
Wind River Workbench
Code Coverage Analyzer

USER'S GUIDE

®

3.0

Wind River Workbench Code Coverage Analyzer User's Guide, 3.0

Copyright © 2007 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, the Wind River logo, Tornado, and VxWorks are registered trademarks of
Wind River Systems, Inc. Any third-party trademarks referenced are the property of their
respective owners. For further information regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDir/product_name/3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:

http://www.windriver.com

For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

Wind River Workbench Code Coverage Analyzer User's Guide, 3.0

7 Nov 07
Part #: DOC-16002-ZD-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

iii

Contents

1 Introduction .. 1

1.1 Introduction ... 1

Code Coverage Analyzer Overview ... 2
Workflow Highlights ... 3

1.2 Architectural Summary ... 4

1.3 Features ... 5

2 Getting Started ... 7

2.1 Introduction ... 7

2.2 Requirements .. 8

VxWorks .. 8
Linux .. 8
All Targets ... 9

2.3 Creating a Project ... 10

2.4 Instrumenting and Compiling Your Code .. 11

2.5 Starting Code Coverage Analyzer ... 11

Connect to Target Dialog Box ... 12
Start the Target Test Code ... 15

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

iv

2.6 Viewing Coverage Data .. 17

Coverage Summary View ... 17
Source Code Viewer ... 18
Trend Graph View ... 19
Distribution Graph View ... 19
Console View .. 20
Color Configuration ... 21
Create HTML Report Dialog Box ... 21
Stopping Data Collection .. 23

2.7 Example Code Coverage Analyzer Session ... 24

3 Instrumenting Source Code .. 27

3.1 Introduction ... 27

3.2 Specifying Instrumentation Parameters .. 28

Coverage Types Tab ... 29
Data Storage Tab (Linux Only) .. 30
Covered Files Tab ... 31
Other Options Tab .. 33
Saving the Instrumented Code Files .. 35

3.3 Instrumenting and Compiling ... 35

From Workbench .. 36
From Your Own Makefile ... 37
From a Command-Line Window ... 37
Instrumentation Issues .. 38

3.4 Downloading Your Object Code ... 39

4 Viewing Output ... 43

4.1 Introduction ... 43

4.2 Starting Data Collection .. 44

4.3 Viewing Live Coverage Data ... 45

4.3.1 Coverage Summary View ... 45

 Contents

v

Saving Output Data ... 48
Deleting Saved Data Files ... 48

4.3.2 Source Code Viewer ... 49

Benefits of Multiple Coverage Selection ... 50
Searching for Source Code Files ... 51
Specifying Source Paths .. 52

4.3.3 Trend Graph View ... 54

4.3.4 Distribution Graph View .. 55

4.3.5 Coverage Report ... 56

4.3.6 Merge Data Files ... 58

Merge Log ... 60
Saving Merged Files ... 60

4.4 Viewing Saved Data .. 61

4.5 Exporting Data .. 62

5 Using the Command-Line Interface .. 65

5.1 Introduction ... 65

5.2 Commands ... 66

coverageupload .. 66
coverageconvert ... 68

5.3 Procedures .. 70

5.4 Example Script Files ... 72

Shell Script File: testcovdemo.sh .. 72
TCL Script File: runcoveragetests.tcl ... 73
TCL Script File: killtgtsvrs.tcl ... 74

6 Troubleshooting ... 75

6.1 Introduction ... 75

6.2 GUI Messages ... 75

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

vi

Status .. 76
Error ... 76

6.3 Command-Line Interface Messages .. 76

Warning ... 77
Error ... 77

6.4 Troubleshooting Tips .. 79

Issues with Instrumentation ... 79
Issues with the Target .. 79
Issues with the GUI .. 79

A Code Coverage Types ... 81

A.1 Introduction ... 81

A.2 Purpose of Code Coverage .. 82

A.3 Types of Coverage .. 83

Function ... 83
Function Exit ... 83
Block ... 84
Decision ... 86
Condition ... 88

A.4 Coverage Type Hierarchy ... 89

B Performance Metrics .. 91

B.1 Introduction ... 91

B.2 Supported Targets Data .. 92

C Glossary .. 95

Index .. 99

1

 1
Introduction

1.1 Introduction 1

1.2 Architectural Summary 4

1.3 Features 5

1.1 Introduction

Wind River Code Coverage Analyzer is a run-time code test coverage analyzer
from Wind River for use in developing embedded software. Wind River Code
Coverage Analyzer tracks your target source code, and determines the percentage
of code that has been executed by a software test case, pointing you to the sections
of code that have not been fully tested. The real-time output display reports on the
branches and blocks in a code segment that are, and are not, actually traversed
during the software test. Code Coverage Analyzer provides you with a definable
degree of confidence that your code has been thoroughly tested before you make
it available to your customers.

NOTE: This document contains background information and process descriptions
only. Detailed help with user interface operations is available by pressing the help
key for your host while running Code Coverage Analyzer.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

2

Code Coverage Analyzer Overview

This section provides an overview of the Code Coverage Analyzer operation.

Mode of Operation

Code Coverage Analyzer is started directly from the Workbench development
platform. It runs as a graphical user interface (GUI) view, integrated with all the
other debugging tools and views available in Workbench. All parameters affecting
the workflow are set up in dedicated Workbench menus, and are saved and made
available for on-going testing projects.

Types of Coverage

During the execution of a software test case, Code Coverage Analyzer monitors the
execution of every branch and block of statements in your code. Its color-coded
graphics and corresponding text output, displayed in real time, enable you to
determine the parts of your code that have (and just as importantly, have not) been
covered by the test case.

The following conditions in your code can be explicitly identified and reported:

■ When each block of non-branching code has been executed.

■ When a function has been entered.

■ If each function exit has been taken.

■ If both the TRUE and FALSE branches of a decision statement are taken.

■ If each subexpression in a Boolean statement has separately evaluated to both
the TRUE and FALSE conditions.

These software test case coverages give you positive proof that thorough software
testing has, or has not, taken place. With this information, you can modify the test
cases to include missed areas as you work toward code that is 100% tested.

Dynamic Coverage Analysis

Code Coverage Analyzer gives you a dynamic real-time view of the performance
of your software with a graph of the percentage of code block elements that have
been traversed in a software test case over a given time period. The use of color
coded output highlights the results as the software test progresses. The capability
of displaying the source code containing a block in question can also help
determine why it was or was not covered in the software test case. To maximize
the degree of assurance you are seeking, Code Coverage Analyzer lets you

1 Introduction
1.1 Introduction

3

1incorporate only the types of coverage you want into the instrumented and
compiled source code.

Post-Analysis Report

When the software test is complete, a comprehensive Code Coverage Analyzer
report can be generated, allowing you to review analyses of coverage percentages
by function, as well as for each type of coverage. This HTML-formatted report can
help you to redesign your test case to ensure the complete and comprehensive
testing of your software product.

Command Line Interface

A command-line interface (CLI) version of Code Coverage Analyzer is also
available. This implementation is designed to support users with a very large code
base that has memory requirements exceeding the capacity of the GUI, and it
allows you to collect and analyze the same coverage data without having to use the
GUI. It also provides an easy means to generate script files for automated testing,
or for adding to your existing test scripts. The command-line interface is described
in detail in Chapter 5. Using the Command-Line Interface.

Workflow Highlights

Code Coverage Analyzer opens a GUI view where you select the coverage types
you want to check, as well as other instrumentation parameters. Other optional
parameters allow you to control the printing of status or error messages, set the
extent of instrumentation in source code and included files, and select compile
stage intermediate files to be saved for later analysis.

The specific test coverage types you can select are:

1. Function—Shows whether each function has been executed at least once.

2. Function Exit—Shows whether every exit from a function has been taken.

3. Block—Shows whether each non-branching block of code has been executed
at least once.

4. Decision—Shows whether both the TRUE and False branches of each decision
statement have been executed at least once.

5. Condition—Shows whether each subexpression in each Boolean statement
has been separately evaluated to TRUE and False at least once.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

4

When you recompile your target code, the coverage instrumentor adds tags to the
code according to options you selected in the GUI. Then, back in the GUI, you use
your test program to execute the instrumented and recompiled target code,
viewing the coverage results in the GUI as the test progresses.

The instrumentation tags for the coverage types you selected cause data to be
gathered from the code as it is executed by this software test. A variety of color-
coded real-time coverage summary dialog boxes are generated and displayed as
the test case progresses.

Upon completion of the test case, you can generate a formal report of the coverage
analysis performed on your target code. This report can be configured to include
only the data you want to present.

1.2 Architectural Summary

The Code Coverage Analyzer elements consist of the GUI, a compile-time
instrumentation program, and an optional target agent.

The GUI enables you to carry out the following activities:

■ Create, modify, and maintain instrumentation parameters.

■ Start and stop data collection.

■ Select from the many optional output viewing modes.

■ Load or delete previously saved data files.

■ View and analyze the coverage results.

■ Merge coverage data files.

The code instrumentation program coverage is run outside the GUI and does the
following:

■ Adds instrumentation tags to the source code files as determined from the
instrumentation parameters you selected.

■ Compiles the source code files, or a selected subset of them.

NOTE: The coverage code instrumentor supports only ANSI C standard C/C++
code compiled with the gcc or Wind River compiler.

1 Introduction
1.3 Features

5

11.3 Features

Code Coverage Analyzer includes the following features:

GUI Format
GUI views are intuitive and easy to use in setting up Code Coverage Analyzer
run-time parameters.

Color-Coded Output
While the software test is running, Code Coverage Analyzer generates real-
time output data records and graphs with the different coverage types color-
coded for easy identification.

Web-based HTML Report
A printable HTML text report, easily generated from the output files, can be
configured to show only the data you want to see.

Source Code View
Code Coverage Analyzer enables you to view source code corresponding to
any file or function displayed in the coverage tree view by clicking on the
screen entry. Viewing the source code can help you better understand how to
modify software test case parameters to ensure that the code gets tested.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

6

7

 2
Getting Started

2.1 Introduction 7

2.2 Requirements 8

2.3 Creating a Project 10

2.4 Instrumenting and Compiling Your Code 11

2.5 Starting Code Coverage Analyzer 11

2.6 Viewing Coverage Data 17

2.7 Example Code Coverage Analyzer Session 24

2.1 Introduction

This chapter takes you through the process of setting up and running Wind River
Code Coverage Analyzer on a VxWorks or Linux target platform. It gives you
enough information to begin using Code Coverage Analyzer with the
demonstration program supplied. At each step references are made to the location
in this manual of more detailed descriptions. For more information on using
Workbench, see the Wind River Workbench User’s Guide.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

8

2.2 Requirements

You must connect to the target manager for your target in the Remote System view
in order to use Code Coverage Analyzer. For more information on the Remote
System view, see the Wind River Workbench User’s Guide: Remote System View, as
well as your platform User’s Guide.

There are some dependencies Code Coverage Analyzer places on your host
operating system for resources that are specific to the target platform, summarized
in the following sections.

VxWorks

■ Code Coverage Analyzer uses the WDB target agent. The easiest way to ensure
that your VxWorks Image Project (VIP) has the WDB support it needs is to
make sure one of the following kernel configuration profiles is used in your
project:

– PROFILE_COMPATIBLE

– PROFILE_DEVELOPMENT

– PROFILE_ENHANCED_NET

■ Wind River Run-Time Analysis Tools do not support connecting to a target
using a WDB_TIPC connection. This means that if you are working in an AMP
environment, you can only connect the Code Coverage Analyzer to core 0 in
AMP mode.

For more information, see Wind River Workbench User’s Guide: VxWorks Image
Projects.

Linux

In the process of building your target root file system, the binary files needed for
the target you are using are copied to the following directory:

NOTE: Workbench does not support using build extensions to instrument VIP-
type projects. To instrument these types of projects, you must use your own
makefile, or use the command-line window. For more information, see the Wind
River Workbench User’s Guide.

2 Getting Started
2.2 Requirements

9

2

/usr/scopetools-6.0

If you should see a file in that directory with a name like the one formerly used to
specify your specific architecture (that is, target type/platform/compiler, such as
ppc85xxGPP1.4gcc4.1.2), it is an empty file and should be disregarded completely.

All Targets

If you have not yet created a target server connection, you should do that now in
the Target Manager view of the Workbench GUI. For detailed instructions on how
to do this, see the Wind River Workbench User’s Guide: New Target Server Connections.
Once you have a target server connection established, you are ready to get started
using Code Coverage Analyzer.

For the first-time user, there are a few necessary functions to be performed before
Code Coverage Analyzer can begin to work on your target code. These are
presented as discrete steps listed below, and each one is described in detail in the
subsections that follow.

1. You must create a Workbench project where you will build and execute your
instrumented target code (see 2.3 Creating a Project, p.10).

2. You must instrument and compile your target code using one of three
optional methods. In all three methods you will be instrumenting and
compiling outside of the Code Coverage Analyzer program, but you do not
need to exit Code Coverage Analyzer to do that (see 3.3 Instrumenting and
Compiling, p.35).

3. When you have successfully carried out the first two steps above, you are then
ready to download your target code binary files and start them, as well as your
Code Coverage Analyzer program, running. Analysis output data will begin
being displayed in the Workbench GUI (see 3.4 Downloading Your Object Code,
p.39).

NOTE: This is a change from previous versions of Code Coverage Analyzer
where a CoverageScope ".prj" project was used for instrumentation. See the
Wind River General Purpose Platform, VxWorks Edition Release Notes, 3.5 for
details.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

10

2.3 Creating a Project

If you do not already have a Code Coverage Analyzer project in the Workbench
Project Explorer view, follow these steps to create a new Workbench project node:

1. Right-click anywhere in the Project Explorer view and select New, then
Example to open the New Example dialog box.

2. Select VxWorks Downloadable Kernel Module Sample Project here, then
click Next.

3. Select The Code Coverage Analyzer Demonstration Program in the
New Project Sample dialog box that opens, then click Finish to complete the
project creation.

Notice that a new covdemo node now appears in the Project Explorer view.
Next you need to build the covdemo.c demonstration program.

4. To establish the path to the source code (covdemo.c), right-click your project
name in the Project Explorer view, then select Import to open the Import
wizard.

5. Select General > File System, then click Next.

6. In the From Directory field, click Browse and navigate to the directory where
your source code (covdemo.c) is stored, then click OK.

Typically this will be:

WIND_SCOPETOOLS_BASE/target/src/vxworks/covdemo

where WIND_SCOPETOOLS_BASE (an environment variable of the same
name) is the root of the tree where you installed the Run-Time Analysis Tools.

7. Select the check box for your code file (covdemo) that appears in the left panel.

Note that all the associated elements (in the panel to the right) also become
selected, including covdemo.c.

8. Click Finish to close the wizard.

Note that all the associated elements checked in the File System panel in this
wizard now appear in your project tree in the Project Explorer view.

You may now wish to open Code Coverage Analyzer and review the
instrumentation options you selected (see 3.2 Specifying Instrumentation Parameters,
p.28). When this review is complete, you are ready to instrument and compile your
target code. If Code Coverage Analyzer is currently running, you do not have to
exit from it. Simply return to Workbench and continue with the next step below.

2 Getting Started
2.4 Instrumenting and Compiling Your Code

11

2

2.4 Instrumenting and Compiling Your Code

Before you run Code Coverage Analyzer on your target, your target source code
must first be instrumented with tags you select to enable the desired coverage
options. A complete review of the available coverage options and the kind of
analysis they generate is given in A. Code Coverage Types. Review this information
for help in deciding on a strategy for developing test cases for your target code.

After reviewing the available coverage options, follow the steps outlined in
3.2 Specifying Instrumentation Parameters, p.28 to select the desired options to be
compiled into your target code.

The actual process of instrumenting and compiling your target code is covered in
detail in 3.3 Instrumenting and Compiling, p.35. Instrumentation takes place in other
Workbench views outside of Code Coverage Analyzer, but it can be done without
having to quit Code Coverage Analyzer if it is already running.

2.5 Starting Code Coverage Analyzer

To start Code Coverage Analyzer, right-click on your target name in the
Remote Systems view, and select Connect Code Coverage Analyzer in the pop-
up menu, as shown here.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

12

Connect to Target Dialog Box

The Connect to Target dialog box, shown for both VxWorks and Linux targets,
opens. Here you enter parameters for your specific target, then click Connect to
start Code Coverage Analyzer running.

Right-click

VxWorks Target Linux Target

2 Getting Started
2.5 Starting Code Coverage Analyzer

13

2

This dialog box connects Code Coverage Analyzer to the selected VxWorks or
Linux target server. The available parameters and their default values are as
follows:

Target Server
Select a target server name from the drop-down list. This list is created from
the list of active target connections owned by the current user. If you do not
see the target you expect to be in this list, look in the Target Manager view and
make sure the desired target server connection is active.

Verbosity
Specifies the volume of target status, information, and error messages written
to the Analyzer Console view (see Console View, p.20). Verbosity can be set in
the range of 0-3 and has the following options:

0 (silent) - Displays only the most severe error message (most restrictive)

1 - Displays all warning, and error messages.

2 - Displays warning, error, and workflow messages.

3 (verbose) - Displays all messages (most verbose)

This verbosity setting controls the volume of messages generated by the target
as well as by the host. All messages appear in the Analyzer Console view.

Additional parameters for VxWorks targets:

Connection Type
Use the default (TCP/IP) whenever possible because it is faster, but if you have
special or unusual connection constraints, you can choose the WTX connection
option.

! CAUTION: Setting verbosity to a value greater than 0 may cause the target
CoverageAgent to needlessly generate large numbers of messages.

Always use the default value of 0 for verbosity unless requested by Wind
River Technical Support to help you diagnose a problem.

NOTE: If your target is not enabled for TCP/IP communication (that is, if your
VxWorks target kernel does not have the TCP/IP components), an informative
message is displayed before the Coverage Summary view opens. In this case
the TCP/IP option is still available, but Code Coverage Analyzer runs in WTX
mode only.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

14

Task Priority
Specify the priority at which the target data collection task is to run, where 0 is
highest priority, and 255 the lowest. Use the default (99), or set a different
priority for the task on the target that handles communication between the
target and the host computer. A higher priority can increase the flow of data
being sent to the host, but at the cost of impacting the performance other target
processes.

Tip: To select a reasonable priority for a TCP/IP connection, you should assign
this task a priority higher than the software test you are running on the target,
but lower than the system modules. The default priority is 99.

Additional parameters for Linux targets:

Target IP Address
Enter the IP address of your target.

TCP Port
Port number used by this target. Usually displays 3333, and does not need to
be changed unless you are using another specific port number.

When you click Connect, Code Coverage Analyzer attempts to establish the
connection, and if successful, the Coverage Summary view opens.

This view is described in detail in 4.3 Viewing Live Coverage Data, p.45.

NOTE: When a coverage project is available, it will appear in this window with text
in italics initially. The text will then turn bold when the binary files are successfully
downloaded. If any code files displayed in the Coverage Summary view that you
know have been downloaded do not switch from italics to bold after just a few
seconds, see the troubleshooting guide, File Errors, p.80 for remedies.

2 Getting Started
2.5 Starting Code Coverage Analyzer

15

2

Start the Target Test Code

If you have not already done so, create a coverage project now (see 2.3 Creating a
Project, p.10), then instrument and compile your target code and download the
binary files to your target, as outlined in 3. Instrumenting Source Code. Initially, after
starting Code Coverage Analyzer, the Coverage Summary view is empty, as
shown in the view above. When you have created a project, instrumented and
compiled your test code, and finally downloaded the binary files, then you are
ready to start the covDemo test code.

To do this, right-click covdemo (covdemo.out) in the Project Explorer view, then
in the pop-up menu select Run Kernel Task to open the Run dialog box, as shown
here.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

16

If coverageTest is not already displayed in the Entry Point field of the
Kernel Task to Run group, click Browse to locate this entry point, then click
Apply to enter it, as shown above. Click Run in the dialog box to start executing
the coverageTest entry point Output data will begin appearing in the
Coverage Summary window, as shown in Coverage Summary View, p.17.

2 Getting Started
2.6 Viewing Coverage Data

17

2

2.6 Viewing Coverage Data

This section briefly describes each of the Code Coverage Analyzer views and
dialog boxes used to control the processing steps in the test code coverage analysis,
and to display the results. It directs you to where you can find detailed view
descriptions.

Coverage Summary View

When you start Code Coverage Analyzer running, the Coverage Summary view
begins to display the analyzed coverage data in a tree structure of functions and
their coverage types, together with the analysis results.

It displays live coverage data when you start data collection, or saved data when
you open a stored data file. Note that the top line in the data has now turned bold,
indicating that the execution file was successfully downloaded. You can change
the background color for any of the coverage types using the Coverage Types

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

18

color palette in the
Window > Preferences > Wind River > Code Coverage Analyzer page (see Color
Configuration, p.21).

The Coverage Summary view is described in detail in 4.3 Viewing Live Coverage
Data, p.45.

Source Code Viewer

Double-click any data line of the coverage tree in the Coverage Summary view to
open the Source view.

This tab view displays the entire contents of the source code file containing the
selected code line, initially centered about that line. Each line in the file reflects the
relative degree of coverage in two ways: a relative coverage symbol (left end, just
to the right of the line number), and a colored background.

2 Getting Started
2.6 Viewing Coverage Data

19

2

You can change the background color for any of the relative coverage types using
the Source Highlighting color palette in the
Window > Preferences > Wind River > Code Coverage Analyzer page (see Color
Configuration, p.21).

Trend Graph View

Select the Trend Graph tab (below the Coverage Summary view) to open the
Trend Graph view.

This view displays coverage data as a graph of percent coverage over time. Each
selected coverage type is represented by a color-coded line. The colors key to the
same colors used in the Coverage Summary view. You can change these colors at
any time using the Coverage Types color palette in the
Window > Preferences > Wind River > Code Coverage Analyzer page (see Color
Configuration, p.21).

The Trend Graph view is described in detail in 4.3.3 Trend Graph View, p.54.

Distribution Graph View

Select the Distribution Graph tab to open the Distribution Graph view.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

20

This view displays a bar graph representation of the different coverage types,
using vertical bars to measure the number of functions or files, grouped in clusters
or bins of percent coverage. Each of the 10 horizontal bins represents a span of 10%
coverage. Right-click in the graph area and select Display Count by File to cause
the bars representing coverage types to represent files instead. If you select it again
it will read Display Count by Function and will toggle back to functions.

The bars are color coded by coverage type. You can change colors at any time using
the color palette in the
Window > Preferences > Wind River > Code Coverage Analyzer page (see Color
Configuration, p.21).

The Distribution Graph view is described in 4.3.4 Distribution Graph View, p.55.

Console View

Select the Analysis Console tab to open the Analysis Console view.

2 Getting Started
2.6 Viewing Coverage Data

21

2

This view displays system status, as well as information and error messages
generated by Code Coverage Analyzer during the session. The volume and type
of messages is controlled by the Verbosity value entered in the Connect to Target
dialog box (see Connect to Target Dialog Box, p.12).

Color Configuration

Select Window > Preferences > Wind River > Code Coverage Analyzer to open
the Code Coverage Analyzer page, containing the color configuration palettes.

In this page you can select background colors for Coverage Types, allowing you
to modify the colors used in Coverage Summary output data displays, as well as
in the Trend Graph and Distribution Graph. It also has a Source Highlighting
palette, allowing you to set the highlighting colors, used only in the Source view,
separately from the other views (see Source Code Viewer, p.18).

Any new colors selected will remain until changed again, even across Code
Coverage Analyzer sessions. Code Coverage Analyzer is shipped with default
color settings, which can be reinstated at any time using this page.

Create HTML Report Dialog Box

Select the Create Report menu item from the pop-up menu in the Coverage
Summary view (see 4.3 Viewing Live Coverage Data, p.45) to open the
Create HTML Report dialog box.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

22

The Create HTML Report dialog box allows you to pick and choose the data you
want included in your coverage report, as well as the file storage location. When
you have selected the desired items, click Create to generate the report. The
HTML Report Created confirmation dialog box opens, where you can choose to
view the report in your default browser, or click Cancel to not view it now.

The HTML report contains coverage data in a printable format. It is generated in
HTML from coverage data as a separate step after data collection has finished, or

2 Getting Started
2.6 Viewing Coverage Data

23

2

at any later time from stored coverage data. It can be displayed and printed in a
browser.

A table of contents enables you to go directly to the data you're looking for. If you
enabled all options while generating the report, then general information is
presented first, followed by total coverage figures. Coverage is then broken down
into summaries by files, then by functions. Finally there is a review of code that
was not covered, first by files, then by coverage types. The report is fully linked
within to allow you to easily navigate its contents.

The Create HTML Report dialog box is described in detail in 4.3.5 Coverage Report,
p.56.

Stopping Data Collection

To stop data collection, right-click on the target name and select
Disconnect Code Coverage Analyzer in the pop-up menu.

Before exiting, Code Coverage Analyzer opens the Save dialog box, offering you
the opportunity to save all the data collected since starting, in a file you specify.

You can also just close the Coverage Summary view by clicking the "X" symbol in
the view’s tab, but in this case the File > Save As option is not available to save the
collected data.

Right-click

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

24

2.7 Example Code Coverage Analyzer Session

The features of Code Coverage Analyzer can be illustrated using a simple example
involving a segment of code to be tested. This example code segment, containing
a C code file covdemo.c, is shipped with Code Coverage Analyzer. In this session
you will compile the code segment with instrumentation, display the real-time
results of the software test case running on the instrumented code, and analyze the
output data.

Follow these steps to run the example Code Coverage Analyzer session:

Step 1: Create a Code Coverage Analyzer project

Before you can even start Code Coverage Analyzer you must have a set of
instrumented and compiled source files available. A project in which to
generate and maintain these files must be created in Workbench as the first
step. To create this project, follow the instructions in 2.3 Creating a Project, p.10.

Step 2: Instrument and compile your target source code.

In Workbench, compile the code segment using the coverage instrumentor. To
do this, follow instructions in From Workbench, p.36. When you have finished
instrumenting and compiling your code, come back to here and continue
following these instructions.

Step 3: Download your compiled object file(s) to the target.

This process is described in detail in 3.4 Downloading Your Object Code, p.39.

Step 4: Start Code Coverage Analyzer.

Start the Code Coverage Analyzer GUI, following the instructions at
2.5 Starting Code Coverage Analyzer, p.11.

Observe that the file name in the Coverage Tree in the Coverage Summary
view initially appears in italics font, but quickly appears in normal bold print,
indicating that it was successfully downloaded to your target. But note that
there is no progress on the coverage test yet (because we have not yet started
the target code running).

NOTE: If any of the instrumented code files displayed in the Coverage
Summary view do not switch from italics to bold after just a few seconds, see
the troubleshooting guide, File Errors, p.80 for remedies.

2 Getting Started
2.7 Example Code Coverage Analyzer Session

25

2

Data collection and display will begin when you actually start the
instrumented test code running, as described in Start the Target Test Code, p.15.
The output data should quickly begin to look like the data presented in
Coverage Summary View, p.17.

Step 5: View results in the different venues

Several data presentation features and venues are available to view output
from your Code Coverage Analyzer run, including the following:

a. Right-click anywhere in the Coverage Tree and select Expand in the pop-
up menu to show all the elements of the coverage tree (see 4.3.1 Coverage
Summary View, p.45).

b. Double-click any line in the expanded coverage tree to view the source
code file containing that code line in the Source view (see Source Code
Viewer, p.18).

c. Select the Trend Graph tab to view a graph of the output data over time
(see Trend Graph View, p.19), or the Distribution Graph tab to view
percent coverage in bar graph form (see Distribution Graph View, p.19).

d. The Coverage Summary view itself shows the results of the test run on the
sample software segment (see Coverage Summary View, p.17). Some
observations you can make from this data are:

– Function coverage is at 71% for the file covdemo.c (five of the six
functions were entered during the test).

– 90% of the block elements in function coverageHeartBeat(), or 9 out
of the 10, tested positive for being covered. The block elements that
failed are indicated by a symbol in the block column, as well as
being identified in the report.

– Scroll down the screen to see similar results that can be validated in
the report.

Step 6: Stop data collection

Right-click your target name in the Remote Systems view and select
Disconnect Code Coverage Analyzer in the pop-up menu (see Stopping Data
Collection, p.23).

Note that the Coverage Summary view remains open for further analysis. At
this point you can right-click anywhere in the Coverage Summary view and
select Create Report, then use the Create HTML Report command to generate
an HTML-formatted text report from the output data.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

26

If you connect to your target again at this point, the current coverage data
being displayed in all open Code Coverage Analyzer views will be cleared
before new data is displayed.

Step 7: Exit Code Coverage Analyzer

If you want to exit Code Coverage Analyzer by closing all the related views,
right-click in the Code Coverage Analyzer tab itself (in the Editor window)
and select Close All.

Before you exit, you might want to use the File > Save As Workbench menu
item to save the data collected in this example (see Saving Output Data, p.48).
This data file can then be downloaded and examined in another Code
Coverage Analyzer session.

This example shows the kind of the information you can obtain from Code
Coverage Analyzer. From the output data you can determine the software
segments that were not covered. You can also view the actual source code for these
non-covered software segments in order to help determine how to modify testing
parameters so those code segments are covered next time.

27

 3
Instrumenting Source Code

3.1 Introduction 27

3.2 Specifying Instrumentation Parameters 28

3.3 Instrumenting and Compiling 35

3.4 Downloading Your Object Code 39

3.1 Introduction

This chapter outlines the steps for instrumenting and compiling source code for a
Wind River Code Coverage Analyzer project.

Before you can begin collecting data using Code Coverage Analyzer, your project
source code must have instrumentation tags applied, and be recompiled using the
coverage instrumentor. To prepare for this step you must select the instrumentor
parameters that describe the coverage characteristics you want applied to your
source code. After your code has been instrumented and recompiled, Code
Coverage Analyzer is able to map the data from your coverage tests to the lines of
original source code, allowing your coverage test results to be correlated and
interpreted in many useful ways.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

28

3.2 Specifying Instrumentation Parameters

As previously mentioned, prior to running the Code Coverage Analyzer you must
instrument your target code with instrumentation parameter types you select to
provide the desired analysis. You can always use the default Code Coverage
Analyzer instrumentation parameters for basic coverage testing, or you can select
specific parameters you want in order to customize your coverage results. If you
choose to create your own instrumentation configuration, a Code Coverage
Analyzer dialog box, available through Workbench, contains all the tools you will
need.

To customize an instrumentation setup, right-click your project name in the
Workbench Project Explorer view and select Properties, then select Code
Coverage Analyzer in the tree nodes to open the Code Coverage Analyzer dialog
box.

In this dialog box you can specify the instrumentation parameters you want to use
(see 2.4 Instrumenting and Compiling Your Code, p.11).

The Instrumentor Options dialog box contains three tab views (four in Linux):

■ Coverage Types

■ Data Storage (Linux only)

■ Covered Files

■ Other Options

Each tab view contains a related set of optional configuration values you can use
for instrumenting your code.

NOTE: The Workbench GUI manages the instrumentation and output files
associated with your project, but it does not keep track of the file names and
locations of your project source code files. If you move your source code after
building it, you must use the Source Path dialog box to inform Code Coverage
Analyzer where you moved it (see Search Failure, p.52).

NOTE: When your cursor rolls over a Coverage Types tab view selection in the
menu, a description of that coverage type appears in the Description field.

3 Instrumenting Source Code
3.2 Specifying Instrumentation Parameters

29

3

Coverage Types Tab

When you open the Code Coverage Analyzer dialog box, the Coverage Types tab
view is displayed by default.

In this tab view, select the coverage type(s) you want to use in your code test
analysis. The default is all five coverage types selected. A detailed review of each
of the five coverage types is presented in A.3 Types of Coverage, p.83.

Strategy

A common technique to maximize productivity is to initially choose parameters
that will conduct a broad sweep through all your code before concentrating efforts
in specific areas. For instance, function coverage alone could be used to verify that
every function in every file is visited at least once. This technique causes a smaller
increase in the size of the resulting object code than the selection of more than one
coverage type, which is especially helpful if target memory is a concern. You can
do more detailed coverage analysis of your code after you have identified areas of
your code on which you want to focus your testing.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

30

Even in more advanced coverage you can take advantage of the interrelationship
of coverage types to catch some of the more subtle coverage errors. Using Decision
and Function coverage together, for instance, returns more information than if
both are run separately.

Remember, you will not see changes in your coverage output data until you
recompile your source code.

You can click Apply at any time to save the current parameter selections, or you
can wait until you are finished making all your changes. The current parameter
values are always displayed in their respective tab views. You can modify them
again at any time.

Data Storage Tab (Linux Only)

For a Linux target only, the Data Storage tab view lets you specify the file name
and parameters for the file on the target where coverage data is to be stored.

Use the following parameters to specify this file:

File to store coverage data (on target)
Enter the directory path and file name of the storage file to be created.

Initial size of file
The starting file size (in KB) to be allocated.

3 Instrumenting Source Code
3.2 Specifying Instrumentation Parameters

31

3

Increase file size in increments of
The size (in KB) to increment file when the current size will be exceeded with
the next write.

Covered Files Tab

The Covered Files tab view lets you specify code files to include or exclude in the
process of instrumentation and compiling.

There are four file coverage choices, with one always selected:

Cover all files
This option (the default) selects all the code files for instrumentation and
compilation.

Ignore all files/turn coverage off
This option allows you to bypass coverage testing without having to modify
your makefiles again.

Cover the files in the list below
This option allows you to specify only the source code files you want compiled
with instrumentation tags. No other source code files will be instrumented.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

32

Ignore the files in the list below
This option allows you to specify the source code files you want to compile
without adding instrumentation tags. All other source code files will be
instrumented.

You can modify the File List table created from either of the last two options by
performing any of the following:

■ To add files directly, enter a directory (or a full path and file name) in the File
field and click Add to add the selected pathname to the File List table.

■ To search for, and navigate to, a file, click Browse to open either:

– the Select Files to Cover dialog box (where you can navigate to a specific
file you want covered), or

– the Select Files to Ignore dialog box (where you can navigate to a specific
file you want ignored),

then click Open to add the selected file to the File List table, as well as the File
field.

In the File List table, you can specify full filenames, pathnames, or directories,
as indicated in the following examples.

xyz.c

All files named xyz.c, regardless of where they are, will be covered (or
ignored).

c:\home\mdm\src\test\xyz.c

The specific file "xyz.c" will be covered (or ignored).

c:\home\mdm\src\other\
All files in this directory, and all its subdirectories, will be covered (or
ignored).

■ To delete files, select any entry in the File List table and click Remove to
remove it from the table.

Only files remaining in the File List table are included (or excluded) when the
source code is instrumented and compiled.

Click Apply to save your changes in the project configuration file. Click Apply
whenever you change the value of any options to save the new values.

3 Instrumenting Source Code
3.2 Specifying Instrumentation Parameters

33

3

Other Options Tab

The Other Options tab view displays optional parameters that can be selected for
your source code instrumentation.

The parameters available in the Other Options tab view are:

Verbosity
Controls the number and type of messages displayed in the Workbench
Build Console view during compilation of your instrumented code (see From
Workbench, p.36). Verbosity values can be in the range of 0-3, where 0 is least
verbose, and 3 is most verbose. The results from selecting a non-zero value for

NOTE: The File List table and associated Add, Browse, and Remove buttons only
apply to the last two options. They are greyed out and not available if either of the
first two (Cover all files and Ignore all files/turn coverage off) options are
selected.

NOTE: Reminder: when you make changes to your instrumentation parameters,
for the changes to appear in the coverage data you must recompile your code.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

34

verbosity can be found at 4.2 Starting Data Collection, p.44. Be sure to read the
Caution message there before assigning a value greater than 0 to verbosity.

Options
Provides the following additional compile-time parameters:

Apply coverage to inlined functions that are in the source code file
Check this option (default) to include these inlined source code functions
in your coverage analysis. If you uncheck it, then coverage will not be
reported on these functions. If there are few enough of them, or their
importance to testing is minimal, you might want to consider unchecking
this option. The default is checked.

Apply coverage to inlined functions that are in header files included by
the source code file

Check this option to include the header file inlined functions in coverage.
The default is unchecked.

Inlined functions in header files are something you cannot change, and
probably do not need to test. But if you do for any reason, you can check
this option to include these functions in your coverage.

Do not delete the instrumented preprocessed source code file
This file (with the .i or .ii extension) is the preprocessed source code file
(.csi extension; see next item) after instrumentation tags are added by
Code Coverage Analyzer. Check this option to save this file when
compiling source code if you want to verify what code objects were
actually tagged, or to clarify or resolve issues. The default is unchecked.

Do not delete the preprocessed source code file
This intermediate file (with the .csi extension) is generated from the
original source code file by the compiler preprocessor prior to being
instrumented. Check this option to save this file when compiling source
code if you want to compare the preprocessed source code to the
instrumented preprocessed source code. The default is unchecked.

These optional parameters are applied when compiling. They should be
carefully considered before modifying as they may cause degraded
performance and increased memory and disk storage requirements.

Project Description
This is a text entry field in which you can make any comments and annotations
relevant to this project that you want. There are no restrictions on text that may
be entered. Just click anywhere in the field and begin typing. Anything you
enter in this field is saved when you click Apply.

3 Instrumenting Source Code
3.3 Instrumenting and Compiling

35

3

This text information is kept with the project configuration file, and is
displayed whenever this project is opened again.

Saving the Instrumented Code Files

All the preprocessed and the instrumented preprocessed files are saved for future
reference in accordance with the parameters you selected in the Other Options tab
view (see Other Options Tab, p.33).

3.3 Instrumenting and Compiling

The next step after setting up the Code Coverage Analyzer instrumentor options
described in 2.3 Creating a Project, p.10 is to instrument and compile your source
code. Compilation is done using the Wind River coverage instrumentor. This
software application calls the compiler preprocessor, inserts instrumentation tags
into the source code files, and finally calls the compiler to compile the
instrumented code. The instrumentation parameters used are from the most recent
project opened by Code Coverage Analyzer.

The compile process takes place in the same environment you have always used,
and the object code generated is stored in its usual place. It is your responsibility
to continue to manage this infrastructure, whether from within the Workbench
GUI or in your own environment. The Workbench GUI can be used to create and
manage the instrumentation and output data files associated with your project.

Your code can be instrumented and compiled from the following sources:

■ Workbench
■ your own makefile
■ a command-line window

NOTE: Workbench does not support using build extensions to instrument VIP-
type projects. To instrument these types of projects, you must use your own
makefile, or use the command-line window. For more information, see the Wind
River Workbench User’s Guide.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

36

From Workbench

Follow this procedure to instrument and compile your code in Workbench:

1. Right-click your target name in the Project Explorer view and select
Build Options, then select Build with Code Coverage Analyzer.

Before building the binaries, be sure this item is checked by right-clicking your
target name and selecting Build Options again to verify that it is checked.

2. Ensure that you are compiling against the correct architecture for your target
by right-clicking your target name in the Project Explorer view and select
Properties to open the Properties for project dialog box.

3. Select the Build Properties view, then be sure the check box for your target
architecture is selected in the Available and enabled build specs list in the
Build Support and Specs tab view, then click OK to close the dialog box.

4. Right-click the project name in the Project Explorer view again, and select
Rebuild Project from the drop-down menu to start the compilation.

Your code will be instrumented and compiled in this process. Status,
information and error messages appear in the Workbench Build Console
view. The number and types of these messages is determined by the verbosity
value, described in Other Options Tab, p.33. After a few seconds, if the
compilation finished with no errors, you will observe a message similar to the
following:

Build Finished in Project 'covDemo': 2006-03-30 15:10:58 (Elapsed
Time: 00:07)

NOTE: This menu item must be checked before each time you build in order to
instrument your target code with the tags you select.

NOTE: You must always use the Rebuild Project option (rather than just
Build) in order for the compiler to be instructed to use the special coverage
instrumentor option (see 3.3 Instrumenting and Compiling, p.35).

NOTE: If you select instrumentation parameters and compile your code using
the above procedure, then later you make code changes and need to compile
again, you must select Rebuild Project (as in Step 5 above). If you only select
Build Project, the build does not use the coverage instrumentor.

3 Instrumenting Source Code
3.3 Instrumenting and Compiling

37

3

From Your Own Makefile

If you compile using your own makefile, you must modify the makefile before
compiling. Specifically, you must add the word coverage (the name of the Code
Coverage Analyzer Instrumentor tool) before each compiler statement in the
makefile. No other changes are required. As each compile statement in the
makefile is executed, the specified instrumentation tags are added to the
preprocessed source code, and the instrumented preprocessed source code is then
compiled with the same options (in situ) on the compiler command-line.

For instance, if you compile with the gcc compiler, a statement to compile the
source code file xyz.c might ordinarily look like:

gcc xyz.c

To instrument and compile this source code file under Code Coverage Analyzer,
the statement would be modified to:

coverage gcc xyz.c

You can see from this example that the entire compiler statement has become an
argument to the coverage instrumentor. Do not change any of your compiler
options or directives, as they are transferred to the compiler when it is executed.
The coverage instrumentor parameters, listed in From a Command Line Window
below, can be also be specified in your makefile.

From a Command-Line Window

You can instrument and compile individual files using the coverage instrumentor
from the command-line, in the same location where you ran Code Coverage
Analyzer. To run this application, you must specify the full pathname to the
executable file when you invoke it, or you can set the PATH environment variable
to include that pathname.

The coverage instrumentor program does not need to be run on your target, or
even on your host computer. Because of cross-compilers, you can build your target
code on almost any machine. The only requirement is that you must use a version
of the coverage program that matches the architecture type of your build machine.
Note that we only support build machines that match the host architectures
indicated in Section 1.1 of the Wind River Run-Time Analysis Tools Installation Guide
and Release Notes Manual.

NOTE: Be sure to verify that the coverage instrumentor is accessible in the PATH
statement in your makefile.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

38

The following is the command-line syntax for starting the coverage instrumentor:

coverage [-project=project file] [-verbosity=n] [-help]
compiler [compiler options]

where the parameters (all are optional) have the following meaning:

-project=project file
The instrumentor uses the specified Code Coverage Analyzer project file,
where project file is the full pathname to the project configuration file. In the
absence of this flag, the instrumentor uses the last project opened in the
GUI.

-verbosity=n where n is in the range of 0 to 3
Controls the number and type of messages posted during source code
instrumentation. Using the default value of 0 causes the instrumentor to
post only error messages. Specifying a larger value (in the range of 1-3)
creates an increasingly greater variety and volume of instrumentor
messages. The general characteristics of verbosity levels are described in
greater detail in 4.2 Starting Data Collection, p.44.

-help

This option displays a list of commands for Code Coverage Analyzer.

The coverage instrumentor adds instrumentation tags to your source code, then
invokes the compiler to compile the instrumented code.

Instrumentation Issues

The following issues deal specifically with instrumenting and compiling your
source code, and should be reviewed before proceeding with this activity.

■ The Code Coverage Analyzer instrumentor supports only
ANSI C standard C/C++ code. In addition, it currently supports only the gcc
and Wind River compilers.

■ Recent versions of the Wind River compiler driver programs (dcc and dplus)
attempt to detect whether the language is C or C++ and compile accordingly.
This mechanism enables you to compile C code with dcc or C++ code with
dplus without having to actually specify which compiler to use.

■ The way in which Code Coverage Analyzer invokes the compiler renders the
compiler unable to dynamically guess which language is being compiled.
Therefore you must use dcc to compile only C code, and dplus to compile only
C++ code. Further, this means that if a project contains both C and C++ code,
you must compile each using different compilation command-lines

3 Instrumenting Source Code
3.4 Downloading Your Object Code

39

3

■ The coverage instrumentor contains a C++ parser, which can create a difficulty
when there is a mixture of C and C++ code to be instrumented. The parser
declares an error when a C code definition statement tries to define a variable
that is a registered keyword in C++. For example, the C code definition:

typedef enum tagbool { FALSE, TRUE } bool;

is a legal statement in C, but would not be legal in C++, since bool is a
registered C++ keyword. The C++ parser in the instrumentor will declare this
statement an error. There are easy work-arounds available. You can use a C
preprocessor macro, such as adding the flag:

-Dbool=Bool

to your compilation line for all C source code (but not for C++). Or, if you
prefer, before the typedef line in the superv.h file you can add:

#define bool Bool

3.4 Downloading Your Object Code

When you have finished instrumenting and compiling your source code files, you
must be sure to download the object files to the target. You can do this at any time.

When you have finished instrumenting and compiling your source files in
Workbench, you can download your object file(s) as follows:

a. If you have not done so already, connect your target to the target manager
by selecting the target symbol and selecting the Connect icon (circled
below).

NOTE: Beware that if you create a code file by the name ctdt.c, it will be
ignored by the instrumentor.

NOTE: If you recompile object files which were previously instrumented and
compiled for Code Coverage Analyzer, you must first disconnect, then reconnect,
any instances of Code Coverage Analyzer currently connected to that target. If you
do not, you will receive incorrect coverage data for the newly created object files
(that is, coverage data corresponding to the previous instrumentation parameter
selection).

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

40

b. With the target connected, in the Project Explorer view, right-click the
object file (covdemo.out), then select Download in the pop-up menu that
opens.

c. Click OK in the Download dialog box that opens.

In a few seconds you should see the project data entry in the Coverage
Summary view change from italics to bold if your binary files were

Right-click on the object
file to be downloaded,
then select Download
from the pop-up menu.

3 Instrumenting Source Code
3.4 Downloading Your Object Code

41

3

successfully downloaded. If this does not happen, see the troubleshooting
guide, File Errors, p.80 for remedies as discussed in Connect to Target Dialog
Box, p.12.

d. If you have multiple object files you need to download, repeat this
procedure for each object file.

e. When all your binary files are downloaded, return to Start the Target Test
Code, p.15 for directions to start the code running.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

42

43

 4
Viewing Output

4.1 Introduction 43

4.2 Starting Data Collection 44

4.3 Viewing Live Coverage Data 45

4.4 Viewing Saved Data 61

4.5 Exporting Data 62

4.1 Introduction

This chapter begins by briefly discussing how to start the Code Coverage Analyzer
GUI, then goes on to describe in detail the appearance, organization, and
usefulness of each output view.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

44

4.2 Starting Data Collection

When you have finished instrumenting and compiling your code, as outlined in
3. Instrumenting Source Code, you can start collecting data with Wind River Code
Coverage Analyzer.

Code Coverage Analyzer reports on data gathered and stored during the running
of the test code. It analyzes this data as it is being generated (in real time). If you
want to observe the data from the very beginning of the test run, you will want to
start Code Coverage Analyzer running prior to starting your test code. However,
you can start collecting data at any time, before, during, or after you start running
the test code.

When you are ready to begin data collection, right-click on your target server name
in the Remote Systems view and select Connect Code Coverage Analyzer to
open the Connect to Target dialog box (see 2.5 Starting Code Coverage Analyzer,
p.11). After selecting desired connection parameters in the dialog box, click OK to
open the Coverage Summary view, and then start your test program if you have
not already done so, following directions in Start the Target Test Code, p.15.

Data Connection Problems

If the Coverage Summary view opens successfully, but one or more of the listed
files does not change from italics to bold after just a few seconds, a potential
problem with that file is indicated. Code Coverage Analyzer will begin collecting
data for the remaining (good) files, but you may want to investigate the broken
ones (see File Errors, p.80).

The following are possible file-related problems and suggested remedies:

■ If there were no instrumentor or compiler errors, check the shell for loading
error messages. Try downloading the files again after correcting any errors
found.

■ Check to be sure that the indicated source code files were not compiled either
with another project, or with coverage turned off (see Covered Files Tab, p.31).
In this case, rebuild your source code and try again.

Successful Connection

When a successful connection has been made, the Coverage Summary view
opens. If your test run is already in progress, the results gathered up to this point
are displayed immediately. Any further results are displayed dynamically as they
are generated.

4 Viewing Output
4.3 Viewing Live Coverage Data

45

4

4.3 Viewing Live Coverage Data

Output data can be viewed in the following forms:

■ In the Coverage Summary View, as an expandable/collapsible tree structure
of percent coverage figures for files and functions, and as covered (or not
covered) symbols for specific coverage types.

■ In the Source Code Viewer, as individual lines of code, with relative coverage
symbols and colored highlighting based on full, partial, or no coverage.

■ In the Trend Graph View, as a graph of increasing percentage of coverage over
test run time, for each of the different coverage types (differentiated with
colored lines).

■ In the Distribution Graph View, as a bar graph of numbers of files or functions
by percent coverage bins (10 of them), over the range of 0-100%, using colors
to show the different coverage types.

■ As a generated HTML Coverage Report.

■ Exported as a comma separated value (.csv) file for your own analysis,
typically in a spreadsheet utility.

All the different forms of data display can be used to display a stored output data
file that is opened, but the Coverage Summary, Source view, Trend Graph, and
Distribution Graph options are also used for data currently being collected.
Results can be displayed simultaneously for comparison and analysis.

4.3.1 Coverage Summary View

The Coverage Summary view opens at the beginning of data collection, or with
the loading of a stored output data file.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

46

The example Coverage Summary view above shows how the results of collecting
data are displayed as an expandable/collapsible coverage tree structure of
functions and their coverage types, together with the resulting coverage data. The
tree is displayed in rows, one for each file and each function within the file, and
one for the beginning statement of each coverage type within the function.

Each row of the tree is comprised of three regions, representing the following:

Expand/Collapse
Shows a "+" symbol (collapsed, select to expand), or a "-" symbol (expanded,
select to collapse). This symbol appears only on file and function lines, and
controls whether subordinate lines are made visible or hidden.

Coverage Tree
Displays the selected covered files and functions (and specific coverage tags,
if expanded). For a file, it shows the complete pathname and filename. For a
function, it shows the function name and parameters passed. For a specific
coverage tag, it indicates the type, and shows the beginning code statement of

4 Viewing Output
4.3 Viewing Live Coverage Data

47

4

the type. For long lines, a horizontal scroll bar allows you to view the entire
line.

Double-click any line in the coverage tree to open a separate view where you
can view the entire source code file containing this line (see 4.3.2 Source Code
Viewer, p.49).

Coverage Results
Graphically shows the percent coverage in columns for each basic coverage
type. Coverage results for each file and function are given in actual percent
coverage (for example, a number such as "50%") displayed in text fields for
each coverage type. The specific coverage tag lines show coverage in this
column graphically, using the symbol for covered, or the symbol for
not covered. Overall percentage covered figures for the entire run are
displayed at the top and bottom of this column.

For further graphic enhancement, the percent coverage text fields show a color
in the background that increases with the percent coverage figure. To modify
the colors, select
Window > Preferences > Wind River > Code Coverage Analyzer in the
Workbench toolbar to open the Code Coverage Analyzer page, then select
colors from the Coverage Types palette (see Color Configuration, p.21).

By selecting Display Count in the pop-up menu (see below), the graphic
symbols representing coverage (as described above) are replaced by the actual
count of hits for each coverage results line in the display. This feature can be
toggled on or off at any time, and its effects appear only in the
Coverage Summary view.

Pop-up Menu

When you right-click any row in the Coverage Summary view, a pop-up menu
opens as shown in the figure above. The following menu items are available:

■ Expand

Expands the Coverage Tree to display all nodes.

■ Display Count

Toggles to show the numeric count of actual "hits" found within each group in
a given coverage type, or only a symbol denoting none, partial, or full
coverage.

■ View Source

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

48

Opens the Source tab view display for the selected row (see 4.3.2 Source Code
Viewer, p.49).

■ Export Data

Opens the Export Data dialog where you can specify a file to save your data to
be exported (see 4.5 Exporting Data, p.62).

■ Create Report

Opens the Create HTML Report dialog box where you can custom configure
a coverage report (see 4.3.5 Coverage Report, p.56).

Saving Output Data

You can save the collected and analyzed coverage data to an output file at any time
while the Code Coverage Analyzer GUI is open, while it is still collecting data, or
even if it has been disconnected. To save your output to a file, select File > Save As
from the Workbench toolbar to open the Save Data As dialog box.

You can modify the default file name in the File field, or you can use the Browse
button to navigate to another existing directory and file. When you click Save, a
copy of all the data collected since Code Coverage Analyzer was started will be
saved at the location showing in the File field. The saved data can be viewed as
described in 4.4 Viewing Saved Data, p.61.

Deleting Saved Data Files

You can delete any data files you previously saved with the File > Save As
command from the Workbench toolbar. To do this, follow these steps:

1. Open the report node in your project tree in the Project Explorer view.

2. Right-click the data file you want to delete to open the pop-up menu.

3. In the pop-up menu, select Delete to delete the file.

4 Viewing Output
4.3 Viewing Live Coverage Data

49

4

4.3.2 Source Code Viewer

The Source view displays your original source code corresponding to the coverage
analysis line selected in the Coverage Summary view, for visual analysis. To open
this Source view, double-click any analysis line in the Coverage Summary view.
The corresponding code line is initially positioned at the top of the Source view,
but you can scroll up and down from there. This view is designed to allow you to
scan through your code to find any sections of it that were not exercised by the test
program.

Double-click on a block, decision, or condition line in the Coverage Summary
view and the Source view will scroll to that line and highlight all the lines in that
block. An example Coverage Summary view, with the Source view opened in the
foreground, is shown here.

The relative coverage status (fully, partially, or not covered) for each instrumented
code line is indicated in two visual ways:

■ With a symbol at the left end of each instrumented code line. This symbol
signifies the following relative coverage status:

 = fully covered

 = partially covered

Right-click,
Select Delete

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

50

 = not covered

■ The background (highlight) color of the line.

The color for each coverage type highlight can be changed by selecting
Code Coverage Analyzer in Workbench to open the Coverage Analyzer page,
and using the Source_Highlighting color palette.

The Source view always opens with the coverage type selected and highlighted
that corresponds to the coverage type of the line double-clicked in the
Coverage Summary view. In addition, every code line in that category has a
relative coverage symbol displayed right after the line number. In this example, all
the code lines contained in the Block 3 selected in the Coverage Summary view are
fully covered (indicated by the symbol, as well as the green highlighting), as
can be observed in 4.3 Viewing Live Coverage Data, p.45.

Benefits of Multiple Coverage Selection

Multiple kinds of coverage can sometimes point out lack of coverage that was not
apparent with just a single coverage type. For instance, in the example above it
appears that all the code in the view is covered. But if you go back to the
Coverage Summary view and select Condition Coverage in addition to the other
coverage types already selected, then rerun Code Coverage Analyzer, the result
shown below makes it obvious that the indicated portion of the code is not fully
covered.

Compare this with the previous results where Condition Coverage is not enabled.

One or more of the subexpressions in the if statement at line 168 (at the arrow), in
the figure above, did not get evaluated to true or false, as described in Condition,
p.88, whereas with only Decision Coverage it appeared fully covered. This
situation can also arise with other types of coverage used alone.

The descriptions of Partially Covered (indicated by the symbol) relate to the
different coverage types as follows:

■ Function — cannot be partially covered; it either is or is not covered.

■ Block—cannot be partially covered, however, a single line in the Source view
may contain more than one block — typically the end of one block and the start
of another. If one block in the line is covered and the other is not, the line is
labeled Partially Covered.

■ Decision — if there is only one decision statement on the line, it means the
decision has evaluated to true or false, but not to both. If there are multiple

4 Viewing Output
4.3 Viewing Live Coverage Data

51

4

decision statements on the line, it means that at least one has evaluated to true
or false, but not to both. For specific information on what the decision(s) have
been evaluated to, see the coverage tree in the Coverage Summary view.

■ Condition — at least one of the subexpressions in a Boolean expression has
evaluated to true or false, but not to both.

Searching for Source Code Files

The File Search dialog box opens when you initiate the search for a source code
file by double-clicking any line in the Coverage Summary window.

The name of the file being searched for is displayed at the top of the dialog box,
and a progress bar is displayed just below it to show that the search is still working.
As matching files are found they are added, along with their pathnames, to the list
in the center of the dialog box. When searching is finished, Done Searching is
displayed above the progress bar, and the progress stops. If no entries are in the
list, it means none were found; edit your source paths and retry.

You can select a match in this field at any time, even while the search is continuing,
and click OK. This closes the dialog box (and terminates the search, if still running)
then opens the selected file in the Source view. The selected source code file will
remain found, but only for the duration of this Code Coverage Analyzer session.

If you click Edit Source Path at any time, this dialog box closes (the search is
terminated, if still running) and the Source Path dialog box opens, where you can
again modify the selection of pathnames to be searched. Click Cancel to terminate
the search and close this dialog box.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

52

Search Failure

If you move your source code files from the place where they were built, Code
Coverage Analyzer will not be able to locate them when you try to open the Source
view. In this case the File Search dialog box displays an error message, including
the filename, as in this example.

Specifying Source Paths

To modify pathnames to your source code files, select Window > Preferences in
the Workbench toolbar to open the Preferences dialog box. In this dialog box,
select the Wind River > Run/Debug node in the tree to open the Source Lookup
page.

4 Viewing Output
4.3 Viewing Live Coverage Data

53

4

In this page, you can enter one or more alternate source code directories into the
ordered list. Code Coverage Analyzer searches the directories in this list for
instrumented and compiled source code files in the order in which the directories
are listed in the dialog box (from top to the bottom).

To add a directory to the list, click Add to open the Browse dialog box, where you
can navigate to and select a directory. The directory will be entered at the bottom
in the Default Source Lookup Path list. Use the Edit button to open the
Folder Selection dialog box where you can add subfolders to an existing folder.

Directories can be given a different search priority by selecting the directory, then
using the Up or Down button on the right to physically move the entry to a new
location in the list. To remove a directory, select it in the list, then click Remove.

When your list is complete and prioritized as you want, click Apply to save any
changes you made to the list of directories. Close this dialog box and start the
search again as directed in 4.3.2 Source Code Viewer, p.49.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

54

The list of directories you generated in the Source Path dialog box appear the next
time you open this dialog box, and remain until you modify the list again.

4.3.3 Trend Graph View

Open the Trend Graph view by selecting the Trend Graph tab.

It contains a line graph of percent coverage for each of the selected coverage types
as a function of time. Time is measured from when the connection is made to the
target, regardless of when the test begins.

The data lines in the Trend Graph are color coded to differentiate between the
types of coverage. To modify the colors (which will also modify the colors used in
the Coverage Summary view), select
Window > Preferences > Wind River > Code Coverage Analyzer in Workbench
to open the Code Coverage Analyzer page, then select colors from the
Coverage Types palette. (see Color Configuration, p.21).

Pop-up Menu

Right-click anywhere in the graphing area to open the pop-up menu shown in the
view above. In this menu, select any entry to toggle the corresponding trace line on
or off.

4 Viewing Output
4.3 Viewing Live Coverage Data

55

4

4.3.4 Distribution Graph View

Open the Distribution Graph view by selecting the Distribution Graph tab.

The Distribution Graph gives you a quick visual indication of the distribution of
percent coverage at the function or file level. It shows vertical bars, color coded to
represent coverage types, arranged in bins of percent coverage ranges, each bin
covering a 10% range. The height of each bar is the number of functions (or files)
whose coverage falls within that percent range.

The data bars in the Distribution Graph are color coded to differentiate between
the types of coverage. To modify the colors (which will modify the colors used in
the Coverage Summary view as well), select
Window > Preferences > Wind River > Code Coverage Analyzer in Workbench
to open the Code Coverage Analyzer page, then select colors from the
Coverage Types palette. (see Color Configuration, p.21).

Pop-up Menu

Right-click anywhere in the graphing area to open the pop-up menu shown in the
view above. Select any entry in this menu to toggle the corresponding plot bar on
or off (in this example, the Function bar display has been toggled off). In addition,
You can display the view of percent coverage by Files or Functions by selecting
the Display Count by File (or Function) menu item at the top of the pop-up menu.
This item toggles with each selection, so the only choice is the other view.
Whichever state you select, it will remain until you change it again, even across
Code Coverage Analyzer sessions.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

56

4.3.5 Coverage Report

Right-click anywhere in the Coverage Summary view, and select Create Report
from the pop-up menu to open the Create HTML Report dialog box.

This is where you select parameters used to build the HTML-formatted report for
the coverage results generated by this Code Coverage Analyzer test run.

The following Contents parameters can be selected:

General Information
When checked, a section containing general information is added to the report.
It contains the target name, the date and time data collection began, the
duration, and the coverage types selected.

Totals
When checked, a section containing the percent coverage for each of the
coverage types selected is added to the report.

Trend Graph
When checked, a link to a Trend Graph view is provided.

4 Viewing Output
4.3 Viewing Live Coverage Data

57

4

Coverage Graph
When checked, a link to a Distribution Graph view is provided.

By Function
When checked, the Distribution Graph shows functions.

By File
When checked, the Distribution Graph shows files.

Summary by Function
When checked, a section listing each function, which file the function is in, and
percent coverage in that function for each of the specific coverage types is
added to the report.

Summary by File
When checked, a section listing each file and the percent coverage for each of
the coverage types selected in that file is added to the report.

Highlighted Source Code
When checked, a link is provided to one or more views, each displaying a
source code file with code lines highlighted, as specified in the
Highlight Functions, Highlight Blocks, Highlight Decisions, and
Highlight Conditions check boxes that follow.

Code Not Covered
When checked, a detailed section listing all the objects of each selected
coverage type that were found to not be covered is added to the report. The
section is organized by Function Coverage first, followed by Exit Coverage,
Block Coverage, Decision Coverage, and Condition Coverage. Each report
item includes the coverage type, followed by a brief explanation of why it was
not covered, the file containing it, and the line numbers (or range) included.
For Function Coverage, the function name is given in place of the coverage
type, whereas for the other coverage types, the coverage type name is first, and
there is a line with the beginning code statement before the line number.

The following Coverage Types options can be selected:

Function, Exit, Block, Decision, Condition

In the Directory and Base Name fields, enter the pathname and filename,
respectively, where you want the report file stored. You can Click Browse to open
the Select Coverage Report dialog box where you can navigate to your desired
directory and click Select to enter the pathname in the field. Since, for any given
report, Code Coverage Analyzer will likely generate the report as multiple HTML
pages (files), each linked to the opening page, you may want to consider specifying

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

58

a separate directory in the Directory field with a descriptive name to store the
collection of files for each report.

A confirmation of the full pathname for the report file you are creating is displayed
in the Main Page field. You cannot change any part of the pathname in this field,
but any changes you make in the Directory or Base Name fields are displayed here
also.

When you are ready, click Create to begin the report creation. The
HTML Report Created dialog box opens when the report has been successfully
created.

This dialog box affirms where the report was stored and gives you the option to
open the report. The report generated by this option is an internally linked HTML
document. It can be viewed online in any browser, and can be printed using the
print capability of the browser. An example report generated from the parameters
selected in the Create HTML Report dialog box is shown here.

This HTML report has been tested and verified correct on both Netscape and
Internet Explorer browsers. It has been executed successfully on a few other
browsers, but not rigorously tested on any others.

On a Windows platform, the report is opened in your default browser when it is
started from Code Coverage Analyzer. When Code Coverage Analyzer opens the
report from a UNIX platform it will try to launch Mozilla, then Firefox, and then
Netscape. If none of these browsers are installed, an error message is displayed.

4.3.6 Merge Data Files

To merge output data files, right-click on any entry in a Coverage Summary view
and select Merge Data to open the Merge Coverage Data dialog box.

4 Viewing Output
4.3 Viewing Live Coverage Data

59

4

This dialog box controls the process of merging saved coverage data files into the
current coverage output in a Coverage Summary view, or with other saved
coverage data files. Enter the file name (00000001.run in this example) to be
merged in the Merge with field (or use Browse to navigate to a desired file), then
click Merge to complete the file merging.

Merging coverage data is useful for constructing a more inclusive picture of code
coverage when it is not possible to design tests that exercise the entire application
in one pass. Separate coverage tests, run at different times, can be merged together
to display results as if they had all executed at the same time, yielding a more
complete code coverage analysis of the source code.

The merge process is subject to the following constraints:

■ The source code for all coverage tests to be merged must not have changed.

■ The same coverage types must have been selected for each test (see Coverage
Types Tab, p.29).

■ The same options for inlined functions in source and header files must have
been selected from the Other Options tab view of the Instrumentor Options
dialog box for all tests (see Other Options Tab, p.33).

These conditions are all checked by Code Coverage Analyzer for any selected files
before they are merged together. If any conditions are not met, an appropriate
error is posted in the Merge Log window and the merge is aborted.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

60

Merge Log

The Merged Log view appears as a new Editor view at the completion of a merge
operation. It displays the merge status and any error messages generated in the
process.

The data in the log for that window is only relevant to that window (that is, each
saved data file containing merged data displays only its own Merge Log window).
If closed, it can be opened again at any time by right-clicking anywhere in the view
containing the merged file (the 00000002.run file, in this example) and selecting
Merge Log.

Saving Merged Files

When a data file is merged into another file, the file containing the merged data is
not automatically saved, and the merged data will be lost if you close the view
without saving it.

Merged data can be saved using the File > Save As Workbench menu command
from the view displaying the merged data (the 00000002.run file, in this example).

4 Viewing Output
4.4 Viewing Saved Data

61

4

4.4 Viewing Saved Data

Using the Workbench toolbar command File > Save As to open the Save Data As
dialog box, you can save all the output data from the beginning of the session up
to the moment you select the command, in a file you select or specify (see Saving
Output Data, p.48). This file can then be opened in the Code Coverage Analyzer
GUI for viewing at any time using the Workbench File > Open File menu
command. This action causes the selected file tab view to open in the Editor view,
with the file name appearing in the tab.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

62

All the same functions and views available in the Coverage Summary view are
also available in the saved data view, including the Source view, Trend Graph,
Distribution Graph, and Coverage Report.

4.5 Exporting Data

You can create a file in Code Coverage Analyzer containing the coverage output
data displayed in a Coverage Summary view, but formatted in ASCII for display
in a spreadsheet application. In the Coverage Summary window, use the pop-up
menu command Export Data (see Pop-up Menu, p.47) to open the Export Data
dialog box where you can select the pathname and filename for the exported data
file. It will be saved as a comma-separated value file with the extension .csv.

4 Viewing Output
4.5 Exporting Data

63

4

You can use the default pathname and filename shown in this dialog box, or enter
any other file name and location you want. Either enter your choice directly in the
File field, or click Browse to navigate to an existing pathname and enter your
filename. When you are ready to save the file, click Export.

Tip: Be sure to note the pathname and filename you have selected, because
once you click Export this information is no longer displayed anywhere. This
file is not maintained by Code Coverage Analyzer.

An example of this file is shown here, as viewed in a typical spreadsheet.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

64

65

 5
Using the Command-Line

Interface

5.1 Introduction 65

5.2 Commands 66

5.3 Procedures 70

5.4 Example Script Files 72

5.1 Introduction

The Wind River Code Coverage Analyzer command-line interface (CLI) provides
the ability to upload and manipulate coverage data from a target without using the
Code Coverage Analyzer GUI. It is designed to handle large code bases that have
much greater memory requirements than the GUI can handle. If you are running
the GUI on a very large instrumented code file and the progress meter stalls while
loading the code on the target, you may want to try testing this code with the
command-line version of Code Coverage Analyzer. By using special caching and
data lookup techniques, it has 26 times the memory capability of the GUI.

In addition to featuring increased memory capacity, you can also add coverage
testing to existing test scripts, or generate a coverage test script specifically to
collect Code Coverage Analyzer data. This enhances the capabilities for
autonomous testing, and can reduce routine and monotony, particularly when
many short tests are to be run. The data is saved in a file for later analysis.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

66

Special commands can be executed directly in a command shell, or added to a host-
based test script. The commands collect and store the same data that would have
been collected by the running GUI. In many cases the stored data can later be
loaded and displayed by the GUI, or it can always be merged with other Code
Coverage Analyzer data. You can also use the command-line interface to generate
HTML reports from this stored data, as well as exporting the data in a comma-
separated value (.csv) format used in spreadsheet and other similar applications.

For information on any errors encountered in using the CLI, and their resolution,
see 6. Troubleshooting.

5.2 Commands

The interface has two commands, which can be entered from the command-line or
in a script. The commands, described in the following sections, are:

■ coverageupload
■ coverageconvert

coverageupload

The coverageupload command connects to your target and uploads requested
data into the specified file, in the Code Coverage Analyzer run format.

The full command options for coverageupload are:

coverageupload [-project project_name.prj] [-tgtsvr target_server]
[-file file_name.run] [-verbosity n]
[-overwrite true/false]

NOTE: Before running the CLI, the WIND_SCOPETOOLS_BASE environment
variable must be explicitly set to the location where the Run-Time Analysis Tools
were installed on your system. This is most easily accomplished by executing the
command, for example:

wrenv -p workbench-3.0

This properly sets up the environment variables to allow you to use the commands
described in 5.3 Procedures, p.70.

5 Using the Command-Line Interface
5.2 Commands

67

5

where the command-line arguments are:

-project project_name.prj (required)
The full path to the Code Coverage Analyzer project, including the .prj
extension.

-tgtsvr target_server (required)
The name of the target server to use for connection to the target. This must be
a valid (fully qualified) target server name, such as walnut@svl-grood-d1.

-file file_name.run (required)
The name of the file to save the data in. Use the .run extension. By default, the
file will be put in the directory in which you are running, but you can also
enter a full pathname.

-verbosity n
A number from 0 to 3 that determines volume of status output. The default is 0.

-overwrite true/false
Specifies whether to overwrite (TRUE) or not to overwrite (FALSE) the
file_name.run file. The default is FALSE.

The GUI does not have to be running to use this command, but a target server is
necessary to connect to the target. The command connects the target to the
specified target server, uploads the data once, and saves it in the specified .run file.

A project file name, including the .prj extension, must be specified in order to
know which data to upload from the target. You must specify the same project that
was used to compile the instrumented code, and the full pathname to that project
file must be entered. This pathname to the project file can be found in either of two
ways:

1. Set the verbosity to 1.

This will print out the full path to the project file in the shell window.

2. Select Open > Project.

The Open Project dialog box opens, displaying the name and pathname of all
your current projects. From this list you can note the full pathname to the
project you are looking for.

It is recommended that you save the data in a file with a .run file extension to
identify it as a Code Coverage Analyzer run file. By default, Code Coverage
Analyzer will not overwrite an existing run file, but if you do want to overwrite an
existing file, set -overwrite to TRUE.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

68

The coverageupload command cannot merge results. If you want to merge the
results of this Code Coverage Analyzer run with an existing .run file, specify a new
file name for coverageupload, then later merge this file with the previous results
using coverageconvert, described below.

coverageconvert

The coverageconvert command manipulates Code Coverage Analyzer data
previously collected by a coverageupload command. It can perform the following
operations:

■ Merge the Code Coverage Analyzer .run file into another Code Coverage
Analyzer .run file.

Only two files can be merged together at a time. To merge more than two
files together, call coverageconvert repeatedly, specifying the same
merge_file.run name (following the -merge option) each time. If the
merge_file.run file does not exist, coverageconvert will create it and merely
copy the file_name.run file to it.

■ Export the Code Coverage Analyzer run file into a comma-separated value
(.csv) file.

The .csv file generated with this option can be imported directly into a
spreadsheet.

■ Generate an HTML report from the Code Coverage Analyzer run file.
The HTML report generated is the same report generated by Code
Coverage Analyzer. Its format is described in detail in 4.3.5 Coverage
Report, p.56.

The basic command options for coverageconvert are:

coverageconvert file_name.run [-merge merge_file.run]
[-export csv_file.csv] [-html report_directory]

where the arguments are:

file_name.run (required)
The name of the coverageupload data output file.

NOTE: It was noted above that data is uploaded by coverageupload only once.
Hence, the small time value for Duration, reported in the HTML report, reflects
the time it took coverageupload to execute (not the time span of coverageconvert
as it monitored the running target code).

5 Using the Command-Line Interface
5.2 Commands

69

5

-merge merge_file.run
Tells Code Coverage Analyzer to merge the contents of file_name.run file
into the existing merge_file.run file.

-export csv_file.csv
Tells Code Coverage Analyzer to transform data in the file_name.run file
into a comma-separated value (.csv) file, csv_file.csv.

-html report_directory
Causes Code Coverage Analyzer to generate an HTML report from the
Code Coverage Analyzer run data collected, and save it in the (required)
report_directory directory.

There are optional commands available that control the HTML report format. They
include the following:

-coverageType function/exit/block/decision/condition
Any of these coverage types selected are included in the report.

-generalInfo true/false
If set to TRUE, this option shows general information in the main page.

-totals true/false
If set to TRUE, this option shows totals information in the main page.

-graph true/false function/file
If set to TRUE, this option shows a distribution graph by functions or files.

-summaryByFunc true/false
If set to TRUE, this option shows a statistical summary by functions.

-summaryByFile true/false
If set to TRUE, this option shows a statistical summary by files.

-highlightSource true/false function/exit/block/decision/condition
If set to TRUE, this option highlights source code lines containing the
selected coverage types.

-notCovered true/false
If set to TRUE, this option displays summary of source code that is not
covered.

NOTE: By default, if none of the above optional commands are specified, it is
equivalent to specifying:

-coverageType function block decision condition -generalInfo true
-totals true -graph true function -summaryByFunc true
-summaryByFile true -highlightSource true block -notCovered true

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

70

5.3 Procedures

This section outlines the steps to retrieve data from your VxWorks targets and save
it for later analysis.

Step 1: Execute the following instructions to set up the proper environment.

On your Windows or UNIX host, run the wrenv program as follows:

WIND_HOME/wrenv.exe -p workbench-3.0 (Windows)

WIND_HOME/wrenv.sh -p workbench-3.0 (UNIX)

This will properly set up the environment variables to allow you to use the
coverageupload and coverageconvert commands.

Step 2: Start wtxregd in the shell.

Step 3: Start your target server running in the shell.

Step 4: Run dfwserver.

To do that, follow these steps:

a. It is recommended that you unregister any dfwserver left over from
previous activity before continuing (it may not always be necessary, but it
is a good practice). Use the following command:

%WIND_SCOPETOOLS%\dfw\dfwrelease\x86-win32\bin\dfwserver.exe -unregister
-userregistry -session dfwservername -registryhost localhost

where:

dfwrelease is the latest dfw release directory, for example,

0160j

dfwservername is the dfw server name you are using, for example:

dfw-wb30-dsmith

b. Start dfwserver to take commands from the console and sockets using the
command:

%WIND_SCOPETOOLS%\dfw\dfwrelease\x86-win32\bin\dfwserver.exe -daemon
-protocol mi -io stdio -io sockets -useregistry
-session dfwservername -registryhost localhost

Where the same placeholders are as described above.

5 Using the Command-Line Interface
5.3 Procedures

71

5

Step 5: In the dfw window, connect dfw to the target server.

To do this, follow these steps:

a. Define both the target server name and the path to the kernel image using
the command:

-wrs-target-define targetserver@hostname unifiedtargetplugin
-tgt "DEVICE=’WTX_VXWORKS’,ADDR=’targetserver@hostname’,
KERNEL=’D:/wb26_22c23a/workspace/walnut/default/vxWorks’"
-auto-cpu-all

Where targetserver@hostname is your target server/host name, for
example:

tgt_128.224.45.33@svl-grood1
There will be a response similar to,

"done, defName=’targetserver@hostname’"

b. Connect dfw to the target, changing the name of the target to your target,
using the command:

-target-select wrs-remote-dfw targetserver@hostname

There will be several responses, such as,

"=connected,thread-id=’1’,def-name=’targetserver@hostname’"

"=connected,thread-id=’2’,def-name=’targetserver@hostname’
core-name=’405GP’,system-context-thread-id=3"

"=modules-changed,thread-id-’2’,modules=[{id=’0x1’,
name=’D:/wb26_22c23a/workspace/walnut/default/vxWorks’
,file=’D:/wb26_22c23a/workspace/walnut/default/vxWorks
’,symbols=’1’,reserved=’0’,image=’1’}]
done.connected-cores=[{core-name=’405GP’,thread-

id=’2’}]

Step 6: On the target, load the full path to the module as it was compiled.

Do this by entering:

ld 1,1,"D:/wb26_22c23a/workspace/covdemo/PPC405sfdiab_DEBUG/
covdemo.out"

Step 7: On the target, execute coverageTest.

In coverageTest, do the following:

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

72

a. Use coverageupload to upload the coverage data from the target with the
command:

coverageupload -tgtsvr targetserver@hostname -file coveragedata.run
-project projectname.prj

Where projectname.prj is the pathname to your project, for example:

/home/grood1/.scopetools/coveragescope/default/default.prj

b. Generate a coverage report with the command:

coverageconvert coveragedata.run -html pathnametoHTMLfile

Where pathnametoHTMLfile is the pathname to where you will store your
HTML output file, for example:

/home/grood1/tmp/html/

5.4 Example Script Files

This section presents an example shell script that tests the covdemo.c program
shipped with Code Coverage Analyzer. The script references two additional TCL
script files, also presented.

Shell Script File: testcovdemo.sh

This shell script file gives you an example of how you can use the Code Coverage
Analyzer scripting feature to set up and collect coverage data from your target.
Two TCL scripts are referenced within this file, one to download object files and
start the tests, and the other to shut down the target servers. Finally, the script
merges the output files and generates a Code Coverage Analyzer HTML report.

#! /bin/sh
#
Example script for collecting CodeCoverageAnalyzer data from two
targets, merging the data, and creating a report
#
Assumes that WIND_BASE and WIND_REGISTRY have been set, e.g. by
sourcing torVars.csh
#

5 Using the Command-Line Interface
5.4 Example Script Files

73

5

Start the target servers
tgtsvr katmai -A -s -n katmai -c /raid0/local/rts/export/root/katmai/vxWorks
&
tgtsvr henry-2 -A -s -n henry-2 -c /raid0/local/rts/export/root/henry-
2/vxWorks &

Call tcl script that downloads the object modules from the
target and runs the tests
wtxtcl runcoveragetests.tcl

Remove coverage data from the last run
rm coveragedata*.run

Use coverageupload to upload the coverage data from the targets
coverageupload -tgtsvr katmai@mammoth -file coveragedata_katmai.run -project
/home/heidi/.scopetools/coveragescope/default/default.prj

coverageupload -tgtsvr henry-2@mammoth -file coveragedata_henry-2.run -
project /home/heidi/.scopetools/coveragescope/default/default.prj

Shutdown the target servers
wtxtcl killtgtsvrs.tcl

Merge the coverage results into one run
coverageconvert coveragedata_katmai.run -merge coveragedata.run
coverageconvert coveragedata_henry-2.run -merge coveragedata.run

Generate a coverage report
coverageconvert coveragedata.run -html /home/heidi/tmp/html/

TCL Script File: runcoveragetests.tcl

Sleep for a bit to let target servers come up
msleep 500

Attach to katmai
wtxToolAttach katmai@mammoth coverageTest
Load and run tests (call coverageTest())
wtxObjModuleLoad LOAD_ALL_SYMBOLS covdemo.o
set coverageTestAddress [lindex [wtxSymFind -name coverageTest] 1]
wtxFuncCall $coverageTestAddress
Sleep to let test run, then detach
msleep 9000
wtxToolDetach

Attach to henry-2
wtxToolAttach henry-2@mammoth coverageTest
Load and run tests (call coverageCleanUp())
wtxObjModuleLoad LOAD_ALL_SYMBOLS covdemo.o
set coverageCleanUpAddress [lindex [wtxSymFind -name coverageCleanUp] 1]
wtxFuncCall $coverageCleanUpAddress

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

74

Detach
wtxToolDetach

TCL Script File: killtgtsvrs.tcl

Shutdown katmai
wtxToolAttach katmai@mammoth coverageTest
wtxTsKill WTX_OBJ_KILL_DESTROY

Shutdown henry-2
wtxToolAttach henry-2@mammoth coverageTest
wtxTsKill WTX_OBJ_KILL_DESTROY

75

 6
Troubleshooting

6.1 Introduction 75

6.2 GUI Messages 75

6.3 Command-Line Interface Messages 76

6.4 Troubleshooting Tips 79

6.1 Introduction

If you get error messages, or are having problems getting Wind River Code
Coverage Analyzer to work, check the error messages and troubleshooting tips in
this chapter to see if they resolve your problems. If you are still unable to get Code
Coverage Analyzer to work, email the Technical Support Team.

6.2 GUI Messages

Message traffic within the Code Coverage Analyzer GUI, and with its external
parts, is formatted and displayed in a variety of places.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

76

Status

Status messages appear in the Analysis Console view, described in Console View,
p.20, while warning messages often appear in pop-up windows.

Error

In the process of starting and running various Code Coverage Analyzer tasks,
error messages may appear. Error messages for the Code Coverage Analyzer GUI
are displayed in the Analysis Console view. This section lists the error messages
most likely to be encountered.

Lost Connection

If Code Coverage Analyzer loses its connection with the target, you will see the
error message:

Lost connection to target.

in the status bar. Possible causes are:

■ The target was rebooted.
■ The network connection was interrupted or disconnected.
■ The target server is busy, or the machine running the target server is busy.

Instrumentor Errors

When an instrumentation error occurs, the Instrumentor Errors window, which
opens automatically on top of the Coverage Summary window, displays the error
messages from the instrumentor. If it is not open, you can select
Project > instrumentor Errors to open it at any time.

6.3 Command-Line Interface Messages

The following list contains error and warning messages that the coverageupload
and coverageconvert options may generate when run on the command-line
interface (CLI) (see Chapter 5. Using the Command-Line Interface). These messages
are sent to stdout. In addition, the coverageupload command creates a log file

6 Troubleshooting
6.3 Command-Line Interface Messages

77

6

containing extra status information on the data collection run, as well as any of
these error or warning messages it generates. The log file is written to:

user_home/.scopetools/coveragescope/coverage.log

Warning

2000 Could not find data on the target for a source file that had been
instrumented for this project.

This error probably means that the code was not loaded on the target for this
source file. It is reported as 0% covered.

2001 Could not load the CodeCoverageAnalyzer information file for this source
code.

This file does not show up in the Code Coverage Analyzer run or report.

2002 Found a bad tag in the CodeCoverageAnalyzer information file.

The Code Coverage Analyzer data reporting could have an error for this
source file.

2003 Found bad data in the CodeCoverageAnalyzer information file.

The Code Coverage Analyzer data reporting could have an error for this
source file.

2004 Had a data error on coverageupload.

Either the size of the array on the target did not match what the host expected,
the key did not match, or the array was unknown. Clear all data in the project
from the GUI (Project > Clear Results) and recompile the entire project.

Error

1000 Need to specify a target server for coverageupload.
1001 Need to specify a .run file for either the output of coverageupload or
the input of coverageconvert.
1002 The run file specified after -file already exists.

Use the argument -overwrite true to overwrite the file or specify a different
file name.

1003 Need to specify a project for coverageupload.
1004 Could not find the specified project file.

Verify that the full path to the file is specified and is correct. Also verify that
the .prj extension is included.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

78

1005 Error opening a project.

Make sure you have read permissions to the project file.

1006 Target server tgt server is not found.

Verify that the target server tgt server is up and running, and that you specified
a fully qualified target server name, such as walnut@svl-grood-d1.

1007 Error in the CodeCoverageAnalyzer link to the target.

The most likely cause of this error is either the target rebooting while
coverageupload is uploading the Code Coverage Analyzer data or a crash of
the target server.

1008 No CodeCoverageAnalyzer information files (.tid) were found for the
project.

This error probably means no source files were instrumented for the project.

1009 Error while reading in CodeCoverageAnalyzer information files.

Either none were successfully loaded or there was another error.

1010 API_SERVER_NOT_FOUND

(Same cause and remedy as error 1006 above.)

1100 Cannot find the specified .run file.

Verify that it exists.

1101 Cannot read the specified .run file.

The file could be corrupted.

1102 Do not have write permission to the file.
1103 Failed to export to the specified file.
1104 Failed to save the .run file.

Verify that you have permission to write to this file.

1105 Merging of the two runs failed.
1106 Could not create the directory for the report.
1107 Failed to generate the report.
3001 The environment variable WIND_SCOPETOOLS is not set.

You need to set this environment variable by calling
WIND_HOME/wrenv.exe -p workbench-3.0 (Windows host)

WIND_HOME/wrenv.sh -p workbench-3.0 (UNIX host)

6 Troubleshooting
6.4 Troubleshooting Tips

79

6

6.4 Troubleshooting Tips

This section organizes problem areas by the major Workbench components in
which they occur.

Issues with Instrumentation

Code Size and CPU Overhead

As with any procedure that tags or patches a program, Code Coverage Analyzer
instrumentation adds a small amount of overhead to your target code, both in
terms of code size and also execution time. Since the object of this analysis is the
paths taken (or not taken) through your test code, and not on speed or timing
issues, the implications of this overhead should not be a problem in most
circumstances.

A summary of observed data on these overhead parameters is given in Appendix
B. Performance Metrics. The information presented there will help you determine
the impact of the test coverage types you would like to run on your target.

Issues with the Target

Target Connection Lost

A message appears alerting you to the fact.

Issues with the GUI

Instrumentor Errors

You can obtain more detailed information by increasing the verbosity level, set in
the Other Options tab view of the Instrumentor Options dialog box, then running
the instrumentor again. Be aware, however, that specifying a larger value (in the
range of 1-3) generates an increasingly greater variety and volume of instrumentor
messages. The default is 0.

Compiler Errors

If an error occurs when compiling your instrumented code, check the compiler
message log for information about the error The compiler message log is usually

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

80

located where your compiler output is displayed. If you are running on
Workbench, the compiler output typically appears in the Build Console view.

File Errors

If the Coverage Summary view appears to open successfully, but one or more of
the listed files does not change from italics to bold after just a few seconds, a
potential problem with that file is indicated.

The following are possible file-related problems and suggested remedies:

■ If there were no instrumentor or compiler errors, check the shell for loading
error messages. Try downloading the files again after correcting any errors
found.

■ Check that the indicated source code files were not compiled either with
another project, or with coverage turned off (see Covered Files Tab, p.31). In this
case, recompile your source code and try again.

81

 A
Code Coverage Types

A.1 Introduction 81

A.2 Purpose of Code Coverage 82

A.3 Types of Coverage 83

A.4 Coverage Type Hierarchy 89

A.1 Introduction

This chapter describes code coverage types and the role of a code coverage
analyzer, such as Wind River Code Coverage Analyzer, as used in the software
testing process.

Code coverage analysis is the process of determining which code statements have,
and which have not, been exercised by a software test case. A code coverage tool
provides the developer with data about how much of the code has been traversed
and which specific parts of the code were not visited. This enables the developer
to modify software test cases to more fully cover all areas of the code.

Various types of coverage, as discussed in A.3 Types of Coverage, p.83, provide the
developer with different information about the effectiveness of the test cases.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

82

A.2 Purpose of Code Coverage

A code coverage analyzer provides the developer with data about how much of
the source code has been exercised by a software test case. For instance, a code
coverage analyzer may report the percentage of total functions that have been
invoked, or the percentage of executable statements that have executed. This gives
the developer a measure of how comprehensive the test case is. A code coverage
analyzer also reports to the developer which parts of the code have not been
executed, such as generating a list of functions that have not been called. The
developer can then use these reports to refine the software test cases to better
exercise the code.

The main point to understand about using a code coverage analyzer is that code
coverage measures the quality of the software testing effort, not the quality of the
software itself. A code coverage analyzer does not detect or locate bugs in the
software, nor does it tell if the code meets all of its specified requirements. Code
coverage results are a tool used to analyze the effectiveness of the software testing
effort.

One of the primary goals of a code coverage analyzer is to find and identify those
areas of code that are not being tested so the test cases themselves can be modified
or augmented. The code coverage report indicates which parts of the code have not
been traversed by the test. The code coverage analyzer does not generate test
software for the developer, but rather points out to the developer which areas of
the code were not exercised. Used properly, the code coverage results can enable
the software developer to improve both the quality and scope of the software test
cases.

As a secondary goal, code coverage can be used to identify redundant test cases
that exercise identical code, thus shortening the testing time. Code Coverage
Analyzer does this by displaying a trend graph of coverage level versus time. A
flat section of the graph indicates the software tests are simply rerunning the same
code and may possibly be eliminated.

Code coverage tests can be used for various levels of software testing. A software
developer may use a code coverage analyzer to verify that a critical function has
been fully tested. A software quality tester may use code coverage to ensure a
certain level of coverage for the entire software test effort before the release of the
product. Different types of coverage are useful for these different purposes, as
discussed in the next section.

A Code Coverage Types
A.3 Types of Coverage

83

A

A.3 Types of Coverage

Code Coverage Analyzer provides five types of code coverage, allowing you
discrete steps in increasing levels of coverage capability.

The types of code coverage provided are:

■ Function
■ Function Exit
■ Block
■ Decision
■ Condition

Function

Function coverage reports whether or not each function in the source code has
been called. A coverage tag is placed in the entry (but not the exit) of each function,
and the function is considered covered if it has been entered at least once. Function
coverage is useful as an initial coverage goal of verifying that a software test case
exercises all major parts of the code.

Function Exit

Function Exit coverage reports whether every exit from a function has been taken.
There are one or more function exits for every function. One exit is always the end
of the function, while other exits may be return, exit() or abort() statements.

Function Exit coverage reports whether or not the bottom of the function was
reached. However, in some cases this end is never reached because of one or more
previous exit statements. It is up to the user to prove that the final function exit is
indeed unreachable and to not show Function Exit coverage.

For example, the following function has three exits, but only two are reachable:

void ExampleExitFunction(int a)
{

if(a) {
...
return ; /* First Function Exit */
} else {
...
return ; /* Second Function Exit */
}
/* Third Function Exit */

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

84

Block

Block coverage reports whether every non-branching block of code has been
executed at least once.

Block coverage provides the same information as coverage for every individual
statement would. "Statement" coverage would report whether each statement has
been executed. But since Code Coverage Analyzer assumes that every consecutive
statement is always executed until a branch is encountered in the code, it is more
concise to break the code up into blocks. Each block consists of all the statements
between branches, and coverage is reported by blocks.

The rest of this section describes how Code Coverage Analyzer divides and labels
blocks. This information may be helpful in interpreting the results of your Block
coverage run.

Every function in the source code is divided into blocks, with the first block
starting at the beginning of the function and the last block ending at the close of the
function. A new block is started every time the code branches, such as an if
statement or a while loop. The various types of branches in C and C++ are broken
into blocks as described below.

■ if statements
This block begins at the opening brace of the if statement and ends at the
closing brace. At the end of an if or if-else block, a new block is started as long
as there is another statement following it. If the if block is the last statement in
the function, it will be the last block in the function, with the block ending at
the closing brace.

■ if-else-if statements
These are treated as nested if statements, but the else is the start of the next
block, which ends at the following if where another new block begins.

For example, the code fragment:

void ExampleIfFunction(int a, int b) {
if(a==2)
{
printf("Hello");

}
else if(b==3 && b>a)
{
printf("World");

}
else
{
printf("\n");

} }

A Code Coverage Types
A.3 Types of Coverage

85

A

has five blocks:

block 1: void func(int a, intb) {
if(a==2)

block 2: {
printf("Hello");

}
block 3:else if(b==3 && b>a)
block 4: {

printf("World");
}

block 5:else
{
printf("\n");

} }

Entering the function always covers block 1. If a equals 2, block 2 will be
covered, but not blocks 3, 4, or 5. If a is not 2 and b equals 3 and is greater than
a, then blocks 3 and 4 will be covered, but not blocks 2 and 5. If a is not equal
to 2 and b is not equal to 3, then blocks 3 and 5 will be covered, but not blocks
2 or 4.

■ loop statements
A new block is started at the beginning of a for or while loop. Block coverage
reports whether this loop has been executed at least once.

A new block is not started at the beginning of a do-while loop as this loop is
always evaluated at least once.

■ switch statements
Every non-empty switch case is the start of a new block. Note that Block
coverage does not tell you whether any case was explicitly encountered, or if
it just fell through to that case.

For example, the code fragment:

void ExampleSwitchFunction(int a,) {
switch(a){

case 0:
 printf("Hello");
case 1:
case 2:
 printf("World");
 break;

 } }

has three blocks:

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

86

block 1: void ExampleSwitchFunction(int a,) {
switch(a) {

block 2: case 0:
 printf("Hello");

block 3: case 1:
case 2:
 printf("World");
 break;

 } }

Block 1 is covered whenever the function is called. Block 2 is covered when a
equals 0. Block 3 is covered if a equals 0,1, or 2.

■ Other branches
Code Coverage Analyzer always starts a new block at a goto or label
statement. A new block is also started after any break, return, or continue
statement, however, these statements should be at the end of a block already,
for example at the end of an if statement. If they are not, the code following
them will never be reached.

■ Exceptions
Code Coverage Analyzer Block coverage supports exception handling for
C++. Catch blocks are marked as separate blocks for coverage, so the
developer must test each catch block to ensure full block coverage.

If an exception occurs in the middle of the block, Code Coverage Analyzer
reports the block as fully covered even though the exception has caused the
control flow to not finish the block.

Decision

Decision coverage reports whether or not each decision statement affecting
control flow has been evaluated to both TRUE and FALSE. Decision coverage tells
you if every branch in the code has been taken, including empty branches.

The various kinds of decision, or branching statements are handled as follows:

■ if statements
For if statements to be fully covered, the expression in () must evaluate to both
TRUE and FALSE. Thus Decision coverage for an if statement is similar to
Block coverage, except the else branch must also be taken, whether or not it is

NOTE: Catch blocks are C++ programming constructs. For more information, consult
any C++ manual.

A Code Coverage Types
A.3 Types of Coverage

87

A

explicitly present. Decision coverage helps make you aware of possible errors
lurking when an else branch is not taken.

For example, in the code fragment:

char *msg;
if(a==0)
 msg = "Hello\n";
printf(msg);

If a equals 0, Decision coverage will report full block coverage. The code
actually fails when a does not equal 0, though, and is reported only partially
covered since the FALSE branch (which is explicitly not present) was never
taken. Decision coverage catches the testing error by requiring the condition
to evaluate to FALSE as well as TRUE.

For else-if statements, Decision coverage is the same as block coverage.

■ loop statements
Decision coverage reports whether the loop condition evaluates to both TRUE
and FALSE. This differs from block coverage in that a loop may terminate from
within the loop, and may never actually terminate from a loop condition
evaluating to FALSE.

Decision coverage also tags and monitors do-while, for, and while loops.
However, a loop with empty conditions (such as for(;;)) will not be tagged and
monitored for decision coverage. Also, a loop with a hard-coded TRUE or
FALSE expression (such as "while(true){...}") will never get full Decision
coverage since TRUE is never evaluated to FALSE.

■ switch statements
Coverage of switch statements is similar to Block coverage, except that it also
reports whether the default case was encountered, even if that case is not
explicitly present.

For example, the ExampleSwitchFunction in Block, p.84, has three decision
branches: a equal 0, a equal 1 or 2, and a not equal 0, 1, or 2.

Because it is related to "decisions," the report for decision coverage shows the
decisions, not the blocks that are affected by the decisions. So in the
ExampleIfFunction in Block, p.84, decision coverage reports whether the
decision a==2 evaluated to both TRUE and FALSE, and whether the decision
b==3 && b>a evaluated to both TRUE and FALSE. In this case, because each if
has an else associated with it, decision and Block coverage both give the same
information, but the reporting is different.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

88

Condition

Condition coverage reports whether or not every subexpression in a Boolean
expression evaluated to both TRUE and FALSE. At first glance it may appear that
decision coverage attained that goal, but in reality, even though decision coverage
catches many control flow errors that block misses, it may not catch all errors due
to the short circuit operation.

For example, the code fragment:

if(a && (b || BuggyFunction())) {...}

reports full decision coverage if evaluated with a equal TRUE and b equal TRUE,
as well as with a equal FALSE. However, neither case called the buggy function.

Condition coverage, on the other hand, requires that each Boolean subexpression
be evaluated to both TRUE and FALSE. Condition coverage does not require the
full Boolean expression to evaluate to both TRUE and FALSE, nor does it require
the full truth table to be tested. Because Decision coverage does require the full
Boolean expression to evaluate to both TRUE and FALSE, Condition coverage and
Decision coverage are often combined to create Condition/Decision coverage.

Condition coverage adds tags to condition subexpressions anywhere in the code,
looking for any expression separated by "&&" or "||." Coverage is handled for the
various condition statements as follows:

■ if statements
In addition to tagging condition subexpressions anywhere, condition coverage
adds a tag to any expression in an if statement, tagging subexpressions only if
they exist. For example, in the ExampleIfFunction in Block, p.84, condition
coverage requires each of the subexpressions a==2, b==3, and b>a to evaluate
to both TRUE and FALSE.

In another example, the code fragment:

d=a && b && c;
if(d) {...}

checks a, b, and c, as well as d when it is in the if statement, for evaluating to
both TRUE and FALSE.

In contrast, the code fragment:

if(a && b && c) {...}

checks only a, b, and c for this condition.

A Code Coverage Types
A.4 Coverage Type Hierarchy

89

A

■ loop statements
Like the if statement, condition coverage reports any subexpressions found in
while and for loop statements, or the whole expression if it has no
subexpressions.

■ switch statements
Condition coverage reports whether each case x was actually encountered (in
other words, did the switch condition equal x at least once). It also reports
whether the default case was encountered, even if that case is not explicitly
present.

In the ExampleSwitchFunction in Block, p.84, full coverage would require a to
have evaluated at some point to 0, to 1, to 2, and to anything but 0, 1, or 2.

A.4 Coverage Type Hierarchy

The coverage types described above are grouped from general to specific measures
of coverage. Within these coverage types, however, there are implications that
hold true for all occurrences irrespective of hierarchy. They are:

■ Full Block coverage implies that all functions are also covered.

■ Full Decision and Full Function coverage implies that blocks are also
covered.

■ Condition coverage alone does not imply that blocks or decisions are covered.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

90

91

 B
Performance Metrics

B.1 Introduction 91

B.2 Supported Targets Data 92

B.1 Introduction

This appendix contains Wind River Code Coverage Analyzer data describing the
increased code size for target code that has been instrumented by the coverage
instrumentor program. Each entry in this table represents a specific brand and
model of target supported by this release. A complete list of supported targets for
this release is found in the following documents.

■ For VxWorks targets:
Wind River Workbench for VxWorks 6.6 Release Notes

■ For Linux targets:
Wind River Workbench for Linux 1.5 Release Notes

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

92

B.2 Supported Targets Data

The code size overhead statistics presented in the tables below was generated
using the Wind River program cobble.c. Table B-1 presents data collected for a
VxWorks target.

Because the increase in code size is highly dependent on the specific code that you
instrument, these numbers should be viewed as rough estimates. As expected, the
Code Coverage Analyzer run time execution of your code (cpu overhead) also
increases, typically between 5% and 50%.

The key for the % Code Size Increase parameters in Table B-1 is as follows:

F = Function coverage only.

FB = Function and Block coverage only.

All = All coverage types.

Table B-1 Code Size Overhead

Family CPU
Target Agent

Size (Kb)
% Code Size Increase

F FB All

68k MC68000 78 5 11 16

MC68020 78 5 11 16

MC68040 78 5 11 16

MC68060 78 5 11 16

MC68LC040 78 5 11 16

ARM ARM7TDMI 113 7 12 13

AMARCH4 108 7 10 12

CPU32 CPU32 74 5 11 16

Coldfire MCF5200 91 4 9 14

MCF5400 91 4 9 14

Fujitsu FR-V FR500 117 5 9 11

B Performance Metrics
B.2 Supported Targets Data

93

B

Hitachi SH SH7600 93 4 7 10

SH7700 93 4 7 10

SH7750 97 3 6 12

MIPS MIPS32sf 122 6 12 18

MIPS32sfr3k 126 6 12 17

R3000 115 6 13 15

R3000sf 115 6 13 15

R4000 110 6 13 15

R4000sf 110 6 13 15

R4650 110 6 13 15

VR4100sf 111 6 13 15

VR5000 121 6 12 18

VR5400 121 6 12 18

PPC PPC403 127 5 9 10

PPC405 128 5 9 10

PC405f 129 5 9 10

PPC603 128 5 9 10

PPC604 133 5 9 11

PPC860 127 5 9 10

PPCEC603 128 5 9 10

RC32364 RC32364sf 111 6 13 15

Simulators SIMNT 89 9 14 18

Table B-1 Code Size Overhead (cont’d)

Family CPU
Target Agent

Size (Kb)
% Code Size Increase

F FB All

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

94

SIMSPARCSOLARIS 107 5 9 11

StrongARM
/XScale

ARMSA110 113 7 12 13

STRONGARM 108 7 10 12

XSCALE 109 7 10 12

x86 I80386 78 5 11 17

I80486 84 6 11 17

PENTIUM 84 6 11 17

Table B-1 Code Size Overhead (cont’d)

Family CPU
Target Agent

Size (Kb)
% Code Size Increase

F FB All

95

 C
Glossary

block

A contiguous group of non-branching code statements, which are, by definition,
guaranteed to be traversed completely when entered.

Block Coverage

A search for, and report on, each contiguous block of non-branching code
statements. For further context, see A.3 Types of Coverage, p.83.

Code Coverage Analyzer instrumentor

The Wind River software tool that adds instrumentation tags to the source code
statements, then calls the compiler. For further context, see 3.3 Instrumenting and
Compiling, p.35.

condition

Any sub expression in a decision statement in the code, containing one Boolean
expression, or multiple Boolean expressions separated by "&&" or "||."

Condition Coverage

This coverage type searches for, and reports on, whether or not every condition
sub expression in a decision statement evaluated to both TRUE and FALSE. For
further context, see A.3 Types of Coverage, p.83.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

96

decision

Any testing and branching statement in the code that affects control flow. It
contains one or more condition sub expressions.

Decision Coverage

This coverage type reports whether or not each decision statement has been
evaluated to both TRUE and FALSE overall. For further context, see A.3 Types of
Coverage, p.83.

function

A self-contained code module that can accept input, execute, and produce output.

Function Coverage

This coverage type reports whether or not each function in the code has been
called. For further context, see A.3 Types of Coverage, p.83.

Function Exit Coverage

This coverage type reports whether every exit from a function has been taken. For
further context, see A.3 Types of Coverage, p.83.

instrumentation parameters

The values, selected by the user, that determine the type and placement of tags in
source code files by the Coverage Instrumentor for coverage monitoring
purposes. For further context, see 3. Instrumenting Source Code.

preprocessed source code

Intermediate source code file that has had its include files and other preprocessor
commands expanded by the compiler prior to being compiled. For further context,
see 3. Instrumenting Source Code.

Software test case

The set of parameters and input data created by the software developer and used
to test software modules in the development process. Code Coverage Analyzer
provides a quantifiable measure of the effectiveness of software test cases. For
further context, see 1.1 Introduction, p.1.

C Glossary

97

C

tag information database (TID)

A file created by the coverage instrumentor that records the instrumentation
parameters in effect for the source code. The file is given the extension .tid. For
further context, see 3. Instrumenting Source Code.

target agent

The part of Code Coverage Analyzer that runs on the target.

truth table

A two-dimensional matrix of all possible TRUE and FALSE values for each of the
unique conditions in a condition statement.

verbosity

Controls the type and number of messages generated by:

■ The coverage instrumentor during compilation (see Other Options Tab, p.33).
The value can range from 0 (least verbose) to 3 (most verbose).

■ The target server connection process (see 4.2 Starting Data Collection, p.44). The
value can range from 0 (least verbose) to 3(most verbose).

For further context, see 4.2 Starting Data Collection, p.44.

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

98

99

Index

A
architecture

coverage instrumentor 4
GUI 4
summary 4

B
block coverage 84

C
CLI

coverageconvert command 68
coverageupload command 66
description and benefits 65
summary of commands 66
using shell scripts 72

code coverage analysis
described 81
purpose 82

Code Coverage Analyzer
features 5
how it works 3

command-line, instrumentor 38

compiler errors 79
compiling source code

from the command-line 37
from Workbench 36
from your makefile 37
in the example session 24

condition coverage 88
Console view 20
coverageconvert command 68
coverage instrumentor tool 35
Coverage Summary view 17
coverage types

block 84
condition 88
decision 86
defined 3
described 83
function 83
implications of 89

Coverage Types color palette 21
coverageupload command 66
create a new Workbench project 10
Create HTML Report dialog box 21

D
decision coverage 86
description field

Wind River Workbench Code Coverage Analyzer
User's Guide, 3.0

100

Instrumentor Options dialog box 34
dialog boxes

Create HTML Report 21
Select Target Server 12

Distribution Graph view 19

E
error

lost connection 76
messages 76

example Code Coverage Analyzer session 24

F
features, list 5
file errors 80
function coverage 83
function defined 96

I
ignoring covered files 31
instrumenting and compiling source code

description 35
from the command-line 37
from Workbench 36
from your makefile 37
in the example session 24

instrumentor command line 38
instrumentor errors 76, 79
Instrumentor Options

Coverage Types tab view 29
Covered Files tab view 31
description field 34
dialog box 28
other options 34
Other Options tab view 33
verbosity 33

L
launching Code Coverage Analyzer 11

example session 24

M
makefile modifications 37
messages

compiler errors 79
error 76
file errors 80
instrumentor errors 76, 79
status 76
warning (command-line interface) 77

modifying your makefile 37

O
options

command-line 38
Instrumentor 33

other options, Instrumentor Options dialog box 34
overview

architectural 4

P
projects

create new, in Workbench 10

S
scripts, CLI command examples 72
Select Target Server dialog box 12
selecting

Coverage Types tab view 29
Covered Files tab view 31
Other Options tab view 33

 Index

101

Index

source code
compiling 35
instrumenting 35
viewer 18

specifying instrumentation parameters 28
start

data collection, example session 25
status messages 76
stop data collection, example session 25

T
target connection

lost, see troubleshooting
verbosity 13

Trend Graph view 19
troubleshooting

Code Coverage Analyzer GUI 79
guide 79
target connection lost 79
target server 79

U
UNIX

displaying report in a browser 58

V
verbosity

defined 97
effect on Console view 21
instrumentor 33
instrumentor command-line 38
target connection 13
Warning 13

views
Console 20
Coverage Data Colors 21
Coverage Summary 17
displaying report in a browser 58

Distribution Graph 19
Source code 18
Trend Graph 19

W
warning

messages 77
target verbosity 13

	Wind River Workbench Code Coverage Analyzer User's Guide, 3.0
	Contents
	1 Introduction
	1.1 Introduction
	Code Coverage Analyzer Overview
	Workflow Highlights

	1.2 Architectural Summary
	1.3 Features

	2 Getting Started
	2.1 Introduction
	2.2 Requirements
	VxWorks
	Linux
	All Targets

	2.3 Creating a Project
	2.4 Instrumenting and Compiling Your Code
	2.5 Starting Code Coverage Analyzer
	Connect to Target Dialog Box
	Start the Target Test Code

	2.6 Viewing Coverage Data
	Coverage Summary View
	Source Code Viewer
	Trend Graph View
	Distribution Graph View
	Console View
	Color Configuration
	Create HTML Report Dialog Box
	Stopping Data Collection

	2.7 Example Code Coverage Analyzer Session

	3 Instrumenting Source Code
	3.1 Introduction
	3.2 Specifying Instrumentation Parameters
	Coverage Types Tab
	Data Storage Tab (Linux Only)
	Covered Files Tab
	Other Options Tab
	Saving the Instrumented Code Files

	3.3 Instrumenting and Compiling
	From Workbench
	From Your Own Makefile
	From a Command-Line Window
	Instrumentation Issues

	3.4 Downloading Your Object Code

	4 Viewing Output
	4.1 Introduction
	4.2 Starting Data Collection
	4.3 Viewing Live Coverage Data
	4.3.1 Coverage Summary View
	Saving Output Data
	Deleting Saved Data Files

	4.3.2 Source Code Viewer
	Benefits of Multiple Coverage Selection
	Searching for Source Code Files
	Specifying Source Paths

	4.3.3 Trend Graph View
	4.3.4 Distribution Graph View
	4.3.5 Coverage Report
	4.3.6 Merge Data Files
	Merge Log
	Saving Merged Files

	4.4 Viewing Saved Data
	4.5 Exporting Data

	5 Using the Command-Line Interface
	5.1 Introduction
	5.2 Commands
	coverageupload
	coverageconvert

	5.3 Procedures
	5.4 Example Script Files
	Shell Script File: testcovdemo.sh
	TCL Script File: runcoveragetests.tcl
	TCL Script File: killtgtsvrs.tcl

	6 Troubleshooting
	6.1 Introduction
	6.2 GUI Messages
	Status
	Error

	6.3 Command-Line Interface Messages
	Warning
	Error

	6.4 Troubleshooting Tips
	Issues with Instrumentation
	Issues with the Target
	Issues with the GUI

	A Code Coverage Types
	A.1 Introduction
	A.2 Purpose of Code Coverage
	A.3 Types of Coverage
	Function
	Function Exit
	Block
	Decision
	Condition

	A.4 Coverage Type Hierarchy

	B Performance Metrics
	B.1 Introduction
	B.2 Supported Targets Data

	C Glossary
	Index

