WIND RIVER

Wind River Workbench
Performance Profiler

USER'S GUIDE

3.0

Copyright © 2007 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, the Wind River logo, Tornado, and VxWorks are registered trademarks of
Wind River Systems, Inc. Any third-party trademarks referenced are the property of their
respective owners. For further information regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDirlproduct_namel3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
US.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:
http://www.windriver.com
For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

Wind River Workbench Performance Profiler User’s Guide, 3.0

7 Nov 07
Part #: DOC-16004-ZD-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

Contents

3 {0 X 11 e Ao o R

1.1 Introduction

Performance Profiler OVerviewccoooieeeevieceeeeeeeeeeeecveecve e
Call Stack Detailscouvieuiieiieiiiieeieeece ettt

1.2 Architectural Summary

VXWOTKS Targetsccovvieuiiiiiiiiiiiiiicccccccciccces
LinuX Targetsccoceieiiiiiiiiiccicccc s
Wind River Linux 2.0 Targetsc.cccoevevvevrininicninceiceccecennes
The HOst GUI ...
Setting User Parametersccoccouoioiriiicieiiiiicccceecc e

1.3 Features

(€= 4] T TS = T (=Y o

2.1 Introduction

2.2 Requirements

2.3 Starting Performance Profiler

Initiating the Target ConNectionccccccueuiiiciiiininiiiniciccccce,

fii

N

NN OG>

11

12

12
13

14

Wind River Workbench Performance Profiler
User's Guide, 3.0

Opening the Performance Profiler GUIccccccoiiinnninicccnnnne. 16

2.4 Testing Your Installation 17
Viewing From the Shellccccooiiiiiiiicce 17

Running the Demonstration Programccccoevevvcniicninccinicennnee. 17

2.5 Usage Notes 20
Symbol RESOIUHIONcoviiiiiiiciiicicc e 20

Target File System (Linux Only)ccccevvvviiiiiiiniicie, 21

Example Pathnamesccccoooiimeinininiiicicecccc e 22

Kernel-Mode vS. Process-MoOdec.oeveeeieeeeieeieeeeireeeeeeeeeeeeeeeeeennes 22

The Performance Profiler GUI ... ee e e s e e 23
3.1 Introduction 23
3.2 The Performance Profiler GUI 24
3.2.1 SYStEM VIEW ...ocviiiiiiiiiicicci e 25
ROUTING LIS vt 26

1= Na T TR Sh U] (o K< TSRO 27

Current Usage Bar ... 29

System View Pop-up Menucccoeriiieiiiiiiicceeeeccce 30

322 FUNCHON VIEW ot 31
Thread (Process) Selection Tablecocoeiveeoinincinneinieiinecnes 32

Function VIEW Tablec...oouiovioiiciiiiieeeeceeee et 32

3.2.3 PrOCESS VIEW .ottt et eeave e ean e e 35
ProCESS LIST cuvieieieeieeee ettt ettt et e enaeen 35

StAtiStICS FIELAS .ooovvieviiiiiieeeceee ettt 36

Process View Pop-up Menuccccoeveveieircciniiininiieeeccc 37

324 (@) 5¢I F=1aTe) s KOOSR 37

3.2.5 SOUTICE COAER VIEWET .ottt eae et enaeeen 38

3.2.6 Analysis Console VIEWcccouiiiiiiiiiiiiicceecc s 39

JCOMIS e e an 40

3.2.7 Unresolved Symbols VIEWcccccoriiiiiniininiciccccces 41

3.2.8 Performance Profiler Status VIEWcccccoeivviiciiiiecieceeeeeeeeeeeeeae 42

3.3

329
3.2.10

Usage Notes

Contents

Preferences Dialog BOXcccooeiuiuiuiirininiiiicerccceee s
SNAPSNOLS ...

Taking a SNapshot ..o
Saving a SNapshot ..o
Viewing Snapshots From a Previously Saved Filecccccccvunne..
Snapshot Time/Date Stampcccoovvvvviininceicccccce

Interpreting Profiling Datac.cccoevvrieiiciniicccccccc
Profiling Modescceuiriiiininicececcce s

TroublesShootingccccccccirirrssssssssssssss s nnmnnnm s nmnnm e e

4.1

4.2

4.3

Introduction

Messages

General Troubleshooting Tips

Status MESSAZEScuvveveiiiiiiicieieieie et s
Er1or MeSSages ..ot

Issues With the Targetccccocoevvreniiiceiicncccc e
Issues With the Performance Profiler GUIccooooevviiiiicicieene,
General TIPS ..o
Known Issues and Workaroundscccooeeeeveeveieneeceeeeieeeeeeeeeee e
Reporting Problems ...

Kernel Abstraction Layer (KAL)ooooeiiiiiiiiisccseeseesssssssssssss s

Al

A2

A3

A4

Introduction

Basis for Need

Procedure

Known Issues and Workarounds

SELUP oot
Wind River Linux 2.0 Targetsccocoeeeeiiinnininiicccccinens
Other Linux Targets ..o

Wind River Workbench Performance Profiler
User's Guide, 3.0

Vi

Introduction

1.1 Introduction 1
1.2 Architectural Summary 5
1.3 Features 9

1.1 Introduction

This chapter introduces you to Wind River Performance Profiler, a dynamic
execution profiler for use in developing embedded and real-time applications.

Performance Profiler monitors the execution flow in a running real-time
embedded program on a function-by-function basis. It allows both systems and
applications programmers to analyze exactly how embedded programs are
utilizing the processor. It is designed for minimal impact on the real-time code it
analyzes, and no special compilation is required. Performance Profiler can be used
to analyze all processes running on an embedded system simultaneously.

NOTE: This document contains background information and process descriptions
only. Detailed help with user interface operations is available by pressing the help
key for your host while running Performance Profiler.

Wind River Workbench Performance Profiler
User's Guide, 3.0

Performance Profiler Overview

Performance is critical in real-time and embedded systems. The causes of poor
performance usually are easy to fix, but hard to find. Performance Profiler allows
you to analyze where your CPU is spending its cycles. It provides a detailed
function-by-function analysis, breaking down the individual routines within the
processes that are consuming the CPU.

Performance Profiler generates statistics that can tell you the following:

= What the CPU is doing.
* What routines are being called.
» What (sub)routine(s) each routine calls in turn.

This information points out inefficiencies that allow you to fine tune your time-
critical system for maximum performance.

Performance Profiler displays the execution profile in the following modes:

* Asa tree with full call stacks—in the System view.
= Asaflatlist of high-use routines—in the Function view.
* Asalist of the profiled processes—in the Process view.

Performance Profiler can present profiling statistics for these components:

* The entire system.

= Any set of processes.

= A single process.

» A single Linux user.

* Anindividual CPU on a multi-CPU Linux system.

Since Performance Profiler requires no special compilation or hardware, it can also
profile code you did not write, such as operating system routines or third-party
libraries.

Call Stack Details

Each process has an associated stack. The stack is used as a temporary storage area
for both the local program variables and the program execution state. Each time
the processor enters a function, it allocates a new section of the stack to hold the
information that function needs. This section is called the function stack frame. It
contains the temporary variables and several key pieces of information for the
function, including saved processor registers and the return address of the parent
(caller) routine.

Example 1-1

1 Introduction
1.1 Introduction

For code compiled with an option that enables frame pointers (FPs), a special
frame pointer register in the processor always points to the currently executing
function stack frame. When a subroutine is called, the old FP is saved on the stack,
anew stack frame is created, and the FP is updated. Thus, at any point in time, the
entire function-call history is present on the stack and can be determined by
following the chain of FPs stored on the stack. This function-call history is known
as the execution state.

NOTE: Modern compilers often forego the use of frame pointers altogether. Thus
Performance Profiler does not rely on FPs.

Performance Profiler utilizes a technique called statistical profiling, which works
by taking periodic samples of the execution state and using these samples to
calculate where the CPU is spending its time. By examining the program counter,
Performance Profiler can determine which function in your program was
executing at the time of the sample. By examining the chain of stack frames,
Performance Profiler can also determine the function sequence that resulted in the
current execution state.

The following samples are compiled into statistics to show the execution patterns
of the program.

Portion of an Execution Tree Produced by a VxWorks Network Interrupt

The first tree is from a VxWorks network application. It shows the TCP write
activity for the network server.

Current Current
indirect % direct %
10.43 .12 _TcpWrite
10.31 0.01 . _write
10.27 .18 . . _loswWrite
10.06 .16 . . . _send
9.35 .64 _sosend
7.92 .27 _tcp_usrreq
7.25 .88 _tcp_output
4.97 .49 _ip_output
3.87 0.06 _eiOutput
3.80 .51 _ether_output
2.32 .31 _eiTxStartup
1.12 1.12 _bcopy
.69 .69 .« .+ _cksum
.63 .63 _bcopy

The profile shows the overhead incurred at each layer as follows:

= theI/O system (_write)
= the socket layer (_sosend)

Example 1-2

Wind River Workbench Performance Profiler
User's Guide, 3.0

= TCP (_tcp_usrreg)
» [P (_ip_output)
» the ethernet driver (_eiOutput)

Portion of an Execution Tree Produced by a Linux Network Interrupt

The example below shows an analogous profile from a Linux target.

Current Current

indirect % direct %

12.77 .95 Interrupts & Exceptions

12.52 .04 . IRQx00_interrupt

12.17 .31 . . call_do_IRQ

11.21 .26 . . . do_IRQ

10.08 .77 do_softirg
9.38 .29 net_rx_action
8.75 .67 ip_rcv_finish
6.72 11 ip_local_deliver_finish
5.84 .08. tcp_vd_rcv
5.40 .97 tcp_v4_do_rcv
4.13 .52 tcp_rcv_established
2.95 .31 _ _kfree_skb
1.91 1.92 1lp_route_input
1.86 1.86 timer_soft_irg

This example output for Linux shows how the TCP IPv4 packet is handled by the
kernel when a network interrupt is received. The callstack shows that the kernel is
processing a network packet in a soft irq net_rx_action. The profile shows the
overhead incurred at each layer as follows:

» the kernel layer(do_softirq)
» IPlayer(ip_rcv_finish)
= TCP IPv4 layer(tcp_v4_rcv)

In both of these examples, the first (or Current indirect) column indicates how
much of the processor time was spent in that routine and the subroutines it calls,
if any. The second (or Current direct) column indicates how much of the processor
time was spent only in that routine. From this output, many important facts can be
observed, including the following:

= The amount of overhead incurred in each layer of the network protocol.
» The total percentage of time spent sending packets.

» For VxWorks, the number of times the data were copied for each call to write()
(two separate calls to bcopy()).

1 Introduction
1.2 Architectural Summary

1.2 Architectural Summary

The Performance Profiler architecture consists of two main components; a
collection agent that runs on a real-time VxWorks or Linux target, and a GUI that
runs on the host, as shown in this illustration.

Host Workstation Target
User Interface Process| [Process| __ [Process
Performance Profiler GUI 1 2 n
——mwmw | | N \TCP/”I:’ \ \ '/
— ~ N pn y
_—— r - . | buffer
= w | T
— || tProfileSampler (VxWorks)]
4 i Symbols \ ProfileAgent (Linux) |
Commands . } ‘
Starts = 1
v Data (WTX only) N ‘ usermode-agent (Linux) | ‘
DrwW | | | Ly
v -~
J Server TCPIP =| tWdbTask (VxWorks) | |
‘ WTX | ‘
Workbench Target User Starts
Manager Starts (Linux only)

There are some minor differences in the implementation of target architecture
between VxWorks and Linux targets. These differences are outlined in the
following sections.

VxWorks Targets

The components communicate through the VxWorks Target Manager, including
the DFW server, and if available, a TCP/IP link, or the optional WTX link.

Performance Profiler performs execution-state sampling on the target machine
using a high-priority sampling task tProfileSampler. The sampler task stores the
samples in a message queue for later retrieval by the analysis task running on the
host. This provides a very efficient profile sampling mechanism that has minimal
impact on the running target system. Note that the figure illustrates how

Linux Targets

Wind River Workbench Performance Profiler
User's Guide, 3.0

Performance Profiler receives these sampling records from the Profile Agent when
in the TCP/IP mode, or directly by way of the DFW server in the WIX mode.

The components in a Linux target communicate with the GUI only on a TCP/IP
link. ProfileAgent is the target-based sampler started by Performance Profiler for
a Linux target. Once started, ProfileAgent sets up the System Clock to interrupt the
machine at periodic intervals. An interrupt handler, also set up by ProfileAgent,
samples the process that was executing before the handler was invoked. The
interrupt handler collects callstack data from the processes and deposits them into
a buffer shared by the ProfileAgent. The ProfileAgent periodically checks this
buffer and transfers the contents to the host-based GUI via a TCP/IP connection.

Wind River Linux 2.0 Targets

The Host GUI

The Analysis Tools are integrated into the Wind River Linux 2.0 Build System as a
root file system package. By default, it is part of the regular (non-small) root file
system templates.

NOTE: The Analysis Tools can be added to a system configured to use a small root
file system by including the template found in the extra/scopetools directory. Do
this using either the Workbench User Interface or the Command Line Interface
methods as outlined in Wind River Linux 2.0 Targets, p.67 in the Workbench GUIL

The GUI utilizes the output of the statistical analysis to maintain a dynamic record
of the system activity. This output consists of a fractional number for each routine
representing the percent of processor time spent in that routine. These fractional
numbers fall within the range from 0.0 (never active) to 100.0 (always active). The
analysis computes both current and cumulative statistics. For details, see Current
vs. Cumulative vs. Maximum, p.47.

As part of the sampled data, Performance Profiler includes the value of program
counter (PC), and walks the stack to record all the routines that were called to
activate the current routine. The PC can also indicate where each subroutine was
called from a single function (exploded mode) to calculate the utilization of each
individual subroutine invocation (for details, see Analysis Mode — Normal vs.

1 Introduction
1.2 Architectural Summary

Exploded, p.50). Using this information, the GUI builds an expandable profile tree
showing the code paths to each subroutine invocation.

In addition, Performance Profiler computes a process profile, reporting system
activity on a process-by-process basis, rather than on a function-by-function basis.

The GUI performs statistical analysis on each process callstack data, and displays
the analyzed information. However, if all the symbols in the callstack are not
resolved, that is, if the hex address symbols have not all been converted into
meaningful routine names, the entire sample is only buffered, and is not displayed.
If the unresolved symbols become resolved, the information for that callstack is
then displayed. The analysis information is periodically updated in the GUI.

Setting User Parameters

Performance Profiler performance can be fine-tuned to most efficiently analyze
your source code and help you quickly identify problem areas. The following
tunable parameters can be set in Performance Profiler. Using them to your greatest
advantage is described in detail in the online help for the Preferences dialog box;
see 3.2.9 Preferences Dialog Box, p.43.

* sample rate

= analysis period

» GUI update period
= analysis modes

= digital data filters

Sample Rate

The frequency at which Performance Profiler samples the execution state. The
default sample rate is 113 Hz. Prime-number rates are best because they maximize
the randomness of the samples and minimize the synchronization with the
scheduler. However, depending on available hardware, this rate may not be
achievable; in these cases, Performance Profiler selects the closest rate.

NOTE: The VxWorks auxiliary clock for most of the Intel x86, PC-based hardware
can only achieve sample rates that are powers of 2, for example, 2, 4, 8, 16, and so
on.

Analysis Period

The amount of time Performance Profiler waits before performing another
statistical analysis of the samples. The default analysis period is 2.5 seconds. With

Wind River Workbench Performance Profiler

User's Guide, 3.0

the default sample rate and the default analysis period, each analysis period
nominally processes approximately 282 samples.

GUI Update Period

The amount of time Performance Profiler waits between updates to the display.
The default update period is 10 seconds. Smaller periods provide more timely
data, but consume more host processing power. The GUI-update period must be a
numerical multiple of the analysis period. It cannot be less than 2.5 seconds.

Details regarding Rates and Periods are discussed in online help for the
Preferences dialog box; see 3.2.9 Preferences Dialog Box, p.43.

Analysis Modes

Performance Profiler can monitor the activity of either the entire system or a
single process. These two modes provide different views of the performance of the
system. For instance, consider a single process that is blocked most of the time.

In system mode, Performance Profiler monitors the activity of all processes on
the target system. The time used by the functions of a process is reported as a
percentage of the total time. Thus, a process that is blocked for most of the time
will register only a small percentage of CPU usage.

NOTE: In the system mode, processes may be ignored by using process filters.
These ignored processes have an IGNORED heading in front of them, and the
function statistics of these processes are attributed to a pseudo function
IGNORED (). This applies to both the Process view and System view.

In single-process mode, Performance Profiler only monitors the activity of the
selected process, showing you where the process spends its time. The time
used by functions of that process is reported as a percentage of the total time
used by that process. Thus, functions in which the process is blocked are
reported as taking a larger percentage of the time. The sum of the CPU usage
for all functions in the process is still 100% (excluding time attributed to the
VxWorks kernel or Linux interrupts).

Details regarding Analysis Modes are discussed in online help for the Preferences
dialog box; see 3.2.9 Preferences Dialog Box, p.43.

Digital Data Filters

The statistics for each profile are filtered digitally to prevent noisy statistics that
jump erratically. Consequently, the Current statistics of each function (or thread)
are actually a weighted average of the most recent analysis results and past results.

1 Introduction
1.3 Features

Although default filter parameters work well for most applications, Performance
Profiler does allow you to adjust the parameters to control the response of the
current statistics.

Details regarding digital data filters are discussed in online help for the
Preferences dialog box; see 3.2.9 Preferences Dialog Box, p.43.

1.3 Features

Performance Profiler embodies the following features:

. Full Function-Tree Profile

Enables you to see the overhead incurred in each layer of a call chain and the
total percentage of time spent in any function. Performance Profiler creates a
direct map of what the CPU is doing, what functions are being called, and
what functions they are calling.

= Analyzes Dynamic Performance

Analyze both long-term (cumulative) and short (current) statistics. The long-
term statistics reflect the activity of the CPU for the entire profiling session.
The short-term statistics offer a dynamic record of the recent CPU activity over
the last few seconds.

= Fully Multi-Thread Aware

For all targets, Performance Profiler displays the statistics for each process and
all the threads within that process.

= Easy-to-Use GUI

Requires no special compilation or hardware. The Performance Profiler
intuitive graphical user interface gives you direct access to all the options and
capabilities. Performance Profiler provides a detailed function-by-function
analysis, showing which of the individual routines within a process are using
excessive CPU.

= Get the Whole Picture

Profile code you did not write, including the operating system and third-party
libraries, since Performance Profiler requires no special compilation or
hardware.

Wind River Workbench Performance Profiler
User's Guide, 3.0

Minimally Intrusive
Does not affect the execution of your program.

Thread-Level Profile

Maintains thread-level execution statistics. The thread-level profile helps you
understand how interactions of threads affect performance of the overall
system.

Complements System Viewer

The Wind River System Viewer provides precise measurements of event
timing. The Performance Profiler analysis enables you to track the individual
routines within the task that are using excessive CPU, and correlate them with
the events displayed in the System Viewer GUL

Multi-Processor Support

For SMP, Performance Profiler maintains profiling statistics for each CPU in
the system, as well as for the overall system. The Function view displays
execution statistics for each process, routine, and for each CPU, as well as for
overall system. The Process view displays how much time each process is
using on each CPU, as well as for the overall system. Multi-processor support
applies only to Linux platforms.

For a complete description of each of the GUI elements of Performance Profiler, see
3. The Performance Profiler GUL.

10

Getting Started

2.1 Introduction 11

2.2 Requirements 12

2.3 Starting Performance Profiler 14
2.4 Testing Your Installation 17

2.5 Usage Notes 20

2.1 Introduction

This chapter takes you through the process of setting up and running Performance
Profiler on either a VxWorks or Linux target platform. It gives you enough
information to begin using Performance Profiler with a demonstration program
supplied with the tool. At each step references are made to the location in this
manual of more detailed descriptions. For more information on using Workbench,
see the Wind River Workbench User’s Guide.

11

Wind River Workbench Performance Profiler
User's Guide, 3.0

2.2 Requirements

VxWorks

Before you can run Performance Profiler, you must first create a target connection
in Workbench, then connect it to the target manager using the appropriate menu
commands or icons. For details on using the target manager, consult the Wind River
Workbench User’s Guide: Target Manager View, as well as your platform User’s
Guide. Instructions are given in this chapter for connecting Performance Profiler
to your target manager.

There are some dependencies Performance Profiler places on your host operating
system for resources that are specific to the target platform, summarized in the
following sections.

NOTE: When running the target manager, the -A option must be present in the
Options command line (in the target server Properties dialog box, in the

Target Server Options > Advanced Target Server Options tab view). This forces
all global and local symbols to be parsed and available for patching. Workbench
does this by default, but if -A is absent for any reason, Performance Profiler will
not be able to find some of the symbols to be parsed, and thus not able to collect
and display data for those symbols.

= If your target is running an x86 processor, Performance Profiler will run
properly only if frame pointers are built into the code by the compiler. The
compiler does this by default, but you must be aware that if you build your
code with frame pointers turned off, you will encounter problems. For
troubleshooting tips, see Issues With the Target, p.55.

NOTE: To help prevent target slowdowns, you must include the
INCLUDE_MODULE_MANAGER loader component. Performance Profiler
communicates between target and host using the WDB target agent, so all
default WDB components must also be included.

» Performance Profiler requires use of the WDB agent. The easiest way to ensure
that your VxWorks Image Project (VIP) has WDB support is to make sure one
of the following kernel configuration Profiles is used in your project:

— PROFILE_COMPATIBLE
— PROFILE_DEVELOPMENT
— PROFILE_ENHANCED_NET

12

Linux

2 Getting Started
2.2 Requirements

For more information, see the VxWorks Image Projects section in Wind River
Workbench User’s Guide, VxWorks Version: Build Properties Dialog.

Wind River Run-Rime Analysis Tools do not support connecting to a target
using a WDB_TIPC connection. This means that if you are working in an AMP

environment, you can only connect the Analysis Tools to core 0 in AMP mode.

Normally, users on Linux hosts will run Workbench as regular users, not root
users. When Workbench is run by a regular user in a self-hosted setup (that is,
running Workbench on your target machine), an attempt will be made to start
the ProfileAgent program (or MemAgent on MemScope) as a regular user.
ProfileAgent and MemAgent are both designed to be run successfully only by
a root user. Therefore, in a self-hosted setup only, you will need to make the
following changes to the ProfileAgent (and MemAgent if you are running
MemScope) program file in order to run it as root user, even if you are using
Workbench as a regular user:

$su

$cd /usr/scopetools-6.0

$chown root ProfileAgent MemAgent

$chmod +s ProfileAgent MemAgent

$exit

This procedure only needs to be done for self-hosted operation. For regular
operation (separate host and target), this is all taken care of for you.

Unless you are running self-hosted (as described above), you must logon as
root, and start usermode-agent on your target. Therefore, the programs
insmod and rmmod must be in your PATH because usermode-agent depends
on them. They must also have execute permission (logging on as root gives this
permission by default).

In the process of building your target root file system, the binary files needed
by the target you are using are copied to the directory
/ust/scopetools-6.0

If you see a file in that directory with a name like the one formerly used to
specify your specific architecture (that is, target type/platform /compiler, such
as ppc85xxGPP2.0gcc4.1.2), it is an empty file and should be disregarded
completely.

If you are running Performance Profiler for the first time, compile the Kernel
Abstraction Layer (KAL), described in A. Kernel Abstraction Layer (KAL), so

13

Wind River Workbench Performance Profiler
User's Guide, 3.0

Performance Profiler can interact with your kernel correctly. If you skip this
step, Performance Profiler might crash your system. In the future, if you
change and recompile your kernel, be sure to recompile KAL every time so
that Performance Profiler is always interacting with your kernel correctly.

= Under no conditions can more than one instance of Performance Profiler be
connected to the same target simultaneously.

= When you create your target connection, you must set the path to your rootfs
in the Root File System field of the
Target Server Connection for Linux User Mode wizard in Workbench. For
more information, see the Wind River Workbench User’s Guide: New Target Server
Connections.

2.3 Starting Performance Profiler

This section describes how to begin using Performance Profiler in a real-time
environment.

Initiating the Target Connection
The Remote Systems view contains the option for connecting Performance

Profiler to your target server. To connect, right-click the target server name and
select the Connect Performance Profiler command from the popup menu.

14

2 Getting Started
2.3 Starting Performance Profiler

L]

L=F Disconmect “wxsimD'

@ Connect Memary Analyzer
= Connect Performance Prafiler
/" 3 Function Tracer
@ Connect Code Coverage Analyzer
1 Remate Systems [=7] Urresak {7 Connect Data Manitar

_ﬁ?| M | 2 | | = Refresh Properties. ..

i d] Properties Alt+Enter

‘Wwind River Target Debugger {Wind River VxWoJ

o SIMNT (scorks 6.6)
g Kernel Tasks
Real Time Pracesses

:] memscope,so - Symbol file: ©: fwb30_w vI
3

1 : |

The Connect to Target dialog box opens, where you can select optional parameter
values to be set when the Performance Profiler GUI opens.

x
Target Server Mame: vasimD@va-grood-dl j
Conneckion Type:

Task Priority: | 99
Stack Depth: |32

Queue Size (# of messages): | 1000

Palling Rate {in Hz): | 5

‘Werbosity: ID - Silent j
¥ Use aux Clack,

Restore Defaults | [8]4 I Cancel |

You can reset all the parameters to the Performance Profiler default values with the
Restore Defaults button. Click OK to begin the target connection process.

For information on setting parameters, click in the parameter field and press the
online help key for your host.

15

Wind River Workbench Performance Profiler
User's Guide, 3.0

NOTE: The verbosity (number) you select in this dialog box maps to the verbosity
(a character string choice) you can select in the Analysis Console view (see
3.2.6 Analysis Console View, p.39), according to the following mapping:

Connect to Target <--> Analysis Console

Verbosity 0 = Severe, Warning, Info, and Config
Verbosity 1 = Debug
Verbosity 2 = Debug-hi

Verbosity 3 Trace

However, setting a verbosity level in one dialog box does not enter the
corresponding value into the display in the other dialog box.

A CAUTION: Setting target verbosity to a value greater than 0 may cause the
ProfileAgent to needlessly generate an exceedingly large number of messages.

Generally, use the default value of 0 for verbosity, unless requested by Wind
River Technical Support to help you diagnose a problem.

Opening the Performance Profiler GUI

When you have successfully connected to your target server, the Performance
Profiler Connect to Target dialog box opens in the System view, and example of
which is shown here.

E vxsimo@svl-grood-d1,Performance Profiler 53 = Eq

Routine | Current Indirect % | Current Direck % | Current Lsage Bar
= {vaworks) @ [0:10177cc8]

(Idle Task) : [0l e 100,00 0.00

Syskem View | Funckion View J Process ViewJ

This view is empty when it opens, but soon begins to display miscellaneous
analyzed profiling data for the program(s) running on the target.

16

2 Getting Started
2.4 Testing Your Installation

When you right-click anywhere in the view, a pop-up menu opens containing
several items that are helpful in managing your data collection activities. Detailed
help for each of these items is available using the online help key for your host.

2.4 Testing Your Installation

Having successfully started Performance Profiler and connected it to your target,
you can now begin to verify the installation and explore some of Performance
Profiler’s capabilities. An easy way to get started is to try the following activities:

= Enter some shell commands.

* Run the demonstration program provided.

Viewing From the Shell

To briefly test your Performance Profiler installation, start the GUI, run a few
commands in a shell to consume some CPU, and view the profiling statistics in the
GUL

Running the Demonstration Program
For either a VxWorks or Linux platform, you can test your installation more
thoroughly using the demonstration program profiledemo.c, located in:
WIND_SCOPETOOLS_BASE /target/src/vxworks/profiledemo
or,
WIND_SCOPETOOLS_BASE /target/src/linux/profiledemo_linux

where WIND_SCOPETOOLS_BASE (an environment variable of the same name)
is the root of the tree where you installed the Run-Time Analysis Tools.

In Workbench, perform the following steps to build and execute the
demonstration program:

1. In the Remote System view, create a target connection with an appropriate
name, if one does not already exist, then connect it to the target server.

17

Wind River Workbench Performance Profiler
User's Guide, 3.0

18

Right-click the connection name and select Connect Performance Profiler,
then select OK in the Connect to Target dialog box to accept the default
connection parameters.

Note that the Performance Profiler tool opens in the System tab view.

Select the Performance Profiler icon (=) on the Workbench toolbar to open
the full Performance Profiler perspective.

Verify that the status message in the Analysis Console view is:
Connected to target

If this message does not appear, check the Analysis Console view for error
messages.

Build the Performance Profiler example program profiledemo.c following
these instructions:

a. Right-click anywhere in the Project Explorer view and select New, then
Example to open the New Example dialog box.

b. Select VxWorks Downloadable Kernel Module Sample Project in the
New Example dialog box that opens, then click Next.

c. Select The Performance Profiler Demonstration Program in the
New Project Sample dialog box that opens, then click Finish to complete
the project creation.

Notice that a new profiledemo node now appears in the Project Explorer view.
You now need to build the profiledemo.c program.

d. In the Project Explorer view, expand the top (profiledemo) node, then
right-click the profiledemo (profiledemo.out) node and select
Rebuild Project to build the binary files.

This program builds rather quickly, but you can follow the build progress in
the Build Console view, as well as the progress meter in the Build Projects
dialog box.

When the program has successfully built, execute it by following these steps.

a. In the Project Explorer view, right-click the profilescopedemo.out node
and select Download, then click OK in the Download dialog box that
opens to download the executable files

b. In the Project Explorer view again, right-click the profilescopedemo.out
node and select Run Kernel Task.

d. Click Run to start the ProfileScopeDemo example program executing.

2 Getting Started

2.4 Testing Your Installation

In the Run dialog box that opens, in the Kernel Task to Run group, click
Browse in the Entry Point field, and select

Downloads > profiledemo.out > ProfileDemoSpawn as the binary files
to be loaded, then click Apply.

You will begin to see data being displayed in the GUI very shortly.

This figure shows an example of the output data generated by this demonstration

program after it has been running for several minutes.

Routine

E: wxsimD@sv|-grood-d1 Performance Profiler &3

=0

| Current Indirect % | Current Direck % | Current Usag... = I

[=lwawvarks : [277930925] (tProfileDema)
[=1wawarks @ [277930925] (tProfileDema) 100% analyzed
[=1wxTaskEntry (wvxWorks)
[=] ProfileDema (profiledema.sa)
[=IFa {profiledema.sa)
[=1fb {profiledema.sa)

=l callcos (profiledemo.so)/
[=lcos {wxwworks)
drem {vxWorks)
copysign (vxWorks)
finite {wxWorks)
[=] _sigCtxLoad (wxiorks)
intUnlock (wiworks)
[=] _sigCtxLoad (wxorks)
intUnlock (wiworks)

_sigChxLoad (wxWorks)

copysign (vxWorks)
finite {wxWorks)
[=] _sigCtxLoad (wxorks)
intUnlock (wiworks)
_sigChxLoad (vxWorks)
drem {vxWorks)

— A

91.39
91.39
91.39
91.39
91.39
§8.93
85.25
80,74
25,00
9.54
6,97
0.00
0.00
0.00
0.00
0.00
1.23
0.582
0.5z
0.5z
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
1.64

Syskem View] Function ViewJ Process ViewJ

From this System View, you can observe the following information:

= The callcos() function is being called by the function fb() (see callout A in the

figure).

= The Current Indirect statistics show that fb() consumes about 88.93% of the
CPU.

» The usage bar for callcos() shows that the CPU spends almost no time in
callcos() itself (about 1.64% of the CPU), but mostly in its subroutine calls (see
callout Bin the figure). This is because the usage bar for callcos() contains very
little blue (dark) color that corresponds to Current Direct CPU usage.

19

Wind River Workbench Performance Profiler
User's Guide, 3.0

= The Current Direct statistics show that the most significant CPU time is spent
in the cos() subroutine (see callout C in the figure), with the CPU spending
about 38.93% of its time.

* Theusage bars also show that the next most expensive calls in terms of Current
Direct CPU usage are drem() and copysign() (see callout D in the figure).

The statistics show that callcos() itself has only a small amount of overhead (its
Current Direct usage is only 1.64%).

The results from your Linux target will be similar to the figure above for VxWorks,
so the explanation given above for the VxWorks test also applies.

2.5 Usage Notes

The following sections describe major factors that enter into consideration when
using Performance Profiler on a VxWorks or Linux target.

Symbol Resolution

For statistical analysis, and for performing symbol resolution, Performance
Profiler uses the ELF symbol table from the process object file. Without symbol
resolution, all function names in the sampled data returned from the target would
be displayed in the GUI simply as virtual memory addresses. For Performance
Profiler to print the corresponding meaningful function names, these addresses
must be converted to their respective symbols. This is automatically done in the
host-side GUI using DFW. For detailed information on this process, see the Wind
River Workbench User’s Guide: Troubleshooting.

You can view the list of symbols that Performance Profiler has not been able to
resolve, as well as the files in which they reside, in the Unresolved Symbols view,
opened with the Unresolved Symbols tab (see 3.2.7 Unresolved Symbols View,
p-41). If you experience any unresolved symbols in your analysis, refer to the
Object Path Mappings Page section of the Wind River Workbench User’s Guide: New
Target Server Connections for helpful information.

20

2 Getting Started
2.5 Usage Notes

NOTE: If the objects found on the host are not consistent with the objects being
analyzed on the target (for example, they have been changed and recompiled), the
symbol names may be skewed.

NOTE: Performance Profiler is not able to analyze any sample whose hexadecimal
addresses are not all resolved into symbols (for statistics on how many unresolved
samples remain in the buffer compared to the number of samples analyzed, see
3.2.7 Unresolved Symbols View, p.41). Unresolved symbols need to be resolved or the
statistics, showing less than 100% analyzed, may not be very representative, and
can be very misleading.

Symbol resolution should 7ot be considered optional!

Symbol resolution is handled differently in the VxWorks and Linux versions of
Performance Profiler, as described in the following sections.

VxWorks Symbol Resolution

In VxWorks, Performance Profiler uses the services of Workbench (specifically, the
dfwserver) to resolve addresses into function names. Most of the time this
arrangement successfully resolves all addresses into function names. However, in
some situations, dfwserver may not be able to detect the presence of a new binary
running on the target. For example, if a target has its own file system and an RTP
started from the corresponding file system, and the target file system is not
mirrored on the host on which the dfwserver is running, dfwserver cannot access
the symbol table of the corresponding binary. Performance Profiler will then not be
able to resolve the addresses from the corresponding RTP into function names. In
this case you must specify the correct object path mappings in the target
connection properties of the corresponding target in Workbench.

For more information, refer to the Object Path Mappings Page section of the Wind
River Workbench User’s Guide: New Target Server Connections.

Linux Symbol Resolution

For Linux targets, the GUI gathers profile data sent from the ProfileAgent on the

target. Included in that process is looking up routine names that correspond to a

list of addresses within each process on the target. These symbols are resolved by
supplying the pathname(s) to object files for all code and library object files used
by the target process.

21

Wind River Workbench Performance Profiler
User's Guide, 3.0

Target File System (Linux Only)

On your Linux target you must make sure there is a copy of all the target
executables and shared libraries located on the host file system.

If your target mounts its file system over a network from a file server that is
accessible from the host, then just enter the directory paths to those files (as well as
user executables and libraries), as seen by the host on which you are running
Performance Profiler.

Example Pathnames

Kernel-Mode vs.

Example pathnames to specify include:
/usr/target/targetspecs/target name/rootfs/1lib
/usr/target/targetspecs/target name/rootfs/usr/bin
...(etc.)

where:

/usr/target/targetspecs/target name/rootfs/

is an example pathname on a host machine beyond which the directory structure
is the same as the target directory structure, starting at its root node. Following this
pattern generally, you should add the host paths that correspond in the following
way:

path_to_exported_file_system_root / path_to_specific_executable_code_file

As previously mentioned, if you strip the ELF symbols from an executable or a
shared library that is part of a process Performance Profiler is analyzing, it is not
be able to resolve the collected addresses into usable function names (see the
caution note in Section above).

Process-Mode
Unlike MemScope, Performance Profiler is able to analyze data in either kernel-

mode or process mode, as well as tasklets, soft irgs, bottom-halves; basically
anything that the timer isr can interrupt.

22

The Performance Profiler GUI

3.1 Introduction 23
3.2 The Performance Profiler GUI 24
3.3 Usage Notes 45

3.1 Introduction

Performance Profiler is a graphical user interface (GUI)-based application. It uses
perspective views to display data that is helpful in determining how your
embedded program is utilizing the CPU. This chapter describes the many
individual Performance Profiler views that display CPU usage data. Each view
provides a different tool to help you see and understand the sequence of function
calls that point to the source of excessive CPU consumption. Data is displayed
dynamically in all the views, as it is collected, and you can have multiple views
open at the same time.

23

Wind River Workbench Performance Profiler

User's Guide, 3.0

3.2 The Performance Profiler GUI

This section gives a detailed description of the each of the following Performance
Profiler views and features.

24

System View

Displays profiling statistics in a function-call tree format. Expand the tree to
view the callstack and determine the function or set of functions that are
consuming the most CPU. In this view, if two different functions call the same
function, the calls appear as separate entries, because they belong to different
callstacks. For details, see 3.2.1 System View, p.25.

Function View

Shows the functions that consume the most CPU. The statistics for each
function consists of all sampled calls to the function, regardless of how the
function is called. Consequently, this view is a flat view, as opposed to the
System view. For details, see 3.2.2 Function View, p.31.

Process View

Lists the profiling statistics for all running processes, showing you how much
CPU each process consumes. For details, see 3.2.3 Process View, p.35.

Correlation

From any Performance Profiler view, locates the same function in a different
Performance Profiler view. For details, see 3.2.4 Correlation, p.37.

View Source Code

Displays the source code for a function selected in the System view or the
Function view. For details, see 3.2.5 Source Code Viewer, p.38

Analysis Console

Displays status, error, and warning messages that may be useful in
determining connection or activation problems. For details, see 3.2.6 Analysis
Console View, p.39.

Unresolved Symbols

Shows all hexadecimal addresses in an object file which cannot be resolved
into corresponding function names, usually because pathnames to the object
files need to be specified. For details, see 3.2.7 Unresolved Symbols View, p.41.

3 The Performance Profiler GUI
3.2 The Performance Profiler GUI

. Performance Profiler Status

Provides detailed status information for Performance Profiler’s statistical
analysis processes and connection information. For details, see
3.2.8 Performance Profiler Status View, p.42.

= Columns

Allows you to select the columns of statistical data you are interested in seeing
in the current view. For details, see Column in 3.2.9 Preferences Dialog Box, p.43.

. Preferences

Allows you to set parameters that control how Performance Profiler samples
the execution state of your system, and to tune and display the statistical
analysis. For details, see 3.2.9 Preferences Dialog Box, p.43.

= Snapshot

Represents the profiling data at an instant of time. You can create a snapshot
from any of the views (System, Function, or Process) to compare data between
runs or to examine a set of data more closely while letting Performance Profiler
collect additional statistics. For details, see 3.2.10 Snapshots, p.43.

= Other

Dialog boxes warn you of a variety of circumstances, such as connection
problems, reminding you to initialize target libraries, and displaying target
errors.

3.2.1 System View
The System view appears by default when you first start Performance Profiler.

You can open this view at any time with the System View tab at the bottom of the
Performance Profiler view.

25

Routine List

Wind River Workbench Performance Profiler
User's Guide, 3.0

Routine List Statistics Fields Current Usage Bar

E:vxsimD@va-grood-dl,PerFUrmancé Profiler &3 £ = Eq

Routine | Current Indira_/t %o | Current Direck % | Current Usage
= {vaworks) @ [0:10177cc8] 100,00 0,00

(Idle Tasl «FFFFFFF] 1009 100,00 0.00

Syskem View | Funckion View J Process ViewJ

The table in the System view displays the collected profiling data in a function-call
tree format. Each row corresponds to a routine call that was active when
Performance Profiler sampled the target system execution state—that is, the
system was executing either the routine or one of its nested subroutines.

For each function call, Performance Profiler maintains a set of data collected from
the target and translated into statistics. The function-call information is displayed
in a call stack tree format in the Routine List, with the statistical data for that
function call displayed in columns in the Statistics Fields in the center. The current
CPU usage is displayed graphically in the Current Usage Bar to the right.

This is generally the most useful view of the profiling statistics, providing a full
function-call tree that you can expand and collapse as you explore the performance
of your system.

The following sub-sections describe the System view components in greater detail.

Each row in the System view begins with the name of the routine corresponding
to the statistics in that row. Together, the names in all the rows in this column form
a function-call tree called the Routine List, pictured here.

For a VxWorks target, the left-most rows in the tree are always a process name, and
the next lower level row is a thread name (unless Display Threads is turned off,
that is, unselected in the pop-up menu above).

For a Linux target, the left-most rows in the tree are interrupts and exceptions,
Linux kernel threads, or Linux processes. All interrupts and exceptions that
Performance Profiler detects during Linux profiling are usually put under

26

3 The Performance Profiler GUI
3.2 The Performance Profiler GUI

Interrupts & Exceptions (the top row). The Linux kernel runs an interrupt or

exception on behalf of a peripheral or an inconsistent kernel state respectively.

System timer interrupts, network card interrupts, and page fault exceptions are the

most common interrupts and exceptions.

Statistics Fields

There are several fields (columns) containing profiling statistics generated to the
right of the routine name in each row, as shown in this example.

E: wxsimD@sv|-grood-d1 Performance Profiler &3 =0

Routine | Current Indirect % | Current Direck % | Currenk Usage Bar &

= wsvorks) : [0x293530] 100,00 0.00
[=] (tProfilebema) [0x779120] 100% analyzed 93,73 0.00
[=] Profilebema (profiledema.sa) 43,04 0.00
[=IFa {profiledema.sa) 43,04 0.00
[=1Fc {profiledema.sa) 37.97 0.63
[Elig fweorks) 29.11 1,27
2 (viwarks) 17.09 17.09
i3 (vWorks) 6,33 6,33
exmul (vxWorks) 2,53 2,53
L2 {vxWorks) 0.63 0.63
L1 {vxWorks) 0.63 0.63
i4 (viWorks) 0.63 0.63
b1 {waiorks) 0.00 0.00
sigmaz (viWworks) 0.00 0.00
i5 (viWorks) 0.00 0.00
A999 {warks) 0.00 0.00
B999 (viiarks) 0.00 0.00 x|

Syskem View] Function ViewJ Process ViewJ

The Statistics Fields columns in the System view are initially spread out to the
width required to display the full title of each column. When additional columns
you may want to see are added, it can, unfortunately, truncate the names
displayed at the top of each column. In order to show more complete names, you
can use the Columns tab view in the Preferences dialog box (see 3.2.9 Preferences
Dialog Box, p.43) to make space by including only the columns you want displayed
in the table (see the list of columns suggested in Viewing Suggestions, p.28). Note
that this was done in the previous figure.

The space crunch can also be alleviated by squeezing in a larger number of data
columns and sacrificing the full column header name (as well as sacrificing some
text in the Routine List, as seen here).

27

Wind River Workbench Performance Profiler
User's Guide, 3.0

E: wxsimD@sv|-grood-d1 Performance Profiler &3

Routine Current Ind... | Current Dir...| Cumulative Ind..| Cumulative Dir...

= 100,00 0.00 100,00 0.00
=l (tPrafileDemo) [0x779120] ... 98,74 0.00 97,53 0.00
[=] ProfileDema (profiledem ... 46,54 0.00 49,74 0.00
[=IFa {profiledema.sa) 46,54 0.00 49,74 0.00

[=1Fc {profiledema.sa) 41.51 3.77 43,99 1.86

[Slia (vxwarks) 27.04 0.63 31.48 2,21

i2 (wiorks) 12,55 12,55 14.96 14.96

i3 (viorks) 5.66 5.66 333 333

exmul (v L., 377 377 6,69 6,69

L2 (wxWorks) 1.59 1.59 242 242

L1 {wxWorks) 0.63 0.63 0.16 0.16

bl {wiorks) 0.63 0.63 0.26 0.26

L3 {wxWorks) 0.63 0.63 0.07 0.07

sigmaz (wxh .., 0.63 0.63 0.27 0.27

i5 (wwiorks) 0,00 0,00 0.66 0.66

i (vciorks) 0,00 0,00 0.19 0.19

ADAD (W, 0,00 0,00 0.19 0.19

B999 (wxWe .., 0.00 0.00 0.05 0.05

Current L.

Syskem View] Function Yiew | Process Yiew |

Yet another alternative is to select the Maximize icon in the upper-right corner of

the view to fill the entire Workbench screen with this single view.

Additional background information about the statistics displayed in the System
view is given in Current vs. Cumulative vs. Maximum, p.47, and in Indirect vs. Direct,

p-48.

Sorting Statistics

Select the column heading of any one of the statistics fields to re-order the entire
table from highest usage to lowest according to the values in that field. Select the
column heading again to re-order the table from lowest to highest. The sorting is

performed hierarchically, one call level at a time.

Viewing Suggestions

Some suggestions for which columns to display are presented here. Columns are
selected using the System, Function, or Process tab view in the Preferences dialog
box (see 3.2.9 Preferences Dialog Box, p.43). Help with these options is also available

online using the help key for your platform.

To Optimize Code by Minimizing Calls to Expensive Functions:

1. Select the Cumulative Indirect %, Current Indirect %,and Max Indirect %

columns, and deselect the others.

2. Locate the functions with highest CPU usage.

28

3 The Performance Profiler GUI
3.2 The Performance Profiler GUI

3. Expand the functions to determine where calls to expensive subroutines occur.

4. Determine if those calls are necessary by examining your source code.

To optimize code by tuning algorithms:

1. Select the Cumulative Direct %, Current Direct %,and
Max Direct % columns, deselect the others.

2. Expand the whole tree.

3. Locate the functions with highest CPU usage.

4. Determine if the algorithms implemented by these functions can be optimized
by examining your source code.

To Determine the Long-term Average CPU Usage of Your System:

Use the Cumulative Indirect % and Cumulative Direct % columns, and
deselect the others.

This view is appropriate for systems that have fairly constant activity. For
these systems, the Current statistics should be similar to the Cumulative ones,
so there no real need to clutter the display with Current statistics.

To Determine the Short-term Average CPU Usage of Your System:

1. Use the Current Indirect % and Current Direct % columns, deselect the
others.

2. Trigger an event on your system that initiates the activity you wish to profile.

3. After getting the profiling statistics, select Stop in the toolbar to stop further
updates.

4. Examine your results.

5. You may wish to apply process filters to filter out tasks if you do not wish to
see functions executed by those tasks in the Routine List.

Current Usage Bar

Always appearing on the right-hand end of the System view table (as seen in some
of the previous figures in this section), these colored graphical usage bars help you
quickly visualize your system performance. The bar displays the Current Indirect
and Current Direct percentages as a bar graph for each row.

29

Wind River Workbench Performance Profiler
User's Guide, 3.0

Current Indirect

Current Direct

The blue (or darker-colored) bar represents Current Direct percentage of CPU
usage, and the red (or lighter-colored) bar is the Current Indirect percentage of
CPU usage. The relative lengths of the bars let you know at a glance the relative
CPU usage between the routines and between the two different types

(Current Direct and Current Indirect) usages.

System View Pop-up Menu

When you right-click a row in the System view, a pop-up menu opens with data
display options.

Expand Branch
Collapse Branch
Wigw Source

Clear Data
Clear Counts

Locate in Function Yigw »

Locate in Process Yiew »

v Display Threads
Hide Dead Processes

Using this menu, you can expand or collapse entire branches in the System view
tree. The routine name is indented for each lower level of the call. A routine that
calls other subroutines can be expanded to the next lower node by selecting its "+"
symbol, or collapsed to the next higher node by selecting its "-" symbol. You can
expand an entire branch to show all its lower-level nodes and branches by right-
clicking the branch and selecting Expand Branch in the menu that appears when
you right-click on a row, as shown here. Likewise, you can right-click any node,
then use Collapse Branch in this menu to close all the nodes and branched below
it. Note, however, that right-clicking a branch (not a node) and selecting either
menu option will cause no action.

30

3 The Performance Profiler GUI
3.2 The Performance Profiler GUI

You can also view source code (see 3.2.5 Source Code Viewer, p.38), and clear counts
(see Statistics Fields, p.36), clear Data (see Current vs. Cumulative vs. Maximum,
p-47), or access the same profile data in another view (see 3.2.4 Correlation, p.37).

In addition, a process may have single or multiple threads running in it. If
Display Threads is selected (checked) in the pop-up menu, then each thread
running in a process (if Performance Profiler detects the samples of the
corresponding thread) is in a separate table row under the row containing the
name of the process. If Display Threads is not selected, then all functions in the
threads in the corresponding process are displayed together with no thread
identification. The Display Threads option is checked by default.

Also, if Hide Dead Processes is checked in the menu that opens, statistics for all
processes that have either quit on their own, or have been terminated, are not
displayed. If Hide Dead Processes is unchecked, their call stacks are displayed.
The Hide Dead Processes option is unchecked by default.

3.2.2 Function View

Open the Function view by selecting the Function View tab at the bottom of the
screen.

Thread Selection Table Function View Table

|:_‘- wxsimD@sv|-grood-d1 Performance Profiler &3 5 =0
Threads: ’ % Routine | System Cumlative % | System Current % | System Max % I
0 taskUnlock (vxWworks) 0.21 0,00 41,38
 [4294967293] (Idle Task taskStackFree (viWorks) / 0.00 0.00 0.45
waWorks ¢ [272103864] (tNetTask) semTake (wxWorks) 0.00 0.00 0.45
VWorks | [277897840] (FProfileSal semMGive (vicworks) 0.00 0.00 0.40
WiWorks : [4294967294] (kernel St semGive (vidWorks) 0.00 0.00 0,37
Wworks | [271954104] (tJobTask) semBTake (viWorks) 0,00 0,00 0.34
Watorks 1 [277929680] (tProfileDe prRouteModeConvert (... 0.00 0.00 0,79
pfctlinput {vxworks) 0.00 0.00 0,35
ip_slowtime {vxworks) 0.00 0.00 0,32
intUnlock (waworks) 6,27 7.59 10,91
in_rmxDestruct (vxworks) 0.00 0.00 0,39
gtFTimerReset (vxWorks) 0.00 0.00 0.40
finite {vxWorks) 4,26 4,02 11.34
fe {profiledema. so) 3.82 3.57 9,20
fb {profiledemo,so) 0.00 0.00 0.58
fa {profiledemo.so) 0.00 0.00 0.48
drem {vxWorks) 21.21 21.43 34,91
cos (vxWorks) 36,96 45,54 54,49
e I
Syskem Wiew | Function View] Process ViewJ

This view displays the routines (functions) with the most Direct CPU usage. Each
entry for an individual thread (or process, if Display Threads is turned off), shows

31

Wind River Workbench Performance Profiler
User's Guide, 3.0

the sum of all calls to a routine, regardless of how the routine is called. For the
entire system, each entry shows the sum of all calls to the routine, regardless of
how, or from which thread (in a multi-threaded process), the routine is called.
Consequently, this is a flat view of the profiling statistics.

The following sections describe in detail the remaining major parts of the Function
view.

Thread (Process) Selection Table

The Thread (or Process, if Display Threads is turned off) Selection table, in the
left side of the Function view (above) lists all the threads (or processes) for which
statistical data is being collected. It allows you to select a particular thread (or
process) for which to view the direct CPU usage statistics in the Function view
table, described below. You can also select Entire System to view the direct CPU
usage statistics for all routines executing on individual CPUs.

Function View Table

The Function view table displays top-usage routines as a flat list.

Routine List Statistics Fields
/

Routine / | Syskem Cumulative % | Syskem Currgn{% | Syskem Max % I
intCpulnlock {vworks) 1.17 1.85 3.09
copysign (viworks) 20,48 22,51 27.03
drem vixiWorks) 33,41 28,41 41,33
Fc (profiledema, out)

cos (vxWorks) 25,19 24,35 34,32
finite {vxWorks) 6,84 5.17 12,88
callcos {profiledemo, out) 4,27 4,06 7.85
wib¥drPutbytes {vxiWorks) 0.00 0.00 0,38
bropy {vxiWorks) 0.00 0.00 0,34
fb {profiledemo. out) 0.00 0.00 0,34
fa {profiledema, out) 0.00 0.00 0,38
wibCrmdLoop {vxWorks) 0.00 0.00 0,37
wdbREMemAccess (vxWorks) 0.00 0.00 0,38
sedr _CHECKSUM {wiiarks) 0.00 0.00 0,34
wibRpcReply {vxworks) 0.00 0.00 0,37

The entries correspond to those routines with the highest Direct CPU usage (or
any CPU usage in a Linux target). You can sort the entries from highest to lowest
usage, or vice versa, by selecting the corresponding column heading. For a Linux
multi-processor target machine, each routine entry shows Direct CPU usage for

32

3 The Performance Profiler GUI
3.2 The Performance Profiler GUI

each CPU as well as for the entire system. Because this table lists the top-usage
routines at the time it is updated, the entries can change with each update.

For each row in the table, Performance Profiler maintains a set of data which was
collected from the target or computed as statistics. Each field of the data is
displayed in a column of the table.

Routine List

Each row in this table contains the name of the routine corresponding to the
Statistics Fields usage statistics to the right.

Statistics Fields

The statistics fields (columns) for the Function view are all Direct (see Indirect vs.
Direct, p.48) statistics. The possible fields in the Function view, selected using the
Columns view, are the following:

System Cumulative %

Represents the long-term average CPU usage of the routine itself, not
including any of its subroutine calls, or direct CPU usage expressed in terms
of percentage of total CPU time. The average is performed over the entire
profiling session.

System Current %

Represents the short-term average CPU usage of the routine itself, not
including any of its subroutine calls, or direct CPU usage expressed in terms
of percentage of total CPU time. This average is performed over the specified
analysis period, and can be tuned using the digital-filter parameters described
in the Preferences dialog box (see 3.2.9 Preferences Dialog Box, p.43).

System Max %

Represents the highest value of short-term average CPU usage of the routine
itself, not including any of its subroutine calls, or direct CPU usage expressed
in terms of percentage of total CPU time during the current profiling session.

System Cumulative Count

The count (for the entire profiling session) of the number of times a sample of
the execution state occurred when the target was executing the routine, but not
any of its subroutines. This number is used to compute the

System Cumulative Direct percentage. This count is reset to zero when you
Clear Counts explicitly to start a new session, or when you change analysis
modes.

33

Wind River Workbench Performance Profiler
User's Guide, 3.0

= System Current Count

The count (since the last time data was analyzed) of the number of times a
sample of the execution state occurred when the target was executing the
routine, but not any of its subroutines. This number is used to compute the
System Current Direct percentage. This count is reset to zero each time
Performance Profiler finishes computing a set of statistics (every analysis
period).

On a Linux multi-processor target, you can visualize any of these statistics fields
for a single CPUX, or for the entire system. These fields can be selected, titles
truncated, and columns sorted in the same manner as for the System View (see
Statistics Fields, p.27).

Function View Pop-up Menu

When you right-click a row in the Function view, a pop-up menu opens with data
display options.

Wigw Source

Clear Data
Clear Counts

Locate in Process Yiew »
Locate in System View k

v Display Threads
Hide Dead Processes

Using this menu, you can view source code (see 3.2.5 Source Code Viewer, p.38), and
clear counts (see Statistics Fields, p.36), clear Data (see Current vs. Cumulative vs.
Maximum, p.47), or access the same profile data in another view (see

3.2.4 Correlation, p.37).

In addition, a process may have single or multiple threads running in it. If
Display Threads is selected (checked) in the pop-up menu, then each thread
running in a process (if Performance Profiler detects the samples of the
corresponding thread) is in a separate table row under the row containing the
name of the process. If Display Threads is not selected, then all functions in the
threads in the corresponding process are displayed together with no thread
identification. The Display Threads option is checked by default.

Also, if Hide Dead Processes is checked in the menu that opens, statistics for all
processes that have either quit on their own, or have been terminated, are not

34

3 The Performance Profiler GUI
3.2 The Performance Profiler GUI

displayed. If Hide Dead Processes is unchecked, their call stacks are displayed.
The Hide Dead Processes option is unchecked by default.

3.2.3 Process View

Process List

The Process view is selected with the Process View tab at the bottom of the view.

Process List Statistics Fields
G Z
E: wxsim0@svl-grood-d1, Performafice Profiler &3 =0
A >

Process / | Syskem Cumulative % | T Syskem Curren, ., | Systemn Max % I Current Usage Bar I
Sl vworks : [277930912] (tFrafie .. 92,60 91,67 99,26

WeWorks | [277930912] (Pro... 92,69 91.67 99,26
[Slvavorks : [272103864] (HNetTa .. f.63 833 9.17

WWorks | [272103864] (et ... 6.63 8,33 9.17
[Slvavorks : [4204967293] (Ide T56 0.00 100,00

Wworks | [4294967293] (Idh ... 0.56 0,00 100,00
[Slvavorks : [4294967294] (Kerne .. 0,00 0.00 0.37

WWorks | [4294967294] (Kel .., 0,00 0,00 0,37
[Slvavrks : [277899640] (HProfile ... 0.1z 0.00 12,79

WWorks | [277899640] (tPro.., 0.1z 0,00 12,79
Syskem Wiew | Function View | Process View

This view displays profiling statistics for all processes running on the target
system. For VxWorks, it provides information similar to the VxWorks Spy utility,
but unlike Spy, Performance Profiler can provide this information without using
the auxiliary clock (sysAuxClk()).

CAUTION: If Performance Profiler is using the aux clock (AuxClk), do not use the
VxWorks Spy utility at the same time (there will be an unresolvable conflict).

The display of statistics in this view is not inhibited by process filter settings (see
Process/User Filter tab view in 3.2.9 Preferences Dialog Box, p.43). Each row of the
table shows statistics for a single process. For a Linux multi-processor machine, the
Process view also reports CPU usage of a process for each CPU in the system.

The Process view table displays profiling statistics for all processes running on the
target. The Process list (the first column in the Process view table) contains the list

35

Statistics Fields

Wind River Workbench Performance Profiler
User's Guide, 3.0

of the process names. If a sampled process ends before Performance Profiler is able
to look up its name, it will substitute the process id for the name.

The Statistics fields (remaining columns in the Process view table) contain all
Indirect statistics (see Indirect vs. Direct, p.48) calculated for the given process. You
can choose from the specific fields, available in the Columns tab view of the
Preferences dialog box (see 3.2.9 Preferences Dialog Box, p.43). For the Process view,
the available fields are:

= System Cumulative %

Represents the long-term average of CPU usage for the process (or thread)
corresponding to this row, expressed as percentage of total CPU time of CPUx
or the entire system. The average is taken over the entire profiling session.

= System Current

Represents the short-term average of CPU usage for the process (or thread)
corresponding to this row, expressed as percentage of total CPU time of CPUx
or the system as a whole. This average is taken over the specified analysis
period, and can be tuned using the digital-filter parameters in the Preferences
dialog box (see 3.2.9 Preferences Dialog Box, p.43).

= System Max %

Represents the highest value of short-term average of CPU usage for the
process (or thread) corresponding to this row, during the current profiling
session, expressed as percentage of total CPU time of CPUx or the system as a
whole.

= System Cumulative Count

The total number of times during the current profiling session that
Performance Profiler sampled the execution state of the target while it was in
the process (or thread) corresponding to this row. Performance Profiler uses
this number to compute the Cumulative-percentage statistics.

= System Current Count

The number of times since the last analysis period that Performance Profiler
sampled the execution state of the target while it was in the process (or thread)
corresponding to this row. Performance Profiler uses this number to compute
the Current-percentage statistics. It resets this number to zero each time it
finishes computing a set of statistics (that is, every analysis period).

36

3 The Performance Profiler GUI
3.2 The Performance Profiler GUI

On a Linux multi-processor target machine, you can visualize any of the above

statistics fields for an individual CPUx, or for the whole system. These fields can

be selected, titles truncated, and columns sorted in the same manner as for the

System View (see Statistics Fields, p.27).

Process View Pop-up Menu

When you right-click a row in the Process view table, a pop-up menu opens with
data display options.

Expand Branch
Collanse Branch

Clear Data
Clear Counts

Locate in System View »

Locate in Function Yigw »

v Display Threads
Hide Dead Processes

The functions and display options are the same as those described for the pop-up
menu in 3.2.1 System View, p.25

3.2.4 Correlation

Using the correlation feature, you can locate the same function in a different
Performance Profiler view, for which you opened the menu that appears in Routine
List, p.26. With correlation, you can answer important questions about which
functions call a particular function that is consuming significant CPU time. It also
can help you figure out which function calls are more expensive than others by
comparing different function call histories. In addition, correlation enables you to
find functions in third-party libraries that are consuming significant CPU time.

Right-click a routine in the Routine list in any of the view tables to open the menu
that appears in Routine List, p.26. Select Locate in alternate View in this menu to
display a sub-menu of correlation choices. A sample correlation menu is shown
here.

37

Wind River Workbench Performance Profiler
User's Guide, 3.0

Expand Branch
Wigw Source

This function in this thread
This function in system Function list

Lacate in Function Yigw »

Locate in Process Yiew #

IMost expensive function in this thread
Mext most expensive function in this thread

v Display Threads
Hide Dead Processes

IMost expensive system Function
Mext most expensive system function

NOTE: If the Display Threads option is unchecked (turned off - see Routine List,
p-26), the word thread in all the menu items described in this section is replaced
with the word process.

3.2.5 Source Code Viewer

You can view the source code containing a function displayed in the Routine list
in either a System View table or a Function View table. To do this, right-click the
function and select the View Source option in the pop-up menu that opens. The
source code will be displayed in another view that opens, sharing space in the
Editor view along with the Performance Profiler view.

E-_ vusim0@s+l-grood-d1, Performance Profier £3 = EIW
Routine | Current Indir. .. I Current Dir... | Cumulative Indir... | Cumulative Dir... I Current Usage Bar
= {waiorks) : [0x10177838] 100,00 0.00 100,00 |

(Idle Task) : [0=FFFFFFF] 100% analyzed 0.00 0.00 3.09 i
(Kernel State) : [0xFFFFFFFe] 100% analy: 0.00 0,00 0,00
= (tProfileDemo) @ [0:x1090c8a0] 100% an 98.54 0.00 95,32
=1 wxTaskEnkry (vaWorks) 98,54 0,00 95,32
[=] ProfileDemo {profiledemo. out) 98,54 0.00 95,32

= fa (profiledemo.out)
= fb {profiledema, out)

Expand Eranch cos (viworks)
Collapse Branch Fe (profil E- wxsim0@sv|-grood-d1, Performance Profiler (profiledema.c i3
fe {profiledes Y]

Yiew Source —_ |

™ int callcos(int loops)

{

Clear Data oop (veEworks)
Clear Counts

int i:

N View ‘ Proces;
fleat x = 0.0;

Locate in Function Yiew »

Locate in Process Yiew

for (i i < loop=: ++1i) {

v Display Threads
Hide Dead Processes }
return(x < 100.4);

38

3 The Performance Profiler GUI
3.2 The Performance Profiler GUI

If the source file can be found, the source code view opens with the entry point of
the text routine showing near the top of the page. You can navigate around the
view using the cursor.

Use this same procedure to view source code from the Function view. Note that
the View Source option is not available in the Process view.

In the event the source code file is not found (for instance, you moved your source
code files since you last compiled them), a message to this effect is displayed in the
Unable to View Source dialog box.

?-_'-)"aUnahIe to Yiew Source x|

Function sigmax is not found in
CifwindRiver fvaoworks-6. 4t argetiprojfsimpe_diab/def ault fvacworks,

This could mean that the routine you have selected is a system routine, but if you
know the routine is in your source code, you can fix this by selecting the
Window > Preferences > Run/Debug > Source Lookup option. There you can
configure other directory paths to search, click OK, then, back in the pop-up menu,
select View Source again, as discussed above.

NOTE: If the source code has been moved from the location where it was compiled,
you must add the current path to the search paths using the Source Lookup dialog
box before Performance Profiler can locate them.

For more information on the Workbench Source Lookup option, see the Wind
River Workbench User’s Guide: Launching Programs.

NOTE: In order to use the View Source Code feature, you must have compiled
your code with debugging information enabled. Because Performance Profiler
uses the DFW server, it works with whatever debug information standard is
utilized by Workbench.

3.2.6 Analysis Console View

Open the Analysis Console view with the Analysis Console tab.

39

Wind River Workbench Performance Profiler
User's Guide, 3.0

@ Performance Profiler Status (E“ Analysis Console &3 =0
&~ -8B -4 E

Time | Module | Type | Message

10:37:36 AM Performance Profiler Info connected to walnuk@syl-grood-d1:5673

«| | i

This is where Performance Profiler reports status, warning, and error messages
generated by the host GUIL During normal operation (when Verbosity is set to 0),
only a few messages are printed to the Analysis Console view. However, when
you start Performance Profiler with a non-zero target verbosity level (see

2.3 Starting Performance Profiler, p.14), the amount of output can become
significant. You should do this only when requested by Wind River Technical
Support to help you debug any problems.

If you close this view, use the Window > Show View > Analysis Console
Workbench menu command to open it again.

Icons

& Verbosity
Select the down-arrow to open a menu with 7 levels of verbosity to choose
from. These verbosity levels control the volume and type of messages
generated by the GUI and displayed in the Console view.

Going down the menu, each verbosity setting enables all the messages from

the previous levels, plus additional messages provided by the level selected.
Thus, the volume of messages increases from the least verbose (Severe = few
messages) to the most verbose (Trace = everything).

NOTE: This verbosity setting determines the volume of messages generated by
the Performance Profiler GUI, as well as the messages generated by the target.
For information on the verbosity selections in the Connect to Target dialog
box, and how they relate to the verbosity settings here, see 2.3 Starting
Performance Profiler, p.14.

40

3 The Performance Profiler GUI
3.2 The Performance Profiler GUI

A CAUTION: Setting verbosity in the Analysis Console view to a value greater
than the default (Severe-Config) may cause the host to needlessly generate an
exceedingly large number of messages in the Analysis Console view.

Generally, use the default value for verbosity (Info) unless requested by W
ind River Technical Support to help you diagnose a problem.

* Filter
Filters the selected message by Analysis Tools module name (MemScope or
Performance Profiler) to show only messages for that module.

E Columns
Select the columns to be displayed in the Analysis Console view from a drop-
down menu.

Remove
Removes all the messages currently displayed in the Analysis Console view.

=l save
Opens a Save dialog box where you can specify the parameters for saving the
messages currently displayed in the view to a file.

3.2.7 Unresolved Symbols View

Performance Profiler collects profiling data sent by the ProfileAgent on the target
to the host. Part of this process includes looking up readable function names that
correspond to a list of addresses within each process on the target. Unresolved
symbols exist when the hexadecimal addresses representing function names in a
task or thread cannot be resolved into meaningful function names by Performance
Profiler. When an address cannot be resolved, it appears in the

Unresolved Symbols view along with the file in which it resides.

41

Wind River Workbench Performance Profiler
User's Guide, 3.0

This view displays tree-like structure consisting of pathnames and the
hexadecimal numbers (symbols) at the end of each pathname that Performance
Profiler has been unable to resolve so far. They are grouped by the files in which
they reside, and these are the files for which you must supply the full host
pathnames using the Window > Preferences > Run/Debug > Source Lookup
dialog box.

Since the view does not auto-refresh, use the Refresh icon () to refresh the
screen with any additional symbols that were found to be unresolved since you
opened the view (or last selected Refresh).

For a more complete discussion of symbol resolution, including the remedy for
unresolved symbols, see Symbol Resolution, p.20. For more information on the
Workbench Source Lookup option, see the Wind River Workbench User’s Guide:
Launching Programs.

Help using this view box is available by pressing the help key for your host.

3.2.8 Performance Profiler Status View

The Performance Profiler Status view is opened by selecting the view tab.

[=] Perfarmance Profiler Status &2 = analysis Console} E < =8

There have been 1919 tokal samples analyzed. ;I
There are 0 unresolved samples in the buffer,

The sampling rate is 63 Hz,

The sampling is being done by the Aux clock,

The analysis period is once per 2,5 seconds,

The maximum stack depth encountered is 14,

The digital filter pole For routine statistics is 0,95,
The digital filter pole For process statistics is 0.8,

There have been 10 samples with truncated callstacks,

There have been 0 samples skipped due to full buffers,

There have been 0 samples with stack depth deeper than the maximum level of 32,
There have been 0 interrupts missed,

This view provides detailed status information for Performance Profiler’s
statistical analysis processes, as well as connection information between the GUI
and the target. This provides useful information about how well Performance
Profiler is processing the statistical data.

42

3 The Performance Profiler GUI
3.2 The Performance Profiler GUI

You can save the text in the Performance Profiler Status view to a file by using the
Saveicon to open the Save dialog box, where you can select the file name and other
parameters needed to save the data.

The Status view has the following icons:

=] save
Opens a Save dialog box where you can specify the parameters for saving the
messages currently displayed in the view to a file.

" Refresh
The Status views is updated automatically every 15 seconds. However, you
can get current updated data at any time by selecting the Refresh icon.

3.2.9 Preferences Dialog Box

The Preferences dialog box is opened with the Window > Preferences menu item.
In the tree structure on the left, select Wind River > Performance Profiler to open
the tab views specific to Performance Profiler. The tab views in this dialog box let
you specify values for general parameters affecting Performance Profiler.

The following tab views are available:
» Target - target-based execution-state sampling options.
* Analysis - host-based statistical-analysis options.

» Process/User Filter - list of active processes or users to ignore when collecting
profiling statistics for routines.

» System/Function/Process View - additional tab views for selecting the
columns to be displayed in each of the three respective Performance Profiler
main views.

Detailed help for each of these tab views is available using the online help key for
your host.

3.2.10 Snapshots

A Snapshot is a static view of the entire collection of profiling statistics gathered
up to the instant in this profiling session that the snapshot is taken. Static means it
can no longer be updated, even though data collection continues and is displayed
in the live data views.

43

Wind River Workbench Performance Profiler
User's Guide, 3.0

You can take a snapshot from any of the three main views described above. This
causes all the profiling data collected from your target to be copied to a unique
temporary file. It is initially displayed in a new System view, but you can then
display it in any of the other views, just as with live data. The only thing you
cannot do in a snapshot view is take another snapshot.

Taking a Snapshot

To take a snapshot in any of the main views described above, select the Snapshot
icon in the pop-up menu that opens when you right-click anywhere in the view
(see, p.16).

Saving a Snapshot
Snapshot buffers are temporary, and will be lost when Performance Profiler exits
unless you save them. To save a snapshot buffer, follow these steps:
1. Select the Save icon to open the Save dialog box.
2. Enter a unique filename in the file-selection box.

3. Select OK to save the snapshot data to the file.

Viewing Snapshots From a Previously Saved File

1. Select the Open icon to open the Open dialog box.
2. Navigate to the desired file, then select OK to load it.

Performance Profiler opens the selected snapshot file and displays the
contents of the file in a new System view. The time stamp identifies the
snapshot by showing when it was taken (see Snapshot Time/Date Stamp, p.45).

Any number of snapshots may be open simultaneously, allowing you to perform
comparisons of statistical data. Each snapshot view appears and operates nearly
identically to its corresponding live view. Data collection and analysis continues
when a snapshot is taken, but new data cannot be added to the snapshot once the
snapshot has been taken.

44

3 The Performance Profiler GUI
3.3 Usage Notes

NOTE: Even though the snapshot is always initially displayed in the System view,
it contains all the data collected up to the time of taking the snapshot. Therefore,
the snapshot data can be displayed in any view or mode, exactly as with the

original data.

Snapshot Time/Date Stamp

Each snapshot view has the time and date the snapshot was captured displayed in
the title bar to uniquely identify the snapshot.

_~——— Time/Date Stamp
E: wxsim0@svl-grood-d1, Performance Profiler W@svl-gmod-dl, IW
Routing nt Indirect % | C i [Current Usage Bar «
[=] (wsevorks) @ [0x293530] 100,00
[=] (tProfilebema) [0x779120] 100% analyzed 93,73
[=] Profilebema (profiledema.sa) 43,04
[=IFa {profiledema.sa) 43,04
[=1Fc {profiledema.sa) 37.97
[Elig fweorks) 29,11
i2 (waWorks) 17.09
i3 (vWorks) 6,33
exmul (vxWorks) 2,53
L2 {vxWorks) 0.63
L1 {vxWorks) 0.63
i4 (viWorks) 0.63
b1 {waiorks) 0.00
sigmaz (viWworks) 0.00
i5 (viWorks) 0.00
A999 {vxwWorks) 0.00
B999 (viiarks) 0.00 0.00 x|
Syskem View] Function ViewJ Process ViewJ

This information constitutes the snapshot name, and it cannot be renamed. You
can give any name to the file in which you store the snapshot (see Saving a Snapshot,
p-44), but the time/date stamp in the title bar remains constant.

3.3 Usage Notes

This section describe the theory and assumptions on which the Performance
Profiler processes are based. These, and other tips here, will help you understand

45

Wind River Workbench Performance Profiler
User's Guide, 3.0

what is presented, and how it was derived, when using Performance Profiler on a
VxWorks or Linux target.

Interpreting Profiling Data

To help you use Performance Profiler more effectively, this section describes how
to interpret Performance Profiler profiling data. It opens with a discussion of the

statistical accuracy of Performance Profiler data, and finishes with a discussion of
profiling modes.

Statistical Accuracy vs. Number of Samples

Example 3-1

The accuracy of a statistical profiler measurement is determined by the number of
samples the profiler collects. To understand how long the profiler should collect
data to insure a desired accuracy is useful information. A well-known formula is
used by Performance Profiler to compute the number of samples required to
achieve an accuracy with a specified confidence level.

2
N = baZ ((12+ 9)/2)
€

where:
N is the number of samples required to achieve the specified accuracy.

p is the probability of an event occurring. A value of 0.01 means you are
interested in a routine with roughly 1% CPU utilization.

q = 1-p (is simply the probability of the event not occurring).
Z is the inverse of the Normal distribution integral function.

g 1is the confidence coefficient with a value between 0 and 1. A value of 0.95
means that you want to be 95% sure of the results.

e is the confidence interval, for example, the error tolerance of the results. A
value of 0.005 means that you want the errors to be within +/-0.25%.

Typical Accuracy

To pinpoint bottlenecks in code, it is usually sufficient to obtain profiling statistics
with 95% confidence to the nearest half a percent of CPU usage. What this means

46

Example 3-2

3 The Performance Profiler GUI
3.3 Usage Notes

is that you are 95% sure that the profiling data are within plus or minus 0.25% (a
range of 0.5%) of their true values. This level of accuracy is available almost
immediately, as can be shown for a routine using 1% of the CPU:

p=0.01
q=0.99
g=095
e = 0.005
zZ[..] =196

Using these values in the formula results in ~1500 samples, or about 13 seconds of
data collection at the Performance Profiler default sample rate of 113 Hz.

High Accuracy

To achieve two-digit accuracy with 95% confidence of the same routine that uses
1% CPU, the values to use in the formula are:

p=001
q=0.99

g=0.95

e = 0.001

Z[..] =196

These result in approximately 37,000 samples, or about 5.5 minutes of data
collection at the Performance Profiler default sample rate of 113 Hz. If you increase
the sample rate to 500 Hz (sampling at 500 times a second is about as fast as is
reasonable for most applications), this takes only about one minute. Thus, even
this level of accuracy is reasonable for a typical statistical profile.

Current vs. Cumulative vs. Maximum

Performance Profiler computes short-term and long-term CPU-usage statistics.
These help you see transient behavior as well as long-term, steady state system
behavior.

Short-term statistics are known as Current averages. These are weighted averages
which weigh recent data more heavily than past data, providing a more dynamic

47

Wind River Workbench Performance Profiler
User's Guide, 3.0

view of your system. The dynamic view enables you to detect transient changes in
CPU usage. You can tune the sensitivity (how quickly Performance Profiler
responds to transient CPU usage) by adjusting filter parameters for Performance
Profiler statistical analysis. For details, see 3.2.9 Preferences Dialog Box, p.43.

Long-term statistics are known as Cumulative averages. These are computed
using samples collected for the entire profiling session.

A profiling session can begin in any of the following ways:

= When you connect a target to the target manager (see 2.3 Starting Performance
Profiler, p.14).

= When you clear the sampled counts explicitly using the Clear Data menu
command (see).

= When you change certain sample and analysis modes. For details, see
3.2.9 Preferences Dialog Box, p.43.

The Maximum values show the highest CPU usage of Current averages for each
routine or process during the current profiling session.

Indirect vs. Direct

When profiling your applications, it is useful to examine both of the following
parameters:

» Indirect statistics — The total time the CPU spends within a function,
consisting of the percentage of time the CPU spends in that function, plus the
percentage of time spent in other functions which this function calls in turn.

= Direct statistic — The percentage of time the CPU spends within a function
only (for example, excluding the CPU time spent in other functions which this
function calls in turn).

Use the Indirect and Direct statistics to determine if CPU usage is consumed
mostly by code within a function or by its subroutine calls.

For example, if the Indirect usage of a function is 10.0%, but Direct usage is only
0.01%, then the majority of the CPU usage must be consumed by subroutine calls.
Expand down the hierarchy to search for high CPU-usage subroutine calls.

As another example, if the Indirect usage of a function is 10.0%, and Direct usage
is 9.9%, then the CPU usage must be consumed by the function itself. You can
ignore any subroutine calls and concentrate on that function to try to optimize
code.

48

Profiling Modes

3 The Performance Profiler GUI
3.3 Usage Notes

There are several run-time mode parameters which affect the collection and
analysis of data. These different modes are described in detail in this section, and
are selected using the Preferences dialog box. For details, see 3.2.9 Preferences
Dialog Box, p.43, or, for online help, use the help key for your platform.

Sample-Collection Mode — System vs. Single Process

The two sample collection modes produce different data that focus on analyzing
the performance of multiple processes or a single process. The resulting data can
be quite different for the same function call.

The System mode is geared towards profiling multiple processes. It shows how
much total CPU is used by each process and by the functions executed by those
processes. If the processor is idle, the sample is attributed to a pseudo process
called Idle Task. If the CPU is executing an ignored process (because the
Process/User Filter table has been set to ignore that process; see 3.2.9 Preferences
Dialog Box, p.43), the sample is attributed to the pseudo function IGNORED().

The Single Process mode, on the other hand, always attributes a sample to the
function the process is currently running. That is, even if the process is blocked, the
sample is attributed to the function which blocked it.

For Linux Targets Only

Note that specifically on Linux targets, if a process is blocked, samples of the
process are attributed to a pseudo function node called thread_waiting() in the
System view. The child node under the thread_waiting() function node in turn
shows in which function the process is blocked.

If a process is ready to run (for example, waiting in a run queue), samples of the
process are attributed to a pseudo function node called thread_runnable() in the
System view. The child node under the thread_runnable() function node shows
the function the process is going to run when scheduled to run on a particular
CPU. Similarly, if a process is stopped due to SIGSTOP, SIGTSTP, SIGTTIN or
SIGTTOU signals, the System view shows the function in which the process is
stopped under a pseudo function called thread_stopped() node.

If a Linux process is terminated, but the parent process has not yet issued a wait()-
like system call, Linux puts the process in the zombie state. The function in which
the process is lingering in a zombie state is reported under a pseudo routine called
thread_zombie() node in the system. For more information on process state,
consult an appropriate Linux reference.

49

Example 3-3

Wind River Workbench Performance Profiler
User's Guide, 3.0

Blocking vs. Non-Blocking Functions

Consider a process that blocks in function A() most of the time. When the process
does unblock, it executes quickly and blocks again on A(). In System mode, the
total usage of A() is low, indicating that it is not utilizing much of the processor.
However, in Single Process mode, nearly all the usage would be attributed to A(),
indicating that the call to A() dominates the process execution.

For more information, see the Target Tab view in 3.2.9 Preferences Dialog Box, p.43.

Analysis Mode — Normal vs. Exploded

To reduce the amount of data and analysis time, the Normal analysis mode
collapses multiple calls to the same function from within a single function, into a
single entry. Consequently, from the System view, in the Normal mode, you can
determine that A() called B(), but we would not be able to distinguish between
invocations of B() in different locations in the source code of A().

Switch to Exploded analysis mode to determine in a multiple-call case whether
one call is more expensive than the others. For more information, see the Analysis
tab view in 3.2.9 Preferences Dialog Box, p.43.

Sample Timing — Auxiliary vs. System Clock

The accuracy of the Performance Profiler profiling data can depend on how the
execution-state samples are collected. It is more accurate if the samples are
collected asynchronously and randomly with respect to your system execution. If,
for instance, your application performs certain computations periodically at a
certain rate, then Performance Profiler should sample at a rate that is not a multiple
of, or an integer divisor of, sampling rate of your application.

If your VxWorks application is already using the auxiliary clock, you should not
connect Performance Profiler to the auxiliary clock. In such cases connect
Performance Profiler to the System Clock instead. Using the System Clock can still
provide valuable information, but (for VxWorks only) the Performance Profiler
Direct statistics may exhibit beating effects, because its sampling is synchronous
with the system execution.

For PPC, ARM, MIPS, and x86 targets running Linux, Performance Profiler is
always connected to the System Clock by default. All IBM-compatible PCs and
most x86 boards include the RTC to keep track of the time and date. On these x86
targets you can also connect Performance Profiler to the RTC.

For more information, see the Target tab view in 3.2.9 Preferences Dialog Box, p.43.

50

3 The Performance Profiler GUI
3.3 Usage Notes

51

Wind River Workbench Performance Profiler
User's Guide, 3.0

52

Troubleshooting

4.1 Introduction 53
4.2 Messages 54
4.3 General Troubleshooting Tips 55

4.1 Introduction

This chapter addresses the following problem areas:
» Performance Profiler status and error messages (4.2 Messages, p.54).
» Typical problems (4.3 General Troubleshooting Tips, p.55).

If you get error messages, or are having problems getting Performance Profiler to
work, check the error messages in this chapter to see if they resolve your problems.
If you are still unable to get Performance Profiler to work, contact Wind River
Technical Support.

53

Wind River Workbench Performance Profiler
User's Guide, 3.0

4.2 Messages

Message traffic within GUI, and with its external parts, is formatted and displayed
in a few specific places. Status and warning messages appear in the Status view
(see 3.2.8 Performance Profiler Status View, p.42). Some error messages are displayed
in the Analysis Console window, described in 3.2.6 Analysis Console View, p.39.

A list of all the status, warning, and error messages, including interpretation and
helpful suggestions where needed, is included below.

Status Messages

The messages describing the status of data sampling and analysis on the host GUI
machine appear in the Status view. For an example of these types of status
messages, see 3.2.8 Performance Profiler Status View, p.42.

Error Messages

VxWorks Targets

For VxWorks targets, if you have trouble loading the object files onto your
VxWorks target, such as the error message:

API_FILE_NOT_FOUND
check the following:

* You are able to ping the target over the network.

» If you are using NFS, check that the file system is mounted (use
nfsDevShow).

* Your target has permission to read the object files from the file server.

If none of these suggestions resolve the problem, it may be that your target system
is slow, or has intermittent response. Try loading the Analysis Tools modules
manually using a shell window and the "ld" command.

Linux Targets

For Linux users, in the course of starting the target, error messages may appear at
certain times. Some of these messages describe actual errors resulting from various
issues. However, some messages only describe potential errors, or errors in
unrelated or non-crucial processes. This section lists the major or most frequently
encountered error messages in both the actual and benign categories.

54

4 Troubleshooting
4.3 General Troubleshooting Tips

When starting Performance Profiler with a Linux target, the following error
messages may be displayed:

Failed to load rti_profile module

The programs insmod and rmmod must be in your user PATH because
ProfileAgent depends on them. They must also have execute permission
(logging on as root gives this permission by default).

License Error: License Server does not support this feature

You do not have a valid license to run Performance Profiler. Contact Wind
River Technical Support to request a valid license.

UnsatisfiedLinkError: filename: libstdc++.s0.5: cannot open shared object file:
No such file or directory

The Workbench installation requires the libstdc++, version 5 package to be
installed on any RHEL host you run with. This package is installed by default
on RHEL 3.x hosts, but is optional on RHEL 4.x hosts. You may be running an
RHEL 4.x host and have not installed this package during installation. Or you
may be running from an installation that was done on a different host type.

NOTE: When installing onto a server for multiple host types, the installer is
only able to check for library compatibility for the host it is being installed
from and not for hosts that may subsequently use the installation.

4.3 General Troubleshooting Tips

This section organizes problem areas by the major components in which they
occur.

Issues With the Target

Unqualified Tasks

Certain tasks cannot be profiled with the current Performance Profiler design.
An example would be any task running with interrupts disabled. Tasks which
run infrequently, or which run at low priority (or both), may require very long

55

Wind River Workbench Performance Profiler
User's Guide, 3.0

56

run times to be seen and profiled, due to the statistical nature of Performance
Profiler.

Call Stack Display (VxWorks only)

Performance Profiler does not appear to be displaying the proper call stacks
for the memory-allocation records.

Cause #1 — The target server was not started with the -A option.

Solution #1 — You must start the target server with the -A option. This ensures
that the target server loads local symbols in addition to global symbols. If this
option is not selected, the call stack traces will pick the nearest global symbol
for calls from local symbols. For more information, see VxWorks, p.12.

Cause #2 — You did not manually load libraries with local symbols, so
Performance Profiler instead shows function names that are the nearest global
symbols.

Solution #2 — Make sure you load your libraries with local symbols using the
ldil«< ...

command.

Cause #3 (for x86 targets only) — Your target kernel was possibly compiled
with frame pointers disabled.

Solution #3 — Frame pointers enabled is the default with the compiler, but
make sure you did not disable them when you last compiled. If you did, you
must recompile your code with frame pointers enabled (see VxWorks, p.12).

Target Connection Lost

You may also receive the following message in the target shell:

Link ERROR: Broken Pipe

Error sending records, reconnecting...
If so, it means the target has replied back to the host, and the host has shut
down the target. In this case, the error is possibly caused by the target not
responding to the host within the specified target timeout period. You can
adjust priorities and timeouts as follows, then retry.

Increase the priority of Performance Profiler to a value just below the
tWdbTask priority, and above the tNetTask priority. For instance, if
tWdbTask priority is at 3 and tNetTask priority is at 50, set Task Priority
in the Connect to Target dialog box to 9, reconnect, and try again.

4 Troubleshooting
4.3 General Troubleshooting Tips

You may also need to change the Backend request timeout value from the
default 3 sec. to a higher number, such as 10. Do this (with your target
disconnected) by right-clicking your target server in the Remote Systems
view, then selecting Properties to open the Target Connection dialog box.
In this dialog box, use the Advanced target server actions group in the
Target Server Actions tab view to modify the timeout value as indicated
above.

Target Crashes

If a task, or the target system itself, crashes during tracing, you may not have
a properly configured target operating system. If so, you must rebuild the
system.

When you rebuild the system, be sure to include the following components:
INCLUDE_MODULE_MANAGER

Supports module library calls.
INCLUDE_SHARED_DATA

Supports shared data regions when you are tracing VxWorks Real-Time

Processes.

These components are required for safe operation of Performance Profiler on
VxWorks systems. Update your target system build configuration accordingly
in the Workbench Project Explorer view, and rebuild the system project.

Target Kernel Start and End Addresses

When starting Performance Profiler on VxWorks, and DFW is unable to
determine the target kernel text start or end address, a dialog box opens with
the following warning:
Unable to locate the start and/or the end of kernel text address,
which the tool needs in order to successfully connect to the target.
Please enter the values manually below:
Enter the start and end addresses manually in the fields provided, and
continue the startup process. However, if you do not know the exact layout of
your target memory and cannot supply correct values, you must cancel the
connection and rebuild your VIP project, adding to it the following symbols:

wrs_kernel_ start_text
wrs_kernel_end_text

This enables DFW to provide the needed addresses.

57

Wind River Workbench Performance Profiler
User's Guide, 3.0

58

Degraded Performance when Running RTPs

If your target code contains RTPs, and you start it running only after you have
connected Performance Profiler and started the GUI, you may experience an
unacceptable level of slow response from Workbench and the target. This
could be manifested by the RTPs taking a very long time (up to several
minutes) to become fully operational, and even longer for symbols to begin
showing up in Performance Profiler.

A simple workaround for this is to start the target program running first, then
connect and start the Performance Profiler GUI. This works because the slow-
loading RTPs are loaded, or nearly so, before Performance Profiler starts and
begins its memory-intensive communication activities over the target
connection.

You may also notice that some symbols are unresolved when the target code is
first started. This is because the first calls into the new RTP’s memory library
are captured by the Performance Profiler GUI before the RTP task ID and
symbols have been registered by Workbench. The workaround described
above also prevents this behavior.

Under certain conditions you may experience an even greater lack of response.
If your RTP spawn time limit is short (say 30 seconds or less), you will see the
message,

Failed to launch RTP name.

If the spawn time limit is longer and the RTP actually launches, you may see
the message,

Target OS object not found.

The workaround is to increase the priority of the RTP and try again.

4 Troubleshooting
4.3 General Troubleshooting Tips

CAUTION: If you are running an RTP on your target that must be started before
Performance Profiler, you must increase the RTP’s initial task priority from the
default 100 to a value of about 60 (higher than ProfileAgent but lower than the
network task) to enable the RTP to execute cooperatively with Performance
Profiler.

In addition, the RTP spawn time limit must be set to 120 seconds or greater, and
the backend request time limit must be set to 30 seconds. With the target
disconnected, edit these values in the Advanced target server options group
of the Target Server Options tab view in the target Properties dialog box.

If you do not attend to these items, the RTP initialization task may not receive
sufficient CPU time to complete its execution before the RTP spawn time limit
expires and causes the host to stop all tasks running in the RTP.

For more information, see Wind River Workbench User’s Guide: RTPs and Shared
Libraries from Host to Target, and also check Workbench online help for
spawn time limit while building your RTP task.

Issues With the Performance Profiler GUI

GUI Issues on Linux

Programs insmod and rmmod must be in PATH

The programs insmod and rmmod must be in your user PATH because
ProfileAgent depends on them. They must also have execute permission
(logging on as root gives this permission by default).

Increase verbosity to see hidden status messages

Many status messages are hidden during normal operation. If you are having
problems, increase the verbosity of the host and/or target side components to
gain some insights. The verbosity can be set when you launch with the -
verbosity 7 command line switch, or by using the

ProfileAgent Setup Options dialog box, displayed when you connect to your
target.

ProfileAgent troubles loading kernel modules

If ProfileAgent has trouble loading the necessary kernel modules, examine
your syslog. The messages there will provide more detail about the failure.

59

Wind River Workbench Performance Profiler
User's Guide, 3.0

60

Incorrect symbols observed

If the data collected by Performance Profiler includes incorrect symbols, there
are a few common possibilities:

— Thelibrary or executable containing the incorrect symbols has been either
partially or completely stripped. Performance Profiler parses the ELF
symbol table to correlate process addresses with actual functions. If the
symbol table no longer contains the function that corresponds to a set of
addresses, those addresses will be attributed (incorrectly) to the next
nearest symbol.

— Performance Profiler is parsing the wrong file for symbols. The tool
searches each of the object paths given by the user, in order, to find the file
which has the symbol information we need to resolve the raw addresses.
If a library or application has the same name as the application you are
analyzing, and resides in an earlier entry in the object path list, it will be
parsed instead of the correct file. Depending on how similar the two files
are, this can result in incorrect offsets or incorrect functions altogether.

Non-Wind River Linux kernels that do not support kgdb

For non-Wind River Linux kernels that do or do not support kgdb, the
Analysis Tools target binaries can handle such kernels with no user
intervention.

Wind River Linux kernels support kgdb by default. The Analysis Tools target
binaries can handle those kernels with no kgdb-related user intervention.
However, you may need to rebuild KAL. For details, see A. Kernel Abstraction
Layer (KAL).

If you have any doubts about your particular Wind River Linux kernel, boot
the kernel and check the dmesg, or the /var/log/messages output for any
mention of kgdb. If there is any mention of it, your kernel does support it.

For Wind River Linux kernels that do not support kgdb, you need to do the
following steps in order to use Analysis Tools with your Wind River Linux
target kernels:

a. Rename profileModule.ko to profileModule.ko_orig.
b. Copy profileModule.ko_no_kgdb to profileModule.ko.

To support Wind River Linux and kgdb, module versioning has been disabled
in the build of target kernel binaries. You may therefore see the following
system messages during target reboot (but you can ignore them):

KAL: no version for "struct_module" found: kernel tainted

General Tips

4 Troubleshooting
4.3 General Troubleshooting Tips

The above message is displayed because we compile the default KAL with no
version info. If you recompile KAL, you will not see this. If you don't have
versioning turned on in your running kernel, you also will not get this
message.

KAL: module license 'ScopeTools License Agreement' taints kernel
You will always see this message.
KAL: No versions for exported symbols. Tainting kernel.

The above message is only displayed if KAL is not recompiled, or you have
versioning turned on in your running kernel.

ProfileScopeModule: no version magic, tainting kernel.

This message is generated for all Wind River Linux kernels.

The following general guidelines are offered to help keep you from problems, and
as procedures to follow if you do have problems:

If you have recently modified the Analysis Tools target binaries you are using,
be sure to reboot your target to start with a clean running target kernel system
before using any of the Analysis Tools. If you have problems with Analysis
Tools target binaries for one of the tools, like Performance Profiler, and you
want to switch to using a different tool, for example MemScope, you should
reboot your target to clean out anything left in the target's memory by the first
Analysis Tools tool.

Be sure when you enter your parameters into the target connection dialog box
that you set the Verbosity to 3 which is the most verbose. This causes trace
messages and other diagnostic info to be displayed in the target terminal
window.

Other important Analysis Tools-related system-level diagnostic messages
might appear in the following places:

- the /var/log/messages file
— the /var/log/kern.log file
— the dmesg program

- syslog

Be sure to save off these messages and submit them to Wind River support
personnel with your Analysis Tools-related target system issues.

61

Wind River Workbench Performance Profiler

User's Guide, 3.0

In the Analysis Console view, you can increase the verbosity by selecting the
drop-down arrow to the right of the yellow “1” icon in the Console toolbar and
select Debug-hi.

Known Issues and Workarounds

62

View Source feature incorrectly displays source file

Using the Performance Profiler View Source feature, the correct source file
may be displayed with the cursor at the top rather than the correct source line
highlighted.

View Source feature stops working

The View Source feature of Performance Profiler may stop working after a
while and new symbols no longer get resolved. This can occur if you choose to
View Source on an object that has both a standard and dynamic symbol table,
(that is, the symtab and dynsym sections) then request symbols from an object
that has only one of the two sections. Typically this happens if you use View
Source relatively soon after connecting it to a target. To work around this issue,
do one of the following:

— Use only objects that either include both symbol tables, or only use the
same symbol table type.

— Use only the View Source feature after the tool has analyzed the bulk of
the target objects you expect to be used.

— Use View Source on a function that resides in an object that only has a
dynamic symbol table directly after Viewing Source on a function residing
in an object that has both symbol tables.

- Disconnect and reconnect the faulting tool when the error occurs.

Scrolling can cause headers to disappear

In the Performance Profiler perspective main results view, scrolling down the
results can cause the column headers to disappear. This is a problem for Linux
hosts.

Special configuration required for simulator TCP/IP

VxWorks simulators require special configuration to enable a TCP/IP
connection. If you try to connect any of the Analysis Tools to a simulator using
TCP/IP, you might see one of the following messages:

Target server could not get ip address of target.

4 Troubleshooting
4.3 General Troubleshooting Tips

SVR_TARGET_UNKNOWN

Failed to get target's IP
LINK ERROR: Failed to connect to target, giving up

Unable to obtain IP address from the target server
vxsim0@xxxx .

All of the tools offer the wtx connection type also. You can use that instead of
TCP/IP to connect to your simulator. If you want to use Analysis Tools with
TCP/IP to connect to a simulator, you will probably need to rebuild and
reconfigure the simulator to handle TCP/IP. For more information, refer to the
Wind River Workbench Simulators User's Guide.

= "most expensive function" may not show exact function on VxWorks target

On a VxWorks target, the most expensive function, as used in the
Performance Profiler perspective, may not show the exact function in the
callstack. It may only open the branch of the callstack where the function is
located. The workaround is that you can still visually search in the expanded
branch for the function with the highest cpu percentage.

= Unresolved symbols file dependencies on Linux targets

On a Linux target, you may have unresolved symbols in object files listed in
the Unresolved Symbols view that are dependent on other object files and
libraries also listed in the Unresolved Symbols view. Using the Object Paths
dialog box to specify a directory for your top-level Unresolved Symbols object
files does not cause them to be removed from the Unresolved Symbols view
until all other object files and libraries in the Unresolved Symbols view that
these higher-level object files are dependent on are resolved also, using the
Object Paths dialog box.

= Empty entry in Unresolved Symbols list on Linux targets

On a Linux target, you may get an empty entry in the Unresolved Symbols list.
There is something in your target code that is preventing Performance Profiler
from identifying missing symbols in your modules.

Reporting Problems

If you experience any problems either installing or running Performance Profiler,
and need help, contact Wind River Technical Support.

63

Wind River Workbench Performance Profiler
User's Guide, 3.0

64

Kernel Abstraction Layer (KAL)

A.1 Introduction 65
A.2 Basis for Need 65
A.3 Procedure 66

A.4 Known Issues and Workarounds 70

A.1 Introduction

The kernel abstraction layer, or KAL, is a script used by a Linux target installation
to resolve any binary incompatibilities that might exist between the Performance
Profiler KAL module and a modified Linux kernel.

A.2 Basis for Need

If you know any of the following conditions exist, you must relink the Analysis
Tools KAL.ko kernel module with your Linux kernel.

* You are using Analysis Tools for the first time on a Linux target.

65

Wind River Workbench Performance Profiler
User's Guide, 3.0

* You have modified or reconfigured your Linux target kernel in any way.
* You are using a Linux distribution from another vendor on your target.

For any of the above conditions, you must recreate the Analysis Tools KAL ko
kernel module to match your Linux kernel, and to resolve any binary
incompatibilities. You do this using a special KAL makefile and kernel module
supplied with Workbench. This module performs the following actions.

— Copies the correct Analysis Tools target agents to your rootfs staging area.
— Builds a KAL.ko module that matches your current kernel.

The easiest way to tell if you need to make changes to your KAL configuration is
to build KAL using it. If you get compilation errors this usually indicates that the
KAL configuration needs to be modified. Looking at the source for KAL.c usually
makes it clear which feature specifications need to be changed.

A.3 Procedure

Setup

If you determine that you must relink the Analysis Tools KAL.ko kernel module to
your Linux kernel, follow the steps outlined in the following sections.

The makefile and Linux kernel are both obtained and used by the script file:
installDir / scopetools-6.0/target/src/kal/buildKAL.sh

This script compiles the shared Analysis Tools kernel module (KAL.ko) to work
with your customized Linux kernel using your gnu compiler or cross-compiler.
You need to provide information to this script in order for it to compile your new
KAL ko correctly. This information is described when you run the script.

You can run the buildKAL.sh script on any host system that has all of the following
criteria:

*» Linux- or Unix-like environment
= bash shell

» access to the proper toolchains and kernel source/config

66

A Kernel Abstraction Layer (KAL)
A.3 Procedure

NOTE: The buildKAL.sh script uses the bash shell interpreter program and expects
it to be in a file system location as on a Linux system (/bin/bash). This location
may be different on a Solaris system.

If you try to run the buildKAL.sh script on a Solaris system and you get an error
message about buildKAL.sh: not found, then you'll need to invoke the bash shell
interpreter along with the buildKAL.sh script as follows:

bash buildKAL.sh

This should successfully start up the buildKAL.sh script.

There are also KAL configuration files available in the configs sub-directory for
several predefined configurations. You can use one of these, or you may need to
create your own KAL configuration. To create your own, choose a similar
configuration file and copy it, then modify it as needed for your configuration. For
example, if you wanted to create a KAL configuration for a Linux-2.6.11 kernel,
copy the predefined config-2.6.10 to config-2.6.11 and edit it. Modify the kernel
version number and any other feature specifications as needed. In many cases, no
changes other than the version number would be needed.

Wind River Linux 2.0 Targets

The process of initially building the KAL.ko kernel module is automated when
you build your target work space environment.

For a Workbench Interface, the commands are as follows:

* Create a new platform project

* Build All
To do this, in the Project Explorer view, expand your platform project,
right-click all, then click Build Target. This builds KAL and includes
Analysis Tools on the rootfs.

or

* Build Analysis Tools
To do this, in the Project Explorer view, expand your platform project,
open User Space Configure, select the Analysis Tools package, select the
Targets tab, then click Build.

* Buildfs
Back in the Project Explorer view, right-click fs, then select Build Target.

67

Wind River Workbench Performance Profiler
User's Guide, 3.0

For a Command Line Interface, the analogous commands are as follows:

» configure
* make all

» configure

* make Linux (optional)

* make -C build scopetools (optional)
* makefs

NOTE: For a small root file system (see Wind River Linux 2.0 Targets, p.6), the
configure command in either instruction above becomes the following.

configure --with-template=extra/scopetools...

NOTE: The make -C build scopetools command in this procedure is optional, and
will be done for you automatically by the make fs command if it does not exist.

These commands are used to create the target workspace on your host, then create
the root file system, and build all the kernel modules (Build All), or create the root
file system and use the default kernel (Build fs, a shorter process). This work is all
done in a staging area on your host system without copying anything to the target.

NOTE: This automation of the KAL.ko kernel generation and root file system
copying is available only for Wind River Linux 2.0 targets.

If you have modified your kernel and want to rebuild it, be aware that rebuilding
your kernel does not automatically rebuild the Analysis Tools kernel, nor does it
copy the Analysis Tools binaries back to your target. After you rebuild your
modified kernel, execute the command:

make scopetools.rebuild

then manually copy the scopetools-6.0 directory from the buildDir/build/ directory
to your target root file system.

Other Linux Targets

For targets other than Wind River Linux 2.0, the procedure is as follows:

68

A Kernel Abstraction Layer (KAL)
A.3 Procedure

After determining that your present KAL configuration needs to be modified
following the suggested scenario outlined in A.2 Basis for Need, p.65 above,
make the necessary edits.

Run the script using the following command:
buildKAL.sh

The script asks you questions concerning the availability of your gcc compiler
(or sometimes a cross-compiler) for your target, and the existence of a Linux
kernel configured and built for your target. This step compiles and links the
kernel module (KAL ko) to work with your customized Linux kernel using
your gnu compiler or cross-compiler, and places the shared Analysis Tools
kernel module in the current directory. Note that entering a question mark (?)
at most prompts causes help for that prompt to be displayed.

You can run the buildKAL.sh script on any host system that has all of the
following criteria:

= A Linux or Unix-like environment.
= A bash shell.

» Access to the proper toolchains and kernel source/config.

NOTE: The buildKAL.sh script uses the bash shell interpreter program and
expects it to be in a file system location as on a Linux system (/bin/bash). This
location may be different on a Solaris system.

If you try to run the buildKAL.sh script on a Solaris system and you get an
error message about buildKAL.sh: not found, then you must invoke the bash
shell interpreter along with the buildKAL.sh script as follows:

bash buildKAL.sh

This should then successfully start up the buildKAL.sh script.

There are also KAL configuration files available in the configs sub-directory
for several predefined configurations. You can use one of these, or you may
need to create your own KAL configuration. To create your own, choose a
similar configuration file and copy it, then moditfy it as needed for your
configuration. For example, if you wanted to create a KAL configuration for a
Linux-2.6.11 kernel, copy the predefined config-2.6.10 to config-2.6.11 and edit
it. Modify the kernel version number and any other feature specifications as
needed. In many cases, no changes other than the version number would be
needed.

69

Wind River Workbench Performance Profiler

User's Guide, 3.0

Copy the new KAL.ko target-binary to your target file system in to same
location where you copied the other Analysis Tools binaries for your target.

Be sure that when you change which target binaries you are using that you
reboot your target to start with a clean running target kernel system.

KAL is designed to be adaptable to a wide range of Linux kernels. Unfortunately,
it is not possible to adapt to all of the differences between various Linux kernels or
to anticipate all of the possible future modifications. Please let us know if you
encounter a kernel configuration for which you are unable to create a working
KAL configuration.

A.4 Known Issues and Workarounds

Some things to watch out for when building and using KAL.ko:

70

Target binaries and target kernel do not match

If you see the following error output when connecting to your target using one
of the Analysis Tools:

insmod: error inserting 'KAL.ko': -1 Invalid module format

or the Oops in the following output:

Found data_access@c000140c

executing: insmod

: insmod

:KAL.ko

KAL: no version for "struct_module" found: kernel tainted.

KAL: module license 'ScopeTools License Agreement' taints kernel.
KAL: No versions for exported symbols. Tainting kernel.

Oops: kernel access of bad area, sig: 11 [#1]

PREEMPT
NIP: C0004420 LR: COO3DAF0 SP: DF299F10 REGS: df299e60 TRAP:
0300 Tainted: PF

MSR: 00029000 EE: 1 PR: 0 FP: 0 ME: 1 IR/DR: 00

DAR: E106C000, DSISR: 00000000

TASK = dedl1c790[1158] 'insmod' THREAD: df298000

Last syscall: 128

GPR0O0: 00000000 DF299F10 DED1C790 E106C000 00000553 0000001F E1062280
00000004

GPR08: DFAB596C 000000A0 00000000 C085D810 22000082 10096B1C 1001CEDS8
00000000

A Kernel Abstraction Layer (KAL)
A.4 Known Issues and Workarounds

GPR16: 7FFFF580 7FFFF910 00000003 FFFFFFFE 000000C8 FFFF9008 00000000
0FFC9454

GPR24: 7FFFE436 10091F38 00000002 C02F0000 30000008 10091F38 CO2F1FA0
E106B7EQ

NIP [c0004420] flush_icache_range+0x24/0x50

LR [c003daf0] sys_init_module+0xa4d/0x42c

Call trace:

[c0001d88] ret_from_syscall+0x0/0x70

it means the Analysis Tools target binaries you are using on your target do not
match the kernel you are running on your target and thus you must run the
buildKAL.sh script in order to generate new Analysis Tools target binaries.

Notification that KAL successfully loaded

If you see the following KAL-related messages during connection to your
target:

KAL is already loaded

or

Module KAL loaded, with warnings

or (if verbosity = 3 is enabled)

executing: insmod

: insmod

:KAL.ko
and nothing else related to KAL after this, then KAL has been loaded
successfully.

Note that this only means that KAL.ko has successfully loaded. If there is a
binary compatibility difference between your KAL.ko and the kernel running
on your target, you may yet encounter runtime problems or crashes. So be sure
to run the KAL script if you make any changes to your kernel.

Error when running KAL.sh script

When you run the buildKAL.sh script, you might get the following cc1 error:

make: Entering directory

* /springboard/RC5_CDs/wrlinux-1.1/build-

wrs_powerquiccii_82xx/dist/linux-2.6.10"

cCc [M] /kal/kal/KAL.o

<unknown> tried to exec ccl but failed (No such file or directory)
There are two ways to specify a directory path to your GNU target-specific
compiler programs, as in these examples:

/toolchains/PNE-1.1-FCS/bin

71

Wind River Workbench Performance Profiler
User's Guide, 3.0

/toolchains/PNE-1.1-FCS/1586-wrs-linux-gnu/bin

Always use the first example. The GNU compiler programs in the first
example know where each other are located. In the second example they do
not, and you get the ccl error above. Note that with the first instance you
definitely need to specify a target-arch-specific prefix for your GNU compiler
programs.

When connecting to your target, some messages can be ignored

When you try to make a connection from the GUI to your target, KAL and your
Analysis Tools target modules are loaded into the kernel. Note that the
following tainting messages are not errors and can be ignored:

Jul 6 17:37:36 oahu kernel: KAL: no version magic, tainting kernel.
Jul 6 17:37:36 oahu kernel: KAL: module license 'ScopeTools License
Agreement' taints kernel.

or

Warning: loading KAL.ko will taint the kernel: non-GPL license -
ScopeTools License Agreement

See http://www.tux.org/lkml/#export-tainted for information about
tainted modules

Warning: loading KAL.ko will taint the kernel: forced load

When you get module-loading errors, you might also get system messages in
the system locations listed in 4.3 General Troubleshooting Tips, p.55.

In the case of KAL not loading successfully, be sure to send the .config file for your
target kernel to Wind River support personnel.

72

Glossary

This glossary contains definitions for some of the common terms used throughout
this manual.

% analyzed

The percentage of samples, belonging to the indicated thread, that have had their
symbols resolved and analyzed.

configuration

The configuration of a Performance Profiler session may be saved to a file and later
loaded to simplify profiling across sessions. The configuration information
includes the update and analysis periods, filter settings, and all other tool options
selected in the Preferences dialog box.

count
Performance Profiler maintains a count of how many times its statistical sampler
encounters a function. You may see these counts when displaying full information.

Cumulative

The Cumulative Indirect statistics are computed using data collected for the entire
profiling session (since Performance Profiler was started or was reset by clearing
“counts”, or since the target was rebooted). For a system that has been running a
long time, the cumulative statistics provide the long-term average performance of
the system.

73

Wind River Workbench Performance Profiler
User's Guide, 3.0

Current

The Current Indirect statistics are computed using recently collected data,
allowing you to detect transient system behavior. This short-term average may be
controlled by adjusting the Performance Profiler analysis-filter settings.

Direct

The Direct statistics (Cumulative or Current) for a function represent the CPU
usage of the function itself and not any of its subroutines. For example, if function
A() calls B() immediately and returns immediately after B() returns, the Direct
usage by A() will most likely be 0%. Once you have located an expensive function
call using the Indirect statistics, turn on the Direct statistics to pinpoint the guilty
subroutine.

execution state

The execution state of the system includes the current thread ID, the current
program counter (PC) of the processor, and the chain of frame pointers that
represents the function-call history for the current function.

Exploded mode

When you enable the Exploded mode, the Performance Profiler System View
lists multiple calls to the same subroutine by the same function as individual
entries. In the “normal” mode, multiple calls by the same function are collapsed
into a single entry.

filter pole

Performance Profiler uses digital filters to tune the short-term averages of the
Direct statistics. These filters reduce “noise” on the calculations while providing
quick response to accurately represent current system activity.

frame pointer (FP)

A special register in the processor that always points to the currently executing
function stack frame.

Function View

The Function View displays the functions with the most Direct usage of the CPU.
This view is “flat”, in that an entry represents the total amount of CPU usage by a
function regardless of how it is called or from how many places it is called.

74

B Glossary

Indirect

For a VxWorks target, the Indirect statistics (Cumulative or Current) for a function
represents usage by the function and all its subroutine calls. Use the Indirect
statistics to quickly locate expensive—for example, CPU-intensive—function calls.

Kernel Abstraction Layer (KAL) (Linux only)

For a Linux target, this is a source code module containing all dependencies on
kernel constructs, and through which Linux kernel resources are accessed. The
KAL layer, when compiled and linked against your Linux kernel, then allows the
generic Performance Profiler kernel module to work with your Linux kernel.

maximum

The high water mark of the accompanying statistic (Indirect or Direct). This value
records the largest Current value seen during this Performance Profiler session.

Preferences

The parameters that determine the analysis characteristics of the Performance
Profiler GUI, set in the Preferences dialog box.

Process/User Filter

Performance Profiler lets you define a list of processes to ignore during profiling.
This allows you to filter out high-activity processes to focus on only the processes
you want. The process filter does not affect the Process View which shows
profiling statistics for all processes.

Process View

The Process View lists profiling statistics for processes. This view is “flat”, in that
an entry represents the total amount of CPU usage by a process regardless of how
it is called or from how many places it is called. For a VxWorks target, it is similar
to the data provided by the VxWorks SpyLib.

Properties

The parameters, selected in a Properties dialog box, that determine the
characteristics of a currently open view, and do not affect any other view.

real-time process (RTP)

RTPs are special kernels that are isolated from the kernel containing the VxWorks
operating system, as well as from each other. This isolation allows applications to

75

Wind River Workbench Performance Profiler
User's Guide, 3.0

execute independently and provides code, data, and symbol namespace
separation such that a fault occurring within an application causes only that
application to fail, but does not impact the kernel or other applications.

routine
A self-contained code module that can accept input, execute, and produce output;
used interchangeably with “function.”

sample

Performance Profiler periodically determines the execution state of the system and
saves it for statistical analysis. This is known as “sampling” the execution state,
and the data collected each time is known as a “sample”.

snapshot

A snapshot represents the profiling statistics at an instant of time. You can create
a snapshot of any view, and also save it to a file to be reloaded later. A snapshot
makes it easier to compare profiles between different “runs”.

symbol

The ASCII name for a process, function, or other program component.

System View

In the System view, Performance Profiler displays the profile statistics in a
collapsible callstack tree. For each profiled function, you can determine its callers
as well as those it calls.

76

A

-A option
needed for symbol loading 12, 56
troubleshooting 56
Warning 12
accuracy of statistics
as generated by Performance Profiler 46
example of high accuracy 47
example of typical accuracy 46
agent
collection agent architectural description 5
AMP environment, WDB_TIPC 13
analysis mode
described 50
architectural summary 5

bash shell interpreter program 67
beating effects 50
building
ensuring WDB support for VIP 12
for Linux+kgdb, module versioning off 60
KAL.ko kernel, issues with 70
KAL.ko kernel, procedure for 67
root file system for Linux2.0 6
root file system, binary files 13

Index

target system, after a crash 57
with frame pointers turned off 12

C

callstack
collecting data from 6
viewing in System View window 24
clock
auxiliary vs. system for sampling use 50
rates and tuning parameters 7
use of real-time clock (RTC) vs. system clock
(sysAuxClk) 50
collection agent
architectural description 5
Columns window
window description 25
confidence level (statistics) 46
Console
verbosity, compared to target 16
Console window
detailed information 39
correlation, between View windows 37
creating a snapshot 44
cumulative
direct statistics 32
statistics 47
current

77

User's Guide, 3.0

execution state 3
routine 6
statistics 47

D

demo program, start with ProfileDemoSpawn 19

DFW 21
dfwserver 21
dialog boxes
Preferences 25, 43
Properties (target server) 12
warning 25
direct
statistics 48
statistics, "beating" effects 50
Display Threads
menu command used 31

E

exploded mode 50

F

features, Performance Profiler 9
frame pointer 3
frequency (sample rate) tuning parameter 7
Function View
definition 74
table, description 32
window description 24, 31
window type described 24

H

Hide Dead Processes
menu option 31, 34
how Performance Profiler works 2

78

Wind River Workbench Performance Profiler

indirect statistics 48
insmod 13,55, 59
interpreting statistics 45

K

Kernel Abstraction Layer (KAL)
see also Appendix A
determine need to relink 65, 66
how to tell if you need to update it 66
procedure for building 67
requirement for a Linux target 13
kgdb
checking for support 60
choosing correct target binaries 60
what to do if not supported 60

L

loading
snapshot file 44

M

Main Window
description 24
elements 26

messages
error 54
status 54
modes

analysis 50
exploded 50

normal 50

profiling 49
sample-collection 49
system 49

N

naming protocol for snapshots 45
normal mode 50

)

options
-A, needed for symbol loading 12
-A, troubleshooting 56

overview, of Performance Profiler 2

P

PATH, variables that must be in 13, 55, 59
Performance Profiler

architecture 5

features 9

how it works 2

overview 2

testing installation 17

period
analysis 7
GUl update 8
PPC targets

using system clock 50
Preferences dialog box

description 25

detailed information 43

tab views 43
Process View

defined 75

table description 35

window description 24, 35
ProfileAgent

process defined 6
ProfileDemoSpawn function 19
profiling modes

analysis (normal vs. exploded) 50

described 49

interpreting statistics 45

sample-collection (system vs. single proc) 49

Index

sampling clock 50

R

rmmod 13,55, 59

root file system
configuration 68
in Wind River Linux 2.0 6
templates 6

RTP
degraded performance 58
support 21

S

sample-collection mode, described 49
sampling
clock 50
samples required, calculation 46
statistical accuracy analysis 46
saving
snapshot 44
small
non-small root file system templates 6
root file system configuration 68
snapshot
creating/viewing 44
naming protocol 45
opening 44
saving to a file 44
timestamp 45
window description 25
window detailed information 43
window type described 25
sorting statistics 28
spy, VxWorks 35
stack frame 2
starting demo, with ProfileDemoSpawn 19
statistics
accuracy in Performance Profiler 46
confidence level formula 46
Cumulative vs. Current 47

79

User's Guide, 3.0

fields, in Function View Routine Tree 33
fields, in System View Routine Tree 27
high accuracy, example 47
Indirect vs. Direct 48
interpreting 45
profiling 3
sampling 46
sorting 28
typical accuracy, example 46
symbol resolution
dfwserver (VxWorks) 21
explained 20, 41
sysAuxClk 35
System View
defined 76
window description 24, 25
window elements 26
window type described 24
system, mode 49

T

tables
Function View 32
Process View 35
targets
x86 7,12,56
testing Performance Profiler installation 17
thread
in Function View entry 31
Linux kernels, in the Routine Tree 26
status functions 49
timestamps for snapshots 45
TIPC, WDB_TIPC in an AMP environment 13
troubleshooting
-A option 56
guide 55
Performance Profiler GUI 59
target server 55
tunable parameters
analysis period 7
filters 8
GUI update period 8
sample rate (frequency) 7

80

Wind River Workbench Performance Profiler

tWdbTarget

adjusting performance Profiler priority 56
tWdbTask

error, target not responding 56

U

Unresolved Symbols window
detailed information 41
window description 24

\'

variables, in PATH statement 13, 55, 59

verbosity
Console and target compared 16
Warning 16

view

Function 31
Process 35
recommended views to use 28
source code 38
System 25
view source code
from a view window 38
from System View Table 38
troubleshooting 62

W

WARNING
-A option usage 12
target verbosity 16
warning dialog box 25
WDB
ensuring WDB support for VIP 12
no support for WDB_TIPC connection 13
working in AMP environment 13
Wind River Linux 2.0 targets
description 6
window

Index

Columns 25

Console 39

Function View 24,31

Process View 24, 35

Snapshot 25, 43

System View 24, 25

Unresolved Symbols 24, 41
Workbench

using dfwserver 21

X

x86 targets
auxiliary clock 7
frame pointers needed 12

81

	Wind River Workbench Performance Profiler User's Guide, 3.0
	Contents
	1 Introduction
	1.1 Introduction
	Performance Profiler Overview
	Call Stack Details

	1.2 Architectural Summary
	VxWorks Targets
	Linux Targets
	Wind River Linux 2.0 Targets
	The Host GUI
	Setting User Parameters

	1.3 Features

	2 Getting Started
	2.1 Introduction
	2.2 Requirements
	VxWorks
	Linux

	2.3 Starting Performance Profiler
	Initiating the Target Connection
	Opening the Performance Profiler GUI

	2.4 Testing Your Installation
	Viewing From the Shell
	Running the Demonstration Program

	2.5 Usage Notes
	Symbol Resolution
	Target File System (Linux Only)
	Example Pathnames
	Kernel-Mode vs. Process-Mode

	3 The Performance Profiler GUI
	3.1 Introduction
	3.2 The Performance Profiler GUI
	3.2.1 System View
	Routine List
	Statistics Fields
	Current Usage Bar
	System View Pop-up Menu

	3.2.2 Function View
	Thread (Process) Selection Table
	Function View Table

	3.2.3 Process View
	Process List
	Statistics Fields
	Process View Pop-up Menu

	3.2.4 Correlation
	3.2.5 Source Code Viewer
	3.2.6 Analysis Console View
	Icons

	3.2.7 Unresolved Symbols View
	3.2.8 Performance Profiler Status View
	3.2.9 Preferences Dialog Box
	3.2.10 Snapshots
	Taking a Snapshot
	Saving a Snapshot
	Viewing Snapshots From a Previously Saved File
	Snapshot Time/Date Stamp

	3.3 Usage Notes
	Interpreting Profiling Data
	Profiling Modes

	4 Troubleshooting
	4.1 Introduction
	4.2 Messages
	Status Messages
	Error Messages

	4.3 General Troubleshooting Tips
	Issues With the Target
	Issues With the Performance Profiler GUI
	General Tips
	Known Issues and Workarounds
	Reporting Problems

	A Kernel Abstraction Layer (KAL)
	A.1 Introduction
	A.2 Basis for Need
	A.3 Procedure
	Setup
	Wind River Linux 2.0 Targets
	Other Linux Targets

	A.4 Known Issues and Workarounds

	B Glossary
	Index

