WIND RIVER

Wind River
General Purpose Platform,
VxWorks Edition

MIGRATION GUIDE

3.6

Copyright © 2007 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, Tornado, and VxWorks are registered trademarks of Wind River Systems, Inc.
The Wind River logo is a trademark of Wind River Systems, Inc. Any third-party
trademarks referenced are the property of their respective owners. For further information
regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDirlproduct_name/3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
US.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:
http://www.windriver.com
For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

Wind River General Purpose Platform, VxWorks Edition Migration Guide, 3.6

12 Dec 07
Part # DOC-16151-ND-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

Contents

OVEIVIBW ...ttt s 1
11 Introduction 1
1.1.1 About This GUideccooviiiiiiiiiiii 1

1.1.2 Finding Additional Migration Informationcccccceevvvinnnnnnnn. 2

1.2 Platform Migration Summary 2
1.2.1 Operating System Migrationcccceeeiiiiiinnniiiccccien 3

122 Development Environment Migrationcccccccovvieciicicnnninnnee 3

123 BSP MiGrationcoooouiioiiiiiiiicieeiee s 3

124 Networking and Middleware Migrationcc.cccccoouvvrvrininicnricnnnn. 4

1.3 Important Changes Requiring Migration 6
1.3.1 Changes Introduced in Wind River General Purpose Platform, VxWorks
EdItion 3.6 ...cocviiiiiiiiiiiiccic s 6

Deprecated IPCOM ROUINEScoovrviieiiiiiicicccc e 6

Changes to tINetTask ... 7

1.32 Changes Introduced in Wind River General Purpose Platform, VxWorks
Edition 3.5 ...oovii s 7

Directory STrUCtUTE ..o 7

Library Archive Changes ... 8

Product or Component Initializationcccooeeiiiiiiiine 9

Configuration and Scalability ... 9

fii

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

Configuration Header Files ... 10

Backward Compatibilityccccoviiiniiiiiiiiiccce 10

Shell COMMANGSooveriiieiiiiiieieieeee ettt 11

Diagnostics and Debuggingcccoovrviiiniinnceicecccc, 12

1.3.3 Downloadable Kernel Modulescccocoeueueuecioinnnnnieecicieneneeen 12

Wind River Network Stack Migration Overviewcccccveeensisannnnns 15
21 Introduction 15
2.2 Key Concepts 16
2.3 Evaluating the Migration Effort 16
24 Source Compilation 17
2.5 Network Stack Configuration and Migration 18
251 Component and Parameter Configurationcccccceevviininninnnn. 18

2.5.2 Network Stack Directory Structurecccocoeeiininiiiiiiiicna, 18

253 Ported Applications and Librariesccccooveiiiiiiicninininienennee, 18

2.54 Backward Compatibility Wrappers ..., 21

255 Removed Header Files ..ot 23

2.6 Migrating Applications 27
2.6.1 Migrating an Application that Uses Networking APIs 27

2.6.2 Migrating a Socket-Based Applicationccccceeoeveveiririicniiiniciiennnnns 28
Wind River Network Stack: Transport and Network Protocols 31
3.1 Introduction 32
3.1.1 Feature Release MatriXc.c.cccoeoeeerinieiriniecnnieineeceneeiceeeeecseeveeneenes 32

3.12 Changes in Wind River Network Stack 6.5c.c.cccccooviiiiiinnns 34

3.1.3 Changes in Wind River Network Stack 6.6ccccccceeuiiiiiiiiinnninne 34

3.2 Migrating to SMP 35
Creating an SMP-Capable VxWorks Image Projectcccceuevnnee. 35

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

Contents

Socket Options

New Socket Commandscccccueeiiiiiniiiiiiiiiceee
Socket Option Definitionsccccccverivireiiucierinniccceereeceeeenes
Interface-Related Socket Optionsccccvvvueiirinicciiiicnicccees

IPv4 and IPv6 Components

341 IPv4 and IPv6 Configurationccccocvvceiniciniiceinicccenceece
3.42 APIMapping ..ot
TCP/IP Layer Core Networking Routinesc.cccoceveevveceirinininnnn.
ICMP ROUHNES ..o
ARP Components
API Mapping for ARP Routines ..o
Proxy ARP

Multicasting Components

3.7.1 SOCket COMMANAS ..vveieeviiiceiieeeeeeeee ettt e et eraeeeaaes

IPv4 Multicast Routing set/getsockopt Optionscccccccevvveicnnnnnnn
IPv6 Multicast Routing set/getsockopt Optionscccccceveveicnnnnnnn

Show Routine Components

3.8.1 Show Routine Configurationc.cccocvveveiiiciniicniiciccccces
3.82 APIMapPING ..o
Utility Components

RIP Components

3.10.1 RIP Configurationccccoeviieiniiieiiicieiiciceece e
3.10.2 APIMAPPING .oeooeiiiiieieieieieiciccce et
RIPng Components

3.11.1 Changes to RIPNG Filescccoooviiiiiiiiiiiiiicccc,
3.11.2 RIPNG CONfigurationcocococeueueureriicicicieerirescceie e
3.11.3 APIMAPPING ..ocoiieviiiiiiiiiieiciieicee e

36
36
36
36
37
37
38
38
39
39
39

40

41
41
41
42
42
42
43

44

44
44
45

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

3.12 Routing APIs
3.13 Routing Sockets
3.13.1 Routing Socket CONfigurationccoeecccueueernnicceererrirecceenenns
3.13.2 Ranking Routes in the Route Tablecccccoovrvniiniiniiiiccn
3.13.3 Routing Socket MESSAZESccrvviurmicmeiiieiiieieeece s
Extended MeSSagesccccvuiuriiiiueiiinieiieeice e
3.14 Virtual Stack
3141 OVEIVIEW ..ottt
3.14.2 Virtual Stack Configuration ..o
Wind River Network Stack: Application Protocolsccccceeveeeinnee
41 Introduction
411 Feature Release MatriXccccoeeiiiiiiiinininniniciccccccieeeececaes
412 Shell Commands and API Changesccccceceiiiiniinnnnicicnccicnne,
4.2 DHCP (IPv4 and IPv6) Components
421 DHCP Configurationcooeceueueurereniierieiereereneeeeceeeneeseseesseeseenensenes
422 APIMAaPPING .ottt s
4.3 DNS Components
43.1 DNS Configurationcccooeeeueimeiiininiceicceccece s
432 APIMAapPPINg .c.coviieiiiieieieieisiciciciet s
44 FIP Components
441 FIP Configurationccccoovieiniieiiiciicecccce s
442 APIMAPPING «oooiiiiieietcicic s
4.5 Ping Components

451 Ping Configuration ..o
452 APIMAaPPING oot

Vi

65
65
67

68
68
68

Contents

4.6 SNTP Components
4.6.1 SNTP Configurationcccccoveeiiiiiiinininieceeceee e
Enabling the Client or SEIVer ...
4.6.2 APIMAapPPINg .oocoieiiiiiecieie e
4.7 Telnet Components
471 Telnet Configuration ..o
472 APIMAPPING oot
4.8 TFIP Components
4.8.1 TFIP Configurationcccoooiimeinininicccecccc s
482 APIMAapPPING .oceeieiiiiiiiitcieieiceie
4.9 Internet and Local Domain Sockets
49.1 Sockets Configurationccccceeiiiiiiiiiiii
49.2 APIMAaPPING ..oovoveveieieieiciciii et
493 Changes in Socket Optionsccccouviviiiiiiiiiiiiiiicccce
Wind River Network Stack 3.1 IPv4 Socket Optionsc.cccoceueuueeee.
IPv6 Socket OPHiONS ..o
494 New Socket OPtiONScccouvvreriiirieiiieice s
New IPv4 Socket OPtionscccoeveeeiniceinininiicenice s
New IPv6 Socket OPtionscccevveeuiicninininiiccnce s
Socket Options for Policy ROUtINGc.cccoveviiiniiiiiciccc
New Socket Options for PPP ...
Socket Options for DIffServ ...
BIO0 RTP aoeceeeeeeeeeereeereeeceeseesseeessessssessessssesssessasssassssessssssasessessssessssssassssssssessassssasssasssassses
411 NFS Client and Server
Wind River Network Stack: Interfaces and Driverscccccceeeeeeviiinnnns
5.1 Introduction
5.1.1 Feature Release MatriXccccooeeveeiiiiieeieeeeceeee e

vii

72
72
73
73

74
74
74

75
75
76

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

5.2 General Interface and Driver Configuration 89
521 Configuration COMPONENTSc.c.cueveuriririieiieieieieiieeieece e 89

522 Shell COMMANAS ..vooiieeiiiriieeee ettt eaeeens 90

523 Unchanged Libraries and APISs ..o 91

5.2.4 (@) oFTe) L= LI 2N & KOOSR 91

525 Checksum Offloadingc.cccoovimmiiicnininiiiciccccec s 91

53 Memory Management 92
531 Changescccccoieiricieiiciece et 92
Drivers and Leading Spaces in Cluster Headersc.cccocoveeunnne.. 92

Use Of NEtBULLID ...cvviviieiiceeceeeeeeeee et 93

5.4 MIB?2 Statistics-Collection Support 94
54.1 IM2IELID vttt ettt et et eneas 94

542 SNMP MIB-II SUPPOIt .oovviiviiiiiiiiiicii e 94

5.5 Routing, Router Advertisement, and Router Solicitationcceceeueueueuence 95
55.1 APTMaPPING ...ooviviiiiiiiiciicccc s 95
ROULINEG .o 95

Router AAVErtiSEIMENtc.cocivvviieuiiieiiiiieeeeeee et 96

Router SOLCIEAtION ...vvieviiievieiiieieceeceeeeeeeeee et ene s 96

5.6 BPF 97
5.7 Interface Components 97
5.8 IP Attach Components 100
581 APIMapping ...cccceeiiiiiiiiiicieiiicice 100

5.9 MUX-L2 101
5.10 AutoIP 101
5.11 zBuf and Fast UDP Sockets 101
5.12 Unnumbered Interfaces 102

viii

Contents

Wind River PPP ... s anns 103
6.1 Introduction 103
6.1.1 Feature Release MatriXcccccoooviviiiiiiiiniiiiiccccc 104

6.1.2 Changes in Wind River PPP 6.6cccccovviinniiiiiiiiiciie, 105

6.1.3 Additional Documentationc.cccccereeoinieeninieeneneeneeeeneeeeenenens 105

6.2 Migration Steps 105
6.3 Configuration 106
6.3.1 Configuring VxWorks Image Projects for Wind River PPP 106
Disabling PPPoE at Compile Timeccccocoeviivninininiicniceccenens 106

6.32 InitialiZation ... 107

6.3.3 Shell Commandsccccoviviiiiiiiiiiii s 107

6.3.4 Configuration ROUINEScccoooeviiiiiiiiiiiicc 107

6.4 Library and Routine Changes 114

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

Overview

1.1 Introduction 1
1.2 Platform Migration Summary 2
1.3 Important Changes Requiring Migration 6

1.1 Introduction

This document provides information for migrating the Wind River General
Purpose Platform, VxWorks Edition to release 3.6.

1.1.1 About This Guide

Changes and improvements that affect the way you use and program many of the
products included in your Platform are documented in this guide. This guide
provides release-to-release information for products that included major changes
in the Wind River General Purpose Platform, VxWorks Edition 3.5 or include
major changes in this release, the Wind River General Purpose Platform, VxWorks
Edition 3.6. For general information about these changes, see 1.3 Important Changes
Requiring Migration, p.6. For information specific to an individual product, see the
product-specific chapter in this guide.

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

This guide contains product-specific chapters for the following products in your
Platform that require migration:

» Wind River Network Stack (4 chapters)
* Wind River PPP

This guide does not contain detailed information about new features in your
Platform unless they relate to features that have been replaced or require
migration. For a comprehensive discussion of new features and changes in this
release, see the release notes for your Platform.

1.1.2 Finding Additional Migration Information

This guide contains migration information for the products listed in 1.1.1 About
This Guide, p.1. Additional migration information is provided in other sources, as
follows:

» VxWorks migration information is included in the VxWorks guides. For
details, see 1.2.1 Operating System Migration, p.3.

* Wind River Workbench migration information is included in the Workbench
guides. For details, see 1.2.2 Development Environment Migration, p.3.

» BSP migration information is provided in VxWorks Device Driver Developer’s
Guide, 6.6 and the VxWorks BSP Developer’s Guide, 6.6, as described in 1.2.3 BSP
Migration, p.3.

1.2 Platform Migration Summary

This section summarizes the migration status of the products in your Platform.
Migration issues that apply to many products or the entire Platform are described
in 1.3 Important Changes Requiring Migration, p.6.

The following products have few or no migration issues in this release:

* Wind River Compiler

*» Wind River GNU Compiler

* Wind River Run-Time Analysis Tools
» Wind River VxWorks Simulator

1 Overview
1.2 Platform Migration Summary

For information on changes to these products, see the release notes for your
Platform.

1.2.1 Operating System Migration

For VxWorks migration information, see the following:

» If you are migrating from a VxWorks release earlier than 6.0, consult the
VxWorks 5.5 Migration Guide, 6.6 before beginning development.

= For information on migrating legacy drivers to VxBus and other driver
migration issues, see the VxWorks Device Driver Developer’s Guide, Volume 3:
Legacy Drivers and Migration.

» For information on migrating kernel applications to real-time process (RTP)
applications, see the VxWorks Kernel Programmer’s Guide, 6.6.

* For information on moving from a uniprocessor environment to symmetric
multiprocessing (SMP) environment using the optional VxWorks SMP feature,
see the VxWorks Kernel Programmer’s Guide, 6.6.

NOTE: SMP support for VxWorks is available as an optional product. However,
default SMP system images for the Wind River VxWorks Simulator are provided
with the standard VxWorks installation as an introduction to the product.

1.2.2 Development Environment Migration

Wind River Workbench

Wind River Workbench 3.0 adopts the latest versions of the Eclipse C/C++
Development Toolkit, Device Debugging, and Target Management projects. As a
result, some Workbench workflows and views have changed. For information on
these changes, see the Wind River Workbench User’s Guide: What’s New with CDT,
CC, and TM. For a comprehensive discussion of the changes in Wind River
Workbench 3.0, see the release notes for your Platform.

1.2.3 BSP Migration

Information about migrating your BSPs can be found in the VxWorks Device Driver
Developer’s Guide, 6.6 and the VxWorks BSP Developer’s Guide, 6.6.

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

For a list of BSPs supported in this release, see the release notes for your Platform.

BSP Makefile Change

A BSP makefile change was introduced in the Wind River General Purpose
Platform, VxWorks Edition 3.5 and may require a change if you are migrating from
an earlier release.

EXTRA_INCLUDE defines with the following format should not be used in BSP
makefiles:

EXTRA_INCLUDE = ¢ (path)

The EXTRA_INCLUDE define may already be defined coming into your makefile.
To add directories to your include path, use the following:

EXTRA_INCLUDE += $ (path)

1.2.4 Networking and Middleware Migration

The products discussed in this section have migration issues. For information on
changes to networking and middleware products not discussed here, see the
release notes for your Platform.

Wind River Network Stack

Major changes to Wind River Network Stack were introduced in the previous
release, Wind River Network Stack 6.5. If you are migrating from Wind River
Network Stack 3.x or earlier, see the following chapters in this guide for network
stack migration information:

2. Wind River Network Stack Migration Overview
Provides introductory information on network stack migration. Describes key
concepts and migration information common to most or all networking
components.

3. Wind River Network Stack: Transport and Network Protocols
Provides migration details and component and API mapping for the
components of the core network stack, including TCP/IP, multicast, and
routing.

4. Wind River Network Stack: Application Protocols
Provides migration details and component and API mapping for the network
application components, including DHCP and DNS, and information on
programming with sockets.

1 Overview
1.2 Platform Migration Summary

5. Wind River Network Stack: Interfaces and Drivers
Provides migration details and information on changes to libraries and
routines for lower-level network stack components, including the MUX and
interface configuration.

Changes introduced in Wind River Network Stack 6.6 are minimal. For details, see
the chapters listed above. In particular, the following changes should be noted:

* The IPCOM routines ipcom_run_cmd() and ipmcp_cmd() are deprecated in
this release.

= The names of some DNS configuration parameters have changed. For details,
see 4.3.1 DNS Configuration, p.65.

For a list of functional enhancements in Wind River Network Stack 6.6, see the
release notes for your Platform.

Wind River PPP

Major changes to Wind River PPP were introduced in the previous release,

Wind River PPP 6.5. Workbench components and API routines were replaced, and
a shell command was added. If you are migrating from Wind River PPP 2.x, see
6. Wind River PPP for details. If you are migrating from Wind River PPP 6.5 to
Wind River PPP 6.6, there are no migration issues.

Wind River TIPC

There are no migration concerns for Wind River TIPC aside from a changed
parameter requirement for the shutdown() routine. Specifically, the syntax of the
shutdown() routine in the TIPC socket API is:

STATUS shutdown

(

int sd, /* identifies the socket to shut down */

int how /* function code */

)
In previous releases, only the complete shutdown of a socket is supported and the
how parameter is ignored. In the current release, only a complete shutdown is
supported, but you must now enter the following value for the how parameter:

SHUT_RDWR
Any other value for the parameter results in an error.

General interoperability issues between releases of Wind River TIPC are covered
in the Wind River TIPC for VxWorks 6 Programmer’s Guide.

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

Wind River USB

Wind River USB 2.4 (this release) can only be used with BSPs that support the
VxBus device driver framework; USB support for BSPs that are not VxBus
compatible is discontinued. For information on the VxBus framework, see
VxWorks Device Driver Developers Guide, Volume 1. For information on adding
VxBus support to your BSP, see the VxWorks BSP Developers Guide.

BSP VxBus support reduces the amount of BSP-specific software required to
support the USB controllers. If your BSP supports VxBus, the only change typically
required to port Wind River USB to Wind River USB 2.4 is to remove any
unneeded PCI configuration routines and interrupt attach routines contained in
the usbPciStub.c file in the BSP directory. The usbPciStub.c file should contain
only those memory translation functions that are necessary to support memory
space mapping that is not one-to-one. For further information on BSP
configuration requirements, see the USB Drivers chapter of the VxWorks Device
Driver Developers Guide, Volume 2.

USB Class drivers written for prior releases of the Wind River USB do not require
migration.

1.3 Important Changes Requiring Migration

1.3.1 Changes Introduced in Wind River General Purpose Platform, VxWorks
Edition 3.6

The following important changes are introduced in this release and apply to
multiple products in your Platform.

Deprecated IPCOM Routines
The following IPCOM routines, which were introduced in Wind River
Network Stack 6.5, are deprecated in Wind River Network Stack 6.6:

* ipcom_run_cmd()
» ipmcp_cmd()

1 Overview
1.3 Important Changes Requiring Migration

Command interpreter commands should not be called programmatically using
ipcom_run_command(). There are documented public APIs for all functionality
that is available as shell commands; they should be used instead.

Changes to tNetTask

If you are programming in a uniprocessor system, the tNetTask task is now named
tNet0. Functionality for this task is unchanged. If you are using VxWorks SMP,
multiple instances of this task are available and named tNetn. For more
information on tNet0, see the Network Driver chapter of the VxWorks Device Driver
Developer’s Guide, Volume 2.

1.3.2 Changes Introduced in Wind River General Purpose Platform, VxWorks
Edition 3.5

NOTE: The content in this section applies to the products listed below and does not
apply to all products in your Platform. However, products that make use of the
networking facilities (but are not listed below) may also be impacted indirectly by
these changes.

The following sections provide important information regarding some of the
fundamental differences between the Wind River General Purpose Platform,
VxWorks Edition 3.4 and later releases (that is, the Wind River General Purpose
Platform, VxWorks Edition 3.5 and 3.6).

Changes in directory structure, configuration, and programming philosophy were
introduced in the following products in the Wind River General Purpose Platform,
VxWorks Edition 3.5:

= Wind River Network Stack
= Wind River PPP

Directory Structure

The directory structure has changed for the products listed above. The source code
for these products is now located under the following directory:

installDir/components/ip_net2-6.6

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

The source tree generally contains one directory for each component or product.
The directories follow a standard structure and typically include the
sub-directories described in Table 1-1.

Table 1-1 Component Sub-Directory Structure

Sub-Directory Contents

config Code that configures the product.

gmake Makefiles for running GNU make utility.

include Public header files that applications can use. (See the list below.)
src Source code, including the product, APIs, and shell commands.

The following header files in installDir/components/ip_net2-6.6/ipcom/include
contain public APIs:

* ipcom_auth.h

* ipcom_ipd.h

» ipcom_syslog.h
* ipcom_sysvar.h

These APIs are documented in the reference entries for the Wind River
Network Stack Kernel API Reference. The rest of the files in the /ipcom/include
directory are for internal use only and should not be used by applications.

Wrapper routines and common network infrastructure source code are still located
in the following directory:

installDir/[vxworks-6.6/target/src/wrn

Library Archive Changes
The locations and names of the library archives have changed. libnet.a is obsolete
and has been replaced by the files described in Table 1-2.
These new files can be found under the following directory:
installDir/vxworks-6.6/target/lib/...

The exact name of the sub-directory depends on the CPU family and tool chain you
are using.

1 Overview
1.3 Important Changes Requiring Migration

Table 1-2 New Library Archive Files

Library Archive File Description

libnetapps.a Contains the object modules for components
that have been ported.

libnetcommon.a Contains the object modules for common

networking components.

libnetwrap.a Contains the object modules for wrapper
components.

New library archives can be found in the following directory:
installDir/components/obj/vxworks-6.6/krnl/lib/...

The exact name of the sub-directory depends on the CPU family and tool chain you
are using.

Product or Component Initialization

Initialization and startup for changed components is automatically regulated by a
central process, IPNET daemon (IPD). IPD can also be used to start, stop, and in
some cases, reconfigure the components of the network stack and middleware
products at run time. IPD is accessed through a shell command or hook routine.
For more information, see Shell Commands, p.11.

NOTE: The ipd command is described in Wind River Network Stack for VxWorks 6
Programmer’s Guide 6.6, Volume 1.

Configuration and Scalability
The configuration methods for the following products changed in the Wind River
General Purpose Platform, VxWorks Edition 3.5:

* Wind River Network Stack
= Wind River PPP

While you can still configure components through Workbench, there is now more
flexibility for scaling and configuration.

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

Configuration parameters can be statically configured through Workbench, and
dynamically reconfigured at run time using shell commands. In addition, some
components can be further scaled at library build-time by editing the configuration
header file found in the product’s config sub-directory.

The network stack must be recompiled and the VxWorks image must be rebuilt
after scalability decisions are made. More details about including and excluding
components can be found in the product-specific chapters in this guide.

Configuration Header Files

In release 3.4 and earlier of the Wind River General Purpose Platform, VxWorks
Edition, the configAlLh file contained component definitions and configuration
parameters. This file was used by the BSP command-line build, as well as
Workbench or vxprj, when creating a VxWorks Image Project. In the Wind River
General Purpose Platform, VxWorks Edition 3.5 and later, components, including
excluded components, are in configAllNetwork.h, and configuration parameters
are in configNetParams.h. These files are located in the following directory:

installDir/[vxworks-6.6/target/config/all

Backward Compatibility

Some VxWorks-specific APIs and applications are carried forward to provide
backward compatibility and ease migration. Some other common networking
APIs and features from the previous release are provided as wrappers in the
network stack. Inside the wrappers, the equivalent new functionality is mapped to
maintain backward compatibility. Wrapper routines should be used only to
maintain backward compatibility. They should not be used in new applications
because they will be deprecated and eventually disappear from subsequent
releases of the network stack.

For a list of the routine wrappers in Wind River Network Stack 6.6, see

2.5.4 Backward Compatibility Wrappers, p.21. For a list of applications and APIs
carried forward in Wind River Network Stack 6.6, see 2.5.5 Removed Header Files,
p-23.

10

1 Overview
1.3 Important Changes Requiring Migration

Shell Commands

Many products included in your Platform now include additional shell commands
that can be used to control components and products or view statistics relating to
their operation.

To use the new commands, you must explicitly include the command components
in your project. The INCLUDE_USE_NATIVE_SHELL component must be included,
as well as the specific component for the command (INCLUDE_component_CMD or
INCLUDE_command_CMD).

For descriptions and syntax for the shell commands common to the Platform, see
Wind River Network Stack for VxWorks 6 Programmer’s Guide 6.6, Volume 1.

Accessing the Command Interpreter

In previous releases, most shell commands are C functions that are called using the
VxWorks (host or target) shells' C interpreter, or programmatically. The new shell
commands must be invoked from the command interpreter, and they in turn call
the necessary C routine.

The C interpreter is the default option in the VxWorks shell. To access the
command interpreter, enter cmd at the shell prompt; to return to the C interpreter,
enter C at the prompt. For more information on the VxWorks shells, the C
interpreter, or the command interpreter, see the VxWorks Kernel Programmer's
Guide: Target Tools.

In some cases, C interpreter commands have been replaced by
command-interpreter commands. This means that the facility can only be used
with the shell, and not programmatically, unless a wrapper has been provided (as
is the case, for example, with ping).

New Commands for Dynamic Control and Configuration

There are many new shell commands, but two of the most important commands
are sysvar and ipd.

About sysvar

Components can now be configured at run time through the sysvar command.
Almost all documented configuration parameters can be set with the sysvar
command. The sysvar command can also be used to display the current run-time
configuration setting for a component.

11

Diagnostics and

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

For details on using sysvar, see Wind River Network Stack for VxWorks 6
Programmer’s Guide 6.6, Volume 1. The sysvar variables are listed in the
programmer’s guides for each product.

The following is a simple example showing how to enable CHAP authentication
for PPP:

[vxWorks *]# sysvar set -o ipppp.auth chap

About ipd

Components are implemented though a series of daemons that can be started and
stopped through the ipd command (see also Product or Component Initialization,
p-9). Restarting a daemon after changing the configuration through the sysvar
command allows a flexible approach to testing various network configurations
without having to reboot your system.

The following is a simple example showing how to stop and start the IKE
component:

[vxWorks *1# ipd stop ipike
[vxWorks *]1# ipd start ipike

Debugging

The approach to diagnostics and debugging for many of the products and
components in your Platform differs from releases prior to the Wind River General
Purpose Platform, VxWorks Edition 3.5, largely due to the introduction of new
shell commands described in Shell Commands, p.11. Many of the diagnostic
routines previously available have been replaced by commands and methods that
do not necessarily provide a one-to-one mapping. However, the flexibility and
efficiency of the shell commands allows for greater control over debugging and
diagnostics. This guide provides mappings for obsolete APIs to new routines or
shell commands. For further details, see the product-specific chapters in this guide.

1.3.3 Downloadable Kernel Modules

When creating or importing a VxWorks downloadable kernel module (DKM)
project, include paths are set up as absolute paths. When you build your project for
the first time and select Generate Includes..., the resultant environment variables
are incorrect. To correct the paths, replace the absolute paths with $WIND_BASE.

12

1 Overview
1.3 Important Changes Requiring Migration

If you have a large project that makes use of many components, it may be more
efficient to recreate your DKM project rather than using the import tool.

13

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

14

Wind River Network Stack
Migration Overview

2.1 Introduction 15

2.2 Key Concepts 16

2.3 Evaluating the Migration Effort 16

24 Source Compilation 17

2.5 Network Stack Configuration and Migration 18
2.6 Migrating Applications 27

2.1 Introduction

The 3.1 and earlier releases of Wind River Network Stack are based on a port of the
KAME /FreeBSD network stack release. With the 6.5 release, Wind River
introduced a new proprietary network stack that is highly flexible, and continues
to provide industry-standard socket interfaces.

Wind River Network Stack 6.6 is an update to the stack that was introduced in the
6.5 release. Application code that uses non-standard, Wind River Network Stack
3.1-specific APIs and interfaces must be revised before migrating to Wind River
Network Stack 6.6.

This chapter and the subsequent three chapters will help you to plan your
migration from Wind River Network Stack 3.1 to Wind River Network Stack 6.6.

15

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

They also discuss any changes between the 6.5 and 6.6 releases. This chapter
provides general information about network stack migration, including key
concepts and basic migration steps, and migration information common to most or
all networking components. The subsequent chapters provide component or
feature and API mapping when possible. The following chapters are organized
generally by network stack layer and follow the organization of the three-volume
Wind River Network Stack Programmer’s Guide, 6.6:

» 3. Wind River Network Stack: Transport and Network Protocols
» 4. Wind River Network Stack: Application Protocols
» 5. Wind River Network Stack: Interfaces and Drivers

2.2 Key Concepts

Wind River Network Stack 6.5 and 6.6 differs from the 3.1 release in the way it can
be built and configured. Some commonly used features have been ported and
wrapper routines have been provided for others. For important information
regarding the fundamental differences between Wind River Network Stack 6.6
and 3.1-era releases, see the following sections in this guide:

» 1.3 Important Changes Requiring Migration, p.6
= 2.5 Network Stack Configuration and Migration, p.18

2.3 Evaluating the Migration Effort

Wind River Network Stack 3.1 is replaced by Wind River Network Stack 6.5

(which was then upgraded to 6.6). Some Workbench components and API routines
have been replaced, and new shell commands have been added. These changes are
due to an evolution of the product that incorporates a smaller, more scalable stack.

The following questions will help you to assess which aspects of your existing
systems will require changes to migrate. If the answer is no to all questions, the
migration effort should be small.

16

2 Wind River Network Stack Migration Overview
2.4 Source Compilation

= Does your application use Wind River Network Stack private APIs (libraries or
APIs that are not documented as part of the standard stack)?

Private APIs continue to be undocumented. For the Wind River
Network Stack 6.6 release, many 3.1-era private APIs are obsolete. If you have

used Wind River Network Stack private APIs, you should migrate to the

documented public APIs. This will ease any migration efforts.

= Does your application use any of the now obsolete header files?

Header files that are obsolete in this release must be removed and replaced by
the new header files, or commented out in your files. For a list of obsolete
header files, see 2.5.5 Removed Header Files, p.23.

= Does your application use hard-coded constants?

Some of the constant values may change. If you have used hard-coded
constants in your application, you must update your code.

= Does your application make use of the virtual stack feature in the Wind River
Network Stack?

If your applications use the virtual stack feature, they must be updated to use
the virtual router feature of Wind River Network Stack 6.6. The virtual stack

feature and associated libraries are obsolete. For more information about the

virtual router feature, see 3.14 Virtual Stack, p.53.

2.4 Source Compilation

Most protocol implementations, whether newly implemented in the current
release, or carried over from the previous release, are precompiled and provided
in both source and binary form.

If you wish to create a customized network stack, you must recompile the source
code as described in the getting started guide for you Platform. If you
subsequently add or remove components in the source code, you must recompile
that code, then rebuild your VxWorks Image Project.

If you are migrating a network application that makes standard socket calls, you
must recompile the application, even if no other part of the application calls into
newly implemented protocols or other features of the current release.

17

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

2.5 Network Stack Configuration and Migration

This section provides important information regarding changes to the build and
configuration processes and components in Wind River Network Stack 6.6. For
details regarding changes to components, parameters, files, and configuring the
individual network stack components, see the following chapters:

» 3. Wind River Network Stack: Transport and Network Protocols
» 4. Wind River Network Stack: Application Protocols
» 5. Wind River Network Stack: Interfaces and Drivers

2.5.1 Component and Parameter Configuration

For information on VxWorks projects and component mapping, see 2.6 Migrating
Applications, p.27. Just as there may not be one-to-one mappings for components,
there is rarely a one-to-one mapping for configuration parameters. For most of the
components, you must read the configuration parameter descriptions in the
Wind River Network Stack for VxWorks 6 Programmer’s Guide, 6.6 (volumes 1 through
3).

2.5.2 Network Stack Directory Structure
The directory structure and file locations for new networking components have
changed. For details, see Directory Structure, p.7.

2.5.3 Ported Applications and Libraries

Table 2-1 lists the applications that have been ported from Wind River
Network Stack 3.1 to Wind River Network Stack 6.6.

For more information, see Backward Compatibility, p.10.

18

2 Wind River Network Stack Migration Overview

2.5 Network Stack Configuration and Migration

Table 2-1 Applications Ported from Wind River Network Stack 3.1 to Wind River Network Stack 6.6

Application Name

Component Name(s)

NFS client/server?®

hostLib

FTIP (v4/v6) client backend APIs
remlib

rloglib

Telnet client

TFTP client

net sysctl

12config

INCLUDE_NFS_CLIENT_ALL, INCLUDE_NFS2_CLIENT, IN
CLUDE_NFS3_CLIENT, INCLUDE_CORE_NFS_CLIENT,
INCLUDE_NFS_MOUNT_ALL,

INCLUDE_NFS2_SERVER,

INCLUDE_NFS3_SERVER,

INCLUDE_NFS_SERVER_ALL,
INCLUDE_CORE_NFS_SERVER,
INCLUDE_NFS_SERVER_INSTALL

INCLUDE_HOST_TBL
INCLUDE_FTP, INCLUDE_FTP6
INCLUDE_REMLIB
INCLUDE_RLOGIN
INCLUDE_TELNET_CLIENT
INCLUDE_TFIP_CLIENT
INCLUDE_NET_SYSCTL

INCLUDE_L2CONFIG

a. In Workbench, NFS has moved from under the Network Applications folder to
Operating System Components > IO system components > NFS Components.

Table 2-2 lists the libraries that have been ported from Wind River
Network Stack 3.1 to Wind River Network Stack 6.6.

Table 2-2 Libraries Ported from Wind River Network Stack 3.1 to Wind River Network Stack 6.6

Library Filename

Component Name

common/mux/muxLib.c
common/mux/muxTkLib.c
common/mux/muxFunc.c

common/mux/muxL2Lib.c

INCLUDE_MUX
none

none

INCLUDE_MUX_L2

19

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

Table 2-2 Libraries Ported from Wind River Network Stack 3.1 to Wind River Network Stack 6.6 (cont'd)

Library Filename Component Name

common/daemon/jobQueueLib.c INCLUDE_JOB_QUEUE
common/daemon/jobQueueUtilLib.c INCLUDE_JOB_QUEUE_UTIL
common/daemon/daemon.c INCLUDE_NET_DAEMON

common/libc/dlinklib/etherMultiLib.c none

common/mem/netBufLib.c INCLUDE_NETBUFLIB
common/mem/netBufPool.c INCLUDE_NET_POOL
common/mem/netBufAdvLib.c INCLUDE_NETBUFADVLIB
common/mem/linkBufPool.c INCLUDE_LINKBUFPOOL
common/mem/netPoolShow.c INCLUDE_NETPOOLSHOW

common/timer/gtf_core.ccommon/timer/ INCLUDE_GTE INCLUDE_GTF_TIMER_START
gtf_util.ccommon/timer/gtf wrapper.c

common/mem/uipc_mbuf.ccommon/ none
mem/uipc_mbuf2.c

common/utilslib/wvNetDLib.c none

sysdep/os/vxWorks/socket/sockLib.c INCLUDE_SOCKLIB, INCLUDE_SC_SOCKLIB
sysdep/os/vxWorks/socket/sockScLib.c

dlink/qosIngressHooks.cdlink/ INCLUDE_QOS_INGRESS_HOOKS

qosIngressLib.c

apps/common/applUtilLib.c INCLUDE_APPL_LOG_UTIL
common/libc/hostlib/hostLib.c INCLUDE_HOST_TBL, INCLUDE_HOST_TBL_SYSCT

common/libc/hostlib/hostUtils.c
common/libc/hostlib/rtpGetnameinfo.c
common/libc/hostlib/rtpGetaddrinfo.c
common/libc/hostlib/rtpHostLib.c
common/libc/hostlib/hostSetup.c
common/libc/hostlib/hostSetupSysctl.c

20

2 Wind River Network Stack Migration Overview
2.5 Network Stack Configuration and Migration

2.5.4 Backward Compatibility Wrappers

Table 2-3 lists the wrapper routines provided in Wind River Network Stack 6.6.
With the exception of the standard POSIX routines, most wrapper routines will not
be maintained indefinitely and will be deprecated in a future release.

Most wrapper components are available through Workbench in their original
folders with their original names. Wrapper components are also available through
Workbench in one place, under: Network Components >

Network Core Components > Backwards compatibility wrapper routines.

For more information, see Backward Compatibility, p.10.

Table 2-3 Wrapper Routines in Wind River Network Stack 6.6

Routine Name

Component Name

Comments

arpAdd(),
arpDelete(),
arpShow()
getaddrinfo()
gethostbyaddr()
gethostbyname()
getifaddrs(),
freeifaddrs()
getnameinfo()

getservbyname()

getservbyport()

INCLUDE_ARP_API or
INCLUDE_IPWRAP_ARP

INCLUDE_GETADDRINFO or
INCLUDE_IPWRAP_GETADDRINFO

none

none

INCLUDE_IPWRAP_GETIFADDRS

INCLUDE_GETNAMEINFO or
INCLUDE_IPWRAP_GETNAMEINFO

INCLUDE_GETSERVBYNAME or
INCLUDE_IPWRAP_GETSERVBYNAME

INCLUDE_GETSERVBYPORT or
INCLUDE_IPWRAP_GETSERVBYPORT

See the API reference entry for
functional changes.

See the API reference entry for
functional changes.

See the API reference entry for
functional changes.

See the API reference entry for
functional changes.

See the API reference entry for
functional changes.

See the API reference entry for
functional changes.

See the API reference entry for
functional changes.

21

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

Table 2-3 Wrapper Routines in Wind River Network Stack 6.6 (cont'd)

Routine Name

Component Name

Comments

if nametoindex(),
if indextoname(),
if nameindex(),

if freenameindex()

ifconfig()

inet_addr(),
inet_ntoa(),
inet_aton(),
inet_ntop(),
inet_pton()

ip6Attach()

ipAttach()

netstat()

ping()

ping6()

routec()

sntpcTimeGet()

none

INCLUDE_IFCONFIG or
INCLUDE_IPWRAP_IFCONFIG

INCLUDE_INETLIB or
INCLUDE_IPWRAP_INETLIB

INCLUDE_IP6ATTACH or
INCLUDE_IPWRAP_IPPROTO

INCLUDE_IPATTACH or
INCLUDE_IPWRAP_IPPROTO

INCLUDE_NETSTAT or
INCLUDE_IPWRAP_NETSTAT

INCLUDE_PING or
INCLUDE_IPWRAP_PING

INCLUDE_PINGS6 or
INCLUDE_IPWRAP_PING6

INCLUDE_ROUTECMD or
INCLUDE_IPWRAP_ROUTECMD

INCLUDE_IPWRAP_SNTPCTIMEGET

ifLib.c::ifNameTolfIndex() and
ifLib.c::ifIndexTolfName() are
obsolete. Use
ifname.c:if_nametoindex()and
ifname.c::if_indextoname().

See the API reference entry for
functional changes.

The Wind River-specific
implementations, inet_lnaof,
inet_makeaddr_b,
inet_makeaddr, inet_netof,
inet_network, and inet_ntoa_b
are also ported.

No distinction between IPv4/v6
attach. See the API reference
entry for functional changes.

No distinction between IPv4/v6
attach. See the API reference
entry for functional changes.

See the API reference entry for
functional changes.

See the API reference entry for
functional changes.

See the API reference entry for
functional changes.

See the API reference entry for
functional changes.

22

2 Wind River Network Stack Migration Overview
2.5 Network Stack Configuration and Migration

2.5.5 Removed Header Files

Table 2-4 lists Wind River Network Stack 3.1 header files that have been removed
from Wind River Network Stack 6.6. All references to the header files in Table 2-4
must be removed or commented out to avoid compilation errors.

Some of the removed files listed in Table 2-4 may not have appeared in the
Wind River General Purpose Platform, VxWorks Edition, 3.4, but were part of
Wind River VxWorks Platforms, 3.4.

Table 2-4 Header Files Removed in Wind River Network Stack 6.6

adv_net.h

altq/altq_var.h
arch/arm/endian.h
arch/coldfire/ansi.h
arch/coldfire/param.h
arch/mips/machdep.h
arch/pentium/endian.h
arch/ppc/ansi.h
arch/ppc/param.h
arch/sh/machdep.h
arch/simpentium/endian.h
arch/simso/ansi.h
arch/simso/param.h
bpfDrv.h
dhcp/common_subr.h
dhcp/dhcp.h
dhcp/dhcpcCommonLib.h
dhcp/dhcpcShow.h

altg/altq.h

altq/if_altq.h
arch/arm/machdep.h
arch/coldfire/endian.h
arch/mips/ansi.h
arch/mips/param.h
arch/pentium/machdep.h
arch/ppc/endian.h
arch/sh/ansi.h
arch/sh/param.h
arch/simpentium/machdep.h
arch/simso/endian.h
arch/types.h
bsdSockLib.h
dhcp/copyright_dhcp.h
dhcp/dhcepc.h
dhcp/dhcepclnit.h
dhcp/dhcpcStateLib.h

altg/altq_config_var.h
arch/arm/ansi.h
arch/arm/param.h
arch/coldfire/machdep.h
arch/mips/endian.h
arch/pentium/ansi.h
arch/pentium/param.h
arch/ppc/machdep.h
arch/sh/endian.h
arch/simpentium/ansi.h
arch/simpentium/param.h
arch/simso/machdep.h
bootpLib.h
dhcp/common.h
dhcp/database.h
dhcp/dhcpcBoot.h
dhcp/dhcepcInternal.h
dhcp/dhcps.h

23

Migration Guide, 3.6

Wind River General Purpose Platform, VxWorks Edition

Table 2-4 Header Files Removed in Wind River Network Stack 6.6 (cont'd)

dhcp/hash.h
dhcpcBootLib.h
dhcpsLib.h
dlink/tunnelLib.h
fastPath/fastPathIp.h
fastPath/fastPathMon.h
icmpLib.h

ifLib.h

IGMPv2/igmp_externs.h

IGMPv2/igmp_state_
machine.h

IGMPv2/igmpCacheLib.h
IGMPv2/igmpRouterLib.h
ipLib.h

mbufSockLib.h
mib/cidrMapi.h
mip6/mip6.h
mip6/mip6_constants.h
mip6/mip6_shisad.h
net/bpf.h
net/fastUdpLib.h

net/if mip.h

net/inet.h

net/raw_cb.h

dhcp6cShow.h
dhcpcLib.h
dlink/gifNpt.h
dlink/vlanTagLib.h
fastPath/fastPathIpLib.h
fastPath/fastPathPatTree.h
if6Lib.h

IGMPv2/igmp_constants.h

IGMPv2/igmp_globals.h

IGMPv2/igmp_state_
machine_structures.h

IGMPv2/igmpPortLib.h
ioccom.h

machdep.h

md5.h

mib/cidrSkel.h
mip6/mip6_babymdd.h
mip6/mip6_had.h
mip6/mip6_stat.h
net/bpfdesc.h
net/if_clone.h

net/if _subrh
net/mipsock.h

net/utils/altqConfig.h

dhcp6Lib.h
dhcprLib.h
dlink/stfNpt.h
fastPath/fastPathFib.h
fastPath/fastPathLib.h
fastPath/fastPathUtil.h
ifIndexLib.h

IGMPv2/igmp_display_
string.h

IGMPv2/igmp_prototypes.h

IGMPv2/igmp_structures.h

IGMPv2/igmpR.h
ip6Lib.h
mbufLib.h
mib/cidrLeaf.h
mib/mibApi.h
mip6/mip6_command.h
mip6/mip6_mnd.h
net/af.h
net/fastUdp6Lib.h
net/if_media.h
net/ifaddrs.h
net/radix.h

net/utils/ip6addrctl.h

24

2 Wind River Network Stack Migration Overview
2.5 Network Stack Configuration and Migration

Table 2-4 Header Files Removed in Wind River Network Stack 6.6 (cont'd)

net/utils/ndp.h
netCore.h
netinet/igmp_var.h
netinet/ip_var.h
netinet/ipémh.h
netinet/pim.h
netinet/sctp_constants.h
netinet/sl_compress.h
netinet/tcp_seq.h
netinet/tcpip.h
netinet/vsData.h
netinet/vsHost.h
netinet/vsIgmpR.h
netinet/vsM2.h
netinet/vsProxyArp.h
netinet/vsRip.h
netinet/vsUdp.h
netinet6/in6_pcb.h
netinet6/ip6_var.h
netinet6/nd6.h
netinet6/raw_ip6.h
netinet6/udp6_var.h
private/bpfLibP.h
private/fastPathLibP.h

net/utils/prefixcmd.h
netinet/icmp_var.h
netinet/in_msf.h
netinet/ip4_ext_in.h
netinet/ipfw.h
netinet/pim_var.h
netinet/sctp_header.h
netinet/tcp_debug.h
netinet/tcp_timer.h
netinet/udp_var.h
netinet/vsDhcps.h
netinet/vsIcmp.h
netinet/vsIp.h
netinet/vsMcast.h
netinet/vsRadix.h
netinet/vsShow.h
netinet6/icmp6.h
netinet6/ip6_ext_in.h
netinet6/mip6.h
netinet6/pimé.h
netinet6/scope6_var.h
osdep.h
private/clarinet.h

private/fastPathPatTreeP.h

netconf.h

netinet/icmp6.h
netinet/in_pcb.h
netinet/ip4_ext_out.h
netinet/ipprotosw.h
netinet/sctp.h
netinet/sctp_uio.h
netinet/tcp_fsm.h
netinet/tcp_var.h
netinet/vsArp.h
netinet/vsFastUdp.h
netinet/vsIgmp.h
netinet/vsLib.h
netinet/vsNetCore.h
netinet/vsRdisc.h
netinet/vsTcp.h
netinet6/in6_msf.h
netinet6/ip6_ext_out.h
netinet6/mip6_var.h
netinet6/pimé_var.h
netinet6/tcp6_var.h
polLh
private/fastPathIpP.h
private/m2LibP.h

25

Migration Guide, 3.6

Wind River General Purpose Platform, VxWorks Edition

Table 2-4 Header Files Removed in Wind River Network Stack 6.6 (cont'd)

private/nfsCacheLibP.h

protos/igmpLib.h
protos/mldLib.h
protos/rarpLib.h
protos/udpLib.h
rdiscLib.h
resolvLib.h
rip/m2RipLeaf.h
rip/rip2.h
ripngLib.h

route/ipRouteLib.h
route/llIRouteNodeLib.h

rtadv/rtadvd.h
rtsolLib.h
sys/callout.h
sys/sockio.h
vs/vsDhcpr.h
vs/vsFastUdp6.h
vs/vslf.h
vs/vsLog.h
vs/vsMld.h
vs/vsNd6.h

private/routeShowP.h
protos/ip6protosw.h
protos/mrouteLib.h
protos/sctpLib.h
proxyArpLib.h
resolv/nameser.h
rip/defs.h
rip/m2RipLib.h
rip/ripLib.h
route/avlRouteNodeLib.h
route/ipRouteNodeData.h
route/ptRouteNodeLib.h
rtadv/timer.h

sntp.h

sys/ds_conf.h
vs/vsBsdSock.h
vs/vsDns.h
vs/vsIempUtil.h
vs/vsIp6.h
vs/vsMcast6.h
vs/vsMroute.h

vs/vsNdp.h

protos/icmpv6Lib.h
protos/mld6_var.h
protos/nd6Lib.h
protos/tcpLib.h
random.h
resolv/resolv.h
rip/interface.h
rip/md5.h
rip/table.h

route/avltree.h

route/ipRouteNodeLib.h

routeLib.h
rtadvLib.h
sntpsLib.h

sys/mem_stru.h

vs/vsDhcpCommon.h

vs/vsFastPath.h
vs/vslempvé.h
vs/vsIpRoute.h
vs/vsMip6.h
vs/vsNatptLib.h

vs/vsRarp.h

26

2 Wind River Network Stack Migration Overview
2.6 Migrating Applications

Table 2-4 Header Files Removed in Wind River Network Stack 6.6 (cont'd)

vs/vsRaw.h vs/vsRipng.h vs/vsRtadv.h
vs/vsSoSup.h vs/vsSysctLh vs/vsTunnelLib.h
zbufLib.h zbufSockLib.h

2.6 Migrating Applications

This section discusses migrating certain types of network applications to
Wind River Network Stack 6.6.

2.6.1 Migrating an Application that Uses Networking APIs

You cannot import an existing VxWorks Image Project (VIP) directly into
Workbench. You must first create a new VIP and add the appropriate components,
which are documented fully in Wind River Network Stack for VxWorks 6
Programmer’s Guide 6.6, Volume 1. Once you have created a new VIP, you can then
add your previous application source code to that project. In some cases, you may
need to rewrite parts of the code to reflect API changes to the protocols or
technology.

Most of the transport and network layer protocols have new implementations.
Consequently, there is no one-to-one correspondence or mapping of the
component names between versions 3.1 and 6.6 of the network stack. In some
cases, where you previously had to include several interdependent components,
the new stack incorporates all of that support into a single component. For
example, the IPv4 and IPv6 components include the appropriate UDP and ICMP
support. There are no longer separate components for UDP and ICMP.

Wind River Network Stack for VxWorks 6 Programmer’s Guide 6.6, Volume 1
documents how to add the appropriate configuration components for a minimal
stack that runs ping, and for a stack that includes any of the supported transport
and networking protocols, such as TCP, IPv4, IPv6, and ARP.

27

Wind River General Purpose Platform, VxWorks Edition

Migration Guide, 3.6

2.6.2 Migrating a Socket-Based Application

Most socket-based applications that interface with the network stack can be
migrated to use the updated network stack with minor clean-up and changes.
Standard socket calls continue to be supported.

The following general process will help you to work through the changes required
to migrate a socket-based application. For assistance using Workbench, see the
Wind River Workbench User’s Guide.

Any new socket components required for your project are automatically included
when you build the network stack. For more socket-related migration information,
see 4.9 Internet and Local Domain Sockets, p.77.

1.
2.
3.

28

Create a new VxWorks Image Project (VIP).

Import your source files into the new VIP.

Compile the project and check the error output.

Missing header files cause compile errors similar to the following example:

blasteeTCPvx.c", line 83: error (dcc:1621): can't find include file
zbufSockLib.h

"blasteeTCPvx.c", line 84: error (dcc:1621): can't find include file
zbufLib.h

Remove references to all missing header files. For a list of header files that are
obsolete, see 2.5.5 Removed Header Files, p.23. For information on replacing or
functionally replacing obsolete features, see the appropriate section in this
guide.

References to obsolete features may cause compile error sequences similar to
the following example:

"blasteeTCPvx.c", line 132: error (dcc:1525): identifier zid not declared
"blasteeTCPvx.c", line 132: error (dcc:1633): parse error near 'zid'
"blasteeTCPvx.c", line 132: error (dcc:1206): syntax error

"blasteeTCPvx.c", line 132: fatal error (dcc:1340): can't recover from
earlier errors

Check the error references to determine if the project is using an obsolete
feature. In this example the project is attempting to use zBuf, which is not
supported in Wind River Network Stack 6.6, and must be replaced by
standard sockets.

2 Wind River Network Stack Migration Overview
2.6 Migrating Applications

Remove any references to the virtual stack from the project. The virtual stack
is obsolete and has been replaced by a virtual router feature. For more
information, see 3.14 Virtual Stack, p.53.

Recompile the project and ensure no errors remain.

29

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

30

3

Wind River Network Stack:
Transport and Network
Protocols

3.1 Introduction 32

3.2 Migrating to SMP 35

3.3 Socket Options 36

3.4 IPv4 and IPv6 Components 37
3.5 ARP Components 39

3.6 Proxy ARP 40

3.7 Multicasting Components 41
3.8 Show Routine Components 42
3.9 Utility Components 44

3.10 RIP Components 44

3.11 RIPng Components 48

3.12 Routing APIs 50

3.13 Routing Sockets 51

3.14 Virtual Stack 53

31

3.1

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

Introduction

Major changes to Wind River Network Stack were introduced in the Wind River
Network Stack 6.5 release. Additional changes were also introduced in the
Wind River Network Stack 6.6 release.

This chapter will help you plan your migration from Wind River Network Stack
3.x to the current release, Wind River Network Stack 6.6. Changes between the last
three versions of Wind River Network Stack—3.x, 6.5, and 6.6—are highlighted in
3.1.1 Feature Release Matrix, p.32. These changes are further described in

3.1.2 Changes in Wind River Network Stack 6.5, p.34, and 3.1.3 Changes in Wind River
Network Stack 6.6, p.34.

There are four chapters in this guide that contain migration information for the
network stack:

2. Wind River Network Stack Migration Overview
Provides introductory information on network stack migration. Describes key
concepts and migration information common to most or all networking
components.

3. Wind River Network Stack: Transport and Network Protocols (this chapter)
Provides migration details and component and API mapping for the
components of the core network stack, including TCP/IP, multicast, and
routing.

4. Wind River Network Stack: Application Protocols
Provides migration details and component and API mapping for the network
application components, including DHCP and DNS, and information on
programming with sockets.

5. Wind River Network Stack: Interfaces and Drivers
Provides migration details and information on changes to libraries and
routines for lower-level network stack components, including the MUX and
interface configuration.

3.1.1 Feature Release Matrix

Table 3-1 provides a list of Wind River Network Stack transport and network layer
features, indicating which releases support them. Features that are currently not
supported in the Wind River Network Stack 6.6 may be available in a future
release.

32

3 Wind River Network Stack: Transport and Network Protocols
3.1 Introduction

Table 3-1 Network Stack Transport and Network Protocols - Feature Release Matrix

Feature 3.1 6.5
Differentiated Services Not supported ®
IPv4-only network stack { {
(New
implementation)
IPv4/IPv6 dual stack [] []
(New
implementation)
Fastpath] ®
(New
implementation)
Multicast Proxy Router (host-side J {
support) (New
implementation)
IPv4 and IPv6 ® ®
(New
implementation)
MPLS Dataplane Support Not supported ®
NDP { {
(New
implementation)
Policy-Based Routing Not supported ®
Proxy ARP Server []]
(New
implementation)
RIP v1, v2 o o
(New
implementation)
RIPng ® ®
(New
implementation)

33

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

Table 3-1 Network Stack Transport and Network Protocols - Feature Release Matrix (cont'd)

Feature 3.1 6.5 6.6
Routing Sockets { ® ®
(New
implementation)
Routing Table o (] ([
(New
implementation)
SCTP o Not supported Not currently
supported
TCPv4 and TCPv6 o () ([
(New
implementation)
UDPv4 and UDPv6 o () (]
(New
implementation)
Virtual Router Not supported [[
Virtual Stack (replaced by Virtual { Obsolete Obsolete
Router)
VRRP Not supported (] []

3.1.2 Changes in Wind River Network Stack 6.5

If you are upgrading from Wind River Network Stack 3.x, there are many changes
in Wind River Network Stack 6.5 that may require migration of existing projects
and code. See sections 3.4 IPv4 and IPv6 Components, p.37, through 3.14 Virtual
Stack, p.53, for further information.

3.1.3 Changes in Wind River Network Stack 6.6
If you are upgrading from Wind River Network Stack 6.5, there are relatively few

changes in Wind River Network Stack 6.6 that require migration of existing
projects and code. Sections 3.4 IPv4 and IPv6 Components, p.37, through 3.14 Virtual

34

3 Wind River Network Stack: Transport and Network Protocols
3.2 Migrating to SMP

Stack, p.53, describe these changes in greater detail. See sections 3.5 ARP
Components, p.39 and 3.14 Virtual Stack, p.53 for further information.

In addition, the following IPCOM routines that were introduced in Wind River
Network Stack 6.5 are deprecated in Wind River Network Stack 6.6:

* ipcom_run_cmd()
* ipmcp_cmd()

Command interpreter commands should not be called programmatically using
ipcom_run_command(). There are documented public APIs for all functionality
that is available as shell commands; these should be used instead.

3.2 Migrating to SMP

NOTE: SMP support for VxWorks is available as an optional product. However,
default SMP system images for the VxWorks simulator are provided with the
standard VxWorks installation as an introduction to the product.

Wind River Network Stack 6.6 can optionally be implemented with symmetric
multiprocessing (SMP) capabilities. To migrate an existing uniprocessor-enabled
stack, you must import it into an SMP-capable VxWorks Image Project.

Creating an SMP-Capable VxWorks Image Project
Once you have rebuilt the Platform source code, you must create a new project
with the SMP option enabled. There are two ways to enable this option:

= If you are using Workbench, select Build with SMP options in the Options
page of the New VxWorks Image Project wizard.

= If you are using vxprj, add the flag -smp to the create command.

35

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

3.3 Socket Options

A number of socket commands are available in Wind River Network Stack 6.6 to
provide backwards compatibility with Wind River Network Stack 3.x. The
location where socket option definitions are stored has also changed. In addition,
there an interface-related socket option is available.

New Socket Commands

New socket commands have been introduced for multicast routing. For further
information, see IPv4 Multicast Routing set/getsockopt Options, p.41, or IPv6
Multicast Routing set/getsockopt Options, p.42.

Socket Option Definitions

In Wind River Network Stack 3.x and earlier releases, coreip IPv6 socket options
are defined in the following location:

installDir/vxworks-6.x/target/h/wrn/coreip/netinet6/in6_var.h

In Wind River Network Stack 6.x, socket options and the required structure
definitions are located in the installDir/vxworks-6.x/target/h/wrn/coreip/ipnet
directory. These definitions can be found in the following new files:

» jpioctl.h
* ipioctl_varh
* mpls_varh

» pfkeyv2.h

» policy_routing.h
* ppp_varh

» qos.h

Interface-Related Socket Options

The socket option SIOCGIFCAP, which takes the struct ifreq as an argument, gets
interface capabilities.

36

3 Wind River Network Stack: Transport and Network Protocols

3.4 IPv4 and IPv6 Components

3.4 IPv4 and IPv6 Components

This section describes the IPv4 and IPv6 components and API mapping.

3.4.1 IPv4 and IPv6 Configuration

Table 3-2

Table 3-3

Table 3-2 shows the configuration component mapping for the IPv4 components.

IPv4 Component Migration

Wind River Network Stack 3.1 Wind River Network Stack 6.x

Components

Components

INCLUDE_HOSTCACHE
INCLUDE_ICMPV4
INCLUDE_IPV4
INCLUDE_RAWV4
INCLUDE_TCP_DEBUG
INCLUDE_TCPV4

INCLUDE_UDPV4

Obsolete

Support included in INCLUDE_IPCOM_USE_INET
INCLUDE_IPCOM_USE_INET

Support automatically included

Functionality included in INCLUDE_IPTCP
INCLUDE_IPTCP *

Support included in INCLUDE_IPCOM_USE_INET

a. Used for both IPv4 and IPv6, configurable at library build time.

Table 3-3 shows the configuration component mapping for the IPv6 components.

IPv6é Component Migration

Wind River Network Stack 3.1 Wind River Network Stack 6.x

Components

Components

INCLUDE_ICMPV6
INCLUDE_IPV6
INCLUDE_MIPV6
INCLUDE_ND

INCLUDE_RAWVe6

Support included in INCLUDE_IPCOM_USE_INET6
INCLUDE_IPCOM_USE_INET6

INCLUDE_IPMIP6, INCLUDE_IPMIP6MN

Support included in INCLUDE_IPCOM_USE_INET6

Support automatically included

37

Table 3-3

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

IPv6 Component Migration (cont'd)

Wind River Network Stack 3.1 Wind River Network Stack 6.x

Components Components
INCLUDE_TCPV6 INCLUDE_IPTCP @
INCLUDE_UDPV6 Support included in INCLUDE_IPCOM_USE_INET6

a. Used for both IPv4 and IPv6, configurable at library build time.

3.4.2 API Mapping

This section provides tables that list the Wind River Network Stack 3.x core stack
routines and the replacement AP], if available, in Wind River Network Stack 6.x.

Shell commands in Wind River Network Stack 6.x are used to replace VxWorks
configuration commands and network show routines for many components, and
are listed in the tables in this section.

TCP/IP Layer Core Networking Routines

Table 3-4

Table 3-4 provides the API mapping for the core networking routines.

Core Networking APIs

3.x API 6.x APl or Method

sysctl sysctl (with changes)
ifRouteDelete() Obsolete
netVersionShow() version shell command
rarpGet() Obsolete

splimp() Obsolete

splnet() Obsolete

splnet2() Obsolete

splx() Obsolete

wakeup() Obsolete

38

3 Wind River Network Stack: Transport and Network Protocols
3.5 ARP Components

Table 3-4 Core Networking APIs (cont'd)

3.xAPI 6.x API or Method
ndp() ndp shell command
prefixemd() Obsolete

ICMP Routines

ICMP functionality is now included in the IP components. Table 3-5 lists the old
APIs and the new implementation solutions.

Table 3-5 ICMP APIs

3.x API 6.x API or Method

icmpShowlInit() Obsolete

icmpMaskGet() A string representation of the mask is returned by the ifconfig
command. A binary representation is returned through the
SIOCGIFNETMASK ioctl.

3.5 ARP Components

This section provides a table that lists the Wind River Network Stack 3.x ARP
routines and the replacement AP], if available, in Wind River Network Stack 6.x.

API Mapping for ARP Routines

Table 3-6 provides the API mapping for the ARP protocols.

39

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

Table 3-6 ARP APIs

3.x API 6.x APl or Method

arpFlush() Two methods exist:

» Usetheioctl() function SIOCDARP with the struct arpreq
as an argument.

» Use the shell command arp -A to delete all ARP entries.

arpResolve() Two methods exist:

» Use theioctl() function SIOCPARP with the struct arpreq
as an argument.

» Use the shell command arp -r hostaddr, which sends an
ARP request to the specified host address.

3.6 Proxy ARP

The proxy ARP implementation in Wind River Network Stack 6.x does not
function exactly as it did in previous releases. You can create proxied networks that
are on the same logical subnet as the main proxy interface. You must either add
specific host routes to the individual nodes on the proxied network, or arrange the
IP addresses of the nodes on the proxied network to be a subset of the larger main
subnet, and add a route to the more specific (proxied) subnet on the proxy ARP
server.

For details on the current proxy ARP implementation, see the Wind River
Network Stack Programmer’s Guide, 6.6, Volume 1.

40

3 Wind River Network Stack: Transport and Network Protocols

3.7 Multicasting Components

3.7 Multicasting Components

The General Purpose Platform now includes host-side support for all versions of
the IGMP and MLD multicasting protocols:

= IGMPvl
= IGMPv2
= IGMPv3
= MLDvl
= MLDv2

3.7.1 Socket Commands

This section provides tables that list the socket options available in Wind River

Network Stack 6.x.

IPv4 Multicast Routing set/getsockopt Options

Table 3-7

For backwards compatibility purposes, the IPv4 multicast routing socket options
are defined in installDirlvxworks-6.x/target/h/wrn/coreip/netinet/ip_mroute.h.
Table 3-7 lists these new options.

IPv4 Multicast Routing Socket Options

Socket Option

Comments

MRT_INIT
MRT_DONE
MRT_ADD_VIF
MRT_DEL_VIF
MRT_ADD_MFC
MRT_DEL_MEC
MRT_VERSION
MRT_ASSERT

MRT_PIM

int; initialize mrouted

int; shut down mrouted

struct vifctl; add virtual interface

struct vifctl; delete virtual interface

struct mfcctl; add a multicast forwarding cache entry
struct mfcctl; delete a multicast forwarding cache entry
int; returns mrouted version number

int; enable assert processing

int; enable PIM processing

41

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

IPv6 Multicast Routing set/getsockopt Options

For backwards compatibility purposes, the IPv6 multicast routing socket options
are defined in installDirlvxworks-6.x/target/h/wrn/coreip/netinet6/ip6_mroute.h.
Table 3-8 lists these new options.

Table 3-8 IPv6 Multicast Routing Socket Options

Socket Option Comments
MRT6_INIT int; initialize mrouted
MRT6_DONE int; shut down mrouted

MRT6_ADD_VIF struct mifé6ctl; add virtual interface
MRT6_DEL_VIF struct miféctl; delete virtual interface
MRT6_ADD_MFC struct mfécctl; add a multicast forwarding cache entry

MRT6_DEL_MFC struct mfécctl; delete a multicast forwarding cache
entry

MRT6_PIM int; enable PIM processing

3.8 Show Routine Components

This section describes the show routine component and API mapping.

3.8.1 Show Routine Configuration

The following show routine components are no longer used:

INCLUDE_ICMP_SHOW INCLUDE_IGMP_SHOW
INCLUDE_NET_SHOW INCLUDE_NET_IF_SHOW
INCLUDE_NET_ROUTE_SHOW INCLUDE_TCP_SHOW

INCLUDE_UDP_SHOW

However, the functionality that they provided is now available from shell
commands. For more information, see 3.8.2 API Mapping, p.43.

42

3 Wind River Network Stack: Transport and Network Protocols

3.8.2 API Mapping

Table 3-9

3.8 Show Routine Components

Table 3-9 lists the previous show routine APIs and the replacement AP, if
available, in Wind River Network Stack 6.x.

Show Routine APIs

3.xAPI

6.x APl or Method

hostShow()
ipstatShow()
ip6statShow()
inetstatShow()
inet6statShow()
icmpstatShow()
icmpé6statShow()
igmpShow()
mRouteShow()
netPoolShow()
netShow()
routeShow()
routestatShow()
tcpstatShow()
tcpDebugShow()
tcpShowlInit()
udpstatShow()
udpShowlInit()
vsShow()

hostShow()
netstat() (wrapper)
netstat() (wrapper)
netstat() (wrapper)
netstat() (wrapper)
netstat() (wrapper)
Obsolete

netstat() (wrapper)

netstat() (wrapper) or routeCmd() (wrapper)
netPoolShow()

netstat() (wrapper)

netstat() (wrapper)

routeCmd() (wrapper)

netstat() (wrapper)

Obsolete

Obsolete

netstat() (wrapper)

Obsolete

Obsolete

43

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

3.9 Utility Components

The following NETSTAT components are obsolete:

INCLUDE_NETSTAT_UN_COMP INCLUDE_NETSTAT_ICMPV4
INCLUDE_NETSTAT_ICMPVe6 INCLUDE_NETSTAT_IGMP
INCLUDE_NETSTAT_MROUTEV6 INCLUDE_NETSTAT_IPV4
INCLUDE_NETSTAT_IPV6 INCLUDE_NETSTAT_RAWYV6
INCLUDE_NETSTAT_SCTP INCLUDE_NETSTAT_TCP
INCLUDE_NETSTAT_UDP INCLUDE_NETSTAT_IF
INCLUDE_NETSTAT_MROUTEV6 INCLUDE_NETSTAT_ROUTE

INCLUDE_NETSTAT®6

All NETSTAT components are replaced by the netstat command, which can be
included in a build using INCLUDE_NETSTAT_CMD.

In addition, the microtime utility is obsolete.

3.10 RIP Components

This section describes the RIP component and API mapping.

3.10.1 RIP Configuration

Table 3-10 shows the configuration component mapping for RIP. For descriptions
of the new components, see the Wind River Network Stack for VxWorks 6
Programmer’s Guide 6.6, Volume 1.

44

3 Wind River Network Stack: Transport and Network Protocols

Table 3-10 RIP Component Migration

3.10 RIP Components

Wind River Network Stack 3.1
Components

Wind River Network Stack 6.x
Components

INCLUDE_RIP

No equivalent

No equivalent

No equivalent

INCLUDE_IPRIP

SELECT_IPRIP_IFCONFIG
INCLUDE_IPRIP_IFCONFIG_1
INCLUDE_IPRIP_IFCONFIG_2
INCLUDE_IPRIP_IFCONFIG_3
INCLUDE_IPRIP_IFCONFIG_4

SELECT_IPRIP_STATIC_ROUTES
INCLUDE_IPRIP_STATIC_ROUTE_1
INCLUDE_IPRIP_STATIC_ROUTE_2
INCLUDE_IPRIP_STATIC_ROUTE_3

INCLUDE_IPRIP_CTRL_CMD

3.10.2 API Mapping

This section provides tables that list the RIP APIs and the replacement AP, if
available, in Wind River Network Stack 6.x.

Shell commands in Wind River Network Stack 6.x are used to replace VxWorks
configuration commands and network show routines for many components, and
are listed in the tables in this section.

For details on using RIP and RIPng see Wind River Network Stack for VxWorks 6
Programmer’s Guide 6.6, Volume 1 and the API reference entries.

Table 3-11 provides the RIP API mappings.

45

Wind River General Purpose Platform, VxWorks Edition

Migration Guide, 3.6

Table 3-11 RIP APIs
3.x API 6.x API or Method Comments
ripAddrsXtract() iprip_ifctrl() with
IPRIP_IFCTRL_GET_IP_ADDRESS

ripAuthHook() Obsolete The new RIP
implementation supports
traditional simple and gated
md5-style authentication
without a function hook. Itis
enabled per interface by
setting auth-simple= or
auth-md5= configuration
options.

ripAuthHookAdd() Obsolete See comments above.

ripAuthHookDelete() Obsolete See comments above.

ripAuthKeyAdd()

ripAuthKeyDelete()
ripAuthKeyFind()
ripAuthKeyFindFirst()

ripAuthKeyInMD5()

ripAuthKeyOut1MD5()
ripAuthKeyOut2MD5()
ripAuthKeyShow()

ripctrl shell command or
iprip_ifctrl() or iprip_ifopen()

none
none

ripctrl shell command or
iprip_ifctrl() with
IPRIP_IFCTRLT_GET_
rip2IfConfAuthType

none

none
none

ripctrl shell command or
iprip_ifctrl() with
IPRIP_IFCTRLT_GET_
rip2IfConfAuthType

RIP authentication is done
on a per-interface basis.

Obsolete
Obsolete

Obsolete. RIP authentication
is done on a per-interface
basis.

Obsolete
Obsolete

46

3 Wind River Network Stack: Transport and Network Protocols

Table 3-11 RIP APIs (contd)

3.10 RIP Components

3.x API 6.x API or Method Comments

ripDebugLevelSet() none Obsolete

ripFilterDisable() none Obsolete

ripFilterEnable() none Obsolete

ripIfAddrExcludeListAdd() none Obsolete. RIP is enabled on a
per-interface basis using
iprip_ifopen(). Excluding
an interface from RIP is not
required.

ripIfAddrExcludeListDelete() none Obsolete. RIP is enabled on a

ripIfAddrReset()
ripIfExcludeListAdd()

ripIfExcludeListDelete()

ripIfExcludeListShow()

ripIfReset()
ripIfSearch()

iprip_ifclose()

none

none

none

iprip_ifclose()

none

per-interface basis using
iprip_ifopen(). Excluding
an interface from RIP is not
required.

Obsolete. RIP is configured
on a per-interface basis
using iprip_ifopen().

Obsolete. RIP is configured
on a per-interface basis
using iprip_ifopen().

Obsolete. RIP is configured
on a per-interface basis.
Retrieve RIP
interface-specific
information using
iprip_ifctrl().

Obsolete

47

Wind River General Purpose Platform, VxWorks Edition

Migration Guide, 3.6

Table 3-11 RIP APIs (contd)

3.x API 6.x API or Method Comments

ripIfShow() none Obsolete. RIP is configured
on a per-interface basis.
Retrieve RIP
interface-specific
information using
iprip_ifctrl().

ripLeakHookAdd() none Obsolete

ripLeakHookDelete() none Obsolete

ripLibInit() iprip_init()

ripRouteHookAdd() iprip_rtadd()

ripRouteHookDelete() iprip_rtdelete()

ripRouteShow() iprip_ctrl()

ripSendHookAdd() none Obsolete

ripSendHookDelete() none Obsolete

ripShutdown() iprip_exit()

ripUpdateDelaySet() none Obsolete

3.11 RIPng Components

The RIPng implementation from Wind River Network Stack 3.1 has been ported to
use the internal functionality of Wind River Network Stack 6.x.

3.11.1 Changes to RIPng Files

The C files for RIPng have been moved from installDir/target/src/wrn/coreip/
apps/ripng to installDir/components/ip_net2-6.x/ipripng/src.

48

Table 3-12

3 Wind River Network Stack: Transport and Network Protocols
3.11 RIPng Components

The RIPng .h files have been moved from installDir/target/h/wrn/coreip/
apps/ripng to installDir/components/ip_net2-6.x/ipripng/include.

The file names have changed, and new files have been added, as shown in
Table 3-12.

RIPng File Name Changes

3.x File Names 6.x File Names

ripngLib.c, route6d.c ipripng.c, ipripng_cmd_show.c, ipripng_daemon.c,
ipripng_util.c

route6d.h ipripng.h, ipripng_constant.h

3.11.2 RIPng Configuration

Table 3-13

Table 3-13 shows the configuration component mapping for RIPng. For
information on working with RIPng, see the Wind River Network Stack for VxWorks
6 Programmer’s Guide 6.6, Volume 1.

RIPng Component Migration

Wind River Network Stack 3.1 Wind River Network Stack 6.x
Components Components

INCLUDE_RIPNG INCLUDE_RIPNG

No equivalent INCLUDE_RIPNG_CTRL_CMD

3.11.3 API Mapping

RIPng is fully ported and integrated with Wind River Network Stack 6.6.
Although the APIs have not functionally changed, RIPng has new shell commands
and can be started and stopped in different ways. The ripngStart() and
ripngStop() routines are carried forward.

49

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

3.12 Routing APIs

Table 3-14 provides the API mapping for routing APIs. The route shell command
is described in the routing chapter in the Wind River Network Stack for VxWorks 6
Programmer’s Guide 6.6, Volume 1.

Table 3-14 Routing APl Mapping

3.x API 6.x API Comments
routec() routec() (wrapper) or route routec() is still provided and can be
command used to add and delete routes. See the

reference entry for routec().

routeAdd() RTM_ADD routing socket ~ Use route add command
message or route command
routeNetAdd() RTM_ADD routing socket ~ Use route add command. For example,
message or route command to route to 10.0.0.0/8 through gateway
192.168.0.1:
route add -net -prefixlen 8 10.0.0.0
192.168.0.1
mRouteAdd() RTM_ADD routing socket ~ Use route add command. For example,
message or route command to route to 10.1.2.3 through gateway
192.168.0.1:

route add 10.1.2.3 192.168.0.1

mRouteEntryAdd() RTM_ADD routing socket ~ Use route add command
message or route command

routeDelete() RTM_DELETE routing socket Use route delete command. For
message or route command example:

route delete 10.1.2.3

mRouteDelete() RTM_DELETE routing socket Use route delete command
message or route command

mRouteEntryDelete() RTM_DELETE routing socket Use route delete command
message or route command

ipRouteLibLog- Use route monitor command

Level(S,G)et()

50

3 Wind River Network Stack: Transport and Network Protocols
3.13 Routing Sockets

Table 3-14 Routing APl Mapping (cont'd)

3.x API 6.x API Comments
ipRouteLibLogLevelGet() none Obsolete
ipRouteLibLogLevelSet() none Obsolete
ipRouteTableCreate() RTM_NEWVR routing socket
message

ipRouteTableDestroy() RTM_DELVR routing socket
message

ipRouteTableSet() none Obsolete

3.13 Routing Sockets

There are a few changes to routing sockets and how they are used in Wind River
Network Stack 6.x. The extended messages provided in previous releases are now
obsolete, but all standard messages are supported as in the previous releases.

The following section briefly describes the changes. For more information, see the
routing sockets chapter in the Wind River Network Stack for VxWorks 6 Programmer’s
Guide 6.6, Volume 1.

3.13.1 Routing Socket Configuration

The routing sockets component is included when you build the network stack.
Routing sockets are also enabled or disabled in a network stack configuration
header file. Routing sockets are enabled by default in:

installDir/components/ip_net2-6.x/ipnet2/ipnet_config.h

To disable routing sockets you must edit the ipnet_config.h file, and rebuild your
project. For more information see the routing sockets chapter in the Wind River
Network Stack for VxWorks 6 Programmer’s Guide 6.6, Volume 1.

Table 3-15 shows the configuration component mapping for including routing
sockets in a project.

51

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

Table 3-15 Routing Socket Component Migration

Wind River Network Stack 3.1 Wind River Network Stack 6.x
Components Components

INCLUDE_ROUTING_SOCKET INCLUDE_IPNET_USE_ROUTESOCK

3.13.2 Ranking Routes in the Route Table

Previously, routes were ranked by age in the host stack route table, and by a
user-assigned weight in the router stack route table. Now, the routes are ranked by
a hopcount field, and ECMP routing algorithms are used to determine the ranking
for routes with the same hopcount.

3.13.3 Routing Socket Messages

The following routing socket messages previously used for multicast address
additions and deletions are no longer supported:

= RTM_NEWMADDR
= RTM_DELMADDR

Multicast address additions to, or deletions from, the routing table are now
reported using the following messages:

= RTM_NEWADDR
= RTM_DELADDR

Extended Messages

Wind River previously provided extended routing socket messages that were
available in a router stack build of the network stack (using the now obsolete
-DROUTER_STACK build option).

The following messages are now obsolete:

RTM_ADDEXTRA RTM_DELEXTRA
RTM_NEWCHANGE RTM_NEWGET
RTM_GETALL RTM_NEWIPROUTE

RTM_OLDIPROUTE

52

3 Wind River Network Stack: Transport and Network Protocols
3.14 Virtual Stack

There are two new extended messages for routing sockets that are used for virtual
router management:

= RTM_NEWVR
= RTM_DELVR

For details, see the virtual router and routing sockets chapters in the Wind River
Network Stack for VxWorks 6 Programmer’s Guide 6.6, Volume 1.

3.14 Virtual Stack

The virtual stack feature available in Wind River Network Stack 3.1 is now
obsolete and has been replaced by a more flexible and scalable solution called
virtual routing.

3.14.1 Overview

In Wind River Network Stack 3.1, you are limited to one virtual stack for a total of
two stack instances on a single target. Because the new virtual router solution
implements multiple routing tables and essential features instead of multiple
stacks, you can now have over 65, 000 virtual routers on a single target. You are
limited only by the capacity of your hardware.

3.14.2 Virtual Stack Configuration

Along with the other compile flags from Wind River Network Stack 3.1, the
-DVIRTUAL_STACK build option is no longer applicable. The virtual routing
implementation has little impact on the size of the stack and support is therefore
automatically included when you build Wind River Network Stack 6.6.

Creation, configuration, and management of the virtual routers is done through
the route and ifconfig shell commands. Any code using the virtual stack feature
must be redesigned to use virtual routing. For details on using the virtual routing
feature, see the Wind River Network Stack for VxWorks 6 Programmer’s Guide 6.6,
Volume 1.

53

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

54

4

Wind River Network Stack:

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Application Protocols

Introduction 56

DHCP (IPv4 and IPv6) Components 58
DNS Components 65

FTP Components 68

Ping Components 71

SNTP Components 72

Telnet Components 74

TFTP Components 75

Internet and Local Domain Sockets 77

4.10 RTP 86
4.11 NFS Client and Server 86

55

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

4 1 Introduction

This chapter provides migration information on the following components of the
network stack that implement standard application-layer protocols, and
applications that use standard socket calls

There are four chapters in this guide that contain migration information for the
network stack:

2. Wind River Network Stack Migration Overview
Provides introductory information on network stack migration. Describes key
concepts and migration information common to most or all networking
components.

3. Wind River Network Stack: Transport and Network Protocols
Provides migration details and component and API mapping for the
components of the core network stack, including TCP/IP, multicast, and
routing.

4. Wind River Network Stack: Application Protocols (this chapter)
Provides migration details and component and API mapping for the network
application components, including DHCP and DNS, and information on
programming with sockets.

5. Wind River Network Stack: Interfaces and Drivers
Provides migration details and information on changes to libraries and
routines for lower-level network stack components, including the MUX and
interface configuration.

4.1.1 Feature Release Matrix

Table 4-1 lists implementations of application-layer protocols and gives their
status in the current release.

56

4 Wind River Network Stack: Application Protocols

4.1 Introduction

Table 4-1 Network Stack Application Protocols - Feature Release Matrix
Feature 3.1 6.5 6.6
BOOTP o Obsolete. Messages ~ Obsolete.
can be handled by Messagescan
DHCP. be handled
by DHCP.

DHCP (IPv4) Server, Relay Agent, and Client L ° °
(New implementation)

DHCP (IPv6) Server, Relay Agent, and Client L] ° °
(New implementation)

DNS Client ° ° °
(New implementation)

FTP Client and Server o ° °
(New implementation)

NEFS Server and Client ° ° °

(New file locations)

Ping and Ping6 o ° °
(New implementation)

RLOGIN o ° °

RPC ° ° °

RSH (remLib) ° o °

SNTP Client ° ° °
(New implementation)

Telnet Client °

Telnet Server °
(New implementation)

TFTP Client and Server o ° °

(New implementation)

57

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

4.1.2 Shell Commands and API Changes

The new implementations for certain protocols bring with them new components,
shell commands, and APIs. The following sections compare the build components,
shell commands, and APIs in Wind River Network Stack 3.1 and Wind River
Network Stack 6.x for each protocol implementation.

For detailed information on the components and configuration parameters for any
of the protocols, see the Wind River Network Stack for VxWorks 6 Programmer’s Guide
6.6, Volume 2.

In addition, there are separate tables for changes in the socket options available
with the getsockopt() and setsockopt() socket calls. For detailed information on
the shell commands for an implementation, refer to the Wind River Network Stack
for VxWorks 6 Programmer’s Guide 6.6, Volume 2. For detailed information on APIs,
see the API reference pages.

4.2 DHCP (IPv4 and IPv6) Components

This section describes DHCP (for IPv4 and IPv6) components and API mapping.

4.2.1 DHCP Configuration
Table 4-2 provides the component mapping for DHCP (for IPv4).

Table 4-2 DHCP (for IPv4) Component Migration

Wind River Network Stack 3.1 Wind River Network Stack 6.x
Components Components
INCLUDE_DHCPC INCLUDE_IPDHCPC
INCLUDE_DHCP_CORE No equivalent
INCLUDE_DHCPC_BOOT No equivalent
INCLUDE_DHCPC_LEASE_CLEAN No equivalent
INCLUDE_DHCPC_LEASE_GET No equivalent

58

4 Wind River Network Stack: Application Protocols
4.2 DHCP (IPv4 and IPv6) Components

Table 4-2 DHCP (for IPv4) Component Migration (cont'd)
Wind River Network Stack 3.1 Wind River Network Stack 6.x
Components Components
INCLUDE_DHCPC_LEASE_SAVE No equivalent
INCLUDE_DHCPC_LEASE_TEST No equivalent
INCLUDE_DHCPC_SHARE No equivalent
INCLUDE_DHCPC_SHOW No equivalent
INCLUDE_DHCPR INCLUDE_IPDHCPR
INCLUDE_DHCPS_SHARE No equivalent
INCLUDE_DHCPS INCLUDE_IPDHCPS
Table 4-3 provides the configuration component mapping for DHCP (for IPv6)
components.
The DHCPv®6 server and relay agent are implemented in a single module. For
information on configuring these components and enabling either the server or the
relay agent, see the Wind River Network Stack for VxWorks 6 Programmer’s Guide 6.6,
Volume 2.

Table 4-3 DHCP (for IPv6) Component Migration

Wind River Network Stack 3.1
Components

Wind River Network Stack 6.x
Components

INCLUDE_DHCP6C
INCLUDE_DHCP6C_SHOW
INCLUDE_DHCP6R
INCLUDE_DHCP6S

No equivalent.

INCLUDE_IPDHCPC6
No equivalent
No equivalent
INCLUDE_IPDHCPS6

INCLUDE_IPDHCPS6_CMD

4.2.2 APl Mapping

Table 4-4 provides the API mapping for the DHCPv4 and DHCPv6 components.
There are additional configuration parameters that can be configured at run time

59

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

using shell commands. For more information, see the Wind River Network Stack for
VxWorks 6 Programmer’s Guide 6.6, Volume 2.

Table 4-4 DHCPv4 and DHCPv6 APIs and Shell Commands

3.1 API 6.x Technique
bootpLibInit() none (obsolete: BOOTP is no longer supported.)
bootpLibMultilnit() none (obsolete)
bootpMsgGet() none (obsolete)
bootpParamsGet() none (obsolete)
dhécInfoGet() Configure by means of the sysvar shell command.
dhcpbe() none (obsolete: The dhcpvé client process is created
and started by IPD start-up code upon boot.)
dhcp6cLibInit() ipdhcpc_create() (routine)
dhcp start (shell command)
dhcp6cStop() none (obsolete)
dhcp6rLibInit() Use the DHCPS6_MODE configuration parameter

(or theipdhcps6.mode sysvar) to switch from server
to relay agent mode.

dhcpé6rStop() none (obsolete)
dhcpérelay() none (obsolete)

60

4 Wind River Network Stack: Application Protocols
4.2 DHCP (IPv4 and IPv6) Components

Table 4-4 DHCPv4 and DHCPv6 APIs and Shell Commands (cont'd)

3.1 API 6.x Technique
dhcp6s() dhcpsé6 shell command with the keyword start to
start the ipdhcps6 daemon (“dhcp6s start”), and the
following routines:

* ipdhcp6s_subnet_add()

» ipdhcp6s_subnet_delete()
» ipdhcp6bs_option_add()

» ipdhcp6s_option_delete()
= ipdhcp6s_prefix_add()

» ipdhcp6s_prefix_delete()
* ipdhcp6s_host_add()

» ipdhcp6s_host_delete()

* ipdhcp6s_user_add()

» ipdhcpbs_user_delete()

dhcp6sLibInit() none (obsolete)

dhcp6sStop() dhcps6 shell command with the keyword stop to
start the ipdhcps6 daemon: dhcpés stop.

— ipdhcps6_subnet_list()

— ipdhcps6_subnet_to_string()
— ipdhcps6_option_list()

— ipdhcps6_option_to_string()
— ipdhcps6_prefix_get()

— ipdhcps6_prefix_list()

— ipdhcps6_host_list()

— ipdhcps6_host_to_string()
— ipdhcps6_user_list()

— ipdhcps6_version()
dhcpcBind() ifconfig dhcp shell command

dhcpcBootBind() none (obsolete)

61

Table 4-4

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

DHCPv4 and DHCPv6 APIs and Shell Commands (cont'd)

3.1 API 6.x Technique

dhcpcBootInformGet() none (obsolete)
dhcpcBootlInit() none (obsolete)

dhcpcCacheHookAdd() none (No event hooks exist. Negotiation is started
from command and there is no way to do it
synchronously/asynchronously.)

dhcpcCacheHookDelete() none (obsolete)
dhcpcEventHookAdd() none (obsolete)

dhcpcEventHookDelete() none (obsolete)

dhcpcInformGet() Use the ifconfig shell command to view the
interface status for an interface configured to use
DHCP.

dhcpclnit() ifconfig with dhcp option

(Negotiation is started from the command line.)

dhcpclInit had an argument that you could set to
false if you wanted to use the DHCP client but not
have it assign the IP address from the server to the
local interface (if instead you wanted to do that
yourself). The current DHCP client implementation
does not allow you to do this.

dhcpcLibInit() none (obsolete: The IPDHCPC daemon is
automatically started after boot.)

dhcpcOptionAdd() none (obsolete)

dhcpcOptionGet() none (obsolete)

dhcpcOptionSet() ipdhcpc.requested_options (sysvar)
Static configuration only.

dhcpcParamsGet() none (obsolete)

dhcpcParamsShow() Obsolete

62

4 Wind River Network Stack: Application Protocols

4.2 DHCP (IPv4 and IPv6) Components

Table 4-4 DHCPv4 and DHCPv6 APIs and Shell Commands (cont'd)

3.1 API 6.x Technique

dhcpcRelease() ifconfig -dhcp

dhcpcServerGet() none (obsolete)

dhcpcServerShow() none (obsolete)

dhcpcShowlInit() none (obsolete)

dhcpcShutdown() ipdhcpc_destroy() or dhep shell command with the

keyword stop.

dhcpcTimerGet() none (obsolete)

dhcpcTimersShow() none (obsolete)

dhcpcVerify() none (obsolete)

dhcpsAddressHookAdd()

dhcpsInit()
dhcpsLeaseEntryAdd()

ipdhcps_host_add()

The IPDHCPS daemon is automatically started after

boot.
ipdhcps_start_hook()

ipdhcps_pool_add()
ipdhcps_host_add()
ipdhcps_subnet_add()
ipdhcps_class_add()
ipdhcps_option_add()
dhcps pool add

dhcps host add

dhcps subnet add
dhcps class add

dhcps option add
dhcps lease add

dhcps config add

63

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

Table 4-4 DHCPv4 and DHCPv6 APIs and Shell Commands (cont'd)

3.1 API 6.x Technique

dhcpsLeaseEntryDelete() ipdhcps_subnet_delete()
ipdhcps_class_delete()
ipdhcps_pool_delete()
ipdhcps_host_delete()
ipdhcps_option_delete()
dhcps subnet delete
dhcps class delete
dhcps pool delete
dhcps host delete
dhcps option delete
dhcps lease delete
dhcps config delete

dhcpsLeaseEntryGet() dhcps subnet list
dhcps pool list
dhcps class list
dhcps host list
dhcps lease list
dhcps option list
dhcps config list

dhcpsLeaseHookAdd() ipdhcps_lease_db_dump()
ipdhcps_lease_db_restore()

— ipdhcps_interface_status_set()
— ipdhcps_lease_db_restore()

— ipdhcpr_server_add() (routine)
dhcpr server add (shell command)

Add server address.
— ipdhcpr_server_delete()
— ipdhcpr_interface_status_set()
— ipdhcpr_start_hook()

Start DHCP relay agent.

64

Table 4-4

4 Wind River Network Stack: Application Protocols
4.3 DNS Components

DHCPv4 and DHCPv6 APIs and Shell Commands (cont'd)

3.1 API 6.x Technique

— ipdhcpr_server_delete() (routine)
dhcpr server delete (shell command) -
4

Delete server address

— ipdhcpr_interface_status_set() (routine)
dhcpr interface enable (shell command)
dhcpr interface disable (shell command)

Set relay agent interface status.
— dhcpr server list

Shell command to list DHCP servers.
— dhcpr interface list

Shell command to list interfaces known by the
DHCP relay agent.

4.3 DNS Components

This section describes DNS component and API mapping.

4.3.1 DNS Configuration

Table 4-5

Table 4-5 provides the DNS component mapping.

DNS Component Migration

Wind River Network Stack 3.1 Wind River Network Stack 6.x
Components Components
INCLUDE_DNS_RESOLVER INCLUDE_IPDNSC

INCLUDE_DNS_RESOLVER_DEBUG No equivalent

65

Migration Guide, 3.6

Wind River General Purpose Platform, VxWorks Edition

The DNS component configuration parameters have changed, but they generally
map by functionality. Table 4-6 shows the mapping of the old and new
configuration parameters. New configuration parameters may not be exact
matches for the old ones, and may have different default values. For details on each
new configuration parameter, see the Wind River Network Stack for VxWorks 6
Programmer’s Guide 6.6, Volume 2.

Table 4-6 DNS Configuration Parameter Migration

Wind River Network Stack 3.1
DNS Parameters

Wind River Network Stack 6.5
DNS Parameters

Wind River Network Stack 6.6
DNS Parameters

RESOLVER_DOMAIN

RESOLVER_DOMAIN_SERVER

No equivalent

No equivalent

No equivalent

RES_TIMEOUT_CFG
RETRY_CFG
RES_OPTIONS_CFG

NSCOUNT_CFG

DNS_DEBUG
No equivalent
No equivalent

No equivalent

DNSC_DOMAIN_NAME

DNSC_PRIMARY
_NAME_SERVER

DNSC_SECONDARY
_NAME_SERVER

DNSC_TERTIARYNS
_NAME_SERVER

DNSC_QUATERNARYNS
_NAME_SERVER

DNSC_TIMEOUT
DNSC_RETRIES

No equivalent

DNSC_DOMAIN_NAME

DNSC_PRIMARY
_NAME_SERVER

DNSC_SECONDARY
_NAME_SERVER

DNSC_TERTIARY
_NAME_SERVER

DNSC_QUATERNARY
_NAME_SERVER

DNSC_TIMEOUT
DNSC_RETRIES

No equivalent

No equivalent. You can specify No equivalent. You can specify
up to four domain name servers up to four domain name servers

using the parameters above.
No equivalent
DNSC_SERVER_PORT
DNSC_IP4_ZONE

DNSC_IP6_ZONE

using the parameters above.
No equivalent
DNSC_SERVER_PORT
DNSC_IP4_ZONE

DNSC_IP6_ZONE

66

4 Wind River Network Stack: Application Protocols
4.3 DNS Components

4.3.2 APl Mapping

Table 4-7

Table 4-7 provides the API mapping for DNS.

DNS APIs and Shell Commands

3.1 API 6.x Technique
resolvDNComp() none (obsolete)
resolvDNExpand() none (obsolete)

resolvGetHostByAddr() ipdnsc_getipnodebyaddr()

Use ipdnsc_freehostent() to free space allocated
by ipdnsc_getipnodebyaddr().

resolvGetHostByAnyAddr() none (obsolete)
resolvGetHostByName() ipdnsc_getipnodebyname()

Use ipdnsc_freehostent() to free space allocated
by ipdnsc_getipnodebyname().

resolvInit() none (obsolete)
resolvMkQuery() none (obsolete)
resolvParamsGet() none (obsolete)
resolvParamsSet() none (obsolete)
resolvQuery() none (obsolete)
resolvSend() none (obsolete)
No equivalent nslookup

ipdnsc_freehostent()
ipdnsc_cache_flush()

New shell command and routines for viewing
statistics and managing DNS.

67

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

4.4 FTP Components

This section describes FIP component and API mapping.

4.41 FTP Configuration
Table 4-8 provides the FIP component mapping. The FIP client library is still
available in Wind River Network Stack 6.5 and 6.6 for backward compatibility. The

network stack also includes a new FIP client utility.

Table 4-8 FTP Component Migration

Wind River Network Stack 3.1 Wind River Network Stack 6.x

Components Components

INCLUDE_FIP6_SERVER INCLUDE_IPFTPS

INCLUDE_FTPD6_GUEST_LOGIN No equivalent

INCLUDE_FTPD6_SECURITY No equivalent

INCLUDE_FTP6 INCLUDE_FTP6 (for backward
compatibility only)

INCLUDE_FTP INCLUDE_FTP (for backward
compatibility only)

No equivalent INCLUDE_IPFTPC

No equivalent INCLUDE_IPFTP_CMD

The hard-coded FIP access account with user name="ftp” and
password="interpeak” that, by default, had read and write access to the FIP server
in the 6.5 version of the Wind River Network Stack has been removed in the 6.6
version. The read-only account with user name="anonymous” (without a
password) still exists by default.

4.4.2 APl Mapping

Table 4-9 provides the API mapping for FIP. The FTP APIs from Wind River
Network Stack 3.1 listed in the 3.1 API column are retained in Wind River

68

Table 4-9

4 Wind River Network Stack: Application Protocols

4.4 FTP Components

Network Stack 6.5 and 6.6 for internal backward compatibility. These APIs are
deprecated and will be removed in a future release.

FTP APIs and Shell Commands

3.1 API 6.x Technique

ftp6Command() ftp6Command() (deprecated)
ftp6DataConnGet() ftp6DataConnGet() (deprecated)
ftp6DataConnlInit() ftp6DataConnlInit() (deprecated)
ftp6FileGet() ftp6FileGet() (deprecated)
ftp6FileSend() ftp6FileSend() (deprecated)
ftp6Hookup() ftp6Hookup() (deprecated)
ftp6LibInit() ftp6LiblInit() (deprecated)
ftp6Login() ftp6Login() (deprecated)

ftp6Ls() ftp6Ls() (deprecated)
ftp6RemoteModTime() ftp6RemoteModTime() (deprecated)
ftp6ReplyGet() ftp6ReplyGet() (deprecated)
ftp6Xfer() ftp6Xfer() (deprecated)

ftpLibInit() ftpLibInit() (deprecated)
ftpCommand() ftpCommand() (deprecated)
ftpCommandEnhanced() ftpCommandEnhanced() (deprecated)
ftpXfer() ftpXfer() (deprecated)
ftpReplyGet() ftpReplyGet() (deprecated)

ftpReplyGetEnhanced()
ftpHookup()

ftpLogin()

ftpDataConnlInitPassiveMode()

ftpReplyGetEnhanced() (deprecated)
ftpHookup() (deprecated)
ftpLogin() (deprecated)

ftpDataConnlInitPassiveMode()
(deprecated)

69

Table 4-9

Wind River General Purpose Platform, VxWorks Edition

Migration Guide, 3.6

FTP APIs and Shell Commands (cont'd)

3.1 API 6.x Technique
ftpDataConnlInit() ftpDataConnlInit() (deprecated)
ftpDataConnGet() ftpDataConnGet() (deprecated)
ftpLs() ftpLs() (deprecated)

ftpLibDebugOptionsSet()
ftpTransientConfigSet()
ftpTransientConfigGet()
ftpTransientFatallnstall()

ftpd6Delete()

ftpdé6DirListGet()

ftpLibDebugOptionsSet() (deprecated)
ftpTransientConfigSet() (deprecated)
ftpTransientConfigGet() (deprecated)
ftpTransientFatalInstall() (deprecated)
ipftpc_open()

ipftpc_close()

ipftpc_getattr()

ipftpc_setattr()

ipftpc_login()

ipftpc_cmd()

ipftpc_list()

ipftpc_get()

ipftpc_put()

ipftpc_lastreply()

ipftpc_strclass()

ipftpc_strerror()

ftp shell command

ipd kill ipftps shell command

(Only available as a shell command, not as
C APL)

ipftpc_list()

70

4 Wind River Network Stack: Application Protocols
4.5 Ping Components

Table 4-9 FTP APIs and Shell Commands (cont'd)

3.1 API 6.x Technique

ftpdé6DisableSecurity() none (obsolete)
Pass.words are enabled /disabled for each
session.

ftpd6EnableSecurity() none (obsolete)

Passwords are enabled /disabled for each
session through IPCOM authentication.

ftpd6Fatal() none (obsolete)

ftpdeélnit() ipftps_create() (called at boot)
ipd start ipftps (shell command)

4.5 Ping Components

This section describes ping component and API mapping.

4.5.1 Ping Configuration
Table 4-10 provides the ping component mapping.

Table 4-10 Ping Component Migration

Wind River Network Stack 3.1 Wind River Network Stack 6.x
Components Components

INCLUDE_PING INCLUDE_PING (wrapper)
INCLUDE_IPPING_CMD

INCLUDE_PING6 INCLUDE_PING6 (wrapper)
INCLUDE_IPPING6_CMD

71

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

4.5.2 APl Mapping

Table 4-11

Table 4-11 provides the APl mapping for ping and pingé.

Ping and Ping6 APIs and Shell Commands

3.1 API 6.x Technique
ping6LibInit() Use the ping shell command.
pingLibInit() Use the ping shell command.

4.6 SNTP Components

SNTP includes a client and a server implementation. This section describes SNTP
component and API mapping.

NOTE: The SNTP server is not available in Wind River General Purpose Platform,
VxWorks Edition.

4.6.1 SNTP Configuration

Table 4-12

Table 4-12 provides the SNTP component mapping.

SNTP Component Migration

Wind River Network Stack 3.1 Wind River Network Stack 6.x
Components Components
INCLUDE_SNTPC INCLUDE_IPSNTPC
INCLUDE_SNTPS INCLUDE_IPSNTPS

No equivalent INCLUDE_IPSNTP_COMMON
No equivalent INCLUDE_IPSNTP_CMD

72

4 Wind River Network Stack: Application Protocols
4.6 SNTP Components

Enabling the Client or Server

Either the SNTP client or the SNTP server can be included in a build. The SNTP
client (INCLUDE_IPSNTPC) is automatically included if the network stack is built
with SNTP. The SNTP server is disabled by default.

NOTE: Although only the SNTP client component or the SNTP server component
can be included in a build, the sntpcTimeGet wrapper, the ipsntp_query_time()
and ipsntp_wait_time() routines, and the SNTP shell command are always
available as long as one of the SNTP components is included.

To enable the SNTP server:
1. Open installDir/components/ip_net2-6.x /ipsntp/config/ipsntp_config.h.
2. Comment out the client define:
#define IPSNTP_USE_CLIENT
3. Uncomment the server define:

#define IPSNTP_USE_SERVER

4. Rebuild the project.

4.6.2 APl Mapping
Table 4-13 provides the SNTP API mapping.

Table 4-13 SNTP APIs and Shell Commands

3.1 API 6.x Technique
sntpsClockSet() none (obsolete)
sntpsConfigSet() none (obsolete)
sntpcTimeGet() sntpcTimeGet() (wrapper)

or ipsntp_query_time() / ipsntp_wait_time().
sntpcTimeGet(), ipsntp_query_time(), and
ipsntp_wait_time() are available as long as one of
the SNTP components is included in the build.

73

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

Table 4-13 SNTP APIs and Shell Commands (cont'd)

3.1 API 6.x Technique

sntpsNsecToFraction() none (obsolete)

mSntpcTimeGet() none (obsolete)

No equivalent ipsntp_set_reference()—the only routine for the

SNTP server. It sets the reference timestamp and
reference identifier for the SNTP server.

4.7 Telnet Components

This section describes telnet component and API mapping.

4.7.1 Telnet Configuration
Table 4-14 provides the telnet component mapping.

Table 4-14 Telnet Component Migration

Wind River Network Stack 3.1 Wind River Network Stack 6.x
Components Components

INCLUDE_TELNET INCLUDE_IPTELNETS
INCLUDE_TELNET_CLIENT INCLUDE_TELNET_CLIENT (ported)

4.7.2 APl Mapping

Table 4-15 provides the telnet API mappings.

74

Table 4-15

4 Wind River Network Stack: Application Protocols

Telnet APIs and Shell Commands

4.8 TFTP Components

3.1 API 6.x Technique
telnet() telnet() (no change)
-
telnetdInit() none (obsolete)
telnetdParserSet() none (obsolete)
telnetdStart() none (obsolete)

telnetdStaticTaskInitializationGet()

none (obsolete)

4.8 TFTP Components

This section describes TFIP component and API mapping.

4.8.1 TFTP Configuration

Table 4-16

Table 4-16 provides the TFTP component mapping.

TFTP Component Migration

Wind River Network Stack 3.1
Components

Wind River Network Stack 6.x
Components

No equivalent

INCLUDE_TFTP_CLIENT

No equivalent

INCLUDE_TFIP_SERVER

INCLUDE_IPTFTP_COMMON

INCLUDE_IPTFTPC (also
INCLUDE_TFTP_CLIENT for backward
compatibility only)

INCLUDE_IPTFTP_CLIENT_CMD

INCLUDE_IPTFIPS

75

Wind River General Purpose Platform, VxWorks Edition

Migration Guide, 3.6

4.8.2 APl Mapping

Table 4-17

Table 4-17 provides the TFIP API mapping. The TFIP APIs from Wind River
Network Stack 3.1 listed in the 3.1 API column are retained in Wind River

Network Stack 6.5 and 6.6 for internal backward compatibility. These APIs are
deprecated and will be removed in a future release.

TFTP APIs and Shell Commands

3.1 API 6.x Technique

titpGet() titpGet() (deprecated)
tftpPut() tftpPut() (deprecated)
tftpInfoShow() tftpInfoShow() (deprecated)
tftpInit() tftpInit() (deprecated)
tftpModeSet() tftpModeSet() (deprecated)
titpPeerSet() tftpPeerSet() (deprecated)
tftpdDirectoryAdd() none (obsolete)

tftpdDirectoryRemove()
tftpdInit()

tftpCopy()
tftpPut()
tftpQuit()
titpSend()
tftpXfer()
tftpCopy()
no equivalent
no equivalent

no equivalent

none (obsolete)

You can stop, start, and reconfigure the tftp
server with the ipd shell command.

tftpCopy() (deprecated)
tftpPut() (deprecated)
titpQuit() (deprecated)
tftpSend() (deprecated)
tftpXfer() (deprecated)
tftpCopy() (deprecated)
iptftp_client_put() (new)
iptftp_client_get() (new)

tftp shell command (new)

76

4 Wind River Network Stack: Application Protocols
4.9 Internet and Local Domain Sockets

4.9 Internet and Local Domain Sockets

This section describes component and API mapping for internet and local domain
sockets.

4.9.1 Sockets Configuration

All of the required sockets components are automatically included when you build
the network stack. For information on the sockets components and how to use
them, see the internet and local domain sockets chapter in the Wind River
Network Stack for VxWorks 6 Programmer’s Guide 6.6, Volume 2. For information on
specific socket ioctl argument types and behavior, see the reference pages.

4.9.2 API Mapping

The following socket APIs are carried forward with no changes:

socket bind listen accept
connect sendto send sendmsg
recvfrom recv recvmsg setsockopt
getsockopt getsockname getpeername shutdown

connectWithTimeout is carried forward, but is not supported for AF_INET and
AF_INET6 address families. Use select() to specify the timeout value for the socket
descriptor.

4.9.3 Changes in Socket Options

The tables in this section identify changes in the socket ioctl options (socket
options) for the getsockopt() and setsockopt() socket calls between Wind River
Network Stack 3.1 and Wind River Network Stack 6.x.

In addition, there are separate tables for changes in the socket options available
with the getsockopt() and setsockopt() socket calls.

77

Wind River Network Stack 3.1 IPv4 Socket Options

Table 4-18

Wind River General Purpose Platform, VxWorks Edition

Migration Guide, 3.6

Table 4-18 lists the IPv4 socket options that are available in the 3.1 release and
identifies whether the options are available in the current release. For new IPv4

socket options, see Table 4-20.

IPv4 Socket Option Mapping

3.1 Socket Option

6.x Socket Option

SIOCSIFADDR
SIOCGIFADDR
SIOCSIFDSTADDR
SIOCGIFDSTADDR
SIOCSIFFLAGS
SIOCGIFFLAGS
SIOCGIFBRDADDR
SIOCSIFBRDADDR
SIOCSARP
SIOCGARP
SIOCDARP
SIOCGIFCONF
SIOCGIFNETMASK
SIOCSIFNETMASK
SIOCGIFMETRIC
SIOCSIFMETRIC
SIOCDIFADDR
SIOCAIFADDR

SIOCADDMULTI
SIOCDELMULTI
SIOCDELMULTI

SIOCSIFADDR
SIOCGIFADDR
SIOCSIFDSTADDR
SIOCGIFDSTADDR
SIOCSIFFLAGS
SIOCGIFFLAGS
SIOCGIFBRDADDR
none (obsolete)
SIOCSARP
SIOCGARP
SIOCDARP
SIOCGIFCONF
SIOCGIFNETMASK
SIOCSIFNETMASK
SIOCGIFMETRIC
SIOCSIFMETRIC
SIOCDIFADDR
SIOCAIFADDR

Use the MCAST_ family of socket options to add
or delete multicast addresses.

78

Table 4-18 IPv4 Socket Option Mapping (cont'd)
3.1 Socket Option 6.x Socket Option
SIOCSIFMTU SIOCSIFMTU
SIOCGIFMTU SIOCGIFMTU
SIOCSIFASYNCMAP none (obsolete)
SIOCGIFASYNCMAP none (obsolete)
SIOCSIFASYNCFLAGS none (obsolete)
SIOCMUXPASSTHRU SIOCMUXPASSTHRU
SIOCMUXL2PASSTHRU SIOCMUXL2PASSTHRU
SIOCGMTU SIOCGIFMTU
SIOCIFCREATE SIOCIFCREATE
SIOCIFDESTROY SIOCIFDESTROY
SIOCSIFINFO_FLAGS none (obsolete)
SIOCAADDRCTL_POLICY none (obsolete)
SIOCDADDRCTL_POLICY none (obsolete)

IPv6 Socket Options

Table 4-19 lists the IPv6 socket options that were available in the 3.1 release and
identifies whether the options are available in the current release. For new IPv6
socket options, see Table 4-21.

Table 4-19 IPv6 Socket Option Mapping

4 Wind River Network Stack: Application Protocols

4.9 Internet and Local Domain Sockets

3.1 Socket Option

6.x Socket Option

SIOCSIFADDR_IN6
SIOCGIFADDR_IN6
SIOCSIFDSTADDR_IN6

SIOCSIFNETMASK_IN6

Use SIOCGIFADDR
Use SIOCSIFADDR
Use SIOCSIFDSTADDR

Use SIOCSIFNETMASK

79

Table 4-19

Wind River General Purpose Platform, VxWorks Edition

Migration Guide, 3.6

IPv6 Socket Option Mapping (cont'd)

3.1 Socket Option

6.x Socket Option

SIOCGIFDSTADDR_IN6
SIOCGIFNETMASK_IN6
SIOCDIFADDR_IN6
SIOCAIFADDR_IN6
SIOCSIFPHYADDR_IN6
SIOCGIFPSRCADDR_IN6

SIOCGIFPDSTADDR_IN6

SIOCSIFPHYNEXTHOP_IN6

SIOCGIFPHYNEXTHOP_IN6

SIOCGIFAFLAG_IN6
SIOCGDRLST_IN6
SIOCGPRLST_IN6
SIOCGIFINFO_IN6
SIOCSIFINFO_IN6
SIOCSNDFLUSH_IN6
SIOCGNBRINFO_IN6
SIOCSPEXFLUSH_IN6
SIOCSRTRFLUSH_IN6
SIOCGIFALIFETIME_IN6
SIOCSIFALIFETIME_IN6
SIOCGIFSTAT_IN6
SIOCGIFSTAT_ICMP6

SIOCSDEFIFACE_IN6

SIOCGIFDSTADDR_IN6
none (obsolete)
SIOCDIFADDR_IN6
SIOCAIFADDR_ING6
none (obsolete)
none (obsolete)
SIOCGIFDSTADDR_IN6
none (obsolete)
none (obsolete)

Use SIOCGIFFLAGS
none (obsolete)
none (obsolete)
none (obsolete)
none (obsolete)
none (obsolete)
none (obsolete)
none (obsolete)
none (obsolete)
none (obsolete)
none (obsolete)
none (obsolete)
none (obsolete)

none (obsolete)

80

4 Wind River Network Stack: Application Protocols
4.9 Internet and Local Domain Sockets

Table 4-19 IPv6 Socket Option Mapping (cont'd)

3.1 Socket Option 6.x Socket Option
SIOCGDEFIFACE_IN6 none (obsolete)
SIOCSIFINFO_FLAGS none (obsolete)
SIOCSSCOPE6 none (obsolete)
SIOCGSCOPE6 none (obsolete)
SIOCGSCOPE6DEF none (obsolete)
SIOCSIFPREFIX_IN6 none (obsolete)
SIOCGIFPREFIX_IN6 SIOCGIFPREFIX_IN6
SIOCDIFPREFIX_IN6 none (obsolete)
SIOCAIFPREFIX_IN6 none (obsolete)
SIOCCIFPREFIX_IN6 SIOCGIFPREFIX_IN6
SIOCSGIFPREFIX_IN6 SIOCGIFPREFIX_IN6
SIOCGETSGCNT_IN6 none (obsolete)
SIOCGETMIFCNT_IN6 none (obsolete)

4.9.4 New Socket Options

The socket options in the following sections are included for your reference. No
migration is required.

New IPv4 Socket Options
Table 4-20 lists socket options for IPv4 that are new in the 6.5 and 6.6 releases. For

IPv4 socket options carried forward from Wind River Network Stack 3.1, see
Table 4-18.

81

Table 4-20

Wind River General Purpose Platform, VxWorks Edition

Migration Guide, 3.6

New IPv4 Socket Options

New Socket Option Comments

SIOCADDRT Add route.

SIOCDELRT Remove route.

SIOCXGETRT Get route.

SIOCAHOMEADDR Add a home address.

SIOCGIFINDEX Get interface index.

SIOCGIFLLADDR Get link level address.

SIOCSIFLLADDR Set link level address.

SIOCXDETACH Detach interface.

SIOCXGDHCPRUNNING Get DHCP status.

SIOCXSDHCPRUNNING Enable(1)/Disable(0) DHCP.

SIOCGIFPRIVATE Get private interface data.

SIOCSIFPRIVATE Set private interface data.

SIOCXSIFFEVENTCB Set interface callback.

SIOCXDIFFEVENTCB Delete interface callback.

SIOCXPROMISC Activate/deactivate promiscuous mode.

SIOCXRESETSTAT Reset interface statistics counter.

SIOCGETVIFCNT Get VIF statistics.

SIOCADDVR Add a new virtual router and creates a route table
with table ID == 0.

SIOCDELVR Delete a virtual router and all tables owned by it.

SIOCADDROUTETAB Add a route table to a (virtual) router.

SIOCDELROUTETAB Delete a route table to a (virtual) router.

SIOCGETROUTETAB Get/create a route table by name.

82

4 Wind River Network Stack: Application Protocols
4.9 Internet and Local Domain Sockets

Table 4-20 New IPv4 Socket Options (cont'd)

New Socket Option

Comments

SIOCSROUTETABNAME
SIOCGROUTETABNAME
SIOCGIFVR

SIOCSIFVR
SIOCGETTUNNEL
SIOCCHGTUNNEL
SIOCGETSGCNT
SIOCXIPSEC_CTL
SIOCXIPSEC_SA_CTL

SIOCXIPSEC_CONF_CTL

Set a name for a route table.

Maps a route table name to VR and table ID.

Get the route table index for an interface.
Set an interface to a specific route table.
Get tunnel parameter.

Change tunnel parameters.

Get mcast route statistics.

IPSEC ioctl.

IPSEC ioctl.

IPSEC ioctl.

New IPv6 Socket Options

Table 4-21 lists socket options for IPv6 that are new in the current release. For IPv6
socket options carried forward from Wind River Network Stack 3.1, see Table 4-19.

Table 4-21 New IPv6 Socket Options

New Socket Option Comments
SIOCMIP6

SIOCXGETGW_IN6 Get IPv6 gateway.
SIOCXSETGW_ING6 Set IPv6 gateway.

SIOCGETSGCNT_IN6 Get mcast6 route statistics.

Socket Options for Policy Routing

Socket options for policy routing are a new feature of the 6.5 release.

83

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

Table 4-22 Socket Options for Policy Routing

New Socket Option Comments

SIOCGPRRULE Get policy routing rule.
SIOCSPRRULE Set rule for policy routing.
SIOCDPRRULE Delete a rule for policy routing.
SIOCEPRRULE Enumerate rules for policy routing.

New Socket Options for PPP

The following table lists socket options that are new for PPP. For information on
migrating PPP applications, see 6. Wind River PPP.

Table 4-23 Socket Options for PPP

New Socket Option Comments

SIOCXPPPGDRVCONF Get PPP driver config (default).
SIOCXPPPGDRVINFO Get PPP driver info (current).
SIOCXPPPSDRVBAUDRATE Set PPP driver baud rate.
SIOCXPPPSDRVUP Make driver signal up (test ioctl).
SIOCXPPPSDRVDOWN Make driver signal down (test ioctl).

SIOCXPPPSDRVWINCOMPAT Enable wincompat mode.

SIOCXPPPGFLAGS Get PPP link layer main flags.
SIOCXPPPSFLAGS Set PPP link layer main flags.
SIOCXPPPGCONF Get PPP main config.
SIOCXPPPSCONF Set PPP main config.
SIOCXPPPGUSER Get local user.
SIOCXPPPSUSER Set local user.
SIOCXPPPGPASSWD Get local password.

84

4 Wind River Network Stack: Application Protocols

4.9 Internet and Local Domain Sockets

Table 4-23 Socket Options for PPP (cont'd)

New Socket Option

Comments

SIOCXPPPSPASSWD

SIOCXPPPGPEERUSER

SIOCXPPPSETIF

SIOCXPPPGDINFO

Set local password.

Get peer user.

Set pppoe Ethernet interface.
Get PPP debug info.

Socket Options for Diffserv

Table 4-24

Diffserv is a Quality of

Service (QoS) feature of the current release. The following

table lists socket options for using Diffserv.

Socket Options for Diffserv

New Socket Option

Comments

SIOCXADSFILTER
SIOCXDDSFILTER
SIOCXDSCREATE
SIOCXDSDESTROY
SIOCXADSMAP
SIOCXDDSMAP
SIOCGIFQUEUE
SIOCSIFQUEUE
SIOCXAIFQFILTER

SIOCXDIFQFILTER

Add a filter for differentiated services meter/marker.
Delete a filter for differentiated services meter/marker.
Create a new differentiated services meter/marker entity.
Destroys a differentiated services meter/marker entity.
Add a filter for differentiated services meter/marker.
Delete a filter for differentiated services meter/marker.
Get the queue type for an interface.

Set the queue type for an interface.

Add a filter to an interface queue.

Delete a filter from an interface queue.

85

410 RTP

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

VxWorks Real-time Process (RTP) projects allow you to manage and build
modules that exist outside of the kernel space as a separate executable. The RTP
implementation has not changed significantly. The only exception is that network
applications—with the exception of ping—that were previously provided as
example applications running in an RTP are not provided in Wind River
Network Stack 6.6. For information on running custom applications in an RTP, see
the Wind River Network Stack for VxWorks 6 Programmer’s Guide, Volume 2.

411 NFS Client and Server

The only change to NFS between the 3.1 and 6.x versions of the Wind River
Network Stack is the location of the source files and the location of the components
in Workbench.

In the Workbench Kernel Configuration Editor, NFS components that were
previously located under Network Components > Network Applications >
NFS Components, are now under

Operating system components > IO system components > NFS Components.

NFS files have been moved to the file system tree, and NFS is no longer covered in
the Wind River Network Stack programmer’s guides. For information on using
NFS, see the VxWorks Kernel Programmer’s Guide.

The C files for NFS have been moved from installDir/target/src/wrn/
coreip/apps/nfs to installDir/vxworks-6.x/target/src/fs/nfs.

The NFS .h files have been moved from instalIDir/vxworks-6.x/target/h/
wrn/coreip to installDir/vxworks-6.x/target/h/nfs.

86

Wind River Network Stack:
Interfaces and Drivers

5.1 Introduction 88

5.2 General Interface and Driver Configuration 89
5.3 Memory Management 92

5.4 MIB2 Statistics-Collection Support 94

5.5 Routing, Router Advertisement, and Router Solicitation 95
5.6 BPF 97

5.7 Interface Components 97

5.8 IP Attach Components 100

59 MUX-L2 101

5.10 Auto IP 101

5.11 zBuf and Fast UDP Sockets 101

5.12 Unnumbered Interfaces 102

87

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

5.1 Introduction

This chapter covers interfaces and drivers and will help you to plan the following
migration paths:

= from Wind River Network Stack 3.1 to Wind River Network Stack 6.5 or 6.6
= from Wind River Network Stack 6.5 to Wind River Network Stack 6.6.

There are four chapters in this guide that contain migration information for the
network stack:

2. Wind River Network Stack Migration Overview
introductory information on network stack migration, key concepts and
migration information common to most or all networking components

3. Wind River Network Stack: Transport and Network Protocols
migration details and component and API mapping for the components of the
core network stack, including TCP/IP, multicast, and routing

4. Wind River Network Stack: Application Protocols
migration details and component and API mapping for the network
application components, including DHCP and DNS, and information on
programming with sockets

5. Wind River Network Stack: Interfaces and Drivers (this chapter)
migration details and information on changes to libraries and routines for
lower-level network stack components, including the MUX and interface
configuration

5.1.1 Feature Release Matrix

Table 5-1 provides a list of Wind River Network Stack features and indicates in
which releases they are available. Features that are not supported in Wind River
Network Stack 6.6 may be available in a future release.

88

5 Wind River Network Stack: Interfaces and Drivers
5.2 General Interface and Driver Configuration

Table 5-1 Network Stack Interfaces and Drivers — Feature Release Matrix

Feature 3.1 6.5 6.6

Automatic IP configuration ° ° °
(New implementation)

netBufLib? ° [°
Router advertisement and o ° °
solicitation (New implementation)

Zero-copy functionality ° Not supported Not supported
(including zbuf)

M2IfLib (including o Not supported Not supported
MIB2-based statistics

collection)

BPF devices o Not supported Not supported

a. The network stack now uses netBufLib only in its communication with network devices. For details, see
Use of netBufLib, p.93.

5.2 General Interface and Driver Configuration

This section describes general interface and driver configuration changes,
including component mappings and API changes.

5.2.1 Configuration Components
Table 5-2 shows some of the new, changed, and obsolete components used in

device and interface programming. This list is not exhaustive; see the Wind River
Network Stack for VxWorks 6 Programmer's Guide 6.6, Volume 3 for more information.

89

Migration Guide, 3.6

Wind River General Purpose Platform, VxWorks Edition

Table 5-2 Migration of Wind River Network Stack Configuration Components

Wind River Network Stack 3.1
Components

Wind River Network Stack 6.x
Components

INCLUDE_AIP

No equivalent

No equivalent

No equivalent
INCLUDE_PREFIX
INCLUDE_ADDIF

No equivalent
INCLUDE_LOOPBACK

No equivalent

INCLUDE_IPAIP
SELECT_IPAIP_CONFIG
INCLUDE_IPAIP_GLOBAL_CONFIGS
INCLUDE_IPAIP_INTERFACE_CONFIGS
No equivalent
INCLUDE_IPNET_IFCONFIG_x
INCLUDE_NULLBUFPOOL
INCLUDE_IPNET_USE_LOOPBACK

INCLUDE_USE_WLAN

5.2.2 Shell Commands

In this release, you use shell commands to configure and view statistics about the
network stack and components. Some new shell commands replace APIs from the
3.1 release. See the APl mapping tables in each section for API changes. For more

information, see Shell Commands, p.11.

Of particular interest affecting interfaces and drivers are the following;:

» ifconfig replaces various routines and commands, such as the previous
ifconfig and ifShow. ifconfig is provided both as a command-interpreter
command and as a wrapper routine that you can call from the C interpreter. In
both interpreters, the syntax for ifconfig has changed somewhat from that of
the ifconfig() routine provided in 3.1-era releases.

* You now use the sysvar and radvd shell commands to set up routing
advertisement and solicitation, in place of routines like rtadwv.

For more information on using individual commands for interfaces and drivers,
see the relevant sections of the Wind River Network Stack for VxWorks 6

Programmer's Guide 6.6, Volume 3.

90

5 Wind River Network Stack: Interfaces and Drivers
5.2 General Interface and Driver Configuration

5.2.3 Unchanged Libraries and APIs

The following libraries and APIs are carried forward without substantial change in
Wind River Network Stack 6.x. For details about each library or API and how to
use it, see the reference entry for the library or APL

applUtilLib muxTkLib daemon (network task support)
netBufAdvLib etherMultiLib netBufLib

jobQueueLib netBufPool jobQueueUtilLib

panicLib linkBufPool hostSetup()

muxL2Lib netPoolShow() muxLib

5.2.4 Obsolete APIs

The tvToTicks API is now obsolete.

5.2.5 Checksum Offloading

The driver interface for hardware checksum offloading has not changed for this
release. That is, no changes need to be made to your driver code to support
hardware checksum offloading if the driver was implemented for an earlier
VxWorks 6.x release. However, checksum offloading support is no longer included
in the network stack by default. In order to enable checksum offloading, you must
include the IPCOM_USE_HW_CHECKSUM component when building your

Wind River Network Stack source code. This support can be included by
uncommenting the definition for IPCOM_USE_HW_CHECKSUM in the following
file: installDir/components/ip_net2-6.5/ipcom/port/vxworks/config/
ipcom_pconfig.h.

For more information on building network stack source code, see the getting
started guide for your Platform. For more information on hardware checksum
offloading, see the Integrating a New Network Interface Driver chapter of Wind River
Network Stack for VxWorks 6 Programmer’s Guide 6.6, Volume 3.

91

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

5.3 Memory Management

This section describes the memory management changes in 6.x releases.

5.3.1 Changes

The 6.5 release introduced several changes to the way the network stack
implements memory allocation.

One of the most important changes is that only the Ethernet and other link-layer
drivers use netBufLib (as noted in Use of netBufLib, p.93).

Another change is that the network stack now creates a single pool of data buffers.
The network stack does not use netBufLib as it did in the 3.1 release. If your
custom application or protocol relied upon the existence of this data pool, note that
netBufLib is no longer used to create that pool.

Drivers and Leading Spaces in Cluster Headers

The 6.5 release modified the implementation of netBufLib to automatically
provide extra memory space (also called headroom or leading pad space) at the
beginnings of clusters in certain network pools. The pools affected are those that
are created with a single size of clusters, when that size is at least 1500 bytes; this
heuristic is intended to select network pools used as receive pools for network
interface devices. When you create such a pool by calling netPoolCreate(), the
sizes of all its clusters are increased by the leading pad space (which defaults to 64
bytes).

If you instead create the pool by calling netPoolInit() and providing a buffer of
memory for the clusters; the netPoolInit() code decreases the total number of
clusters while increasing the cluster size by the headroom, keeping the total
memory usage within the buffer size specified in the netPoolInit() call. (For most
network device receive pools, decreasing the total number of clusters by a small
number does not have negative effects.)

Regardless of how you created the pool, when you allocate a tuple from the pool
by calling netTupleGet(), the tuple’s M_BLK mBlkHdr.mData pointer points not
at the beginning of the cluster, but past the leading pad space (by default, 64 bytes
into the cluster).

The reason for this change is that in some circumstances (such as when packets are
tunneled or encrypted), additional network headers must be prefixed to a packet

92

5 Wind River Network Stack: Interfaces and Drivers
5.3 Memory Management

received off the wire. If there is insufficient space at the start of the cluster for the
additional network header, the stack (which now requires contiguous packet data)
must copy the whole packet to prepend the header, and such copying decreases
performance. Therefore, the extra leading pad space is provided to improve
performance by allowing prepending of the additional headers without requiring
a full packet copy. This change has been made implicit so that it benefits most
network device drivers without requiring driver modifications.

Network drivers whose receive pools are subject to the implicit leading pad space
addition will automatically benefit from the change if they allocate tuples for

packets to be received by calling netTupleGet(), and cause the device to DMA the
data into the tuple cluster starting at the location pointed to by mBlkHdr.mData.

Some older network drivers do not use netTupleGet(), but instead construct
tuples themselves after calling netMblkGet(), netClusterGet(), and
netCIBlkGet(), and use the netClBlkJoin() and netMblkClJoin() routines to join
the parts to form the tuple. These drivers will probably continue to function, but
will not take advantage of the leading pad space unless you modify them to do so
(by causing the device to DMA data after the leading pad space rather than at the
start of the cluster). Such modifications are usually fairly easy.

Some unusual network device drivers that either are very sensitive to the number
of clusters returned by a netPoolInit() call, or that assume that the
mBlkHdr.mData pointer of the M_BLK of a tuple obtained from netTupleGet()
must point at the start of the cluster, may be adversely affected by this change. In
this case, you must either modify the affected device driver, or else set the default
leading cluster pad space to zero by setting the NETBUF_LEADING_CLSPACE_DRV
parameter of the INCLUDE_NETBUFLIB component to zero.

Future releases may remove the implicit addition of leading cluster pad space, and
require such space to be explicitly requested on a per-pool basis.

Use of netBufLib

The network stack no longer uses netBufLib except in its communication with
network devices. Because the drivers continue to use the pre-existing netBufLib
APIs and cluster pool mechanism for their buffers, you can use most 3.1-era
(VxWorks 6.4 and earlier) drivers without modification in Wind River

Network Stack 6.6. However, you must recompile the drivers. If you have
binary-only versions of a driver, you must obtain the source or a binary recompiled
under Wind River Network Stack 6.6.

93

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

In addition, note the following caveats:

» Thenetwork stack requires that network device drivers describe those packets
they deliver to the stack as a single M_BLK/CL_BLK/ cluster tuple. 3.1-era
versions of the stack required that the IP header be 4-byte aligned in memory,
but the current stack only requires 2-byte alignment. It is still better to use
4-byte alignment, because this makes header processing faster.

* Thenetwork stack only delivers packets for transmission described by a single
M_BLK/CL_BLK/ cluster tuple.

* The network stack itself no longer uses the two netBufLib-style “system” and
“data” pools for its own memory allocation.

These items are detailed in the Configuring and Managing Memory chapter of the
Wind River Network Stack for VxWorks 6 Programmer’s Guide 6.6, Volume 3.

5.4 MIB2 Statistics-Collection Support

This release does not support M2IfLib. Therefore, you cannot collect statistics by
stack polling of drivers (using MIB-II). If you want to include statistics collection,
the driver must pass packet statistics to the stack on a per-packet basis.

5.4.1 M2IfLib

This release does not support the M2IfLib library (for example, routines such as
M2IfInit()).

5.4.2 SNMP MIB-Il Support
This release does not support SNMP MIB-II APIs (for example, M2Init and
M2Delete).
New SNMP stub routines are implemented for the following SNMP MIBs:

= RFC 2011 -1IP-MIB
» RFC 4292 - IP-FORWARD
» RFC 2465 -1PV6-MIB

94

5 Wind River Network Stack: Interfaces and Drivers
5.5 Routing, Router Advertisement, and Router Solicitation

» RFC 2466 - IPV6-ICMP-MIB
= RFC 2863 - 1F-MIB

» RFC 4022 - TCP-MIB

= RFC 4113 - UDP-MIB

The source files for the routines can be found in the following directory:

installDir/components/ip_net2-6.5/wrsnmp/src

5.5 Routing, Router Advertisement, and Router Solicitation

Router advertisement and solicitation is no longer handled by rtadv() and
associated APlIs like rtsolStart(). Advertisement and solicitation can be managed
through the radvd and sysvar shell commands.

For more information, see the Working with Drivers and Interfaces chapter in
Wind River Network Stack for VxWorks 6 Programmer’s Guide 6.6, Volume 3.

For information on routing sockets, see 3.13 Routing Sockets, p.51.

5.5.1 API Mapping

Routing

Table 5-3

The tables in this section list routing-related APlIs.

Table 5-3 lists deprecated routing APlIs.

Routing APIs

3.1 API 6.x Technique
Sysctl Sysctl (no change)
kernSysctlInit none (obsolete)
rarpDebugSet none (obsolete)
rdCtl (rdiscLib) none (obsolete)

95

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

Table 5-3 Routing APIs (cont'd)

3.1 API 6.x Technique

rdiscIfReset none (obsolete)
rdiscIfShow none (obsolete)
rdiscStart none (obsolete)
replyNopSlot none (obsolete)

Router Advertisement

Router configuration using the advCap library (rtadvConfSet, rtadvConfClr,
rtadvConfRemove, rtadvConfShow) is deprecated. Use the radvd shell command
instead. The router advertisement daemon is initialized at start-up.

Table 5-4 reflects changes to the router advertisement APIs.

Table 5-4 Router Advertisement APIs

Deprecated 3.1 API 6.x Technique

rtadv radvd shell command (ipnet_cmd_radvd())
advCap library none (obsolete)

rtadvConfClr none (obsolete)

rtadvConfRemove none (obsolete)

rtadvConfSet none (obsolete)

rtadvConfSet none (obsolete)

rtadvConfig radvd shell command

prefixemd radvd add shell command

Router Solicitation

Wind River Network Stack 6.6 supports both host- and router-side router
solicitation, for both IPv4 and IPv6. You can enable automatic router solicitation by

96

5.6 BPF

5 Wind River Network Stack: Interfaces and Drivers
5.6 BPF

setting the IPNET_RFC1256_ENABLE_SOLICITATION build component. The
following router solicitation APIs are deprecated:

* rtsolStart()
» rtsolStop()

Berkeley Packet Filter (BPF) functionality is not supported in this release. The new
DHCP libraries do not require this component. The following BPF APIs are not
included in Wind River Network Stack 6.6:

*» bpfDevCreate()
» pfDevDelete()
* bpfDrv()

5.7 Interface Components

Table 5-5 shows APISs related to interface-specific parameters management. Most
of the GET/SET operations can also be done using the ifconfig (wrapper)
command.

Table 5-5 Interface Configuration APls
3.1 API 6.x Technique Comments
ifconfig ifconfig or ipnet_cmd_ifconfig Functional changes (see the
Wind River Network Stack for VxWorks
6 Programmer’s Guide 6.6, Volume 3).
ifShowInit() none (obsolete)
ifShow() ifconfig

97

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

Table 5-6 Interface Library APIs
3.1 API 6.x Technique Comments
freeaddrinfo() freeaddrinfo() (wrapper)

freehostent()
gai_strerror()
gifLoad()
if6AddrAdd()
if6AddrDelete()
if6AddrGet()
if6DstAddrGet()

if6DstAddrSet()

if6FlagChange()

if6FlagGet()
if6FlagSet()
if6LifetimeGet()

if6eLifetimeSet()

if6PrefixlenGet()
if6PrefixlenSet()

ifAddrAdd()
ifAddrDelete()

freehostent()

none (obsolete)

none (obsolete)
SIOCAIFADDR_IN6 ioctl command
SIOCDIFADDR_ING6 ioctl command
SIOCAIFADDR_ING6 ioctl command

SIOCGIFDSTADDR_ING ioctl
command

You can set the destination address as
part of the IP_SIOCAIFADDR_IN6
ioctl request.

none (obsolete)

SIOCGIFFLAGS and SIOCSIFFLAGS Both flags are required.
ioctl commands

SIOCGIFFLAGS ioctl command
SIOCSIFFLAGS ioctl command
SIOCAIFADDR_IN6 command

SIOCXGIFADDR_IN6 command You can set the preferred and valid

lifetimes as part of the
IP_SIOCAIFADDR_ING ioctl request.

SIOCGIFPREFIX_IN6 ioctl command

none (obsolete) You can set the prefix length as part of

the IP_SIOCAIFADDR_IN6 ioctl
request.

SIOCAIFADDR ioctl command

SIOCDIFADDR ioctl command

98

5 Wind River Network Stack: Interfaces and Drivers
5.7 Interface Components

Table 5-6 Interface Library APIs (contd)

3.1 API 6.x Technique Comments
ifAddrGet() SIOCGIFADDR ioctl command
ifAddrSet() SIOCSIFADDR ioctl command

ifAllRoutesDelete()
ifBroadcastGet()

ifBroadcastSet()

ifDstAddrGet()
ifDstAddrSet()
ifFlagChange()
ifFlagGet()
ifFlagSet()
ifIndexTolfName()
ifMaskGet()
ifMaskSet()
ifMetricGet()
ifMetricSet()
ifNameTolfIndex()

ifProxyArpDisable()
ifProxyArpEnable()

ifUnnumberedSet()

none (obsolete)

SIOCGIFBRDADDR ioctl command Obsolete

SIOCGIFBRDADDR ioctl command The broadcast address is a function of
the IP address and the netmask, and
you cannot set it separately.

SIOCGIFDSTADDR ioctl command
SIOCSIFDSTADDR ioctl command
SIOCSIFFLAGS ioctl command
SIOCGIFFLAGS ioctl command
SIOCSIFFLAGS ioctl command

if _indextoname
SIOCGIFNETMASK ioctl command
SIOCSIFNETMASK ioctl command
SIOCGIFMETRIC ioctl command
SIOCSIFMETRIC ioctl command
if_nametoindex

To enable ARP for a single host, set
the ATF_PUBL flag on the ARP entry
using SIOCSARP. To enable ARP for
the network stack, build the stack
with the INCLUDE_IPPROXYARP
configuration component.

ifconfig command obsolete (unnumbered interfaces are
supported, only the APl is obsolete,
see 5.12 Unnumbered Interfaces, p.102)

99

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

5.8 IP Attach Components

The two IP attach components, INCLUDE_IPATTACH and INCLUDE_IP6ATTACH
are now wrappers to a new implementation. If you include these two components,
this automatically pulls in all necessary components for the wrapper support. For
details, see the Wind River Network Stack for VxWorks 6 Programmer’s Guide 6.6,
Volume 3.

5.8.1 API Mapping

Table 5-7

Table 5-7 provides the API mapping for the IP attach protocols.

ipProto APIs

3.1 API 6.x Technique
ip6Attach() ip6Attach() (wrapper)
ip6Detach() ip6Detach() (wrapper)
ipAttach() ipAttach() (wrapper)
ipDetach() ipDetach() (wrapper)

To attach an END or NPT interface to the network stack, you previously used
ipAttach() and ifAddrSet() as in the following example:

-> ipAttach 0, "fei"

-> ifaddrSet "fei0", "128.224.195.196"
The ifAddrSet() API routine is no longer supported; use ifconfig() instead. Note
that to use these commands, you must include the INCLUDE_IFCONFIG and
INCLUDE_IPWRAP_IPPROTO components in your build. An example follows:

-> ipAttach 0,"fei"

-> ifconfig "feiO inet 50.50.1.127/24"

-> ifconfig "feil up"
When you call ipAttach() this attaches IPv4 to the device. If you build the network
stack for IPv6 support, when you call ipAttach() this also attaches IPv6 to the
device. Thus, ipAttach() and ip6Attach() now behave identically.

100

5 Wind River Network Stack: Interfaces and Drivers
5.9 MUX-L2

5.9 MUX-L2

The MUX layer 2 library is unchanged in this release. For a list of unchanged
libraries and APIs relating to interfaces and drivers, see 5.2.3 Unchanged Libraries
and APIs, p.91.

5.10 Auto IP

Table 5-8 lists APIs associated with Auto IP.

Table 5-8 Auto IP APIs

Deprecated 3.1 API 6.x Technique

autolP The address is configured automatically when the
network interface is brought up.

aipStop The address is not removed when the network interface is
brought down, but the address is revalidated if the
interface is brought back up.

5.11 zBuf and Fast UDP Sockets

The zbufSockLib zero-copy sockets library, and the associated zbufLib buffer
management library, are not supported in this release. Fast UDP sockets are also
not supported.

101

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

5.12 Unnumbered Interfaces

The Wind River Network Stack 3.1 releases used the ifUnnumberedSet() routine
to create unnumbered interfaces for point-to-point type interfaces. In Wind River
Network Stack 6.x, any interface can be turned into a unnumbered interface. While
most stacks restrict unnumbered interfaces to point-to-point interface types, the
Wind River Network Stack allows you to turn any type of interface into an
unnumbered interface simply by assigning it the same IP address as another
interface (for example, the main interface).

Wind River Network Stack 6.x no longer uses ifUnnumberedSet() to do this
assignment; it uses ifconfig() as described below.

Suppose Ethernet interface gei0 is assigned the address 1.2.3.4. You can turn
interface ppp0 into an unnumbered interface by assigning the same address to it
as follows:

ifconfig pppO inet 1.2.3.4

Note that this is exactly the same command you use to assign an address to an
interface; the only difference is that, in this case, it is the same as the Ethernet
interface, which thus turns ppp0 into an unnumbered interface.

102

Wind River PPP

6.1 Introduction 103

6.2 Migration Steps 105

6.3 Configuration 106

6.4 Library and Routine Changes 114

6.1 Introduction

Major changes to Wind River PPP were introduced in the Wind River PPP 6.5
release. This chapter will help you to plan your migration from Wind River PPP 2.x
to the current release, Wind River PPP 6.6. Releases of Wind River PPP numbered
6.5 and later are not backward compatible with earlier releases of Wind River PPP.
6.3 Configuration, p.106, describes equivalent functionality, where available.

Changes between Wind River PPP 6.5 and Wind River PPP 6.6 are highlighted in
6.1.1 Feature Release Matrix, p.104 and 6.1.2 Changes in Wind River PPP 6.6, p.105.

Wind River PPP 6.x does not support PPPoE over a virtual local area network
(VLAN.)

For information on how to set Wind River PPP configuration parameters, see the
Wind River PPP for VxWorks 6 Programmer’s Guide, 6.6: Configuring Wind River PPP.

103

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

6.1.1 Feature Release Matrix

Table 6-1 provides a list of Wind River PPP features and indicates in which releases
they are available.

Table 6-1 Wind River PPP Feature Release Matrix

Feature 2.x 6.5 6.6
Remote Access Framework ° Obsolete Obsolete
Multi-link PPP o Not supported Not supported
SNMP MIBs o Not supported Not supported
Van Jacobson header compression ° Not supported Not supported
Multiple network type support L o °

(New implementation)
Multiple driver type support ° ° °

(New implementation)
Multiple PPP framing support ° °)

(New implementation)
Unlimited PPP connections ° ° °

(New implementation)
Dynamic stack configuration ° ° °

(New implementation)
Configuration profiles ° ° °

(New implementation)
Table management o ° °

(New implementation)
Timers ° ° °

(New implementation)
Memory management ® ° L]

(New implementation)
PPP Client o ° °

(New implementation)

104

6 Wind River PPP
6.2 Migration Steps

Table 6-1 Wind River PPP Feature Release Matrix (cont'd)

Feature 2.x 6.5 6.6

PPP Server [[) [
(New implementation)

PPPoOE Server ® ° [)
(New implementation)

PPPoE Client ° o ®
(New implementation)

PPP shell command Not supported L L

6.1.2 Changes in Wind River PPP 6.6

There are no functional changes in this release, which moves Wind River PPP to a

new release of VxWorks.

6.1.3 Additional Documentation

For a description of the current implementation of Wind River PPP, see the

Wind River PPP for VxWorks 6 Programmer’s Guide, 6.6.

6.2 Migration Steps

Wind River PPP 2.x has been replaced by Wind River PPP 6.x. All Workbench
components and API routines have been replaced, and a shell command has been
added. These changes are due to a new design and implementation of the product.
For more information, see 6.3 Configuration, p.106, and 6.4 Library and Routine

Changes, p.114.

For a description of the new implementation, see the Wind River PPP for VxWorks 6

Programmer’s Guide, 6.6.

105

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

6.3 Configuration

This section describes the changes to components, parameters, files, and
configuration between Wind River PPP 2.x and Wind River PPP 6.x.

6.3.1 Configuring VxWorks Image Projects for Wind River PPP

Table 6-2

In earlier releases of Wind River PPP, you created PPP as a Remote Access
Framework, included the framework in your VxWorks image using the
pfwCreate() routine, and configured all parameters as plug-in objects to the
framework. Wind River PPP is no longer assembled as a framework; you include
the PPP components in your image directly.

The Wind River PPP 6.x components are listed in Table 6-2. To include Wind River
PPP 6.5 in VxWorks using Workbench, include the INCLUDE_IPPPP and
INCLUDE_IPPPPoE components. To enable the pppconfig shell command, include
the INCLUDE_IPPPP_CMD component. To enable per-interface or per-user
configuration, include the INCLUDE_IPPPP_INTERFACE_CONFIG and
INCLUDE_IPPPP_USERS_CONFIG components. Workbench determines all PPP
dependencies for functionality that is built into the PPP libraries. Rebuild the
VxWorks image in Workbench as usual.

Wind River PPP Component Migration

Wind River PPP 2.x Replaced by Wind River PPP 6.x
Components Components
All components are replaced. INCLUDE_IPPPP

INCLUDE_IPPPP_CMD
INCLUDE_IPPPPoE
INCLUDE_IPPPP_INTERFACE_CONFIG
INCLUDE_IPPPP_USERS_CONFIG

Disabling PPPoE at Compile Time

The INCLUDE_IPPPoE component is enabled by default when the IPPPP library is
built. To disable PPPoE at compile time, rebuild the binaries with
IPPPP_USE_PPPOE undefined in ipppp_config.h.

106

6 Wind River PPP
6.3 Configuration

6.3.2 Initialization

The Wind River PPP 2.x initialization routine windNetPPPInit() is no longer used
or required by Wind River PPP 6.x. Initialization and startup is automatically
regulated by a central process, the IPNET daemon (IPD). For more information, see
Product or Component Initialization, p.9.

6.3.3 Shell Commands
Wind River PPP 6.5 has a new shell command: pppconfig. For a description of this
command see the Wind River PPP for VxWorks 6 Programmer’s Guide: Using the

pppconfig Command. For more information on shell commands in this release, see
Shell Commands, p.11.

6.3.4 Configuration Routines

All Wind River PPP 2.x routines have been deprecated. Table 6-3 describes
equivalent functionality in Wind River PPP 6.x.

Table 6-3 Comparison of Routines

Description Wind River PPP 2.x Wind River PPP 6.x

All Remote Access Any routine beginning with the Obsolete. The Remote Access

Framework routines prefix pfw Framework has been obsoleted for

Wind River PPP 6.x.

All Multilink PPP routines ~ Any routine beginning with the Obsolete. Wind River PPP 6.x does
prefix mp not support Multilink PPP.
apiMpLinkAssign()
isNoEidNoAuthCase()

All Port Manager routines Any routine beginning with the Obsolete. The port manager
prefix pm and interface is only used for Multilink
portManagerSerial PPP, which is not supported in

Wind River PPP 6.x.

All PPP MIB II routines Any routine beginning with the Obsolete. Wind River PPP 6.x does

prefix m2ppp not support SNMP MIBs.

107

Migration Guide, 3.6

Table 6-3 Comparison of Routines (cont'd)

Wind River General Purpose Platform, VxWorks Edition

Description

Wind River PPP 2.x

Wind River PPP 6.x

Van Jacobson header compres- pppVjc()

sion

BACP configuration

LCP configuration

pppVjcComponentCreate()
pppVjcComponentDelete()

Any routine beginning with the
prefix bacp or bap

pppBacpComponent()
pppbaptx()

lcpComponentCreate()
lcpComponentDelete()

Obsolete. Wind River PPP 6.x does
not support Van Jacobson header
compression.

Obsolete. Wind River PPP 6.x does
not support RFC 2515 or the
Bandwidth Allocation Protocol.

The LCP configuration options
are defined using either
configuration parameters or the
sysvar variable.

For example, to set the LCP
maximum transmission unit
(MTU) option in the Workbench
GUI, use the PPP_LCP_MTU
parameter.

To set the MTU at the command
line, use the following command:

sysvar set -o ipppp.lcp.mtu value

For more information, see the
Wind River PPP for VxWorks 6
Programmer’s Guide, 6.6:
Configuration Options.

108

Table 6-3 Comparison of Routines (cont'd)

6 Wind River PPP
6.3 Configuration

Description

Wind River PPP 2.x

Wind River PPP 6.x

PAP/CHAP authentication

pppChapComponentCreate()
pppChapComponentDelete()
pppPapComponentCreate()
pppPapComponentDelete()

Authorization is defined at build
time by enabling the
IPCOM_USE_AUTH component in
the file ipcom_config.h, as well as
the IPPPP_USE_AUTH_CHAP or
IPPPP_USE_AUTH_PAP
components in the file

ipppp_config.h.

Note that you should only define
these components if you are going
to use them.

At run time, authentication is
configured using configuration
parameters or sysvar variable.

For authentication, in the
Workbench GUI, use the
PPP_AUTH_MODES

configuration parameter.

At the command line, use the
following command:

sysvar set -o ipppp.auth mode

See the Wind River PPP for
VxWorks 6 Programmer’s Guide, 6.6:
Configuration Options.

109

Migration Guide, 3.6

Table 6-3 Comparison of Routines (cont'd)

Wind River General Purpose Platform, VxWorks Edition

Description

Wind River PPP 2.x

Wind River PPP 6.x

IPCP configuration

IPV6 Configuration

Closing a PPP interface

Show PPP or PPPoE
configuration

ppplpcpComponentCreate()
pppIpcpComponentDelete()

pppIpvecpComponentCreate()
pppIpvocpComponentDelete()

pppConnectionClose()

ppplpv4IinfoGet
ppplpvé6InfoGet
pppOEServiceListShow()
pppOESessionListShow()

To set the desired local IPv4
address in the Workbench GUI,
use the PPP_IPCP_IPV4_ADDRESS
parameter.

At the command line, use the
following command:

sysvar set -o ipppp.ipcp.addr
address

See the Wind River PPP for
VxWorks 6 Programmer’s Guide, 6.6:
Configuration Options.

The IPv6CP is called when a peer
sends an IPv6 Identifier
Configure-Request. For details,
see RFC 2742 (pp. 6-8.) Wind River
PPP uses an action callback
routine of action type
IPPPP_ACTION_PEER_
IDENTIFIER for this. For an
example, see ipppp_example.c.

See the Wind River PPP for
VxWorks 6 Programmer’s Guide, 6.6:
Configuration Options.

Use the following shell command:

pppconfig interface_name
shutdown

Use the following command:

pppconfig show

110

Table 6-3 Comparison of Routines (cont'd)

6 Wind River PPP
6.3 Configuration

Description

Wind River PPP 2.x

Wind River PPP 6.x

Secret name

PPP driver

pppLocalSecretAdd()
pppPeerSecretAdd()
pppPeerSecretDelete()

pppModem()
pppSioAdapter()
sioAdapterCreate()
sioAdapterDelete()

In the Workbench GUI, use the
configuration parameter
PPPOE_SECRET_NAME.

At the command line, use the
following command:

sysvar set -o ipppp.pppoe.
secret_name name

The default is
“puttoanythinghere”.

There is a PPP driver
(ipcom_drv_ppp.c) that uses a
serial port (rs232). To bring a
driver down or up, use ioctl()
system calls.

All configuration with the driver
is also done using ioctl() system
calls.

For the PPP driver info see the
Wind River PPP for VxWorks 6
Programmer’s Guide, 6.6:
Configuration Options.

111

Table 6-3 Comparison of Routines (cont'd)

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

Description

Wind River PPP 2.x

Wind River PPP 6.x

Framing layer

Control layer

Interface layer

pppAsyncFraming()

pppAsyncFraming
ComponentCreate()

pppAsyncFraming
ComponentDelete()

pppBitSyncFraming()

pppBitSyncFraming
ComponentCreate()

pppBitSyncFraming
ComponentDelete()

pppFramingLayer()
pppFramingLayerCreate()
pppFramingLayerDelete()
pppControlLayer()
pppControlLayerCreate()
pppControlLayerDelete()

pppInterfaceLayer()
pppInterfaceLayerCreate()
ppplnterfaceLayerDelete()

Obsolete. Wind River PPP 6.x does
not support the PPP Framing
Layer.

Obsolete. Wind River PPP 6.x uses
configuration parameters (also

called sysvars) to configure PAP,
CHAP, LCP, and IPCP.

See the Wind River PPP for
VxWorks 6 Programmer’s Guide, 6.6:
Configuration Options.

This component has been replaced
with the PPP driver.

Include the IPPPP_IF_INIT and
IPPPP_IF_ATTACH components.

Use the routines
ipcom_drv_ppp_create() and
ipcom_drv_ppp_if_init().

Table 6-3 Comparison of Routines (cont'd)

6 Wind River PPP
6.3 Configuration

Description

Wind River PPP 2.x

Wind River PPP 6.x

Modem

MUX adapter

Initiate Wind River PPP

PPPoE Access Concentrator
name

modemConnect()

modemDisconnect()

muxAdapterCreate()
muxAdapterDelete()
pppMuxAdapter()

windNetPPPInit()

pppOEServiceNameAdd()

To use a null-modem connection,
in the Workbench GUI, set the
global parameter PPP_RUNMODE
to "wincompat".

At the command line, use the
following command:

sysvar set -0 ipppp.runmode
wincompat

See the Wind River PPP for
VxWorks 6 Programmer’s Guide, 6.6:
Configuration Options.

The MUX adapter is obsolete. For
equivalent functionality, use the
routinesipcom_drv_ppp_create()
and ipcom_drv_ppp_exit(),
located in ipcom/port/
vxworks/src.

ipppp_create()

ipppp_start()

In the Workbench GUI, use the
configuration parameter
PPPOE_AC_NAME.

At the command line, use the
following command:

sysvar set -0 ipppp.pppoe.
ac_name name

For more information, see the
Wind River PPP for VxWorks 6
Programmer’s Guide, 6.6:
Configuration Options.

113

Wind River General Purpose Platform, VxWorks Edition
Migration Guide, 3.6

Table 6-3 Comparison of Routines (cont'd)

Description Wind River PPP 2.x Wind River PPP 6.x
Create PPPOE interface pppOEthernetCreate() Use the following shell command:
ifconfig pppoe0 create

(This is only required for PPPoE
clients. PPPoE interfaces on the
server are created automatically.)

Delete PPPoE interface pppOEthernetDelete() Use the following shell
commands.

To shut down a PPPoE interface:
ifconfig interface_name down

To detach from a PPPoE interface
that is already down:

ifconfig interface_name up down-
detach

6.4 Library and Routine Changes

All Wind River PPP 2.x routines have been replaced. Wind River PPP 6.x uses only
the following routines:

* ipppp_login()
* ipppp_example_action_cb()

114

	Wind River General Purpose Platform, VxWorks Edition Migration Guide, 3.6
	Contents
	1 Overview
	1.1 Introduction
	1.1.1 About This Guide
	1.1.2 Finding Additional Migration Information

	1.2 Platform Migration Summary
	1.2.1 Operating System Migration
	1.2.2 Development Environment Migration
	1.2.3 BSP Migration
	1.2.4 Networking and Middleware Migration

	1.3 Important Changes Requiring Migration
	1.3.1 Changes Introduced in Wind River General Purpose Platform, VxWorks Edition 3.6
	Deprecated IPCOM Routines
	Changes to tNetTask

	1.3.2 Changes Introduced in Wind River General Purpose Platform, VxWorks Edition 3.5
	Directory Structure
	Library Archive Changes
	Product or Component Initialization
	Configuration and Scalability
	Configuration Header Files
	Backward Compatibility
	Shell Commands
	Diagnostics and Debugging

	1.3.3 Downloadable Kernel Modules

	2 Wind River Network Stack Migration Overview
	2.1 Introduction
	2.2 Key Concepts
	2.3 Evaluating the Migration Effort
	2.4 Source Compilation
	2.5 Network Stack Configuration and Migration
	2.5.1 Component and Parameter Configuration
	2.5.2 Network Stack Directory Structure
	2.5.3 Ported Applications and Libraries
	2.5.4 Backward Compatibility Wrappers
	2.5.5 Removed Header Files

	2.6 Migrating Applications
	2.6.1 Migrating an Application that Uses Networking APIs
	2.6.2 Migrating a Socket-Based Application

	3 Wind River Network Stack: Transport and Network Protocols
	3.1 Introduction
	3.1.1 Feature Release Matrix
	3.1.2 Changes in Wind River Network Stack 6.5
	3.1.3 Changes in Wind River Network Stack 6.6

	3.2 Migrating to SMP
	Creating an SMP-Capable VxWorks Image Project

	3.3 Socket Options
	New Socket Commands
	Socket Option Definitions
	Interface-Related Socket Options

	3.4 IPv4 and IPv6 Components
	3.4.1 IPv4 and IPv6 Configuration
	3.4.2 API Mapping
	TCP/IP Layer Core Networking Routines
	ICMP Routines

	3.5 ARP Components
	API Mapping for ARP Routines

	3.6 Proxy ARP
	3.7 Multicasting Components
	3.7.1 Socket Commands
	IPv4 Multicast Routing set/getsockopt Options
	IPv6 Multicast Routing set/getsockopt Options

	3.8 Show Routine Components
	3.8.1 Show Routine Configuration
	3.8.2 API Mapping

	3.9 Utility Components
	3.10 RIP Components
	3.10.1 RIP Configuration
	3.10.2 API Mapping

	3.11 RIPng Components
	3.11.1 Changes to RIPng Files
	3.11.2 RIPng Configuration
	3.11.3 API Mapping

	3.12 Routing APIs
	3.13 Routing Sockets
	3.13.1 Routing Socket Configuration
	3.13.2 Ranking Routes in the Route Table
	3.13.3 Routing Socket Messages
	Extended Messages

	3.14 Virtual Stack
	3.14.1 Overview
	3.14.2 Virtual Stack Configuration

	4 Wind River Network Stack: Application Protocols
	4.1 Introduction
	4.1.1 Feature Release Matrix
	4.1.2 Shell Commands and API Changes

	4.2 DHCP (IPv4 and IPv6) Components
	4.2.1 DHCP Configuration
	4.2.2 API Mapping

	4.3 DNS Components
	4.3.1 DNS Configuration
	4.3.2 API Mapping

	4.4 FTP Components
	4.4.1 FTP Configuration
	4.4.2 API Mapping

	4.5 Ping Components
	4.5.1 Ping Configuration
	4.5.2 API Mapping

	4.6 SNTP Components
	4.6.1 SNTP Configuration
	Enabling the Client or Server

	4.6.2 API Mapping

	4.7 Telnet Components
	4.7.1 Telnet Configuration
	4.7.2 API Mapping

	4.8 TFTP Components
	4.8.1 TFTP Configuration
	4.8.2 API Mapping

	4.9 Internet and Local Domain Sockets
	4.9.1 Sockets Configuration
	4.9.2 API Mapping
	4.9.3 Changes in Socket Options
	Wind River Network Stack 3.1 IPv4 Socket Options
	IPv6 Socket Options

	4.9.4 New Socket Options
	New IPv4 Socket Options
	New IPv6 Socket Options
	Socket Options for Policy Routing
	New Socket Options for PPP
	Socket Options for Diffserv

	4.10 RTP
	4.11 NFS Client and Server

	5 Wind River Network Stack: Interfaces and Drivers
	5.1 Introduction
	5.1.1 Feature Release Matrix

	5.2 General Interface and Driver Configuration
	5.2.1 Configuration Components
	5.2.2 Shell Commands
	5.2.3 Unchanged Libraries and APIs
	5.2.4 Obsolete APIs
	5.2.5 Checksum Offloading

	5.3 Memory Management
	5.3.1 Changes
	Drivers and Leading Spaces in Cluster Headers
	Use of netBufLib

	5.4 MIB2 Statistics-Collection Support
	5.4.1 M2IfLib
	5.4.2 SNMP MIB-II Support

	5.5 Routing, Router Advertisement, and Router Solicitation
	5.5.1 API Mapping
	Routing
	Router Advertisement
	Router Solicitation

	5.6 BPF
	5.7 Interface Components
	5.8 IP Attach Components
	5.8.1 API Mapping

	5.9 MUX-L2
	5.10 Auto IP
	5.11 zBuf and Fast UDP Sockets
	5.12 Unnumbered Interfaces

	6 Wind River PPP
	6.1 Introduction
	6.1.1 Feature Release Matrix
	6.1.2 Changes in Wind River PPP 6.6
	6.1.3 Additional Documentation

	6.2 Migration Steps
	6.3 Configuration
	6.3.1 Configuring VxWorks Image Projects for Wind River PPP
	Disabling PPPoE at Compile Time

	6.3.2 Initialization
	6.3.3 Shell Commands
	6.3.4 Configuration Routines

	6.4 Library and Routine Changes

