WIND RIVER

Wind RiverWorkbench
Memory Analyzer

USER'S GUIDE

3.0

Copyright © 2007 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, the Wind River logo, Tornado, and VxWorks are registered trademarks of
Wind River Systems, Inc. Any third-party trademarks referenced are the property of their
respective owners. For further information regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDir /product_name/3rd_party_licensor_notice.pdf.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
US.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:
http://www.windriver.com
For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

Wind River Workbench Memory Analyzer User's Guide, 3.0

13 Nov 07
Part #: DOC-16003-ZD-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

Contents

3 o Yo 10 1 o) o

1.1 Introduction

Memory Allocation Problems ...
Memory Analyzer OVerview ...

1.2 Architectural Summary

VXWOTKS Targetsccccccuiiiiiiiiiiiiiiiciciccccccniccecnes
LinuxX Targets ...
Wind River Linux 2.0 Targetscccccoveuevceriicniiccinceeccece e,
Database FIleScooouiiuiieiieeeeeeee e

1.3 Features

Getting Started ... ——————————

2.1 Introduction

2.2 Requirements

VXWOTKS vttt ettt eve ettt e ear e eveeneeeteeeaeeeaeeeanes
LANUX vttt et e tr e eaae e ra e e ra e e enae e etbeeeraeeeanes

2.3 Starting Memory Analyzer

Initiating the Target Connectioncccceevviviiiiiiiiiininiiiccces
Opening the Memory Analyzer GUIcccooooiiiiiiiciic

fii

Wind River Workbench Memory Analyzer
User's Guide, 3.0

2.4 Testing Your Installation 16
Viewing from the Shell ..o 16

Running the Demonstration Programcccccccovovveinniiccnnnnne. 16

2.5 Usage Notes 19
Symbol RESOIUHIONcuviiiiiiciiicicc e 19

PatChingocoiiiiiiiiiiiiccccc e 20

Using memrun (Linux Only) ... 20

Process Selection (LINux ONly)ccccoeiiiiviiiiiiiiiiiiiccns 21

Thread Analysis (Linux ONnly)ccccoovriiiiiiiiinicceccce e, 22

The Memory Analyzer GUI ..o ieee e eeese s s e s e s 23
3.1 Introduction 23
3.2 The Memory Analyzer GUI 24
3.2.1 SUMMATY VIEW ..o 25

322 Aggregate VIEW ... 26
Aggregate Allocations Table ..., 27

Individual Allocations Tablec.covoiiiciicieceeceeceeeeee e 30

Aggregate View Pop-Up Menus ... 31

3.2.3 TTEE VIEW ..t ettt et e e e e e earreeeean 31

Call SLACK TTOE .oonvveveeeeeeeeee ettt et 32

Individual Allocations Tablecccoveoeiieiiicieieeeeeceeeeeee e 33

Tree View Pop-Up Menusccccooeiriiieiiiiiiiccc 33

3.24 TIME VICW oottt et e et e e eave e e etaeeeabeeesaraeerneeees 34
GIaph AT€aoovoiiiiiiiic s 34

Details TaDIe ..c.ooovvieieieiieee et 35

Time View Pop-Up Menuccovviiiiiiiniiiiiiiiiccccce 36

3.2.5 Fragmentation View (VxWorks Only) ..o 36
Fragmentation Mapcccoeiiiiiiiniiiiii 37

Individual Allocations Tablec.ccveieiiciiciecieceeceeeeee e 39

Fragmentation View Pop-Up Menucccoooeveviiiiiiiiiii 39

3.2.6 Details VIEWPOIt VIEWccoovviiiiriiiiicciicccc s 40

3.2.7 SOUTCE COAE VIEWET ..ottt 41

Call SLACK TTOE wceveeeveeeeeeeeeeeeeee ettt et et ereeeaees 41

Contents

Details VIEWPOTLcocviiiiiiiiiiiciciccccs s
3.2.8 Analysis Console VIEW ...
3.29 Unresolved Symbols VIeW ..o
3.2.10 Preferences Dialog BOXccocoeuiiiuiiiiiiniciciicicecc e
General Tab VIEWccccooiiiiiiiiiiiiiiciccccce s
Aggregate Tab VIEW ..o
Tree Tab VIEW ..o
Time Tab VIEW ...
Fragmentation Tab View (VxWorks Only)cccccooovviiininininninnen
Database Tab VIEW ..o
3211 SNAPSNOLS ..ocviiiiici s
Taking a SNapshot ..o
Saving a SNapshot ...
Viewing Snapshots From a Previously Saved Filecccccccc.co......
Viewing the Database Filecccccooviiiiiiiiiicc
3.3 Menus and Icons
Menu Bar ...
TCONS e
3.4 System Viewer Event Integration
Automatic System Viewer SUPPOIt ..o
Using Memory ANalYzZer ... eeeeeeeeeeeeeeceeeeeeseesseseesssssssssssessnsssnnsnnnes
41 Introduction
42 Finding Memory Leaks
43 Finding Memory Hogs
44 Advanced Topics
Troubleshootingcccccmmiiiiiiiiiie e
51 Introduction
52 Messages

63

63

68

69

71

72

Wind River Workbench Memory Analyzer
User's Guide, 3.0

Target EITOTS ..o 72

HOSE EITOTS et 73

5.3 General Troubleshooting Tips 74
Issues With the Targetccccooiveeiiiininiiiciececc 74

Issues With the GUIc..oooviiiiiiiiicicceeeeeceeee e 80

General TIPS ...cooviiiiiciiicc e 81

Known Issues and Workaroundscc.oeeeeveeeieeeeeeeeeeeeeeeeeeeneene 82

A Kernel Abstraction Layer (KAL)ccccccvcrrirrrirsssssssssssssnnssssssssssmnnnmnnnes 87
A1 Introduction 87

A.2 Basis for Need 87

A.3 Procedure 88
SEEUP o 88

Wind River Linux 2.0 Targetsc.cccoceeueiiiiiiiininiiiicccnccicine 89

Other LIinux Targets ... 90

A4 Known Issues and Workarounds 92

B Event Dictionary ... snnnnens 95
System Viewer Events ..o 95

L € Lo =7 T o 929
o 1= G 103

Vi

Introduction

1.1 Introduction 1
1.2 Architectural Summary 3
1.3 Features 6

1.1 Introduction

Wind River Memory Analyzer analyzes memory usage in a running real-time
embedded program. It provides a live summary of each allocated block of memory
in the system, which helps you detect problems, such as memory leaks, early in
your development process.

Memory Analyzer is designed specifically to analyze C, C++, and assembly
language programs only. For operating system and processor versions supported
by this release, please refer to the release notes for your platform.

NOTE: This document contains background information and process descriptions
only. Detailed help with user interface operations is available by pressing the help
key for your host while running Memory Analyzer.

Wind River Workbench Memory Analyzer
User's Guide, 3.0

Memory Allocation Problems
Dynamic memory allocation is one of the most powerful tools available to software
programmers. It is also one of the areas that is most error prone.
Memory problems can manifest themselves in many ways:
* Memory may be allocated but never properly deallocated — a memory leak.

= A function can write to an area of memory that belongs to another process —
memory corruption.

» The available blocks are too small to be useful — memory is fragmented.

Memory use can waste processor cycles; for example, small allocations that are
used and then freed can sometimes be replaced with a single allocation or static
usage. Memory can run out because bursts of activity requiring many different
parts of the software may need more memory than anticipated by the designers of
each individual part.

Embedded systems must run for months or years unattended and without
maintenance. If dynamic memory errors are not found and fixed in development,
they are likely to cause an unacceptable failure in the deployed system.

Memory Analyzer is designed to help identify these mistakes and allow you to
determine their cause. Memory Analyzer lets you do the following:

* Analyze production code without special compilation.
» View the call stack and process that allocated or freed each piece of memory.
= Identify potential memory leaks by viewing all unfreed allocations.

* Visually inspect memory for excessive use by a particular task, process, or
thread (and, in VxWorks, for memory fragmentation).

» Detect memory usage patterns that should be optimized.

Memory Analyzer Overview

Memory Analyzer includes a collection agent, which runs on the target and
patches the lowest-level memory allocation and deallocation functions to collect
results and call stack data each time the functions are called. When memory is
allocated (or freed), the patched function first creates an Allocation Record (AR).
The patched routines then write the ARs into a message queue on the target. The
Memory Analyzer graphical user interface (GUI), running on the host computer,

1 Introduction
1.2 Architectural Summary

periodically retrieves messages from the AR message queue on the target by way
of the communication link.

Because it patches the lowest-level routines, Memory Analyzer traces memory
allocated by your code, by third-party libraries, and (for VxWorks) by the
operating system. So in addition to your own allocation/deallocation routines,
you can see, for instance, buffers allocated by your code, memory reserved for
semaphores, and many other memory management functions.

1.2 Architectural Summary

The Memory Analyzer architecture consists of two main components: a collection
agent that runs on a real-time VxWorks or Linux target, and a GUI that runs on the
host, as shown in the illustration below.

Host Workstation Target
User Interface Process| [Process| __ [Process
Memory Analyzer GUI 1 2 n
[T T W VI
= = | - TCPAP \ \
= > only L4
— D AN | buffer
—— o2 e
4] |
| | o N tMemLink (VxWorks)
4 i Symbols -\ \ MemAgent (Linux) |
Commands - } ‘
Starts i ‘
Y Data (WTX only) T ‘ usermode-agent (Linux) | 1
DFW oPIP e Sy
| I —
/ Server =l tWdbTask (VxWorks) : |
: WTX ‘
Workbench Target User Starts
Manager Starts (Linux only)

Wind River Workbench Memory Analyzer
User's Guide, 3.0

There are some minor differences in the implementation of target architecture
between VxWorks and Linux targets. These differences are outlined in the
following sections.

VxWorks Targets

For VxWorks targets, the components communicate through the VxWorks Target
Manager, including the DFW server, and if available, a TCP/IP link, or an optional
WTX link.

Target-Side Modules

The target-side modules contain code required to intercept internal calls made to
the lowest level memory allocation routines memPartAligned AllocInternal() and
memPartFreeInternal(), in the stack. The code then queues this data on the target
for transmission to the host by way of the tMemLink routine if you are using a
TCP/IP link, or tWdbTask routine for WTX. The target-side code is designed and
implemented to take as little processing time as possible away from the running
program.

Host-Side Interface

The host-side GUI runs on your host computer, and allows you to interact with the
data collected by the target-side modules.

For loading and starting the host-side GUI, see the instructions in 2. Getting Started.
For an explanation of each component of the GUI, see 3. The Memory Analyzer GUI,
and an introduction on how to effectively use Memory Analyzer on a VxWorks
target can be found in 4. Using Memory Analyzer.

Target-to-Host Link

The target and host have two primary methods of communication: TCP/IP mode
and WTX mode, both discussed in 2.3 Starting Memory Analyzer, p.13.
Linux Targets

For Linux targets, the components communicate through the Workbench Target
Manager, including the DFW server, over a TCP/IP link.

1 Introduction
1.2 Architectural Summary

Target-Side Modules

The target-side modules contain code required to intercept calls made to the
lowest level memory allocation and deallocation routines. The code then queues
this data on the target for transmission to the host by way of the usermode-agent
and MemAgent routines. Linux targets always communicate with the host over a
TCP/IP connection. The target-side code is designed and implemented to take as
little processing time as possible away from the running program.

Host-Side Interface

The host-side GUI runs on your host computer, and allows you to interact with the
data collected by the target-side modules.

Target-to-Host Link

A Linux target only communicates with its host over a TCP/IP connection. This
connection type is discussed in 2.3 Starting Memory Analyzer, p.13.

Wind River Linux 2.0 Targets

Database Files

Run-Time Analysis Tools is integrated into the Wind River Linux 2.0 Build System
as a root file system package. By default, it is part of the regular (non-small) root
file system templates.

NOTE: Run-Time Analysis Tools can be added to a system configured to use a
small root file system by including the template found in the extra/scopetools
directory. Do this using either the Workbench User Interface or the
Command Line Interface methods as outlined in Wind River Linux 2.0 Targets,
p-89.

The Memory Analysis tool uses a set of files as a database to store all memory
allocation and free event records. These files can consume a large amount of disk
space depending on stack depth, duration of the run, and rates of malloc()'s and
free()'s. The database files must not be on an NFS mounted disk drive. By default,
the set of database files are stored in the temporary user directory. Also by default,
the set of database files match the template "mem-targetserver-name-date-
time.madb". This and other defaults mentioned below can be changed in the
Database tab view of the Preferences dialog box (see Database Tab View, p.51).

Wind River Workbench Memory Analyzer

User's Guide, 3.0

NOTE: To reduce the number and size of the Memory Analysis database files, you
can uncheck Append Timestamp which will force the tool to delete and reuse the
files named "mem-targetserver-name.madb". To reduce the number and size of the
database files further, you can uncheck Append Target Name which will force the
tool to delete and reuse the files named "mem.madb". However, you must not
uncheck Append Target Name if you are planning on connecting Memory Analysis
to multiple targets at the same time.

1.3 Features

Memory Analyzer embodies the following features:

Finds memory leaks

You can see allocations that are not freed and may be memory leaks. These are
displayed in the Aggregate view, covered in 3.2.2 Aggregate View, p.26.

Determines individual process memory usages

Memory Analyzer dynamically shows you how much memory each process is
using, and why. Process-based memory information can be found in the Tree
View, described in 3.2.3 Tree View, p.31.

Displays dynamic memory allocations

Watch memory allocations and frees graphically, as they occur, to understand
the dynamics of your system memory usage. See how this works in the Time
view, described in 3.2.4 Time View, p.34.

Identifies inefficiencies

Quantifies heap usage by call stack (and for VxWorks only, by process, thread
or partition), to identify memory hogs and inefficient use. Partition and call-
stack heap usage can be most easily identified using the Aggregate view, while
process usage can best be seen in either the Aggregate or Tree view.

View source code

You can display the source code for the selected memory
allocation/deallocation. For detailed information, see 3.2.7 Source Code Viewer,
p-41.

1 Introduction
1.3 Features

»= System Viewer event integration (VxWorks only)

Memory Analyzer is integrated with the Wind River System Viewer tool.
When you launch Memory Analyzer, it automatically look for System Viewer
support. If support exists, Memory Analyzer posts a System Viewer event for
each sampled record, so you can see calls to traced functions directly within
the System Viewer display. For detailed information, see 3.4 System Viewer
Event Integration, p.59.

For a complete description of each of the GUI elements of Memory Analyzer, see
3. The Memory Analyzer GUI. The application of each of the above features is
demonstrated firsthand in the development of solutions to typical problems
presented in 4. Using Memory Analyzer.

Wind River Workbench Memory Analyzer
User's Guide, 3.0

Getting Started

2.1 Introduction 9

2.2 Requirements 10

2.3 Starting Memory Analyzer 13
2.4 Testing Your Installation 16
2.5 Usage Notes 19

2.1 Introduction

This chapter describes the process of installing, setting up, and running Memory
Analyzer on either a VxWorks or Linux target platform. It gives you enough
information to begin using Memory Analyzer to run a demonstration program
supplied with the tool. For more information on using Workbench, see the Wind
River Workbench User’s Guide.

Wind River Workbench Memory Analyzer
User's Guide, 3.0

2.2 Requirements

VxWorks

Before you can run Memory Analyzer, you must first create a target connection in
Workbench, then connect it to the target manager using the appropriate menu
commands or icons in the Remote Systems view. For details on using the target
manager, consult the Wind River Workbench User’s Guide: Target Manager View, as
well as your platform User’s Guide. Instructions are given in this chapter for
connecting Memory Analyzer to your target manager.

There are some dependencies Memory Analyzer places on your host operating
system for resources that are specific to the target platform, summarized in the
following sections.

NOTE: When running the target manager, the -A option must be present in the
Options command line (in the target server Properties dialog box, in the

Target Server Options > Advanced Target Server Options tab view). This forces
all global and local symbols to be parsed and available for patching. Workbench
does this by default, but if -A is absent for any reason, Memory Analyzer will not
be able to find some symbols to be parsed, and you will not be able to collect and
display data for those symbols.

= If you are using a PowerPC target, you should build your VxWorks Image
Project with the extended vector addressing option enabled. Targets with large
memories typically load Memory Analyzer at an address beyond the limited
26-bit PC-relative addressing normally used. This option is located in the
Components tab view in the project Kernel Configuration view, under
operating system components, kernel components in the tree. Right-click
Allow 32-bit branches to handlers in the tree, then select Include to enable
this option in your build.

= If your target board is running an x86 processor, Memory Analyzer will run
properly only if frame pointers are built into the code by the compiler. The
compiler does this by default, but you must be aware that if you build your
code with frame pointers turned off, you will encounter problems. For
troubleshooting tips, see Issues With the Target, p.74.

» If you want to collect data from real-time processes (RTPs), note that the RTP
components in your kernel need to include Shared Data Region support. This
support must be built into the kernel before running it by taking these steps.

10

2 Getting Started
2.2 Requirements

a. Inthe Project Explorer view, right-click Kernel Configuration, and select
Edit Kernel Configuration from the list of options to open the
Component Configuration view.

b. Expand the components tree to
operating system components- > Real Time Process components.

The shared data region support in RTPs or kernel option should be

greyed out, indicating that support is not currently included in the kernel.

c. Right-click the shared data region support in RTPs or kernel option to
open a menu.

Note that properties for the field are displayed in the table below the tree.
Note that the name is INCLUDE_SHARED_DATA.

d. To open the Include wizard dialog box, select Include in the menu.

e. Inthe Include wizard dialog box, check the
shared data region support in RTPs or kernel check box, then select
Finish to enable the support.

f. Backin the Project Explorer view, right-click Kernel Configuration again
and select the Build option to rebuild your kernel with the shared data
region support you enabled.

CAUTION: If you are running an RTP on your target, the RTP spawn time limit
may need to be set to 120 seconds or greater, and the back end request time limit
may need to be set to 30 seconds. With the target disconnected, edit these
values in the Advanced target server options group of the

Target Server Options tab view in the target Properties dialog box.

If you do not attend to these items, the RTP initialization task may not receive
sufficient CPU time to complete its execution before the RTP spawn time limit
expires and causes the host to stop all tasks running in the RTP.

For more information, see Wind River Workbench User’s Guide: New Target
Server Connections, and also check your help key for spawn time limit while
building the RTP task.

NOTE: Memory Analyzer supports RTPs on simulators, but with the following
exception: it cannot report memory allocations happening inside the RTP
itself, for example, if the RTP calls malloc directly. Memory Analyzer can
report on RTPs that call general VxWorks system functions which happen to
do their own memory allocation in the kernel for their own purposes.

11

Linux

Wind River Workbench Memory Analyzer
User's Guide, 3.0

12

Memory Analyzer requires use of the WDB agent. The easiest way to ensure
that your VxWorks Image Project (VIP) has WDB component support is to
make sure one of the following kernel configuration Profiles is used in
building your project:

- NO_PROFILE
PROFILE_COMPATIBLE
PROFILE_ DEVELOPMENT
PROFILE_ENHANCED_NET

NOTE: To help prevent target slowdowns, you must include the
INCLUDE_MODULE_MANAGER loader component. Memory Analyzer
communicates between target and host using the WDB target agent, so all
default WDB components must also be included.

For more information, see Wind River Workbench User’s Guide, VxWorks Version:
VxWorks Image Projects.

Wind River Run-Time Analysis Tools do not support connecting to a target
using a WDB_TIPC connection. This means that if you are working in an AMP
environment, you can only connect the Run-Time Analysis Tools to core 0 in
AMP mode.

Normally, users on Linux hosts will run Workbench as regular users, not root
users. When Workbench is run by a regular user in a self-hosted setup (that is,
running Workbench on your target machine), an attempt will be made to start
the Run-Time Analysis Tools MemAgent program (or ProfileAgent on
ProfileScope) as a regular user. MemAgent and ProfileAgent are both
designed to be run successfully only by a root user. Therefore, in a self-hosted
setup only, you will need to make the following changes to the MemAgent
(and ProfileAgent if you are running ProfileScope) program file in order to run
it as root user, even if you are using Workbench as a regular user:

$su

$cd /usr/scopetools-6.0

$chown root MemAgent ProfileAgent
$chmod +s MemAgent ProfileAgent
$exit

This procedure only needs to be done for self-hosted operation. For regular
operation (separate host and target), this is all taken care of for you.

2 Getting Started
2.3 Starting Memory Analyzer

* Unless you are running self-hosted (as described above), you must logon as
root, and start usermode-agent on your target. Therefore, the programs
insmod and rmmod must be in your PATH because usermode-agent depends
on them. They must also have execute permission (logging on as root gives this
permission by default).

= In the process of building your target root file system, the binary files needed
for the target you are using are copied to the directory

lusr/scopetools-6.0

If you should see a file in that directory with a name like the one formerly used
to specify your specific architecture (that is, target type/platform/compiler,
such as ppc85xxGPP2.0gcc4.1.2), it is an empty file and should be disregarded
completely.

* Youmay need to rebuild the Run-Time Analysis Tools KAL.ko module before
using the tools. For details, see A. Kernel Abstraction Layer (KAL). For the
special case of Wind River Linux 2.0, see Wind River Linux 2.0 Targets, p.89.

» For Linux targets, the programs insmod and rmmod must be in your user
PATH because MemAgent depends on them. They must also have execute
permission (logging on as root gives this permission by default).

» If you are running Memory Analyzer for the first time, compile the Kernel
Abstraction Layer (KAL), described inA. Kernel Abstraction Layer (KAL), so
Memory Analyzer can interact with your kernel correctly. If you skip this step,
Memory Analyzer might crash your system. In the future, if you change and
recompile your kernel, be sure to recompile KAL every time so that Memory
Analyzer is always interacting with your kernel correctly.

* Under no conditions can more than one instance of Memory Analyzer be
connected to the same Linux target simultaneously.

For more information, see Wind River Workbench User’s Guide, Linux Version: 6.
Projects Overview.

2.3 Starting Memory Analyzer

This section describes how to begin using Memory Analyzer in a real-time
environment.

13

Wind River Workbench Memory Analyzer
User's Guide, 3.0

Initiating the Target Connection

The Remote Systems view contains the option for connecting Memory Analyzer
to your target server. To connect, right-click the target server name and select the
Connect Memory Analyzer command from the popup menu.

L]

L=F Disconmect “wxsimD'

s @ Connect Memary Analyzer
= Connect Performance Prafiler
fi’T:! Function Tracer
@ Connect Code Coverage Analyzer

/

ﬂﬁ Remote Systems E Unresal @ Connect Data Monitor
ANl

[Refresh Properties. ..

= Properties Alt+Enter

The Connect to Target dialog box opens, where you can select optional parameter
values to be set when the Memory Analyzer GUI opens.

" Connect to Target x|
Target Server Mame: vasimD@va-grood-dl j

Conneckion Type:

Task Priority: | 99

Stack Depth: |16

Queue Size (# of messages): | 2000

Palling Rate {in Hz): | 5

‘Werbosity: ID - Silent j

Collection/Analysis(1-100%; | 50

Restore Defaults | [8]4 I Cancel |

You can reset all the parameters to the Memory Analyzer default values with the
Restore Defaults button. Click OK to begin the target connection process.

For information on setting parameters in the Connect to Target dialog box that
opens, click in the parameter field and press the online help key for your host.

14

2 Getting Started
2.3 Starting Memory Analyzer

NOTE: The verbosity (number) you select in this dialog box maps to the verbosity
(a character string choice) you can select in the Analysis Console view (see
3.2.8 Analysis Console View, p.44), according to the following mapping:

Connect to Target <--> Analysis Console

Verbosity 0 = Severe, Warning, Info, and Config
Verbosity 1 = Debug

Verbosity 2 = Debug-hi

Verbosity 3 = Trace

However, setting a verbosity level in one dialog box does not enter the
corresponding value into the display in the other dialog box.

CAUTION: Setting target verbosity to a value greater than 0 may cause the
MemAgent to needlessly generate an exceedingly large number of messages.

Generally, use the default value of 0 for verbosity, unless requested by Wind
River Technical Support to help you diagnose a problem.

Opening the Memory Analyzer GUI

When you have connected to your target, the Memory Analyzer GUI opens
automatically in the Summary view, an example of which is shown here.

@ wxsimD@svl-grood-di, Memory Analyzer £3 =C

Summarﬁ | Alloc # | Free # | Current # | [¥a Bites | Current Bites

Summary Yiew | Aggregate Yiew | Tree Yiew | Time View | Fragmentation View

For VxWorks targets, Memory Analyzer begins collecting and displaying data
from all tasks and RTPs on the target. However, for Linux targets, Memory

15

Wind River Workbench Memory Analyzer
User's Guide, 3.0

Analyzer begins collecting and displaying data only after you have selected one or
more processes from the Process Selection dialog box (see Process Selection (Linux
Only), p.21). You can select the Aggregate View tab to see more details of the
allocations that begin to display in the Summary view.

When you right-click anywhere in the view, a pop-up menu opens containing
several items that are helpful in managing your data collection activities. Detailed
help for each of these items is available using the online help key for your host.

2.4 Testing Your Installation

Having successfully started Memory Analyzer and connected it to your target, you
can now begin to verify the installation and explore some of Memory Analyzer’s
capabilities. An easy way to get started is to try the following activities:

= Enter some shell commands.

* Run the demonstration program provided.

Viewing from the Shell

View results from Memory Analyzer as follows:

* In VxWorks, run a few commands in a shell to allocate some memory, and
view the resulting memory usage statistics displayed in the Memory Analyzer
GUL

* InLinux, view the memory usage statistics in the Memory Analyzer GUI being
gathered from basic system applications.

Running the Demonstration Program

For either a VxWorks or Linux platform, you can test your installation more
thoroughly using the demonstration program memscopedemo.c, located in:

WIND_SCOPETOOLS_BASE /target/src/vxworks/memscopedemo

or,

16

2 Getting Started
2.4 Testing Your Installation

WIND_SCOPETOOLS_BASE /target/src/linux/memscopedemo_linux

where WIND_SCOPETOOLS_BASE (an environment variable of the same name)
is the root of the tree where you installed the Run-Time Analysis Tools.

In Workbench, perform the following steps to build and execute the
demonstration program:

1.

In the Remote System view, create a target connection with an appropriate
name, if one does not already exist, then connect it to the target server.

Right-click the connection name and select Connect Memory Analyzer, then
select OK in the Connect to Target dialog box to accept the default connection
parameters.

Note that the Memory Analyzer opens in the Summary tab view.

Select the Memory Analyzer icon (%8) on the Workbench toolbar to open the
full Memory Analyzer perspective.

Verity that the status message in the Analysis Console view is:
Connected to farget

If this message does not appear, check the Analysis Console view for error
messages.

Build the Memory Analyzer example program memscopedemo.c following
these instructions:

a. Right-click anywhere in the Project Explorer view and select New, then
Example to open the New Example dialog box.

b. Select VxWorks Downloadable Kernel Module Sample Project in the
New Example dialog box that opens, then click Next.

c. Select The Memory Analyzer Demonstration Program in the
New Project Sample dialog box that opens, then click Finish to complete
the project creation.

Notice that a new memscopedemo node now appears in the Project Explorer
view. You now need to build the memscopedemo.c program.

d. Inthe Project Explorer view, expand the top (memscopedemo) node, then
right-click the memscopedemo (memscopedemo.out) node and select
Rebuild Project to build the binary files.

This program builds rather quickly, but you can follow the build progress in
the Build Console view, as well as the progress meter in the Build Projects
dialog box.

17

Wind River Workbench Memory Analyzer
User's Guide, 3.0

5. When the program has successfully built, execute it by following these steps.

a. IntheProject Explorer view, right-click the memscopedemo.out node and
select Download, then click OK in the Download dialog box that opens to
download the executable files

b. In the Project Explorer view again, right-click the memscopedemo.out
node and select Run Kernel Task.

c. Inthe Run dialog box that opens, in the Kernel Task to Run group, click
Browse in the Entry Point field, and select
Downloads > memscopedemo.out > MemScopeDemo as the binary files
to be loaded, then click Apply.

d. Click Run to start the MemScopeDemo example program executing.
You will begin to see data being displayed in the GUI very shortly.

This demonstration program allocates several different blocks of varying size, and
calls free() for some blocks but not for others. This figure shows, in the Aggregate
view, an example of the output data generated by this demonstration program.

@ wxsimD@svl-grood-di, Memory Analyzer £3 =0
Aggregate Allocations Based on Task, Process, and Call Stack

Process I Task | Call Stack. | Alloc # | Free # | Current # | Max Bytes | Current Bytes -« |
wiorks EwdbTask <wdbCmdLoop ... moduleCreate = 1 o 1 1459 1459

wiorks EwdbTask <wdbCmdLoop ... symCreate =] o] 179 179

wiworks EwdbTask <wdbCmdLoop ... moduleSegadd = 3 o 3 72 72

wiWorks twdbTask @00 oo mallocz 1 1] 1 54 54

wiorks EwdbTask malloc{Dx0)[vxworks] 2 1 1 114 54

wiorks EMemScopeDemo mallociDx0i[vxwWorks] 1025 1024 1 32768 32

wiorks EwdbTask <wdbCmdLoop ... selTaskCreate... 1 1 o 24 o

wiorks EwdbTask calloc{0x0i[vxWorks] 1 1 o 48 o

wiorks EwdbTask <wdbCmdLoop ... selTaskCreate... 1 1 o 144 o

Individual Allocations For the Selected Row Above
Stark Address

Free Task Free Call Stack Allocation Size | «

Free Timestamp

Tue 11:33:52.607 0x104d91d0 Tue 11:34:01.794 tMemScop... <MemSc0peDemo . MemScopeDe, ., 32

Tue 11:33:52.607 0x104d9200 Tue 11:34:01.794 tMemScop... <MemScopeDemo ... MemScopelDe, ., 32
Tue 11:33:52.607 0x104d9230 Tue 11:34:01.794 tMemScop... <MemScopeDemo ... MemScopeDe, ., 32
Tue 11:33:52.607 0x104d9260 Tue 11:34:01.794 tMemScop... <MemScopeDemo ... MemScopeDe, ., 32
Tue 11:33:52,607 0x104d9290 Tue 11:34:01.794 tMemScop... <MemScopeDemo ... MemScopeDe, ., 32
Tue 11:33:52.607 0x104d92c0 Tue 11:34:01.794 tMemScop... <MemScopeDemo ... MemScopeDe, ., 32
Tue 11:33:52, 60? 0x104d92f0 Tue 11:34:01.794 tMemScop... <MemScopeDemo ... MemScopeDe, ., 32
M1 N4d9320 Tue 11:534:01.794 HMemSeon MernScnnelemn MernSrnnelie 37 T
Summary Vlew Aggregate View | Tree View | Time Yiew | Fragmentation Yiew

18

2 Getting Started
2.5 Usage Notes

2.5 Usage Notes

2
The following subsections describe other factors that enter into consideration -
when using Memory Analyzer on a VxWorks or Linux target.

Symbol Resolution

For statistical analysis, and for performing symbol resolution, Memory Analyzer
uses the ELF symbol table from the process object file. Without symbol resolution,
all function names in the sampled data returned from the target would be
displayed in the GUI simply as virtual memory addresses. For Memory Analyzer
to print the corresponding meaningful function names, these addresses must be
converted to their respective symbols. This is automatically done in the host-side
GUI using DFW. For detailed information on this process, see the Wind River
Workbench User’s Guide: Troubleshooting.

You can view the list of symbols that Memory Analyzer has not been able to
resolve, as well as the files in which they reside, in the Unresolved Symbols view,
opened with the Unresolved Symbols tab (see 3.2.9 Unresolved Symbols View, p.45).
If you experience any unresolved symbols in your analysis, refer to the Object Path
Mappings Page section of the Wind River Workbench User’s Guide: New Target Server
Connections for helpful information.

NOTE: If the objects found on the host are not consistent with the objects being
analyzed on the target (for example, they have been changed and recompiled), the
symbol names may be skewed.

Symbol resolution is handled differently in the VxWorks and Linux versions of
Memory Analyzer, as described in the following sections.

VxWorks Symbol Resolution

In VxWorks, Memory Analyzer uses the services of Workbench (specifically, the
dfwserver) to resolve addresses into function names. Most of the time this
arrangement successfully resolves all addresses into function names. However, in
some situations, dfwserver may not be able to detect the presence of a new binary
running on the target. For example, if a target has its own file system and an RTP
started from the corresponding file system, and the target file system is not
mirrored on the host on which the dfwserver is running, dfwserver cannot access
the symbol table of the corresponding binary. Memory Analyzer will then not be
able to resolve the addresses from the corresponding RTP into function names. In

19

Wind River Workbench Memory Analyzer
User's Guide, 3.0

this case you must specify the correct object path mappings in the target
connection properties of the corresponding target in Workbench.

For more information, refer to the Object Path Mappings Page section of the Wind
River Workbench User’s Guide: New Target Server Connections.

Linux Symbol Resolution

Patching

For Linux targets, the GUI gathers profile data sent from the MemAgent on the
target. Included in that process is looking up routine names that correspond to a
list of addresses within each process on the target. These symbols are resolved by
supplying the pathname(s) to object files for all code and library object files used
by the target process.

Memory Analyzer collects memory allocation data from your target code by
patching individual allocation/free routines that are ultimately responsible for
manipulating blocks of memory. When one of those routines is invoked, a small,
fast routine records the number of bytes being allocated or freed, as well as the
sequence of instructions leading up to that invocation, into a target buffer.
Memory Analyzer periodically transfers the contents of this buffer to the host,
where it is analyzed and reported in the GUL

Using memrun (Linux Only)

If you start your Linux target program and then use Memory Analyzer to select
your target program for analysis, you could miss memory allocations that are
happening between the time you start up your target program and enable Memory
Analyzer to analyze your target program.

If it is important for you to not miss this early data analysis, you should use the
memrun utility to start your target program.

NOTE: The memrun utility is only available for Linux targets.

memrun is an auxiliary program that performs the following steps for you
automatically:

1. Loads the specified Linux target program along with its required libraries.

20

2 Getting Started
2.5 Usage Notes

2. Patches all the routines in the target program to collect their data (so you do
not have to open the Process Selection dialog box and manually select each

process).

3. Waits for the GUI if it is not running yet, then starts the target program.

The result is that collected and analyzed data begin to be displayed in the GUI only
after Memory Analyzer is up and running, so you will see all of your program
memory allocations/frees from the beginning; nothing will be missed. You should
use the memrun utility, especially if your target program only runs briefly, or if you
are particularly interested in the earliest collected memory-operation data.

To use memrun to start your target program, enter the command

memrun target_program_name

where target_program_name is the name of your Linux target program. memrun detects
if Memory Analyzer is running, and waits with a message for you to start it if it is
not yet running.

NOTE: If you want to select additional processes for data gathering using the
Process Selection dialog box, you can still do that even if you use memrun to start
your target program.

Process Selection (Linux Only)

After starting Memory Analyzer with a Linux target, but before receiving memory
usage statistics, you must select one or more active processes you would like to
analyze. Do this using the Process Selection dialog box. This dialog box
automatically opens when Memory Analyzer is initialized on a Linux target.
Processes selected in this dialog box are patched in the target, and data from them
is collected and analyzed by Memory Analyzer.

A WARNING: If you see MemAgent in the Process Selection dialog box, do not select
it! Doing so will result in unpredictable behavior, including possible system crash.

21

Wind River Workbench Memory Analyzer
User's Guide, 3.0

NOTE: For a Wind River Linux kernel, if you try to select a process in the
Process Selection dialog box, and get a Failed to patch notice due to routines such
as kmalloc and vmalloc, the reason for the error is that the process is a kernel
thread. For Wind River Linux kernels, Memory Analyzer supports the analysis of
user-space processes only. Dynamic allocations that occur in a Wind River Linux
kernel memory region cannot be analyzed by Memory Analyzer.

For help on using this dialog box, press the online help key for your host.

Thread Analysis (Linux Only)

For Linux 2.4 target kernel analysis, threads are treated as regular processes. If, for
example, you run a program containing 4 threads, you will see 4 entries for that
program in the Process Selection list (see the figure above). Each entry will have
the program name, followed by the thread’s unique Process ID. If you select any
one of the 4 threads to be analyzed by Memory Analyzer, all the threads in that
program will be analyzed.

For Linux 2.6 target kernel analysis, threads are treated as lightweight processes
that are grouped together under the process’s initial Process ID. This means that in
the Process Selection list there is only one entry for a multi-threaded process.
Selecting that one entry to be analyzed causes all threads in that process to be
analyzed.

22

The Memory Analyzer GUI

3.1 Introduction 23
3.2 The Memory Analyzer GUI 24
3.3 Menus and Icons 56

3.4 System Viewer Event Integration 59

3.1 Introduction

Memory Analyzer is a GUI-oriented application. It uses views, menus, and toolbar
icons to allow you to see inside the target memory and determine what is going on.
This chapter describes the individual Memory Analyzer views that display
memory usage data. Each view provides a different tool to help you see and
understand timing issues, call stack identities, and other complex
interdependencies that point to the source of memory leaks. Data is displayed
dynamically in all the views, as it is collected, and you can have multiple data
views open at the same time.

23

Wind River Workbench Memory Analyzer

User's Guide, 3.0

3.2 The Memory Analyzer GUI

The Memory Analyzer GUI comprises the following views and dialog boxes
common to both VxWorks and Linux platforms (except as noted):

24

Summary View

Shows a summary of memory allocation and free data organized and listed by
the tasks that performed them.

Aggregate View

Provides a dynamic view of your target memory usage. This is the initial
startup (main) view. For details, see 3.2.2 Aggregate View, p.26.

Tree View

Displays each function in the call stack and its call progression leading up to
the memory allocation, in a tree-like structure. For details, see 3.2.3 Tree View,
p-31.

Time View

Displays a time-line history of memory allocation and a corresponding table
of data. For details, see 3.2.4 Time View, p.34.

Fragmentation View (VxWorks only)

Displays a dynamically updating graphical map of VxWorks target memory
allocation. For details, see 3.2.5 Fragmentation View (VxWorks Only), p.36.

Details Viewport

Shows complete call stack information for both the allocation and free
operations for a row selected in any of the views above. For details, see
3.2.6 Details Viewport View, p.40.

View Source Code

Displays the source code for a function selected in the Tree View or the
Details Viewport view. For details, see 3.2.7 Source Code Viewer, p.41.

Analysis Console

Displays error and warning messages that may be useful in determining
connection or activation problems. For details, see 3.2.8 Analysis Console View,
p-44.

3 The Memory Analyzer GUI
3.2 The Memory Analyzer GUI

= Unresolved Symbols

Displays the names of object files containing the symbols needed to resolve the
unknown function names, currently displayed as hex numbers. For details, see
3.2.9 Unresolved Symbols View, p.45.

= Preferences

Provides a way to customize some appearance settings for the Memory
Analyzer GUI For details, see 3.2.10 Preferences Dialog Box, p.46.

* Snapshot

Creates a static view of your target memory usage in a new Aggregate view.
For details, see 3.2.11 Snapshots, p.53.

= Other

Dialog boxes warn you of a variety of circumstances, such as connection
problems, reminding you to initialize target libraries, and displaying target
errors.

3.2.1 Summary View

The Summary view is initially opened when you start Memory Analyzer, but it
can be reopened at any time using the Summary View tab.

@ wxsimD@svl-grood-di, Memory Analyzer £3 = Eq

Alloc # | Free # | Current #
135 136 2

Sumrmar [Max Bytes | Current Byte

B Total

] warks 138 136 z 29064 28632
tlobTask{10397220) o z -2 o o
twdbTask(1043cFF0) 13 3 10 187z 1724
tShelldf104bddas) 17 119 -2 26812 26812
Unknown(103d6b0) g 1z = 380 96

Expand |

Summary Yiew | Aggregate Yiew | Tree Yiew | Time View | Fragmentation View

This view contains a single table with a tree-format list of tasks on your target that
have allocated or freed memory. Each row in the table represents a function in

25

Wind River Workbench Memory Analyzer
User's Guide, 3.0

your source code. The content of the data columns is described in detail in
Aggregate Allocations Table below.

When you right-click a row in the table, a pop-up menu opens with the single
option Expand, which will expand the tree to expose all the branches below the
one currently selected. In the expanded state, the button becomes Collapse, which
reverts the selected branch, and all the branches below it, to the single starting
node.

3.2.2 Aggregate View

Open the Aggregate view with the Aggregate View tab at the bottom of the
Memory Analyzer view.

@ wxsimO@svl-grood-di, Memory Analyzer £3 =0

Aggregate Allocations Based on Task, Process, and Call Stack

Task | Process I Call Stack. | Alloc # | Free # | Current # | Max Bytes = | Current Bytes IA

tShell0i0x104a0780) weWorks <shellTask ... shel... 1 o 1 1234567 1234567

tShell0i0x104a0780) weWorks <shellTask ... viLe... 3 2 1 1286 1286

tShelld0x104a0780) weWorks <shellTask ... pas... 3 3 o 1064 o

tShell0f0x104a0780) weWorks <shellTask ... stdi... 1 1] 1 a0 a0

tShel(0x104a0780) wxWorks <shelTask ... stdi... 1 a 1 a0 . 80 Aggregate
tShelld(0x104a0780) wiworks <shellTask .., wdb... 1 1 a 32 - .

.] » i o i i Allocations
bShell0fDx 104807500 viiorks <shellTask ... sym... 1 1 il table
tShell0i0x104a0780) veWorks <shellTask ... shel... 1 o 1 g
tShell0i0x104a0780) weWorks <shellTask ... sym... 1 1 1] 4
FOh Al T A CA =700 bl bl T -l TS i i n A
Individual Allocations For the Selected Row Above
Alloc Timestamp = | Start Address | Free Timestamp | Free Task | Free Call Stack Individual
Mon 09:55:38. 167 010332008 Mot free'd 24 L Allocations

| table
4| |)
Summary Yiew | Aggregate Yiew | Tree Yiew | Time View | Fragmentation View

This view contains an Aggregate Allocations table in the upper half, and an
Individual Allocations table in the lower half. If your target code is not yet
running, the small amount of data displayed in the view reflects only the
background tasks running on the target.

The user interface (menu items, toolbar icons, buttons, and popup menus, as well
as data and column heading descriptions) are all described in context-sensitive
online help by pressing the help key for your host. The following sub-sections
describe in detail the major parts of the Aggregate view.

26

3 The Memory Analyzer GUI
3.2 The Memory Analyzer GUI

Aggregate Allocations Table

The Aggregate Allocations table in the upper half of the Aggregate view (see the
figures above) dynamically displays the memory allocation statistics for all the
functions and tasks that allocate memory in your target. (For Linux users, only the
processes you selected in the Process Selection dialog box have their statistics
displayed; see Process Selection (Linux Only), p.21.) This table enables you to locate
the source of memory leaks and to identify functions or tasks that use large
amounts of memory.

NOTE: As areminder, in VxWorks, the program module currently being executed
is referred to here and elsewhere in this user’s guide as a task (or thread). For Linux
users, task (or thread) should be replaced with the word process in every place where
it means the equivalent of task (or thread).

The Aggregate Allocations table enables you to see the following:
» Functions that are allocating memory.

*» How much memory they are allocating.

» How often they are allocating memory.

» Functions or tasks (if any) that are not freeing the memory they allocated.

Table Format

The table displays allocation statistics in columns within a row, with rows being
added dynamically as memory allocation statistics are gathered.

Rows

Each row in the table is the sum of all memory allocation records (in the same
partition, for VxWorks) that have the same task ID and function call stack
signatures. Thus, if a given task allocates memory in exactly the same way,
following the same call stack, the memory-allocation records are displayed in the
same row of the table, but the number of counts and the number of allocated bytes
are incremented.

Conversely, if memory is allocated by the same line of source code, but is called by
a different task or through a different call stack, the allocation records are
displayed in different rows in the display table.

When you select a record in this table, the allocation is highlighted, and the table
in the lower half of the view displays the free details for all allocations that are

27

Wind River Workbench Memory Analyzer
User's Guide, 3.0

collected by the selected aggregate allocation above. This table is described in
Individual Allocations Table, p.30.

Columns

Each row contains several fields (columns) representing the statistical data
collected for each call stack. The first three columns consist of the task/process ID
that allocated the memory, and the call stack itself, formatted in a tree such that it
can be expanded to show the full stack up to the maximum displayable depth.
Finally the allocation/deallocation data is displayed.

28

Call Stack
The function call stack lists the nested function calls that led up to the
allocation. The call stack helps you pinpoint memory calls in your code.

The call stack, as it appears in each row, is displayed by default in an
abbreviated form as:

namel...nameN

where name; is the name of the first function below Main in the nested
sequence of function calls leading up to the memory allocation, and, following
the ellipsis, namey; is the name of the last function in the sequence—the one
that actually called the memory allocation routine. The following is an
example of this call stack display.

<MemLinkEngine...RTIlex>

<MemScopeTrace. . .MemScopeDemo2 >
<wdbCmdLoop. . . taskCreate>

To distinguish between allocations arising from different modules that call the
same function, turn on the display of module names by right-clicking in the
selected row and selecting Show Modules (see description below). The
following pattern shows how the call stack will now appear.

nameq[module nameql...namey[module nameysl

where [module name,, | is the module containing the named function. The
following example shows the previous call stack with this option turned on.

<MemLinkEngine [memscope.so]...RTIlex[scopeutils.sol>
<MemScopeTrace [memscope.so] . . .MemScopeDemo2 [memscopedemo. so] >
<wdbCmdLoop [vxWorks] . . .taskCreate [vxWorks]>

Likewise, you can distinguish between allocations arising from different
offsets within the same function by right-clicking in the selected row again and
selecting Show Offsets (see description below). The following pattern shows
how the call stack will now appear.

3 The Memory Analyzer GUI
3.2 The Memory Analyzer GUI

name1q(offsetq)[module nameql...nameny(offset\p)[module namengl

where (. oﬁsetn) is the offset, in bytes, into the current function at which the call
to the next function occurred. The following example shows the call stack with
both of the above options turned on.
<MemLinkEngine (0x138) [memscope.so] ...RTI|ex(0x178) [scopeutils.sol>
<MemScopeTrace (0x0) [memscope.so] .. .MemScopeDemo?2 (0x40) [memscopedemo. s

ol>
<wdbCmdLoop (0xbc) [vxWorks] .. .taskCreate (0x2c8) [vxWorks]>

Right-click anywhere in the table and select either entry to toggle it on or off.
The setting remains, even between sessions, until you toggle it again.

For VxWorks only, the limit on the number of levels in the call stack is
determined by the Stack depth parameter in the Connect to Target dialog
box. If the actual call stack is deeper than this limit, the last function is still the
one that allocated memory, but the first function in the call stack is not the top-
level caller in the actual call stack.

Data

Individual data items appearing in the row following the call stack consist of
the statistical analysis results, including the number of allocated and freed
bytes, as well as the maximum and current number of bytes allocated. The
number of current bytes allocated by each row is visually emphasized by user-
configurable background highlight colors that change with the increasing
value of the outstanding allocations. This use of color helps you to spot the
comparative seriousness of the memory offenders, as well as helping to spot
potential memory leaks.

Customizing the Format

You can adjust and sort the different elements of the Aggregate Allocations table
(and any other Memory Analyzer tables) in the following ways:

To sort the rows by a selected column in descending order, select a column
heading. To sort in ascending order, select the column heading again.

To change the width of the columns in the table, drag the divider between the
column headers.

To help pinpoint possible memory problems, the background color of a
Current Bytes column entry changes with its value at predetermined
thresholds. These threshold colors and values are shown in Table 3-1.

29

Table 3-1

Wind River Workbench Memory Analyzer
User's Guide, 3.0

Default Color Coding for "Current Bytes" Values

Color Value Range

white value < 1024

1024 <= value <
4096

4096 <= value <
16384

yellow 16384 <= value <
65536

value >= 65536

The values and colors can each be modified using the color palette in the
General tab view of the Preferences dialog box (see 3.2.10 Preferences Dialog
Box, p.46). Help using this dialog box is available by pressing the help key for
your host.

» Columns (statistics fields) can be added or removed using the Aggregate tab
view in the Preferences dialog box (see 3.2.10 Preferences Dialog Box, p.46).

Individual Allocations Table

Rows

Below the Aggregate Allocations table is the Individual Allocations table,
displaying information about allocated memory in a row selected in the Aggregate
Allocations table that has been freed. This table is also formatted in rows and
columns, but all the rows in this table are related only to the single row selected
and highlighted in the Aggregate Allocations table (see 3.2.10 Preferences Dialog
Box, p.46).

Each row in the Aggregate Allocations table can represent multiple allocations by
the same task at different times (indicated by the Allocs # parameter), and each of
those allocations can potentially be freed by a different call stack (task). The rows
in the Individual Allocations table show each of those free operations separately.
The number of rows in this table is equal to the number appearing in the Allocs #
column of the selected row in the Aggregate Allocations table.

30

3 The Memory Analyzer GUI
3.2 The Memory Analyzer GUI

Columns

Each row contains fields associated with allocation and free operations selected in

the Aggregate Allocations table. It includes the allocation and free timestamps,

starting memory address of the allocation, task ID and call stack of the free task,
and allocation size (in bytes). Help using these options is available by pressing the

help key for your host.

The Individual Allocations table can be customized in the same way as the
Aggregate Allocations table, as described in Customizing the Format (see
Aggregate Allocations Table, p.27).

Aggregate View Pop-Up Menus

When you right-click a row in the Aggregate Allocations or the
Individual Allocations table, a pop-up menu opens with data display options.

Aggregate Allocations Table Individual Allocations Table
Show Modules Show Modules
Show Offsets Show Offsets
Show Outstanding Allocations Only Clear Data
Clear Data Locate this record in Tree Yiew
Locate this record in Time Yiew
Locate this record in Fragmentation Yiew

The menu in the Individual Allocations table includes the additional options
Locate this record in Tree View, Locate this record in Time View, and

Locate this record in Fragmentation View. Selecting any of these options opens
the respective view, positioned and highlighted at the corresponding
allocation/free row in that view. It thus allows you to correlate this data item with
the same item in the other main views.

Additional help for this menu is available using the help key for your host.

3.2.3 Tree View

Open the Tree view by selecting the Tree View tab.

31

Call Stack Tree

Wind River Workbench Memory Analyzer
User's Guide, 3.0

. Call Stack Tree Data Fields
/
@ wxsim0@svl-grood-d1, Memory Ana}z{er &3 =0
Call Stack Tree = | Alloc # | Free # | Current # | Tatal Alloc Bytes | Total Alloc Bytes | Current Bytes IA
= Total 10 5 5 238335 ’,/"238335 235965
= tshello{104bfo10) 10 5 5 238335 7 235335 235965
[wxTaskEntry 10 5 5 238335 238335 235965 L
= shellTask 10 5 5 238335 238335 235965
= shellExec 7 3 4 234695 234695 234679
[=] clnkerpParse 7 3 4 234695 234695 234679
= shellinterpCp: 2 1 1 g4 a4 a0
= shellnter; 1 1] 1 g0 a0 a0
E __stdi 1 o 1 g0 g0 g0
[=] sk 1 1] 1 g0 g0 g0
E 1 1] 1 g0 g0 g0
. 3 o 3 50 50 80 ~|| Individual
Individual Allocations for the Selected Row Above Allocations
Alloc Timestamp | Start Address | Free Timestamp | Free Task | Free Call Stack. | Allocation Size/l table
Fri 12:23:20,500 0x103d93f0 Fri 12:23:20.500 tshelln <shellTask{0x4bDi[vxWorks] ... symList,., 4
Fri 12:23:20,500 0x103bfe20 Fri 12:23:20.500 tshelln Free(0x0)[vxWorks] 4
Fri 12:23:20,500 0x103ddob0 Fri 12:23:20.500 tshella <shellTask{0xa4bDi[vxworks] ... shellntr... g
Fri 12:23:20,500 0x103d7d48 ‘Wed 04:00:00,000 tShello Mok free'd a0
Fri12:23:20. 0x103d7e ‘Wwed 04:00:00,000 24
Fri 12:23:20,500 0x108f31F3 Wwed 04:00:00,000 tShelld Mok free'd 234567
Summary Yiew | Aggregate Yiew | Tree Yiew | Time View | Fragmentation View

This view opens displaying a listing of the call stack trees for each function leading
up to a memory allocation in its upper half. The Call Stack Tree entries are
arranged in an expandable tree structure, and include the same data fields found
in the Aggregate Allocations table of the Aggregate view (see Aggregate Allocations
Table, p.27).

In the lower half, the Individual Allocations table displays the free details for an
entry selected from the Call Stack Tree in the Aggregate view above.

The following subsections describe in detail the major components of the Tree
view.

For each function in the Call Stack Tree, the nested functions below it can be
exposed downward to any level until you reach the actual allocation call. At each
function name in the tree for which there are yet more functions below, there is a
"+" symbol that expands the tree one level below it by selecting it. The symbol then
changes to "-" which, when selected, collapses (hides) everything that has been
expanded below this function in the tree.

32

3 The Memory Analyzer GUI
3.2 The Memory Analyzer GUI

Individual Allocations Table

This table, in the lower half of the view, displays the free details for the selected tree

entry in the allocations tree above. The details of this table are exactly the same as
for the Individual Allocations table in the Aggregate view, described in Individual
Allocations Table, p.30.

The statistical data and column headings to the right of each function are the same
asin the Aggregate Allocations table in the Aggregate view, described in Aggregate
Allocations Table, p.27.

The actual data columns displayed in this view can be selected using the Tree tab
view in the Preferences dialog box, described in Tree Tab View, p.49. The sequence
in which the columns appear can be modified as described in Aggregate Allocations
Table, p.27.

NOTE: Color highlights in the Current Bytes column apply only to leaf nodes.

Tree View Pop-Up Menus

When you right-click a row in the Call Stack Tree or the Individual Allocations
table, a pop-up menu opens with data display options.

Call Stack Tree Individual Allocations Table
Expand Branch Show Modules
View Source Show Offsets
Show Modules Clear Data
Show Offsets X i X
Locate this record in Aggregate Yiew
Clear Data Locate this record in Time Yiew

Locate this record in Fragmentation Yiew

The menu in the Individual Allocations table includes the additional options
Locate this record in Aggregate View, Locate this record in Time View, and
Locate this record in Fragmentation View. Selecting any of these options opens
the respective view, positioned and highlighted at the corresponding
allocation/free row in that view. It thus allows you to correlate this data item with
the same item in the other main views.

Additional help for this menu is available using the help key for your host.

33

Wind River Workbench Memory Analyzer
User's Guide, 3.0

3.2.4 Time View

Graph Area

Open the Time view by selecting the Time View tab at the bottom of the view.

Click and Drag Plot Edges

@ wxsim0@syl-grood-dl, Memory Analyzer 3 -

_ Overview
Graph

Total

Memory
" Allocated

Graph

Timestarmp | Start Address | Task | Process I Call Stack. | Bytes |A|
Mon 12:38:12,487 0x104d91a0 tMemScopeDemo(0x116fFa00) wxWorks <MemScopeDemo ... MemScopeDemo3 = 32
Mon 12:38:12,487 0x104d291d0 tMemScopeDemo(0x116fFa00) wxWorks <MemScopeDemo ... MemScopeDemo3 = -3z
Mon 12:38:12,487 0x104d9200 tMemScopeDemo(0x116fFa00) wxWorks <MemScopeDemo ... MemScopeDemo3 = -3z
Mon 12:38:12,487 0x104d9230 tMemScopeDemo(0x116fFa00) wxWorks <MemScopeDemo ... MemScopeDemo3 = -3z
Mon 12:38:12.487 0x104d9260 tMemScopeDemo(0x116FFa00) wxWorks <MemScopeDemo ... MemScopeDemo3>——-32___ | Detalils
Mon 12:38:12.487 0x104d9290 tMemScopeDemo(0x116fFa00) wxWorks <MemScopeDemo ... MemScopeDemo3 = -3z Tabl
Mon 12:38:12,487 0x104d92c0 tMemScopeDemo(0x116fFa00) wxWorks <MemScopeDemo ... MemScopeDemo3 = -3z able
Mon 12:38:12,487 0x104d92f0 tMemScopeDemo(0x116fFa00) wxWorks <MemScopeDemo ... MemScopeDemo3 = -3z
Mon 12:38:12,487 0x104d9320 tMemScopeDemo(0x116fFa00) wxWorks <MemScopeDemo ... MemScopeDemo3 = -3z LI

Summary Yiew | Aggregate Yiew | Tree Wiew Time_\u'iew] Fragmentation Yiew |

In this window, collected data displayed in the Aggregate Allocations table (see
Aggregate Allocations Table, p.27) is translated into a chronological time-line
display, showing the current total memory allocation for all allocations and frees
executed since data collection began.

This section describes in detail the remaining major parts of the Time view and
how it is used.

The Time view Total Memory Allocated graph appears in the middle area of the
view. This is a dynamically updating graph of total memory allocated over time,
initially plotting from the beginning of data collection to the present. However,
you can zoom in (and out) on the data in this graph by simply clicking and
dragging the outside edges of the Overview graph at the top of the page. The

34

Details Table

3 The Memory Analyzer GUI
3.2 The Memory Analyzer GUI

information in the Details table below the graphs always relates to the data visible
in the Total Memory Allocated graph.

The vertical (Y) axis plots total memory (in bytes) currently allocated. The Y value
range (in bytes) increases to the greatest amount of memory that was allocated at
any time since Memory Analyzer data collection began, regardless of the current
total allocation.

The horizontal (X) axis plots time (in seconds), with start of data collection (0) on
the left, and the total elapsed data collection time (in seconds) along the axis.

If you leave the graph in a zoomed-in position, it will remain stationary there, (but
the Overview graph continues to scroll). To see new data plotted as it is being
generated, drag the graph edges in the Overview graph back to the boundaries.

This table, in the bottom half of the Time View window, shows details for each call
stack that led to a memory allocation or free. The call stacks are displayed one per
row, so there are two rows for a complete memory allocation/free sequence. If you
select a row in the table, and the selected memory has been freed, a second row is
also highlighted (for either the memory allocation or free, whichever is the
opposite of what you selected).

Data in each row describe the allocations found in the Aggregate Allocations table
(see Aggregate Allocations Table, p.27). The row includes the target timestamp, the
start address, the task and partition IDs, the call stack, and the number of bytes
allocated. The number of bytes allocated by the line of code is displayed as a
negative number if bytes are freed).

Help using these options is available by pressing the help key for your host. For
detailed information about the call stack, see Aggregate Allocations Table, p.27.

By default, all data columns are displayed in the table. You can, however, choose
only the data columns you want to display in the Details table using the Time tab
view in the Preferences dialog box, described in 3.2.4 Time View, p.34. The format
of the columns as they appear in the table can be modified as described in
Aggregate Allocations Table, p.27.

More information on the Call Stack can be found at Aggregate Allocations Table,
p-27.

35

Wind River Workbench Memory Analyzer
User's Guide, 3.0

Time View Pop-Up Menu

When you right-click a row in the Details table, a pop-up menu opens with data
display options.

Individual Allocations Table

Show Modules
Show Offsets

Clear Data

Locate this record in Aggregate Yiew
Locate this record in Tree Yiew
Locate this record in Fragmentation Yiew

This menu includes the additional options Locate this record in Aggregate View,
Locate this record in Tree View, and Locate this record in Fragmentation View.
Selecting any of these options opens the respective view, positioned and
highlighted at the corresponding allocation/free row in that view. It thus allows
you to correlate this data item with the same item in the other main views.

Additional help for this menu is available using the help key for your host.
3.2.5 Fragmentation View (VxWorks Only)

On a VxWorks target only, open the Fragmentation View with the
Fragmentation View tab.

36

3 The Memory Analyzer GUI
3.2 The Memory Analyzer GUI

M esim0@svl-grond-d1, Memory Analyzer &2 =0

Colar Schemes «|

By Allocation Task

Legend

Mever been allocated

0 <= # bytes < 1024

1024 <= # bytes < 4096
4096 <= # bytes < 16354
16384 <= # bytes < 6553€
65536 <= # bytes

Has been free'd

oEOooonOo

-]
Top Address: 0x1200000 Bottom Address: 0x0000000 Resolution (KBfblock): 32 =
Individual Allocations under the selected block {0x109c0000, 0:x109bS001)

Alloc Timestamp Start Address | Task | Partition | Call Stack | Allocation Size |
Wwed 10:51:57,168 0x108f31e0 tSheld 10173d38 <shellTaskiDxabO)[vxworks] ... sh... 1234567

Summary Yiew | Aggregate Yiew | Tree Yiew | Time View | Fragmentation View

The Fragmentation View displays a graphical map representation of VxWorks
target memory allocation since data collection began. This fragmentation map
allows you to not only see the relative sizes of allocated blocks, but also view the
address, size in bytes, and other allocation statistics for any selected block.

Fragmentation Map

This is a visual representation of memory as map blocks, each a square 5x5 pixels
of a single color. Each map block represents a fixed number of contiguous bytes of
memory. You can zoom ina and out on the map by adjusting the Resolution
arrows up or down at any time, or you can enter a resolution directly. The

Top Address and Bottom Address fields display the current boundaries of the
map. You can enter a byte value directly into either field to adjust the map display
to locate and optimize your view.

NOTE: Any time you modify any of these three parameters, you must click Enter
to complete the action and see the results.

37

Wind River Workbench Memory Analyzer
User's Guide, 3.0

Map Boundaries

The beginning of memory initially appears at the bottom right corner of the map,
with the top left corner being the end (top) of memory. Newer allocations are
always displayed starting at the top of memory, then to the right and lower in the
view. Thus, each memory’s start address will be higher than its end address. The
fragmentation map initially shows all of memory. Any map block can be selected
in the map with your cursor and its memory information details (if it is occupied)
will be displayed in the Individual Allocations table below.

Color Schemes

The first (default) of three options, By Allocation Size, causes colored blocks in the
map area to represent bytes of memory allocated by a single memory allocation
module. The colors, shown in the Legend area of the view, show the
correspondence between that color of mapped blocks and the size (range) of the
allocation. The colors and corresponding size ranges are taken from the General
tab view of the Preferences dialog box (see General Tab View, p.47). You modify the
default colors and size ranges in that dialog box, and the new values will remain,
even across sessions, until you change them again. The default values can be
reinstated with the Restore Defaults button.

Other Options

Of the two remaining options, by Allocation Module allows you to show the
distribution of allocations made by up to the five modules making the highest total
bytes of memory allocations (the "top five"). Note that here, too, the colors are as
selected in the General tab view of the Preferences dialog box, but the byte size
ranges in the Legend area are replaced by the module name(s). The resulting
allocation block map will help you visualize the fragmentation created by those
target contributors to memory usage.

The by Allocation Task option generates a memory block map similar to the by
Allocation Module map described in the previous paragraph, but it displays
results from the tasks, rather than modules, making up to the five highest memory
byte allocations.

Data display/entry fields directly below the fragmentation map show these
additional map parameters:

= Top Address

The address of the top-left (or end) of the allocated memory block. You can
modify this value to include more or less of the available memory in the map.

38

3 The Memory Analyzer GUI
3.2 The Memory Analyzer GUI

= Bottom Address

The address of the bottom-right (or beginning) of the allocated memory block.
You can also modify this value to include more or less memory in the map.

= Resolution (KB/block)

The number of bytes represented by one block (5x5 pixel square of one color)
on the screen, selected using the arrows, with discrete resolutions marked in

powers of two, from 1 to 32,768. This effectively zooms in and out in the map.

Individual Allocations Table

The Individual Allocations under the selected block table, in the bottom half of
the window, shows details for each call stack that led to the memory allocation
selected in the block map. The columns displayed in this table can be selected
using the Fragmentation tab view in the Preferences dialog box (see Fragmentation
Tab View (VxWorks Only), p.50).

The data items (selected as described above) are displayed from left to right in the
columns of this table. They include the target timestamp, the allocation start
address, the task and partition IDs, the call stack information, and the number of
bytes allocated.

Help using these options is available by pressing the help key for your host. For
detailed information about the call stack, see Aggregate Allocations Table, p.27.

Fragmentation View Pop-Up Menu

When you right-click a row in the Individual Allocations table, a pop-up menu
opens with data display options.

Individual Allocations Table

Show Modules
Show Offsets

Clear Data

Locate this record in Aggregate Yiew
Locate this record in Tree Yiew

Locate this record in Time Yiew

39

Wind River Workbench Memory Analyzer
User's Guide, 3.0

This menu includes the additional options Locate this record in Aggregate View,
Locate this record in Tree View, and Locate this record in Time View. Selecting
any of these options opens the respective view, positioned and highlighted at the
corresponding allocation/free row in that view. It thus allows you to correlate this
data item with the same item in the other main views.

Additional help for this menu is available using the help key for your host.

3.2.6 Details Viewport View

The Details Viewport view displays complete information about a single
allocation/free pair in one convenient place.

Details Viewpork &3 =0
Process ID: ¥xWorks

Process Mame: 0x101731a0

Start Address: 0x104a3d48|

Allocation Size: 4

Alloc Free
Tue 01:22:54.311 Tue 01:22:54.311

EShell0f D1 04a0750) EShell0f D1 04a0750)
wxTaskEntry wxTaskEntry
shellTask shellTask
shellExec shellExec
clnterpParse clnterpParse
shelllnterpCparse shelllnterpCparse
shellinterpClex shellinterpClex
symbolResalve symbolResalve
symbolyalueAddrGet symbolyalueAddrGet
shellInternalSymbolEet shellInternalSymbolEet
shelllnternalZppSymbolGet shelInternalCppSymbolGet
demangleSymbolGet demangleSymbolGet
symLiskGet symLiskGet
calloc free

Each row in the Aggregate Allocations table can represent multiple memory
allocations by the same task at different times. Each of those allocations can
potentially be freed by a different call stack. The row displayed in the Individual
Allocations table shows each of those discrete free operations for the row you
selected in the Aggregate Allocations table. The Details Viewport view shows
complete call stack information for both the allocation and free operations for the

row selected in the Individual Allocations table of either an Aggregate view or a
Tree view.

Double-clicking any entry in the table causes Memory Analyzer to display the
source code for the selected routine (see 3.2.7 Source Code Viewer, p.41).

40

3 The Memory Analyzer GUI
3.2 The Memory Analyzer GUI

To distinguish between allocations from different parts of the same function, you
can turn on the display of offsets by selecting the Show Offsets check box in the
General tab view of the Preferences dialog box (see General Tab View, p.47). You
can likewise show module names by selecting the Show Modules check box in the
General tab view.

If you close the view, you can use the Window > Show View > Details Viewport
menu command to open it again. Help with these view elements is available by
pressing the help key for your host.

3.2.7 Source Code Viewer

Call Stack Tree

You can view the source code containing a function displayed in the call stack tree
of the Tree View, or an entry in the Details Viewport view. To do this, right-click
the function and select the View Source option in the pop-up menu that opens.
The source code containing that function will be displayed in another view that
opens, sharing space in the Editor view along with the Memory Analyzer view.

To open a source code viewer in a Memory Analyzer view, right-click anywhere
in any Call Stack Tree entry in the Tree View and click View Source in the popup
menu that opens.

41

Wind River Workbench Memory Analyzer
User's Guide, 3.0

@ wxsimO@svl-grood-di, Memory Analyzer £3 =0
Call Stack Tree = | Alloc # | Free # | Current # | Max Bytes | Current B tgl;

= Total 1037 1033 4 34430 1475
[t1{0x103ae1a8) 1025 1024 1 32768 32|

[taskDestroy{0x4a3)[v:works] 1 1 o 56 o

E __wdbTaskDeleteHook{0x95)[vxworks, | 1 1 1] 56 1]

= wdbCxExitMatifHaslio Lot 1 1 o E o

malloc(DxD)[(@ wxsimd@svl-grood-d1, MemScope (__ memscopedemo.c &3
= wxTaskEnkry (01 0)[v
B MemScopeDemoil

opelerno;
go)c(DxD)[roid MemScopeDemo?2 (void)
3 1dd i { . .
int i:
Cparsell i X .
L for (i = 0; i <« NUM BELOCES: i++) {
isplayi0x —
e - str[i] = (char *) malloc (ELOCE 3Z);
e Selecte

i

haY, (1S
Fri 12:20:59.086 \ 0x10a23278 })
Fri 12:20:57.395 104ad958 woid MemScopeDemo (void)

Fri 12:20:56.758 0x104ac695 {
Fri 12:20:57.520 O:x104as0d8™] it ;
Fri 12:20:55.023 0104232555 taskDelay (TEST DELALY):

Fri12:21:00.368 Ox10a271d8 MemScopeDemnd (] :
Fri 12:21:02.603 0x10a28e58

Summary Yiew | Aggregate Yiew @

int maini{int argec, char *argv[], char *envp[], wvoid *auxp)
{

MemScopeDlemo () ;
#ifdef _ RTP__

taskExit (0] ;

31 e

Details Viewport

In the Details Viewport view (see 3.2.6 Details Viewport View, p.40), double-click any
call stack entry for your target code to open the source code view in the Memory
Analyzer perspective.

42

3 The Memory Analyzer GUI
3.2 The Memory Analyzer GUI

Details Yiewpart £3 =8
Process: WrWorks
Partition: 0x10173628

Start Address: Ox10a23fcs
Allocation Size: 32

Alloc Free
Fri 12:20:59.711 o8 esim0@syl-grood-di, MemScope (__ memscopedemo.c &3
b1{0x103ae1a8) y

i

a)l edd . .
MemScopqumUZ(Dx1?)[memsc0p void MemScopeDemo2 (void)
malloc{Dx0)[wworks] {
int i;
\ for (i = 0; i < NUM_BLOCKS; i++) {
str[i] = (char *) malleec (BLOCK SZ):

+
+

roid MemScopeDemo (void)
i
— .

Jat ;
taskDelay (TEST DELLY) ;
MemScopeDemol (] ;2

| ¥

int maini{int argec, char *argv[], char *envp[], wvoid *auxp)
{

MemScopeDlemo () ;
#ifdef _ RTP__

taskExit (0] ;

31 e

In either of these methods, if the file can be found, the source code view opens with
the entry point of the next routine shown in the call stack tree highlighted in the
center of the page. You can navigate around in the view using the cursor.

In the event the source code file is not found (for instance, you moved your source
code files since you last compiled them), a message to this effect is displayed in the
Unable to View Source dialog box.

Unable to Yiew Source

Function cInterpParse is not found in
Cifwb261_HUTvxworks-6,5/target/projisimpe_diab/defaultfvxworks,

43

Wind River Workbench Memory Analyzer
User's Guide, 3.0

This could mean that the routine you have selected is a system routine, but if you
know the routine is in your source code, you can fix this by selecting the
Window > Preferences > Run/Debug > Source Lookup option. There you can
configure other directory paths to search, click OK, then, back in the pop-up menu,
select View Source again, as discussed above.

NOTE: If the source code has been moved from the location where it was compiled,
you must add the current path to the search paths using the Source Lookup dialog
box described above before Memory Analyzer can locate them.

For more information on the Workbench Source Lookup option, see the Wind
River Workbench User’s Guide: Launching Programs.

NOTE: In order to use the View Source Code feature, you must have compiled your
code with debugging information enabled. Because Memory Analyzer uses the
DFW server, it works with whatever debug information standard is utilized by
Workbench.

Recovering from these problems is also addressed in Issues With the GUI, p.80.

3.2.8 Analysis Console View

Open the Analysis Console view with the Analysis Console tab.

O aralysis Console 52 &~ B '| | T8
Time | Module | Tvpe | Message

712804 AM Memory Analyzer Info connected to vxsim0@syl-grood-d1: 2696

< |

This is where Memory Analyzer reports status, warning, and error messages
generated by the host GUIL During normal operation (when Verbosity is set to 0),
only a few messages are printed to the Analysis Console view. However, when
you start Memory Analyzer with a non-zero target verbosity level, the amount of
output can become significant. You should do this only when requested by Wind
River Technical Support to help you debug any problems.

44

3 The Memory Analyzer GUI
3.2 The Memory Analyzer GUI

Optional activities include filtering messages, selecting columns to display,
removing displayed messages, and saving messages to a file. Help with these view
elements is available by pressing the help key for your host.

If you close this view, you can use the Window > Show View > Analysis Console
Workbench menu command to open it again.

CAUTION: Setting target verbosity to a value greater than 0 may cause the
MemAgent in the target (see 2.3 Starting Memory Analyzer, p.13) to needlessly
generate a large number of messages.

Generally, use the default value of 0 for verbosity, unless requested by Wind
River Technical Support to help you diagnose a problem.

Help using this dialog box is available by pressing the help key for your host.

3.2.9 Unresolved Symbols View

Memory Analyzer gathers memory allocation data sent by the MemAgent on the
target to the host. Part of that process includes looking up readable function names
that correspond to a list of addresses within each process on the target. Unresolved
symbols exist when the hexadecimal addresses representing function names in a
task or thread cannot be resolved into meaningful function names by Memory
Analyzer. When an address cannot be resolved into a function name, it appears in
the Unresolved Symbols view along with the file in which it resides.

ﬂﬁ Remote Systems E Unresolved Symbals &3 =0

=] wrsim0@svl-grood-d1

- fhomearood/pentium4PMEL, 1gcc3. 4.3 Memagent
Ox0006c754

0000697 a0

0x0005db0c

0x0005dbas

0x00073F44

This view displays a tree-like structure consisting of pathnames and the
hexadecimal numbers (symbols) at the end of each pathname that Memory
Analyzer has been unable to resolve so far. They are grouped by the files in which
they reside, and these are the files for which you must supply the full host
pathnames using the Window > Preferences > Run/Debug > Source Lookup
dialog box.

45

Wind River Workbench Memory Analyzer
User's Guide, 3.0

Since the view does not auto-refresh, use the Refresh icon (;) to refresh the
screen with any additional symbols that were found to be unresolved since you
opened the view (or last selected Refresh).

For a more complete discussion of symbol resolution, including the remedy for
unresolved symbols, see Symbol Resolution, p.19. Help using this view is available
by pressing the help key for your host.

3.2.10 Preferences Dialog Box

The Preferences dialog box contains configuration parameters that modify the
appearance of the GUI, change how Memory Analyzer collects profiling data, and
how it analyzes that data. It is opened using the Window > Preferences menu
command, then selecting Wind River > Memory Analyzer.

The dialog box contains the following tab views:
* General

Contains general, as well as call stack, display options, including a color
palette for highlighting.

= Aggregate View
Contains parameters that modify the appearance of the Aggregate view.
= Tree View
Contains parameters that modify the appearance of the Tree view.
* Time View
Contains parameters that modify the appearance of the Time view.
= Fragmentation View (VxWorks only)
Contains parameters that modify the appearance of the Fragmentation view.
* Database

Allows you to select file parameters for the Memory Analyzer database file
name, and to adjust the initial priority balance between host analysis and
target data collection.

After making changes in any tab view, select Apply to save the changes and leave
the dialog box open for more, or select OK to apply any changes and close the
dialog box. Select Cancel to close the dialog box without saving any changes since
you last selected Apply.

46

3 The Memory Analyzer GUI
3.2 The Memory Analyzer GUI

Memory Analyzer automatically saves the current settings of all configuration
parameters to a registry file on a Windows host (or to a disk file on a UNIX host)
when you exit the application. It automatically reloads that file on startup. You
may also save configuration parameters to a specified file, or load them from a
saved, file manually. For information on how to do this, see the chapter on Creating
VxWorks (or Linux) projects in Wind River Workbench User’s Guide.

NOTE: Any errors encountered in validating your selections will displayed at the
top, just below the title bar, and will not allow you to proceed until corrected.

General Tab View

The General tab view contains parameters for selecting call stack display options
(see Aggregate Allocations Table, p.27), and a color palette for modifying the
appearance of all the Memory Analyzer views.

il
|tVD8 Filker text Memory Analyzer oo -

General |Aggregate Wiew I Tree View I Time: Yiew I Fragmentation Yiew I Database I

Help —General Display
Install{Update I~ Show Modules "Example:

Remote Systems
RS5/Atom Feed Yiew I™ Show Offsets

RunfDebug
Team

function ‘

—Color Settings

. Define the text background colors For the current outstanding bytes
: Terminal and the levels when the color change occurs:

|- Wind River

- Binary Parser = 0 < |1024 Text —H—H—|—H—| Custom..,
B == [1024 < [a096 [Text R custom...
- Capabilities
-~ Code Coverage Ar When current bytes »= | 4096 < 16384 | Text —H—H—|—H—| Custorm, ..

- File Templates

4 »= 16384 < |es53s [Text AR custom...
- Performance Profib

- RunfDebug == 65536 [ree AR custom...

- Systemn Viewer Anz
- Target Managemer
- Terminal

- Wind River Linux
4 |

@ Ok I Cancel |

Il
[+

-
[

[l
[+

Restore Defaulks | Apply |

In this tab view you can select parameters that cause the certain tasks to be
performed and colors to be used, including Show Modules, Show Offsets, and

47

Wind River Workbench Memory Analyzer
User's Guide, 3.0

Color Palette. Help using this tab view is available by pressing the help key for
your host.

Aggregate Tab View

The Aggregate tab view contains parameters that modify the appearance of the
Aggregate view (see 3.2.2 Aggregate View, p.26).

il
|tVD8 Filker text Memory Analyzer (e -

[#- General =
B CJCH+ General Agaregate Yiew |Tree Wiew I Time Yiew I Fragmentation Yiew I Database I
" Help ™ show outstanding allocations anly

- InstallfUpdate X I—
- Remate Systems Refresh period For aggregate table (sec): | 10

-~ RS551Akom Feed View Refresh period For individual allocation table {sec): I 20

- Run/Det
uniDebug Aggregate Table Column |

- Code Coverage Ar
File Templates

Max Bytes
Current Bytes

- T
eam Process

- Terminal Task

- wind River Call Stack
- Binary Parser Alloc #
[#- Build Free #
- Capabilities Current #

Iy A r

Perforance ProFiI. Individual Allocation Table Calurmn |
F- Run/Debug allac Timestamp
[+ System Yiewer An: Start P_tddrESS
[#- Target Managemer Free Timestamp

- Terminal Free Task
[+ Wind River Linux Free Call Stack

Allocation Size
Restore Defaulks Apply
<| [I I

@ Ok I Cancel |

In this tab view you can select parameters that affect refresh rates and table
columns to be displayed in the GUI Help using this tab view is available by
pressing the help key for your host.

48

3 The Memory Analyzer GUI
3.2 The Memory Analyzer GUI

Tree Tab View

The Tree tab view contains parameters, and two groups of check boxes, that

modify the appearance of the Tree view (described in 3.2.3 Tree View, p.31).
=0l x|
|tVD8 Filker text Memory Analyzer (e -
[#- General

clce+ General I Aggregate Yiew Tree Yiew |Time View I Fragmentation Yiew I Datahase I
Help Refresh period For tree table (sec): IID—
InstallfUpdate
Remate Systems Refresh period For individual allocation table {sec): I 20
R55)Atom Feed Yiew Tree Table Column |
RunfDebug Call Stack Tree
Team Alloc #
Terminal Free #
[=]- wind River Current #
- Binary Parser Total Alloc Bytes
- Build Current Bytes
- Capabilities
- Code Coverage Ar Individual Allocation Table Column |
- File Templates Alloc Timestamp
; Start Address
- Performance Profil ::ree Iimistamp
ree Tasl
[#- Run/Debug

- System Yiewer Ang B Free C§II SthCk
Allocation Size

-
[

- Target Managemer
- Terminal

- Wind River Linus Restore Defaults | Apply |
4 |

\7) Ok I Cancel |

[l
[+

In this tab view you can select parameters that affect refresh rates and table
columns to be displayed in the GUI Help using this tab view is available by
pressing the help key for your host.

Time Tab View

The Time tab view contains parameters, and a group of check boxes that modify
the appearance of the Time view.

49

| |

Wind River Workbench Memory Analyzer

User's Guide, 3.0

® Preferences

Itype filker bext

[#- General

InstallfUpdate
Remote Systems
RS5fatom Feed Yiew
RunfDebug

Team

Terminal

- Wind River

- Binary Parser

[+ Build

- Capabilities

- Code Coverage Ar
ile Templates
3 Iy naly

- Performance Profib
[#- Run/Debug
[+ System Yiewer An:
[#- Target Managemer
- Terminal

[#- Wind River Linux

Memory Analyzer

=10l x|

General I Aaggregate Yiew I Tree Yiew Time Yiew |Fragmentati0n View I Datahase I

Refresh period For time graph (sec): I 10
Refresh period For table {sec): I 20

_Table Column

Timestamp
Start Address
Task

Process

Call Stack
Bytes

Restore Defaulks |

Apply |

o]

Cancel |

In this tab view you can select parameters that affect refresh rates and table
columns to be displayed in the GUI Help using this tab view is available by

pressing the help key for your host.

Fragmentation Tab View (VxWorks Only)

The Fragmentation tab view contains parameters, and a group of check boxes that

modify the appearance of the Memory Analyzer Time view.

50

3 The Memory Analyzer GUI
3.2 The Memory Analyzer GUI

_ioix
|tVD8 Filker text Memory Analyzer (= ¥
General — 3
clce+ General I Aaggregate Yiew I Tree Yiew I Time Yiew Fragmentation Yiew |Database I
Help Refresh period For fragmentation map {sec): I 10
InstallfUpdate
Rermote Systems Refresh period For table {sec): I 20
RS5/Atom Feed View T=HE Callmm |
Run/Debug lloc Timestamp
Team Skart Address
- Terminal Task.
(= Wind River Partition
- Binary Parser Call Stack,
- Euild allacation Size
- Capabilities
- Code Coverage Ar

- File Templates
& ¢

- Performance Profib
- Run/Debug

- Systemn Viewer Anz
- Target Managemer
- Terminal

[#- Wind River Linux
Restore Defaulks Apply
<| [I I

@ Ok I Cancel |

-
[l [

In this tab view you can select parameters that affect refresh rates and table
columns to be displayed in the GUI. Help using this tab view is available by
pressing the help key for your host.

Database Tab View
The Database tab view contains options for creating the Memory Analyzer

database file described in Viewing the Database File, p.55, and for setting the initial
priority bias between analysis and data collection.

51

Wind River Workbench Memory Analyzer

User's Guide, 3.0

il
|tVD8 Filker text Memory Analyzer oo -

[#- General

2am
erminal

General I Aggregate Yiew I Tree Yiew I Time: Yiew I Fragmentation Yiew Database |

i~ Database File Preferences

v append Target Name

emote Systems . 3
RS Akom Feed View Directory |C.'l,DOCUME~1'|,gr00d'|,LOCALS~1'|,Temp'|, (= |
Run/Debug Filename | merm.mdb

- Wind River v append Date and Time
- Binary Parser
- Build r—Anlysis Options
. Capahilities Collection({1} vs Analysis(100) Eias

B _ L ——

Advanced = |

- Code Coverage Ar
- File Templates

v Analyzer
- Performance Profib
-RunDebug

- Systern Viewer Anz
- Target Managemer
- Terminal

- Wind River Linux

|
(7) K I

-

[l
[+

Restore Defaulks | Apply |

Cancel |

In this tab view you can select parameters that affect refresh rates and table
columns to be displayed in the GUIL

CAUTION: Due to restrictions for file locking and consistency in the database
engine, this directory must not be an NFS mounted directory.

NOTE: If both the Append Target Name and Append Date and Time boxes
are checked, the Target Name option appears first, followed by the Date and
Time, for example:

mem-walnut@svl-grood-d1-Aug05-112307.madb

CAUTION: Exposing the parameter values using the Advanced button
overrides the slider values for the upper boundaries. You should not adjust
these parameters directly unless requested by Wind River technical support to
help in special cases. Use the Bias slider as described above.

Help using this view is available by pressing the help key for your host.

52

3 The Memory Analyzer GUI
3.2 The Memory Analyzer GUI

3.2.11 Snapshots

A Snapshot is a static view of the entire collection of memory usage statistics

gathered up to the instant in this Memory Analyzer session that the snapshot is
taken. Static means it can no longer be updated, even though data collection

continues and is displayed in the live data views.

You can take a snapshot from any of the four main views described above using
the Memory Analyzer > Snapshot menu command. This causes all the memory
usage data collected from your target to be copied to a unique temporary file. It is
initially displayed in a new Aggregate view, but you can then display it in any of
the other views, just as with live data. The only thing you cannot do in a snapshot
view is take another snapshot.

Taking a Snapshot
To take a snapshot, select the Snapshot icon on the Workbench toolbar. The

captured data is then displayed in a new perspective view with a unique
identifying time stamp tab (circled) at the top, as in this example.

\Qnapshot Identification

@ wxsimD@syl-grood-d1, MemScope @ Snapshat of vxsim0@svl-grood-d1, 11:07:51 PDT, 0S/07/07 &3 =0
Aggregate Allocations Based on Task, Process, an
Task | Process I Call Stack. | Alloc # | Free # | Current # | M. * | Current Bytes IA
tShellof0x104a0780) veworks <shellTask ... shellnternalFu... 1 o 1 120000 120000
tShell0f0x104a0780) viworks <shellTask ... viledRead= 2 1 1 1286 1286

2 2 1] 1064 1]
tShell0f0x104a0780) wviWorks <shellTask ... stdioFpCreate = 1 1] 1 a0 a0
tShell0f0x104a0780) wviWorks <shellTask ... stdioFpCreate = 1 1] 1 a0 a0

1 1 1] 32 1]

1 1] 1 24 2

1 1 o 21 o
tShell0i0x104a0780) wviworks <shellTask ... shelllnternalker... 1 o 1 g g —

z z] 4 (i —

' ' n a n
Individual Allocations For the Selected Row Above
Alloc Timestamp | Start Address | Free Timestamp | Free Task | Free Call Stack. | Allocation Size
Mon 09:55:38, 167 0:x103ae0c8 Motk free'd 24

Summary Yiew | Aggregate Yiew | Tree Yiew | Time Wiew | Fragmentation View

53

Wind River Workbench Memory Analyzer
User's Guide, 3.0

The new perspective view is initially opened in the same tab view as the one in
which the snapshot was taken, but you can display the snapshot data in any of the
other views, the same as with live data.

Saving a Snapshot
Snapshot buffers are temporary, and will be lost when Memory Analyzer exits
unless you save them. To save a snapshot buffer, follow these steps:
1. Select the Save icon to open the Save dialog box.
2. Enter a unique filename in the file-selection box.

3. Select OK to save the snapshot data to the file.

Viewing Snapshots From a Previously Saved File

To load and view a previously saved snapshot, follow these steps:
1. Select the File > Open File menu command.

2. Inthe Open File dialog box, navigate to the desired file and select OK to load
it.

Memory Analyzer opens the selected file and displays its contents in a new
Aggregate view. The time stamp identifies the snapshot by showing when it
was taken.

Any number of snapshots may be open simultaneously, allowing you to perform
comparisons of statistical data. Each snapshot view appears and operates nearly
identically to its corresponding live view. Data collection and analysis continues
when a snapshot is taken, but new data cannot be added to the snapshot once the
snapshot has been taken. The only thing you cannot do in a snapshot view is take
another snapshot.

NOTE: Even though the snapshot is always initially displayed in the Aggregate
view, it contains all the data collected up to the time of taking the snapshot.
Therefore, the snapshot data can be displayed in any view or mode, exactly as with
the original data.

54

3 The Memory Analyzer GUI
3.2 The Memory Analyzer GUI

Viewing the Database File

As data is being collected and analyzed by the Memory Analyzer GU]I, it is also
being stored as a streaming data file of memory allocation statistical data from the
target, on a persistent storage medium. Like a snapshot, this default streaming
data file can be opened and viewed on the GUI using the File > Open File menu
command, even while the data continues to be generated and stored in the file.

The unique feature of this file is that it is created, and is being saved, on a storage
disk, in real-time as the data is being generated, rather than keeping the generated
data in memory until it is later saved out to a disk file. If either the target or GUI
system should fail at any point, all the data collected and analyzed up to that point
is saved on disk for replay and continuing analysis.

The file can be opened for display in the Memory Analyzer GUI (similar to a
snapshot), or copied to another file to be saved and replayed later in the GUI. This
file has a default structure composed of the following elements:

mem-target name-timestamp .madb
where,

target name is the name of the target from which the data is being derived

timestamp is a timestamp constructed of these elements:
month/day-hhmmss .madb

where,
month/day is the current date, formatted, for example, as Aug05
hhmmss is the time, formatted, for example, as 114230

These numbers represent the date and time when the target program was started,
and serve to create a unique filename without any user intervention. You can,
however, substitute your own filename, formatted in any desired manner, but it

must have the.madb extension in order to be recognized as the streaming data file.

This data file will be terminated with EOF whenever Memory Analyzer is either
deliberately shut down, or otherwise experiences a failure. When Memory
Analyzer is invoked again, a new streaming data file will be opened, as described
above. A streaming data file can be opened and reviewed at any time by simply
using the File > Open File menu command.

55

Wind River Workbench Memory Analyzer
User's Guide, 3.0

3.3 Menus and lcons

Menu Bar

The individual views that comprise Memory Analyzer are:

* Memory Analyzer main view
* Details Viewport view

* Unresolved Symbols view

* Analysis Console view

There are a number of menu items in the Workbench menu bar that pertain to
these Memory Analyzer views, at least in part if not entirely. In addition, some of
the Memory Analyzer views contain icons for actions applicable to that view.
These items are described in the sections that follow.

The functionality specific to Memory Analyzer is accessible from the following
Workbench menu items:

* Memory Analyzer
* Window

Memory Analyzer Menu ltem

This Workbench menu item appears when Memory Analyzer is started, and it
contains the commands related to Memory Analyzer as described here.

® Memory Analyzer - vusim0@syl-grood-d1, Memory Analyzer - Wind River Workbench
File Edit Mavigate Search Project Analyze | Memory Snalyzer Run ‘Window Help
Expork...
|84 Snapshot

The commands in the Analyze menu include:
= Export
Dumps raw memory allocation data to a text formatted file.

Opens a browser window where you enter or select a memory allocation data
file to be saved in tab-delimited ASCII format, that can be used for further
analysis such as in a spreadsheet application. After a header, each record

56

3 The Memory Analyzer GUI
3.3 Menus and Icons

contains the task ID, memory address, size, and the call stack of the function
that allocated the block.

NOTE: Exported data cannot be re-loaded into Memory Analyzer; use File >
Save for that purpose.

= Snapshot

Creates a static view of your target memory usage in a new Aggregate view.
For details, see 3.2.11 Snapshots, p.53.

Window Menu Item

This Workbench menu item contains commands to open different perspectives,
well as commands to open specific views. The Window commands applicable to
Memory Analyzer include:

* Open Perspective
= Show View
= Preferences

Each of these Window commands is expanded and described separately below.

Open Perspective Menu ltem

ary Analyzer Run | Window Help

Mew Window
MNew Editor
] ld T Application Developrent
Shawy iew 4 @ Code Coverage Analyzer
Customize Perspective. .. R Device Debug
Save Perspective As... w4 Memory Analyzer
Reset Perspective # On Chip Debug
Close Perspective = Performance Profiler
Close All Perspectives
Cther...
Mavigation L4
~ Working Sets 4

Preferences...

57

Wind River Workbench Memory Analyzer
User's Guide, 3.0

The commands in the Window > Open Perspective menu item applicable to
Memory Analyzer include:

= Memory Analyzer

Opens the Memory Analyzer perspective, which will be the initial list of views
previously shown in 3.3 Menus and Icons, p.56 above, or the specific views you
had open when you last ran Memory Analyzer.

Show View Menu Iltem

ary Analyzer Run | ‘Window Help

Mew Window
Idevy Editar:

Open Perspective

Show Yiew

_D._l Analysis Console

bl ~

Cuskomize Perspective. .,
Save Perspective As..,
Reset Perspective

Close Perspective

Close All Perspectives

Details Viewpart:
I Project: Explorer
E Project Mavigataor
EE Remate Systems
[=7] Unresolved Symbols

Mavigation

Y Other... AlHShiIFHD, O

~ Working Sets

3

Preferences...

The commands in the Window > Show View menu item applicable to Memory
Analyzer include:

= Analysis Console

Displays system and error messages generated while running Memory
Analyzer. If the verbosity level is non-zero, the Analysis Console window
also displays debug messages. There may also be error messages from the
communication connection with the target. It is described in detail in

3.2.8 Analysis Console View, p.44

= Details Viewport

This command opens the Details Viewport view. For the row currently
selected in the Individual Allocations table of the Aggregate View, it shows
allocation and free call stacks contents. It is described in detail in 3.2.6 Details
Viewport View, p.40.

58

3 The Memory Analyzer GUI
3.4 System Viewer Event Integration

= Unresolved Symbols

Lists all the symbols Memory Analyzer has been unable to resolve into
meaningful function names so far. It is described in detail in 3.2.9 Unresolved
Symbols View, p.45. Unresolved symbols are discussed more thoroughly in
Symbol Resolution, p.19.

Preferences Menu ltem

The Window > Preferences menu item, appearing at the bottom of the Window
list, opens the Preferences dialog box. It is described in detail in 3.2.10 Preferences
Dialog Box, p.46.

All menu items are also described in context-sensitive online help. For specific
information, select a menu item in Workbench and press the help key for your
host.

Icons

The description of icons in the various Memory Analyzer views can be found by
selecting the icon and pressing the help key for your host.

3.4 System Viewer Event Integration

Memory Analyzer is integrated with the Wind River System Viewer to allow you
to view memory allocation and free events directly in a System Viewer window.

59

Wind River Workbench Memory Analyzer
User's Guide, 3.0

HolkipanderseeventLog.0rrr - Wind River System Viewer

e View Bookmarks Tools Help

I Event Graph Event Table

@ [1 eventlLog O wr BxWorks & x)

9 45 Interrupts
£ Interrupt12

@ & wxKernel (0xc150174)
B funcCallTask (0xc749084) i
B tjobTask (Oxc5dd7cd) ‘
B funcCallTask (Oxc748704) 3
B 1WdbTask (0XCEAfB94)
B 11 (0xC749084)

B thetTask (0xc5ezh10)

= pmlink (0xr74493r1

HE - ? Eventintensity ¥ | & & | « » « » S B IE | & & @Qfsx v

-0l x|

EC A B PSS

Lock

Event ‘E memScopeAlloc - O bext
Prev
Container: ‘thbTask (OxcBdfE94) v‘ (]
Bookmark
Object: 24 =
Help
Time: #10595
Close

Parameters:
address=0x0c743dc0
Panition=0x0cl4etal
size=24

A

A

Memory Analyzer
Events

— Show Event details

You can see the memory allocation and free events alongside other operating-
system events, such as task switches and semaphore calls.

For details on initializing and running the Wind River System Viewer, consult the

Wind River System Viewer User’s Guide.

Automatic System Viewer Support

When you load Memory Analyzer automatically from Workbench (see 2.3 Starting
Memory Analyzer, p.13), the Memory Analyzer Setup code detects whether your
target kernel supports System Viewer. If so, the Memory Analyzer target libraries

60

3 The Memory Analyzer GUI
3.4 System Viewer Event Integration

are initialized with System Viewer support. With this support enabled, Memory
Analyzer will post a System Viewer event for every call stack trace record.
Memory allocation and free events appear as two different types of events.

The description of events and triggers used by Memory Analyzer are found in
Appendix B. Event Dictionary. In analyzing your results, use the sequence numbers
in the System Viewer events and in the Memory Analyzer Aggregate Allocations
and Individual Allocations tables to match events with allocation and free
records.

61

Wind River Workbench Memory Analyzer
User's Guide, 3.0

62

Using Memory Analyzer

4.1 Introduction 63

4.2 Finding Memory Leaks 63
4.3 Finding Memory Hogs 68
4.4 Advanced Topics 69

4.1 Introduction

This chapter contains practical examples of the kinds of problem scenarios you can
solve with Memory Analyzer, using a step-by-step instruction format. It describes
typical problems encountered in the development of optimized software for
VxWorks and Linux operating systems, and how you can use Memory Analyzer
to analyze and diagnose these problems.

4.2 Finding Memory Leaks

Memory leaks occur when allocated memory is not freed and is no longer needed.
While each incident may only leak a small amount of memory, the total amount

63

Wind River Workbench Memory Analyzer
User's Guide, 3.0

over time may become very large. For most embedded systems, this is an
unacceptable situation; eventually, the lack of memory will cause the system to
stop functioning.

Once discovered, memory leaks are notoriously difficult to track down and
eliminate. Painstaking examination of the source code may reveal some problems,
but it is also common that the problem stems from misuse of a third-party library,
for which the source code is not available. Memory Analyzer provides a more
practical solution.

Because Memory Analyzer tracks every allocation and deallocation taking place in
a task, it can discover memory leaks or increase confidence that the system is leak-
free.If Memory Analyzer discovers memory leaks, instantaneous correlation of the
leaked memory with the exact function call and call stack that allocated it allows
the source of the leak to be identified immediately.

To detect leaks, use the following steps:
1. Setup

Start Memory Analyzer; initialize and start user application(s).
2. Test

Exercise the system.
3. Exit

Stop user applications (on systems where this is feasible).
4. Analyze

Determine if outstanding allocations are leaks.
5. Iterate

Repeat from step 1 or 2, if desired.

These steps are described in greater detail in the following paragraphs.

Setup

After starting Memory Analyzer and initializing and starting user code, data
begins to be displayed in the Aggregate view, and may quickly fill the screen. To
reduce the amount of displayed data when searching for memory leaks, you can
instruct Memory Analyzer to hide all allocation rows that have been freed. Do this
using the Show outstanding allocations only check box in the Aggregate tab view
of the Preferences dialog box, opened with the Windows Preferences menu
command, as in the following example.

64

4 Using Memory Analyzer
4.2 Finding Memory Leaks

@ wxsimO@svl-grood-di, Memory Analyzer £3 =0
Aggregate Allocations Based on Task, Process, and Call Stack
| Process | Call Stack. | Alloc # | Free # | Current # | M. = | Current Bytes |
vaworks <shellTask ..., 1 1] 1 2345678 2345678
wiwWorks «<shellTask ... 2 1 1 1286 1286
tShelld0x104a0780) waworks <shellTask ... 2 2 o 1064 o
tShelld0x104a0780) wvxworks <shellTask ... 1 1] 1 a0 a0
tShelld0x104a0780) wvxworks <shellTask ... 1 1] 1 a0 a0
tShelld0x104a0780) wvaworks <shellTask ... 1 1 ¥ 32 1]
tShelldi0x104a0780) waworks <shellTask .. 1 o 1 24 24
tShelldi0x104a0780) waworks <shellTask .. 1 o 21 o
tShelld0x104a0780) waworks <shellTask ... 1 o 1 g g
tShelld0x104a0780) wvxworks <shellTask ... 1 1] 4 1]
® Preferences gl =|
yvpe filter bext Memory Analyzer - - |
[#- General
. Binary Parser General Aggregate/view |Tree View I Time Yiew | Fragmentation Yiew I Databa
-G+ I'| show outstanding allocations anly
[+-Help
- InstallfUpdate ME/TIDI’V Analyzer i
- 0D Comnmand Sl Alloc #
[#- Remate Systems (ineral Aggregate | Tree Yiew | Time View
- RS5fAkom Feed ' : s
E Run::DeTJn:g e > v Bhow outstanding allocations only:
B Team |'\T_0p Table Columns:
- Terminal i 1 AN = =
| il n 3 | il L | il . | il Il
@ wxsimD@svl-grood-d1, Memory Analyzek £3 =0
i Aggregate Allocations Based on Task, Processyand Call Stack
f_Task | Process | Call Stack. alloc # | Free # | Current # | M. = | Current Bytes |
ESNENDl 0 104a0750) X WOrks <SNENTASE, ... 1 i 1 2345670 2345678
tShellof0x104a0730) viworks 2 1 1 1286 1286
. tShell0f0:x104a0730) viworks 1 1 g0 =)
—=— tShell0i0x104a0780) wxWorks 1 1] g0 g0
y tShelldf0:x104a0730) vxworks 1 1] 1 24 24
) tShell0i0:x104a0780) wxWorks 1 o 1 g g
Individual Allocations For the Selected Row Above
Alloc Timestamp = | Start Address | Free Timestamp | Free Task | Free Call Stack. |
< | i
Summary Yiew | Aggregate Yiew | Tree Yiew | Time View | Fragmentation View

NOTE: Memory Analyzer only tracks memory allocated after Memory Analyzer
was started. When detecting leaks, Memory Analyzer should be started as early as
is feasible in the bring-up cycle. For most projects, it is sufficient to start Memory
Analyzer after the system has booted but before any user code is initialized and
started. If your project contains custom code within the boot phase of the system,
you may want to see 4.4 Advanced Topics, p.69.

65

Wind River Workbench Memory Analyzer
User's Guide, 3.0

Test

Because Memory Analyzer detects leaks that occur while the program is running,
it is important to exercise as many areas of the program as possible after starting
Memory Analyzer. Any available automatic test suites should be run in addition
to any available QA tests or other test material. The greater the coverage of code

and execution paths achieved by the tests, the greater the probability of exposing
leaks.

If feasible, the current Memory Analyzer data set should be analyzed after every
step of the testing process. This ensures that all allocations are understood and
their correctness is verified. In larger projects this may be difficult, but Memory
Analyzer can show the module related to each allocation if Show Modules is
selected, which may help locate the module, or group of modules, responsible if an
outstanding allocation needs to be understood.

You can add more allocations to the list by running different tests on the example.
After running these tests, you can sort the display by the Current # column by
selecting its column heading. This brings allocations that are currently outstanding
to the top of the table. At this time, any of the outstanding allocation entries are
candidates for memory leaks. Each one must be investigated and understood to
assure that no leaks are taking place.

Exit

If the application is designed to be cleanly terminated, it is easier to discover
whether an outstanding allocation is truly a leak; any intentionally unfreed
memory should be freed when the application exits. However, on many systems,
the application is not designed to quit. On these systems, the Exit step is reached
when the system is no longer allocating and freeing memory in response to system
tests.

Some systems may continually allocate and free memory; these transient
allocations should be ignored at this point (unless they seem to be always
increasing in Current #). Users with systems that do not quit may also want to
iterate, as described in Iterate, p.67, to better understand which allocations are
expected and which allocations are leaks.

Analyze

Look at all outstanding allocations in the Aggregate view to determine if they are
leaks. In addition to the call stack, the following information is available from the
table entry in the Aggregate view to help understand why this memory was
allocated:

66

4 Using Memory Analyzer
4.2 Finding Memory Leaks

» Task name and id.

* Process name.

* Number of times this allocation has been seen (Allocs #).

= Number of allocations from this entry that have already been freed (Frees #).
* Number of current outstanding allocations (Current #).

= Maximum bytes ever allocated at one time by this entry (Max Bytes).

= Number of bytes allocated currently by this entry (Current Bytes).

For more information about the Aggregate view, see 3.2.2 Aggregate View, p.26.

At this point, some knowledge of the intended behavior of the system becomes
indispensable in diagnosing the seriousness of a potential memory leak. Once you
have become familiar with the way Memory Analyzer depicts data, you can sort
large quantities of allocations to find the ones that need attention.

Iterate

It may be desirable at this point to repeat the tests. Several options are available
within Memory Analyzer for comparing the results of iterative tests:

1. Save the current data file. Open it using File > Open to view it alongside
newly collected data.

2. Use the Snapshot facility to open a snapshot of the current counts.

3. Save the current data file using File > Save. Quit Memory Analyzer, then
restart it. This completely clears out all data, instead of simply zeroing the
counts.

After using these methods of clearing out the current data, either repeat from a
clean system boot or repeat the tests from the current, quiescent state. Then place
the results from the runs next to each other, and examine to see if the data is
comparable. Potential leaks that appear in one test run but do not appear in
another warrant closer inspection.

67

Wind River Workbench Memory Analyzer
User's Guide, 3.0

4.3 Finding Memory Hogs

Memory hog detection may help identify the programming team responsible for a
module or task that is consuming too much memory. It may also be used to verify
that everyone is staying within the limits established at design time.

Tasks That Hog Memory

You can observe Memory usage sorted by task in the Tree view, where every entry
directly below the root node (Total) is a task. Use these entries to see how much
memory is being used by each task.

Functions That Hog Memory

Detect functions that hog memory by using the Aggregate view and sorting on
either the Max Bytes column or the Current Bytes column, depending on which is
most interesting. This causes memory hogs to rise to the top.

Inefficient Memory Allocation Patterns

Using Memory Analyzer to trace memory allocation and deallocation patterns can
help to show up inefficiencies that, when optimized, could reduce overall memory
usage requirements.

Accounting for Peak Usage

Some systems need to be optimized to handle the common case, but must also
handle the peak or burst memory needs without losing any data. You can use the
Time view graph to examine peak memory use and determine if the system can
provide enough memory for this scenario.

The Time view graph shows at what point the maximum memory usage was
reached, how quickly it was reached, what allocations contributed to it, and how
long memory usage was maintained at that level.

68

4 Using Memory Analyzer
4.4 Advanced Topics

4.4 Advanced Topics

Detecting Leaks in the Boot Process

For VxWorks only, this example shows how to incorporate the Memory Analyzer
target libraries into the kernel image to allow data to be collected very early in the
boot process. This enables detection of leaks that might otherwise go unnoticed.

The following process is conceptually simple; putting it into practice depends on
the complexity and flexibility of the build process employed by the user system:

1. Load the necessary application libraries in the bring-up process, or compile
them directly into the kernel. The required libraries are the same as those
loaded by Memory Analyzer when started from Workbench. These can be
viewed by typing moduleShow into the Wind Shell after loading Memory
Analyzer.

2. Inserta call to Memory AnalyzerInit with the proper parameters somewhere
early on in the user bring-up code. This initializes the target-side code
necessary for Memory Analyzer to operate, and allow the GUI to connect. To
guarantee that enough time is available for the GUI to connect, it may be
desirable to have the system wait for a few seconds at this point, if possible.

3. Load the GUI before booting the target system. If data is collected before the
GUI is connected, and the target side queue overflows, data will be lost. But if
the GUI is loaded first, it will connect as soon as the target side is initialized,
and therefore no data will be lost.

4. Boot the system, then Memory Analyzer begins collecting data as soon as the
target side is initialized.

Detecting Leaks in Processes

Both Linux and VxWorks support the classic Process Model. VxWorks calls its
processes Real-Time Processes (RTPs). All resources, including memory, in a
process are recovered and returned to the operating system when the process is
deleted.

Each process has its own memory region allocated to it when it is created. During
process creation, some memory from the kernel memory heap may be added to the
process memory region so that all tasks and modules may be loaded and executed.

When a process dies or is deleted, the memory that was allocated to the process
from the kernel heap is recovered for use by other processes. However, it is not
returned to the kernel heap and, therefore, appears as memory leaks in Memory
Analyzer. In VxWorks, the memShow() routine also shows these apparent leaks.

69

Wind River Workbench Memory Analyzer
User's Guide, 3.0

These are not leaks, rather, they are a matter of book keeping and are completely
harmless. Remember that the operating system recovers all process memory and
other resources for reuse when a process dies or is deleted.

To find memory leaks within your processes, filter the collected data by enabling
the Show Outstanding Allocations Only option (see Aggregate Allocations Table,
p-27), then look for your user tasks in the Aggregate Allocations table. In that
table, concentrate only on allocations directly attributable to the routines in your
task.

Additional Help

For additional advanced help in locating memory leaks, see the Error Detection and
Reporting chapter (ED&R) in either the Wind River Application Programmer’s Guide,
or the Wind River Kernel Programmer’s Guide. There are detailed references in this
chapter to the many procedures and options for configuring, displaying, and
clearing error records, and for configuring system response to fatal error records.
Also described is a set of convenient macros you can use in your source code to
generate error messages, and system response to fatal errors.

The Wind River compiler (Diab) contains yet another set of capabilities (RTEC).

70

Troubleshooting

5.1 Introduction 71
5.2 Messages 72
5.3 General Troubleshooting Tips 74

5.1 Introduction

This chapter addresses the following problem areas:
* Memory Analyzer status and error messages (5.2 Messages, p.72).
= Typical problems (5.3 General Troubleshooting Tips, p.74).

If you get error messages, or are having problems getting Memory Analyzer to
work, check the error messages and troubleshooting tips in this chapter to see if
they resolve your problems. If you are still unable to get Memory Analyzer to
work, contact Wind River Technical Support.

71

Wind River Workbench Memory Analyzer
User's Guide, 3.0

5.2 Messages

Target Errors

Message traffic within Memory Analyzer, and with its external parts, is formatted
and displayed in a variety of places. Status messages appear in a Analysis Console
view (see 3.2.8 Analysis Console View, p.44). Warning messages can appear in the
Console view, but more often appear in dialog boxes. Error messages are
displayed in the Console view.

Some of the important status, warning, and error messages, including
interpretation and helpful suggestions where needed, is included here.

72

Connection
The following messages may appear at the left-hand end of the status bar:
Unconnected

Memory Analyzer is not connected to any target server.

Connecting to targetServer

Memory Analyzer is in the process of connecting to the target server, where
target server is the name of your target server. If the message remains for more
than a very short time, it probably means you need to reload the target
libraries.

Connected to targetServer
Memory Analyzer has successfully attached to target server.
Overflow

No errors

The message queue on the target that buffers allocation records has not
overflowed.

Overflow

The message queue on the target that buffers allocation records has
overflowed. Overflow counts are reported to the standard output of the
analyzed task and to the Memory Analyzer Console. For more information on
overflows, see Detecting Leaks in the Boot Process, p.69.

Host Errors

5 Troubleshooting
5.2 Messages

Data Collection

No errors

The message queue on the target that buffers allocation records has not
overflowed.

WARNING: some data lost

Data has been lost, but collection is still proceeding. Select this message in the
status bar to see a more complete description of why data was lost and
recommended steps for avoiding data loss in the future.

ERROR: not collecting data

Data may have been lost, and an error has occurred that prevents any further
data from being collected. Select this message in the status bar to see a more
complete description of what went wrong and recommended solutions. Note
that if you receive this message repeatedly, it may indicate a condition that
requires contacting Wind River Technical Support.

In the process of starting and running Memory Analyzer, various error messages
may appear at certain times. Some of these messages describe actual errors
resulting from various issues. Some messages only describe potential errors, or
errors in unrelated or non-crucial tasks. This section lists the major or most
frequently encountered error messages in both the actual and benign categories.

VxWorks Errors

Loading

If you have trouble loading the object files onto your VxWorks target, such as
the error message:

API_FILE_NOT_FOUND

check the following:
* You are able to ping the target over the network.

» If you are using NFS, check that the file system is mounted (use
nfsDevShow).

* Your target has permission to read the object files from the file server.

73

Wind River Workbench Memory Analyzer
User's Guide, 3.0

If none of these suggestions resolve the problem, it may be that your target system
is slow, or has intermittent response. Try loading the Run-Time Analysis Tools
modules manually using a shell window and the 1d command.

= Connection

Lost connection to target server.
Memory Analyzer has lost its connection with the target. Possible causes
include the following:
= The target was rebooted.
* The network connection was interrupted or disconnected.

= The target server is busy, or the machine running the target server is busy.

Linux Errors

= insmod

Failed to execute insmod: No such file or directory

This message in your target terminal window, indicates that the insmod and
rmmod programs are not in your path, as noted in GUI Issues on Linux, p.81.

5.3 General Troubleshooting Tips

This section organizes problem areas by the major components in which they
occur.

Issues With the Target

= Target Connection Lost

If the target connection is lost, the message
Lost connection to target server (mode)

appears in the status bar, the status bar message changes to Unconnected, and
the File > Connect to and File > Reconnect commands on the menu bar

74

5 Troubleshooting
5.3 General Troubleshooting Tips

become available. They remain available until you either successfully attach to
a target or exit Memory Analyzer. The Connect to command lets you select
any target, while Reconnect attempts to connect only to the previously
connected target.

You may also receive the following message in the target shell:

Link ERROR: Broken Pipe

Error sending records, reconnecting...
If so, it means the target has replied back to the host, and the host has shut
down the target. In this case, the error is possibly caused by the target not
responding to the host within the specified target timeout period. You can
adjust priorities and timeouts as follows, then retry.

Increase the priority of Memory Analyzer to a value just below the
tWdbTask priority, and above the tNetTask priority. For instance, if
tWdbTask priority is at 3 and tNetTask priority is at 50, set Task Priority
in the Connect to Target dialog box to 9, reconnect, and try again.

Youmay also need to change the Backend request timeout value from the
default 3 sec. to a higher number, such as 10. Do this (with your target
disconnected) by right-clicking your target server in the Remote Systems
view, then selecting Properties to open the Target Connection dialog box.
In this dialog box, use the Advanced target server actions group in the
Target Server Actions tab view to modify the timeout value as indicated
above.

Call Stack Display (VxWorks Only)

Memory Analyzer does not appear to be displaying the proper call stacks for
the memory-allocation records.

Cause #1 — The target server was not started with the -A option.

Solution #1 — You must start the target server with the -A option. This ensures
that the target server loads local symbols in addition to global symbols. If this
option is not selected, the call stack traces pick the nearest global symbol for
calls from local symbols. For more information, see 2.2 Requirements, p.10.

Cause #2 — You did not manually load libraries with local symbols, so
Memory Analyzer instead shows function names that are the nearest global
symbols.

Solution #2 — Make sure you load your libraries with local symbols using the
ldil«< ...

command.

75

Wind River Workbench Memory Analyzer
User's Guide, 3.0

76

Cause #3 (for x86 targets only) — Your target kernel was possibly compiled
with frame pointers disabled.

Solution #3 — Frame pointers enabled is the default with the compiler, but
make sure you did not disable them when you last compiled. If you did, you
must recompile your code with frame pointers enabled (see VxWorks, p.10).

Target Kernel Start and End Addresses

When starting Memory Analyzer on VxWorks, and DFW is unable to
determine the target kernel text start or end address, a dialog box opens with
the following warning:
Unable to locate the start and/or the end of kernel text address,
which the tool needs in order to successfully connect to the target.
Please enter the values manually below:
Enter the start and end addresses manually in the fields provided, and
continue the startup process. However, if you do not know the exact layout of
your target memory and cannot supply correct values, you must cancel the
connection and rebuild your VIP project, adding to it the following symbols:

wrs_kernel_ start_text
wrs_kernel_end_text

This enables DFW to provide the needed addresses.

Degraded Performance while Running RTPs

If your target code contains RTPs, and you start them running only after you
have connected Memory Analyzer, you may experience an unacceptable level
of slow response from Workbench and the target. This could be manifested by
the RTPs taking a very long time (up to several minutes) to become fully
operational, and even longer for symbols to begin showing up in Memory
Analyzer.

You may also notice that some symbols are unresolved when the target code
is first started. This is because the first calls into the new RTP’s memory library
are captured by the Memory Analyzer GUI before the RTP task ID and
symbols have been registered by Workbench.

Under certain conditions you may experience an even greater lack of response.
If your RTP spawn time limit is short (say 30 seconds or less), you will see the
message,

Failed to launch RTP name.
If the spawn time limit is longer and the RTP actually launches, you may see,

Target OS object not found.

5 Troubleshooting
5.3 General Troubleshooting Tips

A simple workaround is to increase the priority of the RTP and try again.
However, you must follow these steps to be successful:

Disconnect your target if it is connected.

b. Edit the following values in the Advanced target server options group of
the Target Server Options tab view in the target Properties dialog box:

— Set the RTP spawn time limit to 120 seconds or greater, and the
backend request time limit to 30 seconds.

— Increase the RTP’s initial task priority from the default 100 to a value
of about 60 (higher than MemLink but lower than the network task) to
enable the RTP to execute cooperatively with Memory Analyzer.

These are recommended values. Note that the time outs may have to be
increased and/or the RTP priority decreased if the recommended values
do not work.

This procedure works because the slow-loading RTPs are loaded, or nearly so,
before Memory Analyzer starts and begins its memory-intensive
communication activities over the target connection. This workaround also
prevents the unresolved symbols behavior described above.

CAUTION: If you do not attend to these items, the RTP initialization task may
not receive sufficient CPU time to complete its execution before the RTP
spawn time limit expires, and thus causing the host to stop all tasks running in
the RTP.

For more information on this topic, see Wind River Workbench User’s Guide:
RTPs and Shared Libraries from Host to Target, and also check Workbench online
help for spawn time limit while building your RTP task.

Unknown Signals

Memory Analyzer uses real-time signals within the context of analyzed
processes. This can have the following repercussions:

— If you are running a process under a debugger, and it reports catching
unknown real-time signals, you can just ignore these messages and
continue.

— The signals used by Memory Analyzer are hardcoded as SIGRTMIN+3
through SIGRTMIN+5. If your target application installs handlers for these
signals, the results will be unpredictable. Note that the GNU libc already
uses SIGRTMIN through SIGRTMIN+2, so in general you are better off
referencing your signal numbers from SIGRTMAX.

77

Wind River Workbench Memory Analyzer
User's Guide, 3.0

78

insmod and rmmod

The programs insmod and rmmod must be in your user PATH because
MemAgent depends on them. They must also have execute permission
(logging on as root gives this permission by default).

Verbosity Effects

Many status messages are hidden during normal operation. If you are having
problems, increase the verbosity of the host and/or target side components to
gain some insights. Verbosity can be set when you launch Memory Analyzer,
using the MemAgent Setup Options dialog box, displayed when you connect
to your target.

MemAgent trouble loading kernel modules

If MemAgent has trouble loading the necessary kernel modules, examine your
syslog for lines beginning with Run-Time Analysis Tools. These messages
will provide more detail about the failure.

Processes and Shared Memory Reporting

Top reports the memory footprint of instrumented processes increasing over
time. The MemAgent process uses shared memory to communicate with
analyzed processes. As the analyzed processes place data into the shared
memory region, they must periodically map more memory into their address
space. So although the address space reports using more memory, actual
memory usage does not increase.

kgdb Support

The Memory Analyzer target binaries can handle non-Wind River Linux
kernels with no user intervention, whether they support kgdb or not.

Wind River Linux kernels support kgdb by default. The Run-Time Analysis
Tools target binaries can handle those kernels with no kgdb-related user
intervention. However, you may need to rebuild KAL For details, see A. Kernel
Abstraction Layer (KAL).

If you have any doubts about your particular Wind River Linux kernel, boot
the kernel and check the dmesg or the /var/log/messages output for any
mention of kgdb. If there is any mention of it, your kernel does support it.

For Wind River Linux kernels that do not support kgdb, you must execute the
following steps in order to use Memory Analyzer with your Wind River Linux
target kernels:

5 Troubleshooting
5.3 General Troubleshooting Tips

a. Rename Memory AnalyzerModule.ko to Memory
AnalyzerModule.ko_orig

b. Copy Memory AnalyzerModule.ko_no_kgdb to Memory
AnalyzerModule.ko

To support Wind River Linux and kgdb, module versioning has been disabled
in the build of target kernel binaries. Because of this, you may see the following
system messages during target reboot, but they may be disregarded:

KAL: no version for "struct_module" found: kernel tainted

The above message is displayed because the default KAL is compiled with no
version info. If you recompile KAL, you do not see this. If you do not have

versioning turned on in your running kernel, you also do not get this message.

KAL: module license 'ScopeTools License Agreement' taints kernel
You will always see this message.
KAL: No versions for exported symbols. Tainting kernel.

The above message is only displayed if KAL is not recompiled, or you have
versioning turned on in your running kernel.

MemoryAnalyzerModule: no version magic, tainting kernel.

This message is generated for all Wind River Linux 2.6 kernels.

If you have recently modified the Run-Time Analysis Tools target binaries you
are using, be sure to reboot your target to start with a clean running target
kernel system before using Run-Time Analysis Tools. If you have problems
with Run-Time Analysis Tools target binaries for one of the tools, like Memory
Analyzer, and you want to switch to using a different tool, for example
ProfileScope, you should reboot your target to clean out anything left in the
target memory by the first Run-Time Analysis Tools tool.

Cannot Select a Linux Process

If you try to select a process in the Process Selection dialog box, and get a
Failed to patch notice due to routines such as kmalloc and vmalloc, the reason
for the error is that the process is a kernel thread. For Linux targets, Memory
Analyzer supports the analysis of user-space processes only. Dynamic
allocations that occur in a kernel memory region cannot be analyzed by
Memory Analyzer.

79

Wind River Workbench Memory Analyzer

User's Guide, 3.0

Issues With the GUI

Viewing Source Code

Module name not available. Unable to show source code.
function name is not found in directory.
No debugging information for object module module.

You may see one of these errors when trying to display source code (as
discussed in 3.2.7 Source Code Viewer, p.41). If the module name cannot be
found, there is no fix available, and source code cannot be displayed. For the
debugging information error, make sure your source code has been compiled
with debugging enabled.

Generally, View Source Code functionality needs some configuration and
setup before it can work properly. Check to be sure that the following steps
have been taken:

a. Modules must be compiled with debugging information. If they are not, a
message will inform you that the module does not contain debugging
information.

b. The source paths to the modules must be properly configured in the
Preferences dialog box; for detailed instructions, see 3.2.10 Preferences
Dialog Box, p.46. This is only necessary if the path to the source code as
mounted on the host machine is different from the path where the module
was compiled. For example, this can occur when the module is compiled
on a Solaris machine but the host is a Windows machine.

View Source Code functionality only works with object files containing Wind

River accepted symbol and debugging information. Some compilers and

target architectures may not generate this information.

Memory Analyzer Database Problems

80

Database Deleted

When you start Memory Analyzer after having exited at least once previously,
you will be prompted in the login procedure to save the data generated by the
previous Memory Analyzer session. If you try to access the Memory Analyzer
database and it is cannot be found anywhere on disk, you may have neglected
to save the database before proceeding to start up Memory Analyzer. Each
Memory Analyzer invocation prompts you to save the previous session’s
database - it is not automatically saved, and will be lost if you do not save it.

For more information on the Memory Analyzer database, see Database Tab
View, p.51.

5 Troubleshooting
5.3 General Troubleshooting Tips

Memory Analyzer Will Not Connect

If Memory Analyzer will not connect, it may be that the previous database file
cannot be deleted for some reason. If the previous database file is in use (for
instance, if you are running SQLITE on the database), then Memory Analyzer
will not connect.

GUI Issues on Linux

General Tips

Symbol Resolution

If the data collected by Memory Analyzer includes incorrect symbols, there are
a few common possibilities:

— Thelibrary or executable containing the incorrect symbols has been either
partially or completely stripped. Memory Analyzer parses the ELF symbol
table to correlate process addresses with actual functions. If the symbol
table no longer contains the function that corresponds to a set of
addresses, those addresses will be attributed (incorrectly) to the next
nearest symbol.

- Memory Analyzer is parsing the wrong file for symbols. The tool searches
each of the object paths given by the user, in order, to find the file which
has the symbol information needed to resolve the raw addresses. If a
library or application has the same name as the application you are
analyzing, and resides in an earlier entry in the object path list, it will be
parsed instead of the correct one. Depending on how similar the two files
are, this can result in incorrect offsets or incorrect functions altogether.

This section lists suggestions for dealing with the following problems:

Connecting to a target.

Staying connected to a target.

Getting data from a target.

Unexpectedly dropping a connection to a target.

Run-Time Analysis Tools target modules and/or user-space programs and
daemons crashing.

A target crashing.

81

Wind River Workbench Memory Analyzer
User's Guide, 3.0

Suggestions

The following general guidelines are offered to help keep you from problems, and
as procedures to follow if you do have problems:

= Ifyouhave recently modified the Run-Time Analysis Tools target binaries you
are using, be sure to reboot your target to start with a clean running target
kernel system before using any of the Run-Time Analysis Tools. If you have
problems with Run-Time Analysis Tools target binaries for one of the tools,
like Memory Analyzer, and you want to switch to using a different tool, for
example ProfileScope, you should reboot your target to clean out anything left
in the target memory by the first Run-Time Analysis Tools tool.

= When you enter your parameters into the Connect To Target dialog box be
sure that you set the Verbosity to 3, which is the most verbose. This causes
trace messages and other diagnostic info to be displayed in the target terminal
window where you started it.

= Other important Run-Time Analysis Tools-related system-level diagnostic
messages might appear in the following places:

The /var/log/messages file.
The /var/log/kern.log file.
The dmesg program.

The syslog.

Be sure to collect these messages with the Help > Collect Log Files option,
and submit them to Wind River Technical Support with your Run-Time
Analysis Tools-related target system issues.

* In the Memory Analyzer perspective there is an Analysis Console window.
You can increase the verbosity in this window by selecting the drop-down
arrow to the right of the yellow "!" icon in the toolbar and selecting Debug-hi.

Known Issues and Workarounds
The following are issues encountered in setting up and testing various target and
host combinations, along with suggested workarounds, if any
= View Source feature displays incorrect offset

The View Source feature may not display the correct offset into the currently
running or highlighted function.

82

5 Troubleshooting
5.3 General Troubleshooting Tips

View Source feature stops working

The View Source feature of Memory Analyzer may stop working after a while
and new symbols are no longer resolved. This can occur if you choose to view
source on an object that has both a standard and dynamic symbol table, (that
is, the symtab and dynsym sections) then request symbols from an object that
has only one of the two sections; typically this happens if you view source
using Memory Analyzer relatively soon after connecting it to a target. To work
around this issue, try the following;:

= Use only objects that either include both symbol tables, or only use the
same symbol table type.

* Only use the View Source feature after the tool has analyzed the bulk of
the target objects you expect to be used.

» Use View Source on a function that resides in an object that only has a
dynamic symbol table directly after Viewing Source on a function residing
in an object that has both symbol tables.

= Disconnect and reconnect the faulting tool when the error occurs.

WR Linux threads are all analyzed

For Linux 2.4 target kernels, threads are treated as regular processes. So if you
run a program that has four threads in it, there will be four entries for that
program in the Memory Analyzer Process Selection dialog box. Each entry
has the program name, and also has a different process ID (pid). If you select
any of these threads to be analyzed with Memory Analyzer, all of the threads
will be analyzed.

For Linux 2.6 target kernels, threads are treated as lightweight processes that
are grouped together under the pid of the initial process. So in the

Process Selection dialog box there is only one entry for a multi-threaded
process. Selecting that one process entry to be analyzed causes all threads
running for that process to be analyzed.

Memory Analyzer and debugger running together may crash process

Using Memory Analyzer on a process that is currently being executed by the
debugger can cause the process to crash. The workaround is to use either the
debugger or Memory Analyzer, but not both together. This happens on both
PowerPC and x86 targets.

memrun fails with stripped programs

memrun fails to collect data for stripped programs. A stripped program does
not have a main() symbol, and thus memrun cannot hold the program at main

83

Wind River Workbench Memory Analyzer
User's Guide, 3.0

84

for patching before the program can run and collect memory allocation data
for it.

VxWorks simulator configuration for TCP/IP

VxWorks simulators require special configuration to enable a TCP/IP
connection. If you try to connect Run-Time Analysis Tools to a simulator using
TCP/IP, you might see one of the following messages:

Target server could not get ip address of target.
SVR_TARGET_ UNKNOWN

Failed to get target's IP
LINK ERROR: Failed to connect to target, giving up

Unable to obtain IP address from the target server
vxsim0@xxxx.

All of the tools offer the wtx connection type also. You can use that instead of
TCP/IP to connect to your simulator. If you want to use Run-Time Analysis
Tools with TCP/IP to connect to a simulator, you may need to rebuild and
reconfigure the simulator to handle TCP/IP. For more information, refer to the
Wind River Simulators User's Guide.

Only kernel level heap recorded by VxWorks simulator

On a VxWorks simulator, Memory Analyzer records only invocations of the
kernel level heap allocation functions.

High-memory PPC target may crash after some errors

If you are using a high-memory ppc VxWorks target, and if you see errors on
your target system console such as Offset for Vector 740 out of range, the
wdbagent may crash shortly thereafter. The explanation is that by default,
PowerPC target kernels support 26-bit vector addressing. High-memory
PowerPC targets have larger memory areas and can use 32-bit extended
addressing. Kernels must be compiled with the
INCLUDE_EXC_EXTENDED_ADDRESSING option for these targets to allow
this extended addressing to happen. Memory Analyzer libraries are normally
loaded into high memory and thus require 32-bit extended addressing
support. Therefore, if you are using a high-memory PowerPC target, you must
compile your kernel with the option mentioned above. For details, refer to
VxWorks, p.10.

Memory Analyzer does not work on Linux with wrDiagnostics

Memory Analyzer does not work on a Linux platform with wrDiagnostics. It
displays the following errors on the target during Memory Analyzer launch:

5 Troubleshooting
5.3 General Troubleshooting Tips

*ScopeTools ERROR * init_module(396) * failed to install trap-handler
KAL: file operation weren't properly unregistered!
KAL: unregistering lingering ScopeTools drivers...

85

Wind River Workbench Memory Analyzer
User's Guide, 3.0

86

Kernel Abstraction Layer (KAL)

A.1 Introduction 87
A.2 Basis for Need 87
A.3 Procedure 88

A.4 Known Issues and Workarounds 92

A.1 Introduction

The kernel abstraction layer, or KAL, is a script used by a Linux target installation
to resolve any binary incompatibilities that might exist between the Memory
Analyzer kernel and a modified Linux kernel.

A.2 Basis for Need

If you know any of the following conditions exist, you must relink the Run-Time
Analysis Tools KAL.ko kernel module with your Linux kernel:

* You are using Run-Time Analysis Tools for the first time on a Linux target.

87

Wind River Workbench Memory Analyzer
User's Guide, 3.0

* You have modified or reconfigured your Linux target kernel in any way.
* You are using a Linux distribution from another vendor on your target.

For any of the above conditions, you must recreate the Run-Time Analysis Tools
KAL ko kernel module to match your Linux kernel, and to resolve any binary
incompatibilities. You do this using a special KAL makefile and kernel module
supplied with Workbench. This module performs the following actions.

— Copies the correct Analysis Tools target agents to your rootfs staging area.
— Builds a KAL.ko module that matches your current kernel.

The easiest way to tell if you need to make changes to your KAL configuration is
to build KAL using it. If you get compilation errors this usually indicates that the
KAL configuration needs to be modified. Looking at the source for KAL.c will
usually make it clear which feature specifications need to be changed.

A.3 Procedure

Setup

If you determine that you must relink the Run-Time Analysis Tools KAL.ko kernel
module to your Linux kernel, follow the steps outlined in the following sections.

The makefile and Linux kernel are both obtained and used by the script file:
installDir / scopetools-6.0/target/src/kal/buildKAL.sh

This script compiles the shared Run-Time Analysis Tools kernel module (KAL.ko)
to work with your customized Linux kernel using your gnu compiler or cross-

compiler. You need to provide information to this script in order for it to compile
your new KAL.ko correctly. This information is described when you run the script.

You can run the buildKAL.sh script on any host system that has all of the following
criteria:

» Linux- or Unix-like environment
= bash shell

» access to the proper toolchains and kernel source/config

88

A Kernel Abstraction Layer (KAL)
A.3 Procedure

NOTE: The buildKAL.sh script uses the bash shell interpreter program and expects
it to be in a file system location as on a Linux system (/bin/bash). This location
may be different on a Solaris system.

If you try to run the buildKAL.sh script on a Solaris system and you get an error
message about buildKAL.sh: not found, then you will need to invoke the bash
shell interpreter along with the buildKAL.sh script as follows:

bash buildKAL.sh

This should successfully start up the buildKAL.sh script.

There are also KAL configuration files available in the configs sub-directory for
several predefined configurations. You can use one of these, or you may need to
create your own KAL configuration. To create your own, choose a similar
configuration file and copy it, then modify it as needed for your configuration. For
example, if you wanted to create a KAL configuration for a Linux-2.6.11 kernel,
copy the predefined config-2.6.10 to config-2.6.11 and edit it. Modify the kernel
version number and any other feature specifications as needed. In many cases, no
changes other than the version number would be needed.

Wind River Linux 2.0 Targets

The process of initially building the KAL.ko kernel module is automated when you
build your target work space environment.

For a Workbench Interface, the commands are as follows:

— Create a new platform project

- Build All
To do this, in the Project Explorer view, expand your platform project,
right-click all, then click Build Target. This will build KAL and
include Run-Time Analysis Tools on the root file system.

or
— Build Run-Time Analysis Tools
To do this, in the Project Explorer view, expand your platform project,
open User Space Configure, select the Run-Time Analysis Tools
package, select the Targets tab, then click Build.

— Build fs
Back in the Project Explorer view, right-click fs, then select
Build Target.

89

Wind River Workbench Memory Analyzer
User's Guide, 3.0

For a Command Line Interface, the analogous commands are as follows:

— configure
— make all

or
— configure
— make linux (optional)
— make -C build scopetools (optional)
— make fs

NOTE: For a small root file system (see Wind River Linux 2.0 Targets, p.5), the
configure command in either instruction above becomes:

configure --with-template=extra/scopetools...

NOTE: The make -C build scopetools command in this procedure is optional, and
will be done for you automatically by the make fs command if it does not exist.

These commands are used to create the target workspace on your host, then create
the root file system, and build all the kernel modules (Build All), or create the root
file system and use the default kernel (Build fs, a shorter process). This work is all
done in a staging area on your host system without copying anything to the target.

NOTE: This automation of the KAL.ko kernel generation and root file system
copying is available only for Wind River Linux 2.0 targets.

If you have modified your kernel and want to rebuild it, be aware that rebuilding
your kernel does not automatically rebuild the Run-Time Analysis Tools kernel,
nor does it copy the Run-Time Analysis Tools binaries back to your target. After
you rebuild your modified kernel, execute the command:

make scopetools.rebuild

then manually copy the scopetools-6.0 directory from the buildDir/build/ directory
to your target root file system.

Other Linux Targets

The procedure is as follows:

90

A Kernel Abstraction Layer (KAL)
A.3 Procedure

After determining that your present KAL configuration needs to be modified
following the suggested scenario outlined in A.2 Basis for Need, p.87 above,
make the necessary edits.

Run the script using the following command:
buildKAL.sh

The script asks you questions concerning the availability of your gcc compiler
(or sometimes a cross-compiler) for your target, and the existence of a Linux
kernel configured and built for your target. This step compiles and links the
kernel module (KAL ko) to work with your customized Linux kernel using
your gnu compiler or cross-compiler, and places the shared Run-Time
Analysis Tools kernel module in the current directory. Note that entering a
question mark ("?") at most prompts causes help for that prompt to be
displayed.

You can run the buildKAL.sh script on any host system that has all of the
following criteria:

= A Linux or Unix-like environment.
= A bash shell.

» Access to the proper toolchains and kernel source/config.

NOTE: The buildKAL.sh script uses the bash shell interpreter program and
expects it to be in a file system location as on a Linux system (/bin/bash). This
location may be different on a Solaris system.

If you try to run the buildKAL.sh script on a Solaris system and you get an
error message about build KAL.sh: not found, then you must invoke the bash
shell interpreter along with the buildKAL.sh script as follows:

bash buildKAL.sh

This should then successfully start up the buildKAL.sh script.

There are also KAL configuration files available in the configs sub-directory
for several predefined configurations. You can use one of these, or you may
need to create your own KAL configuration. To create your own, choose a
similar configuration file and copy it, then moditfy it as needed for your
configuration. For example, if you wanted to create a KAL configuration for a
Linux-2.6.11 kernel, copy the predefined config-2.6.10 to config-2.6.11 and edit
it. Modify the kernel version number and any other feature specifications as
needed. In many cases, no changes other than the version number would be
needed.

91

Wind River Workbench Memory Analyzer

User's Guide, 3.0

Copy the new KAL.ko target-binary to your target file system in to same
location where you copied the other Run-Time Analysis Tools binaries for
your target.

Be sure that when you change which target binaries you are using that you
reboot your target to start with a clean running target kernel system.

KAL is designed to be adaptable to a wide range of Linux kernels. Unfortunately,
it is not possible to adapt to all of the differences between various Linux kernels or
to anticipate all of the possible future modifications. Please let us know if you
encounter a kernel configuration for which you are unable to create a working
KAL configuration.

A.4 Known Issues and Workarounds

The following are some things to be aware of when building and using the KAL.ko

file:

92

Target binaries and target kernel do not match

If you see the error output when connecting to your target using one of the
Run-Time Analysis Tools

insmod: error inserting 'KAL.ko': -1 Invalid module format

or the Oops in the following output

Found data_access@c000140c

executing: insmod

: insmod

:KAL.ko

KAL: no version for "struct_module" found: kernel tainted.

KAL: module license 'ScopeTools License Agreement' taints kernel.
KAL: No versions for exported symbols. Tainting kernel.

Oops: kernel access of bad area, sig: 11 [#1]

PREEMPT

NIP: C0004420 LR: COO3DAFO0 SP: DF299F10 REGS: df299e60 TRAP: 0300
Tainted: PF

MSR: 00029000 EE: 1 PR: 0 FP: 0 ME: 1 IR/DR: 00

DAR: E106C000, DSISR: 00000000

TASK = dedl1c790[1158] 'insmod' THREAD: df298000

Last syscall: 128

GPR0O0: 00000000 DF299F10 DED1C790 E106C000 00000553 0000001F E1062280
00000004

A Kernel Abstraction Layer (KAL)
A.4 Known Issues and Workarounds

GPR08: DFAB596C 000000A0 00000000 C085D810 22000082 10096B1C 1001CEDS8
00000000

GPR16: 7FFFF580 7FFFF910 00000003 FFFFFFFE 000000C8 FFFF9008 00000000
0FFC9454

GPR24: 7FFFE436 10091F38 00000002 C02F0000 30000008 10091F38 CO2F1FA0
E106B7EQ

NIP [c0004420] flush_icache_range+0x24/0x50

LR [c003daf0] sys_init_module+0xa4d/0x42c

Call trace:

[c0001d88] ret_from_syscall+0x0/0x70

it means the Run-Time Analysis Tools target binaries you are using on your
target do not match the kernel you are running on your target, and thus you
must run the buildKAL.sh script in order to generate new Run-Time Analysis
Tools target binaries.

Notification that KAL successfully loaded

If you see the KAL-related messages during connection to your target

KAL is already loaded

or

Module KAL loaded, with warnings

or (if verbosity = 3 is enabled)

executing: insmod

: insmod

:KAL.ko
and nothing else related to KAL after this, then KAL has been loaded
successfully.

Note that this only means that KAL.ko has successfully loaded. If there is a
binary compatibility difference between your KAL.ko and the kernel running
on your target, you may yet encounter runtime problems or crashes. So be sure
to run the KAL script if you make any changes to your kernel.

Error when running KAL.sh script

When you run the buildKAL.sh script, you might get the following cc1 error:

make: Entering directory

* /springboard/RC5_CDs/wrlinux-1.1/build-
wrs_powerquiccii_82xx/dist/linux-2.6.10"

CC [M] /kal/kal/KAL.o

<unknown> tried to exec ccl but failed (No such file or directory)

93

Wind River Workbench Memory Analyzer
User's Guide, 3.0

There are two ways to specify a directory path to your GNU target-specific
compiler programs, as in these examples:
/toolchains/PNE-1.1-FCS/bin
/toolchains/PNE-1.1-FCS/i586-wrs-linux-gnu/bin
Always use the first example. The GNU compiler programs in the first
example know where each other are located. In the second example they do
not, and you will get the cc1 error above. Note that with the first instance you
definitely must specify a target-arch-specific prefix for your GNU compiler
programs.

When connecting to your target, some messages can be ignored

When you try to make a connection from the GUI to your target, KAL and your
Run-Time Analysis Tools target modules are loaded into the kernel. Note that
the following tainting messages are not errors and can be ignored:

Jul 6 17:37:36 oahu kernel: KAL: no version magic, tainting kernel.
Jul 6 17:37:36 oahu kernel: KAL: module license 'ScopeTools License
Agreement' taints kernel.

or

Warning: loading KAL.ko will taint the kernel: non-GPL license -
ScopeTools License Agreement

See http://www.tux.org/lkml/#export-tainted for information about
tainted modules

Warning: loading KAL.ko will taint the kernel: forced load

When you get module-loading errors, you might also get system messages in the
system locations listed in 5.3 General Troubleshooting Tips, p.74.

In the case of KAL not loading successfully, be sure to send the .config file for your
target kernel to Wind River support personnel.

94

Event Dictionary

System Viewer Events

These System Viewer events posted by Memory Analyzer include the function
name, address, and sequence ID number of each corresponding trace record.

ns
memStart

= Possible Causes

System or application code called MemScopelnit() manually, or if you started
Memory Analyzer from the Workbench toolbar, it is called automatically.

= Task State Effects
None.

= Information Collected

Event Parameter Sample Data Description

eventName memStart (39200) The name of the event associated
with this icon.

bufferSize 2,000 Number of messages queued on the
target before being sent to the GUIL

stackDepth 8 Depth of the call stack that will be
collected for every trace point.

95

Wind River Workbench Memory Analyzer
User's Guide, 3.0

useWTX 1 or 0 (boolean) Using WTX to transmit data from
target to host? (1 = yes, 0 = no)

L+
ns

memStop
= Possible Causes

System or application code shut down the Memory Analyzer GUI on the host,
or the MemScopeTargetExit() function was executed.

= Task State Effects
None.

= Information Collected

Event Parameter Sample Data Description

eventName memStop (39201) The name of the event associated
with this icon.

{2
&S
memAlloc

= Possible Causes

System or application code executed the malloc(), calloc(), valloc(),
memAlign(), memPartAlloc(), or memPartAlignedAlloc() function, or the
allocation function in a Custom Malloc/Free scheme, if user implemented.

= Task State Effects
None.

= Information Collected

Event Parameter Sample Data Description

eventName memStart (39202) The name of the event associated
with this icon.

address adress=0x1ffa428 The memory address of the
beginning of the patched function.

96

B Event Dictionary

partition partition=0xd3674 The identifier of the partition in

which the memory was allocated.

size size=0x50 (80) Number of bytes of the usable

memory allocated, excluding
VxWorks block header, plus any
required alignment padding.

e
M

memFree

Possible Causes

System or application code called the free(), cfree(), or memPartFree() routine,
or the free function in a Custom Malloc/Free scheme, if user implemented.

Task State Effects

None.

Information Collected

Event Parameter Sample Data Description

eventName memStart (39203) The name of the event associated

with this icon.

address adress=0x1ffa480 = The memory address of the

beginning of the patched function.

partition partition=0xd3674 The identifier of the partition in

which the memory was allocated.

2
M

mempFailedAlloc

Possible Causes

System or application code executed the malloc(), calloc(), valloc(),
memAlign(), memPartAlloc(), or memPartAlignedAlloc() function, or the
allocation function in a Custom Malloc/Free scheme, if user implemented.

Task State Effects

None.

97

Wind River Workbench Memory Analyzer
User's Guide, 3.0

Information Collected

Event Parameter Sample Data Description
eventName memPFailedAlloc The name of the event associated
(39204) with this icon.
partition partition=0xd3674 The identifier of the partition in
which the memory allocation was
attempted.
size size=0x75b4abf Number of bytes requested.

(5]

memOverflow

Possible Causes

Data is being generated on the target faster than it can be transmitted to the
host. You may need to restart Memory Analyzer with a larger buffer to reduce

the number of records being generated.

Warning: The most recently generated data is being lost.

Task State Effects

None.

Information Collected

Event Parameter Sample Data Description
eventName memOverflow The name of the event associated
(39205) with this icon.

98

Glossary

This glossary contains definitions for some of the common terms used throughout
this manual.

allocation record (AR)

The full call stack for every memory allocation event recorded by the collection
agent and forwarded to the host computer.

call stack

The list of nested subroutine calls that lead up to a memory-allocation call. For each
memory-allocation record, Memory Analyzer includes the call stack for that call.

collection agent

The part of Memory Analyzer that runs on the target.

graphical user interface (GUI)

The collection of computer programs and the media-oriented screens, windows,
dialog boxes, menus, and icons they produce that provide for enhanced human-
computer interactions with no, or minimal, keyboard input.

heap

The part of memory reserved and used for data variables generated and used by
the computer program (in contrast to Program and Stack memory).

99

Wind River Workbench Memory Analyzer
User's Guide, 3.0

host

The computer on which the Memory Analyzer GUI is running, which receives and
processes the allocation record data collected from the agent machine.

inferior process (Linux only)

Any process that has been patched by Memory Analyzer to have its data collected
and analyzed.

kernel abstraction layer (KAL) (Linux only)

A layer of source code containing all dependencies on kernel constructs, that is
compiled and linked to a proprietary object kernel, and through which kernel
resources are accessed.

memory (heap) corruption

Heap corruption occurs when a program writes into a place in memory that does
not belong to it.

memory leak

The condition where one or more memory blocks allocated by a program are not
freed, with the tendency to build up to a large amount of allocated but unused, and
therefore inaccessible, memory.

module

A collection of functions, such as a library or executable.

offset

In a call stack, this is the memory distance (in bytes) from the start of the current
routine to where the call to the next function occurs.

partition

For VxWorks only, a section of memory configured and set aside by a running
program.

patch

A process for changing run-time code dynamically, without compilation.

100

C Glossary

perspective

Any of the view windows within the Workbench Eclipse-based IDE.

polling rate

When there is a lull in data to be sent from the target to the host, this is the length
of time the data-transfer process on the target waits before checking the buffer
again for data to be sent.

process

See task

routine

A self-contained code module that can accept input, execute, and produce output;
used interchangeably with function.

sticky button

A toolbar icon that remains visually depressed when you select it, sustaining the
action until you select it again, turning off the action.

task

The program module currently being executed. See also process.

verbosity

Controls the type and number of messages generated by the target or GUI and
displayed either in the target console or the GUI console.

view source code

Displaying the source code for the selected memory allocation/deallocation. For
detailed information, see Sections 3.2.7 Source Code Viewer, p.41.

101

Wind River Workbench Memory Analyzer
User's Guide, 3.0

102

A

-A option

needed for symbol loading 10, 75

troubleshooting 75
Warning 10
agent

collection agent architectural description 3

Aggregate Allocations table

call stack 28

customizing 29

description 27

task 28
Aggregate view

Aggregate Allocations table 27

description 26

elements 26

Individual Allocations table 30
allocation record (AR)

defined 99

technical note on patching 2
AMP environment, WDB_TIPC 12
architectural summary 3
automatic

launching 13

System Viewer support 60

Index

bash shell interpreter program 89
building

detecting leaks in boot process 69
ensuring WDB support for VIP 12
for PowerPC target 10

for real-time processes (RTPs) 10
KAL.ko kernel, issues with 92
KAL ko kernel, procedure for 88
Linux+kgdb support 78

root file system for Linux 2.0 5
root file system, binary files 13
target kernel start/end address 76
x86, with frame pointers off 10

call stacks

defined 99

depth 29

in Aggregate Allocations table 28
in Time view 35, 39

offset 100

collection agent

architectural description 3
defined 99

Color Palette option

103

User's Guide, 3.0

in Preferences dialog box 48
colors, modifying 48
common view elements

Memory Analyzer menu item 56

menu bar 56

Open Perspective menu item 57

Preferences menu item 59

Show View menu item 58

Window menu item 57
communication link, target-to-host 4,5
connection status message 72
Console

verbosity, compared to target 15
Console view description 44
correlation, among main views
creating a snapshot 53
customizing the Aggregate Allocations table 29

31, 33, 36, 40

D

database files, viewing 5, 55
debugging, viewing source code 80
demo program, starting with MemScopeDemo 18
Details table

call stack 35, 39

description 35

partition 35

timestamp 35, 39
Details Viewport view

description 40

Show Module Names option 41, 44

Show Offsets option 41, 44
detecting

memory hogs 68

memory leaks 64
DFW 19

in Linux architecture 4

in VxWorks architecture 4
dfwserver 19
dialog boxes

Connect To Target - VxWorks 29

Include Wizard (shared data region) 11

Preferences 46

Process Selection 27, 83

104

Wind River Workbench Memory Analyzer

E

Properties (target server) 10

error

F

dynamic allocations cannot be analyzed 22
messages 73
target server restarted 74

features list 6
Fragmentation view

description 36

fragmentation map, description 37
map blocks, resolution 37, 39

map colors 38

frame pointers

call stack display debugging 76
must be enabled for x86 targets 10

functions

G

see also routines
memPartAlignedAllocInternal() 4
memPartFreelnternal() 4

graphical user interface (GUI)

defined 99
Memory Analyzer 23

graphs, in Time view 34

H

heap corruption, defined 100
heap, defined 99

host, defined 100

host-side modules 4,5

INCLUDE_SHARED_DATA 11
insmod 13,78

installation, testing 16
Interface Options, view 46

K

Kernel Abstraction Layer (KAL)
see also Appendix A
determine need to relink 87, 88
how to tell if you need to update it 88
procedure for building 89
requirement for a Linux target 13
requirement for Linux target 13
kernel, cannot analyze memory allocations 22
kgdb
checking for support 78
what to do if not supported 78

L

launching Memory Analyzer, automatically 13
Linux

2.4 kernel, thread analysis 22

2.6 kernel, thread analysis 22

targets, user-space only supported 22,79
loading

configuration file 47

snapshot file 54

M

Main Window
see also Aggregate view
elements 26, 32

map blocks, resolution 37, 39

Memory Analyzer
architecture 3

Index

features 6

list of views 24

overview 2
memory hogs

detecting 68

problem solving scenarios 68
memory leaks

analyzing the call stack 66

defined 100

detecting 64

in the boot process 69

problem solving scenario 63
memory peak usage

problem solving scenarios 68
memPartAlignedAllocInternal() 4
memPartFreelnternal() 4
MemScopeDemo function 18
menu bar 56
menu items

Memory Analyzer 56

Open Perspective 57

Preferences 59

Show View 58

Window 57
messages

error 73

status 73
modifying colors 48
modules

defined 100

host-side 4,5

names, show 41,44

Show Modules option 47

target-side 4,5

N

NFS directory structure, caution 5

(0

offsets

105

Wind River Workbench Memory Analyzer
User's Guide, 3.0

defined 100 described 21
show 41, 44 dialog box 21

options for Linux targets, user-space only 22,79
-A, needed for symbol loading 10 process, defined 101

-A, troubleshooting 75

Color Palette 48

extended vector addressing, for PowerPC 10 R

Show Modules 47

Show Offsets 47
overflow status message 73
overview 2

Real Time Process components 10
resolution, in fragmentation map 39
rmmod 13,78

routines
defined 101
P memPartAlignedAllocInternal() 4
memPartFreelnternal() 4
partitions RTP
defined 100 degraded performance 76
in Time view 35 running on your target 10
patching support 11,19
defined 100 unresolved symbols 76
described 21 use restrictions on simulators 11

Warning, about MemAgent 21
PATH, variables that must bein 13,78
polling rate, defined 101 S
Preferences dialog box
description 46
saving to a file 47
tab views 46
Preferences dialog box, options
Color Palette 48
Show Modules 47
Show Offsets 47
Preferences dialog box, tab views
Aggregate View 48
Database 51

saving, configuration file 47
shared data region support 10
Show Module Names option

in Details Viewport view 41, 44
Show Modules option

in Preferences dialog box 47
Show Offsets option

in Details Viewport view 41, 44

in Preferences dialog box 47

Fragmentation 50 Snapshott' Jviewi o

General 47 creating/viewing

Time 49 opening 54

Tree 49 starting demo program, with MemScopeDemo 18

status messages
connection 72
overflow 73
sticky button
defined 101
Show Modules 47

problem solving scenarios
detecting leaks in boot process 69
memory hogs 68
memory leaks 63
peak usage accounting 68
process selection

106

Show Offsets 47
symbol resolution
described 19
dfwserver (VxWorks) 19
System Viewer
automatic support 60
integration with Memory Analyzer 7,59
Memory Analyzer events 95

T

tab views
Kernel Configuration, Components 10
Preferences - Aggregate 30, 48, 64
Preferences - Database 51
Preferences - Fragmentation 50
Preferences - General 41,47
Preferences - Time 35, 49
Preferences - Tree 33, 49
tables
Aggregate Allocations (Aggregate view) 27
Details (Time view) 35
Individual Allocations (Aggregate view) 30
target connection lost
see troubleshooting
target-side modules 4,5
target-to-host link 4,5
see also architectural summary
tasks
defined 101
in Aggregate Allocations table 28
thread analysis
for Linux 2.4 kernels 22
for Linux 2.6 kernels 22
Time view
description 34
Details table 35
elements 34
graphs 34
timestamps, in Time view 35, 39
TIPC, WDB_TIPC in an AMP environment 12
Tree view
description 31
elements 32

Index

troubleshooting
-A option 75
guide 74
Memory Analyzer GUI 80
target connection lost 74
target server 74
tWdbTarget
adjusting Memory Analyzer priority 75
in architectural description 3
tWdbTask
error, target not responding 75
ppc VxWorks target crash explanation 84
target-side module 4

U

Unresolved Symbols view 45
user-space processes
for Linux, only type supported 22,79

\'}

variables, in PATH statement 13,78
verbosity
Console and target compared 15
defined 101
Warning 15,45
viewing database files 55
viewing source code
debugging 80
defined 6
setup 41
views
Aggregate view, description 26
common elements 56
Console, description 44
Details Viewport, description 40
Fragmentation view, description 36
Interface Options, description 46
list 24
Time view, description 34
Tree view, description 31

107

Wind River Workbench Memory Analyzer
User's Guide, 3.0

w

WARNING
-A option usage 10
MemAgent, in patching 21
target verbosity 15, 45
WDB
ensuring WDB support for VIP 12
no support for WDB_TIPC connection 12
working in AMP environment 12
Workbench
starting Memory Analyzer 13
using dfwserver 19

X

x86 target
frame pointers must be enabled 10, 76
using debugger crashes process 83

108

	Wind River Workbench Memory Analyzer User's Guide, 3.0
	Contents

	1 Introduction
	1.1 Introduction
	Memory Allocation Problems
	Memory Analyzer Overview

	1.2 Architectural Summary
	VxWorks Targets
	Linux Targets
	Wind River Linux 2.0 Targets
	Database Files

	1.3 Features

	2 Getting Started
	2.1 Introduction
	2.2 Requirements
	VxWorks
	Linux

	2.3 Starting Memory Analyzer
	Initiating the Target Connection
	Opening the Memory Analyzer GUI

	2.4 Testing Your Installation
	Viewing from the Shell
	Running the Demonstration Program

	2.5 Usage Notes
	Symbol Resolution
	Patching
	Using memrun (Linux Only)
	Process Selection (Linux Only)
	Thread Analysis (Linux Only)

	3 The Memory Analyzer GUI
	3.1 Introduction
	3.2 The Memory Analyzer GUI
	3.2.1 Summary View
	3.2.2 Aggregate View
	Aggregate Allocations Table
	Individual Allocations Table
	Aggregate View Pop-Up Menus

	3.2.3 Tree View
	Call Stack Tree
	Individual Allocations Table
	Tree View Pop-Up Menus

	3.2.4 Time View
	Graph Area
	Details Table
	Time View Pop-Up Menu

	3.2.5 Fragmentation View (VxWorks Only)
	Fragmentation Map
	Individual Allocations Table
	Fragmentation View Pop-Up Menu

	3.2.6 Details Viewport View
	3.2.7 Source Code Viewer
	Call Stack Tree
	Details Viewport

	3.2.8 Analysis Console View
	3.2.9 Unresolved Symbols View
	3.2.10 Preferences Dialog Box
	General Tab View
	Aggregate Tab View
	Tree Tab View
	Time Tab View
	Fragmentation Tab View (VxWorks Only)
	Database Tab View

	3.2.11 Snapshots
	Taking a Snapshot
	Saving a Snapshot
	Viewing Snapshots From a Previously Saved File
	Viewing the Database File

	3.3 Menus and Icons
	Menu Bar
	Icons

	3.4 System Viewer Event Integration
	Automatic System Viewer Support

	4 Using Memory Analyzer
	4.1 Introduction
	4.2 Finding Memory Leaks
	4.3 Finding Memory Hogs
	4.4 Advanced Topics

	5 Troubleshooting
	5.1 Introduction
	5.2 Messages
	Target Errors
	Host Errors

	5.3 General Troubleshooting Tips
	Issues With the Target
	Issues With the GUI
	General Tips
	Known Issues and Workarounds

	A Kernel Abstraction Layer (KAL)
	A.1 Introduction
	A.2 Basis for Need
	A.3 Procedure
	Setup
	Wind River Linux 2.0 Targets
	Other Linux Targets

	A.4 Known Issues and Workarounds

	B Event Dictionary
	System Viewer Events

	C Glossary
	Index

