WIND RIVER

Wind RiverWorkbench
Function Tracer

USER'S GUIDE

3.0

Copyright © 2007 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, the Wind River logo, Tornado, and VxWorks are registered trademarks of
Wind River Systems, Inc. Any third-party trademarks referenced are the property of their
respective owners. For further information regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDirlproduct_name/3rd_party_licensor_notice.pdf.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
US.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:
http://www.windriver.com
For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

Wind River Function Tracer User's Guide, 3.0

7 Nov 07
Part #: DOC-16007-ZD-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

Contents

INrOdUCHION .. 1
11 Introduction 1
1.2 Architectural Summary 2
1.3 Features 4
Getting Started ... ——————— 7
21 Introduction 7
22 Requirements 7
HOSE e 8
Taret oo 8
2.3 Starting Function Tracer 9
Target Considerationscccooeevieiniceiiicieiceece s 10
Starting Function Tracer From Workbench ..o 11
Unresolved Symbols at Startupccccoeevevniiiiiiiiiiiee 13
24 Testing Your Installation 14
The Function Tracer GUI ... 23
3.1 Introduction 23

fii

Wind River Function Tracer

User's Guide, 3.0

3.2 The Function Tracer GUI 23
3.2.1 Registration WINdOw ... 24
WINAOW EIEIMENTS ..ot 25

322 JAY) N0 AT 5 U Lo) Y2 28
WINAOW ELEIMENLSoovviieeieiiieeeeeeeeeeceeeee ettt 29

3.2.3 Source Code VIeWw WINAOWcoovviiiiiieiiieieeeeeeeeeeeee e 33
Source Path Dialog BOXccccceiiiiiiiiiiiiiiiiiicccccens 35

File Search Dialog BOXccccoiieinirieiiiiciiiieiecce e 36

324 Snapshot WINAOW ... 37

3.2.5 COoNSO0Le WINAOW ..cviiriiiiiciiecee ettt 39
WINAOW EIEMENLSoooviieviiiiereecteeeteeeeeeee ettt e eve e 39

3.2.6 Highlight WINAOWcoooiiiiii 40
WINAOW EIEMENLSooovviivieiiiriiceeeeteeeeeeee ettt e eve e 41

Configuring Highlight Criteria ..o 42

EXAMPIE ..o 43

3.2.7 Columns Dialog BOXccccceiiiiiiiiiiiiiiiciiiciiicccccccnes 44

3.2.8 Custom Modules Dialog BOXccouiiieiriiiininiicciiisiccceeeens 45
WINAOW EIEIMENLSoovviieieiieeieceeeceeeceeeee ettt 46

Loading Custom Modulescccoceviiiiiiiniiinncnceccc e, 47

Using FUNction Tracercccccemiiiiniiiseessnmnnnssssss s sssssssssss s 49
4.1 Introduction 49
4.2 Starting Tracing Activity 49
Initializing Trace POINtSccooiviiiiiiiiiiiiiccc 50

Registering Trace Pointscccccoovvveieiiiiiciciiieeecccc 51

Activating Trace PoOInts ..o, 54

Deactivating ... 55

MOAIEYING .ottt 55

REMOVING .ot 56

4.3 Viewing Data 56
(@A77 A TS A =Y o) L SRR 56

Contents

TTACE TADLE ..ottt 58
) B <S =N B =1 o) (< O RRRRRTRRRRN 61
BUTEONS oo 64
SEALUS BAT oo 65
4.4 Operational Features 66
Viewing Source Code ...t 66
Arranging COIUMNScouoviiiiiiiciic s 66
Setting Highlight Colorcooeviiiiiiiic e 67
Taking SNapshots ..o 67
Adding Custom Modulesc.ccccoovviiiiiiiiiii 67
Viewing Messages in the Console Windowccccooeiiiiniiinnnnn. 67
4.5 System Viewer Event Integration 68
Automatic System Viewer SUPPOItccoevviiiiiiiiiiiiecc 69
High Resolution Time-Stamp Driver ... 69
System Viewer EVeNts ..o 69
USAQE TIPS werrrrrrrrrsnmmmmrrrmissssssnsnssrrnsssssssssss s s s sssssssssssss s sssssssssnssssnssnnnnssnnns 71
5.1 Introduction 71
5.2 Observing Practical Limitations 72
Missing SYMDOISccuiuiiiriiiic s 72
Processor Load and Bandwidth Considerationsccccceveeveeuenee. 72
Routines That Must Not Be Tracedcccoovevvievieveiiiieceeeeeeeeeveenn 73
Tracing Frequently Called Routinesccccooevviviiiiiiiicincnnnn 75
5.3 Tracing Tips 76
Tracing Routines Returning Floating Point Valuesccccccoco... 76
Tracing Real-Time Processes ..o 76
Troubleshooting ... 77
6.1 Introduction 77
6.2 Loading and Initializing Function Tracer Manually 78
Load the Required Librariesccccooiieeirininiiicceniniiiceeeeens 78
Initialize FUNCHON TTACET ...vooviieeiieieeieeeeeeeteeeeeeteeete e 79
Example Target SCript ..o 80

Wind River Function Tracer
User's Guide, 3.0

Starting Function Tracer Manually from the Command Line 81

6.3 General Troubleshooting Tips 81
Issues With the Targetcccovvviiiiiiiiiiiiciccccce, 82

Issues With the HOStccoiuiiiiiiiiiiiiiccccccccce e 85

A APIReferenceccoverrersessmnsesnssnsss s 91
B €[0T T o 93
INAEX e 97

Vi

Introduction

1.1 Introduction 1
1.2 Architectural Summary 2
1.3 Features 4

1.1 Introduction

Real-time systems tend to be event-driven, multi-threaded applications that need
to respond to external conditions. It is difficult to determine execution code paths
especially when they jump between different threads. Simply setting breakpoints
and examining call stacks does not provide sufficient thread-interaction
information, and stopping the code on breakpoints is detrimental to real-time
systems.

Wind River Function Tracer is a dynamic execution-tracing tool for use in
developing embedded software. It monitors all calls to the functions you have
registered, providing a live summary of each call as it occurs, which helps you
pinpoint problems by showing the call sequences that lead to specific function
calls. Function Tracer makes it easy to visualize how your programs execute.

Overview

Function Tracer helps you analyze and debug your system without special
compilation. It provides run-time information, such as the following:

Wind River Function Tracer
User's Guide, 3.0

* Whether a traced function is ever called.

» When a traced function is called, relative to all other traced calls.
» When a traced function exits, relative to all other traced calls.

» Which task made each call.

For each traced function, Function Tracer records the following items:
» the task that called the function

» the parameters with which the function was called (optionally)

» the call stack that led up to the function call

» the return value from the function (optionally)

» the execution time for the function (optionally)

Armed with the above information, you can refine tracing-on-the-fly by adjusting
filters, activating and deactivating trace points, and so forth, to pinpoint problem
areas quickly and efficiently.

Because Function Tracer can trace functions without special compilation or
linking, it makes all these capabilities available also for third-party code and
operating system functions.

Function Tracer requires no special compilation of your code. It patches code with
active trace points that record call parameters, return values, task information, and
the call stack every time an active trace point is called. Function Tracer transmits
the trace records to the host, where the graphical interface displays them for
immediate viewing. When a trace point is deactivated, Function Tracer unpatches
the function and slips out seamlessly.

1.2 Architectural Summary

Function Tracer consists of two main subsystems:
* host-based graphical display and control tool (Function Tracer GUI)

= target-based patching and data collection

1 Introduction
1.2 Architectural Summary

Host Workstation VxWorks Target

Target Server WDB | | Target Agent Production Code
(tgtsvr)

Trace Record
Message
Queue

WTX (Command and Data)

Y

Function Tracer GUI Tf Traced Functions

You interact using the host tool to manage trace points. The host tool sends only
the activation and deactivation commands to the target agent.

When the target agent receives an activation command, it patches the specified
function with code that creates a trace record upon entry to the specified function
and another record upon exit. Each trace record (or trace point) can be configured
to contain the information you need to understand how the function was called.
For details on how to set up trace points, see Registering Trace Points, p.51.

The following data items are sent to the host in a trace point for analysis and
display.

* unique sequence ID that pairs function-entry with function-exit records
= task ID of the calling task

= optionally, the value of all the function parameters (upon entry), subject to the
maximum number of parameters set during initialization

» optionally, the return value of the function call (upon exit)
= full call stack active at the time of the call (upon entry)

» execution time of the function, in milliseconds, if a high resolution timestamp
driver exists on the target

When the target agent receives a deactivate command, it unpatches the specified
function, returning the function to its original state

The target agent posts each trace record to a message queue on the target

Wind River Function Tracer
User's Guide, 3.0

The GUI running on the host computer periodically retrieves messages from the
trace-record message queue on the target; it uses the WTX protocol using the target
server. Function Tracer then processes these records on the host and displays the
analyzed data in the GUL

Function Tracer requires no special compilation of your code. It patches code with
active trace points that record call parameters, return values, task information, and
the call stack every time an active trace point is called. Function Tracer transmits
the trace records to the host, where the graphical interface displays them for
immediate viewing. When a trace point is deactivated, Function Tracer unpatches
the function and slips out seamlessly.

1.3 Features

Function Tracer features include:

Live Graphical Trace
Function Tracer dynamically shows you the traced functions as your system
runs.

Ease of Use

Function Tracer requires no special recompilation, relinking, source-code
instrumentation, or special hardware. It can analyze already running code. Its
intuitive graphical user interface gives you direct access to all the options and
capabilities with a few clicks.

The Whole Picture

Because it requires no special compilation, Function Tracer can analyze code
you did not write, including operating-system code and third-party libraries.

Minimal Impact
Function Tracer, being a software tool, has some impact on the execution of
your programs. While designed to be as small as possible, the delay can
become excessive if a traced function is executed repeatedly at a high
frequency and/or if a large number of functions are traced. Trace records are
queued and sent to the host as a background task, minimizing the impact on
your code. Function Tracer operates using the same compiled code as your
production system.

1 Introduction
1.3 Features

Dynamic Activation
You can activate, deactivate, and change trace points dynamically (as your
system runs) and view the results immediately. When you deactivate a trace
point, the corresponding function is restored to its original state.

Snapshot Comparison
With the GUI, you can take a trace-log snapshot at any time. You can compare
future activity against the snapshot.

Custom Filtering
Custom filtering lets you limit logging to only areas of interest by allowing you
to specify a list of ignored tasks or watched tasks for each trace point.

Wind River Function Tracer
User's Guide, 3.0

Getting Started

2.1 Introduction 7
2.2 Requirements 7
2.3 Starting Function Tracer 9

2.4 Testing Your Installation 14

2.1 Introduction

This chapter takes you through the process of installing, setting up, and running
Wind River Function Tracer on either a VxWorks or Linux target. It gives you
enough information to begin using Function Tracer. At each step, references are
made to the location in this manual of more detailed descriptions. For more
information on using Workbench, see the Wind River Workbench User’s Guide.

2.2 Requirements

You must connect to the target manager for your target in order to use Function
Tracer. For documentation on the target manager, consult the Wind River

Host

Target

Wind River Function Tracer
User's Guide, 3.0

Workbench User’s Guide, VxWorks Version: Target Manager View, as well as your
platform User’s Guide.

There are some dependencies Function Tracer places on your host operating
system for resources that are specific to the target platform, summarized in the
sections below.

Function Tracer requires some resources from your host operating system. The
following is a list of those requirements:

» Ifyouwantto collect data from a real-time process (RTP), the RTP components
in your kernel must include shared data region support. This support must be
built into your kernel before running it on the target. To accomplish this,
include the INCLUDE_SHARED_DATA component

= If youwant to time the execution of routines you are tracing, you must include
the timestamp support component INCLUDE_TIMESTAMP found in the
hardware/peripherals/clocks directory in the Kernel Configuration
component tree window. Note that not all targets have timestamp timer
support.

* The Function Tracer graphical user interface (GUI) is implemented in Java. As
such, the minimum recommended amount of memory on all types of host
machines is 256MB. This requirement may increase if you run other Java
applications on the same machine.

NOTE: In Windows, if you have installed and subsequently uninstalled any
version of Java JDK or JRE on your machine, you must ensure that they have

been uninstalled correctly such that your system registry does not refer to non-

existent Java directories.

Your target requires some resources from your host operating system. The
following is a list of those requirements:

* You must run the Target Manager for your target board in order to use
Function Tracer. For information on the target manager, see the Wind River
Workbench User’s Guide, VxWorks Version: Target Manager View, as well as your
platform User’s Guide.

2 Getting Started
2.3 Starting Function Tracer

= The use of the WDB agent is necessary. The easiest way to ensure that your
VxWorks Image Project (VIP) has WDB support is to make sure one of the
following kernel configuration Profiles is used in your project:

— PROFILE_COMPATIBLE
— PROFILE_DEVELOPMENT
— PROFILE_ENHANCED_NET

For more information, see the Wind River Workbench User’s Guide, VxWorks
Version: VxWorks Image Projects.

» If your target board is running a PowerPC processor, you should build your
VxWorks Image Project with the extended vector addressing option enabled.
This option is in the Components tab, in the project Kernel Configuration
view, under operating system components > kernel components in the tree.
Right-click Allow 32-bit branches to handlers in the tree, then click Include
to enable this option in your build. Targets with large memories typically load
Function Tracer at an address beyond the limited 26-bit PC-relative addressing
normally used.

» If your target board is running an x86 processor, the VxWorks Image Project,
and all applications running on it, must be built with no compiler options
which disable the generation of frame pointers.

A CAUTION: This is the default for both Gnu and Diab (Wind River) compilers,
but beware that if you change it, you will encounter problems.

» Wind River Run-Time Analysis Tools do not support connecting to a target
using a WDB_TIPC connection. This means that if you are working in an AMP
environment, you can only connect the Run-Time Analysis Tools to core 0 in
AMP mode.

For troubleshooting tips, see 6.3 General Troubleshooting Tips, p.81.

2.3 Starting Function Tracer

In most cases, Function Tracer can be started automatically from Workbench by
following the procedures outlined in this section. If launching fails, however, you
must determine which libraries to load yourself, load them, then initialize

Wind River Function Tracer
User's Guide, 3.0

Function Tracer manually. This procedure is described in detail in 6.2 Loading and
Initializing Function Tracer Manually, p.78.

Target Considerations

NOTE: Function Tracer cannot run on a simulator.

A CAUTION: You must set the following options on your target before connecting
Function Tracer.

Enabling Symbols
To ensure that all required symbols are loaded on the target, follow these steps:

1. Right-click the target name and select Properties to open the
Target Connection dialog box.

2. In the Target Server Options tab, click Edit in the
Advanced Target Server Options group to open the
Advanced Target Server Options dialog box.

3. Inthe Symbols tab view of this dialog box, click the
Load global and local symbols button, then click OK.

4. Click OK to close the Target Server dialog box.
5. Connect to the target server using the Workbench icon (j-f).

Tracing Semaphores

A WARNING: If you trace semaphore activity, you must use extreme caution in doing
so. Semaphore calls occur sporadically at rates up to hundreds of times per second.
Attempting to trace such high rate calls can and will cause catastrophic failure of the
target operating system.

To minimize the chances of such failure when tracing semaphore activity, start
Function Tracer with Stack Depth set to 2, and Task Filtering showing only 1 task
of interest at any given time. Failure to use this configuration when tracing the
semaphore API will cause catastrophic failure of the target operating system.

For more information on tracing semaphores, see 4. Using Function Tracer.

10

2 Getting Started
2.3 Starting Function Tracer

Starting Function Tracer From Workbench

Follow these steps to load and start the Function Tracer GUL

1. In Workbench, select the Function Tracer toolbar button (circled).

@ Application Development - Wind River Workbench

File Edit Refactor Mavigate Search Project Target Analyze Run Window Help

EJ&J&NJ*J%JﬁJEv
C PO B :

= = |

[Project Explorer 53 |=F| File Navigatorw =0 |
SR RN

This opens the Function Tracer Launcher dialog box.

Function Tracer Launcher 10l =|
Welcome to Function Tracer

Conneck ko Target Server:

[~ Initialize target only (do not start GUI)

 Target Agent Parameters

Queue Size: IZDDD
Stack Depth: Jis
Poll Rate {in Hz): |5

IMaximumn # of Function Arguments: IID

IMaximum String Buffers: IIDD

Message Log Verbosity: ID - Silent LI

-~ Symbol Lookup
[~ Include dat {.xxx) symbols

I~ Include LC {loxx) symbals

Conneck I Offline mode Set Defaults Cancel

2. In the Function Tracer Launcher dialog box, enter values, or use the default
values, for the following parameters to determine how to initialize the target.

11

Wind River Function Tracer
User's Guide, 3.0

12

Connect to Target Server

Enter a live target server name (not a simulator) in the field, or choose one
from the drop-down menu. The target server drop-down list is populated
with those in the Target Manager view in Workbench. If a target is selected
in this view, then it appears by default in the text entry field, but may be
overridden with any other choice in the drop-down list.

Initialize target only (do not start GUI)

Select this checkbox if you only start and initialize your target, without
starting the Function Tracer GUL

The Target Agent Parameters group contains the following parameters.

Queue Size
The target must queue a message for every trace point it encounters.
These messages are queued on the target until they are retrieved by
the host. If this queue is too small, messages will be lost, and trace
records will be missed; in this event, the target agent notifies the host
GUL To avoid missing records, you may need to adjust this
parameter, which should be entered in multiples of one thousand
(1000, 2000, and so forth). The default is 2000 messages.

Stack Depth
Specify the depth of the call stack to be collected for each trace point.
The call stack always starts from the lowest-level call, that is, the
traced function. The default is 16. Note that the larger this number is,
the slower your system will run and the greater the bandwidth
required when sending trace data to the host.

Poll Rate (in Hz)
Specify how often (in Hz) for the host to poll the target for trace
records. During a single poll, the host continues reading until the
target message queue is empty, then resumes polling at the specified
rate. Polling too slowly causes excessive messages to build up on the
target, but polling too rapidly consumes too much processing power
on the host and target. The default is 5.

Maximum # of Function Arguments
Specify the maximum number of input arguments to record for each
trace point, in the range of 1-10. The default is 10.

Maximum String Buffers
String arguments of traced functions must be copied and saved until
retrieved by the host. Use this parameter to specify the maximum
number of strings to be queued. The default is 100.

2 Getting Started
2.3 Starting Function Tracer

Message Log Verbosity
Specify the debug verbosity level for the GUI, in the range 0-3. Debug
messages are sent to the Console window (see 3.2.5 Console Window,
p-39), available from the View menu. A value of 0 causes only error
messages to be logged. Using larger values (in the range of 1-3) causes
increasingly more debug messages to be printed. The default is 0.

A CAUTION: Setting target verbosity to a value greater than 0 may cause the
target agent to needlessly generate a large number of messages.

Generally, use the default value of 0 for target verbosity, unless requested
by Wind River Technical Support to help you diagnose a problem.

The Symbol Lookup group contains the following parameters.

Include dot (.xxx) symbols
In the attempt to resolve symbols, Function Tracer normally ignores

symbols that begin with a dot ("."). To force these symbols to be
resolved, check this box. The default is unchecked.

Include LC (Iexxx) symbols
(Same description as above, only for symbols starting with Ic.)

3. Click Connect. This loads the libraries onto the target server automatically and
initializes the target agent.

4. As an option to the above process, if you click Offline mode, Function Tracer
does not connect to any target, but rather opens a Console window (see
3.2.5 Console Window, p.39) where you can navigate to, and open, a previously
saved snapshot file instead. No target server parameters need to be entered if
you choose this option.

When you launch the GUI, you must provide the name of a target server to which
it should connect. Connection is successful only after the target libraries have been
loaded and initialized. As a convenience, when the target reboots and target
libraries have been loaded and initialized again, the GUI reconnects automatically
and activates all trace points that were active at the time of reboot.

Unresolved Symbols at Startup

When Function Tracer is loaded, it reports unresolved symbols if you do not have
the high resolution timestamp driver, or System Viewer support, installed in the
kernel. When you load Function Tracer automatically from Workbench (see

2.3 Starting Function Tracer, p.9), the Function Tracer Setup code detects whether

13

Wind River Function Tracer
User's Guide, 3.0

your target kernel includes the high resolution timestamp driver. If so, it initializes
the Function Tracers target libraries with time-stamp support that enables
Function Tracer to record precision timing information for each traced function.

NOTE: A few unresolved symbols present while Function Tracer is running is
normal. This is caused by Function Tracer trying to link to optional services.

Once the GUI starts successfully, you can test your installation following the steps
in the next section, or, if you wish, proceed to 3. The Function Tracer GUI for
instructions on using the GUI.

2.4 Testing Your Installation

You can trace the malloc() function to test whether or not Function Tracer is
installed correctly.

To test your Function Tracer installation, do the following:
1. Start Workbench, then start the Target Server.

2. Open a host shell in Workbench to verify that the target server is connected to
your target board.

3. Launch Function Tracer according to instructions in 2.3 Starting Function
Tracer, p.9.

This opens the Function Tracer Main window and the Registration window
to let you register trace points.

NOTE: If you have trouble starting Function Tracer in Workbench, you can
follow the instructions in 6. Troubleshooting for loading and running Function
Tracer manually.

4. Verify that the status message at the bottom of the Main window reads:
Connected to target.

If this message does not appear, open the Console window (see 3.2.5 Console
Window, p.39) to check for error messages. You may want to restart Function
Tracer with a verbosity setting of 1 or 2.

14

2 Getting Started

2.4 Testing Your Installation

When validating VxWorks 6.6 text (executable code) addresses, Function

Tracer automatically checks the text boundaries available for shared libraries,
loaded modules, and the kernel. To facilitate locating all text ranges, ensure
that all symbols are available to Workbench, and that module loader support
is included in the target system project configuration.

In the Registration window, type malloc in the Name field.

Function Tracer ¥3.0 - Registration = |EI|1|
File Edit ‘“iew ‘Window Help
Function Status Fitter
[m_prepend -
[l m_pulldawn
O m_pullup
[m_split
] malloc I
[match_addrsel_policy
O match_addrselectpalicy
D matchingCplusSymbolCheck
[l matchlen —
=
4 3
Matne: }'nalloc: LI
Parameter Format: I%d
Yo Yo Yol Yoz Yol Yep
% % %e %If %y %le
Return Walue: " Hide (+

Fittering: * Mone
(o lgnore calls from selected tasks

(o Dizplay calls from selected tasks only

I~ Profilesgent 0x72fccl
I~ Profilesgent DxGfhc20
I~ Profilesgent 0x75dc20

-

I~ Profilesgent 0x759af0 _I

-

Apply Changes Highlights... Activate Tracing Clear Changes |
Connected to walnuti@syl-grood-d1 Target inttislized Mo overflovwes

In the Parameter Format field, select the %d option (or type %4).
Select Show for Return Value, and select None for Filtering.

Click Apply Changes, then click Activate Tracing at the bottom of the
Registration window. This registers and activates the trace point for malloc().

15

Wind River Function Tracer

User's Guide, 3.0

10.

If your target is running tasks that are calling malloc(), you should see trace
records appearing in the Function Tracer Main window. If nothing is running,
type in the command line window:

-> fish = malloc(100)

In the Main window, select the malloc(100) that appears in the tShell() column,
then open the Detail table (see Detail Table, p.61) by selecting the arrow next to
Detail on the left edge of the window.

You should see a trace record appear in the Function Tracer Main window
similar to the one below.

Function Tracer ¥3.0 - walnut@syl-grood-d1 =101 x|
File Edit “iew Window Help
-+ Ouerview
+ Trace
Host Seq Time Return tLogTask trlbiolog thletTask t=helll b T
Timestarmp Idd (=) Yalue OxcOb20450 OxcOb21010 OxcOb21430 OxcOc48h90 OxcOc3S:
\Wied 07-14:00 577 0 malloc(80) =
Wied 07:14:01 657 o 0.0337-975151120 malloc
Wed 0T 14:01 657 1 malloc{80)
Wed OT:14:01.702 1 0.0245-375151024 malloc
Wied 07:14:01.702 2 malloc{25)
Wied 07:14:01 734 2 0.03-375150896 malloc
Wied OT:14:01.734 3 malloc{32)
Wed OT:14:01.749 E:| 0.0233-375150848 malloc
Wied 07:14:01.749 4 malloc{100}
Wied O7:14:01 512 4 0.0537 -375150800 malloc
Wed O7:14:01 512 3 malloc{§y
Vied 07:14:01 350 5 0.0355 575150672 malloc
Wied 07:14:01 859 & malloc{5)
Wed 0T 14:01 674 [0.0353-375150672 malloc
Vied 07:14:01 874 7 malloc(1286)
Wied 07:14:01.905 T 16.7254 1060154845 malloc
L ;I_‘
+ Detail
Euncﬁon: malloc Callstack
ask: tShell 0xcOc49k30 wTaskEntry(0x14) .:.I
frequence I 4 helTazk(0x254)
Host Timestamp: Wed 07:14:01.749 EhellExec(0x1a5)
Feturn Yalue: -375150800 InterpParse(0=20c)
Parameter Format: % thellrterpCparse(Oxadd)
Farameters: 100 bz signFunc(0x58)
Execution Time (ms): 0.0337 ight'slueGet(0x28)
Miniraurr: 0.0238 Seq. ld: 3 urctionEyval(Dxc0)
Mzzirnut 16.7254 Seq. ld: 7 ihellinternalFunctionCall(0xcd)
Average 21178 allocg i) =
Clear Restore Shapshot... Highlights=.. Close !
Connected to walnut@E@ssl-grood-c Target intislizedd Mo overflowes

Typical Example

Some of the features of Function Tracer can be illustrated using a simple example.
This example involves two tasks communicating through a message queue.

16

2 Getting Started
2.4 Testing Your Installation

Sender Task msgQSend() Receiver Task
Message]
while (TRUE) { Queue while (TRUE) {
/* block if full */ o /* block if empty */
msgQSend () ; o msgQReceive () ;
} if (msg == DELAY) {

sleep(secs);
}

}

msgQReceive()

The sender task sends a series of messages to the queue as fast as it can, and the
receiver task empties the queue as quickly as it can. When the receiver task,
however, receives a message that starts with the string DELAY it sleeps for the
specified number of seconds before resuming. Sleeping causes the message queue
to fill, eventually resulting in the sender task also blocking.

This example traces the following functions to monitor interaction between the
tasks:

msgQSend()
This is user function prepares a message before calling the VxWorks function,
msgQSend(), to send the message. It will block if the message queue is full.

msgQReceive()
This VxWorks function gets a message from the message queue. The receiver
task makes the call in blocking mode, so it blocks when the message queue is
empty.

The setup for tracing these functions using Function Tracer is shown in the
Registration window.

17

Wind River Function Tracer
User's Guide, 3.0

Function Tracer ¥3.0 - Registration = |EI|1|

File Edit ‘“iew ‘Window Help

Function Status Fitter
[megEtodelnsert -
[l megEopeninit
[vl meaEReceive active i
[megEReceiveSc
v meg@Send active
O mea@Sendhefer
] magRSendso =
=
4 3
Narne: }nngReceive LI
Parameter Format: I%x- %
Yo Yo Yol Yoz Yol Yep
% % %e %If %y %le
Return Walue: * Hide " Show
Fittering: " Mone

* lgnore calls from selected tasks

(o Dizplay calls from selected tasks only

[¥ tExcTask 0x31fe80 =
[¥ tlobTask 0x58e570
[tLogTask Oxsh2has
v =
Apply Changes Highlights... Deactivate Tracing Clear Changes |
Connected to walnuti@syl-grood-d1 Target inttislized Mo overflovwes

NOTE: Since msgQReceive() is used by the operating-systems tasks, this
example uses task filtering to ignore the following tasks for msgQReceive():

= tExcTask
» tLogTask
= {NetTask
= tWdbTask

This figure shows an early portion of a trace collected when the receiver task was
running at a higher priority than the sender task.

18

2 Getting Started
2.4 Testing Your Installation

Function Tracer v3.0 - walnut@svl-grood-di [
File Edt View Window Help
+ ovorviow — Sequence ID
+ Trace -
Host Seq Time Return . teceiver iaN-
Timestarmp It tms) Value RUECEE 0x3M deal ‘ Function Entry
Thu 16:28:00.374 35| 16.6298 3 _msyQReceive =l
Thu 16:28:00.374 ar Wmuﬂnﬂ.ﬂﬂ) NOTE: Entry and exit
Thu 18:28:00.374 36| 00126 _MsgOSend o
Thu 16:28:00.384 38 _MsgQSend(31eses, 39) may be separated
Thu 16:28:00.384 37| 167823 3 _msyQReceive
Thu 16:28:00.384 38 _msyQReceive(30ffhc, 30) . i
Thu 16:28:00.384 38| 00151 _MsgQSend Function-Exit
Thu 16:28:00.384 40 _MsgOSend(3f1e8eg, 40)
Thu 16:28:00.394 39| 16.5158 3 _msyQRecelve
Thu 16:28:00.394 41 mstQReceive(3f0fhc. 40) Send DELAY
Thu 16:28:00.394 40| 00151 _MsgQSend // message
Thu 16:28:00.404 42 _MsgQsend(3f1e8es, DELAY 5) —
Thu 16:28:00.404 41 165021 [_msyOReceive ——— | Receiver
Thu 18:28:00.404 42| 0014z _MsgOSend ~
Thu 18:28:00.404 43 _MsgQSend(311ege8, 0)) sleeps
Thu 16:28:00.414 43| 00101 _MsgQSend
Thu 16:28:00.414 44 _MsgQSend(3f1e8es, 1) Sender sends
Thu 16:28:00.414 44| 00101 _MsgQSend Contmuously
Thu 16:28:00.414 45 _MsgOSend(3f1ege8, 2)
Thu 18:28:00.414 45| 00101 _MsgOSend
E PENS i 2 i3 | g
g ﬂ
+ Detail
Function _Msgosend Callstack
[Task t4 0x311809¢ wTaskENIY(OXT)
ISequence Id 42 func Caltirapper(dx7e) Call stack
Host Timestarmp: Thu 16:28:00.404 testiMsgQ(0xT)
[Return Value TestBasic(Dx1 d2)
Parameter Format %, %s testisgQueueOnee(0xad)
Parameters: 3fleges, DELAY S sendMessage(Dx2d)
Execution Time (ms) 0.0142
Minimurn; 0.0084 Seq. Id: 49
Mayirniirm A71R TNR1 Sert I 147 L‘
Clear Restore Snapshot. Highlights Cloze
Connected to walnut@svl-grood-o1 Target intialized Mo over flows

From this view you can observe the following events:

The calling parameters and return values of each call. Function-entry and
function-exit appear as two separate records, sharing the same sequence 1D,
such as 35, 37, and so forth. The sequence IDs allow you to match function-
entry with the corresponding function-exit. Note that sequence ID pairs can be
separated by other function calls, but they always occur in pairs—an entry and

an exit.

Observe that when the receiver task is not sleeping, it preempts the sender
task as soon as a message arrives, not even letting the MsgQSend() function

return.

This causes the call sequences to bounce between the two tasks, as can be seen
from the traced sequence IDs 35 through 41.

Verify that as soon as the receiver task receives the DELAY message, it sleeps,
allowing the sender task to send continuously without preemption by the
receiver task.

19

Wind River Function Tracer
User's Guide, 3.0

Show from the trace of the receiver task that the entry-exit pair for each
msgQReceive() call is split by an MsgQSend() call by the sender task. This
indicates that the message queue is empty when the receiver task calls
msgQReceive() and that the call completes only after a message has been sent
by the sender task.

Show from the trace of the sender task that preemption is working properly
because the entry and exit for each MsgQSend() call is split by a
msgQReceive() call for the corresponding message from the higher-priority
receiver task.

View the call stack of any call by selecting the function-entry record in the

table.

This figure shows a slightly later portion of the same trace.

Fnction Traces w30 - walnub@svl-groad-d1 = .il

Bie Edn View Window Help

oF Diri Message queue

*Troce is full, as noted,

Hit Bang Turiie Hittum [[

Tirnestarp] s} Value [TEFETS 0t deal because sender
Thu 18 2800 464 &5 noT MO8 =
Thu 16 28 00 468 & _MspQSend(irutes, 13) task has been
This 16 28100 46id s nmm _Bsaeasand blocked from
Thu 16 2600.474 57 _MsyUSenir a8, 11} .
Thi T6:2600.474 57| ooz _Msgusanm returning
Thi 16:2600.474 58 _MsgUsenii 1aties, 15}
Thu 16:26:00.474 sa| oooaz _MsgoSend L
Thu 16:26:00.474 59 MsnOSendi3r1eten, 16}
Thu 16:26:05.500 60 msgOfRecene(3Mbe, DELAY 5)
Thu 16:20.05.500 8| ooser rrsgOReeene
Thu 16 28 05 810 61 b 0T, 1)
Thu 16 2805 810 &1 noors _presgORueha:
Thi T ZE04 510 7] PO AT, 1)
This 162805510 62| nooez _msgUiacene
Thi 16:2605.510 [_MsgOREceMeNINbE, 2)
Thi 162605510 6] noors _msgUiacene
Thu 16:26:05.520 64 _mspORecene|J0MbE, 3)
Thu 16:26:05.520 64| 00ors msgORecene
Thu 16:26:05.520 65 msgORecee(0MbE, 4)
Thu 1 200 520 gl nonrs ; -

+ Detal . -
Function; MaglSend Callstack ngher prlorlty
Task 14 eI 90ac [wTaskEntryxT) - receiver task
Sogureni i 131 1

This 1678 05 851 Ln awakes from
LT il d3)
Parameter Farmat L | testMagOuauRdnt ey Sleep() and
Farametars: Metiel, DELAY 10 | sendMessapeieza) empties queue
[Exacution Time (ms). noaz . .
Minirmam: 00084 Seq.Id: 48 without letting
Mamurn GTIBTOS Seq. i 149
| st 1700133 | =l sender task run
Pause || ciear soashat. || Hohboits.. || Close
Connecti to heary-AEnatches. Target mitialized Ho overlinws

From this view, you can determine the following additional information:

» The sender task does indeed block when the message queue fills (sequence ID

59).

20

2 Getting Started
2.4 Testing Your Installation

» The size of the message queue is the number of uninterrupted MsgQSend()
calls made by the sender task. Referring back to the two previous figures in
this section, observe that the first successful call is sequence ID 43 and the last
successful call is sequence ID 58, and that, in our example, the message-queue
size is 16.

» The receiver task empties the message queue before allowing the sender task
to run again (sequence IDs beginning with 64).

This example shows just some of the information you can obtain from a trace log.
It also shows that you can trace your own code as easily as you can operating-
system code. Most important of all, the registration of traced functions requires no
special compilation, no special link, and no debugging information, allowing you
to analyze production code immediately and painlessly.

21

Wind River Function Tracer
User's Guide, 3.0

22

The Function Tracer GUI

3.1 Introduction 23
3.2 The Function Tracer GUI 23

3.1 Introduction

The Function Tracer graphical user interface (GUI) is the command center from
which you control and view the target program execution traces. This chapter
describes each of the GUI elements and its function, with references to its use in
displaying target program flow.

3.2 The Function Tracer GUI

The Function Tracer GUI comprises the following windows and dialog boxes:
* Registration window

This is where you register trace points to be traced and analyzed (see
3.2.1 Registration Window, p.24).

23

Wind River Function Tracer
User's Guide, 3.0

* Main window

Displays the collected and analyzed target code data (see 3.2.2 Main Window,
p-28).

= Source Code View window

Displays the source code associated with a selected function (see 3.2.3 Source
Code View Window, p.33).

* Snapshot window

Displays a snapshot, or static view of all the trace records received and stored
since Function Tracer was started (see 3.2.4 Snapshot Window, p.37).

= Console window
Reports error and warning messages (see 3.2.5 Console Window, p.39).
* Highlight window

Configures criteria and colors for highlighting selected trace calls (see
3.2.6 Highlight Window, p.40).

= Columns dialog box

Selects the columns you want displayed in the Overview and Trace tables (see
3.2.7 Columns Dialog Box, p.44).

» Custom Modules dialog box

Adds new modules and routines that were not loaded with the target libraries
(see 3.2.8 Custom Modules Dialog Box, p.45).

These window and dialog boxes are described in detail in the sections that follow.

3.2.1 Registration Window

The Registration window lets you define all the settings for the current session of
Function Tracer, including the registration and activation of trace points. In
addition to the Main window opening when you first start the GUI, the
Registration window opens to let you register trace points. You can also open the
Registration window, or bring it to the top, using the View > Registration menu
item (see View, p.32).

24

Function Tracer ¥3.0 - Registration = |EI|1|

3 The Function Tracer GUI
3.2 The Function Tracer GUI

File Edit ‘“iew ‘Window Help

Function Status Fitter
Custom Modules - 3

sealnLtiggsyl-grood-d1
patchutils 5o
scopeutils =0
stripsupportiib.zo
tracescope =0
wiorks

- Function list

oooood
A EF L

Matne: I LI

Parameter Fortmat: I

N\

o ok Sald Yo ol Sap

o %y e %t %l %le

Returm alue: % Hide Show

Fiftering: = More
— Parameter area

" lghore calls from selected tasks

(" Dizplay calls from selected tasks anly

™ tExcTask 0x3 {230 ;I
[T tJobTask 058570
™ tLogTask 0xSh2hss
I~ thbioLog DxSSeat0 LI)

Apply Changes Highlights... Deactivate Tracing Clear Changes |

Connected to walnuti@syl-grood-d1 Target inttislized Mo overflovwes

Window Elements

The Registration window elements are:

Title Bar
The title bar indicates the Function Tracer version and the title Registration.
Menu Bar

The menu bar is identical to that for the Main window (see Main Window,
p-28). Menu items not applicable to this window are grayed out.

Function List

This list contains an entry for each module and function representing the
loaded target libraries. The fields are for selecting and activating trace points.

25

Wind River Function Tracer
User's Guide, 3.0

26

The columns in the Function list are:
— (check box)

This check box is used to activate or deactivate tracing for a module or
function. When you select the check box, tracing for this module or
function begins immediately. When you uncheck the check box, tracing for
this module (and all its functions) or individual function is stopped.

NOTE: If you select the check box for a module, all the function check boxes
for that module are checked and activated immediately. If this is not intended,
you can select the module check box again to uncheck and deactivate it, and
all the function check boxes are also unchecked and immediately deactivated.

NOTE: If you select the check box for a module, and the module contains more
than 50 functions, the performance of your target may be adversely impacted.
In this case a warning message is issued (see Activating Trace Points, p.54).

— Function

The list of functions available to be traced. These are taken from the target
libraries loaded at startup.

— Status

The status of the function. Indicates Active if the function is currently
being traced; blank otherwise.

— Filter

The status of task filtering. Indicates On if a Filtering option other than
None is selected; blank otherwise.

The Function list includes the following text field:
— Name

Use this text field to enter the name of the function to be located for
registration. When you select a trace point from the Function list, this field
is updated to the name of the selected trace point.

CAUTION: Be aware that this Name matching field only finds the first
occurrence of the named function in the Function list. If you know, or suspect,
that there are multiple occurrences, you must scroll through the list by hand to
find the remaining occurrences.

3 The Function Tracer GUI
3.2 The Function Tracer GUI

= Parameter Area

In this area you may enter data for some specific registration parameters. The
parameter values displayed are default initially, but always reflect the last
selected function after one has been selected.

The parameters are:
— Parameter Format

Use this text field to enter the format string for the function parameters.
For a description of the formats, see Registering Trace Points, p.51. When
you select a trace point from the Function list, this field is updated to the
parameter format string used by the selected trace point. Use the
Parameter Format text entry field to build formats with embedded text if
desired, selecting valid printf-like formats from the format buttons below
the list. See examples in Registering Trace Points, p.51.

NOTE: It is not required that you use the format buttons to enter valid printf-
like formats; you can type them directly into the Parameter Format text entry
field.

— Return Value

When Show is selected, Function Tracer prints the return values in the
function-exit trace records in the Trace table of the Main window (see
Return Value Column (optional), p.59).

— Filtering
This section contains commands to enable or disable task filtering for the
trace point that you are adding or modifying.

The filtering commands are:

None
Turns off filtering, causing Function Tracer to record all calls to the
trace point function.

Ignore calls from selected tasks
Ignores trace records for the tasks listed (checked) in the associated
task list.

Display calls from selected tasks only
Displays trace records for only the tasks listed in the associated task
list. (This list is then referred to as a list of watched tasks.)

= Buttons

27

Wind River Function Tracer
User's Guide, 3.0

Buttons are located just above the bottom of the window to provide more
convenient access to the most frequently used menu bar items.

The buttons are:
- Apply changes

When selected, registers a new trace point or commits changes to a
currently registered trace point. If currently activated, Function Tracer
updates the trace point parameters in real-time.

— Highlights

Opens the Highlight window where you can select highlight criteria and
colors. This button duplicates the View > Highlights menu item
described in Menu Bar, p.30.

— Activate/Deactivate Tracing

If the selected trace point is not active, the button label is Activate Tracing.
Clicking the button enables tracing for that trace point, and causes the
button label to change to Deactivate Tracing. Clicking Deactivate Tracing
disables tracing for that trace point, and causes the button label to change
back to Activate Tracing.

NOTE: For the selected trace point, this action duplicates the checking or
unchecking of the Trace check box in the Function list, described above.

— Clear Changes

Backs out of any changes made to a trace point before the Apply Changes
button is clicked.

= Status Bar

The status bar appears at the bottom of the Registration window. Itis identical
to the status bar in the Main window (see Status Bar, p.65), indicating the
current status of the connection with the target.

3.2.2 Main Window

The Main window displays the collected and analyzed target code data in a set of
three user-selectable interpretive tables.

28

3 The Function Tracer GUI
3.2 The Function Tracer GUI

Function Tracer ¥3.0 - walnut@svl-grood-d1 - |EI|1|

File Edit ‘“iew ‘Window Help

+ Overview

cTask tdobTask tlogTask thhiolog tMetTask tShelld tTelnetd tWdbTask 0xGe?5al OxBe7528
G118l | 0x58e570 Ox5h2h38 OxS8eafl 0500010 OxShel90 Ox554570 0x558930 OxGe7Sal Oxfe?S2E
-— =
—
]
—
]
—
]
—
]
—
]
—
]
—
]
—
| i
Kl [»
Trace
Host Seq. Time Return [elnetd b Taszk OxGe75al 0x6e7525
Timestamp Id (] “alue Bads70 0x528930 OxGe75al 0x6e7525
Tue 07:57:02.201 7 malloc{104) -
Tue 07:57:02.245 7 00424 | 7235852 malloc
Tue 07:57:02.245 g malloc{60}
Tue 07:57:02.245 g 00354 | 7235744 malloc
Tue 07:57:02.245 9 malloc{144)
Tue 07:57:02.263 9 00285 | 7239524 malloc
Tue 07:57:02.263 10 malloc{24)
Tue 07:57:02.279 10 0.0372 | 25357005 malloc
Tue 07:57:02.279 ihl malloc{1000}
Tue 07:57:02.279 11 0.0405 | 25357045 malloc
Tue 07:57:02.279 12 malloc{56}
Tue 07:57:02.294 12 00377 | 7239524 malloc
Tue O7:57:37 405 13 _I malloc{104) _I'
4 3
Detail
unction: malloc Callstack
ask: O0xG6e75al 0xGe7Sal raceScopeTracingError(0x0) ;I
equence |d: 12 cbCtxExithotifyHook 0x58)
Host Timestarmp: Tue 07:57:02.279 alloc0:=0)
Feturn Yalue: 7238524
Farameter Format: “odl
Farameters: a6
E:ecution Time (ma]): 0.0377 LI
Clear Restare Snapshat... Highlights... Close |
IConneded to walnut@syl-grood-ci Target intialized Mo averflows

Window Elements

The Main window displays dynamically updated trace records, including timing
data, as the trace points are triggered on the target. It also provides access to

Function Tracer commands through its toolbar and menus. The window elements
are described in the sections that follow.

The Main window contains the following elements:

Title Bar

29

Wind River Function Tracer
User's Guide, 3.0

30

The title bar indicates the version of Function Tracer and the name of the target
server to which Function Tracer is connected.

Menu Bar

The menu bar allows access to all Function Tracer functionality through the
standard menu items provided. The menu items are:

— File

The File menu provides access to the file-related commands as well as the
Close and Quit commands.

Function Tracer ¥3.0 - walnut@svl-grood-d1

File Edit “iew ‘incow

Open Trace Data...
Save..

Export...

Cloze

Prirt...

Gt

The File menu commands are:

Open Trace Data
Opens a binary file, in a separate window, containing previously
saved Trace table data for examination and analysis.

Save
Saves the current contents of the Trace table to a binary file (to be
opened later with Open Trace Data). A Save dialog box opens where
you can specify the file name.

Export
Saves the current contents of the Trace table to a file in ASCII format,
which may then be printed or imported directly into a spreadsheet
application such as MS Excel. A Save dialog box opens where you can
specify the file name. Files in this format cannot be reloaded into

Function Tracer with Open Trace Data (use the Save command for
that).

Close
Closes the window.

3 The Function Tracer GUI
3.2 The Function Tracer GUI

Print
Prints the current log to a printer. A Print dialog box opens where you
can select printing parameters.

Quit
Quits Function Tracer. Quitting also de-initializes the target libraries,
releasing any target memory used for tracing.

Edit

The Edit menu allows you to modify the display of data items on the
screen.

Function Tracer ¥3.0 - walnut@svl-grood-d1

File | Edit “iew Wincow
Snapshat...

Clear
Restore

Pause
Resume

Source Path...

The Edit menu commands are:

Snapshot
Copies the entire contents of the Trace table into a separate window
(3.2.4 Snapshot Window, p.37). The contents of the newly created
Snapshot window are no longer updated with fresh data.

Clear
Clears the Overview, Trace, and Detail tables in the Main window.
You may want to do this after saving the log to reduce memory usage
by the GUI and to improve performance.

Restore
Restores all data in the Overview and Trace tables removed with
Clear since the beginning of the current trace session. It does not
restore any data previously displayed in the Detail table.

Pause
Temporarily stops the display only of trace data being generated.
When the trace display is in the paused state, Pause is grayed out.

Resume
Restarts the display of trace data that was stopped with Pause. When
the trace display is not in the paused state, Resume is grayed out.

31

Wind River Function Tracer
User's Guide, 3.0

Source Path
Opens the Source Path dialog box (see Source Path Dialog Box, p.35)

where you can specify directory paths to search for source code
display.

NOTE: In the Source Path dialog box, the vertical scroll bar on the right may
move itself upward with the influx of data, which inhibits the continuing
display of generated records. If this happens, simply move the vertical scroll
bar to the bottom and dynamic data display resumes.

- View
Use the View menu to access the view-related commands, including
opening the Registration window.

Function Tracer ¥3.0 - walnut@svl-grood-d1

File Edit | View incow

Columns....
Highlights...
Custom hodules...

Conzale...
Registration...
sealnutiggsvl-grood-di ...

The View menu commands are:

Columns
Opens the Columns dialog box (3.2.7 Columns Dialog Box, p.44), where

you can select which columns (tasks) to hide or display trace records for.

NOTE: Tasks hidden with this command continue to store any generated trace
records. If turned on later, all trace data stored while it was hidden are

displayed.

Highlights
Opens the Highlight window (3.2.6 Highlight Window, p.40), where
you can select highlight criteria and colors to be applied to generated

trace records.

Custom Modules
Opens the Custom Modules dialog box (3.2.8 Custom Modules Dialog

Box, p.45), where you can add modules and functions not initially
loaded with the target libraries.

32

3 The Function Tracer GUI
3.2 The Function Tracer GUI

Console
Opens the Console window (3.2.5 Console Window, p.39), displaying
error and warning messages. If the Console window is opened
already, but hidden behind other windows, you can use this menu
item to bring the window to the top.

Registration
Opens the Registration window(3.2.1 Registration Window, p.24),
where you select target functions for tracing and set up their
parameters.

targetServer
Opens the target server (Main) window, where targetServer is the
name of the target server.

- Window
The Window menu lists all the windows currently open.

Function Tracer ¥3.0 - walnut@svl-grood-d1
File Edit “iew | WWincow

Registration...
#* ywalnut@syl-grood-dl ..

It changes dynamically as you open and close windows. You can select
any window listed in the menu to bring it to the top if it is hidden beneath
other open windows.

3.2.3 Source Code View Window

The Source Code View window allows you to view the source code associated
with a selected function. An example of a Source Code View window is shown
here.

33

Wind River Function Tracer
User's Guide, 3.0

Function Tracer ¥3.0 - C:\target'projcovdemo.c - |EI|1|
File Edit ‘“iew ‘Window Help

- =
*coverageHeanBeat - a task that beats once a second as long as
* everything is ak.

v;id coverageHearBeatd)
{ while{eventhings Ok
{ FHeart beat message hera *f
coverageSleep(l);
:Jrinrr("Acck!!!! Heart beat has diedhn™;
'

I
* coverageSleep - a simple sleep function that delays the task far
* the specified number of seconds.

*
woid coverageSleepiint seconds)

{

register int ticks; =
register int rate = sysClkRateGetd;
ticks = seconds*rate;

ifticks = 1)
ticks=1;
taskDelayicks);

i =
1] _>|_I

This window is opened by selecting the function name in the Callstack list
displayed in the Detail table in the Main window (see Detail Table, p.61). The
displayed source code cannot be edited; it is only available for viewing.

In the event the source code file for the selected function is not found, the File
Not Found error dialog box is displayed.

Unable to Find Source x|

& Function FuncCallwrapper is not found in
CifwindRiver fworkspace fwalnutdef aultfvxworks,

No action can be taken from this dialog box; click OK to dismiss it. Then select
Edit > Source Path from the menu bar to open the Source Path dialog box
(described in the next section) where you can enter the correct directory to search.

34

Source Path Dialog Box

3 The Function Tracer GUI
3.2 The Function Tracer GUI

Open the Source Path dialog box using the Edit > Source Path menu command.

Source Path x|

Directory: I Erowse... | — Directory Entry

™ Sesrch subdirectories FECUrsively

List of directaries to search for source files:

CvindRiverscopetools-6 Otargetisrchveonworksidemo ™

Directory List

A
A

Al | Remayve | Remave Al |

Apply | Cancel |

You can enter an ordered list of directories here to search for source code files.

Window Elements

The Source Path dialog box screen includes the following elements:

Directory Entry Panel

A set of controls for editing and reordering the directory list, containing the
following items:

Directory
A text field where the full path to a directory can be manually entered.

Browse
A button that opens a file browser to graphically select directories.

Search subdirectories recursively
Select this check box to search each listed directory recursively.

List of directories to search for source files

An ordered list of directories searched when trying to find a source code file.
The list is searched in order from top to bottom. To change the search priority
of any entry, select the row, then use the Move Up or Move Down arrow

35

Wind River Function Tracer

User's Guide, 3.0

buttons to physically move the row up or down in the table with respect to the
other rows.

= Buttons

The following buttons are provided:

File Search Dialog Box

Add
Adds the contents of the directory text field to the bottom of the list.

Remove
Removes the selected directory from the list.

Remove All

Removes all directories from the list.

Apply

Saves the changes made to the directory list, closes the Source Path dialog
box and opens the File Search dialog box (below).

Cancel
Closes the dialog box without saving any changes you made.

The File Search dialog box is displayed while the software is actively searching the
list of specified directories for a source code file.

//
' x|
Searching for covdemao.c

Done searching

Search Status Desired File

C:targetiprojicovdemo.c |

Match List

oK || Edit SourcePath... || Cancel

36

3 The Function Tracer GUI
3.2 The Function Tracer GUI

Searching for a source code file in a large number of directories can be time

consuming. Any matching files found are added to the match list and can be

selected at any time, even while the search is continuing to run. Once a match is

found and selected, the OK button is enabled. Clicking any of the other buttons at
the bottom while the search is in progress stops the search immediately.

Window Elements

The File Search dialog box has the following screen elements:

= Desired File
The name of the source code file being searched for.

» Search Status
A field containing either the name of the directory currently being searched or,
if finished, the text Done searching.

= Match List
The list of files whose name matches that of the desired source code file.

* Buttons
The following buttons are provided:

- OK
Becomes enabled when a file is selected in the match list. It closes the
dialog box and opens the selected file in a Source Code View window,
described in 3.2.3 Source Code View Window, p.33.

- Edit Source Path
Closes the dialog box and opens the Source Path dialog box, described in
Source Path Dialog Box, p.35.

- Cancel
Closes the dialog box.

3.2.4 Snapshot Window

The Snapshot window displays a static view of all the trace records received and
stored since your target program was started.

37

Wind River Function Tracer
User's Guide, 3.0

Function Tracer ¥3.0 - Snapshot of walnut@svl-grood-d1, Tue May 15 08:13:41 PDT 2007 - |EI|1|
File Edit “iew ‘Window Help
-+ Overview
+ Trace
Host Seq. Time Return b Taszk OxGe75al 0x6e7525
Timestamp Id (] “alue Ox525930 OxGe75al 0x6e7525
Tue 07:57:02.201 7 malloc{104) -~
Tue 07:57:02.245 7 00424 | 7235952 | malloc
Tue 07:57:02.245 g malloc{60}
Tue 07:57:02.245 g 00354 | 7235744 | malloc
Tue 07:57:02.245 9 malloc{144)
Tue 07:57:02.263 9 00285 | 7235524 | malloc
Tue 07:57:02.263 10 malloc{24)
Tue 07:57:02.279 10 0.0372 | 25357005 | malloc
Tue 07:57:02.279 ihl malloc{1000}
Tue 07:57:02.279 1 0.0405 | 25357045 malloc
Tue 07:57:02.279 12 malloc{56}
Tue 07:57:02.294 12 00377 | 7239524 malloc
Tue 07:57:37 405 13 malloc{104)
Tue 07:57:37.405 13 0.0444 | 25355064 | malloc
Tue 07:57:37 405 14 malloc{60}
Tue 07:57:37 405 14 0.0347 | 25355154 | malloc
Tue 07:57:37.420 15 malloc{144)
Tue 07:57:37.420 15 00343 | 7239624 | malloc
Tue 07:57:37.420 16 malloc{24)
Tue 07:57:37.420 16 0.029 | 25357005 | malloc
Tue 07:57:37 436 17 malloc{2500)
Tue 07:57:37 436 17 00445 | 7213560 malloc
Tue 07:57:37 451 18 malloc{56}
Tue 07:57:37.451 18 0.0408 | 25355264 _I malloc _ILI
4 3
= Detail
Highlights... | Close
|Snapshot of walnuti@syl-grood-d1 | Tue May 15 08:13:41 POT 2007

These records consist of all the entries displayed in the Main window (described
in 3.2.2 Main Window, p.28) up to the instant the snapshot was taken. A snapshot
is denoted by the word Snapshot, along with the filename, date and time of the
snapshot, displayed in the title bar (circled above).

The task columns shown in the Snapshot window above are only the ones
containing trace data actually collected; empty task columns are not displayed.
The records in this window are static, and are no longer updated.

A snapshot window is created by using the Edit > Snapshot menu command. Any
number of Snapshot windows may be opened simultaneously to allow you to
perform comparisons of traced data. The Snapshot window appears and operates
nearly identically to the Main window (see 3.2.2 Main Window, p.28), including the
menu, toolbar, and buttons.

38

3 The Function Tracer GUI
3.2 The Function Tracer GUI

NOTE: A snapshot is a temporary window. If you want a permanent record, you
must use the File > Save menu command (in the Snapshot window) to save it to a
file (see Menu Bar, p.30).

3.2.5 Console Window

The Console window is where Function Tracer reports errors and warnings. Open
it using the View > Console menu command in the Main window.

Function Tracer ¥3.0 - Console 10l =|

File Edit ‘“iew ‘Window Help

TraceScope v3.0 155
Tue Mary 15 08:01:16 POT 2007

Connected to walnuti@syl-grood-o1

=

Save.. | Cloze |

Connected to walnuti@syl-grood-d1 Target inttislized

Mo averflows

During normal operation, very few messages are printed to the Console window.
However, when you start Function Tracer with a non-zero verbosity level (see
2.3 Starting Function Tracer, p.9), the amount of output can be significant.

NOTE: Read the Warning note in Starting Function Tracer From Workbench, p.11.

Window Elements

The Console window elements are:

39

Wind River Function Tracer
User's Guide, 3.0

Title Bar

Indicates the version of Function Tracer and the title Console.

Menu Bar

The menu bar for the Console window is identical to that for the Main
window (Menu Bar, p.30). Menu items not applicable to this window are

grayed out.

3.2.6 Highlight Window

You can configure criteria and colors for highlighting selected trace calls using the

Highlight window.
Function Tracer ¥3.0 - Highlight malloc - |EI|1|
File Edit ‘“iew ‘Window Help
railoc | —— Select function
Highlighting: (% Data Only (" Fullwicth " Off Highlighting extent
Highliaht | Condition |
|When execution time is == 0,038 |
|When execition time is = 0.041 |
— Criteria table
[Delete | Mave Up | Mave Dowwr |
|
I N
Highlight trace data text I Custam... |
when execution time in ms is |> 'l I and |= ¥ I ' Criteria parameters
and return value is |> 'l I and |< VI I
or parameter |1 - Yadd 'l iz |> 'l I ancd |< VI I
A | Apply | Reset | Clear | —— Function buttons

Cloze |

Highlighting selected trace records with different colors as they are displayed aids
in spotting and analyzing performance characteristics of the target system.
Highlight criteria can be applied before tracing begins, and can also be applied and

40

3 The Function Tracer GUI
3.2 The Function Tracer GUI

modified as tracing progresses. All additions and modifications take place
immediately, and remain until changed again.

The window may be opened by either of the following actions:

» Clicking the Highlights button in the Main window or the Registration
window.

» Selecting the View > Highlights menu command.

Window Elements

The Highlight window elements are:

Title Bar

Indicates the version of Function Tracer, the title Highlight, and the name

of the selected function you are highlighting.

Menu Bar

The menu bar for the Highlight window is identical to that for the Main
window (Menu Bar, p.30). Menu items not applicable to this window are

grayed out.

Function Selection Field
Allows you to select or enter the name of the function.

Highlighting
These buttons allow you to determine how much of the trace line gets
colored.

Criteria Table
This table displays the highlighting parameters for each configured
function.

Criteria Parameters

Individual parameter entry fields allow you to select parameter types and

limits for highlighting.

Function Buttons
Use these buttons to manipulate the criteria selections made.

Close Button
Closes the window.

41

Wind River Function Tracer

User's Guide, 3.0

Configuring Highlight Criteria

You can configure, or modify existing configurations for, highlighting trace
records at any time using the Highlight window (see the previous figure in
3.2.6 Highlight Window, p.40).

1.

42

Locate the function name (trace point) in the drop-down list, or enter the name
of the function in the function selection field. The highlighting criteria
specified is applied to, or modified in, only this trace point.

Select Data Only (highlights only the data cell), Full Width (highlights the
entire line), or Off (suspends highlighting without changing the criteria) for
Highlighting.

Select a color from the Highlight trace data field for the selected trace point.
You may create a new color by clicking the Custom button.

Select the parameter types and limits using the three following sets of text
entry boxes:

when execution time in ms is...and
Select a boolean symbol for the first text box from the drop-down list,
then enter the time (in milliseconds) in the first text box. If you want
to bracket a time, select the appropriate symbol for that, and enter the
second time in the second text box.

and return value is...and
Select return value(s) in the same way, to be logically "and"ed with the
execution time selected above, if any.

or parameter...is...and
Select a passed input value in the same way, except first select the
parameter format number from the drop-down list preceding the two
text entry boxes.

Click one of the following function buttons to finalize the trace point criteria
selection:

Add
Add this new trace point, with the selected criteria, to the Criteria table.
The trace point appears in the table.

Apply
Apply the above criteria to the selected trace point. Changes to the trace
point criteria appear in the table.

3 The Function Tracer GUI
3.2 The Function Tracer GUI

Reset
Causes any changes made to criteria for a selected trace point, before
clicking Apply, to be returned to their previous value.

Clear

Clears all values set in the text entry fields. You must click Apply to save
the blank fields.

6. Modify the priority of the highlight criteria for the function by physically
moving a selected criteria up (higher priority) or down (lower priority) in the
criteria table using the Move Up or Move Down buttons at the bottom of this
table. You can delete all criteria from a function using the Delete button.

7. Click Close to close the window.

All highlight criteria set for a function remains, even across Function Tracer
sessions, until modified or deleted.

Example

An example of highlights generated from the setup in the Highlight window
shown in 3.2.6 Highlight Window, p.40 is shown here.

43

Wind River Function Tracer
User's Guide, 3.0

Function Tracer ¥3.0 - walnut@svl-grood-d1 10l =|
File Edit ‘“iew ‘Window Help
-+ Overview
+ Trace
Host Seq. Time Return [elnetd b Taszk OxGe75al 0x6e7525
Timestamp Id (] “alue Bads70 0x528930 OxGe75al 0x6e7525

Tue 07:57:02.201 7 malloc{104) -

Tue 07:57:02.245 T 00424 | 7235952 malloc

Tue 07:57:02.245 g malloc{60}

Tue 07:57:02.245 g 0.0354 | 7235744 malloc

Tue 07:57:02.245 9 malloc{144)

Tue 07:57:02.263 9 00285 | 7239524 malloc

Tue 07:57:02.263 10 malloc{24)

Tue 07:57:02.279 10 0.0372 | 25357005 malloc

Tue 07:57:02.279 ihl malloc{1000}

Tue 07:57:02.279 1 0.0405 | 25357045 malloc

Tue 07:57:02.279 12 malloc{56}

Tue 07:57:02.294 12 00377 | 7239524 malloc

Tue 07:57:37 405 13 malloc{104)

Tue 07:57:37 405 13 0.0444 | 25355064 malloc

Tue 07:57:37.405 14 malloc{60}

Tue 07:57:37 405 14 0.0347 | 25355154 malloc

Tue 07:57:37.420 15 malloc{144)

Tue 07:57:37.420 13 00343 | 7239624 malloc

Tue 07:57:37.420 16 malloc{24)

Tue 07:57:37.420 16 0.029 | 25357005 malloc

Tue 07:57:37 436 17 malloc{2500)

Kl d
= Detail
Pauze Clear Restare | Snapshat... | Highlights. Close |

IConneded to walnutiEsyl-grood-o1 Target inttislized Mo overflovwes

3.2.7 Columns Dialog Box
Use the Columns dialog box, opened with the View > Columns menu command,

to select the columns you want displayed in the Overview and Trace tables in the
Main window (in the live window as well as the Snapshot window).

44

3 The Function Tracer GUI
3.2 The Function Tracer GUI

Columns

¥ Return value
ol Sequence Id

v Time (]

[¥ 02667528 OxBeT528

Hx

[V 0xB87520 0x6e75a0

¥ Profilesgent 0x6fbc20

¥ Profilesgent 0x72fcc

¥ Profilesgent 0x759af0

¥ Profilesgent 0x750c20

[V tExcTask 0x31 feg0 =l

Cloze |

Select the check boxes for each column you want displayed in the Main window
(or in the Snapshot window). The result of excluding or including columns
appears immediately, but only affects the window in which they are selected, and
only for the current session.

3.2.8 Custom Modules Dialog Box
The Custom Modules dialog box is where you can add new modules and routines
that were not loaded with the target libraries, or are not otherwise known to the

target server. Open this dialog box using the View > Custom Modules menu
command on the Main window or Registration window menu bar.

45

Wind River Function Tracer
User's Guide, 3.0

x
;l Custom Modules \
Module Selection area (table and
— entry field); use this area to add or
delete custom modules
Maodule Mame:
A Module [Delete Module
|/
.

Function Mame: I

Parameter Format: I
Function Properties area; use this

Yo Yo Yol Yoz Yol %R . .
| area to specify properties for new
i gl #e i g e or modified custom functions, or to
Return Value: & Hide Show delete existing custom functions
Aol Function | Apply Changes | [Delete Function |

Cloze |

Window Elements

The File Search dialog box contains the following window elements:

= Module Selection Panel
Where you add or delete custom modules. The Module Selection Panel
contains the following items:

- Custom Modules table
The list of custom modules and functions that you create.

- Module Name
The text entry field where you enter the new module name.

— Buttons
The following buttons apply to the Module Selection Panel:

Add Module
Adds the new module in the Module Name field to the Module table.

46

3 The Function Tracer GUI
3.2 The Function Tracer GUI

Delete Module
Deletes a selected module from the Module table.

» Function Properties Area
Where you select and enter properties for a new or modified function to be
added to the module. It contains the following items:

- Function Name
The text entry field where you enter the new or modified function name.

- Parameter Format
Select the parameter formats for the function using the buttons below the
field, or type the formats directly into the field.

— Return Value
Select the Hide or Show button to hide or display the return value.

- Buttons
The following buttons apply to the Function Properties Panel:

Add Function
Adds the new function to the Module table.
Apply Changes
Applies any changes you make to a selected function.

Delete Function
Deletes the selected function from the Module table.

* Buttons
The following buttons apply to the File Search dialog box overall:

- Close
Closes the dialog box.

Loading Custom Modules

You can begin loading custom modules and routines at any time after Function
Tracer has finished loading target libraries using the Custom Modules dialog box
(described above).

1. Enter a name for your new module in the Module Name field, or select a
custom module name to modify from the table in the upper (Module
Selection) panel of the window.

47

Wind River Function Tracer
User's Guide, 3.0

7.

If this is a new module, click Add Module to add it to the Custom Modules
table in the upper panel. You can also delete a selected module, along with all
its functions, from the folder by clicking Delete Module.

Enter a new custom function name in the Function Name field, or select a
function from a module in the Custom Modules table for modification.

Use the Parameter Format text field to enter the format string for the function
parameters. For a detailed description of the formats, see Registering Trace
Points, p.51. This format string defines the input parameters to the new or
modified function.

NOTE: It is not required that you use the format buttons to enter valid printf-
like formats; you can type them directly into the Parameter Format text entry
field.

When Show is selected for Return Value, Function Tracer displays the return
value in the function-exit trace records in the Trace table of the Main window
(see Return Value Column (optional), p.59). Otherwise it is not displayed.

Click one of the following buttons to finalize the custom function description:

Add Function
Add this new function to the table. The function appears in the table.

Apply Changes
Apply selected values to the selected existing function being modified.

Delete Function
Deletes the selected function from the module.

Click Close to close the Custom Modules dialog box.

The module(s) and function(s) created with this procedure can now be registered
for tracing (see Registering Trace Points, p.51).

48

4.1
4.2
4.3
4.4
4.5

Using Function Tracer

Introduction 49

Starting Tracing Activity 49
Viewing Data 56
Operational Features 66

System Viewer Event Integration 68

4.1 Introduction

This chapter goes into the details of using the Function Tracer GUI to analyze and
display real-time data from your running target program. It describes the startup
of Function Tracer, and the subsequent control of data flow and analysis using all
the GUI features.

4.2 Starting Tracing Activity

For information on how to launch the GUI, see 2. Getting Started.

49

Wind River Function Tracer
User's Guide, 3.0

Initializing Trace Points

The Registration window appears when you first start the GUL.

Function Tracer ¥3.0 - Registration = |EI|1|

File Edit ‘“iew ‘Window Help

Function Status Fitter

Custom Modules =
sealnLtiggsyl-grood-d1

O+ MEmsCope. 50
[4| memscopederma.so
O+ patchutils so
O+ profile.so
O+ scopeutils s
O + strtpsupportlib =0 -
O+ tracescope.so -
4 »
Mame: I LI
Parameter Fortmat: I
o ok Sald Yo ol Sap
%f %g %e %t C %le
Return Walue: % Hide € Show
Filterir: % More

" lghore calls from selected tasks

(" Dizplay calls from selected tasks anly

I~ Profilesgent 0x72fccl ;I
I~ Profilesgent DxGfhc20
I~ Profilesgent 0x75dc20

I~ Profilesgent 0x759af0 _I

-

Apply Changes Highlights... Deactivate Tracing Clear Changes |
Connected to walnuti@syl-grood-d1 Target inttislized Mo overflovwes

This window is where you define all the settings for the current session of Function
Tracer, including the registration and activation of trace points. It opens
automatically at startup, but you can also open it at any time using the

View > Registration menu item (see View, p.32).

Before any data can be displayed, you must register and activate at lease one trace
point in this window. The process of managing trace points for routines and
functions you want to track is described in the sections that follow.

50

Registering Trace Points

4 Using Function Tracer
4.2 Starting Tracing Activity

Registering a trace point initializes the trace point settings for a function, but the
Function Tracer target agent does not start tracing the function until the trace point
is activated. Therefore, you can register many functions in the beginning, but only
activate a few at a time to minimize the impact on your running programs. The
settings used this time are saved and reinstated the next time you start Function

Tracer.

Register a trace point by following these steps:

1. Inthe Registration window, double-click the name of a module in which you
want to trace the functions. This opens the list of functions for that module.

Function Tracer ¥3.0 - Registration = |EI|1|
File Edit ‘“iew ‘Window Help
Function Status Fitter
[m_prepend -
[l m_pulldawn
O m_pullup
[m_split
O malloc —
[match_addrsel_palicy T .
0O et akectamaey Select a function to trace
D matchingCplusSymbolCheck or,
| matchlen = .
— Enter a function name
Maifie: }'nalloc: LI
Parameter Format: I%d BN
Yo Yo Yol Yoz Yol Yep
% % %e %If %y %le
Return Walue: " Hide (+
Fittering: * Mone

Apply Changes |

(o lgnore calls from selected tasks

(o Dizplay calls from selected tasks only

I~ Profilesgent 0x72fccl
I~ Profilesgent DxGfhc20
I~ Profilesgent 0x75dc20
I~ Profilesgent 0x759af0

Highlights...

Activate Tracing

-

|

Clear Changes |

| Define trace point
properties

{
Connected to &alnut@svl-grood-m

Target inttislized

Mo averflows

Click Apply Changes
to register the trace

point properties

51

Wind River Function Tracer
User's Guide, 3.0

52

For details, see 3.2.1 Registration Window, p.24.

Within Function Tracer, a trace point is identified by a function name, but the
trace point is more than just the function name. It is composed of the following
specifications, applied to that function, that you must make during
registration.

a.

Choose a function to trace by selecting its name in the list, or by entering
its name in the Name field. Since many C compilers create target symbols
by prepending an underscore ("_") to the name of a function, you may also
need to prepend the underscore when searching for the function to trace
using the Name field.

Enter the format string for the function parameters, if any, in the
Parameter format field. The supported formats are:

character %c
A one-byte character.

decimal int %d
An integer in decimal format.

double %lg
A double-precision number printed in general format that adjusts the
precision of the output automatically, resorting to exponential format
when needed.

double %If
A double-precision number printed in non-exponential format.

double %le
A double-precision number printed in exponential format.

float %g
A single-precision number printed in general format that adjusts the
precision of the output automatically, resorting to exponential format
when needed.

float %f
A single-precision number printed in non-exponential format.

float %e
A single-precision number printed in exponential format.

hex int %x
An integer printed as a hexadecimal number (without the leading 0x).

4 Using Function Tracer
4.2 Starting Tracing Activity

pointer %p
A pointer printed as a hexadecimal number (whether the leading Ox is
printed is compiler dependent).

string %s
A string; a pointer to a null-terminated array of characters to be
printed as a string. The string should not contain new-line characters.

unsigned %u
An unsigned integer printed in decimal format.

NOTE: You may omit function parameters from the format string, and
Function Tracer just ignores them. However, you should not specify more
parameters than the function has.

NOTE: The actual number of parameters printed is limited by the initialization
settings (see Starting Function Tracer From Workbench, p.11).

c. Select Show in the Return Value field if you want Function Tracer to print
the return value for the function; otherwise select Hide.

d. Select a Task Filtering option from:

None
Use this setting to record all calls to the function.

Ignore calls from selected tasks
Use this setting to define a list of tasks to ignore when recording calls
to the function.

Display calls from selected tasks only
Use this setting to record calls to the function only if the calling task is
in the defined list (watched tasks).

If you selected the Ignore calls from selected tasks or the

Display calls from selected tasks only option, define a task list in the
associated list box by selecting the check box next to the name of each task
you want included.

Click Apply Changes to register the trace point.

NOTE: Do this step, even if you accepted all the default values for this
function.

53

Wind River Function Tracer
User's Guide, 3.0

4. Select the Trace check box if you want to activate the selected trace point
immediately after registering it; otherwise register more trace points first.

Activating Trace Points

You must now activate a trace point before Function Tracer will record calls to the
corresponding function. Activate each registered trace point individually using
the Registration window, as shown here.

Function Tracer ¥3.0 - Registration

Fie Edt Wiew Windowe Help

=10 x|

Function

Status Fitter

m_prepend

r_pulldowr

rr_pullugy

m_split

mallac
Tmatch_acersel_policy

match Fmrselectpolicy

rratchingCplus SyifbelCheck

matchlen -

o = o

M, }nallm:

Parameter Format: I%d

Foid i U %o

Fet %0 e Felf

Yaliy Yole

Return Value: Hide %

Filtering: " hone
€ Ignore calls from selected tasks

" Display calls from selected tasks only

[T Profilzagert 0x72fccO
[T Profilzsgert 0xEthc20
[T Profilesgert 0x7Sdo20
[T Profilzagert 0x7 59210

Apply Changes |

=l

H\ghligh{s.../l/ Activate Tracing I\ Clear Changes |

Connected to walnut@svi-grood-o1 Target intialized

Mo overflows

Deactivate Tracing

H —
H B

Select the Trace check box

or

Click the Activate Tracing button to
activate a selected trace point

Note: The Activate Tracing button
changes its title to Deactivate Tracing
for a point that has been activated

Uncheck the Trace check box

or

Click the Deactivate Tracing button
to deactivate a selected trace point

In the Registration window, select the Trace check box for each function you want
to activate (or select Activate Tracing at the bottom of the window for a selected

function).

54

A\

Deactivating

Modifying

4 Using Function Tracer
4.2 Starting Tracing Activity

NOTE: Activating more than five functions at the same time may result in a
significant impact on your running system. Prior to allowing this, a warning
message is displayed.

CAUTION: A maximum of 32 trace points is allowed. Most systems can experience
significant delays with fewer than 32, so adjust the number according to the
maximum processing load or delay your system can tolerate.

Trace points are deactivated individually using the Registration window, shown
above. In the Registration window, uncheck the Trace check box for each function
you want to deactivate (or click Deactivate Tracing at the bottom of the window
for each selected function).

You can change the tracing characteristics of any trace point at any time, even
while the trace point is activated, using the Registration window. Referring to the
figure above, follow these steps:

1. In the Registration window, locate the traced function in the Function list
either by scrolling, or by entering its name in the Name field.

2. Select the function in the list to copy its tracing characteristics into the
appropriate fields in the Registration window.

3. Make any desired changes to the name, parameter format, return value, or
taskfilter settings.

4. Click Apply Changes to update the trace point with the new properties.

NOTE: If you are actively tracing this function, be sure its check box is still
checked for tracing in the Registration window. The effects of your changes
appear immediately in the Trace table (Trace Table, p.58).

55

Removing

Wind River Function Tracer
User's Guide, 3.0

Remove a trace point by deactivating it (see Deactivating, p.55). When you
deactivate a trace point, the code patch used to trace and print the activity for that
function is removed from the target and no longer influences processing. When
you activate the trace point again, the code is reinstated. The registration
parameters set for this trace point remain intact until changed.

4.3 Viewing Data

Overview Table

The Function Tracer Main window is the primary view into the execution of your
program. It is where collected and analyzed tracepoint data is displayed in a set of
3 user-selected tables. Each table can be individually opened or closed using the
arrow symbol (}) along the left window margin. The display can be augmented
by highlighting data rows of particular interest with different colored backgrounds
(see 3.2.6 Highlight Window, p.40), or selecting only the columns of data you are
interested in viewing (see 3.2.7 Columns Dialog Box, p.44).

The Main window displays the following tables:

= Overview
= Trace
= Detail

These tables all appear simultaneously in the same (Main) window, and any or all
of these tables may be open for view at the same time.

The Overview table (in the Main window) is initially hidden, but it can be
displayed by toggling the small arrow to the left of the name, or by double-clicking
the Overview name itself.

56

4 Using Function Tracer
4.3 Viewing Data

Function Tracer ¥3.0 - walnut@svl-grood-d1 ;IQILI Toggle the arrow (->)

Fie Edt View Window Help - or double-click

(¥ gverview Overview to open or
tlogTask thMbiolog thetTask t=held tTelnetd tWdbTask 0xEevSal 0xBe7S28 Close the Overview
Ox5Sh2h58 | Ox58eafl 0x590L10 OxShe190 Ox524570 Ox5a8930 OxGevSal OxG6e7523 bl

1 1 1 1 1 1 1 - ta e
L — = 4
_— —
]
—
]
—
]
—
]
—
]
] .
— = —— Overview table
]
—
]
—
]
—
]
—
]
—
]
—
| i
Kl [»
+ Trace
Host Seq. Time Return [elnetd b Taszk OxGe75s
Timestamp Id (] “alue Bads70 0x528930 OxGe75s
Tue 07:57:02.201 7 malloc{104) ﬂ
Tue 07:57:02.245 7 0.0424 | 7235952 malloc
Tue 07:57:02.245 g malloc{60}
Tue 07:57:02.245 g 00354 | 7235744 malloc
Tue 07:57:02.245 9 malloc{144)
Tue 07:57:02.263 9 00285 | 7239524 malloc
Tue 07:57:02.263 10 malloc{24)
Tue 07:57:02.279 10 0.0372 | 25357005 malloc
Tue 07:57:02.279 ihl malloc{101
Tue 07:57:02.279 1 0.0405 | 25357045 malloc
Tue 07:57:02.279 12 malloc{56]
Tue 07:57:02.294 12 00377 | 7239524 malloc
Tue 07 57.37.405 13 _I malloci104 _Iv
4 3
= Detail
Clear Restare | Snapshat... | Highlights... | Close |
|C0nneded to walnutiEsyl-grood-o1 Target inttislized Mo overflovwes

This table displays the tasks by columns, with a scrolling bar graph below it. Each
row in the graph represents, in chronological order, an entry to or exit from one of
the tasks.

The traced function data appears in columns representing the calling task, with
each task in a separate column. They are intended to show only a graphical
representation of the CPU activity distribution among the tasks. If the number of
tasks is large, viewing the traces could require a lot of scrolling between columns.
The selection of displayed task columns can be modified to avoid this.

For details, see 3.2.7 Columns Dialog Box, p.44.

57

Trace Table

Wind River Function Tracer
User's Guide, 3.0

In the Overview table, you can rearrange the order of the task columns to more
effectively visualize the trace results. Do this by following the procedure outlined
in Task Column, p.60.

NOTE: Any task column location change you make in either the Overview or
Trace table is duplicated in the other table.

The Trace table is the main trace data display area. It is initially displayed alone in
the Main window, but may be hidden or displayed at any time by toggling the
small arrow to the left of the name, or by double-clicking the Trace name itself.

Function Tracer ¥3.0 - walnut@svl-grood-d1 10l =|
File Edit ‘“iew ‘Window Help
-+ Overview
+ Trace
Host Seq. Time Return [elnetd b Taszk OxGe75s
Timestamp Id (] “alue Bads70 0x528930 OxGe75s .
Function entry row
Tue 07:57:02.201 7 malloc{104) —**é
Tue 07:57:02.245 7 0.0424 | 7235952 malloc —
Tue 07.57:02.245 g malloc{60) i Function exit row
Tue 07:57:02.245 g 00354 | 7235744 malloc
Tue 07:57:02.245 9 malloc{144)
Tue 07:57:02.263 9 00285 | 7239524 malloc
Tue 07:57:02.263 10 malloc{24)
Tue 07:57:02.279 10 0.0372 | 25357005 malloc
Tue 07:57:02.279 ihl malloc{101
Tue 07:57:02.279 1 0.0405 | 25357045 malloc
Tue 07:57:02.279 12 malloc{56]
Tue 07:57:02.294 12 00377 | 7239524 malloc
Tue 07 57.37.405 13 _I malloci104 _Iv
4 3
= Detail
Pauze Clear Restare | Snapshat... | Highlights... | Close |
|C0nneded to walnutiEsyl-grood-o1 Target inttislized Mo overflovwes

The Trace table dynamically displays all the data records for activated trace points
as they are collected from the target. Each row contains a trace record representing
an entry to, or an exit from, a registered function.

The traced function data appears in columns representing the calling task, with
each task in a separate column. The selection of displayed columns can be
modified as described in 3.2.7 Columns Dialog Box, p.44. You can also rearrange the
order of the task columns to more effectively visualize the trace results, as outlined
in Task Column, p.60.

58

4 Using Function Tracer
4.3 Viewing Data

The Trace table elements are described in the following sections.

Host Timestamp Column

This column is the date and time the trace sample was taken. It is derived from the
host computer time clock, and therefore cannot be relied upon for precision timing
issues.

For more details, see Unresolved Symbols at Startup, p.13.

Sequence ID Column

Function Tracer numbers each entry/exit pair of trace records sequentially,
starting with 0. The exit point of a traced function call has the same sequence ID
number as the entry point. When the traced function calls become nested or the call
sequences become more complicated, you can use these sequence IDs to help you
match the entry and exit points. For example, if foo() calls bar(), the entries within
a column might look like:

0 foo(3)

1 bar (1)

1 bar = 0x00000000
0 foo = 0x00000001

In this example, foo() uses sequence ID 0 and bar() uses sequence ID 1.

In this column, the sequence ID numbers increase with every trace record, and are
not reset to 0 until you quit and restart Function Tracer, or until the target is
rebooted.

Time (ms) Column

If your target has initialized the high resolution timestamp driver, Function Tracer
prints, in this column, the approximate amount of time (in milliseconds) it took to
execute the traced function. For a description of the driver, see 2.3 Starting Function
Tracer, p.9.

Return Value Column (optional)

This column contains the return value from the function call, expressed in both
decimal and hexadecimal. Display of the return value may be disabled on a per
trace point basis during trace point registration (see 3.2.1 Registration Window,
p-24).

59

Wind River Function Tracer
User's Guide, 3.0

Task Column

Each Task column corresponds to a task running on the target. All entries within
the column represent traced function calls made by that task. The column heading
contains the task information task name/task id. If a task is short-lived, Function
Tracer may not be able to find its name, in which case the task id is substituted for
the task name.

For each task column, you can:

= Enable or disable its display by toggling the task name in the Columns dialog
box (3.2.7 Columns Dialog Box, p.44).

= Physically move the column to a different location by placing the cursor on the
column heading, then pressing the left mouse button and dragging it
(horizontally) to a new location. When you release the mouse button, the
column remains there until you move it again.

NOTE: Any task column location change you make in either the Trace or
Overview table is duplicated in the other table.

Function-Entry Row
Each function-entry record is a row in the table, and has the following format:
funcName (argl, arg2, ...)
where:

funcName
The name of the function being called. The function name is followed by a pair
of parentheses that enclose the function parameters.

argl, arg2, ... (optional)
The function parameters passed to the function call are printed using the
format specified in the trace point registration. This display of function
parameters may be enabled or disabled in the Parameter format field of the
Registration window (see 3.2.1 Registration Window, p.24).

When you select a row that contains a function-entry record, the call stack for the
function call is displayed in the Callstack list of the Detail table (Detail Table, p.61).

Function-Exit Row

Each function-exit record is also a row in the table, and has the following format:

funcName

60

4 Using Function Tracer
4.3 Viewing Data

If Show is selected for Return Value for this function in the Registration window,
the Return Value column displays the value, in decimal.

Scroll Bars

Detail Table

As the number of trace records and the number of tasks grow, the entries may not
fit within the viewable portion of the Trace table. Use the vertical and horizontal
scroll bars to view other parts of the table.

NOTE: When you resize the Main window, some column sizes may be readjusted
to find a better fit for the columns within the table.

The Detail table is initially hidden, but it can be displayed by toggling the small
arrow to the left of the name or by double-clicking the Detail name itself. It
contains all the available trace information for a trace point pair selected in the
Trace window.

61

Wind River Function Tracer
User's Guide, 3.0

RI=TE
File Edit ‘“iew ‘Window Help
-+ Overview
+ Trace
Host Seq. Time Return [elnetd b Taszk OxGe75al 0x6e7525
Timestamp Id (] “alue Bads70 0x528930 OxGe75al 0x6e7525
Tue 07:57:02.201 7 malloc{104) -
Tue 07:57:02.245 7 00424 | 7235852 malloc
Tue 07:57:02.245 g malloc{60}
Tue 07:57:02.245 g 00354 | 7235744 malloc
Tue 07:57:02.245 9 malloc{144)
Tue 07:57:02.263 9 00285 | 7239524 malloc
Tue 07:57:02.263 10 malloc{24)
Tue 07:57:02.279 10 0.0372 | 25357005 malloc
Tue 07:57:02.279 ihl malloc{1000}
Tue 07:57:02.279 11 0.0405 | 25357045 malloc
Tue 07:57:02.279 12 malloc{56}
Tue 07:57:02.294 12 00377 | 7239524 malloc
Tue 07:57:37 405 13 malloc{104)
Tue 07:57:37.405 13 0.0444 | 25355064 malloc /
Tue 07:57:37 405 14 malloc{60} L
Tue 07:57:37 405 14 0.0347 | 25355154 mal
Tue 07:57:37.420 15 // malloc{144)
Tue 07:57:37.420 13 7239624 malloc ¥
o . b
@ tail
unction: malloc Callstack
ask: O0xG6e75al 0xGe7Sal TraceScopeTracingError]0x0) ;I
equence |d: 12 cbCtxExithotifyHook 0x58)
Host Timestarmp: Tue 07:57:02.279 alloc0:=0)
Feturn Yalue: 7238524
Farameter Format: “odl
Farameters: a6
Execution Time (ms): 0.0377
Minirnum: 0.0264 Seq. Id: 57
Marcirmurm: 0.0461 Seq. ld: 19
Average: 0.0354 LI
Pauze Clear Restare Snapshat... Highlights... Close |

Connected to walnuti@syl-grood-d1

Target inttislized

Mo averflows

Detailed Information

Toggle the arrow
(->) or double-
click Detail to
open or close the
Detail table

Detail
table

The left panel of the Detail table shows pertinent information about the selected

trace point.

The information items are:

Function

The name of the function being traced.

Task

The task name and ID in which the function resides.

Sequence ID
The record number assigned sequentially by Function Tracer.

62

4 Using Function Tracer
4.3 Viewing Data

Host Timestamp
The date and time of the trace call, from your host computer.

Return Value
The return value for the function, in integer format.

Parameter Format
A list of one or more formats for passed parameters, as configured in the
Parameter Format field of the Registration window. For a description of
the formats, see Registering Trace Points, p.51.

Parameters
The actual formatted values (with text descriptions, if any) of parameters
passed to the function.

Execution Time (ms)
The elapsed execution time for this function call, calculated from the high
resolution timestamp driver. For a description of the driver, see
2.3 Starting Function Tracer, p.9.

Minimum
The value and corresponding Sequence ID of the minimum execution
time.

Maximum
The value and corresponding Sequence ID of the maximum execution
time.

Average

The statistical average execution time over all trace points.

Call Stack

The Callstack list displays the call stack for the currently selected function-entry
record inside the Trace table. The call stack informs you of the list of nested
functions calls that led up to the traced function, even if the nested functions calls
are not traced. The call stack provides useful information without having to
register too many functions with Function Tracer.

The format of the call stack list is:

funcl (offsetl)
func?2 (offset2)

funcN (offsetN)

63

Buttons

Wind River Function Tracer
User's Guide, 3.0

where funci is a function name and offseti is the offset address into the calling
function at which the call to the next function occurred. The first function in the call
stack is the traced function.

To view the source code for a function simply select its name in the Callstack field.
The source code is displayed in a separate window (see 3.2.3 Source Code View
Window, p.33). If Function Tracer cannot find the source code for a function, a
dialog box is displayed allowing you to enter a list of directories to search (see
Source Path Dialog Box, p.35).

NOTE: The number of entries in the call stack is limited by the initialization
parameter (see 2.3 Starting Function Tracer, p.9). If the actual call stack is deeper
than this limit, the first function is still the traced function, but the last function in
the call stack is not the top-level caller in the actual call chain.

Buttons located near the bottom of the window provide more convenient access to
the most frequently used menu bar items. The buttons correspond to menu items
of the same name, described in 3.2.2 Main Window, p.28.

The buttons are:

Pause/Resume
Temporarily stops or starts (toggles) the display only of trace data being
generated.

Clear
Clears the Trace table.

Restore
Restores all data removed with Clear.

Snapshot
Copies the entire contents of the Trace table into a separate window.
Highlights
Opens the Highlight window where you can select highlight criteria and
colors.

Close
Closes the window.

64

Status Bar

4 Using Function Tracer
4.3 Viewing Data

The status bar appears at the bottom of both the Main window and the
Registration window. Messages indicate the current status of the connection with
the target.

The possible status messages fall into three categories:

1.

Connection Status (left end), which can be

Awaiting connection
The GUI is attempting to contact the target server for the target. The target-
server name is indicated in the Title Bar of the window.

Connected to targetServer
When the GUI attaches to the target server for the target, it displays this
message where targetServer is the name of the target server.

target daemon not responding
When the GUI was connected to the target server for target, but loses
connection, it displays this message. Possible causes are:

— Target was rebooted.

— Network connection interrupted or disconnected.

— Targetserver is busy, or the machine running the target server is busy.
Target-Initialization Status (center), which can be

Target not initialized
If the GUI is already connected to the target server, this message indicates
that the target libraries have not been initialized yet.

Target initialized
This indicates that the GUI is connected to the target server and the target
is initialized successfully.

Overflow Status (right end), which can be

No overflows
The message queue on the target that buffers trace records has not
overflowed.

Overflows num
The message queue on the target that buffers trace records has
overflowed. The number, num, indicates the number of lost records. You
may need to restart Function Tracer with a larger buffer, reduce the

65

Wind River Function Tracer
User's Guide, 3.0

number of traced functions, or apply filtering to traced functions to reduce
the number of records.

When Function Tracer is operating properly, the status bar should read:

Connected to walnuti@syl-grood-d1 Target inttislized Mo overflows

If the target message queue overflows, the status bar will look like this
example:

Connected to walnuti@syl-grood-d1 Target inttislized Overfloves 1234

4.4 Operational Features

Once Function Tracer has successfully launched and is displaying trace points in
the Main window, there are additional features you can use to augment data
display.

Viewing Source Code

Any time while Function Tracer is running you can open and view the source code
file for any function listed in the Callstack display in the Details view. To do this,
select the desired function in the display and the Source Code View window opens
displaying the source code file.

For details, see 3.2.3 Source Code View Window, p.33.

Arranging Columns

Function Tracer displays a column in the output (Main) window for each task in
your target program. If there are multiple tasks running on your target, you can
choose which of the tasks to display in the window using the Columns dialog box.
This reduces the horizontal scrolling required to see only the output you are
interested in viewing.

66

4 Using Function Tracer
4.4 Operational Features

For details, see 3.2.7 Columns Dialog Box, p.44.

Setting Highlight Color

Output data in the output (Main) window is initially displayed in plain text (with
no properties differentiating any criteria among the data). You can add color to
provide this differentiation, using the Highlight window. The background of a
data cell, or the entire line, can be colored according to a variety of criteria you
select in this window. Examples of highlighted data are shown in Sections and
above.

For details, see 3.2.6 Highlight Window, p.40.

Taking Snapshots

The Snapshot window displays a static view of all the trace records received and
stored since your target program was started. These records consist of all the
entries displayed up to the instant the snapshot was taken. A snapshot is denoted
by the word Snapshot, along with the filename, date and time of the snapshot,
displayed in the title bar.

Use the Edit > Snapshot menu command to take a snapshot at any time. Multiple
snapshots can be open at same time for comparison and analysis.

For details, see 3.2.4 Snapshot Window, p.37.

Adding Custom Modules

Use the Custom Modules dialog box to add new modules and routines that were
not loaded with the target libraries, or are not otherwise known to the target
server.

For details, see 3.2.8 Custom Modules Dialog Box, p.45.

Viewing Messages in the Console Window
The Console window is where Function Tracer reports errors and warnings. Its

use is affected by the Message Log Verbosity level set in the Function Tracer
Launcher dialog box (see Starting Function Tracer From Workbench, p.11).

67

Wind River Function Tracer
User's Guide, 3.0

For details, see 3.2.5 Console Window, p.39.

4.5 System Viewer Event Integration

Function Tracer is integrated with the Wind River System Viewer to allow you to
view trace events directly in a System Viewer window.

\Documents and Settings\mstanekeventLos iver System Viewer _[0f x|
View Bockmaks Took Help

& = @ '!Evem\memmyv @ “a oM o4

(=1 (1] eventLag 2 wwr (vxiorks & x)
-4 terrupts

[=-£2 vxKernel (Dxc0220010)
= funcCallTask (0xc0:53060)
— = tlobTask (Oxc0h21450)
—= {ExcTask (Dxc0209980)

— = tLogTask (OxcOh2uh?0)
= thibioL o (Dxc0k220c0)
—= iShelld (Dxc0ch0350)

— =tk Task (0xc0ca2410)

— = ietTask (Oxc0k3be10)

= {Teinetd (DxeObdlenn)

= tRBUfMr (Dxcc3dEe0)

— ide

You can see the traced function-entry and function-exit events alongside other
operating-system events, such as task switches and semaphore calls.

For details on installing, initializing and running the System Viewer, see the Wind
River System Viewer User’s Guide.

68

4 Using Function Tracer
4.5 System Viewer Event Integration

Automatic System Viewer Support

When you load Function Tracer automatically from Workbench (see 2.3 Starting
Function Tracer, p.9), the Function Tracer Setup code detects whether your target
kernel supports System Viewer. If so, the Function Tracer target libraries are
initialized with System Viewer support. With this support enabled, Function
Tracer will post a System Viewer event for every trace record. Function-entry and
function-exit events appear as two different types of events.

High Resolution Time-Stamp Driver

When you load Function Tracer automatically from Workbench (see 2.3 Starting
Function Tracer, p.9), the Function Tracer setup code detects whether your target
kernel includes the high resolution time-stamp driver. If so, the Function Tracer
target libraries are initialized with timestamp support that enables Function Tracer
to record precision timing information for each traced function. The timing
information is displayed with the function-exit trace records.

NOTE: Although the high resolution timestamp driver is described only in the
Wind River System Viewer User’s Guide, you can enable it without enabling System
Viewer support for your kernel.

System Viewer Events

The System Viewer events posted by Function Tracer have the following
properties:

= Function-entry

Uses the System Viewer event ID, User0003. The properties of the event
include the function name and address, as well as the sequence ID number of
the corresponding trace record.

= Function-exit

Uses the System Viewer event ID, User0004. The properties of the event
include the function name and address, as well as the sequence ID number of
the corresponding trace record.

Use the sequence numbers in the System Viewer events and in the Function Tracer
Trace table to match events with trace records.

69

Wind River Function Tracer
User's Guide, 3.0

70

Usage Tips

5.1 Introduction 71
5.2 Observing Practical Limitations 72

5.3 Tracing Tips 76

5.1 Introduction

This chapter provides practical knowledge for proper use of Wind River Function
Tracer. Read this chapter thoroughly before using Function Tracer on anything
other than the example given in 2.4 Testing Your Installation, p.14.

The practical limitations on tracing routines you are likely to encounter include the
effects of missing symbols, routines that must never be traced, and the practical
limits on the number of routines being traced simultaneously. The best methods to
use when tracing routines called very frequently are outlined as well.

Finally, some special limitations imposed by Function Tracer when tracing
routines that return floating point values are explained.

71

Wind River Function Tracer
User's Guide, 3.0

5.2 Observing Practical Limitations

The conditions and events outlined in this section need to be taken into serious
consideration when configuring Function Tracer to run on your project.
Disregarding the warnings given here can lead to wasted time and effort due to
incomprehensible errors, and even system crashes. You are urged to read and heed
these tips and avoid the difficulties.

Missing Symbols

Function Tracer is designed to work in the absence of symbols. This can yield stack
traces on the host that have only hexadecimal address values when a matching
symbol is not found. This is normal.

Processor Load and Bandwidth Considerations

Function Tracer is a software-based tool, and therefore requires processor time and
resources to work. While the tracing process is designed to be as efficient as
possible, there is an impact on other tasks running on the processor. That impact
scales with the following events:

* number of trace points used (maximum allowable: 32)

* maximum stack depth selected (maximum allowable: 64)

* information selected to be returned for each trace point

= total number of tasks running

= processor throughput (clock frequency, memory bandwidth, and so forth)
» speed of the link to the host

Of all these parameters, only the first three are usually configurable. The number
of trace points should be set to no more than two or three on slow or moderately
loaded systems. The maximum stack depth should be set to no more than
necessary to find the calling sequence of interest. Selecting more stack depth than
necessary slows the system considerably.

Remember that the first two entries on every stack are obtained free, that is, they
are obtained with no need to walk the stack and inspect program text regions. On
some heavily loaded systems, or while tracing a very frequently called routine, one
trace point at a level of two is often the only viable configuration.

72

Routines That Must Not Be Traced

Table 5-1

5 Usage Tips
5.2 Observing Practical Limitations

There are routines which cannot be traced without causing a task to fail or the
target system to crash. In general, no interrupt service routines (ISRs) can be traced
and no system calls made directly or indirectly by Function Tracer during the
critical analysis phases for patched routine entry and exit. A list of directly called
routines in the critical path is given in Table 5-1.

Routines Directly Called by Function Tracer Along its Critical Path

Routine Parameters

aim*() (aimMmuContextTbl(), and so forth)
cache*() (cacheLock(), cachelnvalidate(), and so forth)
call*() (call(), callExcHandler(), and so forth)
cfront_*() (cfront_demangle_name(), and so forth)
check*() (checkTaskSwitch(), and so forth)

commonExc*()

(commonExcStubCode(), and so forth)

emptyWorkQueue()

(excIntStub(), excJobAdd(), and so forth)

exc*()

int*()

(intLock(), intUnlock(), and so forth)

isrDispatcher()

isrIdSelf()

job*()

(jobAdd(), jobQueuePost(), and so forth)

kernel*()

(logLevelChange())

logMsg()

IstAdd()

IstDelete()

IstLast()

moduleSegFirst()

73

Table 5-1

Wind River Function Tracer
User's Guide, 3.0

Routines Directly Called by Function Tracer Along its Critical Path (cont'd)

Routine Parameters
objVerify()
qFifo*() (qFifoGet(), qFifoPut(), and so forth)

semGiveDefer()

sigWind*() (sigWindKill(), and so forth)

stremp()

symFindByNameAndType()

sysClkRateGet()

sysTimestamp*() (sysTimestamp(), sysTimestampFreq(), and so
forth)

syscall*() (syscallDispatch(), and so forth)

task*() (taskMemCtxSwitch(), taskLock(), and so
forth)

tickGet()

vm*() (vmStateSet(), vmPageLock(), and so forth)

vxMem*() (vxMemProbe(), and so forth)

wdb*() (wdbCtxSuspend(), wdbExcEventGet(), and so
forth)

wind*()

workQ*() (workQDoWork(), workQueueEmpty(), and so
forth)

The list of indirect calls is almost impossible to generate, being dependent on
architecture and system features selected. For example, if a timestamp service is
available, there is usually an architecture-dependent API that directly accesses the
timer device. You should be aware of that API and not attempt to trace it. The same
applies to many kernel services such as the scheduler and interrupt/exception
handling routines. All the routines listed in Table 5-1 have indirect calls associated
with them in the kernel or the BSP code.

74

5 Usage Tips
5.2 Observing Practical Limitations

The kernel, in general, and the Run-Time Analysis Tools support library modules
should not be traced. Attempting to do so will have destructive results, putting
Function Tracer on an endlessly recursive analysis path through its own code, or
causing the processor to crash due to nested exceptions.

Tracing Frequently Called Routines

Routines that are heavily used, such as semGive() and semTake(), require that
special precautions be taken before activating a patch. You must configure
Function Tracer to run as fast as possible by following these steps:

1.
2.

4.

If you have Function Tracer connected, disconnect it.

Start Function Tracer by connecting it to the target, but with a maximum stack
depth of 2.

In the Registration window, open a module and select a symbol, or type the
name of a symbol in the Name field.

Select only that one symbol in the Function list to highlight it.

A CAUTION: Do not select the patch activation box or the Activate Tracing button!

5.
6.

Clear the Parameter Format string and check Hide for Return Value.

For Filtering, select Display calls from selected tasks only, then select the box
to the left of the task of interest in the task list window.

Click Apply Changes.

Click Activate Tracing to begin tracing. If large overflows are reported,
immediately click the button again to stop tracing.

These steps ensure the fastest analysis possible for Function Tracer and should
enable you to trace heavily used routines in most cases. In some extreme cases the
processor is too slow to handle the extra load of Function Tracer together with the
heavily used routine, resulting in buffer overflow messages and even a task or
system failure. Such extreme cases require a hardware tracing tool like a logic
analyzer, an in-circuit emulator, or a JTAG tool.

If Function Tracer does keep up with the heavily used routine, you can now try
adding input parameters and/or a return value. If that also works, you can then
experiment with adding one or two to the maximum stack depth, but be advised
that you could rapidly reach a point where buffer overflows are too severe, or the
task or system begins to fail, or both.

75

Wind River Function Tracer
User's Guide, 3.0

The overall goal here is to minimize the analysis time and host link bandwidth so
that a heavily used routine can be safely traced to as deep as possible in one task's
stack.

5.3 Tracing Tips

Tracing Routines Returning Floating Point Values

The current version of Function Tracer properly shows single precision floating
point return values from software floating point routines. However, routines
returning double precision values, or those utilizing a hardware floating point
coprocessor are not rendered properly.

Tracing Real-Time Processes

Often overlooked in downloading modules, including Real-Time Processes
(RTPs), is the option to download local symbols as well as global. Tracing all
modules, especially RTPs, is greatly enhanced by using this option. For more
information on setting and using this option, see 6.2 Loading and Initializing
Function Tracer Manually, p.78. Also see Cause #2 and Solution #2 in Issues With the
Target, p.82. Always be sure to use this option when you load Run-Time Analysis
Tools libraries.

76

Troubleshooting

6.1 Introduction 77
6.2 Loading and Initializing Function Tracer Manually 78

6.3 General Troubleshooting Tips 81

6.1 Introduction

This chapter helps you deal with the Wind River Function Tracer status and error
messages.

If you get error messages, or are having problems getting Function Tracer to work,
check the error messages in this chapter to see if they resolve your problems. If you
are still unable to get Function Tracer to work, contact Wind River Technical
Support.

77

Wind River Function Tracer
User's Guide, 3.0

6.2 Loading and Initializing Function Tracer Manually

If automatic launching fails, you must determine which libraries to load yourself,
load them, then initialize Function Tracer manually. This section describes the
process in detail.

Manual loading of Function Tracer is more involved than automatic loading. We
strongly recommend you create a shell script that you source from the host shell,
to invoke Function Tracer loading and initialization. This script contains lines that
load the proper libraries and initialize Function Tracer.

Load the Required Libraries

Table 6-1

To load a library, type in a shell window, or add to the script file, a line using the
following syntax:

-> 1d 1 < WIND_SCOPETOOLS_BASE/target/arch/targetArch/library

where WIND_SCOPETOOLS_BASE (an environment variable of the same name) is the
root of the tree where you installed Function Tracer, targetArch reflects the target
processor version you are using, and library is the library to load.

The "1" (number one) flag in the 1d command causes the local symbols to be loaded
along with the global symbols; we recommend you always use this flag when
debugging or using Wind River tools with your code.

Table 6-1 lists the libraries needed by the Function Tracer target agent.

Required Target Libraries

Target Configuration Target Libraries

VxWorks 6.6 scopeutils.so
patchutils.so

tracescope.so

VxWorks 6.6 with RTP support strtpsupportlib.so

ScopeUtils and PatchUtils

The ScopeUtils and PatchUtils libraries contain the routines shared by the
Function Tracer target agent and other tools in the Run-Time Analysis Tools

78

6 Troubleshooting
6.2 Loading and Initializing Function Tracer Manually

collection. You need to load the scopeutils.o and patchutils.o libraries onto your
target.

-> 1d 1 < WIND_SCOPETOOLS_BASE/target/arch/targetArch/scopeutils.so
-> 1d 1 < WIND_SCOPETOOLS_BASE/target/arch/targetArch/patchutils.so

RTP Support

For systems with RTP support configured into them, this library must be loaded,
in addition to those listed above, in order to enable tracing of the RTP tasks.

-> 1d 1 < WIND_SCOPETOOLS_BASE/target/arch/targetArch/strtpsupportlib.so

Function Tracer

Load the tracescope.so library for your architecture.

-> 1d 1 < WIND_SCOPETOOLS_BASE/target/arch/targetArch/tracescope.so

Initialize Function Tracer

To initialize the Function Tracer target agent, make the following calls in the target
shell or in the target-shell script file:
-> stRtpSupportInit (32)

-> TraceScopelnit (numMsg, verbosity, stackDepth, maxArgs, maxStrings,
wvuEnable, tsEnable, triggerEnable, textStartAdrs, textEndAdrs)

The parameters are defined as follows:

numMsg
The size of the message queue on the target. The target must queue a
message for every trace point it encounters. These messages are queued on
the target until they are retrieved by the host. If this queue is too small,
messages will be lost, and trace records will be missed; in this event, the
target agent notifies the host GUI To avoid missing records, you may need
to adjust this parameter.

verbosity
Used to indicate the amount of debug messages printed by the Function
Tracer target agent. These messages appear in the shell from which you
run TraceScopelnit(). A value of 0 displays only error messages. Increase
the value (in the range of 1-3) to display more debug messages.

79

Wind River Function Tracer
User's Guide, 3.0

stackDepth
The maximum depth of the call stack to record for each trace point. The
call stack always starts from the lowest-level call, for example, the traced
function. The maximum value for this parameter is 16.

maxArgs
The maximum number of function parameters to record for each trace
point. The maximum value for this parameter is 10.

NOTE: A function parameter of type double counts as two parameters.

maxStrings
Maximum number of string buffers—each 80 characters in length—to
store string arguments. String arguments of traced functions must be
copied and saved until retrieved by the host. Use this parameter to specify
the maximum number of strings to be queued. If this buffer overflows, the
host GUI displays an overflow message in the lower right corner of the
Function Tracer window.

wvEnable
Set to 1 for System Viewer support; otherwise set to 0.

tsEnable
Set to True if your target supports the high resolution timestamp driver
and you want Function Tracer to time the duration of traced functions.

triggerEnable
Set to True if your BSP has the triggering functions built in; otherwise set
to False.

textStartAdrs
Use the value for the address of sysInit() routine for VxWorks.

textEndAdrs
Use the value for the frame_info_end absolute symbol (look up this
symbol in a host shell connected to the target).

Example Target Script

The following is a complete example of a target-shell script to load and initialize
Function Tracer on a target that supports TCP/IP:

1d 1 < WIND_SCOPETOOLS_BASE/target/arch/ppc603Vx6.6gccd.1.2/
scopeutils.so
1d 1 < WIND_SCOPETOOLS_BASE/target/arch/ppc603Vx6.6gccd.1.2/

80

6 Troubleshooting
6.3 General Troubleshooting Tips

patchutils.so

1d 1 < WIND_SCOPETOOLS_BASE/target/arch/ppc603Vx6.6gccd.1.2/
strtpsupportlib.so

1d 1 < WIND_SCOPETOOLS_BASE/target/arch/ppc603Vx6.6gccd.1.2/
tracescope.so

stRtpSupportInit (32)

TraceScopeInit (5000, 0, 5, 5, 100, O, 0, 0, O, 0x001358)

Starting Function Tracer Manually from the Command Line

A\

Function Tracer is started from a batch file (.bat), with a fixed set of initialization
parameters.

CAUTION: Before entering any other commands in the Host Shell, type:
run wrenv -p vworks-6.6

This properly sets up the environment variables to allow you to start Function
Tracer using the tracescope command described below

To start Function Tracer manually from the command line, use the cd command to
change to the following directory:

WIND_SCOPETOOLS_BASE

where WIND_SCOPETOOLS_BASE (an environment variable of the same name) is the
root of the tree where you installed Function Tracer.

The command-line syntax for using the tracescope.bat file to start Function Tracer
is:
tracescope

If you have executed the instructions in 6.2 Loading and Initializing Function Tracer
Manually, p.78, the Function Tracer GUI should open, ready for input.

6.3 General Troubleshooting Tips

This section organizes problem areas by the major components in which they
occur.

81

Wind River Function Tracer

User's Guide, 3.0

Issues With the Target

= Call Stack Display

Function Tracer does not appear to be displaying the proper call stacks for
memory-allocation data points.

Cause #1
The target server was not started with the -a option.

Solution #1
You must start the target server with the -a option. This ensures that the
target server loads local symbols in addition to global symbols. If this
option is not selected, the call stack traces pick the nearest global symbol
for calls from local symbols.

For more details, see Target Considerations, p.10.

Cause #2
You did not manually load libraries with local symbols, so Function Tracer
instead shows function names that are the nearest global symbols.

Solution #2
Make sure you load your libraries with local symbols as follows:

1d 1 < ...

In addition, when running RTPs, enable them using the following steps:

In the Project Explorer view, right-click on the appropriate.vxe file.
From the menu that opens, select Run RTP on Target.

In the Run window that opens, click the Edit button on the
Advanced Options line.

In the Advanced Options window that opens, click the Select button
on the Options line.

In the Options window that opens, be sure the check boxes for the
options RTP_GLOBAL_SYMBOLS and RTP_LOCAL_SYMBOLS are
selected.

Click OK to exit the Options window, then click OK again to exit the
Advanced Options window, then click Apply to save your selections,
and finally, click Run to run the RTPs on the target.

Cause #3 (for x86 targets only)
Make sure your target kernel was compiled with frame pointers enabled.

82

6 Troubleshooting
6.3 General Troubleshooting Tips

Solution #3
Frame pointers enabled is the default with the compiler, but make sure
you did not disable them when you last compiled. If you did, you must
recompile your code with frame pointers enabled.

Target Connection Lost

You may also receive the following message in the target shell:

Link ERROR: Broken Pipe

Error sending records, reconnecting...
If so, it means the target has replied back to the host, and the host has shut
down the target. In this case, the error is possibly caused by the target not
responding to the host within the specified target timeout period. You can
adjust priorities and timeouts as follows, then retry.

Increase the priority of Function Tracer to a value just below the tWdbTask
priority, and above the tNetTask priority. For instance, if tWdbTask
priority is at 3 and tNetTask priority is at 50, set Task Priority in the
Connect to Target dialog box to 9, reconnect, and try again.

Youmay also need to change the Backend request timeout value from the
default 3 sec. to a higher number, such as 10. Do this (with your target
disconnected) by right-clicking your target server in the Remote Systems
view, then selecting Properties to open the Target Connection dialog box.
In this dialog box, use the Advanced target server actions group in the
Target Server Actions tab view to modify the timeout value as indicated
above.

Target Crashes

If a task, or the target system itself, crashes during tracing, you may not have
a properly configured target operating system. In this case, you must rebuild
the system.

When you rebuild the system, be sure to include the following components:

INCLUDE_MODULE_MANAGER
Supports module library calls.

INCLUDE_SHARED DATA
Supports shared data regions when you are tracing VxWorks Real-
Time Processes.

These components are required for safe operation of Function Tracer on
VxWorks systems. Update your target system build configuration accordingly
in the Workbench Project Explorer view, and rebuild the system project.

83

Wind River Function Tracer
User's Guide, 3.0

84

Target Kernel Start and End Addresses

When DFW is unable to determine the target kernel text start or end address,
the following warning is displayed:
Unable to locate the start and/or the end of kernel text address,
which the tool needs in order to successfully connect to the target.
Please enter the values manually below:
Enter the start and end addresses manually in the fields provided, and
continue the startup process. However, if you do not know the exact layout of
your target memory and cannot supply correct values, you must exit Function
Tracer and rebuild your VIP project, adding to it the following symbols:

wrs_kernel_ start_text
wrs_kernel_end_text

This enables DFW to provide the needed addresses.

Degraded Performance when Running RTPs

If your target code contains RTPs, and you start it running only after you have
connected Function Tracer and started the GUI, you may experience an
unacceptable level of slow response from Workbench and the target. This may
be manifested in any of the following ways:

— The RTPs may take a very long time (up to several minutes) to become
fully operational, and even longer for symbols to begin showing up in
Function Tracer.

- A simple workaround for this is to start the target program running first,
then connect and start the Function Tracer GUI. This works because the
slow-loading RTPs are loaded, or nearly so, before Function Tracer starts
and begins its memory-intensive communication activities over the target
connection.

- You may also notice that some symbols are unresolved when the target
code is first started. This is because the first calls into the new RTP’s
memory library are captured by the Function Tracer GUI before the RTP
task ID and symbols have been registered by Workbench. The
workaround described above also prevents this behavior.

- Under certain conditions you may experience an even greater lack of
response. If your RTP spawn time limit is short (say 30 seconds or less),
you may see the message,

Failed to launch RTP name.

If the spawn time limit is longer and the RTP actually launches, you may see
the message,

6 Troubleshooting
6.3 General Troubleshooting Tips

Target OS object not found.

The workaround either of these conditions is to increase the priority of the RTP
and try again.

A CAUTION: If you are running an RTP on your target that must be started
before Function Tracer, you must increase the RTP’s initial task priority from
the default 100 to a value of about 60 (higher than the target agent but lower
than the network task) to enable the RTP to execute cooperatively with
Function Tracer.

In addition, the RTP spawn time limit must be set to 120 seconds or greater,
and the backend request time limit must be set to 30 seconds. With the target
disconnected, edit these values in the Advanced target server options panel of
the Target Server Options tab view in the target Properties dialog box.

If you do not attend to these items, the RTP initialization task may not receive
sufficient CPU time to complete its execution before the RTP spawn time limit
expires and causes the host to stop all tasks running in the RTP.

For more information, see Wind River Workbench User’s Guide, VxWorks Version:
RTPs and Shared Libraries from Host to Target.

= Frame Pointer Generation

Both Gnu and Diab (Wind River) compilers normally generate required frame
pointers. However, there are some compiler options that turn them off. These
options must be avoided. They are:

For the Gnu compiler:

— -fomit_frame_pointer

— -fomit_leaf_frame_pointer
For the Diab compiler:

- -Xkill-opt=0x800000

Issues With the Host
When the GUI application detects errors, it displays a window containing error

messages. This section describes some of the error messages you might encounter
and the possible causes and solutions.

85

Wind River Function Tracer
User's Guide, 3.0

86

Target Server Restarted

If the target server for your target was restarted without rebooting the target,
you will see the message:

Target server restarted - please reload target libraries

In this case, you need to reboot your target. Otherwise, the newly started target
server does not know about libraries already loaded onto your target. Function
Tracer resets itself after you have loaded the target libraries.

Disconnected from Target Server

If Function Tracer detects that its tool has become disconnected from the target
server, you will see the error message:

wtxError: Not connected to target server, trying to reconnect.
Function Tracer will attempt reconnection after a short delay.

Target Rebooted

Function Tracer detects target reboots and displays the message:
Target was rebooted, please ensure target libraries are reloaded.

Be sure to reload the target libraries by selecting the Function Tracer Launch
icon in Workbench. Function Tracer attempts to initialize the target libraries
again after a short delay.

Lost Connection
If Function Tracer loses connection with the target, you will see the error
message:

wtxError: Connection temporarily lost. (reboot?) Will try to
reconnect in 10 seconds.

This could be caused by target crashes, disconnected network wires, or busy
machines. Check your connections and your target. Function Tracer attempts
reconnection after 10 seconds.

Out of Target Memory

If you specify a message queue size that is too large for the available target
memory, you will see the message:

Unable to allocate queue on target. Please press the Reload button
and specify a smaller queue size.

Click Reload in Function Tracer and specify a smaller queue size.

6 Troubleshooting
6.3 General Troubleshooting Tips

Not Initialized

If you are launching Function Tracer automatically (see Starting Function
Tracer From Workbench, p.11) and the target libraries have not been initialized,
or if Function Tracer was unable to allocate memory for internal data
structures, you may see one of the following messages:

Target not completely initialized. Please press the Reload button to
load the libraries and specify a smaller queue size.

or

Unable to determine stack depth on target....Please initialize the
target libraries.

Click Reload in Function Tracer and specify a smaller queue size. Function
Tracer tries to initialize the target libraries again after a short delay.

Target not completely initialized

This error occurs when you try to initialize the target with a queue size
specified in the Function Tracer Launch window that is too large.

Target not completely initialized. Please reload the target libraries
and specify a smaller queue size.

To fix the error, select the Function Tracer icon in the Workbench toolbar,
uncheck the Start Function Tracer GUI on host check box, and specify a
smaller queue size.

Initialization

You should never see the following initialization error messages:

Unable to determine rtiToolTGT address on target....Please initialize
the target libraries...

or
wtxError: WTX Handle is invalid, restarting the tool.
If you do see these messages, please contact Wind River Technical Support.

Registration

The following message is displayed when you try to activate more than 50
functions:

Module module name contains count functions.

Continuing with activation of this many functions may

have a negative impact on the target's performance.

This is a warning message only; you may Cancel or Continue the request.

The following message warns that another Function Tracer may be attached:

87

Wind River Function Tracer
User's Guide, 3.0

88

There is another Function Tracer attached to the target server. Exit?

The message is displayed on startup if the target server detects that another
Function Tracer may already by attached. If this is the case, then proceeding
can cause loss of data by either or both Function Tracer applications.
Unfortunately this situation can also occur when Function Tracer crashes and
does not notify the target server. In this case, you may proceed without any
loss of data. Click Yes or No.

The following message is displayed when you reboot the target:
Target server restarted, please reload target libraries.

You need to reload the libraries by selecting the Function Tracer icon in the
Workbench toolbar and unchecking the check box labeled Start Function
Tracer GUI on the host.

Custom Modules

The following message is displayed when you click Add Module with no
name in the Module Name field:

The module name cannot be blank!
There must be a name in the Module Name field before trying to add the
module.
The following message is displayed when you click Add Function with no
name in the Function Name field:

The function name cannot be blank!
There must be a name in the Function Name field before trying to add the
function.
The following message warns you that you have entered a duplicate module
name:

A module named "name" already exists!
The name you enter in the Module Name text field cannot match the name of
a custom module that already exists.
The following message warns you that you have entered a duplicate function
name:

Module "modulename" already contains a function named "function name" !

When you click Add Function, the name in the Function Name text field
cannot match the name of an existing function in the currently selected
module.

6 Troubleshooting
6.3 General Troubleshooting Tips

Console

The following message is displayed when there is a Console file save error:
An error occurred while trying to save to file name

This happens when you try to save the contents of the Console window to a
file and an error occurs.

Export
The following message is displayed when there is an Export file write error:

An error occurred while trying to write to ﬁle name

This message is displayed when you click Export to write trace data to a file
and an error occurs while trying to write to the file.

Open Trace Data

The following message is displayed when there is an error reading a trace data
file:

filename does not appear to be a valid trace data file!

When you click Open Trace Data and select a file, Function Tracer scans the
file, and if it does not recognize the data in it, displays the above error.

The following message can be displayed when trying to read a trace data file:
Unable to read file name

When you click Open Trace Data and select a file, this message is displayed if
you do not have read privilege for that file.

The following message is displayed when trying to read a non-data file:
filename is not a file!

When you click Open Trace Data and select an item, this message is displayed
if the item (usually a directory) is not actually a file.

Save Trace Data
The following message is displayed when there is a Console file save error:

An error occurred while writing to file name

This is message is displayed when you click Save to write trace data to a file
and an error occurs while trying to write to the file.

Print

The following message is displayed when you have not supplied required
parameters in the Print dialog box:

89

Wind River Function Tracer
User's Guide, 3.0

90

The "from" and "to" fields must contain valid integer values.

This message indicates that you selected the By sequence id: option but did
not enter integer values into both the from and to text fields.

The following message is displayed when there is a printer error:

Print error “errorfrom printer" .

This happens when an error occurs while you are trying to print trace data.
The error contents are system and error specific.

License

The License Expired window contains a very specific error message from the
FLEXIm license manager. This message can be displayed at any time if either
the FLEXIm license manager crashes or the runtime license expires.

The License Checkout Failed window, containing a very specific error
message from the FLEXIm license manager, is displayed at startup if the
application is unable to check out a license from the FLEXIm license manager.

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUE

NOTE

API| Reference

TraceScopelnit() — track function calls on the target

int TraceScopelInit(const int numMsg, const int verbosity,
const int stackDepth, const int maxArgs,
const int maxStringBufs, const RTIBool wvEnable,
const RTIBool tsEnable, const RTIBool triggerEnable,
const RTIBool unused, void * textEndAdrs)

numMsg - The size of the message queue on the target.

verbosity - Used to indicate the debug level.

stackDepth - The maximum depth of the call stack in the allocation record
maxArgs - The maximum number of arguments to process for function entry.
maxStringBufs - Maximum number of string buffers to hold string args (each 80
characters) .

wvEnable - Set to RTI_TRUE if BSP has the function wxEvent built in.

tsEnable - Set ot RTI_TRUE if BSP has the function sysTimestamp built in.
triggerEnable - Set to RTI_TRUE if BSP has the triggering functions built in.
unused - Always set to 0.

textEndAdrs - Must be set to the last valid kernel text address.

0 for failure, 1 for success.

Not all architectures support dynamic code patching.

91

Wind River Function Tracer
User's Guide, 3.0

92

Glossary

activate/deactivate

Function Tracer can maintain a large list of registered trace points, but it only
monitors and logs calls to active trace points. You can activate and deactivate any
trace point dynamically, as your system executes.

call stack

The list of nested function calls that lead up to a traced function. For each trace-log
entry, Function Tracer includes the call stack for that call.

filter

To prevent large amounts of log data, you can specify for each trace point a list of
tasks to ignore or a list of tasks to watch.

graphical user interface (GUI)

The collection of computer programs and the media-oriented screens, windows,
dialog boxes, menus, and buttons they produce that provide for enhanced human-
computer interactions with no, or minimal, keyboard input.

host

The computer on which the Function Tracer GUI is running, which receives and
processes the allocation record data collected from the target agent machine.

93

Wind River Function Tracer
User's Guide, 3.0

mangle/demangle

C++ compilers encode the function name, class name, and parameter types for a
function into a symbol name in a process known as mangling. Function Tracer has
the ability to reverse this process (demangle) for function names it finds on the call
stacks.

module

A collection of functions, such as a library or executable.

offset

In a call stack, this is the memory distance (in bytes) from the start of the current
routine to where the call to the next function occurs.

parameter format

As part of the registration of a function, you can supply a format string—like the
format string to printf()—to specify how you want the function call and its
parameters to appear in the graphical log.

patch

The process of changing run-time code dynamically, without compilation. When
you activate a trace point, Function Tracer patches the corresponding function to
insert additional code that collects the function-entry and function-exit trace
records.

poll rate

The rate at which Function Tracer sends a request to the target agent for allocation
messages.

register

Registering a trace point with Function Tracer involves defining the name of the
function to be traced, a parameter-format string that defines the number and data
types of the function arguments, and a list of task filters. The registration
information enables Function Tracer to print the log entries in easily readable,
user-specified format. A trace point must be activated before Function Tracer can
monitor its execution.

routine

Used interchangeably with function.

94

B Glossary

snapshot

A copy of the trace log at an instant of time may be copied and saved to a Snapshot
window. A snapshot makes it easier to compare data between different runs.

target agent

This refers to the part of Function Tracer that runs on the target.

trace point

A function that has been registered with Function Tracer for monitoring. A trace
point also is referred to as a traced function.

trace record

Function Tracer creates a record when entering a traced function and another one
when exiting the traced function. A function-entry record includes the function
parameters and the call stack. A function-exit record can include the function-
return value and timing information.

verbosity

Controls the type and number of messages generated by the target or GUI and
displayed either in the target console or the GUI console.

view source

Displaying the source code for the selected module.

95

Wind River Function Tracer
User's Guide, 3.0

96

Symbols

%c character 52
%d decimal int 52
%e float 52

%f float 52

%g float 52

%le double 52

%lf double 52

%Ilg double 52

%p pointer 53

%s string 53

%u unsigned int 53
%x hexadecimal 52

A

activating trace points 26, 54, 93
adding custom modules/functions 45
architecture

host 2

message queue 3

summary 2

target 2
automatic System Viewer support 69

Index

button bar
Main window 64
Registration window 27
buttons
Activate/Deactivate Tracing 28
Apply Changes 28
Clear (Trace table) 64
Clear Changes (trace point) 28
Close 30,41, 43,47,48, 64
Highlights 28, 64
Pause/Resume 64
Restore 64
Snapshot 64

C

C++

demangle 94
call stack 3,93

depth 64, 80

format 63

offset 94
clearing, trace log 31
colors, trace records 40
Columns dialog box

description 44

97

Wind River Function Tracer
User's Guide, 3.0

opening 32,44

rearranging in tables 58

using 66

View menu command 32
compiler

options 8

warnings 9, 85
connection status 65
Console window

description 39

opening 33, 39

title bar 40

using 67

verbosity debug messages sent 13

View menu command 33
copying trace log 95
Custom Modules dialog box

closing 48

description 45

loading custom modules 47

opening 32,45

return value 48

screen elements 46

using 67

View menu command 32

D

deactivating trace points 26, 55, 93
demangle 94
description 3
Detail table
call stack 63
description 61
displaying 61
dialog boxes
Columns 44
Custom Modules 45

E

Edit menu items

98

Clear (Trace tables) 31
Snapshot 31

error messages 85-90

Console 89

Custom Modules 88

Disconnected from Target Server 86
Export 89

Initialization 87

License 90

Lost Connection 86

Not Initialized 87

Open Trace Data 89

Out of Target Memory 86

Print 89

Registration 87

Save (Trace Data) 89

Target not completely initialized 87
Target Rebooted 86

Target Server Restarted 86
troubleshooting 85

examples

ignoring tasks 18
malloc() 14

message queue 16,21
Registration window 17
sequence ID 19

exporting trace data files 30

F

File menu items

Close 30

Export 30

Open Trace Data 30
Print 31

Quit 31

Save 30

File Search dialog box 36
files, required, table of 78
filtering

ignoring tasks, description 27

ignoring tasks, in example case 18
ignoring tasks, registering trace points 53
trace point task, definition of 93

trace point task, registering 53

watching tasks, in registering trace points 53

watching tasks, in registration 27
function
list 25
name 60
parameters 3, 60
routine 94
Function Tracer, list of windows 23
function-entry record
in main window description 60
in trace record 95
in trace record description 3
name 60
parameters 60
function-exit record
in main window description 60
in trace record 95
in trace record description 3
name 60
return value 59
functions, list of 25

G

graphical user interface (GUI)
defined 93
host (Function Tracer) 2,4

H

high resolution timestamp

description of 69

driver 69

Trace table data 59

unresolved symbols 13

used for elapsed execution time 63

used in initializing target agent 80
Highlight window

closing 43

criteria table 41

description 40

Index

menu bar 40, 41

opening 32,41

parameters 41

screen elements 41

title bar 41

using 67

View menu command 32
highlights, trace records 40
host

defined 93

GUI 2,4

timestamp 59, 63

installation
testing 14

Java
JDK 8
JRE 8

L

Launcher dialog

starting Function Tracer automatically

loading custom modules 47

M

Main window
button bar 64
description 56
Detail table 61
Edit menu 31
File menu 30
menu bar 30

99

Wind River Function Tracer
User's Guide, 3.0

Overview table 56
status bar 65
task columns 60
title bar 29
Trace table 58
View menu 32,33
Window menu 33
menu bar
Edit commands 31
File commands 30
Highlight window 40, 41
Main window 30
Registration window 25
View commands 32
Window commands 33
message queue
architecture 3
example 16,21
size 65,79
modifying trace points 55
modules
defined 94
list 25
msgQReceive() 18

N

name
function 60
trace point 26

o)

offsets
defined 94
opening
Columns dialog 32, 44
Console window 33, 39
Custom Modules dialog box 32, 45
Highlight window 32, 41
Main window 33
Registration window 32, 33

100

trace data files 30
options

-A, troubleshooting 82

command line 78

compiler warnings 9, 85

demangle 94

Launcher dialog box 11
overflow status 65
overview

real-time systems 1
Overview table

description 56

displaying 56

rearranging columns 58

P

parameters
formats supported 52, 63
function 3
highlight criteria 41
maximum 80
registration 27
trace point 27,94
patch 2
patch.so 78
patchutils.so 78
pausing, trace display 64
poll rate
defined 94
setting, in Launcher dialog box 12
printing trace data 31

Q

quitting Function Tracer 31

R

real-time
process components 8

systems 1
reboot
automatic reconnection 13
recompile 4
record
call stack 3, 63,93
calling task 3
clearing 31
function name 60
function parameters 60
function-entry 60
function-exit 59, 60
high resolution timestamp 59, 63
host timestamp 59
sequence ID 3,19, 59
timing 59, 63
registering trace points 51, 94
Registration window
button bar 27
description 24
function list 25
in example 17
menu bar 25
opening 32
parameters area 27
status bar 28
testing installation 15
title bar 25
View menu command 33
removing trace points 56
requirements
target 8
resuming, trace display 64
return value
Custom Modules dialog box 48
in trace record 3
trace point 27
trace table column description 59
routine
see also function
defined 94
RTP
degraded performance 84
libraries needed 79, 82
support 8

Index

S

saving trace data files 30

scopeutils.so 78

screen elements
Columns dialog box 44
Custom Modules dialog box 46
Detail table 61
Highlight window 41
Overview table 57
Registration window 25
Snapshot window 38, 67
Trace table 59

scripts

initialize Function Tracer on TCP/IP target 80

initialize target agent 79
target shell 78, 80
searching for source code files 35, 36
selecting columns 44
sendMessage() 17
sequence ID 3, 19,59
shared data region support 8
simulator, cannot be used as a target
Snapshot window
see also Main window
description 37
edit command 31
snapshot, defined 95
snapshot, feature list 5
title bar 38
usage 67
Source Code View window
described 33
using 66
Source Path dialog box
alternate directory selection 35
status
bar 28,65
connection 65
overflow 65
target initialization 65
string buffers
maximum 80
strtpsupportlib.so 78
System Viewer

101

10, 12

Wind River Function Tracer
User's Guide, 3.0

automatic support 69

Function Tracer events 69
initializing Function Tracer 80
integration with Function Tracer 68

T

target
agent architecture 2
cannot be a simulator 10, 12
initialization status 65
server 8,13,14,33
shell script 78, 80
target library
example target script loading 80
GUI initialization 13
launching Function Tracer manually 78
patch.so 78
patchutils.so 78
scopeutils.so 78
strtpsupportlib.so 78
table of required files 78
tracescope.so 78,79
targetArch 78
task
bringing to top 33
columns 60
ID 3
task filtering
ignore 27,53
options 53
trace point 5,27, 93
watch 27
tExcTask 18
timestamp
high resolution 59, 63, 69, 80
high resolution, driver 69
high resolution, System Viewer 69
host 59, 63
unresolved symbols 13
title bar
Console window 40
Highlight window 41
Main window 29

102

Registration window 25
Snapshot window 38
tNetTask 18
trace data files
exporting 30
opening 30
printing 31
saving 30
trace display
clearing tables 64
closing the window 64
generating snapshot 64
pausing 64
restoring 64
resuming 64
trace log, clearing 31
trace point
activating 28, 54, 93
clearing changes 28
deactivating 28, 55, 93
defined 51
filtering 93
highlighting 28, 40, 64
managing 50
modifying 28, 55
name 26
parameter format 27
parameters 94
registering 51, 94
removing 56
return value 27
task filtering 5,27, 53
timing 69
traced function 95
trace record
defined 95
function-entry record in 95
function-exit 95
highlight, colors 40
return value 3
Trace table
description 58
feature list 4
screen elements 59
tracescope.so 78,79

troubleshooting
-A option 82
error messages 85
tWdbTask 18

U

uninstalling
JDK 8
JRE 8
unresolved symbols, cause of 13

\'

verbosity
defined 95
initializing Function Tracer 79
Warning 13
View menu
Columns 32
Console 33
Custom Modules 32
Highlights 32
Registration 33
targetServer 33
viewing errors and warnings 39, 67
viewing source code 33

w

warnings
compiler options 9, 85
verbosity 13
windows
Console 39
Highlight 40
list 23
Main 56
Registration 24
Snapshot 37
Workbench

Index

dialog box 14
Launcher 11
WTX 4

103

	Wind River Workbench Function Tracer User's Guide, 3.0
	Contents
	1 Introduction
	1.1 Introduction
	1.2 Architectural Summary
	1.3 Features

	2 Getting Started
	2.1 Introduction
	2.2 Requirements
	Host
	Target

	2.3 Starting Function Tracer
	Target Considerations
	Starting Function Tracer From Workbench
	Unresolved Symbols at Startup

	2.4 Testing Your Installation

	3 The Function Tracer GUI
	3.1 Introduction
	3.2 The Function Tracer GUI
	3.2.1 Registration Window
	Window Elements

	3.2.2 Main Window
	Window Elements

	3.2.3 Source Code View Window
	Source Path Dialog Box
	File Search Dialog Box

	3.2.4 Snapshot Window
	3.2.5 Console Window
	Window Elements

	3.2.6 Highlight Window
	Window Elements
	Configuring Highlight Criteria
	Example

	3.2.7 Columns Dialog Box
	3.2.8 Custom Modules Dialog Box
	Window Elements
	Loading Custom Modules

	4 Using Function Tracer
	4.1 Introduction
	4.2 Starting Tracing Activity
	Initializing Trace Points
	Registering Trace Points
	Activating Trace Points
	Deactivating
	Modifying
	Removing

	4.3 Viewing Data
	Overview Table
	Trace Table
	Detail Table
	Buttons
	Status Bar

	4.4 Operational Features
	Viewing Source Code
	Arranging Columns
	Setting Highlight Color
	Taking Snapshots
	Adding Custom Modules
	Viewing Messages in the Console Window

	4.5 System Viewer Event Integration
	Automatic System Viewer Support
	High Resolution Time-Stamp Driver
	System Viewer Events

	5 Usage Tips
	5.1 Introduction
	5.2 Observing Practical Limitations
	Missing Symbols
	Processor Load and Bandwidth Considerations
	Routines That Must Not Be Traced
	Tracing Frequently Called Routines

	5.3 Tracing Tips
	Tracing Routines Returning Floating Point Values
	Tracing Real-Time Processes

	6 Troubleshooting
	6.1 Introduction
	6.2 Loading and Initializing Function Tracer Manually
	Load the Required Libraries
	Initialize Function Tracer
	Example Target Script
	Starting Function Tracer Manually from the Command Line

	6.3 General Troubleshooting Tips
	Issues With the Target
	Issues With the Host

	A API Reference
	B Glossary
	Index

