WIND RIVER

Wind River
System Viewer

USER'S GUIDE

3.0

Copyright © 2007 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, the Wind River logo, Tornado, and VxWorks are registered trademarks of
Wind River Systems, Inc. Any third-party trademarks referenced are the property of their
respective owners. For further information regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation under the following directory:
installDirlproduct_namel/3rd_party_licensor_notice.pdf.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
US.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:
http://www.windriver.com
For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

Wind River System Viewer User’s Guide, 3.0

7 Nov 07
Part #: DOC-16156-ND-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

Contents

OVEIVICW .eriieeeiiressirenssrsessrssssssnsssrasssssssssressssssssssansssnnssssenssssnsssssnsssnnnnnne

1.1 What Is Wind River System Viewer?
1.1.1 What Does System Viewer Output Look Like?cccccoovninnnnnnnn.

1.2 System Viewer Tools

1.2.1 Accessing System Viewer ToOlscccooviiiiiiniiininiiiccccccne

1.3 System Viewer Architectural Overview

Preparation and Distributionccccccmiiiiiiiiisnnneeeee s

2.1 Introduction

2.2 The VxWorks Image Project

221 Kernel Configurationc.cccooeeieiiininiiciiccecc e

2.3 Host/Target Communication

24 Preparing for Distribution

fii

Wind River System Viewer

User's Guide, 3.0

Configuring a Logging SeSSIONcccccccrrrrrrrssssssssssssssnsssnssssssnmsnnmnnnes

3.1 Configuration Workflow

3.2 Beyond the Basics
3.3 General Notes
The Event Logging Levelccoommimiiiniiieeesssiinssssss s ssssssssnssnnns
41 Whatis an Event?
4.2 Whatis an Event Logging Level?
421 Which Level Do ISelect? ..o
LI L= 2 o1 Lo = T N 1 o T o =
51 Upload Mode Configuration: General Considerations
5.2 Deferred Upload Or Continuous Upload?
52.1 Deferred Upload ..o
522 Continuous Upload ..o
523 Configuration Options: Deferred Upload and Continuous Upload .
53 Post-Mortem Upload Modes
53.1 Using Post Mortem for Non-Fatal Problemsccccocooeccennnncnes
532 Preparation: Kernel Configuration for Post-Mortem Upload
Post-Mortem Upload Kernel Configurationc.cccoevvvviiccinicnnn.
Post Mortem Mode (using pmLib) Kernel Configuration
5.3.3 Rebuild the Kernel and the Boot Loadercccccooniiiiinnnininccnes
534 Post-Mortem Upload Modecccoeueviriiiiniiciiccciccce
535 Post-Mortem Upload (using pmLib)cccccoovviiriiiicce
53.6 Post-Mortem Upload: General Notesccccooeeveerinicniiciniicne

13

14
15

17

18
18
19
20

Contents

54 Troubleshooting Upload Modes 26
541 The Ring BUfer ... 26

54.2 Symptoms and SOIUtiONScccoeuriiiiiiiiiiiiiiiniiiccccce, 28
Problem: Logging Stops Prematurely / Ring Buffer Stops Updating 28

Possible CaUSEScccccvuviriiiiiiiieiicicce e 28

Possible SOIULIONScccuviiiiiicieiiccce e 28

Problem: Upload Fails (Continuous Upload Only)c..cccccevevurvnncne 29

Possible Causes and Solutions ..., 29

Problem: Buffer Thrashing (Continuous Upload Only) 30

Possible SOIUtioNccccovviiiiiiiiiiccc 30

The Upload Method ... 31
6.1 The Upload Method 31
6.1.1 Upload Method Selection EITorsccccoeuviviviiiiiiiiiiicniiniiiiccnne, 32

6.2 Using the Memory Read Upload Method 32
6.3 Using TSFS Upload Methods 33
6.4 Automatic Upload of Logs 33
6.5 Socket Via TSFS and Socket Via TCP/IP Configuration 35
6.6 File Via TSFS 35
6.7 File Via NFS 36
6.8 File Via netDrv 36
6.9 The Event Receive Utility 37
Logging and Uploading Dataceeeeeeemmmmmmmmmmmemeeeeeseeeeeesseesseessesssnnns 39
71 Start Logging 39
7.2 The Configuration Editor Log Manager 40

Wind River System Viewer
User's Guide, 3.0

7.3 Using System Viewer API to Control Logging
WVON() and WVOFE() o
VXWOorks APT Libraries ..o
74 VxWorks Core Dump Log Upload
Log Viewer: Loading Log Files ... eeseees s s
81 Introduction
8.2 Opening Logs
8.2.1 Load Progress Dialogc.cccocoeuiimririiniiciiiccececc s
8.2.2 Errors and Warning Messages on Opening Log Viewer
8.3 Exporting Log Files
8.4 Introducing the Log Viewer
8.4.1 Basic COMPONENLEScooourviviiiiiiiiiii e
Status Bar ...c.ooveveiiieiiceceec e
RAdAr o
Event Container Treeccoccceveeinieiecnecniieceeecseeeceeenens
Event Icons and State Stiplescccccooeveninnnicniicccnnn,
Analysis Pack Panel ..o,
Log Viewer: VieWing TOOISeuuememmmmmmmemmeeeeeeeeeennssssssssssssssssssnssnnnennns
91 Introduction
9.2 Reading the Event Graph
StAtus Bar ...c.coviiciiiiii s
Event Graph Container Tree ..o,
Event ICONS ...
Measurement Markers ...
9.3 Reading the Event Table
Column INfOrmMationc.ccccceererriririeierereieeierre et
Event Table Container Treecccoccvueiiiiniiicciinncccceeeecenns
Text Pane and Printing ...

Vi

45

45
46
47

47

10

11

Contents

9.4 Reading the Search Results Table 57
9.5 Reading the Event Distribution Display 58
9.6 Reading the Memory Usage Analysis Pack 58
9.6.1 To Open the Memory Usage Analysis Packccccccoorinininnnnes 59

Using Filtering TOOISccccovviiiiiiiiiiiiicccc e 60

Log Viewer: Using the Radarccooccmmmiimniiinmemmmnnnnnissssssssesnnnsnnns 63
10.1 Introduction 63
10.2 Changing the Selected Range Using the Radar 64
10.2.1 Moving the Selected Range with the Mousecccccoooeveirniiinininnnn. 64

10.2.2 Defining a New Selected Range with the Mouseccccccevvvennnee. 65

10.2.3 Defining a New Selected Range Using the Select Range Dialog 65

10.2.4 Zooming the Selected Rangecccocoviiiiiviiiiiiiiicccce, 65

10.2.5 Using Measurement Markerscccccccciiiicininininiiiiicicnnnes 66

10.2.6 Nudging and Paging the Selected Rangeccccccecvviiiiiinninnnncnnee. 68

10.2.7 Moving the Selected Range Between Markerscccoovvvrmninnnnnen. 68

10.2.8 Undoing and Redoing the Range Selectionccccoovrverriiicunicnns. 68

10.3 Using Radar Modes 69
10.3.1 All Events Radar Modeccccoviiiiiiniiiccccccccceecne 69

10.3.2 Peak Activity Radar Modeccccooovieimniiiniiicicccccce, 70

10.3.3 Event Intensity Radar Modeccccovrriiriiiiniiciccce 70

10.3.4 No Radar Mode ..o 70

Log Viewer: Finding and Marking Eventsc.coovmmmmiemeeesseeeseesssnnnnnns 71
11.1 Introduction 71

vii

12

11.2

11.3

Log Viewer:

12.1

12.2

12.3

12.4

12.5

12.6

Wind River System Viewer
User's Guide, 3.0

Using the Event Cursor 72
11.2.1 Setting the Event CUISOTcccociviviiiiiiiiiiiiiiiiiiiniccccccces 72

Using the Event Properties/Search (filename) Dialogccccccceuuune. 73

Moving to the Event CUrsor ..., 74

Zooming on the Event CUISOTccccoorviiiiiiicnicceccc e 74
Using Bookmarks 75
11.3.1 Creating BooKmarkscccccocoeiiiieiiininiicicccecc e 75
11.3.2 Using the Bookmark Maintenance Dialogcccccccoevverniiirinricninnnnes 76
11.3.3 Using the Bookmark Context Menucccocouoeueioieinicninicinicceiennes 78
11.3.4 Changing a Bookmark’s Timestampcccccocoevviiinnniiiiine, 78
11.3.5 Navigating Between Bookmarkscccccooeviiinniinniiiine, 78

Display Filtering and Context Menusccccceviiiuennnne 79
Introduction 79
Display Filtering Options 80
12.2.1 Hide and Show COntainersccccccciiiieiiinininiiieicicicccscneeenenes 81
1222 Filter EVENtS ..oociiiiiiiiiiiiiicicicccc e 81
Container Tree Context Menu 81
12.3.1 Context Menu Items ... 82

State Summary Dialogccccoveviiieiiinieic 83

Log Properties Dialogcccooveiiirieiiiciiicccececc e 83
Event Graph Context Menu 84

Context State Information Dialogcccccocevvviiiiiininiiiccne, 85
Event Table Context Menu 86
12.5.1 Table Pane Context Menuccccoevviiiininininiiiicccs 86
12.5.2 Column Headings Context Menuccccoeuviviriiiiriicnicninninincicnnen, 87

Lower Pane Context Menuccccceueuiiiiniiininininiiiccccccneenes 87
Event Distribution Context Menu 87

viii

13

14

15

12.7 Event Dictionary Online Help

12.7.1

Log Viewer:

13.1 Introduction

13.1.1
13.1.2
13.1.3
13.1.4

Log Viewer:

Contents

Accessing the Event Dictionarycccco.....

Timestampsccccciriniiiisnmmmnnnnnees

Timestamp Ticksccoovvvrriiininiccccee,
High-Resolution Timestampingccccceeuunee.
Sequential Timestampingcccccoeeevveeirirunnnee.

Custom Timestamp Driverscccocooiirinnens

Visualizing Multicore Systems

141 Debugging Multicore Systems in the Log Viewer

14.2 Visualization of Multicore Behavior

14.2.1

14.3 Searching and Filtering by Core Number

Analysis Suite Views
15.1 Introduction

15.2 Opening Logs in Analysis Suite Views

15.2.1

15.3 The System Viewer Analysis Suite in General

15.3.1
15.3.2

Customizing the Visualizationccccceeeene.

Synchronizing Analysis Viewsc.c.ccccoevunnee.

The Analysis View Overview Panel

The Analysis View Data Panelccccco.c.......

16

Wind River System Viewer
User's Guide, 3.0

15.4 The Analysis Views in Particular 100
15.4.1 CPU Usage ANalysiscccocovviniiiiiiiiiiiiiiiceccncccc e 100

1542 Aggregate CPU Usage ANalysiscccoviviivininiiiiiiiciienes 101

15.4.3 System Load ANalysiscccocoeveiniriniiniiiincccccc e 101
Examples of Load Figures ..o 101

1544 Time Running Analysis ..o 102

15.4.5 Time Ready ANalysiscccoooieinimieiiieiiicieiccice e 103

(W L3 1o T I 1 g e T T=1 T ' 105
16.1 Introduction 105
16.2 Getting Started 106
16.2.1 To Create a TrigEeTccocovvvvviiiiieiiiiiccce e 106

16.2.2 Using Sample Trigger Files ..., 107
Understanding Functions with Triggeringc.ccccocoveiinnnnne. 107

16.3 Using Triggering 108
16.3.1 Menu and Toolbar OptioNScccoveirieriiiiiiininiiiiccecccies 108

File MeNU ..o 108

Edit MenUcocooviiiiiicccccc e 108

View and Action Menusccccvreiniicnicciicceccnccenes 109

16.3.2 Columns in the Trigger Utility ... 109

16.3.3 Using the Trigger Maintenance Utilityccccocoovviniiiiiininnes 109

To Create a TrigGer ..o 110

16.3.4 Saving TrGEETS ...coviiviviiiiiiiiccee 114

16.3.5 Defining Variables to Validate Triggersccccccovinnniniinnnnnnnen. 114

16.3.6 Downloading and Running Triggersccccocovviiinnniniiiinenne, 114
Reading Target ICONS ... 114

Reading Trigger ICONSccccovviviiiiiiiiiiiiiiiiiiiccc e 115

17

16.4 Creating and Running the Sample Triggers

Contents

16.4.1 Simple Conditional Trigger Exampleccccccoviviviiiiiniiininininnee.
16.4.2 Chaining Simple Conditional Triggers Exampleccccccceueurueuinnnnne.
16.4.3 Chaining Triggers for System Viewer Logging Example
16.5 Using Functions with Triggering
16.5.1 Using a Function as a Conditionccccccoevvviniiccinnniiccce,
Defining and Loading Condition Functionsccccccevviiviinnnnnns
Writing Condition Function Codec.coooviiiirniiiiiccc
16.5.2 Writing a Call Function as an Action ..o,
16.5.3 Starting and Stopping System Viewer with User Events
16.54 VxWorks 653 Only: The Action Library Managercccocoevevennee.
16.6 Importing Previous Version Trigger Files
User Events (VXWorks Family)cccccmmmmmmminiissmmmnnmnnnnsssssmsssssssssnsnnes
17.1 Introduction
17.2 User Event Display
17.3 The User Events Description File

17.3.1
17.3.2

17.3.3
17.3.4

17.3.5

Location of the User Events Description Filec..ccccooueviiiinninnnnnn
Structure of the User Events Description Filec.cccccooovvviniiininnnnn
Description of EventRangeDescription Attributes
Editing the User Event EventRangeDescriptionccccceceuvvninne.
Editing a Single User Event, or a Block of User Events

Inserting a New EventRangeDescriptioncccocooooiininnn
Inserting New EventDescriptionsccccccocooiiiinnin
Using Textual ICONScccovoviiiiiiiiiiiiiiicccs

The Extended Form of the icon Attributecccccceeeeeeeee

Example of a Complete VxWorks 6.N user.xml Filecccccoceuee.

Xi

Wind River System Viewer

User's Guide, 3.0

17.4 Validating XML Modifications

17.5 Advanced Techniques: Custom Parameter Formatting

EXAMPIES ..ot

18 Configuring VxWorks for System Viewercccccovivvccmmmnninnsssssnnennns

18.1 Introduction

18.2 Configuring the Kernel

18.3 System Viewer Components
18.3.1 Basic System Viewer Componentsc.cccocoueivieeieieinininiinicicree,
18.3.2 Upload Method COMPONENLScooveermierieiicieiceic e
18.3.3 Upload Mode Buffer Componentsccocoeeveviiinnininciinniinn.
18.3.4 Timestamping COMPONENtSccccovvrrririiiiiiiiiiceees
18.3.5 Triggering COMPONENLSccovviviiiiiiiiiiiiic e
18.3.6 Network COmMpONeNntscccccovuviviiiiieiiiiiiiiininicccccccces

19 System Viewer for Wind River LiNUXcccocvemminismmnmnssesesnssessssnaes

19.1 Configuring Wind River Linux for System Viewer

19.2 Using System Viewer Configuration in Workbench
19.21 Configuration SUMMAIYcccccoviiiimniicniricec e,
19.2.2 Flight Recorder Optionsccccooeiiiminiicinicccecec e
19.2.3 Target File System Optionscccoeveriiiieiniciniiceece e
19.24 Buffer Configuration ...
19.2.5 Output Flename ..o
19.2.6 Log Conversion Optionsccccceviiiiininiiiiiiccceeecces
19.2.7 Module Managerc.cccovvviiiiiiiiiiniiiineccees e

Xii

Contents

19.3 Custom Events 155
19.3.1 General Steps for Using Custom Eventsccocoooeenniiiciinnnnen. 156

19.3.2 Marker Example Moduleccccocoviiiiiiiiiininiiiiicccnes 157
Programming Data Collectionccccoommriiimmininsme s 159
A1l Introduction 159
A.2 Instrumenting Objects Programmatically 160
A2.1 Kernel LIDIATi€s ...c..cooooviiiviiiiiiieieieeceeeeee ettt eneenae e 160

A22 Additional LIDIariesccocioiiiiioiiiieieeeeteeceeeeteeeeeees e 166
INEIMNLID oottt ettt 166

WYVINEEDLID ..ottt 166

A3 Adding Eventpoints 168
The €() ROULNE ..c.eoviiiiieieiiieieieteeeee et 168

The WvEvent() ROULINEccccoeiriirieiiiiriicineeeeeeee e 169

A4 Timestamping 171
High-Resolution Timestamp Driver ..o 171

Sequential Timestamp DIiver ... 171

A.5 Dynamic Buffer Allocation 172
A5.1 Configuring the Event Log Buffer ..o, 173
Upload MOdes ..o s 173

Deferred Upload ..o 173

Continuous Uploadcccoovviviiiinniiiiiiinics 174

Post-mortem Modeooeeevveevieerieeieceeeeeeeeee e 175

rBuff Task Priority ..o 175

Target Memory Constraints ..o 176

A52 Configuration TUNINGcccocoeiiiiiinrriicccerresccee e 176

Xiii

Wind River System Viewer
User's Guide, 3.0

Triggering APl ... rr e s s 177
B.1 Introduction 177
MACIOS ..ottt 178

Triggering Structure ..o 180

B.2 Using the Triggering API Functions 180
Adding a Trigger to the Trigger Listccccoevvriniiinnnne. 181

Deleting a Trigger from the Trigger Listcc.ccccooevvrrrnnnne. 181

Activating and Deactivating Triggeringccccccoevurvrunnnee. 181

Showing Information on Triggerscccoevvevvecuiircninirnnnnee. 182

Changing Trigger Statusccccovevvviieiiicieiicccecece, 182

Creating a User Event to Fire a Triggercccccooeeeiniinnne, 183

VxWorks 6.N user.xml Example Fileccooorcrrrirrirrccincsrccsssnnnnns 185
C1 Introduction 185
C.2 VxWorks 6.N user.xml Example File 186
INAEX e ——————————— 189

Xiv

Overview

1.1 What Is Wind River System Viewer? 1
1.2 System Viewer Tools 2

1.3 System Viewer Architectural Overview 4

1.1 What Is Wind River System Viewer?

Wind River System Viewer is a logic analyzer for embedded software that lets you
visualize and troubleshoot complex target activities.

Often the interactions between the operating system, the application, and the
target hardware occur within specified time constraints, characterized by
resolutions of microseconds or finer.

Commonly used debugging and benchmarking tools for embedded systems, such
as source-level debuggers and profilers, provide only static information.

System Viewer logs activities on a running target, whereby the type of data and
aspects of a system that you want to view are highly configurable, and can be
saved for later analysis.

Wind River System Viewer provides the ability to:

» Detect race conditions, deadlocks, CPU starvation, and other problems
relating to task interaction.
* Determine application responsiveness and performance.

Wind River System Viewer

User's Guide, 3.0

See cyclic patterns in application behavior.
Save data for deferred analysis.

NOTE: Wind River System Viewer supports the Linux operating system by
leveraging the functionality of the Linux Trace ToolKit, more commonly known as
LTT. Concepts and features described in other chapters of this guide also pertain
to the Linux operating system, unless otherwise mentioned. For Wind River Linux
architecture, installation and configuration information, see 19. System Viewer for
Wind River Linux.

1.1.1 What Does System Viewer Output Look Like?

If you have never used System Viewer and would like to see what sort of output
you can expect, and what you can do with that output, you can open the sample
log files provided.

To open a sample log, on the main Wind River Workbench menu, choose
File > Open and navigate to
installDirfworkbench-N.N/wrsv/N.N/samples/vxworksN/logs/

Graphical (and tabular) presentations of logged events will be displayed in the
Log Viewer.

To help you get an initial understanding of what you are seeing, in the
Log Viewer, choose Help > Legend.

1.2 System Viewer Tools

The main System Viewer tools are:

System Viewer Configuration

Use this to configure what you want logged, how to upload the log from the
target to the host, and to select how to view analysis data.

Triggering

Use this to precisely specify when (at which event) to start and stop logging.
Most events that are logged can also be used as a trigger.

1 Overview
1.2 System Viewer Tools

NOTE: Triggering is not available for the Wind River Linux operating system.
For information on creating Wind River Linux custom events, see 19.3 Custom
Events, p.155.

Event Receive

A socket listener for collecting log data uploaded by the target.

Log Viewer

Use this to analyze the logged data. You can also save the logs, with or without
the current display settings, in System Viewer format or text format (including
CSV for importing to third party spreadsheet applications).

Analysis Suite Viewers

Use these to view CPU load and event data derived from System Viewer logs.
These viewers, accesible from the System Viewer Configuration editor, are
particularly useful in the context of multiple CPUs.

1.2.1 Accessing System Viewer Tools

You can open existing System Viewer log files in the Log Viewer by choosing
File > Open on the main Wind River Workbench menu.

System Viewer log files have either a .wvr extension, which is a so-called raw
file with log data only, or a .wva extension, which is an analysis file that
includes information on how the previous viewing session was configured so
that you (or somebody else) can pick up from where you left off.

To use the System Viewer configuration tools (Configuration and Triggering
editors) you must be be connected to a target because these tools read
information from the target.

Once you have succesfully established a connection, you can access these tools
from the Wind River Workbench main Target menu, or from the
Target Manager view’s right-click context menu under Target Tools.

To open Event Recieve, choose Target > Event Recieve on the main
Workbench menu.

However, usually there is no need to do this because the
System Viewer Configuration editor automatically opens the utility when
uploading to a socket.

Wind River System Viewer
User's Guide, 3.0

1.3 System Viewer Architectural Overview

Figure 1-1

As you can see in Figure 1-1 (a VxWorks example) System Viewer provides both
host and target side functionality, whereby as much processing as possible done on
the host to minimize the effect of logging on target activities.

Wind River System Viewer Architecture

HOST VXWORKS TARGET

L

orks
trol

pwer

The host side functionaly is the main subject of the rest of this manual. The target
side includes instrumentation points, buffering, event logging, timestamping, data
upload, and triggering of actions such as when to start and stop logging. All of
these things can be individually configured from the host. For a detailed list of
which VxWorks components are needed for specific target side functionality, see
18. Configuring VxWorks for System Viewer. For information relating to Wind River
Linux, see 19. System Viewer for Wind River Linux.

Communication between the host and target uses the WDB protocol over a serial
line or a network connection. This path is shared by all Wind River Workbench
tools to communicate with a target.

Preparation and Distribution

2.1 Introduction 5
2.2 The VxWorks Image Project 6
2.3 Host/Target Communication 6

2.4 Preparing for Distribution 7

2.1 Introduction

This chapter focusses on VxWorks; for information relating to Wind River Linux,
see 19. System Viewer for Wind River Linux.

The chapter outlines what you have to consider to be able to configure and
generate System Viewer log files to debug real-time problems during the
development cycle.

Once you have completed development and debugging, you will want to strip
System Viewer components and instrumentation before shipping your product.
The necessary procedure for doing this is outlined at the end of the chapter.

Wind River System Viewer
User's Guide, 3.0

2.2 The VxWorks Image Project

Unless you specifically chose to use System Viewer instrumentation-free libraries
during creation of your VxWorks Image Project in the Wind River Workbench, you
can use System Viewer out of the box.

However, if, at project creation time, you did specify that you wanted to use
System Viewer instrumentation-free libraries, the VxWorks Image Project is not
usable for System Viewer.

2.2.1 Kernel Configuration

When you create a VxWorks Image Project in the Wind River Workbench, all
commonly used System Viewer components are included in the kernel by default.
For reference purposes, or in case the configuration has been modified, all
System Viewer kernel components are listed in the appendix chapter,

18. Configuring VxWorks for System Viewer.

2.3 Host/Target Communication

When you configure a logging session, System Viewer has to read information
from the target. Furthermore, many configuration parameters you provide are

validated against the target. You therefore must have either a target server, or a
connection to the target up and running before you initiate System Viewer log

configuration and generation.

System Viewer can only use communication channels that are correctly configured
on the target to upload the generated log files to the host. So, if System Viewer
reports invalid upload methods, or incorrect upload parameters, you may need to
configure the target server/connection properties appropriately.

Configuring target server/connection properties in the Wind River Workbench
Target Manager is described in the Wind River Workbench User’s Guide, and will not
be re-described in this manual.

2 Preparation and Distribution
2.4 Preparing for Distribution

2.4 Preparing for Distribution

Step 1:

Step 2:

Step 3:

Step 4:

To use System Viewer, the kernel has to include various System Viewer specific
components. Furthermore, in order to be able to capture and log run-time events,
instrumentation points are coded into the various kernel libraries.

Just as you build an optimized version, devoid of “normal” debug information, of
your product, you will probably also want to remove System Viewer components
and instrumentation before deployment.

Exclude Wind River System Viewer instrumentation

Because instrumentation-free kernel libraries are not supplied with the product,
you have to first build the kernel archives from source with the OPT=-fr (or
OPT=-inet6_fr) option. For information on building the VxWorks kernel archives,
see the source-code installation and build instructions in your getting started
guide.

Create a New VxWorks Image Project

Then, in the Wind River Workbench, create a VxWorks Image Project and be sure
to select the Use System Viewer free kernel libraries in the project creation
wizard. This will be the VxWorks image you deploy.

Remove All System Viewer Components from the Kernel

Remove all System Viewer components as listed in the appendix chapter,

18. Configuring VxWorks for System Viewer. The chapter also introduces you to
using the Kernel Editor for such kernel configuration tasks.

Add your application projects to the new VxWorks Image Project and rebuild

For more information in this respect, see the Wind River Workbench User’s Guide.

Wind River System Viewer
User's Guide, 3.0

Configuring a Logging Session

3.1 Configuration Workflow 9
3.2 Beyond the Basics 11
3.3 General Notes 11

3.1 Configuration Workflow

All basic log configuration is done in the System Viewer Configuration editor.
Your first step in configuring a logging session is therefore to open this editor, so
right-click on a connected target and choose

Target Tools > System Viewer Configuration.

The editor opens with the Configuration tab uppermost, associated toolbar
buttons appear on the main Workbench toolbar, and the
System Viewer Configuration menu appears on the main Workbench menu.

The order of appearance of the nodes (from top to bottom) on the Configuration
tab of the System Viewer Configuration editor can be seen as a reasonable,
although not prescriptive, “configuration workflow”. In practice, you will
probably not always follow this workflow, but be aware that there are
dependencies that flow from top to bottom.

The main thing to bear in mind when you configure a logging session is that
logging is intrusive (itself influences target behavior), and that the more data you
collect (the higher the Event Logging Level), the more intrusive it gets. Over and

Wind River System Viewer
User's Guide, 3.0

above the volume of data collected, the selected Upload Mode and associated
buffering also influences intrusiveness.

Each of the nodes (configuration categories) introduced below is individually
discussed later. The following is intended merely as an overview that also
illustrates a few potential inter-category dependencies.

* The topmost node, Configuration Summary, is a read-only summary of the
the configuration settings in the other nodes below it. If everything looks
correct here, forget about the rest of the nodes and start logging.

* The Event Logging Level node—How much information do you want to
collect? What do you want log?

Deciding what you want to log seems a logical enough place start any
configuration work.

Furthermore, because real-time debugging with System Viewer can, like any
other kind of debugging, often be a question of “homing in” on the problem
(or on different problems in succession), this is also the configuration category
you are most likely to want to revisit.

Modifications to the scope and type of data you want to collect can, in turn,
influence your decisions in the next node down, Upload Mode.

= The Upload Mode node—When do want to upload the log? How will it be
buffered on the target until that time?

If, for example, your application can be expected to generate huge amounts of
data at the Event Logging Level you selected above, this can influence your
decisions on buffer allocation.

Apart from the expected data volume, the type of problem you are interested
in (which you will also have thought about in the context of selecting an
Event Logging Level) will have an effect on Upload Mode settings.

For example, do you want to see the events immediately preceding (and
precipitating) a crash? Or, for example, are you interested in observing
long-term target behavior?

= The Upload Method node—How do host and target communicate? Where do
you want the target to put the logs on the host file system?

This last node is mostly about aligning host and target communication settings
(whereby System Viewer can only use what is available on the target) and
where you want the logs to be uploaded to. Once everything is correct on this
bottom node, you will normally not need to modify this configuration

10

3 Configuring a Logging Session
3.2 Beyond the Basics

category very often, although there can be a dependency on the selected
Upload Mode, and therefore indirectly also on the Event Logging Level.

3.2 Beyond the Basics
Over and above the basic configuration you set System Viewer Configuration

editor, triggering (see 16. Using Triggering) lets you fine-tune exactly when to start
and stop logging.

3.3 General Notes

System Viewer log configuration settings are persistently stored on the host. That
is, the target knows nothing about these settings, so if you use a different host to
connect to the same target, you have to re-configure for the current host.

11

Wind River System Viewer
User's Guide, 3.0

12

The Event Logging Level

41 Whatis an Event? 13
4.2 What is an Event Logging Level? 14

4.1 What is an Event?

Before deciding what level of events you want to log, it might be worth looking at
what System Viewer sees as an event.

System Viewer, defines an event as any action undertaken by a task or an interrupt
service routine (ISR) that can affect the state of a real-time system. The information
logged for each event includes

= the action that occurred, such as semGive()

» the context in which the event occurred, that is, the ISR, task, or idle loop

= the timestamp

» other status information as appropriate, such as the semaphore ID for a
semGive

» parameter details

= calling routines

» andsoon. For detailed information, see the Wind River Workbench User Interface
Reference: System Viewer Event Dictionary.

13

Wind River System Viewer
User's Guide, 3.0

Examples of events are:

= semaphore gives and takes

» task spawns and deletions

= timer expirations

= interrupts

= message queue sends and receives

= watchdog timer activity

= exceptions

= signal activity

* system calls

= I/O activity

* networking activity

= memory allocation, freeing, partitioning, and so on
= protection domain activity (VxWorks 653 only).

System Viewer provides details about the parameters logged for each library or
event, the routines that call them, and so on. For more information, see the
Wind River Workbench User Interface Reference: System Viewer Event Dictionary.

4.2 What is an Event Logging Level?

An event logging level determines the type of events (see 4.1 What is an Event?, p.13)
logged; that is, the breadth and depth of data collection.

In the Event Logging Level node of the System Viewer Configuration editor
there is one main control for selecting logging levels, the
Event Logging Level Selection list.

The Event Logging Level Selection list is ordered from lowest to highest
complexity, and therefore intrusiveness. These levels are cumulative; that is, each
level is the sum of all lower levels, plus whatever new options the selected level
itself provides. The user interface provides descriptions of what kind of events
each Event Logging Level will capture, so click your way through the levels to see
the descriptions.

14

4 The Event Logging Level
4.2 What is an Event Logging Level?

4.2.1 Which Level Do | Select?

To help you decide which level to select, use your knowledge of:

» your application and its (potential) problem areas
* how your application interacts with the operating system

If this not enough, you might try an iterative approach, especially if you are new
to System Viewer:

= Start by collecting at the most simple level, Context Switch, then, after you
have done the rest of your configuration settings and have generated a log,
examine the results in the Log Viewer.

= If you do not see what you need, try the next highest level,
Task State Transition.

The Task State Transition level captures, in addition to the changes in
execution context logged by the Context Switch level, the events that resulted
in such changes.

= If that does not work for you, move up to the highest level,
Additional Instrumentation.

The Additional Instrumentation level is configurable and allows logging of
selected operating system specific event types. Try to narrow down your
selection to likely looking candidates for the problem(s) you are interested in.
Note, however, that if you do not select any libraries, the output will be exactly
the same as if you had selected Task State Transition.

15

Wind River System Viewer
User's Guide, 3.0

16

5.1
5.2
5.3
5.4

The Upload Mode

Upload Mode Configuration: General Considerations 17
Deferred Upload Or Continuous Upload? 18
Post-Mortem Upload Modes 21

Troubleshooting Upload Modes 26

5.1 Upload Mode Configuration: General Considerations

When you configure the Upload Mode, there are two questions you have to
answer:

1.

When do you want to upload the collected event log data from the target?
This depends mainly on what kind of problem you are trying to track down:

— If you want to see the events leading up to a crash, you have to use a
Post-Mortem Upload mode.

- If you want to debug non-fatal problems, you can choose between
Deferred Upload and Continuous Upload.

How do you want to configure the target buffer that holds the data until it is
uploaded?

Normally you do not want configure the buffer at all. You can generally just
accept the default buffer configurations associated with each Upload Mode.

17

Wind River System Viewer
User's Guide, 3.0

Although manual buffer configuration is rare and “advanced” (you have to
know something about the buffering strategies used by each Upload Mode),
there are cases where you might want/have to modify the default
configurations. Such cases range from “advanced tweaking” (for example, to
minimize logging intrusiveness) to troubleshooting problems like
log-collection stoppages or upload failures.

Since you will not normally need to customize the buffer configuration when
you are setting up a logging session, discussion of this subject is confined to
the troubleshooting section of this chapter, 5.4 Troubleshooting Upload Modes,
p-26.

5.2 Deferred Upload Or Continuous Upload?

Deferred Upload or Continuous Upload is the basic decision you have to make
for debugging non-fatal problems.

5.2.1 Deferred Upload

This is the default mode. Data is uploaded when you issue an Upload command
from the System Viewer user interface.

This mode also provides the option to Uses circular buffer on some systems (not
VxWorks 653). This is a wrap-around ring of buffers where the oldest data is
overwritten with the newest data when the ring is full. However, on systems that
do not support this option in Deferred Upload, you can take advantage of the
equivalent Post Mortem Upload feature (see 5.3.1 Using Post Mortem for Non-Fatal
Problems, p.21).

If you use a non-circular buffer, logging stops when the buffer is full. If you use a
circular buffer, logging continues until stopped by a trigger, an API call, or on
demand.

= Deferred Upload Limitations

The volume of data collected, whether you use a circular buffer or not, is
limited to whatever free memory is available on the target.

18

5 The Upload Mode
5.2 Deferred Upload Or Continuous Upload?

However, this may in fact not really be a limitation because, for example:

You are looking at an application that runs its course fairly quickly
(and/or you have sufficiently optimized the Event Logging Level
configuration).

You have localized the problem to some extent, which means that you do
not need to collect data for hours or days on end.

In such a case you might set triggers to start/stop logging, and you would
probably also be able to constrain the volume of data collected via the
Event Logging Level configuration.

You have additional off-board memory.

= Deferred Upload Advantages

Least complex and therefore least problem-prone.
Minimal intrusiveness of logging.

Minimal configuration overhead.

5.2.2 Continuous Upload

In this mode, data is periodically uploaded from the target as buffers are filled.
Logging continues until stopped by a trigger, an API call, or on demand. If the
Upload Method is configured to

Automatically view the data on upload completion, uploading takes place as
soon as logging is stopped.

= Continuous Upload Limitations

This mode is more complex than Deferred Upload in that, over above
collecting data and allocating buffers, it has to concurrently upload filled
buffers (and potentially free them). This has a number of implications:

More complexity may, but by no means necessarily, lead to problems and
therefore also some additional configuration overhead.

Intrusiveness is higher because events associated with periodic uploading
are reflected in the log.

Periodic uploading impacts target performance.

This mode is not compatible with the host-driven Memory Read upload
method, see 6.2 Using the Memory Read Upload Method, p.32.

19

Wind River System Viewer

User's Guide, 3.0

Continuous Upload Advantages

The major advantage, or reason to use, the Continuous Upload mode is the
huge volume of data you can collect without interruption (the physical limit is
the available hard-disk space on the host).

For long-term, uninterrupted observation and situations where you do not
know how to characterize the problem (and therefore cannot set triggers) this
is the mode of choice.

5.2.3 Configuration Options: Deferred Upload and Continuous Upload

Both Deferred Upload and Continuous Upload modes provide the following
configuration options:

Buffer size (default = 32Kb)

This refers to the size of individual buffers in a dynamic ring of multiple
buffers. The smallest possible value (the default of 38Kb) therefore represents
the best fit in terms of how many individual buffers the available target
memory can accommodate.

If target memory constraints are not an issue because the expected volume of
data is relatively low and/or you have ample free target memory, you can
increase the size of individual buffers. Because buffers are dynamically
allocated (and in Continuous Upload mode also sometimes freed), this will
reduce the overhead, and therefore also intrusiveness, of memory
(de-)allocation.

Advanced >>

20

This button opens options that you do not normally need to look at. These
options are relevant only for troubleshooting or advanced tweaking; as such,
they are described under 5.4 Troubleshooting Upload Modes, p.26.

5 The Upload Mode
5.3 Post-Mortem Upload Modes

5.3 Post-Mortem Upload Modes

The Post-Mortem Upload mode is available on VxWorks 6.1 and higher, as well as
on VxWorks 653.

The Post-Mortem Upload (using pmLib) mode is not supported on VxWorks 653.

Both these modes serve the same purpose, the difference lies in how non-system
memory is defined.

Post-Mortem upload is used primarily to collect events leading up to a system
failure. Events are stored in a circular (wrap-around) ring of buffers where the
oldest data is overwritten with the newest data when the ring is full.

So even if you collect data for days or weeks, the events immediately preceding the
failure will be recorded and stored in the target buffer. After a crash and a warm
reboot you can then upload the buffer contents by issuing an Upload command
from the System Viewer user interface.

This can only work if the buffer is stored in memory that is not overwritten on
rebooting, which means you will usually have to first configure system memory
accordingly (see 5.3.2 Preparation: Kernel Configuration for Post-Mortem Upload,
p-21) and then align the System Viewer configuration settings to match. Bear in
mind that if you reconfigure kernel memory, you will have to rebuild the VxWorks
image, as well as the boot loader.

5.3.1 Using Post Mortem for Non-Fatal Problems

You can also use Post-Mortem Upload even if you do not expect the target to
crash. This is particularly useful on systems (like VxWorks 653) that do not support
Deferred Upload with the Use a circular buffer option. This way, you can take
advantage the corresponding circular (wrap-around) buffer feature used by
Post-Mortem. In this case, you would not need to rebuild the boot loader.

5.3.2 Preparation: Kernel Configuration for Post-Mortem Upload

Because post-mortem mode must preserve the buffer after an application failure,
the buffer cannot reside in system memory. This means you will have to configure
the kernel accordingly, unless one of the following applies:

* You are using a BSP that does not reset system memory on a warm reboot.
* You are using shared or off-board memory.

21

Wind River System Viewer
User's Guide, 3.0

If neither of the above apply, you will have to configure the kernel, regardless of
which post-mortem mode (on systems that provide more than one) you want to
use.

Your first step is therefore to open the Kernel Configuration Editor (accessing the
Kernel Configuration Editor and using the Find dialog to locate components is
described under 18.2 Configuring the Kernel, p.148).

How you proceed from here, depends on which mode (if your system provides
more that one) you want to use. Recall: both will achieve the same objective.

— Either follow the steps under Post-Mortem Upload Kernel Configuration, p.22

- Or follow the steps under Post Mortem Mode (using pmLib) Kernel
Configuration, p.23

Post-Mortem Upload Kernel Configuration

To configure memory for Post Mortem Upload you have to set the following
macro values:

LOCAL_MEM_AUTOSIZE = FALSE

USER_RESERVED_MEM = required memory size (as large as possible)

To do so:

= Inthe Kernel Configuration Editor’s Find dialog, start typing
LOCAL_MEM_AUTOSIZE.

The macro name should be matched after the first few keystrokes.

* Double-click on the match and, in the Properties view, set the Value of
LOCAL_MEM_AUTOSIZE to FALSE.

= Open the Find dialog again, and start typing USER_RESERVED_MEM.
The macro name should be matched after the first few keystrokes.

* Double-click on the match and, in the Properties view, set the Value of
USER_RESERVED_MEM to as high a value as possible.

For example, to reserve 512 Kb of memory for the post-mortem log buffer, set
the value to 0x80000.

If you do not know how much memory is available for reservation, use a
Target or Host Shell and:

— To find the top of VxWorks memory, enter sysMemTop ()
— To find the top of all local memory, enter sysPhysMemTop ()

22

5 The Upload Mode
5.3 Post-Mortem Upload Modes

You have now reserved memory for the post-mortem log buffer. Please continue as
described under 5.3.3 Rebuild the Kernel and the Boot Loader, p.23

Post Mortem Mode (using pmLib) Kernel Configuration
To configure memory for the Post-Mortem Upload (using pmLib) mode, you
have to set the macro:
PM_RESERVED_MEM = required memory size (as large as possible)
To do so:

= Inthe Kernel Configuration Editor’s Find dialog, start typing
PM_RESERVED_MEM.

The macro name should be matched after the first few keystrokes.

* Double-click on the match and, in the Properties view, set the Value of
PM_RESERVED_MEM to as high a value as possible.

For example, to reserve 512 Kb of memory for the post-mortem log buffer, set
the value to 0x80000.

NOTE: The size defined by the PM_RESERVED_MEM value is for the whole
arena, the amount of memory available for use by System Viewer depends on
the amount of memory used by other components in the arena such as ED&R.

You have now reserved memory for the post-mortem log buffer using the
persistent memory feature. Please continue as described under 5.3.3 Rebuild the
Kernel and the Boot Loader, p.23

5.3.3 Rebuild the Kernel and the Boot Loader

If you have modified the kernel in order to support post-mortem upload, you have
to rebuild and reboot it.

Furthermore, unless you are using post-mortem as described under 5.3.1 Using
Post Mortem for Non-Fatal Problems, p.21, you will have to rebuild VxWorks boot
loader images. This is necessary to ensure that the boot process does not clear
memory reserved for the System Viewer log buffer or the system image, which
could lead to changes in memory allocations.

23

Wind River System Viewer

User's Guide, 3.0

5.3.4 Post-Mortem Upload Mode

Once you have configured the kernel as outlined under 5.3.2 Preparation: Kernel
Configuration for Post-Mortem Upload, p.21, you can select the Post-Mortem Upload
in the System Viewer Configuration editor.

Normally the start and end addresses displayed in the
Post-Mortem Upload Buffer Configuration pane can be correctly calculated by
System Viewer. If not, a warning is displayed. Possible problems include:

24

The target does not support user-reserved memory (for example, VxSim).

You have not correctly configured user-reserved memory on the kernel, see
Post-Mortem Upload Kernel Configuration, p.22.

The target has ED&R or persistent memory configured (not applicable for
VxWorks 653).

In this case it is possible that the top of USER_RESERVED_MEMORY will be
allocated and used. This prevents post-mortem from using the full range of
USER_RESERVED_MEMORY. System Viewer attempts to detect the presence of
the default ED&R and persisted memory arenas and automatically adjusts the
range available in the USER_RESERVED_MEMORY to avoid memory conflicts.

However, if there are custom PM or EDR arenas defined on the target,
System Viewer may not be able to successfully detect them. If this is the case,
you have the following options:

— Since you have already set up such arenas, rather select the
Post-Mortem Upload (using pmLib) option.

— Alternatively, you can manually configure the region start and end
addresses. The entered values must define an area in
USER_RESERVED_MEMORY which is not used by either the default arenas
or by any custom persistent memory arenas.

5 The Upload Mode
5.3 Post-Mortem Upload Modes

5.3.5 Post-Mortem Upload (using pmLib)

NOTE: This section does not apply to VxWorks 653.

System Viewer Event logs will be stored in the persisted memory arena. The size
of memory reserved is configured automatically, but is limited to the free memory
in the selected arena. It is therefore important to create an arena with enough
memory to allow storage of the event log, see Post Mortem Mode (using pmLib)
Kernel Configuration, p.23.

Once the target has been configured with persisted memory, you can use the
System Viewer Configuration editor to manage it. There are two configurable
parameters:

Region Name
Enter the name of the arena in the edit box and click the Lookup button to
locate the arena on the target. The default arena name is pmDefaultArena.

Region Size
Specify the amount of memory to reserve for System Viewer use, up to the
maximum amount of free memory in the arena. This field will be disabled until
you specify a valid arena. The field will also be disabled if an existing
System Viewer reserved area is detected.

Once you have selected an arena and memory for System Viewer has been
reserved, the start and end addresses of the reserved memory will be shown in the
Region Start and Region End fields.

To change the size of a reserved arena, delete and recreate it.

NOTE: Deleting and recreating a reserved area may cause loss of an existing log in
the reserved memory due to changes in start and end addresses. It is
recommended that you upload existing logs before changing reserved memory.

5.3.6 Post-Mortem Upload: General Notes

» Switching from post mortem mode to another mode or vice-versa does not
immediately destroy existing logs, however, as soon as you start collecting
logs in the new mode, all previously collected logs are destroyed.

* You can not collect multiple logs using post mortem upload mode.

25

Wind River System Viewer
User's Guide, 3.0

5.4 Troubleshooting Upload Modes

Although the System Viewer upload mode configuration defaults generally
suffice, there may be extreme situations that demand custom configuration. You
will probably only realize this during or after an initial logging session (failure);
that is, you will have to re-configure.

The kind of problems that could be solved by upload mode (re-)configuration are:

» Logging stops prematurely.
* In Continuous mode only:
— upload fails and/or
— there is excessive buffer allocation/freeing (known as thrashing)

Generally speaking, such extreme situations, where System Viewer defaults do not
suffice, arise if too many events are fired too rapidly to be properly handled. To
overcome the problem, there are two main areas to look at:

* Constrain the volume of data collected by setting triggers (see 16. Using
Triggering) and/or by refining the Event Logging Level if possible (see 4. The
Event Logging Level).

* Modify the target buffer configuration, which is what the rest of this section is
about.

5.4.1 The Ring Buffer

Almost all custom (re-)configuration of upload modes relates to target buffer
management, so it is worth taking a brief look at the System Viewer buffering
strategy.

System Viewer uses a ring of individual buffers for storing event logs on the target.
Depending on the upload mode, this ring can use:

* Dynamic buffering

Buffers are allocated as needed, up to a configurable maximum count, or until
there is no more target memory available (whichever comes first).

— Dynamic buffer allocation is supported in Deferred Upload and
Continuous Upload modes.

In Continuous Upload mode, excess buffers are freed as data is read and
uploaded from filled buffers.

26

5 The Upload Mode
5.4 Troubleshooting Upload Modes

In both Deferred Upload and Continuous Upload modes you can
suppress dynamic buffering by setting the minimum number of buffers to
equal the maximum number of buffers. In this case, all available target
memory is pre-allocated for use by System Viewer.

However, be aware that in these modes the buffer’s memory requirements
are provided by the system memory partition, the general partition from
which all malloc() requests are sourced.

Post-Mortem Upload modes are non-dynamic. These modes pre-allocate
buffers by subdividing all available user-reserved or persistent memory
(depending on the post-mortem mode selected) into a ring of ten
individual buffers.

= Linear or Circular buffering

Linear buffering—Buffers are allocated and filled as needed, up to a
configurable maximum count, or until there is no more target memory
available (whichever comes first). At this point logging stops.

— Deferred Upload uses linear buffering if Use Circular buffer (on
systems that support the option) is not selected. On VxWorks 653
Deferred Upload buffering is always linear.

— Continuous Upload uses linear buffering. In the normal course of
events, buffers are continuously emptied and uploaded, making them
available for new data, so the end of the ring should never be reached.
All the more so because upload timing is based on the minimum
buffer allocation, and all remaining buffers serve as a reserve for
catching any backlog of events generated during extreme peaks of
activity.

Circular buffering—Bulffers are allocated and filled as needed, up to a
configurable maximum count, or until there is no more target memory
available (whichever comes first). At this point the buffer wraps around;
that is, the oldest buffer is reused and overwritten. This continues until
stopped by a trigger, an API call, or on demand (or a full upload-host
disk).

— Deferred Upload uses circular buffering if Use circular buffer (on
systems that support the option) is selected. This option is not
supported on VxWorks 653.

— Post-Mortem Upload modes always use circular buffering. This
ensures that the events immediately preceding (precipitating) a
system failure are recorded.

27

Wind River System Viewer
User's Guide, 3.0

5.4.2 Symptoms and Solutions

This section focusses on logging problems where there is a good chance that some
upload-mode related re-configuration could provide a solution.

Problem: Logging Stops Prematurely / Ring Buffer Stops Updating
This is observable in the Log Manager (see 7.2 The Configuration Editor Log
Manager, p.40).
Although this could potentially happen in any mode, Continuous Upload is most
likely to be affected due to the additional overhead of concurrently uploading data.

Possible Causes

In all modes this can be because:
* Too many events are generated too quickly for buffers to be allocated in time.
= Not enough memory is allocated for buffering on the target.

Possible Solutions

All modes:

= Increase the buffer allocation task priority. You can do this either in the host or
target shell, or in the Kernel Configuration Editor (in which case you will
need to rebuild and reboot).

The default buffer allocation task priority is 100. So you would increase this to
some higher integer, say 150.

— To increase buffer allocation priority, in the host or target shell, enter:
-> wvRBuffMgrPrioritySet (150)

— To increase buffer allocation priority in the Kernel Configuration Editor,
search for WV_RBUFF_MGR_PRIORITY and enter a value of, say, 150.

Post-Mortem modes:

» Allocate more user-reserved or persistent memory (depending on mode used)
if possible, see 5.3.2 Preparation: Kernel Configuration for Post-Mortem Upload,
p-21.

28

5 The Upload Mode
5.4 Troubleshooting Upload Modes

Deferred and Continuous modes:

Change the Advanced Buffer Configuration settings (click Advanced >>).

Which (combination) of the following you do depends on (1) what you suspect
is causing the problem, and (2) target constraints.

Always bear in mind that log buffering in these modes uses the same memory
partition as system and applications.

— To make more total memory available for log buffering on the target,
increase the Max. Buffer Count (default is 10).

This assumes there is physically more memory available on the target.
— Toreduce the frequency of buffer allocation, increase the Buffer Size.

Note, however, that this can (probably) reduce total available buffer size
(at the same Max. Buffer Count) if target memory is constrained because
the bigger the individual buffers, the worse the fit is likely to be.

— To eliminate buffer allocation overhead altogether, set Min. Buffer Count
to equal Max. Buffer Count.

This pre-allocates all available memory.

Problem: Upload Fails (Continuous Upload Only)

Continuous Upload depends, apart from buffer configuration, on a number of
factors:

The rate at which the target application generates events
Target memory constraints

Relative host and target performance

Network bandwidth

Upload method

All of the above might want looking at, possible upload mode issues are described
below.

Possible Causes and Solutions

Buffer allocation failed—see Problem: Logging Stops Prematurely / Ring Buffer
Stops Updating, p.28.

The ring buffer is filled to capacity faster than individual buffers are uploaded.
In this case, the Log Manager will show that all buffers are full.

29

Wind River System Viewer

User's Guide, 3.0

Possible solution: Click Advanced >> and increase Max. Buffer Count (the
default is 10).

The upload task priority is not high enough; that is, higher-priority tasks
execute so frequently that they prevent uploading (rare).

Possible solution: Use wvUploadTaskConfig(int stackSize, int priority) to
change the priority (do not modify stackSize).

The default upload task priority is 150. So you would increase this to some
higher integer, say 200.

To increase upload task priority, in the host or target shell, set the second
parameter of wvUploadTaskConfig to, say, 200:
-> wvUploadTaskConfig (5000, 200)

Problem: Buffer Thrashing (Continuous Upload Only)

In a balanced system, the ring buffer is not constantly resized; it remains at the
original, minimum ring size (Min. Buffer Count in the

Advanced Buffer Configuration), allowing a steady upload of event data. All
remaining buffers up to Max. Buffer Count should serve only as a reserve for
temporarily holding any upload-backlog induced by sudden, massive bursts of
data.

Thrashing refers to a situation where buffers are repeatedly allocated and freed.
This interferes with target performance and generates intrusive event data, which
will be reflected in the log.

Possible Solution

If you notice the behavior described above in the Log Manager, increase the
minimum number of buffers in the ring:

Click Advanced >> and increase Min. Buffer Count (the default is 2).

30

The Upload Method

6.1 The Upload Method 31

6.2 Using the Memory Read Upload Method 32

6.3 Using TSFS Upload Methods 33

6.4 Automatic Upload of Logs 33

6.5 Socket Via TSFS and Socket Via TCP/IP Configuration 35
6.6 File Via TSFS 35

6.7 File Via NFS 36

6.8 File VianetDrv 36

6.9 The Event Receive Utility 37

6.1 The Upload Method

The Upload Method node lets you configure how the System Viewer event log is
uploaded from the target to the host and where the uploaded log is stored.

The Upload Method Selection drop-list provides the following communication
options:

* Memory Read
» Socket Via TSFS

31

Wind River System Viewer
User's Guide, 3.0

= Socket Via TCP/IP
= File Via TSFS

= File Via NFS

» File Via netDrv

6.1.1 Upload Method Selection Errors

If you see a red X icon against the Upload Method node in the tree at the left, it
means that the current Upload Method Selection is invalid; uploading of log files
is therefore disabled.

The error can be due to one or more of the following (the user interface will tell you
which of these applies):

» The target does not support the selected communication option.

If you want to use such an option, see 18. Configuring VxWorks for
System Viewer for information about how to add the necessary components.

* The Upload Method Selection configuration parameters have not yet been
validated by System Viewer.

Click the Apply button.
= The Upload Method Selection is incorrectly configured.

See the user interface descriptions and the notes below.

6.2 Using the Memory Read Upload Method

The Memory Read upload method is host driven, whereas all the other available
methods for transferring a System Viewer log file from the target to the host are
target driven. That is, this method does not rely on the target pushing the data to
the host. Instead, the structure of the log is processed by the host, and the data is
read directly from the target's memory by the host

This method of transferring log data to the host has a number of advantages. The
main ones are:

* Log transfer is not compromised by task starvation.

32

6 The Upload Method
6.3 Using TSFS Upload Methods

That is, the low priority upload task which is normally responsible for
uploading System Viewer logs is not used, there is therefore no risk of it being
starved of CPU time by other, higher priority tasks.

= The log can be transferred as many times as needed (as long as the option to
delete the log on the target is not selected) to any host directory.

= The host knows exactly where the log will end up when transfer is complete.
= Logs can be transferred without needing to call any target functions.

= Configuration is easy: Enter a filename and directory for storing the
System Viewer log(s) on the host, and set the other options as desired.

NOTE: The Memory Read method is not compatible with the Continuous Upload
mode, see 5.2.2 Continuous Upload, p.19. The log must be complete and static before
a Memory Read transfer can begin.

6.3 Using TSFS Upload Methods

The advantage of using the Target Server File System (TSFS) is that it does not
require extra facilities. If you are on a network, TSFS uses already configured
bandwidth to upload event log data. If you do not have network support, TSFS
uses the serial connection.

To use either of the TSFS methods (file or socket), the target server must be
configured to provide support for this. The TSFS system must be enabled and
set to support read and write operations. In addition, the TSFS root directory
must be specified. For information on target server configuration, see the Wind
River Workbench User’s Guide.

6.4 Automatic Upload of Logs

If log data are to be automatically uploaded and saved to files, you have to specify
a valid file system location on the host the target sends the logs to.

33

Wind River System Viewer
User's Guide, 3.0

34

If you use Socket upload methods, you set the host file system location for the
uploaded log in the File Name field.

— If the target uploads data to a remote host, you would open the
Event Receive utility on that host, and set the information there (see
6.9 The Event Receive Utility, p.37).

— Ifthe target uploads data to the current host, you can set this directly in the
System Viewer Configuration editor, without having to open the
Event Receive utility.

If you use File upload methods, you set the host file system location for the
uploaded log in the Directory containing uploaded log field:

This option is only available if the

Automatically view log on upload completion checkbox is selected. The
directory must be a path the host can follow to access the target's output file.
For example, if you are running System Viewer on a Windows machine and
the target in use is writing to a Unix machine, you have to map a Windows
network drive that allows you to set a Windows path to the Unix directory
holding the target’s output file.

6 The Upload Method
6.5 Socket Via TSFS and Socket Via TCP/IP Configuration

6.5 Socket Via TSFS and Socket Via TCP/IP Configuration

Host

The IP address or name of the host to which the data is to be uploaded. The
default is the name of the current host.

Specifying a remote host requires the Event Receive utility to be started on the
remote host and ready to accept data at the specified socket number, otherwise
validation of the upload method is not possible (see 6.9 The Event Receive
utility, p.37).

Port Number

The socket port on the host to which the event log data is uploaded. The
default port number is 6164.

6.6 File Via TSFS

TSFS path and filename

You can enter a relative path segment (optional) and filename. The path
segment, if used, will be relative to the target’s TSFS root directory path
(displayed further down in the current view).

Directory containing uploaded log

If the target’s current TSFS root directory (displayed above the field) is a path
that can be directly accessed by the current host, then enter the path exactly as
displayed, plus any relative path you entered in the TSFS path and filename
field. Otherwise, see 6.4 Automatic Upload of Logs, p-33.

35

Wind River System Viewer

User's Guide, 3.0

6.7 File Via NFS

NFS directory and file name

You can enter a relative path segment (optional) and filename. The path
segment, if used, will be relative to the target’s NFS directory.

Directory containing uploaded log

See 6.4 Automatic Upload of Logs, p.33.

6.8 File Via netDrv

The netDrv driver typically uses either ftp or rsh for file transfer from the target to
the host.

36

Directory containing uploaded log
See 6.4 Automatic Upload of Logs, p.33.
netDrv directory and filename

You can enter a relative path segment (optional) and filename. The path
segment, if used, will be relative to the target’s netDrv directory.

Host

This is for information purposes only. If no host name or IP address can be
determined, the upload method is not available for use.

6 The Upload Method
6.9 The Event Receive Utility

6.9 The Event Receive Utility

This section is only relevant if you have socket connections on a remote host.

The Event Receive utility allows a remote host to listen for an incoming connection
from a target that has an event buffer to upload. Event Receive then accepts this
log and writes it to a file on the host's file system. The .wvr file extension is
automatically appended to the saved log files.

To open the Event Receive utility from Wind River Workbench select
Analyze > Event Receive.

The Event Receive utility allows you to upload data directly from the target to a
socket connection. The uploaded data is then saved to a file which is specified by
Event Receive.

From the Event Receive utility, you can view or adjust these options for data
upload.

. File Name

Specifies the path and filename to which log files are saved. The default is
userHomeDir/eventLog.wvr.

= Port Number

Specifies the host TCP/IP port over which the Event Receive utility listens for
event data from the upload task. The default event port number for

Event Receive is 6164. If your target uses a different event port, specify the port
number in this field.

= Increment Filenames

Multiple log files are distinguished with the naming pattern, filename.num.wvr,
whereby num is an integer incremented by one for each file. Although, you
cannot specify the num segment of the filename, you can influence the integer
at which it begins. If you select Overwrite Existing Files, the event receive
session begins numbering its log files at zero, and overwrites any files from
previous event receive sessions.

= Overwrite Files

If not selected, the next free incremental number (files with increment numbers
already exist in the directory) is used.

37

Wind River System Viewer
User's Guide, 3.0

38

Logging and Uploading Data

71
7.2
7.3
7.4

Start Logging 39

The Configuration Editor Log Manager 40
Using System Viewer API to Control Logging 41
VxWorks Core Dump Log Upload 42

7.1 Start Logging

To begin collecting data you must have a target (or target simulator) running an
operating system configured for System Viewer.

If logs are to be uploaded to a remote host via a socket connection, make sure
theEvent Receive dialog is up and listening on that host. used to receive data on a
socket that is sent from the target. For more information, see 6.9 The Event Receive
Utility, p.37

System Viewer provides various methods to start logging and to upload data:

Configuration

The System Viewer Configuration editor is the simplest and most
straightforward method to manually start and stop logging. For more
information, see 7.2 The Configuration Editor Log Manager, p.40.

39

Wind River System Viewer
User's Guide, 3.0

Triggering
With Triggering, you specify events and conditions that can be validated
and used to start and stop System Viewer logging. For more information,
see 16. Using Triggering.

Wind River System Viewer API
The Wind River System Viewer API is the most precise method to
determine when logging starts and stops. It is especially useful when there
is a lot of activity on the target. You can issue commands from the host
shellor include them in your application code. Although precise, this
method is more complex than Triggering. For more information, see
7.3 Using System Viewer API to Control Logging, p.41.

The Event Receive dialog is used to receive data on a socket that is sent from the
target. For more information, see 6.9 The Event Receive Utility, p.37.

If you prefer not to use a socket that listens to the target, you can also upload data
using a file with TSFS, NFS, or netDrv. For more information, see 6. The Upload
Method.

7.2 The Configuration Editor Log Manager

NOTE: Using configuration and its features differ with System Viewer on Wind
RiverLinux, see 19System Viewer for Wind River Linux, p.151.

System Viewer dynamically enables or disables items to start and stop logging on
the main System Viewer Configuration menu and the toolbar according to the
status of log collection.

Refreshing information can be slightly intrusive on the target, so System Viewer
provides the ability to control how and when data gets refreshed using the
Refresh Controls that appear at the top of the Log Manager.

The default view of the Log Manager displays the total size of the ring buffer, and
the amount of data currently in the buffer. The current state is also displayed in a
ring

40

7 Logging and Uploading Data
7.3 Using System Viewer API to Control Logging

Colours used in the ring;:

Orange
Buffer has been allocated and is ready to be used.

Green
A green buffer indicates the buffer has been used. If the buffer is partially
green, the buffer is still being used and is not yet full.

Red
In post mortem or using a circular buffer, red indicates that the buffer contains
the oldest set of data and will be overwritten when the buffer currently in use
is filled.

Clicking the More Detail >> button provides further information related to the
buffer and its state. Note that the Bytes Read value is always zero in deferred or
post-mortem modes because no data is read from the buffer (uploaded).

7.3 Using System Viewer API to Control Logging

Using the Wind River System Viewer APl is the most precise method to determine
when logging starts and stops. Use this method when there is a lot of activity on
the target as using the System Viewer Configuration utility may generate
unnecessarily large logs.

You can either issue Wind River System Viewer API commands from the Host
Shell or programmatically in your application code. As described below, use one
of the the following API groups.

wvOn() and wvOff()

These routines provide the easiest method to control logging. The wvOn() and
wvOff(), routines are defined in usrWindView.c.

These routines start a typical instance of event logging and upload. Because these
routines are not used by Wind River System Viewer itself, you can safely modify
them to suit your specific needs. To start event logging use wvOn(), then start the
target application. To close the host-target connection, use wvOf£f() on the target.

41

Wind River System Viewer
User's Guide, 3.0

To examine the source code and how these routines are used, refer to
installDir/vxWorks-N.N/target/config/comps/src/usrtWind View.c.

VxWorks API Libraries

Please see the VxWorks OS Libraries API Reference documentation for more
information on the following libraries that you can use for controlling
System Viewer:

rBuffLib
Provides functions to create and delete the ring buffers used to hold events.

wvLib
Provides the underlying functions to create System Viewer logs, start and stop
logging, and to control the amount of events stored.

wvNetDLib
Provides precise control over the events logged by the network stack.

The order in which you invoke these libraries is critical. You can also use the e()
routine with System Viewer, which is documented in the reference entry for
dbgLib. For more information, see also A. Programming Data Collection.

7.4 VxWorks Core Dump Log Upload

System Viewer supports uploading of System Viewer logs from VxWorks core files
using the Memory Read upload method (see 6.2 Using the Memory Read Upload
Method, p.32).

To access log files in a VxWorks core file, proceed as follows:

1. Create a target server connection for your core file and make sure the tgtsvr -A
option is included. This will include all local and global symbols in the core
file. For more information on creating new target connections, see the Wind
River Workbench User’s Guide: New Target Server Connections.

2. Start System Viewer Configuration as you would for any other target.

When it appears, you will see that it a Core File Log Uploader tab that resembles
the Log Manager on a standard VxWorks target. The difference is that it has a

42

7 Logging and Uploading Data
7.4 VxWorks Core Dump Log Upload

panel that allows you to choose a destination filename and directory. If there are
no logs in the list then the core file does not have any uploadable System Viewer
log files.

Once you have selected a directory and filename, you can either upload an
individual log by selecting it in the list and clicking the Upload button, or you can
upload all the logs by selecting

System Viewer Configuration > Upload All Event Logs on the main menu.

43

Wind River System Viewer
User's Guide, 3.0

44

Log Viewer: Loading Log Files

8.1 Introduction 45

8.2 Opening Logs 45

8.3 Exporting Log Files 47

8.4 Introducing the Log Viewer 47

8.1 Introduction

When you open a System Viewer log file in the Log Viewer, a main viewing
window appears with primary tools to view and analyze log files. This chapter
describes:

8.2 Opening Logs

There are a number of ways you can open System Viewer log files:

* You can use the Wind River Workbench File > Open menu to open all *.wvr
(raw logs, as orignally uploaded), or all *.wva files (analysis logs, which can
include any annotations you have made to raw files) in the Log Viewer.

45

Wind River System Viewer
User's Guide, 3.0

= Forlogs created in the System Viewer integration with Wind River Workbench
3.0, or newer, Wind River Workbench Projects are automatically created for the
log files. In this case, you can can use the Project Explorer’s context menu to
select the viewer you want to open the log in (see also 15. Analysis Suite Views).

= Inaddition, System Viewer can automatically open a log file upon upload.
There are two ways to configure System Viewer to automatically open a log
file:

— In the Upload Method Configuration node of the
System Viewer Configuration editor, select
Automatically view log on upload completion. For more information,
see 6.1 The Upload Method, p.31.

— Inthe Event Receive utility, select View Files Automatically. For more
information, see 6.9 The Event Receive Utility, p.37.

NOTE: If you are using triggering to start and stop System Viewer, the resulting
log file may not open automatically when System Viewer is stopped. Of course,
you must explicitly press upload if you are using deferred upload mode. If you are
using continuous mode, the log has been uploaded but it will not open until you
either refresh triggers or click Upload. For more information, see 5. The Upload
Mode and 16. Using Triggering.

8.2.1 Load Progress Dialog

When you open a System Viewer log for viewing in the Log Viewer, a load
progress dialog appears. You can copy and paste text from this dialog.

This dialog remains open if there are fatal errors, in which case, your log file will
not open for viewing.

A log can load successfully or with warnings. If there are warnings, the

Log Viewer opens with the Log Load Report in focus to draw attention to these.
In these circumstances, it is possible that the the contents of the log will be
truncated from the point where the warnings were encountered.

46

8 Log Viewer: Loading Log Files
8.3 Exporting Log Files

8.2.2 Errors and Warning Messages on Opening Log Viewer

A log file may fail to load for one of the following reasons:
1. The log file is not a System Viewer log file.
2. The log file does not exist.

3. Thelog file is from a target operating system not supported by the

System Viewer installation.

4. The log contains unknown events.

In the first three cases, the error is fatal and log loading cannot proceed. In the final
case, the log is loaded up to the point where the unrecognized event is

encountered.

8.3 Exporting Log Files

In the Log Viewer, choose File > Export to save your log file in a format that may
be opened by third-party tools. The two formats available are CSV (for opening in

spreadsheet applications) or TXT for opening in text editors.

8.4 Introducing the Log Viewer

System Viewer provides a robust framework to view log files based on a common,
underlying data model for analysis. You can view one or multiple log files in

various ways in the Log Viewer, each on a different tab:

Event Graph
A graphical representation of the log's content

Event Table
A tabular representation of the log's content

Event Distribution
An analysis of the distribution of event types within the log

47

Wind River System Viewer
User's Guide, 3.0

Figure 8-1 shows the Log Viewer and its component parts.

You access and close the Log Viewer tools from the Log Viewer’s Tools menu.
When selected, these viewing options appear as tabs within the log viewer. The log
file is displayed with the Event Graph, but the same log file can be viewed using
all four viewing options.

Figure 8-1 The Log Viewer

File View Bookmarks Tools Help
& -0
JIEventIntensitva@ W o4 e B EQQQEX v|aL =
ldak
—Radar
[|1II:|”|:||| e lzill:li:i 1rer L_ I| [reet lll_;l:llll:i [rretn |;|"|:|i:i [|1Ii II:Illjl [
T2 Event Graph | i Event Table | E Event Distribution
______ — == Tool Tabs
Event —m tShelld [0x5a2255)
Container State
Tree o tWlkTask [(x587cE) Stiples
—mp thletTask (0xd55ef) Event
Icon
— = tRBuftgr (Dx5h4d3s)
13 (O] fieBiD) .
— idle Current
1018: wdStart (delay=-2, wdld=0x00446436) b B #802-woe —‘ngg;ed

Confainer and Event
Filtering Indicators

The following basic and optional components of the Log Viewer may or may not
be used by any of the Log Viewer’s tools.

48

8 Log Viewer: Loading Log Files
8.4 Introducing the Log Viewer

8.4.1 Basic Components

Status Bar

Radar

The right section of the status bar always displays the currently selected range that
is also highlighted in the Radar. Some viewing tools, such as the Event Graph
display additional information on the status bar. The status bar also displays icons,
and enables status of event class and container filtering. For more information, see
12.2 Display Filtering Options, p.80.

The Radar presents a summary view of the profile of event activity within the log
being viewed. Several graphing options are available for use in the Radar. The
option which is most useful will vary depending on the characteristics of the event
data contained in the log. For most purposes, the All Events radar suffices, since it
presents a histogram of event density across the timeframe captured in the log.

Most viewing tools adjust their display to show only the time range selected in the
Radar. The selected range is represented by the area with a black background. For
more information, see 10. Log Viewer: Using the Radar.

Event Container Tree

Many viewing tools contain an Event Container Tree. Each row in the Container
Tree represents an execution context (a task, an interrupt or, in some operating
systems, a process). Often, groups of context types are grouped under a collapsible
tree node, for example, Interrupts, Tasks, and so on.

All tools that display an event container tree reflect its current filtering
configuration. If one viewing tool changes by the filtering applied to the event
container tree, that change is seen across all other viewing tools.

Event Icons and State Stiples

The System Viewer Legend that can be accessed from Help > Legend describes the
event types and states represented in some viewing tools as icons and patterned
lines. The legend only displays the events and states contained in the log file being
viewed.

Right-clicking on an event icon or a state stipple anywhere in the Log Viewer
utility displays a context menu from which online help relating to that event or
state may be accessed. For more information, see 12.7.1 Accessing the Event
Dictionary, p.88. For more information on icons, see Event Icons, p.54.

49

Wind River System Viewer
User's Guide, 3.0

Analysis Pack Panel

Analysis Packs are provided for some target operating systems. Those available for
the target operating systems on which the log being viewed was captured, may be
viewed using the View > Analysis Packs

If Analysis Packs are available for your target operating system, select the desired
pack in the Inactive pane and click Use > > > and OK. The analysis pack is then
displayed below the Event Graph, and as an overlay in the Radar.

50

Log Viewer: Viewing Tools

9.1 Introduction 51

9.2 Reading the Event Graph 52

9.3 Reading the Event Table 54

9.4 Reading the Search Results Table 57

9.5 Reading the Event Distribution Display 58
9.6 Reading the Memory Usage Analysis Pack 58

9.1 Introduction

System Viewer provides standard viewing tools and analysis pack features as
options for visually presenting log information. These tools are displayed in the
tool pane or analysis panel of the main System Viewer viewing window, as
described in 8.4 Introducing the Log Viewer, p.47.

51

Wind River System Viewer
User's Guide, 3.0

9.2 Reading the Event Graph

The Event Graph depicts events in a log as a scrollable graph. This same sample
log can also be depicted in the Event Table, as well as the Event Distribution.

Figure 9-1 Reading Event Graph Information

File View Bookmarks Took Help

|H& =@
JIMAIIEvents vl@ oo 4 e EQQQEK 'I%E
| & "a

1 I|_||_|

4 s
Al 7 I 130 i

—-Radar Timeline

Graph Timeline

—mp tExcTask (O:
—= funcCallTask Event Icons
—= tShellD [0x5 State Stipples
—= titdhTask (C
—= Il ~|

l l;.;:bl #0609 - #9737— T Selected Range

Events in the graph are laid out horizontally, from left to right, according to the
graph timeline. This horizontal presentation corresponds to the time interval
designated by the selected range. The timeline displays the time—either in seconds
or by sequence numbers—which corresponds to the section of log activity shown
in the graph.

To print out a section of the log visible in the event, select File > Print. This option
is also available from the context menu, and described in 12.5 Event Table Context
Menu, p.86. For a description of all Event Graph context menus, see 12.4 Event
Graph Context Menu, p.84.

52

Status Bar

9 Log Viewer: Viewing Tools
9.2 Reading the Event Graph

The left side of the status bar displays information on a selected event. When you
mouse-over any event icon in the Event Graph, the timestamp event name,
parameters, and argument values appear. The status bar displays the bounds of a
measured range as you drag a new one, or if you mouse-over either boundary of
an existing measured range.

The right box in the status bar displays the bounds of the currently selected range.
The timestamps displayed are real time; seconds, minutes, and so on, if the target
image is configured with a real-time timestamp driver, or sequence numbers,
prefixed with a #, if sequential timestamping is configured. This area also displays
the bounds of a new selection range whilst it is being dragged. For more
information, see 13. Log Viewer: Timestamps.

The two small boxes to the left of the selected range area contain indicators which
show you the various types of filtering applied to the current display. For more
information, see 9. Log Viewer: Viewing Tools.

Event Graph Container Tree

The Event Graph displays an event container tree. The containers or nodes are
listed in priority, from highest to lowest. The node names describe each of the
horizontally corresponding event graph rows. The event container tree has context
menus for its root node and sub-nodes as described in 12.3 Container Tree Context
Menu, p.81.

The log displayed in Figure 9-1 includes interrupt levels, which are listed in order,
with the highest-priority interrupt at the top. Below the interrupts are tasks, listed
by priority from the first task based on initial priority in the log (not within the
selected range). Changes to a task priority during execution do not change its
vertical position in the Event Graph. The last thread of execution shown in the tree
represents the kernel idle loop.

The scrollbar on the right side of the event graph controls the graph and the
container tree, allowing access to rows that extend vertically beyond the current
viewport.

53

Event Icons

Wind River System Viewer
User's Guide, 3.0

The Event Graph uses event icons and state stipples to identify elements in the
graph. The event icons indicate the type of event that occurred at a given time. The
state stiples are represented as horizontal lines and indicate the state of each task
at a given time. The log in Figure 9-1 was collected at the Additional
Instrumentation logging level, in which events are displayed independent of
whether they result in task state transitions or context switches.

Measurement Markers

Wind River System Viewer uses measurement markers to measure the time
between any two points on the Event Graph. The start time, end time, and
duration of time between markers is shown in the status bar when you point at a
measurement marker. Pointing away from a measurement marker changes the
information displayed in the status bar. To view marker information again, point
to the start or end measurement marker. For more information on measurement
markers, see 10.2.5 Using Measurement Markers, p.66.

9.3 Reading the Event Table

Figure 9-2 shows the Event Table of the same log depicted by Event Graph and
Event Distribution.

The Event Table displays events in a log as rows of information in scrollable table
format. Events are ordered according to time stamp, from top to bottom, indicated
by the Timestamp column. The Event Table only depicts events that occur within
the currently selected range and within nodes selected from the container tree.

54

Filz ‘Wiew Bookmarks Tools Help

9 Log Viewer: Viewing Tools
9.3 Reading the Event Table

Figure 9-2 Reading Event Table Information

FIEEE

|

|4 & a

1

All Events |2 6 « » 4 ’#@QQQEX 'I%}:b‘?fv

) Log Load Report

fﬂ—mﬁr Interrrupts Al Context Index | Event | State | State Mame | Timestamp (# Coj = | Event

— Interrupt Table
—4 Interupt Columns
& Interrupt
5% vikermel (0:
—mp furcCall
—=p tlagTas
— o tExcTas
—ap furcCall
— tShelld | p = 2
—= tidhTa T
—mp thetTas ﬂ
—=p t\\yRBu 806 #: Interruptld - sembive L
{3 [Ox1f recurse=-2 ower
] =) Text Pane
o idle ¥ senlumer=0xEfEfEEfe j For
b

+ zenld=0x0023ddad Selected

Event count: 41 — | [Bp| #eo8-smE2

Events

Count for Selected Event

The status bar displays the event count of the selected container on the left. The
Event Table also uses the event and state icons in its information columns.

To print the Event Table, select File > Print from the main menu, and the currently
displayed information in the table will print. The Event and State columns, which
display icons are never printed. The lower text pane is used to copy rows from the
table to the clipboard or for printing. For more information, see 12.4 Event Graph
Context Menu, p.84.

55

Wind River System Viewer

User's Guide, 3.0

Column Information

The event table columns are described below:

Context Index

Specifies the order in which an event appears in its container. The
Context Index is unique for each event in a container.

Event

Displays the event type as an icon. If an event type does not have an icon,
nothing appears in this column.

Context

Specifies the context in which the event occurred.
Event Name

Identifies the event by name.

Event Class

Specifies the class of the event, as listed in the Filter Events dialog. For more
information, see 12.2 Display Filtering Options, p.80.

Event Type Id

A number between 0 and 65535 that uniquely identifies the type of event in the
operating system’s System Viewer instrumentation. This ID is useful only if
you are interested in implementing your own application events.

Timestamp
Specifies the time at which the event occurred.
Time delta

Indicates the elapsed time between the event displayed in the previous row
and the current event.

Parameters

Lists parameters, if any, and their corresponding argument values contained
in the event.

Wind River System Viewer hides the Context Index, State, State Name, Event
Class, Event Type Id, and Time Delta columns by default. You can toggle the
columns to hide or show their content as described in 12Log Viewer: Display
Filtering and Context Menus, p.79.

56

9 Log Viewer: Viewing Tools
9.4 Reading the Search Results Table

Event Table Container Tree

The event table also displays an event container tree. The containers are listed in
order by priority from highest to lowest. Selecting the topmost or root container
displays events from all visible containers in the event table. Selecting any other
container, or a group of containers, displays only those events in those containers.
This behavior differs from the way the event container is used in the event graph.
For more information, see 12. Log Viewer: Display Filtering and Context Menus.

Text Pane and Printing

The text pane is the white area below the Event Table rows. Using the mouse or
keyboard, you can select table rows to be copied into the lower pane. The text in
the lower pane can then be cut to the clipboard or printed. Discontinuities in the
selected rows are separated by lines in this pane. This is a convenient feature for
comparing events that occurred at disparate times in the log. It is also allows
details of all parameters attached to an event to be displayed in full, in contrast to
the parameters cell in the table above which can display only the start of such
information. For more information, see 12.5 Event Table Context Menu, p.86.

9.4 Reading the Search Results Table

If, in the Event Properties/Search dialog, you click the Show All button, a new
Search Results table is created to show the results of the search performed.

A Search Results table is controlled in exactly the same way as is the Event Table,
9.3 Reading the Event Table, p.54. The difference is that the Search Results table is a
static view of the results of a search; as such it will not respond to subsequent
filtering operations. You may, however, continue to

* navigate the table using the Radar
= set the event cursor

* add bookmarks

» show only a subset of contexts using the context tree to the left of the table

57

Wind River System Viewer
User's Guide, 3.0

9.5 Reading the Event Distribution Display

The Event Distribution display is a multi-column list of containers and their
respective event counts.

As with all other log viewing tools, Event Distribution only displays information
from within the bounds defined by the currently selected range, as displayed in the
radar and at the bottom right of the status bar.

The Container column lists the contexts in the same order as the container tree. The
Event Count column displays, in bold text, the number of events that occur in each
container and, in non-bold text, the number of events that occur in each event class.
The class type is the same used for the Event Class column in the Event Table. The
status bar displays only the standard bounds of time interval, and no additional
information. When you point to a node in the event container tree, the event count
column information is displayed in the Event Table for containers, as described in
12.6 Event Distribution Context Menu, p.87.

9.6 Reading the Memory Usage Analysis Pack

The memory usage analysis pack charts memory allocation and deallocation
resulting from memLib function calls. You can see the addresses of memory blocks
that get allocated and freed.

Figure 9-3 depicts a memory usage analysis pack, which is displayed as a red line
graph in the analysis pack pane below the Event Graph. This pack uses the same
horizontal timeline as the Event Graph and charts memory allocation and

deallocation vertically. The memory graph is represented in the Radar as a red line.

While the event graph indicates when memory events occur, it does not show how
much memory is allocated at any time. The memory usage analysis pack is
designed specifically for viewing memory usage. The memory usage pack is only
be available for applications that use the memLib library to allocate and free
memory.

58

9 Log Viewer: Viewing Tools
9.6 Reading the Memory Usage Analysis Pack

Figure 9-3 Memory Usage Analysis Pack

Fle ‘iew Bookmarks Took Help
|EH & = @ [MAlEents ~| @ Aar o EERE O J2 gy

| & &

4] 4 (AL

T4 Event Graph | & Event Table Event Distribution

|—'P tinitTask [0x6

& -

%

142898~
120000~
100000-
80000~
Memary Usage B0000-

40000-
20000-
0-

-348598- j

= 'é:b[2285116245 - 2455475925

9.6.1 To Open the Memory Usage Analysis Pack

1. Open a log file.

2. Select View > Analysis Packs...

3. Select Memory Usage from the Use/Remove Analysis Pack panel.
4

Click Use > > > to add memory usage to the active list. If the log file currently
in view does not contain memory data, Wind River System Viewer indicates so
with a No data error message.

59

Wind River System Viewer
User's Guide, 3.0

Using Filtering Tools

The memory usage analysis pack is especially useful for detecting memory leaks.
The sample log in Figure 9-3 shows a gradual rise and then a sharp spike in
memory usage between timestamps. To diagnose these rises in memory usage, you
can use the Filter Events dialog to filter out all events except memory events. You
can also filter out containers that have no event activity.

Figure 9-4 shows the Event Graph and memory usage for a log with filters applied
to the first section of notable memory consumption. Note how the memory usage
rises in the Radar, and how the Event Graph clearly displays where the memory

usage activity originates. The Event Cursor information is displayed on the status
bar as a call to memPartAlignedAlloc().

Figure 9-4 Filtered for Memory Events Only

File ‘iew Bockmarks Tools Help

& =2
J All Events I I T T T "’!"@QQQEI 'I%%ﬂ?fv
| & &

T Event Graph | B Event Table | E Event Distribution | 2] Log Load Report

= Il doh

% 1Shell] ([Dx49

 t\idhTask ([0
‘v

142856-
120000~

100000-

ANNN-
21786723 memPartAlignedAlloc (nBytes=524 nBytasPlu... I'— %»[2285116245 - 2 455470925

60

9 Log Viewer: Viewing Tools
9.6 Reading the Memory Usage Analysis Pack

Figure 9-5 shows another log with similar filters applied. The rise in memory usage
is discovered by setting the Event Cursor on the vertical red rise in the memory
usage graph. The event shows a memory allocation of 131104 bytes at timestamp
#72174.

Figure 9-5 Memory Usage Spike

Bt ogTask (01 Thal8)

® tShell (Ol eThi)

w tchTask (Ol 3150E)
o ihietTask (Ox1 28928)

* tEvthdarTask (0x1e92000
* v REUTiMar (0x11ae18)
B poit! (0x20c080)

B pot15 (0:235118)

Bty Upload (0x233560)

Metmary Usage

Cursor at #72174 (memPartAlignedaloc in fyREUfMgE)

61

Wind River System Viewer
User's Guide, 3.0

62

10

Log Viewer: Using the Radar

10.1 Introduction 63
10.2 Changing the Selected Range Using the Radar 64
10.3 Using Radar Modes 69

10.1 Introduction

The Radar is a way to navigate within a log file. Located at the top of the Log
Viewer utility, the Radar presents a time-based view of an entire log. This feature
of Wind River System Viewer allows you to view select information or a particular
type of activity within the log using three major display modes.

Within the Radar, the currently selected range is represented by the area with a
black background. This selected range is that portion of the content of the log file
which appears within each log viewing tool.

63

Wind River System Viewer
User's Guide, 3.0

You can change the currently selected range using these methods:

= dragging a new range in the Radar

= dragging a new range in the Event Graph

» defining the bounds of a new range in the Select Range dialog

= selecting a new range based on an existing pair of measurement markers

* zooming in/out using the menu, toolbar buttons, context menus or keyboard

= scrolling the range using the menu, toolbar buttons, context menus or
keyboard

* jumping to bookmarked timestamps

» using the Event Properties/Search (filename) dialog to search for events within
the log

10.2 Changing the Selected Range Using the Radar

The Radar always displays a currently selected range of the event log in view,
signified by a black area. The gray background of the Radar are regions of the event
log that fall outside the currently selected range. Changing the selected range
allows you to isolate a portion of the event log which the Radar identifies as an area
of activity using one of the available radar display modes.

To manually shrink or expand the current display range from within the Radar,
move the mouse over either end of the Radar range. The cursor changes to a
horizontal arrow. Press the left mouse button and drag an edge as required. When
you release the mouse, the new black area defines a new range that is displayed by
all viewing tools.

10.2.1 Moving the Selected Range with the Mouse

There are two methods to move an existing selected range using your mouse:

* Move the cursor anywhere within the selected range in the Radar, but not on
an edge. The cursor changes to a four-pointed arrow. Press the left mouse
button and drag the selected range left or right as required. Releasing the
mouse button drops the range; and all viewing tools update accordingly.

64

10 Log Viewer: Using the Radar
10.2 Changing the Selected Range Using the Radar

= Single-click the mouse anywhere outside the currently selected range. The
entire range is then centered on the point you selected, contrained by the
bounds of the entire event log.

10.2.2 Defining a New Selected Range with the Mouse

To define a new range using the mouse:

1. Locate the start of the new range by moving the mouse to a desired point in
the range.

2. Hold down the SHIFT key and simultaneously press the left mouse button,
then drag the mouse to the end of the desired range.

3. Release the left mouse button before releasing the SHIFT key. This completes
the new range selection and all viewing tools update to reflect it.

NOTE: Releasing the SHIFT key before you release the left mouse button aborts the
new range selection, and the display reverts to the previously selected range.

10.2.3 Defining a New Selected Range Using the Select Range Dialog
1. Select View > Select Range or the corresponding toolbar button. This opens
the Select Range dialog.
2. Enter values in Start time and End time.

3. Click OK. If your selection is valid, that is within the bounds of the event log,
the selected range is changed as entered, otherwise you are warned that the
range is invalid.

NOTE: Each time you modify or define a new selected range, the right side of the
status bar dynamically updates to reflect that range. The new selected range is also
reflected in the radar.

10.2.4 Zooming the Selected Range

Zooming modifies the selected range, so that the tool window shows more (zoom
in) or less (zoom out) detail. Your options for zooming are accessible from
keyboard shortcuts, the context menus of some tools, the main View menu or the
toolbar. They are as follows:

65

Wind River System Viewer
User's Guide, 3.0

= Zoom 100%

Sets the range to be the entire event log. This feature is provided for
completeness, but is not recommended for extensive use because rendering
and displaying the large amount of information in an entire log can be
time-consuming. Instead, you can use the Radar's features to identify areas of
interest, and then select only those ranges for subsequent display.

= Zoom Factor

Scales the range by a specified factor that you apply to subsequent zooming
operations.

= Zoom In (humpad "+")

Divides the range by the currently active zoom factor, displaying a smaller
portion of the event log. When it is not possible to zoom in further, all means
of zooming in are disabled.

= Zoom Out (numpad "-")

Multiplies the range by the currently active zoom factor, displaying a larger
portion of the event log. When the selected range covers the entire event log,
zooming out is disabled.

Zooming always attempts to maintain the center of the range, with the following
two exceptions:

= If the current range abuts one end of the log, Zoom In stays aligned with edge
of the log. This allows you to Zoom In on the beginning or the end of a log.

= If the Event Cursor is out of range by zooming in and prior to zooming in, the
event cursor is within the currently selected range and the zoom in would put
the event cursor outside the new selected range, then the zoom in operation
re-centers the new range on the event cursor. For details, see Zooming on the
Event Cursor, p.74.

10.2.5 Using Measurement Markers

You create measurement markers to measure the time interval between two points.
You can then use this measured range to define a new selected range. To create
measurement markers, click the point at which the measurement should start in to
the end of the measured range, then release the mouse button. Measured range
markers appear as white-dashed vertical lines as you hold and drag.

66

10 Log Viewer: Using the Radar
10.2 Changing the Selected Range Using the Radar

As you drag the mouse, the measured range is displayed on the left side of the
status bar. When you release the mouse, the measurement markers remain and the
status bar indicates the measurement. The status bar then reverts to its normal
mode of operation in which it displays information on whatever the mouse pointer
is hovering over. To determine the bounds of a measured range following its
creation, just mouse-over either of the measurement markers and the measured
range bounds appear once more in the status bar. The Event Graph also provides
information on the measured range as described in Measurement Markers, p.54.

Measurement markers also appear in the Radar and can be modified but not
created from there by dragging either measurement marker. To set the selected
range to be the same as the measured range, select View > Select measured range
or the corresponding toolbar button. These options are disabled when you have
not defined a measured range.

Once measurement markers are set, they remain until you manually delete them.
In the Event Graph, if you create, reposition, or delete the Event Cursor when
measurement markers are present, the markers remain. To delete the markers,
single-click on either measurement marker in the Event Graph and both markers
are deleted. You can also single-click in any blank area in the Event Graph and
both the Event Cursor and the measurement markers are deleted.

Changing the range selection does not remove measurement markers. The
measured range is saved along with the raw log in a .wva file, if desired. On
opening that .wva file for viewing, any measured range that existed when the .wva
file was saved is restored. and restored from a .wva file. For more information on
saving file settings, see 8.2 Opening Logs, p.45.

67

Wind River System Viewer
User's Guide, 3.0

10.2.6 Nudging and Paging the Selected Range

Nudge and Page features allow you to scroll the currently selected range across the
log for display in the viewing tools as follows:

* Nudge moves the selected range by 0.1x the period of the selected range in the
appropriate direction, subject to the bounds of the event log.

= Page moves the selected range by 0.9x the period of the selected range in the
appropriate direction, subject to the bounds of the event log. There is a slight
overlap when paging, which lets you track where you were.

You can scroll through the log, in small or large steps. You can access these features
by choosing the appropriate View menu item, the corresponding toolbar buttons,
the scroll buttons at either end of the Radar, or the predefined keyboard shortcuts.
The View menu also displays the appropriate keyboard shortcuts for each action:

10.2.7 Moving the Selected Range Between Markers

There are several methods to move the selected range to the Event Cursor or to
define bookmarks. These are described in Moving to the Event Cursor, p.74 and
11.3.5 Navigating Between Bookmarks, p.78.

10.2.8 Undoing and Redoing the Range Selection

A stack of the last 100 range selection commands is maintained so that you can go
back to previous range selections. To do this, use the View > Undo menu item, its
corresponding toolbar button, or the predefined keyboard shortcut on the menu.
Having undone a range change, you can then redo any of them by using the
View > Redo menu item, its corresponding toolbar button, or the predefined
keyboard shortcut on the menu item. If you perform several undo actions, modify
the selected range by any means other than Redo, the redo stack is deleted and the
redo option is disabled.

68

10 Log Viewer: Using the Radar
10.3 Using Radar Modes

10.3 Using Radar Modes

To choose the Radar mode, use View > Radar or the drop-down listbox on the
toolbar. The currently selected Radar mode is indicated by a dot on the

View > Radar menu list and in the toolbar drop-down listbox. A number of
standard Radar modes are common to all operating systems.

In all modes, the (horizontal) x- axis of the Radar represents time with the extent
representing the entire range of the event log. Below the main Radar display is a
time scale that represents the entire range of the event log, divided into a number
of equal timeslices, called buckets. The number of buckets allocated is automatically
determined by Wind River System Viewer when an event log is loaded, and is
based on the timestamping configuration. Each Radar mode differs on how it
allocates events and state changes to buckets, and thus accumulates activity data
in different ways.

The Radar data collection mechanism operates on an event log only after any
container or event filtering as described in 12.2 Display Filtering Options, p.80 is
applied. For example, if an entire class of events is filtered out using the filtering
tool, the activity profile shown by the Radar reflects this filtering. Similarly, if
containers are excluded from the display using container filtering, all events and
state changes that were in the excluded containers cease to contribute to the
Radar's display.

The Radar mode options in Wind River System Viewer are:

10.3.1 All Events Radar Mode

The All Events Radar mode is a simple, time-based separation of event and
state-change activity into data buckets, displayed as a bar graph. In this Radar
graph, the y-axis represents magnitude—the higher the bar displayed at a given
point on the time axis, the more event/state-change activity occurred during that
time period. Each events and state change is given the same weighting, regardless
of the container in which it occurred.

69

Wind River System Viewer
User's Guide, 3.0

10.3.2 Peak Activity Radar Mode

The Peak Activity Radar mode shows how peak activity runs through the
displayed containers over the course of the event log.

It is easy to locate an area of peak activity by setting this Radar mode. The y-axis
represents the vertical location of a container in the container tree, as displayed
alongside the Event Graph or the Event Table tools. Within each time slice, the
container that exhibits the greatest number of events or state-changes is identified,
and a small horizontal line is plotted at its corresponding vertical location in the
tree of event containers. If the Radar shows a line in the middle of the vertical range
of the Radar, this corresponds to a container that is in the middle of the vertical
range of the displayed containers in the Event Graph or Event Table.

10.3.3 Event Intensity Radar Mode

The Event Intensity Radar mode depicts a heat-map of event intensity.

The y-axis represents the vertical location of a container in the container tree, as
displayed alongside the Event Graph or the Event Table tools. In this mode, the
number of event or state changes that occur in each container, over the given time
slice, is represented by the intensity of a colored square. The brighter the square,
the more activity occurred at the given container location. For example, suppose
an event intensity Radar graph shows a bright green block 1/3 of the way through
alog and 2/3 of the way down the Radar's vertical range. You should first select
the Radar range that contains the brightest block (this changes the selected range
accordingly), then scroll down in the Event Graph to reveal the container that is
2/3 of the way down the included event container tree. It should then be obvious
where activity is occurring.

The selected Radar range matches the pattern of the main Event Graph. Also, the
vertical green task and interrupt transition lines have been turned off for clarity.
This is done using the Event Graph context menu as described in 12.4 Event Graph
Context Menu, p.84.

10.3.4 No Radar Mode

The No Radar mode removes the Radar graph area, leaving only the Radar scale,
which shows the currently selected range. This mode is useful when you have
defined a range of interest and you want to maximize the screen area used by a
viewing tool such as the Event Graph.

70

11

Log Viewer: Finding and
Marking Events

11.1 Introduction 71
11.2 Using the Event Cursor 72
11.3 Using Bookmarks 75

11.1 Introduction
Wind River System Viewer allows you to search for specific events. You can mark
and annotate events for future reference using:

* the Event Cursor, which marks the location of a single event, and can be set
manually, or as a result of a search for a specific event or event type. Once set,
you can re-center the selected range on the Event Cursor.

* bookmarks, which are named and commented markers that can be set on any
location in the log.

71

Wind River System Viewer
User's Guide, 3.0

11.2 Using the Event Cursor

The Event Cursor indicates the location of a specific event in the log. It is always
aligned to an event, and its current position is represented in the Radar as a red,
dashed, vertical line.

The Event Cursor appears as a result of an event search, or in some tools by
clicking in the tool pane. Like the Radar, not all tools use the Event Cursor. Each
tool that does use it displays it appropriately for the layout of content in that tool.
For example, in the Event Table, the Event Cursor is represented by red
highlighting of the contents in the event row; in the Event Graph, it is represented
as it is in the Radar—by a red, dashed, vertical line. You can access the Event
Cursor using menu options on either the main menu or context menus.

NOTE: The Event Cursor defines the concept of the current event. Its presence
changes the behavior of some range selection operations, such as zooming. Also, if
you set the Event Cursor in one tool, and then switch to another tool, the event
cursor is attached to the same event in both tools.

11.2.1 Setting the Event Cursor

You can set the Event Cursor in several ways depending on which viewing tool is
in use:

= Inthe Event Graph, set the Event Cursor by clicking on a specific event.

= Inthe Event Table, right-click any event and select the Set cursor entry from
the context menu.

* Open the Event Properties/Search (filename) dialog, as described in Using the
Event Properties/Search (filename) Dialog, p.73. This dialog allows you to search
for specific events within your log file. As an event is located which matches
your search criteria, the event cursor is moved to that event and the selected
range is adjusted appropriately.

The Event Cursor appears in the Radar scale. If you hover the mouse on the Event
Cursor, wherever it appears information about the corresponding event appears in
the status bar. To delete the Event Cursor, click it in the Event Graph. Alternatively,
you may click in any blank area in the Event Graph, but this will remove both the
event cursor and any measurement markers that were defined. For more
information, see 10.2.5 Using Measurement Markers, p.66.

72

11 Log Viewer: Finding and Marking Events
11.2 Using the Event Cursor

Using the Event Properties/Search (filename) Dialog

The Event Properties/Search (filename) dialog displays all known information or
properties about an event, and allows you to search for other events in the log
which satisfy your search criteria.

To open the Event Properties/Search (filename) dialog, select

View > Event Search, double-click any event in the Event Graph or Event Table,
or select the event-name properties item in the event's context menu. When initially
opened the information displayed represents the properties of the event under the
event cursor.

. Event

A drop-down list of the event types that occur in the active log (after filtering
operations).

= Container

A drop-down list of the contexts that occur in the active log after filtering
operations, and in which the event can occur.

= CPU
A drop-down list of available core numbers in the active log (after filtering
operations).

= Object

An edit box displaying the ID of the object related to the event currently
selected (for AIL logging), if relevant.

* Time

Displays the timestamp at which the selected event occurred.
* Parameters

Displays the parameters for the currently selected event.

The search operates on the filtered log, after you perform event or container
filtering, and any events, state changes, or containers filtered are not included in a
search. For more information about filtering, see 12.2 Display Filtering Options,
p-80.

The Lock checkboxes limit your search to events occurring on the currently
displayed parameters. As you select Next or Prev, the Event Cursor is set on the
next or previous event that fits your search criteria. These buttons are enabled only
if an event exists.

73

Wind River System Viewer
User's Guide, 3.0

To display all events that match the selected criteria in a table, click on the

Show All button. A new Search Results tab opens to show all matching events in
the filtered log. The table in a Search Results tab is controlled in exactly the same
way as the standard Event Table, see 9.3 Reading the Event Table, p.54.

Moving to the Event Cursor

The current location of the Event Cursor is always displayed in the Radar's scale
area. Depending on the implementation, it may also be displayed by a viewing tool
in the log viewer. Wherever the Event Cursor is located, you can recenter the
selected range on it by choosing View > Move to Event Cursor or by clicking on
the corresponding toolbar button. Recentering respects the bounds of the event
log, with the exception described below.

Creating or moving the Event Cursor in a tool window does not automatically
change the currently selected range. Changing the selected range, by whatever
means, does not effect the location of the Event Cursor. Thus, the Event Cursor can
be located on an event that does not lie within the currently selected range. The
exception to this is when using the Event Properties/Search (filename) dialog.
When searching for events using the Prev and Next buttons, the tools scroll, as
appropriate, to ensure the Event Cursor is visible. In addition, if an event search
leads you to a location outside the currently selected range, the selected range is
recentered around the Event Cursor.

Zooming on the Event Cursor

If you choose to zoom in on a range that contains the Event Cursor, the zoomed in
range is adjusted to always contain the Event Cursor. If the zoom sends the Event
Cursor outside the selected range, the new range is recentered on the Event Cursor,
as subject to the bounds of the event log.

74

11 Log Viewer: Finding and Marking Events
11.3 Using Bookmarks

11.3 Using Bookmarks

Bookmarks are user-defined markers used to identify interesting locations in the
event log. They appear in the Radar's scale region and also in the viewing tools.
Bookmarks can be defined at any timestamp within the range of the event log.
Optionally, they can be named and given a comment of arbitrary length. Hovering
the mouse over a bookmark displays a tooltip showing its timestamp name and
attached comments. All bookmark information is stored to an analysis .wva file
with the associated event log data collected when an event log is saved.

11.3.1 Creating Bookmarks

You create a bookmark using the Add Bookmark dialog. You can access this dialog
in several ways:

* Right-click to display a context menu and select Add Bookmark

» Select Bookmarks > Manage bookmarks and then select New from the
Bookmarks Maintenance dialog

» Select the Bookmark button from the Event Properties/Search (filenarme)
dialog.

Bookmarks are always based on a timestamp. If the Add Bookmark dialog was
opened from a context menu, Timestamp is automatically filled in with the
timestamp corresponding to the location at which the context menu was
displayed. If no timestamp is automatically filled in, enter one that lies within the
bounds of the event log.

When you create a bookmark, the timestamp is always aligned to a timestamp tick
as described in 13.1.1 Timestamp Ticks, p.89. Once you create a bookmark, it
appears as a small, blue triangle in the Radar's scale area and in the viewing tools
that display bookmarks.

All bookmarks appear in the Radar's scale area. As the Event Graph displays only
the current range, only the three bookmarks that occur within the selected range
are displayed.

Bookmarks are defined at timestamps rather than linked to events, therefore a
bookmark can be defined at a timestamp where no event exists. If a bookmark
appears on a line between events, this indicates that it was positioned at a
timestamp that has no corresponding event.

75

Wind River System Viewer
User's Guide, 3.0

The Event Table allows you to see bookmarks for which there is no row containing
the bookmark's timestamp by displaying it between the appropriate rows.

If there are bookmarks in the selected range that exist before the timestamp of the
first line in the table, the bookmark is displayed on the line above the first row.
Similarly, if bookmarks exist in the selected range, but at a timestamp after the
event shown in the last row, the bookmark appears on the line below the last row.

As bookmarks are set on timestamps rather than events, multiple bookmarks can
appear, even when only one is created. For example, if several events with the
same timestamp are displayed in the event table, and a bookmark is set against one
of them, a bookmarks is displayed at each of those events in the table

When you point to a bookmark and hover over it with the mouse, Wind River
System Viewer displays all information attached to that bookmark.

All defined bookmarks appear in the Radar's scale region, since it represents 100%
of the time range of the event log. For tools displaying only the currently selected
range, bookmarks defined outside of this range, do not appear in the tool.

It is possible to define bookmarks so close in time that they are indistinguishable,
particularly at a coarse zoom level. In this case, they appear on top of one another.
To accurately view individual details of such bookmarks, use the

Bookmark Maintenance dialog.

11.3.2 Using the Bookmark Maintenance Dialog

All the bookmarks you define can be managed in one central place, the
Bookmark Maintenance dialog. To open this dialog, select

Bookmarks > Manage Bookmarks or the corresponding toolbar button. This
dialog contains a table showing all currently defined bookmarks. Each bookmark
is described with a timestamp, and a name that you define.

You can perform the following actions, from the Bookmark Maintenance dialog:
= Sort by Column

To sort the contents of the bookmark table on a particular column, click a
column header and the table sorts to that column. Click again, and the order of
the sort is reversed.

= Display Comments

To display the comment associated with a bookmark, select that bookmark in
the table.

76

11 Log Viewer: Finding and Marking Events
11.3 Using Bookmarks

Create a Bookmark

To add a bookmark, click the New button and fill in the Add Bookmark
dialog, as described in 11.3.1 Creating Bookmarks, p.75. Click OK or APPLY to
apply your changes.

Modify a Bookmark

To edit a bookmark, select a bookmark in the table, then click Edit, which
opens the Edit Bookmark dialog. Modify any of the bookmark information,
including adding a comment. Click OK to apply your changes.

Delete a Bookmark

To delete one or more bookmarks, first select any number of rows in the table.
Then, click Delete. The bookmarks disappear from the table immediately.
Click OK or APPLY to apply your changes.

Apply Recent Changes

To apply New, Edit, or Delete changes, click Apply or OK. Any changes that
have not been finalized appear in bold, italic font. Apply applies the change,
but leaves the dialog open. OK or APPLY applies the change and closes the
dialog.

Cancel Recent Changes

To cancel and changes, which have not yet been applied, that is they will be in
in italic, click Cancel. Even after you click OK in the Add or Edit Bookmark
dialogs, you can still select Cancel from the Bookmark Maintenance dialog to
cancel your edit.The Cancel button only applies to changes made since the
dialog was opened and only cancels changes since the last Apply was clicked.

Center the Display on an Existing Bookmark

To navigate to a defined or existing bookmark, select the bookmark in the table
and click Go to. This immediately recenters the main display on the selected
bookmark, subject to the bounds of the event log.

Center the Display on an Incomplete Bookmark

To navigate to a newly created or edited bookmark, that has not been applied,
that is it is still shown in italics, select the bookmark and click Go to. This
performs an implicit Apply on the selected bookmark row, and then performs
the Go To action.

77

Wind River System Viewer
User's Guide, 3.0

11.3.3 Using the Bookmark Context Menu

Right-click a bookmark to display it’s context menu. Options on this menu are:

Edit
Opens the Edit Bookmark dialog

Delete
Immediately deletes a bookmark

Go to
Immediately recenters the selected range on the bookmark, subject to the
boundary of the event log.

11.3.4 Changing a Bookmark’s Timestamp

You can edit an individual bookmark timestamp by dragging it. When you select
a bookmark in the Radar or the Event Graph, the cursor changes to a hand if that
bookmark is movable. If it is, press the left mouse button, and drag it anywhere,
within the region in which it is displayed.

For example, in the Radar scale region, you can drag a bookmark anywhere in the
event log. In the Event Graph you can drag a bookmark anywhere in the selected
range. This method of editing a bookmark changes only the timestamp of the
bookmark, leaving its optional name and comment unchanged.

As a bookmark is dragged, all other representations of that same bookmark are
updated simultaneously wherever possible. Otherwise, as with the Event Table,
the display is updated after the bookmark is dropped. For example, if you drag a
bookmark in the Radar's scale region across and through the selected range, the
bookmark appears in the Event Graph only while being dragged through the
range displayed in the Event Graph.

11.3.5 Navigating Between Bookmarks

You can navigate between bookmarks using the Previous bookmark and
Next bookmark items on the Bookmarks main menu, or the corresponding
toolbar buttons. Navigating in this manner recenters the selected range on the
previous or next bookmark, subject to the bounds of the event log. The
Previous/Next bookmark menu items and toolbar buttons are dynamically
enabled depending on the distribution of bookmarks you define relative to the
currently selected range.

78

12

Log Viewer: Display Filtering
and Context Menus

12.1 Introduction 79

12.2 Display Filtering Options 80

12.3 Container Tree Context Menu 81
12.4 Event Graph Context Menu 84

12.5 Event Table Context Menu 86

12.6 Event Distribution Context Menu 87
12.7 Event Dictionary Online Help 87

12.1 Introduction

System Viewer allows you to filter information displayed to focus only on specific
tasks and events that you want to study at a given time. Filtering options are
available from the main menu and in some viewing tools, from the context menus.

Each of the standard viewing tools has a context menu to filter and display options,
and information dialogs. These menus also provide access to the online Help.
Some context menu items have counterparts on the main menu that apply across
other viewing tools, while other context menus are uniquely tailored to a particular
pane of a particular tool.

79

Wind River System Viewer
User's Guide, 3.0

NOTE: Filtering only affects the displayed information, not the actual data stored
in the log. To change actual information that is logged, change the event logging
level or the event libraries for which you enable logging. This is done prior to
starting logging, using the System Viewer Configuration utility.

12.2 Display Filtering Options

System Viewer provides two options for filtering, container and event class
filtering.

Container Filtering allows entire containers to be removed from the event
container tree and thus from the display. Event Class filtering allows groups of
event types to be removed from the display. For example, in VxWorks, removing
the Semaphore Events class removes all semGive, semTake, semCreate,
semDelete, and so on events from the display.

NOTE: When any event filtering is applied, all viewing tools respect this filtering.
In particular, the event profile displayed in the Radar adjusts accordingly and the
Wind River System Viewer log viewer utility indicates filtering is applied when
either or both of the two small square areas in the status bar are populated with an
appropriate Event Class and/or Container filtering icon.

Filtering may be applied using the appropriate filtering dialogs:

» Hide/Show Containers allows you to select the container events for display.
For more information, see 12.2.1 Hide and Show Containers, p.81.

» Filter Events dialog allows you to select the classes of events displayed. For
more information, see 12.2.2 Filter Events, p.81.

Both the container and event filtering are data-driven. The Hide/Show Containers
event container tree is generated from the containers that exists in current log. The
Filter Events lists all event dictionary-defined event classes for the target
operating system. For more information, see 12.7 Event Dictionary Online Help,
p-87.

80

12 Log Viewer: Display Filtering and Context Menus
12.3 Container Tree Context Menu

12.2.1 Hide and Show Containers

The Hide/Show Containers dialog depicts a tree of all containers or contexts in the
log file.

Checking the associated box in the tree displays all events for a corresponding
container in the viewing tool. Unchecking the box filters out all events in the
container. The Hide Inactive button unchecks containers that do not have events
over the course a log.

12.2.2 Filter Events

The Filter Events dialog contains a checkbox list of all event classes in a log file.

When a large numbers of events types that are typically generated in high volume,
such as interrupt and network events are viewed at low zoom levels, they slow the
redrawing of the viewing tool option and can also obscure other events. You can
unclutter the display by filtering out event classes of no interest.

Checking the associated box displays all events of that class. Unchecking the box
filters or hides all events of that class. Event classes indicated here correspond to
the Event Class column in the Event Table and to the Class subfolder in the
Containers column of the Event Distribution.

12.3 Container Tree Context Menu

You access the container tree context menu by right-clicking a node in the event
container tree of any tool that uses the tree. The filter settings are persisted across
and affect all tools that use the filtering feature. When you filter items, the status
bar displays the associated filtering icon so you are aware of the container or event
classes that were filtered on a log.

81

Wind River System Viewer

User's Guide, 3.0

12.3.1 Context Menu Items

The container tree context menu items allow you to filter containers and to obtain
information about the log. For more information on container filtering, see

12.2 Display Filtering Options, p.80. The container menu items are listed and
described below:

82

Hide

Hide the selected container(s) from the display.This feature is not enabled for
the root node.

Show All

Causes all containers to be displayed, reversing any previous "hide" actions.
This feature is the same as clicking Select All in Hide/Show Containers and
then Apply.

Show

Opens Hide/Show Containers as described in 12.2.1 Hide and Show Containers,
p-81.

Hide Inactive

Hides all containers which contain no events. This feature corresponds to
clicking Hide Inactive in Hide/Show Containers and then Apply.

State Summary
Opens the State Summary dialog described in State Summary Dialog, p.83.
Properties

When selected from the root of the container tree, this opens the Log Properties
dialog. When selected from any other node in the tree, opens the Container
Properties dialog.

12 Log Viewer: Display Filtering and Context Menus
12.3 Container Tree Context Menu

State Summary Dialog

The State Summary dialog displays statistical information about event states for
the currently selected container(s) over the course of a certain time interval. To
access the dialog, select the container node (or nodes of interest), and choose
State summary from the context menu.

State information relating to the selected containers over the defined time interval
is displayed in columns in the lower portion of the dialog. Note that State lists all
states that the selected contexts are in during the relevant interval. The possible
states are any of the states listed in the help legend. For information on individual
states, see the event dictionary in the Wind River Workbench User Interface Reference:
System Viewer Event Dictionary.

The columns display information for selected container(s) over a time interval
determined by the radio button you select. These options are:

= Selected Range

The state analysis is performed over the time period defined by the current
selected range.

= Measured Range

The state analysis is performed over the time period specified by the currently
measured range (if any). To define a measured range, refer to 10.2.5 Using
Measurement Markers, p.66.

= Whole Log
The state analysis is performed over the entire log.

The State Summary dialog dynamically updates information, so it is possible to
change the basis on which the analysis is performed, even while the dialog remains
open. For example, while the dialog is open, you can click in the event container
tree to change which containers are used for the analysis, you can change the
selected range using any of the various methods available, or you can create a new
(or edit an existing) measured range.

Log Properties Dialog

The Log properties dialog displays the conditions under which a log is generated.

Once a log is opened, you can review its properties by selecting File > Properties
or Properties from the context menu of a root node container. Properties include
the event logging level, the clock frequency, and the target BSP. The setting for each

83

Wind River System Viewer
User's Guide, 3.0

Property is shown under the Value column. You can also add information to the
Log Comment text area, which can them be saved with the log file.

12.4 Event Graph Context Menu

Items on this menu allow you to hide and show events and containers, access
details about events and states, filter the display of information, add bookmarks,
and print information.

For more information on the container tree context menu, see 12.3 Container Tree
Context Menu, p.81.

NOTE: The Event Graph context menu may have different entries depending on
the target operating system from which the event log was captured.

Some menu items have corresponding options on the main menu. In these cases,
the menu item cross-references the main menu documentation. In particular, the
zooming options correspond to the Zoom items on the View menu. For more
information on zooming, see 10.2 Changing the Selected Range Using the Radar, p.64.

The remaining context menu items are:
* Context state

Opens the Context State Information dialog, described in Context State
Information Dialog, p.85. This menu item is only enabled if you have
right-clicked on or near a state stipple.

= Nearest Event properties

Opens the Event Properties/Search (filename) dialog, which is described in
11.2.1 Setting the Event Cursor, p.72, for the event nearest to the mouse pointer
position. If there are no nearby events, the menu entry is disabled. As a
by-product of opening the Event Properties/Search (filename) dialog, the event
cursor is always set to the focused event.

= Nearest Event help

Opens the event dictionary, described in 12.7 Event Dictionary Online Help,
p-87. This menu item is disabled if there is no nearby event.

84

12 Log Viewer: Display Filtering and Context Menus
12.4 Event Graph Context Menu

= Add bookmark

Opens the Add Bookmark dialog, automatically entering the timestamp of the
event at which the menu was opened. For more information, see 11.3.1 Creating
Bookmarks, p.75.

. Print

Corresponds to File > Print and prints that portion of the log that appears in
the graph pane.

= Show gridlines

Displays a white vertical line at each marked time interval. For more
information, see 13. Log Viewer: Timestamps.

= Show event focus hint

Displays a white marker directly underneath the event that currently has focus
in the event graph, that is the nearest event. When the context menu is brought
up, the menu items on it pertain to the event that has focus. It also shows the
event for which detailed information is displayed in the status bar.

= Show Task Transitions

Toggles the display of lines that connect a previous running task to the current
running. This setting controls only the display of task-task transitions.

= Show Interrupt Transitions

Toggles the display of lines that connect a task to an interrupt.

NOTE: Show Task Transitions and Show Interrupt Transitions relate to VxWorks
logs only. For other target operating systems, the menu entry (or entries) may say
something different.

Context State Information Dialog

Selecting Context State, from the context menu of the Event Graph, opens the
Context State Information dialog. This dialog displays information that applies to
the context nearest the mouse click that brought up the dialog.

Statistics are provided about the state of the context at the time interval where the
mouse click occurred, when the context entered that state, and how long it
remained in that state.

85

Wind River System Viewer

User's Guide, 3.0

12.5 Event Table Context Menu

You can access the Event Table context menu by right-clicking the table pane or the
column headings. Both the table pane context menu and the column headings
context menu are documented in this section. The container tree context menu is
documented in 12.3 Container Tree Context Menu, p.81.

12.5.1 Table Pane Context Menu

Items on this menu allow you to manipulate the Event Cursor, search for an event,
count events, add bookmarks, and save the log. Some menu items have
corresponding options on the main menu.

86

Set Cursor

Sets the Event Cursor on the selected event, as described in 11.2.1 Setting the
Event Cursor, p.72.

Move to Event Cursor

Centers the selected range on the Event Cursor, as described in Moving to the
Event Cursor, p.74.

Add bookmark

Opens the Add Bookmark dialog, automatically entering the timestamp on
the interval at which the menu was opened as described in 11.3.1 Creating
Bookmarks, p.75. In the Event Table, bookmarks appear in the left columns of
the rows for the events for which they are set. For more information, see
11.3.2 Using the Bookmark Maintenance Dialog, p.76.

[event-name] properties

Opens the Event Properties/Search (filename) dialog described in 11.2.1 Setting
the Event Cursor, p.72.

Count events

Lists the number of events that exist within the time interval of the current
Radar range. The event count and the rest of the event table are based on only
those nodes selected in the container tree.

Export
Opens the Export as Text dialog.

12 Log Viewer: Display Filtering and Context Menus
12.6 Event Distribution Context Menu

12.5.2 Column Headings Context Menu

Items on this menu allow you to hide and show columns.

The Manage Columns item opens the Column Manager dialog in which you can
select columns to hide or show. Using this dialog you can also multi-select, hide or
show columns all at once. To hide a single column, open the context menu on that
column and select Hide this Column. To show all columns, select Show All.
Finally, you can toggle the display of columns by clicking from the list on the
menu.

Lower Pane Context Menu

The context menu for the lower pane of the Event Table provides options for
working with the text in that pane. Note that Print prints the entire contents of the
pane. When specifying Print Setup, note printing is set to scale, so the text width
fits in one page and scrolls vertically, over as many pages as needed.

12.6 Event Distribution Context Menu

The Event Distribution context menu contains options for collapsing or
expanding all sub-nodes of any container.

The context menu is only available on actual containers, not on non-container
sub-nodes. Each visible node displays a total event count.

12.7 Event Dictionary Online Help

The event dictionary is part of the online Wind River Workbench User Interface
Reference. It provides detailed information available about every possible event
type for a target operating system. Entries in the event dictionary indicate the
causes and consequences of an occurring event, and the information logged about
the event at each level of logging.

87

Wind River System Viewer
User's Guide, 3.0

Wind River System Viewer’s online help resources and the Event Dictionary
require Wind River Workbench to be running. If Wind River System Viewer is
running without Wind River Workbench, an error dialog appears on any attempt
to access the online help.

The context-sensitive help is always be enabled. If System Viewer cannot
communicate with the online help, an error dialog appears indicating the help
system is not available. If the requested help topic does not exist, an error dialog
appears indicating the help topic does not exist.

12.7.1 Accessing the Event Dictionary
You can access the event dictionary by opening the Wind River Workbench online
help library and navigating to the Wind River Workbench User Interface Reference.

There are also several ways to get help from a context menu. These options each
provide a shortcut to the entry in the event dictionary for that event:

= Help

There are numerous Help buttons throughout System Viewer. Clicking any of
them opens the appropriate section in the online Wind River System Viewer
User’s Guide. Alternatively, pressing F1 accomplishes the same task.

= Event Help

Detailed documentation on an event may be obtained by right-clicking that
event's icon and selecting the help menu item from the event's context menu.
This applies in the Event Graph, the Event Table and the Legend.

88

13

Log Viewer: Timestamps

13.1 Introduction

When you develop your application for a target with a supported timestamp
driver, the instrumented kernel uses timestamps. The instrumented kernel can tag
certain events with high-resolution timestamps, sequence numbers, or with user
defined timestamps. Those events are then displayed in the Log

Viewer’sEvent Graph, along a timeline that shows when each event occurred,
based on these timestamps.

The status bar displays the exact timestamp for an event when you click on the
corresponding event icon; and the Event Table has a Timestamp column.

A CAUTION: On supported targets with limited hardware resources, System Viewer
manages the system clock, the auxiliary clock, or both when the timestamp driver
is enabled. In this case, these clocks are not available for the system or other
application use timestamp.

13.1.1 Timestamp Ticks

All time measurements such as any event, bookmark, measurement marker, range
selection, and so on, are aligned to a tick. The amount of time defining a tick, may
or may not be a real time unit:

= Inasequential log, every event captured is assigned a tick value which
increments by 1 for successive events. When displayed, these sequential
timestamps are shown as #n where 7 is an incrementing number. This
indicates that the timestamps logged against each event is not a real-time

89

Wind River System Viewer
User's Guide, 3.0

measurement, but a sequence number. For more information, see
13.1.3 Sequential Timestamping, p.90.

* Inareal-time log, the time per tick is specified in the raw log as the number of
ticks per second and this is related to the resolution of the clock hardware
being used with the BSP for timestamping purposes. The timestamps are
printed out using s, ms, us, ns, ps; whichever is most appropriate based on the
formula: time = tick / (ticks-per-second)

The timestamp driver’s resolution is hardware dependent, but is typically
between 100 KHz (10 microseconds per tick) and 1 MHz (1 microsecond per
tick).

For information on the system timestamp driver for any supported board, see the
entry for the board in the online BSP APIs.

13.1.2 High-Resolution Timestamping

Some BSPs provided by Wind River have a high-resolution timestamp driver. If
this is the case, include the following component in your system image:

INCLUDE_SYS_TIMESTAMP
BSP specific timestamping

BSP-specific drivers are in located the directory
installDir/vxworks-N.N/target/src/drv/timer; the corresponding header files are
located in installDir/vxworks-N.N/target/h/drv/timer.

If you are using a board that does not have a timestamp driver, or if you do not
want to use the one it has, you can use sequential or user-defined timestamping
and include the appropriate component.

13.1.3 Sequential Timestamping

When the real-time system runs on an unsupported board, or on a supported
board without the timestamp driver included, the instrumented kernel
automatically uses its sequence-stamp driver. This driver tags events with sequence
numbers that represent the order in which the events occur on the target. The
events are then spaced equidistantly from each other in the event graph and the
timeline scale is in event sequence numbers rather than seconds. The support
component for sequential timestamping is INCLUDE_SEQ_TIMESTAMP.

90

13 Log Viewer: Timestamps
13.1 Introduction

13.1.4 Custom Timestamp Drivers

Wind River supplies the system timestamp, but you may write your own
timestamp driver or use the timestamp provided by an emulator. The support
component for user-defined timestamping is INCLUDE_USER_TIMESTAMP. For
more information, see VxWorks Device Driver Developer’s Guide:Timestamp Drivers.

91

Wind River System Viewer
User's Guide, 3.0

92

14

Log Viewer: Visualizing
Multicore Systems

14.1 Debugging Multicore Systems in the Log Viewer 93
14.2 Visualization of Multicore Behavior 94

14.3 Searching and Filtering by Core Number 95

14.1 Debugging Multicore Systems in the Log Viewer

Debugging multicore systems in the System Viewer Log Viewer is, from a general
usage point of view, transparent in that it is little different from debugging
single-core systems.

However, the Log Viewer does provide important assistance for visualizing
multicore system behavior, as well as the ability to search and filter events by core
number.

93

Wind River System Viewer
User's Guide, 3.0

14.2 Visualization of Multicore Behavior

The Log Viewer uses the following annotations to graphically visualize multicore
behavior (see Figure 14-1):

» A colored underbar to the executing state line, where the color represents a
core number.

* A number next to the underbar which also represents the core number

These features are only present in logs which contain data from more than one
core.

Figure 14-1 Visualizing multicore behavior

------ wp thibiolog (0x130f020)

...... w tlagTask (01 306750)

..... = funcCallTask (0x16290b0)
...... = tShelld (0x160=830)
o bywdbTask (Ol SFa540)

----- o LaffinitySetTest (0x164F190)

In Figure 14-1, above, you can see that core0 is executing task tShell0 which is
pre-empted by the higher priority task tLogTask. Since tShell0 remains runnable,
it migrates to run on corel.

14.2.1 Customizing the Visualization
You can configure the underbar colors allocated to the display of the cores as
follows:
1. Select Tools > Options > Multi-Processor Options
The color palette used for the display of each core number will be displayed.

2. Click on a core number to change the color used in this and all subsequent log
viewing sessions.

94

14 Log Viewer: Visualizing Multicore Systems
14.3 Searching and Filtering by Core Number

Whilst the limit to the number of cores that System Viewer can support and
visualize is 231, the number of colors that can be allocated is 32. These are

allocated cyclically by core number. Thus the color used is the same for core0,
core32, core64, and so on.

14.3 Searching and Filtering by Core Number
To filter the display of events by core number, select View > Filter CPUs (or the
corresponding toolbar button) to bring up the CPU Filtering dialog.

To restrict a search to a single core number, select the appropriate core number in
the Event Properties/Search dialog and select its Lock checkbox.

95

Wind River System Viewer
User's Guide, 3.0

96

15

Analysis Suite Views

15.1 Introduction 97

15.2 Opening Logs in Analysis Suite Views 98

15.3 The System Viewer Analysis Suite in General 99
15.4 The Analysis Views in Particular 100

15.1 Introduction

The Analysis Suite Views, unlike the Log Viewer (see chapter 8. Log Viewer: Loading
Log Files, and following chapters), do not display all the available log data for
analysis, but rather derived log information that has been extracted for specific
analysis cases. In particular, the analysis views provide support for fast analyses in
multicore systems.

97

Wind River System Viewer
User's Guide, 3.0

15.2 Opening Logs in Analysis Suite Views

For general information on opening logs automatically on upload, as well as on
opening legacy logs, see 8. Log Viewer: Loading Log Files.

For logs created and opened in the System Viewer integration with Wind River
Workbench 3.0 (or newer) Wind River Workbench projects are automatically
created.

The projects are all stored under the System Viewer Logs folder in the current
workspace. The opened logs are sub-grouped in folders based on the where the
logs came from (which target).

You can therefore open any log in these folders as many times as required in any
Analysis View (or the Log Viewer) using the Workbench Project Explorer’s
Open With context menu command.

15.2.1 Synchronizing Analysis Views

Any number of Analysis Views can be opened on the same System Viewer log file.
These views can communicate changes in range-selection and, where applicable,
sample count with other views open on the same file by unlocking the view. All
unlocked views can also be synchronized with a locked view.

= Locked views

Changes made in a locked view will not affect other unlocked views unless
you click the Synchronize button. Changes made in other views will not affect
the locked view.

* Unlocked views

Changes made in any unlocked view will affect the unlocked view. Any
synchronize action will affect the unlocked view.

98

15 Analysis Suite Views
15.3 The System Viewer Analysis Suite in General

15.3 The System Viewer Analysis Suite in General

In the System Viewer Configuration editor’s Analysis View Selection tab, you
can select the type(s) of Analysis View you would like to use once transfer of the
log from the target to the host is complete.

You can set a default configuration of Analysis Views in the Preferences. To do so,
select Window > Preferences, then navigate to Wind River > System Viewer.

You can also persistently customize the graphical representation (colors and fonts)
of each of the Analysis Views in the Preferences.

The Analysis Views open in an integrated Workbench pane (by default at the
bottom of the Workbench window). The data is generally presented in the form of
a graphical overview along the top of the view, with a data graph or table below.

15.3.1 The Analysis View Overview Panel

The overview provided in each of the views lets you navigate through the log to
points of interest using the mouse and the overview’s context menu. The available
navigation tools depend on the analysis type. Some examples of basic overview
context menu navigation tools are:

Select Range
Show a subset of the analysis between two specified times

Zoom 100%
Show the entire, visible analysis; that is, the analysis of the whole log, or of the
cropped region.

Crop
Hide the analysis data before and after the times of the selected range.

Undo Crop
Show the entire analysis, but maintain the selected range.

Set Button Positions
Enable nudge and page buttons. Use these buttons to move the selected range.

99

Wind River System Viewer
User's Guide, 3.0

15.3.2 The Analysis View Data Panel

The data panel shows the analysis data selected in the overview. The data is
generally also navigable using the mouse or context menu, but again this will vary
depending on the way the data is represented.

Depending on the view, you can customize the analysis. For example:

Threshold
Highlight values in the analysis which are above a certain threshold value.

Watermarks
Show high, low and average levels for the analysis over the selected range.

Show/Hide
... CPUs or columns.

15.4 The Analysis Views in Particular

Each of the available Analysis Views are described individually below, for
information on general features common to all or most of the Views, see the
preceding section.

15.4.1 CPU Usage Analysis

This analysis provides a representation of CPU usage for each of the CPUs on the
target. The analysis is based on the activity of the idle context for each of the CPUs
in the system. When the system is not idle at any given instant of time, CPU usage
is deemed to be 100%.

The set of values used to show the CPU usage is calculated by dividing the log into
a configurable number of sample periods. Each of the sample periods will be of
equal duration (with the exception of the first and last ones, which will typically
half as long in order calculate a crossing point). For each of the sample periods, the
time the idle task is “running” is calculated as a percentage of the sample period.
This value is then used to create a CPU Usage percentage, which is given a time
value in the middle of the sample period.

You can influence sampling in two ways:

100

15 Analysis Suite Views
15.4 The Analysis Views in Particular

» Set the number of samples

This will divide the log up into the specified number of sample periods (plus
two extra for calculation of initial and end value crossing-points)

» Set the sample duration

From the start of the selected range, the log will be divided up into the
specified time slices of equal length. The end of the selected range will be the
point where the time at the end of the log is too small to fit into a full sample
period.

15.4.2 Aggregate CPU Usage Analysis

This analysis is visualized and constructed in the same way as 15.4.1 CPU Usage
Analysis, p.100. The main difference being that all of the CPUs in the system are
aggregated to provide a single system-wide CPU usage analysis.

15.4.3 System Load Analysis

System load is calculated, like CPU usage, using sample periods. However, the
calculations are based on the sum of the duration of the running and ready states
over the sample period. The calculated load value is therefore not a percentage, but
a floating point value. In other words, the full load will always be the number of
CPUs in the system (and rot 100%).

Examples of Load Figures

Example 15-1

Single CPU system (Full load = 1)

One context is running and no others are ready:
Load =1

One context is running and another is ready:
Load =2

One context is running and two others are ready:
Load =3

One context is running for 50% of the time, no others are running or ready:
Load =0.5

101

Wind River System Viewer
User's Guide, 3.0

Two contexts are each running for 50% of the time, no others are ready:
Load =1

Two contexts are each running for 50% of the time, one other context is ready 50%
of the time:
Load = 1.5.

Example 15-2 Quad CPU system (Full load = 4)

One context is running and no others are ready or running:
Load =1

Four contexts are running and no others are ready:
Load =4

Two contexts are each running for 50% of the time, one other context is ready 50%
of the time:
Load =15

Two contexts are each running for 50% of the time, two other contexts are ready
50% of the time:
Load =2

15.4.4 Time Running Analysis

The Time Running Analysis is an analysis of the time the contexts were in the
running state.

The analysis can be useful for detecting CPU affinity problems; that is, either
where a context will tend to run on a particular CPU (the context will be seen as
running on that CPU all the time), or where a context switches CPUs unduly (the
number of states for a given context running is high, even though the context is
running a large percentage of the selected period).

The overview shows the states in relation to time and duration. The data display
shows a tabular representation of the context names, number of states, and the
time as a percentage over the selected range that the context was in the running
state. The states are shown for each CPU.

102

15 Analysis Suite Views
15.4 The Analysis Views in Particular

15.4.5 Time Ready Analysis
This analysis can be useful for detecting priority problems.For example, contexts
that are ready (blocked) for long periods because their priority is too low.

This is analogous the Time Running Analysis, p.102, except that the contexts’ ready
states are used in the analysis. The ready state is not attributable to any CPU so the
analysis is system based rather than CPU based.

103

Wind River System Viewer
User's Guide, 3.0

104

16

Using Triggering

16.1 Introduction 105

16.2 Getting Started 106

16.3 Using Triggering 108

16.4 Creating and Running the Sample Triggers 116
16.5 Using Functions with Triggering 124

16.6 Importing Previous Version Trigger Files 129

16.1 Introduction

Triggering is an operating system feature that uses instrumented events, mostly
found at the same point in the code as Wind River System Viewer events. As an
alterative to the System Viewer Configuration utility, you can use triggering to
start and stop the logging process. More importantly, triggering allows you to
precisely control when and how to start and stop logging using instrumented
events.

Most events that you can log can also be written to activate a trigger. Triggering,
specifies an action to be performed when a trigger is hit. You select the actions for
triggers that include controlling how Wind River System Viewer logs events.

105

Wind River System Viewer
User's Guide, 3.0

NOTE: If your system is configured with triggering support, each time an
instrumented point is hit, the operating system checks whether triggering is
enabled. For more information, see B. Triggering API

Wind River System Viewer provides a triggering interface that manages all aspects
of triggering. Using the triggering interface you can create and run sample triggers
and define them using various functions. Triggering API is also provided so you
can use VxWorks triggering in conjunction with Wind River System Viewer

logging.
Sample triggering files are available for your use in

installDir/workbench-N.N/wrsv/N.N/samples/vxworksN/triggering. For
information, see B. Triggering APL.

NOTE: Wind River System Viewer Triggering is not currently available for the
Linux operating system. Information on creating Wind River Linux Custom Events
is described in 19.3 Custom Events, p.155.

16.2 Getting Started
Wind River System Viewer provides a triggering interface so you can support,
define, configure, save, validate, download and run trigger files.

Learn how to use triggering by performing the following the steps as per your
development need and preference. Using each set of procedures, you will learn
how to use the triggering interface, create and use basic triggers in coordination
with log files, and the trigger functions in general.

16.2.1 To Create a Trigger
1. Define a trigger specification by defining the conditions to be checked when
the trigger’s specification is matched.

2. Define the action to be taken when the triggers fires and specify the trigger to
enable once the trigger has fired.

3. Save the trigger to a file if required.

106

16 Using Triggering
16.2 Getting Started

4. Prepare your target before downloading the trigger by declaring all objects,

variables and functions on the target before a trigger can be uploaded and
triggering starts.

16.2.2 Using Sample Trigger Files

To understand simple conditional and chained triggers, create and run the sample
triggering examples in
installDir/'workbench-N.N/wrsv/N.N/samples/vxworksN/triggering.

1.

Re-create and run the simple conditional triggering example described in
16.4.1 Simple Conditional Trigger Example, p.116.

Extend the simple conditional trigger to include a trigger that is chained to it,
as described in 16.4.2 Chaining Simple Conditional Triggers Example, p.118.

Understanding Functions with Triggering

As described in 16.5 Using Functions with Triggering, p.124, Triggering allows you
to use a function as a condition or as an action.

1.

You can create a trigger defined with a Condition on Function. For more
details, see 16.5.1 Using a Function as a Condition, p.124.

You can create a trigger defined to use a function as an action. For more details,
see 16.5.2 Writing a Call Function as an Action, p.126.

Finally, you can create and upload triggers using the Triggering utility or the
triggering APL For more information, see B. Triggering API, which includes an
example for Wind River System Viewer logging described in 16.5.3 Starting
and Stopping System Viewer with User Events, p.127.

NOTE: An application loads events from the required dictionary, therefore if you
open triggering against a live target and the target dies, you can still use triggering
to create and edit triggers even with the target down.

107

Wind River System Viewer
User's Guide, 3.0

16.3 Using Triggering

The Triggering utility is used to create and use triggers. It can be launched from a
selected target running within the Target Manager view.

The Triggering utility depicts each trigger in table format with columns
categorizing attributes of the trigger. When you first open triggering, Wind River
System Viewer scans the target for triggers, and displays the ones it finds in the
table.

16.3.1 Menu and Toolbar Options

File Menu
Items on the File menu allow you to:

» open and save triggers as .trig files

» set up your printer and print triggers in tabular form

= exit triggering

» import a trigger file generated from previous System Viewer (Wind View)
versions. For more information, see 16.6 Importing Previous Version Trigger Files,
p-129.

Trigger files have the .trig extension in Wind River System Viewer. These files
contain definitions for triggers you create. To load a .trig file, choose File > Open
and select the .trig file.

NOTE: File > Import should only be used to load WindView 2x and WindView 3x
format trigger files into the Triggering interface. File > Open should only be used
to load Wind River Workbench generated trigger files.

To view a trigger definition, choose the trigger from the list and double-click it or
open it from the context menu. When you choose File > Save As, all triggers
currently in the triggering list, regardless of what is highlighted, are saved to the
file you specify in the Save As dialog. Similarly, when you choose Print, all triggers
in the list are printed.

Edit Menu

You can create new triggers, edit, rename, delete, or duplicate existing triggers
using the main Analyze menu. To enable these features, select a specific trigger. If
you do not select a trigger, only the Analyze > Triggering > New Trigger item is
enabled.

108

16 Using Triggering
16.3 Using Triggering

The Edit context menu appears when you select a trigger and right-click. Before
you validate and download a trigger, the text in some of the columns and in the
Trigger Maintenance utility may display in red. For more information, see
16.3.5 Defining Variables to Validate Triggers, p.114.

View and Action Menus

The View menu allows you to refresh the trigger state. From Actions you can start
or stop triggering.

16.3.2 Columns in the Trigger Utility

The column headings list the triggers and describe their attributes. For example,
once a trigger is downloaded, Hit Count shows how many times a trigger has fired
and Status shows its current status. For more information, see 16.3.6 Downloading
and Running Triggers, p.114.

You manage the columns that appear and are hidden using the Column Manager
dialog. This feature allows you to quickly view the current information on any
column. To access this Column Manager dialog:

1. Right-click the column header on the Triggering utility to display the context
menu. This menu lists all visible columns indicated with a checkmark so you
know which columns are hidden and shown.

2. Select Manage Columns.

3. Select a column type, Hide>>> and <<<Show respectively to choose which
columns appear and are hidden on the Triggering utility.

4. Select OK to return to the Triggering utility and view the columns.
16.3.3 Using the Trigger Maintenance Utility

You specify new triggers, edit triggers, set up conditions and actions for simple
and chain triggers using four panes in the Triggering Maintenance utility.

109

Wind River System Viewer
User's Guide, 3.0

To Create a Trigger

Step 1:

Step 2:

Open the Trigger Maintenance Utility

A trigger with a default name is presented in the Trigger Maintenance dialog. A
default name is used, however, it is advisable to specify unique names for triggers.

Select Attributes to Define the Trigger

Specification contains drop-down list boxes from which you specify the criteria
for defining a trigger. The Context, Event, and Object fields correspond to those
used by the Event Properties/Search (filename).

1.

110

Select Trigger is initially enabled if you wish your trigger to be enabled when
you download it. Wind River System Viewer enables this feature by default. If
a trigger is chained, that is enabled by an earlier trigger or started from code,
uncheck the checkbox.

On VxWorks 653 only: From Domain, select the domain in which the event can
occur that causes the trigger to fire. Any variable or function that you specify
as a condition or action must be visible from the domain selected for this field.
If it is not, the system issues an exception. The option, Any Domain, restricts
the use of variables and functions, restricts the types of action options, and
disallows conditions altogether.

From Context, specify the context in which the event that causes the trigger to
fire occurs. The event can occur in any context, including the system context.
The Any or Any Interrupt options disable the Call Function option that you
can select from the Action drop-down listbox.

From Event, specify the type of event that causes the trigger to fire. The event
can occur in any specific task, or in any ISR (interrupt service routine).

When user# or intEnt is selected from the Event drop-down list box, you can
enter a identification number in the # text box. This is a user event created with
the trgEvent() routine. For more information, see the reference entry for
trgEvent() and Creating a User Event to Fire a Trigger, p.183.

From Object, select the object ID of all objects of the type specified in the Event
listbox. For example, if you selected semGive or semTake as your event for the
trigger, the Object listbox displays any semaphores on the target. If you
created a semaphore on the shell as in,

% mySem = semBCreate()

type mySem in the listbox and triggering finds the appropriate semaphore for
you.

16 Using Triggering
16.3 Using Triggering

6. Check Disable trigger after firing if the trigger should be disabled after it
fires. System Viewer enables this feature by default. If you do not check this
box, your trigger remains active to continue firing when conditions are met.

Step 3: Select Conditions for the Trigger to Fire

You can define a trigger to isolate an event as close as possible to the start of a
sequence of interest. Once you identify unique events preceding a sequence,
they can then be used as potential trigger points.

For example, you may observe that, shortly before the sequence of interest, a
semaphore is given. It might be possible to identify the task context from
which the semGive() is performed and possibly the ID of the semaphore
being given. These criteria can be used to define when the trigger that initiates
logging fires.

Sometimes the criteria used to define the trigger are not sufficient to uniquely
detect the start of the region of interest, if a task takes and gives the same
semaphore more than once. To uniquely detect the start of the region of
interest, you can refine the trigger by using a conditional qualification. For
example, you can examine a variable (by symbol or address) for a specific
value or range of values, or you can invoke a specific function and test the
result.

The Condition pane contains a drop-down listbox for defining whether or not
a condition is evaluated, as well as two text boxes and an operator listbox for
specifying a condition to be evaluated. The text box on the left is for a function
or variable name, and the text box on the right is for a constant value.

To make a trigger conditional upon a variable or function that takes a specific
value or range of values, follow these steps and ensure that the correct types
are used:

1. Change Unconditionally to Conditional on Function or
Conditional on Variable. The two text boxes are enabled when
Unconditional is not selected.

2. Enter the function or variable name in the first edit box. The function or
variable name must be a known 32-bit identifier on the target.

3. Select the matching criterion by choosing one of the operators from the
drop-down menu (==, <=, <, and so on).

4. Enter the constant value to test in the second text box. The value must be a
32-bit integer constant in either decimal or hexadecimal format.

111

Wind River System Viewer
User's Guide, 3.0

The criteria specified for event, context, and object, conditions are tested for on
the target. If the criteria are met, triggering proceeds. For triggering examples
that use conditions, see 16.4.1 Simple Conditional Trigger Example, p.116 and
16.5.1 Using a Function as a Condition, p.124.

Step 4: Select Actions to be performed when the Trigger Conditions are Met

Wind River System Viewer performs actions on a trigger when that trigger is
set and the event occurs. You define trigger actions and their range from
controlling Wind River System Viewer to performing user-specific requests.
These actions are performed when the specification criteria are met, and any
specified condition is matched.

Select actions for the trigger as follows:

No Action

Select No Action when no action is taken on the trigger. For example, you can
use this option to:

» fire the first in a sequence of chained triggers, where the first trigger has
no other purpose than to enable another trigger.

» determine a specific event has occurred when the associated trigger fires.
The trigger is then disabled after it fires, and you can examine the
Triggering utility to see when it has fired.

* useas a counting mechanism. If the trigger is not disabled after firing, you
can update the Triggering utility using the View menu and see a count of
the number of times the trigger has fired under Status. For more
information, see 16.3.6 Downloading and Running Triggers, p.114.

System Viewer Logging Actions

Select Start System Viewer Logging to start logging when the trigger fires and
Stop System Viewer Logging to stop logging when the trigger fires. For
examples that use triggers to start and stop logging, see 16.4.3 Chaining Triggers
for System Viewer Logging Example, p.121 and 16.5.3 Starting and Stopping System
Viewer with User Events, p.127.

Call Function

Select Call Function to call the specified function on the target with the given
integer parameter. Selecting Call Function enables two text box fields, where
the first field specifies the function name and the second field specifies an

112

Step 5:

Step 6:

16 Using Triggering
16.3 Using Triggering

integer argument to that function. For more information, see 16.5.2 Writing a
Call Function as an Action, p.126.

Taskstop

Select Taskstop to stop the task which is currently executing. You can resume
the task by using the taskResume comand on a shell.

Action Library (VxWorks 653 only)

Uses a library of functions that you set up (for use with triggering) from a shell,
using the commands from the VxWorks 653 API library, trgLib. When

Action Library is selected, only the first field editbox is enabled. It specifies the
library function by index. The second field editbox simply displays the argument
associated with it. This argument was provided when the function was added to
the library. For more information about when to use an action library, see

16.5.4 VxWorks 653 Only: The Action Library Manager, p.128.

Defer Action

Check Defer Action to defer the action until it is safe to execute the trigger
action. For example, suppose you wanted to make sure your action function
did not run within ISR or system context. In this case, check Defer Action, if
the function contains calls to any function that is not permitted in ISR context.

NOTE: Triggering automatically spawns a task called tActDef that executes
functions on the trigger work queue when the system is out of any critical region.
If your application runs at a higher priority than tActDef, you may have to adjust
the priority if you want the trigger action to be executed.

Determine if the Trigger will be linked to Another Trigger

The trigger can be programmed to enable another trigger when it fires. The
trigger that should be enabled can be specified in this text box. For more
information, see the example in 16.4.2 Chaining Simple Conditional Triggers
Example, p.118.

Click OK to return to the Triggering Utility

113

Wind River System Viewer
User's Guide, 3.0

16.3.4 Saving Triggers

To save a trigger to a trigger file, choose File > Save or the corresponding toolbar
button, and save the file with a .trig extension. Saving triggers allows you to store
many triggers so they can be reloaded for re-use.

16.3.5 Defining Variables to Validate Triggers

Wind River System Viewer indicates valid triggers in black text. Before using a
trigger, variables on which it depends, must be defined. Invalid triggers require
that you define variables before they can be used.

In the trigger list, a red text item relies on a target requirement that does not exist.
This is typically a variable that needs to be defined.

When you point to the invalid item and pause briefly for the error information,
Wind River System Viewer indicates the reason why a red text item is invalid,
through a tooltip. After correcting the error, you can update the trigger by clicking
the refresh toolbar button.

After variables are defined and refreshed in the trigger list, the green GO toolbar
button indicates the triggers are validated and ready to download.

16.3.6 Downloading and Running Triggers

You must download a trigger to the target before you use it by clicking GO. Once
you download a trigger, the Target column indicates the status of that trigger,
changing from Not Set to ARMED, FIRED, COUNTING, and so on, as the trigger
runs.

Reading Target Icons
The Target column indicates whether a trigger is successfully downloaded to the
target, resident on the host computer or in a changing state using icons as follows:
Host-only Triggers

Q This icon indicates the trigger is not downloaded to the target, and only stored
in triggering. Host-only triggers are lost if the Wind River System Viewer
launcher is closed on UNIX, or Wind River Workbench is closed on Windows,

114

16 Using Triggering
16.3 Using Triggering

and you have not saved your trigger to a trigger file. Host-only triggers will
remain only if triggering is closed and then re-opened.

Target-Resident Triggers

This icon indicates the trigger is resident on the target. Target-resident triggers
- still exist after you close and re-open triggering, that is if the same target is
connected and you have not rebooted the target.

Trigger Changed on Target

ﬁk— This icon indicates the trigger changed on the host since it was downloaded to
the target. Wind River System Viewer will update the target trigger the next
time the trigger is started.

Reading Trigger Icons

Various icons in the Trigger column indicates the state of a trigger as follows:
Yellow

kS % This icon indicates the trigger is on the host computer, valid and ready for
download. The GO button is enabled.

Red

"\‘ This icon indicates the trigger is on the host computer, but not valid and cannot
be downloaded. The GO button is disabled.

Green

m This icon indicates the trigger is downloaded to the target and ARMED. If you
are running triggering, the trigger fires when the conditions for firing are met.
If triggering stops before the trigger fires, this icon indicates that the last state
of the trigger is ARMED.

Gray

'ﬁﬁa This icon indicates the trigger is downloaded to the target, but not FIRED
because it was initially DISABLED. If you are running triggering, the trigger
does not fire until it is enabled. If triggering stops before the trigger is ARMED
or FIRED, this icon indicates the last state of the trigger is DISABLED.

Gray with Check mark

e & This icon indicates the trigger is FIRED and now DISABLED. If you are
running triggering, the trigger is ARMED, has FIRED and has been disabled

115

Wind River System Viewer
User's Guide, 3.0

because the Disable after fire option of the trigger was selected. The trigger
remains in this state until you click GO.

Yellow with 123

"-.JEE This icon indicates a COUNTING trigger. The trigger is FIRED, but has not
disabled because Disable after fire was not selected when the trigger was
defined. If you are running triggering, the trigger is ARMED, has FIRED and
continues to fire each time its firing condition is met. To update the value in the
Hit Count column, click View > Refresh.

16.4 Creating and Running the Sample Triggers

Wind River System Viewer provides three sample triggering files as follows:

helloGoodbye.trig
Trigger file that demonstrates the process of chaining in triggering which
uses a combination of trigger files, each invoked from the other.

simpleCond.trig
Trigger file that demonstrates the use of a simple conditional trigger.

startStopwv.trig
Trigger file to start and stop Wind River System Viewer logging.

16.4.1 Simple Conditional Trigger Example

This example describes how to create a simple conditional trigger using
simpleCond.trig in
installDir/fworkbench-N.N/wrsv/N.N/samples/vxworksN/triggering . This trigger
file fires when variable foo takes the value 1. When that condition is met, printf()
is called with the value helloString.

You can choose to load the example trigger and begin using it, or recreate the
trigger and save it under a different name. If you have not loaded
simpleCond.trig, create and define the trigger as follows.

116

Step 1:

Step 2:

16 Using Triggering
16.4 Creating and Running the Sample Triggers

Create and Define the Conditional Trigger

1.

2
3.
4

Open the Trigger Maintenance Ultility.

Select Edit > New trigger.

Enter hello in Trigger Name.

From Specification, define the trigger as follows:

» Check Trigger is initially enabled

» Select Default (VxKernel) from Domain

» Select Any Task from Context

» Select Any Event from Event. The Event Id will be disabled
» Select Any Object from Object

» Check Disable trigger after firing

From Condition, define the trigger as follows:

» Select Conditional on Variable from the drop-down listbox
» Enter foo as the variable name

* Choose == from the drop-down listbox

» Enter 1 as the constant value

From Actions, define the trigger as follows:

» Select Call Function in the drop-down listbox
* Enter printf in the text box

» Enter helloString in the argument text box

» Check Defer action

As this simple trigger is not chained, from Chaining, select None from
Enable trigger.

Save your trigger using a unique name, other than those used in the samples
folder.

Define the Variables and Validate the Trigger

1.

Start the Host Shell and create the variable foo, as follows:

-> foo=0
new symbol "foo" added to “vxKernel” symbol table.

Create helloString as follows:

-> helloString="hello\n"
new symbol "helloString" added to “vxKernel” symbol table.

117

A

Step 1:

Wind River System Viewer
User's Guide, 3.0

WARNING: The type entered into the argument text box, in this case helloString,
must be a variable not an integer.

3. Select View > Refresh, or click the Refresh toolbar button to validate the
trigger.

Download and Run the Trigger
1. Click GO to download the trigger.

2. To fire the trigger, the condition for foo must be met. In the Host Shell, set foo
equal to the value 1, as follows:

-> foo=1

The string “hello” prints out. The trigger status is updated to show that it has
fired.

3. Click STOP.

16.4.2 Chaining Simple Conditional Triggers Example

Step 1:

The process of chaining in Wind River System Viewer ensures triggers are fired in
a certain order.

Using helloGoodbye.trig in
installDir/workbench-N.N/wrsv/N.N/samples/vxworksN/triggering, this
example shows you how to create a simple set of chained triggers that print out
“hello” and “goodbye” based on the system variable vxTicks.

You can choose to load the example trigger and begin using it, or recreate the
trigger and save it under a different name. If you have not loaded
helloGoodbye.trig, create and define the trigger as follows.

Create and Define the Hello Trigger

1. Open the Trigger Maintenance Ultility.

2. Select Edit > trigger.

3. Enter hello in Trigger Name.

4. From Specification, define the trigger as follows:

» Check Trigger is initially enabled
» Select Default (VxKernel) from Domain
» Select Any Task from Context

118

Step 2:

16 Using Triggering
16.4 Creating and Running the Sample Triggers

» Select Any Event from Event. The Event Id will be disabled
* Select Any Object from Object
* Check Disable trigger after firing

From Condition, define the trigger as follows:

* Select Conditional on Variable from the drop-down listbox
» Enter vxTicks as the variable name

»= Choose > from the drop-down listbox

* Enter 6144 as the constant value

From Actions, define the trigger as follows:

» Select Call Function in the drop-down listbox
» Enter printf in the text box

= Enter helloString in the argument text box

» Check Defer action

From Chaining, type goodbye in Enable Trigger. The text turns red because
you have not as yet created the goodbye trigger. After you click OK to
complete your trigger, notice that it appears in red text in the table.

Save your trigger using a unique name, other than those used in the samples
folder.

Define the Goodbye Trigger

1.

2
3.
4

Open the Trigger Maintenance Ultility.

Select Edit > New trigger.

Enter goodbye in Trigger Name.

From Specification, define the trigger as follows:

» Un-check Trigger is initially enabled

» Select Default (VxKernel) from Domain

» Select Any Task from Context

» Select Any Event from Event. The Event Id will be disabled

» Select Any Object from Object

» Check Disable trigger after firing as this trigger is not initially enabled
because it is chained to the hello trigger, therefore it becomes enabled once
that trigger fires.

From Condition, define the trigger as follows:

» Select Conditional on Variable from the drop-down listbox
» Enter vxTicks as the variable name

119

Step 3:

Step 4:

Wind River System Viewer
User's Guide, 3.0

»= Choose > from the drop-down listbox
» Enter 6744 as the constant value

6. From Actions, define the trigger as follows:

» Select Call Function in the drop-down listbox
» Enter printf in the text box

* Enter goodbyeString in the argument text box
* Check Defer action

7. From Chaining, select None from Enable trigger.

8. Save your trigger using a unique name, other than those used in the samples
folder.

Now that you have created the goodbye trigger, notice the hello trigger no longer
appears in red. Triggering looks for matching trigger names or IDs, and if it finds
them, it uses them. If not, it assumes the trigger will be created later, and it keeps
the invalid trigger until the object that validates it is created.

This works for many boxes. If you have a semaphore mySem, you don’t have to
search the object yourself; just enter mySem in the Object listbox and it is matched
if it actually exists.

Define the Variables and Validate the Triggers
1. Start the Host Shell and create the variable helloString. as follows:

-> helloString="hello\n"
new symbol "helloString" added to symbol table.

2. Create the variable goodbyeString. as follows:

-> goodbyeString="goodbye\n"
new symbol "goodbyeString" added to symbol table.

3. Select View > Refresh, or simply click the Refresh button to validate the
trigger.

Download and Run the Hello and Goodbye Triggers

1. To download the trigger, click GO. vxTicks is a global variable that counts
ticks. Trigger hello prints “hello” when vxTicks is greater than 0x6144.

2. Click View to refresh items or toolbar buttons until the Triggering utility
shows that the hello trigger has fired. Once the hello trigger fires, the goodbye
trigger is activated, and it prints “goodbye” when vxTicks is greater than
0x6744.

120

16 Using Triggering
16.4 Creating and Running the Sample Triggers

3. Click Stop to stop the triggering. Triggering stops automatically when there
are no triggers left armed or counting.

NOTE: You can use the shell to find the current value of vxTicks and reset the
values in the Trigger Maintenance Utility to be greater than the current value.
Otherwise, one or both triggers fire immediately and the log you collect is almost

empty.

16.4.3 Chaining Triggers for System Viewer Logging Example

Step 1:

To use triggering to collect a Wind River System Viewer log, you must define two
triggers, one having the action to start log collection and one with the action to stop
log collection. In most cases, triggers used to collect a Wind River System Viewer
log are chained, since the order of their firing is critical.

Using startStopwv.trig in
installDir/fworkbench-N.N/wrsv/N.N/samples/vxworksN/triggering, you can
create the sample triggers used to start and stop Wind River System Viewer

logging.
You can choose to load the example trigger and begin using it, or recreate the

trigger and save it under a different name. If you have not loaded startStopwv.trig,
create and define the trigger as follows:

Define the Start System Viewer Trigger

1. Open the Trigger Maintenance Utility.

2. Select Edit > New trigger.

3. Enter startWV in Trigger Name.

4. From Specification, define the trigger as follows:

» Check Trigger is initially enabled

» Select Default (VxKernel) from Domain

» Select Any Task from Context

* Select Any Event from Event. The Event Id will be disabled

» Select Any Object from Object

» Check Disable trigger after firing. Calling startWV more than once
results in an error, so it is important, for a trigger that starts logging to
disable it after it fires.

121

Step 2:

Wind River System Viewer
User's Guide, 3.0

From Condition, define the trigger as follows:

» Select Conditional on Variable from the drop-down listbox
» Enter foo as the variable name

* Choose == from the drop-down listbox

* Enter 1 as the constant value

From Actions, once you have defined how the trigger will fire, select

Start Wind River System Viewer Logging in the drop-down listbox.
Although not required, it is often desirable to define a trigger to stop log
collection. Doing so focuses the log on the sequence of interest and saves both
resources and analysis effort.

From Chaining, type stopWV in Enable Trigger, if you decide to create
another trigger to stop log collection.

Click OK to save this trigger. The System Viewer Configuration utility opens
automatically, allowing you to review the current configuration, and change it
if necessary.

If you are not creating a trigger that stops Wind River System Viewer logging,
leave the System Viewer Configuration utility open so you can stop logging
manually. Otherwise, the window my be closed.

Define the Stop System Viewer Trigger

To create this trigger, use the same trigger file as for the startWV trigger.

1.

2
3.
4

122

Open the Trigger Maintenance Ultility.

Select Edit > New trigger.

Enter stopWYV in Trigger Name.

From Specification, define the trigger as follows:

» Un-check Trigger is initially enabled

» Select Default (VxKernel) from Domain

» Select Any Task from Context

» Select Any Event from Event. The Event Id will be disabled

» Select Any Object from Object

» Check Disable trigger after firing. This trigger is not initially enabled, but
is chained to the startWV trigger, so that it cannot fire until startWV has
fired.

Step 3:

Step 4:

8.

16 Using Triggering
16.4 Creating and Running the Sample Triggers

From Condition, define the trigger as follows:

* Select Conditional on Variable from the drop-down listbox
» Enter foo as the variable name

* Choose == from the drop-down listbox

» Enter 2 as the constant value

From Actions, once you have defined how the trigger will fire, select
Stop Wind River System Viewer Logging in the drop-down listbox.

From Chaining, select None in Enable Trigger, as the stopWYV trigger does
not, itself, chain to another trigger.

Click OK to save this trigger. Save both triggers to the same file.

Define the Variables and Validate the Trigger

1.

2.

Start the Host Shell and create the variable foo as follows:

-> foo=0
new symbol "foo" added to symbol table.

Select View > Refresh, or click the Refresh button to validate the trigger.

Download and Run the Triggers

1.
2.

Click GO to download the trigger.

Wind River System Viewer logging starts when the startWV trigger fires. To
fire this trigger, the condition for foo for the startWV trigger must be met.
When you are ready to begin Wind River System Viewer logging, enter the
following in the Host Shell:

-> foo=1
Click the Update button.
This starts Wind River System Viewer logging.

Click refresh on the triggering utility toolbar or View > refresh from the
menu. The trigger is now shown as disabled and the status is updated to show
it has fired.

Wind River System Viewer logging stops when the stopWYV trigger fires. This
trigger has now become enabled because it was chained to the startWV trigger,
which has fired.

123

Wind River System Viewer
User's Guide, 3.0

4. To fire the stopWYV trigger, the condition for foo for that trigger must be met.
When you are ready to stop Wind River System Viewer logging, enter the
following in the Host Shell:

-> foo=2

This stops Wind River System Viewer logging.

NOTE: When a triggering event fires, it is logged as an event in the Wind River
System Viewer log. A trigger can start or stop logging part way into a resulting log
(for example, 25% into the resulting log). This facility is known as pre-triggering and
results in a record of the events on either side of a trigger firing event.

16.5 Using Functions with Triggering

Triggering allows you to use a function as a condition or as a trigger action.

16.5.1 Using a Function as a Condition

You can write and use a function specifically to test a condition. The function used
as a condition is executed during trigger evaluation if the criteria for event, context,
and object conditions are satisfied.

One technique is to write a function that fires after a specified time period, for
instance, by comparing the value of the system tick count against its value when
the trigger to start the sequence fired. A conditional function cannot be deferred.

You must make the function available on the target and enter its function name as
the condition item. The function is executed if all of the criteria defined for the
trigger under Specification are met. Once the function executes, the trigger fires
only when the function returns the value specified by the constant value.

When calling a function as a condition, it is very important that the condition is
only to be used in conjunction with a specification that limits the number of times
the condition is tested. For example, if a condition function to test a semaphore is
written and is tested without a limiting specification, then the execution of the
conditional function will cause more events which will each cause the condition
function to be called. This nesting of calls will cause a race condition on the target
and will eventually lead to the target crashing.

124

16 Using Triggering
16.5 Using Functions with Triggering

NOTE: If you use a function as a condition, the trigger Specification must define
the Event as user#, and the Event ID as 10. See also 16.5.3 Starting and Stopping
System Viewer with User Events, p.127.

Defining and Loading Condition Functions

The format and content of the condition function must follow the syntax below:

int conditionFunction (void)
{
int returnvValue;
*/ Function body */

return (returnvValue) ;

}

1. Provide a valid conditional function as per the above example

2. Compile the function and load the resulting object module onto the target. For
example, if a function conditionFunction() is contained in a C module called
conditionFunction.c and compiled into an object module
conditionFunction.o, the object module can be loaded on to the target from the
shell using the following command:

-> 1d < conditionFunction.o

3. Create a trigger that uses this function as a condition

4. Define the trigger with the function name and the value returned under the
conditions you want your trigger to fire.

Writing Condition Function Code

The body of a function used as a condition cannot contain any function calls that
are not permitted in an ISR context. This is because, depending on the criteria
specified for event, context, and object conditions, the function provided could be
executed within an ISR. Therefore, unless the combination of trigger specifications
set in the event, context, and object fields guarantees that the function can only be
satisfied in task context, (for example, by setting Context to Any Task or to a specific
task) the body of the function can include only code (or function calls) that can be
safely executed within an ISR or system context. For example, the following
conditional function is invalid because semTake() must not be used in an ISR.

125

Wind River System Viewer
User's Guide, 3.0

int conditionFunction (void)
{
if (vxTicks >= (sysClkRateGet() * 60 * 60))
{
/* semTake NOT ALLOWED in ISR context*/
semTake (mySem) ;

/* printf NOT ALLOWED in ISR context*/
printf ("The system has been up for more than an hour\n") ;

return 1;
}
return 0;
}
As trigger evaluation points are present throughout the VxWorks kernel, you can
not use printf() or logMsg() in condition functions. The above example could be
corrected by making the printf() into a trigger action function and checking Defer,
described in 16.5.2 Writing a Call Function as an Action, p.126. For information
about which routines can safely be called from ISRs, see the VxWorks Application
Programmer’s Guide.

You can also call a user-defined function that collects appropriate diagnostic
information at the time the trigger fires. One way to do this would be to use
wvEvent() in user-defined function. For more information, see The wvEvent()
Routine, p.169.

16.5.2 Writing a Call Function as an Action

A call function takes an integer argument and returns an integer value. Unlike a
condition function, an action function can be deferred because the function is not
executed to evaluate the trigger; instead it is added to a trigger work queue. For
more information, see Defer Action, p.113.

An example of an action function is:

int myActionFunc (int arg)
{
printf (“Trigger fired.\n”);
/* other code */
return 1; (returnvValue) ; /* return value is ignored */

}

To create a trigger that uses the function
1. Open the Trigger Maintenance Utility.

2. From Action, select Call Function from the drop-down list.

126

3.

4.

16 Using Triggering
16.5 Using Functions with Triggering

Enter the function name in the first text box and the integer argument to the
function in the second text box.

Check Defer Action as myActionFunc calls printf() for this function.

16.5.3 Starting and Stopping System Viewer with User Events

Step 1:

Step 2:

This example demonstrates how to start and stop System Viewer with a VxWorks
family User Event and triggering. User Event IDs must be in the range of
40000-65535.

Create a New Trigger with these Definitions

1.

2
3.
4

Open the Trigger Maintenance Ultility.

Select Edit > New trigger.

Enter startWV in Trigger Name.

From Specification, define the trigger as follows:

» Check Trigger is initially enabled.

» Select user# from Event.

» Enter an Event ID of 10 which is the equivalent of the user event number
40010.

From Action, select Start System Viewer Logging.
Select stopWv from Enable Trigger.

Click OK. If you have not already opened the System Viewer Configuration
utility, System Viewer opens this window, so you can setup configuration.

Create a Second Trigger with these Definitions

1.

2
3.
4

Open the Trigger Maintenance utility.

Select Edit > New trigger.

Enter stopWV in Trigger Name. Note the upper-case V.
From Specification, define the trigger as follows:

* Uncheck Trigger is initially enabled.

» Select user# from Event.

» Enter an Event Id of 20 which is the equivalent of the user event number
40020.

127

Wind River System Viewer
User's Guide, 3.0

5. From Action, select Stop System Viewer Logging.
6. Click GO to download the triggers.

Step 3: Create the User Events
1. Start the shell

2. Create a user event using the trgEvent() routine and the Event Id for the
startWv trigger:

-> trgEvent (40010)

Wind River System Viewer logging starts as soon as this event is created.
3. Click Refresh on Triggering to see that the trigger has fired.

4. Create another user event, in the same manner, but this time using the
Event Id for the stopWv trigger as the routine argument:

-> trgEvent (40020)

Wind River System Viewer logging stops as soon as this event is created.

Triggering stops automatically. Your triggers still remain on the target, but the
triggering function is turned off. If you are using deferred upload mode,
upload your Wind River System Viewer log using the upload button in the
System Viewer Configuration utility.

When you click GO to restart triggering, whatever configuration is currently
in place on the host is downloaded and started. Even if it is the same
configuration that was previously loaded, all triggers are reset as they were
initially. Execution does not continue from where it was when you stopped
triggering.

16.5.4 VxWorks 653 Only: The Action Library Manager

The Action Library Manager utility lets you easily maintain Triggering's target
based action library list. See Action Library (VxWorks 653 only), p.113 for more
information about the Action Library.

The Action Library Manager utility displays the target's action library list in a table
on the utility. The table shows each of the action functions and argument and also
the index of the action in the list.

Actions can be added or removed from the list by using the buttons. On adding an
action, a dialog prompting for the function and argument will be presented. In

128

16 Using Triggering
16.6 Importing Previous Version Trigger Files

order to be able to close the dialog with the OK button both the function and
argument names must exist on the target.

NOTE: The argument provided for the function must be a variable or an address
that contains the information for the function call. For example. the action library
entry doMyFunc 0xbadadd will attempt to call doMyFunc with the value at
address Oxbadadd.

16.6 Importing Previous Version Trigger Files

Trigger files saved by WindView 2x and WindView 3x have different formats to the
current trigger files. Although trigger files from previous versions of Tornado have
a different format to the trigger files currently used, Wind River System Viewer
treats a trigger file generated from Tornado in the same manner as a Wind River
Workbench generated trigger file, and all of the triggering facilities apply.

However, you must import previous version trigger files, and save them in the
current version of System Viewer. To import trigger files from previous versions of
WindView, use the File > Import menu item.

To import previous version trigger files, use the File menu. If you use File > Open,
the parser fails and an Error parsing file message appears.The Import facility
allows you to convert and load old format trigger files. If you import a non
Tornado.x trigger file using the import option or if you use the File > Import to
open a Wind River Workbench generated file, the Trigger Import Error message
appears.

When you import trigger files, the new triggers are created using a name and
number based on the old file. For example, suppose you import from an old trigger
file, tor2.trg which has two triggers. The two triggers are imported and named
tor2.0 and tor2.1.

An imported trigger with an unsupported action or event can be successfully
imported, but it will be marked as invalid and appears in red text. It will remain
invalid until all of the unsupported parameters are corrected.

129

Wind River System Viewer
User's Guide, 3.0

130

17

User Events (VxWorks Family)

17.1 Introduction 131

17.2 User Event Display 132

17.3 The User Events Description File 133
17.4 Validating XML Modifications 144

17.5 Advanced Techniques: Custom Parameter Formatting 145

17.1 Introduction

System Viewer can display user-defined events, generally referred to as User
Events. These are inserted into an event log as the thread of execution on a target
passes over the corresponding customer-inserted instrumentation points.

NOTE: User Events with large data payloads will result in copying large amounts
of data into the System Viewer log. This may impact performance of time-critical
code.

Depending on the version and variant of the VxWorks Target Operating System
(referred to as TOS in following) you use, details on how to add these
instrumentation points will vary as described in documentation for that VxWorks
version and variant. This chapter details how the presentation of these events is
controlled in the System Viewer Log Viewer on a VxWorks family TOS.

131

Wind River System Viewer
User's Guide, 3.0

NOTE: User Events as used by the VxWorks family of operating systems are not to
be confused with Wind River Linux Custom Events. Although the purpose and
output are essentially the same, input and internal handling differ.

17.2 User Event Display

All aspects of the definition of the structure of System Viewer events are
encapsulated in a set of XML files which are specific to each supported TOS. User
Events are no exception to this rule.

Changing the way in which User Events are displayed and decoded will involve
editing these XML files, a process which must be performed with the utmost care.
Injecting errors into an XML file will most likely render System Viewer
inoperative.

A CAUTION: Before changing any XML file shipped with System Viewer, you must
ensure that you create a backup copy of that file and put it in a safe place, outside
the Workbench installation tree. You can use these backup files to restore your
installation to its original, functioning state should the need arise.

There are two levels of customization which can be performed on the display of
User Events simply by editing the appropriate section of the supplied XML for
your chosen TOS:

1. change the displayed icon
2. change the displayed text

In addition, the way in which any encapsulated data is formatted for display may
be changed by writing custom formatters in Java and then making these formatters
available to System Viewer at runtime. This is, however, an advanced technique
which should be used only by experienced Java programmers, see 17.5 Advanced
Techniques: Custom Parameter Formatting, p.145. The default formatter provided in
System Viewer should be sufficient for most needs.

132

17 User Events (VxWorks Family)
17.3 The User Events Description File

17.3 The User Events Description File

Firstly, you will need to know the name and version of the TOS you are running on
your target. In the example below, it is assumed you are using VxWorks 6.4.

17.3.1 Location of the User Events Description File

In your Workbench installation, locate the directory at
installDir/fworkbench-N.N/wrsv/N.N/host/resource/windview/

Below this directory there will be subdirectories for all installed TOS versions.
Locate the VxWorks variant and version which corresponds to your TOS or its
nearest historical predecessor.

For example, for VxWorks 6.4, the XML dictionary definitions may be found at
installDir/fworkbench-N.N/wrsv/N.N/host/resource/windview/VxWorks/6.0

Within that directory, the XML file which defines the structure and display
characteristics of User Events is called user.xml. It is this file which must be edited
(after keeping a backup of the original) in order to modify the way in which User
Events will be displayed.

17.3.2 Structure of the User Events Description File

A\

The outline structure of a System Viewer XML file is fixed and that format must be
adhered to if the file is to be loaded correctly by the System Viewer runtime.

CAUTION: All System Viewer XML files must conform to a strict structure, or they
will fail to parse correctly at runtime, and may render System Viewer inoperative.
Before editing any System Viewer XML file, be sure to put a backup copy of the
original file in a safe place (outside the Workbench installation tree) so that you can
restore it should the need arise.

The structure of the file is as follows:

XML Header
Doctype header

<EventDictionary> // start of top level document element
<EventClass> // start of EventClass element
<EventRangeDecription> // 0 or more EventRangeDescription elements
<EventDescription> // 0 or more EventDescription elements
</EventClass> // end of EventClass element
</EventDictionary> // end of top level document element

133

Wind River System Viewer
User's Guide, 3.0

The formal structure of a System Viewer event dictionary XML file is defined in its
DTD (Document Type Description), which may be inspected at:

installDir/workbench-N.N/wrsv/N.N/host/resource/windview/DTDs/EventDictionary.dtd

CAUTION: Do not edit the above file!

By default, User Events occupy a single block of contiguous Event IDs. The content
of user.xml for any TOS will reflect this in that all the corresponding XML
descriptions of these events are grouped into a single EventRangeDescription
element.

For example, here is the default user.xml file for VxWorks 6.0 (and higher) which
demonstrates the above XML file structure and shows a single
EventRangeDescription element which describes the entire User Event range:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE EventDictionary SYSTEM "../../DTDs/EventDictionary.dtd">
<EventDictionary>
<EventClass
key="user"
displayName="User Events"
helpTopicId="VXWORKS6_user_ CLASS_HELP">
<EventRangeDescription
eventIdStart="40000"
eventIdCount="25536"
nameRoot="EVENT_ USER"
displayNameRoot="user"
nameRootSuffixStart="0"
icon="images/defaultUser.gif"
trigger="true"
helpTopicId="VXWORKS6_EVENT_USER_EVENT HELP"
handler="com.windriver.windview.plugins.wv.vxworks.UserEventDescription">
<EventParam
type="UINT32"
name="pc"
formatStr="0x%08x"/>
<EventParam
type="BLOB"
name="data"
formatter="com.windriver.windview.agnostic.wv.SmartHexAsciiFormatter" />
</EventRangeDescription>
</EventClass>
</EventDictionary>

CAUTION: The EventRangeDescription element encapsulates information about
the entire event range and how it should be displayed, as well as describing the
structure of each event and its parameters. It is vital that the structure of the event
(and the EventParam child elements) remains intact, since they reflect the data
structure that will be created by the instrumentation embedded within the TOS.

134

17 User Events (VxWorks Family)
17.3 The User Events Description File

A CAUTION: The original element defining the User Event range defines the entire
permitted range for User Events (40000-65535 in the example above). Do not, when
editing User Events, stray outside this range.

Description of EventRangeDescription Attributes

Within the EventRangeDescription, the meaning of each attribute is as follows:

eventldStart
the starting EventID for the user event range

eventldCount
the number of user events in the range. Note that in the example above,
eventldStart = "40000" and eventldCount = "25536", meaning that the range of
Event IDs covered is 40000 to 65535 inclusive.

nameRoot
can be any alphanumeric name, but without spaces.

displayNameRoot
used for display of the event

nameRootSuffixStart
can be set to any non-negative integer. It defines the User Event number that
will correspond to the first event in the range. Since, in the default example
above, eventldStart = ""40000", displayNameRoot = "user" and
nameRootSuffixStart = "0", the event with event ID = 40000 will be displayed
as user0; the event with event ID = 40001 will be displayed as userl, and so on.

icon
the path to the icon to be used for the event in the event graph, relative to the
user.xml file.

NOTE: If you design your own icon, please abide by the following guidelines:

* Your icon should be no more than 16 pixels high.

» Use a maximum of 256 colours.

» Use a transparent background.

» Remember that System Viewer can display your icon on either a black or a
white background. Ensure that your icon will show up against both.

135

Wind River System Viewer
User's Guide, 3.0

It is also possible to get System Viewer to generate a default, textual icon on
the fly, in which case no icons need to be designed and placed in your
installation. See Using Textual Icons, p.141.

trigger
"true" or "false" depending on whether System Viewer Triggering can trigger
on events in this range. Normally you would leave this at "true".

helpTopicld
used to link with the Workbench online help system. Can be omitted.

handler
this is the class name of a Java handler which will add funtionality to the
graphical display of the events in this range. The default handler shown will
composite the user event number with the given icon. If this functionality is
not required, the handler attribute may be removed completely.

In the example above, for VxWorks 6.N, there follow two EventParam elements.
The number and type EventParam elements may vary for different VxWorks
versions or variants.

For any EventParam element:

type
do not change the original value!

name
may be changed to any display name you require

formatStr
this is a C-compatible printf format string which will be used to format the
integer value of the parameter. May be changed to any C printf format string
which is valid for an integer.

formatter
whilst this may be changed to name any Java class which implements the
required interface (and is available at runtime), this is an advanced technique
and is best left alone. The default formatter will print the value of any User
Event's payload as ASCII if it contains only ASCII, or as a combined
HEX/ASCII dump if the payload contains any non-ASCII characters.

136

17 User Events (VxWorks Family)
17.3 The User Events Description File

17.3.3 Editing the User Event EventRangeDescription
If you want to change the display characteristics of all User Events, all you have to
to do is to change the attributes of their collective EventRangeDescription.

As described in the previous section, the attributes that may be changed in the
EventRangeDescription are:

= nameRoot
= nameRootSuffixStart

= jcon
» trigger
= handler

And, within the EventParam child elements:

* name
= formatter

17.3.4 Editing a Single User Event, or a Block of User Events

The first step in editing a User Event is to remove the required UserEvent ID (or
block of UserEvent IDs) from the EventRangeDescription. This is done by
splitting the range into two and leaving a "hole" to hold the extracted IDs.

For example, if we want to remove a block of 100 User Events from the range,
starting at EventID=40100, we would replace the original one
EventRangeDescription element with two EventRangeDescriptions, the first
covering the EventID Range 40000-40099 and the second covering the EventID
range 40200-65535. This leaves a hole in the defined Event IDs from 40100 to 40199
(i.e. 100 events).

137

Wind River System Viewer
User's Guide, 3.0

The XML to do this is shown below:

<!-- eventId range 40000-40099 inclusive -->
<EventRangeDescription
eventIdStart="40000"
eventIdCount="100"
nameRoot="EVENT_USER"
displayNameRoot="user"
nameRootSuffixStart="0"
icon="images/defaultUser.gif"
trigger="true"
helpTopicId="VXWORKS6_EVENT_USER_EVENT_HELP"
handler="com.windriver.windview.plugins.wv.vxworks.UserEventDescription">
<EventParam
type="UINT32"
name="pc"
formatStr="0x%08x"/>
<EventParam
type="BLOB"
name="data"
formatter="com.windriver.windview.agnostic.wv.SmartHexAsciiFormatter"/>
</EventRangeDescription>

<!-- there is an event ID gap from 40100-40199 inclusive -->

<!-- eventId range 40200-65535 inclusive -->
<EventRangeDescription
eventIdStart="40200"
eventIdCount="25336"
nameRoot="EVENT_USER"
displayNameRoot="user"
nameRootSuffixStart="200"
icon="images/defaultUser.gif"
trigger="true"
helpTopicId="VXWORKS6_EVENT_USER_EVENT_HELP"
handler="com.windriver.windview.plugins.wv.vxworks.UserEventDescription">
<EventParam
type="UINT32"
name="pc"
formatStr="0x%08x"/>
<EventParam
type="BLOB"
name="data"
formatter="com.windriver.windview.agnostic.wv.SmartHexAsciiFormatter" />
</EventRangeDescription>

In the first block, the EventIdStart remains at 40000 as before, but only covers 100
events, as shown by the new eventldCount. Display numbering in this range will
start from 0 as shown in the nameRootSuffixStart attribute. Thus, for an event
with event ID 40000, the displayed name will be user0.

In the second block, the EventldStart now contains 40200 which is the starting
point of the block defined by this new range. The eventldCount is 25336. The

138

17 User Events (VxWorks Family)
17.3 The User Events Description File

defined range is therefore 40200-63335 (inclusive). The nameRootSuffixStart
attribute has been set to 200, meaning that this range will have a display number
starting at 200. Thus, for an event with event ID 40200, the displayed name will be
user200.

The hole (event IDs 40100-40199 inclusive) may be filled in by producing:
» another EventRangeDescription to cover the entire range

» 100 EventDescription elements to describe each event in the range
individually

* any combination of EventRangeDescriptions and EventDescriptions to fill
the hole exactly

A CAUTION: If any EventDescription elements are used, they must appear after all
the EventRangeDescription elements in the XML file. Failure to observe this
restriction will result in the XML file failing to parse and load.

Inserting a New EventRangeDescription

To fill in the gap using a single EventRangeDescription, you could, for example,
append the following XML:

<!-- eventId range 40100-40199 inclusive -->
<EventRangeDescription
eventIdStart="40100"
eventIdCount="100"
nameRoot="EVENT_ USER"
displayNameRoot="myUserEvent"
nameRootSuffixStart="0"
icon="images/myUserIcon.gif"
trigger="true"
handler="com.windriver.windview.plugins.wv.vxworks.UserEventDescription">
<EventParam
type="UINT32"
name="pc"
formatStr="0x%08x"/>
<EventParam
type="BLOB"
name="data"
formatter="com.windriver.windview.agnostic.wv.SmartHexAsciiFormatter" />
</EventRangeDescription>

This would fill the hole exactly, from Event IDs 40100-40199. The display of the first
event in this range would be myUserEvent0 since we have changed the
displayNameRoot and the nameRootSuffixStart. Also, the icon for the events
would change to that provided in images/myUserlcon.gif, but still suitably

139

Wind River System Viewer
User's Guide, 3.0

decorated with the user event number, because we are still using the default value
in the handler attribute. The helpTopicld attribute has been removed since there
will be no corresponding entry in the Workbench documentation for this new
range of event descriptions.

Inserting New EventDescriptions

Gaps in the [re]defined event range may also be filled using discrete
EventDescription elements. Each of these covers just one event ID and offers the
greatest scope for customizaton of individual events.

As an example, we could fill in the very first event ID in the gap created above with
the following fragment of XML which defines the event for ID 40100:

<!-- This discrete EventDescription is provided for Event ID # 40100 which
has the data structure of a User Event.
The number, order and type of each of the parameters
must be EXACTLY as shown (i.e. EXACTLY as for all other user events),
since this format is dictated by the VxWorks runtime.
Here, the "icon" attribute in the EventDescription has been
modified to point to a user-defined icon for this event.
-—>
<EventDescription i1d="40100"

name="MY_USER_EVENT_O0"

trigger="true"

displayName="My User Event #0"

icon="images/myUserEventOIcon.gif">

<EventParam
type="UINT32"
name="pc"
formatStr="0x%08x"/>

<EventParam
type="BLOB"
name="data"

formatter="com.windriver.windview.agnostic.wv.SmartHexAsciiFormatter"/>

</EventDescription>

Here, event ID 40100 has been defined so that it will display as My User Event #0
and have the custom-supplied icon images/myUserEventOIcon.gif located relative
to the user.xml file. Nothing else has changed.

The remaining bits of the hole created in the user event ID range may be filled with
any combination of EventRangeDescription and EventDescription elements.

NOTE: It is not necessary to fill in the entire range; holes may be left. However, if
a hole is left, you must be sure that your TOS runtime will not emit any events
which correspond to the omitted event IDs, or your log will fail to parse
completely due to missing event descriptions.

140

17 User Events (VxWorks Family)
17.3 The User Events Description File

Using Textual Icons

In System Viewer 4.9 and higher, it is possible to use a different form of the icon
attribute of the EventDescription element to have an icon, optionally coloured,
complete with text, inserted on the fly, without having to manually design images
and save them in your installation. This is a real time-saver.

As seen before, the default form of an EventDescription's icon attribute is
icon="images/myIcon.gif", where the value of the icon attribute is simply the path
to an image file relative to the containing XML file.

NOTE: Path separators in the icon attribute must be a forward slash, regardless of
which host operating system you are using; that is, including Windows.

The Extended Form of the icon Attribute

The extended form of the icon attribute allows for quick creation of new
EventDescriptions, removing the need for manually creating image files.

If you want to use the extended form of the icon attribute, you should not use your
own handler attribute. Rather, you should not insert any handler attribute at all.
This is because the extended functionality is provided by the default Event
Description handler.

Syntax

The extended form of the icon attribute has a formal syntax as follows:

icon="specifier [,specifier]*"
specifier: text=TEXT | color=#RRGGBB | icon=ICON_PATH
where:

TEXT
is the text to be composited into the icon (must not contain an equals or
comma character). If the text specifier is omitted, no text will be
composited on to the icon.

RRGGBB
is the hex Red, Green, and Blue values of the desired color of an
auto-generated icon and any composited text. The format is per HTML
color definitions, with each color component being between 00 and FF
Hex. If the color specifier is omitted, the default color will be used
(#00C0CO, a dark cyan).

141

Table 17-1

Wind River System Viewer
User's Guide, 3.0

ICON_PATH
is the path of a desired icon for compositing, relative to the containing
XML file. If the icon specifier is omitted, a default icon will be generated
on the fly.

The table below summarizes what happens depending on the combination of
specified icon attribute specifiers.

Combinations of icon Attribute Specifiers

text= color= icon= Meaning

No No No No icon, no text

Yes No No Text and default icon, both in default color
No Yes No No text, default icon in specified color

Yes Yes No Text and default icon, both in specified color
No No Yes Specified icon only

Yes No Yes Text in default color, specified icon

No Yes Yes Specified icon only

Yes Yes Yes Text in specified color, specified icon
Examples

1. icon="text=myUserEvent"

Simply creates an icon with the default shape (a small downward facing
triangle), with the given text composited above, both in the default color (dark
cyan).

2. icon="color=#FF0000"
Creates an icon with the default shape in bright red, with no text.
3. icon="text=myUserEvent,color=#00FF00"

Creates an icon with the default shape with text "'myUserEvent" composited
above, both in bright green.

4. icon="icon=images/mylcon.gif"

Uses the supplied icon, with no text. This is equivalent to the non-extended
form of the icon attribute: icon="images/myIcon.gif"

142

17 User Events (VxWorks Family)
17.3 The User Events Description File

5. icon="text=myUserEvent,icon=images/mylIcon.gif"

Composites the given icon and the given text, with the text in the default color
(dark cyan). The icon will be rendered exactly as in the supplied image file.

6. icon="text=myUserEvent,color=#0000FEicon=images/mylcon.gif"

Composites the given icon and the given text, with the text in the given color
(bright blue). The icon will be rendered exactly as in the supplied image file.

So, to redesign our new EventDescription for our User Event with event ID 40100
(as shown above), but using the extended form of the icon attribute, our new
EventDescription element could be as follows:

<EventDescription 1d="40100"
name="MY_TRACE_EVENT_ 0"
trigger="true"
displayName="Trace#0"
icon="text=Trace0">
<EventParam
type="UINT32"
name="pc"
formatStr="0x%08x"/>
<EventParam
type="BLOB"
name="data"
formatter="com.windriver.windview.agnostic.wv.SmartHexAsciiFormatter" />
</EventDescription>

By doing this, instances of the event with event ID 40100 would be shown as
Trace#0 as the displayed event name, and have an icon which looks like a small,

downward pointing, dark cyan triangle with the text Trace0 above it, also in dark
cyan.

17.3.5 Example of a Complete VxWorks 6.N user.xml File

An example of a complete new user.xml file, written specifically for VxWorks 6.N,
is provided as an appendix (see C. VxWorks 6.N user.xml Example File). The example
demonstrates many of the techniques described in this section.

If your TOS is not VxWorks 6.N, you should use the default user.xml file (see
17.3.1 Location of the User Events Description File, p.133) for your TOS as a prototype,
and be sure not to alter the range of user event IDs permitted for that TOS.

143

Wind River System Viewer
User's Guide, 3.0

17.4 Validating XML Modifications

Step 1:

Step 2:

All System Viewer installations come complete with a command line utility that
checks the dictionary XML files for consistency and correctness.

It should be run from a shell in which the correct environment has been set up.

Set up the environment
1. Open a shell (or Windows Command Prompt).
2. Change directory to the root of your Wind River Workbench installation
3. At the prompt, type:
wrenv -p workbench-N.N
where N.N is the version of Wind River Workbench you have installed.

You are now ready to run the wrsv-xmldictcc utility to validate your XML.

Validate your XML files

The syntax of the command for validating your XML files is:
wrsv-xmldictec [-v] [-c] path-to-XML-directory

where

-v = verbose
prints OK after the file name of each XML file tested

-c¢ = check images
also tests for the presence of referenced image files

The wrsv-xmldictcc utility is located in the directory
installDir/workbench-N.N/wrsv/N.N/host/Host Type/bin
where HostType is one of:

= sun4-solaris2 for Solaris hosts
= x86-linux2 for Linux hosts
= x86-win32 for Windows hosts

144

Examples

Example 17-1

Example 17-2

17 User Events (VxWorks Family)
17.5 Advanced Techniques: Custom Parameter Formatting

These examples illustrate how you would use the xmldictcc command line utility
on different hosts and with given Workbench, System Viewer, and TOS versions.

Solaris host, Workbench 2.6, System Viewer 4.9

Workbench installation directory:
luser/fred/wb

XML directory to validate:
/user/fred/wb/workbench-2.6/wrsv/4.9/host/resource/windview/Vxiorks/6.0
The required command is (all in one line):

/user/fred/wb/workbench-2.6/wrsv/4.9/host/sund-solaris2/bin/wrsv-xmldictcc -v
-c /user/fred/wb/workbench-2.6/wrsv/4.9/host/resource/windview/VxWorks/6.0

Windows host, Workbench 2.6, System Viewer 4.9

Workbench installation directory:
C:\wb

XML directory to validate:
C:\wb\workbench-2.6\wrsv\4.9\host\resource\windview\VxWorks\6.0
The required command is (all in one line):

C:\wb\workbench-2.6\wrsv\4.9\host\x86-win32\bin\wrsv-xmldictcc.exe -v -c
C:\wb\workbench-2.6\wrsv\4.9\host\resource\windview\VxWorks\6.0

17.5 Advanced Techniques: Custom Parameter Formatting

A CAUTION: Custom formatting of parameters is an advanced technique which

requires knowledge of Java programming and access to a Java 1.4 SDK.

User Events contain a BLOB parameter which can contain a binary payload in the
event generated by the TOS instrumentation. The Java formatter used in the
default user.xml is:
com.windriver.windview.agnostic.wv.SmartHexAsciiFormatter

which will display the content of the BLOB payload as ASCII if the content consists
entirely of ASCII characters, or as a mixed HEX/ASCII decode if there are any

145

Wind River System Viewer
User's Guide, 3.0

non-ASCII characters in the payload. However, in your own TOS runtime code, it
is possible to construct a binary payload for your User Event which contains a
predefined data structure.

For example, your runtime code may define the following data structure

struct
{
unsigned int fieldl;
unsigned int field2;
unsigned int field3;
} myUserEventPayload;

and have this included as the BLOB payload for your User Event.

It is then possible to write a custom EventParameterFormatter implementation in
Java which understands and appropriately formats the data structure of this
payload, rather than using the standard Hex/ASCII formatter.

For full details on how to write a custom Event Parameter Formatter, please see the
online Wind River System Viewer API documentation provided for the
com.windriver.windview.agnostic.wv.eventlog.EventParameterFormatter
interface. The easiest way to find the relevant documentation is to open the Wind
River Workbench online help and search for:
“eventlog.EventParameterFormatter”

CAUTION: As part of this process, you will need to compile your new Java class
and put it into a Jar file. This must be done with a Java SDK which produces code
that is compatible with Java 1.4. Extensions to the Java language introduced in Java
1.5 (or later) must not be used.

Your Java compilation command line must include the wv.jar Jar file in the
compilation classpath. The wv.jar file is located in

installDirfworkbench-N.N/wrsv/N.N/host/java/lib/

146

18

Configuring VxWorks for
System Viewer

18.1 Introduction 147
18.2 Configuring the Kernel 148
18.3 System Viewer Components 149

18.1 Introduction

This chapter tells you where and how to configure a VxWorks Image Project to
appropriately support System Viewer functionality in Wind River Workbench.

For more information on VxWorks Image Projects and how to configure,
customize, scale, and build a VxWorks kernel image in Wind River Workbench, see
the Wind River Workbench User’s Guide.

For more information on how to configure and build a VxWorks kernel from the
command line, see the VxWorks Command Line Tools User’s Guide. The specific
components you will need to build a kernel with System Viewer instrumentation
are listed in this chapter.

147

Wind River System Viewer
User's Guide, 3.0

18.2 Configuring the Kernel

You add the various System Viewer components using the Kernel Editor.

1. In the Project Navigator, expand your VxWorks Image Project and
double-click the Kernel Configuration node.

2. Inthe Kernel Editor that appears, select the Components tab.

3. Expand development tool components > System Viewer components and
include, as needed (components that are not already included are shown in
pale blue):

— 18.3.1 Basic System Viewer Components, p.149.
- 18.3.2 Upload Method Components, p.149

- 18.3.3 Upload Mode Buffer Components, p.150
- 18.3.4 Timestamping Components, p.150

- 18.3.5 Triggering Components, p.150

- 18.3.6 Network Components, p.150

NOTE: The easiest way to find components in the Kernel Editor is to click into the
window and type CTRL+£. In the Find dialog’s Pattern field, type an asterisk (*)
followed by the first few letters of the component.

4. When you are done, save the new kernel configuration.

5. Build your project.

148

18 Configuring VxWorks for System Viewer
18.3 System Viewer Components

18.3 System Viewer Components

The following lists System Viewer kernel components grouped by functionality.

18.3.1 Basic System Viewer Components

INCLUDE_WINDVIEW
Required to initialize and control logging.

INCLUDE_WINDVIEW_CLASS
Required for kernel instrumentation.

18.3.2 Upload Method Components

Upload method: Socket via TSFS
Required components:

— INCLUDE_WVUPLOAD_TSFSSOCK

Upload method: Socket via TCP/IP
Required components:

— INCLUDE_WVUPLOAD_SOCK

Upload method: File via TSFS
Required components:

- INCLUDE_WVUPLOAD_FILE

Upload method: File via NFS
Required components:

- INCLUDE_WVUPLOAD_FILE
— INCLUDE_NFS
— INCLUDE_NFS_MOUNT_ALL

Upload method: File via netDrv
Required components:

- INCLUDE_WVUPLOAD_FILE

149

Wind River System Viewer
User's Guide, 3.0

18.3.3 Upload Mode Buffer Components

INCLUDE_RBUFF
Supports the System Viewer ring buffer library (recommended as
sufficient if you are new to System Viewer).

INCLUDE_WV_BUFF_USER
Allows you to provide a custom implementation of the rBuff library.

INCLUDE_RBUFF_SHOW
Displays rBuff information and statistics about ring buffer performance.
Optional and only available if you include RBUFF.

18.3.4 Timestamping Components

INCLUDE_SEQ_TIMESTAMP
Supports sequential timestamping (recommended if you are new to
System Viewer)

INCLUDE_USER_TIMESTAMP
Supports user-defined timestamping.

INCLUDE_SYS_TIMESTAMP
Supports BSP-specific timestamping (not supported by the simulator).

18.3.5 Triggering Components

NOTE: If yyou are stripping System Viewer components, do not remove this.
It is a VxWorks component.

INCLUDE_TRIGGERING
Adds support for triggering.

18.3.6 Network Components

INCLUDE_WVNETD
Adds support for dual stack Network Instrumentation (wvNetDLib).

150

19

System Viewer for
Wind River Linux

19.1 Configuring Wind River Linux for System Viewer 151
19.2 Using System Viewer Configuration in Workbench 152
19.3 Custom Events 155

19.1 Configuring Wind River Linux for System Viewer

System Viewer configuration for Linux is, on the whole, the same as for VxWorks.
Configuration features are fully supported and generic tasks work the same way
as on VxWorks. See 3. Configuring a Logging Session and following chapters for
general information in this respect.

System Viewer for Wind River Linux leverages the LTTng project. The Wind River
Linux distribution includes the LTTng patches.

151

Wind River System Viewer

User's Guide, 3.0

19.2 Using System Viewer Configuration in Workbench

The System Viewer Configuration editor’s Configuration tab is used to create
commands that are executed on the target to start and stop tracing.

To create the command-line parameters, configuration is subdivided into separate
categories, each of which provide a known parameter as described below.

19.2.1 Configuration Summary

This provides a full summary of the current System Viewer configuration (not the
configuration of your target system), as well as a copy of the command line, which
you can copy for direct use on the target shell.

19.2.2 Flight Recorder Options

There are three rcording options available.

In normal mode, all information is retained for the duration of logging.

Events collected in flight mode are stored in buffers located in target memory.
The trace data remains in the buffers and is not transferred to a file until
requested. The buffers are re-used when full; as a result only the most recent
events will be in the log.

This mode is particularly useful for debugging a target process. If a process
ends unexpectedly for any reason, you can upload the Flight recorder log to
see the sequence of events leading up to the failure.

In hybrid mode all critical, low rate information (such as process create/exit),
is recorded for the duration of logging; high rate information (system call
events, interrupt events, and so on) are stored in a flight recorder buffer.

19.2.3 Target File System Options

The output directory for storing LTTng target trace files, and the system used when
creating new trace files.

152

19 System Viewer for Wind River Linux
19.2 Using System Viewer Configuration in Workbench

Specify a new name for each trace collected
After every log collection you have to enter a new directory name. The
directory name must not exist on the target. The trace files will remain on the
target until deleted manually.

Add incrementing suffix to target trace name
A unique, sequential number is suffixed to the directory name each time a log
is collected. The trace files will remain on the target until deleted manually.

Overwrite target trace files when collecting a new log
The output directory is re-used, and existing trace files in the directory are
overwritten every time a log is collected.

Append to existing trace
Collected data is appended to the end of the specified trace files. If the trace
files do not exist, new ones will be created.

19.2.4 Buffer Configuration

The number and size of sub-buffers in the target memory used during tracing. If
this option is not selected, default values are used.

NOTE: Choosing 2 buffers of a small size is likely to lead to lost events. To check
for lost event run dmesg(1) on the target. To reduce the risk of losing events either
increase the number of buffers, increase the size of the buffer, or both.

19.2.5 Output Filename

The host directory and filename to save the collected eventlog. The LTTng daemon
collects and saves trace files in the directory you specified in the 19.2.3 Target File
System Options, p.152. These files are then copied from the target to the host.

The trace files are copied from the target and saved in a subdirectory, named in
Output Filename field, of the directory specified in the Directory field. These files
are then converted to single file, in a format which is understood by

System Viewer, and saved to the filename you specified in t he Output Filename
field. If conversion fails, the LTTng files are left in the specified directory.

Output Filename options:

153

Wind River System Viewer
User's Guide, 3.0

Automatically download when logging stops
After log collection stops, copy the LTTng files from the target to the host and
convert to a Wind River System Viewer raw file (.wvr).

Automatically view a downloaded log
Once successful download and conversion is complete, System Viewer
automatically opens the log in the Log Viewer.

Add incrementing suffix to filename
This avoids existing logs being overwritten.

19.2.6 Log Conversion Options

Save the LTTng trace files after conversion to System Viewer format (.wvr). The
default is to delete trace files after conversion.

19.2.7 Module Manager

With System Viewer for Wrlinux 2.0 you can selectively include or exclude
instrumentation types logged by System Viewer. These instrumentation types,
called probes, can either be built into the kernel, or included as modules which are
loadable at run time.

The target Module Manager, which appears as a tab in the
System Viewer Configuration utility, lets you configure which instrumentation
modules to include or exclude for log collection.

The Module Manager tab presents a list of the probe modules the target supports.
Select the probes you want to collect information about during logging, and click
the Update Modules button.

If you suspect that the Module Configuration list might be out of synch with the
modules currently loaded on the target, click the Refresh from target button to
reread the target data and update the list.

NOTE: If there are no probe modules on the target, the module list will be empty
and it will be assumed that all instrumentation is built into the kernel. If there are
modules available and none are loaded, a warning will be given. This warning will
appear even if only some modules are built into the kernel.

154

19 System Viewer for Wind River Linux
19.3 Custom Events

19.3 Custom Events

LTTng can record custom user-defined events that can be displayed in System
Viewer. These are generally referred to as Custom Events. Custom events are
implemented using LTTng markers and probes.

NOTE: Wind River Linux Custom Events are not to be confused with User Events as
used by the VxWorks family of operating systems. Although the purpose and
output are essentially the same, input and internal handling differ.

For more information on LTTng probes and markers see:
kernel-source-dir/Documentation/marker.txt

The above document introduces markers and discusses their purpose. It shows
some usage examples of the Linux Kernel Markers: how to insert markers within
the kernel, and how to connect probes to a marker.

Custom events are provided through a probe called 1tt-probe-kernel-generic: this
module is already part of the kernel and no patching is required. The source to this
module is in kernel-source-dir/ltt/probes/ltt-probe-kernel-generic.c

This LTTng probe defines a number of custom events. Each event takes a
printf-like format string for recording the event-data. The following variations are
provided. Choose one (or more) that best suits the information you want to record.

kernel_generic_string %s
kernel_generic_file_line_msg %s %d %s
kernel_generic_int %d
kernel_generic_int64 %l11d
kernel_generic_uint Y%u
kernel_generic_uint64 Y%llu
kernel_generic_pointer %p
kernel_generic_size_t %zd

kernel_generic_int_x4
kernel_generic_int64_x4
kernel_generic_string_int_x4
kernel_generic_string_int64

%d %d %d %d

%l11d %l1d %I1d %l1d

%s %d %d %d %d

_4%s %l1d %l11d %I11d %I1d

Your functions should make calls to the logging events using the MARK macro.
The macro will then write the supplied event data into the LTTng trace.

155

Wind River System Viewer
User's Guide, 3.0

Example 19-1 Using the MARK macro

/* record a string */
MARK (kernel_generic_string, "%s", "example string");

/* record an integer */
MARK (kernel_generic_int, "%d", INT_MIN) ;

/* record a 64-bit value */
MARK (kernel_generic_int64, "$11d", LLONG_MAX) ;

/* record a pointer value */
MARK (kernel_generic_pointer, "%p", &foo);

/* record the size of some type */
MARK (kernel_generic_size_t, "%$zd", sizeof (1LL));

/* record 4 integer values */
MARK (kernel_generic_int_x4, "%d %d %4 %4d", 1, 2, 3, 4);

/* record a string, followed by 4 integer values. */

MARK (kernel_generic_string int_x4, "%$s %d %d %d %d","my event: ",1,2,3,4);
Once your kernel function has been instrumented, rebuilt, and loaded (using
modprobe) you can collect event data by configuring System Viewer in the normal
way. You should ensure that the Itt-probe-kernel-generic module is selected when
using the graphical user interface. If the probe is not activated then no event data
will be collected; loading the 1tt-probe-kernel-generic module from either the user
interface or using modprobe activates custom events.

NOTE: The code or kernel module containing your MARK macros must be loaded
before the ltt-probe-kernel-generic module. If the ltt-probe-kernel-generic
module is either already loaded, or loaded before your module, then you need to
reload the probe using:

1.rmmod ltt-probe-kernel-generic

2.modprobe ltt-probe-kernel-generic

19.3.1 General Steps for Using Custom Events

The general steps for using custom events are:
1. Add MARK macro to your code
2. Compile and load your code into the kernel.

This assumes your code is a module. If it is built into the kernel then you will
need to reboot.

156

19 System Viewer for Wind River Linux
19.3 Custom Events

3. Start data collection using the user interface. Remember to enable the
Itt-probe-kernel-generic module.

4. Stop data collection and view in System Viewer.

19.3.2 Marker Example Module

An example kernel module (marker-example) is also supplied; this module is built
if LTTng is enabled. This marker-example module provides an example of using
each of the custom events. The marker-example source can be found in:

kernel-source-dir/ltt/marker-example.c
To use and activate this module you need to execute the following;:
1. Enter modprobe marker-example
2. Enter modprobe ltt-probe-kernel-generic
3. Start log collection.
4. Enter cat /proc/marker-example

This executes a function in the marker-example module that exercises all of
the available custom events.

5. Stop log collection.

You can now use System Viewer to view the events recorded by the
marker-example module.

157

Wind River System Viewer
User's Guide, 3.0

158

Programming Data Collection

A.1l Introduction 159

A.2 Instrumenting Objects Programmatically 160
A.3 Adding Eventpoints 168

A.4 Timestamping 171

A.5 Dynamic Buffer Allocation 172

A.1 Introduction

A critical aspect of data collection is managing and controlling the volume of
information you generate in a log as System Viewer allows you to collect a great
deal of information.

At the same time, instrumentation classes allow you to limit data collection either
by limiting the detail you collect, or by limiting detailed data collection to specific
objects. Multiprocessor support and the high-resolution timestamp drivers
contribute to the volume of detailed information that must be stored and
uploaded. The dynamic ring buffer provides a flexible method of balancing the
need to hold large amounts of data for upload to the host and the need to leave the
target applications enough resources to work normally.

159

Wind River System Viewer
User's Guide, 3.0

The routines in wvLib and wvNetDLib provide a much finer level of control over
how events are logged than the GUI tools or the basic wvOn() and wvOf£f()
routines described in 7. Logging and Uploading Data.

Detailed information about the routines and examples of their usage are available
in the VxWorks OS Libraries API Reference; you can also examine the source code in
installDirlvxworks-N.N/target/config/comps/src/usrtWindview.c. These routines
are more complex to use than wvOn() and wvOff(), and the order in which they
are invoked is critical.

A.2 Instrumenting Objects Programmatically

Instrumentation of events is implemented in System Viewer by classes, which are
designated by the logging levels discussed in 4. The Event Logging Level. When you
select AIL level logging in the Event Logging Level Configuration pane, the
libraries taskLib, semLib, msgQLib, and wdLib are selected by default in the
Additional Instrumentation Library Selection checklist. You can modify the
amount of data collected by selecting all libraries, only one library, or any
combination of the listed libraries.

A.2.1 Kernel Libraries

Table A-1

When you select a library in the GUI by checking the library name in the
Event Logging Level Configuration pane, all objects in that library are
instrumented. When you start data collection, events are logged for these objects.

You might be interested in how specific tasks, semaphores, message queues, and
so on interact so target routines are available to instrument individual objects. This
allows you greater precision in collecting only the data you are interested in seeing.

Table A-1 lists the Wind River System Viewer target routines that you can call to
control the instrumentation of particular objects.

System Viewer Instrumentation Routines

Routine Description

wvODbjInst() instrument objects

160

A Programming Data Collection
A.2 Instrumenting Objects Programmatically

Table A-1 System Viewer Instrumentation Routines(Continued)

Routine Description

wvSigInst() instrument signals
wvObjInstModeSet() set object instrumentation level
wvEvtClassSet() set the class of events to log
wvEventInst() instrument VxWorks events
wvNetEnable() begin reporting network events
wvNetEventEnable() instrument specific network events

To instrument individual objects and groups of objects programmatically, call
wvODbjlInst() instead of selecting the library in the

Additional Instrumentation Library Selection checklist. Events that affect these
objects are logged if and when AIL level logging begins.

The wvODbjlInst() routine is declared as follows:

STATUS wvObjInst
(

int objType /* object type: windSemClass, windMsgQClass, */
void * objId /* object ID: specific ID or NULL for all */

/* objects of objType */
int mode /* turn instrumentation on/off:

/* INSTRUMENT ON, INSTRUMENT_ OFF */
)

161

Wind River System Viewer
User's Guide, 3.0

The wvObjlnst() routine sets up instrumentation for objects of the specified type
whether or not they already exist on the target system. To instrument only those
objects that are created after a certain point, use the wvObjInstModeSet() routine.

You can instrument specific objects in taskLib, semLib, msgQLib, and wdLib. You
cannot specify particular signals to instrument within sigLib, either all signals are
instrumented, or none are.

To instrument signals programmatically, call wvSigInst() instead of selecting the
library in the Additional Instrumentation Library Selection checklist. Either
method results in all signals being instrumented.

The wvSiglInst() routine is declared as follows:

STATUS wvSigInst
(

int mode /* turn instrumentation on/off:
/* INSTRUMENT_ON, INSTRUMENT_OFF */
)
To instrument VxWorks events programmatically, call wvEventInst() instead of
selecting the library in the dialog box checklist. Either method results in all signals
being instrumented.

The wvEventInst() routine is declared as follows:

STATUS wvEventInst
(

int mode /* turn instrumentation on/off:
/* INSTRUMENT_ON, INSTRUMENT_OFF */

)
You can start event collection using the GUI, or you can start it programmatically.
The following example code shows how to create a log file on the host, enable
instrumentation of all possible classes, collect VxWorks events, signals, and
network instrumentation data, and start and stop logging.

/**

* wvLogFileUploadStart - create a logfile on the host, and start logging
This routine uses various System Viewer functions to create a log on a
host, to select the required instrumentation, and to start log
collection. It is invoked with a logging level, and the name of the
file to use on the host.

e.g. wvLogFileUploadStart 7, "/tgtsvr/logfile.wvr"

RETURNS: OK, or ERROR

SEE ALSO: wvLogStop ()

L S R . S

162

A Programming Data Collection
A.2 Instrumenting Objects Programmatically

STATUS wvLogFileUploadStart
(

int instClass, /* 1, 3, or 7, for CLASS1, CLASS2,
CLASS3 instrumentation */
char * filename /* logfile name */
)
{
STATUS result;
int f£d;
int n;
if (filename == NULL || instClass == 0)
{

puts ("Usage is:\n ‘'wvLogStart <instLevel> <filename>'\n" \
"where instLevel can be 1, 3 or 7\n");
return ERROR;

remove (filename) ;

/* wvOn uses open() which cannot create a file. So we ensure
the file exists */

fd = open (filename, O_WRONLY, O0);
if (fd == ERROR)

{

fd = creat (filename, O_WRONLY) ;

if (fd == ERROR)
{
logMsg ("Error creating logfile\n",0,0,0,0,0,0);
return ERROR;
}

}

close (fd);

/* Enable instrumentation for all possible classes */

for (n=0; n < sizeof (instClasses) / sizeof (instClasses [0]); n++) n
{
wvObjInst (instClasses [n], NULL, INSTRUMENT_ON) ;
}

/* Enable events, signals and network instrumentation */
wvEventInst (INSTRUMENT_ON) ;

wvSigInst (INSTRUMENT ON) ;

wvNetEnable (8);

result = wvOn (instClass, (int)filename, O_WRONLY, O0);

return result;

}

163

Wind River System Viewer
User's Guide, 3.0

/*
* Stop collection and close the file.
*/

void wvLogStop (void)
{
wvOEfE () ;
}
The wvObjInstModeSet() routine lets you instrument a group of objects
beginning from the time of their creation. This routine is declared as follows:

STATUS wvObjInstModeSet
(
int mode /* turn instrumentation on/off:
/* INSTRUMENT ON, INSTRUMENT_OFF */
)

For example, suppose you are adding a new module to an already existing piece
of code. You might be only interested in the new objects affect the existing
application and you do not want to instrument any other objects. Within the object
initialization code of the new module, you can surround the creation calls with
wvODbjInstModeSet(), as in the following example:

void newCode ()

{

/* enable instrumentation for all objects created here */
status = wvObjInstModeSet (INSTRUMENT_ON) ;

/* create message queue 1 */
mglId = msgQCreate (5, 20, MSG_Q_FIFO);
/* create message queue 2 */
mg2Id = msgQCreate (5, 20, MSG_Q_FIFO);
/* create semaphore 1 */
semlId = semMCreate (SEM_Q_FIFO) ;
/* create task 1 */
tlId = taskSpawn ("taskl", TASK_1_ PRI, TASK 1_OPTS,
TASK_1_SIZE, taskl, 0, 0, O, O, 0, O, O, 0, 0, 0);

/* disable object instrumentation */
status = wvObjInstModeSet (INSTRUMENT OFF)

}

All objects created between the two calls to wvObjInstModeSet() are
instrumented. Events that affect those objects are logged if and when AIL level
logging is started, for example, with the wvEvtLogStart() routine, as in the
following example (which occurs after the newCode() fragment shown above):

164

A Programming Data Collection
A.2 Instrumenting Objects Programmatically

void existingCode ()

{

/* area of existing code where objs from newCode module used */
wvEvtLogStart;

/* send a message to message queue 1 */

status = msgQSend (mglId, &buff, MSG_4, MSG_4_TIMEOUT,
MSG_PRI_NORMAL) ;

/* receive a message from message queue 2 */

numbytes = msgQReceive (mg2Id, &buff, BUFF_SIZE, TICKS);

/* take semaphore 1 */

status = semTake (semlId, SEM_1_TIMEOUT) ;

/* suspend task 1 */

status = taskSuspend (tlId);

/* interesting section finished; stop event logging */
wvEvtLogStop () ;

}

To instrument all objects in the system programmatically, perform the following at
the beginning of your application:

» Call wvODbjlInst() once for each type of instrumented object, with objID set to
NULL to instrument all objects of the specified type, and mode set to
INSTRUMENT_ON. This instruments all objects already created by the
operating system.

» Call wvObjInstModeSet() with the argument INSTRUMENT_ON. This
instruments all objects you may create thereafter.

» Call wvSigInst() with the argument INSTRUMENT_ON.
» Call wvEventInst() with the argument INSTRUMENT_ON.

These programmatic steps have the same effect as starting Wind River
System Viewer with all libraries checked in the GU]I, starting Wind River
System Viewer logging, and starting your application.

For additional insight into the configuration start, stop and upload process, see
installDirlvxworks-N.N/target/config/comps/src/usrWindview.c.

165

Wind River System Viewer
User's Guide, 3.0

A.2.2 Additional Libraries

memLib

wvNetDLib

The data collected by these instrumented libraries is displayed in the usual way:
with icons in the main Event Graph.

Each instrumented library is enabled or disabled as a whole. To control which
libraries are logged, use the Event Logging Level Configuration pane as
described in 4. The Event Logging Level. To control what is displayed in the view
graph, the Filter Events dialog contains an entry for each additional library as
described in 12.2.2 Filter Events, p.81.

The information displayed from this library is slightly different from the
information generated and displayed for events in other libraries. While the event
data generated by memlib can be useful, the critical information is usually the
scalar information generated by the event. For example, the most interesting
information about memory activities is usually how much memory is allocated at
a particular time. For more information, see 9.6 Reading the Memory Usage Analysis
Pack, p.58.

On the host, you can view cumulative information depicting what happens as
allocated memory grows and shrinks in each target partition. You can see the
addresses of memory blocks that get allocated and freed. This simplifies detecting
memory leaks. For details about the information collected for events, the routines
associated with them, and so on, see the Wind River System Viewer User’s Reference:
Event Dictionary.

This library is available at the AIL level of logging, and includes events related to
activity in the dual IPv4/IPv6 stack. As with other instrumented objects, network
events may be instrumented individually or in groups. wvNetDLib events are
grouped according to class and priority.

166

A Programming Data Collection
A.2 Instrumenting Objects Programmatically

Networking vents are also divided into five priority levels, with 1 being the
highest. (VERBOSE, INFORMATION, WARNING, CRITICAL, and FATAL). The
network stack is instrumented for the following event classes:

WV_NETD_IP4_DATAPATH_CLASS
This class is for events that are directly related to IPv4 data transfer.

WV_NETD_IP6_DATAPATH_CLASS
This class is for events that are directly related to IPv6 data transfer.

WV_NETD_IP4_CTRLPATH_CLASS
This class is for events related to IPv4 network stack operations, such as
updating the routing table and handling socket operations.

WV_NETD_IP6_CTRLPATH_CLASS
This class is for events related to IPv6 network stack operations, such as
updating the routing table and handling socket operations.

To instrument network event logging programmatically, use the wvNetEnable()
and wvNetDisable() routines, which start and stop network event logging,
respectively.

To enable Wind River System Viewer instrumentation for network events, you
must include network instrumentation in your VxWorks configuration
(INCLUDE_WVNETD). The start routine takes a single parameter specifying the
minimum priority level you wish to log. Events in both core and auxiliary classes
are logged and if no priority is specified, events for all priority levels are logged.

In general, an instrumented target reports all events having priority greater than
or equal to the selected priority. In addition, the wvNetDLib library contains
routines that give much finer control over networking event logging. For example,
you can explicitly include or exclude individual events whose priorities are lower
than the selected level, explicitly enable or disable other events, and apply filters
to events based on addresses and port numbers.

For more information about logging network events and fine tuning these settings,
see the entry for wvNetDLib in the VxWorks OS Libraries API Reference.

167

Wind River System Viewer
User's Guide, 3.0

A.3 Adding Eventpoints

The e() Routine

You can specify which level of logging to implement, but data is collected only
when events are generated by the instrumented VxWorks kernel and libraries.
Your application will make many calls to VxWorks routines, but sometimes you
will want information on some of your application routines as well. There are two
ways to do this. You can set eventpoints dynamically from the Wind River
Workbench shell with the e() routine, or insert event-generating function calls into

application source code.

The simplest type of user-generated event is the eventpoint, which can be set from
the shell with the e() routine. Eventpoints are analogous to breakpoints; they are
program locations that display the default User event icon when the instruction at

that location executes.

The e() routine has the following syntax:

STATUS e

(

INSTR * addr, /*
/*
/*

event_t eventNo, /*

int taskNameOrId, /*
/*

FUNCPTR evtRtn, /*
/*
/*
/*

int arg /*

)

address to set eventpoint; */
NULL = all eventpoints and */
breakpoints are raised */
event number */

task in which to raise event-
point; 0 = all tasks */
function to be called when */
eventpoint encountered; NULL */
= no function, so eventpoint */
always raised */

argument to evtRtn function */

*/

NOTE: Eventpoints follow the same rules as breakpoints, including the following:
(1) Eventpoints in unbreakable tasks are not executed and thus do not appear in
the Event Graph. (2) Eventpoints cannot be set at interrupt level.

To see how a log looks when you set an eventpoint with e(), follow these steps:

1. To set an eventpoint with an ID of 10 at the address of the sin() routine, click
the Launch Shell button and enter the following:

-> e sin, 10, 0, 0, O
value - 1 = 0x1

2. Click GO to start logging using any event logging level.

168

A Programming Data Collection
A.3 Adding Eventpoints

3. In the shell window, enter the following:

-> sin 1
value = 1 = 0xl

4. Click STOP to stop logging and upload the data.

5. Locate the numeral 10, click, drag, and zoom in over this area of the
Event Graph repeatedly until you see your user event icon with the numeral
10 beside itm which may appear as in Figure A-1.

Figure A-1 Event Graph with User Event

=T T

= E screenshaots 1 swevr (WxNorks :
£ Interrpte2
o tExcTask (Dx3dican)
o 1l ogTask (0x3dd298)
ot Task (0x3316a0)
o 15 (0x3275d0)
o thietTask (0x391248)

= tPortmapd (0x342603)

o tywREUtMar (0x3th3es)

The wvEvent() Routine

The wvEvent() routine provides a generic event function which is always
available and which has more flexibility than e(). The wvEvent() routine is
declared as follows:

STATUS wvEvent
(

event_t eventNo, /* event ID */
char * buffer, /* user-supplied buffer */
size_ t bufSize /* buffer size */

)

169

Wind River System Viewer
User's Guide, 3.0

The wvEvent() routine can be called from unbreakable tasks or from interrupt
level, and is therefore more flexible than the e() routine.

Unbreakable tasks are those that are created with the VX_UNBREAKABLE bit set in
the options argument of the taskInit() or taskSpawn() routine. For example, you
can use user-generated events for error checking, as shown in the following
example:
if (something)
{

. /* run this code */

}
else

. /* we should never get here, but if we do, load any values */
/* of interest into eventlBuff, then log using wvEvent */

return = wvEvent (EVENT_1_ID, &eventlBuff, EVENT_1_BUFSIZE) ;

}
If this event is ever encountered, the defaultUser event icon is displayed in the
Event Graph, with the event number just to the right of the icon. You can
double-click this icon to bring up the Event Properties/Search (filename) dialog,
which shows the timestamp at which the user event occurred, the context in which
it occurred, and the user event number, For more information, see Using the Event
Properties/Search (filename) Dialog, p.73.

If you customize the Event Properties/Search (filename) dialog, you can also
display information held in the user event buffer, the buffer argument to
wvEvent().

To see how a log looks when an eventpoint is raised by wvEvent(), perform the
following:

1. Click GO to start logging using any event logging level.
2. In the shell window, enter the following;:

-> wvEvent (99, 0, 0)
value = 0= 0x0

3. Click STOP to stop logging and upload the data.

170

A Programming Data Collection
A.4 Timestamping

A.4 Timestamping

High-Resolution Timestamp Driver

When you develop your application for a target with a supported timestamp
driver, the instrumented kernel tags certain events with a high-resolution
timestamp. Those events are displayed in the Wind River System Viewer

Event Graph along a timeline that shows when each event occurred, based on the
timestamps. You can see the exact timestamp for any particular event in the status
bar, for example, when you click on the corresponding event icon.

The timestamp driver’s resolution is hardware dependent, but is typically between
100 KHz (10 microseconds per tick) and 1 MHz (1 microsecond per tick). For
information on the system timestamp driver for any supported board, see the
entry for the board in the online VxWorks BSP Reference.

In addition to the WRS-supplied system timestamp, you may choose to write your
own timestamp driver or use the timestamp provided by an emulator. For more
information, see VxWorks Device Driver Developer’s Guide:Timestamp Drivers.

Sequential Timestamp Driver

When the real-time system runs on an unsupported board, or on a supported
board without the timestamp driver, the instrumented kernel automatically uses
its sequential timestamp driver.

The sequential timestamp driver tags events with sequence numbers that simply
represent the order in which events occur on the target. The distance between
events does not reflect any measurement of time.

Figure A-2 shows data captured with the sequential timestamp driver with events
all equidistant from each other. If the same events were captured with a
high-resolution timestamp driver, the distance between events would reflect an
actual passage of time.

171

Wind River System Viewer
User's Guide, 3.0

Figure A-2 Sequential Event Display

Fie “iew EBookmarks Toolz Help
J HE -2 7 JMHighPriDrﬂyEverds =l 6>| U |Q &, QE;: -
|2 ||& &

NNt
1 1 1 1 | 1 1 1 1 I 1 1 1 1 | 1 1 1 1 | 1 1 1 1 | 1 1 1 1 I 1 1 1 1 | 1 1 1 1

1000 2000 3000 |4|

& Evert Graph Evertt Table

=Bl screenshats 3w (Vidtiorks 5.5)
------ A& Timerint

------ J*- InterruptE2

...... W {ExcTazk (Ox3dica)

------ o tLogTask (0x3dd208)

------ B tidhTask (0x3316a0)

...... W 7 (0311120

A.5 Dynamic Buffer Allocation

Wind River System Viewer uses a dynamic ring buffer (rBuff) structure to support
data collection. The rBuffLib library provides a ring buffer structure which grows
and shrinks dynamically during operation. For more information about rBuffLib,
see the VxWorks OS Libraries API Reference.

172

A Programming Data Collection
A.5 Dynamic Buffer Allocation

The size of each individual buffer and the minimum and maximum number of
buffers are configured when the buffer ring is created. The library initially allocates
the minimum number plus one additional buffer for immediate addition to the
ring if necessary. If these buffers are filled, more buffers are added until the ring
reaches the maximum size. If data is read from the rBuff, the unused buffer
memory is freed so that it may be used by other processes.

A.5.1 Configuring the Event Log Buffer

Wind River System Viewer allows you to configure the rBuff which holds the
event log as it is captured and stored on the target. How the rBuff is configured
affects how logging interacts with the target application and thus the quality of the
resulting event log.

The optimum rBuff configuration is dependent on two factors:

* the upload mode
* any constraints on target memory

The configuration of the rBuff has a significant impact on the frequency with
which it is dynamically extended and, consequently, how much of this activity is
represented in the log. Optimum values depend on whether you are using
deferred or continuous upload mode.

In both deferred and continuous modes, the rBuff’s memory requirements are
sourced from the system memory partition, the general partition from which all
malloc requests are sourced. Therefore it is important to consider the size of the
rBuff carefully to ensure that it does not conflict with target application
requirements.

Upload Modes

Deferred Upload

The most effective way to use Wind River System Viewer is in deferred upload
mode. In this mode the event data remains on the target during collection and can
be uploaded to the host once logging is completed. The entire log must be stored
on the target, which potentially requires a large ring buffer. If the system partition
is exhausted to the granularity of one buffer block or if the specified maximum
number of buffers is full, data collection stops. Triggering can be used to focus the
sequence captured, avoiding an unnecessarily large buffer requirement.

173

Wind River System Viewer
User's Guide, 3.0

In deferred upload mode, you may want all available memory to be used to hold
event data. The extendable ring of buffers can share available memory between the
customer application and the buffers. To collect as much event data as possible
within the constraints of the system and application, point the rBuff at the system
memory partition, set the maximum size to infinite by specifying Oxfffftfff, and
recreate the problem. The rBuff starts at the specified minimum size, allowing the
application to allocate memory during initialization, and only begins extending
the buffer when its pre-allocated buffer is full.

The limitation of this approach is that the activity necessary to extend the rBuff
appears in the log. This makes it more difficult to determine exactly how the
system behaves when logging is not active. To avoid the intrusion of buffer
allocation on the log, you can pre-allocate the buffer space by setting the minimum
number of buffers equal to the maximum number of buffers. If you choose this
approach, configure the rBuff with a smaller number of large individual buffers.

Continuous Upload

In continuous upload mode, the data in the log is uploaded to the host periodically
as it is captured. Network activity required to upload the data itself generates
events that appear in the log. In addition, any activity required to resize the rBuff
is reflected in the log. This results in logs which are larger and more complex than
would be required to represent the application activity alone.

In continuous upload mode, you select a minimum and maximum number of
buffers. When an individual buffer is full, data is written to the next buffer. If there
are no more buffers and the current number of buffers is less than the maximum,
anew buffer is added. If a buffer is emptied and the current number is greater than
the minimum, the empty buffer is removed. This implementation is flexible and
dynamic. The collected data can fill all the memory available if necessary and if the
maximum number of buffers specified is that large, but the memory is not reserved
for logging if it is not needed.

The size of the individual buffers is used to determine when to start transferring
the event data to the host. A smaller individual buffer size initiates upload sooner
and more often. As there are variations in the rate at which events are generated
on the target and at which the network and host can achieve upload, the rBuff may
dynamically resize to accommodate the events stored on the target. Using a small
individual size maximizes the possibility of a suitable area of memory being
available to extend the rBuff.

174

A Programming Data Collection
A.5 Dynamic Buffer Allocation

Occasionally, the rBuff is still growing, although data is being uploaded to the
host. This happens when the number of events generated by the upload process is
greater than the number of events being uploaded. This is most likely to occur
when you have specified AIL level logging and instrumented semLib because the
upload implementation generates many semaphore events.

The ability to specify the minimum number of buffers to be retained avoids buffer
thrashing, where the ring is repeatedly extended and shortened as the amount of
data in the buffer crosses a particular threshold. There is nothing special about the
set of buffers that is originally allocated. As the ring of buffers is filled and then
emptied, the initial set is just as likely to be freed as those that are subsequently
allocated to meet demand. In a balanced system, the rBuff is not constantly
resized; the ring of buffers remain at the original size and allows steady upload of
event data.

For these reasons, when using continuous upload mode, configure the rBuff with
a larger number of small sized individual buffers and adjust the minimum number
of buffers if necessary to prevent thrashing.

Post-mortem Mode

In post-mortem mode, Wind River System Viewer automatically configures the
number and size of buffers in the ring. The only configuration step you must take
is to place your buffer in an area of memory that is not overwritten when VxWorks
reboots. For more information, see 5.3 Post-Mortem Upload Modes, p.21.

rBuff Task Priority

The rBuff is managed by the task tWvRBuffMgr. The default priority of this task

is 100. This priority is usually appropriate, particularly when you use either n
deferred upload mode or post-mortem mode. In some environments when you use
continuous upload mode, tWvRBuffMgr is not high enough priority to be able to

expand the number of buffers before they fill. If you find that the rBuff is

overflowing in continuous mode, use wvRBuffMgrPrioritySet() to give

tWvRBuffMgr a higher priority.

175

Wind River System Viewer
User's Guide, 3.0

Target Memory Constraints

If you are using a target configuration with sufficient memory resource to dedicate
a proportion to Wind River System Viewer, the ring of buffers may be configured
such so its individual buffers are pre-allocated. This is achieved by configuring the
minimum number of buffers in the ring equal to the maximum number of buffers.

If you are using a target with limited memory resource, use the ring buffer
dynamic resizing facility. This is done by allocating a low minimum number of
buffers with a greater maximum number of buffers. In deferred mode, only those
buffers required above the minimum, and for which space is available at the time
of request, are allocated. In continuous mode, the buffer only extends above the
minimum when necessary to hold the upload backlog, and those extra buffers are
freed when not in use. When using a dynamically resizing buffer configuration, the
ring buffer will not give up buffers it is holding to satisfy a request for memory
made by another part of the system. Therefore, care should be taken when
specifying the maximum ring buffer size.

When using post-mortem mode, the ring buffer is automatically configured to
make appropriate use of the available memory dedicated to this purpose.

A.5.2 Configuration Tuning

The precise ring buffer configuration used is dependent upon many factors such
as relative host and target performance, network bandwidth, the rate at which the
target application generates events, and the upload method used. Therefore it is
advisable to experiment with the ring buffer and upload configuration if any of
these factors is altered to find a configuration which best suits your development
system.

176

Triggering API

B.1 Introduction 177
B.2 Using the Triggering API Functions 180

B.1 Introduction

Wind River System Viewer provides a triggering API and triggering that works in
conjunction with logging. You can use the triggering interface to enter specific
information and commands, which are then downloaded to the target. Although
this data is usually entered in the triggering interface window, you can enter data
at command line. After this data is received, the target handles the following tasks:

* Organizes the data received from the host in a trigger list.

» Manages the trigger list and sets the flag to activate triggering when necessary.
= Activates and deactivates event triggering.

» Performs the actions requested by the host.

» Interacts with Wind River System Viewer and the event points.

» Saves the information coming from the host in a trigger structure.

When a flag is set, the event can be detected by the regular Wind River

System Viewer instrumentation, e(), or trgEvent(). Once the event occurs, the
ACTION_IS_SET variable is checked to see whether System Viewer
(instrumentation) logging or triggering is active. If triggering is active, the list of
triggers is checked to see if any is related to that event. If one is found, the specified
action is performed. Otherwise, execution continues, as shown in Figure B-1.

177

Wind River System Viewer
User's Guide, 3.0

Macros

The ACTION_IS_SET macro is shared by both logging and triggering, and
regulates the activation and interactions of both logging and triggering. The
process flow is shown in the following pseudocode:

if ACTION_IS_SET
{
if WV_ACTION_IS_SET
do logging
if TRG_ACTION_IS_SET
do triggering
}

Macros that defined the status of a trigger are:

#define TRG_ENABLE 1
#define TRG_DISABLE 0

Macros that define whether the condition is a variable or a function are:

#define TRIGGER_COND_FUNC 0
#define TRIGGER_COND_VAR 1
#define TRIGGER_COND_LIB 2

178

B Triggering API
B.1 Introduction

Figure B-1 Process Followed if Triggering is Activated

s either
logging or
triggering
on?

NO

Logging On? Triggering On?

EXIT NO

Run MACRO s there a trigger?

Is it enabled?

Is it the correct
type of event,

context, &/or
object?

NO Is there a
condition?
Is there an . YES) o
action? - Is it true?
Y NO
Perform
action
. NO Is there a NO
< Disable current hained trigger?
YES
Disable Enable new
trigger trigger Y

|—> EXIT

179

Wind River System Viewer
User's Guide, 3.0

Triggering Structure

The triggering structure is defined as follows:

typedef struct trigger
{

OBJ_CORE objCore; /* trigger object core */

event_t eventId; /* event type */

UINT16 status; /* status of the trigger, */

BOOL disable; /* check if disable after use */

int contextType; /* type of context where event occurs */
UINT32 contextId; /* 1d of context where event occurs */
OBJ_ID objId; /* object type */

struct trigger *chain; /* pointer to chained trigger */

struct trigger *next; /* ptr to next trigger in list */

int conditional; /* check if a condition is set */

int condType; /* check the expression type (var/fn) */
void * condEx1 ; /* ptr to conditional expression */

int condOp; /* conditional operator */

int condEx2 ; /* second operand (constant) */

int actionType; /* type of action (none, fn, 1lib) */
FUNCPTR actionFunc; /* pointer to the action */

int actionArg; /* argument passed to the action */

BOOL actionbDef; /* defer the action */

} TRIGGER;

B.2 Using the Triggering APl Functions

All the operations allowed on triggers, such as create, destroy, enable, and disable,
are handled by the triggering API functions. Because these functions involve many
parameters, using the GUI tools is preferable because it ensures the proper
environment for the construction or modification of a trigger.

The following functions are used to manipulate the triggering structure, to detect
the presence of a trigger, and to perform the action specified in the trigger
definition:

180

B Triggering API
B.2 Using the Triggering APl Functions

Adding a Trigger to the Trigger List
trgAdd() adds a new trigger to the trigger list.

TRIGGER_ID trgAdd
(

event_t event, /* System Viewer event type as defined in
eventP.h */

int status, /* initial status (enabled/disabled) */

int contextType, /* type of context where event occurs */

UINT32 contextId, /* ID (if any) of context where event occurs */

OBJ_ID objId, /* object type, if given */

int conditional, /* flag specifying if there is a condition */

int condType, /* flag specifying variable or a function */

int * condEx1, /* pointer to conditional expression */

int condOp, /* operator (==, !=, <, <=, >, >=, |, &) */

int condEx2, /* second operand (constant) */

BOOL disable, /* flag specifying whether to disable a trigger

/* after it is fired */

TRIGGER *chain, /* flag specifying if trigger is chained */

int actionType, /* action type associated with trigger */

FUNCPTR actionFunc, /* pointer to the function */

BOOL actionDef, /* defer the action */

int actionArg /* argument passed to function if any */

)

{

/* fill in trigger struct and add it to the trigger list; */
/* return the trigger ID */

}

Deleting a Trigger from the Trigger List

Triggers are deleted when they are removed from the trigger list. The function
trgDelete() also checks to see if any other triggers are still active; if none are, but
triggering is still active, it turns triggering off. Triggering introduces some
overhead and should be disabled if no function is present.

STATUS trgDelete
(

TRIGGER_ID trgId n
)

{
/* delete trigger from table; if last trigger, turn triggering off */
}

Activating and Deactivating Triggering

When an event point is hit with triggering active, a check for existing triggers is
performed. Because of this overhead, it is important to activate triggering only
when necessary. These functions activate and deactivate triggering.

181

Wind River System Viewer
User's Guide, 3.0

STATUS trgOn ()
{
/* set evtAction to TRG_ACTION_IS_SET if not already set */
}

void trgOff ()
{
/* set evtAction to TRG_ACTION_IS_UNSET if it is on */
}

Showing Information on Triggers

The following information is given: trigger ID, event ID, status, condition, disable
trigger, and chained trigger. If options is 1 and trgld is specified, all parameters are
shown for the specified trigger. If trgld is NULL all the triggers are shown.

STATUS trgShow
(
TRIGGER_ID trgId,
int options
)
{
/* display information on specified trigger or on all triggers */

}

Changing Trigger Status

trgEnable() sets the status of an existing trigger. This is the mechanism used to
activate a chained trigger. A counter is also incremented to keep track of the total
number of currently enabled triggers. This information is used by trgDisable().

STATUS trgEnable
(
TRIGGER_ID trgId
)
{
/* enable trigger unless max number of triggers is already enabled */

}

trgDisable() is used to disable a trigger. This function also checks to see if there are
any other triggers still active. This is done through the counter trgCnt. If trgCnt is
0 and triggering is still on, it calls trgOff().

STATUS trgDisable
(
TRIGGER_ID trgId
)
{
/* turn off trigger; if last active trigger, turn triggering off */

}

182

B Triggering API
B.2 Using the Triggering APl Functions

Creating a User Event to Fire a Trigger

trgEvent() triggers a user event. A trigger must exist and triggering must have
been started with trgOn() or from the triggering GUI to use this routine. The evtld
must be in the range from 40000 to 65535 on VxWorks-family Target Operating
Systems, or from 4096 to 4351 on Wind River Linux.

void trgEvent
(
event_t evtId /* event*/
)
{
/* set a user event with the specified ID */

}

183

Wind River System Viewer
User's Guide, 3.0

184

VxWorks 6.N user.xml
Example File

C.1 Introduction 185
C.2 VxWorks 6.N user.xml Example File 186

C.1 Introduction

This appendix shows an example of a complete new user.xml file, written
specifically for VxWorks 6.N. The example demonstrates many of the techniques
described under 17.3 The User Events Description File, p.133. Explanations, where
required, are provided in embedded comments.

If your Target Operating System (TOS) is not VxWorks 6.N, you should use the
default user.xml file (see 17.3.1 Location of the User Events Description File, p.133) for
your TOS as a prototype, and be sure not to alter the range of user event IDs
permitted for that TOS.

185

Wind River System Viewer
User's Guide, 3.0

C.2 VxWorks 6.N user.xml Example File

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE EventDictionary SYSTEM "../../DTDs/EventDictionary.dtd">
<EventDictionary>
<EventClass
key="user"
displayName="User Events"
helpTopicId="VXWORKS6_user_ CLASS_HELP">

<!-- eventId range 40000-40099 inclusive,
This i1s just as per the default user.xml, but with a reduced range
-——>
<EventRangeDescription
eventIdStart="40000"
eventIdCount="100"
nameRoot="EVENT_USER"
displayNameRoot="user"
nameRootSuffixStart="0"
icon="images/defaultUser.gif"
trigger="true"
helpTopicId="VXWORKS6_EVENT_USER_EVENT_HELP"
handler="com.windriver.windview.plugins.wv.vxworks.UserEventDescription">
<EventParam
type="UINT32"
name="pc"
formatStr="0x%08x"/>
<EventParam
type="BLOB"
name="data"
formatter="com.windriver.windview.agnostic.wv.SmartHexAsciiFormatter" />
</EventRangeDescription>

<!-- eventId range 40100-40199 inclusive
This range has been extracted in order to change the display
characteristics. The range will be displayed starting with
"myUserEvent0" and use a custom icon which must be located in
"images/myUserIcon.gif" relative to the location of this XML file.
Since the "handler" attribute is included as shown, the user event
number (starting at the the number defined in "nameRootSuffixStart")
will be composited with the given icon.
—-——>
<EventRangeDescription
eventIdStart="40100"
eventIdCount="100"
nameRoot="EVENT_USER"
displayNameRoot="myUserEvent"
nameRootSuffixStart="0"
icon="images/myUserIcon.gif"
trigger="true"
handler="com.windriver.windview.plugins.wv.vxworks.UserEventDescription">

186

C VxWorks 6.N user.xml Example File
C.2 VxWorks 6.N user.xml Example File

<EventParam

type="UINT32"

name="pc"

formatStr="0x%08x"/>
<EventParam

type="BLOB"

name="data"
formatter="com.windriver.windview.agnostic.wv.SmartHexAsciiFormatter" />

</EventRangeDescription>

<!-- leaving a gap here for eventIDs 40200-40201 inclusive. These will
be completed using discrete UserEventDescriptions which must appear
after all the defined EventRangeDescriptions.

-—>

<!-- eventId range 40202-65535 inclusive
This range is the remainder of the original user event definition.
It starts at EventID 40202 and continues for the remaining 25334
events taking us up to EventID 65535. The range will have a display
name starting with "user202".
-—>
<EventRangeDescription
eventIdStart="40202"
eventIdCount="25334"
nameRoot="EVENT_ USER"
displayNameRoot="user"
nameRootSuffixStart="202"
icon="images/defaultUser.gif"
trigger="true"
helpTopicId="VXWORKS6_EVENT USER_EVENT_HELP"
handler="com.windriver.windview.plugins.wv.vxworks.UserEventDescription">
<EventParam
type="UINT32"
name="pc"
formatStr="0x%08x"/>
<EventParam
type="BLOB"
name="data"
formatter="com.windriver.windview.agnostic.wv.SmartHexAsciiFormatter" />
</EventRangeDescription>

<!-- This is the end of the EventRangeDescriptions. There now follow

any discrete EventDescriptions to fill in holes.
-—>

187

Wind River System Viewer
User's Guide, 3.0

<!-- eventID 40200. Uses the extended icon attribute format.
Displayed event name will be "Trace#0".
Will have the default, auto-generated icon in the default color.
The text "TraceO0" will be composited above the icon, also in the
default color.
-—>
<EventDescription 1d="40200"
name="MY_TRACE_EVENT 0"
trigger="true"
displayName="Trace#0"
icon="text=Trace0">
<EventParam
type="UINT32"
name="pc"
formatStr="0x%08x"/>
<EventParam
type="BLOB"
name="data"
formatter="com.windriver.windview.agnostic.wv.SmartHexAsciiFormatter"/>
</EventDescription>

<!-- eventID 40201. Uses the extended icon attribute format.
Displayed event name will be "Trace#1l".
Will have the default, auto-generated icon in bright red.
The text "Tracel" will be composited above the icon, also in
bright red.
-—>
<EventDescription id="40201"
name="MY_TRACE_EVENT 1"
trigger="true"
displayName="Trace#1"
icon="text=Tracel, color=#FF0000">
<EventParam
type="UINT32"
name="pc"
formatStr="0x%08x"/>
<EventParam
type="BLOB"
name="data"
formatter="com.windriver.windview.agnostic.wv.SmartHexAsciiFormatter" />

</EventDescription>

</EventClass>
</EventDictionary>

188

A

ACTION_IS_SET macro 178
aggregate usage analysis 101

AIL (additional instrumentation logging level) 160

all events Radar mode 69
analysis pack panel 50

analysis suite 97

analysis, aggregate usage 101
analysis, system load 101
analysis, time ready 103
analysis, time running 102
analysis, usage 100

architecture of System Viewer 4
automatic upload 33

auxiliary clock, and timestamping 89

bookmarks
context menu 78
creating 75
display appearance 75
and events 75
navigating between 78
and Radar 76
and timestamps 75
and timestamps, changing 78

Index

visibility 76
boot loader 23
buffering 26
bufffer thrashing 30

C

chaining
conditional triggers 118
triggers for logging 121
clock
auxiliary, and timestamping 89
system, and timestamping 89
collecting data, see event logging

column information, in event table 56

components,remomoving 7

condition, using a function as, for triggering 124

configuration 40
configure
upload mode 17
configuring
timestamping 89
vxworks 147
context menus
event distribution 87
event graph 84
event table 86
using 79

189

Wind River System Viewer
User's Guide, 3.0

Context State Information dialog 85
continuous upload mode 18
buffer thrashing 30
and ring buffers 174
tWvRBuffMgr task priority, setting 175
upload failure 29
core dump, vwxorks log upload 42
CPU usage analysis 100
custom events, wind river linux 155

D

data
collecting 39
display, see viewing utility
displaying data events 87
logging 39
uploading 39
defaultUser event
see also event, eventpoints
e(), using 168
wvEvent(), using 169
deferred upload mode 18
dynamic ring buffers 173
defining
triggers 109
dialog
Context State Information 85
Log Properties 83
State Summary 83
display
changing the selected range 64
filtering options 80
domains
setting triggers for 110
doployment 7
downloading triggers 114

E

e() 168
errors in log files, and warnings 47

190

event
see also events
cursor, using 72
custom, see wind river linux
custom events
dictionary
accessing online 87
extending 87
event container tree 49
and view graph 53
event distribution
context menu 87
display, reading 58
event function, generic 169
event graph 52
context menu 84
event container tree 53
legend icons 54
measurement markers 54
reading 52
status bar 53
event intensity Radar mode 70
Event Properties/Search (filename) dialog
search criteria 73
using 73
Event Receive utility
upload options 37
event table
column information 56
context menu 86
reading 54
text pane and printing 57
eventLog.wvr log file, default name 37
eventpoints 168
e(), setting with 168
wvEvent(), setting with 169
icons 49
logging 159
application routines 168
memory usage 166
programming 159
sequential timestamping 171
timestamping 171
properties/search (filename) dialog 170
receive 37

table, and event container tree 57

user, see user events (vxworks family)
events

see also event

and bookmarks 75

defined 13

finding and marking 71

user, for starting and stopping System

Viewer 127

F

file system location,logs 33
File via netDrv
components 149
File via NFS
components 149
File via NFS upload method 36
File via TSFS
components 149
File via TSFS upload method 35
filename, .trig extension for triggers 114
functions
call function used in triggering 126
using as a triggering condition 124
using with triggering 124

H

host, remote 37

INCLUDE_NFS 149
INCLUDE_NFS_MOUNT_ALL 149
INCLUDE_RBUFF 150
INCLUDE_RBUFF_SHOW 150
INCLUDE_SEQ_TIMESTAMP 150
INCLUDE_SYS_TIMESTAMP 150
INCLUDE_TRIGGERING 150
INCLUDE_USER_TIMESTAMP 150

Index

INCLUDE_WINDVIEW 149
INCLUDE_WINDVIEW_CLASS 149
INCLUDE_WVUPLOAD_FILE 149

kernel components
upload method file via netDrv
WVUPLOAD_FILE 149

INCLUDE_WVUPLOAD_SOCK 149
INCLUDE_WVUPLOAD_TSFSSOCK 149
INSTRUMENT_ON 165
instrumentation, removing 7
instrumenting 160

individual objects and groups 161
libraries, overview 160
memlLib library 166
netLib library 166
objects
from creation time 164
programmatically 160
routines 160
signals, programmatically 162

interrupts

K

transitions, hiding 85

kernel components

timestamping
INCLUDE_SEQ_TIMESTAMP 150
INCLUDE_USER_TIMESTAMP 150
triggering
INCLUDE_TRIGGERING 150
upload method file via NFS
INCLUDE_NFS 149
INCLUDE_NFS_MOUNT_ALL 149
INCLUDE_WVUPLOAD_FILE 149
upload method file via TSFS
INCLUDE_WVUPLOAD_FILE 149
upload method socket via TCP/IP
INCLUDE_WVUPLOAD_SOCK 149
upload method socket via TSFS

INCLUDE_WVUPLOAD_TSFSSOCK 14

9
upload mode
INCLUDE_RBUFF 150

191

Wind River System Viewer
User's Guide, 3.0

INCLUDE_RBUFF_SHOW 150
INCLUDE_WV_BUFF_USER 150
kernel componoents
basic
INCLUDE_WINDVIEW 149
INCLUDE_WINDVIEW_CLASS 149
kernel componts
timestamping
INCLUDE_SYS_TIMESTAMP 150
kernel configuration 147
kernel libraries 160
instrumenting 160

L

legend icons, of event graph 54

linux, windriver 151
buffer configuration 153
configuration summary 152
configuring for system viewer 151
custom events 155
flight recorder option 152
log conversion options 154
output filename 153
system viewer configuration 152
target file system options 152

log files
default name, eventLog.wvr 37
errors and warnings 47
loading and reading 45
opening manually and automatically 45
saving 47

Log Properties dialog 83

logging 39
chaining triggers for 121
control with System Viewer API 41
start 39

with System Viewer Configuration
utility 40

logging, premature stop 28

logs, file system location 33

LTTng 151
custom events 155

192

M

measurement markers, on event graph 54
memlLib library

logging information 166

routines associated with events 166
memory

leaks, and detection 60

memory analysis pack 60

usage, and event logging 166

usage, and ring buffers 176
memory analysis pack

reading 58
Memory Read upload method 32
message queues, instrumenting 160
mode upload 17
module manager 154
msgQLib, instrumenting specific objects 162

N

NFS 149
NFS_MOUNT_ALL 149
no Radar mode 70

(0

objects, instrumenting
programmatically 160

P

peak activity Radar mode 70
post-mortem mode
ring buffers, dynamic, effecton 175
typical configuration 24
post-mortem upload 24
post-mortem upload (using pmLib) 25
post-mortem upload mode 21
printing

Index

from event table 57 semLib library, instrumenting specific objects 162
probe 154 SEQ_TIMESTAMP 150
programming SEQ_TIMESTAMP component 90

event logging 159 sequential timestamp driver 171

instrumenting objects 160 setting

Event Cursor 72
socket connection 37
R socket via TCP/IP upload method 35
Socket via TSFS
components 149
socket via TSFS upload method 35
Socket via TSFS, components 149
starting
logging, with the System Viewer Configuration
utility 40
System Viewer

Radar
all events mode 69
changing selected range 64
event intensity mode 70
no Radar mode 70
peak activity mode 70

using 63 .
with user events 127

lelifF26150 state stipples 49
rou State Summary dialog 83
RBUFF_SHOW 150 status
rBungb 42 event graph status bar 53
readmng icons for triggers 115

event distribution stopping

cthsplai/l gg System Viewer, with user events 127
event grap SYS_TIMESTAMP 150

event table 54
log files 45
memory analysis pack 58
timestamping 89
remote host, socket connection 37
ring buffer 26

SYS_TIMESTAMP component 90
system clock, and timestamping 89
system load analysis 101

ring buffers T
dynamic
target memory limitations, handling 176 target
tWvRBuffMgr task priority, setting 175 routines, instrumenting objects 160
management task (tWvRBuffMgr) 175 Target Server File System (TSFS)
routines, instrumenting, see instrumenting routines uploading to a file 35

taskInit() 170

taskLib library, instrumenting specific objects 162
S tasks
instrumenting 160

. spawning 170
Savine tWvRBuffMgr 175
log files - 47 unbreakable 170

triggers . 114 . taskSpawn() 170
semaphores, instrumenting 160 TCP/IP upload method 35

193

User's Guide, 3.0

text pane, of event table 57
thrashing 30
ticks, and timestamps 89
time ready analysis 103
time running analysis 102
timestamping
see also timestamps
high resolution 171
reading and configuring 89
sequential timestamp driver 171
timestamps
see also timestamping
and bookmark definitions 75
changing for bookmarks 78
custom drivers 91
driver resolution, high-resolution
timestamping 90
SEQ_TIMESTAMP component 90
sequential timestamping 90
SYS_TIMESTAMP component 90
ticks 89
USER_TIMESTAMP component 91
transition lines, hiding 85
TRG_DISABLE 178
TRG_ENABLE 178
trgEvent() example 127
Arig trigger filename extension 114
TRIGGER_COND_FUNC 178
TRIGGER_COND_LIB 178
TRIGGER_COND_VAR 178
TRIGGERING 150
triggering
see also triggers
API 177
call function used as an action 126
controlling logging 105
function used as a condition 124
getting started with 106
process explained 177
sample code 106
trigger status icons 115
using 105
triggers
see also triggering
API usage

194

Wind River System Viewer

activating triggers 181
adding triggers 181
changing status 182
deactivating 181

deleting triggers 181
displaying information 182

user events, creating trigger-related 183

chaining for logging 121

conditional, chaining 118

counting, for 112

creating and running samples 116

defining and using 109

downloading and running 114

logging examples 127

"no action," specifying 112

saving 114

specifying domain 110

statusicons 115

triggered actions, specifying 112

using functions with triggering 124
troubleshooting 26

buffer thrashing 30

logging stops 28

upload failure, continuouse mode 29
TSFS upload method, socket 35
tWvRBuffMgr, priority setting 175

U

upload
data 39
mode

ring buffers, effect on dynamic 173

Upload Method pane 31
upload failure 29
upload failure, continuous upload mode 29
upload methods
File via NFS 36
File via TSFS 35
Memory Read 32
socket via TCP/IP 35
socket via TSFS 35
upload mode 17
buffering 26

continuous 18
deferred 18
post-mortem 21,24
post-mortem upload (using pmLib) 25
troubleshooting 26
user events (vxworks family) 131
advanced techniques 145
description file 133
display 132
user.xml 133
user.xml example file for vxworks 6.N 185
validate xml 144
USER_TIMESTAMP 150
USER_TIMESTAMP component 91
user-defined events, triggering, for 183
using
context menus 79
display filtering 79
Event Cursor 72
Event Properties/Search (filename) dialog 73
File via NFS upload method 36
File via TSFS upload method 35
functions with triggering 124
memory analysis pack 60
Memory Read upload method 32
Radar 63
System Viewer API to control logging 41
the System Viewer Configuration utility 40
triggers 109
Upload Method pane 31
viewing tools 51

\'}

validating triggers, with variables 114
variables

defining to validate triggers 114
view graphs

event data, summarizing 87

sequenced events, displaying 171

timestamped events, displaying 171
viewing

tools, using 51

utility explained 47

Index

VX_UNBREAKABLE 170
vxworks
configuring 147
core dump log upload 42
user event see user events (vxworks family)

W

warnings, and log files 47
watchdog timers, instrumenting 160
wdLib, instrumenting specific objects 162
wind river linux
buffer configuration 153
configuration summary 152
configuring for system viewer 151
custom events 155
flight recorder option 152
log conversion options 154
output filename 153
system viewer 151
target file system options 152
WINDVIEW 149
WINDVIEW_CLASS 149
WV_BUFF_USERINCLUDE_WV_BUFF_USER 15
0
wvEvent() 169
wvLib 42
wvNetDLib 42
wvObijlnst() 161
wvObjlnstModeSet() 164
wvOff() 41
wvOn() 41
wvRBuffMgrPrioritySet() 175
WVUPLOAD_FILE 149
WVUPLOAD_SOCK 149
WVUPLOAD_TSFSSOCK 149

X

xml, validate 144

195

	Wind River System Viewer User's Guide, 3.0
	Contents
	1 Overview
	1.1 What Is Wind River System Viewer?
	1.1.1 What Does System Viewer Output Look Like?

	1.2 System Viewer Tools
	1.2.1 Accessing System Viewer Tools

	1.3 System Viewer Architectural Overview

	2 Preparation and Distribution
	2.1 Introduction
	2.2 The VxWorks Image Project
	2.2.1 Kernel Configuration

	2.3 Host/Target Communication
	2.4 Preparing for Distribution

	3 Configuring a Logging Session
	3.1 Configuration Workflow
	3.2 Beyond the Basics
	3.3 General Notes

	4 The Event Logging Level
	4.1 What is an Event?
	4.2 What is an Event Logging Level?
	4.2.1 Which Level Do I Select?

	5 The Upload Mode
	5.1 Upload Mode Configuration: General Considerations
	5.2 Deferred Upload Or Continuous Upload?
	5.2.1 Deferred Upload
	5.2.2 Continuous Upload
	5.2.3 Configuration Options: Deferred Upload and Continuous Upload

	5.3 Post-Mortem Upload Modes
	5.3.1 Using Post Mortem for Non-Fatal Problems
	5.3.2 Preparation: Kernel Configuration for Post-Mortem Upload
	5.3.3 Rebuild the Kernel and the Boot Loader
	5.3.4 Post-Mortem Upload Mode
	5.3.5 Post-Mortem Upload (using pmLib)
	5.3.6 Post-Mortem Upload: General Notes

	5.4 Troubleshooting Upload Modes
	5.4.1 The Ring Buffer
	5.4.2 Symptoms and Solutions

	6 The Upload Method
	6.1 The Upload Method
	6.1.1 Upload Method Selection Errors

	6.2 Using the Memory Read Upload Method
	6.3 Using TSFS Upload Methods
	6.4 Automatic Upload of Logs
	6.5 Socket Via TSFS and Socket Via TCP/IP Configuration
	6.6 File Via TSFS
	6.7 File Via NFS
	6.8 File Via netDrv
	6.9 The Event Receive Utility

	7 Logging and Uploading Data
	7.1 Start Logging
	7.2 The Configuration Editor Log Manager
	7.3 Using System Viewer API to Control Logging
	7.4 VxWorks Core Dump Log Upload

	8 Log Viewer: Loading Log Files
	8.1 Introduction
	8.2 Opening Logs
	8.2.1 Load Progress Dialog
	8.2.2 Errors and Warning Messages on Opening Log Viewer

	8.3 Exporting Log Files
	8.4 Introducing the Log Viewer
	8.4.1 Basic Components

	9 Log Viewer: Viewing Tools
	9.1 Introduction
	9.2 Reading the Event Graph
	9.3 Reading the Event Table
	9.4 Reading the Search Results Table
	9.5 Reading the Event Distribution Display
	9.6 Reading the Memory Usage Analysis Pack
	9.6.1 To Open the Memory Usage Analysis Pack

	10 Log Viewer: Using the Radar
	10.1 Introduction
	10.2 Changing the Selected Range Using the Radar
	10.2.1 Moving the Selected Range with the Mouse
	10.2.2 Defining a New Selected Range with the Mouse
	10.2.3 Defining a New Selected Range Using the Select Range Dialog
	10.2.4 Zooming the Selected Range
	10.2.5 Using Measurement Markers
	10.2.6 Nudging and Paging the Selected Range
	10.2.7 Moving the Selected Range Between Markers
	10.2.8 Undoing and Redoing the Range Selection

	10.3 Using Radar Modes
	10.3.1 All Events Radar Mode
	10.3.2 Peak Activity Radar Mode
	10.3.3 Event Intensity Radar Mode
	10.3.4 No Radar Mode

	11 Log Viewer: Finding and Marking Events
	11.1 Introduction
	11.2 Using the Event Cursor
	11.2.1 Setting the Event Cursor

	11.3 Using Bookmarks
	11.3.1 Creating Bookmarks
	11.3.2 Using the Bookmark Maintenance Dialog
	11.3.3 Using the Bookmark Context Menu
	11.3.4 Changing a Bookmark’s Timestamp
	11.3.5 Navigating Between Bookmarks

	12 Log Viewer: Display Filtering and Context Menus
	12.1 Introduction
	12.2 Display Filtering Options
	12.2.1 Hide and Show Containers
	12.2.2 Filter Events

	12.3 Container Tree Context Menu
	12.3.1 Context Menu Items

	12.4 Event Graph Context Menu
	12.5 Event Table Context Menu
	12.5.1 Table Pane Context Menu
	12.5.2 Column Headings Context Menu

	12.6 Event Distribution Context Menu
	12.7 Event Dictionary Online Help
	12.7.1 Accessing the Event Dictionary

	13 Log Viewer: Timestamps
	13.1 Introduction
	13.1.1 Timestamp Ticks
	13.1.2 High-Resolution Timestamping
	13.1.3 Sequential Timestamping
	13.1.4 Custom Timestamp Drivers

	14 Log Viewer: Visualizing Multicore Systems
	14.1 Debugging Multicore Systems in the Log Viewer
	14.2 Visualization of Multicore Behavior
	14.2.1 Customizing the Visualization

	14.3 Searching and Filtering by Core Number

	15 Analysis Suite Views
	15.1 Introduction
	15.2 Opening Logs in Analysis Suite Views
	15.2.1 Synchronizing Analysis Views

	15.3 The System Viewer Analysis Suite in General
	15.3.1 The Analysis View Overview Panel
	15.3.2 The Analysis View Data Panel

	15.4 The Analysis Views in Particular
	15.4.1 CPU Usage Analysis
	15.4.2 Aggregate CPU Usage Analysis
	15.4.3 System Load Analysis
	15.4.4 Time Running Analysis
	15.4.5 Time Ready Analysis

	16 Using Triggering
	16.1 Introduction
	16.2 Getting Started
	16.2.1 To Create a Trigger
	16.2.2 Using Sample Trigger Files

	16.3 Using Triggering
	16.3.1 Menu and Toolbar Options
	16.3.2 Columns in the Trigger Utility
	16.3.3 Using the Trigger Maintenance Utility
	16.3.4 Saving Triggers
	16.3.5 Defining Variables to Validate Triggers
	16.3.6 Downloading and Running Triggers

	16.4 Creating and Running the Sample Triggers
	16.4.1 Simple Conditional Trigger Example
	16.4.2 Chaining Simple Conditional Triggers Example
	16.4.3 Chaining Triggers for System Viewer Logging Example

	16.5 Using Functions with Triggering
	16.5.1 Using a Function as a Condition
	16.5.2 Writing a Call Function as an Action
	16.5.3 Starting and Stopping System Viewer with User Events
	16.5.4 VxWorks 653 Only: The Action Library Manager

	16.6 Importing Previous Version Trigger Files

	17 User Events (VxWorks Family)
	17.1 Introduction
	17.2 User Event Display
	17.3 The User Events Description File
	17.3.1 Location of the User Events Description File
	17.3.2 Structure of the User Events Description File
	17.3.3 Editing the User Event EventRangeDescription
	17.3.4 Editing a Single User Event, or a Block of User Events
	17.3.5 Example of a Complete VxWorks 6.N user.xml File

	17.4 Validating XML Modifications
	17.5 Advanced Techniques: Custom Parameter Formatting

	18 Configuring VxWorks for System Viewer
	18.1 Introduction
	18.2 Configuring the Kernel
	18.3 System Viewer Components
	18.3.1 Basic System Viewer Components
	18.3.2 Upload Method Components
	18.3.3 Upload Mode Buffer Components
	18.3.4 Timestamping Components
	18.3.5 Triggering Components
	18.3.6 Network Components

	19 System Viewer for Wind River Linux
	19.1 Configuring Wind River Linux for System Viewer
	19.2 Using System Viewer Configuration in Workbench
	19.2.1 Configuration Summary
	19.2.2 Flight Recorder Options
	19.2.3 Target File System Options
	19.2.4 Buffer Configuration
	19.2.5 Output Filename
	19.2.6 Log Conversion Options
	19.2.7 Module Manager

	19.3 Custom Events
	19.3.1 General Steps for Using Custom Events
	19.3.2 Marker Example Module

	A Programming Data Collection
	A.1 Introduction
	A.2 Instrumenting Objects Programmatically
	A.2.1 Kernel Libraries
	A.2.2 Additional Libraries

	A.3 Adding Eventpoints
	A.4 Timestamping
	A.5 Dynamic Buffer Allocation
	A.5.1 Configuring the Event Log Buffer
	A.5.2 Configuration Tuning

	B Triggering API
	B.1 Introduction
	B.2 Using the Triggering API Functions

	C VxWorks 6.N user.xml Example File
	C.1 Introduction
	C.2 VxWorks 6.N user.xml Example File

	Index

