WIND RIVER

Wind River Workbench

USER’S GUIDE

3.0

VxWorks Version

Copyright © 2007 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, the Wind River logo, Tornado, and VxWorks are registered trademarks of
Wind River Systems, Inc. Any third-party trademarks referenced are the property of their
respective owners. For further information regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDirlproduct_name/3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
US.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:
http://www.windriver.com
For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

Wind River Workbench User’s Guide, 3.0 (VxWorks Version)

19 Nov 07
Part #: DOC-16055-ND-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

Contents

PART I: INTRODUCTION

1 L0 L= T 3
1.1 Introduction 3
1.2 Wind River Documentation 4
1.3 Road Map to the Wind River Workbench User’s Guide 4

1.4 Understanding Cross-Development Concepts

141 Hardware in a Cross-Development Environmentcccccooevevnnnen. 5
1.5 Basic Eclipse Concepts 7
151 WINAOW e 7
1.5.2 WOTIKSPACE ...ooviiiiiiiiiiicc e 7
153 Perspectives ... 8
154 VIEWS oo 10
1.5.5 EdItOIS oo s 11
1.5.6 Projects ... 11
1.6 Accessing and Searching Workbench Context-Sensitive Helpc.ccu..... 12
1.6.1 Searching for Information in the Documentationccccoccovvrunnee. 12

fii

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

1.6.2 Refining a SEArchccccovviciiiiiniicccee e
2 Wind River Workbench Tutorials ...

21 Introduction

2.2 Starting Wind River Workbench

2.3 Tutorial: Creating a Project and Running a Program
231 Before You Begin ...
232 Creating a Project ..o,
233 Importing Source Files Into Your Projectccccocoovviirnininininnnnne.
234 Building Your Project ...
235 Creating a Connection Definition to the VxWorks simulator
23.6 Downloading the Program and Attaching the Debugger
2.3.7 Setting Up the Device Debug Perspectivecccocoviiiniiiniiicnnnes
2.3.8 Setting and Running to a Breakpointccccoooeiiiiniiin,
239 Modifying the Breakpointcocococeeuerrininciicnrrcceeeseeeenes

24 Tutorial: Editing and Debugging Source Files
241 Before You Begin ...
242 Introducing an Error into the Source Codeccccoevviiiniiininicininnnnns
243 Tracking Down a Build Failure ...
244 Displaying File HiStOry ..o
245 Rebuilding the Project ...

2.5 Tutorial: Using the Editor’s Code Development Featurescccocvererrurunnee
2.5.1 Using Code Completion to Add Symbols to Your File
2.5.2 Using Parameter Hints ...,
2.5.3 Using Bracket Matching to Clarify Syntax ...,
2.54 Finding Symbols in Source Filesc.cccocooiiiiinini,

2.6 Tutorial: Tracking Items of Interest in Your Files

Contents

2.6.1 Creating a Bookmark on a Source Line in a Fileccccccccccoevniinnnnn. 29

2.6.2 Locating and Viewing Your Bookmarksccccccccoecieiiiinnnninnniennne 29

2.7 Tutorial: Using Workbench to Debug a VxWorks 5.5.x Targetccceeuue. 30
271 Before You Begin ..o 30

272 Creating a Project ... 30

2.7.3 Creating a VxWorks 5.5.x Target Server Connectioncccccceuuue. 31

2.74 Launching a Kernel Task and Attaching the Debugger 32

2.7.5 Setting and Running to a Breakpointc.cccccoovoeeiniiiiiniiiciiens 32

2.7.6 System Mode Debuggingcccccooviriniminiiininiicicccccc e 33

2.7.7 Using Core DUmMp Filescccooooviiiiiiiiiiicicccc e 34

2.7.8 Using Already Available Tornado 2.x Projectsccccecevvvirunnnnnnen. 35

3 Setting Up Your Development Environmentcccccmrriviiccnnneennnnns 37
31 Introduction 37
3.1.1 Overview of Host and Target Configuration Tasksc.cccceceveunnes 38

3.1.2 Understanding Target Servers and Target Agentsccccccoeuennne. 39

3.2 Configuring Your Cross-Development System 42
321 Configuring Host SOftwarecccocoveviiiniicniniiniccecc e 42

322 Verifying Serial Setup and POWercccccoovniiniiiinicniccicnes 47

3.3 Setting Up a Boot Mechanism 52
3.4 Booting VxWorks 53
341 Default BoOt Processc.cccocoeiiiiiiininiiiciiciscecc e 53

3.4.2 Entering New Boot Parameters ... 55

3.43 Boot Program Commands ... 56

3.44 Description of Boot Parametersccooovvviviiiiinnniinicnee, 58

3.45 Booting With New Parameterscccccceeiiinniniiniiciciccien 61

3.4.6 Alternate Boot Methodscccoeiiiiiiiiiiiiiiiiiccccce, 62

3.5

3.6

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

3.4.7 Rebooting VXWOIKScccoviiiiiiiiiiiiiiiiiccccciccccae 63
Configuring Host-Target Communication for Workbenchu....... 64
351 Ethernet CONNECHiONScccoeeieiiirieiiiiciieceseeeeeeeeeeeee e 64
3.52 Serial-Line CONNECHONSccccevriiiiiiiiiiiiiiiiiiiiccceccccce i 67
Troubleshooting VxWorks Problems 70

PART II: PROJECTS

4 Projects OVEIrVIEWiccccecemiiismsmmissssrinssssssssssssss s ssssssss s sssnssssssmssssnss 73
41 Introduction 73
42 Workspace/Project Location 74
43 Creating New Projects 75

43.1 Subsequent Modification of Project Creation Wizard Settings 76
432 Projects and Application Codeccoevviriiiiniiicniiicce 76
44 Overview of Preconfigured Project Types 76
441 Workbench Sample Projectscccocooveiiireiiiciniiceiccncceccees 77
442 VxWorks Image Project ... 77
443 VxWorks Boot Loader/BSP Projectccccoooevviiiviiiniciiiniciiennn, 78
444 VxWorks Downloadable Kernel Module Projectccccccovvvrininnnne 78
445 VxWorks Real-time Process Projectccccccoveeiciiinnninnccccnnne, 79
446 VxWorks Shared Library Project ..., 80
447 VxWorks ROMES File System Projectcccccccoeiviiiinnnniicciccne, 80
448 User-Defined Projects ..o 81
449 Native Application Projectccocoevirvmeinicniiicnceccecece 82
4.5 Projects and Project Structures 82
45.1 Adding Subprojects to a Project ..o 82
452 Project Structures and Host File System Directory Structure 83

Vi

4.6

5.1

5.2

5.3

5.4

5.5

5.6

5.7

Contents

453 Project Structures and the Build Systemcccocooiiiiiin, 84
454 Project Structures and Sharing Subprojectscccocooveviiiiiiiines 85
455 Customizing Build Settings for Shared Subprojectsccccevuunee. 86
Project-Specific Execution Environments 86
46.1 Using a project.properties file with a Shellc..ccccoovivnininnnnne. 88
462 Limitations When Using project.properties Filesc.ccccccovvrinnnnnn 88
Creating VxWorks Image Projectscccccvvvvmmmmnssmssnnssesssssssssesnnnns 89
Introduction 89
Creating a VxWorks Image Project 90
52.1 Specifying a Non-Default Driver ..., 94
Importing and Migrating VxWorks Image Projects 95
53.1 Upgrading to a New Version of Workbenchccccccooviinnnn. 95
532 Upgrading to a New Version of VXWOIKSc.ccccccceurrniniccrcnnnnnne 96
Importing Command Line-Generated or Prebuilt VIPs 97
Configuring Kernel Components 98
551 The Kernel Configuration Editor Displayccccoceevevirniicninennnenes 98
552 Using the Kernel Configuration EQitorccccooviiiiiiniiiiniiiiincnnes 99
VxWorks Image Projects in the Project Explorer 100
5.6.1 Global Project NOdesccccccooeuiuiiiiiiieiniiieicicec e 100
5.6.2 Project Build Specs and Target Nodesc.ccccovuviniicninicniicniinne, 101
5.6.3 Build Output FOIAersccoovimiiiiiiiieiicce e 102
564 Makefile NOAEScccooviiiiiiiiiiiiiiiccec s 102
5.6.5 Project File NOdEScccccovviiiiiiiiiiiiiicc 103
Adding Application Projects to the VxWorks Image Projectccuu.e.... 105
Notes on Board Support Packages (BSPs) 106

5.8

vii

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

5.8.1 Using the Simulator BSPcccccoiviiiiiiiiiiiiiiinccccccce 106
582 Using a Wind River BSPcccccoeoiiiiiiiniiiiiiiciiiinciccccccccne 106
583 Using a Custom BSP for Custom Hardwareccccccoovciiccvnnnccnes 106
Creating Boot Loader/BSP Projectsccccccevivmmrinnsmnnnnssnsssssssnennnas 109
6.1 Introduction 109
6.2 Creating a Boot Loader/BSP Project 110
6.3 Creating a Customized Boot Loader 111
6.3.1 Selecting Boot Loader DIiVerscccccooeuriminiiicinicniicenccecie s 112
6.4 Creating a Customized BSP 112
6.5 Boot Loader/BSP Projects in the Project Explorer 113
6.5.1 Global Project NOdescccccoeiiiiiiiniiiiiiiiiccas 113
6.5.2 Project Build Specs and Target Nodesc.cccccooviiniiiiniiiininnn, 113
6.5.3 MakKefile NOAESceviviuiiriiriririciciciccctn ettt 114
6.5.4 Other Project Description Filesccccccceeiiiiiiinniiiiiiiiciiins 114
Creating VxWorks ROMFS File System Projectsccccoeerriinennnne 115
71 Introduction 115
7.2 Creating a VxWorks ROMEFS File System Project 116
7.3 Configuring the VxWorks ROMEFS File System 116
74 VxWorks ROMES File System Projects in the Project Explorer 117
741 Global Project NOAEScccocoviiiiimiiiieiicieicciece e 117
742 Project File NOAESccccoovviiiiiiiiiiiiiicci s 118
Creating VxWorks Real-time Process Projectscccccuivemrrniiiacnnns 119
81 Introduction 119

viii

Contents

8.2 Creating a VxWorks Real-time Process Project 120
8.3 Configuring VxWorks Real-time Process Projects 121
8.3.1 Configuring Build Support and Specsccccccvvvicccnnnnicccnennes 121
8.3.2 Configuring Build TOOISccccoeuiiiiiiiiiiiiiiiccecccces 122
8.3.3 Configuring Build Macros ... 123
8.3.4 Configuring Build Paths ... 124
84 VxWorks Real-time Process Projects in the Project Explorerccecoccune.. 126
841 Global Project NOAESscccooeiuiuiuiiieiiciciccicc e 126
8.4.2 Project Build Specs and Target Nodescccccoovuvrriiirniiininiicniinnne, 126
8.4.3 MaKefile NOAES ...oouviieieceiiceeeeeeeee ettt 127
8.44 Project File NOdESccccovvviiiiiiiiiiccccc 127
8.5 Application Code for a VxWorks Real-time Process Projectcccevuvueucuce 128
8.6 Linking to VxWorks and Using Shared Libraries 128
8.7 Troubleshooting Execution of RTPs 128
Creating VxWorks Shared Library Projectsccccocmmiiicmrrnscsnnnnnns 131
9.1 Introduction 131
9.2 Creating a VxWorks Shared Library Project 132
9.3 Configuring VxWorks Shared Library Projects 132
9.3.1 Configuring Build Support and Specscccccevvviiiiiiiiniicinn 133
932 Configuring Build ToOIScccocoviiiiiiiiiiiiiciiiiicc 134
9.3.3 Configuring Build Macros ... 134
9.3.4 Configuring Build Paths ..o 135
9.4 Shared Libraries in the Project Explorer 138
9.4.1 Global Project NOdeSccccocoiviiiiniiiiiiiiics 138
94.2 Target NOdEeccoviiiiiiiiiiiiiiic e 138

10

11

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

9.4.3 MakKefile NOAES ...c.cueviviuiiiiiririciciciccctn ettt 138
9.44 Project File NOAEScccovuviiiiiiiiiiiiiiiiiiicccccae 138
9.5 Source Code for the Shared Library 139
9.6 Making Shared Libraries Available to Applications 139
9.6.1 Configuring the Application Projectscccccoeoeeivirniiccninccinccnnnes 140
Creating VxWorks Downloadable Kernel Module Projects 141
10.1 Introduction 141
10.2 Creating a VxWorks Downloadable Kernel Module Projectccceuvueuuce 142
10.3 Configuring VxWorks Downloadable Kernel Module Projectsccu.u.. 142
10.3.1 Configuring Build Support and Specsccccoovviiiiiiiiiine, 143
10.3.2 Configuring Build TOOISccccooriiiiiiiiiiiii, 144
10.3.3 Configuring Build Macrosccccevviiiiinininiiciccccee 145
10.3.4 Configuring Build Pathsccccociininiciinccceencccceee e 146
10.4 Downloadable Kernel Modules in the Project Explorer 148
10.4.1 Global Project NOdEscccccviiiiiiiiiiiciiiiiciiiiccicccces 148
10.4.2 Project Build Specs and Target Nodescccccooviriniicninicniiccininnnn. 148
10.4.3 Makefile NOAESccvviiiiiiiiciiiiiicccccc e 149
10.4.4 Project File NOAEScccoeviriiiiiciiiciccc e 149
10.5 Application Code for a VxWorks DKM Project 150
Creating User-Defined Projectsccccocereersmmmmmmcmmmceeccecceecceeceenneenees 151
11.1 Introduction 151
11.2 Creating and Maintaining Makefiles 152
11.3 Creating a User-Defined Project 152
11.4 Configuring a User-Defined Project 153

12

13

Contents

1141 Configuring Build SUPPOITccccovriiiciicceerreecccee e 153
1142 Configuring Build Targets ... 154
1143 Configuring Build Specs ... 155
11.4.4 Configuring Build Macrosccccoevveinicniiicnccceececens 155
11.5 Creating a User-Defined Project to Build VxWorks Sourcesccceueueueene 157
11.6 Creating an Application for VxWorks 159
11.7 Debugging Source 160
Creating Native Application Projectscccccoooememmmmmccecccecceccceeeeees 161
121 Introduction 161
12.2 Creating a Native Application Project 162
12.3 Configuring Native Application Projects 162
12.3.1 Configuring Build Support and Specsccccooiiniininiiiiinne, 163
12.32 Configuring Build TOOLSccccevriiceiirccceeeereccce e 164
12.3.3 Configuring Build Macros ... 165
12.3.4 Configuring Build Paths ... 166
12.4 Native Applications in the Project Explorer 168
12.4.1 Global Project NOdEScccovurviiiuniiiciiiciniceccc s 168
12.42 Project Build Specs and Target Nodesccccooeuvvrriiiciiicninicnnnee 168
1243 Makefile NOAEScccccvvviimiiiiiiiiiiiiic s 169
1244 Project File NOAEScocoeviiiiiiiciiieicc e 169
12.5 Application Code for a Native Application Project 170
Working in the Project EXpIOrerccccccooocecememmmncemeceemceeceecceeccnenennees 171
13.1 Introduction 171
13.2 Creating Projects 172

Xi

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

13.3 Adding Application Code to Projects
13.3.1 Importing ReSOUICEScccovvvimiiiiiiiiiiiiiiicas
13.3.2 Adding New Files to Projectsccccccceiiviiicininniniiiiicicciiiiee
13.4 Opening and Closing Projects
13.4.1 Closing @ Projectcccoouviiiiiciiiiiiiiiicceccce s
13.5 Scoping and Navigation
13.6 Moving, Copying, and Deleting Resources and Nodes
13.6.1 Resources and Logical Nodescccccocviiiiininiiiiiiiiiicn,
13.6.2 Manipulating Filescccccoviiiiiiiniiiiiiiics
13.6.3 Manipulating Project Nodescccooiviiiiinininiiiniicces
13.6.4 Manipulating Target Nodescccccooviiiiiiniiiiiie,
13.7 Parsing Binary Images
14 Advanced Project SCenariosccccccremrrinsmnsmmssssssssssssssssssssssssssnnes
14.1 Introduction
14.2 Resource Locations
14.3 Multiple, Unrelated Software Systems
14.3.1 Using Different Workspaces for Different Systemscccccceuvuueee.
14.3.2 Using the Same Workspace for Different Software Systems
144 Complex Project Structures
14.4.1 Project ASSUMPHONScoovviieiiiiiiiiccc
1442 Infrastructure DeSign ...
14.43 Development ...
14.4.4 FINALZATION wviooviieriiieictie ettt ettt et eeaeeeaeeereeereeenee s

PART Ill: DEVELOPMENT

Xii

172
172
173

173
173

174

181

182

183
183
184

15

16

15.1

15.2

15.3

15.4

15.5

Contents

[\F= NV 1o E=1 1o T BE=Ta To I =T L1 1 4T T
Introduction
Wind River Workbench Context Navigation
15.2.1 Symbol BrOWSINGccccviviiiiiiiiiiiiiiiicicccccc s
15.2.2 The Outline VIew ...
15.2.3 The File Navigator ...
The Editor
15.3.1 Code Templatescccocoeurirririrriniiiciniciece e
15.3.2 Configuring a Custom Editorccccooevniiiiiiiniiniccccc
15.3.3 Building Projects from the EAitorccccccooiiniiiiiicice,
Search and Replace
15.4.1 Initiating Text Retrieval ..o,
Source Analysis
15.5.1 Setting Indexer Preferences ...,
15.52 Sharing Source Analysis Data with a Teamccccocevvviiinnnne.

Building Projects

16.1

16.2

16.3

16.4

16.5

Introduction

Configuring Managed Builds

Configuring User-Defined Builds

Accessing Build Properties

16.4.1 Workbench Global Build Properties
16.4.2 Project-specific Build Properties
16.4.3 Folder, File, and Build Target Properties

16.4.4 Multiple Target Operating Systems and Versionsccccccceeuruunee.

Build Specs

Xiii

205

206
207
208
208

208
209
210
211

211
211

215

216

221

222
222

222
223

223

17

16.5.1 Regenerating Build Spec Cache Informationccccccevericcucunnnnce.
16.6 Makefiles
16.6.1 Derived File Build SUPPOItcccoeviiiiiiiiiiiiiiiccce
Building: Use Casesccccuurrmmerinsmmsrsssssssssssssssssssssss s sssssssssssssssnssnas
17.1 Introduction
17.2 Adding Compiler Flags
17.21 Add a Compiler Flag by Handcccoooviininiiccce,
17.2.2 Add a Compiler Flag with GUI Assistancecccccccoeveeeurierericnnncnes
17.3 Building Applications for Different Boards
17.4 Creating Library Build-Targets for Testing and Release
17.5 Architecture-Specific Implementation of Functions
17.6 Executables that Dynamically Link to Shared Libraries
17.7 User-Defined Build-Targets in the Project Explorer
17.7.1 Custom Build-Targets in User-Defined Projectscccccueuueee.
17.7.2 Custom Build-Targets in Workbench Managed Projects
17.7.3 User Build Argumentsccccocoeevoirnireiniinniiencecceces
17.8 A Build Spec for New Compilers and Other Tools
17.9 Developing on Remote Hosts

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

17.9.1 General ReqUIirementscccoeveveurvcieirinieiiccisice s
17.9.2 Remote Build Scenarioscccceveeevriciniieninicececcece
17.9.3 Setting Up a Remote Environment ..o,
17.9.4 Building Projects Remotely ..o,
17.9.5 Running Applications Remotelyccccooceiiiiiiiiinnnnn.
17.9.6 Rlogin Connection Descriptioncccccovviviiiniiiiiiiniinnnen.
17.9.7 SSH Connection Description ..o

Xiv

228
228
229

230

231

234

235

238
238
238
239

239

Contents

PART IV: TARGET MANAGEMENT

18

19

Connecting to Targetsccccceerinismrrmnnssssrnnss s s 249
18.1 Introduction 249
18.2 The Remote Systems View 250
18.3 Defining a New Connection 250
18.4 Establishing a Connection 251

18.4.1 ASSUMPHIONS ..ocveuiiiiiiiiiiiiciciiccic e 251
18.4.2 Connecting to the Targetcccccevviiiiiiiiiiiiiccccce, 251
18.4.3 Downloading an Output Fileccccccccoiiiiiiiniiiiiiiinne, 253
18.4.4 Specifying an Object File ... 254
18.4.5 The Kernel Shell ..o 254
18.5 The Registry 255
18.5.1 Launching the RegiStrycccccooiiimiininiiciicicccccc, 256
18.5.2 Remote Registries ... 256
18.5.3 Shutting Down the Registry ..o, 257
1854 Changing the Default Registrycccccovrirvceiiiiciiiicccece, 257
New Target Server Connectionsoeeeeeeeeeeereessesresssesssssseeseeeeseeeseees 259
19.1 Introduction 259
19.2 Defining a New Target Server Connection 259
19.2.1 Wind River Target SEIVer ..., 260
19.2.2 Target Server Connection Page ..., 260
19.2.3 Object Path Mappings Pageccccoveevnininicnnicecececcens 264
19.2.4 Target State Refresh Pageccococoeuviiruniiicinicccccccccs 268
19.2.5 Connection Summary Page ... 269
19.3 Kernel Configuration 269

XV

Wind River Workbench

User’s Guide, 3.0 (VxWorks Version)

20 New VxWorks Simulator Connectionscccocrvmrvrnsrcnnensesncenne, 273
20.1 Introduction 273

20.2 Defining a New Wind River VxWorks Simulator Connectionccccuue. 273
20.2.1 VxWorks Boot Parameters Pageccccccoeuceuiiiiiiiiiiiiiiiicicccne 274

20.2.2 VxSim Memory Options Pageccccoviiviiiiiiiiiiiniiiiccccccene 274

20.2.3 VxWorks Simulator Miscellaneous Options Pagec.c.cccoovevennne. 274

20.2.4 Target Server Options Page ..o, 275

PART V: DEBUGGING

21 Launching Programs ... s sssssssssssses 279
21.1 Introduction 279
21.2 Launching a Kernel Task or a Process 280

21.2.1 Defining the Target Connectioncc.cocoevvvevricniicciniicnneeceees 281
21.2.2 Defining the Kernel Task or Process to Runcccccocoevineninirinnnnnn 281
21.2.3 Specifying a Build Target to Downloadcccccccoevvviiiiiiniiccininnnes 282
21.2.4 Specifying the Projects to Buildccoooooiiriiiiiiie 282
21.2.5 Defining Debug Behavior ... 283
21.2.6 Specifying Where Workbench Should Look for Source Files 284
21.2.7 Configuring Access Methodsccccoooviiiniiiiiiiiis 284
21.2.8 Using Your Launch Configurationc.ccccccovviinininiiiininns 285
21.3 Reset & Download: Hardware Debugging Launches 286
21.4 Launching a Native Application 286
21.4.1 Specifying the Location and Arguments for Your Application 286
21.42 Specifying Remote Settingsccooceueerininiciceieinricceeeseeeienes 287
2143 Setting Environment Variablesc.ccccoooiiniininnniicnic 287
2144 Configuring Access Methods ..o 288

Xvi

22

Contents

21.45 Running Your Native Application ..o,
21.5 Relaunching Recently Run Programs
21.5.1 Reusing Existing Launch Configurationsc.cccccoeevrericcucuennnnn.
21.5.2 Increasing the Size of the Launch History Listccccccoeviiriiinnnnenes
21.6 Controlling Multiple Launches
21.7 Launches and the Console View
21.8 Using Attach-to-Target Launches
21.8.1 Attaching the Debugger to a Running Task or Processc.......
21.8.2 Attaching the Debugger to the Kernel ..o,
21.8.3 Attaching the Kernel in Task Modeccocooeuniiiniiiiinicnicicnes
21.8.4 Attaching the Kernel in System Modeccccooviiiiniiinnnnn.
219 Suggested Workflow
Managing Breakpointsccccccuiiiismmmmnsmmnnnsssssnsnssssss s sssssssnnes
22,1 Introduction
22.2 Types of Breakpoints
2221 Line Breakpoints ..o
22.2.2 Expression Breakpoints ..o
22.2.3 Hardware Breakpoints ...
22.3 Manipulating Breakpoints
22.3.1 Importing Breakpointsc.cocoovieeiiiciiiceiiiciccecec
22.3.2 Exporting Breakpoints ..o
22.3.3 Refreshing Breakpoints ...,
22.3.4 Disabling Breakpointscccoooviiiiiiiiiiniiicc,
22.3.5 Removing Breakpoints ..o,
22.4 Limitations on Breakpoints During SMP Task Debuggingccccuuuu....

XVii

288
289
289

290

294

23

24

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Debugging Projects ... cceeeeeeeeseeesss s s s s s s s e e eeees
23.1 Introduction
23.2 Using the Debug View
2321 Understanding the Debug View Displayccccoceeiiiinniinnnee
23.3 Stepping Through a Program
23.4 Using Debug Modes
23.41 Setting and Recognizing the Debug Mode of a Connection
23.4.2 Debugging Multiple Target Connectionscccceveevricniiicininennnnes
23.4.3 Disconnecting and Terminating Processesccccccooevinieininnnnnnnn
2344 Configuring Debug Settings for a Custom Editorcccccccevrunnneee.
23.5 Understanding Source Lookup Path Settings
23.6 Using the Disassembly View
23.6.1 Opening the Disassembly VIeWccccocoornirniniinniiicniceeceenes
23.6.2 Understanding the Disassembly View Displayccccoovvvniiiinnnnnes
23.7 Using the Kernel Objects View
23.7.1 Understanding the Kernel Objects View Displaycccccocevrriiinnnes
23.8 Run/Debug Preferences
Troubleshooting ... ————-
24.1 Introduction
24.2 Startup Problems
2421 Pango Error on LiNUX ..o,
24.3 General Problems

24.3.1 Java Development Tools (JDT) Dependencyccccoevvviiiviiiininnnes
24.3.2 Help System Does Not Display on Solaris or Linuxcccceveevruune

XViii

310
311

313

314
318

319
319

321

321
322
322

323
324

326

24.4

24.5

24.6

24.7

24.8

Contents

24.3.3 Help System Does Not Display on Windowscccccoeeveiiiiiicnennns 332
2434 Removing Unwanted Target Connectionsccccceevvvivnvivinncnennne 332
Error Messages 333
2441 Project System EITOTScococooooiiiiiiiiiiiicc 333
24.42 Build System EIrors ... 335
2443 Remote Systems View EITors ... 337
2444 Getting an S_rtp_INVALID_FILE Error When Trying to Execute an RTP
342
2445 Launch Configuration EITOIscccccooviiieiniiciniiiciiccceceeces 343
24.4.6 Debugger EITOIScccocoviiiiriiiieiicecci e 343
24.47 Source Analysis EITOISccccoooiiiiiiiiiiiiiccc 344
Troubleshooting VxWorks Configuration Problems 345
2451 What to Check ..o 345
Error Log View 348
Error Logs Generated by Workbench 348
2471 Creating a ZIP file 0f LOZS ..oveeveiiiririiccceerrccceeeer e 348
24.7.2 EClPS@ LOG «ovoveeeiiciicicieciccc e 349
24.7.3 DFW GDB/MI and Debug Tracing LOgsccecovvvreruriiniiicniiicneinns 350
24.74 Debugger Views GDB/MI L0cccocouriniririiciiiceiccccc e, 350
24.7.5 Debugger Views Internal Errors Logccccooovovviieniicniicciciiccienes 351
24.7.6 Debugger Views Broadcast Message Debug Tracing Log 351
24.7.7 Target Server Output LOgocoooveveieiiiiicic 352
24.7.8 Target Server Back ENnd LOgccccovvviiiiiiiiiic 352
2479 Target Server WTX LOZccovvimiiiiiiiiiiiiccccccs 353
24.7.10 Remote Systems Debug Tracing LOgcccccocevviviiinniinciiiine, 354
Technical Support 354

Xix

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

PART VI: USING WORKBENCH WITH OTHER TOOLS

25 Integrating PlUg-iNSccccccmmmiimiiiiinsennnsnrinsss s snnns 357
251 Introduction 357

25.2 Finding New Plug-ins 358

25.3 Incorporating New Plug-ins into Workbench 358
25.3.1 Creating a Plug-in Directory Structurecccccooevviiiiiiinicinnns 358

25.3.2 Installing a ClearCase PIUug-inccccccceviviviiiiiniiiiiiiiiiicccccene 359

25.4 Using the Eclipse Update Manager to Install JDT 361

25.5 Disabling Plug-in Functionality 362

25.6 Managing Multiple Plug-in Configurations 362

26 Using Workbench in an Eclipse Environmentccccccceiiiniiiiinnnes 365
26.1 Introduction 365

26.2 Recommended Software Versions and Limitations 365

26.3 Setting Up Workbench 366

26.4 Using CDT and Workbench in an Eclipse Environment 367
26.4.1 Workflow in the Project EXplOrercccocooviiiiiiiiiiiiiiiicieenes 367

26.42 Workflow in the Build Consolecccccoovviniiiiniiiniiiiices 369

26.4.3 Workflow in the Editor ..o, 369

26.44 Workflow for Debuggingcocoeeeueueierininicicicieeeirirceieeeseeceienas 370

27 Using Workbench with Version Controlcccciiiiecmiiniccmnnnnscannnnns 371
27.1 Introduction 371

27.2 Adding Project Description Files to Version Control 371

XX

Contents

PART VII: REFERENCE

A

Al

A2

A3

A4

A5

27.3 Using Workbench with ClearCase Views 372
27.4 Using Workbench with CVS 375
What’s New with CDT, DD, and TMcccccmiirsmmrmnnsmnsssssnssssssssnessans 379
Introduction 379
Working with Projects 381
Editing Source Files 383

Using the Outline View 385
Source Analysis and Symbol Browsing 386

A.5.1 Workbench Parser is Now the CDT Indexerc.ccccccceveinnrrnueuennee 386

A.6

A7

A.8

Command-line Updating of Workspaces

B.1

B.2

Command-line Importing of Projects

C1

C.2

A5.2 Debug and Static Analysis Symbol Browsing Have Been Separated 387

Connecting to Targets

390

Working with Debugging Views

393

For More Information

398

Overview

wrws_update Reference

Overview

wrws_import Reference

XXi

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Configuring a Wind River Proxy HOStcccocciiiccceeeeeeeeeeeceeeceeees 407

D.1 Overview 407

D.2 Configuring wrproxy 409

D.3 wrproxy Command Summary 411

(€] o= | 415

E1 Introduction 415

E11 Refining a Search ... 415

E2 Terms 416
INAEX .. s 423

XXii

PART |

Introduction
1 OVEIVIBW ...creeeeiiremesisrsnssisssnssirssnsssrsnnsssrsnnsssssnnsnnns 3
2 Wind River Workbench Tutorialscccce...... 15
3 Setting Up Your Development Environment 37

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Overview

1.1 Introduction 3

1.2 Wind River Documentation 4

1.3 Road Map to the Wind River Workbench User’s Guide 4

1.4 Understanding Cross-Development Concepts 5

1.5 Basic Eclipse Concepts 7

1.6 Accessing and Searching Workbench Context-Sensitive Help 12

1.1 Introduction

Welcome to the Wind River Workbench User’s Guide. Wind River Workbench 3.0 is
an Eclipse-based development suite that provides an efficient way to develop
real-time and embedded applications with minimal intrusion on the target
system.1

Wind River Workbench is available on Windows, Linux, and Solaris hosts, but in
this guide, screenshots and paths will be shown as on Windows.

1. Eclipse is an industry-standard framework for building development suites.

Wind River Workbench

User’s Guide, 3.0 (VxWorks Version)

1.2 Wind River Documentation

A wide variety of documentation in many different formats is available to
Workbench customers. See the getting started for your platform for a description
of the full document set.

1.3 Road Map to the Wind River Workbench User’s Guide

Part I. Introduction provides an introduction to basic Eclipse terminology and
functionality, walks you through a set of tutorials that introduce the major
features of Workbench, and explains how to set up your development
environment in order to run your programs on real target hardware.

Part II. Projects explains the Project System, including creating new projects,
importing and exporting existing projects, and creating VxWorks images and
user applications.

Part I11. Development describes the Editor, Static Analysis, and Build System
features of Workbench.

Part IV. Target Management provides details about using the Target Manager,
including how to configure a target server, and how to create and manage
your target connections.

Part V. Debugging explains Debugger functionality, including launch
configurations, attaching the debugger to processes, working with
breakpoints, and displaying processes in the Debug and Disassembly views.
This section also provides Troubleshooting information, explaining how to
respond to error messages you may see while using Workbench.

Part VI. Using Workbench with Other Tools describes how to incorporate
plug-ins (such as ClearCase) into Workbench, how to incorporate Workbench
into an existing Eclipse environment, and how to use Workbench with your
version control system.

Part VII. Reference provides information about updating your workspace with
the command-line, as well as a Glossary of Workbench and Eclipse terms for
which you may want more information.

1 Overview
1.4 Understanding Cross-Development Concepts

1.4 Understanding Cross-Development Concepts

Cross-development is the process of writing code on one system, known as a host,
that will run on another system, known as a target.

Cross-development allows you to write code on a system that you have available
to you (such as a PC running Linux, Windows, or Solaris) and produce
applications that run on hardware that you would have no other convenient way
of programming, such as a chip destined for a mobile phone.

1.4.1 Hardware in a Cross-Development Environment

A typical host is equipped with large amounts of RAM and disk space, backup
media, printers, and other peripherals. In contrast, a typical target has only the
resources required by the real-time application with perhaps some small amount
of additional resources for testing and debugging.

Working on the Host

You use the host just as you would if you were writing code to run on the host
itself—to manage project files; edit, compile, link, store multiple versions of your
real-time code, and configure the operating system destined to run on the target.

Connecting the Target to the Host

A number of alternatives exist for connecting the target system to the host, such as
Ethernet, serial, and JTAG. See 3. Setting Up Your Development Environment for
more information about setting up your hardware.

Running Your Application Code

Run-time code is the code that is intended for the final application. The run-time
includes the kernel, your application-specific code, and some selected library code.
The term run-time does not usually refer to the target agent, although you will
typically include it during development and debugging. See 3.1.2 Understanding
Target Servers and Target Agents, p.39 for more information about the target agent.

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Workbench allows you to avoid the cumbersome process of downloading your
complete run-time code each time you make a change by allowing you to
download and run individual application modules as they are developed. You can
even run application modules on the host in the target simulator, Wind River
VxWorks Simulator, if target hardware is not available.

Advantages of Using Wind River Workbench

Wind River Workbench ensures the smallest possible difference between the
performance of the target you use during development, and the performance of
the target after deployment, by keeping most development tools on the host.

A fundamental advantage of using Wind River Workbench is that your
application does not need to be fully linked. Code that is only partially completed
can be downloaded for incremental testing and debugging; application modules
do not need to be linked with the run-time system libraries, or even with each
other. The host-resident shell and debugger can be used interactively to invoke
and test either individual application routines or complete tasks.

Workbench loads the relocatable object modules directly, and maintains a
complete host-resident symbol table for the target. This symbol table is
incremental: the target server incorporates symbols as it downloads each object
module. You can examine variables, call subroutines, spawn tasks, disassemble
code in memory, set breakpoints, trace subroutine calls, and so forth, all using the
original symbol names.

Wind River Workbench shortens the cycle between developing an idea and
implementing it by allowing you to quickly download your incremental run-time
code and dynamically link it with the operating system. Your application is
available for symbolic interaction and testing with minimal delay.

The Workbench debugger allows you to view and debug applications in the
original source code. Setting breakpoints, single-stepping, examining structures,
and so on are all done at the source level, using a convenient graphical interface.

1 Overview
1.5 Basic Eclipse Concepts

1.5 Basic Eclipse Concepts

Wind River Workbench is based on the Eclipse Platform, an industry-standard
framework for building development suites. This section provides a very brief
overview of some of the Workbench components inherited from Eclipse.

For details about changes to Workbench workflows and user interface elements
that came about when Workbench adopted the most recent Eclipse C/C++
Development Toolkit, Device Debugging, and Target Management projects, see
A. What's New with CDT, DD, and TM.

1.5.1 Window

The term window refers to the desktop development environment. You can open
more than one window at a time by selecting Window > New Window (each
window will see the same projects and workspace.) A Workbench window can
contain one or more perspectives.

1.5.2 Workspace

Workbench uses a workspace to store your current working environment. Some of
the items that are saved with the workspace include the set of open projects, and
the size and location of views.

The workspace also contains information about the current session, including the
types and positions of your views when you last exited Workbench, current
projects, and installed breakpoints.

The default location of your workspace is installDir\workspace, but it can be
located elsewhere if necessary. If you want to run two or more copies of
Workbench, each must have its own workspace.

Maintaining More Than One Workspace

If you want to run two independent copies of Workbench (to keep some projects
and files completely separate from others) you must establish a second workspace.
This is not a required step for the tutorial in 2. Wind River Workbench Tutorials.

1. Launch Workbench as described in 2.2 Starting Wind River Workbench, p.16.
2. Select File > Switch Workspace to open the Select a workspace dialog.

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

3. Select the directory where you want your workspace to be located, then select
Make New Folder. Type the name of your new workspace, then click OK.

NOTE: The path to each of your workspaces must be unique. If you want a new
workspace to be located in the installation directory alongside your original
workspace, it must have a unique name (for example, workspace2 or
newWorkspace). If it is located in a different directory, it can have the same name
as the original: workspace.

1.5.3 Perspectives

Figure 1-1

A perspective groups together an editor area and one or more views that are
convenient to have available while working on a particular task.

For example, Figure 1-1 shows the Application Development perspective, which is
designed to help you create projects, browse files, and edit and build source code.

Application Development Perspective

® Application Development - - Wind River Workbench

File Edit Refactor Navigate Search Project Analyze Target Run Window Help

56 09 - aEmBER ik FUE R RN = [} Devics Debug

- Q- Q- i E RN N A Vi } i oo (o - |T.E Application D, ‘

(7 Project Ex 52 =l File Naviga | — O || (§ Getting Started Resources 52 = B | 5= outline 2 =0
=] <)===> b = W A | An outline is not available.

WIND RIVER

Wind River Workbench Help _

Wind River ¥orkbench Online Helo

wind River Workbench Gnling Help gives you acces:
Docurnentation for Wind River Warkbench is also av
product links below. Use the links on this page for o
help you get started.

&,

B remote sy 2 M@ kermelobj = 8 EFaeds @] Error Log) Tasks 33 [£(Problems | =1 properties | B8 Buid Console| B console =0
= | |0 items & w7

S e &' v ! Description Resource Path Loca

J | BE
= E Local ~
‘ﬂ] Local Files
G Local Shells
(e Wind River Registries —
3‘% wxsimD {Wind River YxWorks 6.6) &
< | = b3 | *
i 0 items selected goMof 152M [

Figure 1-2

1 Overview
1.5 Basic Eclipse Concepts

It includes the Project Explorer on the top-left side of the screen, the Outline view
on the top-right, the Remote Systems view on the bottom-left, and the Stacked
view (also known as a tabbed notebook) on the bottom-right with the Tasks view
visible. The Getting Started Resources view provides access to Workbench online
help, as well as other resources you will find useful.

To open a new perspective, select Window > Open Perspective > Other and
choose a perspective you want to explore, or click the Open a perspective icon in
the upper right corner of the Workbench window, select Other, and choose a
perspective.

Figure 1-2 shows the Device Debug perspective, which contains views that are
useful when you are running and debugging programs, including the Debug and
Breakpoints views, and a tabbed notebook containing the Variables, Expressions,
and Register views. These views replace the Outline view of the Application
Development perspective.

Device Debug Perspective

® Device Debug - - Wind River Workbench
File Edit Refactor Mavigate Search Project Analyze Target Run Window Help

Y- AFRBR e B e iiE 5 B povee g |
B0 QP hSe s W vi - B spplcation ...
[Project 52 @ pebug | O | @ Getting Started Resources 52 = O %% pebug 32 =0
B 5 - e K =
WIND RIVER
Wind River Workbench Help f ?ﬁ
Wind River Waorkbench Online Help
Wwind River Workbench Online Help gives you access to all 9 Breakpoin 52 =8

Docurmentation for wind River Workbench is also available =
product links below, Use the links on this page for quick ac

®
help you get started. ® e
Wind River Product Documentation B
3 | 3
48 remate Systems 52 =0
= | @lErmor | Task 2 & Termi [£ probl | E prop | B8 Buid | B cons | = O
jf Y 2 0 items Q—:—' }:9 - P », =g
v ! Description Resource Path =
2| B <}=='=> o o O
=B Local ~ &) 4
‘ED Local Files ¢ [, & &
G Local Shells |%| ° &L @
4@ Wind River Registries e
;ﬁ wasimO (Wind River Yiworks s
¢ | >
o* C remofiszM I

1.5.4 Views

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

The Application Development perspective opens by default, but you can switch
between perspectives by selecting an icon in the shortcut bar along the top right
edge of the Workbench window. When you start Workbench for the first time, the
Open a perspective icon and the Application Development tab appear as shown
in Figure 1-1.

As you open perspectives, their icons appear in the shortcut bar, as seen in
Figure 1-2. To see them all side by side, click to the left of the Open a Perspective
icon and drag to the left until all open perspectives are visible.

To customize a perspective, you can open, close, and move views to create a
comfortable work environment, then select Window > Save Perspective As and
give your perspective a name. That configuration of views will be restored the next
time you open your perspective. You can further customize your perspective by
selecting Window > Customize Perspective.

You can restore a perspective to its default configuration by selecting
Window > Reset Perspective.

Views reside in perspectives, and allow you to display, manipulate, and navigate
the information in Workbench.

Certain views appear in particular perspectives by default, but you can add any
view to any perspective by selecting Window > Show View, then either selecting
the view you want, or selecting Other, selecting the perspective containing that
view, then choosing the view from the list.

There are two things to remember when using views:

* Only one view (or editor) can be active at a time. The title bar of the active view
is highlighted.

* Only one instance of a type of view can be present in a perspective at a time
(but multiple editors can be present to view multiple source files).

Many views have their own menus. To open the menu for a view, click the down
arrow at the right end of the view's title bar. Some views also have their own tool
bars. The actions represented by buttons on view toolbars only affect the items
within that view.

10

1 Overview
1.5 Basic Eclipse Concepts

Moving and Maximizing Views

Move a view by clicking either its title bar or its tab in a stacked notebook, and
dragging it to a new location.

There are several ways to relocate a view:

* Drag the view to the edge of another view and drop it. The area is then split,
and both views are tiled in the same area. The cursor changes to an appropriate
directional arrow as you approach the edge of a view.

= Drag the view to the title bar of an existing view and drop it. The view will be
added to a stacked notebook with tabs. When you drag the view to stack it, the
cursor changes to an icon of a set of stacked folders.

= If you drag a view over a tab in an existing view, the view will be stacked in
that notebook with its tab at the left of the existing view. You can also drag an
existing tab to the right of another tab to arrange tabs to your liking.

To quickly maximize a view to fill the entire perspective area, double-click its title
bar. Double-click the title bar again to restore it.

1.5.5 Editors

An editor is a special type of view used to edit files. You can associate different
editors with different types of files such as C, C++, Ada, Assembler, and Makefiles.
When you open a file, the associated editor opens in the perspective’s editor area.

Any number of editors can be open at once, but only one can be active at a time. By
default, editors are stacked in the editor area, but you can tile them in order to view
source files simultaneously (see 15. Navigating and Editing for more information
about Editors).

Tabs in the editor area indicate the names of files that are currently open for
editing. An asterisk (*) indicates that an editor contains unsaved changes.

1.5.6 Projects

Workbench uses projects as logical containers and as building blocks that can be
linked together to create a software system. The Project Explorer lets you visually
organize projects into structures that reflect their inner dependencies, and
therefore the order in which they are compiled and linked.

11

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

1.6 Accessing and Searching Workbench Context-Sensitive Help

For more information about Workbench functionality and user interface, you can
access the context-sensitive help by pressing the help key for your host. On
Windows press F1, and on Linux and Solaris press CTRL+F1 to open a help view
containing a brief description of the current view, and links to sections of
Workbench documentation with more information on the same topic. You can also
access the help system by selecting Help > Help Contents > Wind River
Documentation.

For more information on Eclipse functionality, see the Eclipse Workbench User Guide
under Help > Help Contents > Wind River Partner Documentation > Eclipse
Platform Documentation, as well as the Eclipse web site at www.eclipse.org.

NOTE: The Help button on Solaris keyboards does not open Workbench help due
to a problem in Solaris/GTK+. Instead, use Ctrl+F1 to access help.

1.6.1 Searching for Information in the Documentation

Many Workbench terms are listed in 1.5 Basic Eclipse Concepts, p.7 and E. Glossary.
If the term you want is not listed, there are two ways you can search for it
throughout all installed documentation.

Help View

1. Press the help key for your host (see 1.6 Accessing and Searching Workbench
Context-Sensitive Help, p.12) to open the Help view within Workbench itself.

2. Atthe bottom of the Help view, click Search, then type the keyword or phrase
you are looking for into the Search expression field. Click Go.

3. Links for relevant topics appear in the Help view. To open the document
containing that topic, click the link.

To switch from the Search Results list back to the help Table of Contents, click the
All Topics link at the bottom of the help view.

Help Browser

1. From the Workbench toolbar, select Help > Help Contents to open the help
system in a standalone browser.

2. At the top of the browser, type your term into the Search field. Click Go.

12

3.

1 Overview
1.6 Accessing and Searching Workbench Context-Sensitive Help

Links for relevant topics appear in the Search Results list. To open the
document containing that topic, click the link.

To switch from the Search Results list back to the help Table of Contents, click the
Contents link at the bottom of the help browser.

1.6.2 Refining a Search

If the result set is very large, the information you are looking for might not appear
in the top 10 or 15 results.

Restricting a Search to Local Help

To refine a local help search to reduce the number of results, follow these steps:

1.

In the Help view, click Default next to the Search scope link to open the Select
Search Scope Sets dialog.

Click New to open the New Scope Set dialog, type a name for your search
scope, then click OK.

In the scope set list, select the scope set you want to define, then click Edit.

Select Search only the following topics, then select the local help sources to
which you want to restrict the search, for instance Wind River
Documentation > References. Click OK.

Click OK to return to the help browser, where your new search scope appears
next to the Search scope link.

Click Go. The results will be shown in the Search Results list.

Restricting a Search to Another Information Source

By default, the Search Scope dialog opens to show options for searching local help.
To select a different source of information for your search scope, follow these steps:

1.

In the Help view, click Default next to the Search scope link to open the Select
Search Scope Sets dialog.

Click New to open the New Scope Set dialog, type a name for your search
scope, then click OK.

In the scope set list, select the scope set you just created, then click Edit.

13

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

4. From the Search Scope dialog, click New, then select Info Center or Web
Search, then click Finish. Your new information source appears in the list on
the left side of the dialog, and new options appear on the right.

5. Fill in the URL you want to connect to, adjust any other information as
necessary, then click OK.

6. Click OK to return to the help browser, where your new search scope appears
next to the Search scope link.

7. Click Go. The results will be shown in the Search Results list.

NOTE: If you have more than one Scope Set defined, your term or expression will
be searched in all scopes unless you further restrict your search.

Click Search Scope to display all defined search scopes, uncheck the scopes you
do not want to include, then click Go to rerun the search.

14

21
2.2
2.3
24
2.5
2.6
2.7

Wind River Workbench
Tutorials

Introduction 15

Starting Wind River Workbench 16

Tutorial: Creating a Project and Running a Program 17
Tutorial: Editing and Debugging Source Files 24

Tutorial: Using the Editor's Code Development Features 26
Tutorial: Tracking Items of Interest in Your Files 29

Tutorial: Using Workbench to Debug a VxWorks 5.5.x Target 30

2.1 Introduction

This chapter provides tutorials that are designed to introduce you to Wind River
Workbench and to familiarize you with its views and development concepts. The
VxWorks Simulator is used to execute the sample programs, and no special
hardware or system setup is required.

In the course of these tutorials, you will:

Create a project.
Import source files.
Build a project.
Connect to a simulator.

15

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

= Set breakpoints.

= Step through code.

» Set a watch on a variable.

* Run code.

= Edit source files.

» Track build errors.

* Debug a project.

= Rebuild and rerun your code.

These tutorials assume a basic understanding of embedded projects and
debugging concepts. They also assume that you have the Workbench software
(with VxWorks support) installed correctly on your host, and that the software is
installed in the default location and with the default settings.

To run the VxWorks 5.5 debugging tutorial, you must also have VxWorks 5.5.x and
Tornado 2.x installed.

For definitions of unfamiliar terminology, see E. Glossary.

NOTE: This release provides VxWorks SMP for symmetric multiprocessing (as an
optional product) in addition to uniprocessor VxWorks, but SMP is not covered in
these tutorials.

For information about VxWorks SMP, and about migrating uniprocessor code to
VxWorks SMP, see VxWorks Kernel Programmer’s Guide: VxWorks SMP.

2.2 Starting Wind River Workbench

1. Before you can run the tutorials, you must start Workbench.
On Windows:

Start > Programs > Wind River > Workbench 3.x > Wind River
Workbench 3.x

On Linux and Solaris:

Open a terminal window, then navigate to your Workbench installation
directory. From the command line, type:

. /startWorkbench.sh

16

2 Wind River Workbench Tutorials
2.3 Tutorial: Creating a Project and Running a Program

2. When you start Workbench for the first time, Workbench creates a new
registry database!. A dialog appears telling you how to migrate your registry
settings from a previous registry to the new one.

3. Click OK. The Wind River Workbench welcome screen appears.

4. Select the arrow to open Workbench to the Application Development
perspective.

2.3 Tutorial: Creating a Project and Running a Program

This tutorial uses the ball sample program, written in C. This program implements
a set of balls bouncing in a two-dimensional grid. As the balls bounce, they collide
with each other and with the walls. You see the balls move by setting a breakpoint
with the property Continue on break at the outer move loop, and watching a
global grid array variable in the Memory view.

First, you will create a new project in your workspace, then you will import the ball
source files into it from their Workbench installation directory.

2.3.1 Before You Begin

—_

Workbench preserves its configuration when you close it, so that at next launch
you can resume where you left off in your development.

If you experimented with opening perspectives and moving views before starting
this tutorial, switch back to the Application Development perspective by clicking
its icon in the upper right corner of the Workbench window. If its icon is not
visible, drag the shortcut bar to the left (your cursor will turn to a double-headed
arrow) or click the double-right arrows and select the perspective.

3

| U application D...
= %Device Debug

. A new database will also be created in /tmp if the default database is not accessible.
. If you did not have a previous version of Workbench installed and therefore do not have

registry settings to migrate over, you can safely ignore this dialog.

17

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

To reset the perspective and its views to their default settings, select
Window > Reset Perspective.

2.3.2 Creating a Project

1. Select File > New > Wind River Workbench Project. The New Wind River
Workbench Project dialog appears.

2. From the Target operating system drop-down list, select Wind River
VxWorks 6.x. Click Next.

3. From the Build type drop-down list, select Downloadable Kernel Module.
Click Next.

4. In the Project Name field, type ball. For the purposes of this tutorial, keep
Create project in workspace selected. Click Finish. The ball project appears in
the Project Explorer.

2.3.3 Importing Source Files Into Your Project

Next, import the ball sample project files.

1. Right-click the ball project folder, then select Import. The Import wizard
appears.

2. Select General, then File System, then click Next. The File System page of the
Import wizard appears.

3. Click the Browse button next to the From directory field. The
Import from directory page appears.

4. Navigate to the installDir\workbench-3.x\samples directory. Select ball, then
click OK . The File system page reappears, with the ball folder in the left pane
and the files in that folder in the right pane.

5. Select the check box next to ball. This automatically selects all the files in the
right pane. Because you are importing into the ball project, ball appears in the
Into folder field. Click Finish.

3. It is important to use this ball sample program, which is written in C. The ball sample
program available from File > New > Example > VxWorks Downloadable Kernel Module
Sample Project > The Ball Demonstration Program is written in C++, and while it behaves
the same, it requires different simulator settings from the sample used in this tutorial.

18

2 Wind River Workbench Tutorials
2.3 Tutorial: Creating a Project and Running a Program

6. To see the contents of the ball project folder (if they are not already visible)
click the plus next to the ball folder in the Project Explorer. You will see the
project files in black, and the build targets in green. Any files that appear in
gray are read-only.

2.3.4 Building Your Project

1. Build the ball project by right-clicking the ball folder in the Project Explorer
and selecting Build Project from the context menu.

2. The first time you build a project, a dialog appears asking if you want
Workbench to generate include paths. You do not need to do this for the
tutorial, so click Continue.*

3. Build output displays in the Build Console at the bottom of the screen, and the
output file ball.out appears in ball/SIMNTdiab/ball/Debug.

NOTE: The directory name SIMNTdiab reflects the active build spec, which is
comprised of build settings appropriate for the VxWorks simulator and the
Wind River Compiler. The Debug directory reflects the fact that debug mode
flags are turned on by default.

If you select a different build spec by right-clicking the project and selecting
Build Options > Set Active Build Spec, or if you clear the debug mode
checkbox, the string will be different.

2.3.5 Creating a Connection Definition to the VxWorks simulator

You create and manage connections to a target, including the VxWorks simulator,
using the Remote Systems view.

NOTE: If you installed VxWorks support when you installed Workbench, a
VxWorks simulator connection definition named vxsim0 automatically appears
below Local.

This is a valid connection definition, and you can use it. However, to understand
how to manually create new target connections, continue with this tutorial.

4. For more information about include paths, open the build properties dialog by
right-clicking on your project and selecting Properties, then press the help key for your host.

19

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

1. To create a new target connection definition, click the Define a connection to
remote system icon on the Remote Systems view toolbar, or right-click in the
Remote Systems view and select New Connection.

2. In the New Connection wizard, select VxWorks 6.x > Wind River VxWorks
6.x Simulator Connection, then click Next.

3. Click Finish to accept all of the default configuration settings and create your
connection definition.” Because the Immediately connect to target if possible
box is selected by default, Workbench attempts to connect to the simulator.

Workbench displays connecting, then connected - target server running in
the Workbench status line at the bottom of the window® once the connection
is made. A VxWorks simulator window opens’, and the connection appears in
the view. Double-click the connection to see the type of target, running
processes, and other information displayed under the connection.

You are now ready to run the sample program.

2.3.6 Downloading the Program and Attaching the Debugger

1. In the Project Explorer, right-click the build target
ball/SIMNTdiab/ball/Debug/ball.out, then select Debug Kernel Task. The
Debug launch configuration dialog appears, with ball.out already filled in as
part of the Name of the launch.

2. Type main in the Entry Point field (or click Browse and select Downloads >
ball.out > main), then click Debug.

3. Several events now occur: Workbench automatically builds the ball project,
switches to the Device Debug perspective, runs the ball program on the
simulator, attaches the debugger, executes the program up to main(), and
then breaks.

For more information about using the other tabs and fields in the launch
configuration dialog, see 21. Launching Programs or open the launch configuration
dialog and press the help key for your host.

5. If you want to see the options that appear on other screens of the New Connection wizard,
click Next several times and then click Finish.

6. To display this and other status information in the Remote Systems view, select Window >
Preferences > Target Managment > Label Decorations, then choose what to display.

7. You do not need the VxWorks simulator window for this tutorial, so minimize it if you wish,
but do not close it. For more information, see Wind River VxWorks Simulator User’s Guide.

20

2 Wind River Workbench Tutorials
2.3 Tutorial: Creating a Project and Running a Program

2.3.7 Setting Up the Device Debug Perspective

The views in the Device Debug perspective can be repositioned to suit your needs.

To set up the Device Debug perspective to match this tutorial:

1.

The action of the ball program is displayed by viewing the memory address of
the grid global variable in the Memory view, so select
Window > Show View > Other > Debug > Memory.

The Memory view appears in the lower-right corner of the Workbench
window, in the tabbed notebook with the Variables and Expressions views.

Click on the title bar of the Memory view and drag it to the left, over the tabbed
notebook containing the Tasks view and the Build Console. Wait for an icon of
a set of stacked folders to appear at the cursor, then drop the view.

Generation of makefiles started,

}QI Error L |+ Tasks | (210 Proble | 5 Propert B puidc &2 B console | = 01| 09= variabl | 193] Registe & Expres O Memary £4 =0
- =] > % 4 BEE T i = RS I
Build Started in Project ‘ball: 2007-07-23 12:38:52 Monitors d Renderings &

Generation of makefiles finished (Elapsed Time: 00:00),

Platform: Wind River ¥xWorks 6.6

Command: make --no-print-directory BUILD _SPEC=SIMNTdiab DEBUG_MOD
Working Directory: C:/WBdvd27 /workspace /ball/SIMNTdiab

make: built targets of C:WEdvd27 jworkspace/ball/SIMNTdiab

Build Finished in Project 'ball': 2007-07-23 12:38:55 (Elapsed Time: 00:03)

In the Expressions view®, right-click the Expression column and select Add
Watch Expression, then type grid and click OK. The memory address of the
grid global variable appears in the value column. This address can vary from
one session to another if something changes, for example if you compile with
the GNU compiler instead of the Wind River Compiler.

Right-click in the Memory view and select Add Memory Monitor.

Type the memory address of the grid global variable into the Monitor Memory
dialog and press OK.

Right-click in the Renderings column, then select Cell Size > 8 bytes.

8. Ifitis not visible in the lower right corner, click the >> next to the name tab and select it from
the list, or open it by selecting Window > Show View > Expressions.

21

Figure 2-1

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

7. Resize the Memory view vertically so you see at least 10 rows (place the cursor

over the top border of the view, and when it becomes a double-headed arrow,
click and drag upwards).

8. Resize the view horizontally so you see one column of addresses on the left

side of the Renderings pane, two columns of values (or when you first begin,
probably zeroes) in the central section, and one column in the right-hand
section.

9. Inaddition to making the Memory view larger, you may also have to adjust

the relative sizes of the Monitors and Renderings panes within the Memory
view before you can see the correct columns in the Renderings pane. The view
should look similar to Figure 2-1.

Resizing the Memory View

_Q_IError Log | ¥ Tasks t Problems | &5 Properties B8 Build Cansale | & Console D Memary &4 =0

Tt s & |k <'==={> L

Maonitors o= 3 g,g,‘, Renderings o= 3
@ 0x103FFEED 0:x103FFEBO : 0x103FFEBD «Traditional =

0x103FFEED ZDEDEDZDZDEDEDED SDEDEZDZDEDEDEDEZD ————————— e ~

Ox103FFECO 7CZ0Z0Z0E0202020 202020202020207C | |
Ox103FFEDD 7CZ0Z0Z0E0202020 202020202020207C | |
Ox103FFEED 7CZ0Z0Z020202020 202020202020207C | |
Ox103FFEFD 7CZ0Z0Z020202020 202020202020207C | |
Ox103FFFO0 7CZ0Z0Z0E20202020 202020202020207C | |
Ox103FFF10 7CZ0Z0Z020202020 202020202020207C | |
Ox103FFF20 7CZ0Z0Z0E0202020 202020202020207C | |
Ox103FFF30 7CZ0Z0Z0E0202020 202020202020207C | |
O0x103FFF40 ZDZDEDEZDEDEDZDED ZDEDEDEDZDEDEDED —————————m oo

< >

NOTE: If the box does not appear, make sure the address you entered in the
Memory window is that of the grid global variable. If you see dots instead of
the box, click Step Over (on the Debug view toolbar) once or twice.

The box may be empty now, but as the program runs, characters representing
different types of balls (two zeros, two @ signs, and two asterisks) appear in
this empty box, bounce around, and collide with each other and with the walls.

22

2 Wind River Workbench Tutorials
2.3 Tutorial: Creating a Project and Running a Program

2.3.8 Setting and Running to a Breakpoint

1. In main.c (which should still be open in the Editor) scroll past the three
initialization for loops and set a breakpoint at the while statement by
double-clicking in the gutter to the left of it.

A blue dot appears in the gutter, and the Breakpoints view displays the
module and line number of the breakpoint.

2. With the breakpoint set, run to it by clicking the Resume button in the Debug
view. Workbench stops when it hits the breakpoint.

3. Examine the Memory view. You should see the six characters of the sample
program (representing balls) in the box.

}QIError Log | = Tasks | (210 Problems | = Properties B8 Build Cansale | & Console D Memary &4 =0

St E S| B8 T

Maonitors o= 3 g,g,‘, Renderings o= 3
@ 0x103FFEBD 0:x103FFEBO : 0x103FFEBD «Traditional =

|Dx103FFEBD ZDEDEDEZDZDEDEDED SDEDEDZDEDEDEDED —————mm—m e ~

Ox103FFECO 7CZ0Z0Z0E0202020 202020202020207C | |
Ox103FFEDD 7CZ0Z0Z0E20202020 202L20202020207C | |
Ox103FFEED 7CZ0Z0Z020202020 202020202020207C | |
Ox103FFEFD 7CZ0Z0Z020402020 202020202020207C | |
Ox103FFFO0 7CZ0Z0Z020202020 4FZ0ZA202020207C | o oF |
Ox103FFF10 7CZ0Z0Z020202020 202020202020207C | |
Ox103FFF20 7CZ0Z0Z0E0202020 202020202020207C | |
Ox103FFF30 7CZ0Z0Z0Z0202020 20Z2020204F20207C | |
Ox103FFF40 ZDZDZDZD40ZDEZDED ZDEZDZDEZDEZDEDEDED ———-f-———mm

< >

2.3.9 Modifying the Breakpoint

Next, change the behavior of the breakpoint so that at each break, the display will
refresh (to show the bouncing balls) without stopping execution.

1. Right-click the breakpoint in the vertical ruler and select
Breakpoint Properties from the context menu (or right-click the breakpoint in
the Breakpoints view and select Properties). The Line Breakpoint Properties
dialog appears.

2. Select Continue on Break, change the Continue Delay to 500, then click OK.

3. Now click the Resume button and watch the balls bounce in the Memory
window.

23

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

4. To stop the program, open the Breakpoint Properties dialog again, clear
Continue on Break, then click OK. The balls may bounce once more after you
click OK, but they will stop.

2.4 Tutorial: Editing and Debugging Source Files

This tutorial demonstrates how Workbench can help you with some of the most
basic activities in development: editing code, building your project and noting
where the build fails, and tracking and fixing errors.

2.4.1 Before You Begin

To set up Workbench for this tutorial, switch back to the Application Development
perspective by clicking its icon in the upper-right corner of the Workbench
window.

2.4.2 Introducing an Error into the Source Code

Because the ball sample program is shipped without errors, you must introduce
one into the sources in order to view a failed build.

1. In the Project Explorer, double-click main.c to open it in the Editor.

2. Select main() in the Outline view. The Editor switches focus to display it.

3. Delete the semicolon (;) after the call to gridInit() so that it reads as follows:

gridInit ()

NOTE: The status bar at the bottom of the Workbench window displays the line
number and column (61:16) where your cursor is located in the Editor.

4. Close and save the file.

24

2 Wind River Workbench Tutorials
2.4 Tutorial: Editing and Debugging Source Files

2.4.3 Tracking Down a Build Failure

1. Build the ball project by right-clicking the ball folder in the Project Explorer
and selecting Build Project from the context menu. Build output appears in
the Build Console tab at the bottom of the screen.

2. When the build encounters the error you created in the main.c file, the build
fails. Workbench displays a red icon containing a white X in several places:

* In the Build Console, which comes to the foreground and displays
information about the error, including the general location where the
problem is suspected to be.

* Inthe Project Explorer, which displays red error markers to alert you that
the build failure was in the ball project, and that main.c is the file
containing the error.

= Inthe Problems view, which displays a description of the error, including
the filename, folder, and line number.

3. Double-clicking the red icon in any of these locations opens the main.c file in
the Editor. Click the red marker in the right overview ruler to switch focus to
(or close to) the line suspected of containing the error.

4. Replace the semicolon after gridInit.

5. Save and close the file.

2.4.4 Displaying File History

Workbench tracks all changes that you make to any files in the project. To display
the change history of the main.c file, right-click the file in the Project Explorer and
select Compare With > Local History.

The History view appears. The dialog displays a list of the dates and times when
the file was changed. When you select one of the list entries, the Compare view

displays the current version of the file in your workspace on the left, and the file as
of the time you chose on the right (that is, the changes associated with that save).

Note the changes you just made. When you are finished, close the Compare view.

NOTE: You can also use the local history feature to restore deleted files. Right-click
the folder the files were in, select Restore from Local History, choose the files you
want to restore, then click Restore.

25

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

2.4.5 Rebuilding the Project

Right-click the ball folder at the top of the project tree and this time, select
Rebuild Project. The project compiles with no errors.

2.5 Tutorial: Using the Editor’s Code Development Features

The Wind River Workbench editor provides code completion, parameter hints,
and bracket matching that can help you develop your code.

2.5.1 Using Code Completion to Add Symbols to Your File

Code completion automatically suggests methods, properties and events as you
enter code.

To use code completion, begin typing in the Editor. Right-click in the Editor and
select Source > Content Assist. You can also use CTRL+SPACE to display a pop-up
list containing valid choices based on the letters you have typed so far.

For example, in ball’s main.c:

1. Position your cursor inside the function main() to the right of the first {
character and press ENTER. Note that the cursor automatically indents
beneath the brace.

NOTE: You can change indentation, brace style, and other code formatting
options by selecting Window > Preferences > General > Editors >
Wind River Workbench Editor.

2. Begin typing grid and invoke code completion: g, r, CTRL+SPACE.

26

2 Wind River Workbench Tutorials
2.5 Tutorial: Using the Editor’s Code Development Features

A dialog appears with suggestions, and as you continue to type the i and the
d, your choices narrow:

€| *main.c &3 =0

(wodid)

W grid : char [][]

@ gridaddBall{BALL * pBall, point point) void
@ gridDeIeteBaII(BALkBall,point point) void
@ gridInit{void) void

@ gridIsBallat{point point)

Eet seed for different */
rrangements */

Press "Ctl+Space’ to show Template Proposals .

Select grid AddBall() and press ENTER to add the function to the file.

2.5.2 Using Parameter Hints

Parameter hints describe what data types a function accepts. When you add a
function using code completion, or when you enter a function name and an open
parenthesis, the Workbench Editor automatically displays any available
parameter hints.

€| *main.c &3 =0
A
nt main (void)
{
grididdEall (]
int i:
BALLL * ©p:
int seed = 3;

gridInit [):

srand (seed) ; /* stop here and set seed for different */
/% initial ball arrangements 7

for (i = 0; i < num hard; i++)
{
hardMew ()

27

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

You can also request parameter hints as you enter your code by right-clicking in
the Editor and selecting Source > Content Assist, or by using the
CTRL+SHIFT+SPACE keyboard shortcut.

2.5.3 Using Bracket Matching to Clarify Syntax

Bracket matching helps you read and troubleshoot complex syntax by highlighting
related parentheses, square brackets, and braces.

If you position your cursor before an open bracket or after a closing bracket, a
rectangle will enclose the corresponding bracket to make it easier to find. You can
jump between the opening and closing brackets by pressing CTRL+SHIFT+P.
Bracket matching operates on the following characters:

O, [L{}L,"" 1 *, <> (C/C++ only)

2.5.4 Finding Symbols in Source Files

The easiest way to find a symbol in a source file you are working with is to select
it in the Outline view, but sometimes that is not possible. So Workbench also
provides other ways to find symbols.

1. Ifitis not already open, double-click the ball project’s main.c file to open it.

2. Select main(): int in the Outline view. The Editor immediately switches focus
and highlights the declaration of main().

3. Several lines below main() is the symbol gridInit(). This symbol does not
appear in the Outline view because that view only displays symbols declared
in the file that is open (and has focus) in the Editor.

NOTE: Hovering over gridInit() displays a pop-up showing the comments
and declaration for the function.

4. To see the declaration of gridInit(), double-click it and then press F3. The
grid.c file opens automatically in the Editor, positioned at the declaration of
gridInit().

Advanced Symbol Search

To open a more advanced symbol search dialog, follow these steps:

28

2 Wind River Workbench Tutorials
2.6 Tutorial: Tracking Items of Interest in Your Files

1. Select Navigate > Open Element.

2. Enter grid*Ball. As you enter a Pattern for the symbol, including wild cards,
Workbench lists all matching symbols. All symbols that match grid*Ball are
displayed.

3. Click Cancel.

2.6 Tutorial: Tracking Items of Interest in Your Files

Adding a bookmark to a source file is similar to placing a bookmark in a book: it
allows you to find an item you are interested in at a later time by looking in the
Bookmarks view. Open the Bookmarks view by selecting Window > Show View
> Bookmarks.

You can create a bookmark on a particular line of code within a file, or you can
bookmark the file itself.

2.6.1 Creating a Bookmark on a Source Line in a File

1. To create a bookmark on a line of code in your file, right-click in the Editor
gutter to the left of the item you want to keep track of, then select
Add Bookmark.

2. Inthe Add Bookmark dialog, enter a meaningful comment to help you
identify it later, then click OK. A small bookmark icon appears in the Editor
gutter, and a marker, or annotation, appears in the overview ruler at the right
edge of the Editor showing your bookmark relative to its position in the file.
An entry also appears in the Bookmarks view.

Hovering over the bookmark icon shows you the text you entered, and
clicking the annotation on the right will return the Editor’s focus to this
position if you scroll to a different line in the file.

2.6.2 Locating and Viewing Your Bookmarks

1. To see the bookmarks in all your projects, open the Bookmarks view by
selecting Window > Show View > Bookmarks.

29

Wind River Workbench

User’s Guide, 3.0 (VxWorks Version)

To open the file that contains a particular bookmark, double-click the
bookmark (or right-click it and select Go To). The file opens in the Editor with
the bookmark location highlighted.

To remove a bookmark you no longer need, right-click it in the Editor gutter
and select Remove Bookmark, or right-click it in the Bookmarks view and
select Delete.

2.7 Tutorial: Using Workbench to Debug a VxWorks 5.5.x Target

This tutorial explains how to use Workbench to create a Tornado 2.x target server
connection and debug a VxWorks 5.5.x target.

To use these instructions, you must have Workbench 3.x, VxWorks 5.5.x, and
Tornado 2.x installed.

2.7.1 Before You Begin

1.

To allow Workbench to find your Tornado installation, run the
installDir/fworkbench-3.x/x86-win32/bin/wrregistert22x.bat script in a
command shell.

When the script asks for the location of your Tornado installation, type the
path and press Enter. The script will update your install.properties file.

2.7.2 Creating a Project

1.

30

Select File > New > Example, then select VxWorks 5.5 Downloadable Kernel
Module Sample Project and click Next.

Select the Cobble demo, then click Finish. The project appears in the Project
Explorer.

Right-click the new cobble_55 project, then select Build Options > Set Active
Build Spec. From the dialog that appears, change the active build spec to
PPC603diab and select Debug mode. Click OK.

2 Wind River Workbench Tutorials
2.7 Tutorial: Using Workbench to Debug a VxWorks 5.5.x Target

4. Right-click the project and select Build Project or press CTRL+SHIFT+A. The
Build Console displays a warning about a bug in the code.

Tasks | Probloms | Praperties 28 Buikd Corscle &3 Remml:r Em:r Loq Terminal

"l d tFPC603‘FH \r'leOtksSS I Toenadod. 2 ranget | l"\ 1C .I’Tomadnz 2.l'ta .,a:m.lwrm’cmeb _JCPU FPCE\CI3 -DTCCL FﬁM]LV—de
ab_PEELI oabbiz.o” &b im -F "cobbie.d”
building PPC603diab_DEBUG/cobble.o

echa "buidng PRCA03 |abJ3EEUG!’oobble 55 th arm <f "PRCA03dah_DEELIG oobble_S5.0ut"inmpps PPCEN3dED_DEBUG tobble.o | witd CiTomados.
jedos - PP dent -1C:] 2target/h -IC: Tornadoz 2ikargatihjumicareip -DCPU=PPCG03 -DTOCL FAMILY=dial
& -¢ PROSOadiah_DEELG ehdl.c; dd APPCE03FH: vxm:rk.,SS <X - 4 -0 "PPCE0Sish_DESLG cobble 55 .0ul” PRCED3Gab_DEEUG cabble o PRCEDSdE
building PPCE03diab_DEBUG cobble
echo "buidng PRC603dab_DEBLIG cobble. " did HPPCEOIF =¥ -0 "PRPCEN3dob_DEBUG/cobble_S5_partiallmage.o” PPCS|
building PPCGE03diab_DEBUG, cobble partie |f||||r| o

miake: buik targats of C:windRivercDES workspace/obble S5

Build Finished in Project “cobble 557 01 Feb 2006 0%:36:53 (Elapsed Time: 00:12)

out

<] ¥

5. Double-click the error symbol to open cobble.c to line 280, then fix the bug.

6. Edit line 133 and change the priority of task tCrunch to 210. If you do not do
this, it will appear that breakpoints are not hit.”

7. Right-click the project folder and select Rebuild Project (Workbench saves
your changes before starting the build).

Your project should build cleanly this time.

2.7.3 Creating a VxWorks 5.5.x Target Server Connection
Now that you have created your project, you are ready to create a target server
connection.

1. From the Remote Systems view toolbar, click Define a connection to remote
system. The New Connection wizard opens.

2. From the Connection Type list, select Wind River VxWorks 5.5.x Target
Server Connection. Click Next.

3. Click Next through the next few screens, reviewing and customizing the target
server options as necessary. Click Finish to create your connection definition.

NOTE: If you get a target server connection error, it could be caused by a long
delay in checking out a license for the Tornado 2.x target server. To lengthen
the timeout, select Window > Preferences > Target Management and increase
the time in the Workbench timeout till target server must be connected field.

9. You can display line numbers by right-clicking in the Editor, selecting Preferences, then
selecting Show line numbers, or you can just scroll up or down and click in the file. The line
number and column position of the cursor is displayed at the bottom of the window.

31

Wind River Workbench

User’s Guide, 3.0 (VxWorks Version)

Once the connection to the Tornado target server is established, it appears
under default(localhost) followed by [Target Server running].

To connect to the Tornado 2.x target, right-click the target server and select
Connect. The target connection appears under the target server connection”.

2.7.4 Launching a Kernel Task and Attaching the Debugger

1.

In the Remote Systems view, right-click your target, then select Target Mode.
Make sure Task is selected.

Right-click your target again, and this time select Debug Kernel Task. The
debug launch configuration dialog appears. This dialog allows you to define
which downloadable module to load, which entry point to call, which
debugging options to implement, and what the source lookup path should be.

You will see that the Name field displays your project’s build target and target
name, but as yet no entry point is defined.

Click Browse next to the Entry Point field, then select Downloads >
cobble_55.out > progStart. Click OK.

Click the Download tab to bring it to the foreground, then click Add. In the
Download dialog, type or browse to the location of your project’s build target
(installDirlworkspace/cobble_55/PPC603diab_DEBUG/cobble_55.0ut).
Make sure Load Symbols to Debug Server is selected, then click OK.

Click the Debug Options tab to bring it to the foreground. Select
Automatically attach spawned Kernel Tasks.

The launch configuration is now complete. Click Debug to launch the task and
attach the debugger. Workbench changes to the Device Debug perspective,
displays the task in the Debug view, and opens cobble.c in the Editor (if it is
not already open) with the focus in progStart.

2.7.5 Setting and Running to a Breakpoint

The easiest way to find a particular function that you want to place a breakpoint
on is to use the Outline view.

10. If you like, click @ next to Kernel Tasks to display the list of kernel tasks running in
the system as well as the name of the core file.

32

2 Wind River Workbench Tutorials
2.7 Tutorial: Using Workbench to Debug a VxWorks 5.5.x Target

The Outline view does not appear by default in the Device Debug perspective,
so open it by selecting Window > Show View > Outline.

2
Select the function cosmos; the Editor will shift focus to that section of -
cobble.c, with cosmos highlighted.

Scroll down to line 166 (containing nadaNichtsIdx) then right-click in the left
Editor gutter and select Breakpoints to open the Breakpoints submenu.

When adding a breakpoint, you can specify the breakpoint’s scope: either the
task that is selected in the Debug view (here, tProgStart) or every task
(Unrestricted). In this example, the code is run by the task tCosmos, not
tProgStart, so select Add Breakpoint (Scope = Unrestricted). If you had
selected Scope = tProgStart, the breakpoint would never have been triggered.

Workbench also allows you to specify the stop scope: either Stop Triggering
Thread, or to Stop All. However, in VxWorks 5.5, Stop All is not supported;
it behaves the same as Stop Triggering Thread. So in this example you do not
need to select either one.

With your breakpoint set, select tProgStart in the Debug view and click
Resume.

The task tProgStart disappears from the Debug view; its only purpose was to
launch the tCrunch, tCosmos, and tMonitor tasks that now appear in the
Debug view and under Kernel Tasks in the Remote Systems view.

Select the task tCrunch in the Debug view to set the scope, then select the
function crunch in the Outline view. The Editor switches its focus and
highlights the function. Several lines below crunch, right-click in the gutter
beside line 268 (beginning while) and select Breakpoints > Add Breakpoint
(Scope = tCrunch).

Back in the Debug view, select tCosmos and click Resume. When tCosmos
hits its breakpoint, click Resume again 9 more times. At this point the task
tCrunch hits its breakpoint and both tasks stop.

2.7.6 System Mode Debugging

In system mode, when a breakpoint is hit, the whole system stops.

1.

Before switching to system mode, highlight tCrunch and tCosmos in the
Debug view, click Resume, then click Disconnect (not Terminate).

In the Remote Systems view, right-click your target (which should still be
running), then select Target Mode > System to switch into system mode.

33

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

3. Open the target console by right-clicking your target and selecting Target
Tools > Target Console. At the prompt, type i to display the list of running
tasks. If you clicked Disconnect (and not Terminate), tCosmos and tCrunch
are still running.

4. In the Remote Systems view, right-click your target and select Attach to
Kernel (System Mode).

Once the target is in system mode, you can right-click various system tasks
and select Attach to Kernel Task (System Mode). Then when the system
stops, you can get the backtrace of the tasks you have attached.

5. Right-click tCosmos and tCrunch and select Attach to Kernel Task. The tasks
appear in the Debug view.

6. Select monitor in the Outline view; this will switch the Editor’s focus to that
part of cobble.c.

7. Set a breakpoint by right-clicking in the gutter next to line 302 (beginning if).

If you select Breakpoints > Add Breakpoint (Scope = tCosmos), the
breakpoint will never be triggered because the code is only run by the
tMonitor task.

Therefore, set the breakpoint using either Scope = Unrestricted or Scope =
tMonitor (you must select tMonitor in the Debug view before you can choose
it as the breakpoint scope).

8. When the breakpoint is triggered, the whole system stops, as shown in the
Remote Systems view and in the Debug view. If you try to type something in
the target console, nothing appears because the whole target is stopped.

9. Remove the breakpoint by right-clicking it in the Breakpoints view and
selecting Remove. In the Debug view, select tMonitor and click Resume to
resume the system.

2.7.7 Using Core Dump Files

You can use core dump files to see backtraces of various tasks.

1. On the Remote Systems view toolbar, click Define a connection to remote
system.

2. Inthe New Connection wizard, select Wind River VxWorks 5.5.x Core Dump
Connection, then click Next.

34

2 Wind River Workbench Tutorials
2.7 Tutorial: Using Workbench to Debug a VxWorks 5.5.x Target

On the next screen, type in or navigate to the location of your core dump file
and the VxWorks kernel image. Click Next through the next few screens and
adjust settings if necessary, then click Finish. Since Immediately connect to
target if possible is selected by default, the connection definition will appear
in the Remote Systems view and Workbench will connect.

A dialog appears telling you that the core dump was successfully attached, but
since Workbench cannot determine the cause for a VxWorks 5.5 core dump the
cause is listed as UNKNOWN. The dialog also displays the program counter
of the current execution context.

In the Debug view, the backtrace of the current execution context appears.
Note that the run control icons are disabled. You can also attach to other tasks
and see their backtraces.

2.7.8 Using Already Available Tornado 2.x Projects

You can import existing Tornado 2.x projects into Workbench.

1.

Create a new user-defined project by selecting File > New > User-Defined
Project.

In the Target Operating System dialog, select Wind River VxWorks 5.5 (this
allows you to use the Tornado 2.x compilers). Click Next.

On the next screen, type a descriptive name into the Project name field, then
select Create project at external location and type in or browse to the location
of your existing Tornado 2.x project. Click Next.

A dialog appears telling you that the directory you pointed to already contains
project information. Click Yes to overwrite existing project information.

Click Finish. Your project now appears in the Project Explorer.

Right-click the new project and select Build Project or press CTRL+SHIFT+A.
Since this is a user-defined project, the build calls the Makefile generated by
Tornado 2.x tools. If you need to add or remove files, you still need to use the
Tornado 2.x IDE or edit the Makefile manually.

To launch Tornado from Workbench, select Target > Launch Wind River
Tornado.

To debug a kernel module, proceed as described in 2.7.4 Launching a Kernel Task
and Attaching the Debugger, p.32. You can also import a kernel project and rebuild
it as well.

35

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Workbench provides added value over Tornado in your ability to use the Search
view, the Outline view, and the very powerful source analysis tools to manage
your projects.

Limitations and Known Issues

To have module synchronization, you must specify the -s option to the target
server.

When the target loads a module, it appears in the Remote Systems view. You can
select and delete it, and it will disappear from the Remote Systems view, but the
module is still running on the target. This is because the target server cannot
remove a module loaded by the target. This is a limitation of Tornado 2.x, and the
Workbench debugger cannot overcome this limitation.

This chapter has been a brief introduction to basic operations with perspectives,
views, and editors, and simple debugging capabilities. The rest of this guide
provides more in depth information about these and other features of Wind River
Workbench.

36

Setting Up Your Development
Environment

3.1 Introduction 37

3.2 Configuring Your Cross-Development System 42

3.3 Setting Up a Boot Mechanism 52

3.4 Booting VxWorks 53

3.5 Configuring Host-Target Communication for Workbench 64
3.6 Troubleshooting VxWorks Problems 70

3.1 Introduction

This chapter explains how to configure your host and target, including how to
download a VxWorks image and boot your target.

The most common development environment setup uses both a serial and a
network connection between the host and target. The serial connection is used to
communicate with the boot loader, and the network connection is used to transfer
files, including the VxWorks system image. A default VxWorks image is provided
for this configuration.

For a discussion of common configuration and setup problems and tips for how to
solve them, see 24.5 Troubleshooting VxWorks Configuration Problems, p.345. For
definitions of terminology that may be unfamiliar to you, see E. Glossary.

37

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

You do not need much of this chapter if all you want to do is connect to a target
that is already set up on your network. If this is the case, read 3.2 Configuring Your
Cross-Development System, p.42 and then proceed with 3.4 Booting VxWorks, p.53.

3.1.1 Overview of Host and Target Configuration Tasks

Host Configuration Tasks

You will need to complete these configuration tasks once per host:
= Install Wind River Workbench.
= Configure TCP/IP for your host.

= Configure a method for transferring a VxWorks image to your target, such as
FTP.

Target Configuration Tasks

You will need to complete these configuration tasks once for each new target:

= Install the VxWorks boot loader for your target (see the Wind River Workbench
for On-Chip Debugging User Tutorials for details).

= Set up one or more physical connections between your target and host.

= Define a Workbench target server to connect to the new target.

Normal Operation
You will need to repeat these tasks each time you want to re-initialize your target
during development:

= Boot VxWorks on the target. VxWorks includes a target agent, the interface
between VxWorks and all other Wind River Workbench tools.

* Launch or restart a Workbench target server on the host.

NOTE: Paths to Workbench directories and files are prefixed by instalIDir in this
guide. Substitute the actual path to your Workbench installation directory.

38

3 Setting Up Your Development Environment
3.1 Introduction

3.1.2 Understanding Target Servers and Target Agents

Wind River Workbench host tools such as shells and debuggers communicate with
the target system through a target server running on the host. A target server can be
configured with a variety of back ends, which provide for various modes of
communication with the target agent running on the target. VxWorks can be
configured and built with a variety of target agent communication interfaces.

Your choice of target server back end and target agent communication interface is
based on the mode of communication that you establish between the host and
target (network, serial, JTAG, and so on). The target server must be configured with
a back end that matches the target agent interface with which VxWorks has been
configured and built. See Figure 3-1 for a detailed diagram of host-target
communications.

NOTE: In the figure, the acronym WTX stands for Wind River Tool Exchange, and
WDB stands for Wind River Debug.

39

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Figure 3-1 Wind River Workbench Host-Target Communication

Shell Debugger Browser %t)kg?sr
WTX ‘
PROTOCOL | |
Target Server
I
EQBE%L%ERVER WDB WDB WDB Non-WDB
RPC Serial Pipe Back End
HOST | |
TARGET (board or simulator) | |
Network Serial Pipe
WDB TARGET AGENT Comm Comm Comm
COMMUNICATION Interface Interface Interface
INTERFACES | |
| |
WDB
Non-WDB
Target
AGENTS Agegnt Agent
|
VxWorks

Target Agent Modes

All of the target server back ends included with Workbench connect to the target
through the target agent. Thus, in order to understand the features of each back
end, you must understand the modes in which the target agent can execute. These
modes are called user mode, system mode, and dual mode.

40

3 Setting Up Your Development Environment
3.1 Introduction

* Inuser mode, the agent runs as a VxWorks task. Debugging is performed on a
per-task basis: you can isolate the task or tasks of interest without affecting the
rest of the target system.

* Insystem mode, the agent runs externally from VxWorks, almost like a ROM
monitor. This allows you to debug an application as if it and VxWorks were a
single thread of execution. In this mode, when the target encounters a
breakpoint, VxWorks and the application are stopped and interrupts are
locked. One of the biggest advantages of this mode is that you can single-step
through ISRs; on the other hand, it is more difficult to manipulate individual
tasks. Another drawback is that this mode is more intrusive; it adds significant
interrupt latency to the system, because the agent runs with interrupts locked
when it takes control (for example, after a breakpoint).

= Tosupport dual mode debugging, VxWorks images are configured with both
agents by default: a user-mode agent INCLUDE_WDB_TASK), and a
system-mode agent (INCLUDE_WDB_SYS). Only one of these agents is active
at a time; switching between the two can be controlled from either the
Workbench debugger (see 23.4 Using Debug Modes, p.314) or the host shell (see
Wind River Workbench Host Shell User’s Guide).

In order to support a system-mode or dual-mode agent, the target communication
path must work in polled mode (because the external agent needs to communicate
to the host even when the system is suspended). Thus, the choice of
communication path can affect what debugging modes are available.

Communication Paths

The most common VxWorks communication path—both for server-agent
communications during development, and for applications—is TCP/IP
networking over Ethernet. That connection method provides a very high
bandwidth, as well as all the advantages of a network connection.

Nevertheless, there are situations where you may wish to use a non-network
connection, such as a serial line or a ROM-emulator connection. For example, if
you have a memory-constrained application that does not require networking, you
may wish to remove the VxWorks network code from the target system during
development. Also, if you wish to perform system-mode debugging, you need a
communication path that can work in polled mode.

Note that the target server back end connection is not always the same as the
connection used to load the VxWorks image into target memory. For example, you

41

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

can boot VxWorks over Ethernet, but use a serial line connection to exploit a
polled-mode serial driver for system-mode debugging.

You can also use a non-default method of getting the run-time system itself into
your target board. For example, you might burn a standalone (self-booting)
VxWorks image directly into target ROM, as described in VxWorks Kernel
Programmer’s Guide: Kernel.

Or you can use a ROM emulator to download new VxWorks images to the target’s
ROM sockets. Another possibility is to boot from a disk locally attached to the
target; see the VxWorks Programmer’s Guide: Local File Systems. Individual Board
Support Packages (BSPs) may provide other alternatives, such as flash memory;
see the reference information for your BSP.

For a tutorial that explains how to use a Wind River ICE or Wind River Probe to
load the run-time system onto your target, see Wind River ICE SX for Wind River
Workbench Hardware Reference or Wind River Probe for Wind River Workbench
Hardware Reference.

3.2 Configuring Your Cross-Development System

Before VxWorks can boot an executable image obtained from the host, the network
software on the host must be correctly configured (see Configuring Host Software,
p-42), your target must be connected and powered up (see Verifying Serial Setup and
Power, p.47), and the boot loader must be loaded onto your target.

3.2.1 Configuring Host Software

For your target to communicate with the Workbench host tools, you need to have
a Wind River registry, TCP/IP, and FTP running on your host.

The following sections describe these procedures in more detail.
Establishing the VxWorks Target Name and IP Address

You can configure the server that provides Domain Name Service (DNS) so that
your computer uses that server to translate system names to network IP addresses.

42

3 Setting Up Your Development Environment
3.2 Configuring Your Cross-Development System

Consult your operating system documentation on how to configure your system
to take advantage of DNS.

If you do not have a domain name server at your site, you can specify how to map

machine names to IP addresses in a file called hosts
(C:\Windows\system32\drivers\etc\hosts on Windows, /etc/hosts on Linux

and Solaris) which records the names and IP network addresses of systems

accessible on the network from the local system (otherwise, you would have to

identify targets by IP address).

Each line consists of an IP address and the name (or names) of the system at that
address.

For example, suppose your host system is called mars and has Internet address
90.0.0.1, and you want to name your VxWorks target phobos and assign it address
90.0.0.50. The hosts file must then contain the following lines:

90.0.0.1 mars

90.0.0.50 phobos
This configuration is represented in Figure 3-7 in 3.4.2 Entering New Boot
Parameters, p.55.

A CAUTION: If you are in a networked environment, do not pick arbitrary IP
addresses for your host and target, as they could be assigned to someone else.
Contact with your system administrator for available IP addresses.

Configuring FTP on Windows

To use the default VxWorks configuration and boot VxWorks over the network,
you must have an FTP server running on the host where the VxWorks system
image is stored, and the FTP server must have a user ID and password defined that
your VxWorks target can use to identify itself.

Workbench includes an FTP server application, WFTPD. Start this FTP server from
the Windows Start menu by selecting Programs > Wind River > VxWorks 6.x
and General Purpose Technologies > FTP Server.

Before an FTP client can connect to WFTPD, you must complete the following
steps:

1. Open the WFTPD window and select Security > Users/rights (Figure 3-2).

43

Wind River Workbench

User’s Guide, 3.0 (VxWorks Version)

Figure 3-2 WFTPD Security Menu

®|

No. log file open - WETPD |_'___||_'E_|[g_|
File Edit WYiew Logging Messages B2 Help

Add, delete, or change users, passwords and home directonies 1 socket |0 users MUK

General...

Hostinet...

WEFTPD displays the User / Rights Security Dialog box shown in Figure 3-3.
Click the New User button; another dialog box (also shown in Figure 3-3)
appears where you can enter whatever arbitrary name you wish as the user ID
for the VxWorks boot ROM. Be sure to use this same name when you assign
the user (u) VxWorks boot parameter described in 3.4.4 Description of Boot
Parameters, p.58.

Figure 3-3 Adding a New User for WFTPD

Usger Mame: | ﬂ Dane

Usger

Mew User... | | |

Horne Directony: -
Help Fights ==

44

Uszer Mame: target
Cancel

Help

After you specify the user name and click OK, WFTPD displays a third dialog
box where you can specify a password (Figure 3-4). Use any memorable
arbitrary string, and be sure to use this same string when you assign the

ftp password (pw) VxWorks boot parameter described in 3.4.4 Description of
Boot Parameters, p.58.

3 Setting Up Your Development Environment
3.2 Configuring Your Cross-Development System

Because the password does not display as you type it, you must type it twice
to be sure the correct password is recorded.

Figure 3-4 WFTPD Password Dialog Box

Change Password

Help

NOTE: Your password must not be an empty string.

4. After defining the new user ID and password, be sure to fill in the
Home Directory text box (Figure 3-5). The VxWorks boot loader does not
require this information, but WFTPD refuses to connect to a client unless you
specify a home directory. Any directory will be fine, as long as you permit
sufficient disk access for the VxWorks boot loader to read the boot image on
your Windows disk.

Figure 3-5 WFTPD Home Directory

User / Rights Security Dialog g|
Uszer Mame: target - [one
Uszer target
Mew User... | Delete | {"Change Pass.. |

Home Directory: — |CATEMP [Resticted to home
Help Rights »>

5. Close the User / Rights Security Dialog box by clicking Done.

NOTE: You can run the FTP server as a restricted user, but you cannot add new
users and passwords if you are a restricted user. A non-restricted user must add
the new users and passwords for you.

6. To enable logging of FTP activities, select Logging > Log Options and select
the types of activities you want to log. The log file will be saved in the home
directory you specified above.

45

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

When you have finished configuring your FIP settings, leave the FTP server
running. It must be running on your host when your target tries to access the
VxWorks image.

Configuring FTP on Linux and Solaris

To use the default VxWorks configuration and boot VxWorks over the network,
you must have an FIP daemon running on the host that the target is connected to,
and the user ID and password that your VxWorks target uses to identify itself must
be able to be authenticated by the network.

If desired, you can use rsh on Solaris instead of FTP.

Becoming Familiar with the Wind River Registry

The Wind River registry is a service that keeps track of running target servers. The
registry must be running for Workbench tools to communicate with VxWorks
targets. Workbench development tools communicate with the target server using
TCP/IP, which in turn communicates with the VxWorks target over the selected
communication method, such as serial, Ethernet, or Transparent Mode Driver
(TMD). The registry is always required, independent of the link between the target
server and the VxWorks target.

Workbench starts the default registry automatically, though if required you can
connect to a registry running on a networked host instead (see 18.4.2 Connecting to
the Target, p.251 for details about connecting to other registries).

You can tell that the Wind River registry is running on your host system if:

» The registry icon is displayed in the Windows system tray.

* Running the ps command on Linux or Solaris shows wtxregd.ex in the jobs list.
To shut down the registry:

= Right-click the registry icon in the Windows system tray and select Shutdown.
= Type killall wtxregd.ex in a Solaris terminal window.

» Type wrenv.linux -p workbench-3.x wtxregd stop in a Linux terminal
window.

46

3 Setting Up Your Development Environment
3.2 Configuring Your Cross-Development System

Changing Wind River Registry Daemon Default Behavior

The behavior of the Wind River registry daemon can be changed by updating the
registry default options. These options control the location of the registry daemon
database, log file locations, levels, and timeouts, and so on.

You can update the registry default options from a terminal window command
line, or by modifying the registry daemon default options configuration file
(installDir/workbench-3.x/foundation/4.x/resource/wtxregd/wtxregd.conf).

For available options and other information about the operation of the registry,
type installDir/workbench-3.x/foundation/4.x/host_type/bin/wixregd help at a
command line, refer to the wtxregd.conf file, or see the online reference entry for
wixregd (Help > Help Contents > Wind River Documentation > References >
Host Tools > Wind River Workbench Host Tools API Reference).

Example Usage

Store the Wind River registry daemon database within a user specific directory.
On Windows:

wtxregd -d $(HOME) /registry-db
On UNIX:

wtxregd start -d $(HOME) /registry-db

3.2.2 Verifying Serial Setup and Power

Hardware settings are specific to your target and host. This section describes in
general terms the types of hardware connections you must make to follow the
instructions in this book, but be aware that you may need to make adjustments to
accommodate your specific cross-development system.

Configuring your target hardware may involve the following tasks:
= Protecting your equipment against electrostatic discharge.
= Setting switches and jumpers on the target CPU board.

= Connecting a serial cable and/or an Ethernet cable, if the target supports
networking.

= Connecting a power supply.

Perform the following general procedures as appropriate for your particular target
hardware. For details, see the target reference for your BSP (such as

47

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

installDirlvxworks-6.x/target/config/bspnameltarget.ref) and the documentation
provided by your target system’s manufacturer.

NOTE: If you are using a Wind River ICE or Wind River Probe emulator to connect
to your target, see the Wind River ICE SX for Wind River Workbench Hardware
Reference or Wind River Probe for Wind River Workbench Hardware Reference for
information about how to connect to your target.

Protecting Equipment from Electrostatic Discharge (ESD)

A

You should always discharge the static electricity that may have collected on your
body before you touch integrated circuit boards, including targets and network
interface cards (NICs).

Electrostatic discharge precautions include:

* touching the metal enclosure of a plugged-in piece of electrical equipment
(such as a PC or a power supply in a metal case)

* placing your equipment on, or standing on, an anti-static mat

» wearing an ESD wrist strap

CAUTION: Failure to take proper ESD precautions can degrade target hardware
over time, leading to intermittent errors or hardware failure.

Setting Board Switches and Jumpers

Many CPU and Ethernet controller boards still have configuration options that are
selected by hardware jumpers, although this is less common than in the past. These
jumpers must be set correctly before VxWorks can boot successfully.

You can determine the correct jumper configuration for your target CPU from the
information provided in the target information reference for your BSP, and in the
target system’s documentation.

Connecting a Serial Cable and Configuring the Terminal View

Most targets include at least one on-board serial port. Wind River Workbench
includes a Terminal view that you can use to open a serial connection from within

48

3 Setting Up Your Development Environment
3.2 Configuring Your Cross-Development System

Workbench, just as you would with any other terminal emulation program such as
hyperterminal, minicom, or telnet.

To configure the Terminal view:
1. Stop any other program already using the serial port.
2. Ifitis not already running, start Workbench.

3. Ifitis not already visible, open the Terminal view (select
Window > Show View > Other, then type Terminal in the filter text field).

4. To get a better view of what is happening in the Terminal view, double click
on the tab at the top of the view. The view will expand to fill the Workbench
window.

® Application Development - - Wind River Workbench

File Edit Refactor Navigate Search Project Analyze Target Run Window Help
o g aEmBR & A e iA [[} evice Debug
P Q@ (5 SR o P : vi = s - |T.E Application D, ‘
EFeeds @] Errar Log] Tasks | [E Problems | = Properties | EH Build Console | Bl Console 8 Terminal 53 5 B %"
g No Connection Selected s
By “
= =
=
=
o=
nf Mo Connection Selected : 70Mof 1520 ([e AT

5. To adjust the settings for your connection, click the square Settings button to
open the Terminal Settings dialog. Configure the terminal settings as
appropriate for your system:

View Title

Type a name into this field to customize the title shown on the Terminal
view tab.

49

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Connection Type: Serial
Select this for a connection to a local target. On Linux, if you are not
running your Linux host as a root user, make sure the permissions are set
correctly for you to access the serial port (if you do not have permissions
set correctly, only the NET option is available under Connection Type).

To set permissions, issue one of the following commands (depending on

which port you plan to use):

$ chmod 666 /dev/ttySO
$ chmod 666 /dev/ttyS1l

Port
Set to the port you are using. Defaults are COM1 on Windows, ttyS0
on Linux, and /dev/cua/a on Solaris.

Baud Rate
Configure the baud rate to match the speed of your connection.

Data Bits
Default on all platforms is 8.

Stop Bits
Default on all platforms is 1.

Parity
Default on all platforms is None.

Flow Control
Default on all platforms is None.

Timeout (sec)
Default on all platforms is 5.

Connection Type: SSH
Select this for a connection to a remote target.

Host
Type in the IP address of the host the target is connected to.

User
Type in your user ID.

Password
Type in your password.

Timeout (sec)
Default on all platforms is 0.

50

3 Setting Up Your Development Environment
3.2 Configuring Your Cross-Development System

Port
Type in the port number you are using.

Connection Type: Telnet
Select this for a connection to a remote target.

Host
Type in the IP address of the host the target is connected to.

Port
Set to the port you are using. You can select telnet or tgtcons from the
drop-down menu, or you can type in the port number.

Timeout (sec)
Default on all platforms is 10.

6. Click OK to open a connection to your target.

7. To disconnect from your target, click Disconnect.
To reopen the connection with the existing settings, click Connect.

After initially configuring the boot parameters and getting started with VxWorks,
you may wish to configure VxWorks to boot automatically without a terminal.
Refer to the target system hardware documentation for proper connection of the
RS-232 signals.

Entering Text in the Terminal View

In its default mode, the Terminal view does not support text editing. However, the
Terminal view includes a Toggle Command Input Field button, which opens a
text inset field at the bottom of the Terminal view.

When this text inset field is open, you can use it to enter and edit text. The contents
of the text inset field are sent to the target when you press ENTER.

The text inset field also keeps track of your command history. You can use the up
and down arrows on your keyboard to navigate through previously entered text,
as with any UNIX text editor.

To hide the text inset field, click the Toggle Command Input Field button again.

Connecting a Cable for the Ethernet Connection

Always make sure you use the correct cable:

= when connecting your board directly to your host, use a crossover cable

51

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

= when connecting your board to a LAN, use a non-crossover cable

A CAUTION: Be sure to follow ESD precautions (see Protecting Equipment from
Electrostatic Discharge (ESD), p.48) whenever working with integrated circuit
boards, including targets and NICs.

Connecting A Power Supply

For standalone targets, use the power supply recommended by the board
manufacturer.

3.3 Setting Up a Boot Mechanism

Workbench is shipped with the following VxWorks images, compiled both with
the Wind River Compiler and with the GNU compiler:

vxWorks

vxWorks_rom
vxWorks_romCompress
vxWorks_romResident

In every case, you will need to create your own boot medium.Your board will
require one of the following media:

ROM
Most boards boot from ROMs.

For cases where boot ROMs are used to boot VxWorks, install the appropriate
set of boot ROMs on your target board(s). When installing boot ROMs, be
careful to:

= Install each device only in the socket indicated on the label.
* Note the correct orientation of Pin 1 for each device.

= Use anti-static precautions whenever working with integrated circuit
devices. For more information, see Protecting Equipment from Electrostatic
Discharge (ESD), p.48.

Floppy Disk

52

3 Setting Up Your Development Environment
3.4 Booting VxWorks

Some BSPs for systems that include floppy drives use boot diskettes instead of
a boot ROM. For example, Pentium systems usually boot from diskette.

Flash Memory

For boards that support flash memory, the BSP may be designed to write the
boot program there. In such cases, an auxiliary program to write the boot
program into flash memory is supplied by the board vendor.

For specific information on a particular booting method, see

Help > Help Contents > Wind River Documentation > Guides > Operating
System > VxWorks BSP Developer's Guide. Instructions for making a floppy
disk for booting a Pentium target are in the target.ref file for the BSP.

You may also wish to replace a boot ROM, even if it is available, with a ROM
emulator. This is particularly desirable if your target has no Ethernet capability,
because the ROM emulator can be used to provide connectivity at near-Ethernet
speeds. Contact Wind River for information about support for ROM emulators.

3.4 Booting VxWorks

Once you have configured your host software and target hardware, you are ready
to boot VxWorks.

With your target connected to your host and a serial connection open in the
Terminal view, click Connect (see Connecting a Serial Cable and Configuring the
Terminal View, p.48).

NOTE: If you are using a VxWorks image configured for a network connection (the
default), you must have an FTP server running on the host where the VxWorks
system image is stored. See Configuring FTP on Windows, p.43 or Configuring FTP
on Linux and Solaris, p.46 for more information.

3.4.1 Default Boot Process

When you boot VxWorks with the default boot program (from a ROM, a diskette,
or another medium), you must use the boot loader prompt to provide the boot
program with information that allows it to find the VxWorks image on the host
and load it onto the target. The default boot program is designed for a networked

53

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

target, and needs to have the correct host and target network addresses, the full
path and name of the file to be booted, the user name, and so on.

Unless your target CPU has non-volatile RAM (NVRAM), you will eventually find
it useful to build a new version of the boot loader that includes all parameters
required for booting a VxWorks image. In the course of developing an application,
you will also build bootable applications.

When you power on the target hardware (and each time you reset it), the target
system executes the boot program from ROM; during the boot process, the target
uses its serial port to communicate with your terminal or workstation. The boot
program first displays a banner page, and then starts a seven-second countdown,
visible on the screen as shown in Figure 3-6.

Figure 3-6 Boot Program Banner Display

® Device Debug - ball/main.c - Wind River Workbench |’._||’E|g|
File Edit Refactor Mavigate Search Project Analyze Run Target Window Help
ol B I AF®BR IR ¥ B RE R [| BB Device Debug |
B B0 Q- Sy P vl % Applcstin ...
| @]Errar Log | ¥ Tasks | & Terminal &3 = Properties | B8 Build Console | Bl Console &1 fg=a|
= =
Telnet: §111,11,111,1:2004 - CONMECTED)
By i
A~
B VxWorks S3ystem Boot
=
a _ . . #
JE Copyright 1984-2005 Wind Riwver Systems, Inc.
=
%
CPU: Wind River SBC PowerQUICC II - MPCEEZxx PowerQUICC ITI
Version: VxWorks 6.2 &
ESP version: Z.0/9)=
Creation date: Oct 18 2005, 23:39:47 -
o1l

Press any key to stop auto-boot...
&

[VxWorks Boot] : I v

: g S mMof13em ([¢

Unless you press any key on the keyboard within that seven-second period, the
boot loader will attempt to proceed with a default configuration, and will not be
able to boot the target with VxWorks.

54

3 Setting Up Your Development Environment
3.4 Booting VxWorks

3.4.2 Entering New Boot Parameters

To interrupt the boot process and provide the correct boot parameters, first power
on (or reset) the target; then stop the boot sequence by pressing any key during the
seven-second countdown.

The boot program displays the VxWorks boot prompt:
[VxWorks Boot] :

To display the current (default) boot parameters, type p at the boot prompt:
[VxWorks Boot]: p

A display similar to the following appears; the meaning of each of these
parameters is described in 3.4.4 Description of Boot Parameters, p.58.

boot device : 1n

unit number : 0

processor number : 0

host name : mars

file name : c:\temp\vxWorks'
inet on ethernet (e) : 90.0.0.50:££££££00
inet on backplane (b)

host inet (h) : 90.0.0.1
gateway inet (g)

user (u) : fred

ftp password (pw) (blank=use rsh) :secret
flags (f) : 0x0

target name (tn) : phobos

startup script (s)

other (o)

This example corresponds to the configuration shown in Figure 3-7. The p
command does not actually display the lines with blank fields, although this
example shows them for completeness.

1. Pre-built VxWorks images are available in
installDir\vxworks-6.x\target\ proj\bsp-compiler\ default, but in this example the vxWorks
file has been copied to c:\temp.

55

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Figure 3-7 Boot Configuration Example

c:\temp\vxWorks
HOST TARGET

<>

mars phobos
user: fred
| |
90.0.0.1 90.0.0.50:ffffff00
| Ethernet |
90.0.0.x subnet

To change the boot parameters, type c at the boot prompt:
[VxWorks Boot]: ¢

In response, the boot program prompts you for each parameter. If a particular field
has the correct value already, press ENTER. To clear a field, enter a period (.), then
press ENTER. To go back to change the previous parameter, enter a dash (-), then
press ENTER. If you want to quit before completing all parameters, type CTRL+D.

Network information must be entered to match your particular cross-development
system configuration. The Internet addresses must match those in the hosts file on
your system (or those known to your Domain Name Server), as described in
Establishing the VxWorks Target Name and IP Address, p.42.

If your target has non-volatile RAM (NV-RAM), the boot parameters are stored
there and retained even if power is turned off. For each subsequent power-on or
system reset, the boot program uses these stored parameters for the automatic boot
configuration.

3.4.3 Boot Program Commands

The VxWorks boot program provides a limited set of commands. To see a list of
available commands, type either h or ? at the boot prompt, followed by ENTER:

[VxWorks Boot]: ?

56

Table 3-1

3 Setting Up Your Development Environment
3.4 Booting VxWorks

Table 3-1 describes each of the VxWorks boot commands and their arguments.

VxWorks Boot Commands

Description

Command

h Help command—print a list of available boot commands.

? Same as h.

@ Boot (load and execute file) using the current boot
parameters.

P Print the current boot parameter values.

c Change the boot parameter values.

1 Load the file using current boot parameters, but without
executing.

gadrs Go to (execute at) hex address adrs.

d adrs|, n] Display n words of memory starting at hex address adrs. If n
is omitted, the default is 64.

m adrs Modify memory at location adrs (hex). The system prompts

f adrs, nbytes, value

tadrs1,adrs2, nbytes
s[011]
e

for modifications to memory, starting at the specified
address. It prints each address, and the current 16-bit value
at that address, in turn. You can respond in one of several
ways:

ENTER: Do not change that address, but continue prompting
at the next address.

number: Set the 16-bit contents to number.

. (dot): Do not change that address, and quit.

Fill nbytes of memory, starting at adrs with value.
Copy nbytes of memory, starting at adrs1, to adrs2.

Turn the CPU system controller ON (1) or OFF (0) (only on
boards where the system controller can be enabled by
software).

Display a synopsis of the last occurring VxWorks exception.

57

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Table 3-1 VxWorks Boot Commands (cont’d)

Command Description
\4 Display BSP and boot ROM version.
N Set Ethernet address.

3.4.4 Description of Boot Parameters

Each of the boot parameters is described below, with reference to the example in
3.4.2 Entering New Boot Parameters, p.55. The letters in parentheses after some
parameters indicate how to specify the parameters in the command line boot
procedure described in 3.4.6 Alternate Boot Methods, p.62.

boot device
The type of device to boot from. This must be one of the drivers included in the
boot loader (for example, enp for a CMC controller). Due to limited space in
the boot media, only a few drivers can be included. A list of included drivers
is displayed at the console (type ? or h).

unit number
The unit number of the boot device, starting at zero.

processor number
A unique numerical target identifier for systems with multiple targets on a
backplane. The backplane master must have its processor number set to zero.
For boards not connected to a backplane, a value of zero is typically used but
is not required.

host name
The name of the host machine to boot from. This is the name by which the host
is known to VxWorks; it need not be the name used by the host itself. (The host
name is mars in the example of 3.4.2 Entering New Boot Parameters, p.55.)

file name
The full pathname of the VxWorks image to be booted (c:\temp\vxWorks in
the example). This pathname is also reported to the host when you start a
target server, so that it can locate the host-resident image of VxWorks. The
pathname is limited to a 160-byte string, including the null terminator.?

inet on ethernet (e)
The Internet Protocol (IP) address of a target system Ethernet interface, as well
as the subnet mask used for that interface. The address consists of the IP
address, in dot decimal format, followed by a colon, followed by the mask in

58

3 Setting Up Your Development Environment
3.4 Booting VxWorks

hex format (here, 90.0.0.50:ffffff00). For more information about working with
IP addresses, see Establishing the VxWorks Target Name and IP Address, p.42.

inet on backplane (b)
The Internet address of a target system with a backplane interface (blank in the
example).

host inet (h)
The Internet address of the host to boot from (90.0.0.1 in the example).

gateway inet (g)
The Internet address of a gateway node for the target if the host is not on the
same network as the target (blank in the example).

user (u)
The user ID that VxWorks uses to access the host for the purpose of loading
the VxWorks image file specified by the filename boot parameter (fred in the
example). That user must have permission to read the VxWorks boot-image
file.

On a Windows host, the user must have FTP access to that host; use the user
name you created in Configuring FTP on Windows, p.43. On a UNIX host, the
user must have FTP or rsh access. The ftp password boot parameter described
below controls how the boot loader accesses the host. For rsh, the user must be
granted access by adding the user ID to the host's /etc/host.equiv file, or more
typically to the user's .rhosts file (~userNamel.rhosts).

ftp password (pw)
The user password used by the boot loader to access the host using FIP for the
purpose of boot loading the file specified by the filename boot parameter. Use
the password you created in Configuring FTP on Windows, p.43.

NOTE: This field is not required by the boot program, but you must supply it
to boot over the network from a Windows host. Without it, the boot loader
attempts to load the run-time system image using a protocol based on the
UNIX rsh utility, which is not available for Windows hosts. So an FTP
password is required, but only for host access during boot loading.

2. If the same pathname is not suitable for both host and target—for example, if you boot from

a disk attached only to the target—you can specify the host path separately to the target
server, using the -c filename option in the Advanced Target Server Options field of the
New Target Server Connection dialog.

59

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

flags (f)

Configuration options specified as a numeric value that is the sum of the
values of selected option bits defined below. (This field is zero in the example
because no special boot options were selected.)

0x01

0x02
0x04
0x08
0x20
0x40
0x80
0x100
0x200
0x400

Do not enable the system controller, even if the processor number is
0. (This option is board specific; refer to your target
documentation.)

Load all VxWorks symbols?, instead of just globals.

Do not auto-boot.

Auto-boot fast (short countdown).

Disable login security.

Use BOOTP to get boot parameters.

Use TFTP to get boot image.

Use proxy ARP.

Use WDB agent.

Set system to debug mode for the error detection and reporting
facility (depending on whether you are working on kernel modules
or user applications). For more information see VxWorks Kernel
Programmer’s Guide: Error Detection and Reporting or VxWorks
Application Programmer’s Guide: Error Detection and Reporting.

a. Loading a very large group of symbol can cause delays of up to several minutes
while Workbench loads the symbols. For information about how to specify the size
of the symbol batch to load, click in the Debug view and press the help key for your
host.

target name (tn)
The name of the target system to be added to the host table (here, phobos).

startup script (s)
If the kernel shell is included in the downloaded image, this parameter allows
you to pass to it the path and filename of a startup script to execute after the
system boots. A startup script file can contain only the shell’s C interpreter
commands. This parameter can also be used to specify process-based
applications to run automatically at boot time, if VxWorks has been configured
with the appropriate components. See VxWorks Application Programmer’s
Guide: Applications and Processes and Target Tools.

other (o)

This parameter is generally unused and available for applications (blank in the
example). It can be used when booting from a local SCSI disk to specify a
network interface to be included.

60

3 Setting Up Your Development Environment
3.4 Booting VxWorks

3.4.5 Booting With New Parameters

After entering the boot parameters, initiate booting by typing the @ command:

[VxWorks Boot]: @

Figure 3-8 VxWorks Booting Display

® Device Debug - ball/main.c - Wind River Workbench

File Edit Refactor Mavigate Search Project Analyze Run Target Window Help
ol B I AF®BR IR ¥ B RE R [| BB Device Debug |
: Q- B ASe .y w i e L Application D...
D Errar Log | ¥ Tasks | & Terminal 2 = Properties | I8 Build Console | B Console IS =7
= =
Telnet: §111,11,111,1:2004 - CONMECTED)
By i
B Attaching interface lo0... done G-
Attached IPv4 interface to wotfocc unit O
... \Loading... 775745 + 102560 =
& |Starting at 0x100000... qt;
Jﬁ Attaching interface lo0... done
Attached IPv4 interface to wotfocc unit O =
8,
VxlWorks -
Copyright 1984-2006 Wind Riwver Systems, Inc.
=
CPU: Wind Riwver 3BC PowerQUICC II - MPCSExx PowerQUICC II 9=
Runtime Name: VxWorks
Runtime Version: 6.4 ol
ESP version: Z.0/10 &
Created: Jep 20 2006, 20:51:31 a
ED&R FPolicy Mode: Deplovyed
WDE Comm Type: WDE_COMM_END
WDE: Ready.
[VxWorks Boot]: I v
i S mMof13em ([¢

Figure 3-8 shows a typical VxWorks boot display. The VxWorks boot program
prints the boot parameters, and the downloading process begins.

The following information is displayed during the boot process:
= The boot program first initializes its network interfaces.

= After the system is completely loaded, the boot program displays the entry
address and transfers control to the loaded VxWorks system.

= When VxWorks starts up, it begins just as the boot ROM did, by initializing its
network interfaces; the network-initialization messages appear again,

sometimes accompanied by other messages about optional VxWorks facilities.

61

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

= After this point, VxWorks is up and ready to attach to the Wind River
Workbench tools.

» The boot display may be useful for troubleshooting. The following hints refer
to Figure 3-8. For more troubleshooting ideas, see 24.5 Troubleshooting
VxWorks Configuration Problems, p.345.

— If Attaching network interface is displayed without the corresponding
done, verify that the system controller is configured properly and the
network interface card is properly jumpered. This error may also indicate
a problem with the network driver in the newly loaded VxWorks image.

— If Loading... is displayed for more than 30-45 seconds without the size of
the VxWorks image appearing, this may indicate problems with the
Ethernet cable or connection, or an error in the network configuration (for
example, a bad host or gateway Internet address).

— If the line Starting at is printed and there is no further indication of
activity from VxWorks, this generally indicates there is a problem with the
boot image.

3.4.6 Alternate Boot Methods

To boot VxWorks, you can also use the command line, take advantage of
non-volatile RAM, or create new boot programs for your target.

Command Line Parameters

Instead of being prompted for each of the boot parameters, you can supply the
boot program with all the parameters on a single line at the boot prompt
(IVxWorks Boot]:) beginning with a dollar sign character (“$”). For example:

$1n(0,0)mars:c:\temp\vxWorks e€=90.0.0.50 h=90.0.0.1 u=fred pw=..

The order of the assigned fields (those containing equal signs) is not important.
Omit any assigned fields that are irrelevant. The codes for the assigned fields
correspond to the letter codes shown in parentheses by the p command. For a full
description of the format, see the reference entry for bootParseLib.

This method can be useful if your workstation has programmable function keys.
You can program a function key with a command line appropriate to your
configuration.

62

3 Setting Up Your Development Environment
3.4 Booting VxWorks

Non-volatile RAM (NV-RAM)

As noted previously, if your target CPU has non-volatile RAM (NV-RAM)), all the
values you enter in the boot parameters are retained in the NV-RAM. In this case,
you can let the boot program auto-boot without having a terminal program
connected to the target system.

Customized Boot Programs

See the VxWorks Kernel Programmer’s Guide for instructions on creating a new boot
program for your boot media, with parameters customized for your site. With this
method, you no longer need to alter boot parameters before booting.

BSPs Requiring TFTP on the Host

Some Motorola boards that use Bug ROMs and place boot code in flash require the
TFTP protocol on the host in order to burn a new VxWorks image into flash.
Workbench ships with a version of TFTP. See your target system documentation
on how to burn flash for these boards.

3.4.7 Rebooting VxWorks
When VxWorks is running, there are several ways you can reboot it. Rebooting by
any of these means restarts the attached target server on the host as well:

* Entering CTRL+X in the Terminal view (other Windows terminal emulators do
not pass CTRL+X to the target, because of its standard Windows meaning.)

* Invoking reboot() from the host shell.
» Pressing the reset button on the target system.
= Turning the target’s power off and on.

When you reboot VxWorks in any of these ways, the auto-boot sequence begins
again from the countdown.

A CAUTION: Be sure to follow ESD precautions (see Protecting Equipment from
Electrostatic Discharge (ESD), p.48) whenever working with integrated circuit
boards, including targets and NICs.

63

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

3.5 Configuring Host-Target Communication for Workbench

If you are developing applications, an Ethernet connection is the easiest to set up
and use, since most VxWorks targets already use the network (for example, to
boot), so no additional target set-up is required. Furthermore, a network interface
is typically a board’s fastest physical communication channel.

If you need a JTAG or other emulator connection, see the Wind River ICE SX for
Wind River Workbench Hardware Reference or the Wind River Probe for Wind River
Workbench Hardware Reference for information about making emulator connections
to your target.

The next few sections describe the setup of Ethernet and serial line connections
within Workbench.

3.5.1 Ethernet Connections

When VxWorks is configured and built with a network interface for the target
agent (the default configuration), the target server can connect to the target agent
using the default wdbrpc back end.

NOTE: If you experience problems when using Workbench tools with a hardware
platform with a new Ethernet driver/chipset, it is highly recommended that you
use the WDB agent over a different communications link (such as serial or the
JTAG Transparent Mode Driver) to isolate if the driver is the source of the problem.

The target agent can receive requests over any device for which a VxWorks
network interface driver is installed. The typical case is to use the device from
which the target was booted; however, any device can be used by specifying its IP
address to the target server.

Connecting to the Target Server

You can connect the target server to the agent by following these steps:

1. Click the Define a connection to remote system icon in the Remote Systems
view toolbar.

64

3 Setting Up Your Development Environment
3.5 Configuring Host-Target Communication for Workbench

J{ﬁRemote Systems &3 m Kernel Ohjects =0
LS G &] P = =
= Local

‘ED Local Files

G Local shells
% Wind River Reaistries
;}‘E waesim Oiind River YxWorks 6.6)
;}ﬁ, wxsiml _smp (Wind River YxWorks 6.6)

The Connection Type dialog appears.

® New Connection

Select Remote System Type

Syskem type:

|ty|:-e filker bext |

E- (= General
T FTP Orlly
Lirz
E Local

5% 55H only

unix LInix

¥ windows

:]I“E Wind River Generic GDE Remate Serial Protocol Connection
(= On Chip Debugging
(== Watiorks B.x

{@ wind River YxWworks 6, Core Dump Connection

:IfE. wind River Yxwiorks 6, Simulator Conneckion

2 I argel Conneckion

Cancel

2. Select Wind River VxWorks 6.x Target Server Connection then click Next.

The Target Server Options dialog appears.

65

Wind River Workbench

Us

@

Target Server Options

Review and customize the target server options.,

Command Line:

er's Guide, 3.0 (VxWorks Version)

New Connection

Backend settings

Backend: |wdbr|:-c “ | Processor; | (default from target) | l Select. ..]

Target name J IP address: | 123.45.78.90 v| Park: l:l

Kernel image
(%) File path From target {if available)

(I File:

[eypass checksum compatisan

Advanced target server options
Werbose target server output

Opkions: | - CifwindRiver fworkspace -RW -BE 3 -A vl [Edit,,,]

tgtswr -4 -R C:fWindRiverfworkspace -RW -Bt 3 -4 123.45,.75.90

7 [< Back " Mext = H Firiish H Cancel l

66

Select the wdbrpc back end, and type in the name or IP address of the target
(you may specify a name only if you added it to your hosts file in Establishing
the VxWorks Target Name and IP Address, p.42).

In the Advanced Target Server Options section, select the Verbose target
server output.

Your command line should look like this:
tgtsvr -V -R C:/installDir/workspace -RW ipaddress

Click Next through the next few screens, then click Finish. Your new target
server connection definition will appear in the Remote Systems view

3 Setting Up Your Development Environment
3.5 Configuring Host-Target Communication for Workbench

connection list, along with the simulator connection definition you created in
2.3.5 Creating a Connection Definition to the VxWorks simulator, p.19.

The Immediately connect to target if possible box is selected by default, so if
your target booted successfully in Booting With New Parameters, p.61, the
Remote Systems view will attempt to connect to your target.

,ﬁﬁRemote Systerns 53 Eﬁ Kermel Objects =B
&£ b & S-S
= E’ L.-:cal
+ *f'n Local Files

JL—_'* Local Shells
+- 4 Wind River Registries
:}% wisimO {Wwind River WiWorks 6.6)

:Ifﬂ. wixsiml_smp (Wind River Yxwaorks 6,6)
g% oy 3.4 [

6. Ifeverythingisset up properly, you will see connected - target server running
at the bottom of the Workbench window. If you have problems connecting, see
Troubleshooting VxWorks Configuration Problems, p.345.

3.5.2 Serial-Line Connections

A minimal cross-development configuration is one in which the standalone target
is connected to the host development system by a single serial line. For a
configuration of this sort, use a combination of a boot mechanism that does not
require a network and an alternative Workbench communications back end.

Workbench can operate over a raw serial connection between the host and target
systems, and can operate on non-networked systems, but this type of connection
is very slow and may not be practical for real-world debugging.

When you connect the host and target exclusively over serial lines, you must:

» Configure and build a boot program to download over the serial connection,
or build an image that boots directly from on-board Flash/ROM memory.

» Reconfigure and rebuild VxWorks with a target agent configuration for a
serial connection.

» Configure and start a target server for a serial connection.

A raw serial connection has some advantages over an IP connection. The raw serial
connection allows you to scale down the VxWorks system (even during

67

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

development) for memory-constrained applications that do not require
networking: you can remove the VxWorks network code from the target system.

When working over a serial link, use the fastest possible line speed. The
Workbench tools—especially the debugger—make it easy to set up system
snapshots that are periodically refreshed. Refreshing such snapshots requires
continuing traffic between host and target. On a serial connection, the line speed
can be a bottleneck in this situation. If your Workbench tools seem unresponsive
over a serial connection, try turning off periodic updates in the browser, or else
closing any debugger displays you can spare.

Configuring the Target Agent For Serial Connection

To configure the target agent for a raw serial communication connection,
reconfigure and rebuild VxWorks with a serial communication interface for the
target agent (see the VxWorks Programmer’s Guide for details).

Configuring the Boot Program for Serial Connection

When you connect the host and target exclusively over serial lines, you must
configure and build a boot program for the serial connection because the default
boot configuration uses an FIP download from the host.

Testing the Connection

Be sure to use the correct kind of cable to connect your host and target. Use a
simple Tx/Rx/GND serial cable because the host serial port is configured not to
use handshaking. Many targets require a null-modem cable; consult the target
system’s documentation. Configure your host system serial port for a full-duplex
(no local echo), 8-bit connection with one stop bit and no parity bit. The line speed
must match whatever is configured into your target agent.

Before trying to attach the target server for the first time, test that the serial
connection to the target is good. To help verify the connection, the target agent
sends the following message over the serial line when it boots (with
WDB_COMM_SERIAL):

WDB READY

To test the connection, attach a terminal emulator to the target-agent serial port,
then reset the target (see Connecting a Serial Cable and Configuring the Terminal View,

68

3 Setting Up Your Development Environment
3.5 Configuring Host-Target Communication for Workbench

p-48). If the WDB READY message does not appear, or if it is garbled, check the
configuration of the serial port you are using on your host.

As a further debugging aid, you can also configure the serial-mode target agent to

echo all characters it receives over the serial line. This is not the default
configuration, because as a side effect it stops the boot process until a target server

is attached. If you need this configuration in order to set up your host serial port,

edit installDir\vxworks-6.x\target\config\comps\src\wdbSerial.c.

Look for the following lines:

#ifdef INCLUDE_WDB_TTY_ TEST
{

#if WDB_TTY_ECHO == TRUE
int waitChar = 0333;

#else /* WDB_TTY_ECHO == FALSE */
int waitChar = 0;

#endif /* WDB_TTY ECHO == TRUE */

#ifdef INCLUDE_KERNEL
/* test in polled mode if the kernel hasn't started */

if (taskIdCurrent == 0)
wdbSioTest (pSioChan, SIO_MODE_POLL, waitChar) ;
else

wdbSioTest (pSioChan, SIO_MODE_INT, waitChar);
#else /* INCLUDE_KERNEL */

wdbSioTest (pSioChan, SIO_MODE_POLL, waitChar) ;
#endif /* INCLUDE_KERNEL */

}
#endif /* INCLUDE_WDB_TTY_TEST */

In each call to wdbSioTest(), change waitChar to 0300.
With this configuration, attach any terminal emulator on the host to the COM port

connected to the target to verify the serial connection. When the serial-line settings
are correct, whatever you type to the target is echoed as you type it.

NOTE: This configuration change also prevents the target from completing its boot
process until a target server attaches to it. Thus, it is best to change the
wdbSioTest() calls back to the default as soon as you verify that the serial line is
set up correctly.

Connecting to the Target Server

After successfully testing the serial connection, you can connect the target server
to the agent by following steps similar to those in Connecting to the Target Server,
p-64:

69

Wind River Workbench

User’s Guide, 3.0 (VxWorks Version)

Close the serial port that you opened for testing (if you do not close the port,
it will be busy when the target server tries to use it).

Click the Define a connection icon in the Remote Systems toolbar. The New
Connection dialog appears.

Select Wind River VxWorks 6.x Target Server Connection then click Next.
The Target Server Connection dialog appears.

Select the wdbserial back end, and type in the name or IP address of the target
(you may specify a name only if you added it to your hosts file in Establishing
the VxWorks Target Name and IP Address, p.42).

In the Advanced Target Server Options section, select Verbose target
server output, then specify the communications port with -d, and also specify
the line speed to match the speed configured into your target. Your command
line should look like this:

tgtsvr -V -d comport -bps speed -B wdbserial ipaddress

Click Next through the next few screens, then click Finish. Your new target
server connection definition will appear in the Remote Systems view
connection list.

Select the target server definition you just created, then click the Connect icon.
If everything is set up properly, you will see connected - target server running
after the target server connection. If you have problems connecting, see
Troubleshooting VxWorks Configuration Problems, p.345.

3.6 Troubleshooting VxWorks Problems

If you encountered problems booting or exercising VxWorks, there are many
possible causes. Read 24.5 Troubleshooting VxWorks Configuration Problems, p.345
before contacting Wind River customer support. Often, you can locate the problem
just by rechecking the installation steps and your hardware configuration.

70

PART Il
Projects

Projects OVerviewccccceemmmiinnnssmmnnnnnssssnnnes 73
Creating VxWorks Image Projectsccccuuen. 89
Creating Boot Loader/BSP Projects 109

Creating VxWorks ROMFS File System Projects 115
Creating VxWorks Real-time Process Projects 119
Creating VxWorks Shared Library Projects 131

Creating VxWorks Downloadable Kernel Module Projects 141

Creating User-Defined Projectscccceeumeennn. 151
Creating Native Application Projects 161
Working in the Project Explorerccccecceeeeees 171
Advanced Project Scenariosccccccviiinnennnnns 181

71

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

72

Projects Overview

4.1 Introduction 73

4.2 Workspace/Project Location 74

4.3 Creating New Projects 75

4.4 Overview of Preconfigured Project Types 76
4.5 Projects and Project Structures 82

4.6 Project-Specific Execution Environments 86

4.1 Introduction

Workbench uses projects as logical containers and as building blocks that can be
linked together to create a software system. The Project Explorer lets you, among
other things, visually organize projects into structures that reflect their inner
dependencies, and therefore the order in which they are compiled and linked.

Pre-configured templates for various project types allow you to create or import
projects using simple wizards that need only minimal input.

73

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

4.2 Workspace/Project Location

Wind River Workbench cannot know where your source files are located, so it
initially suggests a default workspace directory within the installation directory.
However, this is not a requirement, or even necessarily desirable. If you use a
workspace directory outside of the Workbench installation tree this ensures that
the integrity of your projects is preserved after product upgrades or installation
modifications.

Normally, you would set your workspace directory at the root of your existing
source code tree and create your Workbench projects there. For multiple, unrelated
source code trees, you can use multiple workspaces.

Some considerations when deciding where to create your project:

Create project in workspace
Leave this selected if you want to create the project under the current
workspace directory. This is typical for:

— Projects created from scratch with no existing sources.

— Projects where existing sources will be imported into them later on (for
details, see Adding Application Code to Projects, p.172).

— Projects where you do not have write permission to the location of your
source files.

Create project at external location
Select this option, click Browse, then navigate to a different location if you
want to create the project outside the workspace. This is typical for:

— Projects being set up for already existing sources, removing the need to
import or link to them later on.

— Projects being version-controlled, where sources are located outside the
workspace.

Create project in workspace with content at external location
Select this option, click Browse, then navigate to your source location if you do
not want to mix project files with your sources, or copy sources into your
workspace. This is useful for:

— Projects where you do not have write permission to the location of your
source files.

— Projects where team members have their own projects, but share common
(sometimes read-only) source files. This option eliminates the need to

74

4 Projects Overview
4.3 Creating New Projects

create symbolic links to your external files before you can work with them
in Workbench.

NOTE: If you created a workspace with a previous version of Workbench, the
workspace structure must be updated before you can open it with the current

version of Workbench.

A dialog appears informing you that this update may make it incompatible with
previous versions; click OK to update and open the workspace, or Cancel to select
a different workspace.

4.3 Creating New Projects

Although you can create projects anywhere, you would generally create them in
your workspace directory (see 4.2 Workspace/Project Location, p.74). If you follow
this recommendation, there will generally be no need to navigate out of the
workspace when you create projects. Note that if you do create projects outside the
workspace, you must have write permission at the external location because
Workbench project administration files are written to this location.

To create a new project, click the fi# toolbar icon or select File > New >

Wind River Workbench Project to open the New Wind River Workbench Project
wizard. It will help you create one of the pre-configured project types. You can also
select the specific type of project you want to create by clicking the [I toolbar icon
or by selecting File > New > ProjectType. For more information about these
projects, see Overview of Preconfigured Project Types, p.76.

To create one of the demonstration sample projects, select File > New > Example
to open the New Example wizard. Each comes with instructions explaining the
behavior of the program.

Whichever menu command you choose, a wizard will guide you through the
process of creating the specific type of project you select. For step-by-step
descriptions of how to create projects of each type, see the following chapters:

5. Creating VxWorks Image Projects

6. Creating Boot Loader/BSP Projects

7. Creating VxWorks ROMEFS File System Projects
8. Creating VxWorks Real-time Process Projects

9. Creating VxWorks Shared Library Projects

75

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

10. Creating VxWorks Downloadable Kernel Module Projects
11. Creating User-Defined Projects
12. Creating Native Application Projects

4.3.1 Subsequent Modification of Project Creation Wizard Settings

All project creation wizard settings can be modified in the Project Properties once
the project exists. To access the Project Properties from the Project Explorer,
right-click the icon of the project you want to modify and select Properties. For
more information about project properties, see 16.4 Accessing Build Properties,
p.222.

Project structural settings (the sub- and superproject context of the project you are
creating) can be most easily modified in the Project Explorer by right-clicking a
project folder, selecting Project References > Add as Project Reference, and
selecting a project that you want the selected project to be a subproject of.

4.3.2 Projects and Application Code

All application code is managed by projects of one type or another. You can import
an existing Workbench-compatible project as a whole, or you can add new or
existing source code files to your projects. For more information, select File >
Import to open the Import File dialog and press the help key for your host.

4.4 Overview of Preconfigured Project Types

Table 4-1

Different types of projects are used for different purposes. Workbench supports a
number of such project types, each of which will be discussed in more detail in
later chapters. This section contains a brief overview of the available project types.

In the Project Explorer, you can identify the project type by its icon.

Project Type Icons

Icon Project Type

IE-I:' VxWorks Image Project

76

4 Projects Overview
4.4 Overview of Preconfigured Project Types

Table 4-1 Project Type Icons (cont'd)

Project Type
VxWorks Boot Loader/BSP Project

VxWorks Downloadable Kernel Module Project
VxWorks Real-time Process Project

VxWorks Shared Library Project

VxWorks ROMEFS File System Project

User-Defined Project

A R v A

Native Application Project

NOTE: This manual does not discuss Middleware Component projects, as they are
only functional if you have licensed the Wind River VxWorks Platforms product.
For more information about these projects, see the documentation for your
run-time technologies products.

This manual also does not discuss Standalone Application Projects, as they are
only functional if you have licensed the Wind River Workbench for

On-Chip Debugging product. For more information about these projects, see
Wind River Workbench for On-Chip Debugging User Tutorials: Using the OCD
Standalone Project Wizard.

4.4.1 Workbench Sample Projects

A good place to start exploring the sample projects is 2. Wind River Workbench
Tutorials. The tutorials use sample projects to walk you through many aspects of
Workbench and shows you some of the project types introduced below.

4.4.2 VxWorks Image Project
Use a VxWorks Image project to configure (customize /scale) and build a VxWorks
kernel image to boot your target. By adding a VxWorks ROMFS File System project

and kernel modules, applications, libraries, and data files, you can link a complete
system into a single image.

77

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

A new VxWorks Image project can be based either on an existing project of the
same type, or on a Board Support Package. For more information, please see 5.8 Notes
on Board Support Packages (BSPs), p.106.

Refer to 5. Creating VxWorks Image Projects for more information on working with
this type of project.

4.4.3 VxWorks Boot Loader/BSP Project

Use a VxWorks Boot Loader/BSP project to create a VxWorks boot loader (also
referred to as the VxWorks boot ROM) to boot load a target with the VxWorks
kernel. You can also use this type of project to copy sources for an existing BSP into
your project, then customize them without changing the VxWorks install tree.

Boot loaders are used in a development environment to load a VxWorks image
that is stored on a host system, where VxWorks can be quickly modified and
rebuilt. Boot loaders are also used in production systems where both the boot
loader and operating system image are stored on a disk.

Boot loaders are not required for standalone VxWorks systems stored in ROM.

Refer to 6. Creating Boot Loader/BSP Projects for more information on working with
this type of project.

4.4.4 VxWorks Downloadable Kernel Module Project

Use Downloadable Kernel Module projects to manage and build modules that will
exist in the kernel space. You can separately build the modules, run, and debug
them on a target running VxWorks, loading, unloading, and reloading on the fly.
Once your development work is complete, the modules can be statically linked
into the kernel, or they can use a file system if one is present (see 4.4.7 VxWorks
ROMEFS File System Project, p.80). Figure 4-1 illustrates a situation without a file
system on the target.

78

Figure 4-1

4 Projects Overview
4.4 Overview of Preconfigured Project Types

Downloadable Kernel Modules: Overview

Cross-development ; Final Product
HOST TARGET | TARGET
I
.wrproject E— 7 modules | Kernel
*.c, *.cpp arge | including
“h Y Server statically
o & | linked
.0. ".out | modules
Makefile Kernel |
I
|

Kernel-mode development is the traditional VxWorks method of development; all
the tasks you spawn run in an unprotected environment, and all have full access
to the hardware in the system.

A Downloadable Kernel Module that is linked into the kernel is a bootable
application that starts when the target is booted.

Refer to 10. Creating VxWorks Downloadable Kernel Module Projects for more
information on working with this type of project.

4.4.5 VxWorks Real-time Process Project

Use VxWorks Real-time Process projects to manage and build executables that will
exist outside the kernel space. You can separately build, run, and debug the
executable.

At run-time, the executable file is downloaded to a separate process address space
to run as an independent process. A Real-time Process binary can be stored on a
target-side file system such as ROMFS, see 7. Creating VxWorks ROMFS File System
Projects.

Figure 4-2 shows how executables, when loaded into a Real-time Process, run as a
separate entity from the kernel.

79

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Figure 4-2 Real-time Processes: Overview

Cross-development
HOST TARGET
.wrproject Lv | RTP
WPro) Target |4
-, .cpp Server
*.h //v
o *vxe &7
.0. F.vxe
Makefile Kernel

Final Product

TARGET

File System

RTP

Kernel
[+modules]

Refer to 8. Creating VxWorks Real-time Process Projects, 17.6 Executables that

Dynamically Link to Shared Libraries, p.235, and the cheat sheet available from Help
> Cheat Sheets > Wind River Workbench > Setup a VxWorks RTP with a shared

library for more information on working with this type of project.

4.4.6 VxWorks Shared Library Project

Use VxWorks Shared Library projects for libraries that are dynamically linked to

VxWorks Real-time Process projects at run-time. Like the Real-time Process

project, you will need to store the shared library on a target-side file system, which
you can create using 4.4.7 VxWorks ROMEFS File System Project, p.80. You can also
use VxWorks Shared Library projects to create subprojects that are statically linked

into other project types at build time.

Refer to 9. Creating VxWorks Shared Library Projects, 17.6 Executables that

Dynamically Link to Shared Libraries, p.235, and the cheat sheet available from Help
> Cheat Sheets > Wind River Workbench > Setup a VxWorks RTP with a shared

library for more information on working with this type of project.

4.4.7 VxWorks ROMFS File System Project

Use a VxWorks ROMFS File System project as a subproject of any other project type
that requires target-side file system functionality.

80

4 Projects Overview
4.4 Overview of Preconfigured Project Types

So, for example, you may not need a file system project for Downloadable Kernel
Module projects (which can be linked to the VxWorks kernel directly, see

10. Creating VxWorks Downloadable Kernel Module Projects for details), but you will
need to create one for other project types.

This project type is designed for bundling applications and other files, of any type,
with a VxWorks system image in a ROMFS file system. No storage media is
required beyond that used for the VxWorks boot image. Therefore, no other file
system is required to store files; systems can be fully functional without recourse
to local or NFS drives, RSH or FTP protocols, and so on. Note that the name
ROMES has nothing to do with ROM media. It stands for Read Only Memory File
System.

Refer to 7. Creating VxWorks ROMES File System Projects for more information on
working with this type of project.

Figure 4-3 VxWorks ROMFS File System: Overview

Cross-development ; Final Product
HOST TARGET | TARGET
| File System
_ RTP RTP +
.wrproject Target &Y | Shared Libs
.c, *.cpp |_w| Server | (*.s0) *.*
.h . & |
*.0.7.vxe
’ | Kernel
Makefile Kernel | [+modules]
|
1

4.4.8 User-Defined Projects

User-Defined projects assume that you are responsible for setting up and
maintaining your own build system, file system population, and so on. The user
interface nevertheless provides support for the following:

* You can configure the build command used to launch your build utility; this
allows you to start builds from the Workbench GUI.

* You can create build targets in the Project Explorer that reflect rules in your
makefiles; this allows you to select and build any of your make rules directly
from the Project Explorer.

81

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

* You can view build output in the Build Console.

Refer to 11. Creating User-Defined Projects for more information on working with
this type of project.

4.4.9 Native Application Project

Use a Native Application project for C/C++ applications developed for your host
environment. Wind River Workbench provides build and source analysis support
for native GNU 2.9x, GNU 3.x, and Microsoft development utilities (assembler,
compiler, linker, archiver). There is no debugger integration for such projects in
Workbench, so you have to use the appropriate native tools for debugging.

4.5 Projects and Project Structures

All individual projects of whatever type are self-contained units that have no
inherent relationship with any other projects. The system is initially flat and
unstructured. You can, however, construct hierarchies of project references within
Workbench. These hierarchies will reflect inter-project dependencies and therefore
also the build order.

When you attempt to create such hierarchies of references, this is validated by
Workbench; that is, if a certain project type does not make sense as a subproject of
some other project type, or even the same project type, such a reference will not be
permitted.

4.5.1 Adding Subprojects to a Project

Workbench provides different ways to create a subproject/superproject structure:

* You can use the Add as Project Reference dialog. In the Project Explorer,
right-click the project that you want to make into a subproject and choose
Project References > Add as Project Reference, or open the Project menu and
select Add as Project Reference. In the dialog, you will see a list of valid
superprojects; you can select more than one.

82

4 Projects Overview
4.5 Projects and Project Structures

* You can use the Project References page in the Properties dialog. In the
Project Explorer, right-click the project that you want to make into a
superproject and choose Properties, or select the project and choose
Project > Properties. Then select Project References. In the dialog, you will
see a list of projects; select the ones that you want to make into subprojects.

4
Subprojects appear as a subnodes of their parents (superprojects); see Figure 4-4 -
and Figure 4-5.

Workbench validates subproject/superproject relationships based on project type
and target operating system. It does not allow you to create certain combinations.
For example, a Real-time Process project cannot be a direct subproject of a
VxWorks Image project (but it can be added to a ROMFS File System project). In
general, a user-defined project can be a subproject or superproject of any other
project with a compatible target operating system.

For additional information about project structure, see 14.4 Complex Project
Structures, p.184.

Removing Subprojects

To undo a subproject/superproject relationship, use one of these methods:

* In the Project Explorer, right-click the subproject and choose Project
References > Remove Project Reference, or select the subproject and choose
Project > Remove Project Reference.

* In the Project Explorer, right-click the superproject and choose Properties, or
select the superproject and choose Project > Properties. Then select Project
References and uncheck the subprojects that you want to disassociate from
their current parent.

4.5.2 Project Structures and Host File System Directory Structure

A tree of directories has only one Workbench project at the top, all subdirectories
will automatically be included in this project. Do not attempt to create project
hierarchies by creating projects for subdirectories in a tree. This will result in
overlapping projects, which is not permissible.

Figure 4-4 illustrates an ideal host file system directory structure.

83

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Figure 4-4 Workspace/Directory Structure and Project Structure

Physical Logical
VTP - T::I«' VIP_1
(DK _1 @ Kernel Configuration
— i
[C)File System + T o 1
CIRTP 1 - BE File System
" Wahborks File Swstem Contents
CIRTP_ 2 2N
= - L RTP_L

B3 L
- BE pTP 2
S 5

This flat system, on the left, maps to the project structure displayed on the right,
which also represents the ideal (recommended) basic project structure (you may
not need all the project types displayed).

The illustrated project structure is achieved as follows:
1. Create a project for each of the directories on the left.

2. Inthe Project Explorer, select individual projects, and using the instructions in
4.5.1 Adding Subprojects to a Project, p.82, create the project structure that you
need.

4.5.3 Project Structures and the Build System

As you can see in Figure 4-4, project structures are logical, not physical,
hierarchies. These hierarchies define and reflect the inner dependencies between
projects, and therefore also the order in which they have to be built.

NOTE: All references in this section to build and the build system assume that your
projects use Workbench build support. Your user-defined projects are not
automatically included in these descriptions, though it is possible to integrate
custom projects into such a system.

Figure 4-5 illustrates the build order in this project structure.

84

4 Projects Overview
4.5 Projects and Project Structures

Figure 4-5 Build Order in Project Structures

= [k YIP_L
@ Kernel Configuration

+ B b1
- 'E:; File System
mm eWorks File System Conkents
- BE RTP_L
B3 L
- %8 rRTP_2
R

The build starts at the top of the structure, recursively checks dependencies in each
branch, and builds all out-of-date objects and targets at each leaf, until it finishes
at the top of the tree.

Assuming that everything in Figure 4-5 needs to be built, the build order will be:
DKM _1
SL
RTP_1

RTP_2

1
2
3
4. (SL already built in 2 above.)
5
6. FS

7

VIP_1

4.5.4 Project Structures and Sharing Subprojects

Project structures can share subprojects. That is, a single physical project can be
referenced by any number of logical project structures.

The products of any update or build of a subproject, or element thereof, will be
available to project structures that reference that subproject.

85

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

4.5.5 Customizing Build Settings for Shared Subprojects

A single file system folder can be imported into multiple logical project structures,
appearing as a subproject of each one. In each case, you can assign a different build
specification (known as a build spec) depending on what is required by each project.

A folder can also be assigned several different build specs within the same project.

Later, when you set a particular active build spec for the project as a whole, the sub
folder that is assigned the same build spec will be included in the build, while
others assigned different build specs will be excluded. See 17.5 Architecture-Specific
Implementation of Functions, p.234 for an example.

4.6 Project-Specific Execution Environments

If your development process requires you to maintain different build and external
tool execution environments for each of your projects, Workbench allows you to
create a project.properties file within each project that define which tools, tool
versions, and environment variable settings should be used for each one.

You can share the project.properties file with your team to maintain consistency,
and you should add it to source control along with your other project files.

1. In the Project Explorer, right-click your project, then select New > File.
2. Inthe New File dialog, create or link to a project.properties file:

» To create a new file, type project.properties in the File name field, then
click Finish.

» To link to an existing project.properties file, click Advanced, then select
Link to file in the file system. Type in the path or navigate to the file, then
click Finish.

86

4 Projects Overview
4.6 Project-Specific Execution Environments

NOTE: When sharing files with a team, or accessing them from a common
location, it is advisable to use a path variable instead of an absolute path since
each team member’s path to the location may be different.

To define a path variable, click Variables, then click New, then type a Name for
the path variable and the location it represents (or click File or Folder to
navigate to it). Click OK twice to return to the New File dialog; your path
variable and its resolved location appear at the bottom of the dialog. Click
Finish.

The new project.properties file appears under your project in the Project
Explorer, and opens in the Editor so you can add or edit its content.

The project.properties file uses the same syntax as other properties files used
by wrenv (such as install.properties and package.properties). For more
information about wrenv syntax and options, see VxWorks Command Line Tools
User’s Guide: Creating a Development Shell with wrenv.

As an example of what you can specify, the following lines define an extension
to the workbench package, adding the variable PROJECT_CONTEXT to the
environment with the value of set:
projectprops.name=projectprops
projectprops. type=extension
projectprops.subtype=projectprops
projectprops.version=0.0.1
projectprops.compatible=[workbench, ,3.0]
projectprops.eval.0l=export PROJECT_CONTEXT=set
To find the information you will need to create your own extension, find the
project’s platform by looking to the right of your project’s name in the Project
Explorer (for example, it might say VxWorks 6.6).

Open your installDir/install.properties file and look for the section listing the
platform information. This is the type, subtype, and other information you
must include to identify the package you want to extend.

Workbench uses the project properties specified in this file whenever you
build a target in the project. To apply the project properties from the command
line, include the -i option for both the project.properties and
install.properties files when invoking wrenv.

-1 installDir/install .properties -i installDir/workspace/myproject/project.properties

In both cases, the environment for make is altered to include the environment
and properties specified in the file.

87

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

4.6.1 Using a project.properties file with a Shell

The Project > Open Shell menu item also takes advantage of the settings you
specified in the project.properties file. This action is context sensitive, so the
opened shell sets the environment of the selected project’s platform, plus the
extension from the properties file if one exists. If you did not have a project selected
before opening the shell, a dialog appears with the environments you can choose.

4.6.2 Limitations When Using project.properties Files

A project.properties file creates an extension to a project, meaning it can include
new tools, define variables, and specify versions. But it cannot exclude things that
are already included, or overwrite existing variables, or undo PATH settings that
are set within the properties you are trying to extend.

You cannot use a project.properties file with Native Application projects because
they do not have a package associated with them and so cannot be extended.

88

Creating VxWorks Image

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

Projects

Introduction 89

Creating a VxWorks Image Project 90

Importing and Migrating VxWorks Image Projects 95
Importing Command Line-Generated or Prebuilt VIPs 97
Configuring Kernel Components 98

VxWorks Image Projects in the Project Explorer 100

Adding Application Projects to the VxWorks Image Project 105
Notes on Board Support Packages (BSPs) 106

5.1 Introduction

Use a VxWorks Image project (VIP) to configure, customize, scale, and build a
VxWorks kernel image to boot your target. A VIP can be a complete application
and can also contain projects of other types. For example, you can add
Downloadable Kernel Modules or, through an intermediary VxWorks ROMFS File
System, you can add Shared Libraries and Real-time Processes to your VIP.

A new VxWorks Image project can be based on:

An existing VIP (which can be imported into your workspace; see 5.3 Importing
and Migrating VxWorks Image Projects, p.95).

89

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

* A customized Boot Loader/BSP project (see 6.4 Creating a Customized BSP,
p-112 and the VxWorks BSP Developer’s Guide).

* A Board Support Package (see 5.8 Notes on Board Support Packages (BSPs),
p-106).

5.2 Creating a VxWorks Image Project

Before creating the project, see the general comments on projects and project
creation in 4. Projects Overview and the comments on specifying drivers in
5.2.1 Specifying a Non-Default Driver, p.94.

1. Create a VxWorks Image Project by selecting File > New > Wind River
Workbench Project. The New Wind River Workbench Project wizard
appears.

Select a target operating system, then click Next.
From the Build type drop-down list, select System Image. Click Next.

Type a name for your project.

SR

Decide where to create your project:

Create project in workspace
Leave this selected if you want to create the project under the current
workspace directory.

Create project at external location
Select this option, click Browse, then navigate to a different location if you
want to create the project outside the workspace.

6. The next page of the wizard asks what the project is based on. You are asked
whether you would like to base your project on An existing project, or on A
board support package (BSP).

— If you have already configured a VxWorks Image project or a Boot
Loader/BSP project that closely matches your current needs, or if you
want to evaluate a prebuilt VIP project, you can base your project on that.!

1. Prebuilt VIP projects include those shipped with VxWorks, such as the sample SMP-enabled
projects shipped with the UP version of the product.

90

5 Creating VxWorks Image Projects
5.2 Creating a VxWorks Image Project

Project creation will be faster using an existing VxWorks Image project
since the project facility does not have to regenerate configuration
information from BSP configuration files. The files are simply copied.

You can select a supplied BSP from the drop-down list, or navigate to a
third party or other custom BSP (see also 5.8 Notes on Board Support
Packages (BSPs), p.106). The list of known BSPs will depend on the BSPs
you have installed (including the simulator).

Once the VxWorks Image project is created, you cannot change the BSP
that it is based on. You must create a new project with the correct BSP.

If you select A board support package, you are asked to select a Tool
chain. A tool chain is the suite of tools (compiler, linker, and so on) that
will be used to build projects. This is part of the build spec that configures
how things are built. The available list of tool chains depends on what you
have installed.

If you intend to select one of the VxWorks scalability profiles, your
toolchain must be based on the Wind River Compiler (diab).

Support for the BSP validation test suite is included by default.

To configure it, click Options, then select a test suite, provide board and host
configuration information, and type in or click Browse and navigate to a
directory where you want the test results to be stored.

For more information about the settings and options of the BSP validation test
suite, see VxWorks BSP Developer’s Guide: BSP Validation Test Suite.

When you are ready, click Close then Next.

You are asked to select networking options for the kernel.

Select IPv6 enabled kernel libraries to include IPv6 support.

Unselect System Viewer support in kernel if you want to exclude Wind
River System Viewer support. If unchecked, Workbench builds the project
without System Viewer instrumentation, provided the kernel has
previously been compiled with OPT=-fr or OPT=-inet6_fr specified.
(Instrumentation-free kernel libraries are not supplied with the product.)

For information on building the VxWorks kernel, see the source-code
installation and build instructions in your getting started guide. For
information about System Viewer, see the Wind River System Viewer User’s
Guide.

91

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

92

— Select Source mode build to build from source, rather than from libraries,
whenever possible. This compiles only those parts of the system that are
needed by that specific project configuration, greatly increasing its ability
to scale VxWorks down to smaller sizes. Source builds also enable the
system to perform better, because only the needed source is compiled.

If the component configuration does not allow a build from source, then
the project facility will build from libraries as usual.

NOTE: In this release, only the integrator1136jfs and wrSbcPowerQuiccll
BSPs allow configurations that are buildable from source:

— Select SMP support in kernel to include symmetric multiprocessing
options in the VxWorks image. Once the VxWorks Image project is
created, you cannot change whether SMP is enabled or disabled; you will
need to create a new project with the correct SMP setting.

— Select AMP support in kernel to include asymmetric multiprocessing
options in the VxWorks image. As with other VIP settings, once the project
is created, you will need to create a new project to change whether AMP
is enabled or disabled.

NOTE: SMP or AMP support is only available if your product activation file
(*.install.txt) and the selected BSP support it.

» If you do not see the option you want, you must select a different BSP.
» If you see one of these options but cannot select it, that means your BSP
supports this feature but your product activation file did not enable it.

When you are ready, click Next.

You are asked if you want to select a kernel configuration Profile. A Profile is
a preconfigured collection of kernel components that attempts to match given
needs. Selecting a profile can save you quite a bit of manual configuration, but
it is not required.

PROFILE_MINIMAL_KERNEL—Minimal VxWorks Kernel Profile
This profile provides the lowest level of services at which a VxWorks
system can operate. It consists of the micro-kernel, and basic CPU and BSP
support. This profile is meant to provide a very small VxWorks system
that can support multitasking and interrupt management at a very
minimum, but semaphores and watchdogs are also supported by default.
(For more information, see the Small VxWorks Configuration Profiles section
in VxWorks Kernel Programmer’s Guide: Kernel.)

5 Creating VxWorks Image Projects
5.2 Creating a VxWorks Image Project

PROFILE_BASIC_KERNEL—Basic VxWorks Kernel Profile
This profile builds on the minimal kernel profile, adding support for
message queues, task hooks, memory allocation and de-allocation, and
basic I/0 facilities. Applications based on this profile can be more
dynamic and feature rich than the minimal kernel. (For more information,
see the Small VxWorks Configuration Profiles section in VxWorks Kernel
Programmer’s Guide: Kernel.)

PROFILE_BASIC_OS—Basic VxWorks OS Profile
This profile provides a small operating system on which higher level
constructs and facilities can be built. It supports a full I/O system, file
descriptors, and related ANSI routines. It also supports task and
environment variables, signals, pipes, coprocessor management, and a
ROMEFS file system. (For more information, see the Small VxWorks
Configuration Profiles section in VxWorks Kernel Programmer’s Guide:
Kernel.)

PROFILE_COMPATIBLE—VxWorks 5.5 Compatible Profile
This profile provides the minimal configuration that is compatible with
VxWorks 5.5.

PROFILE_DEVELOPMENT—VxWorks Kernel Development Profile
This profile provides a VxWorks kernel that includes development and
debugging components.

PROFILE_ ENHANCED_ NET—Enhanced Network Profile
This profile adds components appropriate for typical managed network
client host devices to the default profile. The primary components added
are the DHCP client and DNS resolver, the Telnet server (shell not
included), and several command-line-style configuration utilities.

PROFILE_CERT—VxWorks DO-178 Certification Profile
This profile provides a DO-178B Level A-certifiable API subset of the
VxWorks operating system.

PROFILE_BOOTAPP—VxWorks Boot Loader Profile
This profile provides a VxWorks boot loader. For more information about
boot loaders, see 6. Creating Boot Loader/BSP Projects and the Customizing
and Building Boot Loaders section in VxWorks Kernel Programmer’s Guide:
Boot Loader. For information about selecting non-default drivers, see
5.2.1 Specifying a Non-Default Driver, p.94.

In addition to the VxWorks Kernel Programmer’s Guide, see the help page for
vxprj::profile for more information about profiles.

93

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

A CAUTION: The OS scale profiles (PROFILE_MINIMAL_KERNEL,
PROFILE_BASIC_KERNEL, and PROFILE_BASIC_OS) are built from
source code, so you must install VxWorks source to use them. For this release,
the profiles can only be built with the Wind River Compiler, and are only
available for the BSPs listed in the Note in step 8. In addition, the profiles do
not support networking.

10. When you are done configuring your project, click Finish. The new VxWorks
Image project appears at the root level in the Project Explorer.

NOTE: If Workbench encounters a problem during project configuration, it
will display an error and ask you if you want to delete the project. If you click
OK, the New Project wizard will reappear with all the settings you chose for
the project that failed. This gives you the opportunity to fix just the setting
causing the problem, rather than having to re-enter all the selections in the
wizard.

If you do not want to fix the problem and re-create the project, click Cancel.

5.2.1 Specifying a Non-Default Driver

If your system requires a (supported) driver that is not provided as the default,
how you select the appropriate driver and de-select the default depends on
whether or not the driver is VxBus-compliant or not.

Drivers that are compatible with the VxBus facility can be added or removed as
standard configuration components (for example, INCLUDE_BCM52XXPHY) using
vxprj or Workbench. Drivers that are not compatible with VxBus must be added
or removed by defining or undefining the respective macros in
installDir/vxworks-6.x/target/config/bspNamel/config.h.

NOTE: Changes to config.h must be made before you create a VxWorks image
project (using either vxprj or Workbench). Any changes made to config.h after a
VIP is created are not picked up by the project.

For information about the VxBus drivers available for your system, see
installDirlvxworks-6.x/target/src/hwif/util/cmdLineBuild.c. For information
about non-VxBus drivers supported for a given BSP, see the VxWorks BSP
References.

94

5 Creating VxWorks Image Projects
5.3 Importing and Migrating VxWorks Image Projects

5.3 Importing and Migrating VxWorks Image Projects

Any existing VxWorks Image project can be imported to Workbench in two ways:
» By selecting File > Import > General > Existing Projects into Workspace.

Use this approach if all you want to do is import an already existing VxWorks

Image project into the current workspace (that s, it was originally created with
Workbench in another workspace). This wizard will make the project known

to the workspace, but not change any file inside the project.

NOTE: This also applies to imports from projects residing within .zip files (for
example, a project that was previously exported to a .zip file using the
corresponding export wizard of Workbench).

» By selecting File > Import > VxWorks 6.x > Existing VxWorks 6.x Image
Project into Workspace.

You must use this approach if you want to migrate the project, or if the project
was created outside of Workbench using the vxprj command-line project
facility (see 5.4 Importing Command Line-Generated or Prebuilt VIPs, p.97).

This wizard adds all project files, including the .wrmakefile and
vxWorks.makefile templates of Workbench (if they do not yet exist). It also
updates any existing project files as needed, thus migrating the project to
Workbench.

5.3.1 Upgrading to a New Version of Workbench

When uprading from a previous version of Workbench to a new one, Workbench
automatically converts and migrates the Workbench-specific files within existing
VxWorks Image projects to the new version, eliminating the need to manually
migrate them or recreate them from scratch. However, it is not generally necessary
to migrate VIPs if only the version of Workbench has changed.

In releases of Workbench versions prior to 2.4, the .wrmakefile template that was
used to generate the Makefiles for the VIP contained all functionality on how to
build VIP projects. Since Workbench 2.4, the VIP-specific instructions have moved
to a dedicated vxWorks.makefile, which contains the necessary functionality to
build the VIP. The .wrmakefile now only covers generic managed build process
instructions such as recursion.

So when migrating existing VIP projects created with versions older than
Workbench 2.4 to newer versions, you must update these makefile templates to

95

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

cause the project to work properly with the new build system. Nevertheless, Wind
River recommends that you migrate any VIP created with a previous version of
Workbench to the latest version in order to get all latest features of VIP build
support.

Migrating the Project

If you did not change anything in the .wrmakefile template, you can directly
migrate the project.

1. If the project was already part of the current workspace, remove the project
from the workspace by right-clicking it in the Project Explorer and selecting
Delete.

2. In the dialog that appears, select Do not delete contents, then click Yes. The
project will disappear from the Project Explorer, but your project files and
sources will remain in their original location.

3. Select File > Import > VxWorks 6.x > Existing VxWorks 6.x Image Project
into Workspace. Only with this wizard are both the .wrmakefile and the
vxWorks.makefile templates (re)created.

4. Navigate to the project you want to import, then click Finish.

Migrating Makefile Template Changes

If you made any manual modifications to your previous .wrmakefile, you must
manually migrate those changes to the new version of the file. If your
modifications affected VxWorks image-specific instructions, migrate them to the
new vxWorks.makefile.

A CAUTION: You must rename the .wrmakefile file prior to migration so it won't get
overwritten during the (re)import of the project.

5.3.2 Upgrading to a New Version of VxWorks
Upgrading from a previous version of VxWorks to a new one using the tcMigrate

command-line migration facility is not discussed here, but after migrating to the
new VxWorks version on command line, follow the same steps for the Workbench

96

5 Creating VxWorks Image Projects
5.4 Importing Command Line-Generated or Prebuilt VIPs

part of the migration as described in 5.3.1 Upgrading to a New Version of Workbench,
p-95.

For more information about migrating to a new version of VxWorks, see the
tcMigrate help entry (by typing tcMigrate into the help system Search field).

5.4 Importing Command Line-Generated or Prebuilt VIPs

One situation where you would want to import a VxWorks Image project is if you
are using the vxprj command-line project facility to build a VIP on the command
line; see the VxWorks Command-Line Tools User’s Guide: Working with Projects and
Components and the vxprj API reference entry for more information about creating
VIP projects this way.

Another situation is if you want to test out the functionality of a prebuilt VIP, for
example the SMP-enabled VIP projects provided with the UP version of VxWorks.

These prebuilt images (whose directory names end _smp) are installed in
installDir/vxworks-6.6/target/proj, and are provided so you can see the actual
kernel configuration of prebuilt, shipped projects, as well as run your
multi-threaded applications on them.

NOTE: These SMP-enabled VIP projects are provided in the UP product for
evaluation purposes only; you may examine and modify the kernel configuration
of these projects to learn how they work, but you may not build them.

You can import command line-generated and prebuilt VIPs into Workbench as
follows:

1. Select File > Import > VxWorks 6.x > Existing VxWorks 6.x Image Project
into Workspace.

2. Browse to the location of the *.wpj file for your project, then click Finish.

Your project appears in the Project Explorer, updated to work with the new
versions of Workbench.

97

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

5.5 Configuring Kernel Components

Your platform distribution includes VxWorks kernel images located in
installDir/vxworks-version/target/config. A kernel image is a binary module that can
be booted and run on a target system. The kernel image consists of system object
modules linked into a single non-locatable object module with no unresolved
external references. In most cases, you will find the supplied kernel image
adequate for initial development. However, later in the cycle you may want to
create a custom VxWorks kernel image.

The VxWorks kernel is a flexible, scalable operating system with numerous
facilities that can be tuned, and included or excluded, depending on the
requirements of your application and the stage of the development cycle.

For example, if you want a very small kernel that does not support networking,
you can create a custom kernel image using one of the OS scale profiles
(PROFILE_MINIMAL_KERNEL, PROFILE_BASIC_KERNEL, and
PROFILE_BASIC_OS). For more information about using profiles, see

5.2 Creating a VxWorks Image Project, p.90.

In other instances it may be useful to build VxWorks with various components
during development, and then exclude them from the production application. The
Kernel Configuration Editor provides a simple means for including or excluding
such components.

For more information about kernel components, see the VxWorks Kernel
Programmer’s Guide: Kernel.

For more information about the Kernel Configuration Editor, see 5.5.1 The Kernel
Configuration Editor Display, p.98 and 5.5.2 Using the Kernel Configuration Editor, p.99,
or open the Kernel Configuration Editor and press the help key for your host.

5.5.1 The Kernel Configuration Editor Display

To open the Kernel Configuration Editor so you can configure the kernel of a
VxWorks Image project, in the Project Navigator, double-click the

Kernel Configuration node immediately under the VxWorks Image project root
node.

The Kernel Configuration Editor consists of three tabs (select at the bottom edge
of the view).

» The Overview tab provides a read-only summary of the configuration that is
updated by changes you make on the other two tabs.

98

5 Creating VxWorks Image Projects
5.5 Configuring Kernel Components

The Bundles tab allows you to add or remove entire bundles of components
that you can fine-tune to your needs in the Components tab.

The Components tab displays a tree of bundles and, at the leaf nodes of
expanded bundles, individual components and their parameters.

5.5.2 Using the Kernel Configuration Editor

From the Kernel Configuration Editor you can manage the components in your
kernel image. For example, if you want to exclude networking components from
an image, follow these steps:

1.

Double-click the Kernel Configuration node of an existing VxWorks Image
project to open the Kernel Configuration Editor.

Since Networking Components is a top level component, it is immediately
visible. Right-click it, then select Exclude. The Exclude dialog appears.

The Exclude dialog displays all the networking components that will be
excluded from the kernel image. If you wanted to keep any components in the
image, you could unselect components at this point. For this example, leave all
components selected, then click Next.

Workbench determines if there are any dependent components that must also
be excluded along with the components you have selected, and displays them.
To complete the configuration, click Finish.

In the Kernel Configuration Editor you will see that Network Components is
still visible, but it is no longer bold. This means the component is installed and
available, but not included in the kernel image. You will also see an overlay
icon indicating that this component has changed, but the change has not yet
been saved. Press Ctrl+S or right-click and select Save to save your changes.

Click the Build Projects icon on the Project Navigator toolbar or right-click
your project and select Build Project. The networking components will be
excluded from the VxWorks kernel image.

Including components is done in the same way. The availability and status of
a component or family is indicated by its typeface:

= Paleicons indicate that a component, or family of components, is not
selected for inclusion.

* Names of components that are selected for inclusion appear in bold type.

A family name appears in bold type if any of its components are included.

99

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

* Names of components that are excluded, but installed and therefore
available for inclusion, appear in plain type.

» Names of components that have not been installed appear in grey italics.

* Names of components that match a search query are highlighted.

NOTE: If the component you want to include or exclude is not at the top level
(and therefore not easy to see) you can use the Find dialog to locate the
component or parameter using its name or description. To access the Find
dialog from the Components tab, type CTRL+F, or right-click and select Find.

For more information about the Kernel Configuration Editor, open it and press the
help key for your host.

5.6 VxWorks Image Projects in the Project Explorer

After a VxWorks Image project has been created (see 5.2 Creating a VxWorks Image
Project, p.90), a number of nodes appear in the Project Explorer. This section
describes these nodes as they appear immediately after project creation, as well as
some that only appear after the projects are built using a specific build
specification (referred to here, and in the user interface, as a build spec).

For general notes about manipulating nodes, for example, moving, copying,
filtering, and so forth, see 13. Working in the Project Explorer.

5.6.1 Global Project Nodes

= ProjectName
The icon at the root of the project tree identifies the type of project; the
icon’s label is the name you gave the project when you created it.

@' Kernel Configuration
Immediately below the project node of a VxWorks Image project, there
is the Kernel Configuration node. Double-click the Kernel
Configuration node to open the Kernel Configuration Editor. See
5.5 Configuring Kernel Components, p.98, for information on using this
editor.

100

5 Creating VxWorks Image Projects
5.6 VxWorks Image Projects in the Project Explorer

5.6.2 Project Build Specs and Target Nodes

Each target node is associated with a predefined build spec.

The default VIP target is a RAM-based image. If you want to create an image of
another type, select a different target node when you build the project. See Creating
New Build Targets, p.102 for more information.

NOTE: What follows is a typical list of build specs. The build specs initially
available for a project are determined by the board support package. The VxWorks
simulator BSP (see 5.8.1 Using the Simulator BSP, p.106) does not supply ROM
build specs.

default
This represents the target built using the default build spec and appears
immediately after the project is created. It is a RAM-based image,
usually loaded into memory by a VxWorks boot loader. This is the
default development image and the only one that is available if you
specify a simulator as your target “board”. Itis also available in formats
such as vxWorks.bin and vxWorks.hex. The .hex options are variants of
the main options with Motorola S-Record output. The .bin options are
variants of the main options with binary output.

default_rom
This is a ROM-based image that copies itself to RAM before executing.
This image generally has a slower startup time, but a faster execution
time than default_ romResident. It is also available in .bin and .hex
formats.

default_romCompress
A compressed ROM image that copies itself to RAM and decompresses
before executing. It takes longer to boot than default_rom but takes up
less space than other ROM-based images (nearly half). The run-time
execution is the same speed as default_rom. It is also available in .bin
and .hex formats.

default_romResident
A ROM-resident image. Only the data segment is copied to RAM on
startup. It has the fastest startup time and uses the smallest amount of
RAM. Typically, however, it runs slower than the other ROM images
because ROM access is slower. It is also available in .bin and .hex
formats.

101

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Creating New Build Targets

To add a build target to a project, right-click the project and choose
New > Build Target (or select the project and choose File > New > Build Target).
Type a name for the new build target and click Finish.

For VxWorks Image projects, build-target names should have the form
vxWorks|[type][format], where type can be empty (the default RAM-based image),
_rom, _romCompress, or _romResident, and format can be empty (the default ELF
image), .bin, or .hex. Examples:

vxWorks

vxWorks.hex

vxWorks_rom
vxWorks_romResident.hex
vxWorks_romCompress.bin

Each target name corresponds to one of the build specs described above. Target
names are case-sensitive and must be spelled correctly to invoke the intended
predefined build specs.

5.6.3 Build Output Folders

When you create the project, a node called vxWorks (default) is added to the
project tree. It will hold the build output of the default target (created by setting
the active build spec to default). Nodes are created for each target as you build
them. The names of the nodes match those of the targets and will, once built, hold
the corresponding target’s build output.

Other build output folders are created if you use other build specs. These will have
the same names as the build spec used (see 5.6.2 Project Build Specs and Target
Nodes, p.101).

5.6.4 Makefile Nodes

Three Makefiles are created in the project folder. One is a template that can also be
used for entering custom make rules. The others are dynamically regenerated from
build spec data at each build.

102

5 Creating VxWorks Image Projects
5.6 VxWorks Image Projects in the Project Explorer

-wrmakefile
A template used by Workbench to generate the project’s Makefile. Add
user-specific build-targets and make rules in this file. These will then be
automatically dumped into the Makefile.

bspvts.makefile
A makefile fragment used by Workbench to invoke the scripts for the
BSP Validation Test Suite.

Makefile.mk
Called from Makefile. Connects the Workbench project to the VxWorks
build system. Includes a list of components and build parameters. Do
not edit.

Makefile
Do not add custom code to this file. This Makefile is regenerated every
time the project is built. The information used to generate the file is
taken from the build specification on which the target node is based.

vxWorks.makefile
A template that contains all necessary instructions to build the VIP, used
by Workbench to generate the project’s Makefile.

5.6.5 Project File Nodes
The project creation facility generates, or includes copies of, a variety of files when
a VxWorks Image project is created.

Application Initialization Stubs

Two of the files that are copied to the project at creation time are stubs for entering
calls to your application code:

|.c| usrApplnit.c
A stub for adding DKM application initialization routines.

.| usrRtpApplnit.c
A stub for adding RTP application initialization routines.

103

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Other Project Description Files

Normally, you need not be concerned with the remaining project files. However,
here a brief summary of the remaining VxWorks Image project files displayed in
the Project Explorer:

projectName.wpj
Contains information about the project used for generating the project
makefile, as well as project source files such as prjConfig.c.

.project

Eclipse platform project file containing builder information and project
nature.

.wrproject

Workbench project file containing common project properties such as
project type, etc.

|| linkSyms.c
A dynamically generated configuration file (therefore not to be checked
in to your version control system) that includes code from the VxWorks
archive by creating references to the appropriate symbols. It contains
symbols for components that do not have initialization routines.

l.¢| prjConfig.c
A dynamically generated configuration file (therefore not to be checked
in to your version control system) that contains initialization code for
components included in the current configuration of VxWorks.

|.¢| prjComps.h
A dynamically generated configuration file (therefore not to be checked
in) that contains the preprocessor definitions (macros) used to include
VxWorks components.

l.c| prjParams.h
A dynamically generated configuration file (therefore not to be checked
in) that contains component parameters.

104

5 Creating VxWorks Image Projects
5.7 Adding Application Projects to the VxWorks Image Project

5.7 Adding Application Projects to the VxWorks Image Project

Step 1:

Step 2:

Step 3:

Once you have created application projects, populated these with code, and
successfully built them, you will want to add these to the VxWorks Image project.
You may also want to add a VxWorks ROMFS file system (see 7. Creating VxWorks
ROMFS File System Projects).

Link the application projects to the VxWorks Image project.

Some projects, including downloadable kernel modules and user-defined projects,
can be managed as subprojects of a VxWorks Image project. If your application
projects are not already set up as subprojects of a VIP, see 4.5.1 Adding Subprojects
to a Project, p.82 for information on how to do this. Building VIPs with application
subprojects helps assure correct linking and dependency-checking.

RTP and shared-library projects cannot be direct subprojects of a VIP, but they can
be subprojects of a File System project that is in turn a subproject of a VIP.

Add the application initialization routines to the VxWorks Image project.

When VxWorks boots, it initializes all operating system components (as needed),
and then passes control to the user’s application for initialization. To add
application initialization calls to VxWorks, do the following:

» For DKM projects, double-click userApplInit.c to open the file for editing, and
add the necessary calls to the usrAppInit() function.

» For RTP projects, double-click userRtpAppInit.c to open the file for editing,
and add the necessary calls to the usrRtpAppInit() function.

Configure the VxWorks Image project VxWorks kernel.

VxWorks must be configured to support the calls your application makes to it, or
you will not be able to link your image. If your BSP provides a “bare-bones”
VxWorks configuration, you may wish to use the Kernel Configuration Editor’s
Auto Scale facility to detect and add most of the VxWorks functionality you
require. Auto Scale will compile your code, analyze the symbols in your object
modules, map them to components, and offer to include those components. There
may be some components that Auto Scale does not detect. If you Auto Scale, build,
and still get link errors, you will need to add the additional components from the
Kernel Configuration Editor (for more information about auto scale and the kernel
configuration editor, open the editor and press the help key for your host).

105

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

5.8 Notes on Board Support Packages (BSPs)

A Board Support Package (BSP) consists primarily of the hardware-specific
VxWorks code for a particular target board. A BSP includes facilities for hardware
initialization, interrupt handling and generation, hardware clock and timer
management, mapping of local and bus memory space, and so on.

You can base a VxWorks Image project on the VxWorks simulator BSP, a Wind
River BSP supplied with Workbench, or a third-party BSP; or you can create your
own custom BSP.

5.8.1 Using the Simulator BSP

You can base your VxWorks Image project on the VxWorks simulator BSP if you
want to develop a custom BSP and application code for your product in parallel,
or if your target hardware is not yet ready. The simulator BSP contains default
VxWorks functionality sufficient for supporting most applications.

5.8.2 Using a Wind River BSP

If your BSP was installed with Workbench 3.0, you can create a VxWorks Image
project from it directly (see 5.2 Creating a VxWorks Image Project, p.90).

For information on migrating a Tornado 3.x-compliant BSP or a SNiFF+ 4.1 (or
newer) BSP to Workbench, see the Wind River Workbench Migration Guide.

5.8.3 Using a Custom BSP for Custom Hardware

Creating a BSP

If you need to create your own BSP, refer to the VxWorks BSP Developer’s Guide and
6. Creating Boot Loader/BSP Projects. If you wish to develop the BSP and the
application code in parallel, you may want to begin application development on
the VxWorks Simulator. See 5.8.1 Using the Simulator BSP, p.106.

106

5 Creating VxWorks Image Projects
5.8 Notes on Board Support Packages (BSPs)

Using a Pre-Existing BSP with the Workbench Project Facility

If you already have a custom BSP that is Tornado 2.x compliant, see the VxWorks
Migration Guide for information on migrating to Workbench.

If you already have a custom, non-compliant BSP, you will need to modify it to

conform to the guidelines outlined in the VxWorks BSP Developer’s Guide in order

to use it with the Workbench project facility. Once you have modified it, verify that
it builds properly before creating a project for it.

NOTE: If you do not make your BSP Workbench compliant, Workbench will not
be able to provide project-based support for customizing, configuring, or building
it.

Using a BSP Outside of Workbench

You may use a non-compliant BSP by managing its configuration manually. For
information on using manual methods, see the VxWorks Command-Line Tools User’s
Guide. You can still create downloadable projects to hold your application code
and download them to a target booted with a non-compliant BSP.

107

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

108

Creating Boot Loader/BSP
Projects

6.1 Introduction 109

6.2 Creating a Boot Loader/BSP Project 110

6.3 Creating a Customized Boot Loader 111

6.4 Creating a Customized BSP 112

6.5 Boot Loader/BSP Projects in the Project Explorer 113

6.1 Introduction

Use a VxWorks Boot Loader/BSP project to create a customized VxWorks boot loader
(also referred to as the VxWorks bootrom) to boot a target with a VxWorks image.
You can also use this project type to create custom BSPs, by copying the BSP
sources into your project so you can customize them without changing the
VxWorks installation tree.

Boot loaders are used in a development environment to load a VxWorks image
that is stored on a host system, where VxWorks can be quickly modified and
rebuilt. Boot loaders are also used in production systems where both the boot
loader and operating system image are stored on a disk.

Boot loaders are not required for standalone VxWorks images, nor is it possible to
create a boot loader for an image meant to be run on the VxWorks simulator.

109

Wind River Workbench

User’s Guide, 3.0 (VxWorks Version)

For more information about boot loaders, see the VxWorks Kernel Programmer’s
Guide: Boot Loader and 3.3 Setting Up a Boot Mechanism, p.52.

6.2 Creating a Boot Loader/BSP Project

Before creating the project, see the general comments on projects and project
creation in 4. Projects Overview.

NOTE: The PROFILE_BOOTAPP configuration profile provides a simpler method
of creating a boot loader (based on a VxWorks Image Project) than the one
described here. It is not, however, available for all BSPs with this release. For more
information, see the description of PROFILE_BOOTAPP—VxWorks Boot Loader
Profile, p.93.

1.

ISR

110

Create a VxWorks Boot Loader/BSP Project by selecting File > New >
Wind River Workbench Project. The New Wind River Workbench Project
wizard appears.

Select a target operating system, then click Next.

From the Build type drop-down list, select Boot Loader/BSP. Click Next.
Type a name for your project.

Decide where to create your project:

Create project in workspace
Leave this selected if you want to create the project under the current
workspace directory.

Create project at external location
Select this option, click Browse, then navigate to a different location if you
want to create the project outside the workspace.

The next page of the wizard asks you to choose:

— The Board support package for which you want to create a boot loader, or
that you want to use as the basis for a custom BSP.

— The Tool chain that you will use with the project.

6 Creating Boot Loader/BSP Projects
6.3 Creating a Customized Boot Loader

— Whether the BSP source files should be copied into your project. Select
Copy files to project if you want to modify the BSP sources without
changing the original files in your VxWorks installation tree.

— The Style and Format of the Boot loader/BSP image.

Boot loader images come in the following styles: Compressed,
Uncompressed, (ROM-)Resident, and (ROM-)Resident At High
Address. These are functionally the same but have different memory
requirements and execution times. After the project has been created, you
can change the Style by right-clicking the project and selecting Set Active
Build Spec.

For format, choose from ELF, Bin, or Hex.

The VxWorks Kernel Programmer’s Guide: Boot Loader chapter provides
detailed information on Style and Format. BSP documentation specifies
which types are available for a specific target.

When you are ready, click Finish. The new project appears at the root level in
the Project Explorer.

NOTE: Once the Boot Loader project is created, you cannot change the BSP that
it is based on. You must create a new project with the correct BSP.

6.3 Creating a Customized Boot Loader

By default, a Boot Loader project merely creates a default boot loader. You may
find it necessary or desirable to customize various features of the boot loader, by
doing one or more the following:

Adding or removing VxWorks components. For example, you can exclude
networking components if you are not going to use the network to boot your
system.

Selecting non-default drivers. If the boot loader’s default drivers are not
appropriate for your target, you need to change the driver selection for the
bootloader. For more information, see 6.3.1 Selecting Boot Loader Drivers, p.112.

Setting boot parameters that are appropriate for your development
environment, or for deployed systems. Boot parameters specify the IP

111

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

addresses of the host and target systems, FTP user names and passwords, the
location of the VxWorks image to boot, and so on. For information about boot
parameters, see 3.4.4 Description of Boot Parameters, p.58.

In order to change the default configuration of a boot loader you must edit the
installDirlvxworks-6.x/target/config/bspName/config.h file. You can open the file
in the editor by clicking on config.h in the Project Explorer.

For more information about these topics, see the VxWorks Kernel Programmer’s
Guide: Boot Loader, 3.3 Setting Up a Boot Mechanism, p.52, and the VxWorks BSP
References entry for your BSP.

6.3.1 Selecting Boot Loader Drivers
If your boot loader requires a (supported) driver that is not provided as the default,

you must edit installDir/vxworks-6.x/target/config/bspName/config.h to define the
macro for the correct driver, and undefine the macro for the one you do not need.

NOTE: Changes to config.h must be made before you create a VxWorks Image
project (using either vxprj or Workbench). Any changes made to config.h after a
VIP is created are not picked up by the project.

For information about the VxBus drivers available for your system (and the macro
names to use in config.h), see installDir/target/src/hwif/util/cmdLineBuild.c. For
information about non-VxBus drivers supported for a given BSP, see the VxWorks
BSP References entry for the BSP in question. Note that the macro names for VxBus
drivers do not have the leading INCLUDE_ element (for example,
DRV_SIO_NS16550), whereas the names for non-VxBus drivers do (for example,
INCLUDE_ELT_3C509_END).

6.4 Creating a Customized BSP

When you select Copy files into project while creating your Boot Loader/BSP
project, a standalone copy of the BSP directory is created inside your project
directory in the workspace.

This means that, instead of writing a BSP from scratch, you can start with a default
BSP, modify and build it to suit your needs, and still have the original VxWorks

112

6 Creating Boot Loader/BSP Projects
6.5 Boot Loader/BSP Projects in the Project Explorer

sources in your installation tree. For more information about how to customize
your BSP, see the VxWorks BSP Developer’s Guide.

Once you have your BSP working, you can use it as the basis for a VxWorks Image
project. For details, see 5.2 Creating a VxWorks Image Project, p.90.

6.5 Boot Loader/BSP Projects in the Project Explorer

After a Boot Loader/BSP project has been created, a number of nodes appear in the
Project Explorer. This section describes these nodes as they appear immediately
after project creation.

For general notes about manipulating nodes, for example, moving, copying,
filtering, etc., please see 13. Working in the Project Explorer.

6.5.1 Global Project Nodes

[EE ProjectName
The icon at the root of the project tree identifies the type of project; the
icon’s label is the name you gave the project when you created it.

6.5.2 Project Build Specs and Target Nodes

Each Boot Loader/BSP project has a single Workbench-managed build target
whose name has the form bsp (buildSpec)—for example,

wrSbc8560 (bootloader_res). To switch build specs, right-click and choose
Set Active Build Spec.

Build-spec names have the form bootloader[style][format], where style can be
empty (the default compressed image), _uncmp (uncompressed), _res
(ROM-resident), or _res_high (ROM-resident at high address), and format can be
empty (the default ELF image), .bin (binary output), or .hex (Motorola S-Record).
Examples:

bootloader
bootloader.bin

113

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

bootloader_res_high
bootloader uncmp.hex

You can create new build targets with user-defined make rules by right-clicking on
the project and choosing New > Build Target or by choosing File > New > Build
Target.

6.5.3 Makefile Nodes

Makefile
This Makefile is generated when the project is created. You may add
your own make rules to the file, or update the existing macros (such as

the TOOL macro).

6.5.4 Other Project Description Files

Normally, you need not be concerned with the remaining project files. However,
here is a brief summary of the remaining VxWorks Boot Loader/BSP project files
displayed in the Project Explorer:

.project
Eclipse platform project file containing builder information and project
nature.

.wrproject
Workbench project file containing common project properties such as
project type, and so on.

114

Creating VxWorks ROMFS File

System Projects

7.1 Introduction 115

7.2 Creating a VxWorks ROMES File System Project 116

7.3 Configuring the VxWorks ROMES File System 116

7.4 VxWorks ROMEFS File System Projects in the Project Explorer 117

7.1 Introduction

Use a VxWorks ROMFS File System project as a subproject of a VxWorks Image
project that requires ROMFS. The VxWorks ROMEFS file system provides a means
for bundling RTP applications and shared libraries with the VxWorks system
image. At runtime, these files can be accessed in the VxWorks /romfs directory
(and any subdirectories you create).

To use other file systems—such as dosFs—in your applications, configure
VxWorks with the appropriate components.

For more information about ROMFS and other file systems, see the VxWorks Kernel
Programmer’s Guide: Local File Systems or the VxWorks Application Programmer’s
Guide: Local File Systems; and the VxWorks Application Programmer’s Guide:
Applications and Processes.

115

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

7.2 Creating a VxWorks ROMFS File System Project
Before creating the project, see the general comments on projects and project
creation in 4. Projects Overview.

1. Create a VxWorks ROMEFS File System project by selecting File > New >
Wind River Workbench Project. The New Wind River Workbench Project
wizard appears.

Select a target operating system, then click Next.
From the Build type drop-down list, select ROMFS File System. Click Next.

Type a name for your project.

AR N

Decide where to create your project:

Create project in workspace
Leave this selected if you want to create the project under the current
workspace directory.

Create project at external location
Select this option, click Browse, then navigate to a different location if you
want to create the project outside the workspace.

Create project in workspace with content at external location
Select this option, click Browse, then navigate to your source location if
you do not want to mix project files with your sources, or copy sources
into your workspace.

6. When you are ready, click Finish. The VxWorks ROMFS File System is created
at the root level in the Project Explorer, and the ROMFS File System Contents
Editor opens (for more information, see 7.3 Configuring the VxWorks ROMFS
File System, p.116).

7.3 Configuring the VxWorks ROMFS File System

1. Ifitis not already open, double-click the VxWorks ROMES File System
Contents node under the VxWorks ROMES File System project. This opens the
File System Contents Editor so you can add files or create subdirectories.

116

7 Creating VxWorks ROMFS File System Projects
7.4 VxWorks ROMFS File System Projects in the Project Explorer

2. Two panels display the contents of the host and the target. Select files, then
click Add and Remove to move files between the two panels. Click Add
External to add a file from outside your workspace to the target contents.

3. To create a subdirectory, right-click in the Target Contents panel and select
Add New Folder to File System. To remove it, right-click it and select Remove
From File System.

4. When you are finished, save and close the editor.

Make sure that you add the correct binary or data files. Click the file names in the
Target Contents pane and verify the path in the Host path field in the bottom
panel. This can be useful, for example, to check that:

* You have used the correct version of a versioned shared library.
* You have taken files from the correct build-spec output folder.

7.4 VxWorks ROMFS File System Projects in the Project Explorer

After you have created a VxWorks ROMFS file system project, a number of nodes
appear in the Project Explorer. This section describes these nodes as they appear
immediately after project creation. For general notes about manipulating nodes,
for example, moving, copying, filtering, and so on, see 13. Working in the Project
Explorer.

7.4.1 Global Project Nodes

=5 ProjectName
The icon at the root of the VxWorks ROMES File System project tree
identifies the type of project; the icon’s label is the name you gave the
project when you created it.

@/ VxWorks ROMFS File System Contents
Below the project node is the VxWorks ROMFS File System Contents
node. Double-click the VxWorks ROMES File System Contents to
open the File System Contents Editor. Please refer to 7.3 Configuring the
VxWorks ROMFS File System, p.116, for information on using this editor.

117

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

7.4.2 Project File Nodes

The project creation facility generates, or includes copies of, a variety of files when
a VxWorks ROMES File System project is created. Normally, you need not be
concerned with these files. However, here is a brief summary of the VxWorks
ROMEFS File System project files displayed in the Project Explorer:

.project
Eclipse platform project file containing builder information and project
nature.

.wrproject
Workbench project file containing common project properties such as
project type, etc.

118

Creating VxWorks Real-time
Process Projects

8.1 Introduction 119

8.2 Creating a VxWorks Real-time Process Project 120

8.3 Configuring VxWorks Real-time Process Projects 121

8.4 VxWorks Real-time Process Projects in the Project Explorer 126
8.5 Application Code for a VxWorks Real-time Process Project 128
8.6 Linking to VxWorks and Using Shared Libraries 128

8.7 Troubleshooting Execution of RTPs 128

8.1 Introduction

You can separately build, run, and debug the VxWorks Real-time Process
executable using VxWorks Real-time Process (RTP) projects to manage and build
modules that will exist outside of the kernel space.

At run-time, the executable file is downloaded to a separate address space to run
as an independent process. The binary produced from a VxWorks Real-time

Process project must be stored on a target-side file system, see 7. Creating VxWorks
ROMES File System Projects.

VxWorks Real-time Process projects provide a protected, process-based,
user-mode environment for developing applications. In this mode, applications

119

Wind River Workbench

User’s Guide, 3.0 (VxWorks Version)

are developed as VxWorks executables. An application has a well-defined start
address. When the executable is loaded, memory is allocated by the system for the
executable, execution begins at the known start address, and all tasks in the
process run within the same memory-protected address space. When the
application terminates, all the resources associated with it are freed back to the
system.

8.2 Creating a VxWorks Real-time Process Project

Before creating the project, see the general comments on projects and project
creation in 4. Projects Overview.

1.

120

Create a VxWorks Real-Time Process project by selecting File > New >
Wind River Workbench Project. The New Wind River Workbench Project
wizard appears.

Select a target operating system, then click Next.

From the Build type drop-down list, select Real-time Process Application.
Click Next.

Type a name for your project.
Decide where to create your project:

Create project in workspace
Leave this selected if you want to create the project under the current
workspace directory.

Create project at external location
Select this option, click Browse, then navigate to a different location if you
want to create the project outside the workspace.

Create project in workspace with content at external location
Select this option, click Browse, then navigate to your source location if
you do not want to mix project files with your sources, or copy sources
into your workspace.

When you are ready, click Finish. The VxWorks Real-time Process project is
created and appears at the root level in the Project Explorer.

8 Creating VxWorks Real-time Process Projects
8.3 Configuring VxWorks Real-time Process Projects

8.3 Configuring VxWorks Real-time Process Projects

Once you have created your project, you can configure its build support and specs,
build tools, build macros, and build paths.

For general details about build properties, see 16.4 Accessing Build Properties, p.222
or press the help key for your host.

1.

To access build properties for your project, right-click it in the Project Explorer
and select Properties.

2. From the Properties dialog, click Build Properties.

8.3.1 Configuring Build Support and Specs

Use this tab to configure build support and build specs for your project.

1.

A VxWorks Real-time Process project is a predefined project type that uses
Workbench build support, so build support is enabled by default. If you are
creating a project because you want to browse symbol information and you are
not interested in building it, click Disabled to disable build support (you can
click Managed build to re-enable it later, if you want).

If necessary, edit the default Build command.

All available build specs are selected (and therefore enabled) by default. To
restrict the list of enabled build specs to only those you need for your project,
click Disable All and then select the checkbox next to the build spec(s) you
want to enable for this project.

Highlighting the name of the build spec is not sufficient to enable it; there must
be a check in the checkbox to enable the build spec.

NOTE: RTPs do not provide build specs for any PPC variants other than PPC32
because RTPs run only in the user space.

To reset build properties to their default settings or import build settings from
another project, click Import and select the source of the build settings.

If you enabled one build spec for this project, it appears in the Default build
spec and Active build spec fields.

If you enabled more than one, the build spec in the Default build spec field is
used for builds, though you can select a different Active build spec for a
particular build. The build spec in the Active build spec field is also

121

Wind River Workbench

User’s Guide, 3.0 (VxWorks Version)

propagated to the appropriate fields on the Build Tools, Build Macros, and
Build Paths tabs.

Select or clear the Debug Mode checkbox, depending on whether you want
the build output to include debug information or not.

NOTE: You can also change the active build spec and the debug mode by
right-clicking the project in the Project Explorer and selecting Build Options >
Set Active Build Spec.

For more information about the build settings on this tab, press the help key
for your host. You may continue configuring your project by selecting another
build tab, or if you are finished, click OK.

8.3.2 Configuring Build Tools

Use this tab to configure build tools, build output generation, and build flags for
your project.

1.

122

The build tools you can select for RTP projects are C-Compiler,
C++-Compiler, Linker, Librarian, or Assembler. In addition, you can define
your own build tool.

» C-Compiler, C++-Compiler, Assembler: These tools produce a
BuildTargetName.obj file on Windows or a BuildTargetName.o file on
UNIX.

» Linker: The linker produces a BuildTargetName.vxe file. This single,
partially linked and munched (integrated with code to call C++ static
constructors and destructors) object is intended for downloading.

The Linker output product cannot be passed up to superprojects,
although the current project’s own, unlinked object files can, as can any
output products received from projects further down in the hierarchy.

» Librarian: The Librarian produces an archive BuildTargetName.a file.

The Librarian output product can be passed up to superprojects, as can
the current project’s own, unlinked object files, as well as any output
products received from projects further down in the hierarchy.

» Todefine your ownbuild tool, click New and enter a build tool name, then
click OK. Your build tools appears in the drop-down list, and you can
configure all build tool settings to fit your needs.

8 Creating VxWorks Real-time Process Projects
8.3 Configuring VxWorks Real-time Process Projects

2. For more information about the build settings on this tab, press the help key

for your host. You may continue configuring your project by selecting another
build tab, or if you are finished, click OK.

8.3.3 Configuring Build Macros

Use this tab to define global and build spec-specific macros that are added to the
build command when executing builds.

1.

To change the value of an existing global build macro, select the value in the
Build macro definitions table and type in a new one, or click Edit and type in
the new value, then click OK.

To define a new global build macro, click New next to the table, then enter a
Name and Value for the macro. Click OK.

NOTE: You can define and use global build macros even if you do not select or
define any build specs for your project.

To change the value of an existing build spec-specific macro, select the Active
build spec for which the value should be applied, select the value in the Build
spec-specific settings table, then type in a new one. Or click Edit and type in
the new value, then click OK.

To define a new build spec-specific macro, click New next to the table, enter a
Name for the macro, leave the Value blank, then click OK.

To define the value, select the macro, select the Active build spec for which the
value should be applied, click Edit and enter the New value, then click OK.

The macro will always be appended to the build command when a build is
launched, and the value will be set according to the active build spec,
including empty values.

For example, if the build command is make --no-print-directory and the
macro is TEST_SPEC, you can define values to be used with different build
specs:

spec 1: Value = speclVal
spec2: Value = spec2Val
spec 3: Value =

The resulting build commands are as follows:

build command for spec 1: make --no-print-directory TEST_SPEC=speclVal

123

Wind River Workbench

User’s Guide, 3.0 (VxWorks Version)

build command for spec 2: make --no-print-directory TEST_SPEC=spec2Val
build command for spec 3: make --no-print-directory TEST_SPEC=

For more information about the build settings on this tab, press the help key
for your host. You may continue configuring your project by selecting another
build tab, or if you are finished, click OK.

8.3.4 Configuring Build Paths

Use this tab to specify a redirection root directory for your build output, and add,
delete, or reorder the directories searched by the build tools.

1.

124

By default, build output is directed to a subdirectory in your workspace.
However, if you want to redirect it somewhere else in your file system, specify
a location in the Redirection root directory field.

The Redirection directory is a subdirectory of the Redirection root directory.
By default this directory has the same name as the Active build spec, though
you can change it by typing a new directory name in the field.

The Include paths table shows the paths used by the compiler to resolve
include directives. To analyze your project and update the displayed include
paths, click Generate to open the Generate Include Search Paths dialog.

a. Onthe Analyze include directives page, specify which include directives
you want Workbench to ignore when generating include paths.

— Select the first box to ignore inactive include directives, or clear it to
analyze them. Inactive include directives are those directives ignored
by the build system because they are surrounded by compiler options
and preprocessor directives such as #ifndef.

— Select the second box to ignore system includes, or clear it to analyze
them.

When you are ready, click Next to analyze include directives. This may
take some time for a large project.

b. The Resolve include directives page displays results from the analysis.
The upper field displays unresolved include directives in three groups:
resolvable by one include search path, resolvable by multiple search paths,
and not resolvable. The lower field displays resolved directives:
predefined search paths, as well as the search paths Workbench was able
to resolve.

8 Creating VxWorks Real-time Process Projects
8.3 Configuring VxWorks Real-time Process Projects

To automatically resolve all include directives that can be resolved,
click Resolve All.

To automatically resolve an individual include directive or one of the
groups of unresolved directives, click Resolve. If Workbench found
one matching header, it will resolve the include directive. If it found
multiple matching headers, a dialog displays the headers and asks
you to select one.

To open the file so you can see the context of an unresolved include
directive, click Show in Editor.

NOTE: When automatically resolving include directives, Workbench uses
heuristics to determine the best matches, but the results may be incorrect. So
you should examine and if necessary Remove undesired search paths in the
lower field. The newly-generated search paths are marked with a yellow plus
on the folder icon (=).

To manually resolve include directives for which no matching headers
were found, click Add and navigate to the location of the appropriate
headers. Click OK to add the path to the list of resolved directives; any
directives resolved by that path are removed from the unresolved list.

To view, enable, or disable variables for paths and path segments,
click Substitution. Click a variable or group of variables to enable or
disable them.

Variables are grouped into four groups, and are applied to all
generated paths in the resolved directives field:

Wind River environment: includes Wind River platform and
Workbench variables.

Build macros: includes global and local build macros, as defined
in project properties.

Project locations: includes variables referring to projects in the
workspace.

System environment: includes all environment variables that do
not appear in the build macro or Wind River environment groups.

Click Apply to see your changes but leave the dialog open for further
editing, or click OK if you are finished.

To copy search paths to the clipboard so you can paste them into a
make file, select the search path then click Copy.

125

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

c. When you are ready, click Finish to return to the Build Paths tab.

4. Tomanually add an include directory for an Active build spec, select the build
spec from the drop-down list, click Add, and browse to or type in the path (be
sure not to erase the -I at the beginning of the path). Click OK.

To add an include path that applies to all your build specs, click Add to all and
then browse to or type in the path, then click OK.

5. When you are finished configuring your project, click OK.

8.4 VxWorks Real-time Process Projects in the Project Explorer

After you have created a VxWorks Real-time Process project, a number of nodes
appear in the Project Explorer. This section describes these nodes as they appear
immediately after project creation. For general notes about manipulating nodes,
for example, moving, copying, filtering, etc., please see 13. Working in the Project
Explorer.

8.4.1 Global Project Nodes

I:p-,. ProjectName
The icon at the root of the project tree identifies the type of project; the
icon’s label is the name you gave the project when you created it.

8.4.2 Project Build Specs and Target Nodes

Each target node is associated with a predefined build specification.

The RTP build targets depend on the options you selected during project creation.
Specifically, you will not have both an archive (TargetName.a) target and a
TargetName.out target immediately after project creation. Which of these will be
visible depends on the build tool you selected. Also, the presence or absence of the
green upward arrow on the target icon (to indicate whether the target is passed up
the hierarchy) will be determined by your project settings.

126

8 Creating VxWorks Real-time Process Projects
8.4 VxWorks Real-time Process Projects in the Project Explorer

It TargetName.vxe (BuildSpecName[DEBUG])

This single, partially linked and munched (integrated with code to call
C++ static constructors and destructors) object, produced by the Linker
build tool is intended for downloading.

iﬁi TargetName.a (BuildSpecName[_DEBUG])
An archive produced by the Librarian build tool that must be statically
linked into an executable.

8.4.3 Makefile Nodes

At project generation time two Makefiles are copied to the project. One is a
template that can also be used for entering custom make rules. The other is
dynamically regenerated from build spec data at each build.

-wrmakefile
A template used by Workbench to generate the project’s Makefile. Add
user-specific build-targets and make-rules in this file. These will then be
automatically dumped into the Makefile.

[H] Makefile
Do not add custom code to this file. This Makefile is regenerated every
time the project is built. The information used to generate the file is

taken from the build specification that on which the target node is
based.

8.4.4 Project File Nodes

The project creation facility generates, or includes copies of, a variety of files when
a project is created. Normally, you need not be concerned with these files.
However, here is a brief summary of the DKM project files displayed in the Project
Explorer:

.project
Eclipse platform project file containing builder information and project
nature.

.wrproject

Workbench project file containing common project properties such as
project type, and so on.

127

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

8.5 Application Code for a VxWorks Real-time Process Project

After project creation you have the infrastructure for a VxWorks Real-time Process
project, but often no actual application code. If you are writing code from the
beginning, you can add new files to a project. If you already have source code files,
you will want to import these to the project. For more information please refer to
13.3.1 Importing Resources, p.172, and 13.3.2 Adding New Files to Projects, p.173.

8.6 Linking to VxWorks and Using Shared Libraries

In order to have your VxWorks Real-time Process project binary initialized once
the kernel has booted, you will need to:

» Create a VxWorks Image project. See 5.2 Creating a VxWorks Image Project, p.90.

» Configure the VxWorks Image project as described under 5.7 Adding
Application Projects to the VxWorks Image Project, p.105 and 5.5 Configuring
Kernel Components, p.98.

» Create a ROMFS target file system before the target is disconnected from the
host system. See 7.2 Creating a VxWorks ROMFS File System Project, p.116.

» If you want to dynamically link to shared libraries, the VxWorks Real-time
Process project needs to be appropriately configured. See 17.6 Executables that
Dynamically Link to Shared Libraries, p.235, and the cheat sheet available from
Help > Cheat Sheets > Wind River Workbench > Setup a VxWorks RTP with
a shared library.

8.7 Troubleshooting Execution of RTPs

You may get an S_rtp_INVALID_FILE error when trying to execute an RTP.

This error is generated when the path and name of the RTP executable are not
provided, or when the executable cannot be found using the indicated path. Unlike
with downloadable kernel modules, RTP executable files are accessed and loaded
from the VxWorks target, not from the host running Workbench.

128

8 Creating VxWorks Real-time Process Projects
8.7 Troubleshooting Execution of RTPs

Therefore the path to the executable file must be valid from the point of view of the
VxWorks target itself. Correctly specifying the path may involve including the
proper device name in front of the path. For example:

S host:d:/my.vxe

129

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

130

Creating VxWorks Shared
Library Projects

9.1 Introduction 131

9.2 Creating a VxWorks Shared Library Project 132

9.3 Configuring VxWorks Shared Library Projects 132

9.4 Shared Libraries in the Project Explorer 138

9.5 Source Code for the Shared Library 139

9.6 Making Shared Libraries Available to Applications 139

9.1 Introduction

Use VxWorks Shared Library projects for libraries that are dynamically linked to
Real-time Process applications at run-time. Such a shared library can be stored on
a host file system, a network file system, or a local file system on the target
(including ROMFS). You can also use VxWorks Shared Library projects to create
subprojects that are statically linked into other project types at build time.

See 17.6 Executables that Dynamically Link to Shared Libraries, p.235, and the cheat
sheet available from Help > Cheat Sheets > Wind River Workbench > Setup a
VxWorks RTP with a shared library for more information on working with this
type of project. Also refer to the VxWorks Application Programmer’s Guide:
Applications and Processes for more information about shared libraries.

131

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

9.2 Creating a VxWorks Shared Library Project
Before creating the project, see the general comments on projects and project
creation in 4. Projects Overview.

1. Create a VxWorks Shared Library project by selecting File > New >
Wind River Workbench Project. The New Wind River Workbench Project
wizard appears.

Select a target operating system, then click Next.
From the Build type drop-down list, select Shared User Library. Click Next.

Type a name for your project.

AR

Decide where to create your project:

Create project in workspace
Leave this selected if you want to create the project under the current
workspace directory.

Create project at external location
Select this option, click Browse, then navigate to a different location if you
want to create the project outside the workspace.

Create project in workspace with content at external location
Select this option, click Browse, then navigate to your source location if
you do not want to mix project files with your sources, or copy sources
into your workspace.

6. When you are ready, click Finish. The VxWorks Shared Library project is
created and appears at the root level in the Project Explorer.

9.3 Configuring VxWorks Shared Library Projects
Once you have created your project, you can configure its build support and specs,
build tools, build macros, and build paths.

For general details about build properties, see 16.4 Accessing Build Properties, p.222
or press the help key for your host.

1. Toaccess build properties for your project, right-click it in the Project Explorer
and select Properties.

132

2.

9 Creating VxWorks Shared Library Projects
9.3 Configuring VxWorks Shared Library Projects

From the Properties dialog, click Build Properties.

9.3.1 Configuring Build Support and Specs

Use this tab to configure build support and build specs for your project.

1.

A VxWorks Shared Library project is a predefined project type that uses
Workbench build support, so build support is enabled by default. If you are
creating a project because you want to browse symbol information and you are
not interested in building it, click Disabled to disable build support (you can
click Managed build to re-enable it later, if you want).

If necessary, edit the default Build command.

All available build specs are selected (and therefore enabled) by default. To
restrict the list of enabled build specs to only those you need for your project,
click Disable All and then select the checkbox next to the build spec(s) you
want to enable for this project.

NOTE: Highlighting the name of the build spec is not sufficient to enable it;
there must be a check in the checkbox to enable the build spec.

To reset build properties to their default settings or import build settings from
another project, click Import and select the source of the build settings.

If you enabled one build spec for this project, it appears in the Default build
spec and Active build spec fields.

If you enabled more than one, the build spec in the Default build spec field is
used for builds, though you can select a different Active build spec for a
particular build. The build spec in the Active build spec field is also
propagated to the appropriate fields on the Build Tools, Build Macros, and
Build Paths tabs.

Select or clear the Debug Mode checkbox, depending on whether you want
the build output to include debug information or not.

NOTE: You can also change the active build spec and the debug mode by
right-clicking the project in the Project Explorer and selecting Build Options >
Set Active Build Spec.

For more information about the build settings on this tab, press the help key
for your host. You may continue configuring your project by selecting another
build tab, or if you are finished, click OK.

133

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

9.3.2 Configuring Build Tools

Use this tab to configure build tools, build output generation, and build flags for
your project.

1. The build tools you can select for Shared Library projects are C-Compiler,
C++-Compiler, Shared Library Linker, Static Librarian, or Assembler. In
addition, you can define your own build tool.

» C-Compiler, C++-Compiler, Assembler: These tools produce a
BuildTargetName.obj file on Windows or a BuildTargetName.o file on
UNIX.

» Shared Library Linker: The shared library linker produces a
BuildTargetName.so target that is dynamically linked to at run-time.

The output product of the shared library linker will normally be passed up
to superprojects. If you do not pass the library target up to its
superprojects, references in the superprojects” application code cannot be
resolved at compile time.

» Static Librarian: The static librarian produces an archive
BuildTargetName.a file.

The static librarian output product can be passed up to superprojects, as
can the current project’s own, unlinked object files, as well as any output
products received from projects further down in the hierarchy.

* Todefine your ownbuild tool, click New and enter a build tool name, then
click OK. Your build tools appears in the drop-down list, and you can
configure all build tool settings to fit your needs.

2. For more information about the build settings on this tab, press the help key
for your host. You may continue configuring your project by selecting another
build tab, or if you are finished, click OK.

9.3.3 Configuring Build Macros
Use this tab to define global and build spec-specific macros that are added to the
build command when executing builds.

1. To change the value of an existing global build macro, select the value in the
Build macro definitions table and type in a new one, or click Edit and type in
the new value, then click OK.

134

9 Creating VxWorks Shared Library Projects
9.3 Configuring VxWorks Shared Library Projects

2. To define a new global build macro, click New next to the table, then enter a
Name and Value for the macro. Click OK.

NOTE: You can define and use global build macros even if you do not select or
define any build specs for your project.

3. To change the value of an existing build spec-specific macro, select the Active
build spec for which the value should be applied, select the value in the Build
spec-specific settings table, then type in a new one. Or click Edit and type in
the new value, then click OK.

4. To define a new build spec-specific macro, click New next to the table, enter a
Name for the macro, leave the Value blank, then click OK.

To define the value, select the macro, select the Active build spec for which the
value should be applied, click Edit and enter the New value, then click OK.

The macro will always be appended to the build command when a build is
launched, and the value will be set according to the active build spec,
including empty values.

For example, if the build command is make --no-print-directory and the
macro is TEST_SPEC, you can define values to be used with different build
specs:

spec 1: Value = speclVal
spec2: Value = spec2Val
spec 3: Value =

The resulting build commands are as follows:

build command for spec 1: make --no-print-directory TEST_SPEC=speclVal
build command for spec 2: make --no-print-directory TEST_SPEC=spec2Val
build command for spec 3: make --no-print-directory TEST_SPEC=

5. For more information about the build settings on this tab, press the help key
for your host. You may continue configuring your project by selecting another
build tab, or if you are finished, click OK.

9.3.4 Configuring Build Paths

Use this tab to specify a redirection root directory for your build output, and add,
delete, or reorder the directories searched by the build tools.

135

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

136

By default, build output is directed to a subdirectory in your workspace.
However, if you want to redirect it somewhere else in your file system, specify
a location in the Redirection root directory field.

The Redirection directory is a subdirectory of the Redirection root directory.
By default this directory has the same name as the Active build spec, though
you can change it by typing a new directory name in the field.

The Include paths table shows the paths used by the compiler to resolve
include directives. To analyze your project and update the displayed include
paths, click Generate to open the Generate Include Search Paths dialog.

a. Onthe Analyze include directives page, specify which include directives
you want Workbench to ignore when generating include paths.

— Select the first box to ignore inactive include directives, or clear it to
analyze them. Inactive include directives are those directives ignored
by the build system because they are surrounded by compiler options
and preprocessor directives such as #ifndef.

— Select the second box to ignore system includes, or clear it to analyze
them.

When you are ready, click Next to analyze include directives. This may
take some time for a large project.

b. The Resolve include directives page displays results from the analysis.
The upper field displays unresolved include directives in three groups:
resolvable by one include search path, resolvable by multiple search paths,
and not resolvable. The lower field displays resolved directives:
predefined search paths, as well as the search paths Workbench was able
to resolve.

— To automatically resolve all include directives that can be resolved,
click Resolve All.

- To automatically resolve an individual include directive or one of the
groups of unresolved directives, click Resolve. If Workbench found
one matching header, it will resolve the include directive. If it found
multiple matching headers, a dialog displays the headers and asks
you to select one.

— To open the file so you can see the context of an unresolved include
directive, click Show in Editor.

9 Creating VxWorks Shared Library Projects
9.3 Configuring VxWorks Shared Library Projects

NOTE: When automatically resolving include directives, Workbench uses
heuristics to determine the best matches, but the results may be incorrect. So
you should examine and if necessary Remove undesired search paths in the
lower field. The newly-generated search paths are marked with a yellow plus
on the folder icon (=).

— Tomanually resolve include directives for which no matching headers
were found, click Add and navigate to the location of the appropriate
headers. Click OK to add the path to the list of resolved directives; any
directives resolved by that path are removed from the unresolved list.

— Toview, enable, or disable variables for paths and path segments,
click Substitution. Click a variable or group of variables to enable or
disable them.

Variables are grouped into four groups, and are applied to all
generated paths in the resolved directives field:

Wind River environment: includes Wind River platform and
Workbench variables.

Build macros: includes global and local build macros, as defined
in project properties.

Project locations: includes variables referring to projects in the
workspace.

System environment: includes all environment variables that do
not appear in the build macro or Wind River environment groups.

Click Apply to see your changes but leave the dialog open for further
editing, or click OK if you are finished.

— To copy search paths to the clipboard so you can paste them into a
make file, select the search path then click Copy.

c. When you are ready, click Finish to return to the Build Paths tab.

To manually add an include directory for an Active build spec, select the build
spec from the drop-down list, click Add, and browse to or type in the path (be
sure not to erase the -I at the beginning of the path). Click OK.

To add an include path that applies to all your build specs, click Add to all and
then browse to or type in the path, then click OK.

When you are finished configuring your project, click OK.

137

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

9.4 Shared Libraries in the Project Explorer

After a VxWorks Shared Library project has been created, a number of nodes
appear in the Project Explorer. This section describes these nodes as they appear
immediately after project creation. For general notes about manipulating nodes,
for example, moving, copying, filtering, and so on, please see 13. Working in the
Project Explorer.

9.4.1 Global Project Nodes

'L??S ProjectName
The icon at the root of the project tree identifies the type of project; the
icon’s label is the name you gave the project when you created it.

9.4.2 Target Node

iﬁi TargetName.so (BuildSpecName[_DEBUG])
A VxWorks Shared Library produced by the Shared Library Linker
that is dynamically linked at run-time.

9.4.3 Makefile Nodes

At project generation time a template that can also be used for entering custom
make rules is copied to the project.

.wrmakefile
A template used by Workbench to generate the project’s Makefile. Add
user-specific build-targets and make-rules in this file.

9.4.4 Project File Nodes

The project creation facility generates, or includes copies of, a variety of files when
a project is created. Normally, you need not be concerned with these files.
However, here is a brief summary of the Shared Library project files displayed in
the Project Explorer:

138

9 Creating VxWorks Shared Library Projects
9.5 Source Code for the Shared Library

.project
Eclipse platform project file containing builder information and project
nature.

.wrproject

Workbench project file containing common project properties such as
project type, and so on.

9.5 Source Code for the Shared Library

After project creation you have the infrastructure for a Shared Library project, but
often no actual library source code. If you are writing code from the beginning, you
can add new files to a project. If you already have source code files, you will want
to import these to the project. For more information refer to 13.3.1 Importing
Resources, p.172, and 13.3.2 Adding New Files to Projects, p.173.

9.6 Making Shared Libraries Available to Applications

To make shared libraries accessible to your applications at run-time, you have to
make sure of a few configuration details, both on the library side and on the
application side. You also need a file system project to store the library on the
target (see 7. Creating VxWorks ROMFS File System Projects).

1. Make sure the shared library is a subproject of all applications that need to
access it. If the library is used by many applications, create projects for each
application and make the library a subproject of each (see 13. Working in the
Project Explorer for information on how to do this).

2. Make sure the library target is passed to superprojects. You can do this in the
Project Properties as follows:

- Inthe Project Explorer, right-click the shared library project folder you are
interested in and select Properties. (If the project folder is a subnode under

139

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

several different superprojects, it does not matter which you choose
because these nodes are only logical representations of the same project.)

— In Project Properties, select Build Properties node, then the Build Tools
tab. On the Build Tools tab, be sure the Generated build target can be
passed check box is selected. If the output of the library build is not passed
up to superprojects, references from the superproject to the library
subproject cannot be resolved at build-time.

3. Click OK to close the Project Properties.

9.6.1 Configuring the Application Projects

Most shared library projects are created as subprojects of one or more application
projects. Although a superproject knows the location of its subprojects, it does not
know that a particular subproject is a shared library, so the application project’s
linker has to be configured to accommodate dynamic access to shared libraries. For
more information, please see 17.6 Executables that Dynamically Link to Shared
Libraries, p.235, and the cheat sheet available from Help > Cheat Sheets >

Wind River Workbench > Setup a VxWorks RTP with a shared library.

140

10

Creating VxWorks
Downloadable Kernel Module
Projects

10.1 Introduction 141

10.2 Creating a VxWorks Downloadable Kernel Module Project 142
10.3 Configuring VxWorks Downloadable Kernel Module Projects 142
10.4 Downloadable Kernel Modules in the Project Explorer 148

10.5 Application Code for a VxWorks DKM Project 150

10.1 Introduction

Use VxWorks Downloadable Kernel Module (DKM) projects to manage and build
modules that will exist in the kernel space. You can separately build the modules,
then run and debug them on a target running VxWorks, loading, unloading, and
reloading on the fly.

Once your development work is complete, the modules can be statically linked
into the kernel or added to a file system if one is present.

Kernel-mode development is the traditional VxWorks method of development. All
the tasks you spawn run in an unprotected environment and all have full access to
the hardware in the system.

141

Wind River Workbench

User’s Guide, 3.0 (VxWorks Version)

10.2 Creating a VxWorks Downloadable Kernel Module Project

Before creating the project, see the general comments on projects and project
creation in 4. Projects Overview.

1.

Create a VxWorks Downloadable Kernel Module Project by selecting File >
New > Wind River Workbench Project. The New Wind River Workbench
Project wizard appears.

Select a target operating system, then click Next.

From the Build type drop-down list, select Downloadable Kernel Module.
Click Next.

Type a name for your project.
Decide where to create your project:

Create project in workspace
Leave this selected if you want to create the project under the current
workspace directory.

Create project at external location
Select this option, click Browse, then navigate to a different location if you
want to create the project outside the workspace.

Create project in workspace with content at external location
Select this option, click Browse, then navigate to your source location if
you do not want to mix project files with your sources, or copy sources
into your workspace.

When you are ready, click Finish. The Downloadable Kernel Module project
is created and appears at the root level in the Project Explorer.

10.3 Configuring VxWorks Downloadable Kernel Module Projects

Once you have created your project, you can configure its build support and specs,
build tools, build macros, and build paths.

For general details about build properties, see 16.4 Accessing Build Properties, p.222
or press the help key for your host.

142

1.

2.

10 Creating VxWorks Downloadable Kernel Module Projects
10.3 Configuring VxWorks Downloadable Kernel Module Projects

To access build properties for your project, right-click it in the Project Explorer
and select Properties.

From the Properties dialog, click Build Properties.

10.3.1 Configuring Build Support and Specs

Use this tab to configure build support and build specs for your project.

1.

A VxWorks Downloadable Kernel Module project is a predefined project type
that uses Workbench build support, so build support is enabled by default. If
you are creating a project because you want to browse symbol information and
you are not interested in building it, click Disabled to disable build support
(you can click Managed build to re-enable it later, if you want).

If necessary, edit the default Build command.

All available build specs are selected (and therefore enabled) by default. To
restrict the list of enabled build specs to only those you need for your project,
click Disable All and then select the checkbox next to the build spec(s) you
want to enable for this project.

NOTE: Highlighting the name of the build spec is not sufficient to enable it;
there must be a check in the checkbox to enable the build spec.

To reset build properties to their default settings or import build settings from
another project, click Import and select the source of the build settings.

If you enabled one build spec for this project, it appears in the Default build
spec and Active build spec fields.

If you enabled more than one, the build spec in the Default build spec field is
used for builds, though you can select a different Active build spec for a
particular build. The build spec in the Active build spec field is also
propagated to the appropriate fields on the Build Tools, Build Macros, and
Build Paths tabs.

NOTE: In order to include a downloadable kernel module in a VxWorks Image
project, its build spec architecture and tool chain must match that of the VIP.

Select or clear the Debug Mode checkbox, depending on whether you want
the build output to include debug information or not.

143

Wind River Workbench

User’s Guide, 3.0 (VxWorks Version)

NOTE: You can also change the active build spec and the debug mode by
right-clicking the project in the Project Explorer and selecting Build Options >
Set Active Build Spec.

7. For more information about the build settings on this tab, press the help key
for your host. You may continue configuring your project by selecting another
build tab, or if you are finished, click OK.

10.3.2 Configuring Build Tools

Use this tab to configure build tools, build output generation, and build flags for
your project.

1. The build tools you can select for DKM projects are C-Compiler,
C++-Compiler, Linker, Partial Image Linker, Librarian, or Assembler. In
addition, you can define your own build tool.

144

C-Compiler, C++-Compiler, Assembler: These tools produce a
BuildTargetName.obj file on Windows or a BuildTargetName.o file on
UNIX.

Linker: The linker produces a BuildTargetName.out file. This single,
partially linked and munched (integrated with code to call C++ static
constructors and destructors) object is intended for downloading. The
Linker output product cannot be passed up to superprojects, although the
current project’s own, unlinked object files can, as can any output
products received from projects further down in the hierarchy.

Partial Image Linker: The Partial Image Linker produces a
BuildTargetName.o file. This single, partially linked, but not munched (not
integrated with code to call C++ static constructors and destructors) object
is for subproject support only; it is not intended for download. The
Partial Image Linker output product can be passed up to superprojects, as
can the current project’s own, unlinked object files, as well as any output
products received from projects further down in the hierarchy

Librarian: The Librarian produces an archive BuildTargetName.a file. The
Librarian output product can be passed up to superprojects, as can the
current project’s own, unlinked object files, as well as any output products
received from projects further down in the hierarchy.

10 Creating VxWorks Downloadable Kernel Module Projects
10.3 Configuring VxWorks Downloadable Kernel Module Projects

* Todefine your ownbuild tool, click New and enter a build tool name, then
click OK. Your build tools appears in the drop-down list, and you can
configure all build tool settings to fit your needs.

2. For more information about the build settings on this tab, press the help key

for your host. You may continue configuring your project by selecting another
build tab, or if you are finished, click OK.

10.3.3 Configuring Build Macros

Use this tab to define global and build spec-specific macros that are added to the
build command when executing builds.

1.

To change the value of an existing global build macro, select the value in the
Build macro definitions table and type in a new one, or click Edit and type in
the new value, then click OK.

To define a new global build macro, click New next to the table, then enter a
Name and Value for the macro. Click OK.

NOTE: You can define and use global build macros even if you do not select or
define any build specs for your project.

To change the value of an existing build spec-specific macro, select the Active
build spec for which the value should be applied, select the value in the Build
spec-specific settings table, then type in a new one. Or click Edit and type in
the new value, then click OK.

To define a new build spec-specific macro, click New next to the table, enter a
Name for the macro, leave the Value blank, then click OK.

To define the value, select the macro, select the Active build spec for which the
value should be applied, click Edit and enter the New value, then click OK.

The macro will always be appended to the build command when a build is
launched, and the value will be set according to the active build spec,
including empty values.

For example, if the build command is make --no-print-directory and the
macro is TEST_SPEC, you can define values to be used with different build
specs:

spec 1: Value = speclVal
spec2: Value = spec2Val
spec 3: Value =

145

Wind River Workbench

User’s Guide, 3.0 (VxWorks Version)

The resulting build commands are as follows:

build command for spec 1: make --no-print-directory TEST_SPEC=spec1Val
build command for spec 2: make --no-print-directory TEST_SPEC=spec2Val
build command for spec 3: make --no-print-directory TEST_SPEC=

For more information about the build settings on this tab, press the help key
for your host. You may continue configuring your project by selecting another
build tab, or if you are finished, click OK.

10.3.4 Configuring Build Paths

Use this tab to specify a redirection root directory for your build output, and add,
delete, or reorder the directories searched by the build tools.

1.

146

By default, build output is directed to a subdirectory in your workspace.
However, if you want to redirect it somewhere else in your file system, specify
a location in the Redirection root directory field.

The Redirection directory is a subdirectory of the Redirection root directory.
By default this directory has the same name as the Active build spec, though
you can change it by typing a new directory name in the field.

The Include paths table shows the paths used by the compiler to resolve
include directives. To analyze your project and update the displayed include
paths, click Generate to open the Generate Include Search Paths dialog.

a. Onthe Analyze include directives page, specify which include directives
you want Workbench to ignore when generating include paths.

— Select the first box to ignore inactive include directives, or clear it to
analyze them. Inactive include directives are those directives ignored
by the build system because they are surrounded by compiler options
and preprocessor directives such as #ifndef.

— Select the second box to ignore system includes, or clear it to analyze
them.

When you are ready, click Next to analyze include directives. This may
take some time for a large project.

b. The Resolve include directives page displays results from the analysis.

The upper field displays unresolved include directives in three groups:
resolvable by one include search path, resolvable by multiple search paths,
and not resolvable. The lower field displays resolved directives:

10 Creating VxWorks Downloadable Kernel Module Projects
10.3 Configuring VxWorks Downloadable Kernel Module Projects

predefined search paths, as well as the search paths Workbench was able
to resolve.

— To automatically resolve all include directives that can be resolved,
click Resolve All.

— Toautomatically resolve an individual include directive or one of the
groups of unresolved directives, click Resolve. If Workbench found
one matching header, it will resolve the include directive. If it found
multiple matching headers, a dialog displays the headers and asks
you to select one.

— To open the file so you can see the context of an unresolved include
directive, click Show in Editor.

NOTE: When automatically resolving include directives, Workbench uses
. L .) 0
heuristics to determine the best matches, but the results may be incorrect. So

you should examine and if necessary Remove undesired search paths in the

lower field. The newly-generated search paths are marked with a yellow plus

on the folder icon (=).

— Tomanually resolve include directives for which no matching headers
were found, click Add and navigate to the location of the appropriate
headers. Click OK to add the path to the list of resolved directives; any
directives resolved by that path are removed from the unresolved list.

— Toview, enable, or disable variables for paths and path segments,
click Substitution. Click a variable or group of variables to enable or
disable them.

Variables are grouped into four groups, and are applied to all
generated paths in the resolved directives field:

Wind River environment: includes Wind River platform and
Workbench variables.

Build macros: includes global and local build macros, as defined
in project properties.

Project locations: includes variables referring to projects in the
workspace.

System environment: includes all environment variables that do
not appear in the build macro or Wind River environment groups.

Click Apply to see your changes but leave the dialog open for further
editing, or click OK if you are finished.

147

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

— To copy search paths to the clipboard so you can paste them into a
make file, select the search path then click Copy.

c. When you are ready, click Finish to return to the Build Paths tab.

4. Tomanually add an include directory for an Active build spec, select the build
spec from the drop-down list, click Add, and browse to or type in the path (be
sure not to erase the -I at the beginning of the path). Click OK.

To add an include path that applies to all your build specs, click Add to all and
then browse to or type in the path, then click OK.

5. When you are finished configuring your project, click OK.

10.4 Downloadable Kernel Modules in the Project Explorer

After a VxWorks Downloadable Kernel Module has been created, a number of
nodes appear in the Project Explorer. This section describes these nodes as they
appear immediately after project creation. For general notes about manipulating
nodes, for example, moving, copying, filtering, and so forth. Please see 13. Working
in the Project Explorer.

10.4.1 Global Project Nodes

[:g,.H ProjectName
The icon at the root of the project tree identifies the type of project; the
icon’s label is the name you gave the project when you created it.

10.4.2 Project Build Specs and Target Nodes

Each target node is associated with a predefined build specification.

The VxWorks Downloadable Kernel Module project software targets depend on
the options you selected during project creation. Specifically, you will not have
both an archive (TargetName.a) target and a TargetName.out target immediately
after project creating. Which, if any, of these will be visible depends on the build
tool you selected. Also, the presence or absence of the green upward arrow on the

148

10 Creating VxWorks Downloadable Kernel Module Projects
10.4 Downloadable Kernel Modules in the Project Explorer

targeticon (to indicate whether the target is passed up the hierarchy) is determined

by your creation settings.

4 Partiallmage.pl
il This default target is always built for VxWorks Downloadable Kernel
Module project. This single, partially linked, but not munched object is
for subproject support only; it is not intended for download. By default,
the build target is passed to the next level (hence the green upward
arrow on the icon).

It TargetName.out (BuildSpecName[DEBUG])
This single, partially linked and munched object, produced by the
Linker build tool is intended for downloading.

& TargetName.a (BuildSpecName[DEBUG])
An archive produced by the Librarian build tool that has to be statically
linked into an executable.

10.4.3 Makefile Nodes

At project generation time two Makefiles are copied to the project. One is a
template that can also be used for entering custom make rules. The other is
dynamically regenerated from build spec data at each build.

-wrmakefile
A template used by Workbench to generate the project’s Makefile. Add
user-specific build-targets and make-rules in this file. These will then be
automatically dumped into the Makefile.

[H] Makefile
Do not add custom code to this file. This Makefile is regenerated every

time the project is built. The information used to generate the file is
taken from the build specification on which the target node is based.

10.4.4 Project File Nodes

The project creation facility generates, or includes copies of, a variety of files when
a project is created. Normally, you need not be concerned with these files.
However, here is a brief summary of the VxWorks Downloadable Kernel Module
project files displayed in the Project Explorer:

149

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

.project
Eclipse platform project file containing builder information and project
nature.

.wrproject
Workbench project file containing common project properties such as
project type, and so on.

10.5 Application Code for a VxWorks DKM Project

After project creation, you have the infrastructure for a VxWorks Downloadable
Kernel Module project, but often no actual application code. If you are writing
code from the beginning, you can add new files to a project. If you already have
source code files, you will want to import these to the project. For more
information please refer to 13.3.1 Importing Resources, p.172, and 13.3.2 Adding New
Files to Projects, p.173.

You can link your VxWorks Downloadable Kernel Module with the operating
system and have it start automatically at boot time. To do this:

1. Create a VxWorks Image project. See 5.2 Creating a VxWorks Image Project, p.90.

2. Configure the VxWorks Image project as described under 5.7 Adding
Application Projects to the VxWorks Image Project, p.105 and 5.5 Configuring
Kernel Components, p.98.

150

11

Creating User-Defined Projects

11.1 Introduction 151

11.2 Creating and Maintaining Makefiles 152

11.3 Creating a User-Defined Project 152

11.4 Configuring a User-Defined Project 153

11.5 Creating a User-Defined Project to Build VxWorks Sources 157
11.6 Creating an Application for VxWorks 159

11.7 Debugging Source 160

11.1 Introduction

User-Defined Projects assume that you are responsible for setting up and
maintaining your own build system, file system population, and so on. The user
interface provides support for the following:

* You can configure the build command used to launch your build utility; this
allows you to start builds from the Workbench GUI. You can also configure
different rules for building, rebuilding and cleaning the project.

* You can create build targets in the Project Explorer that reflect rules in your
makefiles; this allows you to select and build any of your make rules directly
from the Project Explorer.

151

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

* Build output is captured to the Build Console.

11.2 Creating and Maintaining Makefiles

When you create a User-Defined project, Workbench checks the root location of the
project’s resources for the existence of a file named Makefile!. If it does not exist,
Workbench creates a skeleton makefile with a default all rule and a clean. This
allows you to use the Build Project, Rebuild Project, and Clean Project menu
commands, as well as preventing the generation of build errors. You are
responsible for maintaining this Makefile, and you can write any other rules into
this file at any time.

If you base your User-Defined project on an existing project, the makefile of that
project will be copied to the new project and will overwrite a makefile in the new
project’s location. If necessary, you can change the name of the new project’s
makefile using the -f make option to avoid overwriting an existing makefile.

11.3 Creating a User-Defined Project
Before creating the project, see the general comments on projects and project
creation in 4. Projects Overview.

1. Create a User-Defined project by selecting File > New > User-Defined Project.
The New User-Defined Project wizard appears.

2. Select a target operating system, then click Next.
3. Type a name for your project.

4. Decide where to create your project:

1. If you specified a different filename in the New Project wizard’s Build Command field
using the -f make option, which can include a relative or absolute path to a subdirectory,
Workbench checks for the file you specified.

152

11 Creating User-Defined Projects
11.4 Configuring a User-Defined Project

Create project in workspace
Leave this selected if you want to create the project under the current
workspace directory.

Create project at external location
Select this option, click Browse, then navigate to a different location if you
want to create the project outside the workspace.

Create project in workspace with content at external location
Select this option, click Browse, then navigate to your source location if
you do not want to mix project files with your sources, or copy sources
into your workspace.

5. When you are ready, click Finish. Your project appears in the Project Explorer.

11.4 Configuring a User-Defined Project
Once you have created your project, you can configure its build targets, build
specs, and build macros.

For general details about build properties, see 16.4 Accessing Build Properties, p.222
or press the help key for your host.

1. Toaccess build properties for your project, right-click it in the Project Explorer
and select Properties.

2. From the Properties dialog, click Build Properties.

NOTE: Build tools and build paths cannot be configured for User-defined projects.

11.4.1 Configuring Build Support

Use this tab to configure build support for your project.

1. Build support is enabled by default. Click Disabled to disable it, and click
User-defined build to re-enable it.

2. Ifnecessary, edit the default build command.

3. Specify whether received build targets should be passed to the next level.

153

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

4. Specify when Workbench should refresh the project after a build.

Because a refresh of the entire project can take some time (depending on its
size) Workbench does not do it by default. You may choose to refresh the
current project, the current folder, the current folder and its subfolders, or
nothing at all. This option applies to all build runs of the project.

5. You may continue configuring your project by selecting another build tab, or
if you are finished, click OK to close the Build Properties.

11.4.2 Configuring Build Targets

Use this tab to configure make rules and define custom build targets for your
project.

1. Type the desired make rules into the fields in the Make rules section. These
rules are run when you select the corresponding options from the Project
menu or when you right-click your project in the Project Explorer and select
them from the context menu.

The Build Folder and Clean Folder options are available when you select a
folder in the Project Explorer.

2. To define a custom build target, click New. The New Custom Build Target
dialog opens.

3. Type in a name for your build target, then type in the make rule or external
command that Workbench should execute. You can also click Variables and
add a context-sensitive variable to the make rule or command.

The variables represented in the Select Variable dialog are context-sensitive,
and depend on the current selection in the Project Explorer. For variables that
contain a file-specific component, the corresponding target is only enabled
when a file is selected and the variable can be evaluated. Build targets without
file-specific components are always enabled.

4. Choose the type, whether it is a Rule or a Command.

5. Choose a refresh option for the build target, specifying whether Workbench
should use the project setting, refresh the current folder or project, or do
nothing. Click OK to close the dialog.

6. Editabuild target’s options by clicking Edit or Rename. You can also edit the
options (except name) by clicking in the column itself.

154

11 Creating User-Defined Projects
11.4 Configuring a User-Defined Project

7. You may continue configuring your project by selecting another build tab, or

if you are finished, click OK to close the Build Properties.

Once you have defined a custom build target, it is available when you right-click
a project and select Build Options. The build targets are inherited by each folder
within the project, eliminating the need to define the same build targets in each
individual folder.

This makes custom build targets different from the default ones created when you
select File > New > Build Target, or when you name a build target during project
creation.

The default build target is a dedicated make rule at the level at which the build
target is defined (whether that is the project, folder, or subfolder level). A custom
build target can be used on multiple levels, either as a command or a make rule.

11.4.3 Configuring Build Specs

Use this tab to define and import build specs.

1.

To define a new build spec for your project, click New and enter a build spec
name. Click OK. If this is the first build spec for this project, it automatically
appears in the Default build spec and Active build spec fields. Once you have
defined more than one, you can choose a different default and active spec from
the drop-down list.

To reset build properties to their default settings or import build settings from
another project, click Import and select the source of the build settings.

Decide whether to clear build setting overrides, then click Finish to return to
the Build Specs tab.

NOTE: The Debug mode option is not available for User-defined builds, as this
has an effect only on build tool-specific fields, which are not available for
User-defined projects.

You may continue configuring your project by selecting another build tab, or
if you are finished, click OK to close the Build Properties.

11.4.4 Configuring Build Macros

Use this tab to define global and build spec-specific macros that are added to the
build command when executing builds.

155

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

156

To change the value of an existing global build macro, select the value in the
Build macro definitions table and type in a new one, or click Edit and type in
the new value, then click OK.

To define a new global build macro, click New next to the table, then enter a
Name and Value for the macro. Click OK.

NOTE: You can define and use global build macros even if you do not select or
define any build specs for your project.

To change the value of an existing build spec-specific macro, select the Active
build spec for which the value should be applied, select the value in the Build
spec-specific settings table, then type in a new one. Or click Edit and type in
the new value, then click OK.

To define a new build spec-specific macro, click New next to the table, enter a
Name for the macro, leave the Value blank, then click OK.

To define the value, select the macro, select the Active build spec for which the
value should be applied, click Edit and enter the New value, then click OK.

The macro will always be appended to the build command when a build is
launched, and the value will be set according to the active build spec,
including empty values.

For example, if the build command is make --no-print-directory and the
macro is TEST_SPEC, you can define values to be used with different build
specs:

spec 1: Value = speclVal
spec2: Value = spec2Val
spec 3: Value =

The resulting build commands are as follows:

build command for spec 1: make --no-print-directory TEST_SPEC=speclVal
build command for spec 2: make --no-print-directory TEST_SPEC=spec2Val
build command for spec 3: make --no-print-directory TEST_SPEC=

For more information about the build settings on this tab, press the help key
for your host. You may continue configuring your project by selecting another
build tab, or if you are finished, click OK.

11 Creating User-Defined Projects
11.5 Creating a User-Defined Project to Build VxWorks Sources

11.5 Creating a User-Defined Project to Build VxWorks Sources

One of the many uses for a user-defined project is to build a set of VxWorks source
files. For example, to create a project with which you can build the sources in
installDir/vxworks-6.x/target/src/wrn/coreip, follow these steps:

Create a User-Defined Project in the Same Location as your Sources

1. Create a User-Defined project by selecting File > New > User-Defined Project.
The New User-Defined Project wizard appears.

2. Select Wind River VxWorks 6.x, then click Next.
3. Type a name for your project; for this example, name it coreip.

4. As described in 11.3 Creating a User-Defined Project, p.152, you must choose
where to create your project. For this example, choose Create project at
external location.

5. Click Browse, then navigate to installDir/[vxworks-6.x/target/src/wrn/coreip.
Workbench project files will be created in this directory, so you must have
write permissions there. Click OK, then click Next.

6. 1If you have created other projects, you will see the Project Structure page. For
this example, do not select any projects. Click Next.

7. On the Build Support page, make any changes to the Build command and
Make rules to match the corresponding Makefile rules you would use on the
command line and within the Build Properties of the project. Typically this
might be default for building and rclean for cleaning, but adjust these rules as
necessary. Click Next.

8. Ifyouneed a specific build target on the project level, type in a name, then click
Next.

NOTE: You do not need to create a build target now. You can create a custom
build target on any level at a later time by selecting File > New > Build Target,
and by following the instructions in 11.4.2 Configuring Build Targets, p.154.

9. Click Finish. Your project appears in the Project Explorer. To build your
project, click the Build Project icon on the Project Explorer toolbar or press
CTRL+SHIFT+A.

157

Wind River Workbench

User’s Guide, 3.0 (VxWorks Version)

Create a User-Defined Project in a Different Location from your Sources

If you do not want to (or cannot) mix Workbench project files in with your sources,
or you want to create a project in order to browse a particular set of sources, follow
these steps:

1.

2
3.
4

Select File > New > User-Defined Project.
Select Wind River VxWorks 6.x, then click Next.
Type a name for your project; for this example, name it coreip2.

Select Create project in workspace with content at external location, then
navigate to the installDir/vxworks-6.x/target/src/wrn/coreip directory.
Workbench project files will be created in your workspace, and your project
will link in the sources from the coreip directory. Click OK, then click Next.

On the Build Defaults page, leave Use workspace defaults selected, or
unselect it and choose an existing project from the drop-down list to use as a
template. Click Next.

Make any necessary changes to the build command or make rules, then click
Next.

As mentioned in the previous section, you can create a project-level build
target now by typing in a name, or you can create build targets at any time in
the future if you prefer.

Click Next and Finish. Your project appears in the Project Explorer. To build
the sources in the coreip directory, right-click that directory in your project
and select Build Folder.

Add Build Specs and Build Macros

To provide appropriate build specs and build macros for your project, follow these
steps:

1.

158

Right-click your project and select Properties. The Build Properties dialog
opens.

On the Build Specs tab, click New, type a name for your new build spec (for
this example, type in PPC32diab) then click OK.

Repeat this step, naming a second new build spec SIMNTgnu.

Click the Build Macros tab to bring it to the foreground. To create build
spec-specific macros, use the fields on the bottom half of the page.

Click New, and in the Name field type CPU. Click OK.

11 Creating User-Defined Projects
11.6 Creating an Application for VxWorks

Click New again, and in the Name field type TOOL. Click OK.

Select PPC32diab from the Active build spec drop-down list, and in the Value
field beside CPU, type PPC32. In the Value field beside TOOL, type diab.

Next, select SIMNTgnu from the drop-down list. Notice that the PPC32diab
settings disappear. In the Value field next to CPU, type SIMNT, and in the
field next to TOOL, type gnu.

By selecting each build spec from the list in turn, you can verify that the values
for each macro are specific to the build spec.

Click OK to save your build properties.

In the Project Explorer, you can now choose between the two build specs by
right-clicking your project and selecting Build Options > Set Active Build
Spec, just as you can for managed builds.

For example, when SIMNTgnu is selected, the make command constructed is:

make CPU=SIMNT TOOL=gnu ruleand additional args specified by the user

11.6 Creating an Application for VxWorks

In order to have your application initialized once the kernel has booted, you will
need to:

Create a VxWorks Image project. See 5.2 Creating a VxWorks Image Project, p.90.

Configure the VxWorks Image project as described under 5.7 Adding
Application Projects to the VxWorks Image Project, p.105 and 5.5 Configuring
Kernel Components, p.98.

Before the target is disconnected from the host system, create a target-side file
system. See 7.2 Creating a VxWorks ROMFS File System Project, p.116.

159

Wind River Workbench

User’s Guide, 3.0 (VxWorks Version)

11.7 Debugging Source

When debugging your source files in a User-Defined project, you must add the
project to the source lookup path to ensure that the debugger can resolve
breakpoints and find files.

To add source lookup settings for a running process:

1.

160

Right-click a launch configuration, a target, or a thread in the Debug view,
then select Edit Source Lookup. The Edit Source Lookup Path dialog
appears.

Click Add. The Add Source dialog appears.

Select Project and click OK. Select your project from the selection dialog, then
click OK again.

The source lookup containers are searched in the order in which they appear
in the Source Lookup Path dialog, so click Up or Down to adjust the order of
entries in the list.

Check the Search for duplicate source files on the path to force the debugger
to search for and display all files that match the given debugger path, rather
than stopping as soon as it finds one.

12

Creating Native Application
Projects

12.1 Introduction 161

12.2 Creating a Native Application Project 162

12.3 Configuring Native Application Projects 162

12.4 Native Applications in the Project Explorer 168

12.5 Application Code for a Native Application Project 170

12.1 Introduction

Use a Native Application project for C/C++ applications developed for your host
environment.

Workbench provides build and source analysis support for native GNU 2.9x, GNU
3.x, and Microsoft development utilities (assembler, compilerl, linker, archiver)
though you must acquire and install these utilities, since they are not distributed
with Workbench.

There is no debugger integration for native application projects in Workbench, so
you must acquire and use the appropriate native tools for debugging as well.

1. Workbench supports the MinGW, Cygnus, and MS DevStudio compilers. Compilers for
native development are distributed with Wind River VxWorks Platforms, but not with
Workbench.

161

Wind River Workbench

User’s Guide, 3.0 (VxWorks Version)

12.2 Creating a Native Application Project

Before creating the project, see the general comments on projects and project
creation in 4. Projects Overview.

1.

Create a Native Application project by selecting File > New > Wind River
Workbench Project. The New Wind River Workbench Project wizard
appears.

Select Host Operating System (Native Development), then click Next.

From the Build type drop-down list, select the type of application you want to
create. Click Next.

Type a name for your project.
Decide where to create your project:

Create project in workspace
Leave this selected if you want to create the project under the current
workspace directory.

Create project at external location
Select this option, click Browse, then navigate to a different location if you
want to create the project outside the workspace.

Create project in workspace with content at external location
Select this option, click Browse, then navigate to your source location if
you do not want to mix project files with your sources, or copy sources
into your workspace.

When you are ready, click Finish. The Native Application project is created
and appears at the root level in the Project Explorer.

12.3 Configuring Native Application Projects

Once you have created your project, you can configure its build support and specs,
build tools, build macros, and build paths.

For general details about build properties, see 16.4 Accessing Build Properties, p.222
or press the help key for your host.

162

1.

12 Creating Native Application Projects
12.3 Configuring Native Application Projects

To access build properties for your project, right-click it in the Project Explorer
and select Properties.

2. From the Properties dialog, click Build Properties.

12.3.1 Configuring Build Support and Specs

Use this tab to configure build support and build specs for your project.

1.

A Native Application project is a predefined project type that uses Workbench
build support, so build support is enabled by default. If you are creating a
project because you want to browse symbol information and you are not
interested in building it, click Disabled to disable build support (you can click
Managed build to re-enable it later, if you want).

If necessary, edit the default Build command.

All available build specs are selected (and therefore enabled) by default. To
restrict the list of enabled build specs to only those you need for your project,
click Disable All and then select the checkbox next to the build spec(s) you
want to enable for this project.

If you are working on a Windows application, you would normally enable the
msvc_native build spec, and disable the gnu-native build specs. If you are
working on a Linux or Solaris native application, you would normally enable
the GNU tool version you are using, and disable all others.

NOTE: Highlighting the name of the build spec is not sufficient to enable it;
there must be a check in the checkbox to enable the build spec.

To reset build properties to their default settings or import build settings from
another project, click Import and select the source of the build settings.

If you enabled one build spec for this project, it appears in the Default build
spec and Active build spec fields.

If you enabled more than one, the build spec in the Default build spec field is
used for builds, though you can select a different Active build spec for a
particular build. The build spec in the Active build spec field is also
propagated to the appropriate fields on the Build Tools, Build Macros, and
Build Paths tabs.

Select or clear the Debug Mode checkbox, depending on whether you want
the build output to include debug information or not.

163

Wind River Workbench

User’s Guide, 3.0 (VxWorks Version)

NOTE: You can also change the active build spec and the debug mode by
right-clicking the project in the Project Explorer and selecting Build Options >
Set Active Build Spec.

For more information about the build settings on this tab, press the help key
for your host. You may continue configuring your project by selecting another
build tab, or if you are finished, click OK.

12.3.2 Configuring Build Tools

Use this tab to configure build tools, build output generation, and build flags for
your project.

1.

164

The build tools you can select for Native Application projects are C-Compiler,
C++-Compiler, C-Linker, C++-Linker, Librarian, or Assembler. In addition,
you can define your own build tool.

C-Compiler, C++-Compiler, Assembler: These tools produce a
BuildTargetName.obj file on Windows or a BuildTargetName.o file on
UNIX.

C-Linker: The linker produces a BuildTargetName.exe file on Windows
and a BuildTargetName file on UNIX. This partially linked and munched
(integrated with code to call C++ static constructors and destructors)
object is intended for downloading. The C-Linker output product cannot
be passed up to superprojects, although the current project’s own,
unlinked object files can be passed, as can any output products received
from projects further down in the hierarchy.

C++-Linker: This linker produces a BuildTargetName.exe file on Windows
and a BuildTargetName file on UNIX.

Librarian: The Librarian produces a BuildTargetName.lib file on Windows
and a BuildTargetName.a file on UNIX. The Librarian output product can
be passed up to superprojects, as can the current project’s own, unlinked
object files, as well as any output products received from projects further
down in the hierarchy.

To define your own build tool, click New and enter a build tool name, then
click OK. Your build tools appears in the drop-down list, and you can
configure all build tool settings to fit your needs.

12 Creating Native Application Projects
12.3 Configuring Native Application Projects

2. For more information about the build settings on this tab, press the help key

for your host. You may continue configuring your project by selecting another
build tab, or if you are finished, click OK.

12.3.3 Configuring Build Macros

Use this tab to define global and build spec-specific macros that are added to the
build command when executing builds.

1.

To change the value of an existing global build macro, select the value in the
Build macro definitions table and type in a new one, or click Edit and type in
the new value, then click OK.

To define a new global build macro, click New next to the table, then enter a
Name and Value for the macro. Click OK.

NOTE: You can define and use global build macros even if you do not select or
define any build specs for your project.

To change the value of an existing build spec-specific macro, select the Active
build spec for which the value should be applied, select the value in the Build
spec-specific settings table, then type in a new one. Or click Edit and type in
the new value, then click OK.

To define a new build spec-specific macro, click New next to the table, enter a
Name for the macro, leave the Value blank, then click OK.

To define the value, select the macro, select the Active build spec for which the
value should be applied, click Edit and enter the New value, then click OK.

The macro will always be appended to the build command when a build is
launched, and the value will be set according to the active build spec,
including empty values.

For example, if the build command is make --no-print-directory and the
macro is TEST_SPEC, you can define values to be used with different build
specs:

spec 1: Value = speclVal
spec2: Value = spec2Val
spec 3: Value =

The resulting build commands are as follows:

build command for spec 1: make --no-print-directory TEST_SPEC=speclVal

165

Wind River Workbench

User’s Guide, 3.0 (VxWorks Version)

build command for spec 2: make --no-print-directory TEST_SPEC=spec2Val
build command for spec 3: make --no-print-directory TEST_SPEC=

For more information about the build settings on this tab, press the help key
for your host. You may continue configuring your project by selecting another
build tab, or if you are finished, click OK.

12.3.4 Configuring Build Paths

Use this tab to specify a redirection root directory for your build output, and add,
delete, or reorder the directories searched by the build tools.

1.

166

By default, build output is directed to a subdirectory in your workspace.
However, if you want to redirect it somewhere else in your file system, specify
a location in the Redirection root directory field.

The Redirection directory is a subdirectory of the Redirection root directory.
By default this directory has the same name as the Active build spec, though
you can change it by typing a new directory name in the field.

The Include paths table shows the paths used by the compiler to resolve
include directives. To analyze your project and update the displayed include
paths, click Generate to open the Generate Include Search Paths dialog.

a. Onthe Analyze include directives page, specify which include directives
you want Workbench to ignore when generating include paths.

— Select the first box to ignore inactive include directives, or clear it to
analyze them. Inactive include directives are those directives ignored
by the build system because they are surrounded by compiler options
and preprocessor directives such as #ifndef.

— Select the second box to ignore system includes, or clear it to analyze
them.

When you are ready, click Next to analyze include directives. This may
take some time for a large project.

b. The Resolve include directives page displays results from the analysis.
The upper field displays unresolved include directives in three groups:
resolvable by one include search path, resolvable by multiple search paths,
and not resolvable. The lower field displays resolved directives:
predefined search paths, as well as the search paths Workbench was able
to resolve.

12 Creating Native Application Projects
12.3 Configuring Native Application Projects

To automatically resolve all include directives that can be resolved,
click Resolve All.

To automatically resolve an individual include directive or one of the
groups of unresolved directives, click Resolve. If Workbench found
one matching header, it will resolve the include directive. If it found
multiple matching headers, a dialog displays the headers and asks
you to select one.

To open the file so you can see the context of an unresolved include
directive, click Show in Editor.

NOTE: When automatically resolving include directives, Workbench uses
heuristics to determine the best matches, but the results may be incorrect. So
you should examine and if necessary Remove undesired search paths in the
lower field. The newly-generated search paths are marked with a yellow plus
on the folder icon (=).

To manually resolve include directives for which no matching headers
were found, click Add and navigate to the location of the appropriate
headers. Click OK to add the path to the list of resolved directives; any

directives resolved by that path are removed from the unresolved list.

To view, enable, or disable variables for paths and path segments,
click Substitution. Click a variable or group of variables to enable or
disable them.

Variables are grouped into four groups, and are applied to all
generated paths in the resolved directives field:

Wind River environment: includes Wind River platform and
Workbench variables.

Build macros: includes global and local build macros, as defined
in project properties.

Project locations: includes variables referring to projects in the
workspace.

System environment: includes all environment variables that do
not appear in the build macro or Wind River environment groups.

Click Apply to see your changes but leave the dialog open for further
editing, or click OK if you are finished.

To copy search paths to the clipboard so you can paste them into a
make file, select the search path then click Copy.

167

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

c. When you are ready, click Finish to return to the Build Paths tab.

4. Tomanually add an include directory for an Active build spec, select the build
spec from the drop-down list, click Add, and browse to or type in the path (be
sure not to erase the -I at the beginning of the path). Click OK.

To add an include path that applies to all your build specs, click Add to all and
then browse to or type in the path, then click OK.

5. When you are finished configuring your project, click OK.

12.4 Native Applications in the Project Explorer

After a Native Application project has been created, a number of nodes appear in
the Project Explorer. This section describes these nodes as they appear
immediately after project creation. For general notes about manipulating nodes,
for example, moving, copying, filtering, etc., please see 13. Working in the Project
Explorer.

12.4.1 Global Project Nodes

IEP" ProjectName
The icon at the root of the project tree identifies the type of project; the
icon’s label is the name you gave the project when you created it.

12.4.2 Project Build Specs and Target Nodes

Each target node is associated with a predefined build specification.

The build target depends on the options you selected during project creation.
Specifically, you will not have both an archive (TargetName.a for a gnu build spec,
or TargetName.lib for a msvc build spec) target and a TargetName(.exe for a msvc
build spec) target immediately after project creation. Which of these will be visible
depends on the build tool you selected. Also, the presence or absence of the green
upward arrow on the target icon (to indicate whether the target is passed up the
hierarchy) will be determined by your project settings.

168

12 Creating Native Application Projects
12.4 Native Applications in the Project Explorer

It TargetNamel.exe] (BuildSpecName[_DEBUG])
An executable.

iﬁi TargetName.a | lib (BuildSpecName[DEBUG])
An archive produced by the Librarian build tool.

12.4.3 Makefile Nodes

At project generation time two Makefiles are copied to the project. One is a
template that can also be used for entering custom make rules. The other is
dynamically regenerated from build spec data at each build.

-wrmakefile
A template used by Workbench to generate the project’s Makefile. Add
user-specific build-targets and make-rules in this file. These will then be
automatically dumped into the Makefile.

[H] Makefile

Do not add custom code to this file. This Makefile is regenerated every
time the project is built. The information used to generate the file is
taken from the build specification that on which the target node is
based.

12.4.4 Project File Nodes

The project creation facility generates, or includes copies of, a variety of files when
a project is created. Normally, you need not be concerned with these files.
However, here is a brief summary of the DKM project files displayed in the Project
Explorer:

.project
Eclipse platform project file containing builder information and project
nature.

.wrproject

Workbench project file containing common project properties such as
project type, and so on.

169

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

12.5 Application Code for a Native Application Project

After project creation you have the infrastructure for a Native Application project,
but often no actual application code. If you are writing code from the beginning,
you can add new files to a project. If you already have source code files, you will
want to import these to the project. For more information, see 13.3.1 Importing
Resources, p.172, and 13.3.2 Adding New Files to Projects, p.173.

170

Working in the Project Explorer

13

13.1 Introduction 171

13.2 Creating Projects 172

13.3 Adding Application Code to Projects 172

13.4 Opening and Closing Projects 173

13.5 Scoping and Navigation 174

13.6 Moving, Copying, and Deleting Resources and Nodes 175
13.7 Parsing Binary Images 179

13.1 Introduction

The Project Explorer is your main graphical interface for working with projects.
Use the Project Explorer to create, open, close, modify, and build projects. You can
also use it to add or import application code, to import or customize build
specifications, and to access your version control system.

Various filters and viewing options help to make project management and
navigation more efficient. Use the arrow at the top-right of the Project Explorer to
open a drop-down menu of these options.

171

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

13.2 Creating Projects

Creating projects is discussed in general under 4. Projects Overview. Specific
descriptions for creating individual project types are provided in the other
chapters in Part II. Projects.

13.3 Adding Application Code to Projects

After creating a project, you have the infrastructure for a given project type, but no
actual application code. If you already have source code files, you will want to
import these to the project.

13.3.1 Importing Resources

You can import various types of existing resources to projects by choosing
File > Import.

For details about the entries in the Import File dialog, open it and press the help
key for your host.

NOTE: If Workbench encounters a problem while importing resources (for
example, the project already contains a file with the same name), it returns an
error. If you click OK, the Import wizard reappears with all the original settings.
This gives you the opportunity to fix just the item causing the problem, rather than
having to re-enter all the selections in the wizard.

If you do not want to fix the problem and import the resources now, click Cancel.

172

13 Working in the Project Explorer
13.4 Opening and Closing Projects

NOTE: Importing resources creates a link to the location of those resources; it does
not copy them into your workspace.

Later, if you want to delete a project, be sure to check the path in the Confirm
Project Delete dialog very carefully when deciding whether to choose Also delete
contents under 'path’ or Do not delete contents—choosing to delete the project
contents may delete your original sources or the contents of a project in a different
workspace, rather than the project in your current workspace.

If this happens, right-click the folder that originally contained the files, then select
Restore from Local History. Workbench will show you a list of files you can
choose to restore.

13.3.2 Adding New Files to Projects

To add a new file to a project, choose File > New > File.

You are asked to Enter or select the parent folder, and to supply a File name.

For a description of the Advanced button, and what it reveals, open the New File
dialog and press the help key for your host.

13.4 Opening and Closing Projects

You can open or close a project by right-clicking it and choosing Open Project (if
it is currently closed), or Close Project (if it is currently open). You can also select
Project > Open Project or Project > Close Project.

13.4.1 Closing a Project

= Theicon changes to its closed state (dimmed) and the tree collapses.
= All project member files that are open in the editor are closed.

= All subprojects that are linked exclusively to the closed project are closed.
However, subprojects that are shared among multiple projects remain open as
long as a parent project is still open, but can be closed explicitly at any time.

173

Wind River Workbench

User’s Guide, 3.0 (VxWorks Version)

In general, closed projects are excluded from all actions such as symbol
information queries, and from workspace or project structure builds (that is, if
a parent project of a closed subproject gets built).

It is not possible to manipulate closed projects. You cannot add, delete, move,
or rename resources, nor can you modify properties. The only possible
modification is to delete the project itself.

Closed projects require less memory.

13.5 Scoping and Navigation

There are a number of strategies and Workbench features that can help you
manage the projects in your workspace, whether you are working with multiple
projects related to a single software system, or multiple unrelated software
systems.

174

Close projects

If you expect to be working in a different context (under a different root
project) for a while, you can right-click the project you are leaving and select
Close Project.

If you close your root projects when you stop working on them, you will see
just the symbols and resources for the project on which you are currently
working (see also 13.4.1 Closing a Project, p.173).

Open a project in a new window

If you expect to be switching back and forth between software systems (or
other contexts) at short intervals, and you do not want to change your current
configuration of open editors and layout of other views, you can open the
other software system’s root project in a new window (right-click

Open in New Window).

Open a new window

You can open a new window by choosing Window > New Window. This
opens a new window to the same workspace, leaving your current Workbench
window layout intact while you work on some other context in the new
window.

13 Working in the Project Explorer
13.6 Moving, Copying, and Deleting Resources and Nodes

= Use Working Sets

Using working sets lets you set the scope for all sorts of queries. You can, for
example, create working sets for each of your different software systems, or
any constellation of projects, and then scope the displayed Project Explorer
content (and other query requests) using the pull-down at the top-right of the
Project Explorer.

To create a working set, from the drop-down menu, choose

Select Working Set. In the dialog that appears, click New, then, in the next
dialog, specify the Working set type, for example, Java or Breakpoint. Click
Next, give the working set a name, and select the content that should be
included in this working set. When you click Finish, your new working set
will appear in the Select Working Set dialog’s list of available working sets.

After you select a working set in the Select Working Set dialog for the first
time, the working set is inserted into the Project Explorer’s drop-down menu,
so that you can access it directly from there. The currently selected working set
is marked with a dot.

= Use the Navigate Menu

For day-to-day work, there is generally no need to see the contents of your
software systems as presented in the Project Explorer.

Using the Navigate > Open Resource (to navigate to files) and

Navigate > Open Symbol (to jump straight to a symbol definition) may often
prove to be the most convenient and efficient way to navigate within, or
among, systems.

13.6 Moving, Copying, and Deleting Resources and Nodes

The resources you see in the Project Explorer are normally displayed in their
logical, as opposed to physical, configuration (see 4.5 Projects and Project Structures,
p-82). Depending on the type of resource (file, project folder) or purely logical
element (target node) you are manipulating, different things will happen. The
following section briefly summarizes what is meant by resource types and logical
nodes.

175

Wind River Workbench

User’s Guide, 3.0 (VxWorks Version)

13.6.1 Resources and Logical Nodes

Resources is a collective term for the projects, folders, and files that exist in
Workbench.

There are three basic types of resources:

Files
Equivalent to files as you see them in the file system.
Folders

Equivalent to directories on a file system. In Workbench, folders are contained
in projects or other folders. Folders can contain files and other folders.

Projects

Contain folders and files. Projects are used for builds, version management,
sharing, and resource organization. Like folders, projects map to directories in
the file system. When you create a project, you specify a location for it in the
file system.

When a project is open, the structure of the project can be changed and you
will see the contents. A discussion of closed projects is provided under
13.4.1 Closing a Project, p.173.

Logical nodes is a collective term for nodes in the Project Explorer that provide
structural information or access points for project-specific tools.

176

Subprojects

A project is a resource in the root position. A project that references a
superproject is, however, a logical entity; it is a reference only, not necessarily
(or even normally) a physical subdirectory of the superproject’s directory in
the file system.

Build Target Nodes

These are purely logical nodes to associate the project’s build output with the
project.

Tool Access Nodes

These allow access to project-specific configuration tools. VxWorks ROMFS
File System Projects have a node that opens a tool for mapping host-side
project contents to target file system contents. VxWorks Image Projects have a
node that opens the Kernel Configuration Editor for configuring the VxWorks
kernel.

13 Working in the Project Explorer
13.6 Moving, Copying, and Deleting Resources and Nodes

13.6.2 Manipulating Files

Individual files, for example source code files, can be copied, moved, or deleted.
These are physical manipulations. For example, if you hold down CTRL while you
drag-and-drop a source file from one project to another, you will create a physical
copy, and editing one copy will have no effect on the other.

13.6.3 Manipulating Project Nodes

A project is a semi-logical entity; that is, a project is a normal resource in the root
position. A project that is referenced as a subnode is, however, a logical entity; it is
a reference only, not a physical instance.

If you want to make a project into a subproject of one or more other projects,
right-click the first project node, select Project References > Add as Project
Reference, select the project to be the superproject, then click OK. A reference is
inserted from the subproject to the superproject. This means that if you modify the
properties of one instance of the subproject node, all other instances (which are
really only references) are also modified. One such property would be, for
example, the project name. If you rename the project node in one context (by
right-clicking the project, then selecting Rename), it will also be renamed in all
other contexts.

Moving and (Un-)Referencing Project Nodes

If you make a project into a subproject of another one, you are making a logical,
structural change. However, if you right-click a project folder node and select
Move, you will be asked to enter (or browse for) a new file system location. All the
files associated with the current project will then be physically moved to the
location you select, without any visible change in the Project Explorer (you can
verify the new location in the Project Properties).

To remove the currently selected project from its structural (logical) context as a
subproject, right-click the project, select Project References > Remove Project
Reference, select the project it should be removed from, then click OK. It will be
moved to the root level as a standalone project in the Project Explorer.

177

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Deleting Project Nodes

To delete a subproject, which might potentially be linked into any number of other
project structures, you must first either unlink all instances of the subproject (by
right-clicking it inside the superproject and selecting Remove Project Reference),
or get aflat view of your workspace (by opening the drop-down list at the top-right
of the Project Explorer’s toolbar and selecting Project Presentation > Flat). This
hides the logical project organization and provides a flat view with a single
instance of the (sub)project. To delete the project, right-click it and select Delete.

When you delete a project you are asked whether or not you want to delete the
contents. If you choose not to delete the contents, the only thing that happens is
that the project (and all its files) are no longer visible in the workspace; there are
no file system changes.

13.6.4 Manipulating Target Nodes

Target nodes cannot be copied or moved. These are purely logical nodes that make
no sense anywhere except in the projects for which they were created.

Editing Build Targets

To edit the contents of a build target, right-click the build target and select Edit
Content. For more information about adding and editing the contents of build
targets, see Adding Build Targets to Managed Builds, p.217.

Deleting Target Nodes

Deleting a target node also removes the convenience node that represents the
generated, physically existing build-target. However, the physically existing
build-target (if built) is not deleted from the disk.

The convenience node lets you see at a glance whether the target has been built or
not, even if you have uncluttered your view in the Project Explorer by hiding build
resources (in the drop-down menu at the top-right choose Filters > Wind River
build targets) and/or collapsing the actual target node. If you have collapsed the
node, the + sign will indicate that the build-target exists).

178

13 Working in the Project Explorer
13.7 Parsing Binary Images

13.7 Parsing Binary Images

Both the Wind River Compiler and the GNU compiler (gcc) offer parsing tools to
display information from binary image files, such as executables or object files.
These tools provide detailed information about binary image files to help you find
problems in section allocations or memory layout.

In previous releases of Wind River Workbench, these tools were available only on
the command line, as the ddump command (for the Wind River Compiler) and the
objdump command (for gec.)

Now you can use the binary image parsing tools in the Workbench GUI, without
going to the command line. To see the parser output for any binary image file,
follow these steps:

1. Inthe Project Explorer, double-click the binary file, located under the Binaries
node or within the build spec trees.

2. Workbench parses the file with the appropriate tool and displays the outputin
the Workbench Editor.

Files that can be parsed include executables, kernel modules, real-time processes
(RTPs), and object files.

Configuring the Binary Parser Globally

You can configure what results the parsing tools should return by selecting
Window > Preferences > Wind River > Binary Parser.

GNU Compiler Defaults

By default, the gcc objdump command uses the following arguments:

» -C (demangle low-level symbol names into user-level names)

» -x(display all available header information, including the symbol table and
relocation entries)

» -S (display source code intermixed with disassembly)

To change these defaults, open Window > Preferences > Wind River > Binary
Parser and edit the GNU objdump command arguments field. For information
on objdump arguments, see the objdump man page.

179

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Wind River Compiler Defaults

By default, the Wind River Compiler ddump command uses the following
arguments:

» -f (display file header)
= -h (display all section headers)
= -N (display symbol table information)

To change these defaults, open Window > Preferences > Wind River > Binary
Parser and edit the Wind River Compiler ddump command arguments field. For
information on ddump arguments, see the Wind River Compiler User’s Guide:
DDUMP File Dumper.

Configuring the Binary Parser by Project

To configure the binary parser on the project level, right-click on your project name
in the Project Explorer and select Properties > Binary Parser.

The Enable binary parser checkbox is selected by default. To turn the binary
parser off, clear this checkbox. This is a team-shared setting, since it modifies the
.cproject file. If the user version controls that file, it must be checked out as part of
the operation.

To change the default arguments on the project level, select the Enable project
specific settings checkbox. With htis checkbox selected, the Command
Arguments fields become active. If you select this checkbox, Workbench will take
its command arguments for this project from this dialog, and not from the
Workbench Preferences dialog.

180

14

Advanced Project Scenarios

14.1 Introduction 181

14.2 Resource Locations 182

14.3 Multiple, Unrelated Software Systems 183
14.4 Complex Project Structures 184

14.1 Introduction

The scenarios developed in this chapter suggest how you could use the Wind River
Workbench to manage various constellations of projects and project types. Because
Workbench provides a variety of possibilities for achieving different ends, the
scenarios are neither prescriptive nor comprehensive. All we can do here is offer
some suggestions.

The scenarios do not look at the edit/compile/debug cycle; the emphasis is on
project organization and handling. The discussion looks at:

= resource locations
» strategies for working with multiple, unrelated software systems

= complexities within a single software system, including project structure
design, development, and finalization steps

181

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

14.2 Resource Locations

One complexity that you might be faced with, especially in team development
situations, is that you might have to use file system resources (files and directories)
that are outside your workspace.

As long as file system resources are located in the default location (your own
workspace), for example because you have checked them out from your version
control system, there is nothing to discuss.

When you create projects in Workbench, project-specific administrative files are
stored at the file system location of the resources used by the project. This means
that, if these resources are outside your workspace, you may not have write
permission there and that the necessary files therefore cannot be created.

This may be an issue, for example, also with respect to centrally maintained header
files and third party libraries. In such cases you have the following options:

» Have your administrator, who does have write permission, create the project
(see Creating Projects for External Headers, p.196) and import the project as
follows:

— In the Project Explorer, right-click Import.

— In the Import wizard, select Existing Project into Workspace and click
Next.

— Browse to the directory where the project was created and click OK, then
Finish.

This is the recommended way to proceed in cases where not everyone is
allowed to write to resource directories. This way all team members always
access both the same, most up to date source files and the same project, thereby
ensuring consistency across the entire team without any synchronization
overhead. Note that, if you have multiple workspaces, you would have to
import the project to each workspace.

Furthermore, if the external resources are not just header files, that is, if they
are buildable, build support must be either disabled for the imported project
(if existing build output is externally available), or build output of the
imported projects must be redirected somewhere that users have write
permission (open the build properties dialog, click the build paths tab, and
press the help key for your host). Write permission will also be required for the
-wrproject file in the project directory and the .wrfolder files in each folder, for
modifications (added/removed resources) and for maintaining changes in
build properties.

182

14 Advanced Project Scenarios
14.3 Multiple, Unrelated Software Systems

* The other option is to copy the resources to somewhere that you do have write
permission.

Wind River does not recommend this option because of the synchronization
problems that are bound to arise sooner or later. Consider this a last resort.

14.3 Multiple, Unrelated Software Systems

The assumption is that you work on multiple, unrelated software systems in
parallel. Each of these systems will normally (but not necessarily) consist of any
number of subprojects organized into project structures; that is, each system will
normally be arranged as a tree under a single superproject. However, ignoring the
internal organization of your software systems for the moment (this is discussed
under Complex Project Structures, p.184), first look at the software systems as a
whole.

During the course of any working day you might spend time working in different
software systems that have nothing to do with each other (other than the fact that
you happen to be working in them). You will presumably want to be able to focus
as fully as possible, with as little distraction as possible, on the software system
you are working on at any given time. If you have to switch from one system to the
other fairly frequently, the switch should be easy and rapid.

14.3.1 Using Different Workspaces for Different Systems

Using different workspaces for unrelated software systems lets you keep these
systems completely separate, without seeing any sign of the currently
non-relevant context anywhere.

However, when you switch from one workspace to another (choose

File > Switch Workspace), you are actually closing your current Workbench
instance and reopening a new instance that uses the selected new workspace. This
takes time, but offers the advantage that the new workspace opens exactly as you
left it when you last closed it.

This option, because of the time overhead involved in switching, is probably most
feasible if you have only a few separate software systems, and if you spend
extended periods of time in one or other context without interruption.

183

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

However, if you have, a system that you work on most of the time, and several
other systems where you have to frequently do relatively minor maintenance
work, you might find it more convenient to use a single workspace for all, or many
of, your projects.

Naturally, there is no reason why you should not have both multiple workspaces
as outlined here, and, within one or more of these, also maintain multiple,
unrelated software systems in the same workspace as discussed below.

NOTE: If you created a workspace with a previous version of Workbench, the
workspace structure must be updated before you can open it with the current
version of Workbench.

A dialog appears informing you that this update may make it incompatible with
previous versions; click OK to update and open the workspace, or Cancel to select
a different workspace.

14.3.2 Using the Same Workspace for Different Software Systems

Using the same workspace for any number of unrelated software systems does not
stop you from keeping these systems completely separate. The only sign of each
currently non-relevant system can be a single icon (or not even that if you Go Into
a project - see 13.5 Scoping and Navigation, p.174). This means that all software
systems are immediately visible and accessible, without being unduly obtrusive.
Furthermore, switching from one software system to another is much faster than
using different workspaces as described above. On the other hand, if you are
working on multiple, very large software systems, general performance might
become an issue that would suggest using separate workspaces.

Some of the ways that will help you handle multiple software systems in the same
workspace are introduced under 13.5 Scoping and Navigation, p.174

14.4 Complex Project Structures

This section develops a simple infrastructure as a possible approach to a
high-level, internal organization of an individual software system.

184

14 Advanced Project Scenarios
14.4 Complex Project Structures

14.4.1 Project Assumptions

The following discussion attempts to align how Workbench project structures and
project types can support a software system that includes the following
requirements.

There is a kernel

In the design phase, you need not think too much about the kernel. It is
sufficient to know that there will be one at some point.

Use a simulator for initial development and testing.

The output product must be a single flashable image

This image will contain the kernel as well as all the run-time components
(binaries from Real-time Process Projects, libraries, data files, and so on). A
target-side file system is therefore required; this will be implemented using
Wind River ROMFS technology by setting up a VxWorks ROMFS File System
project.

However, in the design phase, you do not need not worry about this; it is
sufficient to know that there will be a VxWorks ROMFS File System project at

some point.

The software system will have to be ported to different boards

Although the kernel as such is not initially of primary importance, the
assumption that you will have to port the system at some stage may be a
design consideration. If you are developing and testing on a simulator (see
above), there will be porting to do anyway.

There are run-time products.

One or more modules are needed as abstraction layers that wrap around the
kernel

Use Downloadable Kernel Module Projects for these.

There are application modules

These have to be process-based and they have to run in their own
memory-protected address space.

Use Real-time Process Projects for these.

There are shared libraries

These are potentially used by any or all of the application modules.

185

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Use Shared Library Projects for these.
= There is legacy code

Use User-Defined Projects and/or Real-time Process Projects and/or
Downloadable Kernel Module Projects.

User-Defined Projects are appropriate in situations where you would rather
not tamper with how the application is built. In other situations, you can wrap
your legacy projects in one of the standard project types supported by
Workbench.

= There are external headers

These are centrally maintained and are potentially used by any or all of the
software system’s modules.

Use a User-Defined project (without build support) for these.
= Building a complete product image must be simple

14.4.2 Infrastructure Design, p.186, tries to meet all the above requirements and
provide a push-button build of the full product image, including all its
components, for multiple architectures.

14.4.2 Infrastructure Design

Based on the Project Assumptions, p.185, the following describes how you could go
about building an infrastructure for such a software system.

NOTE: The screenshots in the following have been filtered in various ways (using
Customize View from the Project Explorer drop-down menu) to hide everything
that is not related to project structure. If you follow the procedures described, you
will see this same structure, as well as a number of additional files, folders, target
nodes, and so on.

The infrastructure described here is not a requirement for project management in
Workbench. It can, however, be convenient to create such an infrastructure to
facilitate porting a software system to other boards, as well as to allow building an
entire product image, even for multiple boards, all at once. Furthermore, such an
infrastructure does not need to be in place from the start; it can be folded over a
project system at any stage of development.

186

14 Advanced Project Scenarios
14.4 Complex Project Structures

Create Container Projects

Step 1:

This infrastructure uses empty container projects at the superproject level as well
as at subproject levels. The type of container used in each case will depend on the
type of content the container will later accommodate.

In the current context, the term container project is therefore used to denote a project
of any type that does not, however, itself contain any source code files; all
application source files will be in subprojects referenced by the empty container
project.

Create a container project.

Creating a container project as the topmost superproject the software system is an
organizational artifact to provide a convenient way of keeping everything
together, and thereby also cleanly separating the software system from other
software systems you might work on in the same workspace.

The only other real functionality the superproject container project needs to
provide is that it has to be buildable. Although the project itself contains no source
code files, you will want to able to start the build at the top of your future project
tree to recursively build the whole structure.

The default User-Defined project provided by Workbench is exactly what you
need for a topmost container project.

1. To create a new User-Defined project, in the Project Explorer, right-click and
select New > User-Defined Project.

2. Inthe wizard that appears, the Target operating system field shows the target
operating systems you have installed. For this example, select Wind River
VxWorks 6.6, then click Next.

NOTE: The Target operating system field will be set to Wind River VxWorks
6.6 until you change it, so this instruction is omitted in subsequent sections.

3. In the Project name field, enter: playpen_sim (this is an arbitrary name for a
fictitious software system; the suffix _sim reflects that this system will be built
for the simulator) and click Finish. (You can ignore the Next button and the
other Wizard pages because the defaults are fine.)

This creates a default User-Defined project; that is, one that supports a
user-defined build based on existing makefiles. Since this is a just a container
project without any (user-defined) makefiles, Workbench will create a Makefile
with a default all rule and a clean. This allows you to use the Build Project,

187

Step 2:

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Rebuild Project, and Clean Project menu commands, as well as preventing the
generation of irritating build errors. If you want, you can write any other rules into
this file at any time. See also 11. Creating User-Defined Projects.

Create container projects for each project type and for external headers.

Recall that Project Assumptions, p.185, stated requirements for Downloadable
Kernel Modules, Real-time Process Projects, Shared Library Projects, and
User-Defined projects.

Creating empty projects for each of these project types facilitates porting from the
simulator to a board, and from one board to another. This is because, in a tree of
projects of the same type, all subprojects are built using the same build spec as that
used by the topmost project. This applies to all project types except User-Defined
projects (there is no way to predict how these are built).

So, for example, by creating an empty Real-time Process project type container
project and later populating this container with real Real-time Process project type
subprojects, then you only need to use a different build spec for the container when
it comes to porting the system to a different board (more about this later).

Note that Real-time Process projects and Shared Library projects actually use the
same build specs, so, technically speaking, you could lump these two project types
together under one container and save yourself a couple of steps. However, the
orderly separation of project types appears a little cleaner and is therefore adopted
here.

The naming convention used for these containers indicates the project type that
will be stored within (actually only reference) these containers, plus a suffix that
indicates the software system they belong to and the board they will be built for

(_playpen_sim).

To create the empty container project types, proceed as follows:

NOTE: You can ignore the Next button and click Finish on the first page in each of
the wizards because the defaults are fine for the moment.

NOTE: Project references can only be created if the projects are based on the same
Platform.

1. To create a new container Downloadable Kernel Module project, in the Project
Explorer, right-click New > VxWorks Downloadable Kernel Module Project.

In the wizard that appears, click Next, and in the Project name field, enter:
DKMs_playpen_sim and click Finish.

188

14 Advanced Project Scenarios
14.4 Complex Project Structures

To create a new container Real-time Process project, in the Project Explorer,
right-click New > VxWorks Real Time Process Project.

In the wizard that appears, click Next, and in the Project name field, enter:
RTPs_playpen_sim and click Finish.

To create a new container Shared Library project, in the Project Explorer,
right-click New > VxWorks Shared Library Project.

In the wizard that appears, click Next, and in the Project name field, enter:
LIBs_playpen_sim and click Finish.

To create a new container User-Defined project, in the Project Explorer,
right-click New > User-Defined Project.

In the wizard that appears, click Next, and in the Project name field, enter:
UDPs_playpen_sim and click Finish.

To create a new container User-Defined project (without build support) to
accommodate the external, centrally maintained header files mentioned in
Project Assumptions, p.185, in the Project Explorer, right-click

New > User-Defined Project.

In the wizard that appears, click Next, and in the Project name field, enter:
headers_playpen (notice that we have not appended the suffix _sim; this is
because this project does not use a build spec, see below) and keep clicking
Next until you get to the wizard’s Build Support page.

189

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Figure 14-1 Disable Build Support for Header Projects

® New User-Defined Project

Build Support =
Choose the build support and specify the build command. :_’ /

Build support
() User-defined build ~ {based on existing makefiles)
(%) Disabled

Make rules

Refresh settings

&) [< Back ” Mext = H Finish H Canicel]

In the wizard’s Build Support page, select the Disabled option and click
Finish.

In the Project Explorer you should now see the flat list of container projects
(collapsed) shown in Figure 14-2.

Figure 14-2 Container Projects

I-—[\h Project Explorer &3 |=F| File Mavigatar #® Debug Symbol EBrowser =0

B[S N

Ir:/ DkMs_playpen_sim {Wind River YxWorks 6.6 Downloadable Kernel Module Project)
'[D. headers_play r-Defined Pr
b LIBs_playpen_sim {wind River WxWorks 6.6 Shared Library Pro]ect)
b plavpen_sim {Wind River YxWoarks 6.6 User-Defined Project)

[):/E' RTPs_playpen_sim (wWind River VaWorks 6,6 Real Time Process Project)
IDU UDPs_playpen_sim (Wind River ¥xWorks 6.6 User-Defined Project)

190

14 Advanced Project Scenarios
14.4 Complex Project Structures

Step 3: Add all container projects to the topmost container project.

The topmost container project must be referenced by all other container projects;
in other words, all other container projects must by subprojects of playpen_sim.

In the Project Explorer, select each project (except playpen_sim), select Project
Resources > Add as Project Resource, select playpen_sim, then click OK.

Figure 14-3 illustrates the infrastructure created in the above steps. Notice the
referencing arrows at the left of the subproject icons.

Figure 14-3 Container Projects Referenced by the Topmost Container

L[Project Explorer &3 File Mavigator | B Debug Symbol Browser =8

=IES =

Pa DKMSJﬂa\y’pEn sim (Wind River VxWorks 6.6 Downloadable Kernel Module Project)
B:/' headers_playpen (Wind River VxWorks 6,6 User-Defined Project)

r'b LIBs_playpen_sim {Wwind River YxWorks 6.6 Shared Library Project)

g2 RTPs_playpen_sim (Wind River Yxwaorks 6.6 Real Time Process Project)

r‘l’a UDPs playpen_sim (Wind River YxWiorks 6.6 User-Defined Project)

14.4.3 Development
Once you set up the infrastructure for your first board (or simulator), you will
populate the container projects with real projects that actually contain source files.

In order to later facilitate porting the software system to other boards you would,
organize these, at least initially, so that:

» All Real-time Process projects are subprojects of RTPs_playpen_sim.

» All Downloadable Kernel Module projects are subprojects of
DKMs_playpen_sim.

» All Shared Library projects are subprojects of LIBs_playpen_sim.
» All projects for external headers are in headers_playpen.

» All User-Defined projects (except the ones in headers_playpen, where build
support is disabled) are subprojects of UDPs_playpen_sim.

191

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Referencing Containers

There are a number of ways you can associate projects with other projects as
subprojects. One method is to right-click the project, select Project Reference >
Add as Project Reference, then select the project you want to be the superproject.
You can also create the reference during project creation as demonstrated in the
example below.

Example 14-1 Creating and a Project and Referencing its Container

Assumption: you are creating a Real-time Process project. This, according to the
conventions outlined above, will be a subproject of RTPs_playpen_sim. The
quickest way to achieve this is:

1. In the Project Explorer, select RTPs_playpen_sim.
2. Right-click New > VxWorks Real Time Process Project.

3. Inthewizard, click Next, enter a Project name (use rtp_1in this example), then
click Next.

4. Inthe wizard’s Project Structure page there is a Superproject check box
labelled Add reference to RTPs_playpen_sim. This check box appears
because you selected the RTPs_playpen_sim project in step 1, above. Select
this check box and continue to create the project.

192

14 Advanced Project Scenarios
14.4 Complex Project Structures

Figure 14-4 Linking as Subproject during Project Creation

w . oee

i x Eil ® New VxWorks Real Time Process Project |:|@@

Project Structure ——
= 1= playpen_sim (¥ind River Specify the project tree structure and project references, S
£ @ DEMs_playpen_sim {
% headers_playpen {will
+-E2 LIBs_playpen_sim (% Superprojeck
+ 'lg RTPs_plawvpen_sim ([+] add reference to RTPs_playpen_sim
+ 'lR,|_:—U,' UDPs _playpen_sim (
Referenced subprojects:
(| bcLIBSJIaypen_sim {wind River Wx<Works 6.6 Shared Library Project)
(| T:_'—E'UDPSJ:Iaypen_sim (\Wind River VxWorks 6.6 User-Defined Project)
M remate Systems 52 i 1 =5 headers_playpen (wind River Wewiorks 6.6 User-Defined Project)

= E_? Local
+ i"LJD Local Files
G Local Shells
+ % ‘Wind River Registries
= '{,% wisim0 (ind River vxwol (7) < Back][Mext =] I Finish l [Cancel
= % \Eind River Target Dl

Shared Libraries

The recommended convention above, that all shared library projects are
subprojects of LIBs_playpen_sim, might seem strange. Shared libraries are
normally subprojects of the projects that use them, so why put shared libraries in
this seemingly disconnected location (LIBs_playpen_sim)?

The libraries are actually even more disconnected than they appear. Remember
that, physically speaking, all the projects in any project structure, no matter how
deep, are topographically flat as shown in Figure 14-5. This figure shows exactly
the same system as Figure 14-6, which displays the logical view you normally see
(the figures show a few extra libraries and RTP projects, to illustrate a possible
project structure).

You can switch from one representation to the other by selecting Project
Presentation > Flat or Project Presentation > Structured from the drop-down
menu at the top-right of the Project Explorer.

193

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Figure 14-5 Physical View of the System

L7 Project Explorer &3 File Mawvigator [Debug Symbol Browser =8
EGm®- -

B DkMs_playpen_sim (Wind River VxWorks 6.6 Downloadable Kernel Module Project)

= B headers_playpen (Wind River YxWorks 6.6 User-Defined Project)

1B lib_1 (wind River xworks 6.6 Shared Library Project)

'FB lib_2 (Wind River Yx\Works 6.6 Shared Library Project)

B LIBs_playpen_sim {Wwind River WxWorks 6.6 Shared Library Project)

oRE playpen_sim (Wind River YxxWorks 6.6 User-Defined Project)

B rkp_L (wind River Yxworks 6.6 Real Time Process Project)

e d Leal Time Project)

'r% RTPs_playvpen_sim {Wind River Yx\Works 6.6 Real Time Process Project)

- B UDPs_playpen_sim (Wind River WxWorks 6.6 User-Defined Project)

&

While it is true that you will normally only have libraries as subprojects of
applications that use them (even if you are developing a library you will probably
have a test application project above the library), it does not matter how often a
library node occurs in a given tree, or even in the entire workspace, it is physically
only one library and will therefore only be built once (see Figure 14-5). In this
sense, it does not matter that the libraries will appear in one extra place,
LIBs_playpen_sim.

Figure 14-6 shows exactly the same system as Figure 14-5 (it has been filtered,
using Customize view from the drop-down menu, to hide everything that is not
related to project structure).

Notice that the Shared Library project, lib_1, occurs three times: once each under
rtp_1 and rtp_2, and once, seemingly unnecessarily, under LIBs_playpen_sim.

194

14 Advanced Project Scenarios
14.4 Complex Project Structures

Figure 14-6 Logical View of the System

L7 Project Explorer &3 File Mavigator | 2% Debug Symbal Browser =0
—] | X
o

2 =2 playpen_sim (Wind River YxWorks 6.6 User-Defined Project)
= B DKMs_playpen_sim (Wind River Wx\Works 6,6 Downloadable Kernel Module Project)
E= % headers_playpen (wind River Viworks 6,6 User-Defined Project)
= @ LIBs_plavpen_sim {Wwind River Yaoworks 6.6 Shared Library Project)
+ % lib_1 {\ind River YxWhorks 6.6 Shared Library Project)
£ % fib_2 (wind River Yx\Works 6,6 Shared Library Project) :
= % RTPs_playpen_sim (Wind River WxWorks 6.6 Real Time Process Project)
=B rep_1 (wind River WxWarks 6.6 Real Time Process Project)
+ F_:—?r lib_1 {\wind River YxWorks 6.6 Shared Library Project)
= % rkp_2 (Wind River ¥x\Works 6.6 Real Time Process Project)
=B lib_1 {Wind River WaWorks 6.6 Shared Library Project)
=+ % lib_2 {wind River wxWorks 6.6 Shared Library Project)
+ % UDPs_playpen_sim {Wwind River VxWarks 6.6 User-Defined Praject)

If you adhere to the convention recommended above, that all shared library

projects are subprojects of LIBs_playpen_sim, you will have to add references

from library nodes to subproject locations under applications that use them. Note

again that when you do this, you are not really copying anything, you are creating
links (again note the reference arrows on subproject icons). However, on the

upside, whenever you need to add your library projects to applications, you will

know exactly where to find them because they are neatly collected in their

container project, in our example, LIBs_playpen_sim.

The other advantage of adhering to this convention will, as already mentioned,
become apparent when it is time to port the software system to different boards.

External Headers and Projects that Use Them

This section starts by describing how to create projects for external headers on the
assumption that you follow the convention of having projects of the same type
referencing their respective container projects, in our example, headers_playpen.
The discussion continues with an outline of the steps you need to apply to the
projects that use these header projects.

195

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Creating Projects for External Headers

Headers, or any other resources that are external to your workspace, might be a
problem if you do not have write permission. If you do not have write permission,
proceed as described under 14.2 Resource Locations, p.182.

If you have write permission, and it is up to you to create projects for external
headers, you would create User-Defined projects for these. These projects, like
their container project, headers_playpen, will have build support disabled.

To create projects for the external headers:

1. In the Project Explorer, right-click headers_playpen and select
New > User-Defined Project.

2. Click Next, and give the project a name (headers_1 in the example). Select
Create project in workspace with content at external location, then browse to
the root directory that contains the files you need. Click Next.

3. On the Project Structure page, select Add reference to project
headers_playpen. If you do not see a check box, or if the label is different, you
did not select headers_playpen in step 1, above. In this case you can manually
move the project when you are finished. Click Next twice.

4. Inthe wizard’s Build Support page, select Disabled, then click Finish.

Generating Include Search Paths for Projects

Once you have created the header project(s), others can import them (see

14.2 Resource Locations, p.182). Whether you create the header projects yourself, or
whether you import them, the include paths of the projects that use the headers
have to be updated. If you are able to import the header projects, the chances are
that you will also be able to import (or use your version control system to
synchronize) the projects that use the headers.

On the other hand, if you are the one who creates the headers project(s), you will
probably also be the one who updates the projects that use them and then makes
these available to others. In this case, or if you create a new project that uses the
headers project from the start, you will generally proceed as follows.

Once your workspace knows the headers (because there is a project for them),
include search paths can be generated.

For each topmost project that uses the headers proceed as follows:

In the Project Explorer, right-click the project that uses the headers and choose
Build Options > Generate Include Search Paths.

196

14 Advanced Project Scenarios
14.4 Complex Project Structures

In the wizard that appears you can configure and generate include search paths for
the project, its subprojects and folders, as well as for multiple build specs. For help
in using this wizard, press the help key for your host.

Note that in the Project Properties dialog, Build Properties node, Build Paths tab,
and the Generate button (for include paths) invoke a similar wizard. This wizard,
only lets you configure include paths for one build spec at a time.

Testing and Debugging

A simulator connection should be sufficient for initial testing and debugging of
your applications. See 20. New VxWorks Simulator Connections for information
about simulator connections, and 23. Debugging Projects for information on
debugging.

14.4.4 Finalization
Once things are working on the simulator, and your board and hardware

connections are up and running, it is time to port the software system from the
simulator to the board(s).

The steps below, especially step 2, where you create four new container (sub)
projects might initially seem tedious. However, you cannot just copy the existing
ones, because as you remember, no physical copies are created, only references
(that look like copies) are created.

Creating four empty container projects per architecture does not take long, and
you only do it once. After that, the advantages include:

* Your projects are clearly and systematically organized.
* You never need to worry about changing build specs for individual projects.

* You can build your whole workspace (all the boards you support) at one time,
again without manipulating the build specs.

= Any resource modifications, adding, removing, editing, at source project level
will be reflected in all the project structures (=boards) simultaneously,
regardless of where you make the modification since these are references, not
copies.

Repeat the following steps for each board you will be supporting.

197

Step 1:

Step 2:

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Create VxWorks Image project and VxWorks ROMFS File System projects.

1.

First, create a VxWorks Image project using the BSP appropriate to your board,
see 5. Creating VxWorks Image Projects.

This will be a top-level project. If you follow the naming conventions used in
this chapter, the project might be named something like playpen_ppc.

Then, if you are using Real-time Process projects and /or Shared Library
projects, you will also need to create a VxWorks ROMEFS File System project,
named something like FileSystem_playpen_ppc. See 7. Creating VxWorks
ROMES File System Projects.

This will be a subproject of the VxWorks Image project (playpen_ppc). The file
system will be linked with the VxWorks system image created from the
VxWorks Image project, and will hold the binary and data files of the system’s
run-time components. These are associated with the file system in Step 3
below.

When you build the VxWorks Image project, the VxWorks ROMFS File System
subproject and the other associated subprojects will be compiled to binaries
and linked to the kernel. If you update files in the file system, rebuilding it
creates a new file system image, which is then re-linked to the kernel.

Create container subprojects for each project type (except headers).

Essentially, you repeat the procedure outlined under Step 2:Create container projects
for each project type and for external headers., p.188, except that:

You do not need to create another project for the headers as they do not use a
build spec.

Instead of appending the suffix _sim to the project names, you would, in our
example, append _ppc.

You have to set the build spec for each container (except the one for
User-Defined projects, which cannot have pre-defined build specs) because
the wizard default (simulator) will no longer apply.

Step-by-step, the procedure is as follows:

1.

198

To create a new container Downloadable Kernel Module project:

a. Right-click in the Project Explorer and select
New > VxWorks Downloadable Kernel Module Project.

14 Advanced Project Scenarios
14.4 Complex Project Structures

b. In the wizard that appears, in the Project name field, enter:
DKMs_playpen_ppc and click Next until you reach the wizard’s
Build Specs page.

c. IntheBuild Specs page, select Deselect All, then select the check box next
to the appropriate build spec (only one) from the list, for example,
PPC32diab and click Finish.

Figure 14-7 Select the Build Spec

® New VxWorks Downloadable Kernel Module Project |Z|@g|

Build Specs

Select available and enabled build specs, i """""

Available and enabled build specs

[Select Al] [Deselect Al

1 PEMTIUMdIab ~
[PENTIUMGRIU

[¥} PPC32diab
[Memczzanu
[] PrC3zsfdiab

[prcazsfgru
"1 PPC403diab s

Active build spec: | PPC32diab w
Debug Maode
@ [= Back ” Next =] [Finish I [Cancel]

2. To create a new container Real-time Process project, right-click in the Project
Explorer and select New > VxWorks Real Time Process Project.

a. In the wizard that appears, in the Project name field, enter:
RTPs_playpen_ppc and click Next until you reach the wizard’s
Build Specs page.

b. Inthe Build Specs page, select Deselect All, then select the check box next
to the appropriate build spec (only one) from the list, for example,
PPC32diab_RTP and click Finish.

3. To create a new container Shared Library project, right-click in the Project
Explorer and select New > VxWorks Shared Library Project.

199

Wind River Workbench

User’s Guide, 3.0 (VxWorks Version)

In the wizard that appears, in the Project name field, enter:
LIBs_playpen_ppc and click Next until you reach the wizard’s
Build Specs page.

In the Build Specs page, select Deselect All, then select the check box next
to the appropriate build spec (only one) from the list, for example,
PPC32diab_RTP and click Finish.

4. To create a new container User-Defined project, right-click in the Project
Explorer and select New > User Defined Project.

a.

In the wizard that appears, click Next, and in the Project name field, enter:
UDPs_playpen_ppc and click Finish.

By definition, there can be no predefined build specs for User-Defined
projects. Workbench does not manage the build; it is up to you to know
what needs to be done with them to complete the porting.

Step 3: Make container projects subprojects of the VxWorks Image and VxWorks ROMFS File
System projects.

The VxWorks ROMES File System project is a subproject of the VxWorks Image
project (see Step 1). The new containers you have just created (except for the

Downloadable Kernel Module project) as well as the headers_playpen project,
should, in turn, be subprojects of this VxWorks ROMES File System project.

Right-click the DKMs_playpen_ppc project, select Project Reference > Add
as Project Reference, select the playpen_ppc project you created under Step 1,
then click OK.

Right-click each of the remaining container projects you have just created,
select Project Reference > Add as Project Reference, select the
FileSystem_playpen_ppc project you created under Step 1, then click OK.

Right-click the headers_playpen subproject under playpen_sim, select

Project Reference > Add as Project Reference, select the

FileSystem_playpen_ppc project, then click OK. It should now appear under
both playpen_sim and FileSystem_playpen_ppc.

The infrastructure for the new board is now complete (see Figure 14-8, modified to
hide unnecessary files).

200

14 Advanced Project Scenarios
14.4 Complex Project Structures

Figure 14-8 Project Organization for Two Boards

Step 4:

Step 5:

L7 Project Explorer &3 ® Debug Symbal Browser | — 8

B I
= I/‘__E‘ playpen_ppc (wind River Vx\Works 6,6 Image Project) #
® Kernel Configuratio
B @ DKMs_playpen_pp L oI
= l"b FileSyster_plavpen_ppe (Wwind River Yxworks 6.6

B WxWiorks ROMFS File System Contents
% headers_playpen (Wind River WxWorks 6.6 Us
B L1Bs_playpen_ppc (Wind River YxWorks 6.6 5]
2e RTPs_playpen_ppe (Wind River VxWorks 6.6 F
% UCPs_playvpen_ppc {wWind River YWaWorks 6.6 |
TDU playpen_sim (Wind River YxwWorks 6.6 User-Defined Pi
+ FD DKMs_playpen_sim (Wind River Vxworks 6,6 Dowl
+ % headers_playpen (Wind River YxhWiorks 6.6 User-C
k= B:/' LIBs_playpen_sim {Wind River YxWorks 6.6 Share
k= r'l'a RTPs_playpen_sim (Wind River YxWorks 6.6 Real
= B 1UDPs _playpen_sim (wind River VxWworks 6.6 User-

-

W

< >

Next, you have to create references to the source code projects.

Referencing source code subprojects.

Insert references from the source code subprojects from each per-type container
subproject under playpen_sim to the corresponding container under

playpen_ppc.
That is, right-click each subproject, select Project Reference > Add as Project

Reference, select the appropriate superproject, then click OK to create the
references from all source code subprojects under:

DKMs_playpen_sim to DKMs_playpen_ppc
LIBs_playpen_sim to LIBs_playpen_ppc
RTPs_playpen_sim to RTPs_playpen_ppc
UDPs_playpen_sim to UDPs_playpen_ppc

Configure the VxWorks Image project and VxWorks ROMFS File System projects.

You will need to configure the VxWorks Image project (add initialization routines
and configure components) and the VxWorks ROMES File System project.

201

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

For more information on this subject, see 5. Creating VxWorks Image Projects,
7. Creating VxWorks ROMEFS File System Projects, and the VxWorks Kernel

Programmer’s Guide.

202

PART Il

Development
15 Navigating and Editingcccccccmmmmmrrniiinnieinnnns 205
16 Building Projectscccccmmmmmririircsnssssssnssnnns 215
17 Building: Use Casescccoemmmrrriiissnmmnnnnnssssnnnes 227

203

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

204

15

Navigating and Editing

15.1 Introduction 205

15.2 Wind River Workbench Context Navigation 206
15.3 The Editor 208

15.4 Search and Replace 211

15.5 Source Analysis 212

15.1 Introduction

Workbench navigation views allow seamless cross-file navigation based on
symbol information. For example, if you know the name of a function, you can
navigate to that function without worrying about which file it is in. You can do this
either from an editing context, or from the Open Element dialog (available from
the Navigate menu). On the other hand, if you prefer navigating within and
between files, you can use the File Navigator. For more information about these
views, open them then press the help key for your host.

Source analysis is the parsing and analysis of source code symbol information. This
information is used to provide code editing assistance features such as syntax
highlighting, code completion, parameter hints, and definition/declaration
navigation for files within your projects.

205

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Apart from the things you see directly in the Editor, source analysis also provides
data for code comprehension and navigation features such as include browsing
and call trees, as well as resolving includes to provide the compiler with include
search paths.

NOTE: Syntax highlighting is provided for file system files that you open in the
Editor, but no other source analysis features are available for files that are outside
your projects.

15.2 Wind River Workbench Context Navigation

Various filters are available on each tool’s local toolbar. Hover the mouse over the
buttons to see a tooltip describing what these buttons do. At the top-right, a
pull-down menu provides additional filters, including working sets (if you have
defined any). An active working set is marked by a bullet next to its name in the
pull-down menu.

Generally, you will want to navigate to symbols, or analyze symbol-related
information, from an Editor context. The entry points are:

» The right-click context menu of a symbol
= Keyboard shortcuts that act on the current selection in the Editor:

F3 — Jump between associated code, for example, between
definition/declaration or function definition/call. There is no navigation
from workspace files to external files, i.e. files outside your projects.

F4 — Open the type hierarchy of the current selection (for details, open the
view and press the help key for your host).

CTRL+ALT+H — Open the call hierarchy of the current selection (for
details, open the call hierarchy and press the help key for your host).

CTRL+ALT+I — Open the include browser to view the includes of the
current selection (for details, open the browser and press the help key for
your host).

CTRL+I — Indents the selected lines according to the code style profile
selected in Window > Preferences > C/C++ > Code Style.

206

15 Navigating and Editing
15.2 Wind River Workbench Context Navigation

CTRL+0O — Opens a quick outline dialog, similar to the Outline view
(described in 15.2.2 The Outline View, p.208) but specific to the current
selection rather than the file as a whole.

= Keyboard shortcuts that open dialogs from which you can access symbols in
any of your projects:

SHIFT+F3 — Display the Open Element dialog.

SHIFT+F4 — Display the Open Type Hierarchy dialog.
ALT+SHIFT+H — Display the Open Call Hierarchy dialog.
CTRL+SHIFT+R — Displays the Open Resource dialog.

These options are also available from the Navigate toolbar menu.

15.2.1 Symbol Browsing

Text Filtering

Workbench now uses the Eclipse CDT Indexer and Editor for source analysis and
symbol browsing.

To open an editor for a symbol (also known as an element), select Navigate > Open
Element or use the C/C++ Search tool by selecting Search > C/C++.

Very large element loads can cause delays of up to several minutes while
Workbench loads the elements. Loading smaller batches of elements can decrease
this delay. Specify the cache limits for the Indexer by selecting Window >
Preferences > C/C++ > Indexer and adjusting the settings in the Cache Limits
section.

The Choose an element field at the top of the Open Element dialog provides
match-as-you-type filtering. For example, to find all names starting with task, start
typing in the field. As you type the letter t, then a, and so on, the number of
elements displayed narrows so you can select the element you want from the list.

The field also supports wild card matching. Type a question mark (?) to match any
single letter; type an asterisk (*) to match a string of arbitrary letters; type a dollar
sign ($) to match the end of a string.

For example, to find all names that end with 0 (zero), use the filter *0$.

207

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

15.2.2 The Outline View

The Outline view is to the right of the currently active Editor, and shows symbols
in the currently active file.

Use the Outline view to sort, filter, and navigate the symbols in the context of the
file in the currently active Editor, as well as to navigate out of the current file
context by following call and reference relationships.

For a guide to the icons in the Outline view, open the view and press the help key
for your host.

15.2.3 The File Navigator

If you have never used the File Navigator, you can open it by choosing

Window > Show View > Other. In the dialog that opens, select

Wind River Workbench > File Navigator and click OK. After the first time you
open the File Navigator, a shortcut appears directly under the

Window > Show View menu. By default, the File Navigator appears as a tab at the
left of the Wind River Workbench window, along with the Project Explorer and the
Debug Symbol Browser.

The File Navigator presents a flat list of all the files in the open projects in your
workspace, so you can constrain the list by using working sets. You can configure
and select working sets using the File Navigator’s local pull-down menu.

The left column of the File Navigator shows the file name, and is active;
double-clicking on a file name opens the file in the Editor, and right-clicking on a
file allows you to compile the file and build the project, among other tasks. The
right column displays the project path location of the file.

The File Filter field at the top of the view works in the same way as the Choose an
element field in the Open Element dialog (see Text Filtering, p.207).

15.3 The Editor

The Editor is your primary view for editing and debugging source code. There are
several editors available to parse different types of files: a C/C++ editor, an
Assembly editor, and a Makefile editor. Workbench no longer includes an Ada

208

15 Navigating and Editing
15.3 The Editor

editor, so Ada syntax highlighting is no longer available; use the default text editor
for Ada files.

Many Editor features are configurable in the Preferences (for details, click in the
Editor and press the help key for your host).

NOTE: You can specify that the Workbench editor emulate the vi or emacs editors
by clicking the appropriate icon on the title bar (v or & respectively). Refer to
additional editor preferences in Window > Preferences > General > Editors and
Window > Preferences > C/C++ > Editor; additional online information is
available at http://help.eclipse.org.

15.3.1 Code Templates

The Editor uses templates to extend code assist (shortcut CTRL+SPACE) by
inserting recurring patterns of text.

In the case of source code, common patterns are for loops, if statements and
comment blocks. Those patterns can be parameterized with variable placeholders
that are resolved and substituted when the template is inserted into the text.
Unresolved variables can be link-edited after inserting the template, which means
that the first unresolved variable is selected, and all occurrences of this variable are
edited simultaneously when you enter the correct text.

An example template might look like the following:
for (int ${var} = 0; S${var} < ${max}; ++S$S{var}) {

${cursor}

}

Provided Templates

Workbench provides the following templates. Auto-insert is turned on by default.

Name Description

author author name

catch catch block

class class declaration
comment default multiline comment
do do while statement

209

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Name Description

else else block

elseif else if block

for for loop

for for loop with temporary variable
if if statement

ifelse if else statement

main main method
namespace namespace declaration
new create new object

stderr print to standard error
stdout print to standard output
switch switch case statement
try try catch block

using using a namespace

Many template options are configurable in the Preferences (for details, click in the
Editor and press the help key for your host).

15.3.2 Configuring a Custom Editor

Workbench has a single global mapping between file types and associated editors.
This mapping dictates which editor will be opened when you double-click a file in
the Project Explorer, or when the debugger stops in a given file.

Configuring the custom editor through file associations will cause the correct
editor to be opened, and the instruction pointer to be painted in the Editor gutter.
To view and modify the mappings, go to Window > Preferences > General >
Editors > File Associations.

NOTE: Some debugger features require additional configuration; for details, see
23.4.4 Configuring Debug Settings for a Custom Editor, p.319.

210

15 Navigating and Editing
15.4 Search and Replace

15.3.3 Building Projects from the Editor

You can build a project from within the Editor. When you are finished editing a
file, press CTRL+SHIFT+A to build the project that the open file belongs to.

If the Link with Editor option is enabled (by clicking the icon on the Project
Explorer toolbar), the corresponding project of the file being shown in the Editor
will be built (as it is selected there).

If Link with Editor is not enabled, the current selection in the Project Explorer will
be used to build the corresponding project there. If there is no selection in the
Project Explorer, and an Editor has the focus, the corresponding project of the file
being shown in the Editor will be built again.

15.4 Search and Replace

The Workbench search tool is an index-based global text search/replace tool. The
scope of a search can be anything from a single file to all open projects in the
workspace. You can query for normal text strings, or regular expressions. You can
filter matches according to location context (for example, show only matches
occurring in comments). Text can be globally or individually replaced, and
restored if necessary. You can create working sets from matched files, and you can
save and reload existing queries.

15.4.1 Initiating Text Retrieval

Text retrieval is context sensitive to text selected in the Editor. If no text is selected
in the Editor, an empty Search dialog opens. If text is selected in the Editor, the
retrieval is immediately initiated according to the criteria currently defined in the
dialog.

To open the search dialog, or to initiate a context sensitive search, use:
» the keyboard shortcut CTRL+2.
» from the global Search menu, choose one of the scoping options.

For more information, open the Search dialog and press the help key for your host.

211

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

15.5 Source Analysis

Editing, navigating, and code comprehension rely on source analysis (formerly
known as static analysis) parsing of source code. In Workbench, source analysis is
done by the Eclipse C/C++ Indexer.

For more information about the Indexer, see the C/C++ Development User Guide.

15.5.1 Setting Indexer Preferences

To set global indexer preferences, open the preferences dialog (by selecting
Window > Preferences > C/C++ > Indexer). For information about the preferences
dialog that appears, press the help key for your host.

To set project-specific preferences, right-click a project in the Project Explorer, then
select Properties > C/C++ General > Indexer. Select Enable project specific
settings, then adjust the settingsas appropriate for your project.

15.5.2 Sharing Source Analysis Data with a Team

Source analysis of a large project can take quite a bit of time, so once you have
parsed the source code of your project, you can share the generated data with your
team members using your group’s source control tool.

To share generated data with your team:

1. If you have adjusted the preferences for any of the projects you want to share,
make sure Store settings with project is selected on the project’s preferences
page (right-click the project, then select Properties > C/C++ General >
Indexer). Click OK to save the preferences with the sources.

2. Right-click somewhere in the Project Explorer, then select Export > C/C++ >
Team Shared Index. The Export Team Shared Index dialog appears.

3. Select the projects for which you want to export the index. Type in (or click
Insert Variable and select a variable for) an Export destination where the
index should be saved (by default, Workbench saves the index as
workspace/projectNamel .settings/cdt-index.zip, but you can change both the
location and the name of the file). Click Finish. Workbench exports the data to
the file system location you specified.

4. Using your team’s source control tool, make the generated data available to
other team members along with the project (for example, by checking it into

212

15 Navigating and Editing
15.5 Source Analysis

ClearCase). After that, when the project and index are imported into another

workspace, Workbench will use the shared data instead of parsing the project.

Changes to the source code are not propagated to the shared data
automatically, they are stored local to the workspace. You must export the
data again to make these new changes available to team members.

Once you have made local changes to a project in your workspace, Workbench
uses that local data in preference to the shared data.

213

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

214

16

Building Projects

16.1 Introduction 215

16.2 Configuring Managed Builds 216
16.3 Configuring User-Defined Builds 221
16.4 Accessing Build Properties 222

16.5 Build Specs 223

16.6 Makefiles 224

16.1 Introduction

The process of building in Workbench starts during project creation, when you
decide what type of project you want and Workbench creates makefiles and
assigns default build settings (that you can change as necessary). Workbench
offers several levels of build support:

Managed Build
Workbench controls all phases of the build. Managed build support is
available for all project types except VxWorks Image, VxWorks Boot Loader,
VxWorks ROMEFS File System, and User-Defined projects.

215

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

NOTE: In this chapter, managed build refers to the type of build that was called
flexible managed build in previous releases of Workbench. For information
about the type of build formerly known as standard managed build, select
Window > Preferences > Wind River > Build and press the help key for your
host.

User-Defined build
With User-Defined builds, you are responsible for setting up and maintaining
your own build system and Makefiles, but Workbench does provide minimal
build support.

» It allows you to configure the build command used to launch your build
utility, so you can start builds from the Workbench GUI.

* You can create build targets in the Project Explorer that reflect rules in
your makefiles, so you can select and build any of your make rules directly
from the Project Explorer.

» Workbench displays build output in the Build Console.

Disabled build
If you select Disabled build for a project or folder, Workbench provides no
build support at all. This is useful for projects or folders that contain, for
example, only header or documentation files that do not need to be built.

Disabling the build for such folders or projects improves performance both
during makefile generation as well as during the build run itself.

NOTE: You cannot change from a lower level of build support to a managed build
once the project is created. If you later want Workbench to manage your build,
create a new project with the desired type of managed build support, either on top
of the existing sources, or import your sources into it.

16.2 Configuring Managed Builds

When you create a managed build project, your project contains the usual project
files, but you must create a build target manually.

216

16 Building Projects
16.2 Configuring Managed Builds

Adding Build Targets to Managed Builds

Once your project is created, you will see a Build Targets node inside it.

1. To add a build target to your project, right-click the Build Targets node and
select New Build Target. The New Build Target dialog appears.

2. By default the Build target name and Binary output name! are the same as the
project name, but if you are going to create multiple build targets you will
want to type in more descriptive names. Choose the appropriate Build tool for
your project, then click Next. The Edit Content dialog appears.

3. Todisplay files, folders, and other build targets from outside your current
project, select Show all projects. If you have created a Working Set, you can
restrict the display by selecting it from the pull-down list.

4. You can add contents to your build target in several ways:

a. You can select specific files, folders, projects, or other build targets in the
left column and click Add. What you can add depends on the build tool
you use; for example, you cannot add an executable build target to another
build target.

When choosing folders or projects, they can be added “flat” or with
recursive content.

— Clicking Add creates a “flat” structure, meaning that Workbench adds
the exact items you choose and skips any subfolders and files.

- Clicking Add Recursive creates a structure that includes subfolders
and files.

NOTE: Adding linked resources to a build target may cause problems within
a team if the linked resources are added using an absolute path instead of a
variable.

To define a path variable, select Window > Preferences > General >
Workspace > Linked Resources, click New, then enter a variable name and
location.

1. Your build targets must have unique names, but you can use the same Binary output name
for each one. This allows you to deliver an output file with the same name in multiple
configurations. Workbench adds a build tool-appropriate file extension to the name you
type, so do not include the file extension in this field.

217

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

b. You can create a virtual folder within your build target by clicking Add
Virtual Folder, typing a descriptive name in the dialog, and clicking OK.
Virtual folders allow you to group objects within the build target so you
can apply the same build settings to them; they also provide a way to add
files with the same name from different locations.

i. To add contents to your virtual folder, right-click it in the Project
Explorer and select Edit Content.

ii. Select content as described in step a above, and click Finish.

5. Toadjust the order of the build target contents, select items in the right column
and click Up, Down, or Remove.

NOTE: Folders appear in the specified place in the list, but the files within them
are added alphabetically.

6. When you have configured your build target, click Finish. It appears in the
Project Explorer under the Build Targets node of your project.

Modifying Build Targets
There are several ways to modify your build target once it has been created.

Editing Content

To add additional items, adjust the order, or make any other changes to your build
target, right-click it in the Project Explorer and select Edit Content. The Edit
Content dialog appears, with the build target content displayed in the right
column. Adjust the contents as necessary, then click Finish.

Renaming Build Targets and Virtual Folders

To rename your build target or virtual folder, right-click it in the Project Explorer,
select Rename, and type a new name.

Copying Build Targets

To copy a build target, right-click the build target and select Copy, then right-click
the destination project’s Build Targets node and select Paste (if you are pasting
back into the original project, type a unique name for the new build target).

218

16 Building Projects
16.2 Configuring Managed Builds

This is useful for setting up the same build targets in multiple projects with
different project types (for example, a library for a native application and a
downloadable kernel module will have the same contents but different flags).

NOTE: The build target and its contents are copied, but any overridden attributes
are not.

Removing Content

To remove an item from the build target, right-click it in the Project Explorer and
select Remove from Build Target, or just select it and press Delete.

Depending on the item you selected, the menu item may change to Exclude from
Build Target if the item cannot be deleted (for example, recursive content cannot
be deleted). Pressing Delete also reinstates an item by removing the exclusion.

Excluding Content

To exclude a specific item from the build target that was included recursively,
right-click it in the Project Explorer and select Exclude from Build Target.

You can also use regular expressions to exclude groups of items.

1. Toadd a pattern to the excludes list, right-click a folder in the build target, then
select Properties, then select the Excludes tab.

2. Click Add File to define a pattern to exclude specific files or file types. For
example, type *_test.c to exclude any file named filename_test.c.

You can include additional parts of the path to better define the file you want
to exclude; for example, type lib/standard_test.c to exclude that specific file.

3. Click Add Folder to define a pattern to exclude folders within specific folders.
For example, type */lib/*_test.c to exclude any file located in a folder named
lib and named filename_test.c.

Leveling Attributes

The leveling chain for managed build projects is shown below.

Project > Target > Folder > File

Project > Target > Folder > Subfolder > File
Project > Target > Virtual folder > File
Project > Target > Virtual folder > Folder >
Project > Target > File

219

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

The folder level here is related to folders underneath a build target, as described in
Adding Build Targets to Managed Builds, p.217. The information that can be leveled
allows you to build files on a per build-spec basis.

You can now configure the build target with specific settings for all build tools on
a build target level (for example, you can set compiler options for the source files
related to that build target).

Target Passing and Project Structure

Passing build targets is only supported when passing to VxWorks kernel image
superprojects; it is not possible to pass managed build targets to other managed
build superprojects.

To reference other managed build targets, add them to the contents of a build
target as described in Adding Build Targets to Managed Builds, p.217.

Understanding Managed Build Output

Workbench does not create build redirection directories for each folder, as the

objects might be built differently when building them for specific targets. Instead,
Workbench creates a build-specific redirection directory, which you can configure
on the Build Properties > Build Paths tab, underneath the project root directory.

The redirection directory contains a directory for each build target; inside those are
directories named Debug or NonDebug depending on the debug mode you chose
for the build. Workbench generates the output files according to the structure you
defined in the build target, storing them in the debug mode directory.

In general, the build output is structured like this:

Project directory

Project dir/build specific redirection dir

Project dir/build specific redirection dir/target dir

Project dir/build specific redirection dir/target dir/debug mode dir

Project dir/build specific redirection dir/target dir/debug mode dir/binary output file of the
build target

All objects belonging to the build target are stored in an additional Objects
subfolder:

Project dir/build specific redirection dir/target dir/debug mode dir/Objects/structure of
object files

220

16 Building Projects
16.3 Configuring User-Defined Builds

Example Build Target and Build Output Structure

To understand how the build target structure influences the build output, below is
an example of a project source tree.

projl/

projl/a.c

projl/b.c

projl/folderl/c.c
projl/folderl/d.c

Target1 contains these two items:

a.c
folderl/*.c

Target2 contains these two items:

b.c
d.c

Configuring the project to use specl as the active build spec, naming the
redirection directory specl, and turning debug-mode on produces the output
structure seen below.

projl/specl/Targetl/Debug/Targetl.out
projl/specl/Targetl/Debug/Objects/a.o
projl/specl/Targetl/Debug/Objects/folderl/c.o
projl/specl/Targetl/Debug/Objects/folderl/d.o

projl/specl/Target2/Debug/Target?2.out
projl/specl/Target?2/Debug/Objects/b.o
projl/specl/Target2/Debug/Objects/d.o

16.3 Configuring User-Defined Builds

When you create a User-Defined project, you can configure the build command,
make rules, build target name, and build tool (for more information, see

11. Creating User-Defined Projects). To create the build target, right-click your
project in the Project Explorer and select Build Project or press CTRL+SHIFT+A.

To update the build settings, right-click your project in the Project Explorer and
select Properties, then select Build Properties.

For more information about the settings described on the build properties tabs,
open the build properties dialog and press the help key for your host.

221

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

16.4 Accessing Build Properties

There are two ways to set build properties: in the Workbench preferences, to be
automatically applied to all new projects of a specific type, and manually, on an
individual project, folder, or file basis. The properties displayed will differ
depending on the type of node and the type of project you selected, as well as the
type of build associated with the project.

For details, open the build properties dialog and press the help key for your host.

16.4.1 Workbench Global Build Properties
To access global build properties, select Window > Preferences and choose the
Build Properties node.

This node allows you to select a project type, then set default build properties to be
applied to all new projects of that type.

16.4.2 Project-specific Build Properties

To access build properties from the Project Explorer, right-click a project and select
Properties. In the Properties dialog, select the Build Properties node.

The project-specific Build Properties node has tabs that are practically identical to
the ones in the Workbench preferences, but these settings apply to an existing
project that is selected in the Project Explorer.

NOTE: Build properties for VxWorks Image Projects (VIPs) can differ substantially
from the general properties of other project types.

For details, open the build properties dialog and press the help key for your host,
and consult the VxWorks Kernel Programmer’s Guide for general information about
VIPs.

16.4.3 Folder, File, and Build Target Properties

Folders, files, and build-targets inherit (reference) project build properties where
these are appropriate and applicable. However, these properties can be overridden
at the folder/file level. Inherited properties are displayed in blue typeface,
overridden properties are displayed in black typeface.

222

16 Building Projects
16.5 Build Specs

Overridden settings are maintained in the .wrproject file. This file should therefore
also be version controlled. Note that you can revert to the inherited settings by
clicking the eraser icon next to a field.

16.4.4 Multiple Target Operating Systems and Versions

If you installed Workbench for multiple target operating systems and/or versions,
you can set a default target operating system/version for new projects in the
Workbench Preferences, under General > Target Operating Systems.

For existing projects, you can verify the target operating system (version) by
right-clicking the project in the Project Explorer, then selecting Properties, then
Project Info.

NOTE: In most cases, it will not be possible to successfully migrate a project from
one target operating system or version to another simply by switching the selected
Target Operating System and Version.

In the Project Explorer (and elsewhere), the target operating system and version
are displayed next to the project name by default. You can toggle the display of this
information in the Preferences, General > Appearance > Label Decorations, using
the Project Target Operating Systems checkbox.

If you have multiple versions of the same operating system installed, the New
Project wizard allows you to select which version to use when creating a new
project.

16.5 Build Specs

A build spec is a group of build-related settings that lets you build the same project
for different target architectures and/or different tool chains by simply switching
from one build spec to another. Note that the architecture/tool chain associations
are preconfigured examples; you can also create your own build specs (usually
from copies of existing ones, using the Copy button) for any constellation of the
many configurable properties that make up a spec (see also 17.8 A Build Spec for
New Compilers and Other Tools, p.239).

223

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

It is important to remember that the build spec used when you build must match
the target board; that is, it must match the VxWorks Image project that the
application project will be associated with.

16.5.1 Regenerating Build Spec Cache Information

Pre-generated build specs are now shipped as part of the VxWorks distribution,
rather than being generated after the product is installed.

This significantly speeds up the post-install “Initializing Workspace” process, but
it means that if you change any makefile fragments in the VxWorks installation,
you need to regenerate the cache information before the new settings will be used
for newly-created workspaces.

To regenerate the cache, use the following commands:

% cd installDir/vxworks-6 .x/setup

% vx_postinstall.bat (on Windows) or vx_postinstall.sh (on Linux or Solaris)
To import the changed settings to existing workspaces so you can use them in your
current projects, select Window > Preferences > Wind River > Build > Build
Properties, then select a project type from the drop-down list, then click Restore
Defaults.

16.6 Makefiles

The build system uses the build property settings to generate a self-contained
makefile named Makefile, one per build spec.

By default makefiles are stored in project directories; if you specified an absolute
Redirection Root Directory (for details, open the Build Paths tab and press the
help key for your host), they are stored there, in subdirectories that match the
project directory names.

The generated makefile is based on a template makefile named .wrmakefile that
is copied over at project creation time. If you want to use custom make rules, enter
these in .wrmakefile, not in Makefile, because the file Makefile is regenerated for
each build. The template makefile, .wrmakefile, references the generated macros
in the placeholder %IDE_GENERATED%, so you can add custom rules either

224

16 Building Projects
16.6 Makefiles

before or after this placeholder. You can also add *.makefile files to the project
directory.

For other ways of setting custom rules, see 17.7 User-Defined Build-Targets in the
Project Explorer, p.238.

NOTE: If you configure your project for a remote build, the generated Makefile
contains paths for remote locations rather than local ones. For more information
about remote builds, see 17.9 Developing on Remote Hosts, p.242.

16.6.1 Derived File Build Support

The Yacc Example

Workbench provides a sample project, yacc_example, that includes a makefile
extension showing how you can implement derived file build support. It is based
on the parser-generator yacc (Yet Another Compiler Compiler) which is not
contained in the Workbench or VxWorks installation. To actually do a build of the
example you need to have yacc or a compatible tool (like GNU’s bison) installed
on your system, and you should have extensive knowledge about make.

The makefile, yacc.makefile, demonstrates how yacc can be integrated with the
managed build and contains information on how this works.

1. Create the example project by selecting New > Project > Example > Native
Sample Project > Yacc Demonstration Program.

2. Right-click the yacc_example project folder, then select New > Build Target.
The New Build Target dialog appears.

3. In the Build target name field, type pre_build.

4. From the Build tool drop-down list, select (User-defined), then click Finish to
create the build target.

5. Inthe Project Explorer, right-click pre_build and select Build Target. This will
use the makefile extension yacc.makefile to compile the yacc source file to the
corresponding C and header files. The build output appears in the Build
Console.

225

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

NOTE: It is necessary to execute this build step prior to the project build,
because the files generated by yacc will not be used by the managed build
otherwise. This is due to the fact that the managed build generates the
corresponding makefile before the build is started and all files that are part of
the project at this time are taken into account.

6. When the build is finished, right-click the yacc_example folder and select
Build Project or press CTRL+SHIFT+A.

Additional information on how you can extend the managed build is located in
yacc.makefile. It makes use of the extensions provided in the makefile template
.wrmakefile, which can also be adapted to specific needs.

General Approach

To implement derived file support for your own project, create a project-specific
makefile called name_of_your_choice.makefile. This file will automatically be used
by the managed build and its make-rules will be executed on builds.

It is possible to include multiple *.makefile files in the project, but they are
included in alphabetical order. So if multiple build steps must be done in a specific
order, it is suggested that you use one *.makefile and specify the order of the tools
to be called using appropriate make rules. For example:

1. Execute a lex compiler.
2. Execute a yacc compiler (depending on lex output).
3. Execute a SQL C tool (depending on the yacc output).
Solution: (using the generate_sources make rule)
generate_sources :: do_lex do_yacc do_sql
do_lex:

@...

do_yacc:
@...

do_sqgl:
@...

or

generate_sources :: $(LEX_GENERATED_SOURCES) $ (YACC_GENERATED_SOURCES)
$ (SQL_GENERATED_SOURCES)

Add appropriate rules like those shown in the file yacc.makefile.

226

17

Building: Use Cases

17.1 Introduction 227

17.2 Adding Compiler Flags 228

17.3 Building Applications for Different Boards 230

17.4 Creating Library Build-Targets for Testing and Release 231
17.5 Architecture-Specific Implementation of Functions 234
17.6 Executables that Dynamically Link to Shared Libraries 235
17.7 User-Defined Build-Targets in the Project Explorer 238
17.8 A Build Spec for New Compilers and Other Tools 239

17.9 Developing on Remote Hosts 242

17.1 Introduction

This chapter suggests some of the ways you can go about completing various
build-specific tasks in Wind River Workbench.

227

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

17.2 Adding Compiler Flags

Let us assume:

1. Youare working on a Real-time Process project (referred to in the following as
MyRTP), and you are using the build spec SIMPENTIUMgnu_RTP.

2. You want to suppress compiler warnings, and you are familiar with the GNU
compiler (used by the given build spec) command line.

3. You later have to change the build spec to SIMPENTIUMdiab_RTP; that is,
you have to use the Wind River Compiler tools, with which you are not
familiar, but you still want to suppress compiler warnings.

17.2.1 Add a Compiler Flag by Hand
According to assumption 2, above, you are familiar with the GNU compiler
command line, so you just want to know where to enter the -w option.
1. Inthe Project Explorer, right-click on the MyRTP project and select Properties.
2. In the Properties dialog, select the Build Properties node.
3. In the Build Properties node, select the Build Tools tab.
4. In the Build Tools tab:
— Set the Build tool to C-compiler.

— The Active build spec will, according to assumption 1, above, already be
set to SIMPENTIUMgnu_RTP.

— In the field next to the Tool Flags button, append a space and the -w
option.

The content of the Tool Flags field you have just modified is expanded to
the %ToolFlags% macro you see in the Command field above it. Because
you entered the -w in the Tool Flags field, rather than the Debug or
Non Debug mode fields, warnings will always be suppressed, rather than
only in either Debug or Non Debug mode.

228

17 Building: Use Cases
17.2 Adding Compiler Flags

17.2.2 Add a Compiler Flag with GUI Assistance

Step 1:

Step 2:

According to assumption 3, above, you have to change to the Wind River Compiler
tool chain used by the SIMPENTIUMdiab_RTP build spec, and you are not
familiar with the new command line tool options.

Change the Active Build Spec

1. In the Project Explorer, right-click on the MyRTP project, and select
Set Active Build Spec.

If the SIMPENTIUMdiab_RTP build spec is enabled, you will see it listed in
the dialog that appears. In this case, all you would have to do is select
SIMPENTIUMdiab_RTP from the list and click OK.

However, we shall assume SIMPENTIUMdiab_RTP is not enabled, and
therefore not available in the list.

2. In the Project Explorer, right-click on the MyRTP project, and select
Properties.

3. In the Properties dialog, select the Build Specs node.

4. In the Build Specs node, select the SIMPENTIUMdiab_RTP build spec and
set both the Default build spec and the Active build spec to
SIMPENTIUMdiab_RTP.

Leave the Properties dialog open to complete Step 2, below.

Use the GUI to Add a Compiler Flag
1. Select the Build Tools tab.

2. In the Build Tools tab:
— Set the Build tool to C-Compiler

— The Active build spec will already be set to SIMPENTIUMdiab_RTP
(see 4 above).

- Weassumed you are unfamiliar with the Wind River compiler options so,
to open the Wind River Compiler Options dialog, click the Tool Flags
button.

229

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

— In the Wind River Compiler Options dialog, click your way down the
navigation tree at the left of the dialog and take a look at the available
options.

When you get to the Compilation > Diagnostics node, select the check
box labelled Suppress all compiler warnings.

Notice that -Xsuppress-warnings now appears in the list of command line
options at the right of the dialog.

Click OK.

3. Back in the Build Tools node of the Properties dialog, you will see that the
option you selected now appears in the field next to the Tool Flags button.

The contents of this, the Tool Flags field, is expanded to the %ToolFlags%
macro you see in the Command field above it.

17.3 Building Applications for Different Boards

Generally, but not necessarily, you would have a VxWorks Image project (VIP) for
each architecture you support. If, however, you are developing applications
and/or libraries only, you might not have VIPs.

If you do have VIPs, you will probably only set the build spec once for the
application subprojects to match the VIP they are under. On the other hand, if you
do not have VIPs, you might switch the build spec to build projects for different
architectures.

The target nodes under projects in the Project Explorer display, in blue, the name
of the currently active build spec.

If, for example, you want to build an application for testing on a simulator, and
then build the same project to run on a real board, you would simply switch build
specs as follows:

1. Right-click the project or the target node and, from the context menu, select
Set Active Build Spec.

230

17 Building: Use Cases
17.4 Creating Library Build-Targets for Testing and Release

In the dialog that appears, select the build spec you want to change to and
specify whether or not you want debug information.

When you close the dialog, you will notice that the label of the target node has
changed. If you selected debug mode in the dialog, the build spec name is
suffixed with _DEBUG.

Build the project for the new architecture.

17.4 Creating Library Build-Targets for Testing and Release

Assume you have a library that consists of the files sourcel.c, source2.c, and test.c.
The file test.cimplements a main() function and is required exclusively for testing,
and is not to be included in the release version of the library.

One way to handle this is to use different targets that are built with different tools
as described below.

1.

Create a Real-time Process project to hold all the files mentioned above. Use
this project type, because you will need to use both the Linker and the
Librarian build tools later.

In the project creation wizard, name the project, for example, LIB and click
Finish. You will need to do some tweaking in the Project’s Properties dialog
anyway, so you might as well do everything there.

Right-click the newly created LIB project, and select Properties. In the
Properties dialog, select the Build Properties node, then the Build Targets
tab.

First create a build-target for the release version of your library.

— Change the Build tool to Librarian.

— Select Pass build target to next level.

— C(lear the Use default contents and link order check box.
— Clear the check box next to test.c.

- Click Apply.

Figure 17-1 shows the results.

231

Figure 17-1

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Release Version of the Library

Properties for LIB

Infa Build Properties

Builders

Build Properties Specify all build properties,

External APIs Build Support Build Targets | Build Specs] Build Tools] Build Macros] Build Paths]

Project References

Static Analysis Build karget: |LIB j Mew, ., | Rename... | Copy... |

Target Operating System

—P Euild toal: |Librarian j
Build output passing

4> Iv Pass build target to next level

Contents and link order:

— B [Use default contents and ik order

sourcel.c Reset
soUrcez,c

—_— P Otest.c

Objects received from Subfolders and Subprojects

Select Al

Deselect Al

e Lr

Ok | Cancel

3. Next, create a target for the test version of the library.

232

Click New then enter, for example, LIB_test in the dialog that appears.

Notice that the Build Tool is set to Linker (because the Linker is the
default tool for Real-time Process Projects) and that LIB (your previous
build-target) has been added to the Contents and link order list.

Clear the Use default contents and link order check box.

In the Contents and link order list, select only the check boxes next to LIB
and test.c; clear all other check boxes.

Figure 17-2 shows the results.

17 Building: Use Cases
17.4 Creating Library Build-Targets for Testing and Release

Figure 17-2 Test Version of the Library

! Properties for LIB

Info
Builders
Build Froperties Specify all build properties.
External ARIs
Praoject References
Static Analysis P> Gid target: [LIB_test | mew...

Target Operating Swstem

Build Properties

Euild Support Build Targets | Build Specs] Euild Toals] Build Macras] Build Paths]

| Rename...| Copy...

Build kool:

~

Contents and link order:

— P [Use default contents and link arder

D sourcel.c Reset
D SOUFCEZ,C

— test.c

[Ohiects received Fram Subfolders and Subprojects

— |Hus

[1Ewild Targets received from Subfolders and Subprojects select Al

Deselect Al

REEER

Add...

i

Apply |

oK | Cancel |

After you close the Properties dialog, there will be two new build-target nodes in

the LIB project. If you build LIB_test, then LIB will automatically also be built if it
is out of date.

233

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

17.5 Architecture-Specific Implementation of Functions

Figure 17-3

Table 17-1

You can enable or disable build specs at the project as well as at the folder level.
This allows architecture-specific implementation of functions within same project.

Figure 17-3 shows a simplified project tree with two subprojects, arch 1 and arch2.
Each uses code that is specific to different target architectures. This is how projects
could be set up to build a software target that requires the implementation of a
function that is specific to different target boards, where only the active build spec
in the topmost project has to be changed. The inner build spec relationships are
outlined in Table 17-1.

Simple Project Structure for Architecture-Specific Functions

L™ Project Explorer &3 £ Debug Symbol Browser | — &

= <'==={> =
= bp project
& project.wvxe (PENTIUMdiab_RTP_DEELIG)
= @ archl
) archl.a (PENTIUMdiab_RTP_DEBUG)
\g| archl.c
= @ archz
) archz.a (PPC32diab_RTP_DEBUG)
\g| archz.c
[h] arch.h
|| main.c
£ >

Project Content and Build Spec Configuration of the Structure in Figure 17-3

Directories/Folders Files Enabled Build Specs
/project main.c, arch.h PENTIUMdiab_RTP and
PPC32diab_RTP
/project/archl archl.c PENTIUMdiab_RTP only
Iproject/arch2 arch2.c PPC32diab_RTP only

The function int arch_specific (void) is declared in arch.h and the file arch1.c
implements int arch_specific (void) for PENTIUM (the only build spec enabled
for the arch1 project), while the file arch2.c implements int arch_specific (void) for
PPC32 (the only build spec enabled for the arch2 project).

If the active build spec for project is set to PENTIUMdiab_RTP, the subproject
arch1 will be built, and its objects will be passed up to be linked into the project

234

17 Building: Use Cases
17.6 Executables that Dynamically Link to Shared Libraries

build-target. The arch2 subproject will not be built, and its objects will not be
passed up to be linked into the project build target because the
PENTIUMdiab_RTP build spec is not enabled for arch2.

The same applies if the PPC32diab_RTP is the active build spec for project: the
arch2 subproject will be built, but the arch1 subproject will not.

17.6 Executables that Dynamically Link to Shared Libraries

Step 1:

Step 2:

Only executables produced from RTP projects can dynamically link to shared
libraries. Note that you will need a VxWorks ROMFS File System project to hold
the library binary on the target. The compiled library must be located in the host
and target side directories you specify as described below.

NOTE: For more information on working with RTP projects and shared libraries,
see the cheat sheet available from Help > Cheat Sheets > Wind River Workbench
> Setup a VxWorks RTP with a shared library.

Modify the Real-time Process build-target build properties.

1. Right-click the RTP’s target node and select Properties.
2. In the Properties dialog, select the Build Properties node.

Set up the Linker Build Tool for a dynamic executable and target-side run path.
1. Select the Build Tools tab.

2. In the field next to the Tool Flags button, enter the run path (-rpath) to the
directory that will hold the shared library on your target, for example,
-rpath /romfs/lib (romfs is the default root directory of the ROMFS created by
VxWorks ROMFS File System projects).

3. Click Tool Flags.

235

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Figure 17-4 Build Options for Dynamic Executables

® Properties for MyRTP (MyRTP.vxe)

----- Build Propertie:

Build Properties

Specify build target properties,

| @ Build Support and Specs ||] Build Target || &7 Contert | 4 Build Todls | $ Build Macros || (= Build Paths || = Libraries

Build toal: | Linker w | Mew, .. Rename. .. Copy... Delete. ..

® Wind River Linker Options

Specify flags For: | Tool Flags w

----- Options

Selected option:

${CC_ARCH_SPEC) A

Options

ﬂ Create a dynamic executable

Linker Tool Flags accessible from the Properties: 'ifﬁnﬂ P

- ta specify the run path of a ROMFS, add "-rpath fromfs" :Xn?;liz:d:;ea;‘;;:;

- ko generate a linker map file, add "-mé -@0=<map file=" f
0:90,1,1 E
-rpath
trenfe ik A

|

L K ” Cancel] ps -0

|-r I L L E AL T i

Tool Flags... l ﬂ $(CC_ARCH_SPEC) -¥ansi -xforce-declarations -Xmake-dependency=0xd -f 0x90,1,1 -rpath
Tromfs/lib

Debug mode flags
Debug mode. .. | 7 |

[EIR N

Mon Debug mode...| 7 |

[Restore Defauls] [Apply]

L Ok ” Cancel]

4. In the Linker Options dialog that appears, select
Create a dynamic executable.

Notice that the option, as used on the command line, appears in the
Selected Options list on the right. After you click OK to close the

Linker Options dialog, you will see the option again in the field next to the
Tool Flags button.

236

Step 3:

17 Building: Use Cases
17.6 Executables that Dynamically Link to Shared Libraries

Define Build Macros for the host-side location and library binary.

1.
2.

Select the Build Macros tab.

In the list of Build spec specific settings, select the LIBS macro and click Edit.

In the dialog that appears, add a space after the existing value (-Istlstd),
followed by the basename of the shared library binary you want to link to, for
example, MySharedLibrary:

-1l:MySharedLibrary.so
When you close the dialog you should see:
LIBATH -1lstlstd -1:MySharedLibrary.so

In the list of Build spec specific settings, select the LIBPATH macro and click
Edit.

In the dialog that appears, enter the host-side directory location of the library
binary you want to dynamically link to, for example:

-L../MySharedLibrary/$ (OBJ_DIR)

Note that $(OBJ_DIR) expands to wherever the build output for
MySharedLibrary is generated to. Using $(OBJ_DIR) is generic and therefore
offers the advantage of not having to change the LIBPATH macro if you change
build specs.

Note further that the relative reference assumes the Shared Library project is
located in the same workspace as the Real-time Process project.

Click OK to close the project’s build-target Properties dialog.

The next time you build the project structure, a dynamic executable capable of
run-time linking to the shared library with the file basename and the
directories (host and target side) you specified above will be produced.

NOTE: If your application is not built as described in this section (17.6
Executables that Dynamically Link to Shared Libraries, p.235), you must set the
LD_LIBRARY_PATH environment variable.

Click Edit beside the Environment field, then click Add in the Edit
Environment dialog, then type LD_LIBRARY_PATH in the Name field and the
full path to your shared library file (using forward slashes and excluding the
filename itself) in the Value field. The path must be defined in terms of the file
system as seen on the target.

Click OK. The Edit Environment dialog should contain the new environment
variable; click OK.

237

Wind River Workbench

User’s Guide, 3.0 (VxWorks Version)

17.7 User-Defined Build-Targets in the Project Explorer

In the Project Explorer you can create custom build-targets that reflect rules in
makefiles. This is especially useful if you have User-Defined projects, which are
projects where the build is not managed by Workbench. However, you might also
find this feature useful in other projects.

17.7.1 Custom Build-Targets in User-Defined Projects

Assuming you have two rules in a makefile, clean and all, you can define a custom
build-target for either or both of these rules. To do so:

1.
2.

17.7.2 Custom B

Right-click a project or folder and select New > Build Target.

In the dialog that appears, enter the rule(s) you want to create a target for. If
you want to execute multiple rules, separate each one with a space.

In our example, enter clean all to have both these rules, which must exist in
your makefile(s), executed when you build your new user-defined target.

Click Finish. The new build-target node appears under the project or folder
you selected. The node icon has a superimposed M to identify it as a
user-defined make rule.

To execute the rule(s), right-click the new target node and select Build Target.

uild-Targets in Workbench Managed Projects

First write the make rules you need into the .wrmakefile file in the project
directory.

1.
2.

238

Right-click a project or folder and select New > Build Target.

In the dialog that appears, enter the rule name(s) you created in .wrmakefile.
If you want to execute multiple rules, separate each one with a space.

Set the Build tool to User-defined, click Finish.

The new build target node appears under the project or folder you selected.
The node icon has a superimposed M to identify it as a user-defined rule.

To execute the rule(s), right-click the new target node and select Build Target.

17 Building: Use Cases
17.8 A Build Spec for New Compilers and Other Tools

17.7.3 User Build Arguments

You can use the User Build Arguments field, located in the Build Console toolbar,
to enter and apply one or more arguments (such as a rule or rules, or macro
re-definitions) that change the execution of any existing make rule, or override any
macro, or affect anything else that is understood by make, at every build,
regardless of what is being built.

To enter new arguments:

1. Type one or more arguments into the text field. Use spaces to separate multiple
arguments.

2. In the Project Explorer, select the project you want to build, then build it by
right-clicking the project and selecting Build Project, by clicking the Build all
selected projects toolbar icon, or by pressing CTRL+SHIFT+A.

The build causes the text field’s new arguments to be stored in the User Build
Arguments list. They are appended to (and thus override) the existing
makefile entries. This occurs on the fly at every build.

To use arguments already in the list:
1. Select the appropriate argument or arguments.

2. Click the Run Last Build again icon, or click the down arrow to its right and
select the project to build.

The current setting of the User Build Arguments field applies to the build, that is,
the Run Last Build again action does not remember the setting that applied when
you initially ran it.

The user build arguments functionality does not provide any value, macro, or shell
substitution. For these, set up an intermediate makefile (e.g., Makefile.wr, or
perhaps Makefile.user).

17.8 A Build Spec for New Compilers and Other Tools

The easiest way to define a build spec for a new compiler and other associated
tools (known as a tool chain) is to copy one of the pre-configured build specs of an
existing tool chain and architecture, and modify the copy.

239

Step 1:

Step 2:

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Copy an Existing Build Spec.

1.

Open any application project’s build properties, as described under 16.4
Accessing Build Properties, p.222.

Using an application project has the advantage that these have a fuller range
of generic build tools (Assembler, language-specific Compiler, Librarian, and
Linker).

Select the Build Specs tab and look at the existing specs. The pre-configured
build spec names follow an ArchitectureToolChain_ProjectType convention, for
example, PENTIUMgnu_RTP. This spec is configured for a Pentium target
board, using GNU tools to create a Real-time Process (RTP).

In the Build Specs tab, select the build spec that comes closest to your needs,
at least in terms of target architecture, or a tool chain that you are familiar with,
and click Copy.

You will be warned that build properties need to be saved before proceeding.
Click OK, then enter a name for the copy you are creating in the next dialog
and click OK again.

Still in the Build Specs tab, set the Active build spec to your newly created
copy (this is initially right at the bottom of the list of Available and enabled
build specs). Whatever you set here is also propagated to the Build Tools,
Build Macros, and Build Paths tabs (for details open the build properties
dialog and press the help key for your host).

Each of these tabs has a generic section at the top with

Build spec specific settings below. The generic section will normally be
correct, which is one advantage of copying an existing spec, rather than
creating a new spec from the beginning.

Configure the Build Tool.

The build system uses generic build tools, for example, a C-Compiler. So if you are
adding a new, unsupported C compiler, you will have to configure a build spec
that understands this specific instance of the generic C-Compiler build tool. Using
the compiler as an example, proceed as follows:

1.

240

Select the Build Tools tab and set the Build tool drop-down list to
C-Compiler.

The generic settings regarding Suffixes and Build output generation should
be correct, if not modify accordingly. (If you were adding a compiler for a new
language, foolanguage, you could first create a Copy of a generic C-Compiler

17 Building: Use Cases
17.8 A Build Spec for New Compilers and Other Tools

Build tool and name that, for example, Foo-Compiler, and then configure the
generic settings as required.)

2. In the Build spec specific settings you would configure the options that are
specific to your particular compiler.

— The Active build spec should already be set to your newly created build
spec.

— The Derived suffix refers to the file suffix of the compiler’s output.

— The Command is the command line call to your compiler with all the
options you want to pass.

In theory, you could simply type a hard command in this field. However,
using the predefined macros of the form %MacroName% and macros (your
own and/or pre-defined) that are defined on the Macros tab and
referenced using $(MacroName) generally makes more sense, as does
separating common Tool Flags and Debug mode and Non Debug mode
flags. For more detailed information, open the build properties dialog,
press the help key for your host, and see the Build Tools section.

3. Ifyou are using your own and/or pre-defined using macros in the Command
field, set these in the Build Macros tab.

For more detailed information, open the build properties dialog, press the help
key for your host, and see the Build Macros section.

4. In the Build Paths tab, configure the redirection directories for build output
and set the include search paths (if applicable; that is, if you are configuring a
build spec for a C/C++ compiler) using the Generate and Add buttons.

For more detailed information, open the build properties dialog, press the help
key for your host, and see the Build Paths section.

After you have configured the build spec for the first tool in the chain, for example,
the compiler, go back to the Build Tools tab (see Step 2, above) to configure any
additional tools, such as the Linker or Librarian.

241

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

17.9 Developing on Remote Hosts

The Workbench remote build feature allows you to develop, build, and run your
applications on a local host running Workbench, using a workspace that is located
on a remote host as if it were on a local disk.

Metweark drive

ggggggg Eclipse Workspace | —é— ————————————

. Remote buitihast |

Host running Yorkbench

rlogin } execute build command H
azh
 mm @ o cicio oo oo Bl Project
output of build command i

In the case of a managed build, Workbench generates the makefiles on the local
machine running Workbench using a path mapping of the workspace root
location, so that the generated makefiles will be correctly dumped for a build that
is executed on the remote machine. When launching the build, a network
connection (rlogin or SSH) is established to the build host, and the actual build
command is executed there by using an intermediate script to allow you to set up
the needed environment for the build process.

17.9.1 General Requirements

» The workspace root directory has to be accessible from both machines.

» Only Eclipse projects located underneath the workspace root can be remotely
built. In other words, linked resources are not supported for files outside the

workspace.

* Anrlogin or SSH remote connection to the build machine must be possible.

242

17 Building: Use Cases
17.9 Developing on Remote Hosts

17.9.2 Remote Build Scenarios

Local Windows, Remote UNIX:

The workspace root directory should be located on the remote UNIX host and
mapped to a specific network drive on Windows. It may also be possible to locate
the root directory on the Windows machine, but then there is the need to mount
the Windows disk on the build host. This may lead to problems regarding
permissions and performance, so a mapping of the workspace root-directory is
definitely needed.

Local UNIX, Remote UNIX:

As it is possible to access the workspace root directory on both machines with the
equivalent path (automount) it may be possible to skip the path mapping.

Local UNIX, Remote Windows:

This scenario is not supported, as you would need to execute the build command
on Windows from a UNIX host.

17.9.3 Setting Up a Remote Environment

To set up your environment on the remote machine prior to a build or run, use the
Edit remote command script button to include additional commands. It will open
the file workspaceDir/.metadata/.plugins/com.windriver.ide.core/remote_cmd.sh.

For example, to extend the path before a build, add the highlighted lines to the
default file:

#!/bin/sh

WORKSPACE_ROOT="%WorkspaceRoot%"

export WORKSPACE_ROOT

DISPLAY=%Display$%

export DISPLAY

PATH=/MyTools/gmake_special/bin:$PATH
export PATH

cd $SWORKSPACE_ROOT

243

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Cd |l$1|l
shift 1

exec "s@"

You can add any commands you need, but all commands must be in sh shell style.

17.9.4 Building Projects Remotely

1. Switch to a workspace that contains existing projects by selecting File >
Switch Workspace. Type the path to the appropriate workspace, or click
Browse and navigate to it.

2. In the Project Explorer, right-click a project and select Build Options >
Remote Connection. The Remote Connections dialog appears.

3. Click Add and type a descriptive name for this remote connection. Click OK.

4. Inthe Connection Settings fields, add the following information to create a
remote connection:

Connection Type
Select Rlogin or SSH.

Hostname
The name of the build host (can also be an IP address).

Username
The username used to establish the connection (the remote user may differ
from the local user).

Remote Workspace Location
The root directory of the workspace as seen on the remote host.

NOTE: This field must contain the absolute path to the directory; environment
variables are not supported.

Display (XServer)
IP address of the machine where the output should be displayed.

By clicking the Advanced button you can also access these fields:

Password request string
A string that will be recognized as a password request to prompt you for
the password. If you selected SSH, this field is not available.

244

17 Building: Use Cases
17.9 Developing on Remote Hosts

Remember Password during Workbench sessions
A switch to specify whether the password entered should be remembered
during the current session. This is useful during a lengthy build /run
session.

5. Click Connect to connect immediately. Remote connection settings are stored,
and are specific to this workspace. They are not accessible from any other
workspace.

6. The build is executed on the remote host, with the build output listed in the
standard Workbench Build Console. The XServer (IP address listed in the
Display field) is used whenever any type of X application is started, either
during builds or runs.

7. Toreturn to local development, select Local Host from the list of connections,
then click Connect.

17.9.5 Running Applications Remotely

This section provides information about running native applications only, as
running VxWorks projects remotely is handled differently.

Running native applications remotely is quite similar to running applications
locally: a Native Application launch configuration must be created that defines
the executable to be run, as well as remote execution settings for the launch. On the

Remote settings tab are:

Remote Program
Enter the command that is used to launch the application. This may be useful
for command-line applications that could then be launched within an xterm,
for instance.

Remote Working Directory
This setting is optional, but if a remote working directory is given, it overrides
the entry in the Working Directory field of the Arguments tab.

For remote runs, a new connection similar to the active connection will be
established to allow control of Eclipse process handling, as the new remote process
will be shown in the Debug view. The Remember password during Workbench
sessions feature is very useful here.

Command-line application’s output and input is redirected to the standard Eclipse
console unless the application is started within an external process that creates a
new window (such as xterm). The default for remote execution is a remote

245

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

command like xterm -e %Application%, therefore a local XServer (like Exceed or
Cygwin X) must be set up and running.

For information about creating launch configurations, see 21. Launching Programs.

17.9.6 Rlogin Connection Description

The rlogin connection used in the Workbench remote build makes use of the
standard rlogin protocol and ports. It establishes a connection on port 513 on the
remote host, and the local port used must be in the range of 512 to 1023 per rlogin
protocol convention.

On Windows the rlogin connection is implemented directly from within
Workbench, so you do not need an existing rlogin client. UNIX implementation is
different, because for security reasons the local port (range: 512 to 1023) is
restricted to root access, which cannot be granted from within Workbench.
Therefore an external rlogin process is spawned using the command-line:

rlogin -1 username hostname

rlogin on UNIX platforms makes use of setUID root to ensure that the needed root
privileges are available.

The standard rlogin protocol doesn't support access to stderr of the remote
connection, to all output is treated as stdout. Coloring in the Build Console of
Workbench for stderr is therefore not available.

NOTE: On Linux the rlogin client and server daemon can be switched off by
default. So if the machine is used as a Workbench (remote build client) host, the
rlogin executable must be enabled (or built) and if the machine is acting as build
server (remote build host) the rlogin daemon must be enabled. Details may be
found in the system documentation of the host.

17.9.7 SSH Connection Description
The supported protocol is SSH2, and it establishes a connection on port 22 (the
default SSH port).

Strict host key checking is disabled. Workbench does not use a known hosts file, so
host key information is stored in memory, and you are not prompted if the host
key changes.

Only password authentication is supported.

246

PART IV
Target Management

18 Connecting to Targetscccccevvimmrriniinnns 249
19 New Target Server Connections 259
20 New VxWorks Simulator Connections 273

247

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

248

18

Connecting to Targets

18.1 Introduction 249

18.2 The Remote Systems View 250
18.3 Defining a New Connection 250
18.4 Establishing a Connection 251
18.5 The Registry 255

18.1 Introduction

A target connection manages communication between the Workbench host tools
and the target system. A connection must be configured and established before
host tools can interact with the target.

All host-side connection configuration work and connection-related activity is
done in the Remote Systems view. Connections are registered and made accessible
to users by the Wind River Registry.

This chapter describes ways to configure, start, and manage target connections in
the Remote Systems view. For detailed information about the Target Server and
Registry, see the tgtsvr and wtxregd API reference entries (see Help > Help
Contents > Wind River Documentation > References > Host Tools > Wind River
Host Tools API Reference).

249

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

18.2 The Remote Systems View

A connection to a target (such as a remote system, a target server, or a VxWorks
simulator) must be defined and established before tools can communicate with the
target system.

All host-side connection configuration work and connection-related activity is
done in the Remote Systems view. The target side (required for target server and
VxWorks simulator connections) is configured in the Kernel Configuration Editor
(see 5.5.2 Using the Kernel Configuration Editor, p.99).

By default, the Remote Systems view is on a tab in the bottom-left of corner of
Workbench. It is available in the Application Development perspective and in the
Device Debug perspective. If the view is not visible, choose Window > Show
View > Remote Systems.

The most import tasks in the Remote Systems view are:

» defining new connections to local and remote targets
= connecting to targets
= disconnecting from targets

Once you have connected to a target, more commands are enabled on the
right-click context menu (see also 21. Launching Programs).

18.3 Defining a New Connection
All connection types are defined from the Remote Systems view (see 18.2 The
Remote Systems View, p.250).

To open the New Connection wizard, use the appropriate toolbar icon or
right-click in the Remote Systems view and select New > Connection.

The first thing the New Connection wizard asks you to do is to select the type of
connection you want to define, either a General remote system connection such as
FTP or SSH or a VxWorks 6.x connection such as to the VxWorks simulator or to a
VxWorks target server.

» For General connections, see Help > Help Contents > RSE User Guide >
Getting Started > Using Remote Connections.

» For VxWorks connections see the following sections:

250

18 Connecting to Targets
18.4 Establishing a Connection

* Wind River VxWorks Simulator Connection

See 20.2 Defining a New Wind River VxWorks Simulator Connection, p.273.
* Wind River Target Server Connection

See 19.2 Defining a New Target Server Connection, p.259.

Properties you set using the New Connection wizard can be modified later by
right-clicking the connection in the Remote Systems view and choosing
Properties. In most cases, you have to disconnect and reconnect for the changes to
take effect.

18.4 Establishing a Connection

Once you have created your application projects and defined connections, you will
want to run, test, and debug the projects on your target or simulator. To do this,
you first need to connect to the target.

18.4.1 Assumptions

* You are using either the VxWorks simulator or the on-chip debugging
instruction set simulator (Wind River ISS), or you are using a target board and
your hardware connections are set up and running.

» Ifyouare using a target board (not a simulator), you have correctly configured
your FTP service as described in 3. Setting Up Your Development Environment
and in the Wind River ICE SX for Wind River Workbench Hardware Reference and
Wind River Probe for Wind River Workbench Hardware Reference.

* You have defined one or more host-target connections as described in 19. New
Target Server Connections and 20. New VxWorks Simulator Connections.

18.4.2 Connecting to the Target

The first step in running an application on the target is to establish a connection to
that target.

251

Table 18-1

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Connect to and disconnect from targets in the Remote Systems view by selecting a
connection node and then using the appropriate toolbar icon, or by right-clicking
and selecting Connect or Disconnect.

Once the connection has been established:

» The Kernel Shell appears if the connection is to a simulator (see 18.4.5 The
Kernel Shell, p.254, for more information).

* On Windows, a registry icon appears in the Windows system tray (the area at
the right of the Windows taskbar) to indicate the registry is running (see also
18.5 The Registry, p.255).

= Inthe Remote Systems view:

Ablue icon is superimposed on the top-left corner of the connection node,
and new nodes appear under the connection node.

To display the state of the connection in the view (whether it is connected,
or the target server is running), select Window > Preferences > Wind
River > Target Management > Label Decorations, then select Show
status on connections and cores. By default, this information appears in
the bottom border of the Workbench window.

A subnode appears under the connection node, labelled with the
connection type and the kernel. The subnode’s right-click context menu
offers a subset of the connection node’s context menu (restricted to the
most commonly used commands) as well as the Kernel Objects
command.

The Kernel Objects command populates and opens the Kernel Objects
tab (by defaultlocated behind the Remote Systems view in the Application
Development perspective).

A number of additional subnodes appear. These are described in
Table 18-1.

VxWorks Connections

Node

Description

o Kernel Tasks When the connection is initially established, you see

the VxWorks tasks. When you download and run
DKMs, they will appear as additional subnodes under
this node.

252

18 Connecting to Targets
18.4 Establishing a Connection

Table 18-1 VxWorks Connections (cont'd)

Node Description

@f# Real Time Processes When you run RTPs, they will appear as subnodes

under this node.

Wt VxWorks location The kernel node and its host location. A superimposed

red S at the top-right of the icon indicates that symbol
information has been downloaded.

18.4.3 Downloading an Output File

Once you have established the target connection, you can download an output file
in several ways.

Download from the Project Explorer

1.

Right-click your output file in the Project Explorer, then select Download. The
Download dialog appears.

The output file to download and the target connection are already filled in;
click Advanced Options for more download options.

Click OK to download your file to the target. The symbol file appears under
the target connection in the Remote Systems view.

Download from the Remote Systems View

1.

Right-click your target connection, then select Download. The Download
dialog appears, but the output file to download is not filled in.

NOTE: If you have already used the Download dialog in this session, the
drop-down list contains the previously-downloaded output file.

Select an output file from the Download: drop-down list, or click Browse and
navigate to the output file you want to download.

If you have more than one active target connection, you can select one of them
from the to: drop-down list. If only one connection is active, it will
automatically appear in the dialog.

253

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

4. Click Advanced Options for more download options.

5. Click OK to download your file to the target. The symbol file appears under
the target connection in the Remote Systems view.

Download Using a Launch Configuration

You can start a specific target connect and download a designated output file with
one click by creating a launch configuration for that combination.

For more information on creating launch configurations, see 21. Launching
Programs.

18.4.4 Specifying an Object File

If you are loading object code on the target using a custom loader, or associating
symbols with already loaded modules, you can specify the object file that you want
the debugger to use.

1. Right-click a container in the Remote Systems view, then select Load/Add
Symbols to Debug Server. A dialog appears with your connection and core
already filled in.

2. Toadd a new object file to the Symbol Files and Order list, click Add.
Navigate to the file, then click Open.

3. Inthe Symbol Load Options section, select Specify module load offset or
Specify section start addresses.

4. When you are finished, click OK.

For more information about the fields in this dialog, click in the Remote Systems
view, then press the help key for your host.

18.4.5 The Kernel Shell

The Kernel Shell! that appears when you establish a connection displays output
generated by applications running on the kernel.

1. In versions of VxWorks prior to 6.0, the Kernel Shell was called the Target Shell. The new
name reflects the fact that the target-resident shell runs in the kernel and not in a process.

254

18 Connecting to Targets
18.5 The Registry

If you are using a VxWorks simulator connection, shell components are included
in the kernel by default and the Kernel Shell also provides a prompt and accepts
input like the Host Shell. If you are using a real board connection, the kernel shell
does not provide an input prompt by default; you can, however, include the
necessary components in the VxWorks kernel (see 5.5 Configuring Kernel
Components, p.98 as well as the VxWorks Kernel Programmer’s Guide and the
VxWorks Application Programmer’s Guide).

For the most part, the Kernel Shell works the same as the Host Shell. For detailed
information about the Host Shell see the Wind River Workbench Host Shell User’s
Guide. For information about the differences between the Host and Kernel shells,
see the VxWorks API Reference entries for dbgLib, shellLib, and usrLib.

18.5 The Registry

The Wind River Registry is a database of target servers, boards, ports, and other
items used by Workbench to communicate with targets. For details about the
registry, see the wixregd and wtxreg reference entries.

If Workbench finds an installed VxWorks platform on start-up, it creates a default
VxWorks simulator connection. Before any target connections have been defined,
the default registry—which runs on the local host—appears as a single node in the
Remote Systems view. (Under Linux, the default registry is a target-server
connection for Linux user mode.) Additional registries can be established on
remote hosts.

Registries serve a number of purposes:

» The registry stores target connection configuration data. Once you have
defined a connection, this information is persistently stored across sessions
and is accessible from other computers.

You can also share connection configuration data that is stored in the registry.
This allows easy access to targets that have already been defined by other team
members.

NOTE: Having connection configuration data does not yet mean that the target
is actually connected.

255

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

= The registry keeps track of the currently running target servers and
administrates access to them.

= Workbench needs the registry to detect and launch target servers.

If Workbench does not detect a running default registry at start-up, it launches
one; alternately, if it does detect a running registry, such as an existing
Tornado registry, it will not start a new one (the Tornado and Workbench
registries cannot run at the same time).

After quitting Workbench, the registry is kept running in case it is needed by
other tools.

18.5.1 Launching the Registry

To launch the default registry, open the Target menu or right-click in the Remote
Systems view and select Launch Default Registry.

NOTE: These menu items are only available if the registry is not running, and the
default registry host is identical to the local host.

The registry stores its internal data in the file installDir/.wind/wtxregd.hostname. If
this file is not writable on launch, the registry attempts to write to
Ivar/tmp/wtxregd.hostname instead. If this file is also not writable, the registry
cannot start and an error message appears.

18.5.2 Remote Registries

If you have multiple target boards being used by multiple users, it makes sense to
maintain connection data in a central place (the remote registry) that is accessible
to everybody on the team. This saves everyone from having to remember
communications parameters such as IP addresses for every board that they might
need to use.

Creating a Remote Registry

You might want to create a new master registry on a networked remote host that is
accessible to everybody. To do so:

1. Workbench needs to be installed and the registry needs to be running on the
remote host. The easiest way to launch the registry is to start and quit

256

18 Connecting to Targets
18.5 The Registry

Workbench. However, you can also launch the wtxregd program from the
command line. (For more information, see the Wind River Host Tools API
Reference entry for wtxregd).

2. Right-click in the Remote Systems view, then select New > Remote Registry
from the context menu.

3. Inthe dialog that appears, enter either the host name or the IP address of the
remote host.

Workbench immediately attempts to connect to the remote registry. If the host is
invalid, or if no registry is identified on the remote host, this information is
displayed in the Remote Systems view.

For more information about editing object path mappings to support a remote
registry, see Path Mappings for Working with Remote Hosts, p.265.

18.5.3 Shutting Down the Registry

Because other tools use the registry, it is not automatically shut down when you
quit Workbench. However, there are times when you should manually shut down
the registry: when switching between the Tornado and the Workbench registries
(you cannot run both at the same time), and when updating or uninstalling
Workbench (or other products that use the registry) so that the new version starts
with a fresh database.

To shut down the registry:

* On Windows, right-click the registry icon in the system tray, and choose
Shutdown.

* On Linux and Solaris, execute wtxregd stop, or manually kill the wtxregd
process.

If you want to migrate your existing registry database and all of your existing
connection configurations to the new version, make a backup of the registry data
file installDir/. wind/wtxregd.hostname and copy it to the corresponding new
product installation location.

18.5.4 Changing the Default Registry

Normally, the default registry runs on the local computer. You can change this if
you want to force a default remote registry (see 18.5.2 Remote Registries, p.256).

257

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

To do this on Linux and Solaris, modify the WIND_REGISTRY environment
variable.

To do this on Windows, follow these steps:

1. Launch a command shell (cmd.exe) and navigate to your Workbench
installation directory.

2. At the command prompt, type the following commands:

> wrenv -p workbench-3.0
> wtxtcl

> package require Wind

> Wind::registry new default registry host
> exit

3. To verify that the registry host was changed correctly, type Wind::registry
without parameters to see the name of the current default registry host.

258

19

New Target Server
Connections

19.1 Introduction 259
19.2 Defining a New Target Server Connection 259
19.3 Kernel Configuration 269

19.1 Introduction

Target Server connections are defined in the Remote Systems view (see
18. Connecting to Targets).

19.2 Defining a New Target Server Connection

To open the New Connection wizard, right-click in the Remote Systems view, then
select New > Connection.

259

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

19.2.1 Wind River Target Server

On the initial page of the New Connection wizard, select Wind River Target
Server Connection for VxWorks and click Next.

19.2.2 Target Server Connection Page

Back End Settings

Back end
The Back end settings specify how a target server will communicate with a
target. Table 19-1 provides descriptions of the available options in the
Back end drop-down list.

Table 19-1 Communications Back Ends for Target Server

Back End Description

wdbrpc WDB RPC. This is the default. It supports any kind of IP connection
(for example, Ethernet). Polled-mode Ethernet drivers are
available for most BSPs to support system-mode debugging for
this type of connection.

wdbpipe WDB Pipe. The back end for VxWorks target simulators.

wdbserial WDB Serial. For serial hardware connections; does not require
SLIP on the host system. If you select this option, also choose a
Host serial device (port) and Serial device speed (bits per second).

wdbproxy WDB Proxy. The back end for UDP, TCP, and TIPC connections.

A CAUTION: The target server must be configured with the same communication
back end as the one built into the kernel image and used by the target agent. The
standard back end options are described in Table 19-1; the compatible kernel
components are listed in Table 19-4.

260

19 New Target Server Connections
19.2 Defining a New Target Server Connection

A CAUTION: Do not choose the TIPC WDB Proxy connection type unless you have
included the TIPC network stack (INCLUDE_TIPC_ONLY) component in your
VxWorks Image Project.

For more information about finding components to include in your VxWorks
Image Project, open the Kernel Configuration Editor and press the help key for
your host.

For more information about TIPC, see Wind River TIPC for VxWorks 6 Programmer’s
Guide: Building VxWorks to Include Wind River TIPC.

CPU
Workbench can correctly identify the target CPU. In rare cases, a close variant
might be misidentified, so you can manually set the CPU here.

Name/IP address
The Name/IP Address field specifies the network name or the IP address of
the target hardware for networked targets. If you are using a serial port, enter
either COM1 or COM2.

Kernel Image and Symbols

The Kernel Image and Symbols properties relate to a copy of the target kernel
that resides on the host.

File path from target (if available)
Select this option to search for an image of the software running on the target
using the target path.

File
If the run-time image file is not in the same location on the host that is
configured into the target (or if host and target have different views of the file
system), select this option and use the adjacent text box to specify the host
location of the kernel image.

For example, if you are using a target programmed with a vxWorks_rom.hex,
vxWorks_romCompressed.hex, or any other on-board VxWorks image, you
must use this option to identify the kernel file location; otherwise the target
server will not be able to identify the target symbols.

261

Wind River Workbench

User’s Guide, 3.0 (VxWorks Version)

Advanced Target Server Options

Please see the tgtsvr reference entry in the online API reference and the VxWorks
Programmer’s Guide for more detailed information about target server options in
the Remote Systems view, as well as on additional available options.

Options

These options are passed to the tgtsvr program on the command line. Enter these
options manually, or use the Edit button for GUI-assisted editing.

Advanced Target Server Options Dialog

The properties in the Advanced Target Server Options dialog that you open with
Edit on the main wizard page are subdivided into tabbed groups: Common,
Memory, Logging, and Symbols.

The

262

Common Tab
Target Server File System

The Target Server File System (TSFS) is a full-featured VxWorks file system
that provides target access to files located on the host system. It is used by the
Wind River System Viewer. It also provides the most convenient way to boot
a target over a serial connection. Although somewhat slow, it is simple and
easy to use.

A target can access files on the host it is booted from, if booted via FTP or rsh.
However, if the target is booted from a remote host, you can use the TSFS as a
simple method to access files on the local host.

The TSFS is also the default method used by the System Viewer for uploading
event data from the target. The TSFS should therefore be enabled and writable
(default) when using the System Viewer.

CAUTION: To use the TSFS, you must include the

WDB target server file system component when you build the kernel image.
See 19.3 Kernel Configuration, p.269, below, and the VxWorks Kernel Application
Programmer’s Guide for more details.

Root

If the Enable File System check box is selected, you have to identify the root
of the host file system that will be made visible to target processes using the
TSFS. By default, this is the Workspace root directory. If you use the TSFES for

19 New Target Server Connections
19.2 Defining a New Target Server Connection

booting a target, it is recommended that you use the default root directory. If
you do not use TSFS, you must use the Kernel Image and Symbols
configuration options to specify the location of the kernel image (see Kernel
Image and Symbols, p.261).

Make Target Server File System writable

To use the Wind River System Viewer, you must select this check box to allow
uploading of event data from the target. Because this also allows other users

to access your host file system, you may wish to set the TSFS option for your
target server to read-only when you are not using the System Viewer.

Timeout Options

Specify allowable spawn time (in seconds) for kernel tasks and RTPs, time (in
seconds) to wait for a response from the agent running on the target system,
how often to retry, and at what intervals.

The Memory Tab
Memory Cache Size

To avoid excessive data-transfer transactions with the target, the target server
maintains a cache on the host system. By default, this cache can grow up to a
size of 1 MB.

A larger maximum cache size may be desirable if the memory pool used by
host tools on the target is large, because transactions on memory outside the
cache are far slower.

The Logging Tab

Options on the Logging tab are used mainly for troubleshooting by Customer
Support.

A maximum size can be specified for each enabled log file. Files are rewritten
from the beginning when the maximum size is reached. If a file exists, it is
deleted when the target server restarts (for example, after a reboot).

For the WTX (Wind River Tool Exchange) log file, you can specify a filter, a
regular expression that limits the type of information logged. In the absence of
a filter, the log captures all WIX communication between host and target. Use
this option in consultation with Customer Support.

263

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

The Symbols Tab

Options on the Symbols tab allow you to determine whether to load global
symbols (the default), both global and local symbols, or no symbols to the
target server.

NOTE: Loading no symbols to the target server may cause the the connection
sequence to fail.

19.2.3 Object Path Mappings Page

Object Path Mappings have two functions:

» To allow the debugger to find symbol files for processes created on the target
by creating a correspondence between a path on the target and the appropriate
path on the host.

» To calculate target paths for processes that you want to launch by browsing to
them with a host file-system browser.

By default, the debug server attempts to load all of a module’s symbols each time
a module is loaded. In the rare cases where you want to download a module or
start a process without loading the symbol file, uncheck Load module symbols to
debug server automatically if possible.

The simplest way to create Object Path Mappings for a module that does not have
symbols yet is to download the output file (or run the executable) manually. In the
Remote Systems view, right-click the file or executable and select Load/Add
Symbols to Debug Server. From the Load Symbols dialog, select Create path
mappings for the module based on the selected symbol file and click OK. Object
path mappings are created automatically, so that after the next
disconnect/reconnect sequence the symbols will be found.

Pathname Prefix Mappings
This maps target path prefixes to host paths. Always use full host paths, not
relative paths.

For example, mapping /tgtsvr/ to C:\workspace\ tells the debugger that files
accessible under /tgtsvr/ on the target can be found under C:\workspace\ on the
host.

264

19 New Target Server Connections
19.2 Defining a New Target Server Connection

If you launch the process host:/ust/hello.vxe on your target, Workbench needs to
know what host:/ corresponds to; in other words, where it can find the hello.vxe
ELF file in the host file system. With an object path mapping of host:/ to
C:\WindRiver\ Workbench knows that the host path to the file is
C:\WindRiver\usr\hello.vxe.

In most cases Workbench provides correct defaults. If necessary, click Add to add
new mappings, or select existing mappings and click Edit to modify existing
mappings. The supplied default mappings are not editable.

To disable any listed object path mapping, including default mappings, unselect
the checkbox to the left of that mapping. To re-enable it, select the checkbox again.

You can export your object path mappings to XML by clicking Export and
providing a descriptive filename. Likewise you can import mappings by clicking
Import and selecting an appropriate XML file.

Reverse Mapping

Sometimes host paths must be mapped to target paths. For example, if you want
to browse to the process C:\WindRiver\usr\hello.vxe and launch it on the target,
Workbench needs to know that the correct target path for this process is
host:/ust/hello.vxe.

Path Mappings for Working with Remote Hosts

You may need to edit object path mappings if your target boots from a remote host
or if your target server runs on a remote host.

Running the target server on a remote host (using a remote registry; see
18.5.2 Remote Registries, p.256 for details) allows you to:

» Access targets using a serial line wdb connection even if the targets are
physically connected to a remote host.

= Have different IP subnets for the targets in a lab and the client running
Workbench, with the target server being the intermediary to translate between
the separate subnets.

In this discussion, the target is the VxWorks target, the host is the remote registry
host that the target server is running on, and the client is the system on which
Workbench is running.

Prerequisites

To allow Workbench to access targets attached to a remote host, two prerequisites
must be met:

265

Table 19-2

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

1. The VxWorks image must be visible to the target (for booting), the host (for the
target server), and the client (for the debugger and the host shell).

2. A file system must be shared between the target and client for running RTPs.

Example: Adding New Path Mappings

When the target server is running on a host that can see the same (networked) file
system that the client can, you do not need to adjust your object path mappings.
The remote target server connections can be used exactly like local connections.

However, when the remote host and the client see different file systems, you need
to create new path mappings to tell the debugger where it can find the files seen
by the target server. In this case, the path to the kernel image is entered as seen on
the remote host; path mappings must be added to tell the debugger where these
paths are on the client.

When there are multiple clients with different file systems, you must add path
mappings for each client. The debugger tries them in the order in which they

appear.
For example, consider a scenario with two clients (one on Windows, one on UNIX)
accessing a common target server host. Table 19-2 shows how each client is set up;

this is the information you would have to work with when figuring out the object
path mappings for this scenario.

Clients Connected to a Common Target Server Host

Station Setup Description

target t100 Booted using rsh from moon:/exportl/images/t100/vxWorks
TSES enabled

host moon Kernel path from target, on /exportl/images/t100/vxWorks
TSFS enabled, with rootdir /Net/shares/tsfs/t100
Tgtsvr command line: tgtsvr -R /Net/shares/tsfs/t100 -RW t100

client c-unix File system shared with host moon
Kernel seen on /Net/moon/exportl/images/t100/vxWorks
TSFS path same as on moon

client c-win Kernel seen on \\moon\exportl\images\t100\vxWorks
TSFS seen on L:\tsfs\t100

Based on this information, the host and target path mappings you would enter into
the Pathname Prefix Mappings fields are shown in Table 19-3.

266

19 New Target Server Connections
19.2 Defining a New Target Server Connection

Table 19-3 Host and Target Paths Converted to Object Path Mappings

Target Path Host Path Comment

moon:/exportl /Net/moon/exportl Access to the boot file system for UNIX
clients. Allows Workbench to
reverse-map for running RTPs, so when
running the RTP
/Net/moon/exportl/myrtp.vxe, the target
path will be computed as
moon:/exportl/myrtp.vxe.

moon:/exportl \\moon\exportl Now the same for Windows clients.

lexportl /Net/moon/exportl Allows Workbench to find the kernel
path: sent by the target server as
lexportl/..., this can be forward-mapped
to the common UNIX file system for

clients.®
lexportl \\moon\exportl Now the same for Windows clients.
Itgtsvr /Net/shares/tsfs/t100 Allow reverse-mapping of the tgtsvr file
system for UNIX hosts.
[tgtsvr L:\tsfs\t100 Now the same for Windows hosts.

a. This mapping may be used only for forward-mapping the kernel image, so it must be
listed after the previous mappings, which are used for reverse-mapping as well.

If you do not run RTPs, only the mappings for the kernel image are required
(shown in the third and fourth rows of Table 19-3). None of the other mappings are
necessary, since a file system is not needed for debugging kernel modules.

Basename Mappings

Use square brackets to enclose each mapping of target file basenames (left element)
to host file basenames (right element), separated by a semi-colon (;). Mapping pairs
(in square brackets) are separated by commas. You can use an asterisk (*) as a
wildcard.

For example, if debug versions of files are identified by the extension *.unstripped,
the mapping [*;*.unstripped] will ensure that the debugger loads
yourApp.vxe.unstripped when yourApp.vxe is launched on the target.

267

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

19.2.4 Target State Refresh Page

Since retrieving status information from the target leads to considerable target
traffic, this page allows you to configure how often and under what conditions the
information displayed in the Remote Systems view is refreshed.

These settings can be changed later by right-clicking the target connection and
selecting Refresh Properties.

Available CPU(s) on Target Board

Workbench can correctly identify the target CPU. In rare cases, a close variant
might be misidentified, so you can manually set the CPU here.

Initial Target State Query and Settings

Specify whether Workbench should query the target on connect, on stopped
events, and/or on running events. You can select all options if you like.

Target State Refresh Settings

Specify whether Workbench should refresh the target state only when you
manually choose to do so, or if (and how often) the display should be refreshed
automatically.

Listen to execution context life-cycle events

Specify whether Workbench should listen for life-cycle events or not. If you want
newly created execution contexts (such as tasks or processes) to be automatically
added or removed from the Remote Systems view tree, select the Listen for
execution context life-cycle events checkbox.

Your target may not provide information on life-cycle events for execution
contexts. If it does not, selecting this checkbox has no effect. However, the
Workbench backend has no way of detecting whether your target provides
life-cycle events or not, so Workbench does not warn you that they are not
provided. The only way to tell whether these events are provided is to select the
checkbox and look for the events in the Remote Systems view tree.

268

19 New Target Server Connections
19.3 Kernel Configuration

NOTE: To prevent excessive delay in the update of the Remote Systems display, do
not use this option when there are more than 100 contexts on the target.

19.2.5 Connection Summary Page

This page proposes a unique Connection name, which you can modify, and
displays a Summary of name and path mappings for review. To modify these
mappings, click Back.

Shared
This option, which is available only for certain connection types, serves a dual
purpose:

» When you define a target connection configuration, this connection is
normally visible only for your user ID. If you define it as Shared, other
users can also see the configuration in your registry, provided that they
connect to your registry (by adding it as a remote registry on their
computer; see 18.5.2 Remote Registries, p.256).

* Normally, when you terminate a target connection, the target server (and
simulator) are killed because they are no longer needed. In a connection
that is flagged as Shared, however, they are left running so that other
users can connect to them. In other words, you can flag a connection as
shared if you want to keep the target server (and simulator) running after
you disconnect or exit Workbench.

Immediately connect to target if possible
If you do not want to connect to the target immediately, you can connect to the
target later using one of the ways described in 23. Debugging Projects. If you
have applications ready to run using the connection(s) you just created, please
see 21. Launching Programs.

19.3 Kernel Configuration

Once you have defined a Target Server (or VxWorks Simulator) connection, you
may have to configure the kernel communication. The default configuration,
however, will normally work fine for getting started.

269

Table 19-4

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

The target server and the simulator communicate with the target system through
the target agent. To communicate with the target agent, the target server uses a
communication back end that has to be configured for the same communication
protocol and transport layer as the target agent on the kernel.

When you create Target Server or VxWorks Simulator connections, you define
host back end communication in the Kernel Configuration Editor. For more
information about this topic, see 5.5.2 Using the Kernel Configuration Editor, p.99.

Table 19-4 shows an overview of target server back ends and the kernel
components that provide the required target-agent communication interface.

Communications Back Ends for Target Server and Compatible Kernel Components

Back End Compatible Kernel Component

wdbrpc WDB END driver connection or WDB network connection
wdbpipe WDB simulator pipe connection

wdbserial WDB serial connection

wdbproxy WDB network connection (for UDP/TCP) or
TIPC network stack (for TIPC)

Figure 19-1 shows where to find these kernel components in the Kernel
Configuration Editor.

270

Figure 19-1

(R

Components
Component Configuration

Description
= @ level t tool comp ts {default)
1] a' Compiler support routines
1] @ System Yiewer components
1] @ WDEB Agent Proxy components
= @ WDB agent components {default)
+ @ WDB agent services {default)
= a' select WDB connection {default)
(7 WDEB END driver connection
(J WDB TIPC connection
(7 WDB network cannection

19 New Target Server Connections

19.3 Kernel Configuration

Kernel Configuration Editor Showing WDB Connection Components

Mame Type Value
FOLDER._TOOLS
SELECT_COMPILER _INTRIN...
FOLDER _WINDYIEW
FOLDER_WDE_PRORY
FOLDER_\WDB
FOLDER_WDB_OPTIONS
SELECT_WDEB_COMM_TYPE
INCLUDE_WDE_COMM_END
INCLUDE_WDE_COMM_TIPC
INCLUDE_WDE_COMM_METW,

" WDB simulator pipe connection {def INCLUDE_WDB_COMM_PIPE

(7 WDE user-defined connection
<

Synopsis | Log

default connection For the simulators

Overview |Bundles | Components

These and other communication-related kernel components are described in detail
in the VxWorks Programmer’s Guide: Kernel Images, Components, and Configuration.

INCLUDE _WDE_COMM_CUSTOM b
>

271

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

272

20

New VxWorks Simulator
Connections

20.1 Introduction 273
20.2 Defining a New Wind River VxWorks Simulator Connection 273

20.1 Introduction

The Wind River VxWorks Simulator allows you to simulate a connection to a
standard or customized version of a VxWorks 6 kernel.

20.2 Defining a New Wind River VxWorks Simulator Connection
For VxWorks Simulator-specific information going beyond this description, please
see the Wind River VxWorks Simulator User’s Guide.

Target Server connections are defined in the Remote Systems view (see 18.2 The
Remote Systems View, p.250).

To open the New Connection wizard, right-click in the Remote Systems view and
choose New > Connection.

273

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

On the initial page of the New Connection wizard, select Wind River VxWorks 6.x
Simulator Connection and click Next.

20.2.1 VxWorks Boot Parameters Page

Standard Simulator (Default)
Select this option to create a simulated connection to a standard VxWorks

kernel.

Custom Simulator
Select this option if you are using a customized VxWorks kernel, then type in
or browse to the location of your vxWorks image.

Processor Number
Your system is automatically configured to run multiple simulators.
Workbench assigns each simulator a unique positive number, known as the

Processor number.

Advanced Boot Parameters
Please see the Wind River VxWorks Simulator User’s Guide for information on

the vxsim command-line options that can be set in this dialog.

20.2.2 VxSim Memory Options Page

These options allow you to manage your memory resources. Please see the Wind
River VxWorks Simulator User’s Guide for details.

20.2.3 VxWorks Simulator Miscellaneous Options Page

This page offers file-system location options (see the Wind River VxWorks Simulator
User’s Guide for details), the ability to influence the process priority of the
simulator, and a field for entering additional command-line options that are

passed as-is to vxsim.

274

20 New VxWorks Simulator Connections
20.2 Defining a New Wind River VxWorks Simulator Connection

20.2.4 Target Server Options Page

WDB back end type
This corresponds to the Back end, as described for the Target Server
connection; see Back End Settings, p.260. The VxWorks Simulator uses the
wdbpipe back end by default.

Name/IP Address
Available only if the wdbrpc back end is selected. Specifies the network name

or IP address of the target. If you are using a serial port, enter either COM1 or
COM2.

The remaining options in the wizard are the same as those outlined for the Target
Server connection settings. These are described starting from Advanced Target
Server Options Dialog, p.262.

If you have created a connection for a standard simulator, the default settings
should work. However, if you have defined a custom simulator connection, you
may have to configure the kernel-side communication, see 19.3 Kernel
Configuration, p.269.

If you have applications ready to run using the connection(s) you have just created,
please see 21. Launching Programs.

275

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

276

21

22

23

24

PART V

Debugging

Launching Programscccccceiiiimmnnnnnnnnnssssnnns 279
Managing Breakpointsccccccmmmmmmeeninnnneennnnns 301
Debugging Projectsccccceimmimirnininnnssnnisssnnns 309
Troubleshootingccccceemiiiniiiiee e 327

277

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

278

21

Launching Programs

21.1 Introduction 279

21.2 Launching a Kernel Task or a Process 280

21.3 Reset & Download: Hardware Debugging Launches 286
21.4 Launching a Native Application 286

21.5 Relaunching Recently Run Programs 288

21.6 Controlling Multiple Launches 290

21.7 Launches and the Console View 294

21.8 Using Attach-to-Target Launches 296

21.9 Suggested Workflow 299

21.1 Introduction

A launch configuration is like a named script that captures the whole process of
building, connecting a target, downloading, running, and possibly attaching a
debugger. Whenever you run a process, task, or program from the Project Explorer
or the Remote Systems view, a Launch Configuration is automatically created for
you. Launch configurations are stored persistently, so you can rerun your previous
launches by clicking a single button, and you can share them with your team.

279

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

The same launch configuration can be executed in Run-mode and Debug-mode:
* Run-mode connects to your target, then launches a task or process.

* Debug-modeis like run-mode, but in addition to connecting to your target and
launching your process, it also attaches the debugger.

This chapter explains how to create, edit, and fine-tune your launch configurations
to provide a tight edit-compile-debug cycle, as well as how to manually attach the
debugger to tasks and processes.

For descriptions of the tabs in this dialog as well as a guide to the icons you will
see in the launch configuration wizard, open the launch configuration dialog, click
in the tab you want information about, and press the help key for your host.

21.2 Launching a Kernel Task or a Process

Launch configurations that run kernel tasks, RTPs, and Linux processes are very
similar. Only a few options and settings differ between them.

To create a new launch configuration, follow these steps:

1. Select a build target in the Project Explorer then select Run > Open Run
Dialog or Run > Open Debug Dialog!. The Create, manage, and run
configurations dialog appears.

2. From the list, select the type of launch you want to create, then click the New
launch configuration icon (| 7).

3. The Name field will display a default name based on the type of configuration
you selected.

= A new kernel task launch configuration is called noEntryPoint -
moduleName - connectionName®. As soon as you select an entry point for the
configuration, the name changes to entryPoint - moduleName -
connectionName. If you prefer, you can type a completely new name in the
Name field.

1. You can also create a launch configuration by right-clicking on the build target in the Project
Explorer and selecting the appropriate Run or Debug command from the context menu.
2. If no target is connected, the default name is noEntryPoint - moduleName - noDownload.

280

21 Launching Programs
21.2 Launching a Kernel Task or a Process

= A new process or RTP configuration is called noExecPath -
connectionName. As soon as you select an Exec Path for the configuration
(when you specify the executable to run), the name changes to executable -
connectionName. Or, if you prefer, you can type a completely new name in
the Name field.

21.2.1 Defining the Target Connection

The default Connection to use is the target that is currently connected. If no
connections are active, the default is the target that is selected in the Remote
Systems view. If you have more than one connection defined, you can select a
different one from the drop-down list.

1. To change the properties of the target connection, including target server
options and object path mappings, click Properties.

2. To create a new connection definition, click Add.

3. Toretrieve the connection-specific properties from the target, adjust them if
necessary, and connect the target, click Connect.

For more information about target connections, click in the Remote Systems view
and press the help key for your host, and see 19. New Target Server Connections.

21.2.2 Defining the Kernel Task or Process to Run

Before you can launch a kernel task or process, you must type in (or click Browse
and navigate to) the Entry Point of your program, or connect your target and click
Browse next to the Exec Path on Target field and navigate to the executable to run®
(if it does not already appear). If you like, you can also change the default Working
Directory for the process.

Once your target is connected, you can select , or change any of the other settings
in this section.

3. Workbench automatically maps the pathname from your host file system into a pathname
that is valid on the target file system. To change the mappings, click Properties, scroll right
to the Object Path Mappings tab, highlight the mapping you want to change, click Edit,
then update and save your new settings.

281

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

NOTE: If your application is not built as described in 17.6 Executables that
Dynamically Link to Shared Libraries, p.235, you must set the LD_LIBRARY_PATH
environment variable. See that section for details.

For more information on the fields on the Main tab, open the dialog, click in the
Main tab, and press the help key for your host.

21.2.3 Specifying a Build Target to Download

If you want Workbench to download a particular build target each time this launch
is used, specify it on the Downloads tab (this is necessary only for kernel task
launches). If you highlighted a build target in the Project Explorer before opening
the launch dialog, the file appears in the Downloads list automatically.

1. To modify any of the settings of the output file that appears, connect to the
target then click Edit.

To add a file or to specify additional files to be downloaded, connect then click
Add.

In both cases, the Download dialog appears. For details about the fields in this
dialog, open the dialog, click in it, and press the help key for your host.

2. When you are finished adjusting the settings, click OK. The new information
appears in the Downloads list.

NOTE: You can also create launches for kernel tasks that are already downloaded,
or are resident in flash memory or are part of the kernel image. Those tasks do not
require an entry in the Downloads list since they do not need to be downloaded
each time the configuration is run.

21.2.4 Specifying the Projects to Build

If you want Workbench to build a particular project or projects prior to launching
this configuration, specify them on the Projects to Build tab. If you selected a build
target in the Project Explorer, its project appears in the Projects to Build list
automatically.

1. Toadd another project to thelist, click Add Project, select one or more projects,
then click OK.

2. Torearrange the build order in the list, select a project then click Up or Down.

282

21 Launching Programs
21.2 Launching a Kernel Task or a Process

If you do not want Workbench to build for this particular launch
configuration, such as when you are working with very large projects, select
all projects and select Remove to clear the list*.

NOTE: Workbench is aware of relationships between projects and subprojects.
So if myLib is a subproject of myProj and you choose to add myProj to the list,
you cannot add myLib to the list as well because it will be built automatically
when you build myProj. Adding myLib as well would be redundant and so is
disabled.

When you change the list of downloaded files for kernel task launches (see
Specifying a Build Target to Download, p.282) the projects containing those files
are automatically added to the Projects to Build list. You should always
review this list when you change the list of downloaded files.

21.2.5 Defining Debug Behavior

Break on Entry

When creating debug-mode launches, Break on entry is selected by default.
Uncheck it if you want this program to run to the first breakpoint you set, rather
than breaking immediately after startup.

If Break on entry is selected when the launch is run, four things happen:

Workbench automatically switches to the Device Debug perspective (if it is not
already open).’

The task or process is displayed in the Debug view.
A temporary breakpoint is planted and appears in the Breakpoints view.

The program executes up to Entry Point and breaks.

. To prevent Workbench from building prior to launching any of your programs, unselect

Window > Preferences > Run/Debug > Launching > Build (if required) before launching.

. From the View Management Preferences screen (Window > Preferences > Run/Debug >

View Management) you can specify the circumstances that will cause Workbench to switch
views based on your selection.

283

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Automatically Attach Spawned Kernel Tasks

For kernel task launches, select this option if you want Workbench to
automatically attach spawned kernel tasks.

21.2.6 Specifying Where Workbench Should Look for Source Files

If your build target was compiled on the same host where you want to debug it,
you do not need to change anything on the Source tab.

However, if the build target was compiled on a different host, and Workbench
needs to find source files during debugging, it searches the locations listed on this
tab in the specified order.

NOTE: If you do not specify a source lookup path, the debugger will ask for the
correct source path as soon as it encounters a source it cannot find. So if you prefer,
you can configure the source lookup manually as you go, rather than configuring
it when creating the launch.

1. On the Source tab, click Add to configure the source lookup path.
2. Select the type of source to add, then click OK.

3. Most choices require that you select a specific project, folder, or path. Make
your selection, then click OK.

4. Click Up or Down to adjust the search order.

5. Check Search for duplicate source files on the path to have Workbench
search the entire source lookup path and offer you a choice of all the files it
finds that have the same filename, rather than automatically using the first file
of that name it encounters.

For more information about the source locator, see 23.5 Understanding Source
Lookup Path Settings, p.321, and open the dialog, click in it, and press the help key
for your host.

21.2.7 Configuring Access Methods
Use the Common tab to specify whether this launch is local or shared, to add the

launch to the Workbench toolbar favorites menus, and to indicate whether the
program should be launched in the background or not.

284

21 Launching Programs
21.2 Launching a Kernel Task or a Process

1. By default this launch configuration is a local file available only to you. If you
want to share it with others on your team, click Shared, then type or browse
to the directory where you want to save the shared file.

2. If you want to be able to launch this program from the Run or Debug favorites
menus (the drop-down menus on the Workbench toolbar), select Run or
Debug in the Display in favorites menu box.

21.2.8 Using Your Launch Configuration

When you are finished configuring the launch configuration for your program,
click Apply to save your settings but leave the dialog open, click Close to save
your launch configuration for later use, or click Run or Debug to launch it now.

Running Your Program

If you select Run to launch your program, the output file or executable is loaded
into target memory and its name and host location appear below your target
connection in the Remote Systems view (RTPs appear under Real-time Processes).
A red S over the output file icon indicates that symbol information has been
downloaded to the debugger.

NOTE: If no symbol information was found, right-click the module and select
Load/Add Symbols to Debug Server to load the symbols for your module from an
alternate location.

You can also match module paths with symbol information by selecting the Create
path mappings for the module based on the selected symbol file checkbox in the
Load Symbols dialog.

Debugging Your Program

If you select Debug to launch your program, in addition to loading the output file
or executable into target memory and downloading symbol information, the
debugger attaches to the task or process that then appears in the Debug view. For
more information about debugging your programs, see 23. Debugging Projects and
open the Debug view, click in it, and press the help key for your host.

285

Wind River Workbench

User’s Guide, 3.0 (VxWorks Version)

21.3 Reset &

For

Download: Hardware Debugging Launches

information about creating a Reset and Download launch configuration, see

Wind River ICE SX for Wind River Workbench Hardware Reference: Establishing
Communications or Wind River Probe for Wind River Workbench Hardware Reference:
Establishing Communications, depending on whether you are using a Wind River
ICE SX or Wind River Probe for your OCD connection.

21.4 Launching a Native Application

1.

To create a new launch configuration that will run a native application on your
local host or remote host, select your application’s executable in the Project
Explorer then select Run > Open Run Dialog. The Create, manage, and run
configurations dialog appears.

From the Configurations list, select Native Application, then click New
launch configuration.

The default name of the new configuration is New_configuration. Type a
descriptive name in the Name field.

21.4.1 Specifying the Location and Arguments for Your Application

1.

286

To specify the location of your application’s executable file, click Browse
Workspace near the Location field. The Select an application dialog opens.

Select the executable and click OK. The executable appears in the Location
field.

To specify the working directory for your application, click Browse
Workspace to open the Select a working directory dialog, or Browse File
System to open the Browse for Folder dialog.

Select a working directory, then click OK. The directory appears in the
Working Directory field.

Type the arguments your application requires into the Arguments field, or
click Variables to open the Select Variable dialog. Double-click the variable
you want to use, or select it and click OK to add it to the Arguments field.

21 Launching Programs
21.4 Launching a Native Application

21.4.2 Specifying Remote Settings

These settings are optional, and are required only if you are running your
application on a remote host. For more information about working with remote
hosts, see 17.9.5 Running Applications Remotely, p.245.

Command-line application’s output and input will be redirected to the standard
Eclipse console unless the application is started within an external process that
creates a new window, such as xterm.

1. If your application requires an interactive shell, type the program and
arguments in the Remote Program field. The default for remote execution is a
remote command like xterm -e % Application%, so a local X-server like Exceed
or Cygwin X must be running.

2. If you want to use a different working directory than the one specified on the
Arguments tab, type the path to the desired directory (as seen on the remote
host).

21.4.3 Setting Environment Variables
These settings define the environment variable values to use when running a Java

application. By default, the environment is inherited from the Eclipse run time.
You may override or append to the inherited environment.

NOTE: These settings apply to applications that run locally, not to remote
applications.

1. To set a new environment variable, or to change or extend variables from the
existing environment, click New. The New Environment Variable dialog
opens.

2. Type a descriptive name for the variable.

3. Type the value for the variable, or click Variables and select the desired
variable, add any required arguments, then click OK.

4. To include an existing environment variable, click Select. The Select
Environment Variables dialog opens.

5. Select the checkbox next to the desired variable, then click OK.

6. For each variable, choose whether to append it to the native environment or
substitute it for the native environment.

287

Wind River Workbench

User’s Guide, 3.0 (VxWorks Version)

21.4.4 Configuring Access Methods

Use the Common tab to specify whether this launch is local or shared, to add the
launch to the Workbench toolbar favorites menus, and to indicate whether the
program should be launched in the background or not.

1.

By default this launch configuration is a local file available only to you. If you
want to share it with others on your team, click Shared, then type or browse
to the directory where you want to save the shared file.

If you want to be able to launch this program from the Run favorites menu (the
drop-down menu on the Workbench toolbar), select Run in the Display in
favorites menu box.

21.4.5 Running Your Native Application

When you are finished configuring the launch configuration for your application,
click Apply to save your settings but leave the dialog open, click Close to save
your launch configuration for later use, or click Run to launch it now.

21.5 Relaunching Recently Run Programs

In a typical development scenario, you will run the same application many times

ina

single debugging session. After creating a launch configuration, you can click

the Run or Debug icon or use a keyboard shortcut to run a process and attach the
debugger in a few seconds.

To relaunch a recently run program:

288

Press CTRL+F11 to launch the last run-mode configuration you used, or F11
to launch the last debug-mode configuration you used.

Click the drop-down arrow next to the Run or Debug icon and select the
configuration from the list. If you ran the configuration recently, it will appear
on the menu. If you selected Run or Debug from the

Display in favorites menu list (see Configuring Access Methods, p.284) it will
always appear on the list, whether you have run it recently or not.

21 Launching Programs
21.5 Relaunching Recently Run Programs

$ 0 Q- FAESS S
% kﬂgstart - cobble,out - vxsim0

= % 2 main - ball,ouk - wxsimd
88 3 vasimi) =
% 4 philasophars, vxe - wxsim0
= Debug As 4
ﬁ‘_ﬁ: Open Debug Dialog. ..

. . Ta:
Organize Favorites., .,
= S —]

= J.gutl‘ﬁ:ail.ﬂu:nﬂ;cllﬁffglﬂ(Stopp
» Torun a configuration not listed on the favorites menu, click Run > Open Run
Dialog or Run > Open Debug Dialog, then choose the configuration from the
configurations list and click Run or Debug.

21.5.1 Reusing Existing Launch Configurations

When launching tasks or processes on a target, Workbench tries to detect whether
a similar launch exists for reuse. Only when no similar launch exists is a new one
created.

To configure the criteria Workbench uses to determine whether a launch matches
well enough, select Window > Preferences > Wind River > Target Management
> Launch Configurations.

For more information about these preferences, open the preferences dialog, click
in it, and press the help key for your host.

21.5.2 Increasing the Size of the Launch History List
Workbench stores a history of previously launched configurations. The default
length of the launch history is 10, but you can increase the history length by

selecting Window > Preferences > Run/Debug > Launching and increasing the
number in the Size of recently launched applications list field.

289

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

21.6 Controlling Multiple Launches

Terminology

You can create a Launch Control launch, consisting of a sequence of your launch
configurations, each one of which is then considered a sub-launch. You can even
add other Launch Control launches to a Launch Control configuration, the only
restriction being that a Launch Control configuration cannot contain itself.

For detailed information on launch control settings, open the dialog, click in it, and
press the help key for your host.

A launch is a specific instance of a launch configuration, and a launch configuration
is a specific instance of a launch type. The launch is what occurs when you initiate
a run or debug session.

A launch configuration is your definition of how the launch will occur, for
example, what program will be run, what target it will run on, and what the
arguments are.

A launch type defines the kind of launches that are supported by Workbench.
There are several different kinds of launch types, for example, Kernel Task or RTP
on Target. The launch type includes GUI elements that specify attributes specific
to it.

You create a launch configuration based on a launch type, specifying the
appropriate attribute values. You then initiate a launch based on a launch
configuration. Launches also have a mode, the two standard modes being Run and
Debug. A launch may be initiated by the Run or Debug buttons in Workbench
(launches may be initiated other ways too).

Configuring a Launch Sequence

The following procedure assumes you have two or more launch configurations
already defined.

1. Select Run > Open Debug Dialog and the Debug dialog opens.

2. Select Launch Control from the Configurations list on the left, and then click
New launch configuration. A new launch control configuration with the
default name New Configuration appears. Change the name as desired.

290

21 Launching Programs
21.6 Controlling Multiple Launches

3. Select the Launch Control tab. Note that your current launch configurations
are listed under Available Configurations on the left, and a space on the right
is labeled Configurations to Launch.

4. Select each launch that you want to add to your new launch configuration and
click Add to add it to the list of configurations to launch. When you have a list
of configurations to launch, you can organize them in the order you want them
to launch by selecting a configuration and clicking Move Up or Move Down.
The sub-launch at the top of the list will come first and the one at the bottom
last. You can remove any sub-launch from the Launch Control configuration
by selecting it and clicking Remove.

You now have a Launch Control configuration that will launch a sequence of
sub-launches in the order specified in the Configurations to Launch list. You can
also specify commands to perform before launches, after launches, and in response
to a launch failure or an application error report as discussed in the next section.

Each launch in a Launch Control will open a Console view for I/O and error
messages as described in 21.7 Launches and the Console View, p.294.

Pre-Launch, Post-Launch, and Error Condition Commands

To access the launch configuration commands, select a sub-launch in your
Configurations to Launch list and click Properties (or double-click the
sub-launch). A properties page containing command information is displayed.
Here you can specify pre-launch, post-launch, and error condition commands,
which will inherit the environment variables shown below them unless you
change them in the command. Your changes affect the launch you are working
with only—other launches using the same configuration get the default values for
the environment variables. Also, the set of environment variables differs for each
launch configuration (see Understanding the Command Environment, p.293 for more
on environment variables).

Preparing a Launch with a Pre-Launch Command

An example of the use of a pre-launch command is to prepare a target for use. For
example, in a development environment you might have to reserve a target, and
you would not want to attempt a launch without being sure you had a target to
launch on. So a pre-launch command might be a script that reserves the board and
then reboots it.

291

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

If the pre-launch command returns a non-zero return code then the launch is
aborted and the error condition command is executed for each sub-launch
previous to the failed sub-launch.

Using a Post-Launch Command

If your application requires additional set up after it has been launched, or if you
would like to verify that it has launched correctly before proceeding to the next
launch, use a post-launch command.

If the post-launch command returns a non-zero return code then the launch is
aborted and the error condition command is executed for each sub-launch
previous to the failed sub-launch as well as for the failed sub-launch.

Using the Error Condition Command

The error condition command of a launch is run when a launch fails, or a
pre-launch or post-launch command returns a non-zero error code. This causes the
error command of the current launch to run, and then each error command of any
preceding launches to run. The error condition commands are executed in reverse
order of the sequence in which the launches occurred. For example, if the fourth
launch fails, the error condition command of the fourth launch is performed, then
the error condition of the third launch, and so on. This is to deal with situations in
which previous commands may have acquired locked resources--unlocking them
in reverse order is important to prevent potential deadlock.

NOTE: To be precise, error commands are called in the reverse order that the
pre-launch commands were called. An error command is never called for a
sub-launch that did not pass the pre-launch command step.

Inserting Commands using an Empty Sub-Launch

You can place a command into your Launch Control that is not associated with any
particular sub-launch by adding an empty Launch Control to hold the command.
Select Launch Control and click New and then specify a name for the dummy
launch, for example, Empty Launch. Add the empty launch to the Launch Control
and use the properties page to insert commands into the launch which aren't
associated with any particular sub-launch.

Running All Pre-Launch Commands First

If you want to run each of the pre-launch commands for each launch first, check
Run Pre-Launch command for all launches first on the main launch control page.
The pre-launch commands will be executed in order, and only after they are all

292

21 Launching Programs
21.6 Controlling Multiple Launches

successfully completed will the first launch take place, followed by the second
launch and so on. This provides for situations in which you do not want to
continue with a complete launch Control sequence if any of the sub-launches
cannot take place because, for example, a target is not available.

Launch Controls as Sub-Launches

You can use an existing Launch Control as a sub-launch, but do not attempt to
create recursive launch controls in this way, as they will not run.

If the parent Launch Control's pre-initialize check box (Run Pre-Launch command
for all launches first) is selected and the pre-initialize check box is set for the child
Launch Control, the child will pre-initialize all of its sub-launches before operation
continues on to the next sub-launch of the parent Launch Control. Otherwise, the
child Launch Control will have its sub-launches initialize at the time that it is
launched.

Understanding the Command Environment

The environment variables are collected from multiple locations and then
provided on the Properties page as a convenience. Typically you will only read
variable values, but you may want to change them in your pre-launch command.
Your changes affect the launch you are working with only—other launches using
the same configuration get the default values for the environment variables.

Environment variables are gathered from four different sources. First, variables
may be defined on the Launch Control's Environment tab. These variables are not
displayed on a sub-launch’s Properties page because the information is readily
available on the Environment tab. The next source for environment variables is
from the sub-launch’s Environment tab (if it has one). The third source for the list
of environment variables is defined by the sub-launch’s configuration type
attributes. Each sub-launch configuration type defines its own set of attributes
(further documentation on sub-launch attributes can be found in the Eclipse
documentation for Launch Configuration). The final source of environment
variables are defined by Launch Control and provide general support for the
launch. The variables defined by Launch Control for each sub-launch are:

= com_windriver_ide_launchcontrol launch_mode
= com_windriver ide_launchcontrol env_file
» com_windriver_ide_launchcontrol skip next

The environment variable com_windriver_ide_launchcontrol_launch_mode
identifies the mode of a launch. The mode may be either debug or run, depending
on how a launch is initiated (for example selecting the Run > Debug dialog to

293

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

initiate a debug mode launch and Run->Run to initiate a run mode launch).
Changing com_windriver_ide_launchcontrol_launch_mode has no effect—it is
only provided for information about a current launch.

Since the command’s environment terminates after the command completes any
variables which need to be changed for a launch must be written to a file. The name
of this file is provided in the environment variable
com_windriver_ide_launchcontrol_env_file. The format of this file is a list of key
value pairs on separate lines. Each key and value is separated by an = and the key
identifies the variable name (this is a standard Java properties file). After a
command is completed Launch Control will read this file and update any variables
as specified in the file.

Launch control also defines the com_windriver_ide_launchcontrol_skip_next
variable. Setting this variable to true in the Pre-Launch command causes the
remainder of the sub-launch to be skipped. Setting this variable in post-launch or
error commands has no effect.

An example of how this could be used is to check for the existence of a server
application in a pre-launch command. If the application is already running then
specifying com_windriver_ide_launchcontrol_skip_next=true in the
com_windriver_ide_launchcontrol_env_file will cause the launch of the
application to be skipped without invoking an error.

NOTE: The Wind River environment variables for individual launches are subject
to change and you should not count on them being maintained across releases. For
details on variables beginning with the string org_eclipse refer to the
documentation available at http://help.eclipse.org.

21.7 Launches and the Console View

Workbench supports the Eclipse Console view with Virtual IO (VIO) features that
allow you to monitor the standard output and error output of your applications
and to enter standard input. VIO connects the Console view to a particular context
(process or task). You can also have multiple Console views and “pin” them to a
particular context. Most Console view settings are available in the Common tab of
your launch configuration, and you can specify Console view preferences in your
Workbench preferences.

294

http://help.eclipse.org

21 Launching Programs
21.7 Launches and the Console View

Note that Console view VIO is tied to the debugger and cannot always serve the
same purposes as a terminal connection to the target. You cannot use it, for
example, to monitor the boot loader or set boot parameters. The Console view is
associated with a particular debugger context and is not a general purpose
terminal connection.

Launches and the Console View
Each launch opens a Console view for I/O and error messages, provided the

Allocate Console check box is selected in the Common tab of the launch (the
default setting).

NOTE: This refers to the Common tab of each individual launch configuration, not
the Common tab of the Launch Control configuration.

In the Common tab you can also specify a file where console output is appended
or overwritten with each launch. The Console view itself offers several controls as
described in the next section.

You can modify Console view settings such as buffer size and text colors by
selecting your preferences at Window > Preferences > Run/Debug > Console.

Console View Output

To open a Console view select Window > Show View > Console. An example
view is shown below.

Figure 21-1 Example Console View

&l cansale 52 }QIError Log | ¥ Tasks .;\;ﬂ Terminal | = Properties B Buid cons | = &
main - hello_YxWorks, out - vxsim0 [Kernel Ta = % i =) s £4 -

]
[Console output redirected to file:C:‘\helloQutput.log]
Listening for transport dt_socket at address: 3456

Hello World!

Show me error #1

Eve for now!

Show me error #2

Show me error #3

Show me error #4

Show me error #5

295

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

The highlights of the view shown include the following:
» A title indicates which context (process or task) this view applies to.

*= A comment indicates that in this case console file logging is occurring and
identifies the log file location. Click on the filename to display it in the Editor.

* The standard output shown in the example is Hello World! and Bye for now!
and is in black, the default color for standard output.

» The standard error outputs shown in the example are the Show me error
messages which are in red, the default color for standard error output.

NOTE: The output appearing in the Console View can appear in a different order
than the order the output was produced if both output and error output are
present. The data from these two output types go through different channels and
their transit times can be different.

Along with other standard functions, icons in the Console view toolbar allow you
to pin the context to a Console view, select among different Console views, and
create new Console views.

Select a specific process or task for a Console view by clicking the down arrow next
to the Display Selected Console icon and making your selection. Click

Pin Console to keep the Console view associated with that context. Select

Open Console > New Console View to create additional Console views.

Refer to http://help.eclipse.org for further details on the Console view, or open the
Console view, click in it, and press the help key for your host.

21.8 Using Attach-to-Target Launches

Workbench automatically creates Attach to Target launch configurations when
you attach to an individual process or kernel task from the Remote Systems view.
They do not actually run an application, they just connect to your target and attach
the debugger to the specified task or process that already exists. These
configurations are visible only in Debug mode.

Once Attach to Target launches are created, you can:

= Review them and delete those that you no longer need.

296

http://help.eclipse.org

21 Launching Programs
21.8 Using Attach-to-Target Launches

= Change which target connection should be used to run the process.

= Rename your launch configurations, and if you think they are valuable, put
them into your Favorites menu using the Common tab.

» Change the mapping between source paths compiled into your objects and
source paths in your workspace by editing the Source Locator information in
the Source tab.

= Change the Projects to Build settings for the launch. This is particularly
valuable for Attach to Kernel launches on the VxWorks simulator: you can
disconnect your simulator, rebuild your kernel as part of the launch, and then
let the launch automatically restart and reconnect the simulator.
Automatically rebuilding shared libraries is another use of Build before
launching.

NOTE: When you attach to a process or task with the same name using the same
connection, Workbench automatically reuses all the settings from the previous
launch.

However, Workbench creates a new launch (requiring you to reconfigure the
settings) when it detects that the properties of the connection have changed: for
example, if the connection was renamed, a different kernel image was used, or the
target server arguments or other connection properties were changed.

One way to avoid accumulating many similar launches is to make your
configuration changes in the launch itself, rather than right-clicking a process in
the Remote Systems view and selecting Attach. That way Workbench will always
have the correct settings for the process you want to run.

21.8.1 Attaching the Debugger to a Running Task or Process

To attach the debugger to a task or RTP that is already running, right-click it in the
Remote Systems view and select:

= Attach to Real-time Process to attach to a Real-time Process on VxWorks.
= Attach to Kernel Task to attach to a kernel task on VxWorks.
» Attach to Process to attach to a process on Linux.

Whenever you manually attach an individual process or task, Workbench
automatically switches to the Device Debug perspective (if it is not already open)
and displays the task or process in the Debug view, the debugger attaches without
stopping the program, and Workbench automatically creates a corresponding

297

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Attach-to-Target launch configuration with those properties. For more
information about how to use Attach-to-Target configurations, see 21.8 Using
Attach-to-Target Launches, p.296.

Comparing Definitions: Running, Suspended, and Stopped Tasks

VxWorks and the Workbench Debug view both make a distinction between
running, suspended, or stopped tasks, but their definitions are not identical.

VxWorks Workbench Debug View Definition

Running Running Task is active, and has focus.
Suspended Running Task is waiting while another task runs.
Stopped Stopped Task stopped at a breakpoint or other

event, or was stopped by user.

21.8.2 Attaching the Debugger to the Kernel

The debugger functions differently depending on whether you attach to the kernel
in task mode or system mode.

21.8.3 Attaching the Kernel in Task Mode

To attach to the kernel in Task Mode® (VxWorks), right-click the Kernel Tasks
node in the Remote Systems view and select Attach All Kernel Tasks.

The debugger will automatically track added and removed kernel tasks so that
you can always debug the entire system. You can also stop (suspend) individual
kernel tasks, unless they have the VX_UNBREAKABLE option set. When you stop
a kernel task, the rest of the system will continue to run.

21.8.4 Attaching the Kernel in System Mode
To attach the kernel in System Mode (VxWorks and Linux dual-mode agent),

right-click the CPU icon below the Connection icon and select Attach-to-Kernel
(system mode).

6. Task mode is also known as user mode.

298

21 Launching Programs
21.9 Suggested Workflow

This will create an Attach-to-Target launch configuration that automatically
switches your target into System Mode before attaching the debugger. The
Debugger will show a single node labelled System Context that represents the
code that the CPU is currently executing. When you stop (suspend) the System
Context, your entire System is stopped, including all the tasks, processes, and
interrupt service routines. You can now also set breakpoints that will suspend the
entire system when they are hit.

In addition to the single System Context node in the debugger, you can also attach
to individual kernel tasks. This will create separate debug sessions. You can also
set breakpoints that are specific to the task that is currently executing by selecting
restrict breakpoint scope to task on the Scope tab of the breakpoint dialogs (for
more information, open the line, expression, and hardware breakpoint dialogs and
press the help key for your host).

Note that System Mode breakpoints (breakpoints that are planted while a System
Mode attach is active) will only be active when your target is in System Mode. You
can switch your target between System Mode and Task Mode by right-clicking the
target in the Remote Systems or Debug views and selecting Target Mode > System
(or Task). For more information about Debug Mode functionality, see 23.4 Using
Debug Modes, p.314.

21.9 Suggested Workflow

Launch Configurations allow for a very tight Edit-Compile-Debug cycle when you
need to repeatedly change your code, build and run it. You can use the F11 (Debug
Last Launched) key to build the projects you have specified, connect your target
(unless it is already connected), download, and run your most important program
over and over again.

The only thing to keep in mind is that it may not be possible to rebuild your
program or kernel while it is still being debugged (or its debug info is still loaded
into the debugger). Workbench will warn you with a dialog and suggest proper
actions in case a problem of such simultaneous usage is detected. Depending on
the size of the modules you run and debug, it can be the case that the debug server
cannot load all the symbolic information for your modules into memory. By
default, the size limit is set to 60MB (this can be changed by selecting Preferences >
Target Management > Debug Server Settings > Symbol File Handling Settings.)

299

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

If a module is bigger than this limit, it will be locked against overwriting as long
as the debugger has symbols loaded. This means that when you try to rebuild this
module, you will see a dialog asking you to unload the module’s symbol
information from the debugger before you continue building. You can usually
unload symbolic information without problems, provided that you do not have a
debug session open in the affected module. If you have a module open, you should
terminate your debug session before continuing the new build and launch process.

300

22

Managing Breakpoints

22.1 Introduction 301

22.2 Types of Breakpoints 302

22.3 Manipulating Breakpoints 305

22.4 Limitations on Breakpoints During SMP Task Debugging 307

22.1 Introduction

Breakpoints allow you to stop a running program at particular places in the code
or when specific conditions exist. This chapter shows how you can use the
Breakpoints view to keep track of all breakpoints, along with any conditions.

You can create breakpoints in different ways: by double-clicking or right-clicking
in the Editor’s left overview ruler (also known as the gutter), by opening the
various breakpoint dialogs from the pull-down menu in the Breakpoints view
itself, or by selecting one of the breakpoint options from the Run > Breakpoints
menu.

301

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

22.2 Types of Breakpoints

Figure 22-1 shows the Breakpoints view with various types of breakpoints set.
Figure 22-1 Breakpoints View

9% Breakpoints £7 =0

XR#AR 2 BEE T
[#] &, pCuriode (*Errars*)
¥ {'E aridInit [/ballfgrid.c: 3?] (*Planted®, Restricked Scope)
IR /0l main.c:61 (Dis
¥ @ jbalimain.c:63 (*F‘Ianted* Restricted Scope)
[#] & fbalimain.c:68 (*Planted*, Stop Triggering)
@, fballimain.c:71 (*Planted®, Continue,Restricted Scope)
[¥].8 fbalimain.c:78 (*Planted*, Skip Count=5)
g fcobblefcobble,c:109[110] (*Planted™®, Temporary,Restricked Scope)

See the sections below for when and how to use each type of breakpoint. For a
guide to the icons you will see in the Breakpoints view, open the view and press
the help key for your host.

22.2.1 Line Breakpoints

Set a line breakpoint to stop your program at a particular line of source code.

Creating Line Breakpoints

To set a line breakpoint with an unrestricted scope (that will be hit by any process
or task running on your target), double-click in the left gutter next to the line on
which you want to set the breakpoint. A solid dot appears in the gutter, and the
Breakpoints view displays the file and the line number of the breakpoint. You can
also right-click the line of code itself and select Breakpoints > Add Breakpoint
(Scope = Unrestricted).

To set a line breakpoint that is restricted to just one task or process, right-click in
the Editor gutter and select Breakpoints > Add Breakpoint (Scope = Selected
Thread). If the selected thread has a color in the Debug view, a dot with the same
color will appear in the Editor gutter, with the number of the thread inscribed
inside it.

302

22 Managing Breakpoints
22.2 Types of Breakpoints

Right-clicking in the Editor’s gutter and selecting Breakpoints > Add Breakpoint,
or selecting Add Line Breakpoint from the Breakpoints view’s pull-down menu
will open the Line Breakpoint dialog, where you can create and adjust the
properties of the breakpoint.

For more information about the settings in this dialog, open the dialog and press
the help key for your host.

22.2.2 Expression Breakpoints

Set an expression breakpoint using any C expression that will evaluate to a
memory address. This could be a function name, a function name plus a constant,
a global variable, a line of assembly code, or just a memory address. Expression
breakpoints appear in the Editor’s gutter only when you are connected to a task.

Breakpoint conditions are evaluated after a breakpoint is triggered, in the context
of the stopped task or process. Functions in the condition string are evaluated as
addresses and are not executed. Other restrictions are similar to the C/C++
restrictions for calculating the address of a breakpoint using the Expression
Breakpoint dialog.

Select Add Expression Breakpoint from the Breakpoints view’s pull-down menu
to open the Expression Breakpoint dialog, where you can create and adjust the
properties for the breakpoint.

For more information about the settings in this dialog, open the dialog and press
the help key for your host.

22.2.3 Hardware Breakpoints

Some processors provide specialized registers, called debug registers, which can
be used to specify an area of memory to be monitored. For instance, [A-32
processors have four debug address registers, which can be used to set data
breakpoints or control breakpoints.

Hardware breakpoints are particularly useful if you want to stop a process when
a specific variable is written or read. For example, with hardware data
breakpoints, a hardware trap is generated when a write or read occurs in a
monitored area of memory. Hardware breakpoints are fast, but their availability is
machine-dependent. On most CPUs that do support them, only four debug
registers are provided, so only a maximum of four memory locations can be
watched in this way.

303

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

There are two types of hardware breakpoints:
» A hardware data breakpoint occurs when a specific variable is read or written.

» A hardware instruction breakpoint or code breakpoint occurs when a specific
instruction is read for execution.

Once a hardware breakpoint is trapped—either an instruction breakpoint or a data
breakpoint—the debugger will behave in the same way as for a standard
breakpoint and stop for user interaction.

Adding Hardware Instruction Breakpoints

There two ways to add a new hardware instruction breakpoint:

In the gutter (grey column) on the left of the source file, right-click and select
Breakpoints > Add Breakpoint (Hardware). Or, double-click in the gutter to add
astandard breakpoint and then, in the Breakpoints view, right-click the breakpoint
you've just added and select Properties. In the last pane (Hardware) of the
Properties dialog select Enable Hardware Breakpoint.

Adding Hardware Data Breakpoints

Set a hardware data breakpoint when:

* Thedebugger should break when an event (such as a read or write of a specific
memory address) or a situation (such as data at one address matching data at
another address) occurs.

» Threads are interfering with each other, or memory is being accessed
improperly, or whenever the sequence or timing of runtime events is critical
(hardware breakpoints are faster than software breakpoints).

Select Add Data Breakpoint from the Breakpoints view’s pull-down menu to
open the Hardware Data Breakpoint dialog, where you can create and adjust the
properties for the breakpoint.

For more information about the settings in this dialog, open the dialog and press
the help key for your host.

304

22 Managing Breakpoints
22.3 Manipulating Breakpoints

Converting Line or Expression Breakpoints Into Hardware Code Breakpoints

To cause the debugger to request that a line or expression breakpoint be a
hardware code breakpoint, select the Hardware check box on the Hardware tab of
the Line Breakpoint or Expression Breakpoint dialogs.

This request does not guarantee that the hardware code breakpoint will be
planted; that depends on whether the target supports hardware breakpoints, and
if so, whether or not the total number supported by the target have already been
planted. If the target does not support hardware code breakpoints, an error
message will appear when the debugger tries to plant the breakpoint.

NOTE: Workbench will set only the number of code breakpoints, with the specific
capabilities, supported by your hardware.

NOTE: If you create a breakpoint on a line that does not have any corresponding
code, the debugger will plant the breakpoint on the next line that does have code.
The breakpoint will appear on the new line in the Editor gutter.

In the Breakpoints view, the original line number will appear, with the new line
number in square brackets [] after it. See the third breakpoint in Figure 22-1.

Comparing Software and Hardware Breakpoints

Software breakpoints work by replacing the destination instruction with a
software interrupt. Therefore it is impossible to debug code in ROM using
software breakpoints.

Hardware breakpoints work by comparing the break condition against the
execution stream. Therefore they work in RAM, ROM or flash.

Complex breakpoints involve conditions. An example might be, “Break if the
program writes value to variable if and only if function_name was called first.”

22.3 Manipulating Breakpoints

Now that you have an understanding of the different types of breakpoints, this
section will show you how to work with them.

305

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

22.3.1 Importing Breakpoints

To import breakpoint properties from a file:

1. Select File > Import > Import Breakpoints, then click Next. The Import
Breakpoints dialog appears.

2. Select the breakpoint file you want to import, then click Next. The Select
Breakpoints dialog appears.

3. Select one or more breakpoints to import, then click Finish. The breakpoint
information will appear in the Breakpoints view, and the next time the context
for that breakpoint is active in the Debug view, the breakpoint will be planted.

22.3.2 Exporting Breakpoints

To export breakpoint properties to a file:

1. Select File > Export > Export Breakpoints, then click Next. The Export
Breakpoints dialog appears.

2. Select the breakpoint whose properties you want to export, and type in a file
name for the exported file. Click Finish.

22.3.3 Refreshing Breakpoints

Right-clicking a breakpoint in the Breakpoints view and selecting

Refresh Breakpoint causes the breakpoint to be removed and reinserted on the
target. This is useful if something has changed on the target (for example, a new
module was downloaded) and the breakpoint is not automatically updated.

To refresh all breakpoints in this way, select Refresh All Breakpoints from the
Breakpoints view toolbar drop-down menu.

22.3.4 Disabling Breakpoints

To disable a breakpoint, clear its check box in the Breakpoints view. This retains all
breakpoint properties, but ensures that it will not stop the running process. To
re-enable the breakpoint, select the box again.

306

22 Managing Breakpoints
22.4 Limitations on Breakpoints During SMP Task Debugging

22.3.5 Removing Breakpoints

There are several ways to remove a breakpoint:

= right-click it in the Editor gutter and select Toggle Breakpoint.
= select it in the Breakpoints view and click the Remove icon

= right-click it in the Breakpoints view and select Remove

For more information about the Breakpoints view or any of the breakpoint dialogs,
open the dialogs and press the help key for your host.

22.4 Limitations on Breakpoints During SMP Task Debugging

In general, task mode debugging on symmetric multiprocessing (SMP) systems is
very much like task mode debugging on uniprocessor (UP) systems.

However, there are limitations on when and where you can place breakpoints
when working on SMP systems.

Breakpoints cannot be placed on these routines

During breakpoint exception handling, a number of kernel APIs are called before
all breakpoints are removed from the target memory, so you cannot put
breakpoints on these routines.

taskCpuLock() /taskDbgUnlock()

intCpuLock()/intCpuUnlock()

usrBreakpointSet ()
vxTas ()

Breakpoint exception while holding an ISR-callable spinlock

Workbench ignores this type of breakpoint and resumes the execution of the
context (in other words it steps over this type of breakpoint) since an ISR
attempting to take the same spinlock will spin forever.

Breakpoint exception while holding a task-callable spinlock

Workbench ignores this type of breakpoint and resumes the execution of the
context (in other word it steps over this type of breakpoint). The task that holds the
spinlock can be stopped while running on CPUO and the scheduler can decide to

307

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

resume it on CPU1. This type of scenario (taking and releasing a spinlock on
different CPUs) is a kernel fatal error and must be prevented.

308

23

Debugging Projects

23.1 Introduction 309

23.2 Using the Debug View 310

23.3 Stepping Through a Program 313

23.4 Using Debug Modes 314

23.5 Understanding Source Lookup Path Settings 321
23.6 Using the Disassembly View 321

23.7 Using the Kernel Objects View 323

23.8 Run/Debug Preferences 326

23.1 Introduction

Like other debuggers you may have used, the Wind River Workbench debugger
allows you to download object modules, launch new processes, and take control of
processes already running on the target.

Unlike other debuggers, it allows you to attach to multiple processes
simultaneously, without affecting the state of the items you are attaching to or
requiring you to disconnect from one process in order to attach to another.

309

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

This chapter shows you how to use the Debug, Disassembly, and Kernel Objects
views to debug your programs. For a guide to the dialogs and icons you will see
while using them, open the views and press the help key for your host.

23.2 Using the Debug View

Figure 23-1

Use the Debug view to monitor, control, and manipulate the processes and tasks
that you are actively debugging. Unlike the Remote Systems view, which shows

all the processes that exist on the target, the Debug view shows only the ones that
are currently under debugger control or were launched by Workbench.

To put a process or task under the control of the debugger and thus see it in the
Debug view:

1. Connect to your target in the Remote Systems view (see Connecting to the
Target, p.251).

2. Launch one or more processes:

» Using a launch configuration as described in Relaunching Recently Run
Programs, p.288.

» By attaching to an already running process, as described in Attaching the
Debugger to a Running Task or Process, p.297

3. Once the debugger has attached to your process, it will appear in the Debug
view as shown in Figure 23-1.

Debug View

35 Debug 52 =0
= IS i S =5 i =
= % wxsimi [Attach to Target]
= SIMNT: ¥xworks 6.6 (Task Made)
(“)pn tJobTask : 0x10397260 (Running)
= % main - ball.out - vaxsim0 [Kernel Task]
= SIMNT: ¥xWorks 6.6 (Task Made)

= J] tMain : 0x116F3208 (Stopped - Breakpoint Hit)
= y . a
_ CiE

B tMain : 0x116f5208

310

Figure 23-2

23 Debugging Projects
23.2 Using the Debug View

Additionally, the Debug view shows processes that were launched on the target
using Workbench, but which were not attached by the debugger. These launches
have a special entry in the Debug view, as shown in Figure 23-2, and are only
available to help you locate and terminate the process.

Debug View Showing Process Not Under Debugger Control

35 Debug 52 =0
Y
= % progStart - cobble,out - vixsim0 [Kernel Task]
p\- tProgStart @ 0x10753e40

23.2.1 Understanding the Debug View Display

When using the Debug view, it is crucial that you understand what is represented
by each level in the hierarchical tree of the process you are debugging. This is
because the level of the current selection in the Debug view affects the activities
that you can perform on it and controls the information displayed in other views.

Below are examples from the kernel task in Figure 23-1 for what might appear at
each level of the tree, with a general description of each level.

main -ball.out - vxsim0 [Kernel task] = launch level
launch name [launch type]

SIMNT: vxWorks 6.x (Task Mode) = debug target level
core name:OS name OS version (debug mode), can also be process name

tMain (Stopped - Breakpoint Hit) = thread level
thread name (state - reason for state change)

main() - main.c:59 = stack frame level
function(args) - file : line #, can also be address

In Workbench 3.0, stack arguments and argument values are not displayed in the
Debug view by default. This default setting was implemented to improve
debugging performance.

To activate stack-level arguments in the Debug view, select Window > Preferences
> Run/Debug > Performance, then select the Retrieve stack arguments for stack
frames in Debug View and Retrieve stack argument values for stack frames in
Debug View checkboxes. Click OK.

311

Wind River Workbench

User’s Guide, 3.0 (VxWorks Version)

NOTE: The stack arguments reflect the current value of the stack argument
variables, not the initial value of the stack arguments immediately after entering

the function call.

How the Selection in the Debug View Affects Activities

Choosing a specific level of your debug target controls what you can do with it.

Selected Level

launch

debug target

thread

stack frame

Monitoring Multiple Processes

Action Allowed

Terminate or disconnect from all processes/ cores for the launch
debug target.

Terminate or disconnect from the debug target.

Perform run control that applies to the whole process:
suspend /resume all threads.

Assign color to the debug target and all its threads/tasks.

Terminate or disconnect; terminates individual tasks/threads, if
supported by process/core.

Run control for thread: resume/suspend/step.
Assign color to thread.

Select of the stack frame causes the editor to display instruction
pointer and source for stack frame.

Perform same run control as on the thread.
Assign color to thread.

Assign corresponding color for parent thread.

When you start processes under debugger control, or attach the debugger to
running processes, they appear in the Debug view labeled with unique colors and
numbers. Likewise, breakpoints that are restricted to a particular process display
that process’s color/number context in the Breakpoints and Editor views.

For example, in Figure 23-3:

312

23 Debugging Projects
23.3 Stepping Through a Program

» The first breakpoint in main.c (a blue circle containing a 0) is restricted to ball,
the blue process numbered 0 in the Debug view.

= The second breakpoint (a solid blue-green circle) is unrestricted.

» The breakpoint in cobble.c (a red circle containing a 1) is restricted to cobble,
the red process numbered 1 in the Debug view.

The color assigned to a process or thread can be changed by right-clicking the
process or thread and selecting Color > specific color.

Figure 23-3 Debug View with Breakpoint and Editor Views

\€| main.c &3 \.€| cobble.c &2 =08 ﬁDebug X =0
int num spin = 2; S Lol R)3 A i3 s i S = | i 7
i o

= % main - ball.out - vaxsim0 [Kernel Task]
=¥ SIMNT: ¥xworks 6.6 (Task Made)
= ﬂ tMain : 0x116F3208 (Stopped - Breakpoint Hit)
=" main() - main.c:59

STATUZ progStart [w
{
synclemld = seml

int main (void)

int i: R p—— =" ox10022d90
EALL * p; atasemn g sl tMain : 0x116f8208
int seed = = % progStart - cobble,out - wxsim0 [Kernel Task]

nodelistGuardiel
| s
| s

= SIMNT: ¥xWorks 6.6 (Task Made)
= (“:’J] tProgStart : 0x116FbFSS {Stopped - Breakpaint Hit)

=1 pro o= =

=’ 0x10022d90

B tProgStart : Ol 16fbfSS

gridInit [):

srand (seed) ;
pCurrNode = NUL]

f% get started 9 Breakpoints 52 =0

XEPHAS e BEE T

for (i = 0; 1 <
{

hardNew () : tidCosmos = tasl

) (FUNCPTR) o @ fballfmain.c:61 (*Planted*, Restricted Scope)
@, fballfmain.c:63 {(*Planted*, Stop Triggering)
Far (i = n. i « % tidSchlep = tasl¥ @ [cobblefcobble.c:122 (*Planted*, Restricted Scope)
< > < b3

The Program Counter (the arrow in the left gutter) indicates the statement that will
execute when the process resumes.

23.3 Stepping Through a Program

Once a process has stopped under debugger control (most often, at a breakpoint),
you can single-step through the code, jump over subroutine calls, or resume
execution. What you can do depends on what you selected in the Debug view.

313

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

When the program is stopped, you can resume operation by clicking Resume on
the toolbar of the Debug view. If there are no more remaining breakpoints,
interrupts, or signals, the program will run to completion (unless you click
Suspend).

To step through the code one line at a time, in the Debug view, click Step Into. If
you have other data views open, such as the Registers or Variables views, they will
update with current values as you step through the code.

The effect of Step Into is somewhat different if you click

Toggle Disassembly/Instruction Step Mode in the Debug view, or when the
current routine has no debugging information. When this mode is set, the step
buttons cause instruction-level steps to be executed instead of source-level steps.
Also, the Disassembly view will appear instead of the Editor view.

To single-step without going into other subroutines, click Step Over instead of
Step Into.

While stepping through a program, you may conclude that the problem you are
interested in lies in the current subroutine’s caller, rather than at the stack level
where your process is suspended. In this situation, if you click Step Return in
Debug, execution continues until the current subroutine completes, then the
debugger regains control in the calling statement.

These run control options, as well as others, are available from the Run menu as
well as from the Debug view toolbar. For more information, open the Debug view
and press the help key for your host.

23.4 Using Debug Modes

Depending on the type of connection you created between the debugger and the
target, you may be able to operate the debugger in different modes. Different
debug modes have different capabilities and limitations, which are mostly related
to how the debugger interacts with the target and the processes that are being
debugged. You can also create multiple debug connections to the same target,
allowing you to debug in multiple modes simultaneously.

Target
Connection Type Supported Modes

314

WDB agent on
VxWorks

kgdb on Linux

ptrace agent on
Linux

Dual Mode on
Linux

23 Debugging Projects
23.4 Using Debug Modes

System Mode

Supports debugging the entire system using a single
execution context.

Supports limited debugging of individual kernel tasks. The
debugger can retrieve stack traces for individual tasks, but
if any of the tasks is resumed and suspended, even when
stepping, the entire system is resumed and suspended.

Task Mode

Supports debugging of kernel tasks. It allows suspending,
resuming, and stepping kernel tasks individually, without
affecting other kernel tasks.

Supports debugging of RTPs.

Kernel Mode

Only supports debugging the kernel using a single
execution context. When the system context is suspended,
the kernel, kernel threads, and user processes are
suspended also.

User Mode

Supports debugging user processes. Processes and threads
within processes are suspended and resumed
independently of each other.

In dual mode, you must toggle between user and kernel mode
depending on your debugging needs.

Kernel Mode (also called System Mode)

Only supports debugging the kernel using a single
execution context. When the system context is suspended,
the kernel, kernel threads, and user processes are

suspended also.

315

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

WDB agent on
VxWorks

kgdb on Linux

ptrace agent on
Linux

Dual Mode on
Linux

316

System Mode

Supports debugging the entire system using a single
execution context.

= Supportslimited debugging of individual kernel tasks. The
debugger can retrieve stack traces for individual tasks, but
if any of the tasks is resumed and suspended, even when
stepping, the entire system is resumed and suspended.

Task Mode

= Supports debugging of kernel tasks. It allows suspending,
resuming, and stepping kernel tasks individually, without
affecting other kernel tasks.

= Supports debugging of RTPs.
Kernel Mode

= Only supports debugging the kernel using a single
execution context. When the system context is suspended,
the kernel, kernel threads, and user processes are
suspended also.

User Mode

* Supports debugging user processes. Processes and threads
within processes are suspended and resumed
independently of each other.

In dual mode, you must toggle between user and kernel mode
depending on your debugging needs.

Kernel Mode (also called System Mode)

= Only supports debugging the kernel using a single
execution context. When the system context is suspended,
the kernel, kernel threads, and user processes are
suspended also.

23 Debugging Projects
23.4 Using Debug Modes

User Mode

Supports debugging user processes. Processes and threads
within processes are suspended and resumed
independently of each other.

OCD System Mode

Supports debugging the entire system using a single
execution context.

OCD with OS System Mode

Awareness for
VxWorks

Supports debugging entire system using a single execution
context, including retrieving the full stack trace when the
system is suspended.

Supports limited debugging of individual kernel tasks. The
debugger can retrieve stack traces for individual tasks, but
if any of the tasks is resumed and suspended, even when
stepping, the entire system is resumed and suspended.

Supports viewing of individual RTPs, but does not provide
run control unless the target has been configured for
one-to-one MMU virtual page mapping.

OCD with OS System Mode

Awareness for
Linux

Only supports debugging the kernel and kernel modules
using a single execution context.

Supports viewing of processes, but the debugger cannot be
attached to them.

Kernel objects are not available.

As a general rule, when you are debugging the target in user mode or task mode,
the debugger interacts only with the process or processes being debugged. If you
suspend this process, other processes keep running. This mode is less intrusive, as
it allows you to control the selected process or thread while the rest of the system
can continue to operate normally.

When you are debugging in system mode, the debugger interacts with the entire
system at once, so if you suspend one task, all processes and kernel tasks running
on the system are suspended as well. This gives you increased control and
visibility into what is happening on the system, but it is also very disruptive.

317

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

For example, if the system maintains network connections with other systems,
suspending it will cause the others to lose their network connections with the

debugged system.

23.4.1 Setting and Recognizing the Debug Mode of a Connection
Right-clicking on a connection in the Remote Systems or the Debug view and

selecting Target Mode allows you to specify a debug mode for the connection. The
currently active mode is indicated by a checkmark.

%5 Debug 52 I AR

=By tMain : 01 16F5208 (Stopy
=" main() - main.c:59

= Copy Stack Chrl+C
Find... Chrl+F

]
= = 0x10022d90 #) Target Mode
o tain : Dx116f8208
= % progStart - cobble, out - wxsim0 [K
= SIMNT: viwiorks 6.6 (Task Mo

P LT - . e

When you create a new debug connection through a launch, the connection debug
mode (either system or task mode) is saved as a property of the launch. This mode
is listed in parentheses at the end of the label of the target node in the Debug view.

Switching Debug Modes

For target connections that support switching between modes, if you switch the
debug mode while a debug connection is active, this debug connection will
become unavailable in the Debug view, as shown in Figure 23-4. When a debug
connection is unavailable, no operations can be performed on it, except for
disconnecting the debug connection.

Figure 23-4 Debug View Showing Unavailable Connections

%5 Debug 52 17 A i ¥ = F
= % main - ball.out - vaxsim0 [Kernel Task]

_ﬂ <unavailable> SIMNT: ks 6.6 (Task Mode)

= @J <unavailable = tMain ; 0x116F3208 {Stopped - Breakpaint Hit)
' cunavailables maing) - main,c:59
T <unavailable 0x10022d90

B tMain : 0x116f5208

318

23 Debugging Projects
23.4 Using Debug Modes

In the Remote Systems view, if you switch the target to system mode, every node
in the tree will have a system mode icon painted on top. If the system mode icon
does not appear, then the node and processes are in task or user mode.

23.4.2 Debugging Multiple Target Connections

You can debug processes on the same target using multiple target connections
simultaneously. An example of this setup is a Linux target that has a user mode
ptrace agent installed for debugging processes, and an OCD connection for halting
the system and debugging the kernel.

In this situation, if the system is halted using the OCD (system mode) target
connection, the user mode ptrace agent will also be halted, and the user mode
target connection will be lost. When the system is resumed, the user mode target
connection will be re-established.

The Remote Systems and the Debug view (if a debug session is active) both
provide feedback in this scenario. The Remote Systems view hides all the process
information that was visible for the target, and displays a label

back-end connection lost next to the target node. The Debug view does not end
the active debug session, but it shows it as being unavailable, in the same manner
as if the debug mode was switched.

23.4.3 Disconnecting and Terminating Processes

Disconnecting from a process or core detaches the debugger, but leaves the process
or core in its current state.

Terminating a process actually kills the process on the target.

NOTE: If the selected target supports terminating individual threads, you can
select a thread and terminate only that thread.

23.4.4 Configuring Debug Settings for a Custom Editor
By default, the Workbench Editor opens when the debugger stops in a given file.

To cause a different editor to open for particular file types, modify the mappings
in Window > Preferences > General > Editors > File Associations.

319

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Modifying these mappings takes care of editor selection and painting of the
instruction pointer in the editor gutter. However, to associate other debugging
actions with the new editor, you must modify the Eclipse extension point
org.eclipse.ui.editorActions.

For example, the breakpoint double-click action associated with the Workbench
Editor looks like this:

<extension point="org.eclipse.uil.editorActions">
<editorContribution
targetID="com.windriver.ide.editor.c"
id="com.windriver.ide.debug.CSourceFileEditor.BreakpointRulerActions">
<action
label="Dummy.label"
class="com.windriver.ide.debug.internal.ui.breakpoints.actions.ToggleB
reakpointRulerAction"
actionID="RulerDoubleClick"
id="com.windriver.ide.debug.ui.actions.toggleBreakpointRulerAction.c">
</action>
</editorContribution>

Other features that are by default configured to work only with the Workbench
Editor are Run to line, Set PC to here, and Watch. These features are configured
through following extensions:

<viewerContribution
targetID="#WREditorContext"
id="com.windriver.ide.debug.ui.editprPopup.actions">
<visibility>
<and>
<systemProperty
name="com.windriver.ide.debug.ui.debuggerActive"
value="true"/>
<pluginState value="activated" id="com.windriver.ide.debug.ui"/>
</and>
</visibility>
<action
label="%WatchAction.label"
icon="icons/actions/hover/watch_exp.gif"
menubarPath="group.debug"
helpContextId="com.windriver.ide.debug.ui.watchAction_context"
class="com.windriver.ide.debug.internal.ui.actions.WatchAction"
id="com.windriver.ide.debug.ui.editor.watchAction">
<enablement>
<systemProperty
name="com.windriver.ide.debug.ui.debuggerActive"
value="true">
</systemProperty>
</enablement>
</action>
<action
label="%SetPcToHereAction.label"
menubarPath="group.debug"

320

23 Debugging Projects
23.5 Understanding Source Lookup Path Settings

helpContextId="com.windriver.ide.debug.ui.setPcToHereAction_context"
class="com.windriver.ide.debug.internal.ui.actions.SetPcToHereAction"
id="com.windriver.ide.debug.ui.editor.setPcToHereAction">

</action>

<action
label="%RunToLineAction.label™"
icon="icons/actions/hover/run_to_line.gif"
menubarPath="group.debug"
helpContextId="com.windriver.ide.debug.ui.runToLineAction_context"
definitionId="org.eclipse.debug.ui.commands.RunToLine"
class="org.eclipse.debug.ui.actions.RunToLineActionDelegate"
id="com.windriver.ide.debug.ui.editor.runToLineAction">

</action>

</viewerContribution>

Please refer to Eclipse SDK documentation for more information on these
extension points.

23.5 Understanding Source Lookup Path Settings

Source Lookup Path settings allow you to map source file paths that the debugger
retrieves from an executable's symbol data (also known as the debugger path) to
the correct location of the source files on the host file system and in your
workspace.

The compiler generated these paths when the executable was built, but if you are
debugging the executable on a different machine, then the paths to those files are
no longer valid.

For information about how to set Source Lookup Path settings, open the source
lookup dialog and press the help key for your host.

23.6 Using the Disassembly View

Use the Disassembly view:

* To examine a program when you do not have full source code for it (such as
when your code calls external libraries).

321

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

» To examine a program that was compiled without debug information.

= When you suspect that your compiler is generating bad code (the view
displays exactly what the compiler generated for each block of code).

23.6.1 Opening the Disassembly View

There are several ways to display the Disassembly view.

* Select Window > Show View > Other, then start typing “disassembly” in the
filter text field. As you type, the number of views will narrow; select the
Disassembly view from the list.

» The Disassembly view appears automatically if the Debug view cannot
display the appropriate source code file in the Editor (it appears as a tab in the
Editor, labeled with the target connection being debugged).

* You can open the Disassembly view manually by clicking the Debug view’s
Toggle Assembly Stepping Mode toolbar icon.

23.6.2 Understanding the Disassembly View Display

The Disassembly view shows source code from your file (when available),
interspersed with instructions generated by the compiler. As you step through
your code, the Disassembly view keeps track of the last four instructions where the
process was suspended. The current instruction is highlighted in the strongest
color, with each previous step fading in color intensity.

322

Figure 23-5

23 Debugging Projects
23.7 Using the Kernel Objects View

Disassembly View

=2 main - ball,out - wxsimd £3 \.€| main.c \.e| grid.c =0
tMain ¢ 0x116F3208
X a
85 while (! finished)
107408043 : cmp dword ptr [finished] .0
10740ach: Jne 0x107404LE3S
89 {
=ln) for (p = pMovableBalls; p !'=
10740acd: MoV ebx,dword ptr [0x10393DCSE]
10740543 test ehx,ebx
10740=zd5: je O0x10740AC4
91 {
9z p->pEallMove (p):
10740547 : push ehx
10740545 : call near [ebx+0x25]
10740adb: MoV ehx,dword ptr [ebx+wrs ker
10740ade: add esp,4
93 ¥
10740=zel: Jmp 0x107404D3
94 ¥
95
=1 return 0O;
10740523 : ®or eax, eax .
£ >

If the Disassembly view displays a color band at the top and bottom (here, the band
is blue), then it is associated with the process with that color context in the Debug
view; if no color band is displayed, then the view will update as you select
different processes in the Debug view.

For more information, open the view and press the help key for your host.

23.7 Using the Kernel Objects View

Use the Kernel Objects view to monitor data structures such as kernel tasks, RTPs,
message queues, semaphores, and other resources.

During multi-process debugging, you can use the Kernel Objects view to monitor
a semaphore used to control a device that two processes are using. Or you can set
an RTP that uses a system resource to watch that resource during Step Over
system calls.

323

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

To open the Kernel Objects view:
1. Connect to your target in the Remote Systems view (see 18.4.2 Connecting to the
Target, p.251).

2. Click the Kernel Objects tab to bring it to the foreground, then click the
pull-down arrow and select your target connection.

EE Remote Systems m Kernel Objects &3 =0
Kernel Objects g - -
Ta display kernel obj o

3. The Kernel Objects view appears.

ﬁﬁRemote Syskems m Kernel Objects &2 =0
Kernel Objects {vxsir g L ;.;:;) (,F g{g} (‘§§ =
£ 10 Devices ~

110 Drivers

11 File Descriptors
I5Rs

Kernel Modules

Kernel Tasks

Memory Partitions
Message Queues
POSTA Message Queues
POSIX Semaphores
Real Time Processes
Semaphores

Shared Data w

+-

F

i

23.7.1 Understanding the Kernel Objects View Display

System resources are displayed in a hierarchical tree.

1. To see specific instances of each type of resource, or to display which tasks
belong to which executable, click the plus sign to expand the tree.

2. To examine a resource in the Kernel Objects view, double-click it. Properties
and their current values are displayed in the Properties view.

324

23 Debugging Projects
23.7 Using the Kernel Objects View

ﬂﬁRemote Syste m Kernel Object &3 =0 }QIError Log | (21 Problems | E Properties 52 E8 Build Console =] :‘=:5> ¥ =8
Kernel Objects g A (,F .g'§:? ¢§§ | Property Yalue L
=& Kernel Tasks | BriefInfo
@ # checkstack
@ tEncTask = Classlshfow
= Detaillnfo
: :LTJ?DTLC':; entry 0x1004D340
@ tamwar entrySymbol jobTask.
errorStatus 00
@ rainloTaskl event_options 00
@ thinloTaskD event_sysflags 00
B tMeto eventReceived 0x0
@ jprom_syslogd eventsWanted 0x0
@ jpnetd name tlobTask
@ twdbTask objectOptions Wy _SUPERYISOR_MODE| vy _UNERES »
@ tshello |z >

To copy a value to another view, right-click it in the Properties view and select
Copy.

To change a value, select it and type in a new value. If you have copied a value
from another view, right-click the value in the Properties view and select
Paste.

If you change the processes or tasks running on the target, select Refresh
Selected or Refresh All to update the display in the Kernel Objects view. To
have the display refresh when a task is suspended, select Refresh on Suspend.

If you want to remove some types of resources from the display, right-click
them and select Add to Filter. Then when you toggle the Filter toolbar icon,
these resources will appear or disappear so you can restrict the list to only the
resources you want to monitor.

NOTE: To improve responsiveness, the Kernel Objects view updates the
display or fetches information only when you specifically request it.

For a guide to the icons in the Kernel Objects view, open the view and press the
help key for your host.

325

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

23.8 Run/Debug Preferences

For information about how to set debug and run control preferences, open the
Debug view and press the help key for your host.

326

24

Troubleshooting

24.1 Introduction 327

24.2 Startup Problems 328

24.3 General Problems 331

24.4 Error Messages 333

24.5 Troubleshooting VxWorks Configuration Problems 345
24.6 Error Log View 348

24.7 Error Logs Generated by Workbench 348

24.8 Technical Support 354

24.1 Introduction

This chapter displays some of the errors or problems that may occur at different
points in the development process, and what steps you can take to correct them. It
also provides information about the log files that Workbench can collect, and how
you can create a .zip file of those logs to send to Wind River support.

327

Wind River Workbench

User’s Guide, 3.0 (VxWorks Version)

24.2 Startup Problems

This section discusses some of the problems that might cause Workbench to have
trouble starting.

Workspace Metadata is Corrupted

If Workbench crashes, some of your settings could get corrupted, preventing
Workbench from restarting properly.

1.

328

To test if your workspace is the source of the problem, start Workbench,
specifying a different workspace name.

On Windows

Select Start > Programs > Wind River > Wind River Workbench 3.x > Wind
River Workbench 3.x, then when Workbench asks you to choose a workspace,
enter a new name (workspace2 or whatever you prefer).

Or, if the Workbench startup process does not get all the way to the Workspace
Launcher dialog, or does not start at all, start it from a terminal window:

> installDir\workbench-3.x\wrwb\3.x\x86-win32\bin\wrwb.exe -data newWorkspace

On Linux or Solaris

Start Workbench from a terminal window, specifying a new workspace name:

> ./startWorkbench.sh -data newWorkspace

If Workbench starts successfully with a new workspace, exit Workbench, then
delete the .metadata directory in your original Workbench installation
(installDir/workspace/.metadata).

Restart Workbench using your original workspace. The .metadata directory
will be recreated and should work correctly.

Because the .metadata directory contains project information, that information
will be lost when you delete the directory.

To recreate your project settings, reimport your projects into Workbench
(File > Import > Existing Project into Workspace). For more information
about importing projects, open the Import File dialog and press the help key
for your host.

24 Troubleshooting
24.2 Startup Problems

.workbench-3.x Directory is Corrupted

1.

To test if your %USERPROFILE%/.workbench-3.x directory is the source of
the problem, rename it to a different name, then restart Workbench.

NOTE: Make sure you rename the %USERPROFILE%/.workbench-3.x
directory (for example, on Windows XP it could be C:\Documents and
Settings \username\.workbench-3.x).

Do not rename the installDir/workbench-3.x directory.

If Workbench starts successfully, exit Workbench, then delete the old version
of your %USERPROFILE%/.workbench-3.x directory (the one you renamed).

Restart Workbench. The %USERPROFILE %/.workbench-3.x will be recreated
and should work correctly.

Because the .workbench-3.x directory contains Eclipse configuration
information, any information about manually configured Eclipse extensions
or plug-ins will be lost when you delete the directory.

To make them available again within Workbench, you must re-register them
(Help > Software Updates > Manage Configuration). For more information
about registering plug-ins, see Adding Plug-in Functionality to Workbench,
p-360.

Registry Unreachable (Windows)

When Workbench starts and it does not detect a default Wind River registry, it
launches one. After you quit Workbench, the registry is kept running since it is
needed by all Wind River tools. You do not need to ever kill the registry.

If you do stop it, however, it stores its internal database in the file
installDir/.wind/wtxregd.hostname.

If this file later becomes unwritable, the registry cannot start, and Workbench will
display an error.

329

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

% Unhandled Exception fz|
Serious intemnal emor occumed while executing: wieregd. exe Slufidan
Eror log has been generated and saved as:
el d: reqd-Problen 0 5

If pou want to file bug report, please e-mail thiz file to: supporbiEiwrs. com

'ou may by bo click Continue and attempt to zave all unzaved data before shutting down
the program.

Unfartunately the serioushess of this eror may result in some loss of data. If pou
Continue, it iz recommended that you save any unzaved data and exit the program
imrediately after.

!

Details »»

This error may also occur if you install Workbench to a directory to which you do
not have write access, such as installing Workbench as an administrator and then
trying to run it as yourself.

Workspace Cannot be Locked (Linux and Solaris)

If you start Workbench and select a workspace, you may see a Workspace Cannot
be Locked error.

Workspace Cannot be Locked

@ Could not launch the product because the associabed workspace is currently
inuse,

There are three possible causes for this error:

1. Another user has opened the same workspace. A workspace can only be used
by one user at a time.

2. You installed Workbench on a file system that does not support locking.

Use the following command at a terminal prompt to start Workbench so that
it creates your workspace on a file system which does allow locking, such as a
directory on a local disk:

./startWorkbench.sh -configuration directory that allows locking

For example:

330

24 Troubleshooting
24.3 General Problems

./startWorkbench.sh -configuration /usr/local/yourName

3. Onsome window managers (e.g. GNOME) you can close the window without
closing the program itself and deleting all running processes. This results in
running processes maintaining a lock on special files in the workspace that
mark a workspace as open.

To solve the problem, kill all Workbench and Java processes that have open file
handles in your workspace directory.

24.2.1 Pango Error on Linux
If the file pango.modules is not world readable for some reason, Workbench will
not start and you may see an error in a terminal window similar to

** (<unknown>:21465) : WARNING **: No builtin or dynamically loaded modules
were found. Pango will not work correctly. This probably means there was an
error in the creation of:

' /etc/pango/pango.modules’
You may be able to recreate this file by running pango-querymodules.

Changing the file’s permissions to 644 will cause Workbench to launch properly.

24.3 General Problems

This section describes problems that are not associated with any particular
Workbench component.

24.3.1 Java Development Tools (JDT) Dependency
Some third party plug-ins have a dependency on JDT. If a plug-in you are

interested in requires JDT, you should download it from the Eclipse Download
Center at http://www.eclipse.org.

24.3.2 Help System Does Not Display on Solaris or Linux

Eclipse comes preconfigured to use Mozilla on Solaris and Linux, and it expects it
to be in your path. If Mozilla is not installed, or is not in your path, you must set

331

http://www.eclipse.org

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

the correct path to the browser or Workbench will not display help or other
documentation.

To manually set the browser path in Workbench:
1. Select Window > Preferences > Help.

2. Click Custom Browser (user defined program), then in the
Custom Browser command field type or browse to your browser launch
program. Click OK.

* On Solaris, a sample Netscape browser launch command is
"usr/dt/bin/netscape"” %1, though you should enter the command line
that is appropriate for your browser.

* On Linux, sample Mozilla browser launch commands are
“[ust/bin/mozilla” %1 and kfmclient openURL %]1, though you should
enter the command line that is appropriate for your browser.

3. To access the context-sensitive help for a particular view or dialog, click the
view or open the dialog, then press Ctrl+F1.

NOTE: The Help button on Solaris keyboards does not open Workbench help
due to a problem in Solaris/GTK+. Instead, use Ctrl+F1 to access help.

24.3.3 Help System Does Not Display on Windows
The help system can sometimes fail to display help or other documentation due to
a problem in McAfee VirusScan 8.0.0i (and possibly other virus scanners as well).

For McAfee VirusScan 8.0.0i, the problem is known to be resolved with patch10
which can be obtained from Network Associates. As a workaround, the problem
can be avoided by making sure that McAfee on-access-scan is turned on and
allowed to scan the TEMP directory as well as *.jar files.

More details regarding this issue have been collected by Eclipse Bugzilla #87371 at
https://bugs.eclipse.org/bugs/show_bug.cgi?id=87371.

24.3.4 Removing Unwanted Target Connections

If you have trouble deleting a target connection session for any reason, use wixtcl.

1. Start wixtcl from a terminal window.

332

https://bugs.eclipse.org/bugs/show_bug.cgi?id=87371

24 Troubleshooting
24.4 Error Messages

% wtxtcl
2. List all entries in the registry.
wtxtcl> wtxInfo
3. Unregister the offending entry or entries (the full entry name must be used).

wtxtcl> wtxUnregister tgt_localhost@manebogad

24.4 Error Messages
Some errors display an error dialog directly on the screen, while others that

occurred during background processing only display this icon in the lower right
corner of Workbench window.

Hovering your mouse over the icon displays a pop-up with a synopsis of the error.

Later, if you closed the error dialog but want to see the entire error message again,
double-click the icon to display the error dialog or look in the Eclipse Log, p.349.

This section explains error messages that appear in each Workbench component.

24.4.1 Project System Errors

For general information about the Project System, see 4. Projects Overview.

Project Already Exists
If you deleted a project from the Project Explorer but chose not to delete the project -
24

contents from your workspace, then you try to create a new project with the same
name as the old project, you will see this error:

333

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

% Project information already exists

The directory "C: windRiveriworkspacefball"already contains project
_‘\r/‘ information.

Continue aryway? (Project files will be overwritten, Otherwise use the import
wizard to get the project into the workspace.)

If you click Yes, your old project contents will be overwritten with the new project.
If you want to recreate the old project in Wind River Workbench, click No, then
right-click in the Project Explorer, select Import, then select

Existing Project into Workspace.

Type the name of your old project or browse to the old project directory in your
workspace, click OK, then click Finish. Your old project will appear in the Project
Explorer.

Cannot Create Project Description Files in Read-only Location

When Workbench creates a project, it creates a .wrproject file and other metadata
files it needs to track settings, preferences, and other project-specific information.
So if your source files are in a read-only location, Workbench cannot create your
project there.

To work around this problem, you must create a new project in your workspace,
link in your source files using one of the following options:
Option 1—Use the Eclipse linked resource mechanism.

1. Create a project in your workspace (user-defined or managed build') by
selecting File > New > project type.

2. Typeinaname for your project, select Create project in workspace, then click
Next.

3. Click Next to accept the default settings in the next dialogs, then click Finish
to create your project.

1. Project types that offer a managed build option are VxWorks Downloadable Kernel Module,
Native Application, VxWorks Real-time Process, VxWorks Shared Library, and Standalone
Application projects.

334

24 Troubleshooting
24.4 Error Messages

4. In the Project Explorer, right-click your new project and select New > Folder.
The Folder dialog appears.

5. Type in a name for your folder, then click Advanced and select the
Link to folder in the file system checkbox.

6. Type the path or click Browse and navigate to your source root directory, then
click OK to create the new folder.

7. Click the plus next to the folder to open it, and you will see the source files
from your read-only source directory. Eclipse calls items incorporated into
projects in this way linked resources.

Option 2—Use Symbolic Links (Linux/Solaris only)

1. Create a new project in your workspace (any project type supports this).

2. Inacommand shell, create a symbolic link to the read-only directory in the
project root directory.

3. In the Project Explorer, press F5 to refresh the display. The directory and all
sources in it appear.

24.4.2 Build System Errors

For general information about the Build System, see 16. Building Projects.

Building Projects While Connected to a Target

If you try to build a project while you have a target connection active in the Remote
Systems view, you may see an error. This happens when any of the files that need
to be built contain symbol information, and therefore have been locked by the
debugger.

You can continue your build by clicking OK, but be advised that you will need to
disconnect your target and restart the build if you see an Build Console error
message similar to dld: Can’t create file XXX: Permission denied.

To avoid this problem, Workbench loads files up to a certain size completely into
memory so no file lock is needed. To specify the largest symbol file that can be
loaded into memory, select Window > Preferences > Target Management >
Debug Server Settings > Symbol File Handling Settings and specify a file size up
to 60M.

335

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Workflow for Cases Where You Need to Continually Rebuild Objects in Use by Your Target

1. Create a launch configuration for your debugging task. When you need to
disconnect your target in order to free your images for the build process, the
launch configuration allows you to automatically connect, build, download,
and run your process with a single click.

You can even specify that your project should be rebuilt before it is launched
by selecting Window > Preferences > Run/Debug > Launching, and then
selecting Build (if necessary) before launching. For more information about
launch configurations, see 21. Launching Programs.

* When you work with processes or RTPs, make sure that your process is
terminated before you rebuild or relaunch. You can then safely ignore the
warning (and check the Do not show this dialog again box).

* When you work with Downloadable Kernel Modules or user-built kernel
images, just let the build proceed. If the Link error message appears, either
disconnect your target or unload all modules, then rebuild or relaunch.

Workflow for Using On-Chip Debugging to Debug Standalone Modules Loaded on Your Target

1. Createa Reset and Download-type launch configuration for your application,
and enable the Build before launch option (by selecting Window >
Preferences > Run/Debug > Launching > Build (if required) before
launching).

2. Run the launch configuration to debug your code. Make any changes to the
source files and save them. Note that saving before unloading the symbols
allows the debugger to track your breakpoints.

3. Before relaunching or rebuilding, unload the modules from the target by
selecting them in the Remote Systems view and pressing the Delete key (you
can multi-select if there are multiple modules).

4. Press the Debug button to relaunch your application. It will automatically
rebuild, redownload, reset, and attach the debugger.

Problems Building Workbench 2.x Projects Imported Into Workbench 3.0

If you have trouble building projects that you imported from a previous version of
Workbench, check if the .wrproject file contains an entry for platform. If not, the
project is not compatible and has to be patched to work with the newest version of
Workbench.

336

24 Troubleshooting
24.4 Error Messages

To patch the .wrproject file:

1. Open the file with the Workbench text editor by right-clicking the file in the
Project Explorer, then selecting Open With > Text Editor.

2. Locate the line at the beginning of the file similar to:
<properties root="1" type="RealTimeProcessProject"/>

3. Add platform="projectplatform" to the end of the line, with projectplatform
replaced by one of VxWorks, Linux, or Standalone, depending on the
platform to which the project type belongs.

4. The result should appear similar to the following:

<?xml wersion="1.0" encoding="UTF-5"2> A
<wrxml>
<properties root="1" type="RealTimePrDcebsPrDject" platform="VailWorks",/>
<attributes>
<maplttribute>

<listhrccribute key="ELD::Info|GlobalMacros™:>
<stringlttribute value="DO_STRIP"£>
</ listhittributer
<gtringlitrribute key="ELD::Info|GlobalMacro|DO STRIP" wvalue="0"/>
<listhttribute key="ELD::Info| Incl|HIPS3Z2sfdiabh RTP">

5. Save and close the .wrproject file. Your project should now build properly.

Build All Command Builds Projects Whose Resources have not Changed

Workbench may enter a state where selecting Project > Build All builds projects
whose resources have not changed since the last build.

This happens only if Auto-Build (Project > Build Automatically) was previously
enabled. If you switch this feature off, you must do a manual clean for all projects
(Project > Clean) in order to re-enable building for previously built projects.

24.4.3 Remote Systems View Errors

For general information about the Remote Systems view, see 18. Connecting to
Targets.

337

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Troubleshooting Connecting to a Target

If you have trouble connecting to your target, try these steps:

1. Check that the target is switched on and the network connection is active. In a
terminal window on the host, type:

ping n.n.n.n

where n.n.n.n is the IP address of your target.

2. Verify the target Name/IP address in the Edit the Target Connection dialog
(right-click the target connection in the Remote Systems view then select
Properties.)

3. Choose the actual target CPU type from the drop-down list if the CPU type in
the Edit the Target Connection dialog is set to default from target.

4. Verify that a target server is running. If it is not:

a. Open the Error Log view, then find and copy the message containing the
command line used to launch the target server.

b. Paste the target server command line into a terminal window, then press
ENTER.

c. Check to see if the target server is now running. If not, check the Error Log
view for any error messages.

5. Check if the dfwserver is running (on Linux and Solaris, use the ps command
from a terminal window; on Windows, check the Windows Task Manager). If
multiple dfwservers are running, kill them all, then try to reconnect.

6. When starting the VxWorks simulator on Solaris, the path environment
variable must include /usr/openwin/bin so that it can find xterm. If xterm is
not in the path, the simulator connection will fail.

7. Check that the WDB connection to the target is fully operational by
right-clicking a target in the Remote Systems view and selecting
Target Tools > Run Debugger WTX Connection Test. This tool will verify
that the communication link is correct. If there are errors, you can use the WTX
and WDB logs to better track down what is wrong with the target.

RPC Timeout Errors

If you get an RPC timeout error when connecting to a target, it means that either
the agent or the target server is not responsive. There can be many reasons for this:

338

24 Troubleshooting
24.4 Error Messages

» The agent died, or is busy.

= The target crashed.

= The target server is doing something heavy (like a load operation).
* The host’s CPU is loaded with another process.

To work around this problem, try changing the default timeouts:

1. Change the WTX client timeout by selecting Window > Preferences, then
selecting Target Management and adding a few seconds to the fields under
Communication timeouts.

2. Change the Backend request timeout by right-clicking your target connection
in the Remote Systems view, then selecting Properties.

a. On the Target Server Options tab, click Edit beside the Options field.
b. On the Common tab, add a few seconds to the Backend request timeout.

If adjusting the timeouts does not help, you can use the WTX and WDB log files,
or the target server output, to better track down the problem. For more
information about collecting log files, see 24.7 Error Logs Generated by Workbench,
p-348.

Exception on Attach Errors

If you try to run a task or launch an RTP and the Remote Systems view is unable
to comply, it will display an Exception on Attach error containing useful
information.

Build errors can lead to a problem launching your task or process; if one of the
following suggestions does not solve the problem, try launching one of the
pre-built example projects delivered with Workbench.

If the host shell was running when you tried to launch your task or process, try
closing the host shell and launching again.

Error Launching a VxWorks Real-time Process on Linux

If you get an error when launching a VxWorks RTP from a Red Hat Workstation,
update 3 host system, try these steps:

1. Delete boothost: from the beginning of the Exec Path on Target field of the
Run Real-time Process dialog.

339

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

2. Add anew object path mapping to the target server connection properties that
does not have boothost: in the host path.

Error When Running a Task Without Downloading First

You will see the following error if you try to run a kernel task without first
downloading it to your target:

% Exception on Attach:

Failed to launch KernelTask main on vxsimd@hostname:
Symbol not Found

Processes can be run directly from the Project Explorer, but kernel tasks must be
downloaded before running. Right-click the output file, select Download, fill in
the Download dialog, then click OK.

If you see this error and you did download the file, open a host shell for your
connection, and try to run the task from the host shell. Type:

lkup entrypoint

to see if your entry point is there.

Downloading an Output File Built with the Wrong Build Spec

If you built a project with a build spec for one target, then try to download the
output file to a different target (for example, you build the project for the
simulator, but now you want to run it on a hardware target), you will see this error:

%) Download Failed

@ WT¥ Loader Errar: Object module not approptiate

340

24 Troubleshooting
24.4 Error Messages

To select the correct build spec, right-click the output file in the Project Explorer,
select Set Active Build Spec, select the appropriate build spec from the dialog,
then rebuild your project.

Your project should now download properly.

Error if Exec Path on Target is Incorrect

If the Exec Path on Target field of the Run Real-time Processes dialog does not
contain the correct target-side path to the executable file (if, for example, it contains
the equivalent host-side path instead) you will see this error:

% Exception on Attach:

Failed to launch RTP philosophers.vxe on sxsimO@host :
Create Failed, Target errno reported: S_rtplib_IMYALID_FILE

Please check that the target can see the file as well as all required shared
libraries through its filesystem, and ensure that the host-copy is accessible by
the tools, Trying ko run the original command in a shell on the target may
produce additional errors For diagnostics,

Commandline used:
i windriver fworkspace/philosophers) SIMPEMTIUMdiab_RTP_DEBUGphilosopl

1. If the target-side path looks correct but you still get this error, check the
following:

a. Recheck the path you gave.
Even if you used the Browse button to locate the file, it will be located in
the host file system. The Object Path Mapping that is defined for your
target connection will translate it to a path in the target file system, which
is then visible in the Exec Path edit field. If your Object Path Mapping is
wrong, the Exec Path will be wrong, so it is important to check.

Troubleshooting Running a Process

If you have trouble running your process from the Run Process or
Run Real-time Process dialog, try these steps:

341

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

1. Ifthe error Cannot create context appears, verify that the Exec Path on Target
is a path that is actually visible on the target (and doesn’t contain the
equivalent host-side path instead).

a. Right-click the process executable in the Project Explorer or right-click
Processes or Real-time Processes in the Remote Systems view and select
Run Real-time Process.

b. Copy the exec path and paste it into the Output View > Target
Console Tab (at the bottom of the view). Verify that the program runs
directly on the target.

2. If the program runs but symbols are not found, manually load the symbols by
right-clicking the process and selecting Load Symbols.

3. Check your Object Path Mappings to be sure that target paths are mapped to
the correct host paths. See 19.2.3 Object Path Mappings Page, p.264 for details on
setting up your Object Path Mappings.

a. Open a host shell and type:

1ls execpath
If you have a target shell, type the same command.

b. In the host shell, type:

devs

to see if the prefix of the Exec Path (for example, host:) is correct.

4. If the Exec Path is correct, try increasing the back-end timeout value of your
target server connection (see Advanced Target Server Options, p.262 for details).

5. From a target shell or Linux console, try to launch the RTP or process.

6. Verify that the vxWorks node in the Remote Systems view has a small S added
to the icon, indicating that symbols have been loaded for the Kernel.

a. If not, verify that the last line of your Object Path Mappings table
displays a target path of <any> corresponding to a host path of
<leave path unchanged>.

24.4.4 Getting an S_rtp_INVALID_FILE Error When Trying to Execute an RTP

This error is generated when the path and name of the RTP executable are not
provided, or when the executable cannot be found using the indicated path. Unlike
with downloadable kernel modules, RTP executable files are accessed and loaded
from the VxWorks target, not from the host running Workbench.

342

24 Troubleshooting
24.4 Error Messages

Therefore the path to the executable file must be valid from the point of view of the
VxWorks target itself. Correctly specifying the path may involve including the
proper device name in front of the path. For example:

$ host:d:/my.vxe

24.4.5 Launch Configuration Errors

If a launch configuration is not working properly, delete it by clicking Delete
below the Debug dialog Configurations list.

If you cannot delete the launch configuration using the Delete button, navigate to
installDirlworkspace/.metadata/.plugins/org.eclipse.debug.core/.launches and
delete the .launch file with the exact name of the problematic launch configuration

A WARNING: Do not delete any of the com.windriver.ide.*.launch files.

Troubleshooting Launch Configurations

If you click the Debug icon (or click the Debug button from the

Launch Configuration dialog) and get a “Cannot create context” error, check the
Exec Path on the Main tab of the Debug dialog to be sure it is correct. Also check
your Object Path Mappings (see 19.2.3 Object Path Mappings Page, p.264 for
information about Object Path Mappings).

If you still get the error, check to be sure that the process you are trying to run is a
Real-time Process, and not a Downloadable Kernel Module or some other type of
executable.

For general information about launch configurations, see 21. Launching Programs.

24.4.6 Debugger Errors

Shared Library Problems

If you are having trouble working with shared libraries, try these steps:

1. Ifyouare trying to run an executable and shared libraries located on your host
machine's disk, make sure you can see the host machine's disk and the location
of the shared libraries from the target.

343

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Use a target shell, or the @ls command from a host shell, to check this.

2. Set SHAREDLIB_VERSION to 1 in order to generate the proper versioned
shared object.

3. Make sure that a copy of libc.so.1 is located in a place where the RTP has
access to it. By default it should be located with the executable files, but you
may locate it elsewhere as long as you use the compiler's -rpath option or the
environment variable LD_LIBRARY_PATH.

24.4.7 Source Analysis Errors

If at any point Workbench is unable to open the cross reference database, you will
see this error:

% Question

<P Failed to open database containing cross references!

Retry | Recover | Clear database Close

There are many reasons the cross reference database may be inaccessible,
including:

» The database was not closed properly at the end of the last Workbench session
running within the same workspace. This happens if the process running
Workbench crashed or was killed.

» Various problems with the file system, including wrong permissions, a
network drive that is unavailable, or a disk that is full.

You have several choices for how to respond to this error dialog:

* Retry—the same operation is performed again, possibly with the same failure
again.

* Recover—the database is opened and a repair operation is attempted. This
may take some time but you may recover your cross reference data.

* Clear Database—the database is deleted and a new one is created. All your
cross reference data is lost and your workspace will be reparsed the next time
you open the call hierarchy.

344

24 Troubleshooting
24.5 Troubleshooting VxWorks Configuration Problems

» Close—the database is closed. No cross reference data is available, nor will it
be generated. At the beginning of the next Workbench session, an attempt to
open the database will be made again.

24.5 Troubleshooting VxWorks Configuration Problems

If you encountered problems booting or exercising VxWorks, there are many
possible causes. This section discusses the most common sources of error. Please
read 24.5.1 What to Check, p.345 before contacting Wind River customer support.
Often, you can locate the problem just by re-checking the installation steps, your
hardware configuration, and so forth.

24.5.1 What to Check

Most often, a problem with running VxWorks can be traced to configuration errors
in hardware or software. Consult the following checklist to locate a problem.

Hardware Configuration

= If you are using an emulator

See the Wind River ICE SX for Wind River Workbench Hardware Reference or the
Wind River Probe for Wind River Workbench Hardware Reference for information
on troubleshooting those connections.

= Limit the number of variables
Start with a minimal configuration of a single target.
= Check that the RS-232 cables are correctly constructed

In most cases, the documentation accompanying your target system describes
its cabling requirements. A common problem—make sure your serial cable is
a NULL modem cable, if that is what your target requires.

345

Wind River Workbench

User’s Guide, 3.0 (VxWorks Version)

Booting Problems

346

NOTE: If you need to use a gender converter to connect your serial cable, it is
most likely not the right kind of cable. NULL modem cables tend to have same
gender connectors on each end, such as both female or both male. Straight
through cables tend to have one male and one female connector. Changing the
gender of a cable rarely has the desired results.

Check the boot ROM(s) for correct insertion

If the target seems completely dead when applying power (some have front
panel LEDs) or shows some error condition (for example, red lights), the boot
ROMs may be inserted incorrectly.

Press the RESET button if required

Some system controller boards do not reset completely on power-on; you must
reset them manually. Consult the target documentation if necessary.

Make sure all boards are jumpered properly

Refer to the target information reference for your BSP and the target
documentation to determine the correct dip switch and jumper settings for
your target and Ethernet boards.

Check the Ethernet transceiver site

For example, connect a known working system to the Ethernet cable and check
whether the network functions.

Verify IP addresses

An IP address consists of a network number and a host number. There are
several different classes of Internet addresses that assign different parts of the
32-bit Internet address to these two parts, but in all cases, the network number
is given in the most significant bits and the host number is given in the least
significant bits. The simple configuration described in 3.4 Booting VxWorks,
p-53 assumes that the host and target are on the same network—they have the
same network number. If the target Internet address is not on the same
network as the host, the VxWorks boot program displays the following
message:

Error loading file: errno = 0x33.

24 Troubleshooting
24.5 Troubleshooting VxWorks Configuration Problems

See the errnoLib reference entry for a discussion of VxWorks error status
values.

= Verify FTP server permissions

Check the FTP server configuration. See Configuring FTP on Windows, p.43 for
more information on configuring the FIP server if you are using WFTPD
(shipped by Wind River). Otherwise, consult your system documentation on
the FTP Server shipped with it.

= Helpful troubleshooting tools

When tracking down configuration problems, ping, arp -a, and netstat -r are
useful tools. For more information, see E. Glossary.

Target Server Problems

= Check back end serial port

If you use a WDB Serial connection to the target, make sure you have
connected the serial cable to a port on the target system that matches your
target-agent configuration. The agent uses serial channel 1 by default, which is
different from the channel used by VxWorks as a default console (channel 0).
Your target’s ports may be numbered starting at one; in that situation,
VxWorks channel one corresponds to the port labeled “serial 2.”

= Verify path to VxWorks image

The target server requires a host-resident image of the VxWorks run-time
system. By default, it obtains a path for this image from the target agent (as
recorded in the target boot parameters). In some cases (for example, if the
target boots from a local device), this default is not useful.

In that situation, create a new Target Server Connection definition in the
Remote Systems view, and use the -c filename option in the

Advanced Target Server Options field to specify the path to a host-resident
copy of the VxWorks image.

Check the WFTPD Server Log

The WFTPD server log displays very helpful plain text messages. For information
about how to enable logging FTP activities, see Configuring FTP on Windows, p.43.

347

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

24.6 Error Log View

Some errors direct you to the Error Log view, which displays internal errors
thrown by the platform or your code. For more information about the Error Log,
open the view and press the help key for your host.

24.7 Error Logs Generated by Workbench

Workbench has the ability to generate a variety of useful log files. Some
Workbench logs are always enabled, some can be enabled using options within
Workbench, and some must be enabled by adding options to the executable
command when you start Workbench.

This section describes the logs, tells you how to enable them (if necessary), and
how to collect them into a ZIP file you can send to Wind River support
representatives.

24.7.1 Creating a ZIP file of Logs

Once all the logs you are interested in have been enabled, Workbench
automatically collects the information as you work.

To create a ZIP file to send to a Wind River support representative:

1. Select Help > Collect Log Files. The dialog opens.

348

24 Troubleshooting
24.7 Error Logs Generated by Workbench

€ Collect Log Files |:|@@

Collect Log Files @
Collect logs of Workbench,

Specify the name and location of the archive which will contain relevant

log information of various Workbench components, Please provide this
archive when contacting Wind River Support, Mote, that some logs need to
be enabled manually - see the documentation for details how to enable

the various logs,
w Browse. ..

Add project description files, creation logs, etc. of checkmarked projects
O b‘TVIP (wind River VxWorks 6.6 Image Project)
L3 hal (Wwind River ViWorks 6.6 Downloadable Kernel Module Project)
L3 = cabble (Wwind River ViWorks 6.6 Downloadable Kernel Module Project)

To zip file:

@ Finish] [Cancel

2. Type the full path and filename of the ZIP file you want to create (or browse
to a location and enter a filename) then click Finish. The ZIP file is created in
the specified location, and contains all information collected to that point.

3. To discontinue logging (for those logs that are not always enabled) uncheck
the boxes on the Target Server Options tab, or restart Workbench without the
additional options.

24.7.2 Eclipse Log

The information displayed in the Error Log view is a subset of this log’s contents.

How to Enable Log

This log is always enabled.

What is Logged

» all uncaught exceptions thrown by Eclipse Java code
* most errors and warnings that display an error dialog in Workbench
» additional warnings and informational messages

349

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

What it Can Help Troubleshoot

* unexpected error popups
* bugs in Workbench Java code
* bugs involving inter-component communication

24.7.3 DFW GDB/MI and Debug Tracing Logs

The DFW logs are a record of all communication and state changes between the
debugger back end (the “debugger framework”, or DFW) and other views within
Workbench, including the Remote Systems view, debugger views, and OCD
views.

How to Enable Log
These logs are always enabled.

To change the maximum debug server log file size, select Window > Preferences >
Target Management > Debug Server Settings. In the Maximum Debug Server
Log File Size field, change the default size to the size you prefer (or to the size
requested by a Wind River support representative).

Changing this field to 0 disables the collecting of dfwserver.log information.

What is Logged

Internal exceptions in the debugger back end, as well as all commands sent
between Workbench and the debugger back end.

What it Can Help Troubleshoot

Debugger, Remote Systems, and debugger back end-related bugs.

24.7.4 Debugger Views GDB/MI Log

This log shows the same information as reported in the DFW GDB/MI and Debug
Tracing Logs, p.350.

How to Enable Log

You must enable this log before you start Workbench. Do this by adding these
parameters to the Workbench executable command:

-vmargs -DDFE.Debug=true

350

24.7.5

24.7.6

24 Troubleshooting
24.7 Error Logs Generated by Workbench

What is Logged

Same as DFW GDB/MI and Debug Tracing Logs, p.350, except with Workbench
time-stamps.

What it Can Help Troubleshoot

Debugger and Remote Systems-related bugs.

Debugger Views Internal Errors Log

How to Enable Log

You must enable this log before you start Workbench. Do this by adding these
parameters to the Workbench executable command:

-vmargs -DDFE.Debug=true

What is Logged

Exceptions caught by the Debugger views messaging framework.

What it Can Help Troubleshoot

Debugger views bugs.

Debugger Views Broadcast Message Debug Tracing Log

How to Enable Log

You must enable this log before you start Workbench. Do this by adding these
parameters to the Workbench executable command:

-vmargs -DDFE.Debug=true
What is Logged

Debugger views internal broadcast messages.

What it Can Help Troubleshoot

Debugger views bugs.

351

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

24.7.7 Target Server Output Log

This log contains the messages printed by the target server while running. These
messages typically indicate errors during various requests sent to it, such as load
operations. Upon startup, if a fatal error occurs (such as a corefile checksum
mismatch) then this error will be printed before the target server exits.

How to Enable Log

= Enable this log from the Remote Systems view by right-clicking the target
connection, selecting Properties, selecting the Target Server Options tab, then
clicking Edit.

Select the Logging tab, then check the box next to Enable output logging and
provide a filename and maximum file size for the log. Click OK.

= Enable this log from the command line using the -1 path/filename and -lm
maximumFileSize options to the target server executable. For more information
about target server commands, see Wind River Documentation > References
> Host Tools > Wind River Host Tools API Reference > tgtsvr.

What is Logged

» fatal errors on startup, such as library mismatches and errors during exchange
with the registry
» gstandard errors, such as load failure and RPC timeout

What it Can Help Troubleshoot

= debugger back end
* target server
* target agent

24.7.8 Target Server Back End Log

This log records all requests sent to the WDB agent.

How to Enable Log

= Enable this log from the Remote Systems view by right-clicking the target
connection, selecting Properties, selecting the Target Server Options tab, then
clicking Edit.

352

24 Troubleshooting
24.7 Error Logs Generated by Workbench

Select the Logging tab, then check the box next to Enable backend logging
and provide a filename and maximum file size for the log. Click OK.

= Enable this log from the command line using the -Bd path/filename and -Bm
maximumFileSize options to the target server executable. For more information
about target server commands, see Wind River Documentation > References
> Host Tools > Wind River Host Tools API Reference > tgtsvr.

What is Logged

Each WDB request sent to the agent. For more information about WDB services,
see Wind River Documentation > References > Host Tools > Wind River WDB
Protocol API Reference.

What it Can Help Troubleshoot

= debugger back end
= target Server
* target agent

24.7.9 Target Server WTX Log
This log records all requests sent to the target server.

How to Enable Log

= Enable this log from the Remote Systems view by right-clicking the target
connection, selecting Properties, selecting the Target Server Options tab, then
clicking Edit.
Select the Logging tab, then check the box next to Enable WTX logging and
provide a filename and maximum file size for the log. Click OK.

= Enable this log from the command line using the -Wd path/filename and -Wm
maximumFileSize options to the target server executable. For more information
about target server commands, see Wind River Documentation > References
> Host Tools > Wind River Host Tools API Reference > tgtsvr.

What is Logged

Each WTX request sent to the target server. For more information about WTX
services, see Wind River Documentation > References > HostTools > WTX C
Library Reference > witxMsg.

353

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

What it Can Help Troubleshoot

= debugger back end
* target server
* target agent

24.7.10 Remote Systems Debug Tracing Log

This log prints useful information about creation and modification of Remote
Systems view internal structures, as well as inconsistencies or warning conditions
in the subsystems the Remote Systems view interoperates with.

How to Enable Log

You must enable this log before you start Workbench. Do this by adding these
parameters to the Workbench executable command:

-debug -vmargs -Dcom.windriver.ide.target.DEBUG=1.
What is Logged

Remote Systems view internal debug errors.

What it Can Help Troubleshoot

Inconsistencies in the debugger back end.

24.8 Technical Support

If you have questions or problems with Workbench or with VxWorks after
completing the above troubleshooting section, or if you think you have found an
error in the software, please see the Wind River Workbench Release Notes for your
platform for any additional information. Contact information for the Wind River
Technical Support organization is also listed in the release notes. Your comments
and suggestions are welcome.

354

PART VI

Using Workbench with Other
Tools

25 Integrating PlUug-iNscccoommmmmmmmmmmmennnnnnnnreeeee 357
26 Using Workbench in an Eclipse Environment . 365

27 Using Workbench with Version Control 371

355

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

356

25

Integrating Plug-ins

25.1 Introduction 357

25.2 Finding New Plug-ins 358

25.3 Incorporating New Plug-ins into Workbench 358
25.4 Using the Eclipse Update Manager to Install JDT 361
25.5 Disabling Plug-in Functionality 362

25.6 Managing Multiple Plug-in Configurations 362

25.1 Introduction

Because Wind River Workbench is based on Eclipse, you can incorporate new
modules into Workbench without having to recompile or reinstall it. These new
modules are called plug-ins, and they can deliver new functionality and tools to
your copy of Wind River Workbench.

Many developers enjoy creating new plug-ins and sharing their creations with
other Eclipse users, so you can find many Web sites with interesting tools and
programs available for you to download and incorporate into your Workbench
installation.

Some plug-ins are dependent on Java Development Tools (JDT). See 25.4 Using the
Eclipse Update Manager to Install [DT, p.361 for instructions on how to install the
JDT.

357

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

25.2 Finding New Plug-ins
In addition to the Eclipse Web site, http://www.eclipse.org, many other Web sites
offer a wide variety of Eclipse plug-ins. Here are a few:
http://www.eclipse-plugins.info/eclipse/plugins.jsp
http://www.eclipseplugincentral.com/
http://eclipse-plugins.2y.net/eclipse/

http://www.sourceforge.net/

25.3 Incorporating New Plug-ins into Workbench

Many developers who download plug-ins prefer to create a new directory for each
one, rather than unzipping the files directly into their Workbench installation
directory. There are many advantages to this approach:

» The default Workbench installation does not change.
* You do not lose any of your plug-ins if you update or reinstall Workbench.
» Plug-ins do not overwrite each other’s files.

* You know which files to replace when an update to the plug-in is available.

25.3.1 Creating a Plug-in Directory Structure
To make your plug-ins easier to manage, create a directory structure for them
outside your Workbench installation directory.

1. Create a directory to hold your plug-ins. It can have any descriptive name you
want, for example, eclipseplugins.

2. Inside this directory, create a directory for each plug-in you want to install.
These directories can also have any descriptive name you want, for example,
clearcase.

358

http://www.eclipse-plugins.info/eclipse/plugins.jsp
http://www.eclipseplugincentral.com/
http://eclipse-plugins.2y.net/eclipse/
http://www.sourceforge.net/
http://www.eclipse.org

25 Integrating Plug-ins
25.3 Incorporating New Plug-ins into Workbench

NOTE: Before continuing, download the plug-in’s .zip or other archive file and
look at its contents. Some plug-ins provide the eclipse directory structure and
the .eclipseextension file for you, others do not.

» If the destination path for the files begins with eclipse, and you see an
.eclipseextension file in the list, you may skip the rest of this section and
extract the plug-in’s files into the directory you created in step 2.

» If the destination path begins with plugins and features, then you must
complete the rest of the steps in this section.

3. Inside each plug-in directory, create a directory named eclipse. This directory
must be named eclipse, and a separate eclipse directory is required inside each
plug-in directory.

4. Inside each eclipse directory, create an empty file named .eclipseextension.
This file must be named .eclipseextension (with no .txt or any other file
extension), and a separate .eclipseextension file is required inside each eclipse
directory.

5. Extract your plug-in into the eclipse directory. Two directories, called features
and plugins, appear in the directory alongside the .eclipseextension file.

NOTE: For any plug-in to work properly, its features and plugins directories
as well as an empty file called .eclipseextension must be located inside a
directory called eclipse.

25.3.2 Installing a ClearCase Plug-in
Once you have created a plug-in directory structure and have found a plug-in you
want to use with Workbench, download and install it according to the instructions

provided by the plug-in’s developer (almost every plug-in comes with release
notes containing installation instructions).

This section will show you how to download and install a plug-in on Windows.

Downloading the IBM Rational ClearCase Plug-in

Wind River recommends the IBM Rational ClearCase plug-in.

359

Wind River Workbench

User’s Guide, 3.0 (VxWorks Version)

Follow steps 1 and 2 in 25.3.1 Creating a Plug-in Directory Structure, p.358 (the
IBM ClearCase plug-in creates the eclipse directory and the .eclipseextension
file for you.)

For the purposes of this example, name the top-level directory eclipseplugins,
and name the plug-in directory clearcaseIBM.

Navigate to http://www.ibm.com/developerworks/rational/downloads/ and
select the Plug-ins tab, then select ClearCase plugins. The IBM Rational
ClearCase plug-ins page opens.

Click the Get the downloads link, then click the HTTP link to the right of the
appropriate version of the package file. For this example, select Adapter V
7.0.0.x for Eclipse 3.2: Windows or Adapter V 7.0.0.x for Eclipse 3.2: Linux
depending on your host platform (this file works for Eclipse 4.0 as well).

Extract the .zip file to your /eclipseplugins/clearcaseIBM directory. The
eclipse directory is created for you, and inside are two directories, called
features and plugins, alongside the .eclipseextension file.

Adding Plug-in Functionality to Workbench

1.

Before starting Workbench, make sure that the ClearCase tools directory is in
your path. This is usually C:\atria\ClearCase\bin on Windows, or
lusr/atria/bin on Linux and Solaris.

Start Workbench, then select Help > Software Updates > Manage
Configuration. The Product Configuration dialog appears.

Select Add an Extension Location in the Wind River Workbench pane.
Navigate to your eclipseplugins/plug-in/eclipse directory. Click OK.

Workbench will ask if you want to restart. To properly incorporate ClearCase
functionality, click Yes.

Incorporating the IBM Rational Plug-in

1.

360

When Workbench restarts, activate the plug-in by selecting Window >
Customize Perspective.

In the Customize Perspective dialog, switch to the Commands tab.

Select the ClearCase option in the Available command groups column, then
click OK. A new ClearCase menu and icons appear on the main Workbench
toolbar.

http://www.ibm.com/developerworks/rational/downloads/

25 Integrating Plug-ins
25.4 Using the Eclipse Update Manager to Install JDT

4. From the ClearCase menu, select Connect to Rational ClearCase to activate
ClearCase functionality.

To configure the ClearCase plug-in, select Window > Preferences > Team >
ClearCase SCM Adapter.

For more information about using the ClearCase plug-in, see Help > Help
Contents > Rational ClearCase SCM Adapter.

For more information about ClearCase functionality, refer to your ClearCase
product documentation.

25.4 Using the Eclipse Update Manager to Install JDT

Previous versions of Workbench included a modified version of the Java
Development Tools (JDT), but to better integrate with Eclipse and other third party
packages this has been removed. However, some third party plug-ins have a
dependency on JDT.

You can use the Workbench Update Manager to install the JDT; you can also use
the Update Manager to search for updates to currently installed features, as well
as searching for new features to install.

1. To open the Update Manager, select Help > Software Updates > Find and
Install.

2. Select Search for new features to install, then click Next.

3. Select The Eclipse Project Updates, select Automatically select mirrors, then
click Finish.

4. From the Search Results dialog, click the plus next to The Eclipse Project
Updates, and the plus next to Eclipse SDK Eclipse 3.3.1, to expand the
features you can choose from.

5. Make sure Show the latest version of a feature only is selected, then click the
check box next to Eclipse Java Development Tools 3.3.1.r331 (clicking the
name of the feature is not enough, you must select the check box itself for JDT
to be installed). Click Next.

6. Accept the JDT license agreement, then click Next.
7. Click Finish to download and install JDT.

361

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

8. After a few minutes, the Feature Verification dialog opens. Click Install All,
then click Yes to restart Workbench.

25.5 Disabling Plug-in Functionality

You can disable plug-in functionality without uninstalling the downloaded files.
This gives you the opportunity to re-enable them at a later time if you want.

1. To disable a plug-in, select Help > Software Updates > Manage
Configuration. The Product Configuration dialog appears.

2. In the left column, open the folder of the plug-in you want to uninstall, select
the plug-in itself, then click Disable.

3. Workbench will ask if you want to restart. To properly disable the plug-in’s
functionality, click Yes.

25.6 Managing Multiple Plug-in Configurations

If you have many plug-ins installed, you may find it useful to create different
configurations that include or exclude specific plug-ins.

When you make a plug-in available to Workbench using the process shown in
Adding Plug-in Functionality to Workbench, p.360, its extension location is stored in
the Eclipse configuration area.

When starting Workbench, you can specify which configuration you want to start
by using the -configuration path option, where path represents your Eclipse
configuration directory.

On Windows:
From a shell, type:

% cd installdir\workbench-3.x\wrwb\platform\eclipse\x86-win32\bin
.\wrwb.exe -configuration path

o

On Linux and Solaris:

362

25 Integrating Plug-ins
25.6 Managing Multiple Plug-in Configurations

Use the option as a parameter to the startWorkbench.sh script:

[

% ./startWorkbench.sh -configuration path &

For more information about using -configuration and other Eclipse startup
parameters, see Help > Help Contents > Wind River Partners Documentation >
Eclipse Workbench User Guide > Tasks > Running Eclipse.

363

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

364

26

Using Workbench in an
Eclipse Environment

26.1 Introduction 365

26.2 Recommended Software Versions and Limitations 365

26.3 Setting Up Workbench 366

26.4 Using CDT and Workbench in an Eclipse Environment 367

26.1 Introduction

Itis possible to install Workbench in a standard Eclipse environment, though some
fixes and improvements that Wind River has made to Workbench will not be
available.

26.2 Recommended Software Versions and Limitations

Java Runtime Version

Wind River tests, supports, and recommends using the JRE 1.5.0_11 for
Workbench plug-ins.

365

Eclipse Version

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Workbench 3.0 is based on Eclipse 3.3. Wind River patches Eclipse to fix some
Eclipse debugger bugs. These fixes will be lost when using a standard Eclipse
environment.

See the getting started for your platform for supported and recommended host
requirements for Workbench 3.0.

Defaults and Branding

Eclipse uses different default preferences from those set by Workbench. The dialog
described in 26.3 Setting Up Workbench, p.366 allows you to select whether to use
Workbench preferences or existing Eclipse preferences.

In a standard Eclipse environment, the Eclipse branding (splash screen, welcome
screen, etc.) is used instead of the Wind River branding.

26.3 Setting Up Workbench

This setup requires a complete Eclipse and Workbench installation. Follow the
respective installation instructions for each product.

1. From within Workbench, select Help > Install into Eclipse. The Install into
Eclipse dialog appears.

2. In the Directory field, type in or Browse to your Eclipse 3.x directory.

3. In the Installation Options section, select Use Wind River default
preferences, or leave it unselected to maintain existing Eclipse preferences.

If you decide to use Wind River default preferences, some changes you will
notice are that autobuild is disabled, and the Workbench Application
Development perspective and help home become the defaults.

4. If you decided to maintain existing Eclipse preferences you can still use the
much faster Wind River (index based) search engine by leaving Use Wind
River search engine selected. To use the Eclipse default search engine,
unselect it.

366

26 Using Workbench in an Eclipse Environment
26.4 Using CDT and Workbench in an Eclipse Environment

5. If you want to track the installation process, leave Log installation process
selected (click Browse to change the path where the file should be created).
Uncheck it if you do not want Workbench to create a log file.

6. When you are done, click Finish. Workbench will be available the next time
you launch Eclipse. No special steps are necessary to launch Eclipse.

NOTE: Any errors discovered during installation appear in the Error Log view.

26.4 Using CDT and Workbench in an Eclipse Environment

The following tips will help you understand how to use Eclipse C/C++
Development Tooling (CDT) and Workbench together in the same Eclipse
environment.

NOTE: When starting Eclipse after installing Workbench, you will see three errors
in the Error Log.

These errors are not a problem. They appear because Workbench ships some CDT
plug-ins that are already on your system, and Eclipse is reporting that the new
ones will not be installed over the existing ones.

26.4.1 Workflow in the Project Explorer
Some menus and actions are slightly different when using CDT and Workbench
together.

Application Development Perspective (Workbench)
CDT projects appear in this perspective along with Workbench projects.

Building CDT Projects

The context menu of the Project Explorer contains entries for Build Project and
Rebuild Project, but the Rebuild Project entry executes a normal build for CDT
projects. The Clean Project entry is missing for CDT projects.

367

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Running Native Applications

The Run Native Application menu is enabled for CDT projects. When executed, it
creates a Workbench Native Application launch with correct parameters. Because
Workbench Native Application launches do not support debugging, to debug
your application you must create a CDT Local C/C++ Application launch from the
Run > Run As menu.

Selecting Projects to Build

When selecting multiple projects (including Workbench and CDT projects) and
executing any build action, the build action is only executed on Workbench
projects.

Displaying File and Editor Associations

The Workbench Project Explorer displays icons for the default editor of a file, if file
associations have been defined. If CDT is the default editor, the corresponding
icons will also show up in the Application Development perspective.

C/C++ Perspective (CDT)

Source Analysis
Source analysis is available from the Indexer entry on the context menu of the
Project Explorer.

Building Workbench Projects
CDT Build Project and Clean Project actions are enabled for Workbench projects,
and they execute the appropriate build commands correctly.

Working with Workbench Binary Targets

There are no actions to directly run, debug or download a Workbench project’s
binary target in this perspective.

368

26 Using Workbench in an Eclipse Environment
26.4 Using CDT and Workbench in an Eclipse Environment

26.4.2 Workflow in the Build Console

Application Development Perspective (Workbench)

When adding a CDT project as a sub-project (project reference) to a Workbench
project, the Clear Build Console flag is ignored when executing a build on this
project.

C/C++ Perspective (CDT)

Executing a build on a Workbench project from this perspective correctly opens
the Workbench Build Console.

General

When navigating to errors from the Workbench Build Console or the Problems
view, the file containing the error opens in the assigned editor.

26.4.3 Workflow in the Editor

Opening Files in an Editor

The editor that should be used for files cannot be determined. It depends on the
settings defined in the appropriate plugin.xml files, and on the order in which the
Workbench and CDT plug-ins are loaded.

Only one default editor can be associated with each file type, and it is the same for
both perspectives. Files can be opened with the Open With menu, allowing you to
select the editor. When executed, that editor is associated with, and becomes the
default for, this specific file.

NOTE: To assign a default editor for all files with a given signature, you must
define a file association in the preferences by selecting Window > Preferences,
then choosing General > Editors > File Associations.

For example, to add a default editor for all *.c files, click Add and enter *.c. The list
of available editors appears. Select one, then click Default.

369

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

26.4.4 Workflow for Debugging

Workbench and CDT Perspectives

Regardless of any direct file association created using the Open With command,
the default editor opens when debugging a file.

For example, associating *.c files with the default Workbench editor opens the
Workbench editor in the CDT Debug and the Workbench Device Debug
perspectives.

The reverse is also true: if you associate a file type with the CDT editor, it will open
when those files are debugged even if you have made an association with a
different editor using Open With.

370

27

Using Workbench with Version
Control

27.1 Introduction 371

27.2 Adding Project Description Files to Version Control 371
27.3 Using Workbench with ClearCase Views 372

27.4 Using Workbench with CVS 375

27.1 Introduction

This chapter provides tips on which Workbench project description files you
should add to version control when archiving your projects, using Workbench
with version-controlled files, and how to manage build output when your sources
are version controlled.

27.2 Adding Project Description Files to Version Control

To add Workbench project description files to version control without putting
your workspace into a source control system, check-in the following automatically
generated files along with your source files:

371

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Project File Description

.cproject CDT project file containing CDT-specific information about the
project.

.project Eclipse platform project file containing general information
about the project.

.wrproject Workbench project file containing mostly general build
properties.

-wrfolder Workbench project file containing folder-level build properties

(located in subfolders of your projects).

.wrmakefile ~ Workbench managed build makefile template used to generate
Makefiles.

*.makefile Workbench managed build extension makefile fragments (e.g.
for VxWorks Image projects or some Platform projects)

*.Wpj VxWorks Image project file containing specific data not
managed directly by Workbench but by the TCL engine.

For user-defined projects, all Makefile files need to be version controlled, too.

For VxWorks Image projects, it could occur that absolute paths are stored in the
.wpj file, which breaks any team support. You should avoid manually adding
source files to a VxWorks Image project that are referenced by absolute paths. The
same is true for any build macro in any project type containing absolute paths—
they should be substituted by environment variables (provided by wrenv for
example) wherever possible.

NOTE: The .metadata directory should not be version controlled, as it contains
mostly user- and workspace-specific information with absolute paths in it.

27.3 Using Workbench with ClearCase Views

When using Workbench with ClearCase dynamic views, create your workspace on
your local file system for best performance. For recommendations about setting up
your workspaces and views, see Help > Help Contents > Rational ClearCase
SCM Adapter > Concepts > Managing workspaces.

372

27 Using Workbench with Version Control
27.3 Using Workbench with ClearCase Views

NOTE: ClearCase documentation is added to the Workbench help system when
you install the ClearCase plug-in. For instructions on how to do this, see
25.3.2 Installing a ClearCase Plug-in, p.359.

Wind River does not recommend that you place the Eclipse workspace directory
in a view-private directory. If you create projects in the default location under the
workspace directory, ClearCase prompts you to add the project to source control.
This process requires all parent directories to be under source control, including
the workspace directory.

In general, version controlled projects should not separate project files from the
sources, so Create project in workspace with content at external location will not
work in this situation. Depending on the version control tool, it might be necessary
to manage sources, and therefore projects, outside of workspaces for performance
reasons. ClearCase is an example of this, because is based on its own virtual file
system, which can slow down performance dramatically.

Instead, follow these steps to create your version-controlled project:
1. Select File > New > project type. The New Project wizard appears.
2. Select the appropriate target operating system, then click Next.

3. Type a name for your project, select Create project at external location, then
navigate to the location of your sources in a view (remember that you must
have write permission to this location in order to create your project files
there). Click OK.

4. The project appears in the Project Explorer, with the name of your view
appended to the project name and type. Workbench creates your project files
in the view, and asks whether you want to add them to version control. Make
sure all project files are selected, then click OK.

5. Workbench checks out the parent directory, creates elements for your new
project files, then checks everything back in.

NOTE: If you choose not to allow Workbench to check in your project files,
they will appear in your view but will not be visible in the Project Explorer.

6. Redirect all build output files to the local file system by changing the
Redirection root directory in the Build Properties > Build Paths tab of your
product. All build output files such as object files and generated Makefiles will
be redirected.

373

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

For more information about the redirecting build output and the redirection
root directory, open the build properties dialog, press the help key for your
host, and see the Build Paths section.

Choosing Not to Add Build Output Files to ClearCase
After installing the ClearCase plug-in, you may be prompted to add any build
output files to ClearCase.
There are two ways to avoid this if you wish:
1. Using Workbench Preferences.

a. Open the Window > Preferences > Team > ClearCase SCM Adapter
preferences page.

b. From the When new resources are added pull-down list, select Do
nothing.

2. Using Derived Resource option.

a. Configure your build so the build output goes into one (or a few)
well-known directories such as bin or output.

b. Check in the empty bin or output directories to ClearCase.

c. In the Project Explorer, right-click the directory you checked in, select
Properties, and on the Info page, select Derived.

d. From now on, the Clearcase plug-in will not prompt you about Derived
resources.

NOTE: If you use Workbench managed builds, they will automatically mark
the build output directories as derived so ClearCase will not try to add the
build output files to source control. If you use a different builder, you may
have to configure it to mark resources as derived.

For more information about IBM Rational ClearCase, see
http://www.ibm.com/developerworks/rational/products/clearcase.

374

http://www-130.ibm.com/developerworks/rational/products/clearcase

27 Using Workbench with Version Control
27.4 Using Workbench with CVS

27.4 Using Workbench with CVS

Unlike ClearCase, adding projects to version control using CVS does not impact
performance, so you can create your project in your workspace if you wish.

The Eclipse Workbench User Guide, available from the Workbench help system,
provides information about using Workbench with CVS. You can access this
information in two ways from the Workbench Help view.

From the Help Table of Contents

This method is useful if you want to read an entire section of the document.

1.

Open the Help view by clicking your cursor in any view, then pressing the
help key for your host.

At the bottom of the view, click All Topics, then navigate to Wind River
Partners Documentation > Eclipse Workbench User Guide.

Sections related to using CVS include:

Getting Started > Team CVS tutorial

Concepts > Team programming with CVS

Tasks > Working in the team environment with CVS

Reference > Team support with CVS

Using the Help View’s Search Feature

This method is useful if you want to find a specific piece of information.

1.

Open the Help view by clicking your cursor in any view, then pressing the
help key for your host.

At the bottom of the view, click Search, then type in CVS.

Several links, along with a small amount of text from each section, appears for
you to choose from.

375

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

376

PART VII

Reference
What’s New with CDT, DD, and TMcc..... 379
Command-line Updating of Workspaces 399
Command-line Importing of Projects 403
Configuring a Wind River Proxy Host 407
GlOSSANY ..cooveeririrrrrrrssssssssssssssssnnnsnn s 415

377

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

378

What’s New with CDT, DD,
and TM

A.1l Introduction 379

A.2 Working with Projects 381

A.3 Editing Source Files 383

A.4 Using the Outline View 385

A.5 Source Analysis and Symbol Browsing 386
A.6 Connecting to Targets 390

A.7 Working with Debugging Views 393

A.8 For More Information 398

A.1 Introduction

When Workbench adopted the latest versions of the Eclipse C/C++ Development
Toolkit, Device Debugging, and Target Management projects, some things you
might be used to seeing and doing in previous versions of Workbench changed a
bit. You will find that the new Eclipse workflows are very similar to the old
Workbench workflows, and you will be able to connect to targets in an almost
identical way.

379

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

However, some Workbench views were totally replaced by their Eclipse
counterparts, and static symbol browsing has changed significantly. You will also
notice that icons and graphics are comparable, but not identical.

This chapter provides a “before and after” look at these changes, and alerts you to
the things that do not function quite the way they used to. For information about
significant non-Eclipse enhancements to Workbench, see the release notes for your
platform (which are available from the Wind River online support site,
http://www.windriver.com/support/).

NOTE: This chapter is meant for current Workbench customers. If you are new to
Workbench, you should become familiar with its workflows and user interface by
working through the steps in 2. Wind River Workbench Tutorials.

380

http://www.windriver.com/support/

A What’s New with CDT, DD, and TM
A.2 Working with Projects

A.2 Working with Projects
The biggest change related to working with projects is that the Workbench Project
Navigator has been replaced by the Eclipse Project Explorer.

The Project Explorer supports your VxWorks platform projects, and displays
projects from other CDT providers alongside your existing projects.

Old Project Navigator New CDT Project Explorer
5 Profect Navigatar & . File Navigator | Symbol Browser -8 C,Projel:tExplorer?\ File Navigator SymbolBrowser. =0
User Build Arguments: | Ll =8 complex (Host Operating System (Mative Development) & »

A
® 2% complex 4 125 complex_cdt

= = complex_cdt | & Binaries
® = .settings ¢ (= .seftings
oI e =D = complexdib
= Debug | i P
B iolib | b @& Debug
| .cdtbuild | (& FocBar
| .cotproject » = FooRel
| .project | = iolib
C| main.cpp | o (= Release i
= =2 complex_flex . [&) main.cpp E
= H{{ Build Targ ynu-native-3.x - debug) X .
[complex_flex (x_flex.exe)] catbuild
(= complexlib | |5 .cdiproject
(= ialib [.project
+ (2 windows-gnu-native-3.x 4 28 complex flex (Host Operating System (Mative Developrner
| .project | H}L Build Targets (Windows-gnu=-native-3.x - debug)
H| wrmakefile - = .settings
] wrpraject = complexdib
€| main.cpp | » = iolib
= 1= hello_vaWorks {Wind River VxWorks 6.4) | X X
= 2 hello_world + (2 Windowrs-gru-native-3.x
% & lib bl maincpp
% 2 philosophers (Wind River ViWarks 6.4) | 5] .cdtproject
1=+ VIP_PQII (Wind River VxWorks 6.4) | [l project
% I£h VIP_sim1 (Wind River ViWorks 6.4) [wrmakefile

2] cwrproject

l'n:—“- con demo sa (Wind River Standalone (Mo Overating Swste ™
4 m | *

Right-clicking a binary under the Binaries node allows you to launch and/or
debug that file; double-clicking parses it and displays the output from the binary
in the Editor.

Double-clicking a file under the Includes node displays header files.

You may notice that the User Build Arguments field, which previously appeared
at the top of the Project Navigator, is not available at the top of the Project Explorer.
It has moved to the Build Console toolbar.

The Project Navigator can still be opened, if desired, by selecting Window > Show
View > Project Navigator from the Workbench toolbar. The Project Navigator will
be deprecated in future releases of Workbench.

381

Project Issues

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

One change to be aware of is that the Project Explorer does not support modifying
project hierarchies and build target contents by dragging and dropping, as was
possible in the Project Navigator. Relationships between projects can be modified
by selecting Project References > Add as Project Reference.

Itis also not possible to drag images from the Project Explorer to Wind River target
connections.

Workbench 3.0 has new data structures underlying the project system. When you
import projects that were created with previous version of Workbench, they are
automatically updated to this new structure. However, this means that after they
have been updated, you will not be able to open them in a previous version of
Workbench. Migration is forward only.

For more information about the Project Explorer, see 13. Working in the Project
Explorer and the C/C++ Development User Guide, available from the Workbench
help system.

382

A What’s New with CDT, DD, and TM
A.3 Editing Source Files

A.3 Editing Source Files

The Workbench Editor has been replaced by the C/C++ Editor, which has many
of the same features such as code folding, code completion, parameter hinting, and
symbol highlighting.

Old Workbench Editor New CDT Editor
c) eobble.c &1 =8 (et e =r

! void cosmos {void):

2 void nodeAdd (int data, int nodeNum):
3 void schlep (void):

=4 yoid nodeSerap [void):

void orunch (void):

void moniter (void):

void progStop (veid):

0 b+ progitart - start the sample program.|
9 STATUS progStart| (void)
i 102 STATUS progStart (void)
SEM_EMPTY) ; 110 i
, SEM_EMPTY) : 11

syneSemId = semBCreate (SEM_Q FIE
datasemld = gemBCreate (SE!{WQ IF

sync¥emId = semBCreate (3EM Q FIFO, SEM EMPTY);

112 dacsfemld = sewBCreate (SEN_Q_FIFO, SEN EMPTY):
113 |
- 114 nodelListGuardiemId = semlCreate { SEN_Q PRIORD
- 115 | SEM_INVERSION_SAFE
116 | SEM _DELETE SAFE):
pCurrNode = NULL: /* just in case */ s - -
; 118 PCUEZNode = WULL: /* just in case */
/* get atarced =/ =
¥ /+ get started #/
tidCosmos = taskSpawn ("tCosmos", 200, 0, STACK SI 7‘:‘73 i gur st acted

(FUKCPTR) casmos,0,0,0,0,0,0,0,0,0,0);

tidCosmos = caskSpawn ("tCosmos", 200, 0, STACE

tidSchlep = taskSpawn ("tSchlep”, 220, 0, STACK_SI {FUNCPTR) cosmos,0,0,0,0,0,0,0,0,0,0);

(FUNCPTR) schlep,?,0,0,0,0,0,90,0,0,0);

tid3chlep = vask3pawn ("tSchlep”, 220, 0, STACE
{FUNCPTR) schlep,0,0,0,0,0,0,0,0,0,0);

ich = taskSpawn ("tCrunch®, 240, 0, STACK_SI
FUNCETR) crumch,0,0,0,0,0,0,0,0,0,0);

priority mis-assignment provides desired ed

tidCrunch = taskSpawn ("tCrunch®”, 240, 0, STACI

tidMonitor = taskSpawn ({FIMCPTR] crunch,0,0,0,0,0,0,0,0,0,0):

(FUNCETR) meoniter,O0,0,0

» 230, 0, STACK :

,0,0,0,0,0,0};

v
" 5 137 tidifonitor = taskSpaun ("tMonitor”, 230, O, $Ti<

Some new features in the Editor include a quick outline dialog available by
pressing Ctrl-O, auto-closing of brackets, and the ability to correct indentation by
selecting badly-formatted lines and pressing Ctrl-I. The Editor context menu

contains many of these entries, as well as many others including one for creating
breakpoints directly in the Editor.

Editor Issues

One difference you may notice is that syntax coloring is similar to the Java editor,
rather than being the same as the Workbench Editor. However, coloring is
configurable in the C/C++ > Editor > Syntax Coloring preferences.

The previous Workbench Editor was multi-language aware, but CDT does not
include a single editor with that functionality. Instead, CDT provides different
editors for different languages, including a C/C++ editor, an Assembly editor, and

383

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

a Makefile editor. Unfortunately there is no Ada editor, so Ada syntax highlighting
is no longer available. Debugging still works, but you must use the default text
editor for Ada files.

ASM symbols no longer appear in the Outline view when editing an assembly file.

For more information about the Editor, see 15.3 The Editor, p.208, the Eclipse
Workbench User Guide, and the C/C++ Development User Guide, available from the
Workbench help system.

384

A.4 Using the Outline View

A What’s New with CDT, DD, and TM
A.4 Using the Outline View

The Workbench Outline view has been replaced by the Eclipse Outline view,
which has the same functionality but different icons.

Old Workbench Outline View

(= outline =3

-~

i

(=]

2R E R R EREEEE-

%mwms ®E
Includes
4~ semLib.h
4~ atdion
4~ stdlib.h
4~ tasklib.h
4= viWorks.h
Macros
& DELAY_TICKS
& HoT
& Loy
& NUM_SAMPLE
&} STACK_SIZE
byLightning
A data: int
<A nodeMumn: int
2 pPreviiode: byLightning
LIST_NODE
cosmicData: int
dataSemld: SEM_ID

nedeListGuardSemId: SEM_

pCurmiode: LIST_NODE®
result: int
syncSemld: SEM_ID
tidCosmos: int
tidCrunch: int
tidMonitor: int
tidSchlep: int
cosmos(): void
cosmos{): vaid
cruneh(): void
crunch(}: void

[a]r | o

New CDT Outline View

ﬁf Outine 52

G

include directives
o sorksh
o stdioh
B stdlinhk
= semlib.h
B tasklibh
NUM_S8MPLE
LUCKY

HOT
DEL&Y_TICKS
STACK_SIZE

LIST_MODE : struct bylightning

& bylightning
o data:int
o nodeMum : int

@ pPreviode ; struct bndigh) |

tidCosmas ¢ int

tidSchlep :int

tidCrunch @ int

tidhanitor ; int

cosmicData @ int

resultzink

pCurrMode : LIST_MODE*

dataSermld : SEM_ID

syncSemld : SEM_ID

nodelistGuardSernld : SEM_ID

costosfvoid) @ void

nodeldd{nt, int) : void

schlepfvoid) : void

nodeScrapuoid) : void

crunchivoid) : void

monitar{void) | void

progStopivoid) : void

proa Startivoid : STATUS
. |

ER e Y8

For more information about the Outline view, see 15.2.2 The Outline View, p.208
and the C/C++ Development User Guide.

385

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

A.5 Source Analysis and Symbol Browsing

Workbench has adopted the CDT source code indexing and symbol browsing
features to replace those that appeared in previous releases.

A.5.1 Workbench Parser is Now the CDT Indexer

Workbench source code parsing is now done by the CDT Indexer, which is
comparable in speed to the Workbench parser it replaces.

Parsing Build Output

The Indexer provides build output parsing. If you uncheck Enable project specific
settings while creating your project or later in the project’s Properties > Binary
Parser preferences, the output of the build is scanned to set up the sources for
indexing. Only the sources that are part of the build process will be indexed, and
all flags (defines, includes) used by the build will be used for the indexing. You can
manually initiate the reindexing of files in a project, updating only those files that
were modifed, or all files. Updating of modified files happens automatically when
they are saved, but you can also initiate reindexing when a header file is touched.

Setting Indexer Preferences

You can configure indexer-specific exclusion filters using regular expressions.
Select a project, choose Properties > C/C++ General > Paths and Symbols >
Source/Filters, then edit the filter data and add a regular expression.

Indexer performance is affected by preferences settings, such as whether indexing
of type references is turned on or off. It is on by default, but turning it off speeds
up the index. When turned off, it is still possible to navigate typedefs, but C/C++
search for references will not work.

Sharing Symbol Data with a Team
When you import a project into your workspace that was created by a team

member using a different workspace, the shared indexing data is copied along
with it. After the import, the data is treated the same as if it had been indexed by

386

Indexer Issues

A What’s New with CDT, DD, and TM
A.5 Source Analysis and Symbol Browsing

your workspace. The import itself is automatic as long as the data was exported
properly, by using Export > C/C++ > Team shared index.

You may notice that the preferences page for configuring external APIs no longer
exists, because you can no longer configure these APIs (they are associated with a
project depending on the project type). External APIs are supplied for Wind
River-specific project types (such as VxWorks project types).

Other issues that affect the CDT Indexer include macro references not appearing
in the call hierarchy (for MACROs that look like functions), no read / write flags for
variables appearing in the Call Tree, and polymorphic method calls not being
honored in the Call Tree.

No references to constructors, destructors, or implicit type conversions appear in
the symbol list. However, Declarations and Definitions are in the symbol list.

An implicit conversion (sequence) is generated when the type of an argument in a
function call does not match the type of the parameter. It can make use of
constructors to convert the argument to an object of the expected type.

Implicit constructor calls may be needed for the initialization of base classes,
automatic variables, or returned values. An implicit destructor call is necessary
when an automatic variable goes out of scope.

For more information about the CDT Indexer, see 15.5 Source Analysis, p.212 and
the C/C++ Development User Guide, available from the Workbench help system.

A.5.2 Debug and Static Analysis Symbol Browsing Have Been Separated

In previous versions of Workbench, the Symbol Browser did double duty,
displaying both static analysis symbols and debug symbols.

In this release, the Symbol Browser has become the Debug Symbol Browser, which
looks the same as it did except that there is no longer a need for a Debug mode
icon since the browser now displays only debug symbols.

The functionality of the Static Symbol Browser (that displayed static analysis
symbols when the Debug mode icon was off, as shown below) has been replaced
by the C/C++ Search dialog and the Open Element dialog (and static analysis is
now known as source analysis).

387

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

The Open Element dialog (SHIFT+F3) functions in a similar fashion to the static
symbol browser that it replaces. Symbol matches are listed as you begin typing,
and you can navigate to the desired symbol by clicking on it.

The C/C++ Search Dialog (CTRL+H, then select the C/C++ Search tab) works in a
similar fashion, except that it produces a list of search results in a separate view
after you initiate the search. You can then navigate from this view.

Old Symbol Browser View

Project Navigakor f@ Symbol Browser =3 =0
ORIECERE S

Name Filter: | | [[]Hide matching
Signature File |
® abs(int) C| math.c - fc_demo_sa

@ addCell{cell_struct*®, cell_struct*) |C| linklist.c - fc_demo_sa =
B el C| cdemo.c - fc_demo_sa

#zblue - color_type C| cdemo,c - fo_demo_sa

® calendar{long) C| calendar.c - fc_demo_sa
LI C| linkhist,c - fc_demo_sa

L (e C| linklist,c - fc_demo_sa

B el 3 C| linkist.c - fc_demo_sa

u el 4 C| linklist ¢ - fe_demo_sa

[s] cell_sbruck C| linklist,c - fc_demo_sa

B clocker C| date.c - fc_demo_sa

@ color_type C| cdemo,c - fc_demo_sa

O date C| calendar.c - fc_demo_sa

& date() C| date.c- jc_demo_sa

@ dateForDayMumiink, date™) C| calendar.c- fc_demo_sa

® dayOfvear{date™®) C| calendar.c - fc_demo_sa

@ daysBetween(date*, date*) C| calendar.c - fc_demo_sa

@ pivision C| date.c - jc_demao_sa

O division C| date.c- fc_demo_sa

B division C| date.c- jc_demo_sa

B End C| engineer.c - fc_demo_sa

® engineers{volatile int) C| engineet.c- /c_demo_sa

w EMGIMEER_ID! IC| engineer.c- fc_demo_sa

5] EMGIMNEER._MAME C| engineer.c - fc_demo_sa v]
l(| il |

388

A What’s New with CDT, DD, and TM
A.5 Source Analysis and Symbol Browsing

New C/C++ Search and Open Element Dialogs

= Search

[|

& ClC++ Search l%’ Java Search | 7 Plug-in Search |

Search string (* = any string, ? = any character):

® Open Element

Choose an element (7 = any character, * = any string):
G

WVisible element types:

@ nNamespace (V] @ Class
@ Enumeration W Union
Matching elements:

T fd_mask

@ fds_bits

© flock

® Foobar

W fsblkent_t

W fsfilont_t

L IFubar

© struct

Typ
@ Function

Varig

K&
=

Qualified name and location:
@ FOObar::Fubar(int) - foo/hello.cpp

o J[conce]

389

ain] [LI [] Case sensitive
Search For Limik To - <7 Search 23 = 5
; 'I" O Declaration Find references ko main In Workspace =
Ui Field (O Reference: i _
Enumerati Namespace o | Y]
Typedef Any Element
Scope
() Workspace Selected resourres (L) Enclosing projects
O Working set: | Choose.,
Search Cancel

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

A.6 Connecting to Targets

The first thing you will notice when you want to connect to a target is that the
Target Manager has been replaced by the Eclipse Remote Systems view. The
functionality of the two views is very similar, though the Remote Systems view
offers a few new features and connection types.

New CDT Connection Types Alongside

Old Workbench Connection Types Workbench Connection Types
%) New Connection (9 New Connection o o s
Connection Type Select Remole System Type
Flease select connection type. Any distibution of ikt :3:
- = - System type:
Wind River VxWorks 6.x Core Dump Connection -
Wind River VxWorks 6.x Simulator Connection type fitter text
Wind River VxWorks 6.x Target Server Connection a [= General
T FTE Only
A Linuz
Bl Local
T3 S5H Only
unis Uiz
B Windows

4 (= Wind River Workbench for Vidlorks 6.
-]g_ Wind River \MidWorks 62 Core Dump Connection
-}GE, Wind River WadWorks 6. Simulator Connection
-}E. Wind River Widarks 6. Target Server Connection

@ < Bac Mext > E E @ < Bacl Next > Einish Cancel

The Remote Systems view allows you to configure, access, and manage remote file

systems and targets, and provides a Local node for access to the local file system
and shell.

390

A What’s New with CDT, DD, and TM
A.6 Connecting to Targets

Old Workbench Target Manager

E?arget Manager x . Kernel ijecnsg =8
it |8 X &7

= & default (localhost)
- [H tgt_193.81.18.99 (Wind River ViWorks 6.4)
- 8 xsim0 (Wind River VxWiorks 6.4) |
=% SIMNT (VxWorks 6.4)
= @ Kernel Tasks
@, tAioloTask0:0x1038f398 [Pend]
@, taioloTaskl:0x1038f490 [Pend)
&, tAioWait:0x1038efd0 [Pend]
@, tExcTask:0x10182680 [Pend]
@, tobTask:0x1036e9d8 [Pend]
@, tLogTask:0x1036f918 [Pend]
@, thbioLog:0x10387110 [Pend]
@, tNetTask:0x103abf10 [Ready]

@, tShell0:0x1081a8b8 [Pend]
@, tWdbTask:0x1048dabs [Ready]

- Real Time Processes

B wworks:0xc7e3do - Symbal file: D:/GPP_FANG/ viworks-6.4/1

[g

0 connected - target server running Kerna

New Eclipse Remote Systems View

i]ﬁl!cmote Systems Ei ﬂ Kernel Objects | ==
i £8 @B~
| © E_:I.ncd

=2 tgt_10.0.0.10 (Wind River Viwierks 5.5)
T8 vcsimO {Wind River Vxwarks 6.5)
= ?é}. wind River Target Debugaer (Wind River VeWorks 6,5)
=) SIMNT (iorks 6.5)
= @ Kernel Tasks
8y, ipeom_syslogd: 01037512 [Pend]
48y, ipretd:0x10404:00 [Pend]
8y, thloloTask:0x1038d036 [Pend]
48y, thioloTask1:0x1038d730 [Pend]
By, ealowalt: 0x1035d228 [Pend]
@, tExcTaskiDx10180558 [Pend]
B, tlobTask:0x1036cc56 [Pend]
i @), tLogTask:0x103206d0 [Pend)]
B, thbiolog:0x 10355110 [Pend]
i @y, ENetTask:0x10382Fb0 [Perd]
B, eshelln:ox10427 10 [Pend]
LB, ewdbTask: 010408340 [Ready]
@ Red Time Processes
S wnoworks:0xefo410 - Symbol file: DifRpps vwrsiwhz.6.1_cdlS_vx3o_gpplv:
1R viesimo_pse (VeWorks 653 2,1)
S8 tat_10.0.0.5 (wind River VeWorks 6.5)
= % Wind River Target Debugger {Wind River Va'Works 6,5}
=14 Penkium (xWorks 6.3)
4 gf® Kernel Tasks
& Red Time Processes
S wworks:0xef9410 - Symbol file: D:fAppswrsfwh2.6.1_cdlS_wx3d_gppfv

< | 1l (2]

391

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Target Management Issues

It is not possible to drag images from the Project Explorer to Wind River target
connections.

Using the Remote Systems Perspective

Switching to the Remote Systems perspective displays the Remote Systems Details
view, which provides additional information about each defined target
connection.

For more information about target management, see 18. Connecting to Targets and
the RSE User Guide, available from the Workbench help system.

392

A.7 Working with Debugging Views

A What’s New with CDT, DD, and TM
A.7 Working with Debugging Views

Several views that were included in previous versions of Workbench have been
replaced by their Eclipse counterparts.

Workbench Memory View is Replaced by the Eclipse Memory View

The new Eclipse Memory view looks quite a bit different from its predecessor. For
example, tabs are now monitors, and renderings are different ways to look at the
memory (currently only one is installed with Workbench). Find and Replace

function in a similar way to the old Memory view, and as before, searches over a
large memory range can be time consuming.

Some issues you may encounter include SNF import and export are no longer
supported, and there is no S-record format for 64-bit import and export. Drag and
drop to the Memory view is not supported.

Old Workbench Memory View

Local Variables | Watch Registers

0x40400

0x00040400 3D
0x0004040E 05
0x00040416 97
0x00040421 63
0x0004042C 00
0x00040437 64
0x00040442 6F
0x0004044D 21
0x00040458 90
0x00040463 04
0x0004046E 0O
0x00040472 00
0x000404584 38
0x00040458F 01
0x00040494 03

60
39
i5
oo
oo
Z0
6F
FF
o1
38
04
ap
60
83
A6

oo

04

d Support T
cols, Inc..
g8 .. .8,

393

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

New Eclipse Memory View

()= Variables | ¥} Registers |6 Expressions | (] Memary &3 CetaE & || §i| gg v~ T O
Monitors . §¢ % Renderings = 3
@ 0x40400 0540400 : 040400 < Traditional> |
@ (401075 _ - _

0x00040400 3D600004
0x00040410 LDFLEFLE
0x00040420 38630001
0x00040430 456D6265 64¢
0x00040440 20546F6F &C
0x00040450 TCOB802R6
0x00040460 3DEOODO4
0x00040470 38841414
0x00040480 4082000C
0x000404%0 E3E1000C
0x00040440 4EE00020
0x000404B0 S3C10010
0x000404C0 3BFF1750
0x000404D0 3D200004 32

1 legooo161 4
0 00000000 0
1 20537570 7
0 496E632E ¢
C 90010014 P I R
= 91810008 3 E

= 48000DB1 2
48000008 3
TCOB03AE 3
TCOE02A6 ¢
1 9001001C 3
4 3BDE1770
91891728 3

For more information about the Memory view, see the C/C++ Development User
Guide, available from the Workbench help system.

Workbench Registers View is Replaced by the Eclipse Registers View

The Eclipse Registers view now contains On-Chip Debugging (OCD) extensions.
The Properties view was removed because bit fields are now editable in place in
the Registers view. The Details pane (at bottom of view) displays the register value
in each radix.

394

A What’s New with CDT, DD, and TM
A.7 Working with Debugging Views

Old Workbench Registers View

Local Variables | Watch | 5 Registers 3

GAe- -0

Memaory
Yalue Descripkion =)
|

ra 000000000 General Purpose Register 0
rl DxFFFFF440 General Purpose Register 1
ré 000000000 General Purpose Register 2
r3 000000001 General Purpose Register 3
r4 OxFFFFF445 General Purpose Register 4
5 0xFFFFFF13 General Purpose Register 5
ré 00000000 General Purpose Register &
r7 De00000000 General Purpose Register 7
=] 000000000 General Purpose Register 8
re 000000000 General Purpose Register 9
rid De00000000 General Purpose Register 10
ti1 0x00000000 General Purpose Register 11
rlz 000000000 General Purpose Register 12
rl3 Dx00000000 General Purpose Register 13
ri4 0x00000000 General Purpose Register 14
vil e NNONNON Zanarsl Diwnocs Damickar 16 !J

New CDT Registers View

9= Variables | 1} Registers &3

MName

o UPMC
St TIMERS
Mt CLOCKS

i

CLPD

iy SIC
i IOPORTS

St CPMTIMERS

Sl DMA

Hex. .. : 0x00000004

Decimal : 4
Cctal..
Binary.

F

000000000004
0b00000000000000000000000000000100

@Expressions i] Memory

Value

00000004
CPM low power with core - 0x1
Divide by 4 - 0:0

0:00000000

0:00000000

0:00000000

+t 2 |[G)e, Bl e ¥ = O

Description

System Clock Control Register

CPM Low Power
Division Factor BRGCLK

Systern Clock Mode Register

Reset Status Register
Reset Mode Register

m

m

For more information about the Registers view, see Wind River Workbench for
On-Chip Debugging User Tutorials and the C/C++ Development User Guide, available
from the Workbench help system.

395

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Watch View is Replaced by the Eclipse Expressions View
The functionality of the two views is basically the same, and drag & drop to this
view is supported. Casting pointers is supported, though you cannot set radix for

a single element. The Expand All capability is no longer available.

Old Workbench Watch View

Fa T =
Local Vatiables | 657 b ED . Registers | Memory il 7 E =0
MName Yalue
demo_counker 1
-9 000001 5FEC
a 55
| Ll 0x00015FBE "December”
[12345678
color red

New Eclipse Expressions View

4= Variables | 31 Registers & Expressions % a Memory =0
4B % %@ My~
Expression Type Value
demo_counter long 9312
4q REC_TYPEL 0x00015F9C
a short 55
- b unsigned char[16] 0x00015F3E "December”
C long 12345678
color color_type red
Hex.... : 0Ox00015F3C -
Decimal : 90012
Cctal.. : 000000257634

Binary. : 0b00000000000000010101111110011100
Natural : 0x00015FaC

4

For more information about the Expressions view, see the C/C++ Development User
Guide, available from the Workbench help system.

396

A What’s New with CDT, DD, and TM
A.7 Working with Debugging Views

Local Variables View is Replaced by the Eclipse Variables View

The functionality of the two views is basically the same, though as in the
Expressions view you cannot set radix for a single element and Expand All
capability is no longer available.

Old Workbench Local Variables View

p =
)= Local Yariables 2

‘Watch | Registers | Memary

Mame Yalue
demo_counker 1
__pfa_demo 0
Summ &
cvar A
el 0x00015FEC
a 55
+b 0x00015FEE "December”
[12345675
color red
locallntl 6
localLongt 305419896
New CDT Variables View
()= Variables &2 . i} Registers | 54" Expressions| [Memory =0
5 B [[G)d B & N
MName Type Value -
demo_counter long 9312
pfa_demo int 3
sum int 5
cvar unsigned char A
4q REC_TYPEL 0x00015F9C 3
a short 55
. b unsigned char[16] 0:00015F3E "December”
C long 12345678
color color_type red
locallntl int 6
lnrall Annl lnnn 2AN5410R0A bt
Hex.... : 0x00002460 -
Decimal : 9312
Cctal.. : 000000022140
Binary. : 0b00000000000000000010010001100000
Natural : 9312 —

4

For more information about the Variables view, see the C/C++ Development User
Guide, available from the Workbench help system.

397

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

A.8 For More Information

For details about new Workbench features, including non-Eclipse enhancements
to Workbench, see the release notes for your platform (which are available from
the Wind River online support site, http://www.windriver.com/support/).

For more information about Eclipse and the CDT, DD, and TM projects introduced
here, see the Eclipse documentation available from the Workbench help system, as
well as documentation you will find at http://www.eclipse.org/documentation/.

398

http://www.eclipse.org/documentation/
http://www.windriver.com/support/

Command-line Updating of
Workspaces

B.1 Overview 399

B.2 wrws_update Reference 400

B.1 Overview

The Workbench installation includes a wrws_update script that allows you to
update workspaces from the command-line. This can be used, for example, to
update workspaces in a nightly build script. The following section provides a
reference page for the command.

399

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

B.2 wrws_update Reference

Execution

Options

A script for updating an existing workspace is available in the Workbench
installation and is named:

wrws_update.bat (Windows only)
wrws_update.sh (Windows, Linux, and Solaris)

This script launches a GUI-less Eclipse application that can be used to update
makefiles, symbols (source analysis), and the search index.

Specify the location of the wrws_update script or add it to your path and execute
it with optional parameters, for example:

$ wrws_update.sh -data workspace_dir

NOTE: The workspace must be closed for the command to execute. This includes
closing all instances of the Workbench GUI that are accessing this workspace.

If you do not specify any options to the command, all update operations are
performed (-all projects, -generate makefiles, --update symbols, -update index).

General Options

-h, --help
Print command help.

-q, --quiet
Do not produce standard output.

Eclipse Options

-data workspace_dir
The script uses the default workspace (if known), but it can also update other
workspaces by specifying the -data workspace_dir option, just as Workbench
does. (The script accepts the same command-line options as Workbench. For
example, to increase virtual memory specify -vmargs -Xmxmem_size.)

400

B Command-line Updating of Workspaces
B.2 wrws_update Reference

Global Options
-a, --all-projects

Update all projects, this option will force all closed projects to be opened.
Opened projects will be closed after finishing the update.

-1, --specify-list-of-projects argument
Specify a list of projects to be updated. This option reduces the scope of the
nightly update to the specified list of projects. Needed closed projects will be
opened and unneeded opened ones closed. After finishing the update the
previous state is restored. Separate the list with "," for example:
cobble,helloWorld.

If the build target of a managed build project depends on files, folders, or
sub-targets from other projects in the workspace, they must be included in the
list of projects.

For example, a project named ManagedBuildProj references build targets
from a subproject, DependProj1, and source files from another project,
DependProj2 (flexible managed build only). Therefore, they must be included
in the list of projects, as shown here on Windows:

$ wrws_update -data C:\build -1 DependProjl,DependProj2,ManagedBuildProj -m

Build Options

-b, --build-projects argument
Launch build for projects. Several strings are valid as arguments, including:
build (default), clean, and rebuild. All open projects in the workspace are
built in the correct build order. It is not required to specify a list of projects
using the -1 option.

-e, --enableTraceBuild
Enable trace build output.

-f, --debugMode argument
Build using specific debug or non-debug mode where applicable. The
argument, if specified, can be 0 or 1, otherwise the current mode is used per
project.

-u, --buildArgs argument
Specify a list of additional build options. Separate the list with "," for example:
-i,MY_VAR=value.

401

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Nightly Update Options

Output

-i, --update-index
Update search-database index.

-m, --generate-makefiles
Regenerate Makefiles where necessary.

-s, --update-symbols argument
Update symbol database (source analysis). To create the data from scratch, you
can supply 'rebuild' as argument.

-t, --create-team-symbols argument
Export symbol databases for shared use in a team. The argument is a quoted
comma-separated list of options. Valid options are timestamp, readonly, and
checksum. The default is timestamp,readonly,checksum. See the online
documentation for details on these options.

-x, --update-xref arqument
Update cross references (source analysis). To create the data from scratch, you
can supply 'rebuild' as argument.

Any errors that might occur during the updates are printed out to standard error
output. Other information (for example, status, what has been done, and so on) are
printed out to standard output.

NOTE: No configuration management-specific actions or commands are executed
within this script and the launched application. Configuration management
specific synchronizations or updates relevant to the workspace (for example,
cvs-update, ClearCase view synchronization, and so on) have to be done before
this script is started.

402

Command-line Importing of
Projects

C.1 Overview 403

C.2 wrws_import Reference 404

C.1 Overview

The Workbench installation includes a wrws_import script that allows you to
import existing projects into workspaces from the command line. The following
section provides a reference page for the command.

403

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

C.2 wrws_import Reference

Execution

Options

A script for launching a GUI-less Eclipse application that can be used to import
existing projects into the workspace is available in the Workbench installation and
is named:

wrws_import.bat (Windows only)

wrws_import.sh (Windows, Linux, and Solaris)

Specify the location of the wrws_import script or add it to your path and execute
it with optional parameters, for example:

$ wrws_import.sh -data workspace_dir

General Options

-d, --debug argument
Provide more information. The argument, if given, specifies the level of
verbosity. Default is 2, the possible options are: [2, 3, 4].

-h, --help
Print command help.

-q, --quiet
Do not produce standard output.

Eclipse Options

-data workspace_dir
Specify the Eclipse workspace with this option.

Import Project Options

-f, --files arqument
Specify a list of project files to be imported. Separate the items in the list with
commas (,). For example: dirl/.project,dir2/.project. All files must be specified
using an absolute path.

404

C Command-line Importing of Projects
C.2 wrws_import Reference

-1, --recurse-directory arqument
Specify a directory to recursively search for projects to be imported. Directory
must be specified using an absolute path.

-v, --define-variables argument
Specify a list of Eclipse path variables to be defined. Separate the list with
commas (,). For example: var 1=value 1,var 2=value 2.

NOTE: This script will not stop or fail if some projects already exist in the
Workspace, the way the Import existing projects into workspace wizard does. It
will just print out the information and continue.

405

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

406

Configuring a Wind River Proxy
Host

D.1 Overview 407
D.2 Configuring wrproxy 409

D.3 wrproxy Command Summary 411

D.1 Overview

The Wind River proxy allows you to access targets not directly accessible to your
Workbench host. For example, you might run the proxy server on a firewall and
use it to access multiple targets behind the firewall.

The proxy supports TCP, UDP, and TIPC (Linux only) connections with targets.
Many different host tools and target agents can be connected. A simple illustration
of this is shown in Figure D-1.

407

Figure D-1

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Wind River Proxy Example

Target with
—® Serial
Connection

Workbench Host Target running
with Target Server — usermode-agent

. Proxy Host - Target running
Telnet Client <€&——»| running wrproxy €—— telnetd

Target supplying
Workbench Host remote kernel
with Data Monitor > metrics to

Data Monitor

L Node on TIPC
Network

The proxy host itself can be one that runs any operating system supported for
Workbench hosts or any host running Wind River Linux. You run the wrproxy
command supplied with Workbench on the proxy host and configure it to route
access from various tools to specific targets. The mapping is done by TCP/IP port
number, so that access to a particular port on the proxy host is directed to a
pre-defined target. You can start wrproxy and then manually configure it, or you
can create a configuration script that wrproxy reads at startup.

408

D Configuring a Wind River Proxy Host
D.2 Configuring wrproxy

D.2 Configuring wrproxy

The wrproxy command (or wrproxy.exe on Windows) is located in
installDir/workbench-version / foundation/version/x86-version/bin/. Copy it to the
host that will serve as your proxy host. The following discussion assumes you have
copied wrproxy to your proxy host and are configuring it from the proxy host.

Configuring wrproxy Manually

To configure wrproxy manually, start it with a TCP/IP port number that you will
use as the proxy control port, for example:

$./wrproxy -p 1234 &

You can now configure wrproxy by connecting to it at the specified port.

Use the create command to configure wrproxy to map client (host tool) accesses on
a proxy port to a particular target. The following example configures accesses to
the proxy port 1235 to connect to the Telnet port of the host my_target:

$ telnet localhost 1234

Trying 127.0.0.1...

Connected to localhost.

Escape character is '~]1'.

create type=tcpsock;port=23;tgt=my_ target;pport=1235
ok pport=1235

Refer to create, p.413 for details on create command arguments.

If you now connect to the proxy host at port 1235, you are connected to the Telnet
port of my_target:

$ telnet localhost 1235

Trying 127.0.0.1...

Connected to localhost.
Escape character is '~]1'.

my_target login:

Creating a wrproxy Configuration Script

If you are typically using the same Wind River proxy configurations over time, it
can be useful to use a startup script to configure it rather than doing it manually
each time. You can cause wrproxy to read a startup script by invoking it as
wrproxy -s startupscript. The script contains the commands that configure wrproxy
as well as comments that begin with the # character. A simple startup script that

409

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

configures the same port setup performed manually in the previous example
might look like this:

This i1s an example of a wrproxy startup script

Configure the proxy host port 1235 to connect to my_target Telnet
create type=tcpsock;port=23;tgt=my_target;pport=1235

list the port configuration

list

end of script

When you start wrproxy with this script, it gets configured as in the previous
example and sends input and output to standard output:

$./wrproxy -s wrproxy startup &
[2] 6660
Executing startup script...

create type=tcpsock;port=23;tgt=my_target;pport=1235
ok pport=1235

list

ok pport=1235; type=tcpsock;port=23;tgt=my_target

$

Since no control port was specified with the -p option at startup, the default port
17476 is used.

NOTE: There is no password management in wrproxy. If you want to be sure that
no new connections (tunnels) are made remotely using the control port, use the
-nocontrol option with the -s startupscript option which will disable the proxy
control port.

The startup script accepts the create, list, and delete commands as described in
Configuration Commands, p.411.

410

D Configuring a Wind River Proxy Host
D.3 wrproxy Command Summary

D.3 wrproxy Command Summary

The following section summarizes all of the Wind River proxy commands.

NOTE: For all commands, unknown parameters are ignored; they are not
considered errors. In addition, the client should not make any assumption on the
number of values returned by the command as this could be changed in the future.
For example, the create command will always return the value for pport but
additional information may be returned in a future version of the Wind River

proxy.

Invocation Commands

The wrproxy command accepts the following startup options:

» -plort]—specify TCP control port. If not specified, the default of 0x4444 (17476)
is used. This should be a unique number less than 65536 not used as a port by
any other application, and it should be greater than 1024 which is the last of
the reserved port numbers.

» -V—enable verbose mode.
» -v[ersion]—print wrproxy command version number.

» s startupscript—specify a startup script that contains wrproxy configuration
commands.

= -h[elp]—print wrproxy command help.

= -nocontrol—disable control port.

Configuration Commands

You can use the following commands interactively, and all except the connect
command in a Wind River proxy startup script.

connect

Create a new Wind River proxy connection and automatically connect to it. Unlike
the create command (see create, p.413) the connection is established immediately

and all packets sent to the connection are immediately routed between the target
and host.

411

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

Usage

412

connect type=type;mode=mode;proto=proto; connection_specific_parameters
Where the arguments to the connect command are as follows:
type is:

» udpsock—UDP socket connection.

» tcpsock—TCP socket connection.

» tipcsock—TIPC socket connection (Linux only).

mode describes how the connection is handled between the proxy and the
client (for example the Workbench host) and is:

» raw—raw mode (default).

» packet—packet size is sent first followed by packet content; the packet is
handled only when fully received.

proto describes how the connection is handled between the proxy and the
target and is:

» raw—proxy does not handle any protocol (default).

» wdbserial —(VxWorks targets only) proxy converts packet to wdbserial.
When proto is wdbserial, some control characters are inserted by the
proxy in the packet sent to the target so that the generated packet will be
understood correctly by the target using a WDB serial backend. This is
typically used to connect to a WDB agent running on a target through a
serial line that is connected to the serial port of a port server (this serial line
is then accessible by the proxy using a well-known TCP port of the port
server).

Connection-specific Parameters
» udpsock and tcpsock connection:
port=port;tgt=tgtAddr

Where port is the TCP/UDP port number and tgtAddr is the target IP
address.

» tipcsock connection (Linux only):
tipept=tipcPort Type;tipcpi=tipcPortInstance;tgt=tgt Addr

Where tipcPortType is the TIPC port type, tipcPortInstance is the TIPC port
instance and tgtAddr is the TIPC target address.

create

D Configuring a Wind River Proxy Host
D.3 wrproxy Command Summary

The response of the Wind River proxy to the connect command is a string as
follows:

ok
or
error errorString

where errorString describes the cause of the error.

Create a new proxy port mapping to a target. The connection is not established
immediately as with the connect command (see connect, p.411) but only when a
client connects to the specified port number.
Usage

create type=type;port=port;tgt=target;pport=pport
where the arguments to the create command are as follows:

type=type is:

» udpsock—UDP socket connection.

» tcpsock—TCP socket connection. (Only tepsock is allowed for a VxWorks
proxy host.)

» tipcsock—TIPC socket connection.

port—this is the port to connect to on the target.

NOTE: If you do not assign a port number, the default value of 0x4444 is used.

tgt=target—is the host name or IP address of the target when type is tcpsock
or udpsock, and port provides the UDP or TCP port number. When type is
tipcsock this is the target TIPC address, and tipcpi provides the TIPC port
instance and tipcpt provides the TIPC port type.

pport=proxy_TCP_port_number—specify the TCP port number that clients
(host tools) should connect to for connection to target_host. This should be a
unique number less than 65536 not used as a port by any other application, and
it should be greater than 1024 which is the last of the reserved port numbers.

NOTE: If you do not specify a pport value, one will be assigned automatically
and returned in the command output.

413

delete

list

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

port=target_TCP_port_number—specify the TCP port to connect to on the
target. This should be a unique number less than 65536 not used as a port by
any other application, and it should be greater than 1024 which is the last of
the reserved port numbers.

A simple example of using the create command to configure a Telnet server port
connection is given in D.2 Configuring wrproxy, p.409.

Delete the proxy configuration for a specific port.

Usage
delete pport=port_number

To delete the proxy configuration of a specific port, use the delete command
with the port number, for example:

$ telnet localhost 1234
Trying 127.0.0.1...
Connected to localhost.
Escape character is '~]'.
delete pport=1235

okA]

telnet> q

Connection closed.

List your current configuration with the 1ist command.

Usage
list

For example, to list your current configuration, connect to the proxy control port
and enter the list command:

$ telnet localhost 1234

Trying 127.0.0.1...

Connected to localhost.

Escape character is '~]'.

list

ok pport=1235;type=tcpsock;port=23;tgt=my_target

414

Glossary

E.1 Introduction 415
E.2 Terms 416

E.1 Introduction

This glossary contains terms used in Wind River Workbench.

If the term you want is not listed here, you can search for it throughout all installed
documentation.

1. At the top of the Help > Help Contents window, type your term into the
Search field.

2. Click Go. Topics containing the term will appear in the Search Results list.
3. To open a topic in the list, click it.

To switch from the Search Results list back to the help Table of Contents, click
the Show in Table of Contents icon in the upper right corner of the help view.

E.1.1 Refining a Search

If the result set is very large, the information you are looking for might not appear
in the top 10 or 15 results.

415

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

To refine a search to reduce the number of results:
1. Click the Search Scope link to open the search scope dialog.
2. Select Search only the following topics then click New.

3. Inthe working set content tree, select the topics to which you want to narrow
the search, for instance Wind River Documentation > References.

4. Type a descriptive name in the List name field (such as WR References) then
click OK.

5. Click OK to return to the help browser, where your new search scope appears
next to the Search scope link.

6. Click Go. The results will be shown in the Search Results list.

For more information about online help, see Help > Help Contents > Wind River
Partner Documentation > Eclipse Workbench User Guide > Tasks > Using the
help system.

E.2 Terms

active view

The view that is currently selected, as shown by its highlighted title bar. Many
menus change based on which is the active view, and the active view is the focus
of keyboard and mouse input.

back end

Functionality configured into a target server on the host determines how it will
communicate with a particular target agent on the target (for example, you use a
wdbrpc back end for Ethernet connections, wdbpipe for VxWorks simulators,
wdbserial for serial connections, and wdbproxy for UDP, TCP, and TIPC
connections).

The target server must be configured with a back end that matches the target agent
interface with which VxWorks has been configured and built.

416

E Glossary
E.2 Terms

board support package (BSP)

A Board Support Package (BSP) consists primarily of the hardware-specific
VxWorks code for a particular target board. A BSP includes facilities for hardware
initialization, interrupt handling and generation, hardware clock and timer
management, mapping of local and bus memory space, and so on.

build spec

A particular set of build settings appropriate for a specific target board.

color context

The color assigned to a particular process in the Debug view; this color carries over
to breakpoints in the Editor and to other views that derive their context from the
Debug view.

cross-development

The process of writing code on one system, known as the host, that will run on
another system, known as the target.

DKM
VxWorks Downloadable Kernel Module.

editor

An editor is a special type of view that is used to edit or browse a file or other
resource. Each Workbench perspective displays an editor area even when no files
are open.

Modifications made in an Editor follow an open-save-close life cycle model.
Multiple instances of an editor type may exist within a Workbench window.

element

An element is an entity that holds source analysis information of any kind,
standing for a declaration or occurrence of a constant, preprocessor option,
variable, function, method, type, or namespace in a parsed source code file.

gutter

The left vertical border of the editor view where breakpoints and the program
counter appear.

417

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

help key

The help key (or combination of keys) is determined by your host platform: press
F1 on Windows, or Ctrl+F1 on Linux and Solaris.

NOTE: The Help button on Solaris keyboards does not open Workbench help due
to a problem in Solaris/GTK+. Instead, use Ctrl+F1 to access help.

kernel configuration editor

The editor that allows you to configure the kernel of a VxWorks Image project.

kernel module

A piece of code, such as a device driver, that can be loaded and unloaded without
the need to rebuild and reboot the kernel.

launch configuration

A run-mode launch configuration is a set of instructions that causes Workbench to
connect to your target and launch a process or application. A debug-mode launch
configuration completes these actions and then attaches the debugger.

overview ruler
The right vertical border of the editor view where bookmarks and other indicators
appear.

perspective

A perspective is a specific grouping of an editor and views that are useful when
working on a particular task.

Default Workbench perspectives include the Application Development and
Device Debug perspectives, but if you click Window > Open Perspective > Other,
additional perspectives (such as those installed with Run-Time Analysis Tools) are
available to you.

plug-in

An independent module, available from Wind River, the Eclipse Foundation, or
from many Internet Web sites, that delivers new functionality to Workbench
without the need to recompile or reinstall it.

418

E Glossary
E.2 Terms

program counter

The address of the current instruction when a process is suspended.

project

A collection of source code files, build settings, and binaries that are used to create
a VxWorks system image, a kernel or RTP application, and so on.

Projects can be linked together in a hierarchical structure (displayed as a
project/subproject tree in the Project Explorer) that reflects their inner
dependencies, and therefore the order in which they should be compiled and
linked.

project description files

Automatically-generated files that contain information about a project, such as
project properties, build information, makefile fragments, and other metadata.

real-time process (RTP)

A VxWorks process that is specifically designed for real-time systems.

registry

The registry associates a target server’s name with the network address needed to
connect to that target server, thereby allowing you to select a target server by a
convenient name.

system mode

When in system mode, the debugger is focused on kernel processes and threads.
When a process is suspended, all processes stop. Compare with user mode.

target agent

The target agent runs on the target, and is the interface between VxWorks and all
other Wind River Workbench tools running on the host or target.

target server

The target server runs on the host, and connects Wind River Workbench tools to
the target agent. There is one server for each target; all host tools access the target
through this server.

419

title bar

toolbar

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

A view’s title bar contains the view name, its icon, and the view toolbar. A
highlighted title bar denotes the active view.

A view’s toolbar contains actions that apply only to that view (for example, Step
Over in the Debug view). The toolbar also contains a context menu that contains
other actions for that view.

The main Workbench toolbar contains actions that apply to Workbench as a whole
(e.g. Search) or that reflect the components that are installed (e.g. Launch
TraceScope).

user mode

When in user mode, the debugger is focused on user applications and processes.
When a process is suspended, other processes continue to run. Compare with
system mode.

view
A view is a pane within the Workbench window that allows you to display,
navigate, and manipulate the resources in your workspace. Only one view has
focus (is active) at a time.

VIP
VxWorks Image Project.

window
The term window refers to the desktop development environment as a whole—the
space Workbench takes up on your screen. A Workbench window can contain
more than one perspective, but only one is displayed at a time.

working set

A working set is a group of resources you select because you want to view them or
perform an operation on them as a group. For example, creating a working set
allows you to speed up a search by restricting its scope. A working set can also help
you focus by reducing the number of projects visible in the Project Explorer, the
number of symbols displayed in the Outline view, and so on.

420

E Glossary
E.2 Terms

workspace

A workspace is the central location for all the resources you see in Workbench:
your projects, folders, and files.

Workbench also uses the workspace to store settings that describe your working
environment: which projects and views are currently open, how you have your
views arranged within the perspective, whether you have breakpoints set, and so
on.

The default location of the workspace is installDir/workspace, but it can be located
anywhere. To keep your projects completely isolated from each other, you can
create more than one workspace.

NOTE: This use of the term workspace is entirely different from the flash
workspace, which is a small area of RAM needed to run the flash algorithm; that
sense of the term is restricted to flash programming.

421

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

422

A

adding
application code to projects

application initialization routines to VIPs

applications to VIPs 105

new files to projects 173

subprojects 82
applications

adding to VIPs 105

initialization stubs 103

projects, configuring 140
Attach to Target launches 296

back end, target server 260
ball sample program 17
basename mappings 267
binary parser 179
board support package 106
creating 106
customizing manually 107
migrating 106
simulator 106
Wind River Workbench 106
Bookmarks view 29
boot

172

105

Index

loader project 109
build specs 113
creating 110
makefile 114
overview 78
project nodes 113
target nodes 113
mechanism, setting up 52
programs
creating new 63
serial connection, configuring for 68
ROMs
emulators, substituting ROM 53

booting

command line parameters 62
parameters
displaying current, at boot time 55
nonvolatile RAM, effect of 63
setting 55
VxWorks 61
rebooting VxWorks 63
TFTP, requiring 63
troubleshooting 346
VxWorks
commands 56

breakpoints

conditional 303
converting to hardware 305
creating

expression 303

423

Wind River Workbench

User’s Guide, 3.0 (VxWorks Version)

hardware 304
line 302
data 303
disabling 306
exporting 306
expression 303
hardware 303
importing 306
limitations during SMP debugging 307
line 302
refreshing 306
removing 307
restricted 302
unrestricted 302
Breakpoints view 301
BSP
See board support package
build
applications for different boards 230
architecture-specific functions 234
complete product image 186
executables to dynamically link to shared
libraries 235
failure due to locked files 335
library for test and release 231
make rule in Project Explorer 238
managed
adding build targets 217
build output 220
configuring 216
using with linked resources 334
management 215
output

disabling prompt to add to ClearCase 374

folders 102
properties

accessing 222

dialog 222

global 222

project-specific 222
redirection root directory 124, 136, 146, 166
remote 244

connection 244

setting up environment 243
spec 223

424

C

creating 239

customizing 86

for new compilers, other tools 239
support 215

disabled 216
target

excluding with regular expressions 219
troubleshooting

imported projects 336
user-defined 216

cables, connecting 48
ClearCase

disabling prompt to add build output files 374
installing plug-ins 359
using with Workbench 372

command line

importing prebuilt 97

importing projects (wrws_import) 403
importing VIPs generated on 97
parameters 62

registry 249

update workspaces (wrws_update) 399

compiler

flags, add 228
new build spec 239

complex project structures 184
conditional breakpoints 303
configuring

application projects 140
file system project 201
flexible managed build 216
jumpers 48
kernel components 98
target
file system 116
hardware 48
VxWorks image project 105, 201

Console view 294
container

project
creating 187

per project type and external headers 188
subprojects 198
controlling multiple launches 290
core dump
connecting to a VxWorks 5.5.x 34
customize build specs, shared subprojects 86
CVS
using with Workbench 375

D

data breakpoints 303
debug modes 314
debug server
loading symbols 254, 264
Debug view 310
debugger
debugging a VxWorks 5.5 application 32
disconnecting and terminating processes 319
single-stepping through code 313
deleting
breakpoints 307
flexible build targets 219

nodes
project 178
target 178

derived resource, not adding to ClearCase 374
development 191
disabled build support 216
Disassembly view 321
opening automatically 322
opening manually 322
Domain Name Service (DNS) 42
downloadable kernel module
application code 150
in Project Explorer 148
project
build specs 148
creating 142
files 149
nodes 148
target nodes 148
dual mode 41

Index

E

Eclipse
basic concepts 7
log 349

using Workbench in 365
Eclipse Update Manager 361
Editor 208

Kernel 99

program counter 313
environment commands (Launch Control) 293
environment variables

LD_LIBRARY_PATH 237

redirection root directory 124, 136, 146, 166
error condition command (Launch Control) 291
Error Log view 348
Exec Path on Target, troubleshooting

Linux 339

RTPs 341
execution environments, project-specific 86
exporting

breakpoints 306

object path mappings 265
expression

breakpoints 303
external headers 195

F

file
system
configuring the target 116
project files 118
project nodes 117
project, VxWorks 80
File Navigator view 208
File Transfer Protocol
See FTP server
files
manipulating 177
find and replace 211
folders, build output 102
FTP server
configuring 43

425

Wind River Workbench

User’s Guide, 3.0 (VxWorks Version)

WFTPD 43

H

hardware breakpoints 303
headers, external 195
help system
accessing 12
display problems
Linux 331
Solaris 331
Windows 332

importing

breakpoints 306

build settings 173

object path mappings 265

resources 172

VxWorks image project 95

SMP-enabled sample 97

Include Browser view 206
indexer

preferences 212
initialization stubs, application 103

J

Java Development Tools (JDT), installing 361
jumpers 48

K

kernel
configuration 100, 117
back ends 269
editor 99
image and symbols 261

426

shell 254
Kernel Configuration Editor 99
Kernel Objects view 323
multi-process debugging 323

L

launch (terminology) 290
launch configurations
creating 280
native applications 286
Launch Control 290
launch sequence 290
LD_LIBRARY_PATH environment variable 237
library, shared
project structure 193
line breakpoints 302
Link with Editor 211
linked resources, path variable 217
linking project nodes, moving and 177
linking to external sources
projects for read-only file locations 334
loading symbols to debug server 264
specifying an object file 254
location, resource 182
logical nodes 176
logs
creating a ZIP of 348
debugger back end
debug tracing 350
GDB/MI 350
debugger views
broadcast message debug tracing 351
GDB/MI 350
internal errors 351
Eclipse 349
Remote Systems debug tracing 354
target server
backend 352
output 352
WTX 353

M

make rule in Project Explorer 238
makefile
boot loader project 114
build properties 224
nodes
downloadable kernel modules 149
native application 169
RTP 127
shared libraries 138
VIP 102
managed build
configuring 216
using with linked resources 334
memory
target server cache size 263
menu, Navigate 175
multiple
processes, monitoring 312
software systems 183
target operating systems or versions 223
multiple launch control 290
multi-process debugging
Kernel Objects view 323

N

native application
launching 286
project 161
application code 170
build specs 168
creating 162
files 169
nodes 168
target nodes 168
Navigate menu 175
navigation 174
New Connection wizard 250
nodes
moving and (un-)linking project 177
resources and logical 176

Index

o)

object path mappings

creating automatically 264

examples 266

exporting 265

for remote hosts 265

importing 265

why they are required 264
opening

build properties dialog 222

new window 174

project, in new window 174
operating systems, multiple 223
output folders, build 102

P

pango error 331
parser, binary image files 179
path variable 217
pathname prefix mappings 264
plug-ins
activating 361
adding an extension location 360
creating a directory structure 358

creating a Workbench plug-in for Eclipse 365

installing ClearCase 359

web sites 358
polled mode 41
post-launch command (Launch Control) 291
preconfigured project types, overview 76
pre-launch command (Launch Control) 291
processes

Attach to Target launches 296

disconnecting debugger 319

RTPs, running 285

working directory 281
profiles 92

VxWorks 5.5 compatible 93

VxWorks scalability levels 92
program counter 313
project

application code 76

427

Wind River Workbench
User’s Guide, 3.0 (VxWorks Version)

boot loader 78,109 VxWorks
creating 110 file system 80
bsp, getting a functioning 106 image 77
build importing prebuilt and command line-
properties, accessing 222 generated 97
remote 244 kernel configuration profiles 92
system 84 scalable 92
closing 173,174 Project Explorer
configuring application 140 boot loader projects 113
creating 172 DOSES file system projects 117
for read-only sources 334 Link with Editor 211
creating new 75 move, copy, delete 175
creating, boot loader 110 moving and (un-)linking project nodes 177
customizing VxWorks image 100 native application projects 168
description files, version control of 371 project presentation option 193
execution environment 86 real-time process projects 126
headers 188 shared libraries 138
importing Tornado 2.x 35 target nodes, manipulating 178
infrastructure design 186 user-defined build-targets 238
linking application projects to VxWorks VxWorks image projects 100
image 105 project presentation option 193
native application 161 project.properties
nodes creating 86
manipulating 177 limitations 88
moving and (un-)linking 177 using from the command line 87
opening 173 using with a shell 88
preconfigured, overview 76 wrenv syntax 87
project structures 82
properties
creating project.properties file 86 R

limitations of project.properties files 88
using from the command line 87

using with a shell 88

wrenv syntax 87

read-only sources
creating projects for 334

real-time process 79 real-tlm? process
sample 77 project 79
scoping 174 application code 128

build specs 126

shared library 80 creating 120

sharing subprojects 85

files 127
structure 9 -
and build system 84 nodes
and host directory structure 83 target nodes 126
See also RTPs

structures, complex 184
troubleshooting imported 336
user-defined 216

rebooting VxWorks 63
redirection root directory 124, 136, 146, 166
with ClearCase 373

428

registry 255
changing daemon default behavior 47
changing default 257
command line 249
data storage 256
error, unreachable 329
launching the default 256
remote, creating 256
shutting down 257
wixregd 257
changing default options 47
regular expressions
to exclude contents of build target 219
remote
build 244
setting up environment 243
connection 244
rlogin 246
SSH 246
Remote Systems view 250
basename mappings 267

defining a VxWorks Simulator connection 273

New Connection wizard 250
object path mappings 264
examples 266
for remote hosts 265
pathname prefix mappings 264
shared connection configuration 269
removing breakpoints 307
replacing text 211
resource locations 182
resources and logical nodes 176
rlogin remote build connection 246
RPC timeout error 338
RTPs
attaching to running 297
running 285
troubleshooting 342

S

S_rtp_INVALID_FILE error 342
sample
ball program 17

Index

projects 77

searching for text 211

serial lines
target server back end connection, as 67
testing 68

set, working 175

setting breakpoints
restricted 302
unrestricted 302

shared library 193
LD_LIBRARY_PATH environment

variable 237

project
creating 132
nodes 138

project file 138
troubleshooting problems 343
simulator
adjusting priority of 274
establishing a new connection 273
VxWorks 106
SMP
breakpoint limitations 307
SMP-enabled sample VIPs, importing 97
software systems, multiple 183
source analysis
description 205
preferences 212
source lookup path
adding sources 284
editing 321
source mode build 92
spec, build 223
SSH remote build connection 246
static analysis
See source analysis 205
structures, complex project 184
stubs, application initialization 103
sub-launch 290
subprojects 201
adding 82
container 198
symbol
file, specifying maximum size 335
table

429

Wind River Workbench

User’s Guide, 3.0 (VxWorks Version)

configuring target server 261

symbols and kernel image 261
system mode 41
compared with task mode 314

T

target

agent

communication modes 40
introduction 39

board

configuring 48

establishing a connection 251
jumpers, setting 48

serial port 48

Terminal view 48

file system 116

name (tn) (boot parameter) 60

operating systems, multiple versions 223
server

tasks

back end settings 260
connecting
ethernet 64
serial 69
connections
establishing new 259
network 64
serial line 67
Tornado 31
core file 261
file system (TSFS) 262
making writable 263
introduction 39
kernel configuration back ends 269
memory cache size 263
symbol table 261
timeout options 263
troubleshooting 347
WDB Pipe back end 260
WDB Proxy back end 260
WDB Serial back end 260

attaching to running 297

430

state 298

team

defining a path variable 217
sharing project.properties file 86
Terminal view 48
entering text 51
text search 211
tgtsvr options 262
timeout error, RPC 338
TIPC target server backend 260

Tornado

creating a target server connection 31

importing Tornado 2.x projects 35

Workbench finding an installation of 30
troubleshooting

booting problems 346

building imported projects 336

creating a ZIP of log files 348

downloading 340

exception on attach 339

Exec Path on Target 341

hardware configuration 345

help system display problems

Linux 331
Solaris 331
Windows 332

Java Development Tools (JDT)

dependency 331

launch configurations 343

logs

debugger back end 350
debugger views

broadcast message debug tracing 351

GDB/MI 350

internal errors 351
Eclipse 349
Error Log 348
generated by Workbench 348
Remote Systems debug tracing 354
target server

backend 352

output 352

WTX 353

pango error 331
registry unreachable 329

removing unwanted target connections 332

RPC timeout error 338

running a process 341

S_rtp_INVALID_FILE error 342

shared library problems 343

startup errors 328

target connection 338

target server problems 347

VxWorks 345

workspace cannot be locked 330
TSES

See target server, file system 262
tutorial

ball sample program 17

debugging a VxWorks 5.5 target 30

editing and debugging source files 24

Editor code assist 26
Type Hierarchy view 206

U

Update Manager 361
user build arguments 239
user mode 41
user-defined
build 216
project
creating 152
debugging 160
usrappinit.c 103
usrrtpappinit.c 103

\'}

version control
adding Workbench project description files
to 371
using ClearCase 372
using CVS 375
views
See Workbench views
VIO

Index

See virtual I/0 (VIO)
VIP
See VxWorks image project
virtual I/0O (VIO) 294
VxWorks
boot loader project 78
booting 53
core dump, connecting to a VxWorks 5.5 34
file system project 80
creating 116
image
customizing 100
pre-built 55
image project 77
build specs 101
creating 90
files 103
importing command line-generated 97
in Project Explorer 100
kernel configuration profiles 92
linking application projects to 105
project nodes 100
source mode build 92
target nodes 101
rebooting 63
shared library project 80
simulator 106
defining a new connection 273
target server connection, 5.5.x 31
tutorial, VxWorks 5.5 30

W

WDB back end
Pipe 260
Proxy 260
Serial 260
WFTPD FTP server 43
Wind River
System Viewer
support libraries, excluding 91
writable target server file system 263
Workbench
Application Development perspective 17

431

Wind River Workbench

User’s Guide, 3.0 (VxWorks Version)

bookmarks
creating 29
viewing 29
breakpoints
modifying 23
running to 23
setting 23
build errors 25
comparing files 25
connection definition, creating 19
creating a project 17
Editor
bracket matching 28
code completion 26
Eclipse functionality 11
parameter hints 27
finding a Tornado installation 30
help system
accessing 12
display problems
Linux 331
Solaris 331
Windows 332
moving and sizing views 11
perspectives 8
project description files, adding to version
control 371
project source
bookmarks
creating 29
viewing 29
bracket matching 28
breakpoints
modifying 23
running to 23
setting 23
code completion 26
file history, viewing 25
parameter hints 27
running ball sample program from build
output 20
starting 16
target, connecting to
connection definition 19
using in an Eclipse environment 365

432

using with ClearCase 372
using with CVS 375

views 10
Breakpoints 301
Debug 310
Disassembly 321
Editor 208

Error Log 348
File Navigator 208
Include Browser 206
Kernel Objects 323
Type Hierarchy 206
working directory, process 281
working sets 206
using 175
workspace
project location 74
starting Workbench with anew 328
switching to a different 183
using one for multiple projects 184
wrenv
syntax of project.properties file 87
wrws_import
reference page 404
script 403
wrws_update
reference page 400
script 399
wixregd
changing default options 47
how to find APT 249
using a remote registry 257

	Wind River Workbench (VxWorks Version) User's Guide, 3.0
	Contents

	Part I Introduction
	1 Overview
	1.1 Introduction
	1.2 Wind River Documentation
	1.3 Road Map to the Wind River Workbench User’s Guide
	1.4 Understanding Cross-Development Concepts
	1.4.1 Hardware in a Cross-Development Environment

	1.5 Basic Eclipse Concepts
	1.5.1 Window
	1.5.2 Workspace
	1.5.3 Perspectives
	1.5.4 Views
	1.5.5 Editors
	1.5.6 Projects

	1.6 Accessing and Searching Workbench Context-Sensitive Help
	1.6.1 Searching for Information in the Documentation
	1.6.2 Refining a Search

	2 Wind River Workbench Tutorials
	2.1 Introduction
	2.2 Starting Wind River Workbench
	2.3 Tutorial: Creating a Project and Running a Program
	2.3.1 Before You Begin
	2.3.2 Creating a Project
	2.3.3 Importing Source Files Into Your Project
	2.3.4 Building Your Project
	2.3.5 Creating a Connection Definition to the VxWorks simulator
	2.3.6 Downloading the Program and Attaching the Debugger
	2.3.7 Setting Up the Device Debug Perspective
	2.3.8 Setting and Running to a Breakpoint
	2.3.9 Modifying the Breakpoint

	2.4 Tutorial: Editing and Debugging Source Files
	2.4.1 Before You Begin
	2.4.2 Introducing an Error into the Source Code
	2.4.3 Tracking Down a Build Failure
	2.4.4 Displaying File History
	2.4.5 Rebuilding the Project

	2.5 Tutorial: Using the Editor’s Code Development Features
	2.5.1 Using Code Completion to Add Symbols to Your File
	2.5.2 Using Parameter Hints
	2.5.3 Using Bracket Matching to Clarify Syntax
	2.5.4 Finding Symbols in Source Files

	2.6 Tutorial: Tracking Items of Interest in Your Files
	2.6.1 Creating a Bookmark on a Source Line in a File
	2.6.2 Locating and Viewing Your Bookmarks

	2.7 Tutorial: Using Workbench to Debug a VxWorks 5.5.x Target
	2.7.1 Before You Begin
	2.7.2 Creating a Project
	2.7.3 Creating a VxWorks 5.5.x Target Server Connection
	2.7.4 Launching a Kernel Task and Attaching the Debugger
	2.7.5 Setting and Running to a Breakpoint
	2.7.6 System Mode Debugging
	2.7.7 Using Core Dump Files
	2.7.8 Using Already Available Tornado 2.x Projects

	3 Setting Up Your Development Environment
	3.1 Introduction
	3.1.1 Overview of Host and Target Configuration Tasks
	3.1.2 Understanding Target Servers and Target Agents

	3.2 Configuring Your Cross-Development System
	3.2.1 Configuring Host Software
	3.2.2 Verifying Serial Setup and Power

	3.3 Setting Up a Boot Mechanism
	3.4 Booting VxWorks
	3.4.1 Default Boot Process
	3.4.2 Entering New Boot Parameters
	3.4.3 Boot Program Commands
	3.4.4 Description of Boot Parameters
	3.4.5 Booting With New Parameters
	3.4.6 Alternate Boot Methods
	3.4.7 Rebooting VxWorks

	3.5 Configuring Host-Target Communication for Workbench
	3.5.1 Ethernet Connections
	3.5.2 Serial-Line Connections

	3.6 Troubleshooting VxWorks Problems

	Part II Projects
	4 Projects Overview
	4.1 Introduction
	4.2 Workspace/Project Location
	4.3 Creating New Projects
	4.3.1 Subsequent Modification of Project Creation Wizard Settings
	4.3.2 Projects and Application Code

	4.4 Overview of Preconfigured Project Types
	4.4.1 Workbench Sample Projects
	4.4.2 VxWorks Image Project
	4.4.3 VxWorks Boot Loader/BSP Project
	4.4.4 VxWorks Downloadable Kernel Module Project
	4.4.5 VxWorks Real-time Process Project
	4.4.6 VxWorks Shared Library Project
	4.4.7 VxWorks ROMFS File System Project
	4.4.8 User-Defined Projects
	4.4.9 Native Application Project

	4.5 Projects and Project Structures
	4.5.1 Adding Subprojects to a Project
	4.5.2 Project Structures and Host File System Directory Structure
	4.5.3 Project Structures and the Build System
	4.5.4 Project Structures and Sharing Subprojects
	4.5.5 Customizing Build Settings for Shared Subprojects

	4.6 Project-Specific Execution Environments
	4.6.1 Using a project.properties file with a Shell
	4.6.2 Limitations When Using project.properties Files

	5 Creating VxWorks Image Projects
	5.1 Introduction
	5.2 Creating a VxWorks Image Project
	5.2.1 Specifying a Non-Default Driver

	5.3 Importing and Migrating VxWorks Image Projects
	5.3.1 Upgrading to a New Version of Workbench
	5.3.2 Upgrading to a New Version of VxWorks

	5.4 Importing Command Line-Generated or Prebuilt VIPs
	5.5 Configuring Kernel Components
	5.5.1 The Kernel Configuration Editor Display
	5.5.2 Using the Kernel Configuration Editor

	5.6 VxWorks Image Projects in the Project Explorer
	5.6.1 Global Project Nodes
	5.6.2 Project Build Specs and Target Nodes
	5.6.3 Build Output Folders
	5.6.4 Makefile Nodes
	5.6.5 Project File Nodes

	5.7 Adding Application Projects to the VxWorks Image Project
	5.8 Notes on Board Support Packages (BSPs)
	5.8.1 Using the Simulator BSP
	5.8.2 Using a Wind River BSP
	5.8.3 Using a Custom BSP for Custom Hardware

	6 Creating Boot Loader/BSP Projects
	6.1 Introduction
	6.2 Creating a Boot Loader/BSP Project
	6.3 Creating a Customized Boot Loader
	6.3.1 Selecting Boot Loader Drivers

	6.4 Creating a Customized BSP
	6.5 Boot Loader/BSP Projects in the Project Explorer
	6.5.1 Global Project Nodes
	6.5.2 Project Build Specs and Target Nodes
	6.5.3 Makefile Nodes
	6.5.4 Other Project Description Files

	7 Creating VxWorks ROMFS File System Projects
	7.1 Introduction
	7.2 Creating a VxWorks ROMFS File System Project
	7.3 Configuring the VxWorks ROMFS File System
	7.4 VxWorks ROMFS File System Projects in the Project Explorer
	7.4.1 Global Project Nodes
	7.4.2 Project File Nodes

	8 Creating VxWorks Real-time Process Projects
	8.1 Introduction
	8.2 Creating a VxWorks Real-time Process Project
	8.3 Configuring VxWorks Real-time Process Projects
	8.3.1 Configuring Build Support and Specs
	8.3.2 Configuring Build Tools
	8.3.3 Configuring Build Macros
	8.3.4 Configuring Build Paths

	8.4 VxWorks Real-time Process Projects in the Project Explorer
	8.4.1 Global Project Nodes
	8.4.2 Project Build Specs and Target Nodes
	8.4.3 Makefile Nodes
	8.4.4 Project File Nodes

	8.5 Application Code for a VxWorks Real-time Process Project
	8.6 Linking to VxWorks and Using Shared Libraries
	8.7 Troubleshooting Execution of RTPs

	9 Creating VxWorks Shared Library Projects
	9.1 Introduction
	9.2 Creating a VxWorks Shared Library Project
	9.3 Configuring VxWorks Shared Library Projects
	9.3.1 Configuring Build Support and Specs
	9.3.2 Configuring Build Tools
	9.3.3 Configuring Build Macros
	9.3.4 Configuring Build Paths

	9.4 Shared Libraries in the Project Explorer
	9.4.1 Global Project Nodes
	9.4.2 Target Node
	9.4.3 Makefile Nodes
	9.4.4 Project File Nodes

	9.5 Source Code for the Shared Library
	9.6 Making Shared Libraries Available to Applications
	9.6.1 Configuring the Application Projects

	10 Creating VxWorks Downloadable Kernel Module Projects
	10.1 Introduction
	10.2 Creating a VxWorks Downloadable Kernel Module Project
	10.3 Configuring VxWorks Downloadable Kernel Module Projects
	10.3.1 Configuring Build Support and Specs
	10.3.2 Configuring Build Tools
	10.3.3 Configuring Build Macros
	10.3.4 Configuring Build Paths

	10.4 Downloadable Kernel Modules in the Project Explorer
	10.4.1 Global Project Nodes
	10.4.2 Project Build Specs and Target Nodes
	10.4.3 Makefile Nodes
	10.4.4 Project File Nodes

	10.5 Application Code for a VxWorks DKM Project

	11 Creating User-Defined Projects
	11.1 Introduction
	11.2 Creating and Maintaining Makefiles
	11.3 Creating a User-Defined Project
	11.4 Configuring a User-Defined Project
	11.4.1 Configuring Build Support
	11.4.2 Configuring Build Targets
	11.4.3 Configuring Build Specs
	11.4.4 Configuring Build Macros

	11.5 Creating a User-Defined Project to Build VxWorks Sources
	11.6 Creating an Application for VxWorks
	11.7 Debugging Source

	12 Creating Native Application Projects
	12.1 Introduction
	12.2 Creating a Native Application Project
	12.3 Configuring Native Application Projects
	12.3.1 Configuring Build Support and Specs
	12.3.2 Configuring Build Tools
	12.3.3 Configuring Build Macros
	12.3.4 Configuring Build Paths

	12.4 Native Applications in the Project Explorer
	12.4.1 Global Project Nodes
	12.4.2 Project Build Specs and Target Nodes
	12.4.3 Makefile Nodes
	12.4.4 Project File Nodes

	12.5 Application Code for a Native Application Project

	13 Working in the Project Explorer
	13.1 Introduction
	13.2 Creating Projects
	13.3 Adding Application Code to Projects
	13.3.1 Importing Resources
	13.3.2 Adding New Files to Projects

	13.4 Opening and Closing Projects
	13.4.1 Closing a Project

	13.5 Scoping and Navigation
	13.6 Moving, Copying, and Deleting Resources and Nodes
	13.6.1 Resources and Logical Nodes
	13.6.2 Manipulating Files
	13.6.3 Manipulating Project Nodes
	13.6.4 Manipulating Target Nodes

	13.7 Parsing Binary Images

	14 Advanced Project Scenarios
	14.1 Introduction
	14.2 Resource Locations
	14.3 Multiple, Unrelated Software Systems
	14.3.1 Using Different Workspaces for Different Systems
	14.3.2 Using the Same Workspace for Different Software Systems

	14.4 Complex Project Structures
	14.4.1 Project Assumptions
	14.4.2 Infrastructure Design
	14.4.3 Development
	14.4.4 Finalization

	Part III Development
	15 Navigating and Editing
	15.1 Introduction
	15.2 Wind River Workbench Context Navigation
	15.2.1 Symbol Browsing
	15.2.2 The Outline View
	15.2.3 The File Navigator

	15.3 The Editor
	15.3.1 Code Templates
	15.3.2 Configuring a Custom Editor
	15.3.3 Building Projects from the Editor

	15.4 Search and Replace
	15.4.1 Initiating Text Retrieval

	15.5 Source Analysis
	15.5.1 Setting Indexer Preferences
	15.5.2 Sharing Source Analysis Data with a Team

	16 Building Projects
	16.1 Introduction
	16.2 Configuring Managed Builds
	16.3 Configuring User-Defined Builds
	16.4 Accessing Build Properties
	16.4.1 Workbench Global Build Properties
	16.4.2 Project-specific Build Properties
	16.4.3 Folder, File, and Build Target Properties
	16.4.4 Multiple Target Operating Systems and Versions

	16.5 Build Specs
	16.5.1 Regenerating Build Spec Cache Information

	16.6 Makefiles
	16.6.1 Derived File Build Support

	17 Building: Use Cases
	17.1 Introduction
	17.2 Adding Compiler Flags
	17.2.1 Add a Compiler Flag by Hand
	17.2.2 Add a Compiler Flag with GUI Assistance

	17.3 Building Applications for Different Boards
	17.4 Creating Library Build-Targets for Testing and Release
	17.5 Architecture-Specific Implementation of Functions
	17.6 Executables that Dynamically Link to Shared Libraries
	17.7 User-Defined Build-Targets in the Project Explorer
	17.7.1 Custom Build-Targets in User-Defined Projects
	17.7.2 Custom Build-Targets in Workbench Managed Projects
	17.7.3 User Build Arguments

	17.8 A Build Spec for New Compilers and Other Tools
	17.9 Developing on Remote Hosts
	17.9.1 General Requirements
	17.9.2 Remote Build Scenarios
	17.9.3 Setting Up a Remote Environment
	17.9.4 Building Projects Remotely
	17.9.5 Running Applications Remotely
	17.9.6 Rlogin Connection Description
	17.9.7 SSH Connection Description

	Part IV Target Management
	18 Connecting to Targets
	18.1 Introduction
	18.2 The Remote Systems View
	18.3 Defining a New Connection
	18.4 Establishing a Connection
	18.4.1 Assumptions
	18.4.2 Connecting to the Target
	18.4.3 Downloading an Output File
	18.4.4 Specifying an Object File
	18.4.5 The Kernel Shell

	18.5 The Registry
	18.5.1 Launching the Registry
	18.5.2 Remote Registries
	18.5.3 Shutting Down the Registry
	18.5.4 Changing the Default Registry

	19 New Target Server Connections
	19.1 Introduction
	19.2 Defining a New Target Server Connection
	19.2.1 Wind River Target Server
	19.2.2 Target Server Connection Page
	19.2.3 Object Path Mappings Page
	19.2.4 Target State Refresh Page
	19.2.5 Connection Summary Page

	19.3 Kernel Configuration

	20 New VxWorks Simulator Connections
	20.1 Introduction
	20.2 Defining a New Wind River VxWorks Simulator Connection
	20.2.1 VxWorks Boot Parameters Page
	20.2.2 VxSim Memory Options Page
	20.2.3 VxWorks Simulator Miscellaneous Options Page
	20.2.4 Target Server Options Page

	Part V Debugging
	21 Launching Programs
	21.1 Introduction
	21.2 Launching a Kernel Task or a Process
	21.2.1 Defining the Target Connection
	21.2.2 Defining the Kernel Task or Process to Run
	21.2.3 Specifying a Build Target to Download
	21.2.4 Specifying the Projects to Build
	21.2.5 Defining Debug Behavior
	21.2.6 Specifying Where Workbench Should Look for Source Files
	21.2.7 Configuring Access Methods
	21.2.8 Using Your Launch Configuration

	21.3 Reset & Download: Hardware Debugging Launches
	21.4 Launching a Native Application
	21.4.1 Specifying the Location and Arguments for Your Application
	21.4.2 Specifying Remote Settings
	21.4.3 Setting Environment Variables
	21.4.4 Configuring Access Methods
	21.4.5 Running Your Native Application

	21.5 Relaunching Recently Run Programs
	21.5.1 Reusing Existing Launch Configurations
	21.5.2 Increasing the Size of the Launch History List

	21.6 Controlling Multiple Launches
	21.7 Launches and the Console View
	21.8 Using Attach-to-Target Launches
	21.8.1 Attaching the Debugger to a Running Task or Process
	21.8.2 Attaching the Debugger to the Kernel
	21.8.3 Attaching the Kernel in Task Mode
	21.8.4 Attaching the Kernel in System Mode

	21.9 Suggested Workflow

	22 Managing Breakpoints
	22.1 Introduction
	22.2 Types of Breakpoints
	22.2.1 Line Breakpoints
	22.2.2 Expression Breakpoints
	22.2.3 Hardware Breakpoints

	22.3 Manipulating Breakpoints
	22.3.1 Importing Breakpoints
	22.3.2 Exporting Breakpoints
	22.3.3 Refreshing Breakpoints
	22.3.4 Disabling Breakpoints
	22.3.5 Removing Breakpoints

	22.4 Limitations on Breakpoints During SMP Task Debugging

	23 Debugging Projects
	23.1 Introduction
	23.2 Using the Debug View
	23.2.1 Understanding the Debug View Display

	23.3 Stepping Through a Program
	23.4 Using Debug Modes
	23.4.1 Setting and Recognizing the Debug Mode of a Connection
	23.4.2 Debugging Multiple Target Connections
	23.4.3 Disconnecting and Terminating Processes
	23.4.4 Configuring Debug Settings for a Custom Editor

	23.5 Understanding Source Lookup Path Settings
	23.6 Using the Disassembly View
	23.6.1 Opening the Disassembly View
	23.6.2 Understanding the Disassembly View Display

	23.7 Using the Kernel Objects View
	23.7.1 Understanding the Kernel Objects View Display

	23.8 Run/Debug Preferences

	24 Troubleshooting
	24.1 Introduction
	24.2 Startup Problems
	24.2.1 Pango Error on Linux

	24.3 General Problems
	24.3.1 Java Development Tools (JDT) Dependency
	24.3.2 Help System Does Not Display on Solaris or Linux
	24.3.3 Help System Does Not Display on Windows
	24.3.4 Removing Unwanted Target Connections

	24.4 Error Messages
	24.4.1 Project System Errors
	24.4.2 Build System Errors
	24.4.3 Remote Systems View Errors
	24.4.4 Getting an S_rtp_INVALID_FILE Error When Trying to Execute an RTP
	24.4.5 Launch Configuration Errors
	24.4.6 Debugger Errors
	24.4.7 Source Analysis Errors

	24.5 Troubleshooting VxWorks Configuration Problems
	24.5.1 What to Check

	24.6 Error Log View
	24.7 Error Logs Generated by Workbench
	24.7.1 Creating a ZIP file of Logs
	24.7.2 Eclipse Log
	24.7.3 DFW GDB/MI and Debug Tracing Logs
	24.7.4 Debugger Views GDB/MI Log
	24.7.5 Debugger Views Internal Errors Log
	24.7.6 Debugger Views Broadcast Message Debug Tracing Log
	24.7.7 Target Server Output Log
	24.7.8 Target Server Back End Log
	24.7.9 Target Server WTX Log
	24.7.10 Remote Systems Debug Tracing Log

	24.8 Technical Support

	Part VI Using Workbench with Other Tools
	25 Integrating Plug-ins
	25.1 Introduction
	25.2 Finding New Plug-ins
	25.3 Incorporating New Plug-ins into Workbench
	25.3.1 Creating a Plug-in Directory Structure
	25.3.2 Installing a ClearCase Plug-in

	25.4 Using the Eclipse Update Manager to Install JDT
	25.5 Disabling Plug-in Functionality
	25.6 Managing Multiple Plug-in Configurations

	26 Using Workbench in an Eclipse Environment
	26.1 Introduction
	26.2 Recommended Software Versions and Limitations
	26.3 Setting Up Workbench
	26.4 Using CDT and Workbench in an Eclipse Environment
	26.4.1 Workflow in the Project Explorer
	26.4.2 Workflow in the Build Console
	26.4.3 Workflow in the Editor
	26.4.4 Workflow for Debugging

	27 Using Workbench with Version Control
	27.1 Introduction
	27.2 Adding Project Description Files to Version Control
	27.3 Using Workbench with ClearCase Views
	27.4 Using Workbench with CVS

	Part VII Reference
	A What’s New with CDT, DD, and TM
	A.1 Introduction
	A.2 Working with Projects
	A.3 Editing Source Files
	A.4 Using the Outline View
	A.5 Source Analysis and Symbol Browsing
	A.5.1 Workbench Parser is Now the CDT Indexer
	A.5.2 Debug and Static Analysis Symbol Browsing Have Been Separated

	A.6 Connecting to Targets
	A.7 Working with Debugging Views
	A.8 For More Information

	B Command-line Updating of Workspaces
	B.1 Overview
	B.2 wrws_update Reference

	C Command-line Importing of Projects
	C.1 Overview
	C.2 wrws_import Reference

	D Configuring a Wind River Proxy Host
	D.1 Overview
	D.2 Configuring wrproxy
	Configuring wrproxy Manually
	Creating a wrproxy Configuration Script

	D.3 wrproxy Command Summary
	Invocation Commands
	Configuration Commands

	E Glossary
	E.1 Introduction
	E.1.1 Refining a Search

	E.2 Terms

	Index

