WIND RIVER

Wind River TIPC
for VxWorks 6

PROGRAMMER'S GUIDE

1.7

Copyright © 2007 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, the Wind River logo, Tornado, and VxWorks are registered trademarks of
Wind River Systems, Inc. Any third-party trademarks referenced are the property of their
respective owners. For further information regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDirlproduct_name/3rd_party_licensor_notice.pdf.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
US.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:
http://www.windriver.com
For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

Wind River TIPC for VxWorks 6 Programmer’s Guide, 1.7

6 Nov 07
Part #: DOC-16095-ZD-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

Contents

INtroduction ... ————

11 Introduction

1.2 TIPC Overview

1.3 Comparison with Open-Source TIPC for Linux

1.4 Interoperability with Other Releases

1.5 Organization of This Document

TIPC Fundamentalsccoorrmreinenrenersessnes s

21 Introduction

2.2 TIPC Network Structure
221 Network Addresses ...
222 Supported Media for Communication Over Linksc.cccccccoeeennne.
2.2.3 Multiple Links for Load-Sharing and Switchoverc.c.cccccooueeennne.

2.3 Messaging Overview

24 Message Reliability and Rejected Messages

2.5 TIPC Addressing

fii

® 0 N o

11

12

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

251 NetWOrk AddAresscceveeuirerieieieiirieeeecee et 12
252 Physical Addressingccccccoeiiiiiniiiniiiiiiicciiineccccces 13
2.5.3 Functional Addressing ... 13
254 Address ReSOIULIONcoveeveveueuiuiiiiniriiiecccictteneee e 15
2.6 Multicasting 17
2.7 Subscriptions 18
Building VxWorks to Include Wind River TIPCccccoivimrriiinnnnnnns 19
3.1 Introduction 19
3.2 Wind River TIPC Build Components 20
3.2.1 TIPC Footprint Reductioncccooeviiiniiiiiiiiiicccccccas 27
322 TIPC socket API Build Componentcccccovuimniniiniciieines 30
323 TIPC memory pool Build Componentccccocoevirniiiininiiinnnnns 31
324 TIPC Media TYPES ...ccvvvriiiiiiiiiiiiiiiiiicicicccc s 32
Ethernet CommuUNICatioNcoccoveirerieieireniecieeeeesieeet e 33
Shared Memory Communicationccccoeeviviveiiieicciininiiiinennens 33
Communication Using Distributed Shared Memory (DSHM) 35
325 TIPC network stack onlycccococoeiiiniicniiinicccecec s 37
Debugging TIPC on a Target System Built with the TIPC network
stack only COMPONENtccooveviiieiiiieiici e 38
Including WDB Agent Proxy for TIPC in a VxWorks Build 39
Including the WDB Target Agent in a Build with the TIPC Network
STACK ettt ettt 40
Starting the Target Server for TIPC Communicationcccceuevueee. 40
3.2.6 TIPC configuration and display routines Build Component 42
3.2.7 Setting TIPC System Valuescccccoeenininiiiicniiiiiccceeeces 42
3.2.8 TIPC prioritized interfaces Build Componentc.cccccccueurvncnnee 45
3.3 Configuring Wind River TIPC 46
3.3.1 Setting Parameters in the TIPC Configuration Stringccc.c....... 48
3.32 Setting the be (bearer) Parametercccccocccvvininiiicininiiccnns 51

Contents

333 Accessing the Configuration String from the VxWorks Boot Loader 53
334 Implementing tipcConfigINfoGet()cooeememrreririccicierrrecccreene 53
3.4 Building VxWorks from Workbench 55
4 Using tipcConfig to Configure and Monitor TIPCcccoceiiiiiiiencenns 63
41 Introduction 63
42 tipcConfig Syntax and Command Options 64
421 Constraints on the Ordering of Command Options in tipcConfig

CommMANAScociiiiiiiiiiiii s 75
422 The -be Command Optionccoeoeiviceinininiiecee s 75
423 Specifying @ DOmainc.ccccoviiiiiiiiiiiii 77
424 The-dest Command Optioncccoceeiniiiiiiiiiiniiices 81
425 Sample Log Outputccooiiiiiiiiiiiiiiicicc s 83
42.6 Sample Output for the “Is” (Link Statistics) Optioncccccceevvvrnnees 83
427 Remote Management ..o 84
tipcConfig Command Options available for remote management .. 84
Enabling Remote Managementc.cccoovvrueicniniciniicnniceceeens 84

The -dest Command Option for Specifying the Address of a Node
tobe Managed ... 85

428 Using the -netid Option to Set Up Separate TIPC Networks Within
ALAN L 86
429 The -nt Command Option ..o 86
Sample Output for the -nt Command Optionccccevviiiiinnnnnnns 87
42.10 Sample Output for the -p (Ports) Optioncccccovvriiiiiiiiiinnn, 89
5 SUDBSCHPLONS ...oooicrircir s 91
51 Introduction 91
5.2 Creating and Using the TIPC Subscription Service 92
521 Creating a SUbSCIIPIONccovoiueiiieiiciiiciccc e 92

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

522 Receiving a Subscription Event Notificationccccoooeeiiiiiinnnnes

Using the Wind River VxWorks Simulator with TIPC

6.1 Introduction

6.2 Simulating a Standalone TIPC Node

6.3 Simulating a Network of TIPC Nodes
6.3.1 Simulating a Network of TIPC Nodes That Use Ethernet
6.32 Simulating a Network of TIPC Nodes That Use Shared Memory
6.3.3 Simulating a Network of TIPC Nodes That Use DSHM

Using Wind River System Viewer with TIPCcommeereeeeeeeeeeeeeees

7.1 Introduction

7.2 TIPC Events Covered by System Viewer

7.3 Event Levels

7.4 Including TIPC System Viewer Instrumentation in a VxWorks Image
Project

74.1 Building TIPC with the Network Stackccccccoovvviiiiiiniiciicines
74.2 Building TIPC without the Network Stackc...cccoovvriiiiinicninnnnn.

Using the TIPC Test Suite ..o

8.1 Introduction

8.2 Including the Test Suite in a Project

8.3 Running Tests in the Test Suite
8.3.1 The tipcTS Shell Command ..o
8.3.2 The tipcTC shell Commandcccoooiiniiiiiiiiiiia,
8.3.3 Tests in the TIPC Test SUiteccccvvvriiiiiiiiiiiciiiiciccccccce

Vi

101

102

102

Contents

84 Sample Output
TIPC Native APl ...t s saane s
9.1 Introduction
9.2 Differences Between Using the Socket API and the Native API
9.3 Callback Routines
9.4 Structures for Handling Message Data
9.5 Routines in the TIPC Native API
9.6 Examples
9.6.1 Performing Basic Port Operationscccococeeueiimniiiciriceiiiceecenns
9.6.2 Registering @ TIPC USETcccovviviviiieiiiiiiiiceeeeccceee
9.6.3 Receiving a Synchronous Message ..o,
9.6.4 Using the TIPC Topology Service ..o
Libraries ...
Socket and Utility Routinescccooimiiiimminnssn s sseen s
TIPC Native ROULINEScoverrrrererr s
Header File Definitions ...,

D.1 Introduction

D.2 Definitions

Sample TIPC Applicationcccciccecmmmninsninnesr e

E.1 Introduction

E.2 TIPC Inventory Simulation

vii

115

116

118

121

121

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

E2.1 DeSCription ..ot 220

E22 Source Code ... 222

F TIPC LOG MESSAQESccceerrsrrummrrssssmnsrssssnnsssssssnsssssssnsssssssnssssssnsssssssnns 247
F.1 Introduction 247

F.2 Log Messages 248

TIPC info MESSAZEScevvureiieciiiieiciee e 248

TIPC warning MeSSagescccovueururieiniiiirinieiee e 248

TIPC e110r MESSAZESoovviviiiiiiiicicii s 250

INAEX e ——————— 253

viii

Introduction

1.1 Introduction 1

1.2 TIPC Overview 2

1.3 Comparison with Open-Source TIPC for Linux 3
1.4 Interoperability with Other Releases 3

1.5 Organization of This Document 4

1.1 Introduction

The Transparent Inter Process Communication (TIPC) protocol is a network
protocol that allows applications to communicate easily and efficiently in both
single node environments and environments containing clusters of nodes. TIPC
was originally developed at Ericsson in the 1990s.

The TIPC Project home page, at http://tipc.sourceforge.net, provides downloads,
additional documentation about TIPC, technical support, and a TIPC discussion
list.

The current release of Wind River TIPC is a port of the open-source Linux 1.7.5
implementation of TIPC, with some minor enhancements and bug fixes.

Wind River TIPC 1.7 and open-source Linux 1.7.5 can interoperate within a
network.

http://tipc.sourceforge.net

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

The TIPC protocol specification currently exists only in draft form and is subject to
change. At the time of this writing, the most recent version of the specification
available was draft-spec-tipc-02.txt, dated May 15, 2006 (see
http://tipc.sourceforge.net/documentation.html).

1.2 TIPC Overview

This section provides a brief overview of TIPC. For more detailed information, see
2. TIPC Fundamentals.

When describing multiprocessing computing environments, the term cluster is
often used to denote a group of interconnected computers that work together as a
single computer. Such clusters can be made up of a large number of computers and
can accommodate changes in topology as computers are added to, or drop out of,
a cluster. In contrast to the Internet, the computers within a cluster are usually
interconnected in such a manner that a message can get to its destination in a single
hop.

TIPC has been expressly developed to meet the needs of applications running
within a cluster. Its main features include:

* alocation-transparent addressing scheme that makes services within clustered
computers appear to belong to a single computer

» rapid, reliable interprocess communication within a node and between nodes,
using either connection-oriented or connectionless modes of operation

» rapid notification of changes in topology and the ability to adjust quickly to
these changes

Both Wind River TIPC and the open-source Linux implementation of TIPC
provide access to TIPC capabilities through the well-known socket API, with some
TIPC-specific modifications. In addition, TIPC provides a separate native API that
can provide a smaller footprint and faster performance than the socket APL
Wind River TIPC supports the native API for kernel applications, only. RTPs must
use the TIPC socket APL. In a kernel application, you can make calls to both the
socket API and the native APL!

1. Note that the TIPC native API has not been finalized by the TIPC Working Group
of the Multicore Association (see http://www.multicore-association.org) and is
still subject to change.

http://tipc.sourceforge.net/documentation.html

1 Introduction
1.8 Comparison with Open-Source TIPC for Linux

1.3 Comparison with Open-Source TIPC for Linux

Wind River TIPC 1.7 supports all features of TIPC that are available with
open-source Linux TIPC 1.7.5 and is fully interoperable with it.

Wind River TIPC supports the following capabilities which are not available with
open-source Linux TIPC 1.7.x:

* Communication between nodes through shared memory and distributed
shared memory (DSHM) (see 3.2.4 TIPC Media Types, p.32).

» Prioritization of interfaces that use HEND drivers (see 3.2.8 TIPC prioritized
interfaces Build Component, p.45; a HEND driver is a device driver that follows
the Hierarchical Enhanced Network Driver (HEND) design introduced in
VxWorks 6.2)

In addition to the differences in capabilities listed above, Wind River TIPC defines
the TIPC socket-address structure (sockaddr_tipc) differently than Linux TIPC
does. Wind River TIPC’s definition follows the Berkeley Software Distribution
(BSD) convention of an 8-bit length field and an 8-bit field for address family,
rather than the single 16-bit field for address family used by Linux TIPC. For
Wind River TIPC’s sockaddr._tipc definition, see D. Header File Definitions.

1.4 Interoperability with Other Releases

Wind River TIPC 1.7 is not interoperable with open-source Linux releases 1.7.1
and 1.7.2, because it uses an improved name and route-distribution algorithm that
is incompatible with them. It is interoperable with open-source Linux release 1.7.3
and later.

TIPC 1.5 and 1.6 only support a single cluster in a network. Aside from new
features in Wind River TIPC 1.7, Wind River TIPC 1.7 is interoperable with TIPC
1.5 and 1.6, with the following restriction: Nodes with TIPC 1.5 or TIPC 1.6 can
only communicate with TIPC 1.7 nodes in the same cluster.

Wind River TIPC for VxWorks 6

Programmer’s Guide, 1.7

1.5 Organization of This Document

The remaining chapters in this book are organized as follows:

2. TIPC Fundamentals provides basic technical information about TIPC and its
implementation in Wind River TIPC.

3. Building VxWorks to Include Wind River TIPC describes how to include
Wind River TIPC binaries in a build of VxWorks.

4. Using tipcConfig to Configure and Monitor TIPC describes how to use the
tipcConfig utility to dynamically set and monitor TIPC configuration
parameters.

5. Subscriptions describes the TIPC subscription facility that makes it possible
for nodes to learn about the availability of services throughout the network.

6. Using the Wind River VxWorks Simulator with TIPC describes how to use the
VxWorks target simulator, Wind River VxWorks Simulator, with Wind River
TIPC.

7. Using Wind River System Viewer with TIPC describes how to use
System Viewer to display and log TIPC socket events.

8. Using the TIPC Test Suite describes how to use the TIPC test suite to make
sure that communication between nodes is working correctly.

9. TIPC Native API describes the TIPC native APl and provides examples of its
usage.

A. Libraries describes the Wind River TIPC library files and lists their public
routines.

B. Socket and Utility Routines describes the routines in the TIPC socket APIL. In
addition, it describes the TIPC configuration and Show routines.

C. TIPC Native Routines describes the routines in the TIPC native API.

D. Header File Definitions gives the public #define and structure definitions in
the tipc.h header file for Wind River TIPC.

E. Sample TIPC Application provides a sample application that illustrates the
use of the Wind River TIPC socket API and added utility routines.

F. TIPC Log Messages lists the messages that can appear in the TIPC log.

21
2.2
2.3
24
2.5
2.6
2.7

TIPC Fundamentals

Introduction 5

TIPC Network Structure 6

Messaging Overview 9

Message Reliability and Rejected Messages 11
TIPC Addressing 12

Multicasting 17

Subscriptions 18

2.1 Introduction

This chapter provides a basic introduction to both the TIPC protocol and
Wind River TIPC. All routines mentioned in this chapter are more thoroughly
described in B. Socket and Utility Routines.

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

2.2 TIPC Network Structure

Figure 2-1

A TIPC network is a hierarchical structure superimposed on a physical network.
A TIPC network is made up of one or more zones. Each zone contains one or more
clusters. A cluster is made up of individual computers, or nodes. The nodes in a
cluster are connected by links. In a TIPC network, a link is a logical connection
between nodes. TIPC creates direct links between all nodes in a cluster, resulting
in a (logical) full mesh topology. The links between nodes require an underlying
physical network that makes communication between the nodes possible. For
example, consider the following physical network with eight nodes:

Physical Network with Eight Nodes

Vi Ns Ns Ns N N7 e

Given the configuration in Figure 2-1, TIPC allows you to define zones and clusters
in any way you wish, as long as no node is included in more than one cluster or
more than one zone. For example, any of the following TIPC networks would be
possible:

* One zone containing a single cluster that consists of nodes N1, N4, and N7.

* One zone containing two clusters. Cluster one consists of nodes N1, N2, and
N5; cluster two consists of nodes N3, N4, N7, and N8.

» Two zones containing one cluster each. Zone one contains a cluster consisting
of nodes N1, N2, N3; zone two contains a cluster consisting of all the
remaining nodes.

As the examples above indicate, not all physical connections between nodes need
to be links in a TIPC network and the topology of a TIPC network can be very
different from the physical network that underlies it.

Typically, clusters are made up of nodes that share a common location, such as a
shelf or room. Each cluster in a zone has direct links to all other clusters in the zone.
Each zone has direct links to all other zones in a network. A direct link between
two zones or between two clusters is established when a node in one zone or
cluster has a direct link to a node in another zone or cluster.

Currently, the TIPC specification also provides for secondary nodes. A secondary
node is only required to have a link to one other node in a cluster. The use of
secondary nodes is under review and may be dropped from the specification.

2 TIPC Fundamentals
2.2 TIPC Network Structure

Neither Wind River TIPC nor the open-source Linux version of TIPC supports
secondary nodes.

. 2
Figure 2-2 illustrates a TIPC network containing a single zone with three clusters. -
Figure 2-2 Wind River TIPC Network Topology

Network 4711

Zone 1

Cluster 1 Cluster 2

Cluster 3

2.2.1 Network Addresses

Every TIPC network has a network ID. Each node within a network is assigned a
unique network address that indicates its zone, cluster, and node number. Each of
these values is an integer ranging from 1 to the maximum value specified for the
network. A network address is usually denoted using the syntax <Z.C.N>, as in

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

<1.1.5> for zone 1, cluster 1, and node 5. The TIPC protocol specification sets the
following limits on the allowable number of zones within a networks, clusters
within a zone, and nodes within a cluster,

Zones within a network 255
Clusters within a zone 4095
Nodes within a cluster 4095

To simplify the management of networks, TIPC employs a network discovery
mechanism that only requires each node to have a network address (zone, cluster,
node number) and each bearer on a node to have a domain (see 4.2.3 Specifying a
Domain, p.77). Only nodes within a bearer’s domain can establish links with the
bearer’s node.Beyond this, the nodes in a TIPC network automatically discover
one another and establish links.

2.2.2 Supported Media for Communication Over Links

Currently, Wind River TIPC supports communication between nodes using
Ethernet and through both shared memory and distributed shared memory
(DSHM). For more information on the communication options, see 3.2.4 TIPC
Media Types, p.32.

Nodes in a network can communicate over more than one type of medium; the
only requirement is that every node in a cluster must be able to communicate with
every other node in the cluster and that there is a direct link between each cluster
in a zone and each zone in a network. For example, all the nodes in a cluster can
have Ethernet links to each other, half the nodes in the cluster can have additional
shared-memory links to each other, and a quarter of the nodes can have additional
distributed shared memory links to each other.

To control the way TIPC creates links between nodes, clusters, and zones, when
you specify a bearer and media type for a node, you also specify the a domain, and
the domain determines the links that can be established.

2.2.3 Multiple Links for Load-Sharing and Switchover

If there are duplicate links of equal priority (see the explanation of priority under
3.3.2 Setting the be (bearer) Parameter, p.51) between two nodes, TIPC automatically
provides load sharing over the links. In addition, if one link in a pair fails, the other
link handles communication for it. The duplicate links do not need to use the same
medium.

2 TIPC Fundamentals
2.3 Messaging Overview

If you have duplicate physical networks, you can define a TIPC network in which

each node in a cluster has duplicate links to all other nodes in the cluster, with all

links having the same priority. In this case, TIPC automatically provides load
sharing between all links and switchover for all links.

As long as the underlying physical connections support it, you can have up to
eight links, with any combination of media, from one node to another. The
following rules summarize load-sharing and switchover with multiple links
between nodes:

If one link is set to a higher priority than all other links, TIPC routes all traffic
across it.

If two links share the highest priority setting, TIPC shares the traffic between
them.

No more than two links can have the same priority setting (see 3.3.2 Setting the
be (bearer) Parameter, p.51).

If duplicate links share the highest priority and one of them fails, the other
takes over all traffic.

If one link has a higher priority than all others and it fails, the link next in
priority takes over for it.

Load-sharing and switchover apply across media.

For example, if there is only an Ethernet link and a shared-memory link
between two nodes, and both links are assigned the same priority, TIPC shares
traffic between them, and when one fails, the other handles all traffic.

2.3 Messaging Overview

All communication within a TIPC network involves an exchange of data between
ports. A port may send data to itself, to another port on the same node, or to a port
that lies on another node in the network. A port can send data to multiple ports
through TIPC multicasting (see 2.6 Multicasting, p.17). Multicasting is only
supported for connectionless sockets.

User applications can create and use ports in a Wind River TIPC network through
a conventional socket API, with some TIPC-specific extensions. In addition, a
separate native API (see 9. TIPC Native API) is available for TIPC programming.

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

Some ports are also created and used by Wind River TIPC, itself. A TIPC port is
automatically created whenever an application creates a TIPC socket by calling
socket() and specifying the AF_TIPC address family. The application sends and
receives data through the socket, and TIPC routes the data through the associated
port. When the socket is closed, the associated TIPC port is deleted.

Data is sent through a TIPC socket in units called messages. A message is a
byte-array that can be from 1 to 66000 bytes long. The internal structure of the
message is determined by the application. A byte stream, connection-oriented
option, SOCK_STREAM, is also available for stream data

Wind River TIPC allows messages to be exchanged in a reliable, connectionless
manner using the SOCK_RDM socket type. It also supports the SOCK_DGRAM
socket type, which is essentially the same as SOCK_RDM but does not guarantee
reliable message delivery. Applications can send messages using send(),
sendmsg, or sendto(); applications can receive messages using recv(), recvfrom()
or recvmsg().

Wind River TIPC allows messages to be exchanged over a reliable connection
using the SOCK_SEQPACKET and SOCK_STREAM socket types. Two means of
establishing a connection are provided:

* Anapplication can issue an explicit connection request using connect(). Once
the connection is accepted, it can send and receive messages using send().

* An application can issue an implied connection request by sending a message
using sendto() without using connect(). The connection is recognized as
completed when a response is received using recv(), recvfrom(), or
recvmsg().

This approach establishes a connection without requiring the connecting ports
to exchange handshaking messages prior to the exchange of data. It provides
the performance of connectionless data transfer and, since it is
connection-oriented, still guarantees a correlation between request and
response. An implicit connection request is particularly suitable when a client
needs to make a single request over a connection rather than a series of
requests.

To allow a socket to receive connection requests, an application first calls listen().
Then, to handle connection requests, the application calls accept(). accept() waits
for a connection request and when it receives one, whether the request is explicit
or implicit, it creates a new socket that is connected to the requesting socket.

Once a connection is established, messages are typically exchanged using send()
and recv() until one side terminates the connection by closing a socket.

10

2 TIPC Fundamentals
2.4 Message Reliability and Rejected Messages

2.4 Message Reliability and Rejected Messages

Wind River TIPC makes considerable effort to successfully deliver a message to its
destination. For example, if a message is given to a Wind River TIPC link for
transmission to another node and then discarded by the underlying network
medium, the link detects the loss and retransmits the message. However, in some
cases, a message is undeliverable. This can occur because:

» The specified destination does not exist.

» The message was delivered to the specified destination, but the associated
socket was closed before it was received by the application.

» The message was sent to a socket (or a node) that had too many unreceived
messages already in queue.

When Wind River TIPC is unable to deliver a message, it “rejects” it.

= Ifasocket configured for connectionless but reliable message transfer
(SOCK_RDM or SOCK_DGRAM, with the TIPC_DEST_DROPPABLE flag unset
(see setsockopt() in B. Socket and Utility Routines)) sends undeliverable
messages, Wind River TIPC returns the first 1024 bytes of each message to the
originating socket.

NOTE: For all routines referred to in this chapter, see B. Socket and Utility Routines
for syntax statements and descriptions.

» If a socket configured for connection-oriented transfer (SOCK_STREAM or, if
TIPC_DEST_DROPPABLE (see setsockopt()) is not specified,
SOCK_SEQPACKET) sends undeliverable messages, TIPC marks the first
undeliverable message sent to the destination as rejected and returns the initial
1024 bytes of the message. Subsequent undeliverable messages to the same
destination are discarded, since returning the first undelivered message
signals the socket that the connection is not functional.

» Ifasocketisnotconfigured for reliable message transfer, TIPC simply discards
undeliverable messages without informing the sender.

To receive rejected messages, an application can call the recvmsg() routine.

To decrease the likelihood that an important message is rejected because the
destination end is congested with unreceived messages, TIPC associates an
importance level with the messages sent by a socket. You can assign an importance
level by calling setsockopt() with its optname parameter set to
TIPC_IMPORTANCE. There are four importance levels:

11

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

» TIPC_LOW_IMPORTANCE (default)

Messages are rejected at the first sign of congestion.
= TIPC_MEDIUM_IMPORTANCE

Messages are rejected at medium levels of congestion.
= TIPC_HIGH_IMPORTANCE

Messages are rejected only at high levels of congestion.
= TIPC_CRITICAL_IMPORTANCE

messages are never rejected due to congestion.

2.5 TIPC Addressing

TIPC uses three different address forms within a network:

* network address
» physical port address
» functional port address

2.5.1 Network Address

As mentioned previously, a TIPC network address has the form <Z.C.N>, where Z
is zone, Cis cluster, and N is node. Depending on its value, it can apply to a specific
node, to any node within a cluster, or to any node within a zone. Network
addresses containing a zero, have special interpretations:

* The network address <Z.C.0> applies to any node within cluster C.
= The network address <Z.0.0> applies to any node within zone Z.

* Anisolated node that is not part of a TIPC network can be assigned a network
address of <0.0.0>. This prevents TIPC from allocating resources for
inter-node communication that will never be utilized.

Network address <0.0.0> can also be used as a lookup domain (see 2.5.4 Address
Resolution, p.15) rather than a node address.

12

2 TIPC Fundamentals
2.5 TIPC Addressing

Both Wind River TIPC and the open-source Linux version of TIPC interpret
network address <0.0.0> in the same way, which differs from the
interpretation in the draft TIPC specification.

An application specifies a network address using a 32-bit integer made up of three
fields:

= Zone - 8 bits
= (Cluster — 12 bits
= Node - 12 bits

Wind River TIPC provides the following APIs to allow applications to easily
manipulate network addresses:

» tipc_addr() - takes separate values for zone, cluster, and node and combines
them into a TIPC address.

» tipc_node() - takes a TIPC address and returns the node number.
» tipc_cluster() — takes a TIPC address and returns the cluster number.

» tipc_zone() — takes a TIPC address and returns the zone number.

2.5.2 Physical Addressing

A TIPC port has a unique port identity, which is automatically generated by TIPC
when the port is created. A port ID is made up of two components, the network
address of the node containing the port, in <Z.C.N> format followed by a colon,
and a 32-bit randomly generated reference value. Together, the two components
constitute the physical address of the port. The following is an example:

<1.1.7:1086734332>

An application can determine the port ID associated with a TIPC socket using the
getsockname() routine.

2.5.3 Functional Addressing

Most TIPC applications use functional addresses rather than port IDs when
communicating with TIPC sockets. A functional address allows the application to
exchange data with the desired socket without having to know the physical
location of the socket within the network. This makes it easy for applications to
continue processing even when the ports within a network are being created,

13

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

destroyed, or relocated dynamically; it also makes it easier for applications to
perform load sharing between multiple ports.

TIPC provides two forms of functional addressing: port name and port name
sequence.

A port name is made up of two 32-bit integers: a type and an instance. Typically, the
type field identifies the service provided by the port, while the instance identifies
some aspect of the service. For example, type 100 may indicate a printer, while
instance 500 of type 100 may identify a specific type of printer or the owner of the
printer.

An application can assign a port name any type value within the 32-bit range, with
the exception of types 0 through 63, which are reserved for TIPC-specific services.

Figure 2-3, section A, illustrates sending a request for a specific service (the port
name) to the socket providing the service. In section A, all the destination sockets
have port names assigned to them.

A port name sequence is made up of three 32-bit integers: a type, a lower instance,
and an upper instance. It provides a way to specify a sequential set of port names
using a single address, rather than having to specify the individual port names one
at a time.

A port name sequence is typically assigned to a socket when the socket is capable
of providing a series of related services. In Figure 2-3, section B illustrates sending
a request for a specific service in a context in which some destination sockets have
port name sequences assigned to them. Wind River TIPC allows a request to
contain a port name, as in Figure 2-3, but not a port name sequence. The TIPC
specification also allows port name sequences in requests for services.

14

2 TIPC Fundamentals
2.5 TIPC Addressing

Figure 2-3 Functional Addressing with Port Names and Port Name Sequences

A B

. type: 18
type: 7 instance 5
instance 12

type: 30
type: 50 < >—> Ig\?ver 1
instance 1

. upper 6
send (type 7 send (pre. 30
instance 1) type: 7 instance 5)

instance 1 type: 30
Q lower 7
upper 15

To assign a functional address to a TIPC socket, an application calls bind() and
specifies a service (the port’s type) available through the socket and the scope
within which the service is available. The scope can include all nodes within the
socket’s node, cluster, or zone. Following a bind operation, TIPC automatically
sends (publishes) the new port-address information to all nodes within the
designated scope.

A functional address remains bound to a socket until the socket is closed or the

application calls bind() using a negative scope value (see the reference page for
bind() in appendix B. Socket and Utility Routines. When the address is unbound,
TIPC withdraws publication of the address from the network.

2.5.4 Address Resolution

TIPC allows an application to bind multiple port names or port name sequences to
a single socket, unlike protocols such as TCP and UDP, which limit a socket to a
single physical address. This capability is most commonly used when a socket is
capable of providing multiple services.

TIPC also allows the same port name or port name sequence to be bound to
multiple sockets in a network. This is useful when the network contains more than
one socket that is capable of providing a given service.

TIPC does not allow port name sequences of a given type to have overlapping
instance values, unless the ranges match exactly, as illustrated by the following
examples:

15

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

Valid port name sequences (non-overlapping instances):

type 25 type 25 type 25 type 25 type 30
lower 1 lower 1 lower 11 lower 1 lower 5
upper 10 upper 10 upper 100 | |upper 10 upper 55

Invalid port name sequences (overlapping instances):

type 25 type 25 type 25
lower 1 lower 5 lower 10
upper 10 upper 15 upper 10

If a given port name is bound to multiple sockets, an application should only use
a port name to request a service if it does not care what socket performs the service.
To request a service from a specific socket, the application needs to use the socket’s
port ID.

When a connection request or a message is sent to a port name, TIPC resolves the
name to a specific socket using the lookup domain specified by the message sender
as part of the port address. The lookup domain is specified in <Z.C.N> format.
Two name-resolution algorithms are available:

16

If the lookup domain is <0.0.0>, TIPC uses a closest-first algorithm: it first tries
to find a matching address belonging to a socket on the same node; if none
exists, it then searches the node's cluster and finally the node's zone. If TIPC
finds multiple matching addresses at a given level, it selects one in a
round-robin manner. This approach gives preferential treatment to sockets
that are “closer” to the sender.

If the lookup domain is not <0.0.0>, TIPC uses a domain-search algorithm: it
searches the specified network domain (node, cluster, or zone) to find a
matching address. If TIPC finds multiple matching addresses at a given level,
it selects one in a round-robin manner. Over time, this approach distributes the
load throughout the available sockets in the specified domain.

2 TIPC Fundamentals
2.6 Multicasting

2.6 Multicasting

When an application sends a message in a connectionless manner to a port name
sequence, rather than a port name, TIPC sends a copy of the message to every port

in the sender’s cluster that has a port name within the specified port name

sequence. No more than a single copy of the message is sent to an individual port.

For example, suppose a message is sent in a connectionless manner to the
following port name sequence:

{1000,100,200}

Each of the ports listed in Table 2-1 will receive a single copy of the message.

Table 2-1 Ports Receiving Multicast Messages for Port Name Sequence {1000,100,200}
Port Names/Port Name Sequences

Port ID Bound to Port Reason for Receipt of Message

<1.1.10:1234> {1000,100} Port name falls within the destination
port name sequence.

<1.1.11:4321> {1000,123}, {1000,175} Both port names fall within the
destination port name sequence.

<1.1.10:5678> {1000,150}, {2000,150} One of the port names falls within the
destination port name sequence.

<1.1.12:5555> 1000,110,120} All port names in the name sequence
fall within the destination port name
sequence.

<1.1.10:8888> {1000,50,500} Port name sequence contains all the

<1.1.14:9999>

port names in the destination port
name sequence.

{1000,170,300} At least one port name in the port
name sequence falls within the
destination port name sequence.

None of the ports listed in Table 2-2 will receive a copy of the message.

17

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

Table 2-2 Ports Not Receiving Multicast Messages for Port Name Sequence {1000,100,200}
Port Names/Port Name Sequences
Port ID Bound to Port Reason for Non-Receipt of Message
<1.1.10:1111> {2000,100,200} Port-name types do not match.
<1.1.10:4444> {1000,50,75} No port names in the name sequence fall

<1.1.10:6666>

within the destination port name sequence.

[None] No port name to match on.

An application can multicasting messages for a single port name by sending the
message to a port name sequence in which the upper and lower instance values are
the same. For example, to multicast to ports that have port name {150,10} bound to
them, the application can send a message to port name sequence {150,10,10}.

The following are restrictions on the use of multicasting:

» Messages are multicast only to nodes within the same cluster; there is no
multicasting from one cluster to another.

» Messages must be sent in a connectionless manner.
» Messages must be sent to a port name sequence.

* The domain field of the sockaddr_tipc structure (see D. Header File Definitions)
does not apply to multicasting.

When a message is sent to a functional address, the destination port name or
port name sequence is specified in a sockaddr_tipc structure.

2.7 Subscriptions

TIPC provides a subscription service that allows applications to discover when
specific services become available or unavailable. Using the subscription service,
an application can subscribe to be notified about the availability of specific port
names or port name sequences throughout the network. Any change in availability
of the address associated with a subscription generates an event notification that
the application can examine.

For information about creating and using TIPC subscriptions, see 5. Subscriptions.

18

Building VxWorks to Include
Wind River TIPC

3.1 Introduction 19

3.2 Wind River TIPC Build Components 20
3.3 Configuring Wind River TIPC 46

3.4 Building VxWorks from Workbench 55

3.1 Introduction

To include TIPC in a VxWorks build, you need to create a VxWorks Image Project
and include TIPC build components (see 3.2 Wind River TIPC Build Components,
p-20). You can include TIPC build components using either Workbench or the
vxprj command-line utility. For information on using Workbench to create a
VxWorks Image Project and include build components, see the Wind River
Workbench User’s Guide and 3.4 Building VxWorks from Workbench, p.55. For
information on using the vxprj command-line utility, see the VxWorks
Command-Line Tools User’s Guide.

An important feature of Wind River TIPC is that there are several build options
that make it possible to reduce the size of the TIPC footprint by almost 40% and to
reduce the combined size of VxWorks and TIPC on a target by 43%. For
information on building TIPC with a reduced footprint, see 3.2.1 TIPC Footprint
Reduction, p.27.

19

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

When you build VxWorks for TIPC, you can statically set a number of TIPC
configuration parameters. You can set the same parameters dynamically, at
startup and, additionally, you can dynamically set many of these and other
parameters any time after startup using the tipcConfig utility. For more
information on setting configuration parameters, see 3.3 Configuring Wind River
TIPC, p.46 and 4. Using tipcConfig to Configure and Monitor TIPC.

3.2 Wind River TIPC Build Components

Table 3-1 lists the build components for TIPC. To view the components as they
appear in Workbench, see Figure 3-2, under 3.4 Building VxWorks from Workbench,
p-55. In Table 3-1, required components are listed first.

Table 3-1 Wind River TIPC Build Components

Workbench Macro Description
TIPC INCLUDE_TIPC The core TIPC component, always required.
TIPC INCLUDE_TIPC_ A required component that allows you to allocate buffer
memory pool MEMPOOL space dedicated to TIPC sockets at startup. For further
information, see 3.2.3 TIPC memory pool Build Component,
p-31.
bootline INCLUDE_TIPC_ For dynamic configuration of TIPC parameters at startup
configuration CONFIG_HOOK_ time, choose either this component or the
BOOT user configuration component (see the next table entry).

Choosing this component instructs TIPC to get its
configuration string from the other parameter of the
VxWorks boot loader (see 3.3.3 Accessing the Configuration
String from the VxWorks Boot Loader, p.53).

You can include both dynamic and static configuration in
the same build. You can also use the tipcConfig utility to
configure and monitor many TIPC features dynamically, at
startup or later. For more information, see 3.3 Configuring
Wind River TIPC, p.46.

20

3 Building VxWorks to Include Wind River TIPC

3.2 Wind River TIPC Build Components

Table 3-1 Wind River TIPC Build Components (cont'd)
Workbench Macro Description
user INCLUDE_TIPC_ For dynamic configuration of TIPC parameters at startup
configuration CONFIG_HOOK_ time, choose either this component or the

USER

bootline configuration component (see the preceding table
entry).

Choosing this component instructs TIPC to call the routine
tipcConfigInfoGet(), for which you must provide a
custom implementation (see 3.3.4 Implementing
tipcConfiglnfoGet(), p.53). If you implement
tipcConfigInfoGet(), you must add the file containing the
implementation to your VxWorks Image Project.

You can include both dynamic and static configuration in
the same build. You can also use the tipcConfig utility to
configure and monitor many TIPC features dynamically, at
startup or later. For more information, see 3.3 Configuring
Wind River TIPC, p.46.

Build TIPC from INCLUDE_USE_

object library

LIBTIPC

Builds TIPC from the precompiled object library, libtipc.a,
which is provided when you install VxWorks. This
component is included by default when you include TIPC
(INCLUDE_TIPC) in your build. This component is
automatically excluded when you build TIPC from source
(see the next table entry).

21

Table 3-1

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

Wind River TIPC Build Components (cont'd)

Workbench

Macro

Description

Build TIPC from INCLUDE_

source

BUILD_TIPC_
SRC

Available only when TIPC source code is installed with
VxWorks. For building TIPC with a reduced footprint,
recompiles and builds TIPC from source code, based on the
components you select for footprint reduction. This
component is automatically included in your build when
you include one or more of the components for footprint
reduction. The components for footprint reduction are:

* No TIPC debug (INCLUDE_TIPC_NODEBUG)

= No TIPC system messages
(INCLUDE_TIPC_NOSYS_MSGS)

* No TIPC configuration service
(INCLUDE_TIPC_NOCFG_SERVICE)

* No TIPC socket API (INCLUDE_TIPC_NOSOCKET)

For more information on TIPC footprint reduction, see the
table entries for the listed components and 3.2.1 TIPC
Footprint Reduction, p.27.

TIPC and IP
network stacks
present

INCLUDE_
TIPC_IP

Required for using the full VxWorks network stack. Choose
either this component or the TIPC network stack only
(INCLUDE_TIPC_ONLY) build component (see the next
table entry).

22

3 Building VxWorks to Include Wind River TIPC

3.2 Wind River TIPC Build Components

Table 3-1 Wind River TIPC Build Components (cont'd)

Workbench Macro

Description

TIPC network INCLUDE_TIPC_
stack only ONLY

Excludes services from the UDP/IP and TCP/IP protocols,
which are not needed by TIPC. Choose either this
component or the TIPC and IP network stacks present
(INCLUDE_TIPC_IP) build component (see the preceding
table entry).

This build component includes only those network
components required by TIPC and can significantly reduce
the size of the VxWorks footprint. (For further information,
see 3.2.5 TIPC network stack only, p.37 and 3.2.1 TIPC
Footprint Reduction, p.27.)

NOTE: If you want to include TIPC network stack only in
a Workbench build, you must first exclude the

Network Components folder from your build (see Step 4
under 3.4 Building VxWorks from Workbench, p.55).

If you build the network stack with

TIPC network stack only and want to use the WDB target
agent to provide network communication between a TIPC
target system and a host computer, you need to set up a
WDB agent proxy on a target system. For further
information, see Debugging TIPC on a Target System Built
with the TIPC network stack only Component, p.38.

Ethernet INCLUDE_TIPC_
MEDIA_ETH

For communication between nodes using Ethernet. In
Workbench, this build component is included by default
when you include TIPC. You can exclude it. In a
command-line build, if you want Ethernet communication,
you need to explicitly add INCLUDE_TIPC_MEDIA_ETH.

Shared Memory INCLUDE_TIPC_
MEDIA_SM

For communication between nodes through shared
memory. Communication using shared memory is not
available with all BSPs. For a list of the BSPs that support
shared memory and additional information on TIPC shared
memory, see 3.2.4 TIPC Media Types, p.32, and Shared
Memory Communication, p.33.

23

Table 3-1

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

Wind River TIPC Build Components (cont'd)

Workbench

Macro

Description

DSHM Primary
Interface

INCLUDE_
DSHM_SVC_
TIPC_PRIM

For communication between nodes using DSHM.

Communication using DSHM is not available with all BSPs.
For a list of the BSPs that support DSHM and additional
information on DSHM for TIPC, see 3.2.4 TIPC Media Types,
p-32 and Communication Using Distributed Shared Memory
(DSHM), p.35.

TIPC static
configuration

INCLUDE_TIPC_
CONFIG_STR

Allows configuration parameters to be set statically. You
can include both dynamic and static configuration in the
same build. You can also use the tipcConfig utility to
configure and monitor many TIPC features dynamically, at
startup or later. (For more information, see 3.3 Configuring
Wind River TIPC, p.46.)

TIPC
configuration
and display
routines

INCLUDE _TIPC_
SHOW

Enables the use of the tipcConfig utility and TIPC
command-line show routines. The tipcConfig utility allows
you to dynamically configure TIPC features, to display
current configuration settings, and to monitor the behavior
of links and nodes in a TIPC network (see 4. Using tipcConfig
to Configure and Monitor TIPC). The show routines provide
information on TIPC memory allocation (see 3.2.6 TIPC
configuration and display routines Build Component, p.42.)

No TIPC debug

INCLUDE_TIPC_
NODEBUG

Excludes TIPC debug code from the build and reduces
TIPC’s footprint by approximately 17 KB (on a PPC32
target). For more information, see 3.2.1 TIPC Footprint
Reduction, p.27.

By default, TIPC debug code is included in the build; you
need to explicitly exclude it.

No TIPC system

messages

INCLUDE_TIPC_
NOSYS_MSGS

Excludes TIPC system messages from the build and reduces
TIPC’s footprint by approximately 2 KB (on a PPC32
target). For more information, see 3.2.1 TIPC Footprint
Reduction, p.27.

By default, TIPC system messages are included in the build;
you need to explicitly exclude them.

24

Table 3-1

3 Building VxWorks to Include Wind River TIPC

3.2 Wind River TIPC Build Components

Wind River TIPC Build Components (cont'd)

Workbench

Macro

Description

No TIPC
configuration
service

INCLUDE_TIPC_
NOCFG_
SERVICE

Excludes code for the tipcConfig utility and for
implementation of the following APIs that either set or
display configuration values:

» tipcConfig()
» tipcDataPoolShow()
* tipcSysPoolShow()

This reduces TIPC’s footprint by approximately 17 KB (on a
PPC32 target). For more information, see 3.2.1 TIPC
Footprint Reduction, p.27.

For information on the APIs that this build component
excludes, see B. Socket and Utility Routines.

No TIPC socket
API

INCLUDE_TIPC_
NOSOCKET

(For kernel applications, only.) Excludes all code in support
of the TIPC socket API from the build and reduces TIPC’s
footprint by approximately 12 KB (on a PPC32 target). For
more information, see 3.2.1 TIPC Footprint Reduction, p.27.

If you include this build component, you need to explicitly
exclude the TIPC socket API
(INCLUDE_CONFIG_TIPC_SOCKET_API) build component
(see the next table entry).

If you exclude the socket API, you need to use the TIPC
native API (see 9. TIPC Native API).

25

Table 3-1

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

Wind River TIPC Build Components (cont'd)

Workbench

Macro

Description

TIPC socket API INCLUDE_

CONFIG_TIPC_
SOCKET_API

If included, provides the following parameters for setting
limits on the use of sockets:

* Number of TIPC sockets (TIPC_NUM_SOCKETS)
parameter allows you to specify the number of sockets
that can be allocated on a node.

* The Socket Receive Queue Threshold
(TIPC_SOCK_RXQ_LIMIT) parameter allows you to set
limits on the number of incoming messages that can be
queued on TIPC sockets.

By default, this component is included in a TIPC build. If
you include the No TIPC socket API
(INCLUDE_TIPC_NOSOCKET) build parameter (see the
preceding table entry), you need to explicitly exclude
TIPC socket API (INCLUDE_CONFIG_TIPC_SOCKET_API).

For further information, see 3.2.2 TIPC socket API Build
Component, p.30.

TIPC System
Defines

INCLUDE_TIPC_
DEFINES

Allows you to set TIPC parameter values replacing initial
system defaults. You can set the following:

= Network ID

» Maximum values for the number of other nodes an
individual node can have links to in its own cluster and
in other clusters.

* Maximum values for ports on a node, subscriptions,
and publications

= Status for remote management of a node—either
enabled, or disabled

For detailed information on the parameters you can set, see
3.2.7 Setting TIPC System Values, p.42

26

3 Building VxWorks to Include Wind River TIPC

3.2 Wind River TIPC Build Components

Table 3-1 Wind River TIPC Build Components (cont'd)

Workbench Macro

Description

TIPC INCLUDE_TIPC_
prioritized HEND_INIT

interfaces

Available only with BSPs that are compatible HEND
interfaces. A HEND interface is an interface that supports

an HEND driver. For a list of HEND interfaces and the BSPs

that are compatible with them, see 3.2.8 TIPC prioritized

interfaces Build Component, p.45.

This component does not appear in the Workbench
Component Configuration Editor for projects that are not
based on a qualifying BSP.

TIPC prioritized interfaces INCLUDE_TIPC_HEND_INIT)
allows you to list interfaces that you want to give a higher
priority for receiving packets than other interfaces. The
interfaces listed must be configured exclusively for
communication using TIPC; they cannot not be used for IP
communication. For more information, see 3.2.8 TIPC
prioritized interfaces Build Component, p.45.

TIPC INCLUDE_
instrumentation WVTIPC

Enables use of Wind River System Viewer with TIPC (see
7. Using Wind River System Viewer with TIPC).

TIPC test suite = INCLUDE_TIPC_

Adds the TIPC test suite to the kernel image. For more
information, see 8. Using the TIPC Test Suite.

demo TS

TIPC inventory INCLUDE_TIPC_
simulation IS

demo

Adds the TIPC inventory simulation, a sample application
(see E. Sample TIPC Application), to a VxWorks kernel image.
The code for the sample application is brought into the
VxWorks Image Project as a kernel application residing in
the project.

3.2.1 TIPC Footprint Reduction’

In a build that does not make specific efforts to limit the size of Wind River TIPC’s
footprint, TIPC is likely to require approximately 125 KB of space.

You can reduce Wind River TIPC’s footprint by close to 40% by excluding network
services not required by TIPC from your build and by excluding individual

1. Estimates of footprint reduction in this section are based on the wrSbc8560 BSP. Footprint
reduction may be different for other BSPs.

27

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

features, such as debugging, that you may not need in a production build.
Table 3-2 lists build components and the reductions in footprint that you obtain by
excluding them.

Table 3-2 TIPC Components and Footprint Reduction

Footprint
Reduction (in
Workbench Name Macro Kilobytes) Comment
TIPC network INCLUDE_ 386 For footprint reduction, you need to exclude
stack only TIPC_ONLY the entire Network Components folder and
then include this component. If you get the
following error, it means that the network
components were not excluded:
incompatible with Boot parameter process
(INCLUDE_NET_BOOT)
For more information, see the table entry for
TIPC network stack only in Table 3-1 under
3.2 Wind River TIPC Build Components, p.20).
No TIPC debug INCLUDE_TIPC_ 17 Removes TIPC debug code from the build.
NODEBUG
No TIPC system INCLUDE_TIPC_ 2 Removes code for TIPC system messages
messages NOSYS_MSGS from the build.
No TIPC INCLUDE_TIPC_ 17 Removes code for the tipcConfig utility and
configuration = NOCFG_ the following APIs from the build:
i SERVICE
service tipcConfig()
tipcDataPoolShow()
tipcSysPoolShow()

For information on the tipcConfig utility,
see 4. Using tipcConfig to Configure and
Monitor TIPC; for information on individual
APIs, see B. Socket and Utility Routines.

28

3 Building VxWorks to Include Wind River TIPC
3.2 Wind River TIPC Build Components

Table 3-2 TIPC Components and Footprint Reduction (cont'd)

Footprint
Reduction (in
Workbench Name Macro Kilobytes) Comment
No TIPC socket INCLUDE_TIPC_ 12 Excludes code all code in support of the
API NOSOCKET TIPC socket from the build and reduces

TIPC’s footprint by approximately 12
Kilobytes (see 3.2.1 TIPC Footprint
Reduction, p.27).

If you include this build component, you
need to explicitly exclude the

TIPC socket API
(INCLUDE_CONFIG_TIPC_SOCKET_API)
build component (see the table entry for
TIPC socket API in Table 3-1 under

3.2 Wind River TIPC Build Components,
p-20).

TIPC footprint, with all default components included: 125 KB.

Total TIPC footprint reduction from the four No TIPC build components:
48 KB.

This is a 38% reduction in TIPC footprint.

There is a 29% reduction in footprint when the TIPC socket API is retained but

the other No TIPC build components are included.
Default size of a VxWorks target with TIPC included: 1006 KB.

Total VxWorks + TIPC footprint reduction from TIPC network stack only
(INCLUDE_TIPC_ONLY): 386 KB

This is a 38% reduction in over-all footprint.

Total VxWorks + TIPC footprint reduction from TIPC network stack only
(INCLUDE_TIPC_ONLY) and all four No TIPC build components: 434 KB.

This is a 43% reduction in over-all footprint.

29

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

3.2.2 TIPC socket API Build Component

The TIPC socket API (INCLUDE_CONFIG_TIPC_SOCKET_API) build component
is required in the current release and is automatically selected for inclusion when
you include TIPC. TIPC socket API has the following parameters:

Table 3-3 TIPC Socket APl Parameters

Parameter in

Workbench #define Default value Description

Number of TIPC_NUM_ 200 The maximum number of

TIPC sockets =~ SOCKETS concurrent sockets supported on a
node. The space for the socket
structures is allocated at startup.

Socket TIPC_SOCK_ 2500 Sets limits on the number of

Receive Queue RXQ_LIMIT incoming messages that can be

Threshold queued on TIPC sockets. For more

information, see

Socket Receive Queue Threshold
(TIPC_SOCK_RXQ_LIMIT)
Parameter, p.30.

Socket Receive Queue Threshold (TIPC_SOCK_RXQ_LIMIT) Parameter

TIPC uses this parameter for managing traffic congestion. The parameter
determines the maximum number of messages that can be queued on TIPC
sockets, based on their importance level (see 2.4 Message Reliability and Rejected
Messages, p.11 and, in B. Socket and Utility Routines, setsockopt().) In the current
release, importance levels are handled as follows:

= TIPC_LOW_IMPORTANCE

For low-priority messages, maximum queue lengths for a single socket and all

sockets on a node are:

- single socket: TIPC_SOCK_RXQ_LIMIT * 1

— all sockets: TIPC_SOCK_RXQ_LIMIT * 2

The default queue limit for a single socket is 2500; the queue limit across all

sockets is 5000.

30

3 Building VxWorks to Include Wind River TIPC
3.2 Wind River TIPC Build Components

= TIPC_MEDIUM_IMPORTANCE

For medium-priority messages, maximum queue lengths for a single socket
and all sockets on a node are:

- single socket: TIPC_SOCK_RXQ_LIMIT * 2
— all sockets: TIPC_SOCK_RXQ_LIMIT * 4

The default queue limit for a single socket is 5000; the queue limit across all
sockets is 10000.

= TIPC_HIGH_IMPORTANCE

For high-priority messages, maximum queue lengths for a single socket and all
sockets on a node are:

- single socket: TIPC_SOCK_RXQ_LIMIT *100
— all sockets: TIPC_SOCK_RXQ_LIMIT * 200

The default queue limit for a single socket is 250000; the queue limit across all
sockets is 500000.

= TIPC_CRITICAL_IMPORTANCE

The parameter value has no effect on critical messages. Critical messages are
always queued, as long as buffer space is available.

3.2.3 TIPC memory pool Build Component

Table 3-4

The TIPC memory pool (INCLUDE_TIPC_MEMPOOL) component allows you to
specify the number and size of memory buffers specifically allocated at startup for
use with TIPC sockets. Pre-allocating memory buffers can result in faster
performance. If TIPC uses up its pre-allocated buffers, it can still call for additional
buffer space from system memory.

When you include TIPC memory pool, you can configure sets of buffers, as listed
in the following table.

TIPC Memory Pool Parameters

Parameter in workbench #define Default Value
Number of 64 byte buffers TIPC_DATA_00064 120
Number of 128 byte buffers TIPC_DATA_00128 200

31

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

Table 3-4 TIPC Memory Pool Parameters (cont'd)

Parameter in workbench #define Default Value
Number of 256 byte buffers TIPC_DATA_00256 40
Number of 512 byte buffers TIPC_DATA_00512 40
Number of 1024 byte buffers TIPC_DATA_01024 50
Number of 2048 byte buffers TIPC_DATA_02048 20
Number of 4096 byte buffers TIPC_DATA_04096 2
Number of 8192 byte buffers TIPC_DATA_08192 0
Number of 16384 byte buffers TIPC_DATA_16384 0
Number of 32768 byte buffers TIPC_DATA_32768 0
Number of 65536 byte clusters TIPC_DATA_65536 0

3.2.4 TIPC Media Types

Nodes in a Wind River TIPC network can communicate with each other using any
combination of the following media types: Ethernet, shared memory, and
distributed shared memory (DSHM). However, not all BSPs support either shared
memory or DSHM and only Ethernet supports symmetrical multiprocessing
(SMP).

To configure a node to use one or more media types, you need to include the
appropriate build components and set the be (bearer) parameter in the TIPC
configuration string (see 3.3.2 Setting the be (bearer) Parameter, p.51). The build
components for TIPC media types are covered in the following sections:

» Ethernet Communication, p.33
» Shared Memory Communication, p.33
» Communication Using Distributed Shared Memory (DSHM), p.35

32

3 Building VxWorks to Include Wind River TIPC
3.2 Wind River TIPC Build Components

Ethernet Communication

In Workbench, Ethernet communication is included in a TIPC build by default,
but you can exclude it from the build by deselecting the Ethernet
(INCLUDE_TIPC_MEDIA_ETH) build component in the Component
Configuration Editor.

Shared Memory Communication

If your BSP supports shared memory, you can build TIPC to communicate
using shared memory. The following BSPs support the use of shared memory

with TIPC:

* mv5100

= cds8548

» hpcNet8641
= linux

* mv5100

» simpc

= gsolaris

= wrSbc8641d

For shared memory, you need to include the Shared Memory
(INCLUDE_TIPC_MEDIA_SM) build component and set TIPC shared-memory
parameters.

VxWorks shared memory is set up in terms of a master board, whose local memory
is used as shared memory, and slave boards, which can access the shared memory
on the master board. The master board can also access its own shared memory.
(For information on VxWorks shared memory, see the VxWorks Kernel
Programmer’s Guide.) When you set TIPC shared-memory parameters, you can set
them to apply to master boards or to slave boards, as described in the following
table.

33

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

Table 3-5 TIPC Shared-Memory Parameters

Workbench Description
Macro Name
Description

Default Value

Starting address of TIPC shared memory block
SM_TIPC_ADRS

(Master board, only) Address of the shared-memory pool on the master board.
(If the board is a slave board, the value entered here is ignored.)

The default setting, SM_TIPC_ADRS_DEFAULT, uses the default shared-memory
address configured for the board support package (BSP) of the master board.

In the case of a TIPC network consisting of multiple CPUs on a single board, you
can allocate shared memory dynamically by setting SM_TIPC_ADRS to NONE.

SM_TIPC_ADRS
_DEFAULT

Size of TIPC shared memory block
SM_TIPC_SIZE

(Master board, only) The size of the shared-memory pool, in bytes. (If the board
is a slave board, the value entered here is ignored.)

For the master board, in order to enable TIPC shared memory, you must change
the default value of 0 to a value greater than zero. You can enter the value as
SM_TIPC_SIZE_DEFAULT, which applies to all supported BSPs and is set at
0x00020000 (128K).

Shared memory packets size
SM_TIPC_SM_PKT_SIZE

(Master board, only) The size of the packets used to contain shared-memory data,
in bytes. A minimum packet size of 160 bytes is recommended.

The default value of 0 is mapped to the VxWorks system default of 2176 bytes.

If the board is a slave board, the value entered for SM_TIPC_SM_PKT_SIZE is
ignored.

0
[equivalent to
2176 bytes]

34

3 Building VxWorks to Include Wind River TIPC
3.2 Wind River TIPC Build Components

Table 3-5 TIPC Shared-Memory Parameters (cont'd)

Workbench Description

Macro Name Default Value
Description
Number of buffers in the bearer pool 60

SM_TIPC_NUM_BUF

(Master or slave board) The number of buffers of local memory to be allocated for
receiving TIPC data from shared memory. The buffers are not freed until a user
application reads the data. If large bursts of traffic are expected, this number
should be high. If not, it can be reduced.

If SM_TIPC_NUM_BUF is too big, buffer space is allocated and unused; if it is too
small, messages may be rejected and need to be retransmitted.

Maximum packets queued in SM 0
SM_TIPC_PKT_Q_LEN [equivalent to

(Master or slave board) The number of packets that can be queued in shared 200 packets]

memory on the master board for this node.

If SM_TIPC_PKT_Q_LEN is set too high, a large number of packets may be queued
for this node, and there may be insufficient shared-memory space for queuing
packets for other nodes. If SM_TIPC_PKT_Q_LEN is set too low, receipt of
shared-memory data may be delayed.

The default value of 0 is mapped to the VxWorks shared-memory default of 200
packets.

Communication Using Distributed Shared Memory (DSHM)
For general information on using DSHM, see the VxWorks Kernel Programmer’s
Guide: Distributed Shared Memory.

If your BSP supports DSHM, you can build VxWorks to support TIPC
communication using DSHM. The following BSPs support DSHM:

» hpcNet8641

» linux

= sb1250
= sb1480
» simpc
»= solaris

35

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

To use DSHM with TIPC, you need to include the Primary TIPC interface
(INCLUDE_DSHM_SVC_TIPC_PRIM) build component in your build. The build
component provides the configuration parameters listed in Table 3-6.

Table 3-6 Primary TIPC interface Build Component Configuration Parameters

Workbench Description
Macro Name
Description

Default Value &
Data Type

Hardware bus
DSHM_SVC_TIPC_PRIM_HW

The name of the bus that the DSHM TIPC interface is on.

npl "

char *

requested size of SM buffer pool
DSHM_SVC_TIPC_PRIM_SZ_REQ_SM_POOL

The requested size of the shared-memory buffer pool to
use with DSHM for TIPC.

0x35000
UINT

minimal acceptable size of SM buffer pool
DSHM_SVC_TIPC_PRIM_SZ_MIN_SM_POOL

The minimum acceptable size of the shared-memory
buffer pool to use with DSHM for TIPC.

0x35000
UINT

size of buffers in SM
DSHM_SVC_TIPC_PRIM_SZ_SM_BUFFER

The size of the buffers to use for DSHM with TIPC.

0x800
UINT

TIPC link window
DSHM_SVC_TIPC_PRIM_LINK_WINDOW

The window size for the link. Window size is the number
of packets sent on the link that the node keeps in memory
without needing to receive an acknowledgement from
the recipient.

UINT

36

3 Building VxWorks to Include Wind River TIPC
3.2 Wind River TIPC Build Components

Table 3-6 Primary TIPC interface Build Component Configuration Parameters (cont’'d)

Workbench Description Default Value &

Macro Name
Description Data Type
Broadcast buffers 0
DSHM_SVC_TIPC_PRIM_N_BCAST_ENTRIES UINT
The Number of buffers to make concurrently available for
sending broadcasts. If set to 0, replicast is used, instead of
broadcast.
All BSPs supported in the current release must use replicast.
Do not change the default setting.
Maximum buffers allocated per-peer 32
DSHM_SVC_TIPC_PRIM_MAX_BUF_ALLOC UINT

The maximum number of buffers to allocate for TIPC
DSHM communication with an individual node, for both
incoming and outgoing traffic.

3.2.5 TIPC network stack only

Wind River TIPC does not use any of the services provided by the UDP or TCP/IP
protocols. If these services are not required by other applications on a node, you
can reduce the size of the VxWorks footprint by building the network stack with
the TIPC network stack only (INCLUDE_TIPC_ONLY) build component, which
includes only those components needed by TIPC.

The TIPC network stack only build component is available only if you build
VxWorks from Workbench or from the command line using the vxprj build tool.
(For information on using the vxprj build tool, see the VxWorks Command-Line
Tools User’s Guide: Working with Projects and Components.)

To build the network stack with TIPC network stack only:
1. Exclude the entire Network Components bundle from your build.

By default, many network components are initially set for inclusion in a
VxWorks Image Project. This removes them from the build.

37

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

2. Include the TIPC build components you want, including the
TIPC network stack only build option.

TIPC network stack only builds the network stack with only those
components required by TIPC.

For detailed instructions, see 3.4 Building VxWorks from Workbench, p.55.

Building VxWorks and TIPC with TIPC network stack only may have
implications for using Workbench debugging tools with a TIPC application that is
running on a target system. This is described in the next section.

Debugging TIPC on a Target System Built with the TIPC network stack only Component

The VxWorks WDB target agent is a software component that resides on a target
system and makes it possible to use Workbench debugging tools located on a host
system with an application running on the target system (see VxWorks Kernel
Programmer’s Guide: Target Tools). Workbench communicates with the WDB target
agent through a target server that runs on the host system.

If there is a full network stack on the target system, network communication
between a target server and WDB target agent can be carried out using UDP/IP.
However, if the target stack is built with TIPC network stack only, UDP/IP is not
available. In this case, if the target needs to communicate with the host over a TIPC
network, the WDB target agent and the target server cannot communicate directly
and have to go through a proxy agent—WDB Agent Proxy. WDB Agent Proxy
needs to reside in a target system separate from the target agent, as illustrated in
Figure 3-1.

38

3 Building VxWorks to Include Wind River TIPC
3.2 Wind River TIPC Build Components

Figure 3-1 Communication between a host and a target with a TIPC network stack build

Host
Workbench
Gateway target Target with TIPC network stack
target
server TCP/IP!
agent | TIPC TIPC TIPC target
proxy | backend connect | agent
- TCP/IP stack - No UDP/IP
-TIPC -TIPC
- WDB Agent Proxy - WDB target agent
- TIPC WDB Agent - WDB TIPC connection

Proxy Backend

1. Although the WDB target agent uses UDP in network communication
with a target server, WDB Agent Proxy uses TCP/IP.

In Figure 3-1, WDB Agent Proxy TIPC (TIPC backend in the gateway target) and
WDB TIPC connection (TIPC connect in the TIPC network stack only target) are
required build components for TIPC communication.

The sections that follow describe how to build and initialize communication over
a WDB agent proxy.

Including WDB Agent Proxy for TIPC in a VxWorks Build

To include the WDB agent proxy in a VxWorks build for a target system that will
be used as a TIPC gateway, you need to include the following Workbench build
components:

= WDB Agent Proxy
= TIPC WDB Agent Proxy Backend

39

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

Including the WDB Target Agent in a Build with the TIPC Network Stack

In Workbench, the simplest way to include the necessary WDB target-agent
components for a build containing the TIPC Network Stack component is:

1. Inthe Workbench component tree, expand the development tool components
bundle, right-click on WDB agent components and select Include.

The Include window for WDB agent components appears.

2. Accept all checked (default) components and, in addition, check WDB TIPC
connection.

3. Click Finish.

For information on including WDB components in a build, see the VxWorks Kernel
Programmer’s Guide: Target Tools.

Starting the Target Server for TIPC Communication

You can start a target server and connect to a TIPC gateway for communication
over a TIPC network from the Workbench target manager (see Wind River
Workbench User’s Guide: New Target Server Connections) or from the command line.
The following command shows the TIPC command options you need to use in
both cases:

tgtsvr -V -B wdbproxy -tipc -tgt targetTipcAddress -tipcpt tipcPortType -tipcpi
tipcPortInstance wdbProxylpAddress /name

40

3 Building VxWorks to Include Wind River TIPC
3.2 Wind River TIPC Build Components

Table 3-7 explains the italicized parameter values in the command:

Table 3-7 TIPC-Specific Parameter Values for Starting a Target Server

Parameter

Description

targetTipcAddress

tipcPortType

tipcPortInstance

The TIPC address of the target with the TIPC
network stack in <Z.C.N> format. For example:
<1.1.8>.

The TIPC port type (see 2.5.3 Functional Addressing,
p-13) to use in connecting to the WDB target agent.
The default port type for the connection is 70. You
should accept the default port unless it is already in
use.

To change the port type:

» In Workbench, change the
WDB_TIPC_PORT_TYPE parameter under
WDB TIPC connection

» For a command-line build, change the define for
WDB_TIPC_PORT_TYPE, as in the following
example:

#tundef WDB_TIPC_PORT_TYPE
#idefine WDB_TIPC_PORT_TYPE 117

The TIPC port instance (see 2.5.3 Functional
Addressing, p.13) to use in connecting to the WDB
target agent. The default port instance for the
connection is 71. You should accept the default port
instance unless it is already in use.

To change the port instance:

» In Workbench, change the
WDB_TIPC_PORT_INSTANCE parameter under
WDB TIPC connection

* For a command-line build, change the define for
WDB_TIPC_PORT_INSTANCE, as in the
following example:

#tundef WDB_TIPC_PORT_INSTANCE
#define WDB_TIPC_PORT_ INSTANCE 118

41

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

Table 3-7 TIPC-Specific Parameter Values for Starting a Target Server (cont'd)

Parameter Description

wdbProxylpAddress/name The IP address or DNS name of the gateway target
running the WDB.

The following is a sample tgtsvr command for TIPC communication:

tgtsvr -V -B wdbproxy -tipc -tgt 1.1.8 -tipcpt 70 -tipcpi 71 192.168.1.5

3.2.6 TIPC configuration and display routines Build Component

The TIPC configuration and display routines component
(INCLUDE_TIPC_SHOW) available only in VxWorks kernel mode, enables use of
the tipcConfig utility (see 4. Using tipcConfig to Configure and Monitor TIPC) and
provides the following Show routines:

tipcDataPoolShow()

Displays statistics on the allocation and availability of clusters in the TIPC data
pool.

tipcSysPoolShow()

Displays statistics on the allocation and availability of clusters in the TIPC
system pool.

The Show routines are documented in B. Socket and Utility Routines.
3.2.7 Setting TIPC System Values

The TIPC System Defines (INCLUDE_TIPC_DEFINES) build component allows
you to set TIPC system values for the parameters listed in Table 3-8.

42

Table 3-8

3 Building VxWorks to Include Wind River TIPC

3.2 Wind River TIPC Build Components

TIPC System Values Set through the TIPC System Defines Build Component

Workbench
name

Default

#define Value

Description

Default
Network ID

TIPC_DEF_
NET_ID

4711

Sets the default Network ID. The ID must be a
value in the range from 1 to 9999.

You can change the ID through the -netid option
of the tipcConfig utility (see the entry for netid in
Table 4-1 under 4.2 tipcConfig Syntax and Command
Options, p.64.

Max Ports

TIPC_DEF_
MAX_PORTS

8191

Sets the maximum number of ports that this node
can create. The number should include both
incoming and outgoing ports for services offered
by the node and a small number of additional
ports needed by TIPC for system purposes. The
number of ports needed for system purposes can
vary, but is generally less than ten.

The number of ports must be a value in the range
from 127 to 65535.

Each node in a cluster can have a different setting
for Max Ports (TIPC_DEF_MAX_PORTS).

Max Nodes

TIPC_DEF_ 255
MAX_NODES

Sets the maximum number of nodes that this node
can have links to in its own cluster. This is also the
highest node number (N) that can be used in a
Z.C.N network address.Each node in a cluster
should have the same Max Nodes
(TIPC_DEF_MAX_NODES) setting. The setting
must be a value in the range from 8 to 4095.

Max Clusters

TIPC_DEF_ 8
MAX_
CLUSTERS

Sets the maximum number of links that this node
can have to nodes in other clusters within its zone.

The number must be a value in the range from 1 to
4095

Max Remotes

TIPC_DEF_ 8
MAX_
REMOTES

Sets the maximum number of nodes that this node
can have links to outside its own cluster. The

number must be a value in the range from 0 to 255.

43

Table 3-8

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

TIPC System Values Set through the TIPC System Defines Build Component (cont'd)

Workbench
name

- Default _
#define Value Description

Max Zones

TIPC_DEF_ 4 Sets the maximum number of nodes that this node
MAX_ZONES can connect to in other zones.

Remote
Management

TIPC_DEF_ 1 Sets the default value for remote management of

REMOTE_ the node. By default, remote management is

MGT enabled. To disable remote management by
default, set this parameter to 0.

When remote management of a node is enabled,
other nodes in the network can use the tipcConfig
utility to manage the node and display
information abut it. In the current release, remote
management is limited to a subset of tipcConfig
command options and only allows you to display
information about a managed node. For more
information, see 4.2.7 Remote Management, p.84.

You can override the default setting through the
-mng option of the tipcConfig utility (see the table
entry for -mng, p.72).

Max
Publications

TIPC_DEF_ 10000 Sets the maximum number of services a node can
MAX_PUBS maintain at one time.

Max Publications (TIPC_DEF_MAX_PUBS) must
be a value in the range from 1 to 65535.

Max
Subscriptions

TIPC_DEF_ 2000 Sets the maximum number of subscriptions that

MAX_SUBS a node supports. This is equivalent to the
maximum number of services that all
applications on the node, combined, can
subscribe to. For information on subscriptions,
see 2.7 Subscriptions, p.18.

Max Subscriptions (TIPC_DEF_MAX_SUBS)
must be a value in the range from 1 to 65535.

44

3 Building VxWorks to Include Wind River TIPC
3.2 Wind River TIPC Build Components

3.2.8 TIPC prioritized interfaces Build Component

The TIPC prioritized interfaces INCLUDE_TIPC_HEND_INIT) build component
is available only with BSPs that are compatible with HEND interfaces. A HEND
interface is an interface that supports an HEND driver. The following interfaces

support HEND drivers:

= motTsec
= motEtsec

= motFec

= qeFcc

The following BSPs are compatible with HEND interfaces:
ads8544 ads860 ads88x cds8548
hpcNet864 m54x5evb mds8360 pcPentium
pcPentium2 pcPentium3 pcPentium4 pcPentium_mp

wrSbc8540 wrSbc8560

The TIPC prioritized interfaces (INCLUDE_TIPC_HEND_INIT) build component
makes it possible to assign designated TIPC-only interfaces a higher priority for
receiving packets than other interfaces. A TIPC-only interface is an interface used
exclusively for handling TIPC. Other interfaces on a TIPC node can be configured
to handle both TIPC and IP or IP only.

By default, packets received by a node are placed in a single queue and handled by
the tNet0 task. However, prioritized TIPC interfaces are queued separately from
other interfaces and packets received by them are handled by a separate task,
tTipcRxTask, that runs at a higher priority than tNet0. Thus, when a TIPC-only
interface is prioritized, packets received by it are queued separately from IP
packets and processed at a higher priority.

In Wind River TIPC 1.7, prioritized interfaces are restricted as follows:
* Only interfaces using an HEND driver can be prioritized.

An HEND driver is a device driver that follows the Hierarchical Enhanced
Network Driver (HEND) design introduced in VxWorks 6.2. To assign an
HEND driver to mottsec interfaces you need to include the

motTsecHEnd Hierarchical Enhanced Network Driver
(INCLUDE_MOT_TSEC_HEND) build parameter in your build.

» Asnoted earlier, only TIPC-only interfaces can be prioritized.

45

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

NOTE: There is no requirement that TIPC-only HEND interfaces be
prioritized. On a single node you can, for example, prioritize one TIPC-only
HEND interface and leave another TIPC-only HEND interface unprioritized.

» Prioritized interfaces cannot be reconfigured.

Once an image is built, a prioritized interface cannot be reconfigured at startup
or later as a TIPC-plus-IP interface or an IP-only interface. Similarly, an
interface that was not built as a prioritized interface cannot be reconfigured as
a prioritized interface.

The TIPC prioritized interfaces (INCLUDE_TIPC_HEND_INIT) build component
contains a single parameter, TIPC interfaces using H-END
(TIPC_HEND_CONFIG_STR), for listing one or more interfaces that are to be
prioritized. Interfaces are entered as a comma-separated list enclosed in quotes.
The following is an example:

TIPC interfaces using H-END="mottsecl,mottsec2"

If you include the TIPC prioritized interfaces build component in your build, you
also need to include the motTsecHEnd Hierarchical Enhanced Network Driver
(INCLUDE_MOT_TSEC_HEND) build component. The path to the component in
the Workbench component tree is:

Hardware > device drivers >
motTsecHEnd Hierarchical Enhanced Network Driver

3.3 Configuring Wind River TIPC

Depending on the TIPC components you include for your build, Wind River TIPC
gets its initial parameter settings from a configuration string (see 3.3.1 Setting
Parameters in the TIPC Configuration String, p.48) in one of the following ways:

» Statically, from a configuration string that is built into VxWorks
(TIPC static configuration/INCLUDE_TIPC_CONFIG_STR build component;
see Table 3-1 under 3.2 Wind River TIPC Build Components, p.20).

46

3 Building VxWorks to Include Wind River TIPC
3.3 Configuring Wind River TIPC

Dynamically, from a configuration string that is accessed through a routine

called when VxWorks starts (the

bootline configuration/INCLUDE_TIPC_CONFIG_

HOOK_BOOT and user configuration/INCLUDE_TIPC_CONFIG_HOOK_
USER build components; see Table 3-1 under 3.2 Wind River TIPC Build

Components, p.20).

From both a static configuration string and a dynamic string.

In addition, after startup, you can use the tipcConfig utility to dynamically
configure and monitor many TIPC features (see 4. Using tipcConfig to Configure and
Monitor TIPC).

Static configuration is most useful for parameters that have the same value across
multiple nodes. An example of such a parameter is max_nodes, which sets the
maximum number of nodes a given node can link to within its cluster. Dynamic
configuration at startup is useful when nodes use a common VxWorks image but
require different values for the same parameter. An example of this is the
parameter a (node address, specified as <Z.C.N>), which has a unique value for
every node.

If a given parameter is specified in both a dynamic and a static configuration
string, the value in the dynamic configuration string takes precedence, except
when specifying interfaces with the be parameter (see 3.3.1 Setting Parameters in the
TIPC Configuration String, p.48). In the case of the be parameter, if you configure
one interface in a dynamic configuration string and another interface in a static
configuration string, both are valid.

To set Wind River TIPC to use static configuration, include the
TIPC static configuration (INCLUDE_TIPC_CONFIG_STR) build component in
your build (see Table 3-1 under 3.2 Wind River TIPC Build Components, p.20).

To set Wind River TIPC for dynamic configuration at startup, include one of the
following parameters:

bootline configuration (INCLUDE_TIPC_CONFIG_HOOK_BOOT)

In this case, to set the TIPC configuration string, you access it through the
other parameter of the VxWorks boot loader (see 3.3.3 Accessing the
Configuration String from the VxWorks Boot Loader, p.53).

user configuration (INCLUDE_TIPC_CONFIG_HOOK_USER)

In this case, you need to implement the tipcConfigInfoGet() routine (see
3.3.4 Implementing tipcConfigInfoGet(), p.53). This option allows you to access
the configuration string from a location of your choice. For example, you can

47

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

put the configuration string in a file and use tipcConfigInfoGet() to access the
file on a local hard disk.

3.3.1 Setting Parameters in the TIPC Configuration String

When Wind River TIPC starts, it uses default parameter values, unless the values
are specified in a TIPC configuration string. The configuration string is composed
of a series of parameters and values, separated by semi-colons, as in the following
example:

max_nodes=100;a=1.1.27;be=eth:cpm0

Table 3-9 lists the available configuration parameters. There are constraints on the
order in which parameters can be specified. The ordering restrictions are:

max_ports > netid > a > be
max_zones, max_nodes, max_clusters > a

where “>" means “precedes”.

For example, the following is a valid configuration string:
max_nodes=100;max_ports=200;netid=1000;a=1.1.27;10g=1024;be=eth:cpm0

Configuration strings are case sensitive and cannot contain spaces.

Table 3-9 Configuration Parameters in the TIPC Configuration String

Default -
Parameter Syntax Value Description
a a=Z.C.N <0.0.0> Sets network address of the node. If the node is not
[address] part of a network, set the address to <0.0.0>.
be bearer_name[N/A Specifies the type of communication to use between
[bearer] Idomain[/priority]] nodes: Ethernet over a specific interface, shared

memory, or both Ethernet and shared memory. In
addition to specifying a medium, you can specify a
domain and a priority to assign to communication
with the node. For more information, see

3.3.2 Setting the be (bearer) Parameter, p.51.

Before you enter the be parameter in a configuration
string, you must enter the a (address) parameter.

48

3 Building VxWorks to Include Wind River TIPC
3.3 Configuring Wind River TIPC

Table 3-9 Configuration Parameters in the TIPC Configuration String (cont'd)

Default

Parameter Syntax Value

Description

log log=size 0 The size, in bytes, of the log. A log size of 0 (the
default) means that logging is turned off.

If there is a log, the minimum size is 512 byes. If you
specify a log size less than the minimum (other than
0), the minimum size is used.

If you enter a log size and later change the size, the
log is reset to empty and the new size goes into
effect.

For an example of log output, see 4.2.5 Sample Log
Output, p.83.

max_clusters max_clusters=N 8 The maximum number of links that this node can
have to nodes in other clusters within its zone.

The number must be a value in the range from 1 to
4095

max_nodes max_nodes=N 255 Sets the maximum number of nodes that this node
can have links to in its own cluster. This is also the
highest node number (N) that can be used in a
Z.C.N network address.Each node in a cluster
should have the same Max Nodes
(TIPC_DEF_MAX_NODES) setting. The setting must
be a value in the range from 8 to 4095.

max_ports max_ports=N 8191 the maximum number of ports that his node can
create. The number should include both incoming
and outgoing ports for services offered by the node
and a small number of additional ports needed by
TIPC for system purposes. The number of ports
needed for system purposes can vary, but is
generally less than ten.

The number of ports must be a value in the range
from 127 to 65536.

Each node in a cluster can have a different setting
for max_ports.

49

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

Table 3-9 Configuration Parameters in the TIPC Configuration String (cont’d)

Default

Parameter Syntax Value

Description

log log=size 0 The size, in bytes, of the log. A log size of 0 (the
default) means that logging is turned off.

If there is a log, the minimum size is 512 byes. If you
specify a log size less than the minimum (other than
0), the minimum size is used.

If you enter a log size and later change the size, the
log is reset to empty and the new size goes into
effect.

For an example of log output, see 4.2.5 Sample Log
Output, p.83.

max_clusters max_clusters=N 8 The maximum number of links that this node can
have to nodes in other clusters within its zone.

The number must be a value in the range from 1 to
4095

max_nodes max_nodes=N 255 Sets the maximum number of nodes that this node
can have links to in its own cluster. This is also the
highest node number (N) that can be used in a
Z.C.N network address.Each node in a cluster
should have the same Max Nodes
(TIPC_DEF_MAX_NODES) setting. The setting must
be a value in the range from 8 to 4095.

max_ports max_ports=N 8191 the maximum number of ports that his node can
create. The number should include both incoming
and outgoing ports for services offered by the node
and a small number of additional ports needed by
TIPC for system purposes. The number of ports
needed for system purposes can vary, but is
generally less than ten.

The number of ports must be a value in the range
from 127 to 65536.

Each node in a cluster can have a different setting
for max_ports.

50

3 Building VxWorks to Include Wind River TIPC
3.3 Configuring Wind River TIPC

Table 3-9 Configuration Parameters in the TIPC Configuration String (cont'd)

Parameter

Default

Syntax Value

Description

max_publ

max_subscr

max_zones

netid

max_publ=N 10000 Sets the maximum number of services a node can
maintain at one time.

Range: 1 to 65535.

max_subscr=N 2000 Sets the maximum number of subscriptions that a
node supports. This is equivalent to the maximum
number of services that all applications on the node,
combined, can subscribe to. For information on
subscriptions, see 2.7 Subscriptions, p.18.

If max_number is specified, sets the maximum
number of subscriptions the local node can have.

Range: 1 to 65535.

max_zones=N 4 The maximum number of nodes that this node can
connect to in other zones.

netid=ID 4711 The network ID used by the node.
Range: 1 to 9999.

3.3.2 Setting the be (bearer) Parameter

The be parameter specifies the type of communication to use between nodes,
either Ethernet, shared memory, or distributed shared memory (DSHM), and
allows you to assign a domain and a priority to communication with a node.

There can be more than one instance of the be parameter in a configuration string.
For example, you can use the parameter once to specify an Ethernet interface and
a second time to specify the use of shared memory. You can also repeat the
parameter to specify the use of multiple Ethernet interfaces. The current release
supports up to eight active interfaces. Separate repeated uses of the parameter
with semi-colons, as in the following example:

be=eth:fei1/1.1.0/12;be=sm:sm0/1.1.0/8

Before you configure the be parameter, you must always enter the -a parameter.
The -a parameter sets the address of the node for which bearer information is set
with the -be parameter.

51

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

The syntax for specifying the be parameter is:

bearer_name[/domain[/priority]]

where:

52

bearer_name has one of the following formats:
- ethunterface_name (Ethernet)
- sm:smO0 (shared memory).
The sm0 component is a fixed value and should not be modified.

Note that shared memory is not available with all BSPs (see 3.2.4 TIPC
Media Types, p.32).

— dshm:plb0 (distributed shared memory)

For the current release, the plb0 component is a fixed value and should not
be modified.

Note that DSHM is not available with all BSPs (see 3.2.4 TIPC Media Types,
p-32).
domain is an optional argument given in <Z.C.N> format that determines
which nodes the current node can have links to.

In specifying a domain, a zero value for Z, C, or N, means that the domain
includes all zones, clusters, or nodes:

- If domain is specified as <0.0.0>, all nodes in the network are included in
the domain.

- If domain is specified as <1.0.0>, the domain is restricted to zone 1, but
includes all nodes in all clusters within zone 1.

— If domain is specified as <Z.C.0>, where Z and C are the current node’s
zone and cluster, the domain includes only the nodes within the current
node’s cluster.

If no domain is specified, the current node can only have links to other nodes
inits cluster. This is equivalent to a domain of Z.C.0, where Z is the node’s own
zone and C is the node’s own cluster.

For more detailed information on domains, see 4.2.3 Specifying a Domain, p.77.

priority assigns a priority to communication over the specified interface, as
follows:

= For priorities 0 through 31, the higher the integer, the greater the priority.

3 Building VxWorks to Include Wind River TIPC
3.3 Configuring Wind River TIPC

» A priority of 32 (the default) sets priority equal to the default priority of
the medium (Ethernet or shared memory).

— The default value for Ethernet is 10.
— The default value for shared memory is 15.

— The default value for distributed shared memory is 15.

3.3.3 Accessing the Configuration String from the VxWorks Boot Loader

To access the TIPC configuration string from the VxWorks boot loader:
1. Bring up the VxWorks boot prompt.

You can bring up the VxWorks boot prompt by booting, or rebooting,
VxWorks and then pressing any key when you see the message:

Press any key to stop auto-boot...
2. At the VxWorks Boot prompt, enter ¢ (for “change”):
[VxWorks Boot]:c

VxWorks prompts you to set configuration parameters. It displays one

parameter at a time, showing a different parameter each time you press Enter.

3. Press Enter until you see the following prompt:
other :

4. Enter the configuration string. Do not enclose the string in double quotes.

3.3.4 Implementing tipcConfiginfoGet()

For dynamic configuration at startup, you can implement the routine
tipcConfigInfoGet() to access the Wind River TIPC configuration string. This
makes it possible to put the configuration string in a location where it is easy to
modify, which is particularly useful when there are configuration parameters that
are subject to frequent change or are different from one node to another.
tipcConfigInfoGet() has the following syntax:

STATUS tipcConfigInfoGet
(
char * buffer, /* buffer for null-terminated configuration string */
UINT bufferlen /* length of the buffer */
)

53

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

The tipcConfigInfoGet() routine returns OK on success, or ERROR on failure to
place the configuration string in the designated buffer.

The file with the source code for tipcConfigInfoGet() must contain the following
include:

#include <vxWorks.h>

If you implement tipcConfigInfoGet(), you must add the file containing the
implementation to your VxWorks Image Project.

If you are calling tipcConfigInfoGet() for dynamic configuration of Wind River
TIPC:

1. Place the source file containing tipcConfigInfoGet() in the build directory for
your board-support package (BSP):

installDir/target/config/bspDir

2. Open the make file in the build directory and add the name of the object file
that contains tipcConfigInfoGet() to the end of the line that starts with
MACH_EXTRA, as in the following example:

MACH_EXTRA = sysSpeed.o mtxI2c.0o hawkI2c.o sysASpeed.o
tipcCfgInfoGet.o

54

3 Building VxWorks to Include Wind River TIPC
3.4 Building VxWorks from Workbench

3.4 Building VxWorks from Workbench

This section describes how to include Wind River TIPC in a Workbench VxWorks
Image Project. For detailed information on using Workbench, see the Wind River
Workbench User’s Guide.

To include Wind River TIPC in a VxWorks Image Project:

1. Launch Workbench and open the workspace that contains your VxWorks
Image Project. If you do not have an existing VxWorks Image Project, see the
Wind River Workbench User’s Guide for instructions on how to create one.

2. Expand your VxWorks Image Project and double-click Kernel Configuration
to display the component tree for your project.

3. Expand the component folders as follows:

Network Components > Network Protocol Components >
TIPC components

4. If you want to build VxWorks with a TIPC-specific network stack that
excludes all UDP/IP and TCP/IP services:

a. Right-click Network Components and choose Exclude.
The Exclude window for network components appears.
b. Click Finish to exclude all network components from your build.

For information on the TIPC-specific network stack, see 3.2.5 TIPC network
stack only, p.37.

In the next step, you include TIPC build components in your VxWorks Image
Project. Figure 3-2 shows the TIPC build components in the Workbench
component tree.

55

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

Figure 3-2 TIPC Build Components in the Workbench Component Configuration Editor

Component Configuration

Description
= TIPC components
= I_f? TIPC advanced configuration
= @ TIPC footprint reduction
{7 Mo TIPC configuration service
{7 Mo TIPC debug
(2 Mo TIPC socket APT
(7} Mo TIPC system messages
= "_TE: TIPC kernel demos
(7 TIPC inventory simulation dema
(7 TIPE test suite demo (defaulk)
=] E’ TIPC library selection
7 Build TIPC From object library (defaul)
{3 Build TIPC From source * [see note 1]
(3 TIPC memory pool (default)
& () TIPC prioritized inkerfaces * [see note 2]
(0 TIPC socket AP {default)
(7 TIPC system defines
= B TIPC initidlization
=l ‘?,r TIPC dvnamic configuration (default)
{7 Bootline configuration (default)
(7 User configuration
(3 TIPC static configuration
= 5‘ TIPC media bvpes
(7 DSHM primary interface * [see note 2]
(7 Ethernet {default)
& (7 sShared Mamary * [see note 2]
% TIPC skack support
(3 TIPC and IP network stacks present (default)
(7 TIPC network stack only
(3 TIPC (default)
{5} TIPC configuration and display routines

Mame
FOLDER_TIPC
FOLDER_TIPC_ADVAMCED
FOLDER _TIPC_FOOTPRIMT
INCLUDE_TIPC MOCFG_SERVICE
INCLUDE_TIPC_MODEEUG
INCLUDE_TIPC MOSOCKET
INCLUDE _TIPC_MOSYS_M3GS
FOLDER _TIPC_DEMOS
INCLUDE_TIPC_IS
INCLUDE_TIPC_TS
SELECT_TIPWC_BUILD
INCLUDE_USE_LIBTIPC
INCLUDE_BUILD_TIPC_SRC
INCLUDE _TIPC_MEMPCOL
INCLUDE_TIPC_HEMD_IMIT
INCLUDE_COMFIG_TIPC_SOCKET_API
INCLUDE_TIPC_DEFIMES
SELECT_TIPC_IMIT
SELECT_TIPC _COMFIG_HOOK
INCLUDE_TIPC _COMFIG_HOOK_BOOT
INCLUDE _TIPC _COMFIG_HOOK, LSER
INCLUDE_TIPC _COMFIG_STR
SELECT_TIPC_MEDIA_TYPES
INCLUDE_DSHM_SWC_TIPC_PRIM
INCLUDE_TIPC _MEDIA_ETH
INCLUDE_TIPC_MEDLA_SM
SELECT_TIPC_STACK
INCLUDE_TIPC_IP
INCLUDE_TIPC_OMLY
INCLUDE_TIPC
INCLUDE _TIPC _SHCW

*1 Component only appears if TIPC source code is included in your installation

*2 Component only appears in the configuration tree if supported by the BSP used in the build

5. Right-click on TIPC components and Select Include

The Workbench Include window appears. It lists the available TIPC

components.

56

3 Building VxWorks to Include Wind River TIPC
3.4 Building VxWorks from Workbench

Figure 3-3 TIPC components in the Workbench Include window

Including components in the kernel configuration,

Mote: Components that are marked as default are checked by defaulk,

Seleck components o include;

Description

[] ¢PBoatline configuration

[¢ Build TIPC From obiject library

[¢ Build TIPC From source [Only appears if TIPC source code is included in VxWorks installation]
[¢ psHM primary interface [Only appears if BSP supports it]
[] ¢ Ethernet

|:| (7 Ma TIPC configuration service

[] 3 Mo TIPC debug

[¢7 Mo TIPC socket AP

|:| (7 Mo TIPC system messages

[] (7 shared Memary [Only appears if BSP supports it]

(7 TIPC {default)

[@3 TIPC and IP netwark stacks present

[] 3 TIPC configuration and display routines

[J 3 TIPC inventary simulation dema

[] 3 TIPC memory poal

[3 TIPC network stack onky

[] P TIPC pricritized interfaces [Only appears if BSP supports it]
[] 3 TIPC socket &PT

[] 3 TIPC skatic canfiguration

[(3 TIPC system defines

[] 7 TIPC test suite demo

[7 user configuration

[Select All H Deselect All]

The TIPC component is included by default. When you include TIPC in a
build, the following components are also included by default, and you do not
need to check them:

— Bootline configuration

— Build TIPC from Object library

— Ethernet

- TIPC memory pool

— TIPC socket API

— TIPC and IP network stacks present
— TIPC system defines

57

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

58

For build components that require a choice among one or more alternatives,
make your selections as described below. For information about individual
components, see 3.2 Wind River TIPC Build Components, p.20.

Static and Dynamic Configuration

You can include either static configuration, dynamic configuration, or both
(see 3.3 Configuring Wind River TIPC, p.46).

For Static configuration, include:

» TIPC static configuration

For dynamic configuration, include one of the following:
* Dbootline configuration (default)

Choosing this component instructs TIPC to get the configuration string
from the other parameter of the VxWorks boot loader (see 3.3.3 Accessing
the Configuration String from the VxWorks Boot Loader, p.53).

* user configuration

Choosing this component instructs TIPC to call the routine
tipcConfigInfoGet(), for which you must provide a custom
implementation (see 3.3.4 Implementing tipcConfigInfoGet(), p.53). If you
implement tipcConfigInfoGet(), you must add the file containing the
implementation to your VxWorks Image Project.

Footprint Reduction and Building from Precompiled Libraries or from Source Code

If your installation includes the source code for TIPC, when you build
Vxworks to include TIPC, you can build from precompiled TIPC libraries or
from TIPC source code. You build from source code only if you are going to
include one or more for the following build parameters for TIPC footprint
reduction:

— No TIPC debug (INCLUDE_TIPC_NODEBUG)

— No TIPC system messages (INCLUDE_TIPC_NOSYS_MSGS)

— No TIPC configuration service (INCLUDE_TIPC_NOCFG_SERVICE)
— No TIPC socket API (INCLUDE_TIPC_NOSOCKET)

If you include No TIPC socket API, when you click Finish after
selecting components (Step 8), Workbench will generate an error and
you will need to explicitly exclude the TIPC socket API build
component from your build.

Choose one of the following build options:

3 Building VxWorks to Include Wind River TIPC
3.4 Building VxWorks from Workbench

* Build TIPC from object library (default)

This option builds your VIP project using the TIPC library as originally
installed. It does not apply if you include any of the footprint-reduction
components listed earlier or if you include TIPC System Viewer
instrumentation in your build.

= Build TIPC from source

This component is visible in Workbench only if your installation includes
TIPC source code. It allows you to build the TIPC code from source code
and is automatically included if any of the footprint-reduction
components listed earlier is included. It is also automatically included if
you include TIPC System Viewer instrumentation in your build.

Media Types

Communication over Ethernet is available to all BSPs. The availability of
shared memory or distributed shared memory (DSHM) for TIPC
communication depends on the BSP that you are building for. For information
on media types, see 3.2.4 TIPC Media Types, p.32.

Include one or more of the following:

Ethernet (default)
Shared Memory
DSHM primary interface

Network Stack With or Without UDP/IP and TCP/IP Services

You can choose include either the full VxWorks network stack in your build
or, if you do not not need either UDP/IP or TCP/IP services and you want a
smaller VxWorks image, you can include a minimal stack with only the
services required by TIPC.

Choose one of the following options:
» TIPC and IP network stacks present (default)
» TIPC network stack only

TIPC network stack only reduces the size of the network stack by
approximately 380 KB. Including TIPC network stack only requires that
you have previously excluded the Network Components bundle from
your build (see Step 4). If you get the following error, it means that the
network components were not excluded:

incompatible with Boot parameter process INCLUDE_NET_BOOT)

59

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

60

For information on minimizing TIPC’s footprint and the overall image size of
your project, see 3.2.1 TIPC Footprint Reduction, p.27.

Include additional components from the following list (see, also, Figure 3-3)
based on TIPC requirements and the needs of your project.

TIPC configuration and display routines

Enables the use of the tipcConfig utility and TIPC command-line show
routines (see 3.2.6 TIPC configuration and display routines Build Component,
p-42).

TIPC inventory simulation demo

Adds the TIPC inventory simulation, a sample application (see E. Sample
TIPC Application), to a VxWorks kernel image.

TIPC memory pool (default)

A required component that allows you to allocate buffer space dedicated
to TIPC sockets at startup. For further information, see 3.2.3 TIPC memory
pool Build Component, p.31.

TIPC prioritized interfaces

Available only with BSPs that are compatible HEND interfaces. See
3.2.8 TIPC prioritized interfaces Build Component, p.45.

TIPC socket API (default)

You must explicitly exclude this component if you include the No TIPC
socket API build component (see 3.2.2 TIPC socket API Build Component,
p-30).

TIPC System Defines

Allows you to set TIPC parameter values replacing initial system defaults
(see 3.2.7 Setting TIPC System Values, p.42).

TIPC test suite demo (default)
Adds the TIPC test suite (see 8. Using the TIPC Test Suite).

Click Finish to include your selections in the build.

If you want to include System Viewer instrumentation in your build, you need
to include the TIPC instrumentation INCLUDE_WYVTIPC) build component
in your build.

10.

11.

3 Building VxWorks to Include Wind River TIPC
3.4 Building VxWorks from Workbench

The path to the TIPC instrumentation component is:

development tool components > System Viewer components >
TIPC instrumentation

For more information, see 7.4 Including TIPC System Viewer Instrumentation in
a VxWorks Image Project, p.104

Enter parameter values for any of the following components included in your
build:

TIPC memory pool

Specify the number and size of memory buffers allocated at startup for use
with TIPC sockets. For information, see 3.2.3 TIPC memory pool Build
Component, p.31.

TIPC prioritized interfaces

For the parameter TIPC interfaces using H-END, enter a string value that
lists all interfaces that are to be prioritized. For more information, see
3.2.8 TIPC prioritized interfaces Build Component, p.45

TIPC socket API

Specify the maximum number of concurrent sockets supported on a node
(Number of TIPC sockets) and the number of incoming messages that can
be queued on TIPC sockets (Socket Receive Queue Threshold). For more
information, see 3.2.2 TIPC socket API Build Component, p.30.

TIPC system defines
Set TIPC system values (see 3.2.7 Setting TIPC System Values, p.42).
TIPC static configuration

Enter a TIPC configuration string for setting TIPC parameter values (see
3.3.1 Setting Parameters in the TIPC Configuration String, p.48).

DSHM primary interface

Set configuration parameters for memory allocation and other aspects of
DSHM (see Communication Using Distributed Shared Memory (DSHM),
p-35).

Shared Memory

Set configuration parameters for memory allocation and other aspects of
shared memory (see Shared Memory Communication, p.33).

Select Build All from the Project menu to build your project.

61

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

62

Using tipcConfig to Configure
and Monitor TIPC

4.1 Introduction 63

4.2 tipcConfig Syntax and Command Options 64

4.1 Introduction

The tipcConfig utility allows you to dynamically configure a number of TIPC
features, display current configuration settings, and monitor the behavior of links
and nodes in a TIPC network. To have access to the tipcConfig utility, you need to
build VxWorks to include the TIPC configuration and display routines
(INCLUDE_TIPC_SHOW) build component (see Table 3-1 under 3.2 Wind River
TIPC Build Components, p.20).

63

Wind River TIPC for VxWorks 6

Programmer’s Guide, 1.7

4.2 tipcConfig Syntax and Command Options

The syntax for using tipcConfig is:

tipcConfig "[-]command_option[=arguments][[-lcommand_option[=arquments]]
[[-lcommand_option[=arquments]]..."

Note the following:

The entire command following tipcConfig must be enclosed in quotes.

Each command option and its arguments must be separated from the next
command option and its arguments by either a space or by a semi-colon.

A command option and its arguments are always linked by an equals sign, as
in the following example:

tipcConfig "-v;-max_ports=5000;max_nodes=350;netid=11"
A command option can be preceded by -, as in -v, but this is optional.

Command options can be abbreviated as long as they are unambiguous. For
example -addr can be abbreviated to -a, but an abbreviation of either -bd or -be
to -b would be ambiguous.

The following are equivalent examples of a tipcConfig command:

tipcConfig "-v -mng=enable -nt=ports,10,5,15"
tipcConfig "v mng=enable nt=ports,10,5,15"

Table 4-1 lists the tipcConfig command options in alphabetical order. Note,
however, that there are restrictions on the order in which some options can be
entered (see 4.2.1 Constraints on the Ordering of Command Options in tipcConfig
Commands, p.75).

64

4 Using tipcConfig to Configure and Monitor TIPC
4.2 tipcConfig Syntax and Command Options

Table 4-1 tipcConfig Command Options

tipcConfig

Option Arguments Description

-a [=node_address] If node_address is given, sets the local

or node_address is given in <Z.C.N> format. node’s address.

If no address is specified, gets the local

-addr ,
node’s address.

You must always set the -addr option
before you set the -be option (see
4.2.1 Constraints on the Ordering of
Command Options in tipcConfig
Commands, p.75).

-b N/A Lists the bearer or bearers associated
with the local node or (with the -dest
option) with the destination node.
Example:

-> tipcConfig "b"
Bearers:
eth:fei0
-bd =bearer_namel[,bearer_name[,bearer_ Disables use of the specified bearer or
namel,...]]] bearers.
bearer_name is given in one of the Example:
following formats: "bd=eth:fei0,dshm:plb0”
» ethiterface_name (Ethernet)
*= sm:sm0 (shared memory)
» dshm:plb0 (DSHM)
-be =bearer_name[ldomain[/priority]][,bearer_ Enables use of the specified bearer or

namel/domain[/priority]][,bearer_name[
Idomain|/priority]]...]]

For information on the individual
syntax components, see 4.2.2 The -be
Command Option, p.75.

bearers. For more information, see
4.2.2 The -be Command Option, p.75.

The -addr option must always be set
before the -be option (see

4.2.1 Constraints on the Ordering of
Command Options in tipcConfig
Commands, p.75).

65

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

tipcConfig Command Options (cont’d)

tipcConfig
Option

Arguments

Description

-d
or

-dest

[=destination_node_addr]

destination_node_addr is given in Z.C.N
format, for example: -dest=1.1.7.

Allows you to specify the address of a
node for which remote management is
enabled and then enter tipcConfig
command options for managing the
specified node. In the current release,
remote management is limited to a
subset of tipcConfig command options
and only allows you to display
information about the remote node. For
more information, see 4.2.7 Remote
Management, p.84.

If no destination address is specified,
the destination address currently in
effect is displayed. If no destination
address has been set, the local node’s
address is displayed.

or

-help

N/A

Displays a tabular listing of command
options, similar to this table.

Use this command option alone,
without other command options.

N/A

Toggles interactive mode. If interactive
mode is in effect, when you enter a
value to set a parameter, you are asked
to confirm the operation, as in the
following example:

-> tipcConfig "-i -mng=enable"

enable remote management [Y/n]
Interactive mode stays in effect across
uses of tipcConfig until it is disabled.

-1

=[node_addr]

node_address is given in <Z.C.N> format.

If anode addressis given, displays links
to the specified node from either the
local node or (with the -dest option) the
destination node.

66

4 Using tipcConfig to Configure and Monitor TIPC
4.2 tipcConfig Syntax and Command Options

Table 4-1 tipcConfig Command Options (cont’d)

tipcConfig
Option Arguments Description
-log [=size] If a log size is specified, sets the size of
the log. A log size of 0 (the default)

,Srl}zlz ézzl}jﬁsézﬁfeng%er from 0 to 32768. means that logging is turned off.
If there is a log, the minimum size is 512
byes. If you specify a log size less than
the minimum (other than 0), the

minimum size is used.

If you enter a log size and later change
the size, the log is reset to empty and the
new size goes into effect.

If you enter -log without specifying a
size, the current contents of the log is
displayed and the log is reset to empty.
For an example of log output, see

4.2.5 Sample Log Output, p.83.

67

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

Table 4-1 tipcConfig Command Options (cont’d)
tipcConfig
Option Arguments Description
-1p =link_namelpriority Sets the specified link’s priority, as
link_name is given as shown in the entry follows:
for -Is. » For priorities 1 through 31, the
priority is a value from 0 to 32. The h;%(};reii the integer, the greater the
default value is 32. See the Description P Y
column for the way priority is applied. = A priority of 32 (the default) sets
priority equal to the default priority
of the medium (Ethernet, shared
memory, or DSHM).

— The default value for Ethernet
is 10.

— The default value for shared
memory is 15.

— The default value for DSHM is
15.

- You cannot assign the same
priority to more than two
interfaces on a node.

-Is =link_name Displays usage statistics for the
link name is eiven as: specified link on the local node or (with
M & ' the -dest option) the destination node.
node_addr:if_name-dest_node:bearer
For an example of output, see
Example: 4.2.6 Sample Output for the “Is” (Link
1.1.7:fei0-1.1.58:eth0 Statistics) Option, p.83.
-lsr =link_name Resets statistics counters to zero for the

link_name is given as shown in the entry
for -Is.

specified link.

68

4 Using tipcConfig to Configure and Monitor TIPC
4.2 tipcConfig Syntax and Command Options

Table 4-1 tipcConfig Command Options (cont’d)

tipcConfig

Option Arguments Description

-1t =link_nameltolerance_interval Sets link tolerance. Tolerance is the
link_name is given as shown in the entry m?n%mum length of time, in . .
for -_ls milliseconds, that the node will wait

' before declaring that a link is down, if
tolerance_interval is given in no communication is received on it.
milliseconds. You can set a value in the Within the time interval, the node
range from 50 to 30000 ms. The default makes multiple attempts to elicit
value is 1500 ms for both Ethernet and = communication on the link.
shared memory.

-lw =link_namelwindow_size Sets the window size for the link.
link_name is given as shown in the entry window_size is the. nurpber of messages
for -1 sent on the specified link that the node

or -lIs. . . . :
will keep in memory without needing
window_size is an integer in the range to receive an acknowledgement from
from 16 to 150. Default window size is the recipient.
50.
-m N/A Lists the media—Ethernet, shared

memory, or both—on the local node or
(with the -dest option) on the
destination node.

-max_clusters

[=max_number]

max_number is an integer from 1 to 4095.
The default value is 8.

The maximum number of clusters in
this node’s zone. If no max_number is
specified, displays the current value for
max_number.

-max_clusters must always precede
-addr (see 4.2.1 Constraints on the
Ordering of Command Options in
tipcConfig Commands, p.75).

69

Table 4-1

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

tipcConfig Command Options (cont'd)

tipcConfig
Option

Arguments

Description

-max_nodes

[=max_number]

max_number is an integer from 8 to 4095.
The default value is 255.

If max_number is specified, sets the
maximum number of nodes in this
node’s cluster. Typically, eachnode in a
cluster has the same max nodes setting.
If no max_number is specified, displays
the current value for max_number.

-max_nodes must always precede -addr
(see 4.2.1 Constraints on the Ordering of
Command Options in tipcConfig
Commands, p.75).

-max_ports

[=max_number]

max_number is an integer from 127 to
65535. The default value is 8191.

If max_number is specified, sets the
maximum number of ports that his node
can create. The number should include
both incoming and outgoing ports for
services offered by the node and a small
number of additional ports needed by
TIPC for system purposes. The number
of ports needed for system purposes can
vary, but is generally less than ten.

If no max_number is specified, displays
the current value for max_number.

The precedence order for -max_ports is:

max_ports > netid > a > be

-max_publ

[=max_number]

max_number is an integer from 1 to
65535. The default value is 10000.

If max_number is specified, sets the
maximum number of services a node
can offer at one time. This is equivalent
to the maximum number of port names
and name sequences that all
applications on thenode, combined, can
publish.

If no max_number is specified, displays
the current value for max_number.

70

4 Using tipcConfig to Configure and Monitor TIPC
4.2 tipcConfig Syntax and Command Options

Table 4-1 tipcConfig Command Options (cont’d)
tipcConfig
Option Arguments Description
-max_ [=max_number] If max_number is specified, sets the
remotes maximum number of nodes that this

max_number is an integer from 0 to 255.
The default value is 8.

node can have links to outside its own
cluster.

If no max_number is specified, displays
the current value for max_number.

-max_subscr

[=max_number]

max_number is an integer from 1 to
65535. The default value is 2000.

If max_number is specified, sets the
maximum number of subscriptions the
local node supports. This is equivalent
to the maximum number of services
that all applications on the node,
combined, can subscribe to. For
information on subscriptions, see

2.7 Subscriptions, p.18.

If no max_number is specified, displays
the current value for max_number.

-max_zones

[=max_number]

max_number is an integer from 1 to 255.
The default value is 4.

If max_number is specified, sets the
maximum number of zones in this
node’s network.

If no max_number is specified, displays
the current value for max_number.

-max_zones must always precede -addr
(see 4.2.1 Constraints on the Ordering of
Command Options in tipcConfig
Commands, p.75).

71

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

Table 4-1 tipcConfig Command Options (cont’d)
tipcConfig
Option Arguments Description
-mng [=enable | disable] Specifies whether remote management

is enabled or disabled for this node. If
no argument is entered, the current
state is displayed, either enabled or
disabled.

When remote management of a node is
enabled, other nodes in the network can
use the tipcConfig utility to manage the
node and display information abut it. In
the current release, remote
management is limited to a subset of
tipcConfig command options and only
allows you to display information about
amanaged node. For more information,
see 4.2.7 Remote Management, p.84.

Note that remote management is
enabled by default, unless you reset the
default through the

Remote Management
(TIPC_DEF_REMOTE_MGT) parameter
(see the table entry for Remote
Management, p.44).

[=lookup_domain]

lookup_domain is given in <Z.C.N>
format.

If lookup_domain is given, lists all nodes
known to the current node within the
specified domain. For information
aboutlookup domains, see 2.5.4 Address
Resolution, p.15.

If no lookup domain is given, displays
all known nodes within the network.

72

4 Using tipcConfig to Configure and Monitor TIPC
4.2 tipcConfig Syntax and Command Options

Table 4-1 tipcConfig Command Options (cont’d)

tipcConfig
Option Arguments Description
-netid [=network_id] If network_id is specified, sets the
network address of the node.
For a usage example in which separate
networks within a LAN are set up, see
4.2.8 Using the -netid Option to Set Up
Separate TIPC Networks Within a LAN,
p-86.
If no network ID is specified, gets the
network address.
The default network ID at initial startup
is 4711.
-nt [=typel low[,up]]] | Lists information in the name table of
depth[, typel low[,up]]] the local node or (with the -dest option)
where depth is one of the followine: the name table of the destination node.
P & For further information and sample
= types output, see 4.2.9 The -nt Command
* names Option, p.86.
= ports
= all
P N/A For each port, the associated port name

is given, if there is one. If a port is
currently connecting to another port,
the port ID of the connecting port is
given.

For sample output, see 4.2.10 Sample
Output for the -p (Ports) Option, p.89.

73

Table 4-1

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

tipcConfig Command Options (cont’d)

tipcConfig
Option

Arguments

Description

-S

N/A

Displays the current TIPC release
number.

Examples:

-> tipcConfig "-s"
TIPC version 1.7.5

->tipcConfig "-dest=1.3.1;-s"
Status for node <1.3.1>:
TIPC version 1.7.5

'

N/A

Toggles verbose mode. In verbose
mode, the system displays a
confirmation for new settings, as in the
following example:

-> tipcConfig "v"
verbose mode: active

Verbose mode stays in effect across uses
of tipcConfig until it is disabled.

N/A

Displays the current version of the
tipcConfig utility.

Example:
> tipcConfig "-V"

TIPC configuration tool version
1.1.4

74

4 Using tipcConfig to Configure and Monitor TIPC
4.2 tipcConfig Syntax and Command Options

4.2.1 Constraints on the Ordering of Command Options in tipcConfig Commands

There are constraints on the order in which some tipcConfig command options

can be specified. These constraints apply to the options within a single tipcConfig
command and also to the use of options across tipcConfig commands. For

example, the -addr option must be set before the -be (bearer) option, as in the
following tipcConfig command:

max_nodes=100;max_ports=200;netid=1000;a=1.1.27;10g=1024;be=eth:cpm0
The following sequence of tipcConfig commands is also valid:

max_ports=200;netid=1000;a=1.1.27;
max_nodes=100;1og=1024;be=eth:cpm0

The rules for entering tipcConfig command options are:

» If entered, the -v (verbose), -i (interactive), and -dest options should be
specified before other command options.

» Within a single tipcConfig command and across multiple tipcConfig
commands, the following precedence relations must be observed:

max_ports > netid > a > be
max_zones, max_nodes, max_clusters > a

" _n

where “>" means “precedes”.

4.2.2 The -be Command Option
The tipcConfig -be option enables TIPC communication over one or more
interfaces using Ethernet, shared memory, or distributed shared memory.
The syntax of the -be option with its arguments is:

-be=bearer_name[/domain[/priority]][,bearer_name[/domain[/priority]]
[,bearer_name[/domain|[/priority]]...]]

where:

The tipcConfig -be option enables TIPC communication over one or more
interfaces using Ethernet, shared memory, or distributed shared memory. An
individual interface can be used for only one media type (see 3.2.4 TIPC Media
Types, p.32), but you can configure separate interfaces on a node for different
media types (see 3.2.4 TIPC Media Types, p.32). You can also configure two or more

75

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

interfaces for the same media type, excluding DSHM, which does not support
multiple links (see 2.2.3 Multiple Links for Load-Sharing and Switchover, p.8).

The syntax of the -be option with its arguments is:

-be=bearer_name[/domain[/priority]][,bearer_name[/domain[/priority]]
[,bearer_name[/domain|[/priority]]...]]

where:

» bearer_name is the media type and interface or bus name, as follows:
- For Ethernet, enter eth:interface_name. For example: -be=eth:eth1
— For shared memory, always enter: -be=sm:sm0.

— Inthe current release, for distributed shared memory, always enter:
-be=dshm:plb0.

Note that shared memory and DSHM are not available with all BSPs (see
3.2.4 TIPC Media Types, p.32).

* domain is an optional argument given in <Z.C.N> format that determines
which nodes the current node can have links to.

In specifying a domain, a zero value for Z, C, or N, means that the domain
includes all zones, clusters, or nodes:

- If domain is specified as <0.0.0>, all nodes in the network are included in
the domain.

- If domain is specified as <1.0.0>, the domain is restricted to zone 1, but
includes all nodes in all clusters within zone 1.

— If domain is specified as <Z.C.0>, where Z and C are the current node’s
zone and cluster, the domain includes only the nodes within the current
node’s cluster.

If no domain is specified, the current node can only have links to other nodes
inits cluster. This is equivalent to a domain of Z.C.0, where Z is the node’s own
zone and C is the node’s own cluster.

For more detailed information on domains, see 4.2.3 Specifying a Domain, p.77.

= priority assigns a priority to communication over the specified interface, as
follows:

- For priorities 0 through 31, the higher the integer, the greater the priority.

— A priority of 32 (the default) sets priority equal to the default priority of
the medium (Ethernet or shared memory).

76

4 Using tipcConfig to Configure and Monitor TIPC
4.2 tipcConfig Syntax and Command Options

— The default value for Ethernet is 10.
— The default value for shared memory is 15.
— The default value for DSHM is 15.

If no priority is specified, the default priority is 0.

NOTE: You cannot assign the same priority to more than two interfaces on a
node.

Before setting the -be option, you must always set the -addr option (see

4.2.1 Constraints on the Ordering of Command Options in tipcConfig Commands, p.75).

4.2.3 Specifying a Domain

When TIPC communication over a bearer is enabled, TIPC broadcasts messages
over the bearer for the purpose of detecting other nodes in the network that use the
same medium and establishing links to them. TIPC establishes links between
nodes based on the domains assigned to their bearers.

When you configure a bearer by setting the be parameter in a configuration string
3.3.2 Setting the be (bearer) Parameter, p.51 or using the -be command option with
the tipcConfig utility, you can specify a domain for the bearer. The domain is
entered in Z.C.N format and determines the nodes that bearer’s own node can have
links to:

» If two nodes have bearers that use the same medium (for example, Ethernet)
and the domain of each bearer includes the network address of the other node,
TIPC establishes a link between the nodes.

In specifying a domain, a zero value for Z, C, or N, means that the domain includes
all zones, clusters, or nodes:

» If domain is specified as <0.0.0>, all nodes in the network are included in the
domain.

» Ifdomainis specified as <1.0.0>, the domain is restricted to zone 1, but includes
all nodes in all clusters within zone 1.

» If domain is specified as <Z.C.0>, where Z and C are the current node’s zone
and cluster, the domain includes only the nodes within the current node’s
cluster.

77

Domain

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

If no domain is specified, the current node can only have links to other nodes in its
cluster. This is equivalent to a domain of Z.C.0, where Z is the node’s own zone and
C is the node’s own cluster.

Settings for Meeting TIPC Network Requirements

TIPC requires that all the nodes in a cluster have direct links to each other, that all
the clusters in a zone have direct links to each other, and that all the zones in a
network have direct links to each other.

Domain Settings for Direct Links Between Nodes within a Cluster

The simplest way to ensure that all nodes in a cluster have direct links to each other
over a given medium is to not specify any domain and simply accept the default
setting. However, this also means accepting the default priority for a medium,
which may not be desirable.

To assign the default domain and a priority to a bearer, you need to enter the
default domain as Z.C.0, where Z is the node’s own zone and C is the node’s own
cluster. For example, the following setting configures an Ethernet bearer on node
<1.1.5> with the default domain and a priority of 12:

be=eth:eth0/1.1.0/12

It is also possible to assign a bearer a domain that allows linkage only to a specific
node within the bearer’s cluster, as in the following example for node <1.1.5>:

be=eth:eth1/1.1.4

This can be useful if, for example, you have multiple interfaces on a node. You can
configure one interface as an Ethernet bearer and assign it the default domain. This
provides for links to all nodes in its cluster. You can configure a second interface
as an Ethernet bearer and assign it a restricted domain that creates a link to one
specific node for purposes of load-sharing and switchover.

Domain Settings for Links Between Clusters

In a zone with multiple clusters, each cluster must have direct links to all other
clusters. Figure 4-1 illustrates two ways of assigning such links.

78

4 Using tipcConfig to Configure and Monitor TIPC
4.2 tipcConfig Syntax and Command Options

Figure 4-1 Links Between Clusters

Zone 1

Cluster 1 Cluster 2

Cluster 3

In clusters 1 and 2, a single node acts as a router to multiple clusters. This is likely
to be the most common way of handling routing between clusters. The alternative
is to have separate nodes act as routers to different clusters, as in cluster 3.

To have a single node act as a router to multiple clusters, enter the domain as
follows:

Z.0.0
where Z is the zone of the routing node.

To have a node act as a router to a single cluster in its own zone, enter the domain
as follows:

Z.CN
where:

— Zis the zone of the routing node.
— Cis the external cluster.
— Nis arouting node in the external cluster.

79

Table 4-2

Figure 4-2

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

The following table shows the domains that would need to be assigned to bearers
for each of the routing nodes in Figure 4-1.

Cross-Cluster Domain Assignments

Node Domain
1.14 1.0.0
1.2.1 1.0.0
1.3.1 1.14
1.3.2 1.2.1

Domain Settings for Links Between Zones

In a network with multiple zones, each zone must have direct links to all other
zones. Figure 4-2 illustrates two ways of assigning such links.

Links Between Zones

Zone 1 Zone 2
Cluster 1 Cluster 1

OO A O—
7T/

Cluster 1 Cluster 2

3.91 3.1

80

4 Using tipcConfig to Configure and Monitor TIPC
4.2 tipcConfig Syntax and Command Options

In zones 1 and 2, a single node acts as a router to multiple zones. This is likely to
be the most common way of handling routing between zones. The alternative is to
have separate nodes act as routers to different zones, as in zone 3.

To have a single node act as a router to multiple zones, enter the domain as follows:
0.0.0

To have a node act as a router to a single external zone, enter the domain as
follows:

Z.CN
where:

— Z is the external zone.
— Cis a cluster in the external zone.
- Nisarouting node in the external zone.

The following table shows the domains that would need to be assigned to bearers
for each of the routing nodes in Figure 4-2.

Table 4-3 Cross-Zone Domain Assignments

Node Domain

1.1.2 0.0.0
211 0.0.0
3.1.1 1.1.2
3.1.2 2.1.1

4.2.4 The -dest Command Option

If remote management has been enabled on another node (see the table entry for
-mng, p.72), this option allows you to enter the node’s address in <Z.C.N> format
and enter command options for managing the designated node. In the current
release, remote management is limited to a subset of tipcConfig command options
and only allows you to display information about the remote node. The command
options available for remote management are:

81

Table 4-4

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

The syntax of the -dest (-d) command option is:
-dest[=destination_node_addr]
where destination_node_addr is given in <Z.C.N> format.

In the current release, the remote node is limited to the following tipcConfig
commands:

Command Options for -dest

-b (get bearers)

-1 (get links to clusters)
-Is (get link statistics)
-m (get media)

-n (get nodes in cluster)
-nt (show name table)
-p (get port information)

-s (display TIPC release number)

When you specify the address of a remote node, tipcConfig command options
apply to the specified node. In addition, all subsequent tipcConfig commands also
apply to the remote node, until you reset the -dest option to the local node.

To reset the -dest option to the local node do one of the following:

= Enter tipcConfig -dest with the destination address set to the address of the
local node.

= Enter tipcConfig -dest with the destination address set to <0.0.0>, as in the
following example:

tipcConfig ("-dest=0.0.0;nt=ports,10,5,15")

If you use the -dest option without specifying a destination address, the
destination address currently in effect is displayed. If no destination address has
been set, the local node’s address is displayed.

82

4 Using tipcConfig to Configure and Monitor TIPC
4.2 tipcConfig Syntax and Command Options

4.2.5 Sample Log Output

The following is sample output for the tipcConfig "log" command:

-> tipcConfig "log"

Log dump:

TIPC info: Established link <1.1.7:fei0-1.1.58:eth0> on network plane A
TIPC info: Lost link <1.1.7:fei0-1.1.58:eth0> on network plane A

TIPC info: Lost contact with <1.1.58>

TIPC info: Disabled bearer <eth:feiO>

TIPC info: Own node address <1.1.7>, network identity 1960

TIPC info: Enabled bearer <eth:feil>, discovery domain <1.1.0>

In the log:

network plane A is a TIPC-assigned label for the bearer; each bearer gets a
similar label.

A discovery domain is effectively the same as a lookup domain. For
information about lookup domains, see 2.5.4 Address Resolution, p.15.

For a list of the messages that can occur in the log, see F. TIPC Log Messages

4.2.6 Sample Output for the “Is” (Link Statistics) Option

The following is sample output for the tipcConfig "ls" command:

-> tipcConfig "ls=1.1.7:feil0-1.1.58:eth0"
Link <1.1.7:fei0-1.1.58:eth0>

ACTIVE MTU:1500 Priority:10 Tolerance:1500 ms Window:50 packets
RX packets:2 fragments:0/0 bundles:0/0

TX packets:79 fragments:0/0 bundles:0/0

TX profile sample:82 packets average:60 octets

0-64:100% -256:0% -1024:0% -4096:0% -16354:0% -32768:0% -66000:0%
RX states:1840 probes:927 naks:0 defs:0 dups:0

TX states:1840 probes:913 naks:0 acks:0 dups:0

Congestion bearer:0 1link:0 Send queue max:3 avg:0

In the output:

For the Tolerance and Window values, see the entries for -It and -lw in
Table 4-1.

For received messages (RX states):

probes are messages sent to check on whether a link is still valid, when
there has been no traffic or response from another node.

defs are the number of messages received out of order. They are deferred

packets that are held in queue until all missing packets are received.

83

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

— dups are the number of duplicate messages received.
» For transmitted messages (TX states):

— probes are messages sent to check on whether a link is still valid, when
there has been no traffic or response from another node.

— dups are the number of messages retransmitted.

4.2.7 Remote Management

When remote management of a node is enabled through the tipcConfig -mng
command option (see Enabling Remote Management, p.84), other nodes in the
network can use the tipcConfig -dest command option to initiate management of
the node and to display information about it (see The -dest Command Option for
Specifying the Address of a Node to be Managed, p.85). In the current release, remote
management is limited to a subset of tipcConfig command options and only
allows you to get information about a remote node, not to alter its configuration.

tipcConfig Command Options available for remote management

The following tipcConfig command options are available for remote management
in the current release:

-b (get bearers)

-1 (get links to clusters)

-Is (get link statistics)

-m (get media)

-n (get nodes in cluster)

-nt (show name table)

-p (get port information)

-s (display TIPC release number)

Enabling Remote Management

When you build VxWorks to include TIPC, remote management of TIPC nodes is
enabled by default. You can change this and build VxWorks with TIPC remote
management disabled by default through the Remote Management
(TIPC_DEF_REMOTE_MGT) build parameter (see the table entry for Remote
Management, p.44). At any time after startup, you can use the tipcConfig -mng

84

4 Using tipcConfig to Configure and Monitor TIPC
4.2 tipcConfig Syntax and Command Options

command option to disable or enable remote management of an individual node
(see the table entry for -mng, p.72).

The -dest Command Option for Specifying the Address of a Node to be Managed
To manage a node for which remote management has been enabled, you use the
tipcConfig -dest (or -d) command option from a remote node and specify the
network address of the node to be managed in Z.C.N format. For example:

-dest=1.1.25

Enter the -dest command option before any other command options, except for the
-v and -i command options, which can come before it (see 4.2.1 Constraints on the
Ordering of Command Options in tipcConfig Commands, p.75).

The following example specifies node <1.2.5> as the destination node for remote
management and displays information about the node’s bearers and links:

tipcConfig “-dest=1.2.5;-b;-1"”

Once you use the -dest command option to specify a destination node, all
subsequent uses of the tipcConfig utility apply to the specified node, unless you
reset the destination. To reset the destination, you need to use the tipcConfig
command with the -dest command option and specify a new destination for
tipcConfig commands. To reset the destination to the local node, you can enter
either the local node’s address or, simply, 0.0.0 as the address. For example if the
local node’s address is <1.1.7>, the following are equivalent commands to reset the
destination to the local node and display information about its bearers and links:

tipcConfig “-dest=1.1.7;-b;-1"”
tipcConfig “-dest=0.0.0;-b;-1”

Note that if the local node is <1.1.7> the following command to first get
information about node <1.3.17> and then reset management to the local node is
not valid: tipcConfig "-dest=1.3.17;-b;-1;-dest=1.1.7". You need to use separate
tipcConfig commands with separate command strings specifying the -dest
command option.

85

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

4.2.8 Using the -netid Option to Set Up Separate TIPC Networks Within a LAN

You can use the tipcConfig -netid option to set up independent TIPC networks
within a LAN of interconnected TIPC nodes. This can be useful for development
purposes.

For example, suppose you have a LAN with five TIPC nodes and want to work
with only three of them for development purposes. To do this, you use the -netid
option to assign each node the same network ID and you use the -addr option to
assign each node a network address within the network. The following example
assigns a network ID and a network address to a node:

tipcConfig "-netid=1000 -addr=1.1.7"

4.2.9 The -nt Command Option

The tipcConfig -nt option lists information in the name table of the local node or
(with the -dest option) in the name table of the destination node. For sample
output see Sample Output for the -nt Command Option, p.87. The syntax for
specifying arguments is:

tipcConfig -nt[=type[low[,up]]] | depth[,typel,low[,up]]]
where
= depth is one of the following:
- types
List only the port types in the node’s name table.
- names

List only the port names (consisting of both a type and an instance) in the
node’s name table.

- ports
List port names and their port identities.
- all
List port names, port identities, and publication information.
If no depth is specified, the output is the same as for a depth of all.

» type is a specific type for which you want to display information.

86

4 Using tipcConfig to Configure and Monitor TIPC
4.2 tipcConfig Syntax and Command Options

* Jow and up are optional lower and upper instance values for a port name
sequence for which you want to display information. To restrict the display of
information to a single port name instance, you can enter a single value. For
example, the following displays name table information for a port whose type
is 5 and instance value is 8:

tipcConfig “nt=5,8"

If you do not specify an argument, tipcConfig -nt lists all the information in the
name table. For sample output, see Sample Output for the -nt Option Without
Arguments (Equivalent to “-nt=all”, p.88.

Sample Output for the -nt Command Option

The following sections give examples of output from several uses of the -nt
command option.
Sample Output for depth=types

The following is sample output for tipcConfig -nt with a depth of types:
-> tipcConfig ("-nt=types")
Type

Sample Output for depth=names

The following is sample output for tipcConfig -nt with a depth of names:

-> tipcConfig ("-nt=names")

Type Lower Upper

0 16781319 16781319
16781322 16781322

1 1 1

NOTE: As described in 2.7 Subscriptions, p.18, type 0 is a special type whose
instances correspond to nodes within the network. In the output for the -nt option,
the instance values for type 0 are decimal representations of a node’s <Z.C.N>
address, where Z is 8 bits, C is 12 bits, and N is 12 bits.

87

Wind River TIPC for VxWorks 6

Programmer’s Guide, 1.7

Sample Output for depth=ports

The following is sample output for tipcConfig -nt with a depth of ports:

-> tipcConfig ("-nt=ports")
Lower

Type

Upper

Port Identity

16781319
16781322

1

16781319
16781322
1

<1.1.7:1086734332>
<1.1.10:1086734332>
<1.1.10:1086734333>

For the interpretation of type 0 instance values, see the note in Sample Output for
depth=names, p.87.

Sample Output for the -nt Option Without Arguments (Equivalent to “-nt=all”

The following is sample output for tipcConfig -nt without any arguments, which

is equivalent to using -nt with a depth of all:

-> tipcConfig "nt"

Type Lower
0 16781319
16781322
1 1
75 0
4
5
7

16781319
16781322
1
0
4

5
7
7

Port Identity

.7:1086734332>

<1.

PR R e

.58:4038885369>

.7:1086734333>
.7:1086734027>
.7:1086734165>
<1.1.7:1086734099>
<1.1.7:1086734031>
<1.1.7:1086734090>
<1.1.7:1086734049>

Publication

1086734333
4038885370
1086734334
1086734028
1086734166
1086734100
1086734032
1086734091
1086734050

node
cluster
zone
zone
zone
zone
zone

The values in the publication column, a reference number and scope value, are for
Wind River internal debugging.

For the interpretation of type 0 instance values, see the note in Sample Output for
depth=names, p.87.

Sample Output for the -nt Option with arguments for type, low, and up

The following example shows output for tipcConfig -nt when a port name
sequence is specified using the type, low, and up arguments:

-> tipcConfig "nt=75,0,7"

75

0
4

88

0
4

<1.
<1.
<1.
<1.
<1.
<1.

[e N N L

B N N Y

:1086734027>
:1086734165>
:1086734099>
:1086734031>
:1086734090>
:1086734049>

1086734028
1086734166
1086734100
1086734032
1086734091
1086734050

cluster
zone
zone
zone
zone
zone

4 Using tipcConfig to Configure and Monitor TIPC
4.2 tipcConfig Syntax and Command Options

For the interpretation of type 0 instance values, see the note in Sample Output for
depth=names, p.87.

4.2.10 Sample Output for the -p (Ports) Option

The tipcConfig -p option lists all ports on the local node or (with the -dest option)
all ports on the destination node. The following is sample output:

-> tipcConfig "p"

Ports:

1086734333
1086734332
1086734319:
1086734317
1086734165:
1086734150
1086734099
1086734048
1086734046
1086734040

bound to {1,1}

bound to {0,16781319}

connected to <1.1.7:1086734317>
connected to <1.1.7:1086734319>
bound to {75,4}

bound to {75,7}

bound to {75,4}

connected to <1.1.7:1086734046>
connected to <1.1.7:1086734048>
bound to {75,8}

via {1,1}

via (1,1}

In the example, the values in parentheses are the type and instance values making
up a port name. If a port has a current connection, the port it is connected to is
given in angled brackets. If a connection does not show a port name, it means that
the connection is made through a physical address and not through a functional

address.

89

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

90

Subscriptions

5.1 Introduction 91

5.2 Creating and Using the TIPC Subscription Service 92

5.1 Introduction

When an application uses the bind() routine to bind a service to a socket, it assigns
the service a functional address and a scope (see 2.5.3 Functional Addressing, p.13).
All nodes within the scope of a service are notified when the service becomes
available and keep track of its ongoing availability. Every TIPC node maintains a
connection-oriented, message-based subscription service for providing
information on the availability of the services it knows about. An application can
subscribe to this service in order to learn about the availability or unavailability of
individual services known to a node.

In the current release, there are two types of subscriptions:
= Portlevel (TIPC_SUB_PORTS)

When an application creates a port-level subscription for a service, it is notified
each time the service becomes available or unavailable at a socket anywhere in
the network, as long as the application’s node is within the scope of the service.

91

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

» Service level (TIPC_SUB_SERVICE)

When an application creates a service-level subscription, it only receives a
notification

— when a previously available service becomes unavailable throughout the
network

— when a service previously unavailable throughout the network becomes
available

An application can also use subscriptions to gather information about the topology
of a TIPC network. TIPC automatically assigns every node in the network a port
name in which the type is 0 and the instance value is the node’s network address
(<Z.C.N>) and publishes information about the availability of this port name, just
as it does for other port names. By subscribing to port names of type 0, an
application can receive notifications whenever a node joins or leaves the network.

5.2 Creating and Using the TIPC Subscription Service

This section describes how to create a subscription and how to receive and
interpret an event notification when a service becomes available or unavailable.
Once an application has received the subscription information it requires, it can
terminate a subscription by calling close() to end the connection to the
subscription service.

The definitions of structures and macros mentioned in this section can be found in
D. Header File Definitions.

5.2.1 Creating a Subscription

To create a subscription, an application:

» Creates a SOCK_SEQPACKET connection to the subscription service, using the
reserved port name 1,1 (type 1, instance 1) as the destination address.

* Sends a message containing a tipc_subscr structure to the subscription service.

The two operations can be performed sequentially using the connect() routine
followed by call to the send() routine. You can also use TIPC’s implied

92

5 Subscriptions
5.2 Creating and Using the TIPC Subscription Service

connection-handshake capability to combine the two operations in a single
sendto() or sendmsg() operation (see sendto() and sendmsg() in B. Socket and
Utility Routines).

The contents of the message sent to the subscription service must be a tipc_subscr
structure. The structure is defined as follows:

struct tipc_name_seq seq; /* name sequence of interest */
__u32 timeout; /* subscription duration (in ms) */
_u32 filter; /* bitmask of filter options */
char usr_handle[8]; /* available for subscriber use */

Instead of entering a duration in milliseconds for the timeout field, you can create
a subscription with no time limit by specifying a timeout of TIPC_WAIT_FOREVER.

The filter field of the structure determines the type of subscription created. It
currently supports two options, corresponding to service-level and port-level
subscriptions (see 5.1 Introduction, p.91):

» TIPC_SUB_PORTS
» TIPC_SUB_SERVICE

5.2.2 Receiving a Subscription Event Notification
To receive an event notification when a service becomes available or unavailable,

the application calls the recv() or recvmsg() routine. When a subscription event
occurs, the application receives a tipc_event structure. The structure is defined as

follows:

struct tipc_event {
_u32 event; /* event type */
__u32 found_lower; /* matching name seq instances */
__u32 found_upper; /* " " " " */
struct tipc_portid port; /* associated port */
struct tipc_subscr s; /* associated subscription */

}

The event field of the structure supports three types of subscription events:
* TIPC_PUBLISHED - the specified service is now available.
* TIPC_WITHDRAWN - the specified service is no longer available.

» TIPC_SUBSCR_TIMEOUT - the subscription has expired.

93

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

94

Using the Wind River
VxWorks Simulator with TIPC

6.1 Introduction 95
6.2 Simulating a Standalone TIPC Node 96
6.3 Simulating a Network of TIPC Nodes 96

6.1 Introduction

The Wind River VxWorks Simulator allows you to simulate a single hardware
target or a network with multiple targets for testing a VxWorks application. For
TIPC, you can use a single instance of VxWorks simulator to simulate a standalone
TIPC node or you can use multiple instances to simulate a network of TIPC nodes
connected by Ethernet or shared memory.

95

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

6.2 Simulating a Standalone TIPC Node

To use VxWorks simulator to simulate a standalone TIPC node:

1. Build a VxWorks image containing TIPC (see 3. Building VxWorks to Include
Wind River TIPC).

You can use the TIPC default configuration without changes or you can
modify it to suit your requirements. By default, the simulated node is assigned
a default network address of <0.0.0>.

2. Start the simulated standalone target from a VxWorks development shell. For
example:

>vxsim

6.3 Simulating a Network of TIPC Nodes

When you simulate a network of TIPC nodes, each node must have a unique TIPC
network address and each node must have the same be (bearer) setting.

You can build TIPC to assign network addresses and a bearer either through TIPC
static configuration or TIPC dynamic configuration (see 3.3 Configuring Wind River
TIPC, p.46).

If you use Workbench, the simplest way to configure a simulated network of TIPC
nodes is to build TIPC with dynamic bootline configuration. A special feature of
bootline configuration is that when you use it with VxWorks simulator, it provides
automatic configuration of network addresses and bearers (see TIPC with bootline
configuration, using default configuration values, p.97). If you build TIPC for static
configuration only, you need to build a separate image for each TIPC node you
want to simulate.

6.3.1 Simulating a Network of TIPC Nodes That Use Ethernet

To use VxWorks simulator to simulate a network of TIPC nodes that communicate
over Ethernet:

1. Build a VxWorks image containing TIPC (see 3. Building VxWorks to Include
Wind River TIPC).

96

6 Using the Wind River VxWorks Simulator with TIPC
6.3 Simulating a Network of TIPC Nodes

For use with VxWorks simulator, it is simplest if you build a VxWorks image
with TIPC and bootline configuration.

You can include the TIPC show routines component in your build.

2. Configure a simulated Ethernet network. (For information on configuring a
simulated Ethernet network, see Wind River VxWorks Simulator User’s
Guide:Tutorials:Basic Simulated Network with Multiple Simulators.)

3. Start the VxWorks simulator network daemon from the VxWorks
development shell. For example:

>vxsimnetd

4. From a VxWorks development shell, use the vxsim command to start your
simulated target nodes. The way you enter arguments for vxsim depends on
whether you are using Wind River TIPC with bootline configuration and
whether you want to use default values for TIPC configuration.

In all cases, you must enter vxsim with -ni and -p options, as follows:

» Specify the -ni option followed by the IP address of the simulated network
device used by the target.

= Specify the -p option followed by a processor number for the target.

TIPC with bootline configuration, using default configuration values

If your VxWorks image includes TIPC bootline configuration, you can omit the
vxsim -0 option and vxsim will automatically provide a unique network
address for each target node and set the bearer to simnet0.

The network address that vxsim assigns to a target node is always equivalent
to:

a=1.1.p+1
where p is the processor number assigned with the -p option.

The following example assumes bootline TIPC configuration and shows vxsim
commands for starting two simulated nodes with only the -ni, and -p options:

>vxsim -ni simnet=192.168.200.4 -p 4
>vxsim -ni simnet=192.168.200.5 -p 5

The first target in the example is assigned a processor number of 4, which
means that it is assigned a network address of <1.1.5>. The second target is
assigned a processor number of 5 and a network address of <1.1.6>.

97

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

TIPC with bootline configuration and manually entered configuration values

If you want to manually enter configuration values for any of the TIPC
configuration parameters, you need to use the vxsim -o option followed by a
TIPC configuration string (see 3.3.1 Setting Parameters in the TIPC Configuration
String, p.48) containing a network address (a=1.1.N) and bearer
(be=eth:simnet0) for the target node.

The following example shows vxsim commands for starting two simulated
nodes with the -ni, -p, and -o options:

>vxsim -ni simnet=192.168.200.4 -p 4
-0 "a=1l.1l.4;be=eth:simnetO"

>vxsim -ni simnet=192.168.200.5 -p 5
-o "a=1l.1.5;be=eth:simnetO"
TIPC configuration through tipcConfiginfoGet()

If you do not use TIPC with bootline configuration, configuration information
is provided through the user-implemented tipcConfigInfoGet() routine (see
3.3.4 Implementing tipcConfigInfoGet(), p.53). In this case, you need to specify
the vxsim -ni and -p options, but you do not need to specify the -o option.

The following example assumes configuration through tipcConfigInfoGet()
and shows vxsim commands for starting two simulated nodes with the -ni,
and -p options:

>vxsim -ni simnet=192.168.200.4 -p 4

>vxsim -ni simnet=192.168.200.5 -p 5

6.3.2 Simulating a Network of TIPC Nodes That Use Shared Memory

To simulate a network of TIPC nodes that communicate with each other using
shared memory, you follow the procedure for simulating a network that uses
Ethernet for communication, with the following differences:

= If you manually enter configuration values through the vxsim -o option (see
TIPC with bootline configuration and manually entered configuration values, p.98,
in the preceding section), the bearer parameter must always be set as follows:

be=sm:sm0

= The vxsim -p option must be set sequentially from node to node, starting with
0 for the master node.

98

6 Using the Wind River VxWorks Simulator with TIPC
6.3 Simulating a Network of TIPC Nodes

The following example shows vxsim commands for starting two simulated nodes
that communicate with each other using shared memory:

>vxsim -p 0 -o "a=1l.l1l.4;be=sm:sm0"

>vxsim -p 1 -o "a=1l.l1l.5;be=sm:sm0"

6.3.3 Simulating a Network of TIPC Nodes That Use DSHM

To simulate a network of TIPC nodes that communicate with each other using
DSHM, follow the procedure for simulating a network that uses Ethernet for
communication, with the following differences:

= If you manually enter configuration values through the vxsim -o option (see
TIPC with bootline configuration and manually entered configuration values, p.98,
in the preceding section), the bearer parameter must always be set as follows:

be=dshm:plb0

= The vxsim -p option must be set sequentially from node to node, starting with
0 for the master node.

The following example shows vxsim commands for starting two simulated nodes
that communicate with each other using shared memory:

>vxsim -p 0 -o "a=1.1.4;be=dshm:plb0"

>vxsim -p 1 -o "a=1.1.5;be=dshm:plb0"

99

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

100

Using Wind River System

71
7.2
7.3
7.4

Viewer with TIPC

Introduction 101
TIPC Events Covered by System Viewer 102
Event Levels 102

Including TIPC System Viewer Instrumentation in a VxWorks Image
Project 104

7.1 Introduction

Wind River System Viewer is a logic analyzer for embedded software that makes
it possible to visualize and troubleshoot complex target activities. If your VxWorks
installation includes TIPC source code, you can use System Viewer to display and
log TIPC socket events.

101

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

7.2 TIPC Events Covered by System Viewer

The TIPC events currently instrumented for System Viewer correspond to the
following socket and I/O calls:

accept
bind

close
connect
getsockopt
ioctl

7.3 Event Levels

Table 7-1

listen sendmsg
read sendto
recv setsockopt
recvfrom shutdown
recvmsg socket
send write

Within System Viewer, you specify an event level that determines the types of
events displayed. The available event levels are VERBOSE, INFO, WARNING,
CRITICAL, and FATAL. When you choose an event level, all events at or above the
specified level are displayed. The following table lists event levels from lowest to
highest and describes each level.

System-Viewer Event Levels

Event Level Description

VERBOSE Events that occur frequently during normal operation, such as
creating a socket or initializing a device. Such events, which
provide the highest level of detail, often occur as a result of a
user-level routine.

INFO Events indicating minor checkpoints that occur during normal
operation, such as the closure of a socket.

WARNING Events indicating unusual situations that might cause later errors.

Many events at this level occur in response to invalid or
unexpected input from a remote host. The ability of TIPC
processing to send to and receive data from other addresses is
generally not affected.

102

Table 7-1

7 Using Wind River System Viewer with TIPC
7.3 Event Levels

System-Viewer Event Levels (cont'd)

Event Level Description

CRITICAL Events indicating uncorrectable transient errors. Some events at

this level can be avoided by altering the system configuration, but
most cannot be prevented by any user action. Operations in
process when such an event occurs will fail, and any TIPC data is
usually discarded, but the event has no permanent effect on TIPC
processing. Inability to allocate space for a new socket structure is
a typical event at this priority level.

FATAL Events resulting from unrecoverable errors which prevent

completion of the current operation. Such events generally signify
a condition such as inability to free up resources or an inconsistent
view of the TIPC system.

For each TIPC event, System Viewer displays information such as the following:

the event number and type (for example, wvTipcStart, wvTipcWarning)
the module in which the event took place (for example, tipcSockLib.c)

a tag identifying the event’s location in the source code (for example,
EventTag=3)

the name of the function in which the event took place (for example,
Function Name=tipcSockClose)

relevant event parameters (for example, Passed parameters:= P1=0x2)

Event parameters are displayed below the function name. In some cases, to
interpret a parameter you may need to consult the source code. In the source
code, each System Viewer event is triggered by a call to
WV_TIPC_MARKER_x(), where x is a value between 1 and 4 that indicates
the number of parameters being passed.

The following are sample events logged at the VERBOSE event level. The first
event, wvTipcStart, is an event that appears only in a VERBOSE listing:

3497 #: tShellO0 - wvTipcStart

wvEvtInfo:= ComponentID=windTipc Entity=WV_TIPC_SOCKET

Module=tipcSockLib.c EventTag=1l FilterID=0

Function Name=tipcSocket
Parameter P0=0x00000062
Passed parameters:=

103

7.4

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

3498 #: tShell0 - wvTipcWarning

wvEvtInfo:= ComponentID=windTipc Entity=WV_TIPC_SOCKET
Module=tipcSockLib.c EventTag=2 FilterID=0

Function Name=tipcSocket

Qualifier=noSock

Passed parameters:= P1=0xffffffod

3511 #: tShell0 - wvTipcCritical

wvEvtInfo:= ComponentID=windTipc Entity=WV_TIPC_SOCKET
Module=tipcSockLib.c EventTag=3 FilterID=0

Function Name=tipcAccept

Qualifier=noBufs

Passed parameters:= P1=0x26bc058

Including TIPC System Viewer Instrumentation in a
VxWorks Image Project

If your VxWorks installation includes TIPC source code, you can include TIPC
System Viewer instrumentation in a build that includes the Wind River Network
Stack (see the next section) and also in a build that excludes the Network Stack (see
7.4.2 Building TIPC without the Network Stack, p.105). When you do this, TIPC is
automatically recompiled for System Viewer instrumentation; manual
recompilation is not necessary.

7.4.1 Building TIPC with the Network Stack

To create a VxWorks Image Project that includes the Wind River Network Stack,
TIPC system-viewer instrumentation, and System Viewer, you need to include the
network stack and TIPC in your project and then include the

TIPC instrumentation build component. The location of the

TIPC instrumentation build component is:

development tool components > System Viewer components >
TIPC instrumentation

For information on including TIPC in a build, see 3. Building VxWorks to Include
Wind River TIPC. For information on including the Network Stack in a build, see
Wind River Network Stack for VxWorks 6 Programmer’s Guide, Volume 1.

104

7 Using Wind River System Viewer with TIPC

7.4 Including TIPC System Viewer Instrumentation in a VxWorks Image Project

7.4.2 Building TIPC without the Network Stack

You can build VxWorks to include TIPC without the Wind River Network Stack.
For information, see the entry for TIPC network stack only in Table 3-1 under
3.2 Wind River TIPC Build Components, p.20.

To use System Viewer with TIPC, you need to include WDB support in your
image. When you build VxWorks without the network stack, you need to adhere
to the following sequence of steps in Workbench, you cannot do it from the
command line:

1.

Exclude all networking build components from your VxWorks Image Project.

For most BSPs, a number of networking components are included in a build by
default. You need to select the Network Components folder in the Workbench
Configurator and explicitly exclude the entire folder.

Include the TIPC network stack only build component. The location of the
TIPC network stack only build component in the Configurator is:

Network Components > Network Protocol Components >
TIPC Components > TIPC network stack only

Add WDB support to the image by including the WDB TIPC connection build
component in your build. The location of the WDB TIPC connection build
component in the Configurator is:

development tool components > WDB agent components >
WDB connection > WDB TIPC connection

Include the TIPC instrumentation build component in your build:

development tool components > System Viewer components > TIPC in
strumentation

Build your image project.

105

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

106

Using the TIPC Test Suite

8.1 Introduction 107

8.2 Including the Test Suite in a Project 108
8.3 Running Tests in the Test Suite 108

8.4 Sample Output 111

8.1 Introduction

Wind River TIPC provides a test suite containing 15 tests that you can execute
from the Workbench console or from the target shell. The tests are based on calls
to the TIPC socket API. Among the tests included in the suite are tests for
connection-oriented and connectionless communication, transmission of very
large messages and of fragmented messages, and sending and receiving messages
(for a list of the tests, see 8.3.3 Tests in the TIPC Test Suite, p.110). You can run the
test suite, which consists of a client process and a server process, within a single
node or between two nodes, which can be in the same cluster or in different
clusters.

107

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

8.2 Including the Test Suite in a Project

There are three ways of gaining access to the test suite:
* Through the TIPC test suite demo (INCLUDE_TIPC_TS)

In this case, you can run the test suite once TIPC has started. If you want to
modify or extend the source code, you can make your changes and rebuild
your project. The project will be rebuilt directly from the source code. The
location of the source code for the test suite is:

installDir /vxworks-6.x /target/src/demo/tipcTestSuite
»= Through a VxWorks Downloadable Kernel Module Sample Project

In this case, the source code is located in your workspace. If you make changes
to the code, you can recompile the test suite and then load it into the kernel.

» Through a VxWorks Real Time Process Sample Project

In this case, the source code is located in your workspace. If you make changes
to the code, you can recompile the test suite and then load it into application
space.

8.3 Running Tests in the Test Suite

To run tests in the test suite, you need to

1. Start the server process on a node by executing the server shell command,
tipcTS (see 8.3.1 The tipcTS Shell Command, p.109).

The server must be running before you start the client process and issue a test
command.

2. Start the client process and issue a test command by executing the client shell
command, tipcTC, on a node (see 8.3.2 The tipcTC shell Command, p.109).

You can run the client and server processes on separate nodes or on the same node.
However:

= Attest time, only one server process and one client process can be running in
the network.

108

8 Using the TIPC Test Suite
8.3 Running Tests in the Test Suite

You can test multiple nodes sequentially. For example, after running tests with
the server process on one node, you can shut down the server process on that
node and start it on another node.

8.3.1 The tipcTS Shell Command
The tipcTS shell command starts the test-suite server process. The syntax of the
shell command is:
tipcTS z

where:
* zdetermines the level of verbosity:

0 Non-verbose mode (the default)

1 Moderate verbosity

2 Highly verbose debug output

8.3.2 The tipcTC shell Command
The tipcTC shell command starts the test-suite client process, if it is not already
running, and executes a test command. The syntax of the shell command is:
tipcTC x,y,z
where:

* xisaninteger designating the number of the test to run (for the list of tests, see
8.3.3 Tests in the TIPC Test Suite, p.110).

* ydetermines whether the server process terminates after the test or keeps
running:

0 The server keeps running and waits for another test.
1 The server shuts down.

If you do not enter a value for z, you do not need to enter a value for y. In this
case, the default is 0; the server keeps running.

109

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

» zdetermines the level of verbosity:
0 Non-verbose mode (the default)
1 Moderate verbosity
2 Highly verbose debug output
For sample test output, see 8.4 Sample Output, p.111.

8.3.3 Tests in the TIPC Test Suite

To execute a TIPC test, you enter the tipcTC shell command and specify an integer
representing the test you want to run. The following tests are available:

Execute test 1 through 15, in sequence.

Create a non-reliable, connectionless socket (SOCK_DGRAM).

Create a reliable, connectionless socket (SOCK_RDM).

Create a reliable, connection-oriented socket (SOCK_STREAM).

Create a reliable, connection-oriented socket (SOCK_SEQPACKET).

Shutdown a SOCK_STREAM connection.

Shutdown a SOCK_SEQPACKET connection.

Test message-size limits using SOCK_RDM.

Test sending of TIPC_IMPORTANCE levels with a message (see the

reference page for getsockopt()).

9 Test sending TIPC socket options with a message (see the reference pages
for getsockopt() and setsockopt()).

10 Test sending of header ancillary data with SOCK_SEQPACKET (reliable,
connection-oriented).

11 Test sending of header ancillary data with SOCK_RDM (reliable,
connectionless).

12 Test multicast using SOCK_RDM.

13 Test sending fragmented message using SOCK_RDM.

14 Test sending large messages (over 66000 Bytes) using SOCK_STREAM.

15 Test sendto() and recvfrom() socket routines using SOCK_RDM.

I UI WP O

110

8 Using the TIPC Test Suite
8.4 Sample Output

8.4 Sample Output

In the current release, the output from tests in the test suite is primarily useful for
validating that an application and network configuration are working correctly.
The failure of a test is helpful for debugging purposes, but many of the tests in the
test suite, even at the most verbose level, do not provide detailed debugging
information.

Output from Successful Tests (Non-Verbose)

The following shell command generates all 15 tests in the test suite, lets the server
continue to run when the test complete (the default), and leaves the level of
verbosity at 0 (the default).

-> tipcTC 0

Test # 1

TIPC connectionless (SOCK_DGRAM) test...STARTED!
TIPC connectionless (SOCK_DGRAM) test...PASSED!

Test # 2
TIPC connectionless (SOCK_RDM) test...STARTED!
TIPC connectionless (SOCK_RDM) test...PASSED!

Test # 14

TIPC message > 66000 bytes (SOCK_STREAM) test...STARTED!
TIPC message > 66000 bytes (SOCK_STREAM) test...PASSED!
Test # 15

TIPC sendto - recvfrom (SOCK_RDM) test...STARTED!

TIPC sendto - recvfrom (SOCK_RDM) test...PASSED!

Error Output from a Failed Test (Test 1; Non-Verbose)

The following shell command runs test 1 (create a non-reliable, connectionless
socket), leaves the server running when the test ends, and leaves the level of
verbosity at 0.

tipcTC 1

Test # 1

TIPC connectionless (SOCK_DGRAM) test...STARTED!

TEST FAILED sendtoSocketTIPC(): unable to allocate send buffer errno = 0:
OK

value = 0 = 0x0

111

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

Output from Successful Tests (Verbose, Level 1)

The following shell command generates all 15 tests in the test suite, shuts the
server process down at the end of the test sequence, and sets the verbosity level to
1.

-> tipeTC 0,1,1
Test # 1
TIPC connectionless (SOCK_DGRAM) test...STARTED!

client_test_connectionless: subtest 1

client_test_connectionless: subtest 2
TIPC connectionless (SOCK_DGRAM) test...PASSED!

Test # 2
TIPC connectionless (SOCK_RDM) test...STARTED!

client_test_connectionless: subtest 1
client_test_connectionless: subtest 2
client_test_connectionless: subtest 3

client_test_connectionless: subtest 4
TIPC connectionless (SOCK_RDM) test...PASSED!

Test # 14
TIPC message > 66000 bytes (SOCK_STREAM) test...STARTED!
*x%k%%% TIPC big stream test client started ******

Client: sending 75000 bytes
******% TIPC big stream test client finished *****x*
TIPC message > 66000 bytes (SOCK_STREAM) test...PASSED!

Test # 15
TIPC sendto - recvfrom (SOCK_RDM) test...STARTED!
TIPC sendto - recvfrom (SOCK_RDM) test...PASSED!

TIPC test suite finished
value = 0 = 0x0

Output from Successful Tests (Verbose, Level 2)

The following shell command generates all 15 tests in the test suite, shuts the
server process down at the end of the test sequence, and sets the verbosity level to
2.

-> tipecTC 0,1,1

tipcTC: task spawned. taskId=274215160
Test # 1

waiting for synchronization signal 99

112

8 Using the TIPC Test Suite
8.4 Sample Output

acknowledging synchronization signal 99

got ack for synchronization signal 100
TIPC connectionless (SOCK_DGRAM) test...STARTED!

client_test_connectionless: subtest 1
client_SendConnectionless: Connectionless source:

sent a message 0
sent a message 1

sent synchronization signal 2

got ack for synchronization signal 2

TIPC connectionless (SOCK_DGRAM) test...PASSED!
Test # 2

waiting for synchronization signal 99
acknowledging synchronization signal 99

TIPC connectionless (SOCK_RDM) test...STARTED!

client_test_connectionless: subtest 1
client_SendConnectionless: Connectionless source:
waiting for synchronization signal 1

sent a message 98

sent a message 99

sending synchronization signal 2

sent synchronization signal 2

got ack for synchronization signal 2

TIPC connectionless (SOCK_RDM) test...PASSED!

est # 14
waiting for synchronization signal 99
acknowledging synchronization signal 99

10x100 bytes out

10x100 bytes out

TIPC message > 66000 bytes (SOCK_STREAM) test...STARTED!

x*x% TIPC big stream test client started ***
waiting for synchronization signal 1
acknowledged synchronization signal 1

Client: sending 75000 bytes

sent a message 0

got ack for synchronization signal 3

*x*x%kx% TIPC big stream test client finished ****#*x*

TIPC message > 66000 bytes (SOCK_STREAM) test...PASSED!

113

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

114

TIPC Native API

9.1 Introduction 115

9.2 Differences Between Using the Socket API and the Native API 116
9.3 Callback Routines 118

9.4 Structures for Handling Message Data 121

9.5 Routines in the TIPC Native API 121

9.6 Examples 123

9.1 Introduction

TIPC provides its own API, the TIPC native API, that you can use in place of the

TIPC socket APL! The advantages of the TIPC native API are that it has a smaller
footprint than the socket API and can improve throughput and response latencies.
A disadvantage of the TIPC native APl is thatitis very different from the standard
socket API and must be learned from scratch. In addition, the TIPC native API is
only available in kernel applications. RTPs must use the TIPC socket APL

1. The TIPC native API has not been finalized by the TIPC Working Group of the
Multicore Association (see http://www.multicore-association.org) and is still
subject to change.

115

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

The socket API and the native API are not mutually exclusive. If the TIPC socket
APlis included in a build, you can use both the socket API and the native APlin a
kernel application.

9.2 Differences Between Using the Socket API and the Native API

There are a number of important conceptual differences between programming
with the native API and programming with the socket APL

Ports

The fundamental communication endpoint of the native APl is a port, which
operates at a more primitive level than a socket. Applications that use the native
API with TIPC ports are sometimes required to deal with aspects of the TIPC
protocol that are hidden by the socket AP, including handling undeliverable
messages that are returned to the sending port and managing the handshaking
required to set up and tear down port-to-port connections. Unlike the socket API,
the native API recognizes only two fundamental types of ports,
connection-oriented and connectionless ports.

Accessing a specific port via the native APl is not re-entrant. This is because the
header for each message is cached in the port structure and is not locked. Parallel
access can result in corrupted header information. Applications need to take
account of this.

Port Reference

Every TIPC port has a unique reference value that is analogous to the file descriptor
value that is associated with a socket. Native API routines that manipulate ports
use the port reference argument to identify the port, rather than a pointer to the
actual port data structure; this allows TIPC to gracefully handle cases where an
application inadvertently attempts to utilize a port that no longer exists.

User Registration

TIPC allows an application using the native API to register as a user, and assigns
it a user identifier (see tipc_attach() in C. TIPC Native Routines). If this user
identifier is provided by the application when it creates a port, TIPC deletes the
port automatically if the application later deregisters itself. This feature can

116

9 TIPC Native API
9.2 Differences Between Using the Socket API and the Native API

simplify things for a programmer whose application uses a constantly changing
set of ports, since TIPC takes care of deleting all ports currently in use by the
application when the application terminates. (Applications not wishing to take
advantage of this capability can skip the optional registration process entirely and
simply create their ports anonymously using a user identifier value of 0.)

Sending Messages

Applications can send messages using the native API in much the same way as
with the socket APIL The message can be specified either as a set of one or more
byte arrays (using the iovec structure) or as a socket buffer (using the sk_buff
structure), as long as it does not exceed TIPC's 66000 byte limit on message size (for
information on the iovec and sk_buff structures, see 9.4 Structures for Handling
Message Data, p.121). The latter form can improve performance by eliminating the
need for TIPC to copy the data into a socket buffer, but only if the application that
creates the buffer reserves 80 bytes of headroom to allow a TIPC message header
and data link header to be prepended easily.

Receiving messages

The native API does not provide a synchronous mechanism for receiving messages
sent to a port; there is no equivalent of the recv(), recvfrom(), or recvmsg()
routines that the socket API provides. Instead, an application specifies a set of
message handling callback routines when it creates a port; TIPC then invokes the
appropriate routine each time a message is received by the port.

SMP

On SMP systems, when running multiple links between nodes, there is a race
condition when the discovery mechanism detects the new node and tries to create
a link. A check is done to determine if the node is already known, and then the
node structure is allocated and added to the list of known nodes. If the second link
detects the same new node and checks for this node after the first link has checked
for the node but before the first link has created the node structure, then the
duplication of node structures can result in an error.

117

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

9.3 Callback Routines

The native API provides callback routines that a user can implement for detecting
achange in TIPC’s operating state and for handling messages at a specific port. The
following callbacks are available:

Table 9-1 Callbacks in the TIPC Native API

Callback Comment

tipc_mode_event For handling changes in TIPC’s operating
state. In the current release, the possible
operating modes are:

= TIPC_NOT_RUNNING
= TIPC_NODE_MODE

The node does not have a TIPC address,
and is in standalone mode.

= TIPC_NET_MODE

The node has a TIPC address and is part of
a TIPC network.

For more information, see tipc_mode_event
under tipc_attach() in C. TIPC Native Routines.

tipc_msg_event() For handling incoming messages on a specific
port. For more information, see
tipc_msg_event under tipc_createport() in
C. TIPC Native Routines.

tipc_named_msg_event() For handling incoming messages sent to a port
name or port-name sequence.

For more information, see
tipc_named_msg_event under
tipc_createport() in C. TIPC Native Routines.
For a sample implementation, see
named_msg_event() under 9.6 Examples,
p-123.

118

Table 9-1 Callbacks in the TIPC Native API

9 TIPC Native API
9.3 Callback Routines

Callback

Comment

tipc_conn_msg_event()

tipc_continue_event()

tipc_msg_err_event()

For handling incoming connection-oriented
messages.

For more information, see
tipc_conn_msg_event under
tipc_createport() in C. TIPC Native Routines.
For a sample implementation, see
mon_conn_msg_event_cb() under

9.6 Examples, p.123.

For handling congestion abatement on a
specific port. This callback is only called if a
previous send failed due to congestion.. For
more information, see tipc_continue_event
under tipc_createport() in C. TIPC Native
Routines.

For handling for handling messages with an
error code, such as rejected messages, that
have been sent to a specific port ID (see

2.4 Message Reliability and Rejected Messages,
p-11). For more information, see
tipc_msg_err_event under tipc_createport()
in C. TIPC Native Routines.

119

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

Table 9-1 Callbacks in the TIPC Native API

Callback Comment

tipc_named_msg_err_event() For handling for handling messages with an
error code, such as rejected messages, that
have been sent to a port name or port-name
sequence (see 2.4 Message Reliability and
Rejected Messages, p.11). For more information,
see tipc_named_msg_err_event under
tipc_createport() in C. TIPC Native Routines.

tipc_conn_shutdown_event For handling rejected connection messages
(see 2.4 Message Reliability and Rejected
Messages, p.11).

For more information, see
tipc_conn_shutdown_event under
tipc_createport() in C. TIPC Native Routines.
For a sample implementation, see
mon_shutdown_cb() under 9.6 Examples,
p-123.

If TIPC receives a message for which no callback routine has been specified, it
automatically rejects the message or, if the message was an error message, discards
it.

TIPC callback routines execute in a TIPC kernel thread, rather than one of the
application's threads, and must be non-blocking. Callbacks must either handle
critical section issues that arise between threads or transfer responsibility to an
application thread, as outlined in the example given for handling a synchronous
receive (see 9.6.3 Receiving a Synchronous Message, p.125), thereby allowing the
application to emulate a synchronous receive capability of its own.

120

9 TIPC Native API
9.4 Structures for Handling Message Data

9.4 Structures for Handling Message Data

The TIPC native API uses the following structure, comparable to a socket buffer,
for sending and receiving data:

struct sk_buff {

struct sk_buff *next; / * ptr to next buffer in list * /
struct sk_buff *prev; / * ptr to previous buffer in list * /
M_BLK_1ID mB1kId; / * ptr to mBlk * /

char cb[sizeof (struct tipc_skb_cb)l; / * control block area * /

unsigned int len;
unsigned char *data;
unsigned char *tail;
}i

The sk_buff structure contains a tipc_skb_cb structure and an iovec structure.
The definition of the tipc_skb_cb structure, which is for control blocks, is:

struct tipc_skb_cb {
void *handle;
};

The definition of the iovec structure is:

/*
* VxWorks iovec structure (treat as an array for multiple segments)
*/
struct iovec {
char *iov_base; / * Base address. * /
size_ t iov_len; / * Length. * /

}i

9.5 Routines in the TIPC Native API

This section lists and gives brief descriptions of the routines in the TIPC native APL
For more information on the routines, see C. TIPC Native Routines.

TIPC operating mode routines:

tipc_get_addr() Get Z.C.N of own node

tipc_get_mode() Get TIPC operating mode

tipc_attach() Register application as a TIPC user
tipc_detach() Deregister TIPC user & free all associated ports

121

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

TIPC port manipulation routines:

tipc_createport() Create a TIPC port and generate reference
tipc_deleteport() Delete a TIPC port and obsolete reference
tipc_ref_valid() Determine whether port reference is valid
tipc_ownidentity() Get port ID of port
tipc_set_portimportance() Set port traffic importance level
tipc_portimportance() Get port traffic importance level
tipc_set_portunreliable() Set port traffic source droppable setting
tipc_portunreliable() Get port traffic source droppable setting
tipc_set_portunreturnable() Set port traffic destination droppable setting
tipc_portunreturnable() Get port traffic destination droppable setting
tipc_publish Bind name/name sequence to port
tipc_withdraw() Unbind name/name sequence from port
tipc_connect2port() Associate port with peer

tipc_disconnect() Disassociate port from peer

tipc_shutdown() Shut down connection to peer and disassociate
tipc_isconnected() Determine whether port is currently connected
tipc_peer() Get port ID of peer port

TIPC messaging routines:

tipc_send() Send iovec(s) on connection

tipc_send_buf() Send sk_buff on connection
tipc_send2name() Send iovec(s) to port name
tipc_send_buf2name() Send sk_buff to port name

tipc_send2port(Send iovec(s) to port ID

tipc_send_buf2port(Send sk_buff to port ID

tipc_multicast(Multicast iovec(s) to port

122

9 TIPC Native API
9.6 Examples

TIPC subscription routine:

tipc_ispublished() Determines whether a specific name has been published

9.6 Examples

This section provides examples of the following:

» 9.6.1 Performing Basic Port Operations, p.123
» 9.6.2 Registering a TIPC User, p.124

* 9.6.3 Receiving a Synchronous Message, p.125
» 9.6.4 Using the TIPC Topology Service, p.126

You can find demonstration programs that use the native API at http://tipc.sf.net.
In addition, the TIPC source code contains sections that use the native API in the
same way that an application can. Examples are:

» tipc_cfg_init() in net/tipc/config.c

net/tipc/config.c contains the TIPC configuration service (using port name
{0,Z.C.N}), which handles messages sent by the tipcConfig application. It uses
a connectionless request-and-reply approach to messaging.

» 2)tipc_subscr_start() in net/tipc/subscr.c

net/tipc/subscr.c file contains the TIPC topology service (using port name
{1,1}), which handles subscription requests from applications and returns
subscription events. It demonstrates the way to handle connection
establishment (both explicit and implied) and tear-down (both self-initiated
and peer-initiated).

9.6.1 Performing Basic Port Operations

Create a port:
static u32 port_ref;
tipc_createport (0, NULL, TIPC_LOW_IMPORTANCE,
NULL, NULL, NULL,

NULL, named_msg_event, NULL,
NULL, &port_ref);

123

http://tipc.sf.net

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

Bind the port name {100,123} with cluster scope to the port:
struct tipc_name_seq seq;

seq.type = 100 ;
seq.lower = 123 ;
seq.upper = 123 ;
tipc_publish(port_ref, TIPC_CLUSTER_SCOPE, &seq);

Process messages sent to the port {100,123}:

/* Note: This callback routine was specified during port creation above *
/

static void named_msg_event (void *usr_handle,
u32 port_ref,
struct sk_buff **buf,
unsigned char const *data,
unsigned int size,
unsigned int importance,
struct tipc_portid const *orig,
struct tipc_name_seq const *dest)

{
/ * data points to message content, size indicates how much * /
printf ("%s", data);
/ * can send reply message(s) back to originator, if desired * /
struct iovec my_iov;
char reply info[30];
strcpy (reply_info, "here is the reply"):;
my_iov.iov_base = reply_info;
my_iov.iov_len = strlen(reply_info) + 1;
tipc_send2port (port_ref, orig, 1, &my_iov);
/* TIPC discards the received message upon exit */

}

Delete the port:

tipc_deleteport (port_ref) ;

9.6.2 Registering a TIPC User

Register a TIPC user:

static u32 user_ref;

tipc_attach(&user_ref, NULL, NULL);

124

9 TIPC Native API
9.6 Examples

Create a port and associate it with a registered TIPC user:
static u32 port_ref;
tipc_createport (user_ref, NULL, TIPC_LOW_IMPORTANCE,
NULL, NULL, NULL,
NULL, named_msg_event, NULL,
NULL, é&port_ref);
Deregister a TIPC user (and all associated ports):

tipc_detach (user_ref) ;

9.6.3 Receiving a Synchronous Message

Application thread: n

/* use one definition for either events or semaphores */
#define GET_TRIGGER eventReceive (VXEV0l, EVENTS_WAIT ALL, WAIT_FOREVER, N

ULL)
#define GET_TRIGGER semTake (semTaskSend)

/* Initialize data structures for holding ingress queue */

struct sk_buff_head message_qg;
wait_queue_head_t wait_qg;

skb_queue_head_init (&message_q) ;
init_waitqueue_head (&wait_q) ;

/* Wait for messages; process & discard each one in turn */

while (1) {
struct sk _buff *skb;

GET_TRIGGER;
skb = skb_dequeue (&message_q) ;
< ... Process message as required ... >

kfree_skb (skb) ;

125

Wind River TIPC for VxWorks 6

Programmer’s Guide, 1.7

Callback routine that converts an asynchronous receive into a synchronous

receive:

/* use one definition for either events or semaphores */
#define SEND_TRIGGER eventSend(callTask, VXEV01)

#define SEND_TRIGGER semGive (semTaskSend)

static void named_msg_event

(

void *usr_handle,

u32 port_ref,

struct sk _buff **buf,

unsigned char const *data,
unsigned int size,

unsigned int importance,

struct tipc_portid const *orig,
struct tipc_name_seq const *dest
)

{

/* Add message to queue of unprocessed messages */
skb_queue_tail (&message_g, *buf);

/* Tell TIPC *not* to discard the received message upon exit */
*buf = NULL;

/* Wake up application */

SEND_TRIGGER;
}

9.6.4 Using the TIPC Topology Service

The following example creates a connection to the TIPC topology server to monitor
a TIPC name. When the name appears, the callback sends a signal to the calling
task. When the name disappears, the callback registered closes down the
connection to the topology server and sends a signal to the calling task.

126

#define GET_TRIGGER eventReceive (VXEV01 | VXEV02, EVENTS_WAIT_ANY, WAIT
FOREVER, NULL)

#define SEND_TRIGGER eventSend(callTask, VXEVO01) ;

#define SEND_TERMINATE eventSend(callTask, VXEV02) ;

#define TIPC_EXPERIMENT_ TYPE 1000 / * Any number * /

#define TIPC_EXPERIMENT INSTANCE 100 / * Any number * /

int callTask; /* task that needs to be signalled */

9 TIPC Native API
9.6 Examples

VAR SRR AR R R SRR R R ARt

*

* mon_shutdown_cb - handle connection termination message

Used in this code to receive any topology server message based
on monitoring of the relevant {type, instance}.

* %k X %

* RETURNS: N/A
*/
static void mon_shutdown_cb(void *usr_handle,

u32 port_ref,
struct sk _buff **buf,
unsigned char const *data,
unsigned int size,
int reason)
{
/* TIPC has already disconnected port, so just delete it */
tipc_deleteport (port_ref) ;

/* wake up any application routine to let it gracefully exit */
SEND_TERMINATE;
}

JRKK KK KKK KKK AKK KK KXKK KK KIK KK AKX K KK AXK KK KA K KK AX KKK KA XK IR A XX KKk A Xk K

mon_conn_msg_event_cb-call back for connection oriented message event

Used in this code to receive any topology server message based
on monitoring of the relevant {type, instance}.

buf = data packet
size = number of bytes in message

*
*
*
*
*
* where:
*
*
*
* RETURNS: N/A
*/
static void mon_conn_msg_event_cb(void *usr_handle,
u32 port_ref,
struct sk_buff **buf,
unsigned char const *data,
unsigned int size,
unsigned int importance,
struct tipc_portid const *orig,
struct tipc_name_seq const *destination)

{
struct tipc_event * event; /* topology events (subscription) * /
int res; /* result of an operation */
event = (struct tipc_event *)data; /* point event to data */
if (event->event==TIPC_SUBSCR_TIMEOUT) /* timed out subscription */
{
goto monitorExit;
}
if (event->event == TIPC_WITHDRAWN) /* withdrawn subscription */
{

127

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

128

goto monitorExit;

}
if (event->event == TIPC_PUBLISHED) /* publication detected */
{
SEND_TRIGGER;
}
/* keep monitoring for a withdrawl */
return;
monitorExit:
res = tipc_shutdown (port_ref) ;
if (res)
{
/* handle failure to shutdown */
}

}

/* wake up application to let it gracefully exit */
SEND_TERMINATE;

res = tipc_deleteport (port_ref) ;

if (res)

{

/* handle failure to delete port */
}
return;

JRKK KK KKK KK KA KXKKKKXKRK KK KX K KK AXXK KK AXK KK KA K K I AX KKK KA XK IR A XX I Ik XX kK

*

* monitorPublication - Monitor a publication of the receiver of msgs

EE R D T S T T . S

/

The monitor sets up a connection to the topology server using Native
API. When publication is detected, the callback signals the calling
Task. When the publication is revoked or the subscription times out,
the monitoring stops by closing the connection to the topology server.

Note you may have to ensure that the calling task is pending on an
eventReceive before the subscription is created to ensure an event is
not missed (not addressed in this code).

monitorPublication (int callingTask)

where:
callingTask = Task ID of caller

RETURNS: STATUS

9 TIPC Native API
9.6 Examples

STATUS monitorPublication (int callingTask) {

struct tipc_subscr subscr; /* subscription of interest */
struct tipc_name name; /* name to send to */

int res; /* result of operations */

u32 port_ref; /* port for communications to top srv */

u32 user_ref; /* user reference */

struct iovec msg_sect; /* lovec for data */

callTask = callingTask;

/* set up subscription */

subscr.seq.type = TIPC_EXPERIMENT TYPE;
subscr.seq.lower = TIPC_EXPERIMENT INSTANCE;
subscr.seq.upper = TIPC_EXPERIMENT INSTANCE;
subscr.timeout = TIPC_WAIT_ FOREVER;
subscr.filter = TIPC_SUB_PORTS;

/* set up addressing */
name.type = TIPC_TOP_SRV;
name.instance = TIPC_TOP_SRV;

res = tipc_attach(&user_ref, NULL, NULL);
if (res)
{
printf ("monitorPublication: tipc_attach returned %d errno=%d)\n",
res, errno);
return ERROR;
}

res = tipc_createport (user_ref, NULL, TIPC_LOW_IMPORTANCE,
NULL, NULL, mon_shutdown_cb,
NULL, NULL,
mon_conn_msg_event_cb, NULL, &port_ref);

if (res)
return res;

/* send first message to port */
msg_sect.iov_base = (char *)&subscr;
msg_sect.iov_len = sizeof (subscr) ;

tipc_send2name (port_ref,
&name,
0 /* domain of O:own zone */,
1 /* num_sect */,
msg_sect) ;
return OK;

129

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

130

Libraries

tipc_config_show - Library of Wind River TIPC Config and Management cmds..........ccccccouevvuennnes 131

tipc_lib
tipc_native

NAME

ROUTINES

DESCRIPTION

INCLUDE FILES

— Library of Wind River TIPC socket-based and utility routines in Kernel space 132
— Library of Wind River TIPC Native API in Kernel space.........ccccccoevvuviiiuniennines 133

tipc_config show

tipc_config_show — Library of Wind River TIPC Config and Management cmds

tipcConfig() — the public API for TIPC configuration and management commands
tipcSysPoolShow() — display TIPC system-pool statistics
tipcDataPoolShow() — display TIPC data-pool statistics

This library contains the TIPC Configuration and Management commands. It is largely
based on the tipc-config utility in Linux.

In the current design, these commands are only accessible from a kernel context. RTP
support is not included.

Many of the public management commands are available to be used with remote nodes once
a remote node is identified.

none

131

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

tipc_lib
NAME tipc_lib — Library of Wind River TIPC socket-based and utility routines in Kernel space

ROUTINES accept() —accept a request for a connection to a socket
bind() —bind an address to a socket
close() — close a socket
connect() — request a connection to a socket
getpeername() — get the port ID of a peer socket
getsockname() — get the port ID of a socket
getsockopt() — get the value of an option associated with a socket
listen() — enable a socket to receive connection requests
recv() — receive data from a socket
recvfrom() — receive data from a socket
recvmsg() — receive data from a socket
send() —send a message to a socket
sendmsg() — send a message to a socket
sendto() — send a message to a socket
setsockopt() — set the value of an option associated with a socket
shutdown() — shut down a connection
socket() — create a socket
tipc_addr() — combine zone, cluster, and node numbers into a TIPC address
tipc_cluster() — take a TIPC network address and return the cluster number
tipc_node() — take a TIPC address and return the node number
tipc_zone() — take a TIPC address and return the zone number

DESCRIPTION This library contains TIPC socket-based routines and utility routines for handling TIPC
addresses.

Many of the socket routines make reference to a sockaddr structure that usually refers to the
sockaddr_tipc structure used by the TIPC code. The sockaddr._tipc structure is shown
below.

struct sockaddr_tipc {

unsigned char addrlen; /* 16 */
unsigned char family; /* AF_TIPC */
unsigned char addrtype; /* TIPC_ADDR_XXX */
unsigned char scope; /* used with bind */
union {
struct tipc_portid id; /* 1f TIPC_ADDR_ID */
struct tipc_name_seq namesedq; /* 1if TIPC_ADDR_NAMESEQ/_MCAST */
struct { /* if TIPC_ADDR_NAME */
struct tipc_name name;
__u32 domain; /* 0: own zone; used w/ connect,
sendto */
} name;
} addr;

};

132

INCLUDE FILES

SEE ALSO

NAME

ROUTINES

A Libraries
tipc_native

tipc/tipc.h

Wind River TIPC for VxWorks 6 Programmer’s Guide

tipc_native

tipc_native — Library of Wind River TIPC Native API in Kernel space

tipc_attach() — Register a TIPC user (native API only)

tipc_connect2port() — Associate a TIPC port with its peer (native API only)
tipc_createport() — Create a TIPC port (native API only)

tipc_deleteport() — Delete a TIPC port (native API only)

tipc_detach() — Unregister a TIPC user (native API only)

tipc_disconnect() — Disassociate a TIPC port with its peer (native API only)
tipc_forward2name() — Forward a message to the named port (native API only - may be
obsoleted)

tipc_forward2port() — Forward a message to a port (native API only - may be obsoleted)
tipc_forward_buf2name() — Forward a buffer to the named port (native API only - may be
obsoleted)

tipc_forward_buf2port() — Forward a buffer to a port (native API only - may be obsoleted)
tipc_get_addr() — Get the network address for this node (native API only)
tipc_get_mode() — Get operating mode of TIPC (native API only)

tipc_isconnected() — Determine if a TIPC port is connected (native API only)
tipc_ispublished() — Determine if a TIPC name exists (native API only)
tipc_multicast() — Multicast data to a set of named TIPC ports (native API only)
tipc_ownidentity() — Get port ID of TIPC port (native API only)

tipc_peer() — Get the port ID of a TIPC port's peer (native API only)
tipc_portimportance() — Get importance of TIPC port messages (native API only)
tipc_portunreliable() — Get reliability of TIPC port messages (native API only)
tipc_portunreturnable() — Get returnability of TIPC port messages (native API only)
tipc_publish() — Add a name or name sequence to a TIPC port (native API only)
tipc_ref_valid() - Validate a reference to a TIPC port (native API only)

tipc_send() — Send data over TIPC connection (native API only)

tipc_send2name() — Send data to a named TIPC port (native API only)
tipc_send2port() — Send data to a TIPC port ID (native API only)

tipc_send_buf() — Send message buffer over TIPC connection (native API only)
tipc_send_buf2name() — Send message buffer to a named TIPC port (native API only)
tipc_send_buf2port() — Send message buffer to a TIPC port ID (native API only)
tipc_set_portimportance() — Set importance of TIPC port messages (native API only)
tipc_set_portunreliable() — Set reliability of TIPC port messages (native API only)

133

DESCRIPTION

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

tipc_set_portunreturnable() — Set returnability of TIPC port messages (native API only)
tipc_shutdown() — Disconnect a TIPC port from its peer (native API only)
tipc_withdraw() — Remove a name or name sequence from a TIPC port (native API only)

This library contains TIPC native API routines for handling TIPC functionality.

The TIPC native API is only available to kernel applications and cannot be used from an
RTP. The native APl is a different method of communicating with TIPC that is distinct from
the Socket API, the more commonly used TIPC API.

The native API relies on providing TIPC with a number of callback routines that are called
for events that occur. The native API application needs to supply these routines and register
them as a port is created.

The TIPC native API allows programmers to access the capabilities of TIPC in a more direct
manner than with the socket API. As such, more care may be required than when using the
socket API. See some caveats and warnings at the bottom of this section.

Benefits of the native API:

1. Low-level operation can lead to faster execution speed.
2. Can exclude socket code from system to reduce object code size.

Limitations of the native API:

1. Not available to user-space applications.
2. Low-level operation places a greater burden on programmer.

Concepts

There are a number of important conceptual differences between programming with the
native API and programming with the socket API. Understanding these concepts is an
essential pre-requisite for using the native API effectively.

Ports:

The fundamental communication endpoint of the native APIis a "port", which operates at a
much more primitive level than a socket. Applications using TIPC ports are sometimes
required to deal with aspects of the TIPC protocol that were hidden by the socket API,
including handling undeliverable messages that are returned to the sending port and
managing the handshaking required to set up and tear down port-to-port connections. And
unlike the socket API, there are only two fundamental types of ports which are
connection-oriented and connectionless ports.

Port reference:

Every TIPC port has a unique "reference" value, which is analogous to the file descriptor
value that is associated with a socket. Native API routines that manipulate ports use the

134

A Libraries
tipc_native

port reference argument to identify the port, rather than a pointer to the actual port data
structure; this allows TIPC to gracefully handle cases where an application inadvertently
attempts to utilize a port that no longer exists.

User registration:

TIPC allows an application using the native API to register as a "user", and assigns it a user
identifier. If this user identifier is provided by the application when it creates a port, TIPC
will delete the port automatically if the application later deregisters itself. This feature can
simplify things for a programmer whose application uses a constantly changing set of ports,
since TIPC takes care of deleting all ports currently in use by the application when the
application terminates. (Applications not wishing to take advantage of this capability can
skip the optional registration process entirely and simply create their ports anonymously
using a user identifier value of 0.)

Sending messages:

Applications can send messages using the native API in much the same way as with the
socket API. The message can be specified either as a set of one or more byte arrays (using
the "iovec" structure) or as a socket buffer (using the "sk_buff" structure), as long as it does
not exceed TIPC's 66000 byte limit on message size. The latter form can improve
performance by eliminating the need for TIPC to copy the data into a socket buffer but only
if the application that creates the buffer reserves 80 bytes of headroom to allow a TIPC
message header and data link header to be prepended easily.

Receiving messages:

The native API does not provide any synchronous mechanism for receiving messages sent
to a port. (That is, there is no equivalent of the recv(), recvfrom(), or recvmsg() routines
that the socket API provides.) Instead, an application specifies a set of message handling
callback routines when it creates a port; TIPC then invokes the appropriate routine each
time a message is received by the port.

Individual callback routines may be specified to handle:

1) a direct message (i.e. one sent to a port ID)
2) a named message (i.e. one sent to a port name or name sequence)
3) a connection message (i.e. one sent on an established connection)

4) an errored direct message (i.e. a direct message that was returned)
5) an errored named message (i.e. a named message that was returned)
6) an errored connection message (i.e. a connection message that was returned)

An application only needs to supply callback routines for the messages that the port actually
needs to handle. If TIPC receives a message for which no callback routine has been
specified, it automatically rejects the message (or, in the case of an errored message, discards
it).

Since the callback routine executes in a TIPC kernel thread, rather than one of the
application's threads, the programmer must be prepared to handle any critical section

135

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

issues that arise between the various threads. Alternatively, the callback routine can
transfer responsibility to an application thread (as outlined in the example for handling a
synchronous receive), thereby allowing the application to emulate a synchronous receive
capability of its own. Finally, since the callback routines execute in a TIPC kernel thread,
they must be non-blocking.

Routines

The native API routines listed below are available to programmers. More detail about the
arguments and return value for each of these routines can be found by looking at the
function prototypes in tipc.h as well as the later portion of this section. In many cases the
use of the routine will be obvious. You can also consult the examples section below and/or
the source code for each routine to learn more about what these routines do and how to use
them.

WARNING! The native APl is still under development at this time
WARNING! and has not been finalized by the TIPC Working Group. Expect
WARNING! changes in future versions of TIPC.

/ * TIPC operating mode routines * /

tipc_get_addr() - get Z.C.N of own node

tipc_get_mode() - get TIPC operating mode

tipc_attach() - register application as a TIPC user
tipc_detach() - deregister TIPC user & free all associated ports

/ * TIPC port manipulation routines * /

tipc_createport() - create a TIPC port & generate reference
tipc_deleteport() - delete a TIPC port & obsolete reference
tipc_ref_valid() - determine if port reference is valid
tipc_ownidentity() - get port ID of port
tipc_set_portimportance() - set port traffic importance level
tipc_portimportance() - get port traffic importance level

tipc_set_portunreliable() - set port traffic "source droppable” setting
tipc_portunreliable() - get port traffic "source droppable" setting
tipc_set_portunreturnable() - set port traffic "destination droppable" setting
tipc_portunreturnable() - get port traffic "destination droppable"” setting

tipc_publish() - bind name/name sequence to port
tipc_withdraw() - unbind name/name sequence from port
tipc_connect2port() - associate port with peer

tipc_disconnect() - disassociate port with peer

tipc_shutdown() - shut down connection to peer & disassociate

136

A Libraries
tipc_native

tipc_isconnected() - determine if port is currently connected
tipc_peer() - get port ID of peer port

/ * TIPC messaging routines * /

tipc_send() - send iovec(s) on connection
tipc_send_buf() - send sk_buff on connection
tipc_send2name() - send iovec(s) to port name
tipc_send_buf2name() - send sk_buff to port name
tipc_send2port() - send iovec(s) to port ID
tipc_send_buf2port() - send sk_buff to port ID
tipc_multicast() - multicast iovec(s) to port name sequence

tipc_forward2name() - [may be obsoleted]
tipc_forward_buf2name() - [may be obsoleted]
tipc_forward2port() - [may be obsoleted]
tipc_forward_buf2port() - [may be obsoleted]

/ * TIPC subscription routines * /

tipc_ispublished() - determines if a specific name has been published
tipc_available_nodes() - [likely to be obsoleted - not described further]

Create a port:

static u32 port_ref;

tipc_createport(0, NULL, TIPC_LOW_IMPORTANCE,
NULL, NULL, NULL,
NULL, named_msg_event, NULL,
NULL, &port_ref);

137

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

Bind the name {100,123} with "cluster" scope to the port:

struct tipc_name_seq seq;

seq.type =100;

seq.lower =123 ;

seq.upper = 123 ;

tipc_publish(port_ref, TIPC_CLUSTER_SCOPE, &seq);

Process messages sent to port {100,123}:

/ * Note: This callback routine was specified during port creation above * /

static void named_msg_event(void *usr_handle,
u32 port_ref,
struct sk_buff **buf,
unsigned char const *data,
unsigned int size,
unsigned int importance,
struct tipc_portid const *orig,
struct tipc_name_seq const *dest)

/ * data points to message content, size indicates how much * /
printf("%s", data);
/ * can send reply message(s) back to originator, if desired * /

struct iovec my_iov;
char reply_info[30];

strepy(reply_info, "here is the reply");
my_iov.iov_base = reply_info;
my_iov.iov_len = strlen(reply_info) + 1;
tipc_send2port(port_ref, orig, 1, &my_iov);

/ * TIPC discards the received message upon exit * /

138

A Libraries
tipc_native

Delete the port:
tipc_deleteport(port_ref);

TIPC user registration

Register TIPC user:

static u32 user_ref;
tipc_attach(&user_ref, NULL, NULL);

Create port and associate with registered TIPC user:

static u32 port_ref;

tipc_createport(user_ref, NULL, TIPC_LOW_IMPORTANCE,
NULL, NULL, NULL,
NULL, named_msg_event, NULL,
NULL, &port_ref);

Deregister TIPC user (and all associated ports):

tipc_detach(user_ref);

Synchronous message receive

Application thread:

/ * use one definition for either events or semaphores * /

#define GET_TRIGGER eventReceive(VXEV01, EVENTS_WAIT_ALL, WAIT_FOREVER, N
ULL)

#define GET_TRIGGER semTake(semTaskSend)

/ * Initialize data structures for holding ingress queue * /

struct sk_buff_head message_q;
wait_queue_head_t wait_g;

139

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

skb_queue_head_init(&message_q);
init_waitqueue_head(&wait_q);

/ * Wait for messages; process & discard each one in turn * /

while (1) {
struct sk_buff *skb;

GET_TRIGGER;
skb = skb_dequeue(&message_q);
< ... Process message as required ... >

kfree_skb(skb);

Callback routine converts asynchronous receive into synchronous receive:

/ * use one definition for either events or semaphores * /
#define SEND_TRIGGER eventSend(callTask, VXEV01)
#define SEND_TRIGGER semGive(semTaskSend)

static void named_msg_event(void *usr_handle,
u32 port_ref,
struct sk_buff *buf,
unsigned char const *data,
unsigned int size,
unsigned int importance,
struct tipc_portid const *orig,
struct tipc_name_seq const *dest)

/ * Add message to queue of unprocessed messages * /
skb_queue_tail(&message_q, *buf);
/ * Tell TIPC *not* to discard the received message upon exit * /

*buf = NULL;

140

A Libraries
tipc_native

/ * Wake up application * /

SEND_TRIGGER;

}

Topology Service Usage

This example creates a connection to the topology server to monitor a TIPC name. When
the name appears, the callback will send a signal to the calling task. When the name

disappears, the callback registered will close down the connection to the topology server
and send a signal to the calling task.

#define GET_TRIGGER eventReceive(VXEV01 | VXEV02, EVENTS_WAIT_ANY, WAIT_FO
REVER, NULL)

#define SEND_TRIGGER eventSend(callTask, VXEV01);
#define SEND_TERMINATE eventSend(callTask, VXEV02);
#define TIPC_EXPERIMENT_TYPE 1000 / * Any number * /
#define TIPC_EXPERIMENT_INSTANCE 100 / * Any number * /

int callTask; / * task that needs to be signalled * /

/

*

* mon_shutdown_cb - handle connection termination message
*
* Used in this code to receive any topology server message based

* on monitoring of the relevant {type,instance}.
*

* RETURNS: N/A
*/

static void mon_shutdown_cb(void *usr_handle,
u32 port_ref,
struct sk_buff **buf,
unsigned char const *data,
unsigned int size,
int reason)
{
/ * TIPC has already disconnected port, so just delete it * /
tipc_deleteport(port_ref);

141

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

/ * wake up any application routine to let it gracefully exit * /
SEND_TERMINATE;
}

/qq nnnnnnnnnnnnnnnn B R E s L e L L

* mon_conn_msg_event_cb - call back for a connection oriented message event
*

* Used in this code to receive any topology server message based
* on monitoring of the relevant {type,instance}.

*

* where:

* buf = data packet

* size = number of bytes in message

*

* RETURNS: N/A

*/

static void mon_conn_msg_event_cb(void *usr_handle,
u32 port_ref,
struct sk_buff **buf,
unsigned char const *data,
unsigned int size,
unsigned int importance,
struct tipc_portid const *orig,
struct tipc_name_seq const *destination)

struct tipc_event *event; / * topology events (subscription) * /
int res; / * result of an operation * /

event = (struct tipc_event *)data; / * point event to data * /

if (event->event == TIPC_SUBSCR_TIMEOUT) / * timed out subscription * /

{

goto monitorExit;

}
if (event->event == TIPC_WITHDRAWN) / * withdrawn subscription * /

{

goto monitorExit;

}

if (event->event == TIPC_PUBLISHED) / * publication detected * /

{
SEND_TRIGGER;

142

A Libraries
tipc_native

/ * keep monitoring for a withdrawl * /
return;

monitorEXxit:
res = tipc_shutdown(port_ref);
if (res)
{

/ * handle failure to shutdown * /

}

/ * wake up application to let it gracefully exit * /
SEND_TERMINATE;

res = tipc_deleteport(port_ref);
if (res)
{
/ * handle failure to delete port * /

}

return;

/

*

* monitorPublication - Monitor a publication of the receiver of msgs

*

* The monitor sets up a connection to the topology server using the Native
* APL. When the publication is detected, the callback signals the calling

* Task. When the publication is revoked or the subscription times out,

* the monitoring stops by closing the connection to the topology server.

*

* Note you may have to ensure that the calling task is pending on an

* eventReceive before the subscription is created to ensure an event is

* not missed (not addressed in this code).

*

* monitorPublication (int callingTask)

* where:
* callingTask = Task ID of caller

*

* RETURNS: STATUS

143

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

*/
STATUS monitorPublication (int callingTask) {
struct tipc_subscr subscr; / * subscription of interest * /
struct tipc_name name; / * name to send to * /
int res; / * result of operations * /
u32 port_ref;, / * port for communications to top srv * /
u32 user_ref, / * user reference * /

struct iovec msg_sect; / *iovec for data * /

callTask = callingTask;

/ * set up subscription * /

subscr.seq.type = TIPC_EXPERIMENT_TYPE;
subscr.seq.lower = TIPC_EXPERIMENT_INSTANCE;
subscr.seq.upper = TIPC_EXPERIMENT_INSTANCE;
subscr.timeout = TIPC_WAIT_FOREVER;
subscr.filter = TIPC_SUB_PORTS;

/ * set up addressing * /
name.type = TIPC_TOP_SRYV;
name.instance = TIPC_TOP_SRV;

res = tipc_attach(&user_ref, NULL, NULL);

if (res)
{
printf("monitorPublication: tipc_attach returned %d (errno=%d)\n", res, errno);
return ERROR;

}

res = tipc_createport(user_ref, NULL, TIPC_LOW_IMPORTANCE,
NULL, NULL, mon_shutdown_cb,
NULL, NULL,
mon_conn_msg_event_cb, NULL, &port_ref);

if (res)
return res;

/ * send first message to port * /
msg_sect.iov_base = (char *)&subscr;
msg_sect.iov_len = sizeof(subscr);

144

A Libraries
tipc_native

tipc_send2name(port_ref,
&name,
0 /* domain of 0:own zone */,
1 /* num_sect */,
msg_sect);
return OK;

}

More examples

Demo programs utilizing the native API can be found at http://tipc.sf.net.

In addition, the TIPC source code itself contains a couple of sections that utilize the native
APTjust like an application might:

1) tipc_cfg_init() in net/tipc/config.c

This file contains the TIPC configuration service (using port name {0,Z.C.N}, which handles
messages sent by the tipc-config application. It utilizes a very simple connectionless
request-and-reply approach to messaging.

2) tipc_subscr_start() in net/tipc/subscr.c

This file contains the TIPC topology service (using port name {1,1}), which handles
subscription requests from applications and returns subscription events. It demonstrates
the correct way to handle connection establishment (both explicit and implied) and tear
down (both self-initiated and peer-initiated).

Structures used in the native API

The various structures used for sending and receiving data are important to properly use
the native API.

/ *
* VxWorks TIPC emulation of common file socket buffer API
*/
struct sk_buff {
struct sk_buff *next; / * ptr to next buffer in list * /
struct sk_buff *prev; / * ptr to previous buffer in list * /
M_BLK_ID mBIkId; / * ptr to mBlk * /
char cb[sizeof(struct tipc_skb_cb)]; / * control block area * /

unsigned int len;
unsigned char *data;
unsigned char *tail;

145

INCLUDE FILES

SEE ALSO

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

/ *
* Declarations used in emulation of common file socket buffer API

*/

struct tipc_skb_cb {
void *handle;
7
/ *
* VxWorks iovec structure (treat as an array for multiple segments)
*/
struct iovec {
char *iov_base; / * Base address.* /
size_t iov_len; / * Length. * /

5

Caveats and Warnings

The native API is a more direct way of using TIPC in kernel applications. There are some
usage warnings that one should be aware of when developing an application with this API.

WARNING! The native APl is still under development at this time
WARNING! and has not been finalized by the TIPC Working Group. Expect
WARNING! changes in future versions of TIPC.

Accessing a specific port via the native API is not re-entrant. The reason for this is that the
header for each message is cached in the port structure and is not locked. Parallel access can
result in corrupted header information. Applications should take care to handle this
situation.

On SMP systems, when running multiple links between nodes, there is a race condition
when the discovery mechanism detects the new node and tries to create a link. A check is
done to determine if the node is already known, and then the node structure is allocated and
added to the list of known nodes. If the second link detects the same new node and checks
for this node after the first link has checked for the node but before the first link has created
the node structure, then the duplication of node structures can result in an error. Again, this
is something that could only be seen on SMP systems.

For more information and updated notes, please check the release notes as well as the TIPC
discussion list. Information about the latter is available at http://tipc.sourceforge.net and
click on the "Support" tab.

tipc/tipc.h

Wind River TIPC for VxWorks 6 Programmer’s Guide

146

Socket and Utility Routines

accept() — accept a request for a connection to a SOCKet........c.ocevcveiriiiiiiici 148

bind() —bind an address to a SOCKet ... 149
close() —lose @ SOCKELoviiiiii s 150
connect() —request a conNection to @ SOCKELccccvueuiiiiiiiiiiiiicicc s 151
getpeername() — get the port ID of a peer SOCKet..........ccccouviiiiiiiiiiiicc s 152
getsockname() — get the port ID of a socket 153
getsockopt() — get the value of an option associated with a socketcccoveviiiiiiicncnn 154
listen() — enable a socket to receive connection requestscccoeereiiiiicenicceene 156
recv() - receive data from a socket 156
recvfrom() —receive data from a socket 158
recvmsg() —receive data from a socket 159
send() —send a message t0 @ SOCKELccoviiiiiiiiiiiiic s 161
sendmsg() —send a message t0 @ SOCKELccoueiiueiiiiiiiiic s 162
sendto() —send a message to a Socketccoovviieieiiiieiiicnnn 164
setsockopt() — set the value of an option associated with a socket 166
shutdown() — shut down a connection...........cccceuvvviicininiicininnnn, 168
socket() — CTEAtE @ SOCKET ... e 169
tipcConfig() — the public API for TIPC configuration and management commands............... 170
tipcDataPoolShow() - display TIPC data-pool statistics.........ccccoeeviuerrieiriiicec e 171
tipcSysPoolShow() —display TIPC system-pool statiSticsccceeerriirrmeiniiicieiiiicieicceca 172
tipc_addr() — combine zone, cluster, and node numbers into a TIPC addresscc.coueen... 173
tipc_cluster() — take a TIPC network address and return the cluster number..........c.c.ccccccueeeece. 173
tipc_node() —take a TIPC address and return the node numberc.ccccccceiiiiiiccncnee 174
tipc_zone() —take a TIPC address and return the zone numMbercccccccueeuciecccicicciccnnee 175

147

NAME

SYNOPSIS

DESCRIPTION

RETURNS

ERRNO

SEE ALSO

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

accept()

accept() — accept a request for a connection to a socket

int accept
(

int sd, /* socket descriptor, listening socket */
struct sockaddr * addr, /* return param for requester address */
int * addrlen /* return param for address length */

)

This routine accepts a request for a connection to a socket. It creates a socket for the
connection and returns the socket descriptor of the new socket. The routine blocks the caller
until a connection is present, unless the socket is marked as non-blocking (see FIONBIO
under ioctl()). The socket sd must be a socket that was set as a listening socket with a
previous call to listen(). The routine is valid only for sockets of type SOCK_SEQPACKET
and SOCK_STREAM (see socket()).

Parameters:

sd
The socket descriptor of the listening socket.

addr
A pointer to a sockaddr structure for receiving the port ID of the connecting socket.
Typically, this parameter points to a sockaddr_tipc structure that is cast as a sockaddr
structure. This field can be NULL if the port ID is not required by the caller.

addrlen
A pointer to the length, in bytes, of the sockaddr structure in the addr parameter.
Initially, if addr is non-NULL, it should be set to the size of a sockaddr_tipc structure.
Upon return, it gives the length of the sockaddr structure containing the portID of the
connecting socket.

A socket descriptor (a small, non-negative integer) on success, -1 on failure. The socket
descriptor that is returned is used to identify the socket in subsequent calls to the socket APL

EINVAL, ENOBUFS, EOPNOTSUPPORT, EWOULDBLOCK, EPROTONOTSUP,
EPROTOTYPE, or ENOMEM

tipc_lib

148

NAME

SYNOPSIS

DESCRIPTION

B Socket and Utility Routines

bind()
L]

bind()

bind() - bind an address to a socket

STATUS bind
(
int sd, /* socket descriptor */
struct sockaddr * addr, /* address to bind to socket */
int addrlen /* length of address */

)

This routine associates a sockaddr structure containing a TIPC port name or port name
sequence with the socket identified by the socket descriptor, making it possible for other
sockets to connect to or send to it using a predetermined socket address. Typically, the
sockaddr structure is derived by casting a sockaddr_tipc structure as a sockaddr structure.

An application can perform multiple bind operations on the same socket. TIPC supports
binding multiple port names, port name sequences, or a combination of both to a socket.
This is useful if the socket is capable of performing multiple functions within a network.
Conversely, a given port name or port name sequence can be bound to multiple sockets
within a network. This is useful if more than one socket is capable of performing the
associated function within a network.

If the socket that is the target of the bind operation is connected to another socket at the time
of the call, the operation fails and generates an error.

The sockaddr_tipc structure contains a scope field that defines the extend to which the name
or name sequence is published. The valid entries are TIPC_NODE_SCOPE,
TIPC_CLUSTER_SCOPE, or TIPC_ZONE_SCOPE as appropriate.

A name or name sequence that was associated with a socket using bind() can be unbound
by calling bind() again using the negative of the scope value used originally (eg. use
-TIPC_CLUSTER_SCOPE instead of TIPC_CLUSTER_SCOPE). To unbind all names and name
sequences at once, pass in a socket address of length zero.

NOTE: When a socket is created, TIPC automatically assigns it a port ID. An application can
use the port ID as the socket's address without having to bind the port ID to the socket
through a bind() operation.

Parameters:

sd
The socket descriptor of the socket to bind an address to.

addr
A pointer to a sockaddr structure containing the port name or port name sequence to
bind to the socket. Typically, this parameter points to a sockaddr._tipc structure that is
cast as a sockaddr structure.

149

RETURNS

ERRNO

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

addrlen
The length, in bytes, of the sockaddr structure in the addr parameter.

OK on success, or ERROR if the socket does not exist, the address is invalid, or the socket
is already connected.

N/A

tipc_lib

close()

close() — close a socket

STATUS close
(

int sd /* socket descriptor */

)

This routine closes a socket, and frees all resources associated with it.

If messages sent in a connectionless and reliable manner (SOCK_RDM or SOCK_DGRAM
with the TIPC_DEST_DROPPABLE option not set (see setsockopt())) are still in the socket's
receive queue, each message is rejected and the first 1024 bytes of each message are
returned to the sender. Any other connectionless messages still in the socket's receive queue
are discarded.

If messages sent in a connection-oriented and reliable manner (SOCK_SEQPACKET or
SOCK_STREAM with the TIPC_DEST_DROPPABLE option not set (see setsockopt())) are
still in the socket's receive queue, the first message is rejected and its first 1024 bytes are
returned to the sender; the remaining messages are discarded. If the socket is connected to
another socket at the time it is closed, the connection is terminated.

NOTE: It is advisable to perform a shutdown() on a connection-oriented socket that was
connected to a peer before calling close() so that the peer can easily distinguish between a
connection that was intentionally and properly terminated versus one that was abnormally
terminated. See recv() and recvmsg().

NOTE: VxWorks does not employ reference counting to ensure that there are no other users
of the socket at the time of closure, so applications should not close a socket if it is being used
by another thread of control.

Parameter:

sd
Socket descriptor of the socket to close.

150

RETURNS

ERRNO

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

RETURNS

B Socket and Utility Routines

connect()
OK on success, ERROR otherwise.
EINVAL
tipc_lib
connect()
connect() — request a connection to a socket
STATUS connect
(
int sd, /* socket descriptor, requesting socket */
struct sockaddr * addr, /* address of socket to connect to */
int addrlen /* length of the address, in bytes */

)

This routine requests a connection to another socket as defined in the addr structure. It is
valid only with source and destination sockets of type SOCK_SEQPACKET and
SOCK_STREAM (see socket()). The socket requesting the connection cannot have a name
or name sequence bound to it.

The connect() routine blocks until one of the following occurs:
- The destination system accepts the connection.

- The socket's connect time limit is reached (see CONN_ACK_TIMEOUT under
setsockopt()).

- The specified destination cannot be located or is located but then ceases to exist.

- The connection attempt fails or is invalid (for example, because the socket has a port
name or port name sequence bound to it).

Parameters:

sd
A socket descriptor identifying the socket making a connection request.

name
A pointer to a sockaddr structure containing the port ID or port name of the destination
socket. Typically, this parameter points to a sockaddr_tipc structure that is cast as a
sockaddr structure.

namelen
The length, in bytes, of the sockaddr structure in the name parameter.

OK on success, ERROR otherwise.

151

ERRNO

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

RETURNS

ERRNO

SEE ALSO

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

EOPNOTSUPP, EINPROGRESS, EINVAL, ETIMEDOUT, EALREADY,
EDESTADDRREQ, or EISCONN

tipc_lib

getpeername()

getpeername() — get the port ID of a peer socket

STATUS getpeername
(

int sd, /* the socket requesting the peer name */
struct sockaddr * addr, /* return param for the port ID */
int * addrlen /* return param for address length */

)

This routine gets the port ID of the peer socket that is connected to the specified socket. It is
valid only for a socket of type SOCK_SEQPACKET or SOCK_STREAM (see socket()).

Parameters:

sd
The socket descriptor of the socket requesting the peer's port ID.

addr
A pointer to a sockaddr structure for returning the port ID of the peer socket. Typically,
this parameter points to a sockaddr_tipc structure that is cast as a sockaddr structure.

addrlen
The length, in bytes, of the sockaddr structure in the addr parameter. Initially, it should
be set to the size of a sockaddr._tipc structure. Upon return, it gives the length of the
sockaddr structure containing the peer socket's port ID.

OK on success, ERROR otherwise.

EFAULT, EBADF, or ENOTSUP

tipc_lib

152

NAME

SYNOPSIS

DESCRIPTION

RETURNS

ERRNO

SEE ALSO

B Socket and Utility Routines

getsockname()

getsockname()
getsockname() — get the port ID of a socket
STATUS getsockname

(

int sd, /* socket descriptor */

struct sockaddr * addr, /* return parameter for the port ID */

int * addrlen /* return parameter for address length */

)

This routine returns the port ID of a socket.

NOTE: This routine simply returns the port ID of a socket and the use of name may be
misleading as there is no relation to a TIPC port name or port name sequence that may be
associated with a port.

Parameters:

sd
The socket descriptor of the socket.

addr
A pointer to a sockaddr structure for returning the port ID of the socket. Typically, this
parameter points to a sockaddr_tipc structure that is cast as a sockaddr structure.

addrlen
The length, in bytes, of the sockaddr structure in the addr parameter. Initially, it should
be set to the size of a sockaddr._tipc structure. Upon return, it gives the length of the
sockaddr structure containing the socket's port ID.

OK on success, ERROR otherwise.

EINVAL, EFAULT, EBADF, or ENOTSUP

tipc_lib

153

NAME

SYNOPSIS

DESCRIPTION

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

getsockopt()

getsockopt() — get the value of an option associated with a socket

STATUS getsockopt
(

int sd, /* socket descriptor */

int level, /* protocol level, always SOL_TIPC */

int optname, /* a TIPC-specific option name */

char * optval, /* return parameter for the value of the option */
int * optlen /* return parameter for the length of optval */

)

This routine gets the current value of a TIPC-specific option associated with a socket.

Parameters:

sd
The socket descriptor of the target socket.

level
The protocol level of the option, always SOL_TIPC. Wind River TIPC does not support
SOL_SOCKET-level options.

NOTE: For SOCK_STREAM sockets only, returns 0 length for all IPPROTO_TCP

options (to ease compatibility and conversion to TIPC).

optname
The name of the option for which a value is to be retrieved. The following options are
available:

TIPC_IMPORTANCE
The importance of messages sent through the socket. The lower the importance,
the more likely the message is to be discarded due to congestion in the TIPC
network. If messages are sent in a reliable manner, using a lower importance can
result in delays, since messages may need to be resent. If messages are sent in an
unreliable manner, this can result in lost messages.

The following values can be returned:
TIPC_LOW_IMPORTANCE
TIPC_MEDIUM_IMPORTANCE
TIPC_HIGH_IMPORTANCE

TIPC_CRITICAL_IMPORTANCE
The default value is TIPC_LOW_IMPORTANCE.

154

RETURNS

ERRNO

SEE ALSO

B Socket and Utility Routines
getsockopt()

TIPC_SRC_DROPPABLE
This option governs the handling of messages sent by the socket if link congestion
occurs. If enabled, the message is discarded; otherwise the system queues the
message for later transmission.

By default, this option is disabled for SOCK_SEQPACKET, SOCK_STREAM, and
SOCK_RDM socket types (resulting in "reliable" data transfer), and enabled for
SOCK_DGRAM (resulting in "unreliable" data transfer).

TIPC_DEST_DROPPABLE
This option governs the handling of messages sent by the socket if the message
cannot be delivered to its destination, either because the receiver is congested or
because the specified receiver does not exist. If enabled, the message is discarded;
otherwise the message is returned to the sender.

By default, this option is disabled for SOCK_SEQPACKET and SOCK_STREAM
socket types, and enabled for SOCK_RDM and SOCK_DGRAM. This arrangement
ensures proper teardown of failed connections when connection-oriented data
transfer is used, without increasing the complexity of connectionless data transfer.

CONN_ACK_TIMEOUT
The number of milliseconds that connect() waits for a connection to be established
before abandoning the connection attempt.

optval
A pointer to a buffer for returning the value of the specified option. Although optval is
passed in as char ¥, the option value whose address gets passed in is an integer, whose
address needs to be cast to a pointer to char.

optlen
A pointer to the length, in bytes, of the option value to return.

OK on success, ERROR otherwise.
EINVAL or ENOPROTOOPT

tipc_lib

155

NAME

SYNOPSIS

DESCRIPTION

RETURNS

ERRNO

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

listen()

listen() — enable a socket to receive connection requests

STATUS listen
(
int sd, /* socket descriptor */
int backlog /* connect-request max queue length--ignored by TIPC */
)

This routine enables a socket to receive (listen for) connection requests. It is valid only with
a sockets of type SOCK_SEQPACKET or SOCK_STREAM (see socket()).

Parameters:

sd
The socket descriptor of the socket that is to listen for connection requests.

backlog
TIPC ignores the value assigned to this parameter, which otherwise specifies the
maximum length of the queue waiting for connections.

OK on success, ERROR otherwise.

N/A

tipc_lib

recv()

recv() — receive data from a socket

int recv

(

int sd, /* socket descriptor */

char * buf, /* pointer to a buffer for receiving data */
int buflLen, /* length of buffer */

int flags /* flags to underlying protocols */

)

This routine allows a socket to receive a message. The recv() routine can be used with both
connectionless (SOCK_DGRAM, SOCK_RDM) and connection-oriented
(SOCK_SEQPACKET, SOCK_STREAM) sockets.

156

RETURNS

ERRNO

SEE ALSO

B Socket and Utility Routines
recv()

TIPC allows a socket to receive messages sent by another socket. In order to receive
returned messages (for example, because the destination socket was closed or the
destination address does not exist) the recvmsg() function should be used.

For connectionless sockets, a return value of 0 indicates the return of an undelivered data
message that was originally sent by this socket.

For connection-oriented sockets, a return value of 0 indicates that the connection was
terminated by the peer issuing a shutdown(). A return value of -1 indicates that the
connection was terminated for some other reason.

TIPC supports the MSG_PEEK and MSG_DONTWAIT flags when receiving, as well as the
MSG_WAITALL flag when receiving on a SOCK_STREAM socket; all other flags are ignored.

Parameters:

sd
The socket that receives the data.

buf
A pointer to a buffer for receiving data. For socket types other than SOCK_STREAM,
if the buffer is not large enough to hold the message, the message is truncated and the
excess data is discarded.

bufLen
The size of the buffer, in bytes.

flags
The following flags are available. They can be OR-ed.

MSG_PEEK
Allows the application to receive a message without removing it from the socket's
receive queue.

MSG_DONTWAIT
Prevents recv() from blocking if the socket's receive queue is currently empty. The
same effect can be achieved using the ioctl() call with FIONBIO.

MSG_WAITALL
For SOCK_STREAM sockets only, causes the recv() to block until all data
specified has been received.

The number of bytes received, 0 for a connection that terminated normally or a returned
message was detected, or ERROR if the call fails.

EINVAL, EOPNOTSUPP, EWOULDBLOCK, ECONNRESET, or ENOTCONN

tipc_lib, recvmsg()

157

NAME

SYNOPSIS

DESCRIPTION

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

recvfrom()

recvfrom() — receive data from a socket

int recvfrom

(

int sd, /* socket descriptor of receiving socket
*/

char * buf, /* pointer to buffer for receiving data */

int bufLen, /* length of buffer */

int flags, /* flags to underlying protocols */

struct sockaddr * from, /* return parameter for sender's address
*/

int * fromLen /* return param for length of address */

)

This routine receives a message from either a connectionless (SOCK_DGRAM,
SOCK_RDM) socket or a connection-oriented (SOCK_SEQPACKET, SOCK_STREAM)
socket.

TIPC allows a socket to receive messages sent by another socket. In order to receive
returned messages (for example, because the destination socket was closed or the
destination address does not exist) the recvmsg() function should be used.

TIPC supports the MSG_PEEK and MSG_DONTWAIT flags when receiving, as well as the
MSG_WAITALL flag when receiving on a SOCK_STREAM socket; all other flags are ignored.

Parameters:

sd
The socket that receives the data.

buf

A pointer to a buffer for receiving data.

For socket types other than SOCK_STREAM, if the buffer is not large enough to hold
the message, the message is truncated and the excess data is discarded.

bufLen

The size of the buffer, in bytes.

flags
The following flags are available. They can be OR-ed.

MSG_PEEK
Allows the application to receive some or all of a message without removing it
from the socket's receive queue.

158

RETURNS

ERRNO

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

B Socket and Utility Routines
recvmsg()

MSG_DONTWAIT
Prevents recvfrom() from blocking if the socket's receive queue is currently

empty. The same effect can be achieved on the socket using the ioctl() call with
FIONBIO.

MSG_WAITALL
For SOCK_STREAM sockets only, causes the recv() to block until all data
specified has been received.

from
A return parameter that points to a sockaddr structure for holding the port identifier of
the sender. Typically, this parameter points to a sockaddr_tipc structure that is cast as
a sockaddr structure.

fromLen
The length, in bytes, of the sockaddr structure in the from parameter. Initially, it should
be set to the size of a sockaddr_tipc structure. Upon return, it contains the size of the
specific instance of the sockaddr structure in the from parameter.

The number of bytes received, 0 for a connection that terminated normally or a returned
message was detected, or ERROR if the call fails.

EINVAL, EOPNOTSUPP, or EWOULDBLOCK

tipc_lib, recvmsg()

recvmsg()

recvimsg() — receive data from a socket

int recvmsg

(

int sd, /* socket descriptor */

struct msghdr * msg, /* pointer to a message structure receiving
* both source address and incoming data */

int flags /* flags to underlying protocols */

)

This routine allows a socket to receive a message as well as ancillary data and the port ID of
the sender, if requested. The recvmsg() routine can be used with both connectionless
(SOCK_DGRAM, SOCK_RDM) and connection-oriented (SOCK_SEQPACKET,
SOCK_STREAM) sockets.

For connectionless sockets, a return value of 0 indicates the return of an undelivered data
message that was originally sent by this socket.

159

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

For connection-oriented sockets, a return value of 0 or -1 indicates connection termination.
The exact return value upon connection termination is influenced by the "msg_control" field
of "msg". If "msg_control" is NULL, a return value of 0 indicates that the connection was
terminated by the peer using shutdown(); connection termination by any other means
causes a return value of -1. If "msg_control" is non-NULL, a return value of 0 is always used;
the application must examine the TIPC_ERRINFO object to determine if the connection was
explicitly terminated by the peer. (POSIX non-conformity)

The port ID of the message sender is captured in the "msg_name" field of "msg" (if
non-NULL) and ancillary data relating to the message is captured in the "msg_control" field
of "msg" (if non-NULL). The data portion of the message is stored in the "msg_iov" field.

The following ancillary data objects may be captured:

1) TIPC_ERRINFO - The TIPC error code associated with a returned data message or a
connection termination message, and the length of the returned data. (8 bytes: error code
+ data length)

2) TIPC_RETDATA - The contents of a returned data message, up to a maximum of 1024
bytes.

3) TIPC_DESTNAME - The TIPC name or name sequence that was specified by the sender
of the message. (12 bytes: type + lower instance + upper instance; the latter two values are
the same for a TIPC name, but may differ for a name sequence)

Each of these objects is only created where relevant. For example, receipt of a normal data
message never creates the TIPC_ERRINFO and TIPC_RETDATA objects, and only creates the
TIPC_DESTNAME object if the message was sent using a TIPC name or name sequence as
the destination rather than a TIPC port ID. Those objects that are created will always
appear in the relative order shown above.

If ancillary data object capture is requested (i.e. "msg->msg_control" is non-NULL) but
insufficient space is provided, the MSG_CTRUNC flag is set to indicate that one or more
available objects were not captured.

When used with connection-oriented sockets, TIPC_DESTNAME is captured for each data
message received by the socket if the connection was established using a TIPC name or
name sequence as the destination address. Note: There is currently no way for the
destination socket to capture TIPC_DESTNAME following accept() until the originator
sends a data message.

TIPC supports the MSG_PEEK and MSG_DONTWAIT flags when receiving, as well as the
MSG_WAITALL flag when receiving on a SOCK_STREAM socket; all other flags are ignored.

Parameters:

sd
The socket that receives the data.

msg
A pointer to a struct msghdr for receiving data, ancillary data, and sender information.

160

RETURNS

ERRNO

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

B Socket and Utility Routines
send()

The msg_name and msg_namelen fields define space to store the sender's port ID.
The msg_control and msg_controllen fields define space to store ancillary data.

The msg_iov and msg_iovlen fields define space for message data. NOTE: recvmsg()
supports only a single iov.

flags
The following flags are available. They can be OR-ed.

MSG_PEEK
Allows the application to receive a message without removing it from the socket's
receive queue.

MSG_DONTWAIT
Prevents recvimsg() from blocking if the socket's receive queue is currently empty.
The same effect can be achieved using the ioctl() call with FIONBIO.

MSG_WAITALL
For SOCK_STREAM sockets only, causes the recv() to block until all data
specified has been received.

The number of bytes received, 0 for a connection that terminated normally and/or a
returned message was detected, or ERROR if the call fails.

EINVAL, EOPNOTSUPP, EWOULDBLOCK, ECONNRESET, or ENOTCONN

tipc_lib, recv()

send()

send() — send a message to a socket

int send
(
int sd, /* socket descriptor of sending socket */
const char * buf, /* pointer to a buffer for the message */
int buflLen, /* length of the buffer */
int flags /* always 0; not used by Wind River TIPC */

)

This routine sends a message over a previously established connection. It is valid only for
sockets of type SOCK_SEQPACKET or SOCK_STREAM.

The send() routine should not be used until a connection has been fully established using
either explicit or implicit handshaking.

161

RETURNS

ERRNO

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

TIPC supports the MSG_DONTWAIT flag when sending; all other flags are ignored.

Parameters:

sd
Socket descriptor of the socket sending the message.

buf

A pointer to a buffer for the message.

bufLen

A positive value specifying the length of the buffer.

flags
The following flag is available.

MSG_DONTWAIT
Prevents send() from blocking if there is congestion on the link. The same effect
can be achieved using the ioctl() call with FIONBIO.
The number of bytes sent, or ERROR (if the call fails.
EINVAL, EWOULDBLOCK, EPIPE, ENOTCONN, EOPNOTSUPP, or EISCONN.

tipc_lib

sendmsg()

sendmsg() — send a message to a socket

int sendmsg
(

int sd, /* socket descriptor of sending socket */
struct msghdr * msg, /* pointer to a message structure sending

* both source address and outgoing data */
int flags /* flags to underlying protocols */

)

This routine sends a message to a socket. TIPC allows the routine to be used with both
connectionless (SOCK_DGRAM, SOCK_RDM) and connection-oriented
(SOCK_SEQPACKET, SOCK_STREAM) sockets.

Connectionless Socket: When sendmsg() is used with a connectionless socket, it transmits
a message to a one or more destination sockets, which can be specified by port name, port
identity, or, in the case of a multicast message, by port name sequence.

162

B Socket and Utility Routines
sendmsg()

If the destination is denoted by a TIPC name or a port ID the message is unicast to a single
port; if the destination is denoted by a TIPC name sequence the message is multicast to all
ports having a TIPC name or name sequence that overlaps the destination name sequence.

Connection-Oriented Socket: When sendmsg() is used with a connection-oriented socket,
a connection initiation and message send is achieved in a single operation, rather than
performing separate connect() and send() operations; this technique is known as an
implied connect.

A connection to the peer is not fully established until the application successfully uses
recv(), recvfrom(), or recvimsg() to receive the message sent back by the peer socket. While
waiting for the connection, the application cannot use sendmsg() again to send a message
to the same destination. Once the connection is established, the application can also transmit
messages to the peer using send().

The implied-connect technique is most suited to situations where a client needs to send a
single request to a server and receive a single reply (which may consist of multiple
messages). It is faster than using the connect() and send() routines in sequence and,
because it is connection-oriented, it still guarantees a correlation between a request and the
response to it.

TIPC supports the MSG_DONTWAIT flag when sending; all other flags are ignored.
TIPC does not currently support the use of ancillary data with sendmsg().
Parameters:

sd
Socket descriptor of the socket sending the message.

msg
A pointer to a struct msghdr for sending data and destination information.

The msg_name and msg_namelen fields point to the destination information. If
msg_name is non-NULL, then msg_namelen must specify a size at least as large as the
size of the sockaddr_tipc structure.

The msg_control and msg_controllen fields are ignored since ancillary data is not
supported for sendmsg().

The msg_iov and msg_iovlen fields define space for message data.

flags
The following flag is available.

MSG_DONTWAIT
Prevents sendmsg() from blocking if there is congestion on the link. The same
effect can be achieved using the ioctl() call with FIONBIO.

163

RETURNS

ERRNO

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

The number of bytes sent, or ERROR if the call fails.
EINVAL, EWOULDBLOCK, EPIPE, ENOTCONN, EOPNOTSUPP, or EISCONN.

tipc_lib

sendto()

sendto() — send a message to a socket

int sendto
(

int sd, /* socket descriptor of sending socket */
char * buf, /* pointer to a buffer for the message */
int buflLen, /* the length of the buffer */

int flags, /* flags to underlying protocols */
struct sockaddr * to, /* address of the destination socket */
int tolen /* length of the address */

)

This routine sends a message to a socket. TIPC allows the routine to be used with both
connectionless (SOCK_DGRAM, SOCK_RDM) and connection-oriented
(SOCK_SEQPACKET, SOCK_STREAM) sockets.

Connectionless Socket: When sendto() is used with a connectionless socket, it transmits a
message to a one or more destination sockets, which can be specified by port name, port
identity, or, in the case of a multicast message, by port name sequence.

If the destination is denoted by a TIPC name or a port ID the message is unicast to a single
port; if the destination is denoted by a TIPC name sequence the message is multicast to all
ports having a TIPC name or name sequence that overlaps the destination name sequence.

Connection-Oriented Socket: When sendto() is used with a connection-oriented socket, a
connection initiation and message send is achieved in a single operation, rather than
performing separate connect() and send() operations; this technique is known as an
implied connect.

A connection to the peer is not fully established until the application successfully uses
recv(), recvfrom(), or recvimsg() to receive the message sent back by the peer socket. While
waiting for the connection, the application cannot use sendto() again to send a message to
the same destination. Once the connection is established, the application transmits messages
to the peer using send(), not sendto().

The implied-connect technique is most suited to situations where a client needs to send a
single request to a server and receive a single reply (which may consist of multiple
messages). It is faster than using the connect() and send() routines in sequence and,

164

RETURNS

ERRNO

SEE ALSO

B Socket and Utility Routines
sendto()

because it is connection-oriented, it still guarantees a correlation between a request and the
response to it.

Parameters:

sd
Socket descriptor of the socket sending the message.

buf

A pointer to a buffer for the message.

bufLen

A positive value specifying the length of the buffer.

flags
The following flag is available.
MSG_DONTWAIT

Prevents sendto() from blocking if there is congestion on the link. The same effect
can be achieved using the ioctl() call with FIONBIO.

to
A pointer to a sockaddr structure containing the port identifier, port name, or port
name sequence of the destination. Typically, this parameter points to a sockaddr_tipc
structure that is cast as a sockaddr structure. If this parameter points to a TIPC port
name, then the addr.name.domain field indicates search domain used during the name
lookup process. (In contrast, if this parameter is set to a TIPC name sequence the
message is multicast to all ports having a TIPC name or name sequence that overlaps
the destination name sequence. Additionally, if this parameter points to a TIPC portID,
no name lookup occurs.) The "scope" field of this parameter is always ignored when
sending.

tolen
The length of the sockaddr structure in the to parameter.

The number of bytes sent, or ERROR if the call fails.
EINVAL, EWOULDBLOCK, EPIPE, ENOTCONN, EOPNOTSUPP, or EISCONN.

tipc_lib

165

NAME

SYNOPSIS

DESCRIPTION

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

setsockopt()

setsockopt() — set the value of an option associated with a socket

STATUS setsockopt
(

int sd, /* socket descriptor of the socket */
int level, /* protocol level, always SOL_TIPC */
int optname, /* a TIPC-specific option name */

char * optval, /* the value to assign to the option */
int optlen /* length of the option value */

)

This routine sets the value of a TIPC-specific option associated with a socket.
Parameters:

sd
The socket descriptor of the socket.

level
The protocol level of the option, always SOL_TIPC. Wind River TIPC does not support

SOL_SOCKET-level options.
For SOCK_STREAM sockets only, the value of IPPROTO_TCP is allowed, but is ignored.

optname
The name of the option to set. The following options are available:

IMPORTANCE_OPTION
Sets the importance of messages sent through the target socket. The lower the
importance, the more likely the message is to be discarded due to congestion in the
TIPC network. If messages are sent in a reliable manner, this can result in delays,
since messages may need to be resent. If messages are sent in an unreliable
manner, this can result in lost messages.

This option can be set to the following values:
TIPC_LOW_IMPORTANCE
TIPC_MEDIUM_IMPORTANCE
TIPC_HIGH_IMPORTANCE

TIPC_CRITICAL_IMPORTANCE
The default value is TIPC_LOW_IMPORTANCE.

TIPC_SRC_DROPPABLE
This option governs the handling of messages sent by the socket if link congestion
occurs. If enabled, the message is discarded; otherwise the system queues the
message for later transmission.

166

B Socket and Utility Routines
setsockopt()

The default value of TIPC_SRC_DROPPABLE for SOCK_SEQPACKET,
SOCK_STREAM, and SOCK_RDM socket types is 0 (disabled) resulting in
"reliable" data transfer. The default value for SOCK_DGRAM is non-zero
(enabled) for "unreliable" data transfer.

TIPC_DEST_DROPPABLE
This option governs the handling of messages sent by the socket if the message
cannot be delivered to its destination, either because the receiver is congested or
because the specified receiver does not exist. If enabled, the message is discarded;
otherwise the message is returned to the sender.

The default value of TIPC_DEST_DROPPABLE for SOCK_SEQPACKET and
SOCK_STREAM socket types is 0 (disabled). The default value for SOCK_RDM
and SOCK_DGRAM is non-zero (enabled). This arrangement ensures proper
teardown of failed connections when connection-oriented data transfer is used,
without increasing the complexity of connectionless data transfer.

CONN_ACK_TIMEOUT
Specifies the number of milliseconds that connect() waits for a connection to be
established before abandoning the connection attempt.

The default value for CONN_ACK_TIMEOUT is 8 seconds.

optval
A pointer to the value to set for the specified option. Although optval is a pointer to char,
all the underlying option values are integers, therefore the option value must be cast as
a pointer to char.

optlen
The length of the option value in bytes.

RETURNS OK on success, ERROR otherwise.
ERRNO EINVAL or ENOPROTOOPT
SEE ALSO tipc_lib

167

NAME

SYNOPSIS

DESCRIPTION

RETURNS

ERRNO

SEE ALSO

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

shutdown()

shutdown() — shut down a connection

STATUS shutdown
(
int sd, /* identifies the socket to shut down */
int how /* function code */

)

Shuts down socket send and receive operations on a connection-oriented socket. The
socket's peer is notified that the connection was deliberately terminated by the application
(by means of the TIPC_CONN_SHUTDOWN error code), rather than as the result of an error.

TIPC does not support partial shutdown of a connection; attempting to shut down either
send or receive operations always shuts down both.

Applications should normally call shutdown() to terminate a connection before calling
close().

A socket that has been shutdown() cannot be re-used for a new connection; this prevents
any "stale" incoming messages from an earlier connection from interfering with the new
connection.

Parameters:

sd
The socket descriptor of the socket to shut down.

how
TIPC will only accept a value of SHUT_RDWR for the how parameter. Any other passed
value will result in an error (EINVAL).

TIPC only supports a complete shut down of the socket.
OK on success, ERROR otherwise
EBADF, ENOTSUP, EINVAL, or ENOTCONN

tipc_lib

168

NAME

SYNOPSIS

DESCRIPTION

RETURNS

ERRNO

SEE ALSO

B Socket and Utility Routines

socket()

socket()
socket() — create a socket
int socket

(

int domain, /* address family: AF_TIPC */

int type, /* SOCK_SEQPACKET, SOCK_STREAM, SOCK_DGRAM, or
SOCK_RDM */

int protocol /* socket protocol, always 0 */

)

This routine opens a socket and returns a socket descriptor. The socket descriptor is passed
to the other socket routines to identify the socket. The socket descriptor is a standard I/O
system file descriptor (fd) and can be used with the close(), read(), write(), and ioctl()
routines.

Parameters:
domain

The addressing protocol to use, AF_TIPC.
type

One of the following types of socket:
Type Description
SOCK_SEQPACKET Transfer messages in a reliable, connection-oriented manner.
SOCK_STREAM Transfer byte streams in a reliable, connection-oriented

manner.

SOCK_DGRAM Transfer messages in an unreliable, connectionless manner.
SOCK_RDM Transfer messages in a reliable, connectionless manner.
protocol

The socket protocol, always 0.

A socket descriptor (a small, non-negative integer) on success, -1 on failure. The socket
descriptor is used to identify the socket in subsequent calls to the socket API.

ENOBUFS, EPROTONOSUPPORT, or ENOMEM

tipc_lib

169

NAME

SYNOPSIS

DESCRIPTION

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

tipcConfig()

tipcConfig() — the public API for TIPC configuration and management commands

void tipcConfig

(

char * str

)

/* command string */

This routine displays or sets various parameters and statistics in the TIPC module. The
routine is included as a Show routine and is intended to allow the configuration and
management of TIPC in a network. Many commands are privileged and will only work on
the local node, but some commands can be executed on remote nodes as well.

Example:

-> tipcConfig

Usage:

valid
-v
-1

tipcConfig option [option ...]

options:

operations

-dest
-addr

[=<addr>]
[=<addr>]

-netid[=<value>]

-mng [=enable|disable]

-nt [=[<depth>,]<type>[, <low> [, <up>]]]
where <depth> = types|names|ports|all

-b

-m

-b [=<pattern>]

-be =<bname> [/<domain>[/<priority>]]]

-bd =<bname> | <pattern>

-n [=<addr>]

-1 [=<addr>|<pattern>]

-1s [=<linkname> |<pattern>]

-1sr =<linkname>|<pattern>

-1p =<linkname> |<pattern>/<value>

-1t =<linkname> |<pattern>/<value>

-1lw =<linkname> |<pattern>/<value>

-max_ports [=<value>]

-max_nodes [=<value>]

-max_clusters [=<value>]

-max_zones [=<value>]
-max_remotes [=<value>]
neighbors

-max_publ [=<value>]
-max_subscr [=<value>]
-log [=<size>]

-s

-V

170

Toggle Verbose mode
Toggle Interactive set

Get/set Command destination node
Get/set node address

Get/set network id

Get/set remote management

Get name table

Get port info

Get media

Get bearers

Enable bearer

Disable bearer

Get nodes in domain

Get links for domain

Get link statistics

Reset link statistics

Set link priority

Set link tolerance

Set link window

Get/set max number of ports
Get/set max nodes in own cluster
Get/set max clusters in own zone
Get/set max zones in own network
Get/set max non-cluster

Get/set max publications
Get/set max subscriptions
Dump/resize log

Get TIPC status info
Program version

RETURNS

ERRNO

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

B Socket and Utility Routines
tipcDataPoolShow()

-help This usage list

where <pattern> is an optional search string starting with '?'
->

N/A
N/A

tipc_config_show

tipcDataPoolShow()

tipcDataPoolShow() — display TIPC data-pool statistics
void tipcDataPoolShow (void)

This routine displays statistics on the allocation and availability of clusters in the TIPC data
pool. The TIPC data pool is used for the transfer of data packets between TIPC sockets.

Example:

-> tipcDataPoolShow
type number
FREE 471
DATA 1
TOTAL 472

number of mbufs: 472

number of times failed to find space: 0

number of times waited for space: 0

number of times drained protocols for space: 0

CLUSTER POOL TABLE

size clusters free usage minsize maxsize empty
64 120 119 4 64 64 0
128 200 200 0 0 0 0
256 40 40 0 0 0 0
512 40 40 0 0 0 0
1024 50 50 0 0 0 0
2048 20 20 0 0 0 0
4096 2 2 0 0 0 0

171

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

RETURNS N/A
ERRNO N/A
SEE ALSO tipc_config_show, netPoolShow()

tipcSysPoolShow()

NAME tipcSysPoolShow() — display TIPC system-pool statistics
SYNOPSIS void tipcSysPoolShow (void)

DESCRIPTION This routine displays statistics on the allocation and availability of clusters in the TIPC
system pool. The TIPC system pool is used by TIPC sockets and their protocol control
blocks.

Example:

-> tipcSysPoolShow
type number

TOTAL : 401

number of mbufs: 401

number of times failed to find space: 0

number of times waited for space: 0

number of times drained protocols for space: 0

CLUSTER POOL TABLE

size clusters free usage minsize maxsize empty
16 200 200 0 0 0 0
192 200 200 0 0 0 0
528 200 200 0 0 0 0

Note that parentheses are not required when the routine is invoked from the command line.

RETURNS N/A
ERRNO N/A
SEE ALSO tipc_config_show, netPoolShow!()

172

B Socket and Utility Routines
tipc_addr()

tipc_addr()

NAME tipc_addr() — combine zone, cluster, and node numbers into a TIPC address
SYNOPSIS _ u32 tipc_addr
(
unsigned int zone, /* zone number */
unsigned int cluster, /* cluster number */
unsigned int node /* node number */
)
DESCRIPTION This routine takes individual zone, cluster, and node numbers and combines them into a

32-bit TIPC network address.
Parameters:

zone
The zone number.

cluster
The cluster number.

node
The node number.

RETURNS 32-bit network address.
ERRNO N/A
SEE ALSO tipc_lib

tipc_cluster()

NAME tipc_cluster() — take a TIPC network address and return the cluster number
SYNOPSIS unsigned int tipc_cluster
(
__u32 addr /* TIPC network address */
)
DESCRIPTION This routine takes a 32-bit TIPC network address and returns the cluster number contained

in the address.

173

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

Parameters:
addr
TIPC network address.
RETURNS Cluster number.
ERRNO N/A
SEE ALSO tipc_lib

tipc_node()

NAME tipc_node() - take a TIPC address and return the node number
SYNOPSIS unsigned int tipc_node
(
__u32 addr /* TIPC network address */
)
DESCRIPTION This routine takes a 32-bit TIPC network address and returns the node number contained in
the address.
Parameters:
addr
TIPC network address.
RETURNS Node number.
ERRNO N/A
SEE ALSO tipc_lib

174

NAME

SYNOPSIS

DESCRIPTION

RETURNS

ERRNO

SEE ALSO

B Socket and Utility Routines
tipc_zone()

tipc_zone()

tipc_zone() - take a TIPC address and return the zone number

unsigned int tipc_zone
(
_u32 addr /* TIPC network address */
)

This routine takes a 32-bit TIPC network address and returns the zone number contained in
the address.

Parameters:

addr
TIPC network address.

Zone number.
N/A

tipc_lib

175

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

176

tipc_attach()
tipc_connect2port()
tipc_createport()
tipc_deleteport()
tipc_detach()
tipc_disconnect()
tipc_forward2name()
tipc_forward2port()
tipc_forward_buf2name()
tipc_forward_buf2port()
tipc_get_addr()
tipc_get_mode()
tipc_isconnected()
tipc_ispublished()
tipc_multicast()
tipc_ownidentity()
tipc_peer()
tipc_portimportance()
tipc_portunreliable()
tipc_portunreturnable()
tipc_publish()
tipc_ref_valid()
tipc_send()
tipc_send2name()
tipc_send2port()
tipc_send_buf()
tipc_send_buf2name()
tipc_send_buf2port()
tipc_set_portimportance()
tipc_set_portunreliable()

TIPC Native Routines

— Register a TIPC user
— Associate a TIPC port with its peer
— Create a TIPC port

— Delete a TIPC port
— Unregister a TIPC user

— Disassociate a TIPC port with its peerccccccoovviiiiiiiiiniicc
— Forward a message to the named portc.ccccocoveiiiiiciicnncccn

— Forward a message to a port

— Forward a buffer to the named port ..o,

— Forward a bulffer to a port

— Get the network address for this node

— Get operating mode of TIPCccccccoiiiiiiiinniiciicecs
— Determine if a TIPC port is connectedccccoovoveiiiiiciiiicceccn

— Determine if a TIPC name exists

— Multicast data to a set of named TIPC poOrtsccocvuerverircnincnnicincnnn.

- Get port ID of TIPC port ..
— Get the port ID of a TIPC port's peer

— Get importance of TIPC port messagescccocovveriniiccininiccninieenns
— Get reliability of TIPC port messagescccocovriveeniniiccneiniccsiecenns

— Get returnability of TIPC port messagescccccoveevvcrrircuninnne.
— Add a name or name sequence to a TIPC portc.ccccceeuernneen.
— Validate a reference to a TIPC portcccccueee.
— Send data over TIPC connectionc..........
- Send data to a named TIPC portcccccoceeeee.
—Send data to a TIPC port IDccccevvviiniciinnnnn

- Send message buffer over TIPC connectionc.cccccocvuveccieieicccnnnnes
- Send message buffer to a named TIPC portccccocovvvviiiniicniicninnnn.

- Send message buffer to a TIPC port ID
— Set importance of TIPC port messages

— Set reliability of TIPC port messagesccccccvvrvieriiiieiniiiccsiiicens

177

Wind River TIPC for VxWorks 6

Programmer’s Guide, 1.7

tipc_set_portunreturnable()
tipc_shutdown()
tipc_withdraw()

178

— Set returnability of TIPC port messagesc.cocowevevrircerevriiceinieeiceinnnn.
— Disconnect a TIPC port from its Peerccovvviiurirvriniicniicnicieceiicnes
— Remove a name or name sequence from a TIPC portccccocevvreninnne

NAME

SYNOPSIS

DESCRIPTION

C TIPC Native Routines
tipc_attach()

tipc_attach()

tipc_attach() — Register a TIPC user (native API only)

int tipc_attach
(

unsigned int * userref, /* returned TIPC user id */
tipc_mode_event cb, /* callback routine */
void * usr_handle /* argument to callback routine */

)

This routine adds a user of TIPC to the list of users. A callback can be specified that will be
called whenever the operating mode of TIPC changes from TIPC_NOT_RUNNING to
TIPC_NODE_MODE or TIPC_NET_MODE, or vice versa; the callback is also called
immediately if TIPC is running in TIPC_NODE_MODE or TIPC_NET_MODE at the time
tipc_attach() is called.

NOTE: This routine may be called when TIPC is inactive.
Parameters:

userref
TIPC userid assigned to the newly registered user. This value must be used when

deregistering a user via tipc_detach().

cb
tipc_mode_event - TIPC operating mode change callback

typedef void (*tipc_mode_event)
(

void *usr_handle, /* user defined handle */
int mode, /* new operating mode */
u32 addr /* address of this node */

)
This is a user-supplied callback routine that will be called in the event that the operating
mode of TIPC changes. The existing operating modes are TIPC_NOT_RUNNING,
TIPC_NODE_MODE, or TIPC_NET_MODE. This routine is registered with the
tipc_attach() call when registering a TIPC user. There is nothing returned with this
callback and any errno can be set within the callback as appropriate to the application.

Parameters:

user_handle
The user-supplied value that was used in the tipc_attach call that registered this

callback routine.

mode
The new operating mode of TIPC which will be one of TIPC_NOT_RUNNING,

TIPC_NODE_MODE, or TIPC_NET_MODE.

179

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

addr
This is the TIPC address of this node (most relevant when the operating mode
changes to TIPC_NET_MODE).

usr_handle
Value that is passed to the callback function when it is invoked.

RETURNS TIPC_OK on success, ENOPROTOOPT if TIPC is not running and no callback (cb) is
provided, or EBUSY if no more users can be added.

ERRNO N/A

SEE ALSO tipc_native, tipc_detach()

tipc_connect2port()

NAME tipc_connect2port() — Associate a TIPC port with its peer (native API only)
SYNOPSIS int tipc_connect2port
(
u32 portref, /* port reference */
struct tipc_portid const *port /* port ID of peer port */
)
DESCRIPTION This routine associates a TIPC port with the peer port to which it is connected.
CAUTION This routine is provided for advanced TIPC users, and can not be used to initiate a typical

connect operation, as it does not notify the peer port of the connection attempt; use
tipc_send2name() or tipc_send2port() instead.

Parameters:

portref

The reference value of the port.

port
The port information for the destination port.

RETURNS TIPC_OK or -EINVAL for an invalid port reference.
ERRNO N/A
SEE ALSO tipc_native, tipc_disconnect(), tipc_send2name(), tipc_send2port()

180

NAME

SYNOPSIS

DESCRIPTION

C TIPC Native Routines
tipc_createport()

tipc_createport()

tipc_createport() — Create a TIPC port (native API only)

int tipc_createport
(

unsigned int tipc_user, /* TIPC user number */

void *user_handle, /* user defined handle */
unsigned int importance, /* importance of the port */
tipc_msg_err_event error_cb, /* cb for any error */

tipc_named _msg_err_ event named_error_cb,/* cb for named msg error */

tipc_conn_shutdown_event conn_error_cb,/* cb for conn msg error */

tipc_msg_event message_cb, /* cb for incoming msg */

tipc_named _msg_event named message_cb, /* cb for incoming named msg */

tipc_conn_msg_event conn_message_cb, /* cb for incoming conn msg */

tipc_continue_event continue_event_cb,/* cb for congestion abatement
*/

u32 *portref /* port reference returned */

)

This routine creates a TIPC port that can send and receive messages using the native API.
Any necessary callback routines need to be registered with the port. Not all callback
routines are required for any given type of port. All ports require the tipc_user, user_handle,
and portref fields to be defined. Connectionless ports typically would also supply a
message_cb at a minimum. Connection oriented ports typically would also supply a
conn_message_cb. Note that there is nothing returned by the callback routines and any
errno that is set by the callback routine is independent of the native API. TIPC will
automatically discard the message once the callback routine returns. Any message for
which no callback exists will be rejected by TIPC unless it is an errored message which is
simply discarded.

Parameters:

tipc_user
TIPC userid that port is associated with. A value of 0 creates an "anonymous" port that
is not associated with any registered TIPC user.

user_handle
A user-supplied value that is passed as an argument to the port's callback routines. The
callback routines may wish to use this value to identify the port in some manner; for
example, it may contain a pointer to a data structure associated with the port.

importance
The importance level of messages sent by the port (one of: TIPC_LOW_IMPORTANCE,
TIPC_MEDIUM_IMPORTANCE, TIPC_HIGH_IMPORTANCE, or
TIPC_CRITICAL_IMPORTANCE). This value can also be changed at any time once the
port has been created.

181

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

error_cb

tipc_msg_err_event - error handling callback for any TIPC_DIRECT_MSG message that
has an error code attached to it.

typedef void (*tipc_msg_err_event)

(

void *usr_handle, /* user defined handle */

u32 portref, /* destination port */

struct sk_buff **puf, /* pointer to incoming msg */
unsigned char const *data, /* pointer to data in incoming msg */
unsigned int size, /* size of data in msg, in bytes */
int reason, /* error code of incoming msg */

struct tipc_portid const *attmpt_destid /* originating port */
)

This is a user-supplied routine that will be called in the event that a direct
(TIPC_DIRECT_MSG) message is received for an unconnected port and there is an error
code associated with the message.

Parameters:

user_handle
The user-supplied value that was used when the port was created.

portref
This is the destination port for which the incoming message was targeted.

buf

A pointer to the incoming message buffer.

data

A pointer to the data in the incoming message buffer.
size

The size of the data, in bytes.

reason
Any error code present in the incoming message.

attmpt_destid
The originating port of the incoming message.

named_error_ch

182

tipc_named_msg_err_event - error handling callback for any TIPC_NAMED_MSG or
TIPC_MCAST_MSG message with an error code.

C TIPC Native Routines

typedef void (*tipc_named_msg_err_event)

(

tipc_createport()

void *usr_handle, /* user defined handle */
u32 portref, /* destination port */
struct sk_buff **puf, /* pointer to incoming msg */

unsigned char const *data, /* pointer to data in incoming msg */

unsigned int size, /* size of data in msg, in bytes */
int reason, /* error code of incoming msg */
struct tipc_portid const *attmpt_dest /* name or name sequence */
)
This is a user-supplied routine that will be called in the event that a named
(TIPC_NAMED_MSG) or multicast (TIPC_MCAST_MSG) message is received for an
unconnected port containing an error code.

Parameters:

user_handle
The user-supplied value that was used when the port was created.

portref
This is the destination port for which the incoming message was targeted.

buf

A pointer to the incoming message buffer.
data

A pointer to the data in the incoming message buffer.
size

The size of the data, in bytes.

reason
Any error code present in the incoming message.

attmpt_dest
The port name or port name sequence used to send this message.

conn_error_ch
tipc_conn_shutdown_event - tipc_conn_shutdown_event - connection shutdown
callback routine for any incoming connection oriented (TIPC_CONN_MSG) message
with an error code.

typedef void (*tipc_conn_shutdown_event)

(

void *usr_handle, /* user defined handle */

u32 portref, /* destination port */

struct sk_buff **buf, /* pointer to incoming msg */
unsigned char const *data, /* pointer to data in incoming msg */

unsigned int
int

)

/*
/*

size,
reason

size of data in msg, in bytes */
error code of incoming msg */

This is a user-supplied routine that will be called in the event that a connection is shut
down (a TIPC_CONN_MSG message with an error code will be received).

183

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

Parameters:

user_handle
The user-supplied value that was used when the port was created.

portref

This is the destination port for which the incoming message was targeted.

buf

A pointer to the incoming message bulffer.

data

A pointer to the data in the incoming message buffer.
size

The size of the data, in bytes.

reason
Any error code present in the incoming message.

message_ch

tipc_msg_event - an incoming TIPC_DIRECT_MSG message is received

typedef void (*tipc_msg_event)

184

(

void *usr_handle, /* user defined handle */

u32 portref, /* destination port */

struct sk_buff **buf, /* pointer to incoming msg */
unsigned char const *data, /* pointer to data in incoming msg */
unsigned int size, /* size of data in msg, in bytes */
int importance, /* incoming message importance */

struct tipc_portid const *origin /* originating port */
)

This is a user-supplied routine that will be called in the event that a direct
(TIPC_DIRECT_MSG) message is received. This would be the user-supplied receive
routine for incoming messages.

Parameters:

user_handle
The user-supplied value that was used when the port was created.

portref

This is the destination port for which the incoming message was targeted.

buf

A pointer to the incoming message buffer.

data

A pointer to the data in the incoming message buffer.
size

The size of the data, in bytes.

C TIPC Native Routines
tipc_createport()

importance
The message importance, one of TIPC_LOW_IMPORTANCE,
TIPC_MEDIUM_IMPORTANCE, TIPC_HIGH_IMPORTANCE, or
TIPC_CRITICAL_IMPORTANCE.
origin
The originating port of the incoming message.
named_message_cb

tipc_named_msg_event - an incoming TIPC_NAMED_MSG or TIPC_MCAST_MSG
message is received.

typedef void (*tipc_named_msg_event)

(

void *usr_handle, /* user defined handle */

u32 portref, /* destination port */

struct sk_buff **puf, /* pointer to incoming msg */
unsigned char const *data, /* pointer to data in incoming msg */
unsigned int size, /* size of data in msg, in bytes */
int importance, /* incoming message importance */

struct tipc_portid const *origin,/* originating port */
struct tipc_name_seq const *dest /* destination port */
)

This is a user-supplied routine that will be called in the event that a named
(TIPC_NAMED_MSG) or multicast (TIPC_MCAST_MSG) message is received. This
would be the user-supplied receive routine for named incoming messages.

Parameters:

user_handle
The user-supplied value that was used when the port was created.

portref
This is the destination port for which the incoming message was targeted.

buf

A pointer to the incoming message buffer.

data
A pointer to the data in the incoming message buffer.
size
The size of the data, in bytes.
importance
The message importance, one of TIPC_LOW_IMPORTANCE,

TIPC_MEDIUM_IMPORTANCE, TIPC_HIGH_IMPORTANCE, or
TIPC_CRITICAL_IMPORTANCE.

origin
The originating port of the incoming message.

185

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

dest
This is the destination port for which the incoming message was targeted.

conn_message_cb
tipc_conn_msg_event - a incoming TIPC_CONN_MSG message is received.

typedef void (*tipc_conn_msg_event)

(

void *usr_handle, /* user defined handle */

u32 portref, /* destination port */

struct sk_buff **puf, /* pointer to incoming msg */
unsigned char const *data, /* pointer to data in incoming msg */
unsigned int size /* size of data in msg, in bytes */

)
This is a user-supplied routine that will be called in the event that a connection
(TIPC_CONN_MSG) message is received. This would be the user-supplied receive
routine for a connected port.

Parameters:

user_handle
The user-supplied value that was used when the port was created.

portref
This is the destination port for which the incoming message was targeted.

buf

A pointer to the incoming message buffer.

data
A pointer to the data in the incoming message buffer.

size
The size of the data, in bytes.

continue_event_cb
tipc_continue_event - this callback is called once port congestion has abated.

typedef void (*tipc_continue_event)

(
void *usr_handle, /* user defined handle */

u32 portref /* destination port */

)

This is a user-supplied routine that will be called once any congestion has abated and
the port is once again ready to be used.

Parameters:

user_handle
The user-supplied value that was used when the port was created.

portref
This is the destination port for which the incoming message was targeted.

186

RETURNS

ERRNO

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

RETURNS

ERRNO

SEE ALSO

C TIPC Native Routines
tipc_deleteport()

portref
Pointer to an area that is filled in with the port reference for the newly created port.

TIPC_OK or -ENOMEM if a port could not be created.
N/A

tipc_native, tipc_deleteport()

tipc_deleteport()

tipc_deleteport() — Delete a TIPC port (native API only)

int tipc_deleteport
(
u32 portref /* port reference */

)

This routine deletes a previously created port. The port can no longer be used to send or
receive messages, and all names and name sequences associated with the port are
automatically withdrawn.

Parameters:

portref
The port reference for the port to be deleted.

TIPC_OK, or -EINVAL if the port does not exist.
N/A

tipc_native, tipc_createport()

187

NAME

SYNOPSIS

DESCRIPTION

RETURNS

ERRNO

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

CAUTION

RETURNS

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

tipc_detach()

tipc_detach() — Unregister a TIPC user (native API only)

void tipc_detach
(
unsigned int userref /* returned TIPC user id */

)

This routine removes a registered TIPC user and deletes all ports created by that user.
Parameters:

userref
TIPC userid for user (as assigned by tipc_attach()).

N/A
N/A

tipc_native, tipc_attach()

tipc_disconnect()

tipc_disconnect() — Disassociate a TIPC port with its peer (native API only)

int tipc_disconnect

(

u32 portref /* port reference */

)

This routine breaks the association between a TIPC port and the peer port to which it is
currently connected.

This routine is provided for advanced TIPC users, and can not be used to initiate a typical
disconnect operation, as it does not notify the peer port that the connection has been broken;
use tipc_shutdown() instead.

Parameters:

portref
The reference value of the port.

TIPC_OK, -EINVAL if the port does not exist, or -ENOTCONN if the port is not connected.

188

ERRNO

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

C TIPC Native Routines
tipc_forward2name()

N/A

tipc_native, tipc_connect2port(), tipc_shutdown()

tipc_forward2name()

tipc_forward2name() — Forward a message to the named port (native API only - may be
obsoleted)

int tipc_forward2name

(

u32 portref, /* port reference */

struct tipc_name const *name, /* name of the dest port */

u32 domain, /* domain of name to send to */
unsigned int section_count, /* number of message sections */
struct iovec const *msg_sect, /* iovector for the data */

struct tipc_portid const *origin, /* port information storage */
unsigned int importance /* importance of message */

)

This routine takes the iovector describing the outgoing message and sends it to the named
port if possible. If the message cannot be sent, then either -ELINKCONG is returned if the
port is reliable, or the message size is calulated and returned for an unreliable port. In the
event of congestion, the port is marked as congested.

Use this routine to send a message described by an iovector to a port by name and specify
the originating port id.

Note that this routine may be obsoleted in future releases of TIPC.

Parameters:

portref
The port reference value.

name
The port name to send the message bulffer.

domain
The domain of the name to send to. This must be one of TIPC_NODE_SCOPE,
TIPC_CLUSTER_SCOPE, or TIPC_ZONE_SCOPE.

section_count
The number of message sections to be sent.

msg_sect
The iovector pointing to the message segments.

189

RETURNS

ERRNO

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

origin
Originating port information.

importance
The new importance value. Must be one of TIPC_LOW_IMPORTANCE,
TIPC_MEDIUM_IMPORTANCE, TIPC_HIGH_IMPORTANCE, or
TIPC_CRITICAL_IMPORTANCE.

number of bytes sent, -EINVAL for an invalid port reference, or -ELINKCONG if the port is
congested.

N/A

tipc_native, tipc_forward2port(), tipc_forward_buf2name(), tipc_forward_buf2port()

tipc_forward2port()

tipc_forward2port() — Forward a message to a port (native API only - may be obsoleted)

int tipc_forward2port

(

u32 portref, /* port reference */

struct tipc_portid const *dest, /* dest port information */
unsigned int num_sect, /* number of message sections */
struct iovec const *msg_sect, /* iovector for the data */
struct tipc_portid const *orig, /* port information storage */
unsigned int importance /* importance of message */

)

This routine takes the iovector describing the outgoing message and sends it to the specified
port if possible. If the message cannot be sent, then either -ELINKCONG is returned if the
port is reliable, or the message size is calulated and returned for an unreliable port. In the
event of congestion, the port is marked as congested. The originating port and port
importance are defaulted to that of the portref port.

Use this routine to send a direct message described by an iovector to a port by id and also
specify the originating port.

Note that this routine may be obsoleted in future releases of TIPC.

Parameters:

portref
The port reference value.

dest
The port id to send the message bulffer.

190

RETURNS

ERRNO

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

C TIPC Native Routines
tipc_forward_buf2name()

num_sect
The number of message sections to be sent.

msg_sect
The iovector pointing to the message segments.
origin
Originating port information.
importance
The new importance value. Must be one of TIPC_LOW_IMPORTANCE,
TIPC_MEDIUM_IMPORTANCE, TIPC_HIGH_IMPORTANCE, or

TIPC_CRITICAL_IMPORTANCE. TIPC_PORT_IMPORTANCE can also be used which
defaults to the current importance setting of the port.

number of bytes sent, -EINVAL for an invalid port reference, or -ELINKCONG if the port is
congested.

N/A

tipc_native, tipc_forward2name(), tipc_forward_buf2name(), tipc_forward_buf2port()

tipc_forward_buf2name()

tipc_forward_buf2name() — Forward a buffer to the named port (native API only - may be
obsoleted)

int tipc_forward_ buf2name

(

u32 portref, /* port reference */

struct tipc_name const *name, /* name of the dest port */

u32 domain, /* domain of name to send to */
struct sk _buff *buf, /* buffer to send to peer */
unsigned int dsz, /* size of the buffer */

struct tipc_portid const *orig, /* port information storage */
unsigned int importance /* importance of message */

)

This routine takes the iovector describing the outgoing message and sends it to the named
port if possible. If the message cannot be sent, then either -ELINKCONG is returned if the
port is reliable, or the message size is calulated and returned for an unreliable port. In the
event of congestion, the port is marked as congested.

Use this routine to send a buffer to a port by name and specify the originating port id.

Note that this routine may be obsoleted in future releases of TIPC.

191

RETURNS

ERRNO

SEE ALSO

NAME

SYNOPSIS

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

Parameters:

portref
The port reference value.

name
The port name to send the message bulffer.

domain
The domain of the name to send to. This must be one of TIPC_NODE_SCOPE,
TIPC_CLUSTER_SCOPE, or TIPC_ZONE_SCOPE.

buf

The message buffer to send.

dsz
The size of the message to send.
orig
Originating port information.
importance
The new importance value. Must be one of TIPC_LOW_IMPORTANCE,

TIPC_MEDIUM_IMPORTANCE, TIPC_HIGH_IMPORTANCE, or
TIPC_CRITICAL_IMPORTANCE.

number of bytes sent, -EINVAL for an invalid port reference, or -ELINKCONG if the port is
congested.

N/A

tipc_native, tipc_forward2name(), tipc_forward2port(), tipc_forward_buf2port()

tipc_forward_buf2port()

tipc_forward_buf2port() — Forward a buffer to a port (native API only - may be obsoleted)

int tipc_send_buf2port
(

u32 portref, /* port reference */

struct tipc_portid const *dest, /* dest port information */
struct sk _buff *buf, /* buffer to send to peer */
unsigned int dsz, /* size of the buffer */
struct tipc_portid const *orig, /* port information storage */
unsigned int importance /* importance of message */

)

192

DESCRIPTION

RETURNS

ERRNO

SEE ALSO

C TIPC Native Routines
tipc_forward_buf2port()

This routine takes the iovector describing the outgoing message and sends it to the specified
port if possible. If the message cannot be sent, then either -ELINKCONG is returned if the
port is reliable, or the message size is calulated and returned for an unreliable port. In the
event of congestion, the port is marked as congested. The originating port and port
importance are defaulted to that of the portref port.

This routine is the equivalent of tipc_forward_buf2port using the port reference and our
own node id as the originating port; and the existing importance of the port.

Use this routine to send a buffer to a port by id and also specify the originating port.
Note that this routine may be obsoleted in future releases of TIPC.

Parameters:

portref

The port reference value.

dest
The port id to send the message buffer.

buf

The message buffer to send.

dsz
The size of the message to send.
origin
Originating port information.
importance
The new importance value. Must be one of TIPC_LOW_IMPORTANCE,
TIPC_MEDIUM_IMPORTANCE, TIPC_HIGH_IMPORTANCE, or

TIPC_CRITICAL_IMPORTANCE. TIPC_PORT_IMPORTANCE can also be used which
defaults to the current importance setting of the port.

number of bytes sent, -EINVAL for an invalid port reference, or -ELINKCONG if the port is
congested.

N/A

tipc_native, tipc_forward2name(), tipc_forward2port(), tipc_forward_buf2name()

193

NAME

SYNOPSIS

DESCRIPTION

RETURNS

ERRNO

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

RETURNS

ERRNO

SEE ALSO

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

tipc_get_addr()

tipc_get_addr() — Get the network address for this node (native API only)

u32 tipc_get_addr (void)

This routine returns the tipc network address (i.e. Z.C.N value) of this node. This value can
be converted to its constituent parts using the tipc_node(), tipc_cluster(), and tipc_zone()
routines.

A 32-bit value representing the Z.C.N address of this node.

N/A

tipc_native

tipc_get_mode()

tipc_get_mode() — Get operating mode of TIPC (native API only)

int tipc_get_mode (void)

This routine returns the current operating mode of TIPC, which can be one of:
TIPC_NOT_RUNNING - TIPC is not active TIPC_NODE_MODE - TIPC is active, but limited
to intra-node messaging TIPC_NET_MODE - TIPC is active and capable of inter-node
messaging

TIPC_NOT_RUNNING, TIPC_NODE_MODE, or TIPC_NET_MODE.

N/A

tipc_native

194

NAME

SYNOPSIS

DESCRIPTION

RETURNS

ERRNO

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

C TIPC Native Routines
tipc_isconnected()

tipc_isconnected()

tipc_isconnected() — Determine if a TIPC port is connected (native API only)

int tipc_isconnected
(
u32 portref, /* port reference */
unsigned int *isconnected /* returned connection status */

)
This routine determines if the specified TIPC port is currently connected to another port.
Parameters:

portref
The reference value of the port.

isconnected
Pointer to an area to store the connection status of the port (1 = connected, 0 = not
connected).

TIPC_OK or -EINVAL if the port does not exist.

N/A

tipc_native

tipc_ispublished()

tipc_ispublished() — Determine if a TIPC name exists (native API only)

int tipc_ispublished
(
struct tipc_name const *name /* port name to check */

)

This routine determines if the specified port name (i.e. {type, instance} value) is known to
TIPC. If the port name is known, an application will be able to send messages to the port(s)
having that name.

Parameters:

name
Pointer to the port name of interest.

195

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

RETURNS 1 if the name is published, 0 otherwise.
ERRNO N/A
SEE ALSO tipc_native

tipc_multicast()

NAME tipc_multicast() — Multicast data to a set of named TIPC ports (native API only)

SYNOPSIS int tipc_multicast
(
u32 portref, /* port reference */
struct tipc_name_seq const *name_seq /* name sequence for the port */
u32 domain, /* domain of name to send to */
unsigned int section_count, /* number of message sections */
struct iovec const *msg /* iovector for the data */
)

DESCRIPTION This routine takes the iovector describing the outgoing message and sends it to any port

with a matching name or name sequence within the domain specified. If the message cannot
be sent, then either -ELINKCONG is returned if the port is reliable, or the message size is

calulated and returned for an unreliable port. In the event of congestion, the port is marked
as congested. The originating port and port importance are defaulted to that of the portref
port.

Use this routine to send a message described by an iovector to a port name sequence used
for multicasting.

set up connection.

Parameters:

portref
The port reference value.

name_seq
The name sequence to multicast a message to.

domain
The domain of the name to send to. This must be one of TIPC_NODE_SCOPE,
TIPC_CLUSTER_SCOPE, or TIPC_ZONE_SCOPE.

section_count
The number of message sections to be sent.

msg
The iovector pointing to the message segments.

196

RETURNS

ERRNO

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

NOTE

RETURNS

ERRNO

SEE ALSO

C TIPC Native Routines
tipc_ownidentity()

number of bytes sent, -EINVAL for an invalid port reference, -ELINKCONG if the port is
congested, or -ENOMEM if the buffer cannot be cloned.

N/A

tipc_native

tipc_ownidentity()

tipc_ownidentity() — Get port ID of TIPC port (native API only)

int tipc_ownidentity
(
u32 portref, /* port reference */
struct tipc_portid *port /* returned port ID */
)

This routine obtains the port ID of the specified TIPC port.

This routine does not validate that the specified port actually exists.

Parameters:

portref

The reference value of the port.

port
Pointer to an area that is filled in with the port ID of the specified port.

TIPC_OK
N/A

tipc_native

197

NAME

SYNOPSIS

DESCRIPTION

RETURNS

ERRNO

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

tipc_peer()
tipc_peer() — Get the port ID of a TIPC port's peer (native API only)

int tipc_peer
(
u32 ref, /* port reference */
struct tipc_portid *port /* returned port ID */
)

This routine returns the port ID of the peer port to which the specified TIPC port is currently
connected.

Parameters:

ref

The reference value of the port.

port
Pointer to area for the port ID of the port's peer.

TIPC_OK, -EINVAL for an invalid port reference, or -ENOTCONN for an unconnected port.
N/A

tipc_native

tipc_portimportance()

tipc_portimportance() — Get importance of TIPC port messages (native API only)

int tipc_portimportance
(
u32 portref, /* port reference */
unsigned int *importance /* returned port importance */

)

This routine obtains the importance level of messages sent by a TIPC port.

Parameters:

portref
The reference value of the port.

importance
Pointer to an area that is filled in with the importance value.

198

RETURNS

ERRNO

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

RETURNS

ERRNO

SEE ALSO

C TIPC Native Routines
tipc_portunreliable()

TIPC_OK, or -EINVAL if the port does not exist.
N/A

tipc_native, tipc_set_portimportance()

tipc_portunreliable()

tipc_portunreliable() — Get reliability of TIPC port messages (native API only)

int tipc_portunreliable
(
u32 portref, /* port reference */
unsigned int *isunreliable /* returned reliability setting */

)

This routine indicates if messages sent by the port are being sent in an unreliable manner
(i.e. the messages are silently discarded if congestion occurs).

Parameters:

portref
The reference value of the port.

isunreliable
Pointer to the area where the reliability setting for the port is stored (0 = send reliably,
1 = send unreliably).

TIPC_OK, or -EINVAL if the port does not exist.

N/A

tipc_native, tipc_set_portunreliable()

199

NAME

SYNOPSIS

DESCRIPTION

RETURNS

ERRNO

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

tipc_portunreturnable()

tipc_portunreturnable() — Get returnability of TIPC port messages (native API only)

int tipc_portunreturnable
(
u32 portref, /* port reference */
unsigned int *isunreturnable /* returned returnability setting */

)

This routine indicates if messages sent by the port are being sent in a non-returnable manner
(i.e. the messages are silently discarded if they cannot be delivered to the specified
destination).

Parameters:

portref
The reference value of the port.

isunreturnable
Pointer to the area where the returnability setting for the port is stored (0 = messages
are returnable, 1 = messages are non-returnable).

TIPC_OK, or -EINVAL if the port does not exist.

N/A

tipc_native, tipc_set_portunreturnable()

tipc_publish()

tipc_publish() — Add a name or name sequence to a TIPC port (native API only)

int tipc_publish
(
u32 portref, /* port reference */
unsigned int scope, /* scope of the publication */
struct tipc_name_seq const *name_seq /* name sequence for the port */
)

This routine adds a TIPC name sequence (i.e. {type, lower bound, upper bound} value) to
the set of names associated with a TIPC port. It can also be used to add a TIPC name (i.e.
{type, instance} value) by specifying a name sequence in which the lower bound and upper
bound are the same.

200

RETURNS

ERRNO

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

RETURNS

ERRNO

SEE ALSO

C TIPC Native Routines
tipc_ref_valid(')

The name sequence will be publicized to all nodes in the TIPC network that lie within the
specified publication scope.

Parameters:

portref

The reference value of the port.

scope
The publication scope for the name sequence (one of: TIPC_NODE_SCOPE,
TIPC_CLUSTER_SCOPE, or TIPC_ZONE_SCOPE).

name_seq
The name sequence to be associate with the TIPC port.

TIPC_OK, or -EINVAL if the port does not exist, the port is connected, the name sequence
is invalid, the type is reserved, or the scope is invalid, or -EADDRINUSE if the reference
values have wrapped.

N/A

tipc_native, tipc_withdraw()

tipc_ref_valid()

tipc_ref_valid() — Validate a reference to a TIPC port (native API only)

int tipc_ref_valid
(
u32 portref /* port reference */

)

This routine determines if the TIPC port associated with the specified port reference
currently exists.

Parameters:

portref

The reference value of the port.
1 if the port exists, 0 otherwise
N/A

tipc_native

201

NAME

SYNOPSIS

DESCRIPTION

RETURNS

ERRNO

SEE ALSO

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

tipc_send()

tipc_send() — Send data over TIPC connection (native API only)

int tipc_send
(

u32 portref, /* port reference */
unsigned int num_sect, /* number of message sections */
struct iovec const *msg_sect /* iovector for the data */

)

This routine takes the iovector describing the outgoing message and sends it to the
connected peer port if possible. If the message cannot be sent, then either -ELINKCONG is
returned if the port s reliable, or the message size is calulated and returned for an unreliable
port. In the event of congestion, the port is marked as congested.

Use this routine to send a message described by an iovector to a previously set up
connection.

Parameters:

portref
The port reference value.

num_sect
The number of message sections to be sent.

msg_sect
The iovector pointing to the message segments.

number of bytes sent, -EINVAL for an invalid port reference, or -ELINKCONG if the port is
congested.

N/A

tipc_native, tipc_send2name(), tipc_send2port(), tipc_send_buf(),
tipc_send_buf2name(), tipc_send_buf2port()

202

NAME

SYNOPSIS

DESCRIPTION

RETURNS

ERRNO

SEE ALSO

C TIPC Native Routines
tipc_send2name()

tipc_send2name()

tipc_send2name() — Send data to a named TIPC port (native API only)

int tipc_send2name
(

u32 portref, /* port reference */

struct tipc_name const *name, /* name of the dest port */

u32 domain, /* domain of name to send to */
unsigned int num_sect, /* number of message sections */
struct iovec const *msg_sect /* iovector for the data */

)

This routine takes the iovector describing the outgoing message and sends it to the named
port if possible. If the message cannot be sent, then either -ELINKCONG is returned if the
port is reliable, or the message size is calulated and returned for an unreliable port. In the
event of congestion, the port is marked as congested.

This routine is the equivalent of tipc_forward2name using the port reference and our own
node id as the originating port.

Use this routine to send a message described by an iovector to a port by name.

Parameters:

portref

The port reference value.

name
The port name to send the message bulffer.

domain
The domain of the name to send to. This must be one of TIPC_NODE_SCOPE,
TIPC_CLUSTER_SCOPE, or TIPC_ZONE_SCOPE.

num_sect
The number of message sections to be sent.

msg_sect
The iovector pointing to the message segments.

number of bytes sent, -EINVAL for an invalid port reference, or -ELINKCONG if the port is
congested.

N/A

tipc_native, tipc_send(), tipc_send2port(), tipc_send_buf(), tipc_send_buf2name(),
tipc_send_buf2port()

203

NAME

SYNOPSIS

DESCRIPTION

RETURNS

ERRNO

SEE ALSO

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

tipc_send2port()

tipc_send2port() — Send data to a TIPC port ID (native API only)

int tipc_send2port
(

u32 portref, /* port reference */

struct tipc_portid const *dest, /* dest port information */
unsigned int num_sect, /* number of message sections */
struct iovec const *msg_sect /* iovector for the data */

)

This routine takes the iovector describing the outgoing message and sends it to the specified
port if possible. If the message cannot be sent, then either -ELINKCONG is returned if the
port is reliable, or the message size is calulated and returned for an unreliable port. In the
event of congestion, the port is marked as congested. The originating port and port
importance are defaulted to that of the portref port.

This routine is the equivalent of tipc_forward2port using the port reference and our own
node id as the originating port; and the existing importance of the port.

Use this routine to send a direct message described by an iovector to a port by id from the
port referenced.

Parameters:

portref
The port reference value.

dest
The port id to send the message bulffer.

num_sect
The number of message sections to be sent.

msg_sect
The iovector pointing to the message segments.

number of bytes sent, -EINVAL for an invalid port reference, or -ELINKCONG if the port is
congested.

N/A

tipc_native, tipc_send(), tipc_send2name(), tipc_send_buf(), tipc_send_buf2name(),
tipc_send_buf2port()

204

NAME

SYNOPSIS

DESCRIPTION

RETURNS

ERRNO

SEE ALSO

C TIPC Native Routines
tipc_send_buf()

tipc_send_buf()

tipc_send_buf() — Send message buffer over TIPC connection (native API only)

int tipc_send_buf
(

u32 portref, /* port reference */
struct sk _buff *buf, /* buffer to send to peer */
unsigned int dsz /* size of the buffer */

)

This routine takes the buffer and size specified in the parameters and sends it to the
connected peer port if possible. If the message cannot be sent, then either -ELINKCONG is
returned if the port s reliable, or the message size is calulated and returned for an unreliable
port. In the event of congestion, the port is marked as congested.

Use this routine to send a message buffer to a previously set up connection.

Parameters:

portref
The port reference value.

buf

The message buffer to send.

dsz
The size of the message to send.

number of bytes sent, -EINVAL for an invalid port reference, -ELINKCONG if the port is
congested, or -ENOMEM if the buffer cannot be cloned.

N/A

tipc_native, tipc_send(), tipc_send2name(), tipc_send2port(), tipc_send_buf2name(),
tipc_send_buf2port()

205

NAME

SYNOPSIS

DESCRIPTION

RETURNS

ERRNO

SEE ALSO

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

tipc_send_buf2name()

tipc_send_buf2name() — Send message buffer to a named TIPC port (native API only)

int tipc_send_buf2name
(

u32 portref, /* port reference */

struct tipc_name const *name, /* name of the dest port */
u32 domain, /* domain of name to send to */
struct sk_buff *buf, /* buffer to send to peer */
unsigned int dsz /* size of the buffer */

)

This routine takes the buffer and size specified in the parameters and sends it to the
connected peer port if possible. If the message cannot be sent, then either -ELINKCONG is
returned if the port s reliable, or the message size is calulated and returned for an unreliable
port. In the event of congestion, the port is marked as congested.

Use this routine to send a buffer to a port by name.

Parameters:

portref
The port reference value.

name
The port name to send the message bulffer.

domain
The domain of the name to send to. This must be one of TIPC_NODE_SCOPE,
TIPC_CLUSTER_SCOPE, or TIPC_ZONE_SCOPE.

buf

The message buffer to send.

dsz
The size of the message to send.

number of bytes sent, -EINVAL for an invalid port reference, -ELINKCONG if the port is
congested, or -ENOMEM if the buffer cannot be cloned.

N/A

tipc_native, tipc_send(), tipc_send2name(), tipc_send2port(), tipc_send_buf(),
tipc_send_buf2port()

206

NAME

SYNOPSIS

DESCRIPTION

RETURNS

ERRNO

SEE ALSO

C TIPC Native Routines
tipc_send_buf2port()

tipc_send_buf2port()

tipc_send_buf2port() — Send message buffer to a TIPC port ID (native API only)

int tipc_send_buf2port
(

u32 portref, /* port reference */

struct tipc_portid const *dest, /* dest port information */
struct sk_buff *buf, /* buffer to send to peer */
unsigned int dsz /* size of the buffer */

)

This routine takes the iovector describing the outgoing message and sends it to the specified
port if possible. If the message cannot be sent, then either -ELINKCONG is returned if the
port is reliable, or the message size is calulated and returned for an unreliable port. In the
event of congestion, the port is marked as congested. The originating port and port
importance are defaulted to that of the portref port.

This routine is the equivalent of tipc_forward_buf2port using the port reference and our
own node id as the originating port; and the existing importance of the port.

Use this routine to send a buffer to a port by id from the port referenced.

Parameters:

portref
The port reference value.

dest
The port id to send the message bulffer.

buf

The message buffer to send.

dsz
The size of the message to send.

number of bytes sent, -EINVAL for an invalid port reference, or -ELINKCONG if the port is
congested.

N/A

tipc_native, tipc_send(), tipc_send2name(), tipc_send2port(), tipc_send_buf(),
tipc_send_buf2name()

207

NAME

SYNOPSIS

DESCRIPTION

RETURNS

ERRNO

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

tipc_set_portimportance()

tipc_set_portimportance() — Set importance of TIPC port messages (native API only)

int tipc_set_portimportance
(
u32 portref, /* port reference */
unsigned int importance /* new port importance */

)

This routine sets the importance level of messages sent by a TIPC port. Note that this setting
will have an influence on the number of messages that may be queued up by the receiver if
the receiver is running a socket layer.

By default, a TIPC port sends messages using the importance level specified by the user
when the port was created.

Parameters:

portref

The reference value of the port.
importance
The new importance value (TIPC_LOW_IMPORTANCE, TIPC_MEDIUM_IMPORTANCE,
TIPC_HIGH_IMPORTANCE, or TIPC_CRITICAL_IMPORTANCE).
TIPC_OK, or -EINVAL if the port does not exist or an invalid importance level is specified.
N/A

tipc_native, tipc_portimportance()

tipc_set_portunreliable()

tipc_set_portunreliable() — Set reliability of TIPC port messages (native API only)

int tipc_set_portunreliable
(
u32 portref, /* port reference */
unsigned int isunreliable /* new reliability setting */

)

This routine specifies if messages sent by the port are to be sent in an unreliable manner (i.e.
the messages will be silently discarded if congestion occurs).

208

RETURNS

ERRNO

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

RETURNS

ERRNO

SEE ALSO

C TIPC Native Routines
tipc_set_portunreturnable()

By default, a TIPC port sends messages reliably.

Parameters:

portref

The reference value of the port.
isunreliable

The new reliability setting (0 = send reliably, non-zero = send unreliably).
TIPC_OK, or -EINVAL if the port does not exist.

N/A

tipc_native, tipc_portunreliable()

tipc_set_portunreturnable()

tipc_set_portunreturnable() — Set returnability of TIPC port messages (native API only)

int tipc_set_portunreturnable
(
u32 portref, /* port reference */
unsigned int isunreturnable /* new returnability setting */

)

This routine specifies if messages sent by the port are to be sent in an non-returnable manner
(i.e. the messages will be silently discarded if they cannot be delivered to the specified
destination).

By default, a TIPC port sends returnable messages.

Parameters:

portref

The reference value of the port.

isunreturnable
The new returnability setting (0 = messages are returnable, non-zero = messages are
non-returnable).

TIPC_OK, or -EINVAL if the port does not exist.

N/A

tipc_native, tipc_portunreturnable()

209

NAME

SYNOPSIS

DESCRIPTION

RETURNS

ERRNO

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

tipc_shutdown()

tipc_shutdown() — Disconnect a TIPC port from its peer (native API only)

int tipc_shutdown
(
u32 ref /* port reference */
)

This routine gracefully terminates a connection between a TIPC port and its peer. The TIPC
port is disconnected, and its peer is notified that the connection has been terminated.

Parameters:

ref

The reference value of the port.
TIPC_OK, -EINVAL if the port does not exist, or -ENOTCONN if the port is not connected.
N/A

tipc_native

tipc_withdraw()

tipc_withdraw() — Remove a name or name sequence from a TIPC port (native API only)

int tipc_withdraw
(
u32 portref, /* port reference */
unsigned int scope, /* scope of the publication */
struct tipc_name_seq const *name_seq /* name sequence for the port */

)

This routine removes a TIPC name sequence (i.e. {type, lower bound, upper bound} value)
from the set of names associated with a TIPC port. It can also be used to remove a TIPC
name (i.e. {type, instance} value) by specifying a name sequence in which the lower bound
and upper bound are the same. The specified name sequence and scope values must match
those of an existing publication.

This routine can also remove all published names in a single operation by specifying a NULL
name sequence.

The specified name sequence(s) will also be unpublicized on all nodes in the TIPC network
that have been previously notified of the publication.

210

RETURNS

ERRNO

SEE ALSO

C TIPC Native Routines
tipc_withdraw()

Parameters:

portref
The reference value of the port.

scope
The publication scope for the name sequence (one of: TIPC_NODE_SCOPE,
TIPC_CLUSTER_SCOPE, or TIPC_ZONE_SCOPE). This value is ignored when removing
all names from the port.

name_seq
The name sequence to remove from the port's set of names. Specifying NULL will
remove all published names for this port.

TIPC_OK, or -EINVAL if the port or specified name sequence does not exist.

N/A

tipc_native, tipc_publish()

211

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

212

Header File Definitions

D.1 Introduction 213
D.2 Definitions 214

D.1 Introduction

This appendix lists public type definitions, defines, and structures contained in the
Wind River TIPC header file:

installDir/target/h/tipc/tipc.h
You need to include this file (#include <tipc/tipc.h>) in all TIPC applications.

213

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

D.2 Definitions

/* Scalar data types used by TIPC (WRS) */

typedef unsigned char __u8, unchar;
typedef char _ s8;

typedef unsigned short _ ul6;
typedef short _ sle;
typedef unsigned int __u32, uint;
typedef int _ s32;

typedef unsigned char u8;

typedef char s8;
typedef unsigned short ulé6;
typedef short s16;
typedef unsigned int u32;
typedef int s32;
/*
* TIPC addressing primitives
*
* (Uses macros rather than inline functions to avoid compiler warnings)
*/
struct tipc_portid {
__u32 ref;
__u32 node;

}i

struct tipc_name {
__u32 type;
__u32 instance;

Y
struct tipc_name_seq {
__u32 type;
__u32 lower;
__u32 upper;
Y
#define tipc_addr(Z,C,N) (((2)<<24)|((C)<<12)]|(N))
#define tipc_zone (A) ((A)>> 24)
#define tipc_cluster (4) (((A) >> 12) & Oxfff)
#define tipc_node (4) ((A) & Oxfff)

/*
* Task defines for handler.c and others that need to know the PRIORITY
*/

#define TIPC_TASK_PRIORITY (52)

#define TIPC_TASK_OPTIONS (0)
#define TIPC_TASK_STACKSIZE (5000)

214

D Header File Definitions
D.2 Definitions

/*
* Application-accessible port name types
*/
#define TIPC_NET_ EVENTS 0 /* network event subscription name type */
#define TIPC_TOP_SRV 1 /* topology service name type */
#define TIPC_RESERVED_TYPES 64 /* lowest user-publishable name type */
/*

* Publication scopes when binding port names and port name sequences
*/

#define TIPC_ZONE_SCOPE 1
#define TIPC_CLUSTER_SCOPE 2
#define TIPC_NODE_SCOPE 3
/*
* Limiting values for messages
*/

#define TIPC_MAX USER_MSG_SIZE 66000

/*
* Message importance levels
*/

#define TIPC_LOW_IMPORTANCE
#define TIPC_MEDIUM_ IMPORTANCE
#define TIPC_HIGH_IMPORTANCE
#define TIPC_CRITICAL_IMPORTANCE

/* default */

/*
* Msg rejection/connection shutdown reasons
*/

#define TIPC_OK

#define TIPC_ERR_NO_NAME
#define TIPC_ERR_NO_PORT
#define TIPC_ERR_NO_NODE
#define TIPC_ERR_OVERLOAD
#define TIPC_CONN_SHUTDOWN

aabd WNPE o

/*
* TIPC topology subscription service definitions
*/

#define TIPC_SUB_PORTS 0x01 /* filter for port availability */
#define TIPC_SUB_SERVICE 0x02 /* filter for service availability */
#1f 0

/* The following filter options are not currently implemented */

#define TIPC_SUB_NO_BIND_EVTS 0x04 /* filter out "publish" events */
#define TIPC_SUB_NO_UNBIND_EVTS 0x08 /* filter out "withdraw" events */
#define TIPC_SUB_SINGLE_EVT 0x10 /* expire after first event */

#endif

215

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

#define TIPC_WAIT_FOREVER ((__u32)~0) /* timeout for permanent subscription */

struct tipc_subscr {

struct tipc_name_seq seq; /* name sequence of interest */
__u32 timeout; /* subscription duration (in ms) */
_u32 filter; /* bitmask of filter options */
char usr_handle[8]; /* available for subscriber use */
}i
#define TIPC_PUBLISHED 1 /* publication event */
#define TIPC_WITHDRAWN 2 /* withdraw event */
#define TIPC_SUBSCR_TIMEOUT 3 /* subscription timeout event */
struct tipc_event {
__u32 event; /* event type */
__u32 found_lower; /* matching name seq instances */
__u32 found_upper; /* " " " " */
struct tipc_portid port; /* associated port */
struct tipc_subscr s; /* associated subscription */
Y
/*

* Socket API

#ifndef AF_TIPC
#define AF_TIPC 33 /* SOCK_STREAM, SOCK_SEQPACKET, SOCK_RDM, SOCK_DGRAM */
#endif

#define TIPC_ADDR_NAMESEQ 1
#define TIPC_ADDR_MCAST 1
#define TIPC_ADDR_NAME 2
#define TIPC_ADDR_ID 3
struct sockaddr_tipc {
unsigned char addrlen; /* 16 */
unsigned char family; /* AF_TIPC */
unsigned char addrtype; /* TIPC_ADDR_Xxx */
unsigned char scope; /* used with bind */
union {
struct tipc_portid id; /* if TIPC_ADDR_ID */
struct tipc_name_seq nameseq; /* if TIPC_ADDR_NAMESEQ/_MCAST */
struct { /* if TIPC_ADDR_NAME */
struct tipc_name name;
__u32 domain; /* 0: own zone; used w/ connect, sendto */
} name;
} addr;

Y

216

D Header File Definitions
D.2 Definitions

/*

* Ancillary data objects supported by recvmsg ()
*/

#define TIPC_ERRINFO 1

#define TIPC_RETDATA 2
#define TIPC_DESTNAME 3

/*
* TIPC-specific socket option values
*/

#define SOL_TIPC 50
#define TIPC_IMPORTANCE 127
#define TIPC_SRC_DROPPABLE 128
#define TIPC_DEST_DROPPABLE 129
#define TIPC_CONN_TIMEOUT 130

/*
/*
/*

/*
/*
/*
/*
/*

error info */
returned data */
destination name */

TIPC socket option level */

Default: TIPC_LOW_IMPORTANCE */
Default: 0 (resend congested msg) */
Default: based on socket type */
Default: 8000 (ms) */

217

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

218

Sample TIPC Application

E.1 Introduction 219
E.2 TIPC Inventory Simulation 220

E.1 Introduction

This appendix provides a sample application illustrating the use of the Wind River
TIPC API The application is a demonstration program,
tipcInventorySim_VxWorks.c, that simulates a store with items for sale and
customers who enter the store to purchase items.

The demonstration program is available online:
installDir/vxworks-6.x/target/src/demo/tipcInventorySim_VxWorks.c

If you include the TIPC inventory simulation demo (INCLUDE_TIPC_IS) build
component in your build, the code for the inventory simulation is brought into
your VxWorks Image Project as a downloadable kernel project, ready for
compilation.

219

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

E.2 TIPC Inventory Simulation

The following description of a sample TIPC program is slightly modified from the
original text in tipcInventorySim_VxWorks.c. The source code is unchanged.

E.2.1 Description

The file tipcInventorySim_VxWorks.c contains a demonstration program that
illustrates the way TIPC can be used to support distributed applications. It takes
advantage of TIPC's reliable connection-oriented messaging, its port-naming
(functional-addressing) capability, and its port-name subscription feature.

The program simulates a store that stocks a number of different items. The
program randomly creates items for purchase. From time to time a customer enters
the store looking for an item. If the item is not available, the customer waits for it
for a limited period of time before leaving. The item wanted by each customer and
the length of time the customer will wait for it are randomly generated within a
fixed range. The interval between the arrival of customers is also random, but there
is a limit on the number of customers who can be in the store at one time.

Every item and every customer is implemented as a separate task. An item is
available when it creates a socket whose port name identifies the type (see

2.5.3 Functional Addressing, p.13) of the item. A customer obtains an item by
sending a message to the socket associated with the desired item and receiving a
reply, after which both the item and the customer tasks are terminated.

Customers use TIPC's port-name subscription feature (see 2.7 Subscriptions, p.18)
to determine whether the desired item is available and then use TIPC's implied
connection capability (see 2.3 Messaging Overview, p.9) to establish a connection to
the item. If a race condition arises when multiple customers are waiting for the
same item, the item is sold to the first customer who connects to it. The remaining
customers simply wait for another item of the same type to appear and then try
again to purchase it.

The simulation is most effective when it is run on multiple CPUs at the same time.
Since the port name used by an item is published throughout the TIPC cluster,
customers can obtain the item from another CPU if it is not available locally. The
more CPUs involved in the simulation, the more items are available and the less
likely a customer is to walk out of the store empty-handed because an item is
unavailable.

When the simulation is terminated on a node, it waits for all customers to leave the
store and then generates extra customers to purchase any unsold items on the

220

E Sample TIPC Application
E.2 TIPC Inventory Simulation

node. TIPC's name-sequence subscription feature is used to allow the termination
code to distinguish between items in its own store and items in other stores.

The following shell commands are available for running the simulation:
* newSim(])
Create a new simulation on the current node, where:
I > 0 auto-generates items and customers for items 1 to I
I = 0 auto-generates items and customers for all possible items

I < 0 requires manual generation of items (see newlItem([,R)) and
customers (see newCust([,R))

* stopSim
Halts the simulation on all nodes.
= startSim
Resumes the simulation on all nodes.
= killSim
Terminates the simulation on this node, only.
= newltem(,R)
Create one or more items on the current node, where:
I > 0 assigns the specified ID to an item
I =0 assigns a randomly generated ID to an item
R > 0 creates R items, one at a time
R =0 creates one item
R < 0 creates an unlimited number of items, one at a time
* newCust(,R)
Create one or more customers on the current node, where:
I'> 0 assigns the specified ID to a customer
I =0 assigns a randomly generated ID to an customer
R > 0 creates R customers, one at a time
R =0 creates one customer

R < 0 creates an unlimited number of customers, one at a time

221

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

While the simulation is halted (stopSim), you can use the following commands to
get information about the simulation:

= showSim

Display status and statistical information about the simulation. Most of the
displayed information applies only to the local node.

LI

Display all tasks running on this node. Tasks for items have names of the form
item_X, where X is the ID of the item. Tasks for customers have names of the
form custN_X, where N is the ID of the customer and X is the ID of the item
the customer wants to purchase.

» tipcConfig "nt"

If the tipcConfig utility is enabled, display port names for all simulated items,
including those on other nodes in the TIPC network.

To enable the tipcConfig utility, you need to include the
TIPC configuration and display routines INCLUDE_TIPC_SHOW) in your
project build

E.2.2 Source Code

/* tipcInventorySim_VxWorks.c - TIPC distributed inventory sim for VxWorks */
/* Copyright (c) 2004-2005 Wind River Systems, Inc. */
/* includes */

#include <vxWorks.h>
#include <memLib.h>
#include <selectLib.h>
#include <semLib.h>
#include <sockLib.h>
#include <stdio.h>
#include <string.h>
#include <sysLib.h>
#include <taskLib.h>
#include <tickLib.h>
#include <tipc/tipc.h>

/* defines */

#define TIPC_SALES_DEMO_TYPE 75 /* TIPC type # used by items in demo */
#define MSG_SIZE_MAX 50 /* maximum message size (in bytes) */
#define MAX_CUSTOMERS 10 /* maximum # of customers per CPU */

222

E Sample TIPC Application
E.2 TIPC Inventory Simulation

#define MAX_ITEMS 10 /* maximum # of items per CPU */
#define DEMO_ITEM_ID_MIN 1 /* minimum item ID */
#define DEMO_ITEM_ID_MAX 10 /* maximum item ID */

#define NUM_DEMO_ITEMS (DEMO_ITEM ID_MAX - DEMO_ITEM ID_MIN + 1)

#define CUSTOMER_WAIT MIN 5000 /* min time a customer will wait (ms) */
#define CUSTOMER_WAIT MAX 20000 /* max time a customer will wait (ms) */
#define NEW_CUST WAIT MIN 1000 /* min time before new customer (ms) */
#define NEW_CUST WAIT MAX 5000 /* max time before new customer (ms) */
#define NEW_ITEM WAIT MIN 0 /* min time before new item (ms) */
#define NEW_ITEM WAIT MAX 8000 /* max time before new item (ms) */
#define SIM_STATUS_INTERVAL 10000 /* time between status displays (ms) */
#define ITEM_GEN_TASK_ PRI 110

#define CUSTOMER_GEN_TASK_PRI 110

#define ITEM_TASK_PRI 120

#define CUSTOMER_TASK_ PRI 130

#define SIM_STATUS_TASK_PRI 140

#define ITEM_STACK_SIZE 5000

#define CUSTOMER_STACK_SIZE 5000

#define ITEM_GEN_STACK_SIZE 5000

#define CUSTOMER_GEN_STACK_SIZE 5000
#define SIM_STATUS_STACK_SIZE 5000

#define TIPC_BOGUS_SUBSCR_TYPE TIPC_TOP_SRV
#define TIPC_BOGUS_SUBSCR_INST 0

/* locals */

LOCAL int simActive = FALSE; /* 1s simulation created? */

LOCAL int simErrors; /* error counter */

LOCAL int simWarnings; /* warning counter */

LOCAL SEM_ID semSyncLock; /* used to avoid interleaved output
(and to pause simulation) */

LOCAL SEM_ID semltems; /* used to limit # items per CPU */

LOCAL SEM_ID semCustomers; /* used to limit # customers per CPU */

LOCAL int tidCustGen; /* task ID of customer generator */

LOCAL int tidItemGen; /* task ID of item generator */

LOCAL int tidShowSim; /* task ID of status display */

LOCAL int ticksPerSec; /* helps convert ms to ticks */

LOCAL int itemCount [NUM_DEMO_ITEMS] ; /* # of items in stock */

LOCAL int customerCount [NUM_DEMO_ITEMS];/* # customers waiting for item */

LOCAL int itemsSold[NUM_DEMO_ITEMS] ; /* # of items sold */

LOCAL int customerSales; /* # customers who left with item */

/* Note: customer sales may not match total items sold
because customers can buy items from other locations! */

LOCAL int customerExits; /* # customers who left w/o item */
LOCAL int customerRetries; /* # customers who had to retry */
LOCAL int itemO_fd = -1; /* socket used to halt simulation */

223

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

LOCAL int doOneLoop = 0; /* used to clean up the warnings in multi_printf */
/ *
* This macro ensures simultaneous printf's aren't interleaved.
*/
#ifdef _WRS_GNU_VAR_MACROS
#define multi_printf (fmt, arg...) \
do { \

semTake (semSyncLock, WAIT FOREVER); \
printf (fmt, ## arg); \
semGive (semSyncLock); \

} while (doOneLoop)

#else
#define multi_printf(...) \
do { \
semTake (semSyncLock, WAIT FOREVER); \
printf (__VA_ARGS_); \

semGive (semSyncLock); \
} while (doOneLoop)
#endif

JRRK KK KKK KK AKK KK KEKK K I KXK KK KX K KK AXK KKK XX K K KA X KKK KA XK IR KX XK IR LXK KK KKK K F Xk Kk ok Kk
*

* randomGet - random number generator
This routine returns a random integer in the specified range (inclusive).

RETURNS: random value

L I

/

int randomGet

(

int minvalue, /* lowest permitted value */
int maxValue /* highest permitted value */
)

{

return (rand() % (maxValue - minvalue + 1)) + minValue;

}

/***
*

showSim - display simulation status
This routine prints out the status of the sales demo (on this CPU only) .

RETURNS: OK or ERROR

EE

224

E Sample TIPC Application
E.2 TIPC Inventory Simulation

STATUS showSim (void)

{

int 1i; /* loop counter */

printf ("\nItem # ")

for (1 = 0; 1 < NUM_DEMO_ITEMS; i++)
printf (" %$3d", DEMO_ITEM ID MIN + i);

printf ("\n---------- ") ;

for (i = 0; i1 < NUM_DEMO_ITEMS; i++)
printf ("----");

printf ("\nSold ") ;

for (1 = 0; 1 < NUM_DEMO_ITEMS; i++)
printf (" %$3d", itemsSoldl[il]);

printf ("\nIn Stock :");

for (i = 0; i < NUM_DEMO_ITEMS; i++)

printf (" %$3d4d", itemCount[i]);
printf ("\nCustomers:");
for (1 = 0; 1 < NUM_DEMO_ITEMS; i++)
printf (" %$3d", customerCount[i]);

printf ("\n\nCustomer totals: sales = %d, walkouts = %d, retries = %d\n\n",
customerSales, customerExits, customerRetries);

printf ("Simulation totals: errors = %d, warnings = %d\n\n",
simErrors, simWarnings);

return OK;

}

JRRK KK KKK KKK EKKK K KXK KK I KX K KK AXXK KK AXKK I KA KK KA X KKK KA XK KK A XX K IR LXK KK KA * KK F A Xk Kk ok Kk

*

E R S

simStatShow - simulation status monitor

This routine is the mainline for the simulation status display task.
It is also responsible for halting the simulation whenever item 0 exists.

void simStatShow (void)

{

struct tipc_subscr subscr; /* subscription info */

int sockfd_w; /* socket descriptor */

struct sockaddr_tipc topsrv; /* topology server socket address */

memset (&topsrv, 0, sizeof (topsrv));

topsrv. family = AF_TIPC;

topsrv.addrtype = TIPC_ADDR_NAME;
topsrv.addr.name.name.type = TIPC_TOP_SRV;
topsrv.addr.name.name.instance = TIPC_TOP_SRV;

multi_printf ("Status display task created\n");
/* Subscribe to watch for item 0 */
TIPC_SALES_DEMO_TYPE;

0;
0;

subscr.seq. type
subscr.seq. lower
subscr.seq.upper

225

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

subscr.timeout = TIPC_WAIT_ FOREVER;
subscr.filter = TIPC_SUB_SERVICE;
subscr.usr_handle[0] = O;

/* Create socket to watch for item 0 */

sockfd_w = socket (AF_TIPC, SOCK_SEQPACKET, O0);
if (sockfd_w < 0)
{
multi_printf ("Can't create socket to watch for item 0\n");
goto simStatShow_end;
}

if (connect (sockfd_w, (struct sockaddr*)&topsrv, sizeof (topsrv)) < 0)
{
multi_printf ("show : Can't connect to TOP server\n");
goto simStatShow_end;
}
if (send (sockfd w, (char *)&subscr, sizeof (subscr), 0) < 0)
{
multi_printf ("Can't watch for item 0\n");
goto simStatShow_end;
}

/* Now loop endlessly */

FOREVER
{

struct tipc_event event; /* event from topology server */
/* Start bogus subscription to force timeout event */

subscr.seq.type = TIPC_BOGUS_SUBSCR_TYPE;
subscr.seq.lower = TIPC_BOGUS_SUBSCR_INST;
subscr.seq.upper = TIPC_BOGUS_SUBSCR_INST;
subscr.filter = TIPC_SUB_SERVICE;
subscr. timeout = SIM_ STATUS_INTERVAL;
subscr.usr_handle[0]++;

if (send (sockfd_w, (char *)&subscr, sizeof (subscr), 0) < 0)
{
multi_printf ("Can't watch for item 0\n");
goto simStatShow_end;
}

/* Wait until item 0 appears or it's time to print status */

FOREVER
{
if (recv (sockfd_w, (char *)&event, sizeof (event), 0)
< 0) {
multi_printf ("Error recv subscription on item 0\n");
goto simStatShow_end;
}

226

E Sample TIPC Application
E.2 TIPC Inventory Simulation

if (event.event == TIPC_PUBLISHED)
break;

if ((event.event == TIPC_SUBSCR_TIMEOUT) &&
(event.s.usr_handle[0] == subscr.usr_handle[0]))
break;

}

/* Quit if simulation has ended */

if (!simActive)
break;

/* Print simulation status */

semTake (semSyncLock, WAIT FOREVER) ;
showSim () ;

/* Halt simulation as long as item 0 exists */

if (event.event == TIPC_PUBLISHED)
{
printf ("\nSimulation halted\n");
FOREVER
{
if (recv (sockfd w, (char *)&event, sizeof (event), 0) < 0)
{

multi_printf ("Error recv subscription on item 0\n");
goto simStatShow_end;
}

if (event.event == TIPC_WITHDRAWN)
{
break;
}
}
printf ("\nSimulation resumed\n");

}
/* Release print lock */

semGive (semSyncLock) ;
}

multi_printf ("Status display task deleted\n");
simStatShow_end:

close (sockfd w);

tidShowSim = (int)NULL;

}

KKK KK K K K K K KR K R K K R R KR R R R R R R R R R R R R R R R R R R K R R R R R R R R R R R R R R R R Rk K kR kK

simItem - simulated item
This routine is the body of an item task.

RETURNS: OK or ERROR

227

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

*/

STATUS simItem
(

int itemID /* item identifier */

)

{

int sockfd_1; /* descriptor for listening socket */
int sockfd_s; /* descriptor for server socket */
struct sockaddr_tipc addr; /* socket address */

int addrlen; /* socket address length */

char inMsg [MSG_SIZE_MAX] ; /* request msg from customer */

char outMsg [MSG_SIZE_MAX] ; /* reply msg to customer */

int msgSize; /* message size (in bytes) */

uint zone; /* zone ID of own node */

uint cluster; /* cluster ID of own node */

uint node; /* node ID of own node */

char itemName[8]; /* item name as character string */
int haveItem; /* TRUE i1f item has not been bought */
int res; /* operation success indicator */

int addr_size=sizeof (struct sockaddr_tipc); /* size of tipc sockaddr */

sprintf (itemName, "Item %d", itemID);
multi_printf ("%$s created\n", itemName) ;

/* Create listening socket for item */

sockfd_1 = socket (AF_TIPC, SOCK_SEQPACKET, O0);
if (sockfd_1l < 0)

{
multi_printf (" ERROR: %s can't create socket\n", itemName) ;
simErrors++;
if (errno == EAFNOSUPPORT)

{

multi_printf

(">>>>> MAKE SURE THAT TIPC IS ENABLED!!! <<<<<\n");

}
else

multi_printf("errno = %d (simErrors=%d).\n", errno, simErrors);
return ERROR;
}

res = listen (sockfd 1, 5);
if (res < 0)
{
multi_printf (" ERROR: %s can't listen for customers\n", itemName) ;
simErrors++;
close (sockfd_1);
return ERROR;
}

/* Determine own node address */
if (0 > getsockname (sockfd 1, (struct sockaddr *)&addr, &addr_size))

{

multi_printf (" ERROR: %s can't determine own address\n", itemName) ;

228

E Sample TIPC Application
E.2 TIPC Inventory Simulation

simErrors++;
close(sockfd_ 1) ;
return ERROR;

}

zone = tipc_zone (addr.addr.id.node);
cluster = tipc_cluster (addr.addr.id.node) ;
node = tipc_node (addr.addr.id.node) ;

/* bind socket and publish name */

addr.family = AF_TIPC;

addr.addrtype = TIPC_ADDR_NAME;

addr.scope = TIPC_ZONE_SCOPE;

addr .addr .name.name.type = TIPC_SALES_DEMO_TYPE;
addr .addr .name.name. instance = itemID;

addr.addr .name.domain = 0;

addrlen = sizeof (addr);

res = bind (sockfd_1, (struct sockaddr *)&addr, addrlen);
if (res < 0)

{

multi_printf (" ERROR: %s can't publish its name\n",

simErrors++;

close (sockfd_1);

return ERROR;

}

/* Continue until a customer takes the item */
itemCount [itemID - DEMO_ITEM ID MIN]++;
haveltem = TRUE;

while (haveItem)

{

/* Wait for a customer to request item */

sockfd_s = accept (sockfd_ 1, (struct sockaddr *)&addr,

if (sockfd_s < 0)
{

multi_printf (" ERROR: %s connection failure\n",

simErrors++;
break;

}

msgSize = recv (sockfd_s, inMsg, sizeof (inMsg), 0);
if (msgSize <= 0)
{

/* Try again if customer fails to send request */

itemName) ;

&addrlen) ;

itemName) ;

multi_printf (" WARNING: %s didn't get customer request\n",

itemName) ;
simWarnings++;
}
else

{

sprintf (outMsg, "<%d.%d.%d>%s", zone, cluster, node, inMsg);

229

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

msgSize = strlen (outMsg) + 1;

res = send (sockfd_s, outMsg, msgSize, 0);

if (res != msgSize)
{
/* Try again if can't send reply back to customer */
multi_printf (" WARNING: %s couldn't reply to customer\n",
itemName) ;
simWarnings++;
}
else
{
char * ptr;
if ((ptr = strchr (inMsg, '[')) != NULL)
*ptr = '\0';

multi_printf ("%$s given to customer from %s\n",
itemName, inMsg) ;

haveItem = FALSE;

}

close (sockfd_s);

}
itemCount [itemID - DEMO_ITEM_ID_MIN]--;
itemsSold[itemID - DEMO_ITEM ID_MIN]++;

/* Indicate item is no longer available */

close (sockfd 1);
semGive (semItems) ;

return (haveItem) ? ERROR : OK;
}

JRRK KK KKK KK KX KK K KXK KKK KX K KK KX KKK AKX KKK K LXK KK KX KKK KKK KK KX XK IR A KKK KKK KK KXk Kk ok Kk

*

simItemGen - simulated item generator

*

*

This routine is the mainline for the item generator task.

*

*
~

void simItemGen

(

int maxItemID /* max item ID for items */

)

{

int itemID; /* item ID for next item */

int waitTime; /* delay before creating next item */
char taskName[11l]; /* task name character string */

multi_printf ("Item generator created\n");

FOREVER
{

230

E Sample TIPC Application
E.2 TIPC Inventory Simulation

/* Only create a new item if fewer than the maximum exist */

if ((semTake (semItems, WAIT_FOREVER) == ERROR) || (!simActive))
break;

/* Create randomly selected item */
itemID = randomGet (DEMO_ITEM_ID_MIN, maxItemID) ;
sprintf (taskName, "item_%d", itemID);
taskSpawn (taskName, ITEM_TASK_PRI, 0, ITEM_STACK_SIZE,
(FUNCPTR) simItem, itemID, O, O, O, O, 0, 0, 0, O, 0);
/* Do null print so generator pauses here when simulation is halted */
multi_printf ("");

/* Delay a bit to avoid creating items too quickly */

waitTime = randomGet (NEW_ITEM _WAIT MIN, NEW_ITEM_WAIT_ MAX) ;
taskDelay ((waitTime * ticksPerSec)/1000) ;

}
multi_printf ("Item generator deleted\n");
tidItemGen = (int)NULL;
}

JRRK KK KKK KKK AKKK K KXKK KK KX K KK AKX KKK AXK KK KA KKK KA KKK KA XK KKK XX KKK A KKK KKK K kX Kk Kh ok Kk

* newltem - manually create simulated item

*

* This routine allows a user to create a specified item.
*

* RETURNS: OK or ERROR

y

STATUS newltem
(

int itemID, /* item identifier (0 = random) */

int itemCount /* # times to repeat (< 0 = forever) */
)

{

int 1i; /* loop counter */

int res = ERROR; /* return code */

if (!simActive)
{
printf ("Simulation not active on this node\n") ;
return ERROR;

}
if (itemID == 0)
;rintf ("Random item(s) will be created\n");
else}if ((itemID < DEMO_ITEM ID_MIN) || (itemID > DEMO_ITEM ID_MAX))

231

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

{

printf ("Item number must be in the range %d to %d\n",
DEMO_ITEM_ ID_ MIN, DEMO_ITEM_ID_MAX) ;

return ERROR;

}
if (itemCount == 0)
{
itemCount = 1;
}
taskPrioritySet (taskIdSelf (), ITEM_TASK_PRI) ;
for (i = 1; (itemCount < 0) || (i <= itemCount); i++)
{
res = semTake (semItems, WAIT FOREVER) ;
if (res == ERROR)
{
printf ("Unable to create item\n");
break;
}

res = simItem ((itemID > 0) ? itemID
randomGet (DEMO_ITEM_ID_MIN, DEMO_ITEM_ID_ MAX)) ;

/* don't exit if item had problems (some errors aren't fatal) */
}

return res;

}

JRRK KK KKK KKK XKXKK K KIK KK I KX K KK AXXK KK AXK KK KA KK KA X KKK KA XK I KA XX K IR LXK KKK KKK KXk Kk ok Kk

*

L S T S e . S

simCust - simulated customer
This routine is the body of a customer task.

NOTE: Currently no attempt is made to reduce the customer's maximum waiting
time following a failed attempt to obtain an item; instead, the customer
just starts waiting all over again. [Perhaps the appearance of the desired
item in the network (even though it wasn't obtained) is enough encouragement
to keep the customer hanging around longer than originally intended. :-)]

The searchDomain parameter is normally passed as 0 to indicate that the
desired item can be anywhere in the network. A non-zero value (such as
the local node address) is used in simulation termination to connect to
local items.

RETURNS: TRUE if desired item was obtained, otherwise FALSE

int simCust

(

int customerID, /* unique ID for customer */
int itemID, /* desired item */
int waitTime, /* max time to wait (in ms) */

232

E Sample TIPC Application
E.2 TIPC Inventory Simulation

uint searchDomain /* where in network to look for item */
)

{

int sockfd_c; /* descriptor for customer socket */
int sockfd_s; /* descriptor for subscription socket */
struct tipc_subscr subscr; /* blocking subscription info */

struct tipc_event event; /* topology events (subscription) */
struct sockaddr_tipc addr; /* socket address */

int addrlen; /* socket address length */

char msg [MSG_SIZE_MAX] ; /* message to/from item */

int msgSize; /* size of message (in bytes) */

uint zone; /* zone ID of own node */

uint cluster; /* cluster ID of own node */

uint node; /* node ID of own node */

char custName [20] ; /* customer name as character string */
int transactionID; /* counts attempts to get item */

int needItem; /* TRUE i1f customer still needs item */
fd_set readFds; /* socket to watch for item's reply */
struct timeval timeLimit; /* time to wait for item's reply */

int res; /* operation success indicator */

sprintf (custName, "Customer %d", customerID) ;
multi_printf ("%$s wants item %d within %d ms\n",
custName, itemID, waitTime) ;

/* subscribe to item name */
subscr.seq.type = TIPC_SALES_DEMO_TYPE;
subscr.seq.lower = itemID;
subscr.seq.upper = itemID;
subscr.timeout = waltTime;
subscr.filter = TIPC_SUB_PORTS;

sockfd_s = socket (AF_TIPC, SOCK_SEQPACKET, O0);
if (sockfd_s < 0)

{
multi_printf ("cust: can't create subscr socket\n");
simErrors++;
if (errno == EAFNOSUPPORT)
{
multi_printf
(">>>>> MAKE SURE THAT TIPC IS ENABLED!!! <<<<<\n");
}
else

multi_printf("errno = %d (simErrors=%d).\n", errno, simErrors);
return 0;

}

/* Determine own node address */
addrlen = sizeof (struct sockaddr_tipc);
if (getsockname (sockfd_s, (struct sockaddr *)&addr, &addrlen) < 0)
{
multi_printf (" ERROR: %s can't determine own address\n",
custName) ;
simErrors++;
close(sockfd_s) ;
return 0;

233

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

}
zone = tipc_zone(addr.addr.id.node) ;
cluster = tipc_cluster (addr.addr.id.node) ;
node = tipc_node(addr.addr.id.node) ;

/* set up addressing */

memset (&addr, 0, sizeof (addr)) ;

addr. family = AF_TIPC;

addr.addrtype = TIPC_ADDR_NAME;

addr .addr .name.name.type = TIPC_TOP_SRV;
addr.addr .name.name. instance = TIPC_TOP_SRV;

/* send subscription to topology server */

if (sendto(sockfd_s, (char *)&subscr, sizeof (subscr), 0,
(struct sockaddr *)&addr, sizeof(addr)) < 0)
{
multi_printf ("simCust: can't connect to TOP server\n");
simErrors++;
close (sockfd_s);
return 0;

}

customerCount [itemID - DEMO_ITEM ID MIN]++;
needItem = TRUE;
transactionID = 0;
while (needItem)
{

/* Wait for desired item to appear */

if (recv (sockfd_s, (char *)&event, sizeof (event), 0) != sizeof (event))
{
multi_printf (" ERROR: %s subscription failure\n",
custName) ;
simErrors++;
break;
}
printf ("simCust (%s): received an event\n", custName); /* ELMER */
if (event.event == TIPC_SUBSCR_TIMEOUT)
{

multi_printf ("%$s left without item %d after %d ms\n",
custName, itemID, waitTime) ;
customerExits++;
break;
}
if (event.event == TIPC_WITHDRAWN)
{
/* ignore withdrawl events */
continue;

}

/* termination of local simulator if searchDomain != 0;
* clean up all remaining item tasks on local node */

if ((searchDomain != 0) && (event.port.node != searchDomain))

{

/* ignore all non-local items */

234

E Sample TIPC Application
E.2 TIPC Inventory Simulation

continue;

}
/* Create customer socket */

sockfd_c = socket (AF_TIPC, SOCK_SEQPACKET, O0);
if (sockfd_c < 0)
{
multi_printf (" ERROR: %s can't create socket\n", custName) ;
simErrors++;
break;

}
/* Try to choose item (using specified port id) */

addr.family = AF_TIPC;
addr.addrtype = TIPC_ADDR_ID;
addr.addr.id = event.port;
addrlen = sizeof (addr) ;

sprintf (msg, "<%d.%d.%d>[%d:%d]", zone, cluster, node,
customerID, ++transactionID);
msgSize = strlen (msg) + 1;

res = sendto (sockfd_c, msg, msgSize, O,
(struct sockaddr *)&addr, addrlen);

if (res != msgSize)
{
multi_printf (

" WARNING: %s unable to send request to item %d\n",
custName, itemID) ;

simWarnings++;

customerRetries++;

}

else

{

FD_ZERO (&readFds) ;

FD_SET (sockfd_c, &readFds);

timeLimit.tv_sec = ((waitTime + 999) / 1000);

timeLimit.tv_usec = 0;

if (select (sockfd_c + 1, &readFds, NULL, NULL, &timeLimit) == 0)
{
multi_printf (

" WARNING: %s missed item %d (no reply from item)\n",
custName, itemID) ;

simWarnings++;

customerRetries++;

}

else

{

msgSize = recv (sockfd_c, msg, sizeof (msg), 0);

if (msgSize <= 0)
{
multi_printf ("%$s missed item %d (item rejected request)\n",

custName, itemID) ;

customerRetries++;

235

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

}
else
{
char * ptr;
if ((ptr = strchr (msg, '>')) != NULL)

*(ptr + 1) = '\0';

multi_printf ("%$s got item %d from %s\n",
custName, itemID, msg);

needItem = FALSE;

customerSales++;

}

close (sockfd c);
/* Give TIPC 0.5s to withdraw item name in case item was on slow CPU */

if (needItem)
taskDelay ((500 * ticksPerSec)/1000);
}
close(sockfd_s) ;
customerCount [itemID - DEMO_ITEM_ID_MIN]--;

/* Desired item obtained or unavailable, so exit */
semGive (semCustomers) ;

return needItem == FALSE;
}

/***

*

simCustGen - simulated customer generator

*
*
* This routine is the mainline for the customer generator task.
*
*

void simCustGen

(

int maxItemID /* max item ID for customers */

)

{

int customerID; /* unique ID for next customer */
int itemID; /* item ID for next customer */
int waitTime; /* time to wait (in ms) */

char taskName[11l]; /* task name character string */

multi_printf ("Customer generator created\n");
customerID = 1;
FOREVER

{

/* Only create a new customer if fewer than the maximum exist */

236

E Sample TIPC Application
E.2 TIPC Inventory Simulation

if ((semTake (semCustomers, WAIT_FOREVER) == ERROR) || (!simActive))
break;

/* Create customer for randomly selected item */
itemID = randomGet (DEMO_ITEM_ ID_MIN, maxItemID) ;
waitTime = randomGet (CUSTOMER_WAIT MIN, CUSTOMER_WAIT_MAX) ;
sprintf (taskName, "cust%d_%d", customerID, itemID);
taskSpawn (taskName, CUSTOMER_TASK_PRI, 0, CUSTOMER_STACK_SIZE,
(FUNCPTR) simCust, customerID, itemID, waitTime,
o, 0, 0, 0, 0, 0, 0);

/* Increment customer ID (but don't let it exceed 3 digits) */

if (++customerID > 999)
customerID = 1;

/* Do null print so generator stops here when simulation is halted */
multi_printf ("");
/* Delay a bit to avoid creating customers too quickly */

waitTime = randomGet (NEW_CUST WAIT MIN, NEW_CUST_WAIT_MAX) ;
taskDelay ((waitTime * ticksPerSec)/1000) ;

}
multi_printf ("Customer generator deleted\n");
tidCustGen = (int)NULL;
}

JRRK KK KKK KKK AKKK K KX KK K I KX K KK AXXK KK AXK K I ALK KK AX KKK I A XK KK A XX K IR LXK KKK LR KK Xk Kk ok Kk

*

newCust - manually create simulated customer

This routine allows a user to create a customer looking for a specified item.
The customer is automatically assigned customer ID 1000 and a random time

to wait for the item.

RETURNS: OK or ERROR

* ok ok 3k X X %

STATUS newCust
(

int itemID, /* desired item (0 = random) */

int custCount /* # times to repeat (< 0 = forever) */
)

{

int 1i; /* loop counter */

int res = ERROR; /* return code */

if (!'simActive)
{

printf ("Simulation not active on this node\n") ;

237

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

return ERROR;

}

if (itemID == 0)
érintf ("Random item(s) will be chosen for purchase\n");

else}if ((itemID < DEMO_ITEM ID_MIN) || (itemID > DEMO_ITEM ID_MAX))
{

printf ("Item number must be in the range %d to %d\n",
DEMO_ITEM ID_MIN, DEMO_ITEM_ ID_MAX) ;
return ERROR;

}
if (custCount == 0)
{
custCount = 1;
}
taskPrioritySet (taskIdSelf (), CUSTOMER_TASK_ PRI);
for (i = 1; (custCount < 0) || (i <= custCount); i++)
{
res = semTake (semCustomers, WAIT_FOREVER) ;
if (res == ERROR)
{
printf ("Unable to create customer\n");
break;
}

res = simCust (1000, (itemID > 0) ? itemID
randomGet (DEMO_ITEM_ ID MIN, DEMO_ITEM_ID_MAX),
randomGet (CUSTOMER_WAIT MIN, CUSTOMER_WAIT MAX), O0);

/* don't exit if customer didn't get item (timeouts aren't fatal) */

}

return res;

}

/***

*

* newSim - create sales demo
This routine starts up the sales demo.

RETURNS: OK or ERROR

EE S

STATUS newSim
(

int maxItemID /* max item ID for generated things */
)
{

int i; /* loop counter */

238

E Sample TIPC Application
E.2 TIPC Inventory Simulation

if (simActive)
{
multi_printf ("Simulation already active on this node\n") ;
return ERROR;

}
if (maxItemID < 0)
{
/* Won't auto-generate any items or customers */
}
else if (maxItemID == 0)
{
maxItemID = DEMO_ITEM ID MAX;
}
else if ((maxItemID < DEMO_ITEM_ID_ MIN) || (maxItemID > DEMO_ITEM_ID_MAX))
{

printf ("Maximum item number must be in the range %d to %d\n",
DEMO_ITEM_ ID_MIN, DEMO_ITEM_ ID_MAX) ;

return ERROR;

}

/* Initialize data structures used by simulation */

ticksPerSec = sysClkRateGet () ;
srand ((unsigned int)tickGet ());

semSyncLock = semBCreate (SEM_Q FIFO, SEM_FULL) ;
semItems = semCCreate (SEM_Q_ FIFO, MAX ITEMS) ;
semCustomers = semCCreate (SEM_Q FIFO, MAX_CUSTOMERS) ;

for (i = 0; i < NUM_DEMO_ITEMS; i++)

{

itemsSold[i] 0;

itemCount[i] = 0;

customerCount [i] = 0;

}
customerSales = 0
customerExits = 0;
customerRetries =

simErrors = 0;
simWarnings = 0;
simActive = TRUE;
/* Display initial status */
printf ("Sales demo created\n");
showSim () ;
/* Spawn status display task, and optional customer and item generators */
tidShowSim = taskSpawn (
"sim_show", SIM_STATUS_TASK_PRI, 0, SIM_STATUS_STACK_SIZE,

(FUNCPTR) simStatShow, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
if (maxItemID >= 0)

239

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

{
tidItemGen = taskSpawn (
"item_gen", ITEM GEN_TASK PRI, 0, ITEM_GEN_STACK_SIZE,
(FUNCPTR) simItemGen, maxItemID, O, 0, O, 0, 0, 0, 0, 0, 0);
tidCustGen = taskSpawn (
"cust_gen", CUSTOMER_GEN_TASK_PRI, 0, CUSTOMER_GEN_STACK_SIZE,
(FUNCPTR) simCustGen, maxItemID, 0, 0, 0, 0, 0, 0, 0, 0, 0);

}

else
{
tidItemGen = (int)NULL;
tidCustGen = (int)NULL;
}

return OK;

}

/***

*

stopSim - halt sales demo
This routine temporarily suspends the sales demo by creating an item 0.

RETURNS: OK or ERROR

EE S

STATUS stopSim (void)

{

struct sockaddr_tipc addr; /* socket address */

int addrlen; /* socket address length */

int res; /* operation success indicator */

if (!simActive)
{
printf ("Simulation not active on this node\n") ;
return ERROR;
}

if (itemO_fd >= 0)
{
printf ("Simulation already stopped by this node\n");
return ERROR;
}

item0_fd = socket (AF_TIPC, SOCK_SEQPACKET, O0);
if (itemO_fd < 0)
{
multi_printf ("Unable to create socket for item 0\n");
return ERROR;
}

addr.family = AF_TIPC;

addr.addrtype = TIPC_ADDR_NAME;

addr .scope = TIPC_ZONE_SCOPE;

addr .addr .name.name.type = TIPC_SALES_DEMO_TYPE;

240

E Sample TIPC Application
E.2 TIPC Inventory Simulation

addr.addr .name.name. instance = 0;
addr .addr .name.domain = 0;
addrlen = sizeof (addr);

res = bind (item0_fd, (struct sockaddr *)&addr, addrlen);
if (res < 0)

{

multi_printf ("Unable to publish name for item 0\n");

close (itemO_f£fd4d);

item0_fd = -1;

return ERROR;

}

return OK;

}

[KKK KK KK KK KK KK KKK KKK KK R R R K Kk KR K K Kk K R K K K R R R Kk R R R R Kk R R Xk Kok R R Rk Rk R R kK ok R Rk ok ok ok Rk ok k ok ok k

*

* %k X X ok

startSim - resume sales demo

This routine resumes the sales demo by destroying item 0.

RETURNS: OK or ERROR

STATUS startSim (void)

{
if (!simActive)
{
printf ("Simulation not active on this node\n") ;
return ERROR;
}

if (itemO_fd < 0)
{
printf ("Simulation not stopped by this node\n") ;
return ERROR;
}

close (itemO_£d) ;
item0_fd = -1;

return OK;

}

JRRK KK KKK I KA K KK KXKK KK KX K KK IIXK KK AXK KK KA K KK AX KKK KA K KK A XX K IR LXK KK A KKK kA Xk Khok Kk

*

EE R T

simDie - terminate sales demo

This routine terminates the sales demo.

NOTE: This routine must be run at "customer" task priority so that each
item it consumes has a chance to close its socket (& unbind the associated

item name) before the the termination code activates another customer --
otherwise the new customer may try to grab the just deleted item!

241

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

*

* RETURNS: OK or ERROR

*

*/

LOCAL STATUS simDie (void)
{
struct tipc_subscr subscr; /* general purpose subscription info */
struct tipc_event event; /* subscription event info */
struct sockaddr_tipc addr; /* topology server socket address */
struct sockaddr_tipc topsrv; /* topology server socket address */
int sockfd_c; /* socket descriptor for customer 0 */
int itemID; /* loop counter for processing items */
int addr_size=sizeof (struct sockaddr_tipc); /* size of tipc sockaddr */
int my_node; /* node ID of this node */

/* Tell generator and status display tasks to shut down */
simActive = FALSE;
semGive (semItems) ;
semGive (semCustomers) ;
/* Wait for customer tasks to timeout & terminate on their own */
for (itemID = 0; itemID < NUM_DEMO_ITEMS; itemID++)

while (customerCount[itemID] > 0)

taskDelay (1);

/* Wait for generator and status display tasks to terminate */

while (tidItemGen != (int)NULL)
taskDelay (1);

while (tidCustGen != (int)NULL)
taskDelay (1);

while (tidShowSim != (int)NULL)

taskDelay (1);
/* Display status before consuming unsold items */
showSim () ;
/* Consume unsold items (from this CPU only!) by creating fake customers */

sockfd_c = socket (AF_TIPC, SOCK_SEQPACKET, O0);

if (sockfd_c < 0)
{
multi_printf ("ERROR: can't create socket\n");
goto simDie_end;

}

memset (&topsrv, 0, sizeof (topsrv));
topsrv.family = AF_TIPC;

topsrv.addrtype = TIPC_ADDR_NAME;
topsrv.addr.name.name. type = TIPC_TOP_SRV;
topsrv.addr.name.name.instance = TIPC_TOP_SRV;

242

E Sample TIPC Application
E.2 TIPC Inventory Simulation

subscr.seq.type = TIPC_SALES_DEMO_TYPE;
subscr.seq.lower = DEMO_ITEM ID_MIN;
subscr.seq.upper = DEMO_ITEM_ID_MAX;
subscr.timeout = 10; /* need a nominal delay */
subscr.filter = TIPC_SUB_PORTS;

if (0 > getsockname (sockfd_c, (struct sockaddr *)&addr, &addr_size))
{
multi_printf ("ERROR: can't determine own address\n");
goto simDie_closeend;

}
my_node = addr.addr.id.node;

if (sendto (sockfd_c, (char *)&subscr, sizeof (subscr), O,
(struct sockaddr *)&topsrv, sizeof (topsrv)) < 0)
{
/* note that topsrv is set */
multi_printf ("ERROR: subscription failure\n");
goto simDie_closeend;

}

FOREVER
{
if (recv (sockfd_c, (char *)&event, sizeof (event), 0) < 0)
{

/* FIXME: some items may be left over after exiting */
multi_printf ("ERROR: receive problem\n") ;
goto simDie_closeend;

}
if (event.event == TIPC_SUBSCR_TIMEOUT)
break; /* all done */
if ((event.event == TIPC_PUBLISHED) &&
(event.port.node == my_node))
{
simCust (0, event.found_lower, 100, my node); /* stay on card */
}
else

/* ignore event */

}

simDie_closeend:
close(sockfd_c);

simDie_end:
/* Display final status & exit demo */

showSim () ;
semDelete (semCustomers) ;
semDelete (semItems) ;

semDelete (semSyncLock) ;

printf ("Sales demo terminated\n");

243

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

return OK;

}

VAR AR EE R AR EE R e R e R R R e R R
*

* killSim - initiate sales demo termination

*

* This routine spawns a task to terminate the sales demo.

*

* Note: The deletion is done by a separate task for several reasons:

* 1) It avoids locking up the VxWorks shell task during the termination

* phase, which can last for a number of seconds.

* 2) It provides a simple way to ensure the termination code runs at the

* proper task priority level (i.e. don't have to save & restore the current
* task priority of the VxWorks shell task).

* 3) It masks a minor side-effect of the VxWorks select() routine which can
* set errno to a non-zero value even when everything is working properly.
*

* RETURNS: OK or ERROR

*

*/

STATUS killSim (void)
{
if (!simActive)
{
printf ("Simulation not active on this node\n");
return ERROR;
}

if (taskSpawn (
"sim_kill", CUSTOMER_TASK_PRI, 0, CUSTOMER_STACK_SIZE,
(FUNCPTR) simDie, 0, 0, O, 0, 0, O, 0, 0, 0, 0) == ERROR)
{
printf ("Unable to terminate simulation\n");
return ERROR;
}

return OK;

}

/***

*

* memSim - show memory usage during simulation
This routine pauses the simulation for a memory dump.

RETURNS: OK or ERROR

EE I I

STATUS memSim (void)
{
if (!simActive)
{

printf ("Simulation not active on this node\n") ;

244

E Sample TIPC Application
E.2 TIPC Inventory Simulation

return ERROR;
}

stopSim () ;
memShow (1) ;
startSim () ;
return OK;

}

245

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

246

TIPC Log Messages

F.1 Introduction 247
F.2 Log Messages 248

F.1 Introduction

This appendix lists the messages that can appear in the TIPC log. There are three
types of messages:

* Informational (TIPC info)

» Warnings (TIPC warning)

» Errors (TIPC error)

247

F.2

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

Log Messages

The following messages can appear in the TIPC log:

TIPC info Messages

TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC

info: Enabled bearer <%s>, discovery domain %s, priority %u
info: Blocking bearer <%s>

info: Disabling bearer <%s>

info: Activated (version " TIPC_MOD_VER ")

info: tid %$x take %x (%d)

info: tid %$x free %x

info: Bearer %s is down

info: Bearer %s is up

info: tTipcTask terminated normally

info: Resetting link <%s>, requested by peer
info: Resetting link <%s>, requested by peer "
info: Resetting link <%s>, changeover initiated by peer
info: Reception queue empty

info: Contents of Reception gqueue:

info: buffer %$x invalid

info: Contents of unsent queue:

info: Contents of send queue:

info: Empty send queue

info: Started in network mode

info: Own node address %s, network identity %u
info: Left network mode

info: Established link <%s> on network plane %c
info: New link <%s> becomes standby

info: 0ld link <%s> becomes standby

info: 0ld link <%s> becomes standby

info: Lost standby link <%s> on network plane %c
info: Lost link <%s> on network plane %c

info: Lost link <%s> on network plane %c

info: Lost contact with %s

TIPC warning Messages

TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC

warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:

Multicast link creation failed, no memory
Incomplete multicast delivery, no memory

Media <%s> rejected

Bearer <%s> rejected, not supported in standalone mode
Bearer <%s> rejected, illegal name

Bearer <%s> rejected, illegal discovery domain
Bearer <%s> rejected, illegal priority

Bearer <%s> rejected, media <%s> not registered
Bearer <%s> rejected, already enabled

Bearer <%s> rejected, duplicate priority

Bearer <%s> priority adjustment required %u->%u
Bearer <%s> rejected, bearer limit reached (%u)

248

TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC

warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:

F TIPC Log Messages
F.2 Log Messages

Bearer <%s> rejected, enable failure (%d)
Attempt to block unknown bearer <%s>

Attempt to disable unknown bearer <%s>

Memory squeeze; dropped remote link subscription
Invalid configuration message discarded
Duplicate %s using %s seen on <%s>

Memory squeeze; Failed to create node

Ignoring request for second link to node %s
Memory squeeze; Failed to create link

Out of buffers; incoming SM message discarded

Can't duplicate buffer to send over Ethernet! (errno=0x%08x)

Out of buffers; incoming Ethernet message discarded
Interface %s not found

Cannot enable more than %d Ethernet Bearers.

Unable to bind to interface %s

Attempt to re-initialize Ethernet media ignored
Cannot start ethernet media

Link creation failed, no memory

Link creation failed, no memory for print buffer
Resetting link <%s>, peer not responding

Resetting link <%s>, send queue full", 1_ptr->name);
Resetting all links to %s

Resetting link <%s>

Retransmission failure on link <%s>

Resetting link <%s>

Resetting link <%s>, priority change %u->%u

Link changeover error, tunnel link no longer available
Link changeover error, unable to send tunnel msg
Link changeover error, peer did not permit changeover
Link changeover error, unable to send changeover message
Link changeover error, unable to send duplicate msg
Link changeover error, duplicate msg dropped

Link switchover error, got too many tunnelled messages
Link changeover error, original msg dropped

Link unable to unbundle message(s)

Link unable to fragment message

Link unable to reassemble fragmented message

Bulk publication failure

Bulk publication not sent

Bulk publication not sent

Memory squeeze; failed to distribute publication
Publication distribution to cluster failed
Publication distribution to cluster failed
Publication distribution to cluster failed

Memory squeeze; failed to distribute name table msg
Failed to distribute name table msg

Memory squeeze; failed to distribute name table msg
Failed to distribute name table msg

Invalid name table item received

Bulk route publication failure

Bulk route update not sent

Memory squeeze; failed to distribute route

Route distribution to cluster failed

Memory squeeze; failed to distribute route msg
Failed to distribute route msg

Memory squeeze; failed to distribute route msg

249

TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC

warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:
warning:

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

Failed to distribute route msg

Invalid routing table item received

Publication creation failure, no memory

Name sequence creation failed, no memory

Cannot publish {%u, %u,%u}, overlap error

Cannot publish {%u,%u,%u}, overlap error

Cannot publish {%u, %u,%u}, no memory

Failed to publish illegal {%u, %u, %u}

Failed to publish reserved name <%u, %u, $u>

Publication failed, local publication limit reached (%u)
Failed to create subscription for {%u,%u,%u}
Publication failed, local publication limit reached (%u)
Could not add element %x (max %u allowed for this type)
Memory squeeze; unable to record new region

Node creation failed, no memory

Unable to deliver multicast message(s)

Port creation failed, no memory

Port creation failed, reference table exhausted

Port creation failed, no memory

tipcSm (%s): %d %$s unavailable in the last %d system ticks

tipcSm (%s): Out of %s, incoming SM message discarded (tick#:

Shared memory bearer already enabled

Shared memory bearer '%s' not a valid name

Attempt to re-initialize Shared Memory media ignored
Cannot start shared memory media

Subscription rejected, subscription limit reached (%u)
Subscription rejected, no memory

Subscription rejected, illegal request

Subscriber rejected, invalid subscription size
Subscriber rejected, no memory

Subscriber rejected, unable to create port

TIPC error Messages

TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC

error:
error:
error:
error:
error:
error:
error:
error:
error:
error:
error:
error:
error:
error:
error:
error:
error:
error:
error:

Unable to create configuration service

Unable to create configuration service identifier
Cannot start network communication

Unable to initiate network communication

Unable to allocate additional signals

Unable to allocate more signal entries

Attempt to delete non-existent link

Unknown link event %u in WW state

Unknown link event %u in WU state

Unknown link event %u in RU state

Unknown link event %u in RR state

Unknown link state %u/%u

Unexpected changeover message on link <%s>

Unable to de-list cluster publication

Unable to de-list node publication

Unable to remove local publication
tipc_nametbl_stop(): hash chain %u is non-null
tipc_routetbl_stop(): routing table has %u entries
Unable to remove local route

250

o0

TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC
TIPC

error:
error:
error:
error:
error:
error:
error:
error:
error:
error:
error:
error:
error:
error:
error:
error:

F TIPC Log Messages
F.2 Log Messages

Attempt to create third link to %s

Attempt to establish second link on <%s> to %s
Attempt to acquire reference to non-existent object
Reference table not found during acquisition attempt
Reference table not found during discard attempt
Attempt to discard reference to non-existent object
Attempt to discard non-existent reference
tipc_ref_unlock() invoked using invalid reference
Unable to allocate additional buffers
vxskb_tuple_get(): pCluster == NULL
vxskb_tuple_get(): newClBlk == NULL
vxskb_tuple_get(): netClBlkJoin == NULL
vxskb_tuple_get(): mBlkIdNew == NULL
vxskb_tuple_get(): mBlkIdNew == NULL

Unable to allocate %d byte buffer

Failed to create subscription service

251

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

252

A

a (addr) (tipcConfig command option) 65
a (address) (parameter in configuration string) 48
accept() 10

see also Appendix B: Routines

b (tipcConfig command option) 65
bd (tipcConfig command option) 65
be (bearer)
parameter in configuration string 51
tipcConfig command option 75-77
bootline configuration (build component) 20, 47
in a Workbench build 58
BSPs
support for DSHM 35
support for shared memory 33
build components 20-27
bootline configuration 20, 47
in a Workbench build 58
Build TIPC from object library 21
Build TIPC from source 22
DSHM Primary Interface 24
Ethernet 23
INCLUDE_BUILD_TIPC_SRC 22
INCLUDE_CONFIG_TIPC_SOCKET_API 26

Index

INCLUDE_DSHM_SVC_TIPC_PRIM 24
INCLUDE_TIPC 20
INCLUDE_TIPC_CONFIG_HOOK_BOOT
20, 47
INCLUDE_TIPC_CONFIG_HOOK_USER 21,
47
INCLUDE_TIPC_CONFIG_STR 24, 46, 47
INCLUDE_TIPC_DEFINES 26, 42
parameters, table of 43
INCLUDE_TIPC_HEND_INIT 27,45
INCLUDE_TIPC_IP 22
INCLUDE_TIPC_IS 27
INCLUDE_TIPC_MEDIA_ETH 23,33
INCLUDE_TIPC_MEDIA_SM 23
INCLUDE_TIPC_MEMPOOL 20, 31
INCLUDE_TIPC_NOCFG_SERVICE 25
INCLUDE_TIPC_NODEBUG 24
INCLUDE_TIPC_NOSOCKET 25
INCLUDE_TIPC_NOSYS_MSGS 24
INCLUDE_TIPC_ONLY 23,28, 37
debugging with WDB target agent 38
INCLUDE_TIPC_SHOW 24,42
INCLUDE_TIPC_TS 27
INCLUDE_USE_LIBTIPC 21
INCLUDE_WVTIPC 27
No TIPC configuration 25
No TIPC debug 24
No TIPC socket API 25
No TIPC system messages 24
Shared Memory 23

253

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

table of build components 20
TIPC 20
TIPC and IP network stacks present 22
TIPC configuration and display routines 24,
42
TIPC instrumentation 27
TIPC inventory simulation demo 27
TIPC memory pool 20, 31-32
TIPC network stack
in a Workbench build 59
TIPC network stack only 23, 28, 37
debugging with WDB target agent 38
TIPC prioritized interfaces 27,45
TIPC socket API 26, 30-31
TIPC static configuration 24, 46, 47, 58
TIPC System Defines 26, 42
parameters, table of 43
TIPC test suite demo 27
user configuration 21, 47
in a Workbench build 58
Build TIPC from object library (build component)
21
Build TIPC from source (build component) 22
building VxWorks to include TIPC = 19-61
build components 20
see also, as main entry, build components
Workbench build 55-61

C

close() 92
see also Appendix B: Routines
clusters
defined 6
links between 78
links within 78
components, see build components
configuration string
a (address) parameter 48
be parameter 51
log parameter 49, 50
max_clusters parameter 49, 50
max_nodes parameter 49, 50
max_ports parameter 49, 50

254

max_publ parameter 51
max_subscr parameter 51
max_zones parameter 51
netid parameter 51
configuring Wind River TIPC 46
configuration string 46
dynamic configuration 46
static configuration 46
connect() 10
see also Appendix B: Routines

D

d (dest) (tipcConfig command option) 66, 81-82, 85

debugging TIPC 38
Default Network ID (static configuration
parameter) 43
distributed shared memory (DSHM), seeDSHM
domains 77-81
DSHM 35
media type
supported BSPs 35
DSHM Primary Interface (build component) 24
dynamic configuration 46
Workbench build 58

E

Ethernet 33
media type 8
Ethernet (build component) 23

F

footprint reduction 27-29

G

getsockname() 13

see also Appendix B: Routines

H

h (help) (tipcConfig command option) 66
header-file definitions 214
HEND interfaces and drivers 45

i (tipcConfig command option) 66
implied connection request 10
importance level 11
INCLUDE_BUILD_TIPC_SRC (build component)
22
INCLUDE_CONFIG_TIPC_SOCKET_API (build
component) 26
parameters, table of 30
INCLUDE_DSHM_SVC_TIPC_PRIM (build
component) 24
INCLUDE_TIPC (build component) 20
INCLUDE_TIPC_CONFIG_HOOK_BOOT (build
component) 20, 47
INCLUDE_TIPC_CONFIG_HOOK_USER (build
component) 21,47
INCLUDE_TIPC_CONFIG_STR (build
component) 24, 46,47
INCLUDE_TIPC_DEFINES (build component) 26,
42
INCLUDE_TIPC_HEND_INIT (build component)
27,45
INCLUDE_TIPC_IP (build component) 22
INCLUDE_TIPC_IS (build component) 27
INCLUDE_TIPC_MEDIA_ETH (build
component) 23,33
INCLUDE_TIPC_MEDIA_SM
shared-memory (build component) 23
INCLUDE_TIPC_MEDIA_SM (build component)
parameters, table of 34
INCLUDE_TIPC_MEMPOOL (build component)
20, 31
parameters, table of 31

Index

INCLUDE_TIPC_NOCFG_SERVICE (build
component) 25
INCLUDE_TIPC_NODEBUG (build component)
24
INCLUDE_TIPC_NOSOCKET (build component)
25
INCLUDE_TIPC_NOSYS_MSGS (build
component) 24
INCLUDE_TIPC_ONLY (build component) 23,28,
37
debugging with WDB target agent 38
INCLUDE_TIPC_SHOW (build component) 24, 42
INCLUDE_TIPC_TS (build component) 27
INCLUDE_USE_LIBTIPC (build component) 21
INCLUDE_WVTIPC (build component) 27

L

1 (tipcConfig command option) 66
links
between clusters 78
between zones 80
defined 6
multiple, for load sharing and switchover 8
within a cluster 78
Linux TIPC
comparison with Wind River TIPC 3
interoperable with Wind River TIPC 1
listen() 10
see also Appendix B: Routines
load sharing 8
log
parameter in configuration string 49, 50
tipcConfig command option 67
sample output 83
Ip (tipcConfig command option) 68
Is (tipcConfig command option) 68
sample output 83
Isr (tipcConfig command option) 68
It (tipcConfig command option) 69
Iw (tipcConfig command option) 69

255

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

M

m (tipcConfig command option) 69
Max Clusters (static configuration parameter) 43
Max Nodes (static configuration parameter) 43
Max Ports (static configuration parameter) 43
Max Publications (static configuration parameter)
44
Max Remotes (static configuration parameter) 43
Max Subscriptions (static configuration
parameter) 44
Max Zones (static configuration parameter) 44
max_clusters
parameter in configuration string 49, 50
tipcConfig command option 69
max_nodes
parameter in configuration string 49, 50
tipcConfig command option 70
max_ports
configuration string parameter 49, 50
parameter in configuration string 49, 50
tipcConfig command option 70
max_publ
parameter in configuration string 51
tipcConfig command option 70
max_remotes (tipcConfig command option) 71
max_subscr
parameter in configuration string 51
tipcConfig command option 71
max_zones
parameter in configuration string 51
tipcConfig command option 71
media types 32
DSHM 35
Ethernet 33
shared memory 33
message, definition of 10
mng (tipcConfig command option) 72, 84-85
multicasting 17-18

N

n (tipcConfig command option) 72
netid

256

parameter in configuration string 51
tipcConfig command option 86
network addresses 12
notation for 7
No TIPC configuration (build component) 25
No TIPC debug (build component) 24
No TIPC socket API (build component) 25
No TIPC system messages (build component) 24
nt (tipcConfig command option) 73, 86-89
sample output 87

P

p (ports) (tipcConfig command option) 73
sample output 89
port address
functional 13
physical 13
portname 14
type and name components 14
port name sequence 14

R

recv() 10
see also Appendix B: Routines
recvfrom() 10
see also Appendix B: Routines
recvmsg() 10
see also Appendix B: Routines
remote management (tipcConfig utility) 84-85
Remote Management (static configuration
parameter) 44

S

s (tipcConfig command option) 74
secondary nodes not supported 6
send() 10

see also Appendix B: Routines
sendmsg() 93

see also Appendix B: Routines
sendto() 10

see also Appendix B: Routines
shared memory 33

media type 8

supported BSPs 33
Shared Memory (build component) 23

parameters, table of 34
show routines

tipcDataPoolShow 42

tipcSysPoolShow 42
sockaddr_tipc structure 3
socket() 10

see also Appendix B: Routines
static configuration 46

Workbench build 58
subscriptions 91-93

creating 92

receiving an event notification 93

service provided by TIPC 18
switchover 8
System Viewer, see Wind River System Viewer

T

target agent, WDB 38
target server
starting 40
test suite 107-113
including in a project 108
running tests 108
sample output 111
tests included 110
tipcTC shell command 109
tipcTS shell command 109
TIPC (build component) 20
TIPC and IP network stacks present (build
component) 22
TIPC configuration and display routines (build
component) 24, 42
TIPC instrumentation (build component) 27
TIPC inventory simulation demo (build
component) 27

TIPC memory pool (build component) 20, 31-32

Index

parameters, table of 31
TIPC network stack (build component)
in a Workbench build 59

TIPC network stack only (build component) 23,28,

37
debugging with WDB target agent 38

TIPC prioritized interfaces (build component) 27,

45
TIPC protocol 1
see also, Wind River TIPC
addressing 12
address resolution 15
address types 12
functional port addresses 13

multiple port names or name sequences

bound to a socket 15
network addresses 12
notation for addresses 7
physical port addresses 13

same pOI‘t name Oor name sequence bound

to multiple ports 15

basic concepts 5-18
clusters 6
links 6
messaging 9
multicasting 17-18, ??-18
network structure 6
portname 14
ports 9
subscription service provided 18
subscriptions 91-93

creating 92

receiving an event notification 93
zones 6

TIPC socket API (build component) 26, 30-31

parameters, table of 30

TIPC static configuration (build component) 24,46,

47,58
TIPC System Defines (build component) 26, 42
parameters, table of 43
TIPC test suite demo (build component) 27
tipc_addr() 13
see also Appendix B: Routines
tipc_cluster() 13
see also Appendix B: Routines

257

Wind River TIPC for VxWorks 6
Programmer’s Guide, 1.7

TIPC_DEF_MAX_CLUSTERS (static configuration
parameter) 43
TIPC_DEF_MAX_NODES (static configuration
parameter) 43
TIPC_DEF_MAX_PORTS (static configuration
parameter) 43
TIPC_DEF_MAX_PUBS (static configuration
parameter) 44
TIPC_DEF_MAX_REMOTES (static configuration
parameter) 43
TIPC_DEF_MAX_SUBS (static configuration
parameter) 44
TIPC_DEF_MAX_ZONES (static configuration
parameter) 44
TIPC_DEF_NET_ID (static configuration
parameter) 43
TIPC_DEF_REMOTE_MGT (static configuration
parameter) 44
tipc_node() 13
see also Appendix B: Routines
tipc_zone() 13
see also Appendix B: Routines
tipcConfig utility 63-89
a (addr) command option 65
b command option 65
bd command option 65
be (bearer) command option 75-77
constraints on order of command options 75
d (dest) command option 66, 81-82, 85
h (help) command option 66
i command option 66
1 command option 66
log command option 67
sample output 83
Ip command option 68
Is command option 68
sample output 83
lsr command option 68
It command option 69
lw command option 69
m command option 69
max_clusters command option 69
max_nodes command option 70
max_ports command option 70
max_publ command option 70

258

max_remotes command option 71
max_subscr command option 71
max_zones command option 71
mng command option 72, 84-85
n command option 72
netid command option 86
nt command option 73, 86-89
sample output 87
p (ports) command option 73
sample output 89
remote management 84-85
s command option 74
V command option 74
v command option 74
tipcConfigInfoGet()
for dynamic configuration 53
with a command-line build 54
with a Workbench build 58
tipcDataPoolShow show routine 42
tipcDataPoolShow() 42
see also Appendix B: Routines
tipcSysPoolShow show routine 42
tipcSysPoolShow() 42
see also Appendix B: Routines
Transparent Inter Process Communication (TIPC)
protocol. see TIPC protocol

U

user configuration (build component) 21, 47
in a Workbench build 58

\'}

V (tipcConfig command option) 74
v (tipcConfig command option) 74
VxWorks
including Wind River TIPC in a build
building from Workbench 55-61
VxWorks simulator 95-99
simulating a network of TIPC nodes 96
DSHM 99

Ethernet 96
shared memory 98
simulating a standalone TIPC node 96

w

WDB agent proxy 38
WDB target agent 38
Wind River System Viewer 101-105
event levels 102
including instrumentation for TIPC in a build
104
TIPC events covered 102
Wind River TIPC
see also, TIPC protocol
comparison with Linux version 3
configuration string
setting parameters in 48
table of parameters 48
configuring 46
configuration string 46
dynamic configuration 46
static configuration 46
connection types 10
domains 77-81
footprint reduction 27-29
header-file definitions 214
interoperability with other releases 3
interoperable with open-source Linux version
1
media types 32
message reliability 11
overview 2
rejected messages 11
secondary nodes not supported 6
supported media 8
system parameters
Default Network ID 43
Max Clusters 43
Max Nodes 43
Max Ports 43
Max Publications 44
Max Remotes 43
Max Subscriptions 44

Index

Max Zones 44
Remote Management 44
TIPC_DEF_MAX_CLUSTERS 43
TIPC_DEF_MAX_NODES 43
TIPC_DEF_MAX_PORTS 43
TIPC_DEF_MAX_PUBS 44
TIPC_DEF_MAX_REMOTES 43
TIPC_DEF_MAX_SUBS 44
TIPC_DEF_MAX_ZONES 44
TIPC_DEF_NET_ID 43
TIPC_DEF_REMOTE_MGT 44

test suite 107-113
including in a project 108
running tests 108
sample output 111
tests included 110
tipcTC shell command 109
tipcTS shell command 109

tipcConfig utility, see,as main entry, tipcConfig

utility
undeliverable messages 11
Wind River VxWorks Simulator, see VxWorks
simulator
Workbench
building VxWorks to include TIPC = 55-61

V4

zones
defined 6
links between 80

259

	Wind River TIPC for VxWorks 6 Programmer's Guide, 1.7
	Contents
	1 Introduction
	1.1 Introduction
	1.2 TIPC Overview
	1.3 Comparison with Open-Source TIPC for Linux
	1.4 Interoperability with Other Releases
	1.5 Organization of This Document

	2 TIPC Fundamentals
	2.1 Introduction
	2.2 TIPC Network Structure
	2.2.1 Network Addresses
	2.2.2 Supported Media for Communication Over Links
	2.2.3 Multiple Links for Load-Sharing and Switchover

	2.3 Messaging Overview
	2.4 Message Reliability and Rejected Messages
	2.5 TIPC Addressing
	2.5.1 Network Address
	2.5.2 Physical Addressing
	2.5.3 Functional Addressing
	2.5.4 Address Resolution

	2.6 Multicasting
	2.7 Subscriptions

	3 Building VxWorks to Include Wind River TIPC
	3.1 Introduction
	3.2 Wind River TIPC Build Components
	3.2.1 TIPC Footprint Reduction
	3.2.2 TIPC socket API Build Component
	3.2.3 TIPC memory pool Build Component
	3.2.4 TIPC Media Types
	Ethernet Communication
	Shared Memory Communication
	Communication Using Distributed Shared Memory (DSHM)

	3.2.5 TIPC network stack only
	Debugging TIPC on a Target System Built with the TIPC network stack only Component
	Including WDB Agent Proxy for TIPC in a VxWorks Build
	Including the WDB Target Agent in a Build with the TIPC Network Stack
	Starting the Target Server for TIPC Communication

	3.2.6 TIPC configuration and display routines Build Component
	3.2.7 Setting TIPC System Values
	3.2.8 TIPC prioritized interfaces Build Component

	3.3 Configuring Wind River TIPC
	3.3.1 Setting Parameters in the TIPC Configuration String
	3.3.2 Setting the be (bearer) Parameter
	3.3.3 Accessing the Configuration String from the VxWorks Boot Loader
	3.3.4 Implementing tipcConfigInfoGet()

	3.4 Building VxWorks from Workbench

	4 Using tipcConfig to Configure and Monitor TIPC
	4.1 Introduction
	4.2 tipcConfig Syntax and Command Options
	4.2.1 Constraints on the Ordering of Command Options in tipcConfig Commands
	4.2.2 The -be Command Option
	4.2.3 Specifying a Domain
	4.2.4 The -dest Command Option
	4.2.5 Sample Log Output
	4.2.6 Sample Output for the “ls” (Link Statistics) Option
	4.2.7 Remote Management
	tipcConfig Command Options available for remote management
	Enabling Remote Management
	The -dest Command Option for Specifying the Address of a Node to be Managed

	4.2.8 Using the -netid Option to Set Up Separate TIPC Networks Within a LAN
	4.2.9 The -nt Command Option
	Sample Output for the -nt Command Option

	4.2.10 Sample Output for the -p (Ports) Option

	5 Subscriptions
	5.1 Introduction
	5.2 Creating and Using the TIPC Subscription Service
	5.2.1 Creating a Subscription
	5.2.2 Receiving a Subscription Event Notification

	6 Using the Wind River VxWorks Simulator with TIPC
	6.1 Introduction
	6.2 Simulating a Standalone TIPC Node
	6.3 Simulating a Network of TIPC Nodes
	6.3.1 Simulating a Network of TIPC Nodes That Use Ethernet
	6.3.2 Simulating a Network of TIPC Nodes That Use Shared Memory
	6.3.3 Simulating a Network of TIPC Nodes That Use DSHM

	7 Using Wind River System Viewer with TIPC
	7.1 Introduction
	7.2 TIPC Events Covered by System Viewer
	7.3 Event Levels
	7.4 Including TIPC System Viewer Instrumentation in a VxWorks Image Project
	7.4.1 Building TIPC with the Network Stack
	7.4.2 Building TIPC without the Network Stack

	8 Using the TIPC Test Suite
	8.1 Introduction
	8.2 Including the Test Suite in a Project
	8.3 Running Tests in the Test Suite
	8.3.1 The tipcTS Shell Command
	8.3.2 The tipcTC shell Command
	8.3.3 Tests in the TIPC Test Suite

	8.4 Sample Output

	9 TIPC Native API
	9.1 Introduction
	9.2 Differences Between Using the Socket API and the Native API
	9.3 Callback Routines
	9.4 Structures for Handling Message Data
	9.5 Routines in the TIPC Native API
	9.6 Examples
	9.6.1 Performing Basic Port Operations
	9.6.2 Registering a TIPC User
	9.6.3 Receiving a Synchronous Message
	9.6.4 Using the TIPC Topology Service

	A Libraries
	B Socket and Utility Routines
	C TIPC Native Routines
	D Header File Definitions
	D.1 Introduction
	D.2 Definitions

	E Sample TIPC Application
	E.1 Introduction
	E.2 TIPC Inventory Simulation
	E.2.1 Description
	E.2.2 Source Code

	F TIPC Log Messages
	F.1 Introduction
	F.2 Log Messages
	TIPC info Messages
	TIPC warning Messages
	TIPC error Messages

	Index

