
Wind River
Network Stack
for VxWorks 6

PROGRAMMER'S GUIDE
Volume 1: Transport and Network Protocols

®

6.6

®

Wind River Network Stack for VxWorks 6 Programmer's Guide, 6.6

Copyright © 2007 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, the Wind River logo, Tornado, and VxWorks are registered trademarks of
Wind River Systems, Inc. Any third-party trademarks referenced are the property of their
respective owners. For further information regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDir/product_name/3rd_party_licensor_notice.pdf.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:

http://www.windriver.com

For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

Wind River Network Stack for VxWorks 6 Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

12 Nov 07
Part #: DOC-16135-ND-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

iii

Contents

1 Overview ... 1

1.1 Introduction ... 1

1.2 Technology Overview ... 2

1.2.1 TCP/IP ... 2

1.2.2 Multiprotocol Label Switching ... 2

1.2.3 RIP and RIPng .. 2

RIP .. 2
RIPng .. 3

1.2.4 VRRP .. 4

1.2.5 Multicast Routing ... 4

IPv4 Addressing ... 5
IPv6 Addressing ... 5

1.3 Product Overview ... 6

1.3.1 Address Resolution Protocol (ARP) .. 7

1.3.2 Internet Control Message Protocol (ICMP) .. 8

1.3.3 Internet Control Message Protocol (ICMPv6) 8

1.3.4 Internet Protocol (IP) ... 8

1.3.5 Internet Protocol Version 6 (IPv6) ... 9

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols 6.6

iv

1.3.6 Neighbor Discovery Protocol (NDP) ... 9

1.3.7 Transmission Control Protocol (TCP) ... 9

1.3.8 User Datagram Protocol (UDP) .. 10

1.3.9 Multiprotocol Label Switching ... 11

1.3.10 RIP .. 11

1.3.11 Multicast Routing ... 13

General Purpose Platform ... 13
Wind River Platforms .. 13
Terminology .. 13
Multicast Router vs. Multicast Proxy .. 14
Multicast Router Components ... 15
Multicast Router Implementation .. 16
Multicast Proxy Implementation ... 16
Multicast Proxy Operation .. 16

1.4 Additional Documentation ... 18

Wind River Documentation .. 18
Books .. 20
Online Resources .. 20
RFCs ... 21

2 Configuring and Building the Network Stack 27

2.1 Introduction ... 27

2.2 Configuring and Building the Wind River Network Stack Source Code ... 28

2.2.1 IPv4 or IPv6 ... 28

Affected Modules—IPv6-Only Network Stack 28
Build Instructions ... 29
Symbol Table Download and Network Drives 30

2.2.2 Optimizations and Debugging ... 31

Verbose .. 31

2.2.3 SMP Platform Build ... 32

2.2.4 Examples .. 32

 Contents

v

2.3 Configuring VxWorks with the Wind River Network Stack 32

Creating an IPv6 Project .. 33
Creating an SMP Project .. 33
Automatically Included Components ... 33
Additionally Required Components ... 34

2.3.1 Including a Network Driver ... 36

Checking for VxBus Support .. 36
Adding a Network Interface—Legacy END Drivers 37
Configuring an Additional Interface ... 38
Creating a Tunnel to a Remote IPv6 Destination 39

2.3.2 Special Provisions for IPv6-Only Network Stacks 40

Configuring IPv6-Related Parameters at Boot Time 40

2.3.3 Additional Dependencies ... 41

2.3.4 Configuring the Network Daemon Task .. 41

2.4 Using Shell Commands ... 45

2.4.1 Including Shell Command Components .. 45

2.4.2 General Network Stack Shell Commands .. 46

ipd ... 46
ipversion .. 47
syslog ... 47
sysvar ... 48

2.4.3 Running Commands from the Shell .. 48

2.5 Testing Connectivity from the Target .. 49

Testing IPv4 Connectivity ... 49
Testing IPv6 Connectivity ... 50

3 Configuring Transport and Network Protocols 51

3.1 Introduction ... 51

3.2 Configuring VxWorks with Transport and Network Layer Support 52

3.2.1 ARP .. 52

ARP Build-Time Configuration ... 52

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols 6.6

vi

ARP Run-Time Configuration .. 53
arp ... 53

3.2.2 Proxy ARP ... 54

3.2.3 ICMP (v4 and v6) ... 55

3.2.4 IPv4 ... 56

IPv4 Run-Time Configuration .. 59

3.2.5 IPv6 ... 60

IPv6 Run-Time Configuration .. 65

3.2.6 NDP .. 66

NDP Build-Time Configuration ... 66
NDP Run-Time Configuration ... 66
ndp .. 66

3.2.7 TCP ... 67

3.2.8 MPLS .. 69

MPLS Build-Time Configuration ... 69
INCLUDE_IPMPLS Parameter .. 70
Alternative Static Configuration .. 70
MPLS Run-Time Configuration ... 71
mplsctl - MPLS control configuration tool ... 71
route - MPLS-specific commands .. 74

4 Adding Routing Support ... 77

4.1 Introduction ... 77

4.2 Building and Configuring RIP and RIPng .. 79

IPRIP Interface Configurations .. 79
RIP Build-Time Configuration ... 81
RIPng Run-Time Configuration ... 83
ripngctrl ... 83
RIP Shell Commands ... 84
RIPng .. 85
RIPv1/v2 ... 88

4.3 Policy-Based Routing ... 90

 Contents

vii

4.4 VRRP ... 93

4.4.1 Configuring and Building VRRP ... 93

4.5 Fast Path ... 95

4.5.1 Generic Fast Path .. 95

4.5.2 Ethernet Fast Path .. 95

4.6 Adjusting the Route Table ... 96

4.6.1 Route Shell Command ... 96

route ... 96

5 Working with Routing Sockets ... 101

5.1 Introduction ... 101

5.2 Getting Started with Routing Sockets ... 103

5.2.1 Configuring VxWorks for Routing Sockets .. 103

5.2.2 Setting up a Routing Socket .. 103

5.2.3 Disabling Routing Sockets .. 104

5.3 Preparing and Processing Routing Socket Messages 104

5.3.1 Case/Switch Processing for Received Messages 105

5.3.2 Types of Routing Socket Messages .. 106

RTM_DELETE .. 108
RTM_CHANGE .. 109
RTM_GET .. 109
RTM_LOSING .. 110
RTM_REDIRECT .. 110
RTM_MISS .. 111
RTM_LOCK .. 111
RTM_RESOLVE .. 111
RTM_NEWADDR .. 111
RTM_DELADDR .. 112
RTM_IFINFO .. 112
RTM_IFANNOUNCE .. 112
Extended Messages for Virtual Routing ... 112

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols 6.6

viii

5.3.3 RTF Flags ... 113

5.4 Extracting Information from a Routing Socket Message 114

5.4.1 Parsing the Routing Socket Message after the Header 114

5.5 Building a Routing Socket Message ... 116

5.5.1 Setting the Header Structure Field Values ... 116

6 Enabling Virtual Routers ... 119

6.1 Introduction ... 119

6.2 Component and Technology Overview ... 120

6.2.1 Virtual Router Domain Separation .. 120

Interface Management ... 121

6.3 Conformance to Standards ... 122

6.4 Managing Virtual Routers .. 122

6.5 Examples .. 123

Creating VRs and Assigning Interfaces .. 123
Working with VR in Applications ... 124

7 Adding Support for Multicast Routing ... 125

7.1 Introduction ... 125

7.2 Configuring and Building VxWorks for Multicasting Support 126

7.2.1 Building the IGMP and MLD Modules in Platform Source Code 126

Building for Multicast Forwarding .. 126
Building for MLD ... 127

7.2.2 Configuring VxWorks with Multicasting ... 127

Setting Multicasting Parameters .. 129

7.3 Starting and Stopping the Router ... 132

7.3.1 Running the Multicasting Router Daemon .. 132

 Contents

ix

7.3.2 Getting Statistics ... 133

mcastproxy .. 133

7.3.3 Multicast Routing Run-Time Configuration .. 134

7.3.4 Changing the Protocol Versions .. 135

7.4 Joining and Leaving Host Groups .. 135

7.4.1 Socket Options .. 136

Group Options .. 137
Blocking Options .. 138

7.4.2 Membership Reports for IGMPv1, IGMPv2, and MLDv1 138

7.5 Sending Queries and Reports .. 138

7.5.1 Network Interfaces ... 139

7.5.2 Queries ... 140

Message Types .. 140
Query States .. 141

7.5.3 Using Sockets .. 143

Binding ... 143
Examples of Host Send and Receive ... 144

7.6 Adding and Deleting Virtual Interfaces for Multicast Routing 147

vifctl Structure .. 147
sioc_vif_req Structure .. 147
sioc_sg_req Structure ... 147
Opening a Multicast Socket for Receiving Upcalls 149

7.7 Using PIM Hooks ... 150

Protocol Independent Multicast (PIM) ... 150
Using a Socket Interface to Enable and Access PIM Functionality ... 151

8 Wind River Mobile IP: Overview ... 153

8.1 Introduction ... 153

8.2 Mobile IP Technical Overview .. 154

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols 6.6

x

8.2.1 Components and Terminology .. 154

8.2.2 Communication with the Mobile Node .. 155

Communication with the Mobile Node in IPv4 155
Communication with the Mobile Node in IPv6 157
Sequence of Steps in Establishing and Carrying out Mobile

Communication ... 157

9 Wind River Mobile IPv4: Mobile Node .. 159

9.1 Introduction ... 159

9.2 Mobile Node Features ... 160

9.2.1 Low-Latency Handoffs .. 160

9.2.2 Integration with IPsec and IKE .. 161

9.3 Conformance to Standards ... 162

9.4 Build Component and Build Parameters ... 163

9.4.1 Reconfiguring IKE When the Mobile Node Moves 184

9.4.2 Using IKE Care-of Addresses ... 184

9.5 Including the Mobile Node in a Build ... 185

9.6 Shell Commands ... 185

9.7 Testing the Mobile Node .. 187

10 Wind River Mobile IPv4: Home Agent .. 189

10.1 Introduction ... 189

10.2 Conformance to Standards ... 190

10.3 Build Components and Build Parameters ... 191

10.3.1 Configuration Parameters for the IPv4 Home Agent Build Component
193

10.3.2 Configuration Parameters for RADIUS Support 204

 Contents

xi

10.3.3 Configuration Parameters for Diameter Support 208

10.4 Including the Home Agent in a Build .. 210

10.5 Shell Commands .. 211

10.5.1 Sample Output for the ha list Shell Command 213

10.5.2 Sample Output for the ha show Shell Command 213

10.5.3 Sample Output for the ha errors Shell Command 214

10.6 Testing the Home Agent ... 214

10.6.1 Mobile-Node Test Configuration ... 216

10.6.2 Home-Agent Test Configuration ... 218

11 Wind River Mobile IPv4: Foreign Agent ... 219

11.1 Introduction ... 219

11.2 Low-latency handoffs .. 220

11.3 Conformance to Standards ... 221

11.4 Build Components and Build Parameters ... 223

11.4.1 Configuration Parameters for the IPv4 Foreign Agent Build Component
225

11.4.2 Configuration Parameters for RADIUS Support 236

11.4.3 Configuration Parameters for Diameter Support 239

11.5 Including the Foreign Agent in a Build ... 242

11.6 Shell Commands .. 243

11.6.1 Shell Commands for Displaying Registration and Error Information 243

Sample Output for the fa list Shell Command 245
Sample Output for the fa show Shell Command 245
Sample Output for the fa error Shell Command 246

11.6.2 Shell Commands for Layer-2 Triggers .. 246

11.7 Testing the Foreign Agent .. 247

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols 6.6

xii

11.7.1 Mobile-Node Test Configuration ... 249

11.7.2 Home-Agent Test Configuration ... 251

11.7.3 Foreign-Agent Test Configuration ... 252

12 Wind River Mobile IPv6: Mobile Node .. 253

12.1 Introduction ... 253

12.2 Conformance to Standards ... 253

12.3 Build Component and Build Parameters ... 254

12.4 Including the Mobile Node in a Build ... 261

12.5 Shell Commands ... 262

12.5.1 Sample Output for the mn6 list Shell Command 264

12.5.2 Sample Output for the mn6 statistics Shell Command 264

12.5.3 Sample Output for the mn6 status Shell Command 265

A Glossary .. 267

A.1 Introduction ... 267

A.2 Terms .. 267

A.3 Abbreviations and Acronyms .. 275

Index .. 279

1

 1
Overview

1.1 Introduction 1

1.2 Technology Overview 2

1.3 Product Overview 6

1.4 Additional Documentation 18

1.1 Introduction

The Wind River Network Stack is a full-featured dual IPv4/IPv6 TCP/IP stack
that supports simultaneous use of raw IP, UDP, and TCP over IPv4 and IPv6. It is
specifically designed and implemented for use in modern, embedded real-time
systems and can be configured for a minimum memory footprint. Because
Wind River Network Stack 6.6 has a new and improved design, existing projects
and code may require migration. See the Platforms migration guide for further
information.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

2

1.2 Technology Overview

1.2.1 TCP/IP

TCP/IP refers to a suite of protocols, at the core of which are the Transmission
Control Protocol and the Internet Protocol. TCP/IP has become the preferred
communication standard for local and wide area networks, and new features are
continuously being added by the Internet Engineering Task Force (IETF). TCP/IP
is also widely used when connecting networked embedded real-time systems.
TCP/IP stacks designed for use in embedded systems frequently have functional
limitations. These are often caused by memory and timing constraints, and by the
fact that stack vendors have problems keeping up with the continuous flow of new
protocols specified by the IETF.

1.2.2 Multiprotocol Label Switching

Multiprotocol Label Switching (MPLS) is an IETF standards-approved technology
for speeding up network traffic flow and making it easier to manage. The strength
of MPLS is that the route analysis of an IP packet need only be done once, at the
ingress side of the MPLS path, by an edge router.

The MPLS-enabled edge router identifies the Forwarding Equivalence Class (FEC)
the IP packet belongs to and encodes this classification as a label. This label is
added as an extra header on top of the packet header before it is forwarded further.
At each subsequent hop in the network, the label is referenced against a local table
of incoming labels to outgoing labels (also known as cross-connects). The incoming
label is replaced by the outgoing label and the packet is forwarded further in the
MPLS path. At the MPLS egress side the label is removed and the packet is
delivered to the local IP stack for further route analysis.

1.2.3 RIP and RIPng

RIP

The Routing Information Protocol (RIP) maintains routing information within
small inter-networks.

1 Overview
1.2 Technology Overview

3

1RIP is restricted to networks in which the largest number of hops is 15. Although
15 hops can encompass a very large network, many networks already exceed this
limit.

The Wind River Network Stack includes implementations of RIPv1, RIPv2, and
RIPng. Use RIPng for IPv6 networks. See 1.2.3 RIP and RIPng, p.2. You can use RIP
or RIPng as an Interior Gateway Protocol.

RIP is implemented as a set of C functions that can be directly used by a single real
time operating system (RTOS) process to implement a RIP daemon that manages
dynamic routing.

The RIP router supports three modes of operation: Version 1 RIP, Version 2 RIP
with multicasting, and Version 2 RIP with broadcasting.

Version 1 RIP
This mode of operation follows RFC 1058. It uses subnet broadcasting to
communicate with other routers and sends out only a gateway and metric for
each subnet.

Version 2 RIP with multicasting
In this mode, the router not only knows about other routers but can also
describe routes based on their subnet mask and can designate a gateway that
is not the router that sends the updates. Thus, the machine that hosts the RIP
router does not necessarily have to be the gateway. Because this mode uses
multicasting to communicate, only interested nodes in the network see routing
information and updates.

Version 2 RIP with broadcasting
This mode is the same as Version 2 RIP with multicasting, except that it uses
broadcasting instead of multicasting. This mode is backwards compatible with
RIP version 1 and is the mode recommended in RFC 1388.

RIPng

The RIPng implementation is very similar to RIPv2, but is modified to
accommodate IPv6 addressing. For a detailed description of the RIPng protocol,
see RFC 2080.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

4

1.2.4 VRRP

Virtual Router Redundancy Protocol (VRRP) specifies an election protocol that
dynamically assigns responsibility for a virtual router to one of the VRRP routers
on a local area network (LAN).

If you have a statically configured router on a LAN, you can use VRRP to assign
backup routers using virtual IP addresses. This allows failover if the master router
fails. VRRP is only use in IPv4 networks. VRRP is fully described in RFC 3768.

Terminology

In this chapter, the term virtual router is used to describe an abstract object
managed by VRRP that acts as a default router for hosts on a shared LAN. This is
not the same as the Wind River virtual router implementation, which allows
multiple routing tables per network stack instance.

1.2.5 Multicast Routing

IP multicasting is the transmission of a single data packet to multiple nodes over a
network. This process uses a router and is defined in RFCs which describe
protocols for the IPv4 and IPv6 domains. These protocols—the Internet Group
Management Protocol (IGMP) and Multicast Listener Discovery Protocol (MLD),
respectively—are used by hosts and routers to communicate.

Hosts follow the multicasting protocols to:

■ send and receive multicast traffic

■ join and leave multicast groups

■ notify multicast routers of the groups they are currently listening to

Routers follow the multicasting protocols to:

■ keep track of which addresses are listening

■ forward multicast traffic to all their clients

A specific IP address is associated with each multicast group. Any host that wants
to send data to the members of a multicast group need only transmit to the
appropriate multicast IP address. Hosts that want to transmit multicast data need
not be members of the multicast group to which they transmit. When an IP stack
on a router receives a packet with a multicast group destination address, the router
forwards the packet to any hosts that have registered with it for that multicast

1 Overview
1.2 Technology Overview

5

1group. Thus, although any host can transmit to a multicast group, only registered
group members receive the multicast.

IPv4 Addressing

All addresses from 224.0.0.0 to 239.255.255.255 are multicast addresses. Addresses
from 224.0.0.0 to 224.0.0.255 (which can also be written as 224.0.0.0/24) are
considered link local multicast addresses and must never be forwarded by a
router. The IGMP protocol is using the link local multicast addresses since it is only
relevant to multicast routers attached to the same link as the host sending them.

Under IPv4, multicast group addresses are restricted to the class D addresses,
which range from 224.0.0.0 to 239.255.255.255. Within this range, certain addresses
and address ranges are already registered to specific uses and protocols. For
example, 224.0.0.1 multicasts to all systems on the local subnet. The Internet
Assigned Numbers Authority (IANA) maintains a list of registered IPv4 multicast
groups. As described in RFC 3232, this list is now published online at:

http://www.iana.org/assignments/multicast-addresses

IPv6 Addressing

All IPv6 multicast has the first 8 bits set, meaning that they always start with
0xFFxy. The x nibble is a (4-bit) flag field and y is the scope of the address, where
scope is a 4-bit multicast scope value used to limit the scope of the multicast group.
The values are described in RFC 4291.

Under IPv6, multicast addresses begin with an 8-bit prefix of 11111111, or FF,
followed by 8 additional bits used to indicate either:

■ reserved addresses
■ well-known addresses
■ the scope of the address

The remaining bits define the multicast group ID. Under IPv6, multicast addresses
can be scoped to the local node, link, site, and so on. IPv6 routers will not forward
a multicast packet beyond the scope of the packet address.

For detailed information on IPv6 multicast addresses, see RFC 2375 and RFC 4291.
For information on assigned multicast addresses, see the IANA online database at:

http://www.iana.org/assignments/ipv6-multicast-addresses

http://www.iana.org/assignments/multicast-addresses
http://www.iana.org/assignments/ipv6-multicast-addresses

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

6

Although IP multicasting is not a link-layer feature, it does require some support
from the underlying network interface driver. You must be able to configure the
network interface to know which multicast groups (addresses) are of interest to it.
When packets addressed to those groups arrive on the interface, the driver passes
the packet up to IP. Otherwise, the driver ignores the packet. All END drivers
currently shipped with the Wind River Network Stack support this ability.

The mechanics by which an application adds its host to a multicast group and
transmits or receives multicast data are usually handled using a UDP socket
connection. For an example of how to manage a multicast send and receive, see
Examples of Host Send and Receive, p.144.

1.3 Product Overview

While the Wind River General Purpose Platform supports the standard TCP/IP
and application protocols, some features are available only with the
market-specific platforms. These include Platform for Industrial Devices, Platform
for Network Equipment, Platform for Consumer Devices, and Platform for
Automotive Devices. These additional features, listed below and noted in the
documentation, are not available with the Wind River General Purpose Platform,
VxWorks Edition:

■ Internet Group Management Protocol (IGMP)
– IGMPv1 proxy, and router
– IGMPv2 proxy, and router
– IGMPv3 proxy, and router

■ Mobile IP
– Mobile IPv4 Mobile Node (MIPMNv4)
– Mobile IPv4 Home Agent (MIPHAv4)
– Mobile IPv4 Foreign Agent (MIPFAv4)
– Mobile IPv6 Mobile Node (MIPMNv6)

■ Multi Protocol Label Switching (MPLS) - Data plane support only

■ Multicast Listener Discovery (MLD)
– MLDv1 proxy, and router
– MLDv2 proxy, and router

■ Quality of Service (QoS)

1 Overview
1.3 Product Overview

7

1
■ Tunneling

■ Virtual local area network (VLAN) Tagging (802.1Q VLAN Tag)

■ Virtual Router Redundancy Protocol (VRRP)

If you have purchased one of the Wind River Platforms that supports these
features, your Platform getting started guide includes instructions on how to build
the network stack code to activate these features.

The network stack provides statistics and programming application programming
interfaces (APIs) to be used by SNMP agent instrumentation code in order to
support MIB-II related RFCs. See the Wind River SNMP Programmer's Guide and
release notes for further information.

The following protocols are implemented for the transport and networking layers
of the Wind River Network Stack.

1.3.1 Address Resolution Protocol (ARP)

The Address Resolution Protocol (ARP) is used to dynamically map IPv4 Internet
host addresses to Ethernet addresses. ARP is part of the network stack and is
automatically included when you build an IPv4 stack. The network stack also
includes a proxy ARP implementation.

ARP is used to learn Internet to Ethernet mappings. When an IP datagram is sent
to a link-local address whose mapping is not in the cache, the IP datagram is
queued and an ARP request is broadcast on the link mapped to the associated
network. If a response is provided, the new mapping is cached and all messages
pending on this IP address are transmitted. The stack can queue the number of
packets specified by IPNET_MAX_PKTS_PENDING (three by default) while
waiting for an ARP response. The oldest packet in the queue is discarded if more
than IPNET_MAX_PKTS_PENDING packets are sent to the IP address before
receiving an ARP response. An Internet Control Message Protocol (ICMP)
host-unreachable error is sent to the source node of discarded packet.

Proxy ARP responds to ARP messages for clients on the subnet for which it acts as
a proxy. The network stack can either act as a proxy ARP server for network routes
tagged with the proxy arp flag, or automatically tag all interface address network
routes as proxy ARP. Proxy ARP can also be set on a per interface basis.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

8

1.3.2 Internet Control Message Protocol (ICMP)

ICMP is a network layer protocol that provides message packets to report errors
and other information regarding IP packet processing back to the source. It may be
accessed through a raw socket for network monitoring and diagnostic functions.
The protocol parameter to the socket call to create an ICMP socket is
IP_IPPROTO_ICMP.

ICMP sockets are connectionless, and are normally used with the ipcom_sendto()
and ipcom_recvfrom() call. The ipcom_connect() call may also be used to fix the
destination for future packets, which enables the ipcom_recv() and ipcom_send()
system calls to be used.

Outgoing packets automatically have an IP header pre-pended to them, based on
the destination address. Incoming packets are received with the IP header and
options intact.

1.3.3 Internet Control Message Protocol (ICMPv6)

ICMPv6 is the error and control message protocol used by IPv6 and the Internet
protocol family. It may be accessed through a raw socket for network monitoring
and diagnostic functions. The protocol parameter to the socket call to create an
ICMPv6 socket is IP_IPPROTO_ICMPV6.

ICMPv6 sockets are connectionless, and are normally used with the
ipcom_sendto() and ipcom_recvfrom() call. The ipcom_connect() call may also
be used to fix the destination for future packets, which enables the ipcom_recv()
and ipcom_send() system calls to be used.

Outgoing packets automatically have an IPv6 header prepended to them, based on
the destination address. The ICMPv6 pseudo header checksum field,
icmp6_cksum is filled automatically by the kernel. Incoming packets are received
without the IPv6 header or IPv6 extension headers. This behavior is opposite from
IPv4 raw sockets and ICMPv4 sockets.

1.3.4 Internet Protocol (IP)

IP is the network layer protocol used by the Internet protocol family. Options may
be set at the IP level when using higher-level protocols that are based on IP (such
as TCP and UDP). See ipcom_setsockopt() for IP options description.

1 Overview
1.3 Product Overview

9

1The IP protocol may also be accessed through a raw socket when developing new
protocols or special-purpose applications. Raw IP sockets are connectionless and
are normally used with the ipcom_sendto() and ipcom_recvfrom() call. The
ipcom_connect() call may also be used to fix the destination for future packets,
which enables the ipcom_recv() and ipcom_send() system calls to be used.

1.3.5 Internet Protocol Version 6 (IPv6)

IPv6 is the network layer protocol used by the Internet protocol version 6, family
IP_AF_INET6. Options may be set at the IPv6 level when using higher-level
protocols that are based on IPv6, such as TCP and UDP. IPv6 may also be accessed
through a raw socket when developing new protocols, or special-purpose
applications.

Raw IPv6 sockets are connectionless, and are normally used with the
ipcom_sendto() and ipcom_recvfrom() calls. The ipcom_connect() call may also
be used to fix the destination for future packets, which enables the ipcom_recv()
and ipcom_send() system calls to be used.

1.3.6 Neighbor Discovery Protocol (NDP)

NDP is an IPv6 Internet protocol. Using NDP, same-link nodes can discover each
other’s presence, determine their respective link-layer addresses, and monitor
changes in the addressing or accessibility of neighbors on the local link. Because
the monitoring is active, NDP can purge cached information that has become
invalid. It also lets a host notice when a router (or the path to a router) fails, which
not only lets the host purge the old route but also triggers a search for a
replacement router.

1.3.7 Transmission Control Protocol (TCP)

TCP provides reliable, flow-controlled, two-way transmission of data. It is a
byte-stream protocol used to support the IP_SOCK_STREAM abstraction. TCP uses
the standard Internet address format and, in addition, provides a per-host
collection of port addresses. Thus, each address is composed of an Internet address
specifying the host and network, with a specific TCP port on the host identifying
the peer entity.

Sockets utilizing TCP are either active or passive. Active sockets initiate
connections to passive sockets. By default TCP sockets are created active; to create

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

10

a passive socket the ipcom_listen() system call must be used after binding the
socket with the ipcom_bind() system call. Only passive sockets may use the
ipcom_accept() call to accept incoming connections. Only active sockets may use
the ipcom_connect() call to initiate connections.

Passive sockets may underspecify their location to match incoming connection
requests from multiple networks. This technique, termed wildcard addressing,
allows a single server to provide service to clients on multiple networks. To create
a socket that listens on all networks, the Internet address IP_INADDR_ANY must
be bound. The TCP port may still be specified at this time; if the port is not
specified the system will assign one, which is called ephemeral port.

Once a connection is established, the socket’s address is fixed by the peer entity’s
location. The address assigned to the socket is the address associated with the
network interface through which packets are being transmitted and received.
Normally this address corresponds to the peer entity’s network.

TCP supports one socket option, which is set with ipcom_setsockopt() and tested
with ipcom_getsockopt(). Under most circumstances, TCP sends data when it is
presented; when outstanding data has not yet been acknowledged, it gathers small
amounts of output to be sent in a single packet once an acknowledgement is
received.

Furthermore, options at the IP network level may be used with TCP. Incoming
connection requests that are source-routed are noted, and the reverse source route
is used in responding.

1.3.8 User Datagram Protocol (UDP)

UDP is a connectionless transport-layer Internet protocol that interfaces between
the network and upper-layer processes. Unlike the TCP, UDP is simple, but
unreliable and adds no flow-control or error-recovery functions to IP. By contrast,
UDP consumes less network overhead than TCP. UDP is used by several
well-known application-layer protocols, such as Network File System (NFS),
Simple Network Management Protocol (SNMP), Domain Name System (DNS),
and Trivial File Transfer Protocol (TFTP).

UDP is used to support the IP_SOCK_DGRAM abstraction for the Internet protocol
family. UDP sockets are normally used with the ipcom_sendto() and
ipcom_recvfrom() call. The ipcom_connect() call may also be used to fix the
destination for dual future packets, which enables the ipcom_recv() and
ipcom_send() system calls to be used.

1 Overview
1.3 Product Overview

11

1UDP address formats are identical to those used by TCP. In particular UDP
provides a port identifier in addition to the normal Internet address format. Note
that the UDP port space is separate from the TCP port space, i.e., a UDP port may
not be connected to a TCP port. In addition, broadcast packets may be sent using
a reserved broadcast address, assuming the underlying network supports this.
This address is network interface dependent.

Options at the IP transport level can be used with UDP.

1.3.9 Multiprotocol Label Switching

The Wind River MPLS implementation is an MPLS forwarding module. The MPLS
forwarding module has the following features:

■ RFC-compliant MPLS forwarding plane

■ small footprint

■ support for Forwarding Equivalence Class (FEC) to Next-Hop Label
Forwarding Entry (NHLFE), or FTNs, based on MPLS tunnel interfaces

■ support for FTNs based on MPLS shortcut routes

■ virtual router aware

1.3.10 RIP

The Wind River RIP component contains a set of functions that can be used to write
a RIP daemon capable of running the RIP version 1 or 2 protocol on any number
or type of interfaces.

RIP maintains its own database of routes which are stored in the IPCOM route data
structure implemented in the IPCOM common library. A set of callback function
hooks can be configured to report the addition and deletion of RIP routes to the
TCP/IP stack.

No socket code is included or even necessary in the RIP main code since the
required networking code is located outside the RIP API. For systems that include
the standard BSD sockets interface, a single UDP socket must be created and
initialized before opening the first RIP interface. The same socket handles all the
RIP traffic regardless of the number of RIP interfaces. All incoming RIP packets are
passed to RIP for parsing using a single function call. On the output side, an
interface specific callback function hook is used to pass the outgoing RIP packets

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

12

to the lower layer for transmission (using BSD sockets, a call to sendto() is all that
is required).

Wind River RIP is written in endian-independent, portable, easy to understand
ANSI C and requires extremely little of the operating system. Basically, all that is
needed to run RIP is malloc and free routines for dynamic memory, a timer that
can call a tick function once every second, and the network stack.

The code that requires the functionality of the operating system and the TCP/IP
stack is collected in IPCOM. Both RIP and IPCOM include and use functions to
swap 16 bit and 32 bit words in order to run on a target regardless of its endian.
RIP has been tested both on little endian and big endian targets.

A complete example is included in the release. The example implements a RIP
daemon process that interacts with the network stack, adding and deleting routes
within the stack.

The higher-level functions in the example are used to open and close RIP on an
interface and add static RIP routes which might be needed in the startup phase.
The RIP daemon process, ipripd, completely initializes RIP.

Next, it creates and binds a UDP socket to the well-known RIP port 520. A routing
socket is opened as well in order to receive information about interfaces going up
and down as well as routes being added or deleted.

After initialization, the RIP daemon listens on both the RIP socket and the routing
socket. If a RIP packet is received on the UDP socket, the RIP daemon process
simply passes a pointer to the RIP user data in the packet for RIP input parsing
using the iprip_ifread() function call, i.e., a memcpy is not required. The result is
efficient and fast RIP parsing by the RIP daemon.

Included with the example is an implementation of a proprietary RIP shell
command - ripctrl - which can be used for simple maintenance or debugging
purposes. Include INCLUDE_IPRIP_CTRL_CMD and
INCLUDE_RIPNG_CTRL_CMD to access the shell commands for RIP and RIPng.

Wind River RIP includes a control interface both for global and interface-specific
configuration and statistics. The main purpose of this interface is to allow an
SNMP agent to access the information necessary to implement the Routing
Information Protocol Management Information Base (RIP MIB). The interface does
not use any SNMP or MIB mechanisms such as ASN, Object Identifiers, SNMP get,
set and next requests etc. A straightforward tag interface is all that is needed. The
advantage of a simple design is portability and code usage. Applications that
require a RIP MIB implementation can access all the necessary information,
whether it is reading or writing, in order to implement all the mandatory RIP
variables and tables in the RIP MIB from RFC 1724. Presently however, the

1 Overview
1.3 Product Overview

13

1optional peer table which contains information that may be helpful in debugging
neighbor relationships is not implemented.

1.3.11 Multicast Routing

The multicasting hosts are available in the General Purpose Platform and in Wind
River Platforms. The multicasting router is available only in Wind River Platforms.

General Purpose Platform

The General Purpose Platform provides support for the following features:

■ the host-end of the IGMPv1, IGMPv2, and IGMPv3 protocols

■ the host-end of the MLDv1 and MLDv2 protocols

Wind River Platforms

The Wind River Platforms provides support for the following features:

■ the host-end of the IGMPv1, IGMPv2, and IGMPv3 protocols

■ the host-end of the MLDv1 and MLDv2 protocols

■ the router-side of the IGMPv1, IGMPv2, and IGMPv3 protocols

■ the router-side of the MLDv1 and MLDv2 protocols

■ the multicast forwarding engine

Terminology

Table 1-1 lists the primary terms used to describe multicasting.

NOTE: The multicasting router and the multicast forwarding engine are only
available in the Wind River Platforms builds of the network stack. The Wind River
General Purpose Platform, VxWorks Edition, does not support the multicasting
router.

NOTE: The router-side is not provided by the stack itself, but by a multicast
daemon task, which implements the functionality of a multicast proxy.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

14

Multicast Router vs. Multicast Proxy

Several factors distinguish a multicast router from a multicast proxy.

A multicast router requires a set of policies on how the different multicast streams
should be forwarded. The policy must be created by an administrator and handled
by a multicast routing deamon. The policy might just say “forward traffic from all
interfaces to all other interfaces that have a listener.” This policy could be
supported by a multicast proxy—in fact, it is the only policy a proxy (as opposed
to a router) is capable of supporting.

However, the multicast router might also have polices that say “if group G is
received on interface I, then create a tunnel to host H and forward all datagrams

Table 1-1 Multicasting Terms

Term Meaning

daemon A daemon is a term that originates from Unix and refers to a
task that is running in the background. The Wind River
multicasting daemon is the task that implements the multicast
routing duties as required by a multicast proxy specification.

group A group (in the context of multicasting) is a specific IP address
for which there can be zero or more listeners. A IP datagram
sent to a group should be delivered to all nodes listening to
that group.

host A host is any node that does not act as a router

IP address An IP address refers to the address of a node.

multicast proxy A multicast proxy is a way of implementing a multicast router
node. The proxy has some restrictions on the network
topology in which it is operating. These restrictions are
described in the RFC on which the implementation is based.

node A node is a device that has a network connection.

router A router is a node that can move IP datagrams from on
interface to another, in order to move the packet closer to the
destination node.a

a. Thus, the term multicast proxy is equivalent to multicast router, with the restrictions
described by the RFC that is used to implement the multicast proxy.

1 Overview
1.3 Product Overview

15

1received on interface I to group G into that tunnel.” This behavior distinguishes a
router from a proxy. A proxy cannot perform such a task.

Note that a proxy acts as a multicast router or host on a link. A specific node (i.e.,
a physical machine with networking capabilities) can act as a multicast host on
some of its network interfaces while acting as a multicast router on others.

One restriction a multicast proxy has compared to a multicast router is that it
cannot act as multicast router on all links. It must be a multicast host on at least one
of its links and one of those links is the “upstream” interface.

On the routers serving the points in the network to which you want to multicast,
you must run a common multicast routing protocol. On all VxWorks targets
participating in the multicast, both senders and the receivers, you must enable
multicast forwarding in the kernel, and you must run a multicast routing capable
application.

Thus, the multicast proxy has the benefit of not requiring any policy configuration
and would work very well in any office or home receiving multicast traffic from
the Internet. The interface connected to the Internet would be the uplink interface.

One reason to use a multicast router is that many backbone routers on the Internet
do not support multicast. For example, if a corporate office in Stockholm wanted
to send a multicast stream to an office in Ottawa, it would need a multicast router
that would create a unicast tunnel between these offices, which would handle all
multicast traffic Stockholm and Ottowa. The offices could thus send a multicast
stream between them since all the Internet backbone would do is forward unicast
datagrams (which just happen to carry multicast traffic).

Multicast Router Components

The multicast router consists of three parts:

■ The control plane implements the server side of the IGMP and MLD protocols.
It determines whether groups have listeners on a link.

■ The multicast routing table (also known as the forwarding information base, or
FIB) programs the multicast routing table to route multicast traffic. It serves as
the interface between the control plane and data plane.

■ The data plane receives multicast datagrams on an ingress interface and
forwards them to zero or more egress interfaces according to the rules in the
FIB.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

16

Multicast Router Implementation

VxWorks implements the multicast router via a multicast proxy task, which waits
on a message queue. This message queue collects expiration messages and
membership reports. In response to a timer expiration message, the proxy either
sends a query or removes a multicast destination from the interface on which it has
expired.

In response to a membership report, the task processes the packet.

When a new membership report arrives on an interface, a placeholder entry is
created in the FIB. Integration with other multicast protocols (such as PIM) is
required to create completed entries that forward multicast traffic.

Multicast Proxy Implementation

The Wind River multicast proxy implementation is a limited implementation of
the router part of the IGMP and MLD protocols. The first limitation is that the
proxy must act as a multicast host on at least one of the interfaces. However, it can
forward traffic between all downstream and upstream interfaces.

The other limitation is that it will always forward multicast datagrams to the
upstream interface unless it was the ingress interface for the datagram. These
restrictions are normally not a problem for routers used as home or corporate
gateways, where the upstream interface would be the interface connected to the
Internet. However, backbone multicast routers must use a full multicast router
implementation.

The multicasting router end is implemented through a multicast router daemon,
which keeps track of the groups (and channels, in the case of source-specific
multicast) that have listeners, and programs the stack using the MRT_xxx family of
setsockopt() (MRT6_xxx family for MLD). When the stack encounters multicast
packets for which no routing policy exists, it generates events at the socket that
called the MRT_INIT (or MRT6_INIT for MLD). For more information, see
7.6 Adding and Deleting Virtual Interfaces for Multicast Routing, p.147.

Multicast Proxy Operation

The multicast proxy handles:

■ the IPv6 multicast forwarding control plane

■ the MLD router side implementation

1 Overview
1.3 Product Overview

17

1
■ the IPv4 multicast forwarding control plane

■ the IGMP router side implementation

The actual forwarding—that is, moving an incoming multicast packet from, and
interface to, zero or more outgoing packets—is done by the stack base, on the
information programmed by the control plane (in this case, the multicast proxy
task).

Operational Example

In this example, a node (called R) has three interfaces—I1, I2, and I3. IPMCP is
configured to use I1 as the upstream interface and I2 and I3 as the downstream
interfaces.

The network also has three multicast hosts:

■ H1 connected to the same link as I1
■ H2 connected to I2
■ H3 connected to I3

H1, H2, and H3 are not members of any groups at first.

R sends out periodical queries on I2 and I3 (since it acts as a multicast router on
those interfaces) that ask: “to all nodes, tell me which multicast groups you are
listening to on this link.” It receives no response at this point in the example.

H1 now sends a datagram to group G1. This datagram will not be received by R
and not forwarded, because R is a multicast host on this link and is not listening to
that group.

H2 now sends a datagram to group G2. This datagram will be received by R on I2
since a router receives all multicast datagrams. R forwards the datagram to I1—it
cannot detect listeners on group G2 because it is not a router on that link. This is
one of the restrictions of proxies compared to full multicast routers. All received
multicast datagram has to be forwarded to the uplink interface, which could cause
some unnecessary traffic on that link.

H1 now joins G2. This will result in an IGMP or MLD (depends on whether G is an
IPv4 or an IPv6 address) that says “I've joined group G2.” R does not receive that
report, and even if it did, it would just ignore it since it is acting as multicast host
on I1.

H1 would now receive any datagram sent to G2 from H2 or H3, since all multicast
packages are forwarded to the uplink interface.

H2 now joins G2. A report is sent and is processed by R since it acts as a router on
I2. R now joins group G2 on its uplink interface I1. R therefore sends a report to

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

18

that link, which is not processed by H1 but may be processed by any multicast
router on that link.

H3 send a datagram to G2. R receives it and forward its to both I1 and I2—I1 since
it is the uplink interface and I2 because R knows that group G2 has (at least) one
listener on the link attached to I2. Both H1 and H2 receive the datagram.

H1 send a datagram to G2. R receives it since it is now listening on that group on
I1. R detects a listener for G2 on I2 and forwards the datagram out to that link. It
does not send a copy to I1 since a multicast datagram is never forwarded to the
interface it was received on.

H2 leaves G2, a report is sent that says “I'm no longer interested in group G2.” R
sees the report and sends out a query to I2 that says “Is any node listening to group
G2?” R will stop forwarding datagrams sent to G2 if no one answers that question
within the timeout value set by the IPMCP configuration. The default value is 10
sec.

1.4 Additional Documentation

The following sections describe additional documentation about the technologies
described in this book.

Wind River Documentation

The following Wind River documents present information associated with the
Wind River Network Stack:

■ Wind River VxWorks Platforms Getting Started – describes how to install and
build components of the Wind River VxWorks Platforms product.

■ Wind River VxWorks Platforms Release Notes – describes reported and resolved
software defects and new features for the Wind River VxWorks Platforms
product.

Wind River Network Stack Programmer's Guide

The Wind River Network Stack Programmer's Guide consists of three volumes. This is
Volume 1. This volume provides an overview and general information about

1 Overview
1.4 Additional Documentation

19

1about the network stack. In addition, it covers routing and the network and
transport layers, including the following topics:

■ configuring a minimal stack

■ configuring and running the network daemon task

■ adding basic TCP/IP support for IPv4 and IPv6

■ adding Address Resolution Protocol (ARP)

■ using routing socket messages

■ adding RIP and RIPng support

■ working with the Virtual Router Redundancy Protocol (VRRP)

■ enabling virtual routers

■ Multiprotocol Label Switching (MPLS) - Data plane support

■ adding IGMP and MLD multicasting support for IPv4 and IPv6

■ configuring and using Mobile IP

Volume 2 of the Wind River Network Stack Programmer's Guide covers
implementations of application-layer protocols and socket programming. The
Wind River network stack includes implementations of the following
application-layer protocols:

■ DHCP and DHCPv6
■ DNS
■ FTP
■ Ping
■ RLOGIN
■ RPC
■ RSH
■ SNTP
■ Telnet
■ TFTP

Volume 3 of the Wind River Network Stack Programmer's Guide covers interfaces,
drivers, and the MUX, which is an abstraction layer between the drivers and
interfaces. Volume 3 includes the following topics:

■ configuring and managing network memory

■ creating and configuring network interfaces

■ using tunneling with interfaces

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

20

■ using router advertisement and solicitation

■ integrating END and Network Protocol Toolkit (NPT) driver interfaces

■ integrating a new network-layer or transport-layer service

■ using 802.1Q VLAN tagging

■ MUX/NPT routines and data structures.

■ implementing quality-of-service (QoS) mechanisms

Books

The focus of this manual is the configuration of the Wind River Network Stack.
Although this manual includes some networking background information, it is
beyond the scope of this manual to provide a thorough description of socket usage,
routing, protocol implementation, writing a network interface driver, and
interpreting statistics returned by routines. For information of that sort, consider
the following sources:

■ The Design and Implementation of the 4.4 BSD Operating System, by Marshall Kirk
McKusick, Keith Bostic, Michael J. Kraals, John S. Quarterman

■ TCP/IP Illustrated, Vol. 1, by Richard Stevens

■ TCP/IP Illustrated, Vol. 2, by Gary Wright and Richard Stevens

■ Internetworking with TCP/IP Volume III, by Douglas Comer and David Stevens.

■ UNIX Network Programming, by Richard Stevens
(for information on socket programming)

■ Implementing IPv6, by Mark A. Miller, P.E.

Online Resources

Online resources are as follows:

■ The IPv6 Forum Web site, www.ipv6forum.com

■ The IPv6 Information Page, www.ipv6.org

www.ipv6forum.com
www.ipv6.org

1 Overview
1.4 Additional Documentation

21

1
RFCs

The Wind River Network Stack is compliant with the following RFCs, except
where noted otherwise. These RFCs can be found at the IETF Web site
http://www.ietf.org.

RFC 0147: Definition of a socket

RFC 0768: User Datagram Protocol

RFC 0781: Specification of the Internet Protocol (IP) timestamp option

RFC 0791: Internet Protocol

RFC 0792: Internet Control Message Protocol

RFC 0793: Transmission Control Protocol

RFC 0826: Ethernet Address Resolution Protocol: Or Converting Network Protocol
Addresses to 48.bit Ethernet Address for Transmission on Ethernet Hardware

RFC 0894: A Standard for the Transmission of IP Datagrams over Ethernet Networks

RFC 0903: A Reverse Address Resolution Protocol

RFC 0919: Broadcasting Internet Datagrams

RFC 0922: Broadcasting Internet datagrams in the presence of subnets

RFC 0925: Multi-LAN Address Resolution

RFC 0950: Internet Standard Subnetting Procedure

RFC 0959: File Transfer Protocol (partial implementation; see Wind River Network
Stack for VxWorks 6 Programmer’s Guide 6.6,Volume 2: Application Protocols, for
further information)

RFC 1027: Using ARP to implement transparent subnet gateways

RFC 1034: Domain Names - Concepts and Facilities (partial implementation; see Wind
River Network Stack for VxWorks 6 Programmer’s Guide 6.6,Volume 2: Application
Protocols, for further information)

RFC 1035: Domain Names - Implementation and Specification (partial implementation;
see Wind River Network Stack for VxWorks 6 Programmer’s Guide 6.6,Volume 2:
Application Protocols, for further information)

RFC 1058: Routing Information Protocol

RFC 1071: Computing the Internet checksum

RFC 1112: Host extensions for IP multicasting

http://www.ietf.org

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

22

RFC 1122: Requirements for Internet Hosts - Communication Layers

RFC 1123: Requirements for Internet Hosts - Application and Support

RFC 1123: Requirements for Internet Hosts - Application and Support

RFC 1191: Path MTU discovery

RFC 1256: ICMP Router Discovery Messages

RFC 1323: TCP Extensions for High Performance

RFC 1349: Type of Service in the Internet Protocol Suite

RFC 1350: The TFTP Protocol (Revision 2)

RFC 1517: Applicability Statement for the Implementation of Classless Inter-Domain
Routing CIDR

RFC 1518: An Architecture for IP Address Allocation with CIDR

RFC 1519: Classless Inter-Domain Routing (CIDR): an Address Assignment and
Aggregation Strategy

RFC 1624: Computation of the Internet Checksum via Incremental Update

RFC 1701: Generic Routing Encapsulation (GRE)

RFC 1724: RIP Version 2 MIB Extension

RFC 1853: IP in IP Tunneling

RFC 1853: IP in IP Tunnelling

RFC 1886: DNS Extensions to support IP version 6

RFC 1924: A Compact Representation of IPv6 Addresses

RFC 1981: Path MTU Discovery for IP version 6

RFC 2001: TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery
Algorithms

RFC 2002: IP Mobility Support

RFC 2003: IP Encapsulation within IP

RFC 2004: Minimal Encapsulation within IP

RFC 2005: Applicability Statement for IP Mobility Support

RFC 2018: TCP Selective Acknowledgment Options

RFC 2030: Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI

1 Overview
1.4 Additional Documentation

23

1RFC 2104: HMAC: Keyed-Hashing for Message Authentication

RFC 2113: IP Router Alert Option

RFC 2236: Internet Group Management Protocol, Version 2

RFC 2373: IP Version 6 Addressing Architecture

RFC 2374: An IPv6 Aggregatable Global Unicast Address Format

RFC 2375: IPv6 Multicast Address Assignments

RFC 2385: Protection of BGP Sessions via the TCP MD5 Signature Option

RFC 2401: Security Architecture for the Internet Protocol

RFC 2406: IP Encapsulating Security Payload (ESP)

RFC 2428: FTP Extensions for IPv6 and NATs

RFC 2450: Proposed TLA and NLA Assignment Rule

RFC 2453: RIP Version 2

RFC 2460: Internet Protocol, Version 6 (IPv6) Specification

RFC 2461: Neighbor Discovery for IP Version 6 (IPv6)

RFC 2462: IPv6 Stateless Address Autoconfiguration

RFC 2463: Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version
6 (IPv6) Specification

RFC 2463: Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version
6 (IPv6) Specification

RFC 2464: Transmission of IPv6 Packets over Ethernet Networks

RFC 2473: Generic Packet Tunneling in IPv6 Specification

RFC 2473: Generic Packet Tunnelling in IPv6 Specification

RFC 2474: Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6
Headers

RFC 2475: An Architecture for Differentiated Service

RFC 2529: Transmission of IPv6 over IPv4 Domains without Explicit Tunnels

RFC 2529: Transmission of IPv6 over IPv4 Domains without Explicit Tunnels

RFC 2547: BGP/MPLS VPNs

RFC 2553: Basic Socket Interface Extensions for IPv6

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

24

RFC 2553: Basic Socket Interface Extensions for IPv6

RFC 2577: FTP Security Considerations

RFC 2581: TCP Congestion Control

RFC 2597: Assured Forwarding PHB Group

RFC 2697: A Single Rate Three Color Marker

RFC 2710: Multicast Listener Discovery (MLD) for IPv6

RFC 2711: IPv6 Router Alert Option

RFC 2784: Generic Routing Encapsulation (GRE)

RFC 2794: Mobile IP Network Access Identifier Extension for IPv4

RFC 2893: Transition Mechanisms for IPv6 Hosts and Routers

RFC 2977: Mobile IP Authentication, Authorization, and Accounting Requirements

RFC 2991: Multipath Issues in Unicast and Multicast Next-Hop Selection

RFC 3012: Mobile IPv4 Challenge/Response Extensions

RFC 3024: Reverse Tunneling for Mobile IP, revised

RFC 3031: Multiprotocol Label Switching Architecture

RFC 3041: Privacy Extensions for Stateless Address Autoconfiguration in IPv6

RFC 3056: Connection of IPv6 Domains via IPv4 Clouds

RFC 3056: Connection of IPv6 Domains via IPv4 Clouds

RFC 3115: Mobile IP Vendor/Organization-Specific Extensions

RFC 3315: Dynamic Host Configuration Protocol for IPv6 (DHCPv6) (partial
implementation; see Wind River Network Stack for VxWorks 6 Programmer’s Guide
6.6,Volume 2: Application Protocols, for further information)

RFC 3344: IP Mobility Support for IPv4

RFC 3376: Internet Group Management Protocol, Version 3

RFC 3484: Default Address Selection for Internet Protocol version 6 (IPv6)

RFC 3493: Basic Socket Interface Extensions for IPv6

RFC 3513: Internet Protocol Version 6 (IPv6) Addressing Architecture

RFC 3519: Mobile IP Traversal of Network Address Translation (NAT) Devices

RFC 3542: Advanced Sockets Application Program Interface (API) for IPv6

1 Overview
1.4 Additional Documentation

25

1RFC 3543: Registration Revocation in Mobile IPv4

RFC 3587: IPv6 Global Unicast Address Format

RFC 3596: DNS Extensions to Support IP Version 6

RFC 3646: DNS Configuration options for Dynamic Host Configuration Protocol for IPv6
(DHCPv6)

RFC 3678: Socket Interface Extensions for Multicast Source Filters

RFC 3736: Stateless Dynamic Host Configuration Protocol (DHCP) Service for IPv6

RFC 3768: Virtual Router Redundancy Protocol (VRRP)

RFC 3769: Requirements for IPv6 Prefix Delegation

RFC 3775: Mobility Support in IPv6 (partial implementation; see Wind River Network
Stack for VxWorks 6 Programmer’s Guide 6.6,Volume 3: Interfaces and Drivers, for
further information)

RFC 3776: Using IPsec to Protect Mobile IPv6 Signaling Between Mobile Nodes and
Home Agents

RFC 3810: Multicast Listener Discovery Version 2 (MLDv2) for IPv6

RFC 3846: Mobile IPv4 Extension for Carrying Network Access Identifiers

RFC 3879: Deprecating Site Local Addresses

RFC 3927: Dynamic Configuration of IPv4 Link-Local Addresses

RFC 4075: Simple Network Time Protocol (SNTP) Configuration Option for DHCPv6

RFC 4193: Unique Local IPv6 Unicast Addresses

RFC 4213: Basic Transition Mechanisms for IPv6 Hosts and Routers (does not
implement the optional (MAY) feature described in 3.2.2., Dynamic Tunnel MTU)

RFC 4242: Information Refresh Time Option for Dynamic Host Configuration Protocol for
IPv6 (DHCPv6)

RFC 4291: IP Version 6 Addressing Architecture

RFC 4293: Management Information Base for the Internet Protocol (IP)

RFC 4294: IPv6 Node Requirements

RFC 4433: Mobile IPv4 Dynamic Home Agent (HA) Assignment

RFC 4443: Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version
6 (IPv6) Specification

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

26

RFC 4604: Using Internet Group Management Protocol Version 3 (IGMPv3) and
Multicast Listener Discovery Protocol Version 2 (MLDv2) for Source-Specific Multicast

RFC 4605: Internet Group Management Protocol (IGMP) / Multicast Listener Discovery
(MLD)-Based Multicast Forwarding ("IGMP/MLD Proxying") The operation of a
multicast proxy is described in RFC 4605. The Wind River multicast proxy
implements the server part of the RFCs listed in this section.

RFC 4607: Source-Specific Multicast for IP

RFC 4636: Foreign Agent Error Extension for Mobile IPv4

RFC 4692: Considerations on the IPv6 Host Density Metric

Related RFCs

RFC 0854: Telnet Protocol Specification

RFC 0951: Bootstrap Protocol

RFC 1014: XDR: External Data Representation standard

RFC 1542: Clarifications and Extensions for the Bootstrap Protocol

RFC 1700: Assigned Numbers

RFC 1831: RPC: Remote Procedure Call Protocol Specification Version 2

RFC 2131: Dynamic Host Configuration Protocol

RFC 2132: DHCP Options and BOOTP Vendor Extensions

RFC 2242: NetWare/IP Domain Name and Information

RFC 2849: The LDAP Data Interchange Format (LDIF) - Technical Specification

RFC 3152: Delegation of IP6.ARPA

RFC 3232: Assigned Numbers: RFC 1700 is Replaced by an On-line Database

RFC 3633: IPv6 Prefix Options for Dynamic Host Configuration Protocol (DHCP)
version 6

27

 2
Configuring and Building the

Network Stack

2.1 Introduction 27

2.2 Configuring and Building the Wind River Network Stack Source
Code 28

2.3 Configuring VxWorks with the Wind River Network Stack 32

2.4 Using Shell Commands 45

2.5 Testing Connectivity from the Target 49

2.1 Introduction

This chapter provides information on the following topics:

■ how to build a VxWorks bootable image that includes a basic network stack
without security components for use in applications where footprint size is a
concern

■ how to access shell commands that can be used to configure the network stack

■ how to configure the network daemon task

The following chapters also provide additional detail:

■ 3. Configuring Transport and Network Protocols explains how to implement the
protocols ARP, UDP, TCP/IP, ICMP, NDP, and MPLS.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

28

■ 4. Adding Routing Support describes the route storage mechanism and the
protocols used to maintain the contents of the route table.

■ 5. Working with Routing Sockets describes how to configure and build routing
sockets, which provide a two-way interface to the routing table.

■ 6. Enabling Virtual Routers describes the use of virtual routing tables, which
ensure the multiplication of routing tables while minimizing the demand on
system resources.

■ 7. Adding Support for Multicast Routing describes how to configure and build
support for multicast routing.

■ Chapters 8–12 describe how to configure and build Mobile IP.

2.2 Configuring and Building the Wind River Network Stack
Source Code

The Platform getting started guide contains general instructions for building a
product into VxWorks. This section describes some options for building the
network stack source.

2.2.1 IPv4 or IPv6

You can build the network stack source code in one of three ways:

■ IPv4 only
■ IPv4/IPv6
■ IPv6 only

The procedure you follow depends on your installation. For further information,
see either Wind River VxWorks Platforms, p.29, or Wind River General Purpose
Platform, VxWorks Edition, p.30.

Affected Modules—IPv6-Only Network Stack

Most code modules are unaffected by the way the network stack source code is
built. If you build an IPv6-only network stack, however, modifications may be

2 Configuring and Building the Network Stack
2.2 Configuring and Building the Wind River Network Stack Source Code

29

2

required in modules that make calls to IPv4 routines. Such modules include SNMP
and BSPs.

To make these modules compatible with an IPv6-only network stack, perform the
following steps:

■ Enclose any IPv4-specific code with #ifdef INET.

■ Enclose any IPv6-specific code fragment with #ifdef INET6.

Build Instructions

Wind River VxWorks Platforms

The macro settings in the config.mk file in the
installDir/vxworks-6.x/config/platform directory determine how the network stack
is built.

By default, the network stack is built for IPv4:

export FEATURE_IPNET_INET6 = false

To build the network stack for combined IPv4/IPv6 support, set this macro to true.

An additional macro is available for building an IPv6-only network stack. By
default, this macro is set to false.

export FEATURE_IPNET_INET6_ONLY = false

To build an IPv6-only network stack, set this macro to true.

Whenever you change these values, you must rebuild the Platform source code as
described in your Platform getting started guide.

If you build an IPv6-only network stack, however, you must also disable certain
components before building the Platform source code. These components include:

■ COMPONENT_SNMP
■ COMPONENT_IPIPSEC
■ COMPONENT_IPIKE
■ COMPONENT_IPFREESCALE
■ COMPONENT_IPSSH
■ COMPONENT_IPMIP4
■ COMPONENT_IPMIPFA
■ COMPONENT_IPMIPHA
■ COMPONENT_IPMIPMN
■ COMPONENT_IPEAP
■ COMPONENT_IPDIAMETERC

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

30

■ COMPONENT_IPSSL
■ COMPONENT_IPCRYPTO
■ COMPONENT_IPRIPNG
■ COMPONENT_IPMIP6
■ COMPONENT_IPMIP6MN
■ COMPONENT_PPP
■ COMPONENT_DOT1X
■ COMPONENT_RADIUS
■ COMPONENT_FIREWALL
■ COMPONENT_WLAN

Wind River General Purpose Platform, VxWorks Edition

In Wind River General Purpose Platform, VxWorks Edition, the source code
libraries are prebuilt for an IPv4-only network stack.

To rebuild the source code libraries with support for a dual IPv4/IPv6 network
stack, you must issue a make command with the ADDED_Cflags+=-DINET6
command-line flag.

To rebuild the source code libraries with support for an IPv6-only network stack,
you must issue a make command in the following directory:

installDir/vxworks-6.x/target/src/ipnet

Use the ADDED_Cflags+=-DINET6_ONLY command-line flag:

make CPU=cpuType TOOL=toolChain ADDED_CFLAGS+=-DINET6_ONLY

Symbol Table Download and Network Drives

Symbol table download and network drive mounting are ordinarily performed
over an IPv4 network. Some modifications may be required when you build an
IPv6-only network stack. For further information, see 2.3.2 Special Provisions for
IPv6-Only Network Stacks, p.40.

NOTE: Certain third-party libraries are supplied only in binary format, without
source code. You must back up these libraries before rebuilding the VxWorks
source code. For a complete description of the procedures for backing up prebuilt
libraries and rebuilding the source code, see the getting started guide for
Wind River General Purpose Platform, VxWorks Edition.

2 Configuring and Building the Network Stack
2.2 Configuring and Building the Wind River Network Stack Source Code

31

2

2.2.2 Optimizations and Debugging

By default, the network stack is also built for speed:

export FEATURE_IPNET_BUILD = speed

The possible values for this macro and their meaning are listed in Table 2-1.

Verbose

The verbose mode turns on verbose login from the stack. Because it outputs large
amounts of data on the console, it should only be used for troubleshooting.
Examples of information displayed with verbose are:

■ network interface state change
■ address additions/removals
■ route entry additions/removals

By default, the network stack is built with verbose off:

export FEATURE_IPNET_VERBOSE = false

Table 2-1 FEATURE_IPNET_BUILD Macro Options

Option Meaning

debug Using the debug option compiles the network stack as follows:

■ the debug flag (-g) enabled
■ optimization set to 0
■ assert and full debug instrumentation is enabled

speed Using the speed option compiles the network stack as follows:

■ the debug flag (-g) disabled
■ optimization set to level 2

debugspeed Using the debugspeed option compiles the network stack as
follows:

■ the debug flag (-g) enabled
■ optimization set to level 2

size Using the size option compiles the network stack as follows:

■ the debug flag (-g) disabled
■ optimization set to level 2

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

32

To build the stack to turn verbose on, set this macro to true:

export FEATURE_IPNET_VERBOSE = true

and rebuild the stack.

2.2.3 SMP Platform Build

To build the Platform source for SMP, add VXBUILD=SMP to the make command.
For example:

make CPU=cpuType TOOL=toolChain VXBUILD=SMP

2.2.4 Examples

For example, with the following settings:

FEATURE_IPNET_BUILD = debug
FEATURE_IPNET_VERBOSE = true

the source is built with the debug messages incorporated into the build, and they
get printed onto the console, from the vxWorks image loaded onto the target.

The same can also be achieved by the following :

make CPU=PENTIUM4 TOOL=diab FEATURE_SET=pne IPBUILD=debug IPVERBOSE=yes
TARGET=rclean

make CPU=PENTIUM4 TOOL=diab FEATURE_SET=pne IPBUILD=debug IPVERBOSE=yes

2.3 Configuring VxWorks with the Wind River Network Stack

This section lists the minimal network components needed to create a stack with
just enough resources to respond to a ping or ping6 request. This lets a remote
system test the network connection to your target. Since, you cannot test network
connectivity from a target running a minimal stack without adding ping, ping or
ping6 are also included in the list of essential components.

You can configure VxWorks in either of two ways—with the Wind River
Workbench or the vxprj command-line tool. Both methods handle dependencies
for you. For instructions on using Workbench, see the Wind River Workbench User's

2 Configuring and Building the Network Stack
2.3 Configuring VxWorks with the Wind River Network Stack

33

2

Guide. For instructions on using vxprj, see the VxWorks Command-Line Tools User's
Guide.

If a component contains configuration parameters, you may need or want to
modify them.

Creating an IPv6 Project

If you are using the General Purpose Platform and creating an IPv6-compatible
network stack, you must specify an additional option when you create your
project.

■ If you are using Workbench, select Use IPv6 enabled kernel libraries in the
Options page of the New VxWorks Image Project wizard.

■ If you are using vxprj, add the flag -inet6 to the make command.

Creating an SMP Project

If you are creating an SMP-compatible network stack, you must specify this option
when you create your project.

■ If you are using Workbench, select Build with SMP options in the Options
page of the New VxWorks Image Project wizard.

■ If you are using vxprj, add the flag -smp to the make command.

Automatically Included Components

The components listed in this section are required, but are automatically included
when a project is created, so you do not need to explicitly add them.

INCLUDE_IPNET

This component automatically includes the INCLUDE_IPCOM component, which
pulls in the socket library (INCLUDE_SOCKLIB) and the common networking
infrastructure (INCLUDE_COMMON_NET and INCLUDE_IPNET_STACK). It also

NOTE: This option is only applicable for network stack projects based on the
General Purpose Platform. Do not specify this option if you are using the
Wind River VxWorks Platforms.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

34

includes support for the routing network stack, the networking daemon, the MUX
and END drivers, job queuing, and memory pool buffers.

INCLUDE_IPCOM_USE_INET

This component pulls in UDPv4 and ICMPv4, as well as the standard support for
IPv4.

INCLUDE_IPTCP

This component pulls in libraries and modules that provide support for TCP in
either the IPv4 or IPv6 domains. Which support is included depends on how the
network stack source is built. For more information, see your Platform getting
started guide.

Additionally Required Components

The components listed in this section are required. In most cases, they are included
when you build a VxWorks image.

INCLUDE_GTF_TIMER_START

This component automatically starts the General Timer Facility. This component
requires INCLUDE_GTF, which pulls in modules that support the General Timer
Facility. INCLUDE_GTF has no configuration parameters.

INCLUDE_GTF_TIMER_START has no configuration parameters.

INCLUDE_INETLIB

This component pulls in inetLib and other modules that implement routines for
manipulating Internet addresses, including the UNIX BSD inet_ routines. It
includes routines for converting between character addresses in Internet standard
dotted decimal notation and integer addresses, routines for extracting the network
and host portions out of an Internet address, and routines for constructing Internet
addresses given the network and host address parts.

There are no component dependencies or configuration parameters associated
with this component. For information on the externally callable functions
associated with this component, see the inetLib reference entry.

2 Configuring and Building the Network Stack
2.3 Configuring VxWorks with the Wind River Network Stack

35

2

INCLUDE_IPATTACH or INCLUDE_IP6ATTACH

This component provides ipAttach() or ip6Attach() for attaching to the network
interface specified in the boot line parameters.

INCLUDE_IPCOM_USE_ETHERNET

This component pulls in Ethernet support and denotes the type of link layer
interface to support.

INCLUDE_IPPING_CMD or INCLUDE_IPPING6_CMD

These components pull in the modules for ping or ping6, respectively. If you want
to run an application, you probably want the default stack components (at the very
least), which also include INCLUDE_APPL_LOG_UTIL.

INCLUDE_NET_BOOT_CONFIG

This component configures a network interface based on the device configuration
parameters in the boot line. This component has no associated configuration
parameters.

INCLUDE_NET_REM_IO

This component pulls in modules that initialize systems in support of file access on
the boot host. This component supports the activities of components such as
INCLUDE_NET_DRV and requires the following components:

■ INCLUDE_NET_DRV
■ INCLUDE_BOOT_LINE_INIT
■ INCLUDE_NET_BOOT
■ INCLUDE_NET_HOST_SETUP

For more information on how to use netDrv, see the netDrv reference entry.

NOTE: The return values of inet_aton are not compatible with some other BSD
socket implementations. inet_aton returns 0K for success or ERROR for failure,
whereas vxworks.h defines OK as 0 and ERROR as (-1).

Like other BSD implementations, the internal API ipcom_inet_aton returns -1 for
success and 0 for failure. However, to maintain backwards compatibility for
VxWorks socket applications, these values have been reversed by the public
wrapper code inet_aton.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

36

INCLUDE_NET_SYSCTL

This component pulls in the sysctlLib module and adds network system control
support. This component requires INCLUDE_SYSCTL and has no configuration
parameters.

INCLUDE_PING

This component pulls in support for the ping utility with IPv4 and is documented
in the Wind River Network Stack for VxWorks 6 Programmer’s Guide, Volume 2.

INCLUDE_PING6

This component pulls in support for the ping utility with IPv6 and is documented
in the Wind River Network Stack for VxWorks 6 Programmer’s Guide, Volume 2. This
component is only required for an IPv6 stack.

INCLUDE_XDR

This component pulls in modules that implement generic XDR (External Data
Representation) routines. It is automatically included as a requirement for Remote
Procedure Call (RPC).

This component is required only if you also include WDB_COMM_SERIAL. For
more information, see the Wind River Network Stack for VxWorks 6 Programmer’s
Guide, Volume 2.

2.3.1 Including a Network Driver

To make the stack usable, it must include at least one network driver.

The following sections describe how to add and configure the necessary interfaces.

Which procedure you follow depends on whether your BSP supports VxBus. If it
does, the system will automatically detect any additional drivers, and you only
need to configure them. In such a case, perform only the procedure described in
Configuring an Additional Interface, p.38.

Checking for VxBus Support

You can tell whether your BSP supports VxBus by examining the following file:

target/config/bspName/config.h

2 Configuring and Building the Network Stack
2.3 Configuring VxWorks with the Wind River Network Stack

37

2

If this file contains the line #define INCLUDE_VXBUS, it supports VxBus, and you
do not need to perform a separate procedure to add a network interface.

If this file does not contain the line #define INCLUDE_VXBUS, you must edit the
file to add the necessary interfaces. See Adding a Network Interface—Legacy END Drivers,
p.37, for further information.

Adding a Network Interface—Legacy END Drivers

Perform this procedure only if your BSP does not support VxBus.

Before configuring the network stack, check whether your BSP supports a second
interface. If not, you can add that support. To learn whether your BSP already
supports a second interface and how to enable it, read the BSP reference page in
the Workbench online help.

To add a network interface, you must edit target/config/bspName/configNet.h.

Each BSP requires specific edits to add support for an interface. The following
example shows how to add support for an additional fei interface for the
pcPentium BSP.

Example 2-1 Adding a Network Interface to a BSP (FEI Driver)

1. Locate the following lines:

#ifdef INCLUDE_FEI_END
{ 0, FEI82557_LOAD_FUNC, FEI82557_LOAD_STRING, FEI82557_BUFF_LOAN,
NULL, FALSE},

#endif /* INCLUDE_FEI_END */

2. Add the following line just before the #endif line:

{ 1, FEI82557_LOAD_FUNC, FEI82557_LOAD_STRING, FEI82557_BUFF_LOAN,
NULL, FALSE},

3. If more than two interfaces are necessary, repeat step 2, incrementing the
interface number for each additional interface.

4. Ensure that installDir/vxworks-6.x/target/config/bspName/config.h includes
the following define:

#define INCLUDE_FEI_END

If you are using a different BSP or interface, read the BSP reference page in
Workbench online help.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

38

Configuring an Additional Interface

Once you have added a network interface, you must configure it with an IP
address or network mask. You can configure the interface at build time or at run
time.

Configuring an Additional Interface at Build Time

To configure an interface at build time, include an INCLUDE_IPNET_IFCONFIG_N
component (one for each interface). Each of these components contains an
IFCONFIG_N parameter.

For each IFCONFIG_N, edit the following fields:

ifname
Specifies the name of the Ethernet interface, for example, ifname fei0. If the
interface name is missing after ifname (the default setting), the END device
name will be used.

devname
Specifies the driver to which this interface should attach itself, for example,
fei0. The default setting driver instructs VxWorks to retrieve the device name
from the device boot parameters.

inet
Specifies the interface IPv4 address and subnet, for example, inet 10.1.2.100/24.
Instead of IPv4 address, the following syntaxes can also be used:

inet driver (default)
Specifies that the address and mask should be read from the BSP.

inet dhcp
Specifies that the address and mask should be received from a DHCP
server. The gateway might also be received from that server (depending
on the DHCP server configuration).

inet rarp
Specifies that the address and mask should be received from an RARP
server.

gateway
Specifies the default gateway used for IPv4, for example, gateway 10.1.2.1.
Only one default gateway can be specified. gateway driver can be used to take
the gateway from the boot parameters.

2 Configuring and Building the Network Stack
2.3 Configuring VxWorks with the Wind River Network Stack

39

2

inet6
Specifies the interface IPv6 address and subnet, for example,
inet6 3ffe:1:2:3::4/64. The tentative keyword can be inserted before the address
if the stack should perform duplicate address detection on the address before
assigning it to the interface, for example, tentative 3ffe:1:2:3::4/64.

gateway6
Specifies the default gateway used for IPv6. Only one default gateway can be
specified.

Configuring an Additional Interface by Editing config.h

You can also configure an additional interface by editing the config.h file for your
BSP—that is, target/config/bspName/config.h. In this case, specify the values for
IFCONFIG_N directly in the file, using a #define statement. For example:

#define IFCONFIG_1 "ifname", "devname driver","inet driver","gateway
driver", \
 "inet6 3ffe:1:2:3::10/64"

Configuring an Additional Interface at Run Time

If you are not ready to configure the interface at build time, you can configure it at
run time. This procedure consists of two steps:

1. Attaching a protocol.

2. Configuring the address and subnet mask.

To perform these steps, run an ipAttach shell command on the target, followed by
an ifconfig. For example:

[vxWorks *] # ipAttach 1,"fei"
[vxWorks *] # ifconfig "fei1 10.0.0.2 netmask 255.255.255.0 up"

The parameters for the ifconfig command are specified in Configuring an Additional
Interface at Build Time, p.38.

Creating a Tunnel to a Remote IPv6 Destination

In addition, for IPv6, you may want to set up a tunnel to a remote IPv6 destination
if no IPv6 router is available locally. For information on how to do this at run-time,
see the Wind River Network Stack for VxWorks 6 Programmer’s Guide, Volume 3.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

40

2.3.2 Special Provisions for IPv6-Only Network Stacks

Downloading a symbol table and mounting network drives are ordinarily
performed over an IPv4 network stack. If you build an IPv6-only network stack as
described in 2.2.1 IPv4 or IPv6, p.28, you must make special provisions for these
tasks.

The default VxWorks image is configured to support symbol table download over
IPv6 if the network stack is built with the IPv6-only configuration. Therefore, do
not undefine INCLUDE_NET_DRV in your BSP’s config.h or exclude
INCLUDE_NET_DRV from the VxWorks image project. These steps disable symbol
table download.

To download a symbol table at startup using the default image, you must only
ensure that IPv6-related parameters are configured in the boot string as described
below.

Configuring IPv6-Related Parameters at Boot Time

For an IPv6-only target to download the symbol table, you must provide the IPv6
address of the boot host. If the provided address is a global address, you must also
provide the target’s boot interface global IPv6 address.

Because the inet on ethernet and host inet fields of the boot string are already used
to configure the boot net device, you must use the other field for IPv6 addresses.
The format of the other field is described below.

The format takes into the consideration the fact that the other field is also used to
store the name of the interface that is initialized when the target is booted via
non-network boot devices, such as SCSI, TFFS, etc.

If the target is booted via non-network devices and you want to initialize a
network device, place its name at the beginning. Any subsequent configuration
parameters must be followed by the semicolon (;) character
(OTHER_FIELD_DELIMITER). This practice is based upon the covention used by
TIPC.

The target IPv6 address field starts with ead6= and is followed by the IPv6 address
string. This field is not required for symbol table download if you are using a link
local address for the host.

The host IPv6 address field starts with had6= and is followed by the IPv6 address
string. If the host IPv6 address is a link local address, note the following:

2 Configuring and Building the Network Stack
2.3 Configuring VxWorks with the Wind River Network Stack

41

2

■ The address should be immediately followed by %ifname, where ifname is
the name of the interface connected to the boot host.

■ The link local address is not readily available for routing because of
initialization issues. Depending upon the network traffic in the LAN and other
factors, the symbol table download could either be slow or even fail. To avoid
failure, increase the number of connection retrials using the configuration
parameter REM_NUM_CONN_RETRIALS. On a pcPentium target directly
connected to a FreeBSD server with relatively small traffic, a 100% success rate
was achieved if REM_NUM_CONN_RETRIALS==3. With this parameter set to
0, the success rate was 0. A succes rate of 60-90 percent was achieved with
REM_NUM_CONN_RETRIALS set to 1 and 2.

2.3.3 Additional Dependencies

A minimal stack to which you have added the components listed in this chapter
will support a ping or ping6 made from the stack using the host shell. However,
you cannot use the kernel shell because that feature is not part of the minimal
default stack, although you can add it in if you want. See 2.4.1 Including Shell
Command Components, p.45, for further information.

2.3.4 Configuring the Network Daemon Task

Under VxWorks, the task tNet0 is the default network daemon. This task is
dedicated to handling the task-level (as opposed to interrupt-level) processing
required by the network stack; it is primarily used by network drivers. The ISR
associated with a network driver uses jobQueuePost() to queue
packet-processing work on this task. For information on using this function in an
END or NPT driver, see the Wind River Network Stack for VxWorks 6 Programmer’s
Guide, Volume 3.

To configure one or more network daemons, use the INCLUDE_NET_DAEMON
component. This component supplies parameters that you can use to specify the

NOTE: If you include the DNS client, or resolver, INCLUDE_IPDNSC, you need to
specify configuration values that are appropriate for your environment. The
default values are mere placeholders. They allow a build to succeed, but they do
not result in a working DNS resolver. For more information, see the Wind River
Network Stack for VxWorks 6 Programmer’s Guide, Volume 2.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

42

network task priority, stack size, and task options. This component also lets you
control the size of the daemon job queues.

When there is just one network task in VxWorks, it is named tNet0. When there are
several, the tasks are named as follows:

■ tNet0
■ tNet1
■ tNet2
■ etc.

Configure the number of network tasks (network daemons) by means of the
configuration parameter NUM_NET_DAEMONS of the INCLUDE_NET_DAEMON
component. For any value of NUM_NET_DAEMONS other than 0, that value is the
number of network tasks. A NUM_NET_DAEMONS value of 0 is a special case:

■ On a uniprocessor system, the value 0 means 1 network daemon is created.

■ On an SMP system, the value 0 means that N+1 network daemons are created,
where N is the number of configured cores.

The daemons have no CPU affinity by default. If the
NET_DAEMONS_CPU_AFFINITY parameter is TRUE on an SMP system, any
network daemon whose index matches the index of a configured CPU will have
affinity for that CPU.

As an example, if NUM_NET_DAEMONS is set to 0 on a four-core system, the
following network daemons are created:

■ tNet0
■ tNet1
■ tNet2
■ tNet3
■ tNet4

If, in addition, NET_DAEMONS_CPU_AFFINITY is set to TRUE, then:

■ tNet0 has affinity to CPU 0.
■ tNet1 has affinity to CPU 1.
■ tNet2 has affinity to CPU 2.
■ tNet3 has affinity to CPU 3.
■ tNet4 has no CPU affinity.

NOTE: Using several network tasks is not a default for either a uniprocessor or
SMP system. It would be rare, but not impossible, to use several network tasks on
a UP system.

2 Configuring and Building the Network Stack
2.3 Configuring VxWorks with the Wind River Network Stack

43

2

If NET_DAEMONS_CPU_AFFINITY is FALSE (the default), all the network daemons
are created with no CPU affinity.

It is of course possible to modify the affinity of the CPU network daemon tasks in
any way desired after creation.

By default, all END interfaces post work to the job queue serviced by the default
network daemon tNet0. However, It is possible (at run time) to change the
network daemon job queue that a VxBus END device posts work to, using the
vxbEndQnumSet() function. This may improve performance for some SMP
applications that communicate via multiple network interfaces concurrently. For
more information on using the vxbEndQnumSet() utility, see the Wind River
Network Stack for VxWorks 6 Programmer’s

Guide, Volume 3: Integrating a New Network Interface Driver.

Table 2-2 lists the INCLUDE_NET_DAEMON configuration parameters.

Table 2-2 Network Daemon Configuration Parameters

Name and Description Valid and Default Values

 NET_TASK_OPTIONS
Options specified in the taskSpawn() call for
tNetn tasks.

VX_SUPERVISOR_MODE |
VX_UNBREAKABLE

NET_DAEMONS_CPU_AFFINITY
Specifies whether network daemons have
affinity for a particular CPU. When this option
is set to TRUE, any network daemon whose
index matches the index of a configured CPU
will have affinity for that CPU.

FALSE

NET_TASK_PRIORITY
Task priority for tNetn tasks.

Default: 50

NET_TASK_STACKSIZE
Stack size for tNetn tasks.

Default: 10000

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

44

For the most part, you should not need to adjust any of these parameters. If you
think you need to adjust the task priority consider the following. By default, tNetn
runs at a priority of 50. If you launch a task that depends on network services,
make sure your new task runs at a lower priority than that of tNetn.1

When assigning a priority to a task dependent upon network services, keep in
mind the following:

■ An ISR interrupts even a priority 0 task.

■ When tNet0 is the highest priority task ready to run, it runs.

■ If a user task with a priority greater than tNet0 is ready, it runs instead of
tNet0.2

■ While tNet0 does not run, packets are not processed, although packets may
continue to arrive.

You must also consider the hazards of priority inversion. After a task takes a
semaphore with priority inversion protection, its task priority is elevated if
another higher priority task tries to take the semaphore. The new task priority is
equal to that of the highest priority task waiting for the semaphore. This priority
elevation is temporary. The priority of the elevated task drops back down to its
normal level after it releases the semaphore with priority inversion protection.

If a task dependent on tNet0 takes a semaphore with priority inversion protection,
and if a higher priority task subsequently tries to take the same semaphore, the
tNet0-dependent task inherits the higher task priority. Thus, it is possible for a

NUM_NET_DAEMONS
The number of network tasks.

Default: 1

NET_JOB_NUM_CFG
The number of jobs allowed in the network
daemon queue.

Default: 85

Table 2-2 Network Daemon Configuration Parameters (cont’d)

Name and Description Valid and Default Values

1. Changes to the TFTP client make it necessary that the application run at a priority less than
that of tNet0. Otherwise, calls such as tftpXfer() will fail. This change is consistent with the
general advice that network applications should run at a priority less than that of tNet0.
Previously, the TFTP client would work even if it was running at a higher priority.

2. Only user tasks with priority greater than tNet0, numerically less than 50, can preempt
tNet0.

2 Configuring and Building the Network Stack
2.4 Using Shell Commands

45

2

network-dependent task to elevate in priority beyond that of tNet0. This locks
tNet0 out until after the tNet0-dependent task gives back the problematic
semaphore or semaphores.

For more information on valid stack size values, see the taskSpawn() reference
entry.

2.4 Using Shell Commands

The network stack provides shell commands to perform tasks and to configure the
network stack at run time. Shell commands that are specific to a technology, are
documented with that technology. Some of the shell commands used with the
network stack are also used with other products.

2.4.1 Including Shell Command Components

There are several ways to invoke the shell commands. In general, you need to add
the INCLUDE_CommandName_CMD component(s) to your VxWorks project to
make the commands available under the following circumstances:

■ if you are calling the CommandName’s hook routine from the shell and running
the shell in C interpreter mode

■ if you are using CommandName from the command shell

However, you do not need to include this component if your application, which is
linked into the VxWorks image, calls the command hook routine directly. This is
because the application has already pulled in support for it.

To run a shell command from the VxWorks kernel shell, include the
INCLUDE_USE_NATIVE_SHELL component. The INCLUDE_IPCOM_SHELL_CMD
is also included by default when the appropriate shell component is included.

NOTE: For more information on priority inversion protection and semaphores, see
the reference entry for semMLib.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

46

2.4.2 General Network Stack Shell Commands

Most shell commands are specific to a particular protocol or technical area. A few
are used across technologies or are generic to the stack as a whole. Those
commands are documented here.

ipd

The ipd shell command controls the other daemons, such as the multicasting
proxy daemon. The component for ipd is INCLUDE_IPD_CMD.

Name

ipd – daemon process command

Synopsis

ipd command [-options]

Individual synopses are as follows:

ipd [-V vr] list
ipd [-V vr] start service
ipd [-V vr] kill service
ipd [-V vr] reconfigure service
ipd [-V vr] # service

Description

Command options are as follows:

-V vr
Use the virtual router identified by vr.

list
List daemon services.

start
Start the specified service.

kill
Stop the specified service.

reconfigure
Reconfigure the specified service.

2 Configuring and Building the Network Stack
2.4 Using Shell Commands

47

2

ipversion

The ipversion shell command displays the product versions. The component for
ipversion is INCLUDE_IPVERSION_CMD.

Name

ipversion – show product versions

Synopsis

ipversion

Description

Shows product versions and copyrights for network stack and middleware
products.

syslog

The syslog shell command is used to send system log messages. The component
for syslog is INCLUDE_IPCOM_SYSLOGD_CMD.

Name

syslog – system log command

Synopsis

syslog echo prio_message
syslog list
syslog priority facility prio
syslog log file [logfile]

Description

Command options are as follows:

prio_message
Priority message.

facility prio
Priority facility.

logfile
The specified log file.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

48

sysvar

The sysvar system variable shell command lets you modify the configuration
parameters at run time by running them through sysvar, as follows:

> sysvar dynamicParameter = dynamicParameterValue

The component for sysvar is INCLUDE_IPCOM_SYSVAR_CMD.

Name

sysvar – lists, gets, and defines system variables

Synopsis

sysvar list [name[*]]
sysvar get name
sysvar unset name[*]
sysvar set [-c | -o | -r] name value

Description

Command options are as follows:

name
Name of a system variable.

-c
OK to create.

-o
OK to overwrite.

-r
Flag read-only.

value
Value of a system variable.

2.4.3 Running Commands from the Shell

The shell commands are run from the shell in command-interpreter mode. To run
the shell commands:

1. Open a VxWorks kernel shell.

2 Configuring and Building the Network Stack
2.5 Testing Connectivity from the Target

49

2

2. At the command prompt, type cmd and press ENTER to switch to
command-interpreter mode. The command prompt changes from -> to
[vxWorks *] #.

3. Run the appropriate shell command.

For further information on using the kernel shell, see the VxWorks Kernel
Programmer’s Guide.

2.5 Testing Connectivity from the Target

You can use the ping() utility from a target to test whether a particular system is
accessible over the IPv4 or IPv6 Internet. Like the UNIX command, the VxWorks
ping() implementation sends one or more packets to another system and waits for
a response. You can identify the other system by either its name or its numeric
Internet address. This feature is useful for testing routing tables and host tables or
determining whether another machine is receiving and sending data.

Testing IPv4 Connectivity

The following example shows ping() output for an unreachable address:

-> ping "192.0.2.1",1
Pinging 192.0.2.1 (192.0.2.1) with 64 bytes of data:
Request timed out: S_errno_EWOULDBLOCK (70).

--- 192.0.2.1 ping statistics ---
1 packets transmitted, 0 received, 100% packet loss, time 1000 ms
value = -1 = 0xffffffff

If the first argument uses a host name, ping() uses the host table to look it up, as
in the following example:

-> ping "caspian",1
Pinging caspian (192.0.2.2) with 64 bytes of data:
Reply from 192.0.2.2 bytes=64 time=0ms ttl=64

--- caspian ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 1000 ms
rtt min/avg/max = 0/0/0 ms
value = 0 = 0x0

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

50

The second argument specifies how many received packets it needs before
terminating. A value of 1 tells ping() to terminate and report success as soon as the
first response packet arrives. A value of 0 tells ping() to (send and) receive packets
forever or until forcibly terminated). If you specify more than one packet, ping()
includes summary statistics.

Testing IPv6 Connectivity

The ping6() API does not differ much from the ping() interface (see the ping6()
reference entry for the details). Using ping6() to test connectivity with a remote
site requires tunneling if the local link does not contain a native IPv6 router. For
information on how to set up a tunnel that links you to a remote IPv6 router, see
the Wind River Network Stack for VxWorks 6 Programmer’s Guide, Volume 3.

51

 3
Configuring Transport and

Network Protocols

3.1 Introduction 51

3.2 Configuring VxWorks with Transport and Network Layer Support 52

3.1 Introduction

This chapter describes how to configure VxWorks for basic TCP/IP support. Some
of the protocols listed in this section are automatically included as part of the core
stack, while others can be individually added to a network stack.

The components described in this chapter are:

■ ARP (automatically included)
■ ICMP (automatically included)
■ ICMPv6 (automatically included)
■ IP
■ IPv6
■ NDP (automatically included)
■ TCP
■ UDP
■ MPLS

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

52

3.2 Configuring VxWorks with Transport and Network Layer
Support

This section explains how to configure VxWorks with the appropriate components
to support various networking protocols. For most protocols, two methods of
configuration are described:

■ build-time configuration, using either Workbench or vxprj

■ run-time configuration, using the sysvar shell command or other shell
command

In some cases, there is a one-to-one mapping between build-time configuration
parameters and run-time sysvar parameters. Where such a correspondence exists,
you can configure the component either at build time or at run time. In other cases,
a build-time configuration component or a sysvar parameter has no counterpart.

For information about using sysvar, see sysvar, p.48.

3.2.1 ARP

ARP is part of the network stack and is automatically included when you build an
IPv4 network stack. The only build-time configuration required is to include the
arp shell command—see ARP Build-Time Configuration, p.52, for further
information.

To modify or display ARP configuration or entries, use the shell command
described in ARP Run-Time Configuration, p.53.

For information on configuring Proxy ARP, see 3.2.2 Proxy ARP, p.54.

ARP Build-Time Configuration

ARP uses a shell command and an API for configuration. To build VxWorks with
support for this shell command, include the IPCOM arp commands build
component, INCLUDE_IPARP_CMD.

! CAUTION: If you exclude a component from the build, Workbench may prompt
you to exclude its dependencies. Some dependencies may still be needed by other
components in the project. Therefore, accept the dependency exclusions carefully.

3 Configuring Transport and Network Protocols
3.2 Configuring VxWorks with Transport and Network Layer Support

53

3

To build VxWorks with support for this API, include the arpLib build component,
INCLUDE_ARP_API. This component gives application programs access to the
ARP entries so they can list, add, delete ARP entries.

ARP Run-Time Configuration

Use the arp command or the arpLib library routines to configure ARP at run time.

arp

Name

arp – dynamically display and configure ARP and proxy ARP information, or for
test purposes

Synopsis

arp [-V routetab] [-i ifname] -a
arp [-V routetab] [-i ifname] -A
arp [-V routetab] -d hostaddress
arp [-V routetab] [-i ifname] [-p] [-t] -s hostaddress ether_addr

Description

The ARP program displays and modifies the Internet-to-Ethernet address
translation tables used by the ARP. With no flags, the program displays the current
ARP entry for hostname. The host may be specified by name or by number, using
Internet dot notation.

The arp options are as follows:

-i ifname
Specify interface. If not specified, the first interface that uses ARP is used.

-t
Temporary ARP entry. The entry will time out normally.

-p
Public ARP entry (proxy ARP entry). A proxy ARP entry is shown as a route
with the proto2 flag set (shown as ‘2’ with route/netstat).

-V routetab
Specify route table. 0 if not specified.

The arp commands are as follows:

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

54

-a

The program displays all of the current ARP entries.

-A
Erase all ARP entries on the interface.

-d
Delete an entry for the host called hostaddress.

-s hostaddress ether_addr
Create an ARP entry for the host having the specified IPv4 and Ethernet
address. The Ethernet address is given in the standard format of six hex bytes
separated by colons (i.e., 01:02:03:04:05:06). The entry is permanent unless the
-t flag is used, but can be removed by using the arp -d command. Public (proxy
ARP) entries are added using the -p flag.

arpLib Library

For further information on this library, see the arpLib reference entry.

3.2.2 Proxy ARP

The INCLUDE_IPPROXYARP component supplies configuration parameters to
define how proxy ARP will work over the network. Table 3-1 lists the
INCLUDE_IPPROXYARP configuration parameters and their default values. Where
applicable, a sysvar is also documented for run-time configuration. Modify the
values as needed.

3 Configuring Transport and Network Protocols
3.2 Configuring VxWorks with Transport and Network Layer Support

55

3

3.2.3 ICMP (v4 and v6)

ICMP is part of the network stack. The appropriate version of ICMP is
automatically included when you include the IPv4 or IPv6 components.

Table 3-1 Proxy ARP Configuration Parameters

Component Name, sysvar, and Description Valid and Default Values

INET_AUTO_PROXY_ARP
ipnet.inet.AutoProxyArp

This parameter defines the behavior of proxy ARP.
When enabled, the network stack automatically tags
all interface address network routes as proxy ARP.

Default: "0"

0 != enabled.

INET_IFLIST_AUTO_PROXY_ARP
This parameter defines the behavior of proxy ARP
on a per interface basis. When enabled, the network
stack automatically tags specified interface address
network routes as proxy ARP. This parameter can be
configured on a per-interface basis in the form
"ifparam=value", for example "eth0=1". Each
"ifparam=value" pair must be separated by a
semicolon.

Default: ""

0 != enabled.

 INET_ENABLE_PROXY_ARP
ipnet.inet.EnableNetworkProxyArp

This parameter defines the behavior of proxy ARP.
When enabled, the network stack provides proxy
ARP for network routes tagged with the proxy ARP
flag.

Default: "0"

0 != enabled.

INET_IFLIST_ENABLE_PROXY_ARP
This parameter defines the behavior of proxy ARP
on a per interface basis. When enabled, the network
stack provides proxy ARP for network routes tagged
with the proxy ARP flag. This parameter can be
configured on a per-interface basis in the form
"ifparam=value", for example "eth0=1". Each
"ifparam=value" pair must be separated by a
semicolon.

Default: ""

0 != enabled.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

56

3.2.4 IPv4

The INCLUDE_IPCOM_USE_INET component pulls in modules that provide
support for IPv4. This component includes UDP and ICMP support. Table 3-2 lists
the INCLUDE_IPCOM_USE_INET configuration parameters and their default
values. Where applicable, a sysvar is also documented for run-time configuration.
Modify the values as needed.

Table 3-2 IPv4 Configuration Parameters

Component Name, sysvar, and Description Valid and Default Values

INET_BASE_HOP_LIMIT
ipnet.inet.BaseHopLimit

The default value for the time to live field for IPv4
unicast datagram packets.

Default: "64"

INET_BASE_REACHABLE_TIME
ipnet.inet.BaseReachableTime

Duration, in seconds, that an entry in the ARP cache
is in reachable state.

Default: "30"

INET_BASE_RETRANSMIT_TIME
ipnet.inet.BaseRetransmitTime

Number of seconds to wait between retransmits.

Default: "1"

INET_DELAY_FIRST_PROBE_TIME
Duration, in seconds, to wait for a stale ARP entry to
become reachable before forcing a probe. Packets are
sent using the stale entry during this time.

Default: "5"

INET_DST_CACHE_TO_LIVE_TIME
Number of seconds an entry will be kept in the
destination cache.

The destination cache contains FIB entries created in
response to redirect- and need-frag ICMP messages.

Default: "600"

INET_ICMP_IGNORE_ECHO_REQ
ipnet.inet.IcmpIgnoreEchoRequest

Controls if the stack should answer to ICMP echo
request messages. Set to 0 if the stack should answer
to echo requests.

Default: "0"

3 Configuring Transport and Network Protocols
3.2 Configuring VxWorks with Transport and Network Layer Support

57

3INET_ICMP_IGNORE_TIMESTAMP_REQ
ipnet.inet.IcmpIgnoreTimestampRequest

Controls if the stack should answer to ICMP time
stamp request messages. Set to 0 if the stack should
answer to timestamp requests.

Default: "0"

INET_ICMP_RATE_LIMIT_BUCKET_SIZE
ipnet.inet.IcmpRatelimitBucketsize

The number of ICMPv6 messages that the stack is
allowed to send in the interval specified by
INET_ICMP_RATE_LIMIT_INTERVAL.

For example, if
INET_ICMP_RATE_LIMIT_BUCKET_SIZE=10 and
INET_ICMP_RATE_LIMIT_INTERVAL=100, then up
to 10 ICMP messages can be sent under a 100 msec
period. If more messages are sent, they are
discarded.

If no ICMP messages are sent for 1000 msec, then the
limit is still 10 messages for the next 100 msec period.

Default: "100"

INET_ICMP_RATE_LIMIT_INTERVAL
ipnet.inet.IcmpRatelimitInterval

The Icmp Ratelimit Interval millisecond interval.

Default: "1000"

INET_ICMP_REDIRECT_RECEIVE
ipnet.inet.IcmpRedirectReceive

Set to != 0 if redirect messages should be accepted
and processed.

Default: "1"

Table 3-2 IPv4 Configuration Parameters (cont’d)

Component Name, sysvar, and Description Valid and Default Values

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

58

INET_ICMP_REDIRECT_SEND
ipnet.inet.IcmpRedirectSend

Set to 2 if a redirect should be sent and the original
message should be forwarded (default).

Set to 1 if a redirect should be sent but the original
message should be discarded.

Set to 0 if no redirect should be sent but the original
message should be forwarded.

Set to -1 if no redirect should be sent and the original
message should be discarded.

Default: "2"

Valid values: "-1", "0",
"1", "2"

INET_ICMP_SEND_DST_UNREACHABLE
ipnet.inet.IcmpSendDestinationUnreachable

Set to != 0 if the stack should send destination
unreachable.

Default: "1"

INET_ICMP_SEND_TIME_EXCEEDED
ipnet.inet.IcmpSendTimeExceeded

Set to != 0 if the stack should send time exceeded
messages.

Default: "1"

INET_MAX_APP_SOLICIT
ipnet.inet.MaxApplicationSolicit

Maximum number of resolve message that is sent to
the routing/netlink sockets, if ARP probes failed (or
were disabled).

Default: "1"

INET_MAX_MULTICAST_SOLICIT
ipnet.inet.MaxMulticastSolicit

Maximum number of ARP request messages that
should be resent before staring to use application
probes.

Default: "9"

INET_MAX_PKTS_PENDING
Maximum number of packets that can be waiting for
IPv4 to link layer resolution to finish.

Default: "3"

Table 3-2 IPv4 Configuration Parameters (cont’d)

Component Name, sysvar, and Description Valid and Default Values

3 Configuring Transport and Network Protocols
3.2 Configuring VxWorks with Transport and Network Layer Support

59

3

The INCLUDE_IPATTACH component configures the IPv4 stack to automatically
attach to the network interface specified in the boot line parameters. Including
INCLUDE_IPATTACH simply makes the ipAttach() command available. There are
no externally callable functions or configuration parameters associated with this
component.

IPv4 Run-Time Configuration

Table 3-3 lists the INCLUDE_IPCOM_USE_INET4 component sysvars and their
descriptions for the sysvars that have no static configuration parameter
counterpart.

INET_MAX_UNICAST_SOLICIT
ipnet.inet.MaxUnicastSolicit

Maximum number of unicast ARP request messages
that should be sent before starting to use multicast
solicits.

Default: "1"

INET_MIN_MTU_SIZE
Minimum MTU size, meaning the smallest path
MTU expected in any route. All Internet routers
should be able to handle 576 octets. This value is
used by some ICMP messages that include data from
the packet that caused an ICMP message to be sent.

Default: 68

INET_NBR_CACHE_TO_LIVE_TIME
ipnet.inet.NeighborCacheToLive

Duration, in seconds, that can pass before a stale
entry in the ARP cache is deleted.

Default: "1200"

Table 3-2 IPv4 Configuration Parameters (cont’d)

Component Name, sysvar, and Description Valid and Default Values

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

60

3.2.5 IPv6

The INCLUDE_IPCOM_USE_INET6 component pulls in modules that provide
support for IPv6. This component includes UDP, ICMP, and NDP support.
Table 3-4 lists the INCLUDE_IPCOM_USE_INET6 configuration parameters and
their default values. Where applicable, a sysvar is also documented for run-time
configuration. Modify the values as needed.

Table 3-3 IPv4 sysvar Configuration Parameters

sysvar Default Value

ipnet.inet.EnablePathMtuDiscovery
Enable/disable path MTU discovery algorithm for IPv4.

1

ipnet.inet.UdpChecksum
Enables/disables UDP checksum calculation on outgoing
IPv4 UDP datagrams.

1

Table 3-4 iPv6 Configuration Parameters

Component Name, sysvar, and Description Default Value

INET6_ACCEPT_RTADV
ipnet.inet6.AcceptRtAdv

Enable/disable processing of router advertisements
message.

"1"

INET6_AUTO_CONFIG
Enable/disable address autoconfiguration.

"1"

INET6_BASE_HOP_LIMIT
ipnet.inet6.BaseHopLimit

The default hop limit for IPv6 packets.

"64"

INET6_BASE_REACHABLE_TIME
ipnet.inet6.BaseReachableTime

Number of seconds that an entry in the NDP cache is
in reachable state.

"30"

INET6_BASE_RETRANSMIT_TIME
ipnet.inet6.BaseRetransmitTime

Number of seconds to wait between retransmits.

"1"

3 Configuring Transport and Network Protocols
3.2 Configuring VxWorks with Transport and Network Layer Support

61

3INET6_DAD_TRANSMITS
Number of times the node should test the address
for uniqueness before assigning it to the interface
(set to 0 to turn off duplicate address detection).

"1"

INET6_DELAY_FIRST_PROBE_TIME
Number of seconds to wait for a stale neighbor
discovery (ND) entry to become reachable before
forcing a probe. packets are sent using the stale entry
during this time.

"5"

INET6_DST_CACHE_TO_LIVE_TIME
ipnet.inet6.DstCacheToLive

Number of seconds an entry will be kept in the
destination cache.

The destination cache contains FIB entries created in
response to redirect- and need-frag ICMP messages.

"300"

INET6_ICMP_IGNORE_ECHO_REQ
ipnet.inet6.IcmpIgnoreEchoRequest

Set to "0" if the stack should answer to echo requests.

"0"

INET6_ICMP_RATE_LIMIT_BUCKET_SIZE
ipnet.inet6.IcmpRatelimitBucketsize

Number of ICMPv6 messages the stack is allowed to
per ICMP ratelimit interval millisecond interval.

"10"

INET6_ICMP_RATE_LIMIT_INTERVAL
ipnet.inet6.IcmpRatelimitInterval

ICMP ratelimit interval millisecond interval. Set to 0
to disable the rate limiter.

"1000"

INET6_ICMP_REDIRECT_RECEIVE
ipnet.inet6.IcmpRedirectReceive

Set to != 0 if redirect messages should be accepted
and processed.

"1"

Table 3-4 iPv6 Configuration Parameters (cont’d)

Component Name, sysvar, and Description Default Value

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

62

INET6_ICMP_REDIRECT_SEND
ipnet.inet6.IcmpRedirectSend

Set to 2 if a redirect should be sent and the original
message should be forwarded (default).

Set to 1 if a redirect should be sent but the original
message should be discarded.

Set to 0 if no redirect should be sent but the original
message should be forwarded.

Set to -1 if no redirect should be sent and the original
message should be discarded.

"2"

INET6_ICMP_SEND_DST_UNREACHABLE
ipnet.inet6.IcmpSendDestinationUnreachable

Set to != 0 if the stack should send destination
unreachable.

"1"

INET6_ICMP_SEND_TIME_EXCEEDED
ipnet.inet6.IcmpSendTimeExceeded

Set to != 0 if the stack should send time exceeded
messages.

"1"

INET6_MAX_APP_SOLICIT
Number of resolve messages that are sent to
routing/netlink sockets if ND probes failed (or are
disabled).

"1"

INET6_MAX_MULTICAST_SOLICIT
Number of neighbor discovery messages that
should be resent before starting to use application
solicit. Setting this to a value other than 0 will cause
IPv6 ready tests to fail, so exercise caution in
changing this parameter.

"0"

INET6_MAX_PKTS_PENDING
Number of packets that can be waiting for IPv6 to
link layer resolution to finish.

"3"

Table 3-4 iPv6 Configuration Parameters (cont’d)

Component Name, sysvar, and Description Default Value

3 Configuring Transport and Network Protocols
3.2 Configuring VxWorks with Transport and Network Layer Support

63

3INET6_DST_CACHE_TO_LIVE_TIME
ipnet.inet6.DstCacheToLive

Number of seconds an entry will be kept in the
destination cache.

The destination cache contains FIB entries created in
response to redirect- and need-frag ICMP messages.

"300"

INET6_ICMP_IGNORE_ECHO_REQ
ipnet.inet6.IcmpIgnoreEchoRequest

Set to "0" if the stack should answer to echo requests.

"0"

INET6_ICMP_RATE_LIMIT_BUCKET_SIZE
ipnet.inet6.IcmpRatelimitBucketsize

Number of ICMPv6 messages the stack is allowed to
per ICMP ratelimit interval millisecond interval.

"10"

INET6_ICMP_RATE_LIMIT_INTERVAL
ipnet.inet6.IcmpRatelimitInterval

ICMP ratelimit interval millisecond interval. Set to 0
to disable the rate limiter.

"1000"

INET6_ICMP_REDIRECT_RECEIVE
ipnet.inet6.IcmpRedirectReceive

Set to != 0 if redirect messages should be accepted
and processed.

"1"

Table 3-4 iPv6 Configuration Parameters (cont’d)

Component Name, sysvar, and Description Default Value

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

64

INET6_ICMP_SEND_DST_UNREACHABLE
ipnet.inet6.IcmpSendDestinationUnreachable

Set to != 0 if the stack should send destination
unreachable.

"1"

INET6_ICMP_SEND_TIME_EXCEEDED
ipnet.inet6.IcmpSendTimeExceeded

Set to != 0 if the stack should send time exceeded
messages.

"1"

INET6_MAX_APP_SOLICIT
Number of resolve messages that are sent to
routing/netlink sockets if ND probes failed (or are
disabled).

"1"

INET6_MAX_MULTICAST_SOLICIT
Number of neighbor discovery messages that
should be resent before starting to use application
solicit. Setting this to a value other than 0 will cause
IPv6 ready tests to fail, so exercise caution in
changing this parameter.

"0"

INET6_MAX_PKTS_PENDING
Number of packets that can be waiting for IPv6 to
link layer resolution to finish.

"3"
Table 3-4 iPv6 Configuration Parameters (cont’d)

Component Name, sysvar, and Description Default Value

3 Configuring Transport and Network Protocols
3.2 Configuring VxWorks with Transport and Network Layer Support

65

3

The INCLUDE_IP6ATTACH component configures the IPv6 stack to automatically
attach to the network interface specified in the boot line parameters. There are no
externally callable functions or configuration parameters associated with this
component.

It is not necessary to call ip6Attach(). If IPv6 is enabled, ipAttach() binds the
driver for both IPv6 and IPv4 services. Both ip6Attach() and ipAttach() are
functionally equivalent.

IPv6 Run-Time Configuration

Table 3-5 lists the INCLUDE_IPCOM_USE_INET6 component sysvars and their
descriptions for the sysvar commands that have no static configuration parameter
counterpart.

INET6_NBR_CACHE_TO_LIVE_TIME
ipnet.inet6.NeighborCacheToLive

Number of seconds that can pass before a stale entry
in the neighbor cache is deleted.

"1200"

INET6_ROUTER_LIFETIME
Number of seconds this router can be used as
gateway after a router advertisement had been sent;
only used when the network stack is configured as a
router.

"1800"

Table 3-4 iPv6 Configuration Parameters (cont’d)

Component Name, sysvar, and Description Default Value

Table 3-5 IPv6 sysvar Configuration Parameters

sysvar Default Value

ipnet.inet6.RouterLifetime
Number of seconds this router can be used as gateway
after a router advertisement had been sent, only used
when configured as a router

1800

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

66

3.2.6 NDP

NDP is part of the network stack and is automatically included when you build an
IPv6 stack. The only build-time configuration required is to include the ndp shell
command—see NDP Build-Time Configuration, p.66, for further information.

NDP Build-Time Configuration

To build VxWorks with support for the NDP shell command, include the
IPCOM ndp commands build component, INCLUDE_IPNDP_CMD.

To modify or display NDP, use the shell commands described in NDP Run-Time
Configuration, p.66.

NDP Run-Time Configuration

NDP is configurable using a shell command.

ndp

Name

ndp – dynamically display and configure NDP information, or for test purposes

ipnet.inet6.DelayFirstProbeTime
Number of seconds to wait for a stale ND entry to
become reachable before forcing a probe, packets are
sent using the stale entry during this time.

5

ipnet.inet6.DupAddrDetectTransmits
Number of times the node should test the address for
uniqueness before assigning it to the interface (set to 0
to turn off duplicate address detection).

1

Table 3-5 IPv6 sysvar Configuration Parameters (cont’d)

sysvar Default Value

3 Configuring Transport and Network Protocols
3.2 Configuring VxWorks with Transport and Network Layer Support

67

3

Synopsis

ndp [-V routetab] -a
ndp [-V routetab] -A
ndp [-V routetab] -c
ndp [-V routetab] -d hostaddress
ndp [-V routetab] -p
ndp [-V routetab] -P
ndp [-V routetab] -r
ndp [-V routetab] -R
ndp [-V routetab] [-i ifname] -s nodeaddress ether_addr

Description

The ndp command manipulates the address-mapping table used by NDP.

The ndp options are as follows:

-a
Dump the currently existing NDP entries.

-A
Erase all the NDP entries.

-d
Delete specified NDP entry.

-p
Show prefix list.

-r
Show default router list.

-R
Flush all the entries in the default router list.

-s
Register a NDP entry for a node. The entry is permanent.

-i
Specify interface. Selected by the stack based on the address otherwise.

-V
Specify route table to use. 0 if not specified.

3.2.7 TCP

The INCLUDE_IPTCP component pulls in modules that provide support for TCP in
either the IPv4 or IPv6 domains. You can designate which domain it supports

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

68

when you build the Platform source (see 3.2 Configuring VxWorks with Transport
and Network Layer Support, p.52). Table 3-6 lists the INCLUDE_IPTCP configuration
parameters and their default values. Modify these values as needed.

Table 3-6 TCP Configuration Parameters

Component Name and Description Valid and Default Values

TCP_CONN_TIMEOUT
The connection timeout, or number of
seconds stack will attempt to create a TCP
connection before giving up.

Default: 30

TCP_MAX_MSS
Defines the largest maximum segment size
(MSS) that TCP will ever suggest. The
actual MSS suggested might be smaller
than this number if it depends on the MTU
for the interface.

Default: 0

A value of 0 specifies the largest
MSS allowed by the MTU.

TCP_MAX_RETRANSMITS
Maximum number of times a TCP segment
is resent before giving up and sending an
IPTCP_ERRNO_ETIMEDOUT error.
Exponential back off is applied before each
resend (max time between two resends is 1
minute).

Default: 10

TCP_MSL
TCP sockets that enter the TIME_WAIT state
remain in that state for 2 times this value.
Should be 120 seconds (2 minutes)
according to RFC 793, but most TCP/IP
stacks set this value to 30 seconds.

Default: 30

TCP_SEGMENT_MULTIPLIER
Segment size multiplier used on outgoing
segments when the outgoing interface
supports TCP segmentation offload.

Default: 2

Generally, the higher the value,
the better the performance;
however, factors higher than 2
are not guaranteed to work on
all network cars.

3 Configuring Transport and Network Protocols
3.2 Configuring VxWorks with Transport and Network Layer Support

69

3

INCLUDE_NET_HOST_SHOW Component

This component pulls in the hostShow library, which supplies the hostShow()
routine. This routine provides a list of remote hosts, along with their Internet
addresses and aliases

3.2.8 MPLS

MPLS Build-Time Configuration

To build VxWorks with MPLS support, include the following build components as
needed for the features you require.

INCLUDE_IPMPLS
The MPLS component enables the MPLS forwarding module and includes a
parameter to define an initial MPLS network configuration.

INCLUDE_IPMPLS_TUNNEL
The MPLS Tunnel Interface support component enables tunnel interface
support. This component has no configuration parameters and is
automatically included when INCLUDE_IPMPLS is included in the network
stack build.

TCP_USE_RFC1122_URGENT_DATA
Determines which RFC to follow when
setting urgent data.

If set to "1", use urgent data as described in
RFC 1122. If set to "0", use urgent data as
described in RFC 793.

Default: "0"

Most stacks use "0". However,
this parameter must be set to "1"
in order to successfully pass if
Ixia ANVL TCP-CORE group
19 tests are used.

TCP_USE_TIMESTAMP
Determines whether the timestamp option
should be included in all segments for peers
that support it. Set to 0 if the timestamp
option should never be used. Set to "1" to
use timestamp.

Default: 0

Table 3-6 TCP Configuration Parameters (cont’d)

Component Name and Description Valid and Default Values

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

70

INCLUDE_IPMPLS Parameter

Table 3-7 lists the INCLUDE_IPMPLS configuration parameters and the default
value. Modify the value as needed.

Alternative Static Configuration

In addition to configuring an initial MPLS setup through Workbench, you can also
do so through a configuration array in a file to be used at initialization. The file is
called ipmpls_config.c, and is located in the following directory:

installDir/components/ip_net2-6.x/osconfig/vxworks/src/ipnet

The format for creating entries is described in the ipmpls_config.c file, and is also
used by the MPLS network pre-configuration parameter described in Table 3-7.

The following code illustrates an example configuration array in ipmpls_config.c:

IP_STATIC IP_CONST Ipcom_sysvar ipmpls_fwdconf_sysvar[] =
{

{"ipmpls.fwdconf.00", "mplsctl -s -a -n 1"},
{"ipmpls.fwdconf.01", "mplsctl -s -a -n 1 -o push,123,push,234,”

“set,eth0,10.1.1.239"},
{"ipmpls.fwdconf.02", "mplsctl -s -a -I mpls0"},
{"ipmpls.fwdconf.03", "mplsctl -s -b -n 1 -I mpls0"},

Table 3-7 MPLS Configuration Parameters

Parameter Name and Description Default Value

MPLS network pre-configuration
IPMPLS_FWDCONF_SYSVAR allows you to specify an initial
MPLS forwarding setup to be used when MPLS is initialized
by using a special configuration array.

Each variable in the array must be named as follows, where
index is a unique line indicator:

ipmpls.fwdconf.index

The value of each variable must follow the syntax of the
mplsctl shell command described in MPLS Run-Time
Configuration, p.71. Make sure to include the silent flag, -s, in
each statement.

The commands stored in the array are executed in the order in
which they appear.

NULL

3 Configuring Transport and Network Protocols
3.2 Configuring VxWorks with Transport and Network Layer Support

71

3

{"ipmpls.fwdconf.04", "mplsctl -s -a -i 4711 -p ipv4"},
{"ipmpls.fwdconf.05", "mplsctl -s -a -i 4711 -o”

“pop,setrx,mpls0,dlv"},
{IP_NULL, IP_NULL}

MPLS Run-Time Configuration

Use the shell commands mplsctl and route for run-time configuration of MPLS.

mplsctl - MPLS control configuration tool

Name

mplsctl - control configuration tool

Synopsis

mplsctl [-s] [-a] [-d] [-b] [-u] [-f ilm | nhlfe] [-I interfaceName>]
[-n nhlfe Key] [-i ilmKey] [-p protocol] [-l labelSpace] [-o labelOperations] [-m mtu]
[-t ttl]

Description

The mplsctl command is used for reading and writing configuration to the MPLS
forwarding module.

Options

The command options available with mplsctl are as follows:

-s
Silent mode—i.e., no output to stdout.

-a
Add an object.

-d
Delete an object.

-b
Bind an object to another.

-u
Unbind an object.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

72

-f
Flush the incoming label map (ILM) or Next-Hop Label Forwarding Entry
(NHLFE) table.

Object Options

The object options available with mplsctl are as follows:

-I interfaceName
Used together with tunnels and label spaces.

-n nhlfeKey
Used with NHLFE, tunnels, and cross-connects.

-i ilmKey
Used with ILMs and cross-connects.

-p protocol
Either IPv4 or IPv6.

-m mtu
Used with tunnels and NHLFE.

-t
Set MPLS time to live (TTL) to the value specified in the payload IP header
(default 255). Used with NHLFEs.

-o labelOperations
A comma-separated list of label operations used with NHLFEs and ILMs. See
NHLFE Label Operations, p.72, and ILM Label Operations, p.73, for label
operations.

NHLFE Label Operations

The valid label operations for use with NHLFE are as follows:

push,label
Push a label.

fwd,key
Forward the packet using the NHLFE identified by the key.

set,ifname,address
Set the outgoing interface and next hop address. Valid address formats are:
IPv4, IPv6.

3 Configuring Transport and Network Protocols
3.2 Configuring VxWorks with Transport and Network Layer Support

73

3

ILM Label Operations

The valid label operations for use with ILM are as follows:

pop

Pop a label.

peek
Look at the label on top of the label stack and perform the operations
associated with it.

dlv
Deliver packet to the IPv4/IPv6 stack.

push,label
Push a label.

fwd,key
Forward the packet using the NHLFE identified by the key.

set,destination
Set destination address to route to. Valid formats: IPv4, IPv6.

setrx,ifname
Set receiving interface. Cannot be used together with the vr operation.

vr,index
Set IPv4/IPv6 route table to use when doing forwarding. Cannot be used
together with the setrx operation.

Examples

To add an IPv4 ILM with label 4711 in labelspace 17:

mplsctl -a -i 4711:17 -p ipv4

To add operations on an ILM:

mplsctl -a -i 4711:17 -o pop,setrx,eth0,dlv

To add an NHLFE with auto generated key:

mplsctl -a -n 0

To add an NHLFE with a user defined key (1234):

mplsctl -a -n 1234

To add operations on an NHLFE:

mplsctl -a -n 1234 -o push,2345,set,eth0,10.1.1.1

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

74

To add a cross-connect (ILM to NHLFE):

mplsctl -b -i 4711:17 -n 1234

To setup ILM operations to deliver to the network stack with virtual router #2
specified:

mplsctl -a -i 4711:17 -o pop,vr,2,dlv

To setup ILM operations to deliver to network stack for further forwarding with a
special destination address (192.168.0.17)specified:

mplsctl -a -i 4711:17 -o pop,set,192.168.0.17,dlv

To create an MPLS tunnel interface named mpls0:

mplsctl -a -I mpls0

To bind the MPLS tunnel interface mpls0 to NHLFE with key 1234.

mplsctl -b -I mpls0 -n 1234

route - MPLS-specific commands

This section describes only the MPLS options for the route shell command. The
route shell command is fully described in 4.6 Adjusting the Route Table, p.96.

Name

route - a utility to manually manipulate network routing

Synopsis

route [-n] command [[modifiers] args]

Description

The route shell command contains a specific option for managing MPLS shortcut
routes.

Options

There is one MPLS-specific option you can use with the route command:

-mpls nhlfeKey

This option manages a shortcut route that corresponds to the NHLFE identified by
the key.

3 Configuring Transport and Network Protocols
3.2 Configuring VxWorks with Transport and Network Layer Support

75

3

Examples

To add a shortcut for the network (FEC) 1.2.3.0/24 and map it to the NHLFE
identified by key 17:

route inet add -mpls 17 network netmask 255.255.255.0 1.2.3.0

To delete a shortcut for the network (FEC) 1.2.3.0/24 that is mapped to the NHLFE
identified by key 17:

route inet delete -mpls 17 network netmask 255.255.255.0 1.2.3.0

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

76

77

 4
Adding Routing Support

4.1 Introduction 77

4.2 Building and Configuring RIP and RIPng 79

4.3 Policy-Based Routing 90

4.4 VRRP 93

4.5 Fast Path 95

4.6 Adjusting the Route Table 96

4.1 Introduction

This chapter describes the route storage mechanism and the protocols used to
maintain the contents of the route table.

Implementation

The route table implementation is included in IPCOM, the network stack and the
middleware common library.

The IPCOM route implementation has the following features and characteristics:

■ Handles an unlimited number of route tables.

■ The key length can be different for each route table.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols 6.6

78

■ Supports noncontinuous masks. The most specific match is defined as the
entry that matches the most of the nonmasked bits starting with the most
significant bit.

■ No code locking for maximum performance. External synchronization must
be provided by the (very few) applications that need to use a single route table
from multiple threads of execution.

■ Lookups are done in O(log(N)) time in the best, average and worst case, where
N is the number of route entries in the table. Finding a specific entry in a table
with one million entries is only ten times as slow as finding it in a table with
one thousand entries.

■ No global data is used; different route tables can be used from different
threads of execution without synchronization.

■ Applications may get notified when a route changes.

Storage Mechanism

The route table functions are based on a PATRICIA1 tree. A PATRICIA tree has the
following characteristics:

■ All data is stored at leaves.

■ Inner nodes of the tree just contain links.

■ The form of the tree only depends on the keys of the elements, not the order of
insertion.

■ Branches of the tree are as long as it takes to make a difference between keys.

Searching in a PATRICIA tree starts from the root node and from the most
significant bit in the search key. Each internal node contains a bit number (that will
increase when walking down the tree), and the next node is selected based on
whenever this bit is set or cleared in the search key. The search is stopped when
reaching a leaf node.

If the leaf node is not a perfect match, the algorithm backtracks up the tree looking
for indications that a more general mask may apply (i.e., one having fewer one
bits). The backtracking continues until an entry is found which matches when
using the mask or until it is clear that nothing will match.

If none of these route table storage mechanisms is appropriate to your needs, you
may implement your own, using the PATRICIA tree implementation as a model.

1. Donald R. Morrison, PATRICIA - Practical Algorithm to Retrieve Information Coded in
Alphanumeric, Journal of the ACM, 15(4):514-534, October 1968

4 Adding Routing Support
4.2 Building and Configuring RIP and RIPng

79

4

4.2 Building and Configuring RIP and RIPng

The Wind River Network Stack uses the following RIP components:

■ IPRIP interface configurations (SELECT_IPRIP_IFCONFIG)

■ Static RIP routes configuration (SELECT_IPRIP_STATIC_ROUTES)

■ IPCOM RIPNG commands (INCLUDE_RIPNG_CTRL_CMD)

■ IPCOM RIPv1/v2 commands (INCLUDE_IPRIP_CTRL_CMD)

■ RIPNG (INCLUDE_RIPNG)

■ RIPv1/v2 (INCLUDE_IPRIP)

IPRIP Interface Configurations

The RIP interface configurations are used to configure which interfaces should
automatically run RIP and what configuration they should have. You can specify
up to four interface configurations through Workbench, with IPRIP_IFCONFIG_1
being the default configuration.

The wildcard interface name any is used to match any interface, effectively starting
RIP on all interfaces. If a specific entry is found, that entry is used instead of the
any entry. If RIP should only be ran on some interfaces, remove the any entry.

The parameters used to configure the RIP interface array are described in Table 4-1
and the options for the configuration parameters are described in Table 4-2.

Table 4-1 Wind River IPRIP Interface Configuration

Component Name and Description Default Value

IPRIP Interface #1 Configuration (default)
INCLUDE_IPRIP_IFCONFIG_1

This component specifies the default configuration
for RIP interfaces in the IPRIP_IFCONFIG_1
configuration parameter.

all broadcast
input-multicast

IPRIP Interface #2 Configuration
INCLUDE_IPRIP_IFCONFIG_2

This component specifies the interface configuration
for a RIP interface in the IPRIP_IFCONFIG_2
configuration parameter.

NULL

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols 6.6

80

Table 4-2 lists and describes the available options for RIP interface configuration.

IPRIP Interface #3 Configuration
INCLUDE_IPRIP_IFCONFIG_3

This component specifies the interface configuration
for a RIP interface in the IPRIP_IFCONFIG_3
configuration parameter.

NULL

IPRIP Interface #4 Configuration
INCLUDE_IPRIP_IFCONFIG_4

This component specifies the interface configuration
for a RIP interface in the IPRIP_IFCONFIG_4
configuration parameter.

NULL

Table 4-1 Wind River IPRIP Interface Configuration (cont’d)

Component Name and Description Default Value

Table 4-2 RIP Interface Configuration Options

Option Description

broadcast | multicast | silent Use subnet broadcast output, multicast output
(224.0.0.9), or do not output RIP
requests/responses.

auth-md5=password Enable GateD style md5 authentication with
<password>

auth-simple=password Enable simple authentication with <password>.

input=<no|v1|v2> Change input mode (no, v1 or v2 only). No means
that no input RIP packets are parsed.

input-multicast Accept multicast input (224.0.0.9).

metric=num Change default metric from 1 to num.

version-1 Enable RIPv1 (default is RIPv2)

nopoison Use simple Split Horizon instead of poisonous.

4 Adding Routing Support
4.2 Building and Configuring RIP and RIPng

81

4

Adding Additional Interface Configurations

You can also add an unlimited number of interface configuration entries,
beginning with the name of the interface followed by options and their values if
required, in the iprip_interface_config array in the following directory:

installDir/components/ip_net2-6.x/osconfig/vxworks/src/ipnet/iprip_config.c

The following example configuration illustrates how to use the configuration
array:

IP_CONST char *iprip_interface_config[] =
{

"all broadcast",
"eth0 broadcast input=v2",
"ppp0 silent metric=2 input=no",
IP_NULL

};

RIP Build-Time Configuration

The static RIP routes configuration array is used to configure initial static RIP
routes which may be useful before the system has configured the network using
RIP.

You can configure up to three static RIP routes in Workbench, with each one
specifying the route destination, mask, gateway and metric.

The parameters used to configure the RIP static routes are described in Table 4-3.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols 6.6

82

Adding Additional Static Routes

You can also add an unlimited number of static route entries by specifying the
route destination, mask, gateway and metric, in the iprip_staticroute_config array
in installDir/components/ip_net2-6.x/osconfig/vxworks/src/ipnet/iprip_config.c.
The following example configuration illustrates the syntax of the configuration
array:

IP_CONST char *iprip_staticroute_config[] =
{

"dst=136.35.0.0 mask=255.255.0.0 gw=10.1.2.100 metric=3",
IP_NULL

};

Table 4-3 Wind River Static RIP Route Configuration

Component Name and Description Default Value

Static RIP Route #1 Configuration
INCLUDE_IPRIP_STATIC_ROUTE_1

This component specifies the default configuration for RIP
interfaces in the IPRIP_STATIC_ROUTE_1 configuration
parameter.

The syntax for each entry is:
dst=<a.b.c.d> mask=<a.b.c.d> gw=<a.b.c.d> metric=<num>

For example:
“dst=136.35.0.0 mask=255.255.0.0 gw=10.1.2.100 metric=3"

NULL

Static RIP Route #2 Configuration
INCLUDE_IPRIP_STATIC_ROUTE_2

This component specifies the default configuration for RIP
interfaces in the IPRIP_STATIC_ROUTE_2 configuration
parameter.

See Static RIP Route #1 Configuration above for syntax.

NULL

Static RIP Route #3 Configuration
INCLUDE_IPRIP_STATIC_ROUTE_3

This component specifies the default configuration for RIP
interfaces in the IPRIP_STATIC_ROUTE_3 configuration
parameter.

See Static RIP Route #1 Configuration above for syntax.

NULL

4 Adding Routing Support
4.2 Building and Configuring RIP and RIPng

83

4

RIPng Run-Time Configuration

RIPng includes a shell command, ripngctrl, which can be used to dynamically
configure RIPng or for test purposes. To use this command, configure VxWorks
with INCLUDE_IPRIPNG_CTRL_CMD. This component is included automatically
with INCLUDE_IPRIPNG.

The ripngctrl subcommands display the routing table and interfaces. They can also
start and stop the RIPng task.

ripngctrl

Name

ripngctrl - dynamically configure RIPng

Synopsis

ripngctrl ripngStart 'options' priority
ripngctrl ripngStop
ripngctrl rtprint
ripngctrl ifprint

Description

To use ripngctrl ripngStart to start RIPng, you must first set the interface to
promiscuous mode in order to receive RIPng protocol messages. Use the ifconfig
command as follows:

ifconfig("<interface-name> promisc")

Use ripngctrl ripngStart with the options described in RIPng, p.85. Use ripngctrl
ripngStop to stop the RIPng task.

Use ripngctrl rtprint to display the RIPng route table and use ripngctrl ifprint to
display the RIPng interfaces.

Available Options

For the list of options available with the ripngctrl ripngStart command, see RIPng,
p.85.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols 6.6

84

RIP Shell Commands

RIP includes a shell command, ripctrl, which can be used to dynamically configure
RIP or for test purposes. To use this command, configure VxWorks with
INCLUDE_IPRIP_CTRL_CMD.

Name

ripctrl - dynamically configure RIP

Synopsis

ripctrl rtprint
ripctrl rtadd [-m metric] [-r tag] [-p] destination mask [gateway]
ripctrl rtdelete destination mask [gateway]
ripctrl ifopen ifname [broadcast|multicast|silent] [in-multi]
[auth-simple|auth-md5 password] [out v1] [in no|v1|v2]
ripctrl ifclose ifname

Description

The ripctrl program displays the routing table and configures routes and
interfaces with the RIP daemon. USe the ripctrl rtprint subcommand to print the
whole RIP daemon route table.

Use the ripctrl rtadd and rtdelete subcommands to add or delete static RIP routes.

RIP can be closed and opened on interfaces using the ripctrl ifopen and ifclose
subcommands.

Mandatory Parameters

destination
The destination IP address of the route being added or deleted in the format
x.x.x.x.

mask
The network mask of the route being added or deleted in the format x.x.x.x.

ifname
The name of the interface to open or close.

Options

The options for each subcommand are as follows:

-m metric
Specify the route metric when adding a route. Default is 1.

4 Adding Routing Support
4.2 Building and Configuring RIP and RIPng

85

4

-r tag
Specify the route tag. Default is not set.

-p
Indicates a permanent route.

gateway
Specify the default gateway for the route in the format x.x.x.x. Default is not
set, indicating an interface route.

broadcast|multicast|silent
Indicates whether the RIP interface transmits RIP packets broadcast, multicast,
or not at all (silent).

in-multi
Indicates that this interface accepts multicast RIP packets.

auth-simple|auth-md5 password
Select simple or MD5 authentication and specify a password.

out v1
The default protocol for outgoing RIP packets is RIPv2. Use this option to
specify RIPv1 for outgoing packets.

in no|v1|v2
Specify the protocol for incoming RIP packets.

RIPng

The RIPng implementation is similar to RIPv2, but it uses a more flexible address
format that makes it possible to support both IPv4 and IPv6 addresses.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols 6.6

86

The parameters for configuring RIPng through the INCLUDE_RIPNG component
are described in Table 4-4.

Use IPRIPNG_OPTIONS_STRING to specify RIPng configuration options. If you
want to use an option string, include a quoted string containing the options. The
valid options for use within the quoted IPRIPNG_OPTIONS_STRING string are as
follows:

-a
Enables aging for the statically defined routes. If you specify this option, RIPng
removes even statically defined routes if they have gone too long without
update. The limit is equal to RIP_GARBAGE_TIME plus RIP_EXPIRE_TIME. By
default, that delay would be 480 seconds (300 seconds plus 180 seconds).

-A prefix/prefix_length, interface0 [, interface1, interface2, ...]
This option is used for aggregating routes. The prefix/prefix_length values
specify the prefix and the prefix length of the aggregated route. When
advertising routes, RIPng filters specific routes covered by the aggregate, and
advertises the aggregated route prefix/prefix_length to the interfaces specified
in the comma-separated interface list interface0 [, interface1, interface2, ...]. To
support this behavior, RIPng creates a static route to prefix/prefix_length with
RTF_REJECT flag, in the kernel routing table.

-d
Enables output of debugging messages.

Table 4-4 RIPng Configuration

Component Name and Description Default Value

IPRIPng Options String
IPRIPNG_OPTIONS_STRING

This component contains the options to submit to
ripngStart(). See the descriptions below for details and
available options.

—

IPRIPng Priority
IPRIPNG_PRIORITY

This component specifies the priority of the RIPng daemon
task, tRipTask. In addition to tRipngTask, RIPng also
spawns a supporting task, tRipngDog. The priority for this
supporting task is higher than that of tRipTask.
Specifically, it is set to IPRIPNG_PRIORITY - 1.

0

4 Adding Routing Support
4.2 Building and Configuring RIP and RIPng

87

4

-D
Enables output of extensive debugging messages.

-h
Disable split horizon processing by default. Unless interfaces are explicitly
configured using -x, -y, -z, all new interfaces have Split Horizon with Poison
Reverse enabled. You can use -h to disable this so that all new interfaces have
Split Horizon disabled.

See also -p, which causes all new interfaces to default to Split Horizon without
Poison Reverse. Do not specify -p or -h if you want all new interfaces to default
to Poison Reverse.

-l
Because there is not now a clear definition of the term “site” for IPv6, a default
behavior for RIPng is not to exchange site-local routes. If you specify the -l
option, RIPng assumes all interfaces to be on the same site, and RIPng will
exchange site-local routes with the peers directly accessible through those
interfaces. For this reason, you must not use the -l option if this RIPng instance
is running on a site boundary router.

-L prefix/prefix_length, interface0 [, interface1, interface2, ...]
Filter incoming routes from interfaces interface0 [, interface1, interface2, ...].
RIPng will accept incoming routes that are in prefix/prefix_length. If multiple
-L options are specified, any routes that match one of the options is accepted.
A prefix/prefix_length of ::/0 is treated specially as a default route. For example:

"-L 3ffe::/16,if1 -L ::/0,if1"

This string configures RIPng to accept any default route and any routes in the
6bone test address, but no others. If you would like to accept any route, do not
specify a -L option.

-N interface0 [, interface1, interface2, ...]
Do not listen to or advertise routes from or to interfaces specified by interface0
[, interface1, interface2, ...].

-O prefix/prefix_length, interface0 [, interface1, interface2, ...]
Restrict route advertisement to the interfaces specified by interface0 [,interface1,
interface2, ...]. This option also restricts RIPng to advertising only those routes
that matches prefix/prefix_length.

-p
Disable Poison Reverse by default. Including this option configures RIPng so
that all new interfaces to use Split Horizon without Poison Reverse. To disable
Split Horizon entirely, use -h. Note that -p does not affect interfaces that are

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols 6.6

88

explicitly configured using -x, -y, -z. The -p and -h options are used to set the
default mode for only those interfaces that are not explicitly configured. To use
Poison Reverse by default, do not specify either -p or -h.

-q
Puts RIPng in quiet, listen-only, mode. No advertisements are sent.

-r address1 [,address2, ...]
Restricted Neighbor List. Accept responses from only those routers specified
in the address list (address1, ...).

-s
Configures RIPng to advertise the statically defined routes stored in the
routing table. Announcements obey the regular split horizon rule.

-S
This option is the same as -s option except that no split horizon rule is applied.

-T interface0 [, interface1, interface2, ...]
Advertise only default route, toward interface0 [, interface1, interface2, ...].

-t tag
Attach a route tag to originated route entries. The tag can be decimal
(unprefixed), octal (prefixed by 0), or hexadecimal (prefixed by 0x).

-x interface0 [, interface1, interface2, ...]
Enable Poison Reverse Processing for these interfaces.

-y interface0 [, interface1, interface2, ...]
Enable Split Horizon (without Poison Reverse) for these interfaces.

-z interface0 [, interface1, interface2, ...]
Disable Split Horizon altogether on these interfaces.

RIPv1/v2

RIP can be configured statically or dynamically. There are three defined data types
and three groups of functions described in the reference entries for RIP.

The INCLUDE_IPRIP component supplies software modules that implement RIP.

In addition to configuration through Workbench, RIP can be configured
dynamically through the sysvar command or related hooks. There are sysvar
command variables equivalent to each configuration parameter. These variables
are included in Table 4-5. For information on using the sysvar command, see
sysvar, p.48.

4 Adding Routing Support
4.2 Building and Configuring RIP and RIPng

89

4

The parameters used to configure RIP are described in Table 4-5.

Table 4-5 Wind River RIPv1/v2 Configuration

Component Name, sysvar, and Description Default Value

Authenticate RIP requests
IPRIP_AUTH_ENABLED
iprip.auth.requests
This component enables MD5 authentication of RIP requests.

1=enabled, 0=disabled
0

RIP Expire Interval
IPRIP_EXPIRE_INTERVAL
iprip.expire.seconds

This component specifies the maximum time in seconds
until a route is invalidated. An invalidated route is not used
but is retained on a garbage list. If confirmation arrives
while a route is on the garbage list, the route is marked as
valid. By default, the route remains on the garbage list for a
maximum of 180 seconds, as per RFC 2453.

180

RIP Flash Interval
IPRIP_FLASH_DELAY
iprip.flash.seconds

This component specifies the interval in seconds between
flash route updates.

180

RIP Garbage Interval
IPRIP_GARBAGE_INTERVAL
iprip.garbage.seconds

This component specifies the number of seconds to wait
before an unconfirmed route is permanently deleted from
the table.

120

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols 6.6

90

4.3 Policy-Based Routing

The policy based routing in the Wind River Network Stack makes it possible to
base the route lookup decision on more than the destination address. Each virtual
router can have one or more Forwarding Information Base (FIB) in policy routing
mode. The default FIB is created when the virtual router is created. The default FIB
cannot be deleted unless the whole virtual router is deleted. All lookups are done
at the default FIB unless there is a matching policy rule that points to another FIB.

The API for policy based routing is located in
installDir/components/ip_net2-6.0/ipnet2/include/ipnet_policy_routing.h.

The lookup is done according to the following scenario when policy routing is
enabled:

1. A search is made for a policy routing rule matching the IP datagram being
sent.

RIP Update Interval
IPRIP_UPDATE_INTERVAL
iprip.update.seconds

This component specifies the number of seconds between
transmitting route updates over every known interface.

20

RIP Update Delta Interval
IPRIP_UPDATE_DELTA
iprip.update.deltaseconds

This component specifies the variation to RIP updates in
seconds. The time between each RIP broadcast or multicast
message is equal to IPRIP_UPDATE_INTERVAL + random (0
to IPRIP_UPDATE_DELTA). For example, if
IPRIP_UPDATE_INTERVAL is 20 and
IPRIP_UPDATE_DELTA is 20, updates are sent every 20 to 40
seconds.

20

Table 4-5 Wind River RIPv1/v2 Configuration (cont’d)

Component Name, sysvar, and Description Default Value

4 Adding Routing Support
4.3 Policy-Based Routing

91

4

2. If a matching rule is found, then the lookup is done from the FIB pointed to by
that rule. If no matching rule was found go to step 6.

3. A normal route lookup is done, if an entry is found then that entry is returned.

4. If the last field was set to IP_TRUE, then return a lookup failure else go to
step 5.

5. Go back to step 2 if no route entry was found and continue the search from the
first rule after the last matching rule.

6. Do the route lookup from the default FIB and return the result.

All rules are searched in descending priority. The rule priority is set when the rule
is added and can be [IPNET_PR_PRIO_MIN ... IPNET_PR_PRIO_MAX].

The af (address family) must be set for all rules and the mask fields must contain
which rules need to be matched (zero or more IPNET_PR_RULE_xxx constants
OR’ed together).

Zero or more of the fields described in Table 4-6 can be used in a rule.

Table 4-6 Policy-Based Routing Rule Fields

Field Description

ds Traffic class (IPv6) or Type of Service (IPv4),
IPNET_PR_RULE_DS must be set in mask.

proto IP protocol (ex IP_IPPROTO_TCP) IPNET_PR_RULE_PROTO
must be set in mask.

saddr Source address or source network; see also saddr_prefixlen.

saddr_prefixlen Number of leading bits of the source address that must
match, 0 means that all bits of saddr must match.
IPNET_PR_RULE_SADDR must be set in mask.

daddr Destination address or destination network; see also
daddr_prefixlen.

daddr_prefixlen Number of leading bits of the destination address that must
match, 0 means that all bits of daddr must match.
IPNET_PR_RULE_DADDR must be set in mask.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols 6.6

92

Other fields in the struct Ipnet_policy_routing_table are described in Table 4-7.

Add, delete, get and enumeration of policy routing are done through four
ipcom_socketioctl() calls.

This feature can be controlled through the qos shell command. See Wind River
Network Stack for VxWorks 6 Programmer’s Guide, Volume 3: Interfaces and Drivers for
information on QoS.

flow (IPv6 only) flow ID in host byte order
IPNET_PR_RULE_FLOW must be set in mask ifindex
Interface the packet must be bound to (sending) or entered
the stack (forwarding, i.e., incoming interface)
IPNET_PR_RULE_IFINDEX must be set in mask.

scope (IPv6 only) the scope of the destination address in host byte
order. IPNET_PR_RULE_SCOPE must be set in mask.

pkt_mask Flags in the flags field of Ipcom_pkt structure that will be
inspected. See
installDir/components/ip_net2-6.0/ipcom/include/ipcom_
pkt.h for flag definitions.

pkt_result The result by AND’ing the flags field of Ipcom_pkt on the
outgoing packet with pkt_mask.
IPNET_PR_RULE_PKTFLAGS must be set in mask.

Table 4-6 Policy-Based Routing Rule Fields (cont’d)

Field Description

Table 4-7 Other Policy Routing Fields

Field Description

table The table (or FIB) to us if this rule matches.

last IP_TRUE if no more tables should be checked after this one
(if it matches).

id Unique identifier for the rule, set by
IPNET_SIOCSPRRULE.

prio The priority of the rule must be in the range
[IPNET_PR_PRIO_MIN ... IPNET_PR_PRIO_MAX]

4 Adding Routing Support
4.4 VRRP

93

4

4.4 VRRP

Virtual Router Redundancy Protocol (VRRP) specifies an election protocol that
dynamically assigns responsibility for a virtual router to one of the VRRP routers
on a LAN.

The VRRP is not the Wind River Virtual Router implementation. See 6. Enabling
Virtual Routers for information on the virtual router.

4.4.1 Configuring and Building VRRP

The Wind River Network Stack supports the following VRRP component
(INCLUDE_IPVRRPD):

In order to build the network stack to use VRRP, you must configure the network
interface using IPNET_USE_VRRP.

To use VRRP, you must configure address and interface lists on which to perform
VRRP operations. The parameters used to configure VRRP in Workbench are
described in Table 4-8.

Table 4-8 Wind River VRRP Configuration

Component Name and Description Default Value

IP Address list
VRRP_IFLIST_VRIDS_IPADDR

This component specifies one or more addresses associated
with this virtual router for each interface/VRID pair. The IP
Address list is specified using the format
<ifparam>=<value>. Each pair of <ifparam>=<value> is
semicolon-separated. For example:
"eth0.1=10.130.2.254;eth1.2=10.130.3.254".

NULL

Interface list
VRRP_IFNAME_LIST

This component specifies a list of interfaces where this
router should perform VRRP operations. The format is a
space-separated list of interface names. For example:
"eth0 eth1".

The default list is empty, which means the daemon will just
shutdown if it is started.

—

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols 6.6

94

advertisement interval list
VRRP_IFLIST_VRIDS_ADV_INTERVAL

This component specifies the time interval in seconds
between VRRP advertisement messages for each
interface/VRID pair. The advertisement interval list is
specified using the format <ifparam>=<value>. Each pair of
<ifparam>=<value> is semicolon-separated. For example:
"eth0.1=1;eth1.2=1".

NULL

preempt mode list
VRRP_IFLIST_VRIDS_PREEMPT_MODE

This component controls whether a higher priority backup
router preempts a lower priority master for each
interface/VRID pair. The preempt mode list is specified
using the format <ifparam>=<value>. Each pair of
<ifparam>=<value> is semicolon-separated. For example:
"eth0.1=1;eth1.2=1"

1=true

NULL

 priority list
VRRP_IFLIST_VRIDS_PRIORITY

This component specifies the priority value to be used in
master election by this virtual router for each
interface/VRID pair. A value of 1-254 is available for
virtual routers backing up the master virtual router. A
value of 255 means this router owns the address and starts
as master. The priority list is specified using the format
<ifparam>=<value>. Each pair of <ifparam>=<value> is
semicolon-separated. For example:
"eth0.1=100;eth1.2=255".

NULL

vrids list
VRRP_IFLIST_VRIDS

This component specifies a list of virtual IDs defined on this
interface. Must be >= 1 and <= 255. The vrids list is
specified using the format <ifparam>=<value>. Each pair of
<ifparam>=<value> is semicolon-separated. For example:
"eth0=1;eth1=2"

NULL

Table 4-8 Wind River VRRP Configuration (cont’d)

Component Name and Description Default Value

4 Adding Routing Support
4.5 Fast Path

95

4

4.5 Fast Path

Fast path, also known as fast IP-forwarding, is a mechanism that intercepts packets
(either IPv4 or IPv6) before they are passed up to IP. If the packet is destined for a
location known to the fast path route cache (also known as the FIB, the forwarding
information base), the application forwards the packet. If the destination is
unknown to the FIB, the application leaves the packet to IP.

This two-level approach lets you bypass regular IP processing for selected packets.
This improves performance on packets headed for destinations known to the FIB.
It reduces performance for all other packets, but overall router performance is
improved if most traffic is headed for destinations known to the FIB.

The Wind River Network Stack supplies two varieties of fast path—generic and
Ethernet—that are tightly integrated with the routing engine and are defined by
default when the network stack is built.

In Wind River VxWorks Platforms, these components are defined in the following
file:

installDir/components/ip_net2-6.6/ipnet/config/ipnet_config.h

4.5.1 Generic Fast Path

The IPNET_FASTPATH component is included by default. This component
configures the network stack to use IPv4/IPv6 fast path routing code. This fast
path is slower that the Ethernet fast path, but it works for all interface types
(incoming and outgoing), and it will also work together with Wind River Firewall
and Wind River NAT.

4.5.2 Ethernet Fast Path

The IPNET_ETH_FASTPATH component is included by default. This component
configures the network stack to use IPv4/IPv6 Ethernet fast path routing code. The
Ethernet fast path is faster than the generic fast path, but both the incoming
(ingress) and the outgoing (egress) interfaces must be Ethernet. The outgoing
interface must have the link2 (IP_IFF_LINK2) bit set to create the Ethernet fast path
flow.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols 6.6

96

4.6 Adjusting the Route Table

The route command is a utility for manually making changes to the route table or
route settings.

4.6.1 Route Shell Command

The route command is sometimes used in conjunction with several other
components. In those cases, its use is described in the relevant section of this guide.

The route command is available when using routing sockets. It is included in the
network stack by including the INCLUDE_IPROUTE_CMD component.

route

Name

route - a utility to manually manipulate network routing

Synopsis

The syntax for the general route command is as follows:

route [-n] [-nollinfo] [-V routetab] subcommand [[modifiers] args]

Description

The route utility supports a limited number of general options, but a rich
command language enables the user to specify any arbitrary request that could be
delivered via the programmatic interface.

Options

The options for route are described in Table 4-9.

NOTE: If Wind River Firewall is included in the Platform build, the Ethernet fast
path feature is disabled. Make sure the firewall is excluded in your config.mk if
you intend to use the Ethernet fast path feature.

4 Adding Routing Support
4.6 Adjusting the Route Table

97

4

Route Utility Subcommands

The route subcommands have the following syntax:

route [-n] command [net | host] destination gateway

The only exception is the monitor subcommand, which has the following syntax:

route [-n] monitor

The subcommands for route are described in Table 4-10.

The options for the route subcommands are described in Table 4-11.

Table 4-9 Route Shell Command Options

Option Description

-n Bypasses attempts to print host and network names
symbolically when reporting actions.

-nollinfo Do not show routes which have the IPNET_RTM_LLINFO flag
set.

-V routetab Specify route table. If unspecified, 0 is used.

Table 4-10 Route Subcommands

route Subcommand Description

add Add a route.

delete Delete a route.

change Change aspects of a route (such as its gateway).

get Lookup and display the route for a destination.

show Print out the route table similar to netstat –r.

monitor Continuously report any changes to the routing information
base, routing lookup misses, or suspected network
partitionings.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols 6.6

98

If the destination is directly reachable via an interface requiring no intermediary
system to act as a gateway, the -iface modifier should be specified; the gateway
given is the address of this host on the common network, indicating the interface
to be used for transmission.

The optional -netmask qualifier is intended to achieve the effect of an OSI ESIS
redirect with the netmask option, or to manually add subnet routes with netmasks
different from that of the implied network interface (as would otherwise be
communicated using the open shortest path first (OSPF) or ISIS routing protocols).
One specifies an additional address parameter (to be interpreted as a network
mask). The implicit network mask generated in the IP_AF_INET case can be
overridden by making sure this option follows the destination parameter. The
modifier -prefixlen is also available for similar purposes in the IPv6 case.

Route Flags

Routes have associated flags that influence operation of the protocols when
sending to destinations matched by the routes. These flags may be set (or
sometimes cleared) by indicating the corresponding modifiers described in
Table 4-12.

Table 4-11 Route Subcommand Options

Option Description

[net | host] Force the destination to be interpreted as a network or a
host, respectively.

destination The destination host or network. Routes to a particular host
may be distinguished from those to a network by
interpreting the Internet address specified as the
destination argument.

gateway The next-hop intermediary through which packets should
be routed.

Table 4-12 Route Command Route Flags

Route Flag Description

-cloning IPNET_RTF_CLONING generates a new route on use.

-xresolve IPNET_RTF_XRESOLVE emit mesg on use (for external lookup).

4 Adding Routing Support
4.6 Adjusting the Route Table

99

4

Optional Modifiers

The optional modifiers -rtt, -rttvar, -mtu, -hopcount, and -expire provide initial
values to quantities maintained in the routing entry by transport level protocols,
such as TCP. In a change or add command where the destination and gateway are
not sufficient to specify the route (as in the ISO case, where several interfaces may
have the same address), the -ifp or -ifa modifiers may be used to determine the
interface or interface address.

-iface ~IPNET_RTF_GATEWAY destination is directly reachable.

-static IPNET_RTF_STATIC manually added route.

-nostatic ~IPNET_RTF_STATIC pretend route added by kernel or daemon.

-reject IPNET_RTF_REJECT emit an ICMP unreachable when matched.

-blackhole IPNET_RTF_BLACKHOLE silently discard packets (during
updates)

-llinfo IPNET_RTF_LLINFO translates proto address to link address

Table 4-12 Route Command Route Flags (cont’d)

Route Flag Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols 6.6

100

101

 5
Working with Routing Sockets

5.1 Introduction 101

5.2 Getting Started with Routing Sockets 103

5.3 Preparing and Processing Routing Socket Messages 104

5.4 Extracting Information from a Routing Socket Message 114

5.5 Building a Routing Socket Message 116

5.1 Introduction

Routing sockets provide a two-way communication interface to the route table.
Using a routing socket, an application can monitor and make changes to the
contents of the routing table.

Traditionally, a route table stored only one entry per destination network. For
IPv4, a destination network is identified by an IPv4 address and a netmask value.
For IPv6, a destination network is identified by an IPv6 address and a prefix value.
A route table entry associates this destination with a gateway on a local network
or with an interface on a local network. In previous route table implementations,
adding a route entry to the table failed if the table already contained an entry for
that destination.

The route table in the current network stack has been enhanced to store multiple
same-destination routes that differ by gateway value or network mask. Adding a

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols 6.6

102

route entry to a table that already contains an entry for that destination can
succeed, provided the new entry differs from the existing entry (or entries) in its
gateway value or network mask. Policy routing adds even more flexibility to a
lookup by adding type of service (TOS) (IPv4), traffic class (IPv6), protocol, source
address or network, destination address or network, and traffic flow (IPv6) as
selectors.

When IP queries the route table, it expects to get back only one route. To satisfy this
expectation, the route table ranks multiple same-destination routes. The highest
ranked route, known as the primary or representative route for the destination, is
the route reported to IP. How the system ranks same-destination routes depends
on how you build the code.

Ranking Routes Using ECMP Routing

Multiple same-destination route entries are ranked by hopcount field
(rmx_hopcount). The ones with lower hopcount have higher precedence. If there
are multiple same-destination entries with the same hopcount, selection is done
through an algorithm called Equal-Cost Multipath (ECMP) which is described in
RFC 2991, Multipath Issues in Unicast and Multicast Next-Hop Selection. Two of the
algorithms described in RFC 2991 are implemented:

■ Modulo-N Hash
■ Highest Random Weight

Modulo-N Hash is the fastest, but adding or removing a same-destination route
tends to change which route entry is returned for a specific traffic flow. Highest
Random Weight will always return the same route entry for a specific flow after a
remove operation unless the entry that used to be returned was the one removed.
The same entry or the new entry is selected after an add operation. The probability
for the new entry to be selected over the old one is:

 1/N

where N is number of same-destination entries, including the added entry.

Location of net/route.h

This chapter makes reference to the net/route.h file. The full pathname is:

installDir/vxworks-6.x/target/usr/h/wrn/coreip/net/route.h

5 Working with Routing Sockets
5.2 Getting Started with Routing Sockets

103

5

5.2 Getting Started with Routing Sockets

This section describes how to add routing socket support to VxWorks and how to
set up a routing socket.

5.2.1 Configuring VxWorks for Routing Sockets

The Wind River Network Stack supports the routing socket support component.

The INCLUDE_IPNET_USE_ROUTESOCK component pulls in the routing socket
interface.

There are no configuration parameters or externally callable functions directly
associated with this component.

5.2.2 Setting up a Routing Socket

Setting up a routing socket requires a socket() call. There is no need to make an
explicit bind() or connect() call for a routing socket. After creating a routing
socket, you may want to configure the socket options.

Creating a Routing Socket

To create a socket descriptor for use as a socket in the routing domain, call socket()
with a domain value of AF_ROUTE, a type value of SOCK_RAW, and a protocol value of
0 (zero). For example:

myRouteSocket = socket (AF_ROUTE, SOCK_RAW, 0);
if (routeSocket < 0)

{
your response code for the socket call failure
}

Setting Socket Options on a Routing Socket

After you have the socket descriptor, you can make it non-blocking by making an
FIONBIO call to ioctl().

For example:

on = 1;
if (ioctl (myRouteSocket, FIONBIO, (int) &on) == -1) {

your response code for the ioctl call failure
}

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols 6.6

104

Another useful option is SO_USELOOPBACK, which is enabled by default. When
this option is cleared, you will not hear the response to the messages that you write
to your socket.

on = 0;
if (setsockopt (myRtSock, SOL_SOCKET, SO_USELOOPBACK, (char *)&on,

sizeof (on)) == ERROR) {
your response code for the setsockopt call failure

}

A routing socket typically only sends a response if the requested operation fails.
The only exceptions are the GET messages, which also send a response with the
retrieved results (if successful). Disabling this option will require a separate
routing socket to read the search results.

5.2.3 Disabling Routing Sockets

To build a network stack without routing sockets, you need to edit the network
stack configuration header file. Routing sockets are enabled by default in:

installDir/components/ip_net2-6.x/ipnet2/config/ipnet_config.h

To disable routing sockets:

1. Open installDir/components/ip_net2-6.x /ipnet2/config/ipnet_config.h.

2. Comment out the routing sockets define:

#define IPNET_USE_ROUTESOCK

3. Save the file.

4. Rebuild the project.

5.3 Preparing and Processing Routing Socket Messages

When preparing or processing a routing socket message, you can assume that it
consists of a fixed-length header followed by up to eight socket address structures.
For most routing socket messages, the fixed-length header is described by an
rt_msghdr structure, which is defined in net/route.h.

This structure describes the fixed length message header for all but the following
routing socket message types:

5 Working with Routing Sockets
5.3 Preparing and Processing Routing Socket Messages

105

5

■ RTM_NEWADDR
■ RTM_DELADDR
■ RTM_IFINFO
■ RTM_IFANNOUNCE

For RTM_NEWADDR or RTM_DELADDR messages, the message header is
described by the ifa_msghdr structure defined in net/route.h.

For RTM_IFINFO messages, the message header is described by the if_msghdr
structure defined in net/route.h.

For RTM_IFANNOUNCE messages, the message header is described by the
if_announcemsghdr structure defined in net/route.h.

5.3.1 Case/Switch Processing for Received Messages

The first three members of the routing socket message header structures are all of
the same type and carry the same meaning. Thus, when a message first arrives on
a socket, you can read the routing socket message type value using any structure
overlay that is convenient. To make it easier to do this, you could receive the
message into a union. Consider the following code fragment skeleton:1

#include <net/if.h>
#include <net/route.h>

/* sizeof the msglen, version and type fields that all AF_ROUTE messages must
contain */ #define AF_ROUTE_MIN_MSG_LEN 4

union af_route_msg {
 struct if_msghdr if_hdr;
 struct ifa_msghdr ifa_hdr;
 struct rt_msghdr rt_hdr;
 struct if_announcemsghdr if_announcehdr; };

int input_af_route_msg(void *msg_ptr, int msg_len) {
 union af_route_msg *msg = msg_ptr;

 if (msg_len < AF_ROUTE_MIN_MSG_LEN)
 /* Message is too short for being a AF_ROUTE message */
 return MALFORMED_MSG_ERROR_CODE;

 if (msg_len < msg->rt_hdr.rtm_msglen)
 /* Message is truncated or malformed */
 return TRUNCATED_MSG_ERROR_CODE;

 switch (msg->rt_hdr.rtm_type)

1. Although this union is useful for receiving messages, it would waste resources to use it
when creating a routing socket message.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols 6.6

106

 {
 case RTM_ADD:
 /* Handle add message, reference message through msg->rt_hdr */
 break;
 case RTM_NEWADDR:
 /* Handle new address message, reference message through
msg->ifa_hdr */
 break;
 case RTM_IFINFO:
 /* Handle interface status change, reference message through
msg->if_hdr */
 break;
 case RTM_IFANNOUNCE
 /* Handle interface status change, reference message through
msg->if_announcehdr */
 break;
 /* case statements for all other messages types goes here */
 default:
 /* Unsupported or invalid message type */
 return INVALID_MSG_TYPE_ERRO_CODE;
 }
}

5.3.2 Types of Routing Socket Messages

Routing sockets on a VxWorks target running a host stack build use the standard
set of routing socket messages described in the routing sockets section of TCP/IP
Illustrated, Volume 2, with some exceptions. For instance, interface indices are 32
bits, the rt_msghdr structure has a new element with a route table index associated
with virtual router functionality, and the rt_metrics and if_data substructures
occurring in rt_msghdr and if_msghdr messages are different. See the net/route.h
and net/if.h header files for the structure definitions.

Constants for the message types are defined in net/route.h. The key at the top of
the list indicates the message structure and whether the message can be sent or
received by the network stack.

/* T = message can be sent to IPNET
 F = message can be sent from IPNET
 1 = message format is struct rt_msghdr
 2 = message format is struct ifa_msghdr
 3 = message format is struct if_msghdr
 4 = message format is struct if_announcemsghdr
 */
#define RTM_ADD 0x1 /* TF1 Add route */
#define RTM_DELETE 0x2 /* TF1 Delete route */
#define RTM_CHANGE 0x3 /* TF1 Change in metric or flags */
#define RTM_GET 0x4 /* TF1 Report metrics and other route
information */
#define RTM_LOOSING 0x5 /* F1 Kernel suspects route is failing */
#define RTM_REDIRECT 0x6 /* F1 Kernel told to use a different route */

5 Working with Routing Sockets
5.3 Preparing and Processing Routing Socket Messages

107

5

#define RTM_MISS 0x7 /* F1 Lookup failed on this address */
#define RTM_LOCK 0x8 /* TF1 Lock specified metric */
#define RTM_OLDADD 0x9 /* Unsupported! */
#define RTM_OLDDEL 0xa /* Unsupported! */
#define RTM_RESOLVE 0xb /* F1 Request to resolve destination to
link-layer address */
#define RTM_NEWADDR 0xc /* TF2 Address is added to interface */
#define RTM_DELADDR 0xd /* TF2 Address is removed from interface */
#define RTM_IFINFO 0xe /* F3 Interface status or flag(s) is changing
*/
#define RTM_IFANNOUNCE 0x10 /* F4 Interface attached/detached */

The network stack also includes two extended routing socket messages that can be
used to create or destroy a virtual router. For more information on the virtual
router see 6. Enabling Virtual Routers. The extended messages are:

#define RTM_NEWVR 0xf1 /* TF1 Add a new virtual router */
#define RTM_DELVR 0xf2 /* TF1 Delete a virtual router, the default
(0)route table cannot be removed */

The following sections describe these two messages as well as the other message
types.

RTM_ADD

You can both read and write RTM_ADD messages.

Receiving an RTM_ADD Message

Receiving this message indicates that some agent has attempted to add a new route
to the routing table. The rt_msghdr.rtm_errno field will indicate whether the
attempt succeeded or failed.

If the route just added is a new interface route, an RTM_NEWADDR preceded the
RTM_ADD message. Multicast address additions are also reported through these
messages.

Writing an RTM_ADD Message

Writing an RTM_ADD message adds a new route to the routing table if the
message is well formed and at least one of the following elements distinguishes the
new route from a route already existing in the table:

■ destination address
■ netmask value (or IPv6 prefix value)
■ gateway
■ protocol ID
■ TOS

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols 6.6

108

To monitor the success of an add request under the standard message set, check
the errno value, which is available from the send results.

The header for an RTM_ADD message is described by an rt_msghdr structure,
which is defined in net/route.h.

RTM_DELETE

You can both read and write RTM_DELETE messages.

Receiving an RTM_DELETE Message

Receiving this message indicates that some agent has tried to delete a route from
the routing table. To know whether the attempt succeeded, check the rtm_errno
field in the message header.

If the deleted route is an interface route, this RTM_DELETE is followed by an
RTM_DELADDR. Multicast address deletions are also reported through these
messages.

Writing an RTM_DELETE Message

Writing an RTM_DELETE message deletes a route from the routing table if the
message is well formed and if it matches a route in the table. The criteria by which
a match is made are:

■ destination address

■ netmask value (or IPv6 prefix value)

■ gateway (a value of NULL functions as a wildcard)

■ protocol ID (a value of 0 functions as a wildcard)

■ TOS (a value of -1 functions as a wildcard)

You need to specify a protocol ID, a TOS value, and a gateway value only if you
want to delete a secondary route. To delete the primary route, it is enough to
specify only the destination address and netmask value.

To check the success of a delete request, monitor the socket for an incoming
RTM_DELETE.

The header for an RTM_DELETE message is described by an rt_msghdr structure,
which is defined in net/route.h.

5 Working with Routing Sockets
5.3 Preparing and Processing Routing Socket Messages

109

5

RTM_CHANGE

You can both read and write RTM_CHANGE messages.

Receiving an RTM_CHANGE Message

Receiving this message indicates that an agent has changed the gateway, metrics,
or some other property associated with the route to the specified destination.

Writing an RTM_CHANGE Message

Writing this message lets you change the gateway or metrics associated with the
route to the specified destination, which is identified by:

■ destination address

■ netmask value (or IPv6 prefix value)

■ gateway (a value of NULL does not function as a wildcard)

■ protocol ID (a value of 0 functions as a wildcard)

■ TOS (a value of -1 functions as a wildcard)

You need to specify a protocol ID and TOS value only if you want to modify a
particular route. You can set these to wildcard values if matching on them is not
important to you. If multiple routes exist, you must specify a gateway in order to
select the matching entry.

All information in the message other than the destination and netmask are
interpreted as values that you want written into the existing route entry. If only
one route exists for a destination address and netmask, you can change the
gateway by providing a new gateway value. If multiple routes exist, then you
cannot change the gateway because the gateway is used to select the route that is
the entry you want changed.

The header for an RTM_CHANGE message is described by an rt_msghdr structure,
which is defined in net/route.h.

RTM_GET

You can both read and write RTM_GET messages. Writing this message checks the
route table for a route to the specified destination. To check the success of the
request, monitor the socket for an incoming RTM_GET message. If the request was
successful, the route information is appended to the message header. If the request

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols 6.6

110

failed to find a matching route, this is indicated in the rtm_errno field of the
message header.

The criteria by which a match is made are:

■ destination address
■ netmask value (or IPv6 prefix value)
■ gateway (a value of NULL functions as a wildcard)
■ protocol ID (a value of 0 functions as a wildcard)
■ TOS (a value of -1 functions as a wildcard)

You need to specify the protocol ID, the TOS value, and the gateway value if you
want to retrieve a secondary route. To retrieve the primary route, you need to
specify only the destination address, and optionally, the netmask (or prefix) value.
If the netmask value is not specified, the code does a longest-match lookup of the
destination, as it would if sending a packet, rather than searching for an exact
match with a specified destination-netmask pair.

The header for an RTM_GET message is described by an rt_msghdr structure,
which is defined in net/route.h.

RTM_LOSING

This is a read-only message. It indicates that the specified route might not still be
valid. TCP originates this message after four or more consecutive failed
retransmissions over the route.

The header for an RTM_LOSING message is described by an rt_msghdr structure,
which is defined in net/route.h.

RTM_REDIRECT

This is a read-only message. It indicates that ICMP has sent a redirect for the
specified destination, the address appended to the header in the RTA_DST
location. The address of a preferred gateway is appended to the message in the
RTA_GATEWAY location. The address of the author for the redirect message is
appended to the header in the RTA_AUTHOR location.

To know whether this message indicates a change in the contents of the route table,
check the rtm_errno value in the message header. A non-zero rtm_errno value
indicates a failed RTM_REDIRECT. A zero indicates a successful RTM_REDIRECT.
In this case, the table will contain a new host-specific route. This new host route is

5 Working with Routing Sockets
5.3 Preparing and Processing Routing Socket Messages

111

5

created only if the original mis-directed route was a non-host (or network) route.
Otherwise, that existing host route is modified.

The header for an RTM_REDIRECT message is described by an rt_msghdr
structure, which is defined in net/route.h.

RTM_MISS

This is a read-only message. It indicates that some agent’s search of the route table
failed to find a route to the specified destination. The header for an RTM_MISS
message is described by an rt_msghdr structure, which is defined in net/route.h.

RTM_LOCK

You can both read and write RTM_LOCK messages. Receiving this message
indicates that the metrics associated with the specified route are now locked.
Writing this message locks the metrics for the specified route. The header for an
RTM_LOCK message is described by an rt_msghdr structure, which is defined in
net/route.h.

RTM_RESOLVE

This is a read-only message. Receiving this message indicates a request to resolve
destination address to a link-layer address. The header for an RTM_RESOLVE
message is described by an rt_msghdr structure, which is defined in net/route.h.

RTM_NEWADDR

This is a read-only message. This message is the first of two messages associated
with adding an IP address to an interface. The second, an RTM_ADD, describes the
route through that interface to the subnet associated with the address.

For an RTM_NEWADDR message, the message header is described by the
ifa_msghdr structure, which is defined in net/route.h.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols 6.6

112

RTM_DELADDR

This is a read-only message. This message is the second of two messages associated
with deleting an IP address from an interface. The first, an RTM_DELETE, describes
the now deleted route through that interface to the subnet with the associated
address.

For an RTM_DELADDR message, the message header is described by the
ifa_msghdr structure, which is defined in net/route.h.

RTM_IFINFO

This is a read-only message. This message reports a change in status for the
specified interface. All routes through that interface are affected by the change. For
an RTM_IFINFO message, the message header is described by an if_msghdr
structure, which is defined in if.h.

RTM_IFANNOUNCE

This is a read-only message. It announces the arrival or departure of a network
interface. The header for an RTM_IFANNOUNCE message is described by an
if_announcemsghdr structure, which is defined in if.h.

Extended Messages for Virtual Routing

A new virtual router can be created and destroyed in various ways. For more
information see 6. Enabling Virtual Routers.

RTM_NEWVR

You can both read and write RTM_NEWVR messages. Adds a new virtual routing
domain. The header for an RTM_NEWVR message is described by an rt_msghdr
structure, which is defined in net/route.h.

RTM_DELVR

You can both read and write RTM_DELVR messages. Deletes a virtual routing
domain. The default route table (for VR 0) cannot be removed. The header for an
RTM_DELVR message is described by an rt_msghdr structure, which is defined in
net/route.h.

5 Working with Routing Sockets
5.3 Preparing and Processing Routing Socket Messages

113

5

5.3.3 RTF Flags

The RTF flags indicate a route’s type and other attributes. Table 5-1 provides a
complete listing of the supported RTF_name flags.

Table 5-1 RTF Flags

Flag Hex Value Description

RTF_UP 0x1 Route is up and usable.

RTF_GATEWAY 0x2 Destination is reachable through a gateway.

RTF_HOST 0x4 Route to a host.

RTF_REJECT 0x8 Route is administratively not reachable. IP
datagrams matching this route will generate
an ICMP/ICMPv6 host unreachable
message with code PROHIBITED_NET or net
unreachable with code PROHIBITED_HOST.

RTF_DYNAMIC 0x10 Created dynamically (by redirect).

RTF_MODIFIED 0x20 Modified dynamically (by redirect).

RTF_DONE 0x40 Message confirmed (applies to routing
sockets). The routing socket message has
been processed.

RTF_CLONING 0x100 Generate new routes on use. This flag is
usually set internally for directly connected
network routes. This causes ARP entries to
be cloned.

RTF_XRESOLVE 0x200 External daemon resolves name. This
specifies that a cloned route be passed to a
user daemon through a RTM_MISS message
for name resolution.

RTF_LLINFO 0x400 Route contains link layer information
generated by link layer (for example, ARP).

RTF_STATIC 0x800 Manually added (through routec(), for
example).

RTF_BLACKHOLE 0x1000 Just discard packets (during updates).

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols 6.6

114

5.4 Extracting Information from a Routing Socket Message

A routing socket message includes all the information needed to identify a route
table entry. This includes information such as the destination address, netmask,
and gateway (which are appended after the message header) as well as the route
metrics (which are supplied in the members of the message header). After the
header, a routing socket message can contain up to eight socket address structures.

5.4.1 Parsing the Routing Socket Message after the Header

If all eight socket address structures were present in a message, the structures
would follow the header in the order shown below:

■ destination address
■ gateway address
■ netmask
■ cloning mask

RTF_PROTO2 0x4000 Protocol specific routing flag.

RTF_PROTO1 0x8000 Protocol specific routing flag.

RTF_PREF 0x10000 Ignore Equal Cost Multipath and always
select this entry.

RTF_MBINDING 0x40000 This route is part of a multiple binding flow
and unicast packets may be sent to multiple
destinations. Used mainly by Mobile IP.

RTF_SKIP 0x80000 A hit on this route entry should be treated as
a lookup failure. Used mainly by policy
routing to move on to the next policy routing
rule.

RTF_LOCAL 0x200000 Route represents a local address.

Table 5-1 RTF Flags (cont’d)

Flag Hex Value Description

5 Working with Routing Sockets
5.4 Extracting Information from a Routing Socket Message

115

5

■ interface name
■ interface address
■ address of the author of a redirect
■ broadcast or point-to-point destination address

These appended socket address structures supply all the remaining information
needed to identify a route table entry for the events (add, change, delete, and so
on) associated with that route.

To tell you which addresses are actually included and which are omitted, the
routing socket message header provides an 8-bit mask. The name of the field that
contains this bit-mask is of the form: structure_addrs, where structure is rtm, ifm,
ifmam, or ifam. Each bit in the mask corresponds to one of the eight addresses
listed above. If the bit is set, the address is present. If the bit is clear, the address is
omitted.

Consider a bit-mask of 0x87, which is 1000 0111 in base 2. In this mask, only four
bits are set, which tells you that the message after the header contains only four
addresses. Because the lowest order bit is set, you know that the first address after
the header is a destination address. Because the second and third lowest order bits
are set, you know that the second address is a gateway address, which is followed
by a netmask. The only other set bit is the highest order bit, which tells you that the
final (fourth address) is a broadcast address.

The net/route.h file defines a set of constants for the bits in a structure_addrs mask.
You can AND these constants against structure_addrs to test whether a particular
address is present in the message. The constants for rtm_addrs are as follows:

#define RTA_DST 0x1 /* destination sockaddr present */
#define RTA_GATEWAY 0x2 /* gateway sockaddr present */
#define RTA_NETMASK 0x4 /* netmask sockaddr present */
#define RTA_GENMASK 0x8 /* cloning mask sockaddr present */
#define RTA_IFP 0x10 /* interface name sockaddr present */
#define RTA_IFA 0x20 /* interface addr sockaddr present */
#define RTA_AUTHOR 0x40 /* sockaddr for author of redirect */
#define RTA_BRD 0x80 /* for NEWADDR, broadcast or p-p dest addr */

The RTAX_MAX constant is defined in net/route.h as 8, the maximum number of
socket address structure types included in a routing socket message. The constants
for indexing into an array of pointers to sockaddr structures are also defined.
These constants are:

#define RTAX_DST 0 /* destination sockaddr present */
#define RTAX_GATEWAY 1 /* gateway sockaddr present */
#define RTAX_NETMASK 2 /* netmask sockaddr present */
#define RTAX_GENMASK 3 /* cloning mask sockaddr present */
#define RTAX_IFP 4 /* interface name sockaddr present */
#define RTAX_IFA 5 /* interface addr sockaddr present */
#define RTAX_AUTHOR 6 /* sockaddr for author of redirect */

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols 6.6

116

#define RTAX_BRD 7 /* for NEWADDR, broadcast or p-p dest addr */
#define RTAX_MAX 8 /* size of array to allocate */

5.5 Building a Routing Socket Message

The messages you can transmit over a routing socket are restricted to a few basic
types. For details see 5.3.2 Types of Routing Socket Messages, p.106.

Within these messages, you specify a route table entry using the following values:

■ a destination address, in the RTAX_DST socket address structure

■ a netmask, in the RTAX_NETMASK socket address structure

■ a gateway address, in the RTAX_GATEWAY socket address structure

■ a TOS value, in the RTAX_DST socket address structure (optional, policy
routing)

■ a Protocol ID, in the RTAX_DST socket address structure (optional, policy
routing)

The socket address structures referred to above are appended after the routing
socket message header.

To specify route metrics in the routing socket message, use the rt_metrics structure
in the rtm_rmx field of the routing socket message header. For more information,
see rtm_rmx – optional, for setting metrics, p.118.

5.5.1 Setting the Header Structure Field Values

Each of the writable routing socket message types use an rt_msghdr structure for
its header. When building a routing socket message, fill in the rt_msghdr members
as follows:

NOTE: Depending on the message type and whether the table stores more than one
entry for a destination, you may need to specify a destination address only, or a
destination and netmask only, or a gateway value.

5 Working with Routing Sockets
5.5 Building a Routing Socket Message

117

5

rtm_msglen – required in an outgoing message
Expects the length of the entire socket message. The reported size includes the
header plus all appended socket addressees. The best time to assign this value
is after you have appended the last address to the routing socket message. See
below, rtm_addrs – required in an outgoing message, p.117.

rtm_version – required in an outgoing message
Expects the version ID of the routing socket message. The current version is 4.

rtm_type – required in an outgoing message
Expects a value indicating the routing socket message type RTM_type.

These message types (described in 5.3.2 Types of Routing Socket Messages, p.106)
let you add, change, delete, get, or lock an entry in the route table. The
response to an add, change, delete, get, or lock message is an incoming add,
change, lock, get, or delete message on your socket. You can determine the
success or failure of your request by reading the rtm_errno field in the header
of the response message.

rtm_index – read-only, ignored in outgoing messages
The index value for the associated network interface.

rtm_flags – for add and delete messages only
In an outgoing message, this field expects an integer value whose bits describe
the route. Included in this value are bits that indicate whether the interface is
online or offline, whether this is a host route or a gateway route, and more. For
a complete listing of valid flags, see 5.3.3 RTF Flags, p.113.

rtm_addrs – required in an outgoing message
Expects a bit mask in which you have set bits that identify which addresses
you have appended to the end of this message.

rtm_pid – optional in an outgoing message
A process or task ID or some other identifier for yourself. You can use this to
recognize responses to the commands you have issued.

rtm_seq – optional in an outgoing message
Expects the sequence number that you want to assign to this command. This
value is returned in the response message. Use it in conjunction with rtm_pid
to help distinguish the response to this command from responses to other
commands.

rtm_errno – read-only in an outgoing message
Read this value in the response to a command. If its value is zero, the
command was successful. Any other value indicates an error.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols 6.6

118

rtm_use – read-only in an outgoing message
This is strictly an output vehicle. It tells you the number of times that the
specified route was used.

rtm_inits – optional, for setting metrics
Expects a value whose bits indicate which metrics this message would
initialize. Use the IPNET_RTV_ constants defined in
installDir/components/ip-net2-6.x/ipnet2/include/ipnet.h to help set bits for this
field.

rtm_inits can be set to ~0 (all bits set to one), if all metric fields should be
affected. It can be set to 0 (all bits set to zero), if no metric fields should be
affected. Setting rtm_inits to zero during an add operation results in the stack
choosing the values for the metric.

rtm_rmx – optional, for setting metrics
Expects an rt_metrics structure, defined in net/route.h.

If you use this structure to specify metric values for a route, you must also set
the appropriate flags in the rtm_inits field.

119

 6
Enabling Virtual Routers

6.1 Introduction 119

6.2 Component and Technology Overview 120

6.3 Conformance to Standards 122

6.4 Managing Virtual Routers 122

6.5 Examples 123

6.1 Introduction

The most efficient virtual routers ensure the multiplication of routing tables, not of
TCP/IP stacks. While the network stack is fully capable of being multiplied many
times in a system, it is much more efficient to enable virtual routing by
instantiating routing tables only. Enabling virtual routing through the
reproduction and concurrent running of TCP/IP stacks can be a significant drain
on system resources. Using multiple routing tables, by contrast, requires very little
memory to implement.

The virtual router (VR) implementation is not related to the Virtual Router
Redundancy Protocol, described in 4.4 VRRP, p.93.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols 6.6

120

6.2 Component and Technology Overview

Virtual routing makes it possible to partition route nodes so they appear and
behave as multiple physical router nodes when viewed from the outside. The
benefits of using virtual routing include lower hardware costs and simpler
administration, since one box can act as multiple routers.

VR is always enabled by default in the network stack for the following reasons:

■ It does not impose any algorithmic speed penalty. All VR operations cost are
constant (O(1)).

■ It requires very little extra code.

■ VR-specific structures are allocated when the VR is created and freed if the VR
is removed.

■ It requires only one 16-bit field in structures that need to know which VR they
belong to. The structures are sockets, network interfaces and network packets
headers.

The same port and/or address can be used on two different VRs without any
collision because the following entities are separate for each VR:

■ forwarding information base (FIB)
■ IPv4 and IPv6 network interface addresses
■ TCP and UDP ports

Every network interface attached to the stack belongs to exactly one VR. Every
network interface is initially assigned to the default VR, which always has VR-ID 0.
The default VR is created at boot and cannot be deleted. FIB entries will normally
only point to network interfaces that are assigned to the same VR as the FIB, but it
is possible for a FIB entry to point to a network interface in another VR. The
cross-VR routing is useful in some MPLS and virtual private network (VPN) use
cases.

6.2.1 Virtual Router Domain Separation

All network stack processes may belong to independent VR domains, each having
their own set of configuration parameters and, most importantly, interfaces,
routes, ARP/NDP entries, addresses and sockets. The VR domains are completely
separated and therefore capable of using duplicate IP addresses, TCP/IP
connections with the same ports, interfaces with the same names, and so on.
Because of this complete separation, multiple telnet servers and web servers, as

6 Enabling Virtual Routers
6.2 Component and Technology Overview

121

6

well as advanced routing software suites, can run on the same target with no
software modifications required. No socket system call API changes are required.
One separate process per VR is created, running the same network application
software but using only one virtualized TCP/IP stack.

With virtualization, each user process must belong to a specific VR domain,
identified by the process-specific environment variable VR. If a process does not
have the VR environment variable set, it automatically belongs to VR 0, the default,
or main, VR. Since processes inherit all environment variables from the parent
upon creation, the child processes belong to the same VR as the parent. To separate
multiple processes created with the same names but belonging to unique VR
domains, each process has the string #<vr> automatically appended to its name.

Interface Management

A VR domain can contain many interfaces, but each interface can belong to only
one VR. If an interface is dynamically created by a process, it will have its VR
automatically set to the same as the creating process. Alternatively, an interface
can be moved to a VR domain using ioctl() socket extensions.

If an interface is moved to another VR, all its routes are moved as well. Interfaces
may even use the same names as long as they belong to independent VR domains.
This is possible because system calls operating on interfaces can use the VR
identifier in combination with the interface name to identify an interface. The VR
identifier used by a socket system call is normally taken from the socket. Because
of this, advanced socket system calls, like routing sockets, will operate on routes,
addresses, and interfaces belonging to the same VR only. If no socket is used in the
system call, the VR from the calling process is used (the VR environment variable).

For example, if you use the if_nameindex() function to list all interfaces from a
process belonging to VR 2, you will in effect only list the interfaces belonging to
VR 2. Users listing processes will note that they see a loopback interface named
lo0, regardless of what VR they belong to. This is because each VR actually has its
own loopback interface, all named lo0 but separated by their VR tag. This purpose
of this feature is to provide full support for separated loopback communication.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols 6.6

122

6.3 Conformance to Standards

The Wind River implementation of virtual routing is not based on any published
standard. Virtual routing is not associated with the Virtual Router Redundancy
Protocol (VRRP).

6.4 Managing Virtual Routers

A VR is created and destroyed at run time. A newly created VR contains an empty
FIB for every network protocol for which the network stack was built (IPv4, IPv6,
and MPLS).

The network stack uses the VR ID to uniquely identify the VR, but it is possible to
assign human readable names to all VR as well. Applications can choose to
reference the VR by either VR ID or by the assigned name.

Every VR contains at least one FIB; the default FIB. The default FIB is always
assigned table ID IPCOM_ROUTE_TABLE_DEFAULT (which is configurable, and
has a default value of 254). All lookups are done in the default table, unless another
table is assigned by a policy routing rule.

To add or delete a VR, add or delete a FIB, add a VR by name, name a tuple (VR,
table), and map a name to a tuple (VR, table), use the following socket ioctl
options. See the appropriate reference entries for more information on these
options.

■ SIOCADDVR
■ SIOCADDROUTETAB
■ SIOCDELROUTETAB
■ SIOCGETROUTETAB
■ SIOCSROUTETABNAME
■ SIOCGROUTETABNAME

VR can also be created and destroyed using the AF_ROUTE socket messages
RTM_NEWVR and RTM_DELVR. See 5. Working with Routing Sockets.

A network interface is assigned to a specific VR using the socketioctl() option
SIOCSIFVR. A socket is assigned to a specific VR using setsockopt() option
SO_X_VR. A socket returned by accept() inherits the VR ID from the parent socket.

6 Enabling Virtual Routers
6.5 Examples

123

6

6.5 Examples

Creating VRs and Assigning Interfaces

This example shows how to create two VRs, create 4 VLAN network interfaces,
and assign 2 VLANs to each VR, using the route and ifconfig shell commands.

vlanExt1 and vlanExt2 symbolize the network interfaces that would normally be
connected to the public Internet. vlanInt1 and vlanInt2 symbolize the corporate
LAN.

The VRs can be created using the route shell command. The following commands
create two VRs with VR ID 1 and 2 using the AF_ROUTE socket API. However, the
result would be exactly the same if the ioctl API was used.

route vr -add 1
route vr -add 2

The following commands create four VLANs and assign vlanExt1/vlanInt1 to
VR #1 and vlanExt2/vlanInt2 to VR #2:

ifconfig vlanExt1 create vlanif eth0 vlan 10 vr 1
ifconfig vlanExt2 create vlanif eth0 vlan 11 vr 2
ifconfig vlanInt1 create vlanif eth0 vlan 12 vr 1
ifconfig vlanInt2 create vlanif eth0 vlan 13 vr 2

Using the ifconfig -a command will not show any of the VLAN interfaces created,
since the command only shows interfaces assigned to the current VR. To show all
interfaces assigned to VR #1, for example, use the following command:

ifconfig -V 1 -a

The following commands assign IPv4 addresses to the interfaces:

ifconfig -V 1 vlanExt1 inet 10.1.1.10 up
ifconfig -V 2 vlanExt2 inet 10.1.1.11 up
ifconfig -V 1 vlanInt1 inet 192.168.1.1 up
ifconfig -V 2 vlanInt2 inet 192.168.1.1 up

Even though vlanInet1 and vlanInet2 are assigned the same address, there are no
delivery problems because the FIB on VR #1 does not contain information about
vlanInet2 and vice versa.

The ping and ping6 commands are also VR-aware, and a specific VR can be used
by specifying it with the -V n switch.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols 6.6

124

Working with VR in Applications

This code fragment starts two processes, each belonging to a separate VR. The
process opens a socket.

IPCOM_PROCESS(my_server)
{
 int socket;

 ipcom_proc_init();

 /* Open a socket. Note: the socket will automatically belong to
 * the same VR as the process does (specified by the process
 * specific environment variable "VR")
 */
 socket = socket(AF_INET, SOCK_DGRAM, 0);
 if (socket < 0)
 goto exit;

 for(;;)
 {
 /* Network code */
 }

 exit:
 ipcom_proc_exit();
}

void example(void)
{
 int vr;

 /* Create and start my_server belonging to VR 1 */
 vr = 1;
 (void)ipcom_setenv_as_int("VR", vr, 1);
 ipcom_proc_create("my_server", my_server, IPCOM_PROC_STACK_SMALL,
IP_NULL);

 /* Create and start my_server belonging to VR 2 */
 vr = 2;
 (void)ipcom_setenv_as_int("VR", vr, 1);
 ipcom_proc_create("my_server", my_server, IPCOM_PROC_STACK_SMALL,
IP_NULL); }

125

 7
Adding Support for

Multicast Routing

7.1 Introduction 125

7.2 Configuring and Building VxWorks for Multicasting Support 126

7.3 Starting and Stopping the Router 132

7.4 Joining and Leaving Host Groups 135

7.5 Sending Queries and Reports 138

7.6 Adding and Deleting Virtual Interfaces for Multicast Routing 147

7.7 Using PIM Hooks 150

7.1 Introduction

Multicasting is a one-to-many communication from a single source node to a
group of destination nodes. Typical multicasting applications include multimedia
conferencing, online training, news and software distribution, and database
replication.

This chapter describes how to build multicasting support into the network stack
and how to configure the VxWorks operating system to include multicasting
support. The rest of the chapter follows the general workflow, describing how to
start the router, how hosts join and leave groups, and how to send and respond to
queries.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

126

For information on general multicasting technology, see 1.2.5 Multicast Routing,
p.4. For information on the Wind River implementation of the IPv4 and IPv6
multicasting protocols, see 1.3.11 Multicast Routing, p.13.

7.2 Configuring and Building VxWorks for Multicasting Support

This section explains how to build the source for multicasting and how to
configure VxWorks with the appropriate components to support multicasting in
the network stack.

7.2.1 Building the IGMP and MLD Modules in Platform Source Code

General instructions for building a product into VxWorks appear in your Platform
getting started guide. This section summarizes the macros relevant to
multicasting. For complete information on how to build the modules, refer to your
Platform getting started guide.

Building for Multicast Forwarding

The macro COMPONENT_IPMCP is used to include multicast forwarding when
building the network stack source. To include this features, you must edit the
configuration file:

installDir/vxworks-6.x/config/platform/config.mk

and set this macro to true:

export COMPONENT_IPMCP = true

By default, it is set to false:

export COMPONENT_IPMCP = false

NOTE: By default, the stack supports the latest versions of the multicasting
protocols. To change this, see 7.3.4 Changing the Protocol Versions, p.135.

7 Adding Support for Multicast Routing
7.2 Configuring and Building VxWorks for Multicasting Support

127

7

Building for MLD

Wind River MLD router implementation is an IPv6-only feature, and it assumes
that IPv6 routing is enabled. To enable MLD routing, you must perform the
following steps:

1. Build the Platform source code with support for IPv6—for further
information, see 2.2.1 IPv4 or IPv6, p.28.

2. Create a VxWorks image project with support for IPv6—for further
information, see Creating an IPv6 Project, p.33.

7.2.2 Configuring VxWorks with Multicasting

To build VxWorks with IGMP or MLD, include the following build components as
needed for the features you require. Host-side support of the IGMP and MLD
protocols is automatically included:

■ IGMP is included if INCLUDE_IPCOM_USE_INET is defined.

■ MLD is included if INCLUDE_IPCOM_USE_INET6 is defined.

Multicasting Configuration Components, p.127, lists the components for IGMP and
MLD.

Multicasting Configuration Components

INCLUDE_IPMCP_USE_IGMP
The IPv4 IGMP component adds support for the server side IGMP (that is, it
adds the control plane for IPv4 multicast forwwarding) to the multicast proxy.
This option requires INCLUDE_IPNET_USE_MCAST_ROUTING.

NOTE: The multicasting router and the multicast forwarding engine are only
available in the Wind River VxWorks Platforms builds of the network stack. The
Wind River General Purpose Platform, VxWorks Edition, does not support the
multicasting router.

! CAUTION: If you exclude a component from the build, Workbench may prompt
you to exclude its dependencies. Some of those dependencies may still be needed
by other components in the project. You should therefore accept the dependency
exclusions with care.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

128

The default protocol is IGMPv3, but this can be changed by running the sysvar
described in 7.3.4 Changing the Protocol Versions, p.135.

INCLUDE_IPMCP_USE_MLD
The IPv6 MLD component adds support for the server side MLD (that is, it
adds the control plane for IPv6 multicast forwwarding) to the multicast proxy.
This option requires INCLUDE_IPNET6_USE_MCAST_ROUTING.

The default protocol is MLDv2, but this can be changed by running the sysvar
described in 7.3.4 Changing the Protocol Versions, p.135.

INCLUDE_IPNET_USE_MCAST_ROUTING
The IPv4 Multicast Routing component includes the stack data plane for IPv4
multicast forwarding and the backend for processing the calls from the control
plane.

INCLUDE_IPNET6_USE_MCAST_ROUTING
The IPv6 Multicast Routing component includes the stack data plane for IPv6
multicast forwarding and the backend for processing the calls from the control
plane.

INCLUDE_IPMCP
The Mutlicast Proxy component adds support for router end of the IGMP
protocol (if INCLUDE_IPMCP_USE_IGMP is defined) and the MLD protocol (if
INCLUDE_IPMCP_USE_MLD is defined). This component includes
configuration parameters listed in Table 7-1.

INCLUDE_IPCOM_SYSVAR_CMD
The IPCOM System Variable Tool Commands component provides access
to the sysvar shell command, which is used to select the desired version of
IGMP and MLD. For information on using this command, see 7.3.4 Changing
the Protocol Versions, p.135.

INCLUDE_IPMCAST_PROXY_CMD
The IPCOM Multicast Proxy Commands component enables viewing of the
multicast proxy statistics via the shell. For information on using this
command, see 7.3.2 Getting Statistics, p.133.

INCLUDE_IPCOM_SYSVAR_CMD
The INCLUDE_IPCOM_SYSVAR_CMD must be defined in order to access the
sysvar shell command.

7 Adding Support for Multicast Routing
7.2 Configuring and Building VxWorks for Multicasting Support

129

7

Setting Multicasting Parameters

Table 7-1 lists the INCLUDE_IPMCP configuration parameters and their default
values. Where applicable, a sysvar is also documented for run-time
configuration.Modify the values as needed when you include the Mutlicast Proxy
component.

Table 7-1 INCLUDE_IPMCP Configuration Parameters

Component Name, sysvar, and Description Valid and Default Values

MCP_DOWNSTREAM_IFNAMES
ipmcp.DownstreamIfs

The Downstream interface names parameter is a
collection of interfaces to which multicast packets
arriving at the upstream inteface are forwarded (if
that multicast group has at least one listener). This is
a comma-separated list; for example is, eth1, eth2.

A comma-separated
list. Default: NULL

MCP_LAST_LISTERNER_QUERY_INTERVAL
ipmcp.LastListenerQueryInterval

The Multicast last listener query interval
parameter designates the maximum response time
(delay), in milliseconds, allowed for a multicast
client to answer on a group-specific MLD query. The
value of this variable is added to each group-specific
MLD query message sent by the multicast proxy.

Note that for values greater than 12.8 seconds, a
limited set of values can be represented,
corresponding to sequential values of
Max Resp Code. When converting a configured
time to a Max Resp Code value, it is recommended
to use the exact value if possible, or the next lower
value if the requested value is not exactly
representable.

This value may be tuned to modify the leave latency
of the network. A reduced value results in reduced
time to detect the loss of the last member of a group
or source.

Default: "1000"

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

130

MCP_QUERY_INTERVAL
ipmcp.QueryInterval

The Multicast router query interval parameter
designates the interval in seconds between MLD
general queries sent by multicast proxy in querier
state.

The overall level of periodic traffic is inversely
proportional to the this value. A longer interval
results in a lower overall level of traffic.

Default: "125"

Must be equal to or
greater than the
maximum response
time that is inserted in
general query
messages.

MCP_QUERY_RESP_INTERVAL
ipmcp.QueryResponseInterval

The Multicast router query response interval
parameter designates the maximum response delay,
in milliseconds, allowed for a multicast client to
answer on a general query. The value of this variable
is added to each general query message sent by the
multicast router.

By varying this value, an administrator can tune the
burstiness of multicasting messages on the network;
larger values make the traffic less bursty, as host
responses are spread out over a larger interval. The
number of seconds represented by this value must
be less than the value of MCP_QUERY_INTERVAL.

Default: "10000"

Table 7-1 INCLUDE_IPMCP Configuration Parameters (cont’d)

Component Name, sysvar, and Description Valid and Default Values

7 Adding Support for Multicast Routing
7.2 Configuring and Building VxWorks for Multicasting Support

131

7

Network Stack Memory Pool Configuration

NUM_SYS_64

The default setting for NUM_SYS_64 is not sufficient for multicast routing. Change
the NUM_SYS_64 allocation to a value of at least 500, and then rebuild your
VxWorks image. For details, see the Wind River Network Stack for VxWorks 6
Programmer’s Guide, Volume 3.

MCP_ROBUSTNESS_VAR
ipmcp.RobustnessVariable

The Multicast router robustness variable
parameter allows tuning for the expected packet loss
on a link. Some of the timers, for example, use the
value of this variable.

If this value is set to the default value of "2",
IGMP/MLD is robust to a single packet loss but may
operate imperfectly if more losses occur. On lossy
subnetworks, the value should be increased to allow
for the expected level of packet loss. However,
increasing the value increases the leave latency of
the subnetwork. The leave latency is the time
between when the last member stops listening to a
source or group and when the traffic stops flowing.

Default: "2"

This value must not be
set to "0".

MCP_UPSTREAM_IFNAME
ipmcp.UpstreamIf

The Upstream interface name parameter is the
network interface where all multicast packets are
received and forwarded to downstream interfaces;
for example, eth0. The multicast proxy will not start
unless this parameter is set to an existing, configured
interface that is in UP state (IFF_UP flag is set to on).

Default: NULL

Table 7-1 INCLUDE_IPMCP Configuration Parameters (cont’d)

Component Name, sysvar, and Description Valid and Default Values

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

132

7.3 Starting and Stopping the Router

Multicast routing requires a multicast daemon to work (in contrast to unicast
routing, which can be used without a routing daemon). Wind River multicasting
consists of a single daemon process called ipmcp, which has a management
interface through which it can be started, stopped and (re)configured.

7.3.1 Running the Multicasting Router Daemon

To start, reconfigure, and stop the multicasting daemon you can use either the ipd
shell command or call API routines.

Using the Shell

To start the daemon with ipd, run:

> ipd start ipmcp

To stop the daemon with ipd, run:

> ipd kil ipmcp

To use ipd to reread the configuration values listed in Setting Multicasting
Parameters, p.129, run:

> ipd reconfigure ipmcp

ipd returns 0 on success, non-zero on error.

Using API Routines

To programmatically start the daemon, call this routine:

IP_PUBLIC Ip_err
ipcom_ipd_start(const char *name);

To programmatically stop the daemon, call this routine:

IP_PUBLIC Ip_err
ipcom_ipd_kill(const char *name);

To programmatically reconfigure the daemon, call this routine:

NOTE: If you build the stack without the multicast forwarding engine (which will
make the stack smaller), the stack must be rebuilt with multicast routing to enable
it. For details, see 7.2 Configuring and Building VxWorks for Multicasting Support,
p.126.

7 Adding Support for Multicast Routing
7.3 Starting and Stopping the Router

133

7

IP_PUBLIC Ip_err
ipcom_ipd_reconfigure(const char *name);

7.3.2 Getting Statistics

The multicast router daemon has a shell command, mcastproxy, which is used to
get statistics from it. To use this command, configure VxWorks with
INCLUDE_IPMCAST_PROXY_CMD, as described in 7.2.2 Configuring VxWorks with
Multicasting, p.127.

mcastproxy

Name

mcastproxy – display the current status of the multicasting daemon

Synopsis

mcastproxy [-4|-6] <-i|-j|-r>

Description

This command displays a list of active multicast groups for each interface
available. The MLD daemon shows the MLD state per interface, for example,
QUERIER or NON QUERIER. The default, with no options, is to show both the IPv4
and IPv6 status.

The mcastproxy options are as follows:

-4
Show IPv4 only.

-6
Show IPv6 only.

-i
Show interface statistics.

-j
Show groups joined by clients.

-r
Show route statistics.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

134

Example

This example shows the statistics when the multicast proxy is routing IP
datagrams sent to group 225.0.0.11, arriving at vlan4 to vlan5, vlan6 and vlan7.

To show the IPv4 interface statistics:

192.168.200.20> mcastproxy -4 -i
Upstream interface IPv4 statistics

Name Pkts Bytes
vlan4 5 235

Downstream interface IPv4 statistics
Name Pkts Bytes State
vlan5 5 235 QUERIER
vlan6 5 235 QUERIER
vlan7 5 235 QUERIER

To show the IPv4 groups joined by clients:

192.168.200.10> mcastproxy -4 -j
IPv4 groups joined at vlan5

Group State
225.0.0.11 ACTIVE

IPv4 groups joined at vlan6
Group State
225.0.0.11 ACTIVE

IPv4 groups joined at vlan7
Group State
225.0.0.11 ACTIVE

To show the IPv4 route statistics:

192.168.200.10> mcastproxy -4 -r
IPv4 routes

Group Source Pkt Bytes Dwnstr ifs
225.0.0.11 10.30.200.4 5 235 vlan5, vlan6, vlan7

7.3.3 Multicast Routing Run-Time Configuration

You can use sysvar commands at run time to configure the parameters described
in Table 7-1.

For information on using sysvar, see sysvar, p.48.

After running the sysvar commands, you must reconfigure the network daemon,
as described in 7.3.1 Running the Multicasting Router Daemon, p.132, for any
changes to take place.

7 Adding Support for Multicast Routing
7.4 Joining and Leaving Host Groups

135

7

7.3.4 Changing the Protocol Versions

INCLUDE_IPMCP_USE_IGMP is required to get support for the router end of
IGMPv1,IGMPv2, and IGMPv3. INCLUDE_IPMCP_USE_MLD is required to get
support for the router end of MLDv1 and MLDv2. The default is to use the latest
versions of these protocols. To use an older procol version, run the following
command through the sysvar:

ipmcp.igmp.CompatibilityMode

Valid values are 1, 2 and 3. The default is 3.

CompatibilityMode is the highest protocol version that the daemon will use.

Similarly for MLD, run the following command through sysvar:

ipmcp.mld.CompatibilityMode

Valid values are 1 and 2. The default is 2.

The INCLUDE_IPCOM_SYSVAR_CMD must be defined in order to access the
sysvar shell command.

For more information on using sysvar with multicasting, see 7.3.3 Multicast
Routing Run-Time Configuration, p.134.

7.4 Joining and Leaving Host Groups

IP multicasting transmits IP datagrams to host groups, which are sets of zero or
more hosts identified by a single IP destination address. The multicast datagram is
delivered to all members of its destination host group. Hosts join and leave
multicast groups using a series of setsockopt() calls. Membership is dynamic,
meaning that hosts can:

■ join and leave groups at any time

■ be a member of more than one group at a time

A host need not be a member of a group to send datagrams to it.

NOTE: An administrator must ensure that all multicast routers on a link are using
the same version of the protocol.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

136

IGMP and MLD define a set of control messages that IP hosts can use to inform
routers of their interest in joining or leaving a multicast group.

7.4.1 Socket Options

Previously, IPv4 hosts used the following socket options to join and leave groups:

IP_JOIN_GROUP
Start listening to group G.

IP_LEAVE_GROUP
Stop listening to group G.

IPv6 hosts used the following socket options:

IPV6_JOIN_GROUP
Start listening to group G.

IPV6_LEAVE_GROUP
Stop listening to group G.

An updated set of options is defined in RFC 3678. All newly written code should
use these. As described in the RFCs, IGMP v3 and MLDv2 support source filtering
options, which cannot be used with earlier versions of the protocols.

Table 7-2 Socket Options for Joining and Leaving Groups

Option Protocol Mode

MCAST_JOIN_GROUP
Start listening to a specified group from any
source.

IGMPv2
IGMPv3
MLDv1
MLDv2

Exclude

MCAST_BLOCK_SOURCE
Block traffic from from a specified source to a
specified group.

IGMPv3
MLDv2

Exclude

MCAST_LEAVE_GROUP
Stop listening to a specified group regardless
of source.

IGMPv2
IGMPv3
MLDv1
MLDv2

Exclude

7 Adding Support for Multicast Routing
7.4 Joining and Leaving Host Groups

137

7

Group Options

Using MCAST_JOIN_SOURCE_GROUP, you identify both the group you want to
join and the IPv4 address of the source from which to accept multicast packets.

To leave the group, you can use either the standard MCAST_LEAVE_GROUP socket
option or the new MCAST_LEAVE_SOURCE_GROUP socket option. If you use the
newer option, you can specify the group and source you are leaving. If you are
registered for more than one source, those other sources remain active. The
MCAST_LEAVE_GROUP socket option removes all sources.

To register for more than one source, some cases allow multiple
MCAST_JOIN_SOURCE_GROUP calls. However, the least ambiguous method is to
use the SIOCMSFILTER ioctl, which lets you specify more than one source in the
leave or join command. For more information on these socket options and the ioctl,
see RFC 3678.

MCAST_UNBLOCK_SOURCE
Allow traffic from a specified source to a
specified group.

IGMPv3
MLDv2

Exclude

MCAST_JOIN_SOURCE_GROUP
Accept traffic to a specified group from a
specified source.

IGMPv3
MLDv2

Include

MCAST_LEAVE_SOURCE_GROUP
Stop receiving traffic for a specified group
from a specified source.

IGMPv3
MLDv2

Include

MCAST_LEAVE_GROUP
Stop listening to a specified group regardless
of source.

IGMPv2
IGMPv3
MLDv1
MLDv2

Include

Table 7-2 Socket Options for Joining and Leaving Groups (cont’d)

Option Protocol Mode

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

138

Blocking Options

Using the option MCAST_BLOCK_SOURCE, you identify both the group you want
to join and the IPv4 address of a source from which you will not accept multicast
packets.

To unblock that source, use MCAST_UNBLOCK_SOURCE. To block more than one
source, some circumstances allow multiple MCAST_BLOCK_SOURCE calls.
However, the least ambiguous method is to use the SIOCMSFILTER ioctl, which
lets you specify more than one source in the command.

7.4.2 Membership Reports for IGMPv1, IGMPv2, and MLDv1

The multicasting daemon keeps a compatibility mode per group record. To switch
gracefully between versions of IGMP or MLD, it uses a host present timer per
group record, and only sends a message from a given version as long as the timer
for that version is running. Every IGMP/MLD membership report for group G is
translated internally to “exclude no source addresses on group G.

For leaving groups, the processing is identical to IGMP/MLD membership report,
except that a leave group for group G is translated internally to “include no source
addresses on group G. However, leave group messages are ignored for groups in
the IGMPv1 compatibility state.

7.5 Sending Queries and Reports

Multicasting routers send IGMP or MLD host membership queries to host groups
periodically to update the memberships present on a particular network. Hosts
listen for these queries and send reports back. Routers listen for the reports. If, after
a specified number of queries, a router does not receive any reports for a particular
group, it stop forwarding multicasts for that group. Thus, in short:

■ The router task is both a sender of IGMP/MLD queries and a listener of
IGMP/MLD reports.

■ The hosts are listeners of queries and senders of reports.

For example, if a router sends a query that says: “all hosts that listen to group G,
report to me,” all hosts that listen to group G must respond with a report within a

7 Adding Support for Multicast Routing
7.5 Sending Queries and Reports

139

7

time specified in the query (a common value is 10 seconds). Sending traffic does
not require anything special from the host. Receiving a specific group will trigger
at least two things:

1. The host sends a unsolicited report to any router that says: I'm starting to listen
on group G now.

2. The host must also configure its network interface (such as a network card) so
that it can receive traffic sent to group G. Network interfaces will not receive
any multicast traffic that they have not been explicitly configured to receive.

7.5.1 Network Interfaces

The IGMP/MLD multicasting proxy acts as an IGMP or MLD router on one or
more network interfaces. These interfaces are denoted as downstream interfaces.
There can be any number of downstream interfaces.

The IGMP/MLD multicasting proxy must also have one interface on which it will
act as an IGMP and/or MLD host. This interface is denoted as an upstream interface,
where multicast packets are received and possibly forwarded to one or more of the
downstream interfaces. The upstream interface is normally connected to some
form of public WAN, like the Internet.

When started, the multicasting daemon scans through all available interfaces in
the system. Each interface found that is up, running, and multicast-capable is
activated by the daemon. As soon as each such interface is assigned with an IPv6
address of link local scope, the daemon takes the role of MLD querier on that link.
It starts to periodically send general query messages.

Simultaneously, the daemon listens for messages on all active links, discarding
those that are malformed or inappropriately addrsesed. The same applies to
messages that originate from the daemon itself.

The IGMP/MLD multicasting proxy can be configured to use any of the following
versions of the multicasting protocols:

■ IGMPv1
■ IGMPv2
■ IGMPv3
■ MLDv1
■ MLDv2

Normally the highest protocol version is used, since it can handle lower versions
of the protocol. For more information, see 7.3.4 Changing the Protocol Versions,
p.135 and Query States, p.141.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

140

7.5.2 Queries

A IGMP/MLD multicasting proxy must keep track of which groups have at least
one listener on each link on which it is acting as a router (that is, all links to which
it has a downstream interface attached). It periodically sends IGMP/MLD query
messages to each downstream interface to force all hosts to report on what they are
listening to at the moment.

Message Types

There are two types of query messages:

■ A general query means give me a report of all groups you are listening to.

■ A specific query asks who is listening to a specific group.

The IGMPv3 and MLDv2 protocols contain the report message types, listed in
Table 7-3, which are only be sent by hosts:

IS_IN and IS_EX Messages

The IS_IN and IS_EX are sent in response to query messages.

Example 1

Host A is listening on group G and accepts packets from any source to group G.
Host A would end a IS_EX{} for group G (read as is in exclude mode for group G,
no sources are excluded).

Table 7-3 Message Types

Message Description

IS_IN { S } Type MODE_IS_INCLUDE, source addresses S.

IS_EX { S } Type MODE_IS_EXCLUDE, source addresses S.

TO_IN { S } Type CHANGE_TO_INCLUDE_MODE, source addresses S.

TO_EX { S } Type CHANGE_TO_EXCLUDE_MODE, source addresses S.

ALLOW { S } Type ALLOW_NEW_SOURCES, source addresses S.

BLOCK { S } Type BLOCK_OLD_SOURCES, source addresses S.

7 Adding Support for Multicast Routing
7.5 Sending Queries and Reports

141

7

Example 2

Host B is listening on group G and only accepts packets from source S to group G.
Host B would send an IS_IN{S} for group G (meaning include mode for group G,
include only source S).

Example 3

Host C is listening on group G and accepts packets any source but S1 and S2 to
group G. Host C would end a IS_EX{S1,S2} for group G (read as is in exclude mode
for group G, all sources are accepted except S1 and S2).

TO_IN, TO_EX, ALLOW, and BLOCK Messages

The TO_IN, TO_EX, ALLOW, and BLOCK messages are sent when a node makes
changes to its group membership(s). For example, suppose host A wants to start to
listen on group G accepting any source. Host A sends a TO_EX{}. Host A then
decides to block traffic from sources S1, S2 and S3 on group G. Host A sends a
BLOCK{S1,S2,S3}. Finally, host A wants to receive traffic from S2 again. Host A
sends an ALLOW{S2}.

Query States

As mentioned, the IGMP or MLD query message is sent from IGMP/MLD routers
only. Receiving a query means that there is another multicast router on the link.
However, only one multicast router is allowed to be querier on the link.

To handle this situation, the proxy checks the source address of the MLD query. If
the source address is numerically higher than the daemon’s own interface address,
it enters the non-querier state on this interface.

The other querier present timer is activated, as described in Table 7-4.

NOTE: The option to block or allow traffic to a group from a specific source was
not possible in IGMPv1, IPGMPv2 and MLDv1.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

142

The other multicast router could also be using a previous version of the IGMP or
MLD protocol. By default, the multicasting daemon uses IGMPv3 and MLDv2 (the
most current versions of the protocols). However, it can be configured to run older
versions, as described in 7.3.4 Changing the Protocol Versions, p.135. The

Table 7-4 Querier States and Timers

Term Description

Querier state A multicast router in querier state periodically transmits
IGMP/MLD queries on a link in order to get information
about multicast listeners.

Non-querier state A multicast router in non-querier state does not transmit any
IGMP/MLD queries but still collects information about
multicast listeners by listening for IGMP/MLD messages
on a link.

A multicast router enters the non-querier state on a link
when it detects another multicast router on the same link
that has a numerically higher interface address.

Other querier
present timer

The other querier present timer is activated by a multicast
router when it enters the non-querier state. The timer is
reset every time a new IGMP/MLD query message is
received.

If the timer expires, the multicast router resumes the
querier state.

There is one timer for IGMP and one for MLD on every
downstream network interface.

Listener timer Each multicast group address that is stored in the
multicasting daemon database is tagged with a listener
timer. The timer is reset every time a multicast client sends
a MLD report for that address.

The multicasting daemon regards the multicast address as
inactive if the listener timer expires. The address is then
removed from the database.

Link local address The link local address is an IPv6 address with link local
scope. All MLD messages use a link local source address.

7 Adding Support for Multicast Routing
7.5 Sending Queries and Reports

143

7

administrator must make sure that all multicast routers on a specific link use the
same version.

7.5.3 Using Sockets

Multicasting is a feature of the IP layer, but to access this routine, an application
uses a UDP socket. To open a socket, use socket().

First Parameter

The first parameter specifies the address family as IPv4 or IPv6, and is set to either:

■ AF_INET for IPv4

■ AF_INET6 for IPv6

Second Parameter

The second parameter specifies the type of socket, and can be set to either:

■ SOCK_DGRAM (for UDP traffic)

■ SOCK_RAW (protocol determined by the third argument)

Third Parameter

The third parameter is the IP protocol to use. It can be set to 0 if the second
argument is SOCK_DGRAM, in which case the stack selects the default datagram
protocol, which is UDP for the AF_INET and AF_INET6 domains. Otherwise, the
third parameter should be one of the protocols defined by the IPPROTO_XXX
constants. Typically, this parameter is one of the following:

■ IPPROTO_IGMP for IGMP
■ IPPROTO_ICMPV6 for MLD

MLD is just a subset of the ICMPv6 protocol. IGMP is a separate protocol from
ICMP. IGMP has protocol number of 2 and ICMP has protocol number of 1.

Binding

To tell the stack which multicast groups a node wants to receive, an application can
use either setsockopt() or bind(). The bind() routine is used to specify the
address a packet must be sent to in order to match the specified socket. The most
common usage is to bind to the ANY address:

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

144

■ 0.0.0.0 for IPv4
■ :: for IPv6

so that the socket matches, regardless of destination address. Alternately, the
application can bind() to group G and join group G (the order of bind() and join
does not matter), in which case the socket only matches traffic that has a
destination address of G.

Examples of Host Send and Receive

Example 7-1 Sender

#include <arpa/inet.h>
#include <netinet/in.h>
#include <stdio.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <time.h>
#include <unistd.h>

#define HELLO_PORT 12345 /* destination UDP port */
#define HELLO_GROUP "225.0.0.37" /* destination mcast address */
#define HELLO_IFADDR "10.1.2.135" /* address of outgoing interface */

int
main(int argc, char *argv[])
{
 struct sockaddr_in to;
 struct in_addr ifaddr;
 int fd;
 int ifindex;
 const char *message = "Hello, World!";

 /* create what looks like an ordinary UDP socket */
 if ((fd=socket(AF_INET, SOCK_DGRAM, 0)) < 0) {
 perror("socket");
 return 1;
 }

 /* Specify which interface to send the packet to, the stack will pick the
* first multicast capable interface it is not specifically set. Which
* interface is the "first" interface is implementation specific. This
* step can be skipped for nodes which only one network interface. */

 if (inet_pton(AF_INET, HELLO_IFADDR, &ifaddr) < 0) {
 perror("inet_pton(G)");
 return 1;
 }
 if (setsockopt(fd, IPPROTO_IP, IP_MULTICAST_IF, &ifaddr, sizeof(ifaddr))
< 0) {
 perror("setsockopt(IP_MULTICAST_IF)");
 return 1;

7 Adding Support for Multicast Routing
7.5 Sending Queries and Reports

145

7

 }

 /* set up destination address */
 memset(&to, 0, sizeof(to));
 to.sin_family = AF_INET;
 to.sin_port = htons(HELLO_PORT);
 if (inet_pton(AF_INET, HELLO_GROUP, &to.sin_addr) < 0) {
 perror("inet_pton(G)");
 return 1;
 }

 /* now just sendto() our destination! */
 while (1) {
 if (sendto(fd,
 message,
 strlen(message),
 0,
 (struct sockaddr *) &to,
 sizeof(to)) < 0) {
 perror("sendto");
 return 1;
 }
 sleep(1);
 }
 return 0;
}

Example 7-2 Listener

#include <arpa/inet.h>
#include <netinet/in.h>
#include <stdio.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <time.h>

#define HELLO_GROUP "225.0.0.37"
#define HELLO_PORT 12345
#define HELLO_IF "eth0"
#define MSGBUFSIZE 256

main(int argc, char *argv[])
{
 struct sockaddr_in name;
 int fd;
 struct group_req greq;
 char msgbuf[MSGBUFSIZE];
 int on = 1;

 /* create what looks like an ordinary UDP socket */
 if ((fd=socket(AF_INET,SOCK_DGRAM,0)) < 0) {
 perror("socket");
 return 1;
 }

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

146

 /* allow multiple sockets to use the same PORT number */
 if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &on, sizeof(on)) < 0) {
 perror("setsockopt(SO_REUSEADDR)");
 return 1;
 }

 /* set up destination address */
 memset(&name, 0, sizeof(name));
 name.sin_family = AF_INET;
 name.sin_port = htons(HELLO_PORT);
 if (inet_pton(AF_INET, HELLO_GROUP, &name.sin_addr) < 0) {
 perror("inet_pton(G)");
 return 1;
 }

 /* bind to receive address */
 if (bind(fd, (struct sockaddr *) &name, sizeof(name)) < 0) {
 perror("bind");
 return 1;
 }

 /* use setsockopt() to request that the kernel join a multicast group */
 greq.gr_interface = if_nametoindex(HELLO_IF);
 memcpy(&greq.gr_group, &name, sizeof(name));
 if (setsockopt(fd, IPPROTO_IP, MCAST_JOIN_GROUP, &greq, sizeof(greq)) <
0) {
 perror("setsockopt(MCAST_JOIN_GROUP)");
 return 1;
 }

 /* now just enter a read-print loop */
 while (1) {
 int nbytes;
 socklen_t fromlen;
 struct sockaddr_in from;

 fromlen = sizeof(from);
 if ((nbytes=recvfrom(fd,
 msgbuf,
 MSGBUFSIZE,
 0,
 (struct sockaddr *) &from,
 &fromlen)) < 0) {
 perror("recvfrom");
 return 1;
 }
 puts(msgbuf);
 }
}

7 Adding Support for Multicast Routing
7.6 Adding and Deleting Virtual Interfaces for Multicast Routing

147

7

7.6 Adding and Deleting Virtual Interfaces for Multicast Routing

For each network interface (physical or a virtual tunnel) that you use for multicast
forwarding, you must add a corresponding multicast interface.

vifctl Structure

The vifctl structure is used when adding and deleting virtual interfaces. A virtual
interface is either tied to one of the local network interfaces or is an IP tunnel to
another multicast router.

struct vifctl
{
vifi_t vifc_vifi; /* Index of VIF */
u8 vifc_flags; /* IPNET_VIFF_xxx flags */
u8 vifc_threshold; /* ttl limit */
u32 vifc_rate_limit; /* Rate limiter values */
struct in_addr vifc_lcl_addr; /* Local address */
struct in_addr vifc_rmt_addr; /* Tunnel endpoint address

/* only used if VIFF_TUNNEL */
};

#define VIFF_TUNNEL 0x1 /* The VIF is a tunnel */
#define VIFF_REGISTER 0x2 /* Receive PIM register message */

/* on this pseudo interface */

sioc_vif_req Structure

The sioc_vif_req structure is used to return information about number of received
and sent packages and bytes on a specific virtual interface.

struct sioc_vif_req
{
vifi_t vifi; /* Virtual interface index */
u32 icount; /* Number of packets received on this interface */
u32 ocount; /* Number of packets sent on this interface */
u32 ibytes; /* Number of bytes received on this interface */
u32 obytes; /* Number of bytes sent on this interface */
};

sioc_sg_req Structure

The sioc_sg_req structure is used to return information about the usage of a
specific multicast route entry.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

148

struct sioc_sg_req
{
struct in_addr src; /* The source address */
struct in_addr grp; /* The destination group address */
u32 pktcnt; /* Packets sent along this route */
u32 bytecnt; /* Bytes sent along this route */
u32 wrong_if; /* Number of packet received on the

/* wrong VIF matching this route */
};

Example 7-3 Adding Multicast Routing Virtual Interface

This example shows how to add a virtual interface for use with multicast routing:

struct vifctl myVc;

/* Assign all fields as needed */
memset(&myVc, 0, sizeof(myVc));

/* Must be unique for each virtual interface. */
myVc.vifc_vifi = vif_index;

/* VIFF_flagname as defined in netinet/mroute.h. */
myVc.vifc_flags = vif_flags;

/* Contains the minimum TTL a multicast data packet must have to be forwarded
* on that virtual interface. Typically, it would have a value of 1. */
myVc.vifc_threshold = min_ttl_threshold;

/* Contains the maximum rate (in bits per second) of the multicast data
* packets forwarded on that virtual interface. A value of 0 means no limit.
*/
myVc.vifc_rate_limit = max_rate_limit;

memcpy(
&myVc.vifc_lcl_addr,
&vif_local_address, /* Contains the local IP address of the

/* corresponding local interface. */
sizeof(myVc.vifc_lcl_addr)

);

if (myVc.vifc_flags & VIFF_TUNNEL)
{
memcpy(

&myVc.vifc_rmt_addr,
&vif_remote_address, /* Contains the remote IP address */

/* in case of DVMRP multicast tunnels.*/
sizeof(myVc.vifc_rmt_addr)
);

}
setsockopt(mRoutSock, IPPROTO_IP, MRT_ADD_VIF, (void *)&myVc, sizeof(myVc));

7 Adding Support for Multicast Routing
7.6 Adding and Deleting Virtual Interfaces for Multicast Routing

149

7

Example 7-4 Deleting Virtual Multicast Routing Interfaces

This example shows how to delete a multicast interface:

vifi_t myViIfIndex = vif_index;
setsockopt(mRoutSock, IPPROTO_IP, MRT_DEL_VIF, (void *)&myViIfIndex,
sizeof(myViIfIndex));

Opening a Multicast Socket for Receiving Upcalls

After multicast forwarding is enabled and the multicast virtual interfaces are
added, the kernel can deliver upcalls on the multicast routing socket that you
opened earlier and for which you have set the options MRT_INIT. The upcalls use
a struct igmpmsg header (see <netinet/ip_mroute.h>) with the im_mbz field set
to zero. Note that this header follows the structure of struct ip with the ip_p
protocol field set to zero.

The upcall header contains im_msgtype field with the type of the upcall
IGMPMSG_type. The values of the rest of the signal header fields and the body of
the signal message depend on the particular signal type.

If the upcall message type is IGMPMSG_NOCACHE, a multicast packet has reached
the multicast router, but the router has no forwarding state for that packet.
Typically, the message is a signal for the multicast routing user-level process to
install the appropriate multicast forwarding cache (MFC) entry in the kernel.

mfcctl Structure

The mfcctl structure describes the virtual interfaces to which a multicast should be
forwarded. It is always a one-to-one mapping in the incoming and outgoing
interfaces for unicast packages, but that is not the case with multicast. One
incoming packet can be forward to up to MAXVIFS number of virtual interfaces.

struct mfcctl
{
struct in_addr mfcc_orgin; /* The sender of the multicast packet */
struct in_addr mfcc_mcastgrp; /* The group the packet is sent to */
vifi_t mfcc_parent; /* The VIF that the packet is */d

/* expected to arrive on */
u8 mfcc_ttls[MAXVIFS]; /* mfcc_ttls[VIF id] != 0 if packet */

/* sent along this route should */
/* be forwarded to that VIF */

};

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

150

Example 7-5 Adding an Entry to an MFC

To add an entry to an MFC:

struct mfcctl mc;
memset(&mc, 0, sizeof(mc));
memcpy(&mc.mfcc_origin, &source_addr, sizeof(mc.mfcc_origin));
memcpy(&mc.mfcc_mcastgrp, &group_addr, sizeof(mc.mfcc_mcastgrp));
mc.mfcc_parent = iif_index;
for (i = 0; i < maxvifs; i++)

{
mc.mfcc_ttls[i] = oifs_ttl[i];
}

setsockopt(mRoutSock, IPPROTO_IP, MRT_ADD_MFC, (void *)&mc, sizeof(mc));

where:

source_addr and group_addr are the source and group address of the
multicast packet (as set in the upcall message).

iif_index is the virtual interface index of the multicast interface the multicast
packets for this specific source and group address should be received on.

oifsv_ttl[] is the minimum TTL (per interface) a multicast packet should have
to be forwarded on an outgoing interface. If the TTL value is zero, the
corresponding interface is not included in the set of outgoing interfaces.

7.7 Using PIM Hooks

The Wind River Network Stack does not include a PIM implementation. If you
write or port a PIM implementation, you can access it in the standard way
described below.

Protocol Independent Multicast (PIM)

PIM is the common name for two multicast routing protocols: Protocol
Independent Multicast - Sparse Mode (PIM-SM) and Protocol Independent
Multicast - Dense Mode (PIM-DM).

PIM-SM is a multicast routing protocol that can use the underlying unicast routing
information base or a separate multicast-capable routing information base. It

7 Adding Support for Multicast Routing
7.7 Using PIM Hooks

151

7

builds unidirectional shared trees rooted at a rendezvous point (RP) per group and
optionally creates shortest-path trees per source.

PIM-DM is a multicast routing protocol that uses the underlying unicast routing
information base to flood multicast datagrams to all multicast routers. Prune
messages are used to prevent future datagrams from propagating to routers with
no group membership information.

Both PIM-SM and PIM-DM are fairly complex protocols, although PIM-SM is
much more complex than PIM-DM. To enable PIM-SM or PIM-DM multicast
routing in a router, you must enable multicast routing and PIM processing in the
kernel and run a PIM-SM- or PIM-DM-capable application.

Using a Socket Interface to Enable and Access PIM Functionality

After opening a multicast routing socket and enabling multicast forwarding, use
one of the following socket options to enable or disable PIM processing in the
kernel:

int version = 1;
setsockopt(mRoutSock, IPPROTO_IP, MRT_INIT, (void *)&version,
sizeof(version));

After you have enabled PIM processing, add the multicast-capable interfaces (see
Example 7-3). In case of PIM-SM, you must also add the PIM-Register virtual
interface. To do this, use the following options:

struct vifctl vc;
memset(&vc, 0, sizeof(vc)); /* Assign all vifctl fields as needed. */
...
if (is_pim_register_vif)

{
vc.vifc_flags |= VIFF_REGISTER;

}
setsockopt(mRoutSock, IPPROTO_IP, MRT_ADD_VIF, (void *)&vc, sizeof(vc));

To send or receive PIM packets, first you must open a raw socket (see the socket()
reference entry), with protocol value of IPPROTO_PIM:

int pim_s4;
pim_s4 = socket(AF_INET, SOCK_RAW, IPPROTO_PIM);

After opening the raw socket for PIM, send or receive PIM packets on that socket
by calling sendto(), sendmsg(), recvfrom(), or recvmsg().

NOTE: There is no limit on the number of source addresses per group or per socket.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

152

153

 8
Wind River Mobile IP: Overview

8.1 Introduction 153

8.2 Mobile IP Technical Overview 154

8.1 Introduction

The Wind River network stack contains implementations of a mobile node, home
agent, and foreign agent as specified in RFC 3344, IP Mobility Support for IPv4, and
it contains an implementation of a mobile node for IPv6, as specified in RFC 3775
(Mobility Support in IPv6). The implementations of the individual components are
described in chapters following this overview.

Mobility support allows a node that is configured for mobility (a mobile node) to
move from one network link to another without losing its connection to another
node and without changing its accessibility to other nodes in the network. A
mobile node is always accessible through its home agent, a router on the mobile
node’s home link that knows where the mobile node is.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

154

8.2 Mobile IP Technical Overview

This section introduces the basic components involved in mobile IP and describes
the way communication with a mobile node is carried out.

8.2.1 Components and Terminology

The components and terminology introduced in this section are illustrated in
Figure 8-1.

A mobile node, as defined in RFC 3775, is a “node that can change its point of
attachment from one link to another, while still being reachable via its home
address.” A mobile node’s home address is an “IP address that is assigned for an
extended period [and]... remains unchanged regardless of where the node is
attached to the Internet.” The home address has the same network prefix as its
home link.

Figure 8-1 Mobile IP Components, with and without a Foreign Agent (FA)

...

...

...

IPv4

foreign link

MN
(home addr)

Home agent

Router

Router

Correspondent
node

ho
m

e
lin

k

Router

...

...

...

...

IPv4 or IPv6

foreign link

Home agent

Router

Router

Correspondent
node

ho
m

e
lin

k

Router

...

MN
(home addr)

MN
(care-of addr)

MN
(care-of addr)

Foreign agent

A. Mobile IP with a Foreign Agent (FA)
(MN care-of-addr = FA addr)

B. Mobile IP without a Foreign Agent
(MN has its own care-of-addr)

8 Wind River Mobile IP: Overview
8.2 Mobile IP Technical Overview

155

8

A node that communicates with the mobile node is a correspondent node. When a
mobile node leaves its home link and attaches to a different link, the link to which
it attaches is a foreign link. When a mobile node attaches to a foreign link, it obtains
a care-of address on the foreign link. The care-of address is an IP address used for
communication between the mobile node and the mobile node’s home agent. The
home agent is a router on the mobile node’s home link that supports mobile IP.

Mobile IP for IPv4 gives the mobile node the option of obtaining its care-of address
from a foreign agent or of obtaining it by other means, for example through the
Dynamic Host Configuration Protocol (DHCP). A foreign agent is a router on the
mobile node’s foreign link that supports Mobile IP for IPv4. If the Mobile node
obtains its care-of address from a foreign agent, the care-of address is the address
of the foreign agent.

Mobile IP for IPv6 does not use a foreign agent. When an IPv6 mobile node is on a
foreign link, it obtains its IP address through stateless autoconfiguration (RFC
2462) or through stateful (DHCPv6) configuration.

8.2.2 Communication with the Mobile Node

When a mobile node is on its home link, communication with a correspondent
node is carried out in exactly the same way as it would be without mobile IP. When
the mobile node is on a foreign link, the way communication is carried out can
differ between mobile IP for IPv4 and mobile IP for IPv6.

Communication with the Mobile Node in IPv4

When a mobile IPv4 mobile node is on a foreign link, messages sent from the
correspondent node to the mobile node always go to the mobile node’s home agent
first and from there to the mobile node. The home agent tunnels the correspondent
node’s message either to the mobile node’s foreign agent or directly to the mobile
node. Messages from the mobile node to the correspondent node are either sent
using reverse tunneling or are sent directly to the correspondent node. In Wind
River’s mobile-IPv4 implementation, the type of communication used is
determined by a static configuration parameter. Bidirectional tunneling, tunneling
using a home agent in both directions, is illustrated in sections A and B of
Figure 8-2. Tunneling one way and direct communication from mobile node to
correspondent node is illustrated in section C of Figure 8-2.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

156

Figure 8-2 Bidirectional and Unidirectional Tunneling in Mobile IP

Correspondent
Node

Foreign Agent

Home Agent

To M
obile

 N
ode

Tunnel to home

agent (reverse

tunneling)

Tunnel to Foreign

Agent

To C
orre

sp
ondent

Node

Mobile Node

Correspondent
Node

Home Agent

To M
obile

 N
ode

Tunnel to home

agent (reverse

tunneling)

Tunnel to Mobile

Node

To C
orre

sp
ondent

Node

Mobile Node

Correspondent
Node

Home Agent

To M
obile

 N
ode

Tunnel to Mobile

Node

To Correspondent
Node Mobile Node

A. Bidirectional Tunneling
between Home Agent
and Foreign Agent
(mobile IPv4, only)

B. Bidirectional Tunneling
between Home Agent
and Mobile Node

C. Unidirectional Tunneling
between Home Agent
and Mobile Node
(mobile IPv4, only)

8 Wind River Mobile IP: Overview
8.2 Mobile IP Technical Overview

157

8

Communication with the Mobile Node in IPv6

In Wind River’s implementation of mobile IPv6, when the mobile node is on a
foreign link, all communication between the mobile node and a correspondent
node uses bidirectional tunneling, as illustrated in section B of Figure 8-2. Direct
communication between mobile node and correspondent node (route optimization)
is described in RFC 3775, Mobility Support in IPv6, but is not supported in the
current release.

Sequence of Steps in Establishing and Carrying out Mobile Communication

The basic steps in mobile IPv6 communication are:

1. The mobile node moves from its home link to a foreign link.

2. The mobile node obtains a temporary care-of address on the foreign link.

■ The care-of address is an IP address with the same network prefix as the
foreign link.

■ In mobile IPv4, if the mobile node uses a foreign agent, the care-of address
is the same as the foreign agent’s IP address. Otherwise, the address is a
unicast address obtained either through DHCP or direct configuration.

■ In mobile IPv6, to obtain its care-of address, a mobile node can use IPv6
stateless or stateful (DHCP) auto-configuration.

3. The mobile node sets up communication with a home agent on its home link
and registers its care-of address with the home agent.

■ IPsec is used for communication between the mobile node and the home
agent.

■ The home agent can be the mobile node’s default router on its home link,
or it can be another router on the link.

■ The router that serves as a home agent for the mobile node must have its
own software for implementing a mobile IPv6 home agent.

4. The home agent binds its own MAC address to the mobile node’s home
address.

This allows the home agent to capture packets sent to the mobile node and
then tunnel the packets to the mobile node using the mobile node’s care-of
address.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

158

5. Communication between the mobile node and a correspondent node is carried
out through either bidirectional tunneling (available in the implementations of
both mobile IPv4 and mobile IPv6— Figure 8-2, sections A and B) or
unidirectional tunneling (mobile IPv4, only—Figure 8-2, section C). As noted
previously, direct communication between mobile node and correspondent
node is provided for in RFC 3775 for mobile IPv6, but is not supported in the
current release of Wind River Mobile IPv6.

6. If the mobile node moves to another foreign link, it obtains a new care-of
address and registers it with its home agent. Communication is now carried
out over the new care-of address.

7. When the mobile node returns to its home link, it de-registers its care-of
address with the home agent.

159

 9
Wind River Mobile IPv4:

Mobile Node

9.1 Introduction 159

9.2 Mobile Node Features 160

9.3 Conformance to Standards 162

9.4 Build Component and Build Parameters 163

9.5 Including the Mobile Node in a Build 185

9.6 Shell Commands 185

9.7 Testing the Mobile Node 187

9.1 Introduction

This chapter describes the Wind River implementation of a mobile node for IPv4.
For a general overview of Mobile IP see 8. Wind River Mobile IP: Overview.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

160

9.2 Mobile Node Features

The Wind River mobile node for IPv4 implements RFC 3344, IP Mobility Support for
IPv4. The following are features of the implementation that are not in RFC 3344
and whose implementation may need some explanation:

■ Low-latency handoffs in going from one foreign agent to another (see
9.2.1 Low-Latency Handoffs, p.160)

■ Integration with Internet Key Exchange (IKE) and IPsec (see 9.2.2 Integration
with IPsec and IKE, p.161)

9.2.1 Low-Latency Handoffs

The Wind River mobile node implements the IETF Internet-Draft Low Latency
Handoffs in Mobile IPv4, dated October, 2005, with an expiration date of April, 2006.
The draft proposes three ways of reducing delays in registering a new care-of
address when the mobile node moves from one foreign agent (the “old” foreign
agent) to another foreign agent (the “new” foreign agent):

■ Pre-registration handoff

This approach allows the mobile node to communicate with a new foreign
agent in order to obtain a new care-of address while it is still connected to the
old foreign agent.

■ Post-registration handoff

This allows data to be delivered to the mobile node at a new foreign agent
before the process of registering the mobile node’s new care-of address has
completed. Data is delivered using bidirectional tunneling between the old
and the new foreign agents.

■ Combined handoff

In this case, the pre-registration and post-registration handoffs are carried out
in parallel.

The current implementation supports all three methods.

9 Wind River Mobile IPv4: Mobile Node
9.2 Mobile Node Features

161

9

9.2.2 Integration with IPsec and IKE

The mobile node can be configured to run in either fa (foreign agent) mode, in
which case it obtains it care-of address from a foreign agent, or in co (co-located)
mode, in which case it obtains its care-of address without using a foreign agent (see
Mobile node run mode in Table 9-2 in 9.4 Build Component and Build Parameters,
p.163).

If the mobile node is configured to run in co-located mode, you can also configure
it to use IPsec and IKE when communicating with its home agent. There are three
configuration parameters for this:

■ IPSEC protected CoA only (MIPMN_IPSEC_PROTECTED)

This parameter allows you to apply Wind River IPsec security policies to
care-of addresses.

■ IPIKE secure address only (MIPMN_IPIKE_SECURE)

You can use this parameter to specify that the mobile node only uses IKE
tunnel inner address (TIAs) as care-of addresses. A TIA is an address that IKE
dynamically allocates as part of the negotiation of security parameters.

■ IPIKE reconfiguration on movement (MIPMN_IPIKE_RECONFIGURE)

You can use this parameter to configure the mobile node so that whenever it
moves and needs a new care-of address, it sends a reconfiguration request to
Wind River IKE.

IPIKE Mobike On Movement (MIPMN_IPIKE_MOBIKE)

When this parameter is enabled, the mobile node uses MOBIKE (see RFC 4555,
IKEv2 Mobility and Multihoming Protocol (MOBIKE)) to re-establish an
encrypted channel previously created by IPIKE.

For more information on these parameters, see the entries for them in Table 9-2,
Section 9.4 Build Component and Build Parameters, p.163.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

162

9.3 Conformance to Standards

The Wind River mobile node for IPv4 implements relevant features of a number of
RFCs. The following table lists the RFCs and identifies those features of an RFC
that are not supported.

Table 9-1 Primary RFCs Used in Implementing the Wind River Mobile Node

RFC Comments

RFC 2003, IP Encapsulation within IP Enabled through a user-configuration option.

RFC 2004, Minimal Encapsulation within IP Enabled through a user-configuration option.

RFC 2005, Applicability Statement for IP
Mobility Support

RFC 2784, Generic Routing Encapsulation
(GRE)

Enabled through a user-configuration option.

RFC 2794, Mobile IP Network Access Identifier
Extension for IPv4

Network access identity is specified through a
user-configuration option.

RFC 3012, Mobile IPv4 Challenge/Response
Extensions

Currently only CHAP is supported in MN-AAA
authentication.

See also RFC 4721, Mobile IPv4 Challenge/Response
Extensions (Revised), which is a revision of RFC
3012.

RFC 3024, Reverse Tunneling for Mobile IP,
revised

Enabled through a user-configuration option. The
following feature is not supported:

■ Encapsulating Delivery Style (see Section 5.2
of the RFC)

RFC 3344, IP Mobility Support for IPv4 The main RFC for IPv4 mobility support.

RFC 3519, Mobile IP Traversal of Network
Address Translation (NAT) Devices

Enabled through a user-configuration option.

RFC 3846, Mobile IPv4 Extension for Carrying
Network Access Identifiers

There are configuration options for specifying the
home agent to connect to and the AAAH server to
connect to.

9 Wind River Mobile IPv4: Mobile Node
9.4 Build Component and Build Parameters

163

9

9.4 Build Component and Build Parameters

When you build VxWorks and the network stack, there is a single build
component for the mobile node:

The IPv4 Mobile Node (INCLUDE_IPMIPMN) build component provides a
number of configuration parameters, as listed in Table 9-2. For each configuration
parameter, the table gives the corresponding Workbench description, macro
name, and sysvar.

RFC 3957, Authentication, Authorization, and
Accounting (AAA) Registration Keys for Mobile
IPv4

Enabled through a user-configuration option.

RFC 4433, Mobile IPv4 Dynamic Home Agent
(HA) Assignment

Enabled through a user-configuration option.

RFC 4721, Mobile IPv4 Challenge/Response
Extensions (Revised)

RFC 4721 updates RFC 3012.

Currently only CHAP is supported in MN-AAA
authentication.

IETF draft, Low Latency Handoffs in Mobile
IPv4

For a brief description of low-latency handoff
methods, see 9.2.1 Low-Latency Handoffs, p.160.

Table 9-1 Primary RFCs Used in Implementing the Wind River Mobile Node (cont’d)

RFC Comments

Workbench Name Macro Name

IPv4 Mobile Node INCLUDE_IPMIPMN

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

164

Table 9-2 IPv4 Mobile Node Build Parameters

Parameter (Workbench description,
macro name, sysvar)

Default Value
and Data Type Description

Mobile Node Interface

[MIPMN_IFNAME]

sysvar:
ipmipmn.interface=”if_name”

“eth0”

char *

Specifies the network interface used for
Mobile IP.

Home agent IPv4 address

[MIPMN_HOME_AGENT]

sysvar:
ipmipmn.homeagent=”HA_addr”

[None]

char *

Specifies the IPv4 address of the mobile
node’s home agent.

Mtu reduction

[MIPMN_MTU_REDUCTION]

sysvar:
ipmipmn.mtu_reduction=”value”

"0"

char *

If set to "1" reserves space in an MTU
(Maximum Transfer Unit) packet for headers
such as IPsec and other security related
protocols that are beyond the mobile node’s
control. This setting is useful for avoiding
fragmentation.

Home address

[MIPMN_HOME_ADDRESS]

sysvar:
ipmipmn.homeaddress=
”MN_addr”

"0.0.0.0"

char *

Specifies the IPv4 address of the mobile node
on its home network. If the address is entered
as "0.0.0.0", the mobile node uses the IP
address of the interface specified in the
MIPMN_IFNAME parameter as its home
address.

Home netmask

[MIPMN_HOME_MASK]

sysvar:
ipmipmn.homenetmask=”mask”

"255.255.0.0"

char *

Specifies the netmask of the mobile node’s
home network in a.b.c.d format.

If no netmask is entered, the mobile node
uses the netmask of the interface specified in
the MIPMN_IFNAME_LIST parameter as its
home netmask.

9 Wind River Mobile IPv4: Mobile Node
9.4 Build Component and Build Parameters

165

9

Dynamic Home Agent
Assignment

[MIPMN_DYNAMIC_HOME_
AGENT_ASSIGNMENT]

sysvar:
ipmipmn.dhaa

"disabled"

char *

If set to either “enabled” or “home”, enables
Dynamic Home Agent Assignment (DHAA)
as described in RFC 4433, Mobile IPv4
Dynamic Home Agent (HA) Assignment.

If this parameter is set to “disabled“, the
default, the mobile node uses only the home
agent specified in the Home agent IPv4
address (MIPMN_HOME_AGENT) build
parameter.

If this parameter is set to “enabled” and the
mobile node uses a foreign agent, the foreign
agent may assign the mobile node a home
agent in the mobile node’s domain (first
checking on the availability of the home agent
in the Home agent IPv4 address parameter)
or in the foreign agent’s domain, depending
on the way the foreign agent is configured.

If this parameter is set to “home” and the
mobile node communicates with a foreign
agent, the foreign agent assigns the mobile
node a home agent in the mobile node’s
domain (first checking on the availability of
the home agent in the Home agent IPv4
address parameter).

If this parameter is set to either “enabled” or
“home“, but the mobile node runs in
co-located mode, the home agent in the
Home agent IPv4 address parameter is used.

Home gateway

[MIPMN_HOME_GATEWAY]

sysvar:
ipmipmn.homegateway=”addr”

"10.1.1.1"

char *

Specifies the IPv4 address of the mobile
node’s home gateway.

Table 9-2 IPv4 Mobile Node Build Parameters (cont’d)

Parameter (Workbench description,
macro name, sysvar)

Default Value
and Data Type Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

166

Router solicitation address

[MIPMN_SOL_ADDRESS]

sysvar:
ipmipmn.sol_address=”addr”

"224.0.0.11"

char *

Specifies the destination address of outgoing
router solicitation messages from the mobile
node.

If not set, or if set to “0.0.0.0” or an invalid
address, no router solicitations are sent.

Default Home Agent Shared
Secret

[MIPMN_HA_AUTH_SECRET]

sysvar:
ipmipmn.haauthsecret=”secret”

“test0”

char *

Specifies the default shared secret to use in
authentication with home agents. You can
override the default shared secret and assign
individual home agents their own shared
secrets by setting all three of the following
parameters:

■ Home Agent Security Association
Secrets (MIPMN_HA_SPI_SECRET_LIST)

■ Home Agent Security Association
Methods
(MIPMN_HA_SPI_METHOD_LIST)

■ Home Agent Security Association
Selection
(MIPMN_HA_SA_ADDRESS_LIST)

Table 9-2 IPv4 Mobile Node Build Parameters (cont’d)

Parameter (Workbench description,
macro name, sysvar)

Default Value
and Data Type Description

9 Wind River Mobile IPv4: Mobile Node
9.4 Build Component and Build Parameters

167

9

Default Home Agent SPI

[MIPMN_HA_AUTH_SPI]

sysvar:
ipmipmn.haauthspi=”spi”

"1000"

char *

Specifies the default Security Parameter
Index (SPI) to use in authentication with
home agents. The value entered must be 256
or greater.

You can override the default SPI and assign
individual home agents separate SPIs by
setting all three of the following parameters:

■ Home Agent Security Association
Secrets (MIPMN_HA_SPI_SECRET_LIST)

■ Home Agent Security Association
Methods
(MIPMN_HA_SPI_METHOD_LIST)

■ Home Agent Security Association
Selection
(MIPMN_HA_SA_ADDRESS_LIST)

Table 9-2 IPv4 Mobile Node Build Parameters (cont’d)

Parameter (Workbench description,
macro name, sysvar)

Default Value
and Data Type Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

168

Default Home Agent Security
Method

[MIPMN_HA_AUTH_METHOD]

sysvar:
ipmipmn.haauthmethod

"md5-hmac"

char *

Specifies the default method of security
verification to use with home agents. The
following options are available:

■ md5-hmac

This is the default mobile IPv4
authentication method.

■ keygen

The mobile node generates keys using
RFC 3957, Authentication, Authorization,
and Accounting (AAA) Registration Keys for
Mobile IPv4. This option requires that you
set the following parameters:

– AAA SPI (MIPMN_AAA_SPI)

– AAA Shared Secret
(MIPMN_AAA_SECRET)

– AAA Security Association Method
(MIPMN_AAA_METHOD)

You can override the default verification
method and individually assign verification
methods to home agents by setting all three of
the following parameters:

■ Home Agent Security Association
Secrets (MIPMN_HA_SPI_SECRET_LIST)

■ Home Agent Security Association
Methods
(MIPMN_HA_SPI_METHOD_LIST)

■ Home Agent Security Association
Selection
(MIPMN_HA_SA_ADDRESS_LIST)

Table 9-2 IPv4 Mobile Node Build Parameters (cont’d)

Parameter (Workbench description,
macro name, sysvar)

Default Value
and Data Type Description

9 Wind River Mobile IPv4: Mobile Node
9.4 Build Component and Build Parameters

169

9

Mobile node run mode

[MIPMN_RUN_MODE]

sysvar: [None]

 "fa"

char *

Either "fa" or "co". If “fa”, the mobile node
obtains its care-of address from a foreign
agent. If “co”, it obtains a co-located unicast
address from, for example, DHCP.

Default Foreign Agent Shared
Secret

[MIPMN_FA_AUTH_SECRET]

sysvar:
ipmipmn.faauthsecret=”secret”

“test1”

char *

Specifies the shared secret to be used in
authentication with a foreign agent. Requires
that Enable mobile-foreign authentication is
set to TRUE.

You can override the default shared secret
and assign individual foreign agents their
own shared secrets by setting all three of the
following parameters:

■ Foreign Agent Security Association
Secrets (MIPMN_FA_SPI_SECRET_LIST)

■ Foreign Agent Security Association
Methods
(MIPMN_FA_SPI_METHOD_LIST)

■ Foreign Agent Security Association
Selection
(MIPMN_FHA_SA_ADDRESS_LIST)

Table 9-2 IPv4 Mobile Node Build Parameters (cont’d)

Parameter (Workbench description,
macro name, sysvar)

Default Value
and Data Type Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

170

Default Foreign Agent SPI

[MIPMN_FA_AUTH_SPI]

sysvar:
ipmipmn.faauthspi=”spi”

"1001"

char *

Specifies the default Security Parameter
Index (SPI) to be used in authentication with
foreign agents. Requires that Enable
mobile-foreign authentication is set to
TRUE.

The value entered must be 256 or greater.

You can override the default SPI and assign
individual foreign agents separate SPIs by
setting all three of the following parameters:

■ Foreign Agent Security Association
Secrets (MIPMN_FA_SPI_SECRET_LIST)

■ Foreign Agent Security Association
Methods
(MIPMN_FA_SPI_METHOD_LIST)

■ Foreign Agent Security Association
Selection
(MIPMN_FHA_SA_ADDRESS_LIST)

Table 9-2 IPv4 Mobile Node Build Parameters (cont’d)

Parameter (Workbench description,
macro name, sysvar)

Default Value
and Data Type Description

9 Wind River Mobile IPv4: Mobile Node
9.4 Build Component and Build Parameters

171

9

Default Foreign Agent Security
Method

[MIPMN_FA_AUTH_
METHOD]

sysvar:
ipmipmn.faauthmethod

"md5-hmac"

char *

Specifies the method of security verification
to use with the foreign agent. The following
options are available:

■ md5-hmac

This is the default mobile IPv4
authentication method.

■ keygen

The mobile node generates keys using
RFC 3957, Authentication, Authorization,
and Accounting (AAA) Registration Keys for
Mobile IPv4. This option requires that you
set the following parameters:

– AAA SPI (MIPMN_AAA_SPI)

– AAA Shared Secret
(MIPMN_AAA_SECRET)

– AAA Security Association Method
(MIPMN_AAA_METHOD)

You can override the default verification
method and individually assign verification
methods to home agents by setting all three of
the following parameters:

■ Foreign Agent Security Association
Secrets (MIPMN_FA_SPI_SECRET_LIST)

■ Foreign Agent Security Association
Methods
(MIPMN_FA_SPI_METHOD_LIST)

■ Foreign Agent Security Association
Selection
(MIPMN_FHA_SA_ADDRESS_LIST)

Table 9-2 IPv4 Mobile Node Build Parameters (cont’d)

Parameter (Workbench description,
macro name, sysvar)

Default Value
and Data Type Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

172

Registration lifetime

[MIPMN_REG_LIFETIME]

sysvar:
ipmipmn.reg_lifetime=”value”

"30"

char *

Specifies the length of time, in seconds, that
registration of a care-of address stays in
effect. Enter “0” to assign an infinite
registration lifetime.

When the mobile node is on a foreign
networks, it attempts to reregister after half
the specified lifetime.

Receive broadcasts

[MIPMN_RECV_BROADCASTS]

sysvar:
ipmipmn.receivebroadcasts=
”value”

"0"

char *

If set to "1", enables the mobile node to receive
broadcast packets from its home network.

Tunnel type

[MIPMN_TUNNEL_TYPE]

sysvar:
ipmipmn.tunneltype=”type”

"ipip"

char *

Specifies the type of tunneling to use between
the home agent and the mobile node or a
foreign agent, depending on the setting of
the Mobile node run mode parameter. One
of the following options:

■ "ipip" (IP Encapsulation within IP; see
RFC 2003)

■ "min" (Minimal Encapsulation within IP;
see RFC 2004)

■ "gre" (Generic Routing Encapsulation;
see RFC 2784)

Table 9-2 IPv4 Mobile Node Build Parameters (cont’d)

Parameter (Workbench description,
macro name, sysvar)

Default Value
and Data Type Description

9 Wind River Mobile IPv4: Mobile Node
9.4 Build Component and Build Parameters

173

9

Reverse tunneling

[MIPMN_REVERSE_
TUNNELING]

sysvar:
ipmipmn.reversetunneling=
”value”

"optional"

char *

Determines whether reverse tunneling is
used. There are three options:

■ “disabled”—Reverse tunneling is
disabled.

■ “optional”—The mobile node first
attempts to use reverse tunneling. If the
home agent does not support it, the
mobile node retries registration using
triangular routing.

■ “required”—The mobile node only uses
reverse tunneling.

Network access identifier

[MIPMN_NAI]

sysvar:
ipmipmn.nai.mn=”nai”

[None]

char *

Specifies the mobile node’s Network Access
Identifier (NAI), as described in RFC 2794,
Mobile IP Network Access Identifier Extension
for IPv4).

Table 9-2 IPv4 Mobile Node Build Parameters (cont’d)

Parameter (Workbench description,
macro name, sysvar)

Default Value
and Data Type Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

174

Solicitations

[MIPMN_SOLICIT]

sysvar:
ipmipmn.solicit=”value”

"required"

char *

One of the following values:

■ “required” (the default)

The mobile node sends a router
solicitation whenever an interface comes
online. It repeats the solicitation every
three seconds until it receives a response.

■ “optional”

The mobile node sends out a router
solicitation whenever an interface comes
online, but does not repeat the
solicitation if there is no response.

■ “disabled”

The mobile node does not send a router
solicitation when an interface comes
online.

If set to “optional” or “disabled”, this
parameter allows transparent
post-registration low-latency handoffs in
which the mobile node does not need to
re-register until a registration timeout occurs
or the foreign agent forces re-registration (see
9.2.1 Low-Latency Handoffs, p.160).

IPSEC protected CoA only

 [MIPMN_IPSEC_PROTECTED]

sysvar:
ipmipmn.ipipsec.protected=
”value”

"0" If this parameter is set to "1" and the IPIKE
secure address only parameter is set to "0",
the mobile node only uses care-of addresses
associated with an IPsec. If the IPIKE secure
address only parameter is set to "1", it takes
precedence, and this parameter is ignored.

Table 9-2 IPv4 Mobile Node Build Parameters (cont’d)

Parameter (Workbench description,
macro name, sysvar)

Default Value
and Data Type Description

9 Wind River Mobile IPv4: Mobile Node
9.4 Build Component and Build Parameters

175

9

IPIKE reconfiguration on
movement

[MIPMN_IPIKE_RECONFIGURE]

sysvar:
ipmipmn.ipike.reconfigure=
”value”

"0"

char *

If set to "1", when the mobile node moves, it
sends a reconfiguration request to Wind
River IKE. In this, case, the IKE daemon
rereads its configuration file, reacquires any
primary addresses on the mobile node’s
interface, and renegotiates security
associations. For information on configuring
IKE and IPsec when this parameter is set to
"1", see 9.4.1 Reconfiguring IKE When the
Mobile Node Moves, p.184.

IPIKE secure address only

[MIPMN_IPIKE_SECURE]

sysvar:
ipmipmn.ipike.secure=”value”

"0"

char *

If set to "1", the mobile node only uses care-of
addresses allocated by IKE. For information
on this parameter and on configuring IKE
and IPsec when this parameter is set to "1",
see 9.4.2 Using IKE Care-of Addresses, p.184.

IPIKE Mobike On Movement

[MIPMN_IPIKE_MOBIKE]

sysvar:
ipmipmn.ipike.mobike

"0"

char *

If set to “1”, the mobile node uses MOBIKE
(see RFC 4555, IKEv2 Mobility and
Multihoming Protocol (MOBIKE)) to
re-establish an encrypted channel previously
created by IPIKE.

MOBIKE only applies to addresses allocated
by IPIKE. As a result, you should generally
enable the IPIKE Secure Address Only
(MIPMN_IPIKE_SECURE) parameter when
you enable this parameter.

NAT Traversal

[MIPMN_NAT_T_ENABLED]

sysvar:
ipmipmn.nat_t.enabled=”value”

"1"

char *

If set to "1", the default, enables NAT
Traversal as described in RFC 3519, Mobile IP
Traversal of Network Address Translation (NAT)
Devices. In this case, NAT traversal is used if
the mobile node’s home agent detects that a
Registration Request has passed through a
NAT, but not otherwise.

Table 9-2 IPv4 Mobile Node Build Parameters (cont’d)

Parameter (Workbench description,
macro name, sysvar)

Default Value
and Data Type Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

176

Forced NAT Traversal

[MIPMN_NAT_T_FORCED]

sysvar:
ipmipmn.nat_t.forced=”value”

 "0"

char *

If set to "1", forces NAT traversal as described
in RFC 3519, even if the mobile node’s home
agent does not detect that a Registration
Request has passed through a NAT.

NAT Traversal keepalive

[MIPMN_NAT_T_KEEPALIVE]

sysvar:
ipmipmn.nat_t.keepalive=”value”

"120"

char *

Specifies the keep-alive time interval, in
seconds, to use for NAT-Traversal ICMP
keep-alive messages. The keep-alive time
interval is used to maintain a NAT UDP port
mapping.

NAT Traversal tunnel type

[MIPMN_NAT_T_TUNNEL_
TYPE]

sysvar:
ipmipmn.nat_t.tunneltype=
”type”

[None]

char *

Determines the type of tunneling used for
NAT traversal. If no value is entered, NAT
traversal tunneling uses the tunneling type
specified in the Tunnel type parameter. To
specify a different type of tunneling for NAT,
enter one of the following:

■ "ipip" (IP Encapsulation within IP; see
RFC 2003)

■ "min" (Minimal Encapsulation within IP;
see RFC 2004)

■ "gre" (Generic Routing Encapsulation;
see RFC 2784)

Table 9-2 IPv4 Mobile Node Build Parameters (cont’d)

Parameter (Workbench description,
macro name, sysvar)

Default Value
and Data Type Description

9 Wind River Mobile IPv4: Mobile Node
9.4 Build Component and Build Parameters

177

9

Home Agent Security Association
Secrets

[MIPMN_HA_SPI_SECRET_LIST]

sysvar:
ipmipmn.ha.spi.spi.secret

[None]

char *

Specifies the secrets to use with SPIs when
communicating with home agents. An
individual SPI can be associated with only
one secret. Enter SPIs and secrets using the
following format:

SPI=secret;SPI=secret;...

A secret can be up to 16 bytes in length. SPIs
must be 256 or greater.

The following are examples:

"1000=terces1"
"1000=terces1;1001=circes2;1200=x_z"

By default, SPI 1000 is set to test0 and SPI
1001 is set to test1.

Table 9-2 IPv4 Mobile Node Build Parameters (cont’d)

Parameter (Workbench description,
macro name, sysvar)

Default Value
and Data Type Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

178

Home Agent Security Association
Methods

[MIPMN_HA_SPI_METHOD_
LIST]

sysvar:
ipmipmn.ha.spi.spi.method

"md5-hmac"

char *

Specifies the security method to use with
individual SPIs when communicating with
home agents. There are two options for
security method:

■ md5-hmac

This is the default mobile IPv4
authentication method.

■ keygen

The mobile node generates keys using
RFC 3957, Authentication, Authorization,
and Accounting (AAA) Registration Keys for
Mobile IPv4. This option requires that you
set the following parameters:

– AAA SPI (MIPMN_AAA_SPI)

– AAA Shared Secret
(MIPMN_AAA_SECRET)

– AAA Security Association Method
(MIPMN_AAA_METHOD)

Enter SPIs and methods using the following
format:

“SPI=method;SPI=method;...”

SPIs must be 256 or greater.

Table 9-2 IPv4 Mobile Node Build Parameters (cont’d)

Parameter (Workbench description,
macro name, sysvar)

Default Value
and Data Type Description

9 Wind River Mobile IPv4: Mobile Node
9.4 Build Component and Build Parameters

179

9

Foreign Agent Security
Association Secrets

[MIPMN_FA_SPI_SECRET_LIST]

sysvar:
ipmipmn.fa.spi.spi.secret

[None]

char *

Specifies the secrets to use with SPIs when
communicating with foreign agents. An
individual SPI can be associated with only
one secret. Enter SPIs and secrets using the
following format:

SPI=secret;SPI=secret;...

A secret can be up to 16 bytes in length. SPIs
must be 256 or greater.

The following are examples:

"1000=terces1"
"1000=terces1;1001=circes2;1200=x_z"

By default, SPI 1000 is set to test0 and SPI
1001 is set to test1.

Table 9-2 IPv4 Mobile Node Build Parameters (cont’d)

Parameter (Workbench description,
macro name, sysvar)

Default Value
and Data Type Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

180

Foreign Agent Security
Association Methods

[MIPMN_FA_SPI_METHOD_
LIST]

sysvar:
ipmipmn.ha.spi.spi.method

"md5-hmac"

char *

Specifies the security method to use with
individual SPIs when communicating with
foreign agents. There are two options for
security method:

■ md5-hmac

This is the default mobile IPv4
authentication method.

■ keygen

The mobile node generates keys using
RFC 3957, Authentication, Authorization,
and Accounting (AAA) Registration Keys for
Mobile IPv4. This option requires that you
set the following parameters:

– AAA SPI (MIPMN_AAA_SPI)

– AAA Shared Secret
(MIPMN_AAA_SECRET)

– AAA Security Association Method
(MIPMN_AAA_METHOD)

Enter SPIs and methods using the following
format:

“SPI=method;SPI=method;...”

SPIs must be 256 or greater.

Table 9-2 IPv4 Mobile Node Build Parameters (cont’d)

Parameter (Workbench description,
macro name, sysvar)

Default Value
and Data Type Description

9 Wind River Mobile IPv4: Mobile Node
9.4 Build Component and Build Parameters

181

9

Foreign Agent Security
Association Selection

[MIPMN_FA_SA_ADDRESS_
LIST]

sysvar:
ipmipmn.fa.sa.address.network
[/prefix]

[None]

char *

Specifies the security associations to use
when communicating with foreign agents, in
the following format:

“fa_address[/prefix]=SPI;fa_address
[/prefix]=SPI;...”

If fa_address is set to any, the specified SPI
applies to all foreign agents.

SPIs must be 256 or greater.

Examples:

■ The following setting enables
authentication using SPI 1002 between
this the mobile node and the foreign
agent with IP address 10.1.2.42:

"10.1.2.42=1002"

■ The following enables authentication
using SPI 1002 between mobile node and
all foreign agents:

"any=1002"

■ The following specifies that all foreign
agents on the 10.1.2.0/24 network are to
use SPI 1004.

"10.1.2.0/24=1004"

Table 9-2 IPv4 Mobile Node Build Parameters (cont’d)

Parameter (Workbench description,
macro name, sysvar)

Default Value
and Data Type Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

182

Home Agent Security Association
Selection

[MIPMN_HA_SA_ADDRESS_
LIST]

sysvar:
ipmipmn.ha.sa.address.
network[/prefix]

[None]

char *

Specifies the security associations to use
when communicating with home agents, in
the following format:

“ha_address[/prefix]=SPI;ha_address
[/prefix]=SPI;...”

If ha_address is set to any, the specified SPI
applies to all foreign agents.

SPIs must be 256 or greater.

Examples:

■ The following setting enables
authentication using SPI 1002 between
this the mobile node and the home agent
with IP address 10.1.2.42:

"10.1.2.42=1002"

■ The following enables authentication
using SPI 1002 between mobile node and
all home agents:

"any=1002"

■ The following specifies that all home
agents on the 10.1.2.0/24 network are to
use SPI 1004.

"10.1.2.0/24=1004"

AAA Shared Secret

[MIPMN_AAA_SECRET]

sysvar:
ipmipmn.aaa.secret

[None]

char *

The shared secret to use for AAA
authentication. Example:

"myaaasecret"

Table 9-2 IPv4 Mobile Node Build Parameters (cont’d)

Parameter (Workbench description,
macro name, sysvar)

Default Value
and Data Type Description

9 Wind River Mobile IPv4: Mobile Node
9.4 Build Component and Build Parameters

183

9

AAA SPI

[MIPMN_AAA_SPI]

sysvar:
ipmipmn.aaa.spi

[None]

char *

The Security Parameter Index (SPI) to use for
AAA authentication.

If set to “2”, AAA authentication is carried
out through RADIUS Challenge Handshake
Authentication Protocol (CHAP).

AAA Security Association
Method

[MIPMN_AAA_METHOD]

sysvar:
ipmipmn.aaa.method

"md5-hmac"

char *

Specifies the authentication method to use
when calculating authentication extensions.
Options are:

■ md5-hmac

■ chap

If no value is entered, md5-hmac is the
default value, unless AAA SPI
(MIPMN_AAA_SPI) is set to 2 (the predefined
RADIUS SPI for CHAP), in which case the
default is AAA authentication carried out
through CHAP.

Simultaneous Bindings

[MIPMN_SIMBIND]

sysvar:
ipmipmn.simbind

"0"

char *

If set to “1”, enables simultaneous bindings.

Tunnel Reordering

[MIPMN_TUNNEL_
REORDERING]

sysvar:
ipmipmn.reordering

"0"

char *

If set to “1”, provides in-order delivery of
packets for GRE tunneling.

Registration Revocation

[MIPMN_REVOCATION]

sysvar:
ipmipmn.revocation

"1"

char *

If set to “0”, disables registration revocation.
If enabled, the default, the mobile node
informs the home agent that it supports
registration revocation and the home agent
can revoke a binding or registration, if
necessary.

Table 9-2 IPv4 Mobile Node Build Parameters (cont’d)

Parameter (Workbench description,
macro name, sysvar)

Default Value
and Data Type Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

184

9.4.1 Reconfiguring IKE When the Mobile Node Moves

Setting the IPIKE reconfiguration on movement [MIPMN_IPIKE_RECONFIGURE]
build parameter to "1" tells the mobile node to send a reconfigure request to Wind
River IKE whenever the mobile node has moved to a new link and needs a new
care-of address. When IKE receives the request, it rereads its configuration file,
reacquires any primary addresses on the mobile node’s interface and renegotiates
security associations.

For IKE to reconfigure itself correctly:

■ IKE should only be configured with the name of the mobile node’s interface,
not an IP address, in an IPsec SA.

■ The system variable Flush keys on reconfigure
[IPIKE_FLUSH_RECONFIGURE] must be set to "1" on the mobile node, so that
IKE renegotiates security policies and associations when it reconfigures itself.

9.4.2 Using IKE Care-of Addresses

If you set the IPIKE secure address only [MIPMN_IPIKE_SECURE] build
parameter to "1", the mobile node only uses IKE tunnel inner addresses as care-of
addresses. A tunnel inner address (TIA) is an address that IKE dynamically
allocates as part of the negotiation of security parameters. When IPIKE secure
address only is enabled, the mobile node verifies potential care-of addresses
against the IPsec security-policy database in order to make sure that an address
has the security parameters necessary for being a TIA.

To use IKE TIAs:

■ The TIA address must be assigned to the mobile node’s interface as the
primary address for negotiating security parameters.

■ Wind River IKE needs to be configured with its
IKE_DYNAMIC_ADDRESS_MODE parameter set to “0”.

This forces security policies to allow any TIA IP address for the mobile node.

■ For the mobile node, IPsec SAs need to be configured as either of the following

address interface_name address 0.0.0.0/0

address 0.0.0.0/0 address 0.0.0.0/0

■ If the responder—for example, the home agent—to the mobile node is using
Wind River IKE, it must set its IPIKE_ADDRESS_POOL_NETWORK4

9 Wind River Mobile IPv4: Mobile Node
9.5 Including the Mobile Node in a Build

185

9

configuration parameter (see Wind River IKE for VxWorks 6 Programmer's
Guide, 6.x).

The responder needs to set the IPIKE_ADDRESS_POOL_NETWORK4
configuration parameter for initiators that request dynamic addresses.

9.5 Including the Mobile Node in a Build

To include the mobile node in a VxWorks build, you need to create a VxWorks
Image Project and include the IPv4 Mobile Node (INCLUDE_IPMIPMN) build
component. You can do this through either Workbench or the vxprj command-line
utility. For information on using Workbench to create a VxWorks Image Project
and include build components, see the Wind River Workbench User's Guide for
VxWorks. For information on using the vxprj command-line utility, see the
VxWorks Command-Line Tools User’s Guide.

Once you include the IPv4 Mobile Node (INCLUDE_IPMIPMN) component in
your build, you can set values for the static configuration parameters listed in
Table 9-2.

9.6 Shell Commands

You can use shell commands to:

■ Inform the mobile node of its current link-layer status, for use in low-latency
handoffs.

■ Display the current status of the mobile node

■ Display a history of the node’s state events.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

186

Table 9-3 lists the mobile-node shell commands and gives examples of their usage.

Table 9-3 Mobile Node Shell Commands

Command Description

mn mt -mnifname interface_name -faip fa_ip Informs the mobile node that it is in transit to the
foreign agent specified in the fa_ip parameter.

The interface_name parameter is the name of the
interface used by the mobile node.

mn ld -mnifname interface_name Informs the mobile node that it is now disconnected
from its previous link (ld: link down). The
interface_name parameter is the name of the interface
used by the mobile node.

mn lu -mnifname interface_name Informs the mobile node that it is now connected to
a new link (lu: link up). The interface_name
parameter is the name of the interface used by the
mobile node.

mn show [-v] Shows the current status of the mobile node.
Displays care-of addresses, the mobile node’s
registration status, and other attributes. The -v
option displays usage statistics. See Sample Output
for the mn show Shell Command, p.187.

mn history Displays the last 30 state events within the mobile
node.

mn errors Displays the last 30 errors. An error is the reception
of a defective registration reply, such as an
erroneous error code; an unparsable packet; or a
packet that fails authentication.

mn flush [errors | history] Flushes either the mobile node’s error log or the
mobile node’s history log.

9 Wind River Mobile IPv4: Mobile Node
9.7 Testing the Mobile Node

187

9

Sample Output for the mn show Shell Command

The mn show shell displays current status of the mobile node. The following is
sample output (with pseudo-IP addresses):

mn show
Mobile Node :
 Status : registered
 Mobile Interface : gifmip0
 Co-located : yes
 Home Address : xxx.xxx.1.20
 Home Agent : xxx.xxx.1.1
 Reverse Tunnel : yes
 Broadcast : yes
 Home Agent Discovery: no
 Dynamic Home Address: no
 SPI HA : 1000
 Tunnel type : IPIP
 Established : Mar 29 00:53:01
 Updated : Mar 29 00:53:01
 Lifetime : 30/30
 Home Agent NAI : ha-test@ecalpon.com
 AAAH NAI : aaah-test@ecalpon.com
 Care Of Address :
 CoA : yyy.yyy.1.40
 Interface : vlan11
 Challenge : no
 NAT Traversal : no
 Retransmits : 0
 Low Latency : no

9.7 Testing the Mobile Node

You can test the functioning of the mobile node and a home agent by following the
procedure described in 10.6 Testing the Home Agent, p.214, which requires the
following components:

■ Home agent
■ Mobile node
■ Correspondent node
■ A home network for the mobile node and home agent
■ A foreign network for the mobile node (when it is away from home)
■ A router

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

188

Figure 9-1 shows a test configuration with these elements and sample IP
addresses:

If the mobile node has two interfaces, you can use the first interface as the active
mobile IP interface and you can use the second interface to telnet to the mobile
node and execute shell commands and perform debugging.

Figure 9-1 Mobile-Node Test Configuration with Sample IP Addresses

Router

Correspondent
10.1.2.180

Node
Home Agent Mobile Node

10.1.1.2.181

10.1.2.40

Home Network: 10.1/16

(home address)

Mobile Node

Foreign Network: 10.130/16

10.130.1.99
(Care-of Address)

10.1.2.42

10.130.1.1

189

 10
Wind River Mobile IPv4:

Home Agent

10.1 Introduction 189

10.2 Conformance to Standards 190

10.3 Build Components and Build Parameters 191

10.4 Including the Home Agent in a Build 210

10.5 Shell Commands 211

10.6 Testing the Home Agent 214

10.1 Introduction

This chapter describes the Wind River implementation of a home agent for IPv4.
For a general overview of Mobile IP, see 8. Wind River Mobile IP: Overview.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

190

10.2 Conformance to Standards

The Wind River home agent for IPv4 implements relevant features of a number of
RFCs. Table 10-1 lists the RFCs and identifies those features of an RFC that are not
supported.

Table 10-1 Primary RFCs Used in Implementing the Wind River Mobile Node

RFC Comments

RFC 2003, IP Encapsulation within IP Always enabled.

RFC 2004, Minimal Encapsulation within IP Enabled through a user-configuration option.

RFC 2005, Applicability Statement for IP
Mobility Support

RFC 2784, Generic Routing Encapsulation
(GRE)

Enabled through a user-configuration option.

RFC 2794, Mobile IP Network Access Identifier
Extension for IPv4

The Mobile IP Network Access Identifier (NAI) is
required when the mobile node attempts to use
dynamic home agent assignment or dynamic home
address assignment.

RFC 3012, Mobile IPv4 Challenge/Response
Extensions

Currently only CHAP is supported in MN-AAA
authentication.

See also RFC 4721, Mobile IPv4 Challenge/Response
Extensions (Revised), which is a revision of RFC
3012.

RFC 3024, Reverse Tunneling for Mobile IP,
revised

Enabled through a user-configuration option. The
following feature is not supported:

Encapsulating Delivery Style (see Section 5.2 of the
RFC).

RFC 3344, IP Mobility Support for IPv4 The main RFC for IPv4 mobility support.

RFC 3519, Mobile IP Traversal of Network
Address Translation (NAT) Devices

Enabled through a user-configuration option.

10 Wind River Mobile IPv4: Home Agent
10.3 Build Components and Build Parameters

191

10

10.3 Build Components and Build Parameters

When you build VxWorks and the network stack, there are four build components
for the Mobile IPv4 home agent:

RFC 3588, Diameter Base Protocol. Use of DIAMETER is enabled through a
user-configuration option. Portions of the protocol
that apply to Mobile IPv4 are supported, with the
exception of Accounting.

RFC 3846, Mobile IPv4 Extension for Carrying
Network Access Identifiers

If the home agent’s NAI is specified (see the table
entry for RFC 2794), the home agent includes it in
exchanges. This information can be used by AAA
agents in authenticating and authorizing clients.

RFC 4721, Mobile IPv4 Challenge/Response
Extensions (Revised)

RFC 4721 updates RFC 3012.

Currently only CHAP is supported in MN-AAA
authentication.

Table 10-1 Primary RFCs Used in Implementing the Wind River Mobile Node (cont’d)

RFC Comments

Table 10-2 Foreign Agent Build Components

Workbench Name Macro Name Description

IPv4 Home Agent INCLUDE_IPMIPHA The primary home-agent build component.
Always required.

For information on the configuration
parameters for this component, see
10.3.1 Configuration Parameters for the IPv4
Home Agent Build Component, p.193.

IPv4 Home Agent
IPCOM commands

INCLUDE_IPMIPHA_
CMD

This component provides access to shell
commands for the home agent. For more
information, see 10.5 Shell Commands, p.211.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

192

Presentation and Formatting of Parameters in Tables

The sections that follow present tables of configuration parameters. For each
configuration parameter, the table gives the corresponding Workbench
description, macro name, and sysvar (for general information about sysvars, see
sysvar, p.48). Note the following characteristics of parameters and parameter
values:

■ All parameters are entered as strings.

■ Many parameters allow a semicolon-separated list of entries in the following
format:

“item=value;item=value;...”

The following is an example (see the table entry for Home agent interface
address):

“eth0=10.1.2.10; eth1=0.0.0.0;eth2=10.2.3.4”

■ If a static configuration parameter accepts a list of entries, you can use the
corresponding sysvar shell command multiple times to enter parameter
values.

IPv4 Home Agent AAA
Radius Support

INCLUDE_IPMIPHA_
AAA_RADIUS

This component provides authentication,
authorization, and accounting (AAA)
support for RADIUS.

For information on the configuration
parameters for this component, see
10.3.2 Configuration Parameters for RADIUS
Support, p.204..

IPv4 Home Agent AAA
DIAMETER Support

INCLUDE_IPMIPHA_
AAA_DIAMETER

This component provides authentication,
authorization, and accounting (AAA)
support for DIAMETER.

For information on DIAMETER and the
configuration parameters for this
component, see 10.3.3 Configuration
Parameters for Diameter Support, p.208.

Table 10-2 Foreign Agent Build Components (cont’d)

Workbench Name Macro Name Description

10 Wind River Mobile IPv4: Home Agent
10.3 Build Components and Build Parameters

193

10

For example, the following sequence of shell commands accomplishes the
same thing as the Home agent interface address
(MIPHA_IF_HOME_ADDRESS_LIST) parameter in the preceding bullet item:

sysvar ipmipha.if.eth0.homeagent “10.1.2.10”
sysvar ipmipha.if.eth1.homeagent “0.0.0.0”
sysvar ipmipha.if.eth2.homeagent “10.2.3.4”

■ There is no default value for a parameter that allows a list of entries, but in
many cases, there is a default value for the value side of an item=value pair. In
such cases, this is the value shown in the “Default Value” column of the table.

For example, the Advertisement interval (MIPHA_IF_ADV_INTERVAL_LIST)
parameter allows you to list individual interfaces and time intervals for
sending router advertisements on them. By default, router advertisements are
sent on an interface every three seconds. Therefore, the “Default Value”
column shows “3”, and you do not need to list interfaces that use the default
interval.

■ The only parameter that allows a list of entries and does not separate entries
using a semicolon is Home agent Interface list (MIPHA_IFNAME_LIST).

Entries for Home agent Interface list are space separated, as in the following
example:

“eth1 eth2 vlan100”

10.3.1 Configuration Parameters for the IPv4 Home Agent Build Component

The following table lists the configuration parameters that belong to the IPv4
Home Agent (INCLUDE_IPMIPHA) build component.

Table 10-3 IPv4 Home Agent Build Parameters

Parameter (Workbench
description, macro, sysvar)

Default Value
and Data Type Description

Home agent Interface list

[MIPHA_IFNAME_LIST]

sysvar:
ipmipha.interfaces=
”if_name”

“eth0”

char *

Specifies the network interfaces available to the home
agent. Enter interfaces as a string of space-separated
interface names. The following are examples:

“eth1”
“eth1 eth2 vlan100”

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

194

Registration lifetime

[MIPHA_REG_
LIFETIME]

sysvar:
ipmipha.reg_lifetime=
”seconds”

“30”

char *

Specifies the length of time, in seconds, that a mobile
node’s registration is maintained. If the mobile node
does not reregister its foreign address within this
time, the home agent drops the registration.

Replay protection

[MIPHA_REPLAY_PROT
ECTION]

sysvar:
ipmipha.timestampreplay
protectionmaxdiff=
”seconds”

"7"

char *

Specifies the maximum time difference, in seconds,
allowed between the current time and the timestamp
in a mobile node’s registration request. If set to 0, no
validation is performed, and any time difference is
allowed.

HA Network access
identifier

[MIPHA_HA_NAI]

sysvar:
ipmipha.nai.ha=”nai”

[None]

char *

(Optional) Specifies the network access identifier
(NAI) of the home agent (see RFC 3846). The NAI is a
unique, fully qualified domain name, in the form:

host@domain

The name preceding the “@” symbol must contain at
least 3 characters.

Security Parameter Index
(SPI) list

[MIPHA_SPI_LIST]

sysvar:
ipmipha.spi.spi.secret=
”secret”

“test0”

char *

Specifies the secrets to use with Security Parameter
Indexes (SPIs). An individual SPI can be associated
with only one secret. Enter SPIs and secrets using the
following format:

SPI=secret;SPI=secret;...

A secret can be up to 16 bytes in length.

The following are examples:

"1000=terces1"
"1000=terces1;1001=circes2;1200=x_z"

Table 10-3 IPv4 Home Agent Build Parameters (cont’d)

Parameter (Workbench
description, macro, sysvar)

Default Value
and Data Type Description

10 Wind River Mobile IPv4: Home Agent
10.3 Build Components and Build Parameters

195

10

Foreign - Home security
association list

[MIPHA_FA_SA_
ADDRESS_LIST]

sysvar:
ipmipha.fa.sa.address.net
work[/prefix] = spi

[None]

char *

Specifies the security associations to use between
foreign agents and the home agent, in the following
format:

“fa_address[/prefix]=SPI;fa_address[/prefix]=SPI;...

If fa_address is set to any, the specified SPI applies to
all foreign agents.

Examples:

■ The following setting enables authentication
using SPI 1002 between this home agent and the
foreign agent with IP address 10.1.2.42:

"10.1.2.42=1002"

■ The following enables authentication using SPI
1002 between this home agent and all foreign
agents:

"any=1002"

■ The following specifies that all foreign agents on
the 10.1.2.0/24 network are to use SPI 1004.

"10.1.2.0/24=1004"

Foreign - Home security
association reverse lookup

[MIPHA_FA_SA_
LOOKUP_REQUIRE]

sysvar:
ipmipha.fa.sa.lookup.
required=0_or_1

"0"

char *

If set to “1”, enables reverse lookup of any
foreign-home security association used in
communication with the home agent and verification
that the SPI is indeed the SPI that should have been
used, and not just that the calculated hash is correct.

Table 10-3 IPv4 Home Agent Build Parameters (cont’d)

Parameter (Workbench
description, macro, sysvar)

Default Value
and Data Type Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

196

Mobile - Home security
association home address
list

[MIPHA_MN_SA_
ADDRESS_LIST]

sysvar:
ipmipha.mn.sa.address.
network[/prefix] = spi

[None]

char *

Specifies the security associations to use between
mobile nodes and the home agent, in the following
format:

“mn_address[/prefix]=SPI;mn_address[/prefix]=SPI;.
..

If mn_address is set to any, the specified SPI applies to
all mobile nodes.

Examples:

■ The following setting enables authentication
using SPI 1002 between this home agent and the
mobile node with IP address 10.1.2.42:

"10.1.2.42=1002"

■ The following enables authentication using SPI
1002 between this home agent and all mobile
nodes:

"any=1002"

■ The following specifies that all mobile nodes on
the 10.1.2.0/24 network are to use SPI 1004.

"10.1.2.0/24=1004"

Mobile - Home security
association NAI list

[MIPHA_MN_SA_NAI_
LIST]

sysvar:
ipmipha.mn.sa.nai.
nai_string = spi

[None]

char *

Specifies the security associations to use between
mobile nodes and the home agent, in either of the
following formats:

“user@domain=spi;user@domain=spi;...”

“@domain=spi;@domain=spi;...”

The following example sets the SPI for mobile-node to
home-agent authentication to “1002” for mobile
nodes that use a network access identifier (NAI) in the
windriver.com domain:

"@windriver.com=1002"

Table 10-3 IPv4 Home Agent Build Parameters (cont’d)

Parameter (Workbench
description, macro, sysvar)

Default Value
and Data Type Description

10 Wind River Mobile IPv4: Home Agent
10.3 Build Components and Build Parameters

197

10

Mobile - Home security
association reverse lookup

[MIPHA_MN_SA_
LOOKUP_REQUIRE]

sysvar:
ipmipha.mn.sa.lookup.
required0_or_1

"0"

char *

If set to “1”, requires the foreign agent to reverse
lookup the SPI a home agent presents for use and
verify that it is correct.

Mobile - Home security
association lookup order

[MIPHA_MN_SA_
LOOKUP_ORDER]

sysvar:
ipmipha.mn.sa.lookup.
order=searchkey

"hoa;nai"

char *

Determines the order in which security associations
are resolved, in the following format:

“searchkey;searchkey;...”

In the current release, searchkey can only have one of
the following values:

■ hoa (home address)
■ nai (network address identifier)

Example:

“nai;hoa”

Dynamic Home Address
Assignment is required

[MIPHA_MN_DYNAMIC
_HOA_REQUIRED]

sysvar:
ipmipha.mn.hoa.dynamic.
required=0_or_1

"0"

char *

If set to “1”, mobile nodes must request dynamic
home address assignment.

Mobile NAI is required

[MIPHA_MN_NAI_
REQUIRED]

sysvar:
ipmipha.mn.nai.required
=0_or_1

"0"

char *

If set to “1”, mobile nodes must provide a mobile NAI
in their registration requests.

Table 10-3 IPv4 Home Agent Build Parameters (cont’d)

Parameter (Workbench
description, macro, sysvar)

Default Value
and Data Type Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

198

Mobile NAI to Home
Address mapping

[MIPHA_MN_NAI_
HOA_ADDRESS_LIST]

sysvar:
ipmipha.mn.nai.
nai_string.hoa.address

or, alternatively,

ipmipha.if.<if_name>.mn.
nai.<nai_string>.hoa.
address=addr

[None]

char *

Determines the home addresses mobile nodes receive,
based on the mobile node’s NAI, in the following
format:

“nai=ip_address;nai=ip_address;...”

Example:

"mipuser@windriver.com=10.1.1.1"

Note that there are two sysvars corresponding to this
parameter. The first sysvar, ipmipha.mn.nai.
nai_string.hoa.address, has the same effect as this
parameter and applies generically to the home agent;
the second sysvar,
ipmipha.if.<if_name>.mn.nai.<nai_string>.
hoa.address allows you to specify home addresses for
NAIs on a per-interface basis, rather than generically.

Home agent interface
address

[MIPHA_IF_HOME_
ADDRESS_LIST]

sysvar:
ipmipha.if.interface.
homeagent=”addr”

“10.1.2.180”

char *

Specifies the IP address assigned to each interface
available to the home agent, in the following format:

“if_name=address;if_name=address;...”

If the IP address for an interface is set to 0.0.0.0, the
interface will not function as a home agent, but will
check incoming packets for forwarding to proxied
mobile nodes.

Example:

“eth0=10.1.2.10; eth1=0.0.0.0;eth2=10.2.3.4”

Home agent netmask

[MIPHA_IF_HOME_
MASK_LIST]

sysvar:
ipmipha.if.interface.
homenetmask=”mask”

“255.255.0.0”

char *

Specifies the netmasks to use with the IP addresses
assigned to individual interfaces, in the following
format:

“if_name=mask;if_name=mask;...”

Example:

“eth0=255.255.255.0; eth1=255.2255.255.0”

Table 10-3 IPv4 Home Agent Build Parameters (cont’d)

Parameter (Workbench
description, macro, sysvar)

Default Value
and Data Type Description

10 Wind River Mobile IPv4: Home Agent
10.3 Build Components and Build Parameters

199

10

Foreign agent security
requirements

[MIPHA_IF_FA_AUTH_
LIST]

sysvar:
ipmipha.if.interface.
fa_auth=”0_or_1”

“0”

char *

If set to “1”, specifies the interfaces on which a
home-agent to foreign-agent security association is
required, in the following format:

“if_name=1;if_name=1;...”

By default, interfaces do not (if_name=0) require a
security association.

Example:

“eth0=1;eth1=1”

Advertisement interval

[MIPHA_IF_ADV_
INTERVAL_LIST]

sysvar:
ipmipha.if.interface.adv_
interval=
”seconds”

“3”

char *

Specifies the intervals, in seconds, at which the home
agent sends router advertisements on individual
interfaces, in the following format:

“if_name=seconds;if_name=seconds;...”

If the time interval for an interface is set to 0, the home
agent does not send router advertisements on the
interface, and no other router-advertisement
parameters need to be set for the interface.

RFC 3344 suggests a time interval that is about a third
of the ICMP router advertisement lifetime. The
interval can be set to 0 or to a high value if it can be
expected that mobile nodes have other means, such as
wireless access points, of detecting their entry on a
new subnet.

Example:

“eth0=6; eth1=12;eth2=15”

Table 10-3 IPv4 Home Agent Build Parameters (cont’d)

Parameter (Workbench
description, macro, sysvar)

Default Value
and Data Type Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

200

Router advertisement
address

[MIPHA_IF_ADV_
ADDRESS_LIST]

sysvar:
ipmipha.if.interface.adv_
address=”addr”

“224.0.0.11”

char *

This parameter specifies the multicast destination
address for router advertisements sent from
individual interfaces. In the current release, the
destination address for each interface must be set to
224.0.0.11, as in the following example:

"eth0=224.0.0.11;eth1=224.0.0.11"

Router advertisement
lifetime

[MIPHA_IF_ADV_
LIFETIME_LIST]

sysvar:
ipmipha.if.interface.adv_
lifetime=
”seconds”

[None]

char *

Specifies the lifetime, in seconds, of router
advertisements sent from individual interfaces, in the
following format:

“if_name=seconds;if_name=seconds;...”

Example:

"eth0=350;eth1=300"

Enable NAT-T

[MIPHA_IF_NAT_T_
ENABLED_LIST]

sysvar:
ipmipha.if.interface.nat_t.
enabled=
”seconds”

“1”

char *

If set to “0”, disables NAT Traversal on interfaces (see
RFC 3519, Mobile IP Traversal of Network Address
Translation (NAT) Devices). The format for entries is:

“if_name=0;if_name=0;...”

By default, NAT Traversal on an interface is enabled
(if_name=1).

Example:

“eth0=0; eth1=0”

Table 10-3 IPv4 Home Agent Build Parameters (cont’d)

Parameter (Workbench
description, macro, sysvar)

Default Value
and Data Type Description

10 Wind River Mobile IPv4: Home Agent
10.3 Build Components and Build Parameters

201

10

NAT-T keepalive

[MIPHA_IF_NAT_T_
KEEPALIVE_LIST]

sysvar:
ipmipha.if.interface.nat_t.
keepalive=
”seconds”

“0”

char *

For individual interfaces, specifies the keep-alive time
interval, in seconds, to use for NAT-Traversal ICMP
keep-alive messages. The keep-alive time interval is
used to maintain a NAT UDP port mapping. The
format for entries is:

“if_name=seconds;if_name=seconds;...”

By default, the NAT-T keep-alive interval for an
interface is 0 seconds, which allows a foreign agent or
mobile node to determine the keep-alive interval. If a
value other than 0 is specified, foreign agents or
mobile nodes requesting NAT-T must use the
specified value as the keep-alive timeout.

Example:

“eth0=135; eth1=100”

Interface IPIP tunneling

[MIPHA_IF_IPIP_
TUNNEL_ENABLED_LIST]

sysvar:
ipmipha.if.if_name.ipip=
0_or_1

"1"

char *

If set to “0”, disables the use of IPIP tunneling (IP-
Encapsulation-within-IP tunneling; see RFC 2003) on
individual interfaces. The format for entries is:

“if_name=0;if_name=0;...”

By default, IPIP tunneling is enabled on an interface.

Example:

“eth0=0; eth1=0”

Table 10-3 IPv4 Home Agent Build Parameters (cont’d)

Parameter (Workbench
description, macro, sysvar)

Default Value
and Data Type Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

202

Interface GRE tunneling

[MIPHA_IF_GRE_
TUNNEL_ENABLED_LIST]

sysvar:
ipmipha.if.if_name.gre=
0_or_1

“1”

char *

If set to “0”, disables the use of Generic Routing
Encapsulation (GRE tunneling on an interface (see
RFC 2784). The format for entries is:

“if_name=0;if_name=0;...”

By default, GRE tunneling is enabled on an interface.
Note, however, that even when GRE tunneling is
enabled, the home agent still uses IP over IP
tunneling, unless the mobile node explicitly requests
GRE tunneling.

Example:

“eth0=0; eth1=0”

Interface MIN Encap
tunneling

[MIPHA_IF_MINENC_
TUNNEL_ENABLED_LIST]

sysvar:
ipmipha.if.if_name.minenc
=0_or_1

“1”

char *

If set to “0”, disables the use of Minimal
Encapsulation within IP tunneling on an interface (see
RFC 2004). The format for entries is:

“if_name=0;if_name=0;...”

By default, Minimal Encapsulation within IP
tunneling is enabled on an interface. Note, however,
that even when minimal-encapsulation tunneling is
enabled, the home agent still uses IP over IP
tunneling, unless the mobile node explicitly requests
GRE minimal-encapsulation tunneling.

Example:

“eth0=0; eth1=0”

Table 10-3 IPv4 Home Agent Build Parameters (cont’d)

Parameter (Workbench
description, macro, sysvar)

Default Value
and Data Type Description

10 Wind River Mobile IPv4: Home Agent
10.3 Build Components and Build Parameters

203

10

Interface Reverse
Tunneling

[MIPHA_IF_TUNNEL_
REVERSE_LIST]

sysvar:
ipha.if.if_name.reverse=
0_or_1

"1"

char *

Determines whether reverse tunneling on an interface
is disabled (0), optional (1), or required (2). If optional,
reverse tunneling is used if the node requests it. The
format for entries is:

“if_name=value;if_name=value;...”

By default, reverse tunneling on an interface is
optional (1).

Example:

“eth0=2; eth1=0;eth2=2”

Interface Tunnel
Reordering

[MIPHA_IF_TUNNEL_
REORDERING_LIST]

sysvar:
ipmipha.if.if_name.
reordering=0_or_1

[None]

char *

Enables (1) or disables (0) tunnel reordering for
individual interfaces. When enabled, packets are
guaranteed to be delivered in order for an any tunnel
type—such as GRE—that supports tunnel reordering.
The format for entries is:

if_name=value;if_name=value;...

Simultaneous bindings
support

[MIPHA_IF_SIMBIND_
ENABLED_LIST]

sysvar:
ipmipha.if.if_name.
simbind.enable==0_or_1

 "enabled"

char *

Either “enabled” or “disabled”. For individual
interfaces, determines whether the home agent
maintains multiple bindings for specified mobile
nodes across changes in care-of addresses. The format
for entries is:

if_name=value;if_name=value;...

If disabled on an interface, the home agent accepts
simultaneous binding registrations, but only
maintains the last one registered, and the registration
response is “accepted but no simultaneous bindings”.

Example:

"eth0=DISABLED;eth1=DISABLED"

Table 10-3 IPv4 Home Agent Build Parameters (cont’d)

Parameter (Workbench
description, macro, sysvar)

Default Value
and Data Type Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

204

10.3.2 Configuration Parameters for RADIUS Support

The following table lists the configuration parameters that belong to the IPv4
Home Agent AAA Radius Support (INCLUDE_IPMIPHA_AAA_RADIUS) build
component.

Max number of
simultaneous bindings

[MIPHA_IF_SIMBIND_
MAX_LIST]

sysvar:
ipmipha.if.if_name.
simbind.max=
max_bindings

"3"

char *

For interfaces that allow multiple simultaneous
bindings, this parameter specifies the maximum
number of simultaneous bindings individual
interfaces can maintain. The format for entries is:

if_name=value;if_name=value;...

Example:

"eth2=4;eth3=5"

Revocation Support

[MIPHA_IF_
REVOCATION_
ENABLED_LIST]

sysvar:
ipmipha.if.if_name.
revocation=0_or_1

[None]

char *

Enables (1) or disables (0) registration revocation on
individual interfaces. The format for entries is:

if_name=value;if_name=value;...

Example:

“eth0=1;eth2=2”

Table 10-3 IPv4 Home Agent Build Parameters (cont’d)

Parameter (Workbench
description, macro, sysvar)

Default Value
and Data Type Description

Table 10-4 IPv4 Home Agent AAA Radius Build Parameters

Parameter (Workbench
description, macro, sysvar)

Default Value
and Data Type Description

RADIUS Access Support

[MIPHA_AAA_RADIUS_
ACCESS]

sysvar:
ipmipha.aaa.radius.access
=”0_or_1”

"disabled"

char *

If set to “enabled”, the home agent uses RADIUS. By
default, RADIUS is not used.

10 Wind River Mobile IPv4: Home Agent
10.3 Build Components and Build Parameters

205

10

RADIUS Access server
address

[MIPHA_AAA_RADIUS_
ACCESS_ADDRESS]

sysvar:
ipmipha.aaa.radius.access
.
address=
”radius_server_address”

[None]

char *

The IP address of the RADIUS server to send access
requests to.

RADIUS Access server
port

[MIPHA_AAA_RADIUS_
ACCESS_PORT]

sysvar:
ipmipha.aaa.radius.access
.
port=”radius_server_port”

"1812"

char *

The port on the RADIUS server to send access requests
to.

RADIUS Access server
secret

[MIPHA_AAA_RADIUS_
ACCESS_SECRET]

sysvar:
ipmipha.aaa.radius.access
.
secret=”secret”

[None]

char *

The security secret to send to the RADIUS server for
enabling communication between the RADIUS server
and the home agent.

RADIUS Access Required

[MIPHA_AAA_RADIUS_
ACCESS_REQUIRE]

sysvar:
ipmipha.aaa.radius.access
.require=”true_or_false”

"false"

char *

If set to “true”, the mobile-node must use RADIUS and
include an MN-AAA authentication extension in its
registration request to the home agent. For information
on how a mobile-node authenticates itself to a home
agent using RADIUS, see RFC 4721, Mobile IPv4
Challenge/Response Extensions (Revised), which is a
revision of RFC 3012.

Table 10-4 IPv4 Home Agent AAA Radius Build Parameters (cont’d)

Parameter (Workbench
description, macro, sysvar)

Default Value
and Data Type Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

206

RADIUS Access Interval

[MIPHA_AAA_RADIUS_
ACCESS_TIME_
INTERVAL]

sysvar:

ipmipha.aaa.radius.access
.time_interval=0_or_1

“0” If set to “0”, the default, the home agent needs to renew
its authentication with the RADIUS server every time it
receives authentication credentials (such as an
MN-AAA authentication extension) from a mobile
node.

If a number greater than zero is entered, it sets the
time-interval, in seconds, after which the home agent
needs to renew its AAA authentication with the
RADIUS server. If the mobile node sends repeated
authentication credentials to the home agent, the home
agent does not need to reauthenticate itself to the
RADIUS server until the specified time interval has
elapsed.

RADIUS Accounting
Support

[MIPHA_AAA_RADIUS_
ACCOUNTING]

sysvar:
ipmipha.aaa.radius.
accounting=”0_or_1”

"disabled"

char *

If set to “enabled”, the foreign agent provides
accounting information about the mobile node to a
RADIUS server.

RADIUS Accounting
server address

[MIPHA_AAA_RADIUS_
ACCOUNTING_ADDRESS]

sysvar:
ipmipha.aaa.radius.
accounting.address=
“ip_address”

[None]

char *

The address of the RADIUS server to send accounting
information to.

Table 10-4 IPv4 Home Agent AAA Radius Build Parameters (cont’d)

Parameter (Workbench
description, macro, sysvar)

Default Value
and Data Type Description

10 Wind River Mobile IPv4: Home Agent
10.3 Build Components and Build Parameters

207

10

RADIUS Accounting
server port

[MIPHA_AAA_RADIUS_
ACCOUNTING_PORT]

sysvar:
ipmipha.aaa.radius.
accounting.port=”port”

"1813"

char *

The port to send RADIUS accounting information to.

RADIUS Accounting
server secret

[MIPHA_AAA_RADIUS_
ACCOUNTING_SECRET]

sysvar:
ipmipha.aaa.radius.
accounting.sec=”secret”

[None]

char *

The security secret to send to the RADIUS server for
accounting in order to enable communication between
the server and the foreign agent.

RADIUS local address

[MIPHA_AAA_RADIUS_
LOCAL_ADDRESS]

sysvar:
ipmipha.aaa.radius.local.a
ddress=”local_address”

[None]

char *

The IP address the foreign agent uses for all
communication with a RADIUS server.

RADIUS AAAH NAI

[MIPHA_AAA_RADIUS_
NAI]

sysvar:
ipmipha.aaa.radius.nai=
nai

[None]

char *

The AAAH NAI that the home agent appends to
registration replies, so that the mobile node knows
what AAAH server authenticated it. The mobile node
can append the AAAH NAI to all its subsequent
registration requests to ensure that the same AAA
server authenticates it through an entire session. The
AAAH NAI may be necessary if a number of AAA
servers are running for load balancing purposes.

Table 10-4 IPv4 Home Agent AAA Radius Build Parameters (cont’d)

Parameter (Workbench
description, macro, sysvar)

Default Value
and Data Type Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

208

10.3.3 Configuration Parameters for Diameter Support

Diameter is an enhanced AAA protocol based on RADIUS. It is described in
RFC 3588, Diameter Base Protocol.

The following table lists the configuration parameters that belong to the IPv4
Home Agent AAA DIAMETER Support (INCLUDE_IPMIPHA_AAA_DIAMETER)
build component.

Table 10-5 IPv4 Home Agent AAA DIAMETER Build Parameters

Parameter(Workbench
description, macro, sysvar)

Default Value
and Data Type Description

Diameter Access Support

[MIPHA_AAA_DIAMETER
_ACCESS]

sysvar:
ipmipha.aaa.diameter.
access=”0_or_1”

"disabled"

char *

If set to “enabled”, the foreign agent uses Diameter.
By default, Diameter is not used.

Diameter Access server
address

[MIPHA_AAA_DIAMETER
_
ACCESS_ADDRESS]

sysvar:
ipmipha.aaa.diameter.
access.address=
”radius_server_address”

[None]

char *

The IP address of the Diameter server to send access
requests to.

Diameter Access server port

[MIPHA_AAA_DIAMETER
_
ACCESS_PORT]

sysvar:
ipmipha.aaa.diameter.
access.port=
”radius_server_port”

"1812"

char *

The port on the Diameter server to send access
requests to.

10 Wind River Mobile IPv4: Home Agent
10.3 Build Components and Build Parameters

209

10

Diameter Access Required

[MIPHA_AAA_DIAMETER
_
ACCESS_REQUIRE]

sysvar:
ipmipha.aaa.diameter.
access.require=
”true_or_false”

"false"

char *

If set to “true”, the mobile-node must use Diameter
and include an MN-AAA authentication extension in
its registration request to the home agent. For
information on how a mobile-node authenticates
itself to a home agent using an MN-AAA
authentication extension, see RFC 4721, Mobile IPv4
Challenge/Response Extensions (Revised), a revision of
RFC 3012.

Diameter Access Time
Interval

[MIPHA_AAA_DIAMETER
_
ACCESS_ TIME_ INTERVAL]

sysvar:
ipmipha.aaa.diameter.
access.time_interval=seconds

“0” If set to “0”, the default, the home agent needs to
renew its authentication with the Diameter server
every time it receives authentication credentials
(such as an MN-AAA authentication extension) from
a mobile node.

If a number greater than zero is entered, it sets the
time-interval, in seconds, after which the home agent
needs to renew its AAA authentication with the
Diameter server. If the mobile node sends repeated
authentication credentials to the home agent, the
home agent does not need to reauthenticate itself to
the Diameter server until the specified time interval
has elapsed.

Diameter Destination
Realm

[MIPHA_AAA_DIAMETER
_ACCESS_REALM

sysvar:
ipmipha.aaa.diameter.
access.realm=realm

[None]

char *

The destination realm (domain) in the network access
identifier (NAI) the home agent sends to Diameter
servers when it makes an access request. The
destination realm is the segment of the NAI that
follows the “@” symbol.

An example of a realm is: windriver.com.

Table 10-5 IPv4 Home Agent AAA DIAMETER Build Parameters (cont’d)

Parameter(Workbench
description, macro, sysvar)

Default Value
and Data Type Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

210

10.4 Including the Home Agent in a Build

To include the home agent in a VxWorks build, you need to create a VxWorks
Image Project and include the IPv4 Home Agent (INCLUDE_IPMIPHA) build
component. In addition, to have access to shell commands for the home agent, you
need to include the IPv4 Home Agent IPCOM commands
(INCLUDE_IPMIPHA_CMD) build component. You can include these build
components in a build using either Workbench or the vxprj command-line utility.
For information on using Workbench to create a VxWorks Image Project and
include build components, see the Wind River Workbench User's Guide for VxWorks.
For information on using the vxprj command-line utility, see the VxWorks
Command-Line Tools User’s Guide.

Once you include the IPv4 Home Agent (INCLUDE_IPMIPHA) build component in
your build, you can set values for the static configuration parameters listed in
Table 10-3.

Diameter Destination
Hostname

[MIPHA_AAA_DIAMETER
_ACCESS_HOSTNAME

sysvar:
ipmipha.aaa.diameter.
access.hostname=name

[None]

char *

(Optional) A host name that is attached to all access
requests sent to a Diameter server. The host name
must be entered as a fully qualified domain name.
For example:

“thishost.windriver.com”

Table 10-5 IPv4 Home Agent AAA DIAMETER Build Parameters (cont’d)

Parameter(Workbench
description, macro, sysvar)

Default Value
and Data Type Description

10 Wind River Mobile IPv4: Home Agent
10.5 Shell Commands

211

10

10.5 Shell Commands

You can use home-agent shell commands to display information about current
mobile-node registrations, support for tunneling, and errors that have occurred at
the home agent.

Table 10-6 lists the home-agent shell commands.

Table 10-6 Mobile IPv4 Home Agent Shell Commands

Command Description

ha list Lists all mobile nodes currently registered with the
home agent and identifies the type of care-of address
used by the mobile node (co-located or not co-located),
the types of tunneling enabled, and whether NAT
traversal is in effect.

For sample output, see 10.5.1 Sample Output for the ha list
Shell Command, p.213.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

212

ha show [-v] [-a] [HoA_addr] [MN_NAI] Displays extended information about current
registrations according to the options entered:

-v
Verbose output; adds information about pending
registrations

-a
Gives extended information about all currently
registered nodes.

HoA_addr
If entered, displays information only for mobile
nodes with the specified home address.

MN_NAI
If entered, displays information only for the mobile
node with the specified network access identifier
(NAI).

For sample output, see 10.5.2 Sample Output for the ha
show Shell Command, p.213.

ha errors Lists the last 30 errors that have occurred at the home
agent. In general, most errors result from faulty
registration requests. For sample output, see
10.5.3 Sample Output for the ha errors Shell Command,
p.214.

Table 10-6 Mobile IPv4 Home Agent Shell Commands (cont’d)

Command Description

10 Wind River Mobile IPv4: Home Agent
10.5 Shell Commands

213

10

10.5.1 Sample Output for the ha list Shell Command

The ha list shell command lists all mobile nodes currently registered with the
home agent and gives status information about pending and completed
registrations, tunneling support, and whether NAT traversal is in effect. Status
information is provided as follows:

The following is sample output:

>ha list
Home Address Care of Address Interface Lifetime Flags
192.168.1.20 192.168.1.40 vlan133 20/30 BTD

10.5.2 Sample Output for the ha show Shell Command

The ha show shell command displays information about current registrations,
based on the command options entered. The following is sample output:

>ha show -v -a
192.168.1.20:
Creation : May 02 12:54:54
Interface : vlan133
Mobile NAI : mn-mip-test@windriver.com
Home Agent NAI: ha-mip-test@windriver.com
AAAH NAI : aaah-mip-test@windriver.com
Binding 192.168.1.40:
Creation : May 02 12:54:54
Last updated : May 02 12:54:54
Lifetime requested: 30
Lifetime remaining: 17
Mode : co-located
Broadcast : yes
Reverse tunnel : yes
SPI MH : 1000
Tunnel type : IPIP
Nat traversal : no

Symbol Description

B Accepts broadcasts on behalf of the mobile node.
D Mobile node uses co-location mode.
G GRE tunneling supported.
M Minimal Encapsulation within IP tunneling supported.
T Reverse tunneling is enabled.
* NAT Traversal is in effect.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

214

10.5.3 Sample Output for the ha errors Shell Command

The ha error shell command lists the most recent errors (up to 30) that have
occurred at the home agent. The following is sample output:

>ha errors
May 02 13:02:39: [code=131 src=192.168.1.40 if=vlan133 coa=192.168.1.4]
mobile-home extension failed authentication

10.6 Testing the Home Agent

This section provides an example showing how you can test the home agent. It
requires the following components:

■ Home agent
■ Mobile node
■ Correspondent node
■ A home network for the mobile node and home agent
■ A foreign network for the mobile node (when it is away from home)
■ A router

Figure 10-1 shows a test configuration with these elements and sample IP
addresses.

If the mobile node has two interfaces, you can use the first interface as the active
mobile IP interface and you can use the second interface to telnet to the mobile
node and execute shell commands and perform debugging.

10 Wind River Mobile IPv4: Home Agent
10.6 Testing the Home Agent

215

10

To test the home agent:

1. Set configuration parameters for the mobile node and home agent. For almost
all parameter values, you can use the installed default values.

For sample configuration settings, see:

■ 10.6.1 Mobile-Node Test Configuration, p.216

■ 10.6.2 Home-Agent Test Configuration, p.218

2. To test the mobile node’s ability to detect when it is home or on a foreign link,
move the mobile node’s network cable between the home network and the
foreign network.

By default, the mobile node’s network interface is set to eth0.

When you move the cable, the mobile node should automatically detect when
it is home or on the foreign network by listening to the router advertisements
sent by the home agent and the foreign agent.

Figure 10-1 Home-Agent Test Configuration with Sample IP Addresses

Router

Correspondent
10.1.2.180

Node
Home Agent Mobile Node

10.1.1.2.181

10.1.2.40

Home Network: 10.1/16

(home address)

Mobile Node

Foreign Network: 10.130/16

10.130.1.99
(Care-of Address)

10.1.2.42

10.130.1.1

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

216

3. When the mobile node moves to the foreign network, to trigger the mobile
node’s detection of the new network and to verify that the mobile node
receives a new care-of address:

a. Change the IP address assigned to the mobile node’s network interface
using shell commands as in the following example:

ifconfig eth0 inet delete 10.1.2.181
ifconfig eth0 inet add 10.130.1.99

b. Change the default route (home gateway) used by the mobile node:

route delete default 10.1.1.1
route add default 10.130.1.1

If the mobile node has two interfaces, you can maintain the node’s mobile IP
connections by using the mobile node’s first interface (eth0, in the example) for
mobile IP and telnetting to the mobile node’s second interface for executing
shell commands.

Note that when the mobile node returns to its home network, you do not need
to reconfigure it using shell commands. When the mobile node receives router
advertisements from the home agent, it automatically resets its IP address,
netmask, and default gateway to conform to the home agent.

10.6.1 Mobile-Node Test Configuration

In keeping with Figure 10-1, the following are sample configuration settings for
the mobile node:

Table 10-7 Test Configuration for the Mobile Node

Parameter Value

Mobile Node Interface

[MIPMN_IFNAME]

“eth0”

Home agent IPv4 address

[MIPMN_HOME_AGENT]

“10.1.2.180”

Home address

[MIPMN_HOME_ADDRESS]

“10.1.2.181”

10 Wind River Mobile IPv4: Home Agent
10.6 Testing the Home Agent

217

10

Home netmask

[MIPMN_HOME_MASK]

"255.255.0.0"

Home gateway

[MIPMN_HOME_GATEWAY]

"10.1.1.1"

Router solicitation address

[MIPMN_SOL_ADDRESS]

"224.0.0.11"

Home agent shared secret

[MIPMN_HA_AUTH_SECRET]

“test0”

Home agent SPI

[MIPMN_HA_AUTH_SPI]

“1000”

Registration lifetime

[MIPMN_REG_LIFETIME]

“30”

Receive broadcasts

[MIPMN_RECV_BROADCASTS]

“1”

Tunnel type

[MIPMN_TUNNEL_TYPE]

“ipip”

Reverse tunneling

[MIPMN_REVERSE_TUNNELING]

“1”

Table 10-7 Test Configuration for the Mobile Node (cont’d)

Parameter Value

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

218

10.6.2 Home-Agent Test Configuration

In keeping with Figure 10-1, the following are sample configurations for the home
agent:

Table 10-8 Test Configuration for the Home Agent

Parameter Value

Home agent Interface list

[MIPHA_IFNAME_LIST]

“eth0”

Home agent interface address

[MIPHA_IF_HOME_ADDRESS_
LIST]

“10.1.2.180”

Home agent netmask

[MIPHA_IF_HOME_MASK_LIST]

“255.2255.0.0”

Advertisement interval

[MIPHA_IF_ADV_INTERVAL_LIST]

“3”

Router advertisement lifetime

[MIPHA_IF_ADV_LIFETIME_LIST]

“300”

Interface default SPI list

[MIPHA_SPI_LIST]

“test0”

Router advertisement lifetime

[MIPHA_IF_ADV_LIFETIME_LIST]

“30”

219

 11
Wind River Mobile IPv4:

Foreign Agent

11.1 Introduction 219

11.2 Low-latency handoffs 220

11.3 Conformance to Standards 221

11.4 Build Components and Build Parameters 223

11.5 Including the Foreign Agent in a Build 242

11.6 Shell Commands 243

11.7 Testing the Foreign Agent 247

11.1 Introduction

This chapter describes the Wind River implementation of a foreign agent for IPv4.
For a general overview of Mobile IP see 8. Wind River Mobile IP: Overview.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

220

11.2 Low-latency handoffs

The Wind River Mobile IPv4 foreign agent supports low-latency handoffs as
described in the IETF Internet-Draft Low Latency Handoffs in Mobile IPv4. The draft
proposes three ways of reducing delays in registering a new care-of address when
the mobile node moves from one foreign agent (the “old” foreign agent) to another
foreign agent (the “new” foreign agent):

■ Pre-registration handoff

This approach allows the mobile node to communicate with a new foreign
agent in order to obtain a new care-of address while it is still connected to the
old foreign agent.

■ Post-registration handoff

This allows data to be delivered to the mobile node at a new foreign agent
before the process of registering the mobile node’s new care-of address has
completed. Data is delivered using bidirectional tunneling between the old
and the new foreign agents.

■ Combined handoff

In this case, the pre-registration and post-registration handoffs are carried out
in parallel.

The current implementation supports all three methods.

Layer-2 Triggers

Low-latency handoffs are performed through the use of layer-2 (L2) triggers. An
L2 trigger occurs at a foreign agent (one type of L2 trigger also occurs at a mobile
node) and provides information from layer 2 to layer 3 about the current location
or status of the mobile node either before or after a handoff occurs. The draft
specification defines four types of L2 triggers:

■ L2-ST (source trigger)

Occurs at the old foreign agent, informing it that the mobile node is moving to
a new foreign agent and that an L2 handoff (a connection to a foreign link) is
about to occur.

■ L2-TT (target trigger)

Occurs at the new foreign agent, informing it that a mobile node is about to be
handed off to it.

■ L2-LD (link down)

11 Wind River Mobile IPv4: Foreign Agent
11.3 Conformance to Standards

221

11

Occurs at the old foreign agent, informing it that the L2 connection between it
and the mobile node is broken.

■ L2-LU (link up)

Occurs at the new foreign agent informing it that an L2 link between it and the
mobile node is established. (Can also occur at the mobile node, informing it
that an L2 link to the foreign agent is established.)

11.3 Conformance to Standards

The Wind River foreign agent for IPv4 implements relevant features of a number
of RFCs. The following table lists the RFCs and identifies those features of an RFC
that are not supported.

Table 11-1 Primary RFCs Used in Implementing the Wind River Foreign Agent

RFC Comments

RFC 2003, IP Encapsulation within IP Always enabled.

RFC 2004, Minimal Encapsulation within IP Enabled through a user-configuration option.

RFC 2005, Applicability Statement for IP
Mobility Support

RFC 2784, Generic Routing Encapsulation
(GRE)

Enabled through a user-configuration option.

RFC 2794, Mobile IP Network Access Identifier
Extension for IPv4

The foreign agent requires a mobile network access
identifier (NAI) to be present when dynamic home
agent assignment or dynamic home address
assignment is in effect.

RFC 3012, Mobile IPv4 Challenge/Response
Extensions

Currently only CHAP is supported in MN-AAA
authentication.

See also RFC 4721, Mobile IPv4 Challenge/Response
Extensions (Revised), which is a revision of RFC
3012.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

222

RFC 3024, Reverse Tunneling for Mobile IP,
revised

Enabled through a user-configuration option. The
following feature is not supported:

Encapsulating Delivery Style (see Section 5.2 of the
RFC).

RFC 3344, IP Mobility Support for IPv4 The main RFC for IPv4 mobility support.

RFC 3519, Mobile IP Traversal of Network
Address Translation (NAT) Devices

Enabled through a user-configuration option.

RFC 3588, Diameter Base Protocol. Use of Diameter is enabled through a
user-configuration option. Portions of the protocol
that apply to Mobile IPv4 are supported, with the
exception of Accounting.

RFC 3846, Mobile IPv4 Extension for Carrying
Network Access Identifiers

RFC 4004, Diameter Mobile IPv4 Application Enabled through a user-configuration option.

RFC 4721, Mobile IPv4 Challenge/Response
Extensions (Revised)

RFC 4721 updates RFC 3012.

Currently only CHAP is supported in MN-AAA
authentication.

IETF draft, Low Latency Handoffs in Mobile
IPv4

For a brief description of low-latency handoff
methods, see 11.2 Low-latency handoffs, p.220.

Table 11-1 Primary RFCs Used in Implementing the Wind River Foreign Agent (cont’d)

RFC Comments

11 Wind River Mobile IPv4: Foreign Agent
11.4 Build Components and Build Parameters

223

11

11.4 Build Components and Build Parameters

When you build VxWorks and the network stack, there are four build components
for the Mobile IPv4 foreign agent:

Presentation and Formatting of Parameters in Tables

The sections that follow present tables of configuration parameters. For each
configuration parameter, the tables give the corresponding Workbench
description, macro name, and sysvar (for general information about sysvars, see

Table 11-2 Foreign Agent Build Components

Workbench Name Macro Name Description

IPv4 Foreign Agent INCLUDE_IPMIPFA The primary foreign-agent build
component. Always required.

For information on the configuration
parameters for this component, see
11.4.1 Configuration Parameters for the IPv4
Foreign Agent Build Component, p.225.

IPv4 Foreign Agent
IPCOM commands

INCLUDE_IPMIPFA_CMD This component provides access to shell
commands for the foreign agent. For more
information, see 11.6 Shell Commands, p.243.

IPv4 Foreign Agent AAA
Radius Support

INCLUDE_IPMIPFA_AAA
_RADIUS

This component provides authentication,
authorization, and accounting (AAA)
support for RADIUS.

For information on the configuration
parameters for this component, see
11.4.2 Configuration Parameters for RADIUS
Support, p.236.

IPv4 Foreign Agent AAA
DIAMETER Support

INCLUDE_IPMIPFA_AAA
_DIAMETER

This component provides authentication,
authorization, and accounting (AAA)
support for DIAMETER.

For information on DIAMETER and the
configuration parameters for this
component, see 11.4.3 Configuration
Parameters for Diameter Support, p.239.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

224

sysvar, p.48). Note the following characteristics of parameters and parameter
values:

■ All parameters are entered as strings.

■ Most parameters allow a semicolon-separated list of entries in the following
format:

“item=value;item=value;...”

The following is an example (see the table entry for foreign-home
authentication SPIs list):

“10.1.2.42=1001;10.3.4.5=1003;10.3.4.111=1004”

■ If a static configuration parameter accepts a list of entries, you can use the
corresponding sysvar shell command multiple times to enter parameter
values.

For example, the following sequence of shell commands accomplishes the
same thing as the foreign-home authentication SPIs list parameter in the
preceding bullet item:

sysvar ipmipfa.ha.spi.10.1.2.42 “1001”
sysvar ipmipfa.ha.spi.10.3.4.5 “1003”
sysvar ipmipfa.ha.spi.10.3.4.111 “1004”

■ There is no default value for a parameter that allows a list of entries, but in
many cases, there is a default value for the value side of an item=value pair. In
such cases, this is the value shown in the “Default Value” column of the table.

For example, the RtAdv interval (MIPFA_IF_ADV_INTERVAL_LIST)
parameter allows you to list individual interfaces and time intervals for
sending router advertisements on them. By default, router advertisements are
sent on an interface every 10 seconds. Therefore, the “Default Value” column
shows “10”, and you do not need to list interfaces that use the default interval.

■ The only parameter that allows a list of entries and does not separate entries
using a semicolon is Foreign agent Interface (MIPFA_IFNAME_LIST).

Entries for Foreign agent Interface are space separated, as in the following
example:

“eth0 eth1 vlan100”

11 Wind River Mobile IPv4: Foreign Agent
11.4 Build Components and Build Parameters

225

11

11.4.1 Configuration Parameters for the IPv4 Foreign Agent Build Component

The following table lists the configuration parameters that belong to the IPv4
Foreign Agent (INCLUDE_IPMIPFA) build component.

Table 11-3 IPv4 Foreign Agent Build Parameters

Parameter (Workbench
description, macro, sysvar)

Default Value
and Data Type Description

Foreign agent Interface

[MIPFA_IFNAME_LIST]

sysvar:
ipmipfa.interfaces=
”if_name”

“eth0”

char *

Specifies the network interfaces available to the
foreign agent. Enter interfaces as a string of
space-separated interface names. The following are
examples:

“eth1”
“etho eth1 vlan100”

Registration lifetime

[MIPFA_REG_LIFETIME]

sysvar:
ipmipfa.reg_lifetime=
”seconds”

“10”

char *

Specifies the length of time, in seconds, that a mobile
node’s registration is maintained. If the mobile node
does not reregister its foreign address within this
time, the foreign agent drops the registration.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

226

Foreign - Home security
association list

[MIPFA_HA_SA_
ADDRESS_LIST]

sysvar:
ipmipfa.ha.sa.address.
network[/prefix]= spi

[None]

char *

 Specifies the security associations to use between the
foreign agent and a home agent, in the following
format:

“ha_address[/prefix]=SPI;ha_address[/prefix]=SPI;
...”

If ha_address is set to any, the specified SPI applies to
all home agents.

Examples

■ The following setting enables authentication
using SPI 1002 between this foreign agent and the
home agent with IP address 10.1.2.42:

"10.1.2.42=1002"

■ The following enables authentication using SPI
1002 between this foreign agent and all home
agents:

"any=1002"

■ The following specifies that all home agents on
the 10.1.2.0/24 network are to use SPI 1004.

"10.1.2.0/24=1004"

Foreign - Home security
association reverse lookup

[MIPFA_HA_SA_
LOOKUP_REQUIRE]

sysvar:
ipmipfa.ha.sa.lookup.
required=0_or_1

“0”

char

If set to “1”, requires the foreign agent to reverse
lookup the SPI a home agent presents for use and
verify that it is correct.

Table 11-3 IPv4 Foreign Agent Build Parameters (cont’d)

Parameter (Workbench
description, macro, sysvar)

Default Value
and Data Type Description

11 Wind River Mobile IPv4: Foreign Agent
11.4 Build Components and Build Parameters

227

11

Foreign - Foreign security
association list

[MIPFA_FA_SA_
ADDRESS_LIST]

sysvar:
ipmipfa.fa.sa.address.
network[/prefix] = spi

[None]

char *

Specifies the security associations to use between this
foreign agent and other foreign agents, in the
following format:

“other_fa_address[/prefix]=SPI;other_fa_address
[/prefix]=SPI;...”

If fa_address is set to any, the specified SPI applies to
all foreign agents.

Examples:

■ The following setting enables authentication
using SPI 1002 between this foreign agent and the
foreign agent with IP address 10.1.2.42:

"10.1.2.42=1002"

■ The following enables authentication using SPI
1002 between this foreign agent and all foreign
agents:

"any=1002"

■ The following specifies that all foreign agents on
the 10.1.2.0/24 network are to use SPI 1004.

"10.1.2.0/24=1004"

SPI-Secret list

[MIPFA_SPI_SECRET_
LIST]

sysvar:
ipmipfa.spi.spi.secret=
”secret”

“1000=test0;
1001=”test1”

char *

Specifies the secrets to use with SPIs. An individual
SPI can be associated with only one secret. Enter SPIs
and secrets using the following format:

SPI=secret;SPI=secret;...

A secret can be up to 16 bytes in length.

The following are examples:

"1000=terces1"
"1000=terces1;1001=circes2;1200=x_z"

By default, SPI 1000 is set to test0 and SPI 1001 is set
to test1.

Table 11-3 IPv4 Foreign Agent Build Parameters (cont’d)

Parameter (Workbench
description, macro, sysvar)

Default Value
and Data Type Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

228

Interface FA address

[MIPFA_IF_ADDRESS_
LIST]

sysvar:
ipmipfa.if.if_name.adv_
address=”addr”

“0.0.0.0”

char *

Specifies interface-IP address pairings for the foreign
agent, in the following format:

“if_name=address;if_name=address;...”

■ If address is set to 0.0.0.0, the IP address for the
interface is read at boot time.

■ If address is set to 255.255.255.255, no router
advertisements are sent on the interface, but
registration responses to requests sent by the
foreign agent are processed.

Examples:

“eth0=10.1.1.5;eth1=255.255.255.255;”

RtAdv interval

[MIPFA_IF_ADV_
INTERVAL_LIST]

sysvar:
ipmipfa.if.if_name.adv_
interval=”seconds”

“10”

char *

Specifies the intervals, in seconds, at which the
foreign agent sends router advertisements on
individual interfaces, in the following format:

“if_name=seconds;if_name=seconds;...”

If the time interval for an interface is set to 0, the
foreign agent does not send router advertisements on
the interface (and no other router-advertisement
parameters need to be set for the interface).

RFC 3344 suggests a time interval that is about a third
of the ICMP router advertisement lifetime. The
interval can be set to 0 or to a high value if it can be
expected that mobile nodes have other means, such as
wireless access points, of detecting their entry on a
new subnet.

Example:

“eth0=6; eth1=12;eth2=30”

Table 11-3 IPv4 Foreign Agent Build Parameters (cont’d)

Parameter (Workbench
description, macro, sysvar)

Default Value
and Data Type Description

11 Wind River Mobile IPv4: Foreign Agent
11.4 Build Components and Build Parameters

229

11

RtAdv destination IP
address

[MIPFA_IF_ADV_
ADDRESS_LIST]

sysvar:
ipmipfa.if.interface.adv_
address=”addr”

[None]

char *

Specifies the multicast destination address for router
advertisements sent from individual interfaces. In the
current release, the destination address for each
interface must always be set to 224.0.0.11, as in the
following example:

"eth0=224.0.0.11;eth1=224.0.0.11"

RtAdv lifetime

[MIPFA_IF_ADV_
LIFETIME_LIST]

sysvar:
ipmipha.if.<if_name>.
adv_lifetime=”seconds”

“300’

char *

Specifies the lifetime, in seconds, of router
advertisements sent from individual interfaces, in the
following format:

“if_name=seconds;if_name=seconds;...”

Example:

"eth0=350;eth1=250"

Interface Challenge

[MIPFA_IF_CHALLENGE
_LIST]

sysvar:
ipmipha.if.if_name.
challenge=”0_or_1”

“1”

char *

If set to “0”, disables interfaces from sending
authentication challenges to mobile nodes (see RFC
3012, Mobile IPv4 Challenge/Response Extensions). The
format for entries is:

“if_name=0;if_name=0;...”

By default, interfaces are enabled (if_name=1) to send
challenges.

Example:

“eth0=0;eth1=0”

Table 11-3 IPv4 Foreign Agent Build Parameters (cont’d)

Parameter (Workbench
description, macro, sysvar)

Default Value
and Data Type Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

230

Interface Mobile Node
authentication

[MIPFA_IF_MN_AUTH_
ENABLED_LIST]

sysvar:
ipmipha.if.if_name.mn
_auth=”0_or_1”

“0”

char *

If set to “1”, enables interfaces to require
authentication between a mobile node and the foreign
agent. The format for entries is:

“if_name=1;if_name=1;...”

By default, interfaces are disabled (if_name=0) from
requiring authentication.

Example:

“eth0=1;eth1=1”

Enable pre-registration

[MIPFA_IF_LLH_PRE_
ENABLED_LIST]

sysvar:
ipmipha.if.<if_name>.llh.
pre.enable=”0_or_1”

“1”

char *

If set to “0”, disables pre-registration low-latency
handoffs on an interface (see 11.2 Low-latency handoffs,
p.220). The format for entries is:

“if_name=0;if_name=0;...”

By default, interfaces are enabled (if_name=1) to use
low-latency handoffs.

Example:

“eth0=0;eth1=0”

Enable post-registration

[MIPFA_IF_LLH_POST_
ENABLED_LIST]

sysvar:
ipmipha.if.if_name.llh.
post.enable=”0_or_1”

“0”

char *

If set to “1”, enables post-registration low-latency
handoffs on an interface (see 11.2 Low-latency handoffs,
p.220). The format for entries is:

“if_name=1;if_name=1;...”

By default, interfaces are disabled (if_name=0) from
using post-registration low-latency handoffs.

Example:

“eth0=1;eth1=1”

Table 11-3 IPv4 Foreign Agent Build Parameters (cont’d)

Parameter (Workbench
description, macro, sysvar)

Default Value
and Data Type Description

11 Wind River Mobile IPv4: Foreign Agent
11.4 Build Components and Build Parameters

231

11

BET registration lifetime

[MIPFA_IF_LLH_BET_
LIFETIME_LIST]

sysvar:
ipmipha.if.interface.llh.
post.bet_lifetime=
”seconds”

“5”

char *

For post-registration low-latency handoffs, specifies
the desired lifetime, in seconds, of the bidirectional
edge tunnel (BET) between this foreign agent and
another foreign agent (see IETF draft, Low Latency
Handoffs in Mobile IPv4). The lifetime two foreign
agents negotiate is the length of time the foreign
agents are able to communicate through the BET
tunnel. The BET registration lifetime is used as the
default lifetime when the lifetime of a BET is being
extended. The format for entries is:

“if_name=seconds;if_name=seconds;...”

By default, the BET registration lifetime on an
interface is 5 seconds.

Example:

"eth0=10;eth1=7"

Low Latency Handoff
neighbor address

[MIPFA_LLH_NBR_IP_
LIST]

sysvar:
ipmipfa.llh.neighbor.ip.
address[/prefix]=
sol_interval/adv_timeout

[None]

char *

Lists the neighboring foreign agents that can take part
in low-latency handoffs with this foreign agent and
gives the router-solicitation intervals and
neighbor-advertisement timeouts to use with them.
The format for entries is:

“neighbor_ip=address,sol_interval/adv_timeout;
neighbor_ip=address,sol_interval/adv_timeout;...”

■ You can enter any as an address, in which case
any foreign agent that responds to neighbor
solicitations from this foreign agent can take part
in low-latency handoffs.

Example:

"10.1.2.45=10/20;10.2.2.0/24=20/40"

Table 11-3 IPv4 Foreign Agent Build Parameters (cont’d)

Parameter (Workbench
description, macro, sysvar)

Default Value
and Data Type Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

232

Low Latency Handoff
neighbor BSSID

[MIPFA_LLH_NBR_
BSSID_LIST]

sysvar:
ipmipfa.llh.neighbor.ap.
bssid =ip_address

[None]

char *

Maps access-point numeric IDs (BSSIDs; Basic Service
Set Identifiers) to the corresponding IP addresses of
access points. This mapping is necessary for mobile
nodes that are able to obtain the BSSID of a new access
point but not the IP address of the new foreign agent
they are moving to. The format for entries is:

“BSSID=IP_address;BSSID=IP_address;...”

Example:

"1111=10.1.2.45;1112=10.2.2.1"

Enable NAT-T

[MIPFA_IF_NAT_T_
ENABLED_LIST]

sysvar:
ipmipfa.if.if_name.nat_t.
enable=”0_or_1”

“1”

char *

If set to “0”, disables NAT Traversal on interfaces (see
RFC 3519, Mobile IP Traversal of Network Address
Translation (NAT) Devices). The format for entries is:

“if_name=0;if_name=0;...”

By default, NAT Traversal on an interface is enabled
(if_name=1).

Example:

“eth0=0; eth1=0”

Enable forced NAT-T

[IMIPFA_IF_FORCED_
NAT_T_ENABLED_LIST]

sysvar:
ipmipfa.if.if_name.nat_t.
forced=”0_or_1”

“0”

char *

If set to “1”, enables forced NAT traversal on
interfaces (see RFC 3519, Mobile IP Traversal of Network
Address Translation (NAT) Devices), even if the mobile
node’s home agent does not detect that a Registration
Request has passed through a NAT. The format for
entries is:

“if_name=1;if_name=1;...”

By default, forced NAT Traversal on an interface is
disabled (if_name=0).

Example:

“eth0=1; eth1=1”

Table 11-3 IPv4 Foreign Agent Build Parameters (cont’d)

Parameter (Workbench
description, macro, sysvar)

Default Value
and Data Type Description

11 Wind River Mobile IPv4: Foreign Agent
11.4 Build Components and Build Parameters

233

11

NAT-T keepalive

[MIPFA_IF_NAT_T_
KEEPALIVE_LIST]

sysvar:
ipmipfa.if.if_name.nat_t.
keepalive=”seconds”

“120”

char *

For individual interfaces, specifies the keep-alive time
interval, in seconds, to use for NAT-Traversal ICMP
keep-alive messages. The keep-alive time interval is
used to maintain a NAT UDP port mapping. The
format for entries is:

“if_name=seconds;if_name=seconds;...”

Example:

“eth0=135; eth1=100”

Interface Reverse
Tunneling

[MIPFA_IF_TUNNEL_
REVERSE_LIST]

sysvar:
ipmipha.if.if_name.tunnel.
reverse=”0_1_or_2”

“1”

char *

Determines whether reverse tunneling on an interface
is disabled (0), optional (1), or required (2). If optional,
reverse tunneling is used if the node requests it. The
format for entries is:

“if_name=value;if_name=value;...”

By default, reverse tunneling on an interface is
optional (1).

Example:

“eth0=2; eth1=0;eth2=2”

Interface IPIP tunneling

[MIPFA_IF_IPIP_
TUNNEL_ENABLED_LIST]

sysvar:
ipmipfa.if.interface_name.
tunnel.ipip=0_or_1

“1”

char *

If set to “0”, disables the use of IPIP tunneling (IP-
Encapsulation-within-IP tunneling; see RFC 2003) on
individual interfaces. By default, IPIP tunneling is
enabled on an interface.

The format for entries is:

“if_name=0;if_name=0;...”

Example:

“eth0=0; eth1=0”

Table 11-3 IPv4 Foreign Agent Build Parameters (cont’d)

Parameter (Workbench
description, macro, sysvar)

Default Value
and Data Type Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

234

Interface GRE tunneling

[MIPFA_IF_GRE_
TUNNEL_ENABLED_LIST]

sysvar:
ipmipha.if.if_name.tunnel.
gre=0_or_1

“1”

char *

If set to “0”, disables the use of Generic Routing
Encapsulation (GRE tunneling on individual
interfaces (see RFC 2784). By default, GRE tunneling
is enabled on an interface.

The format for entries is:

“if_name=0;if_name=0;...”

Note that even when GRE tunneling is enabled, the
foreign agent still uses IP-over-IP tunneling, unless
the mobile node explicitly requests GRE tunneling.

Example:

“eth0=0; eth1=0”

Interface MIN Encap
tunneling

[MIPFA_IF_MINENC_
TUNNEL_ENABLED_LIST]

sysvar:
ipmipha.if.if_name.tunnel.
minenc=”0_or_1”

“1”

char *

If set to “0”, disables the use of
Minimal-Encapsulation-within-IP tunneling on
individual interfaces (see RFC 2004). By default,
Minimal-Encapsulation-within-IP tunneling is
enabled on an interface.

The format for entries is:

“if_name=0;if_name=0;...”

Note that even when minimal-encapsulation
tunneling is enabled, the foreign agent still uses
IP-over-IP tunneling, unless the mobile node
explicitly requests GRE minimal-encapsulation
tunneling.

Example:

“eth0=0; eth1=0”

Table 11-3 IPv4 Foreign Agent Build Parameters (cont’d)

Parameter (Workbench
description, macro, sysvar)

Default Value
and Data Type Description

11 Wind River Mobile IPv4: Foreign Agent
11.4 Build Components and Build Parameters

235

11

Interface Tunnel
Reordering

[MIPFA_IF_TUNNEL_
REORDERING_LIST]

sysvar:
ipmipfa.if.interface_name.
reordering=”0_or_1”

[None]

char *

Enables (“1”) or disables (“0”) tunnel reordering for
individual interfaces. When enabled, packets are
guaranteed to be delivered in order for any tunnel
type—such as GRE—that supports tunnel reordering.
The format for entries is:

if_name=value;if_name=value;...

Revocation Support

[MIPFA_IF_
REVOCATION_ENABLED_
LIST]

sysvar:
ipmipfa.if.if_name.
revocation=”0_or_1”

[None]

char *

Enables (“1”) or disables (“0”) registration revocation
on individual interfaces. The format for entries is:

if_name=value;if_name=value;...

Example:

“eth0=1;eth2=2”

Revocation Inform
configuration Support

[MIPFA_IF_
REVOCATION_INFORM_
LIST]

sysvar:
ipmipfa.if.if_name.
revocation.inform=
”0_1_or_2”

[None]

char *

Lists interfaces and for each interface, determines
whether a mobile node is informed of a registration
revocation. The following notification options are
available:

■ 0 (the mobile node is never notified)

■ 1 (the foreign agent leaves it to the home agent to
decide on whether the mobile node is notified)

■ 2 (the foreign agent always notifies the mobile
node)

The format for entries is:

if_name=value;if_name=value;...

Example:

“eth0=1;eth1=0;eth3=2”

Table 11-3 IPv4 Foreign Agent Build Parameters (cont’d)

Parameter (Workbench
description, macro, sysvar)

Default Value
and Data Type Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

236

11.4.2 Configuration Parameters for RADIUS Support

The following table lists the configuration parameters that belong to the IPv4
Foreign Agent AAA Radius Support (INCLUDE_IPMIPFA_AAA_RADIUS) build
component.

Table 11-4 IPv4 Foreign Agent AAA Radius Build Parameters

Parameter
(Workbench, Macro, Sysvar)

Default Value
and Data Type Description

RADIUS Access Support

[MIPFA_AAA_RADIUS_
ACCESS]

sysvar:
ipmipfa.aaa.radius.access
=”0_or_1”

"disabled"

char *

If set to “enabled”, the foreign agent uses RADIUS. By
default, RADIUS is not used.

RADIUS Access server
address

[MIPFA_AAA_RADIUS_
ACCESS_ADDRESS]

sysvar:
ipmipfa.aaa.radius.access.
address=
”radius_server_address”

[None]

char *

The IP address of the RADIUS server to send access
requests to.

RADIUS Access server
port

[MIPFA_AAA_RADIUS_
ACCESS_PORT]

sysvar:
ipmipfa.aaa.radius.access.
port=”radius_server_port”

"1812"

char *

The port on the RADIUS server to send access requests
to.

11 Wind River Mobile IPv4: Foreign Agent
11.4 Build Components and Build Parameters

237

11

RADIUS Access server
secret

[MIPFA_AAA_RADIUS_
ACCESS_SECRET]

sysvar:
ipmipfa.aaa.radius.access.
secret=”secret”

[None]

char *

The security secret to send to the RADIUS server for
enabling communication between the RADIUS server
and the foreign agent.

RADIUS Access Required

[MIPFA_AAA_RADIUS_
ACCESS_REQUIRE]

sysvar:
ipmipfa.aaa.radius.access.
require=”true_or_false”

"false"

char *

If set to “true”, the mobile-node must use RADIUS and
include an MN-AAA authentication extension in its
registration request to the foreign agent. For
information on how a mobile-node authenticates itself
to a foreign agent using RADIUS, see RFC 4721, Mobile
IPv4 Challenge/Response Extensions (Revised), which is a
revision of RFC 3012.

RADIUS Access Interval

[MIPFA_AAA_RADIUS_
ACCESS_TIME_
INTERVAL]

sysvar:

ipmipfa.aaa.radius.access.
time_interval=0_or_1

“0” If set to “0”, the default, the foreign agent needs to
renew its authentication with the RADIUS server every
time it receives authentication credentials (such as an
MN-AAA authentication extension) from a mobile
node.

If a number greater than zero is entered, it sets the
time-interval, in seconds, after which the foreign agent
needs to renew its AAA authentication with the
RADIUS server. If the mobile node sends repeated
authentication credentials to the foreign agent, the
foreign agent does not need to reauthenticate itself to
the RADIUS server until the specified time interval has
elapsed.

Table 11-4 IPv4 Foreign Agent AAA Radius Build Parameters (cont’d)

Parameter
(Workbench, Macro, Sysvar)

Default Value
and Data Type Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

238

RADIUS Accounting
Support

[MIPFA_AAA_RADIUS_
ACCOUNTING]

sysvar:
ipmipfa.aaa.radius.
accounting=”0_or_1”

"disabled"

char *

If set to “enabled”, the foreign agent provides
accounting information about the mobile node to a
RADIUS server.

RADIUS Accounting
server address

[MIPFA_AAA_RADIUS_
ACCOUNTING_ADDRESS]

sysvar:
ipmipfa.aaa.radius.
accounting.address=
“ip_address”

[None]

char *

The address of the RADIUS server to send accounting
information to.

RADIUS Accounting
server port

[MIPFA_AAA_RADIUS_
ACCOUNTING_PORT]

sysvar:
ipmipfa.aaa.radius.
accounting.port=”port”

"1813"

char *

The port to send RADIUS accounting information to.

RADIUS Accounting
server secret

[MIPFA_AAA_RADIUS_
ACCOUNTING_SECRET]

sysvar:
ipmipfa.aaa.radius.
accounting.sec=”secret”

[None]

char *

The security secret to send to the RADIUS server for
accounting in order to enable communication between
the server and the foreign agent.

Table 11-4 IPv4 Foreign Agent AAA Radius Build Parameters (cont’d)

Parameter
(Workbench, Macro, Sysvar)

Default Value
and Data Type Description

11 Wind River Mobile IPv4: Foreign Agent
11.4 Build Components and Build Parameters

239

11

11.4.3 Configuration Parameters for Diameter Support

Diameter is an enhanced AAA protocol based on RADIUS. It is described in
RFC 3588, Diameter Base Protocol.

The following table lists the configuration parameters that belong to the IPv4
Foreign Agent AAA DIAMETER Support
(INCLUDE_IPMIPFA_AAA_DIAMETER) build component.

RADIUS local address

[MIPFA_AAA_RADIUS_
LOCAL_ADDRESS]

sysvar:
ipmipfa.aaa.radius.local.a
ddress=”local_address”

[None]

char *

The IP address the foreign agent uses for all
communication with a RADIUS server.

Table 11-4 IPv4 Foreign Agent AAA Radius Build Parameters (cont’d)

Parameter
(Workbench, Macro, Sysvar)

Default Value
and Data Type Description

Table 11-5 IPv4 Foreign Agent AAA DIAMETER Build Parameters

Parameter (Workbench
description, macro, sysvar)

Default Value
and Data Type Description

Diameter Access Support

[MIPFA_AAA_DIAMETER_
ACCESS]

sysvar:
ipmipfa.aaa.diameter.access
=”0_or_1”

"disabled"

char *

If set to “enabled”, the foreign agent uses
DIAMETER. By default, DIAMETER is not used.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

240

Diameter Access server
address

[MIPFA_AAA_DIAMETER_
ACCESS_ADDRESS]

sysvar:
ipmipfa.aaa.diameter.
access.address=
”diameter_server_address”

[None]

char *

The IP address of the DIAMETER server to send
access requests to.

Diameter Access server port

[MIPFA_AAA_DIAMETER_
ACCESS_PORT]

sysvar:
ipmipfa.aaa.diameter.
access.port=”diameter_server
_port”

"1812"

char *

The port on the DIAMETER server to send access
requests to.

Diameter Access Required

[MIPFA_AAA_DIAMETER_
ACCESS_REQUIRE]

sysvar:
ipmipfa.aaa.diameter.
access.require=
”true_or_false”

"false"

char *

If set to “true”, the mobile-node must use
DIAMETER and include an MN-AAA authentication
extension in its registration request to the foreign
agent. For information on how a mobile-node
authenticates itself to a foreign agent using an
MN-AAA authentication extension, see RFC 4721,
Mobile IPv4 Challenge/Response Extensions (Revised), a
revision of RFC 3012 and RFC 4004, and RFC 4004,
Diameter Mobile IPv4 Application.

Table 11-5 IPv4 Foreign Agent AAA DIAMETER Build Parameters (cont’d)

Parameter (Workbench
description, macro, sysvar)

Default Value
and Data Type Description

11 Wind River Mobile IPv4: Foreign Agent
11.4 Build Components and Build Parameters

241

11

Diameter Access Time
Interval

[MIPFA_AAA_DIAMETER_
ACCESS_ TIME_ INTERVAL]

sysvar:
ipmipfa.aaa.diameter.access
.time_interval=0_or_1

“0” If set to “0”, the default, the foreign agent needs to
renew its authentication with the DIAMETER server
every time it receives authentication credentials
(such as an MN-AAA authentication extension) from
a mobile node.

If a number greater than zero is entered, it sets the
time-interval, in seconds, after which the foreign
agent needs to renew its AAA authentication with
the DIAMETER server. If the mobile node sends
repeated authentication credentials to the foreign
agent, the foreign agent does not need to
reauthenticate itself to the DIAMETER server until
the specified time interval has elapsed.

Diameter Destination
Realm

[MIPFA_AAA_DIAMETER_
ACCESS_REALM

sysvar:
ipmipfa.aaa.diameter.access
.realm=realm

[None]

char *

The destination realm (or domain) to which the
foreign agent sends DIAMETER requests (see RFC
4004, Diameter Mobile IPv4 Application).

The foreign agent specifies its destination realm in all
access requests sent to a DIAMETER server. The
server accepts a request only if the server is located in
the specified destination realm.

A realm (or domain) is the segment of an NAI that
follows the “@” symbol. An example of a possible
realm is: windriver.com.

This is a required parameter.

Diameter Destination
Hostname

[MIPFA_AAA_DIAMETER_
ACCESS_HOSTNAME

sysvar:
ipmipfa.aaa.diameter.access
.hostname=name

[None]

char *

(Optional) The host name of a specific DIAMETER
server to send access requests to (see RFC 4004,
Diameter Mobile IPv4 Application). The host name
must be entered as a fully qualified domain name.
For example:

“myDiameterServer.windriver.com”

Table 11-5 IPv4 Foreign Agent AAA DIAMETER Build Parameters (cont’d)

Parameter (Workbench
description, macro, sysvar)

Default Value
and Data Type Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

242

11.5 Including the Foreign Agent in a Build

To include the foreign agent in a VxWorks build, you need to create a VxWorks
Image Project and include the IPv4 Foreign Agent (INCLUDE_IPMIPFA) build
component. In addition, to have access to shell commands for the foreign agent,
you need to include the IPv4 Foreign Agent IPCOM commands
(INCLUDE_IPMIPFA_CMD) build component. You can include these build
components in a build using either Workbench or the vxprj command-line utility.
For information on using Workbench to create a VxWorks Image Project and
include build components, see the Wind River Workbench User's Guide for VxWorks.
For information on using the vxprj command-line utility, see the VxWorks
Command-Line Tools User’s Guide.

Once you include the IPv4 Foreign Agent (INCLUDE_IPMIPFA) build component
in your build, you can set values for the static configuration parameters listed in
Table 11-3.

Diameter Foreign-Home
Key Generation

[MIPFA_AAA_DIAMETER_
ACCESS_FA_HA_SPI

sysvar:
ipmipfa.aaa.diameter.access
.fa_ha_spi=spi

“0”

char *

If a value other than “0” is entered, it specifies an SPI
that is used to generate security associations between
between the foreign agent and home agents. The
security association generated between the foreign
agent and an individual home agent in this way can
then be reused in subsequent communication with
the home agent.

This parameter, if a non-zero value is entered, makes
it unnecessary to manually configure separate
security associations for the foreign agent and
individual home agents.

Table 11-5 IPv4 Foreign Agent AAA DIAMETER Build Parameters (cont’d)

Parameter (Workbench
description, macro, sysvar)

Default Value
and Data Type Description

11 Wind River Mobile IPv4: Foreign Agent
11.6 Shell Commands

243

11

11.6 Shell Commands

You can use foreign-agent shell commands to display information about current
mobile-node registrations and to list errors that have occurred at the foreign agent
(see 11.6.1 Shell Commands for Displaying Registration and Error Information, p.243).
In addition, for testing purposed, you can use shell commands to generate layer-2
triggers for low-latency handoffs (see 11.6.2 Shell Commands for Layer-2 Triggers,
p.246).

11.6.1 Shell Commands for Displaying Registration and Error Information

Table 11-6 lists the foreign-agent shell commands for displaying status
information about mobile-node registrations and for displaying errors
information.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

244

Table 11-6 Mobile IPv4 Foreign Agent Shell Commands for Registration and Error Information

Command Description

fa list Lists all nodes currently registered with the foreign
agent and identifies whether:

■ Registration is pending or completed

■ GRE or Minimal-Encapsulation-within-IP
tunneling is supported

■ NAT traversal is in effect

For sample output and information on the way
output is formatted, see Sample Output for the fa list
Shell Command, p.245.

fa show [-v] [-a] [home_addr:home_agent]
[MN_NAI]

Displays information about current registrations
according to the options entered:

-v
Verbose output; adds information about
pending registrations

-a
Gives extended information about all currently
registered nodes.

home_addr:home_agent
If entered, displays information only for the
mobile node with the specified home address
and home agent.

MN_NAI
If entered, displays information only for the
mobile node with the specified network access
identifier (NAI).

For sample output, see Sample Output for the fa show
Shell Command, p.245.

fa errors Lists the last 30 errors that have occurred at the
foreign agent. In general, most errors result either
from a faulty registration request or a faulty
registration reply. For sample output, see Sample
Output for the fa error Shell Command, p.246.

11 Wind River Mobile IPv4: Foreign Agent
11.6 Shell Commands

245

11

Sample Output for the fa list Shell Command

The fa list shell command lists all nodes currently registered with the foreign agent
and gives status information about pending and completed registrations,
tunneling support, and whether NAT traversal is in effect. Status information is
provided as follows:

The following is sample output:

>fa list
Status Home Address Home Agent Interface Lifetime
+ T 192.168.1.20 192.168.1.1 vlan11 26/30

Sample Output for the fa show Shell Command

The fa show shell command displays information about current registrations. The
following is sample output:

>fa show -a
192.168.1.20:192.168.1.1:
Creation : Apr 19 09:03:02
Mobile NAI : mn-mip-test@windriver.com
Link : MAC:00:00:00:00:00:03
Registration:
Last updated : Apr 19 09:04:17
Lifetime requested: 30
Lifetime remaining: 22
Reverse tunnel : yes
Interface : vlan11
Registration Type : normal
Tunnel type : IPIP
Nat traversal : no

Symbol Description

+ Completed registration.
- Pending registration.
G GRE tunneling supported.
M Minimal Encapsulation within IP tunneling supported.
T Reverse tunneling is in effect.
* NAT Traversal is in effect.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

246

Sample Output for the fa error Shell Command

The fa error shell command lists the most recent errors (up to 30) that have
occurred at the foreign agent. The following is sample output:

fa errors
Apr 19 09:09:42: REQUEST [src=192.168.1.20 code=67 if=vlan11
nai=mn-test@windriver.com] required mobile-foreign extension not found

11.6.2 Shell Commands for Layer-2 Triggers

For testing purposes, you can use shell commands to generate L2 triggers (see
Layer-2 Triggers, p.220) at a foreign agent.

The syntax of the shell commands for generating L2 triggers is:

fa trigger -mnip MN_addr -mneth MN_ethernet -faip FA_addr -mnifname
MN_ifname

where:

trigger is one of the following L2 triggers:

■ st

L2-ST (source trigger); the mobile node is moving from this foreign agent
to a new foreign agent, where an L2 handoff is about to occur.

■ tt

L2-TT (target trigger); the mobile node is leaving the old foreign agent and
moving toward this foreign agent.

■ ld

L2-LD (link down); the mobile node has lost its layer-two connection to
this foreign agent.

■ lu

L2-LU (link up); the mobile node has established a layer-two connection
to this foreign agent.

MN_addr is the IP address of the mobile node.

MN_ethernet is the mobile node’s ethernet connection.

FA_addr is the address of the other foreign agent, either the old foreign agent
or the new foreign agent, depending on the trigger.

11 Wind River Mobile IPv4: Foreign Agent
11.7 Testing the Foreign Agent

247

11

MN_ifname is the name of either the interface on the new foreign agent that the
mobile node is moving to or the name of the interface on the old foreign agent
that the mobile node is leaving, depending on the trigger.

11.7 Testing the Foreign Agent

This section provides an example showing how you can test the foreign agent. It
requires the following components:

■ Home agent
■ Mobile node
■ Correspondent node
■ A home network for the mobile node and home agent
■ Foreign agent
■ A foreign network for the foreign agent and the mobile node (when it is away

from home)
■ A router

Figure 11-1 shows a test configuration with these elements and sample IP
addresses:

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

248

If the mobile node has two interfaces, you can use the first interface as the active
mobile IP interface and you can use the second interface to telnet to the mobile
node and execute shell commands and perform debugging.

To test the foreign agent:

1. Set configuration parameters for the mobile node, home agent, and foreign
agent. For almost all parameter values, you can use the installed default
values.

For sample configuration settings, see:

■ 11.7.1 Mobile-Node Test Configuration, p.249

■ 11.7.2 Home-Agent Test Configuration, p.251

■ 11.7.3 Foreign-Agent Test Configuration, p.252

2. Move the mobile node’s network cable between the home network and the
foreign network.

Figure 11-1 Foreign-Agent Test Configuration with Sample IP Addresses

Router

Correspondent
10.1.2.180

Node

Foreign Agent

Home Agent Mobile Node

10.1.1.2.181

10.1.2.40

Home Network: 10.1/16

(home address)

Mobile Node

Foreign Network: 10.130/16

10.130.1.102 10.130.1.99
(Care-of Address)

10.1.2.42

10.130.1.1

11 Wind River Mobile IPv4: Foreign Agent
11.7 Testing the Foreign Agent

249

11

By default, the mobile node’s network interface is set to eth0.

When you move the cable, the mobile node should automatically detect when
it is home or on the foreign network by listening to the router advertisements
sent by the home agent and the foreign agent.

11.7.1 Mobile-Node Test Configuration

In keeping with Figure 11-1, the following are sample configuration settings for
the mobile node:

Table 11-7 Test Configuration for the Mobile Node

Parameter Value

Mobile Node Interface

[MIPMN_IFNAME]

“eth0”

Home agent IPv4 address

[MIPMN_HOME_AGENT]

“10.1.2.180

Home address

[MIPMN_HOME_ADDRESS]

“10.1.2.181

Home netmask

[MIPMN_HOME_MASK]

"255.255.0.0"

Home gateway

[MIPMN_HOME_GATEWAY]

"10.1.1.1"

Router solicitation address

[MIPMN_SOL_ADDRESS]

"224.0.0.11"

Home agent shared secret

[MIPMN_HA_AUTH_SECRET]

“test0”

Home agent SPI

[MIPMN_HA_AUTH_SPI]

“1000”

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

250

Mobile node run mode

[MIPMN_RUN_MODE]

“fa”

Foreign agent shared secret

[MIPMN_FA_AUTH_SECRET]

“test1”

Foreign agent SPI

[MIPMN_FA_AUTH_SPI]

“1001”

Registration lifetime

[MIPMN_REG_LIFETIME]

“30”

Receive broadcasts

[MIPMN_RECV_BROADCASTS]

“1”

Tunnel type

[MIPMN_TUNNEL_TYPE]

“ipip”

Reverse tunneling

[MIPMN_REVERSE_
TUNNELING]

“1”

Network access identifier

[MIPMN_NAI]

““

Table 11-7 Test Configuration for the Mobile Node (cont’d)

Parameter Value

11 Wind River Mobile IPv4: Foreign Agent
11.7 Testing the Foreign Agent

251

11

11.7.2 Home-Agent Test Configuration

In keeping with Figure 11-1, the following are sample configurations for the home
agent:

Table 11-8 Test Configuration for the Home Agent

Parameter Value

Home agent Interface list

[MIPHA_IFNAME_LIST]

“eth0”

Home agent interface address

[MIPHA_IF_HOME_ADDRESS_
LIST]

“10.1.2.180”

Home agent netmask

[MIPHA_IF_HOME_MASK_LIST]

“255.2255.0.0”

interface default security parameter
index

[MIPHA_IF_AUTH_SPI_LIST]

“1000”

Advertisement interval

[MIPHA_IF_ADV_INTERVAL_LIST]

“3”

Router advertisement lifetime

[MIPHA_IF_ADV_LIFETIME_LIST]

“300”

Interface default SPI list

[MIPHA_SPI_LIST]

“test0”

Router advertisement lifetime

[MIPHA_IF_ADV_LIFETIME_LIST]

“30”

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

252

11.7.3 Foreign-Agent Test Configuration

In keeping with Figure 11-1, the following are sample configurations for the
foreign agent:

Table 11-9 Test Configuration for the Home Agent

Parameter Value

Foreign agent Interface

[MIPFA_IFNAME_LIST]

“eth0”

Interface FA address

[MIPFA_IF_ADDRESS_LIST]

10.130.1.102

RtAdv interval

[MIPFA_IF_ADV_INTERVAL_LIST]

“3”

RtAdv lifetime

[MIPFA_IF_ADV_LIFETIME_
LIST]

“300”

Interface default SPI list

[MIPFA_SPI_LIST]

"1001=test1;1002=test2”

Registration lifetime

[MIPFA_REG_LIFETIME]

“30”

253

 12
Wind River Mobile IPv6:

Mobile Node

12.1 Introduction 253

12.2 Conformance to Standards 253

12.3 Build Component and Build Parameters 254

12.4 Including the Mobile Node in a Build 261

12.5 Shell Commands 262

12.1 Introduction

This chapter describes the Wind River implementation of a mobile node for IPv6.
For a general overview of Mobile IP see 8. Wind River Mobile IP: Overview.

12.2 Conformance to Standards

The Wind River mobile node for IPv6 implements, with a few exceptions, relevant
features of the following RFCs:

■ RFC 3775, Mobility Support in IPv6

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

254

The following features of RFC 3775 are not implemented in the current release:

– Routing multicast packets (see section 11.3.4 of the RFC)
– Return routability (see section 11.6 of the RFC)

■ RFC 3776, Using IPsec to Protect Mobile IPv6 Signaling Between Mobile Nodes and
Home Agents

Dynamic keying, as described in RFC 3776, sections 4.4 and 5.3, is not
implemented in the current release.

12.3 Build Component and Build Parameters

When you build VxWorks and the network stack, there is a required build
component for Mobile IPv6 and a required build component for the mobile node.
In addition, there is a separate build component for including access to shell
commands for the mobile node. For information on the shell commands, see
12.5 Shell Commands, p.262. The build components are listed in the following table:

The IPv6 Mobile Node (INCLUDE_IPMIP6MN) build component provides a
number of configuration parameters, as listed in Table 12-1. For each configuration
parameter, the table gives the corresponding Workbench description, macro
name, and sysvar.

Workbench Name Macro Name
IPv6 Mobility Toolkit INCLUDE_IPMIP6
IPv6 Mobile Node INCLUDE_IPMIP6MN
IPv6 Mobile Node IPCOM commands INCLUDE_IPMIP6MN_CMD

12 Wind River Mobile IPv6: Mobile Node
12.3 Build Component and Build Parameters

255

12

Table 12-1 IPv6 Mobile Node Configuration Parameters

Parameter
(Workbench, Macro, Sysvar)

Default Value
and Data Type Description

Network enumeration

[MIP6MN_NETWORK_ENUM]

sysvar:
ipmip6mn.enum.cfg_name

"windriver"

char *

Specifies the name assigned to a mobile-node
network configuration. In the current release, a
mobile node can have only one home network
and one network configuration.

If a mobile node can have more than one home
network, on each network it must have a
different configuration of home agent, home
address, and other parameter settings. In such
cases, it is necessary to have multiple network
configurations by a name or other identifier.

Example: “Alameda”

Interface enumeration list

[MIP6MN_IF_NAME_LIST]

sysvar:
ipmip6mn.cfg_name.interface.
if_name

[None]

char *

Specifies the interfaces available to the mobile
node. Each interface is specified in conjunction
with a numerical key, in the following format:

“key=if_name;key=if_name...”

The key value is used internally and has no user
implications. The key values you enter for this
parameter can be the same or different from the
key values you enter for the Home Agent
enumeration (MIP6MN_IF_HOMEAGENT_LIST)
parameter (see the next table entry). The two sets
of keys are completely independent of each
other.

Example:

“0=eth2;1=eth1;2=eth2”

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

256

Home Agent enumeration

[MIP6MN_IF_HOMEAGENT_
LIST]

sysvar:
ipmip6mn.cfg_name.homeagent.
HA_addr

[None]

char *

(Optional) Specifies home agents available to the
mobile node and their priorities. Each home
agent is specified in conjunction with a
numerical key, in the following format:

“key=priority/HA_addr;key=priority/HA_
addr;...”

where priority is an integer, with higher values
having greater priority.

The key values you enter are used internally and
have no user implications. They can be the same
or different from the key values you enter for the
Interface enumeration list
(MIP6MN_IF_NAME_LIST) parameter (see the
preceding table entry). The two sets of keys are
completely independent of each other.

Example:

“1=2/2001:DB8:111:3::1;2=1/2001:DB8:111::6”

If you do not enter any values for this parameter,
the mobile node uses Dynamic Home Agent
Address Discovery (DHAAD).

Home address

[MIP6MN_HOME_ADDRESS]

sysvar:
ipmip6mn.
cfg_name.homeaddress=”addr”

[None]

char *

Specifies the mobile node’s home address.

Table 12-1 IPv6 Mobile Node Configuration Parameters (cont’d)

Parameter
(Workbench, Macro, Sysvar)

Default Value
and Data Type Description

12 Wind River Mobile IPv6: Mobile Node
12.3 Build Component and Build Parameters

257

12

Requested binding lifetime

[MIP6MN_LIFETIME]

sysvar:
ipmip6mn.cfg_name.lifetime=
”lifetime”

"120"

char *

Specifies the mobile node’s requested binding
lifetime, in seconds. The binding lifetime is the
maximum length of time the mobile node
remains registered with a home agent. The
mobile node can reregister with the home agent
before this time period expires.

The effective binding lifetime is determined by
the home agent, but it cannot be longer than the
lifetime requested by the mobile node.

Initial Registration Timeout

[MIP6MN_REG_TIMEOUT]

sysvar:
ipmip6mn.cfg_name.registration
_timeout=”timeout”

"1500"

char *

Specifies the amount of time, in milliseconds, for
the mobile node to wait for a home agent’s initial
binding acknowledgement. The initial binding
acknowledgement may take more time than
subsequent acknowledgements, because the
home agent needs to verify the validity of the
mobile node’s home address.

Security association auth mode

[MIP6MN_SA_AUTH_MODE]

sysvar:
ipmip6mn.cfg_name.psec.sa.
authmode=”mode”

“SHA1”

char *

For IPSec, specifies the default authorization
mode to use with a security association (SA) if its
Security Parameter Index (SPI) has not been
assigned an overriding authorization mode (see
the table entry for Security association auth
mode list).

Security association auth key

[MIP6MN_SA_AUTH_KEY]

sysvar:
ipmip6mn.cfg_name.ipsec.sa.
enckey=“key”

[See
Description]

char *

For IPSec, specifies the default authorization key
to use with an SA, if its SPI has not been assigned
an overriding authorization key (see the table
entry for Security association auth key list).

The default authorization key is:

HMACSHA196 AUTH PADN

Table 12-1 IPv6 Mobile Node Configuration Parameters (cont’d)

Parameter
(Workbench, Macro, Sysvar)

Default Value
and Data Type Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

258

Security association enc mode

[MIP6MN_SA_ENC_MODE]

sysvar:
ipmip6mn.cfg_name.ipsec.sa.
encmode=“mode”

“3DES”

char *

For IPSec, specifies the default encryption mode
to use with an SA if its SPI has not been assigned
an overriding encryption mode (see the table
entry for Security association enc mode list).

Security association enc key

[MIP6MN_SA_ENC_KEY]

sysvar:
ipmip6mn.cfg_name.ipsec.sa.
enckey=“key”

[See
Description]

char *

For IPSec, specifies the default encryption key to
use with an SA if its SPI has not been assigned an
overriding encryption key (see the table entry for
Security association enc key list).

The default encryption key is:

3DES-CBC Private Enc PAD

Security association auth mode
list

[MIP6MN_SA_AUTH_MODE_
LIST]

sysvar:
ipmip6mn.cfg_name.ipsec.sa.
spi.authmode=“mode”

[None]

char *

For IPSec, specifies the authorization modes to
use with individual SPIs. The format for entries
is:

“SPI=auth_mode;SPI=auth_mode;...”

If you do not enter an authorization mode for an
SPI, the default mode entered for the Security
association auth mode
(MIP6MN_SA_AUTH_MODE) parameter is used.

Example:

“200=SHA1;201=PADL”

Table 12-1 IPv6 Mobile Node Configuration Parameters (cont’d)

Parameter
(Workbench, Macro, Sysvar)

Default Value
and Data Type Description

12 Wind River Mobile IPv6: Mobile Node
12.3 Build Component and Build Parameters

259

12

Security association auth key
list

[MIP6MN_SA_AUTH_KEY_
LIST]

sysvar:
ipmip6mn.cfg_name.ipsec.sa.
authkey=“key”

[None]

char *

For IPSec, specifies the authorization keys to use
with individual SPIs. The format for entries is:

“SPI=key;SPI=key;...”

If you do not enter an authorization key for an
SPI, the default authorization key entered for the
Security association auth key
(MIP6MN_SA_AUTH_KEY) parameter is used.

Example:

“200=H1M2A3C4S5H6A71AuthX;201=
s9a8a7u6t5h4k3e2y1AB”

Security association enc mode
list

[MIP6MN_SA_ENC_MODE_
LIST]

sysvar:
ipmip6mn.cfg_name.ipsec.sa.
encmode=“mode”

[None]

char *

For IPSec, specifies the encryption modes to use
with individual SPIs. The format for entries is:

“SPI=mode;SPI=mode;...”

If you do not enter an encryption mode for an
SPI, the default mode entered for the Security
association enc mode
(MIP6MN_SA_ENC_MODE) parameter is used.

Example:

“200=3DES;201=AES“

Security association enc key list

[MIP6MN_SA_ENC_KEY_LIST]

sysvar:
ipmip6mn.cfg_name.ipsec.sa.
enckey=“key”

[None]

char *

For IPSec, specifies the encryption keys to use
with individual SPIs. The format for entries is:

“SPI=key;SPI=key;...”

If you do not enter an encryption key for an SPI,
the default encryption key entered for the
Security association enc key
(MIP6MN_SA_ENC_KEY) parameter is used.

Example:

“200=576LPMKO4239NHY359BH2550;201=
416RAN397DOM677NUM534BER”

Table 12-1 IPv6 Mobile Node Configuration Parameters (cont’d)

Parameter
(Workbench, Macro, Sysvar)

Default Value
and Data Type Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

260

Enable mobile header signaling

[MIP6MN_IPSEC_MH_
ENABLED]

sysvar:
ipmip6.cfg_name.ipsec.mh.
enabled=”value”

"1"

char *

Disables (“0”) security for Mobility Header
signalling using IPSec in transport mode. By
default, signalling using IPSec in transport mode
is on, as required by RFCs 3775 and 3776

IPSec MH SPI In

[MIP6MN_IPSEC_MH_SPI_IN]

sysvar:
ipmip6.cfg_name.ipsec.mh.spi.
in=”value”

"200"

char *

For Mobility Header signalling, specifies the SPI
to use for inbound packets.

IPSec MH SPI Out

[MIP6MN_IPSEC_MH_SPI_
OUT]

sysvar:
ipmip6.cfg_name.ipsec.mh.spi.
out=”value”

"201"

char *

For Mobility Header signalling, specifies the SPI
to use for outbound packets.

Enable payload data protection

[MIP6MN_IPSEC_PAYLOAD_
ENABLED]

sysvar:
ipmip6.cfg_name.ipsec.payload.
enabled=”value”

"0" Enables (“1”) protection of payload data
tunneled to and from the home agent using
IPSec.

Table 12-1 IPv6 Mobile Node Configuration Parameters (cont’d)

Parameter
(Workbench, Macro, Sysvar)

Default Value
and Data Type Description

12 Wind River Mobile IPv6: Mobile Node
12.4 Including the Mobile Node in a Build

261

12

12.4 Including the Mobile Node in a Build

To include the mobile node in a VxWorks build, you need to create a VxWorks
Image Project and include the IPv6 Mobile Node (INCLUDE_IPMIP6MN) and IPv6
Mobility Toolkit (INCLUDE_IPMIP6) build components. In addition, to have
access to shell commands for the mobile node, you need to include the IPv6
Mobile Node IPCOM commands (INCLUDE_IPMIPFA_CMD) build component.
You can include the mobile-node build components either Workbench or the vxprj
command-line utility. For information on using Workbench to create a VxWorks
Image Project and include build components, see the Wind River Workbench User's
Guide. For information on using the vxprj command-line utility, see the VxWorks
Command-Line Tools User’s Guide.

IPSec Payload SPI In

[MIP6MN_IPSEC_PAYLOAD_
SPI_IN]

sysvar:
ipmip6.cfg_name.ipsec.payload
.spi.in=”value”

"204" Specifies the SPI to use for payload protection on
inbound packets. The SPI must be different from
that used for security on inbound Mobility
Header signalling (see the table entry for IPSec
MH SPI In). This is necessary because the SA for
Mobility Header signalling is not affected by
changes in the mobile node’s location, but the SA
for payload security depends on the mobile
node’s current care-of address.

IPSec Payload SPI Out

[MIP6MN_IPSEC_PAYLOAD_
SPI_OUT]

sysvar:
ipmip6.cfg_name.ipsec.paylod.
spi.out=”value”

"205" Specifies the SPI to use for payload protection on
outbound packets. The SPI must be different
from that used for security on outbound
Mobility Header signalling (see the table entry
for IPSec MH SPI Out). This is necessary
because the SA for Mobility Header signalling is
not affected by changes in the mobile node’s
location, but the SA for payload security
depends on the mobile node’s current care-of
address.

Table 12-1 IPv6 Mobile Node Configuration Parameters (cont’d)

Parameter
(Workbench, Macro, Sysvar)

Default Value
and Data Type Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

262

Once you include the IPv6 Mobile Node (INCLUDE_IPMIP6MN) and IPv6
Mobility Toolkit (INCLUDE_IPMIP6) build components in your build, you can set
values for the static configuration parameters listed in Table 12-1.

12.5 Shell Commands

The shell commands for the mobile node are designed so that they can be used
with multiple network configurations, although the current release supports only
a single network configuration. The shell commands allow you to:

■ List the home agent and home address for each network configuration.

■ Display statistics on mobile-node activities

■ Display status information about network configurations.

Table 12-2 lists the mobile-node shell commands.

Table 12-2 Mobile IPv6 Mobile Node Shell Commands

Command Description

mn6 list Lists the home agent and home address for each
network configuration. In the current release, only
one network configuration is supported. For sample
output, see 12.5.1 Sample Output for the mn6 list Shell
Command, p.264.

mn6 statistics [-v] [-a] [-i index] [-n
network_name] [-h home_addr]

Displays statistics on the mobile node’s activities,
according to the options entered. Currently, only a
single network configuration is supported. The
options available for mn6 show. For a description of
the available options see the table entry for mn6
status. Note that the mn6 statistics shell command
does not have a -s option, although the mn6 status
command does.

For sample output, see 12.5.2 Sample Output for the
mn6 statistics Shell Command, p.264.

12 Wind River Mobile IPv6: Mobile Node
12.5 Shell Commands

263

12

mn6 status [-v] [-s] [-a] [-i index] [-n
network_name] [-h home_addr]

Displays status information about network
configurations, according to the options entered.
Currently, only a single network configuration is
supported. The options available for mn6 show are:

-v
Verbose output.

-s
Short mode; only basic status information is
provided

-a
Gives extended information about all network
configurations.

-i index
(Not implemented in the current release) Gives
information only about the network
configuration with the specified index value.

-n network_name
Gives information only about the specified
network.

-h home_addr
Gives information only about the network
configuration with the specified home address.

For sample output, see 12.5.3 Sample Output for the
mn6 status Shell Command, p.265.

Table 12-2 Mobile IPv6 Mobile Node Shell Commands (cont’d)

Command Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

264

12.5.1 Sample Output for the mn6 list Shell Command

The mn6 list shell command lists the home agent and home address for each
network configuration. Currently, only one configuration is supported. The
following is sample output:

>mn6 list
Index: 1
Network: wr
Interface: gifwr0
Address: 2000:70::103:0:0:0:12

12.5.2 Sample Output for the mn6 statistics Shell Command

Displays statistics on the mobile node’s activities, according to the options entered.
Currently, only a single network configuration is supported. The following is
sample output:

>mn6 statistics -a
Index: 1
Network: wr
Interface: gifwr0
Address: 2001:DB8::103:0:0:0:12

Discovery and Advertisement:
Discovery Requests: 1
Discovery Replies: 1
Discovery Timeouts: 0
Moved To FN: 1
Moved To HN: 0
Prefix Advs Recvd: 0
Prefix Advs Ignored: 0
Prefix Sol Sent: 0

Registration Counters:
Binding Errors from CN: 0
Binding Refresh Req Recvd: 0
Binding Acks from CN: 0
Binding Acks from HA: 1
Binding Updates to CN: 0
Binding Updates to HA: 1
ICMP Errors Recvd: 0
Mobility Messages Recvd: 1
Mobility Messages Sent: 1

Traffic Counters:
Counter Discontinuity Time: May 02 13:06:54
Received Bytes: 467904
Received Frames: 680
Sent Bytes: 545652
Sent Frames: 712

12 Wind River Mobile IPv6: Mobile Node
12.5 Shell Commands

265

12

12.5.3 Sample Output for the mn6 status Shell Command

The mn6 status shell command gives status information about network
configurations, according to the options entered. Currently, only a single network
configuration is supported. The following is sample output:

> mn6 status -n wr
Index: 28
Network: wr
Interface: gifwr0
Address: 2001:DB8::103:0:0:0:12

Status: Registered
Home Address: 2001:DB8::103:0:0:0:12
Peer Address: 2001:DB8::103:0:0:0:10
COA: 2001:DB8::105:200:FF:FE00:2
Accepted: True
Lifetime Requested: 120
Lifetime Granted: 120
Time Sent: Mar 26 13:49:05
Accepted Time: Mar 26 13:49:06
Max Sequence: 55470
Retransmissions: 0

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

266

267

 A
Glossary

A.1 Introduction 267

A.2 Terms 267

A.3 Abbreviations and Acronyms 275

A.1 Introduction

This chapter contains brief definitions of networking terms, acronyms, and
abbreviations used in discussions in this manual.

A.2 Terms

This section defines terms used in the Wind River Network Stack documentation.
It includes both standard industry terms and clarifies terms used in this book
whose meaning, in the context of this product, differs from another definition used
in the industry.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

268

ALG

The Application Level Gateway is a module used together with NAT to support
protocols that embed address information in the payload data. An ALG is
sometimes also called application proxy.

API

An Application Programmming Interface (API) is the syntax and semantics of the
interface.

callback

In this document, a callback is a routine that is called from within the kernel code.
An example is the socket specific asynchronous input function.

control plane

The control plane refers to the code that calls into the stack to configure the multicast
forwarding table.

daemon

A daemon is a term that originates from UNIX and refers to a task that is running
in the background. The Wind River multicasting daemon is the task that
implements the multicast routing duties as required by a multicast proxy
specification.

datagram

A datagram is a self-contained packet used in packet switching. A datagram
contains enough information in the header to allow the network to forward it to
the destination independently of previous or future datagrams. Thus, no setup is
needed before a computer tries to send datagrams to a computer with which it has
not previously communicated, unlike with virtual circuit protocols. See also packet,
p.272.

data link layer

The data link layer is layer two of the seven-layer Open Systems Interconnection
(OSI) model. It transfers data between adjacent network nodes in a wide area
network or between nodes on the same local area network segment. The data link
layer prepares the packets for transmission, and detects and handles errors, such
as packet collision. Examples of data link protocols are Ethernet for local area
networks and PPP (Point-to-Point Protocol) for point-to-point connections.

A Glossary
A.2 Terms

269

A

data plane

The data plane is the code that makes up the forwarding step, for example, in the
context of multicasting.

descriptor

A descriptor is an integer assigned by the system when a socket is created by
ipnet_socket() which uniquely identifies an access path to that file or socket from
a given process or any of its children.

egress filtering

Egress filtering is a method of securing a network by monitoring and filtering
packets that leave an internal network to external networks (internet) via a router.
Egress filtering makes a system less prone to attack from hackers by ensuring that
spoofed packets never leave an internal network. See also, ingress filtering, p.270.

END driver

An END driver is a frame-oriented drivers that exchange frames with the MUX. See
also, NPT driver, p.272 and MUX, p.271.

fast path

A fast path is a fast IP-forwarding mechanism that intercepts packets before they
are passed up to IP. If the packet is destined for a location known to the fast path
route cache (also known as the FIB, the Forwarding Information Base), the
application forwards the packet. If the destination is unknown to the FIB, the
application leaves the packet to IP.

firewall

A firewall is a piece of hardware or software used in a networked environment to
prevent communications that are forbidden by the security policy. A common type
of firewall is a router retrofitted with extra software for packet filtering based on a
list of rules or criteria.

flow

A flow is a sequence of packets sent from a particular source to a particular (unicast
or multicast) destination for which the source desires special handling by the
intervening routers.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

270

gif interface

A gif interface is a generic tunneling pseudo device for IPv4 and IPv6. It can tunnel
IPv[46] traffic over IPv[46]. Therefore, there can be four possible configurations.
The behavior of gif is mainly based on RFC2893 IPv6-over-IPv4 configured tunnel.
See also, stf interface, p.274.

group

A group (in the context of multicasting) is a specific IP address for which there can
be zero or more listeners. A IP datagram sent to a group should be delivered to all
nodes listening to that group.

host

A host is any node that does not act as a router.

IETF

The Internet Engineering Task Force is an international community of network
designers, operators, vendors, and researchers who work in groups on Internet
standards. IEFTF is described fully a their website: http://www.ietf.org

ingress filtering

Ingress filtering is the application of a firewall rulebase to inbound traffic. Ingress
filtering allows you to control the traffic that enters your network and restrict
activity to legitimate purposes. See also egress filtering, p.269 and firewall, p.269.

IP address

An IP address refers to the address of a node.

IPv6

IPv6 stands for Internet Protocol version 6, the latest level of the Internet Protocol.
The most obvious improvement in IPv6 over the IPv4 is that IP addresses are
lengthened from 32 bits to 128 bits. This extension anticipates future growth of the
Internet and provides relief for what was perceived as an impending shortage of
network addresses.

jumbogram

A jumbogram is a transmission packet that contains a payload larger than 65,535
eight-bit bytes (also known as octets). IPv6 is able to carry a jumbogram.

A Glossary
A.2 Terms

271

A

MAC

MAC (Medium Access Control) is the part of the data link layer that governs access
to the transmission media and is the method of determining which device has
access to the Ethernet collision domain at any given time. See data link layer, p.268.

MAC Interface

The MAC interface is the Ethernet interface used by the SNMP agent in the network
device for communications to and from another device.

MLD

Multicast Listener Discovery (MLD) is one of the protocols needed to support
multicasting in the IPv6 domain.

MPLS

Multi-Protocol Label Switching (MPLS) is an IETF standards-approved technology
for speeding up network traffic flow and making it easier to manage. The strength
of MPLS is that the route analysis of an IP packet need only be done once, at the
ingress side of the MPLS path, by an edge router.

MRU

The Maximum-Receive-Unit (MRU) is the largest physical packet size measured in
bytes, that a network can receive.

MTU

The Maximum Transmission Unit (MTU) is the largest physical packet size
measured in bytes that can be transmitted to the network.

multicast proxy

A multicast proxy is a way of implementing a multicast router node. The proxy has
some restrictions on the network topology in which it is operating. These
restrictions are described in the RFC on which the implementation is based.

MUX

The MUX is an interface layer through which the network services communicate
with the data link layer. MUX decouples the network driver and network protocol
layers, thereby allowing you to add new network drivers without having to alter
the network protocol, or to add a new network protocol without having to alter the
MUX_based network interface drivers. Currently, the MUX supports two network

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

272

driver interface styles, the END interface and the Network Protocol Toolkit (NPT)
driver interface. See also, END driver, p.269 and NPT driver, p.272.

node

A node is a device that has a network connection.

NPT driver

An NPT driver is an implementation of the OSI Data link layer that makes use of
MUX functions. The NPT (Network Protocol Toolkit) style drivers are
packet-oriented drivers that exchange packets with the MUX. See also, END driver,
p.269 and MUX, p.271.

OSI network model

The OSI network model is a description of seven layers through which data passes
when transmitted from an application on one machine to a peer on a remote
network-connected machine. In practice, only four layers are usually
implemented: the application layer, the transport layer, the network layer, and the
data link layer.

packet

A packet is a collection of bits, comprising data and control information—including
a header, which contains the packet’s source and destination IP addresses—
formatted for transmission, by protocols, from one node to another.

packet filtering

Packet filtering is the selective passing or blocking of data packets as they pass
through a network interface, specifically between the network and transport
layers. The most commonly-used criteria when inspecting packets are source and
destination address, source and destination port, and protocol. Filter rules specify
the criteria that a packet must match and the resulting action taken.

PPP

The Point-to-Point Protocol (PPP), defined in RFC1661, it provides a standard
method for transporting multi-protocol datagrams over point-to-point links.

process ID

Each active process in the system is uniquely identified by a nonnegative integer
called a process ID.

A Glossary
A.2 Terms

273

A

protocol

A network protocol is a standardized format for communication or data
transmission between two devices. For example, network protocol rules can
specify the packet format, data compression, timing, sequencing, and error
checking for data transmission. A given protocol usually applies to software and
hardware elements operating at the same OSI layer. However, a protocol can be
used to mean a set or suite of protocols that can span layers, as in the case of
TCP/IP. See also, OSI network model, p.272 and TCP/IP, p.274.

RFCs

RFCs (Request for Comments) are publicly available documents that contain
research, innovations, and methodologies applicable to Internet technologies. The
Internet Engineering Task Force (IETF, p.270) adopts some of the applied
information theory published in RFCs as official Internet standards. Not all RFCs
represent IETF standards—some are just informational.

router

A router is a device that determines which paths to use through a network to
transmit data. Routers operate at the network layer in the OSI model, providing
intelligent connections between networks.

In multicasting, a router is a node that can move IP datagrams from one interface
to another in order to move the packet closer to the destination node. The term
multicast proxy is equivalent to multicast router, with the restrictions described by
the RFC that is used to implement the multicast proxy.

SNARF protocol

A SNARF protocol is a protocol that sees all packets first and that acts as a filter for
other protocols, by determining whether or not a packet is passed on.

socket

An internet socket is one end-point of a two-way communication link used by
processes to communicate over a network. An internet socket is identified by a
unique number defined by the TCP/IP protocol (for example, a combination of an
IP address, a protocol, and a port number). Sockets provide information to the
transport layer protocol. Each socket has queues for sending and receiving data
Data written by a program to the socket at one end of the connection is transmitted
to the socket on the other end of the connection, where it can be read by the
program at that end.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

274

stf interface

An stf interface is a 6to4 tunnel interface that can tunnel IPv6 traffic over IPv4, as
specified in RFC3056. For ordinary nodes in 6to4 site, you do not need stf interface.
The stf interface is necessary for site border router (called "6to4 router" in the
specification). See also, gif interface, p.270.

target

A target refers to the hardware, that is, the CPU and board combination that the
RTOS (see A.3 Abbreviations and Acronyms, p.275) is running on.

TCP/IP

TCP/IP is a suite of communication protocols that includes TCP and IP. It is used
to connect hosts on the Internet and is built into the UNIX operating system. See
also, protocol, p.273.

transport layer

The transport layer is the functionality in the OSI network model that provides
transparent, reliable, and cost-effective transfer of data between end users. The
transport layer controls the reliability of a given link, keeping track of the packets
and retransmitting those that fail. TCP, UDP, RTP, and SCTP (listed in
Abbreviations and Acronyms, p.275) are examples of transport layer protocols. See
also, OSI network model, p.272.

tunneling

A tunneling protocol is a network protocol that encapsulates one protocol or
session inside another. Tunneling can be used to transport a network protocol
through a network that would not otherwise support it. Corporations make use of
tunneling to extend the corporate network through private “tunnels” over the
public Internet. This kind of interconnection is known as a virtual private network
(VPN) and can provide functionality such as private addressing.

UDP

UDP, which stands for User Datagram Protocol, is a relatively fast and
connectionless protocol that runs at the transport layer on top of IP networks.
Because it has very few error recovery services (unlike TCP), it is used primarily
for broadcasting messages and for other applications that do not require a
connection. See also, datagram, p.268, protocol, p.273, and transport layer, p.274.

A Glossary
A.3 Abbreviations and Acronyms

275

A

A.3 Abbreviations and Acronyms

The Wind River Network Stack uses the following abbreviations and acronyms in
development tools, code, file names, and directory names.

Table A-1 Abbreviations and Acronyms

Abbreviation Description

ALG Application Level Gateway

ARP Address Resolution Protocol

BGP Border Gateway Protocol

BOOTP Bootstrap Protocol

CBQ Class-Based Queueing

CIDR Classless Inter-domain Routing

COMP Connection-Oriented Message Passing

CSMA Carrier Sense Multiple Access

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

ECN Explicit Congestion Notification

EGP Exterior Gateway Protocol

END Enhanced Network Driver

FIB Forwarding Information Base

FTP File Transfer Protocol

GTF Generalized Timing Format

HFSC Hierarchical Fair Service Curve

HTTP Hypertext Transfer Protocol

IETF Internet Engineering Task Force

IANA Internet Assigned Number Authority

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

276

ICMP Internet Control Message Protocol

IGMP Internet Group Management Protocol

IGP Interior Gateway Protocol

IP Internet Protocol

IPC Inter-Process Communication

IPSec IP Security

LAN Local Area Network

MAC Media Access Control

MIB Management Information Base

MII Media Independent Interface

MLD Multicast Listener Discovery

MPLS Multi Protocol Label Switching

MRU Maximum-Receive-Unit

NAT Network Address Translation

NAPT Network Address Port Translation

NAT-PT Network Address Translation – Protocol Translation

NDP Neighbor Discovery Protocol

NFS Network File System

NPT Network Protocol Toolkit

OSI Open Systems Interconnection

OSPF Open Shortest Path First

PIM Protocol Independent Multicast

PSTN Public Switched Telephone Network

Table A-1 Abbreviations and Acronyms (cont’d)

Abbreviation Description

A Glossary
A.3 Abbreviations and Acronyms

277

A

RARP Reverse Address Resolution Protocol

RED Random Early Detection

RFC Request for Comment

RIP Routing Information Protocol

RPC Remote Procedure Call

RTO Retransmission Time Out

RTOS Real-Time Operating System.

SACK Selective Acknowledgement

SAL Socket Application Library

SMTP Simple Mail Transfer Protocol

SNMP Simple Network Management Protocol

SNS Socket Name Service

SNTP Simple Network Time Protocol

TCP Transmission Control Protocol

TFTP Trivial File Transfer Protocol

TOS Type of Service

TTL Time to Live

UDP User Datagram Protocol

VLAN Virtual Local Area Network

VPN Virtual Private Network

XDR External Data Representation

Table A-1 Abbreviations and Acronyms (cont’d)

Abbreviation Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

278

279

Index

Symbols
#define commands

IFCONFIG_N 39
INCLUDE_FEI_END 37
INCLUDE_VXBUS 37
IPNET_USE_ROUTESOCK 104

#ifdef commands
INET 29
INET6 29

A
abbreviations, list of 275
acronyms, list of 275
Address Resolution Protocol, see ARP
Application Level Gateway, defined 268
Application Programming Interface, defined 268
application protocols 19
ARP 52

product overview
arp shell command 52, 53
arpLib 53
attaching a stack to a network interface

automatic, boot interface, IPv4 59
automatic, boot interface, IPv6 65
INCLUDE_IPATTACH 35

B
blocking options 138
blocking socket, avoiding 103
boot line 35
boot network interface, automatic stack attach 59
boot string 40
BOOTP

abbreviation for 275
broadcasting

RIP, using 3

C
callback, defined 268
COMPONENT_IPMCP 126
config.h 36, 37, 39
config.mk 29, 96
configNet.h 37
configuring

basic components 32
network interfaces

at run time 39
connectivity, network

testing under IPv4 49
testing under IPv6 50

control plane 15, 127, 128
defined 268

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

280

D
data link layer, defined 268
data plane 15, 128
data plane, defined 269
datagram, defined 268
debugging 31
descriptor, defined 269
devname parameter 38
domain value, routing socket 103
downstream interfaces 139
dual IPv4/IPv6 network stack

General Purpose Platform 30
Wind River Platforms 29

E
egress filtering, defined 269
END driver, defined 269
Ethernet fast path 95
Ethernet support 35

F
fast IP-forwarding, see fast path
fast path 95

defined 269
Ethernet 95
generic 95
optional modifiers 99

FEATURE_IPNET_BUILD 31
FEATURE_IPNET_INET6 29
FEATURE_IPNET_INET6_ONLY 29
FEATURE_IPNET_VERBOSE 31
features in Platforms, see Wind River Platforms
features in Wind River Platforms 6
FIB 90
FIONBIO 103
firewall 96

defined 269
forwarding information base, see FIB

G
gateway parameter 38
gateway6 parameter 39
General Timer Facility

starting, build-time configuration 34
generic fast path 95
gif interface, defined 270
glossary of terms 267
group options 137

H
Highest Random Weight algorithm 102
host groups 135
hostShow library 69
hostShow() routine 69

I
ICMP 55

product overview 8
ICMPv4 34
ICMPv6

product overview 8
IETF standards 21
if.h 112
ifconfig shell command 39
IFCONFIG_N parameter 38
ifname parameter 38
IGMP 127
IGMPv1 135
IGMPv2 135
IGMPv3 135
IINCLUDE_IPCOM_USE_INET6,adding 60
INCLUDE_APPL_LOG_UTIL 35
INCLUDE_ARP_API 53
INCLUDE_BOOT_LINE_INIT 35
INCLUDE_COMMON_NET 33
INCLUDE_FEI_END 37
INCLUDE_GTF 34
INCLUDE_GTF_TIMER_START 34

 Index

281

Index

INCLUDE_INETLIB 34
INCLUDE_IP6ATTACH 35
INCLUDE_IP6ATTACH, adding 65
INCLUDE_IPARP_CMD 52
INCLUDE_IPATTACH 35

adding 59
INCLUDE_IPCOM 33
INCLUDE_IPCOM_SHELL_CMD 45
INCLUDE_IPCOM_SYSLOGD_CMD 47
INCLUDE_IPCOM_SYSVAR_CMD 48, 128
INCLUDE_IPCOM_USE_ETHERNET

required for basic stack 35
INCLUDE_IPCOM_USE_INET 34

adding 56
INCLUDE_IPCOM_USE_INET4 59
INCLUDE_IPCOM_USE_INET6 65
INCLUDE_IPD_CMD 46
INCLUDE_IPDNSC

modifying default values 41
INCLUDE_IPMCAST_PROXY_CMD 128, 133
INCLUDE_IPMCP 128, 129
INCLUDE_IPMCP_USE_IGMP 127, 135
INCLUDE_IPMCP_USE_MLD 128, 135
INCLUDE_IPMIP6 (build component) 254
INCLUDE_IPMIP6MN (build component) 254
INCLUDE_IPMIP6MN_CMD (build

component) 254
INCLUDE_IPMIPFA (build component) 223
INCLUDE_IPMIPFA_AAA_DIAMETER (build

component) 223
INCLUDE_IPMIPFA_AAA_RADIUS (build

component) 223
INCLUDE_IPMIPFA_CMD (build

component) 223
INCLUDE_IPMIPHA (build component) 191
INCLUDE_IPMIPHA_AAA_DIAMETER (build

component) 192
INCLUDE_IPMIPHA_AAA_RADIUS (build

component) 192
INCLUDE_IPMIPHA_CMD (build

component) 191
INCLUDE_IPMIPMN (build component) 163
INCLUDE_IPMPLS 69, 70
INCLUDE_IPMPLS_TUNNEL 69
INCLUDE_IPNDP_CMD 66

INCLUDE_IPNET 33
INCLUDE_IPNET_IFCONFIG_N component 38
INCLUDE_IPNET_STACK 33
INCLUDE_IPNET_USE_MCAST_ROUTING 127,

128
INCLUDE_IPNET_USE_ROUTESOCK 103
INCLUDE_IPNET6_USE_MCAST_ROUTING 128
INCLUDE_IPPING_CMD 35
INCLUDE_IPPING6_CMD 35
INCLUDE_IPPROXYARP, adding 54
INCLUDE_IPRIP_CTRL_CMD 12
INCLUDE_IPRIP_STATIC_ROUTE_1 82
INCLUDE_IPRIP_STATIC_ROUTE_2 82
INCLUDE_IPRIPNG 83
INCLUDE_IPRIPNG_CTRL_CMD 83
INCLUDE_IPTCP 34, 67
INCLUDE_IPVERSION_CMD 47
INCLUDE_IPVRRPD 93
INCLUDE_NET_BOOT 35
INCLUDE_NET_BOOT_CONFIG 35
INCLUDE_NET_DAEMON

configuring 41, 43
INCLUDE_NET_DRV 40
INCLUDE_NET_DRV 35
INCLUDE_NET_HOST_SETUP 35
INCLUDE_NET_HOST_SHOW, adding 69
INCLUDE_NET_REM_IO 35
INCLUDE_NET_SYSCTL 36
INCLUDE_PING 36
INCLUDE_PING6 36
INCLUDE_RIP 88
INCLUDE_RIPNG 86
INCLUDE_RIPNG_CTRL_CMD 12
INCLUDE_SOCKLIB 33
INCLUDE_SYSCTL 36
INCLUDE_USE_NATIVE_SHELL 45
INCLUDE_XDR 36
inet dhcp parameter 38
inet driver parameter 38
inet parameter 38
inet rarp parameter 38
INET_AUTO_PROXY_ARP 55
INET_BASE_HOP_LIMIT 56
INET_BASE_REACHABLE_TIME 56
INET_BASE_RETRANSMIT_TIME 56

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

282

INET_DELAY_FIRST_PROBE_TIME 56
INET_DST_CACHE_TO_LIVE_TIME 56
INET_ENABLE_PROXY_ARP 55
INET_ICMP_IGNORE_ECHO_REQ 56
INET_ICMP_IGNORE_TIMESTAMP_REQ 57
INET_ICMP_RATE_LIMIT_BUCKET_SIZE 57
INET_ICMP_RATE_LIMIT_INTERVAL 57
INET_ICMP_REDIRECT_RECEIVE 57
INET_ICMP_REDIRECT_SEND 58
INET_ICMP_SEND_DST_UNREACHABLE 58
INET_ICMP_SEND_TIME_EXCEEDED 58
INET_IFLIST_AUTO_PROXY_ARP 55
INET_IFLIST_ENABLE_PROXY_ARP 55
INET_MAX_APP_SOLICIT 58
INET_MAX_MULTICAST_SOLICIT 58
INET_MAX_PKTS_PENDING 58
INET_MAX_UNICAST_SOLICIT 59
INET_MIN_MTU_SIZE 59
INET_NBR_CACHE_TO_LIVE_TIME 59
-inet6 command-line flag 33
inet6 parameter 39
INET6_ACCEPT_RTADV 60
INET6_AUTO_CONFIG 60
INET6_BASE_HOP_LIMIT 60
INET6_BASE_REACHABLE_TIME 60
INET6_BASE_RETRANSMIT_TIME 60
INET6_DAD_TRANSMITS 61
INET6_DELAY_FIRST_PROBE_TIME 61
INET6_DST_CACHE_TO_LIVE_TIME 61, 63
INET6_ICMP_IGNORE_ECHO_REQ 61, 63
INET6_ICMP_RATE_LIMIT_BUCKET_SIZE 61,

63
INET6_ICMP_RATE_LIMIT_INTERVAL 61, 63
INET6_ICMP_REDIRECT_RECEIVE 61, 63
INET6_ICMP_REDIRECT_SEND 62
INET6_ICMP_SEND_DST_UNREACHABLE 62,

64
INET6_ICMP_SEND_TIME_EXCEEDED 62, 64
INET6_MAX_APP_SOLICIT 62, 64
INET6_MAX_MULTICAST_SOLICIT 62, 64
INET6_MAX_PKTS_PENDING 62, 64
INET6_NBR_CACHE_TO_LIVE_TIME 65
INET6_ROUTER_LIFETIME 65
inetLib, component 34
ingress filtering, defined 270

interface, network driver, including 36
Internet Control Message Protocol, see ICMP
Internet Engineering Task Force, defined 270
Internet Group Management Protocol, see IGMP
Internet Protocol, see IP
IP

product overview 8
specifying version 28

ip_mroute.h 149
ip6Attach() 35, 65
ipAttach shell command 39
ipAttach() 35, 65
ipd shell command 46, 132
ipmcp.DownstreamIfs 129
ipmcp.LastListenerQueryInterval 129
ipmcp.QueryInterval 130
ipmcp.QueryResponseInterval 130
ipmcp.RobustnessVariable 131
ipmcp.UpstreamIf 131
IPMPLS_FWDCONF_SYSVAR 70
ipnet.inet.AutoProxyArp 55
ipnet.inet.BaseHopLimit 56
ipnet.inet.BaseReachableTime 56
ipnet.inet.BaseRetransmitTime 56
ipnet.inet.EnableNetworkProxyArp 55
ipnet.inet.EnablePathMtuDiscovery 60
ipnet.inet.IcmpIgnoreEchoRequest 56
ipnet.inet.IcmpIgnoreTimestampRequest 57
ipnet.inet.IcmpRatelimitBucketsize 57
ipnet.inet.IcmpRatelimitInterval 57
ipnet.inet.IcmpRedirectReceive 57
ipnet.inet.IcmpRedirectSend 58
ipnet.inet.IcmpSendDestinationUnreachable 58
ipnet.inet.IcmpSendTimeExceeded 58
ipnet.inet.MaxApplicationSolicit 58
ipnet.inet.MaxMulticastSolicit 58
ipnet.inet.MaxUnicastSolicit 59
ipnet.inet.NeighborCacheToLive 59
ipnet.inet.UdpChecksum 60
ipnet.inet6.AcceptRtAdv 60
ipnet.inet6.BaseHopLimit 60
ipnet.inet6.BaseReachableTime 60
ipnet.inet6.BaseRetransmitTime 60
ipnet.inet6.DelayFirstProbeTime 66
ipnet.inet6.DstCacheToLive 61, 63

 Index

283

Index

ipnet.inet6.DupAddrDetectTransmits 66
ipnet.inet6.IcmpIgnoreEchoRequest 61, 63
ipnet.inet6.IcmpRatelimitBucketsize 61, 63
ipnet.inet6.IcmpRatelimitInterval 61, 63
ipnet.inet6.IcmpRedirectReceive 61, 63
ipnet.inet6.IcmpRedirectSend 62
ipnet.inet6.IcmpSendDestinationUnreachable 62,

64
ipnet.inet6.IcmpSendTimeExceeded 62, 64
ipnet.inet6.NeighborCacheToLive 65
ipnet.inet6.RouterLifetime 65
IPNET_ETH_FASTPATH 95
IPNET_FASTPATH 95
IPNET_USE_VRRP 93
iprip.auth.requests 89
iprip.expire.seconds 89
iprip.flash.seconds 89
iprip.garbage.seconds 89
iprip.update.deltaseconds 90
iprip.update.seconds 90
IPRIP_AUTH_ENABLED 89
IPRIP_EXPIRE_INTERVAL 89
IPRIP_FLASH_DELAY 89
IPRIP_GARBAGE_INTERVAL 89
IPRIP_IFCONFIG_1 79
iprip_interface_config 81
IPRIP_UPDATE_DELTA 90
IPRIP_UPDATE_INTERVAL 90
IPRIPNG_OPTIONS_STRING 86
IPRIPNG_PRIORITY 86
IPv4 Foreign Agent (build component) 223
IPv4 Foreign Agent AAA DIAMETER Support

(build component) 223
IPv4 Foreign Agent AAA Radius Support (build

component) 223
IPv4 Foreign Agent IPCOM commands (build

component) 223
IPv4 Home Agent (build component) 191
IPv4 Home Agent AAA DIAMETER Support (build

component) 192
IPv4 Home Agent AAA Radius Support (build

component) 192
IPv4 Home Agent IPCOM commands (build

component) 191
IPv4 Mobile Node (build component) 163

IPv4 sysvars 59
IPv6 9

configuring for 33
defined 270
product overview 9

IPv6 Mobile Node (build component) 254
IPv6 Mobile Node IPCOM commands (build

component) 254
IPv6 Mobility Toolkit (build component) 254
IPv6-only network stack 40

General Purpose Platform 30
Wind River Platforms 29

ipversion shell command 47

J
jumbogram, defined 270

K
kernel shell, running command from 48

M
MAC interface, defined 271
MAC, defined 271
Maximum Transmission Unit, defined 271
Maximum-Receive-Unit, defined 271
MCAST_BLOCK_SOURCE 136
MCAST_BLOCK_SOURCE 138
MCAST_JOIN_GROUP 136
MCAST_JOIN_SOURCE_GROUP 137
MCAST_JOIN_SOURCE_GROUP 137
MCAST_LEAVE_GROUP 136, 137
MCAST_LEAVE_GROUP 137
MCAST_LEAVE_SOURCE_GROUP 137
MCAST_UNBLOCK_SOURCE 137
MCAST_UNBLOCK_SOURCE 138
mcastproxy shell command 133

examples 134
MCP 129

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

284

MCP_DOWNSTREAM_IFNAMES 129
MCP_LAST_LISTERNER_QUERY_INTERVAL 12

9
MCP_QUERY_INTERVAL 130
MCP_QUERY_RESP_INTERVAL 130
MCP_ROBUSTNESS_VAR 131
MCP_UPSTREAM_IFNAME 131
Medium Access Control, see MAC
membership reports 138
memory management 19
mfcctl structure 149
migrating 1
migration 1
MLD 127
MLD, defined 271
MLDv1 135
MLDv2 135
mobile IP

communication with a mobile node 155
bidirectional tunneling 155
reverse tunneling 155

foreign agent (IPv4) 219–252
build components, table of 223
configuration parameters for Diameter

support 239
configuration parameters for

INCLUDE_IPMIPFA build
component 225

configuration parameters for RADIUS
support 236

low-latency handoffs 220
RFCs supported 221
shell commands 243
testing 247

home agent (IPv4) 189–218
build components, table of 191
configuration parameters for Diameter

Support 208
configuration parameters for

INCLUDE_IPMIPHA build
component 193

configuration parameters for Radius
Support 204

RFCs supported 190
shell commands 211

testing 214
mobile node (IPv4) 159–188

configuration parameters (static) 164
IPsec and IKE, integration with 161
IPv4 Mobile Node (INCLUDE_IPMIPMN)

build component 163
low-latency handoffs 160
RFCs supported 162
shell commands 185
testing 187

mobile node (IPv6) 253–265
build components 254
configuration parameters for

INCLUDE_IPMIP6MN build
component 255

RFCs supported 253
shell commands 262

overview 153–158
terms and definitions 154
tunneling (figure) 156

Modulo-N Hash algorithm 102
MPLS 69

product overview 11
MPLS network pre-configuration 70
MPLS, defined 271
mplsctl shell command 71
Multi Protocol Label Switching (MPLS)

technology overview 2
multicast daemon 132
Multicast Listener Discovery, see MLD
multicast proxy

example 17
implementation 16

multicast router
components of 15
implementation 16

multicast router vs. multicast proxy 14
multicast routing

adding and deleting virtual interfaces for 147
blocking options 138
changing protocol versions 135
group options 137
IP addressing with 5
product overview 13
socket options 136

 Index

285

Index

supported protocols 13
technology overview 4
terminology 13

multicast routing table, see forwarding information
base 15

multicasting
building VxWorks image for 126
configuring 126
overview 125
queries 138, 140
reports 138
RIP, using 3

Multiprotocol Label Switching, see MPLS
MUX 19
MUX, defined 271

N
NDP 66

product overview 9
ndp shell command 66
Neighbor Discovery Protocol, see NDP
NET_JOB_NUM_CFG 44
NET_TASK_OPTIONS 43
NET_TASK_PRIORITY 43
NET_TASK_STACKSIZE 43
network connectivity, testing

under IPv4 49
under IPv6 50

network daemon 41
network drive, mounting 30, 40
network interface

adding 37
configuring 38–39

network interface driver, including 36
non-blocking socket 103
NPT driver, defined 272
NUM_SYS_64 131

O
optimization 31

OSI network model, defined 272
OTHER_FIELD_DELIMITER 40

P
packet filtering, defined 272
packet, defined 272
PATRICIA tree 78
pcPentium BSP 37
PIM-DM 151
PIM-Register 151
PIM-SM 150, 151
ping 32, 35, 41, 123
ping utility

network connections, testing 49
ping6 32, 35, 41, 123
ping6() 50
Platforms for Consumer Devices, see Wind River

Platforms
Platforms for Industrial Devices, see Wind River

Platforms
Platforms for Network Automotive Devices, see

Wind River Platforms
Platforms for Network Equipment, see Wind River

Platforms
Point-to-Point Protocol, defined 272
priority inversion 44
Protocol Independent Multicast, see PIM
protocol, defined 273
protocols, application 19

Q
qos shell command 92

R
reading, recommended 20
REM_NUM_CONN_RETRIALS 41

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

286

RFCs
defined 273
0147, Definition of a socket 21
0768, User Datagram Protocol 21
0781, Specification of the Internet Protocol (IP)

timestamp option 21
0791, Internet Protocol 21
0792, Internet Control Message Protocol 21
0793, Transmission Control Protocol 21
0826, Ethernet Address Resolution Protocol: Or

Converting Network Protocol
Addresses to 48.bit Ethernet Address
for Transmission on Ethernet
Hardware 21

0854, Telnet Protocol Specification 26
0894, A Standard for the Transmission of IP

Datagrams over Ethernet
Networks 21

0903, A Reverse Address Resolution
Protocol 21

0919, Broadcasting Internet Datagrams 21
0922, Broadcasting Internet datagrams in the

presence of subnets 21
0925, Multi-LAN Address Resolution 21
0950, Internet Standard Subnetting

Procedure 21
0951, Bootstrap Protocol 26
0959, File Transfer Protocol 21
1014, XDR

External Data Representation standard 26
1027, Using ARP to implement transparent

subnet gateways 21
1034, Domain Names - Concepts and

Facilities 21
1035, Domain Names - Implementation and

Specification 21
1058, Routing Information Protocol 3, 21
1071, Computing the Internet checksum 21
1112, Host extensions for IP multicasting 21
1122, Requirements for Internet Hosts -

Communication Layers 22
1123, Requirements for Internet Hosts -

Application and Support 22
1191, Path MTU discovery 22
1256, ICMP Router Discovery Messages 22

1323, TCP Extensions for High
Performance 22

1349, Type of Service in the Internet Protocol
Suite 22

1350, The TFTP Protocol (Revision 2) 22
1388, RIP Version 2 Carrying Additional

Information 3
1517, Applicability Statement for the

Implementation of Classless Inter-
Domain Routing CIDR 22

1518, An Architecture for IP Address Allocation
with CIDR 22

1519, Classless Inter-Domain Routing (CIDR)
an Address Assignment and Aggregation

Strategy 22
1542, Clarifications and Extensions for the

Bootstrap Protocol 26
1624, Computation of the Internet Checksum

via Incremental Update 22
1700, Assigned Numbers 26
1701, Generic Routing Encapsulation (GRE) 22
1724, RIP Version 2 MIB Extension 12, 22
1831, RPC

Remote Procedure Call Protocol
Specification Version 2 26

1853, IP in IP Tunneling 22
1853, IP in IP Tunnelling 22
1886, DNS Extensions to support IP version

6 22
1924, A Compact Representation of IPv6

Addresses 22
1981, Path MTU Discovery for IP version 6 22
2001, TCP Slow Start, Congestion Avoidance,

Fast Retransmit, and Fast Recovery
Algorithms 22

2002, IP Mobility Support 22
2003, IP Encapsulation within IP 22
2004, Minimal Encapsulation within IP 22
2005, Applicability Statement for IP Mobility

Support 22
2018, TCP Selective Acknowledgment

Options 22
2030, Simple Network Time Protocol (SNTP)

Version 4 for IPv4, IPv6 and OSI 22
2080, RIPng for IPv6 3

 Index

287

Index

2104, HMAC
Keyed-Hashing for Message

Authentication 23
2113, IP Router Alert Option 23
2131, Dynamic Host Configuration

Protocol 26
2132, DHCP Options and BOOTP Vendor

Extensions 26
2236, Internet Group Management Protocol,

Version 2 23
2242, NetWare/IP Domain Name and

Information 26
2373, IP Version 6 Addressing Architecture 23
2374, An IPv6 Aggregatable Global Unicast

Address Format 23
2375, IPv6 Multicast Address Assignments 5,

23
2385, Protection of BGP Sessions via the TCP

MD5 Signature Option 23
2401, Security Architecture for the Internet

Protocol 23
2406, IP Encapsulating Security Payload

(ESP) 23
2428, FTP Extensions for IPv6 and NATs 23
2450, Proposed TLA and NLA Assignment

Rule 23
2453, RIP Version 2 23
2460, Internet Protocol, Version 6 (IPv6)

Specification 23
2461, Neighbor Discovery for IP Version 6

(IPv6) 23
2462, IPv6 Stateless Address

Autoconfiguration 23
2463, Internet Control Message Protocol

(ICMPv6) for the Internet Protocol
Version 6 (IPv6) Specification 23

2464, Transmission of IPv6 Packets over
Ethernet Networks 23

2473, Generic Packet Tunneling in IPv6
Specification 23

2473, Generic Packet Tunnelling in IPv6
Specification 23

2474, Definition of the Differentiated Services
Field (DS Field) in the IPv4 and IPv6
Headers 23

2475, An Architecture for Differentiated
Service 23

2529, Transmission of IPv6 over IPv4 Domains
without Explicit Tunnels 23

2547, BGP/MPLS VPNs 23
2553, Basic Socket Interface Extensions for

IPv6 23, 24
2577, FTP Security Considerations 24
2581, TCP Congestion Control 24
2597, Assured Forwarding PHB Group 24
2697, A Single Rate Three Color Marker 24
2710, Multicast Listener Discovery (MLD) for

IPv6 24
2711, IPv6 Router Alert Option 24
2784, Generic Routing Encapsulation (GRE) 24
2794, Mobile IP Network Access Identifier

Extension for IPv4 24
2849, The LDAP Data Interchange Format

(LDIF) - Technical Specification 26
2893, Transition Mechanisms for IPv6 Hosts and

Routers 24
2977, Mobile IP Authentication, Authorization,

and Accounting Requirements 24
2991, Multipath Issues in Unicast and Multicast

Next-Hop Selection 24, 102
3012, Mobile IPv4 Challenge/Response

Extensions 24
3024, Reverse Tunneling for Mobile IP,

revised 24
3031, Multiprotocol Label Switching

Architecture 24
3041, Privacy Extensions for Stateless Address

Autoconfiguration in IPv6 24
3056, Connection of IPv6 Domains via IPv4

Clouds 24
3115, Mobile IP Vendor/Organization-Specific

Extensions 24
3152, Delegation of IP6.ARPA 26
3232, Assigned Numbers: RFC 1700 is Replaced

by an On-line Database 5, 26
3315, Dynamic Host Configuration Protocol for

IPv6 (DHCPv6) 24
3344, IP Mobility Support for IPv4 24
3376, Internet Group Management Protocol,

Version 3 24

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

288

3484, Default Address Selection for Internet
Protocol version 6 (IPv6) 24

3493, Basic Socket Interface Extensions for
IPv6 24

3513, Internet Protocol Version 6 (IPv6)
Addressing Architecture 5, 24

3519, Mobile IP Traversal of Network Address
Translation (NAT) Devices 24

3542, Advanced Sockets Application Program
Interface (API) for IPv6 24

3543, Registration Revocation in Mobile
IPv4 25

3587, IPv6 Global Unicast Address Format 25
3596, DNS Extensions to Support IP Version

6 25
3633, IPv6 Prefix Options for Dynamic Host

Configuration Protocol (DHCP)
version 6 26

3646, DNS Configuration options for Dynamic
Host Configuration Protocol for IPv6
(DHCPv6) 25

3678, Socket Interface Extensions for Multicast
Source Filters 25, 136, 137

3736, Stateless Dynamic Host Configuration
Protocol (DHCP) Service for IPv6 25

3768, Virtual Router Redundancy Protocol
(VRRP) 4, 25

3769, Requirements for IPv6 Prefix
Delegation 25

3775, Mobility Support in IPv6 25
3776, Using IPsec to Protect Mobile IPv6

Signaling Between Mobile Nodes and
Home Agents 25

3810, Multicast Listener Discovery Version 2
(MLDv2) for IPv6 25

3846, Mobile IPv4 Extension for Carrying
Network Access Identifiers 25

3879, Deprecating Site Local Addresses 25
3927, Dynamic Configuration of IPv4 Link-

Local Addresses 25
4075, Simple Network Time Protocol (SNTP)

Configuration Option for
DHCPv6 25

4193, Unique Local IPv6 Unicast Addresses 25

4213, Basic Transition Mechanisms for IPv6
Hosts and Routers 25

4242, Information Refresh Time Option for
Dynamic Host Configuration Protocol
for IPv6 (DHCPv6) 25

4291, IP Version 6 Addressing Architecture 25
4293, Management Information Base for the

Internet Protocol (IP) 25
4294, IPv6 Node Requirements 25
4433, Mobile IPv4 Dynamic Home Agent (HA)

Assignment 25
4443, Internet Control Message Protocol

(ICMPv6) for the Internet Protocol
Version 6 (IPv6) Specification 25

4604, Using Internet Group Management
Protocol Version 3 (IGMPv3) and
Multicast Listener Discovery Protocol
Version 2 (MLDv2) for Source-Specific
Multicast 26

4605, Internet Group Management Protocol
(IGMP) / Multicast Listener Discovery
(MLD)-Based Multicast Forwarding
("IGMP/MLD Proxying") 26

4607, Source-Specific Multicast for IP 26
4636, Foreign Agent Error Extension for Mobile

IPv4 26
4692, Considerations on the IPv6 Host Density

Metric 26
RIP

broadcasting 3
multicasting 3
product overview 11
subnet broadcasting 3
technology overview 2

RIP (Routing Information Protocol)
versions 3

ripctrl shell command 84
RIPng 2, 85
ripngctrl shell command 83
route flags 98
route shell command 71, 74, 96
route table

adjusting 96
implementation 77

route.h 102, 104, 106, 108, 109, 110, 111, 112, 115

 Index

289

Index

router, defined 273
Routing Information Protocol, see RIP
routing sockets

creating 103
disabling 104
message

accessing the addresses in 114
extracting information from 114
header structures for 104
receiving/processing 105
type values for 106

options 103
overview 101
setting up 103

RTAX_MAX 115
RTF_name flags 113
RTM_ADD 107
RTM_CHANGE 109
RTM_DELADDR 105
RTM_DELADDR 112
RTM_DELETE 108
RTM_GET 109
RTM_IFANNOUNCE 105
RTM_IFANNOUNCE 112
RTM_IFINFO 105
RTM_IFINFO 112
RTM_LOCK 111
RTM_LOSING 110
RTM_MISS 111
rtm_name members of rt_msghdr structure 117
RTM_NEWADDR 105, 107
RTM_NEWADDR 111
RTM_REDIRECT 110

S
semMLib 45
shell commands,overview 45
sioc_sg_req structure 147
sioc_vif_req structure 147
SIOCMSFILTER 137
SMP

building source code for 32
configuring for 33

-smp command-line flag 33
SNARF, defined 273
socket options 136
socket, defined 273
source code

building for General Purpose Platform 30
building for Wind River Platforms 29

standards, IETF 21
stf interface, defined 274
symbol table 30, 40
sysctlLib 36
syslog shell command 47
sysvar parameters 52
sysvar shell command, overview 48

T
target, defined 274
tasks, priority inversion of 44
TCP 34, 67
TCP/IP

technology overview 2
TCP/IP, defined 274
TCP_CONN_TIMEOUT 68
TCP_MAX_MSS 68
TCP_MAX_RETRANSMITS 68
TCP_MSL 68
TCP_SEGMENT_MULTIPLIER 68
TCP_USE_RFC1122_URGENT_DATA 69
TCP_USE_TIMESTAMP 69
terms, glossary of 267
tNet0 41
tNetn

task options for 43
tNetTaskn

task options for 43
Transmission Control Protocol (TCP) 9

product overview 9
transport layer, defined 274
tRipngTask 86
tRipTask 86
troubleshooting

IPv6 connectivity 50
network connections 49

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 1: Transport and Network Protocols, 6.6

290

tunneling, defined 274
tunnels 39

U
UDP 274

product overview 10
UDPv4 34
upstream interface 139
User Datagram Protocol, see UDP

V
verbose mode 31
vifctl structure 147
Virtual Router Redundancy Protocol (VRRP) 93

technology overview 4
virtual routers

assigning interfaces to 123
creating 123
managing 122
using in applications 124

VRRP 93
VRRP_IFLIST_VRIDS 94
VRRP_IFLIST_VRIDS_ADV_INTERVAL 94
VRRP_IFLIST_VRIDS_IPADDR 93
VRRP_IFLIST_VRIDS_PREEMPT_MODE 94
VRRP_IFLIST_VRIDS_PRIORITY 94
VRRP_IFNAME_LIST 93
VXBUILD=SMP command-line flag 32
VxBus 36
vxprj 32

W
WDB_COMM_SERIAL 36
Wind River Firewall 96
Wind River Platforms, features in 6
Wind River Workbench 32

X
XDR (External Data Representation)

basic networking support 36

	Wind River Network Stack for VxWorks 6 Programmer's Guide, 6.6
	Contents
	1 Overview
	1.1 Introduction
	1.2 Technology Overview
	1.2.1 TCP/IP
	1.2.2 Multiprotocol Label Switching
	1.2.3 RIP and RIPng
	RIP
	RIPng

	1.2.4 VRRP
	1.2.5 Multicast Routing
	IPv4 Addressing
	IPv6 Addressing

	1.3 Product Overview
	1.3.1 Address Resolution Protocol (ARP)
	1.3.2 Internet Control Message Protocol (ICMP)
	1.3.3 Internet Control Message Protocol (ICMPv6)
	1.3.4 Internet Protocol (IP)
	1.3.5 Internet Protocol Version 6 (IPv6)
	1.3.6 Neighbor Discovery Protocol (NDP)
	1.3.7 Transmission Control Protocol (TCP)
	1.3.8 User Datagram Protocol (UDP)
	1.3.9 Multiprotocol Label Switching
	1.3.10 RIP
	1.3.11 Multicast Routing
	General Purpose Platform
	Wind River Platforms
	Terminology
	Multicast Router vs. Multicast Proxy
	Multicast Router Components
	Multicast Router Implementation
	Multicast Proxy Implementation
	Multicast Proxy Operation

	1.4 Additional Documentation
	Wind River Documentation
	Books
	Online Resources
	RFCs

	2 Configuring and Building the Network Stack
	2.1 Introduction
	2.2 Configuring and Building the Wind River Network Stack Source Code
	2.2.1 IPv4 or IPv6
	Affected Modules-IPv6-Only Network Stack
	Build Instructions
	Symbol Table Download and Network Drives

	2.2.2 Optimizations and Debugging
	Verbose

	2.2.3 SMP Platform Build
	2.2.4 Examples

	2.3 Configuring VxWorks with the Wind River Network Stack
	Creating an IPv6 Project
	Creating an SMP Project
	Automatically Included Components
	Additionally Required Components
	2.3.1 Including a Network Driver
	Checking for VxBus Support
	Adding a Network Interface-Legacy END Drivers
	Configuring an Additional Interface
	Creating a Tunnel to a Remote IPv6 Destination

	2.3.2 Special Provisions for IPv6-Only Network Stacks
	Configuring IPv6-Related Parameters at Boot Time

	2.3.3 Additional Dependencies
	2.3.4 Configuring the Network Daemon Task

	2.4 Using Shell Commands
	2.4.1 Including Shell Command Components
	2.4.2 General Network Stack Shell Commands
	ipd
	ipversion
	syslog
	sysvar

	2.4.3 Running Commands from the Shell

	2.5 Testing Connectivity from the Target
	Testing IPv4 Connectivity
	Testing IPv6 Connectivity

	3 Configuring Transport and Network Protocols
	3.1 Introduction
	3.2 Configuring VxWorks with Transport and Network Layer Support
	3.2.1 ARP
	ARP Build-Time Configuration
	ARP Run-Time Configuration
	arp

	3.2.2 Proxy ARP
	3.2.3 ICMP (v4 and v6)
	3.2.4 IPv4
	IPv4 Run-Time Configuration

	3.2.5 IPv6
	IPv6 Run-Time Configuration

	3.2.6 NDP
	NDP Build-Time Configuration
	NDP Run-Time Configuration
	ndp

	3.2.7 TCP
	3.2.8 MPLS
	MPLS Build-Time Configuration
	INCLUDE_IPMPLS Parameter
	Alternative Static Configuration
	MPLS Run-Time Configuration
	mplsctl - MPLS control configuration tool
	route - MPLS-specific commands

	4 Adding Routing Support
	4.1 Introduction
	4.2 Building and Configuring RIP and RIPng
	IPRIP Interface Configurations
	RIP Build-Time Configuration
	RIPng Run-Time Configuration
	ripngctrl
	RIP Shell Commands
	RIPng
	RIPv1/v2

	4.3 Policy-Based Routing
	4.4 VRRP
	4.4.1 Configuring and Building VRRP

	4.5 Fast Path
	4.5.1 Generic Fast Path
	4.5.2 Ethernet Fast Path

	4.6 Adjusting the Route Table
	4.6.1 Route Shell Command
	route

	5 Working with Routing Sockets
	5.1 Introduction
	5.2 Getting Started with Routing Sockets
	5.2.1 Configuring VxWorks for Routing Sockets
	5.2.2 Setting up a Routing Socket
	5.2.3 Disabling Routing Sockets

	5.3 Preparing and Processing Routing Socket Messages
	5.3.1 Case/Switch Processing for Received Messages
	5.3.2 Types of Routing Socket Messages
	RTM_DELETE
	RTM_CHANGE
	RTM_GET
	RTM_LOSING
	RTM_REDIRECT
	RTM_MISS
	RTM_LOCK
	RTM_RESOLVE
	RTM_NEWADDR
	RTM_DELADDR
	RTM_IFINFO
	RTM_IFANNOUNCE
	Extended Messages for Virtual Routing

	5.3.3 RTF Flags

	5.4 Extracting Information from a Routing Socket Message
	5.4.1 Parsing the Routing Socket Message after the Header

	5.5 Building a Routing Socket Message
	5.5.1 Setting the Header Structure Field Values

	6 Enabling Virtual Routers
	6.1 Introduction
	6.2 Component and Technology Overview
	6.2.1 Virtual Router Domain Separation
	Interface Management

	6.3 Conformance to Standards
	6.4 Managing Virtual Routers
	6.5 Examples
	Creating VRs and Assigning Interfaces
	Working with VR in Applications

	7 Adding Support for Multicast Routing
	7.1 Introduction
	7.2 Configuring and Building VxWorks for Multicasting Support
	7.2.1 Building the IGMP and MLD Modules in Platform Source Code
	Building for Multicast Forwarding
	Building for MLD

	7.2.2 Configuring VxWorks with Multicasting
	Setting Multicasting Parameters

	7.3 Starting and Stopping the Router
	7.3.1 Running the Multicasting Router Daemon
	7.3.2 Getting Statistics
	mcastproxy

	7.3.3 Multicast Routing Run-Time Configuration
	7.3.4 Changing the Protocol Versions

	7.4 Joining and Leaving Host Groups
	7.4.1 Socket Options
	Group Options
	Blocking Options

	7.4.2 Membership Reports for IGMPv1, IGMPv2, and MLDv1

	7.5 Sending Queries and Reports
	7.5.1 Network Interfaces
	7.5.2 Queries
	Message Types
	Query States

	7.5.3 Using Sockets
	Binding
	Examples of Host Send and Receive

	7.6 Adding and Deleting Virtual Interfaces for Multicast Routing
	vifctl Structure
	sioc_vif_req Structure
	sioc_sg_req Structure
	Opening a Multicast Socket for Receiving Upcalls

	7.7 Using PIM Hooks
	Protocol Independent Multicast (PIM)
	Using a Socket Interface to Enable and Access PIM Functionality

	8 Wind River Mobile IP: Overview
	8.1 Introduction
	8.2 Mobile IP Technical Overview
	8.2.1 Components and Terminology
	8.2.2 Communication with the Mobile Node
	Communication with the Mobile Node in IPv4
	Communication with the Mobile Node in IPv6
	Sequence of Steps in Establishing and Carrying out Mobile Communication

	9 Wind River Mobile IPv4: Mobile Node
	9.1 Introduction
	9.2 Mobile Node Features
	9.2.1 Low-Latency Handoffs
	9.2.2 Integration with IPsec and IKE

	9.3 Conformance to Standards
	9.4 Build Component and Build Parameters
	9.4.1 Reconfiguring IKE When the Mobile Node Moves
	9.4.2 Using IKE Care-of Addresses

	9.5 Including the Mobile Node in a Build
	9.6 Shell Commands
	9.7 Testing the Mobile Node

	10 Wind River Mobile IPv4: Home Agent
	10.1 Introduction
	10.2 Conformance to Standards
	10.3 Build Components and Build Parameters
	10.3.1 Configuration Parameters for the IPv4 Home Agent Build Component
	10.3.2 Configuration Parameters for RADIUS Support
	10.3.3 Configuration Parameters for Diameter Support

	10.4 Including the Home Agent in a Build
	10.5 Shell Commands
	10.5.1 Sample Output for the ha list Shell Command
	10.5.2 Sample Output for the ha show Shell Command
	10.5.3 Sample Output for the ha errors Shell Command

	10.6 Testing the Home Agent
	10.6.1 Mobile-Node Test Configuration
	10.6.2 Home-Agent Test Configuration

	11 Wind River Mobile IPv4: Foreign Agent
	11.1 Introduction
	11.2 Low-latency handoffs
	11.3 Conformance to Standards
	11.4 Build Components and Build Parameters
	11.4.1 Configuration Parameters for the IPv4 Foreign Agent Build Component
	11.4.2 Configuration Parameters for RADIUS Support
	11.4.3 Configuration Parameters for Diameter Support

	11.5 Including the Foreign Agent in a Build
	11.6 Shell Commands
	11.6.1 Shell Commands for Displaying Registration and Error Information
	Sample Output for the fa list Shell Command
	Sample Output for the fa show Shell Command
	Sample Output for the fa error Shell Command

	11.6.2 Shell Commands for Layer-2 Triggers

	11.7 Testing the Foreign Agent
	11.7.1 Mobile-Node Test Configuration
	11.7.2 Home-Agent Test Configuration
	11.7.3 Foreign-Agent Test Configuration

	12 Wind River Mobile IPv6: Mobile Node
	12.1 Introduction
	12.2 Conformance to Standards
	12.3 Build Component and Build Parameters
	12.4 Including the Mobile Node in a Build
	12.5 Shell Commands
	12.5.1 Sample Output for the mn6 list Shell Command
	12.5.2 Sample Output for the mn6 statistics Shell Command
	12.5.3 Sample Output for the mn6 status Shell Command

	A Glossary
	A.1 Introduction
	A.2 Terms
	A.3 Abbreviations and Acronyms

	Index

