
Wind River Workbench

HOST SHELL USER’S GUIDE

®

3.0

Wind River Workbench Host Shell User's Guide, 3.0

Copyright © 2007 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, the Wind River logo, Tornado, and VxWorks are registered trademarks of
Wind River Systems, Inc. Any third-party trademarks referenced are the property of their
respective owners. For further information regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDir/product_name/3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:

http://www.windriver.com

For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

Wind River Workbench Host Shell User’s Guide, 3.0

30 Oct 07
Part #: DOC-16030-ND-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

iii

Contents

1 Overview ... 1

1.1 Introduction ... 1

1.1.1 Target Operating System Configuration ... 3

1.1.2 Reference Pages .. 3

PART 1: VXWORKS 6.X, LINUX, AND STANDALONE TARGETS

2 Using the Host Shell .. 7

2.1 Introduction ... 8

2.2 Starting the Host Shell .. 8

2.2.1 Starting the Host Shell from the Command Prompt 8

Setting Your Environment ... 8
Starting the Target Server .. 8
Starting the Host Shell ... 9
Starting the Host Shell from an Existing Connection 9
Host Shell Startup Options ... 9

2.2.2 Starting the Host Shell from Workbench .. 11

2.2.3 Starting a Standalone Host Shell with an OCD Connection 11

Starting the Host Shell ... 11
Connecting to a Target ... 12

Wind River Workbench
Host Shell User’s Guide, 3.0

iv

2.3 Switching Interpreters ... 13

2.3.1 Evaluating Statements in Different Modes ... 13

2.4 Setting Shell Environment Variables ... 14

2.5 Path Mapping .. 20

The ROOT_PATH_MAPPING Variable .. 20
The VXE_PATH Variable ... 21

2.6 Running the Host Shell in Batch Mode ... 22

2.7 Host Shell Logging ... 22

2.8 Host Shell Scripting ... 23

2.8.1 Single-Stepping Scripts .. 24

2.8.2 Stepping in the Tcl Interpreter .. 24

2.9 Host Shell Features .. 25

2.9.1 I/O Redirection .. 25

2.9.2 Symbol Matching ... 26

2.9.3 Directory and File Listing ... 26

2.9.4 Target Symbol and Path Completion .. 27

2.9.5 Synopsis Printing ... 27

2.9.6 Data Conversion ... 28

2.9.7 Data Calculation ... 28

Calculations with Variables .. 29

2.10 Stopping the Host Shell .. 29

2.11 Host Shell Architecture ... 29

2.11.1 Layers of Interpretation ... 31

3 Using the C Interpreter with VxWorks 6.x ... 33

3.1 Introduction ... 35

 Contents

v

3.2 C Interpreter Limitations .. 35

3.3 Host and Kernel Shell Differences ... 36

3.3.1 Function Calls in the Kernel ... 37

3.4 Running Target Routines From the Shell .. 38

3.4.1 Invocations of VxWorks Subroutines .. 38

3.4.2 Invocations of Application Subroutines ... 38

3.5 Rebooting from the Shell .. 38

3.6 Using the Host Shell for System-Mode Debugging .. 39

3.7 Interrupting a Shell Command .. 43

3.8 Task References .. 44

The “Current” Task and Address ... 44

3.9 Data Types ... 45

3.10 Expressions .. 47

3.10.1 Literals ... 47

3.10.2 Variable References .. 47

3.10.3 Operators ... 48

3.10.4 Function Calls ... 48

3.10.5 Arguments to Commands ... 49

3.11 Assignments .. 50

3.11.1 Typing and Assignment .. 50

3.11.2 Automatic Creation of New Variables .. 51

3.12 Comments .. 51

3.13 Strings ... 52

3.13.1 Strings and Pathnames .. 52

3.14 Ambiguity of Arrays and Pointers .. 53

Wind River Workbench
Host Shell User’s Guide, 3.0

vi

3.15 Pointer Arithmetic .. 54

3.16 Redirection in the C Interpreter .. 54

3.16.1 Ambiguity Between Redirection and C Operators 55

3.16.2 The Nature of Redirection ... 55

3.16.3 Scripts: Redirecting Shell I/O ... 56

C Interpreter Startup Scripts ... 57

3.17 C++ Interpretation .. 57

3.17.1 Overloaded Function Names .. 58

3.17.2 Automatic Name Demangling ... 59

3.18 C Interpreter Primitives .. 60

3.18.1 Managing Tasks .. 60

3.18.2 Task Information .. 61

3.18.3 System Information .. 63

3.18.4 System Modification and Debugging .. 66

3.18.5 C++ Development .. 69

3.18.6 Object Display ... 69

3.18.7 Network Status Display .. 71

3.19 Resolving Name Conflicts Between Host and Target 72

3.20 Examples .. 73

4 Using the Command Interpreter with VxWorks 6.x 75

4.1 Introduction ... 76

4.2 General Commands ... 77

4.3 Displaying Target Agent Information .. 78

4.4 Working with Memory .. 79

4.5 Displaying Object Information ... 79

 Contents

vii

4.6 Working with Symbols ... 79

4.6.1 Accessing a Symbol’s Contents and Address 80

4.6.2 Symbol Value Access ... 80

4.6.3 Symbol Address Access .. 81

4.6.4 Special Consideration of Text Symbols ... 81

4.7 Displaying, Controlling, and Stepping Through Tasks 82

4.8 Setting Shell Context Information .. 83

4.9 Displaying System Status ... 83

4.10 Using and Modifying Aliases .. 84

4.11 Launching RTPs .. 86

4.11.1 Redirecting Output to the Host Shell .. 86

4.11.2 Monitoring and Debugging RTPs .. 87

4.11.3 Setting Breakpoints .. 88

4.12 Event Scripting Commands .. 89

handler add ... 89
handler show .. 90
handler remove ... 91
handler enable .. 91

4.12.1 Limitations .. 91

4.12.2 Event Scripting Example ... 93

4.13 General Examples ... 94

5 Using the GDB Interpreter ... 97

5.1 Introduction ... 98

5.2 General GDB Commands ... 98

5.3 Working with Breakpoints ... 99

Wind River Workbench
Host Shell User’s Guide, 3.0

viii

5.4 Specifying Files to Debug ... 100

5.5 Running and Stepping Through a File .. 100

5.6 Displaying Disassembly and Memory Information 101

5.7 Examining Stack Traces and Frames ... 102

5.8 Displaying Information and Expressions .. 102

5.8.1 info .. 103

5.8.2 print .. 103

5.9 Displaying and Setting Variables ... 104

5.10 Working with Signals .. 105

5.10.1 handle ... 105

5.10.2 info handle ... 106

5.10.3 signal .. 107

5.10.4 send signal ... 107

5.11 Event Scripting .. 108

5.11.1 Event Scripting Commands .. 108

display .. 108
undisplay ... 108
info display .. 109
enable display ... 109
disable display .. 109
commands ... 110
info commands ... 110
enable commands ... 110
disable commands .. 111

5.11.2 Event Scripting Example ... 111

5.12 Wind River On-Chip Debugging GDB Commands .. 112

5.12.1 target ocd ... 112

5.12.2 wrsdeftarget .. 113

5.12.3 wrsregquery .. 115

 Contents

ix

5.12.4 Reset and Download Commands .. 115

6 Using the Tcl Interpreter .. 117

6.1 Introduction ... 117

6.2 Controlling the Target ... 118

6.3 Accessing the WTX Tcl API .. 120

6.4 Calling Target Routines ... 120

6.5 Passing Values to Target Routines .. 121

6.6 Calling Under C Control ... 121

6.6.1 Potential Problems ... 122

6.7 Shell Initialization ... 122

6.7.1 Shell Initialization File ... 123

6.8 Tcl Scripting ... 123

6.8.1 Event Scripting ... 124

API Description .. 125

7 Executing an OCD Reset and Download ... 127

7.1 Introduction ... 127

7.2 Set Target Registers .. 128

7.3 Play Back Firmware Commands .. 129

7.4 Reset One or More Cores .. 130

7.5 Download Executables and Data and Program Flash 130

Download Executables and Data ... 131
Erase Flash Memory (Optional) ... 131
Program Flash Memory (Optional) ... 131

Wind River Workbench
Host Shell User’s Guide, 3.0

x

7.6 Run the Target ... 132

7.7 Set a Hardware Breakpoint ... 132

7.8 Configure Target Memory Map ... 132

7.9 Pass Through Command to Firmware .. 134

7.10 Upload from Target Memory .. 134

PART II: VXWORKS 653 TARGETS

8 Overview for VxWorks 653 .. 137

8.1 Introduction ... 137

8.2 Starting the Host Shell .. 138

8.2.1 Starting the Host Shell from the Command Prompt 138

Setting Your Environment ... 138
Starting the Target Server .. 138
Starting the Shell ... 138
Host Shell Startup Options ... 139

8.2.2 Starting the Host Shell from Workbench .. 140

8.3 Switching Interpreters ... 140

8.3.1 Evaluating Statements in Different Modes ... 140

8.4 Setting Shell Environment Variables ... 141

8.5 Path Mapping .. 144

The ROOT_PATH_MAPPING Variable .. 144

8.6 Host Shell Features .. 145

8.6.1 Symbol Matching ... 145

8.6.2 Directory and File Listing ... 145

8.6.3 Target Symbol and Path Completion .. 146

8.6.4 Synopsis Printing ... 146

 Contents

xi

8.6.5 Data Conversion ... 147

8.6.6 Data Calculation ... 147

Calculations with Variables .. 147

8.7 Stopping the Host Shell .. 148

8.8 Host Shell Architecture ... 148

8.8.1 Layers of Interpretation ... 151

9 Using the Host Shell with VxWorks 653 ... 153

9.1 Introduction ... 154

9.2 Domain Selection and Identification ... 154

9.3 Running Target Routines From the Shell .. 156

9.3.1 Invocations of VxWorks 653 Subroutines ... 156

9.4 Function Calls from User Domains .. 156

9.5 Rebooting from the Host Shell .. 157

9.6 Task-Mode Debugging .. 158

9.6.1 Task Breakpoints .. 158

9.6.2 Protection Domain Breakpoints ... 159

9.7 Stack Tracing ... 161

9.8 Disassembler ... 161

9.9 Using the Host Shell for System-Mode Debugging .. 162

9.10 Interrupting a Shell Command .. 165

9.11 Working With Shared Library and Data Domains .. 167

9.12 Loading From the Shell ... 167

9.12.1 Incremental Loading .. 167

Wind River Workbench
Host Shell User’s Guide, 3.0

xii

9.12.2 Dynamic Linking .. 167

9.12.3 Object Module Load Path ... 168

9.12.4 Loader Defaults .. 169

10 Using the C Interpreter with VxWorks 653 ... 171

10.1 Introduction ... 172

10.2 Host and Target Shell Differences .. 172

10.2.1 Protection Domain Breakpoints ... 173

10.2.2 Function Calls in the Kernel Domain .. 174

10.3 Task References ... 174

The “Current” Task and Address ... 175

10.4 Data Types .. 175

10.5 Expressions .. 177

10.5.1 Literals .. 177

10.5.2 Variable References .. 178

10.5.3 Operators ... 178

10.5.4 Function Calls ... 179

10.5.5 Arguments to Commands ... 180

10.6 Assignments .. 181

10.6.1 Typing and Assignment .. 181

10.6.2 Automatic Creation of New Variables .. 181

10.7 Comments .. 182

10.8 Strings ... 182

10.8.1 Strings and Pathnames .. 183

10.9 Ambiguity of Arrays and Pointers .. 183

10.10 Pointer Arithmetic .. 184

 Contents

xiii

10.11 C Interpreter Limitations .. 185

10.12 Redirection in the C Interpreter .. 186

10.12.1 Ambiguity Between Redirection and C Operators 186

10.12.2 The Nature of Redirection ... 186

10.12.3 Scripts: Redirecting Shell I/O ... 187

C Interpreter Startup Scripts ... 188

10.13 C++ Interpretation .. 189

10.13.1 Overloaded Function Names ... 189

10.13.2 Automatic Name Demangling ... 191

10.14 C Interpreter Primitives .. 192

10.14.1 Managing Tasks .. 192

10.14.2 Task Information .. 193

10.14.3 Displaying System Information ... 195

10.14.4 Modifying and Debugging the Target ... 199

10.14.5 Protection Domains .. 202

10.14.6 C++ Development .. 202

10.14.7 Object Display ... 203

10.14.8 Network Status Display .. 206

10.15 Resolving Name Conflicts Between Host and Target 207

10.16 Examples .. 207

11 Using the Tcl Interpreter with VxWorks 653 209

11.1 Introduction ... 209

11.2 Controlling the Target ... 210

11.3 Accessing the WTX Tcl API .. 211

11.4 Calling Target Routines ... 212

Wind River Workbench
Host Shell User’s Guide, 3.0

xiv

11.5 Passing Values to Target Routines .. 212

11.6 Calling Under C Control ... 213

11.7 Shell Initialization ... 213

11.7.1 Shell Initialization File ... 214

PART III: APPENDICES

A Using the Host Shell Line Editor .. 217

A.1 Introduction ... 217

A.2 vi-Style Editing ... 218

A.2.1 Switching Modes and Controlling the Editor 218

A.2.2 Moving and Searching in the Editor .. 219

A.2.3 Inserting and Changing Text .. 220

A.2.4 Deleting Text ... 220

A.2.5 Put and Undo Commands .. 221

A.3 emacs-Style Editing .. 221

A.3.1 Moving the Cursor ... 221

A.3.2 Deleting and Recalling Text .. 222

A.3.3 Special Commands ... 222

A.4 Command Matching .. 223

A.4.1 Directory and File Matching ... 223

A.4.2 Command and Path Completion ... 223

B Single Step Compatibility .. 225

B.1 Introduction ... 225

B.2 Scripting ... 226

 Contents

xv

B.3 SingleStep Command Equivalents ... 226

B.4 SingleStep read Command Compatibility .. 230

B.5 SingleStep write Command Compatibility .. 232

B.6 SingleStep Variable Compatibility ... 233

Wind River Workbench
Host Shell User’s Guide, 3.0

xvi

1

 1
Overview

1.1 Introduction

The Wind River Workbench host shell is a command-line shell for the Wind River
Workbench debugger. It is intended for scripting and for lightweight use of the
debugger when the Eclipse-based Workbench graphical user interface (GUI) is not
needed or not wanted. You can use it independently of the GUI to debug an
application at source or symbol level.

The host shell is a host-resident command shell that allows you to download
application modules, invoke operating-system and application subroutines, and
monitor and debug VxWorks 6.x or VxWorks 653 kernel modules, VxWorks 6.x
real-time processes (RTPs), and Linux executables. You can run application
modules interactively by calling their entry points. You can also run the host shell
in non interactive mode, as an engine for automated runs and tests.

The host shell behaves differently depending on what operating system image you
have loaded on your target. Modes and features that are available for one OS may
not be available for another.

This document divides target operating systems into two groups:

Group 1

■ VxWorks 6.x
■ Linux
■ Standalone (no operating system)

Group 2

■ VxWorks 653

Wind River Workbench
Host Shell User’s Guide, 3.0

2

The behavior of the shell differs so widely between these two groups that they
need to be covered separately. In this document, Part I describes the host shell for
operating systems in Group 1. Part II describes the host shell for VxWorks 653.

Modes in the host shell differ as follows:

■ Command Interpreter Mode is a UNIX-style command interpreter for debugging
and monitoring a VxWorks 6.x system, including real-time processes (RTPs.)

■ C Interpreter Mode executes C-language expressions and allows prototyping
and debugging in kernel space. The C interpreter is available to VxWorks and
VxWorks 653 targets, but behaves differently for each OS. The C interpreter is
described in Part 1 in 3. Using the C Interpreter with VxWorks 6.x (for
VxWorks 6.x targets) and in Part II in 10. Using the C Interpreter with VxWorks
653 (for VxWorks 653 targets.)

Note that C interpreter routine calls return 32-bit values only.

■ Tcl Interpreter Mode allows you to access the Wind River Tool Exchange (WTX)
Tcl API; it also allows scripting.

■ GDB Interpreter Mode allows you to debug a target using GNU Debugger
(GDB) commands.

Host shell operation involves three components:

■ The host shell itself. The shell is where you directly exercise control; it receives
your commands and executes them locally on the host, dispatching requests to
the target server for any action involving the symbol table or target-resident
programs or data.

Table 1-1 Differences Between Target Operating Systems

Target OS

Command
Interpreter
Mode

C
interpreter
Mode

GDB
Interpreter
Mode

Tcl
Interpreter
Mode Default Mode

VxWorks 6.x Yes Yes Yes Yes C

VxWorks 653 No Yes No Yes C

Linux No No Yes Yes GDB

Standalone (no
operating system)

No No Yes Yes GDB

1 Overview
1.1 Introduction

3

1
■ A target server, which manages the symbol table and handles all

communications with the remote target, dispatching function calls and
sending their results back as needed.

■ A target agent, a small monitor program that mediates access to target memory
and other facilities. The target agent is the only component that runs on the
target. The symbol table, managed by the target server, resides on the host,
although the addresses it contains refer to the target system.

A target-resident version of the shell is also available for VxWorks 6.x and
VxWorks 653 targets. For VxWorks 6.x this is called the kernel shell. For
VxWorks 653 it is called the target shell. See the VxWorks Kernel Programmer’s Guide:
Target Tools or the Wind River Workbench User’s Guide, VxWorks 653 Version: Tools.

1.1.1 Target Operating System Configuration

Depending on your target operating system, you may need to configure your OS
to use the host shell:

■ VxWorks 6.x targets need to have the Wind River DeBug (WDB) agent running
in order to use the host shell. Make sure the component INCLUDE_WDB is
included when you configure your VxWorks image.

■ Wind River Linux targets need to have the user mode agent running in order
to use the host shell. Once your kernel is booted, call usermode-agent to start
the user mode agent.

1.1.2 Reference Pages

For more information, see the host shell reference pages: hostShell, cMode,
cmdMode, gdbMode, and rtpCmdMode. You can access these pages by opening
Wind River Workbench and selecting Help > Help Contents > Wind River
Documentation > References > Host Tools > Wind River Host Shell API
Reference.

Wind River Workbench
Host Shell User’s Guide, 3.0

4

5

PAR T 1

VxWorks 6.x, Linux, and
Standalone Targets

2 Using the Host Shell .. 7

3 Using the C Interpreter with VxWorks 6.x 33

4 Using the Command Interpreter with VxWorks 6.x
75

5 Using the GDB Interpreter 97

6 Using the Tcl Interpreter 117

7 Executing an OCD Reset and Download 127

Wind River Workbench
Host Shell User’s Guide, 3.0

6

7

 2
Using the Host Shell

2.1 Introduction 8

2.2 Starting the Host Shell 8

2.3 Switching Interpreters 13

2.4 Setting Shell Environment Variables 14

2.5 Path Mapping 20

2.6 Running the Host Shell in Batch Mode 22

2.7 Host Shell Logging 22

2.8 Host Shell Scripting 23

2.9 Host Shell Features 25

2.10 Stopping the Host Shell 29

2.11 Host Shell Architecture 29

Wind River Workbench
Host Shell User’s Guide, 3.0

8

2.1 Introduction

This chapter describes features of the host shell common to VxWorks 6.x, Linux,
and standalone (no operating system) targets.

2.2 Starting the Host Shell

You can start the host shell from a command prompt or from within the Workbench
GUI.

2.2.1 Starting the Host Shell from the Command Prompt

Setting Your Environment

Before launching the host shell, you must use the command wrenv to set up your
environment. If you do not set your environment, the prompt returns the following
error:

WIND_FOUNDATION_PATH must be set to start the Host Shell

To set your environment, enter the following command from your installation
directory:

%wrenv -p target_OS_version

For example, if you are using VxWorks 6.x, enter

%wrenv -p vxworks-6.x

If you are using Wind River Linux 1.x, enter

%wrenv -p wrlinux-1.x

Starting the Target Server

To start a target server, use the tgtsvr command. For example, to start a target
server called myTgtsvr on a target with the IP address 123.456.78.90, enter the
following command from your installation directory:

2 Using the Host Shell
2.2 Starting the Host Shell

9

2

% tgtsvr 123.456.78.90 -n myTgtsvr

To see all available options for the tgtsvr command, enter tgtsvr -h.

Note that you must set up your environment with the wrenv command before
using the tgtsvr command.

Starting the Host Shell

Once you have attached a target server to the target, start the host shell using the
hostShell command.

To start the host shell, type the following:

%hostShell [options] target_server

For former users of Tornado, the windsh command is still supported:

%windsh [options] target_server

Starting the Host Shell from an Existing Connection

If you are using an OCD connection, or if you have already established a target
connection using Workbench, then you can start the host shell with the hostShell
command, indicating the name of the target connection to use and the backend
server to use.

To start the host shell, type the following:

% hostShell [options] -dt target_connection -ds backend_server_session

If you do not know the names of your target connection and backend server
session, type hostShell with no arguments and follow the options presented.

Host Shell Startup Options

Table 2-1 summarizes startup options. For example, to connect to a running
simulator, type the following:

%hostShell vxsim0@hostname

NOTE: When you start the host shell, a second shell window appears, running the
Debug server. You can minimize this second window to reclaim screen space, but
do not close it.

Wind River Workbench
Host Shell User’s Guide, 3.0

10

You may run as many different host shells attached to the same target as you wish.
The output from a function called in a particular shell appears in the window from
which it was called, unless you change the shell defaults using shConfig (see
2.4 Setting Shell Environment Variables, p.14).

Table 2-1 Host Shell Startup Options

Option Description

-N, -noconnection Specifies that the host shell will not connect to the
backend server on startup. This allows a Tcl script to
control the host shell.

-n, -noinit Do not read home Tcl initialization file.

-T, -Tclmode Start in Tcl mode.

-m[ode] Indicates mode to start in: C (C), Tcl (Tcl|tcl|TCL),
GDB (Gdb|gdb|GDB), or Cmd (Cmd|cmd|CMD).

-v, -version Display host shell version.

-h, -help Print help.

-p, -poll Sets event poll interval in milliseconds; the default is
200.

-e, -execute Executes Tcl expression after initialization.

-c, -command Executes expression and exits shell (batch mode).

-r, -root mappings Root pathname mappings.

-ds[backend_server_session] Debugger Server session to use.

-dp[backend_server_port] Debugger Server port to use.

-host Retrieves target server information from host’s
registry.

-s, -startup Specifies the startup file of shell commands to execute.

-q, -quiet Turns off echo of script commands as they are
executed.

-dt target Backend target definition name.

2 Using the Host Shell
2.2 Starting the Host Shell

11

2

2.2.2 Starting the Host Shell from Workbench

If you have established a target connection, you can start the host shell from the
Remote Systems view in Workbench. For creating target connections, see the Wind
River Workbench User’s Guide: Connecting to Targets.

In the Remote Systems view, right-click on your target connection name and select
Target Tools > Host Shell. The Host Shell Properties dialog appears. You can
specify startup options from Table 2-1 in this dialog, or leave them at their defaults.
Click OK to start the host shell.

2.2.3 Starting a Standalone Host Shell with an OCD Connection

To start a standalone host shell independent of Workbench using an OCD
connection, use the following steps.

Starting the Host Shell

Windows Hosts

1. Select Start > All Programs > Wind River > Workbench version > Registry to
start the Wind River Registry manually.

2. Set up the Wind River environment variables.

Open a DOS window and navigate to your Workbench installation directory.
Enter the command

wrenv -p workbench-version

3. Type SET to verify that the paths are set up correctly. The path
WIND_FOUNDATION_PATH should be set to
installDir/workbench-3.x/foundation/version.

4. Start the host shell with the -N flag so that it just brings up the prompt with no
target connection:

hostShell -N

This opens the host shell showing the (gdb) prompt, which you can use to
define the needed target connection.

Linux Hosts

1. Navigate to your Workbench install directory and enter the command

Wind River Workbench
Host Shell User’s Guide, 3.0

12

workbench-3.x/foundation/version/x86-linux2/bin/wtxregd start

This starts the Wind River Registry.

2. Set up the Wind River environment variables.

From your Workbench installation directory, login as root and enter the
command

./wrenv.sh -p workbench-version

3. Exit root.

4. Type SET to verify that the paths are set up correctly. The path
WIND_FOUNDATION_PATH should be set to
/home/username/installDir/workbench-3.x/foundation/version.

5. Start the host shell with the -N flag so that it just brings up the prompt with no
target connection:

workbench-3.x/foundation/version/x86-linux2/bin/hostShell -N

This opens the host shell showing the (gdb) prompt, which you can use to
define the needed target connection.

Connecting to a Target

1. In the host shell, specify the target connection using the wrsdeftarget
command.

For example, to connect to a PowerPC 8260 target using a Wind River ICE SX
that has an IP address of 123.456.789.0, enter the following:

wrsdeftarget WRICE_8260 --core MPC8260 --cpuplugin 82xxcpuplugin
DEVICE='Wind River ICE' STYLE=ETHERNET ADDR=123.456.789.0

In the above example, WRICE_8260 is an arbitrary name. You can use any
name for the connection; however, your connection name must not contain
spaces. --core is set to MPC8260, because you are connecting to an 8260 target.
--cpuplugin is set to 82xxcpuplugin, which is the plugin common to all
PowerPC 82xx processors.

For a full description of the wrsdeftarget command, see 5.12.2 wrsdeftarget,
p.113.

2. Connect the host shell to the newly defined target connection using the
target ocd command.

2 Using the Host Shell
2.3 Switching Interpreters

13

2

Use the syntax target ocd target_id. For example, to connect to the defined
target connection WRICE_8260, enter

target ocd WRICE_8260

The host shell attaches to this target connection and opens a backend server for
communication. This backend server manifests as a second terminal window.
You can minimize this window, but do not close it; closing it severs the host
shell's connection with the target.

2.3 Switching Interpreters

At times you may want to switch from one interpreter to another. From a prompt,
type these special commands and then press Enter:

■ cmd to switch to the command interpreter. The prompt changes to
[vxWorks] #.

■ C to switch to the C interpreter. The prompt changes to ->.

■ tcl to switch to the Tcl interpreter. The prompt changes to tcl>.

■ gdb to switch to the GDB interpreter. The prompt changes to gdb>.

2.3.1 Evaluating Statements in Different Modes

You can use the above commands to evaluate a statement native to a different
interpreter for the one you are using.

To evaluate a statement native to another interpreter, use the routine shEval
followed by the special character for the interpreter you want to invoke.

For example, to evaluate a C interpreter command from within the command
interpreter, type the following:

[vxWorks]# shEval C test = malloc(100); test[0] = 10; test[1] = test[0]+2

If you are using a command that is valid in more than one interpreter, another step
is necessary. For example, the set command is valid in both the GDB interpreter
and the Tcl interpreter, so the syntax

tcl> shEval gdb set $pc= address

Wind River Workbench
Host Shell User’s Guide, 3.0

14

will return an error:

can't read "pc": no such variable

To avoid this problem, precede the set command’s argument with a backslash:

tcl> shEval gdb set \$pc = 0x14200

2.4 Setting Shell Environment Variables

The host shell has a set of environment variables that configure different aspects of
the shell’s interaction with the target and with the user. These environment
variables can be displayed and modified using the Tcl routine shConfig. Table 2-2
provides a list of the host shell’s environment variables and their significance.

Since shConfig is a Tcl routine, it should be called from within the shell’s Tcl
interpreter; it can also be called from within another interpreter if you precede the
shConfig command with the Tcl special character, tcl (tcl shConfig variable option).

For example, to switch from vi mode to emacs mode when using the C interpreter,
type the following:

-> shEval tcl shConfig LINE_EDIT_MODE emacs

When in command interpreter mode, you can use the commands set config and
show config to set and display the environment variables listed in Table 2-2. Not
all of the listed environment variables are valid for all targets. For example, all
variables dealing with real-time processes (RTPs) are specific to VxWorks 6.x.

Table 2-2 Host Shell Environment Variables

Variable Result

RTP_CREATE_STOP [ON|OFF] When RTP support is configured in the system,
this option indicates whether RTPs launched
via the host shell (using the host shell’s
command interpreter) should be launched in
the stopped or running state.

2 Using the Host Shell
2.4 Setting Shell Environment Variables

15

2

RTP_CREATE_ATTACH [ON|OFF] When RTP support is configured in the system,
this option indicates whether the shell should
automatically attach to any RTPs launched from
the host shell (using the host shell’s command
interpreter).

VXE_PATH .pathname When RTP support is configured in the system,
this option indicates the path in which the host
shell should search for RTPs to launch. If this is
set to “.” the full pathname of an RTP should be
supplied to the command to launch an RTP.

ROOT_PATH_MAPPING value Indicates how host and target paths should be
mapped to the host file system on which the
backend used by the host shell is running. If this
value is not set, a direct path mapping is
assumed (for example, a pathname given by
/folk/user is searched; no translation to another
path is performed).

LINE_LENGTH value Indicates the maximum number of characters
permitted in one line of the host shell’s window.

STRING_FREE [manual|automatic] Indicates whether strings allocated on the target
by the host shell should be freed automatically
by the shell, or whether they should be left for
the user to free manually using the C interpreter
API strFree().

SEARCH_ALL_SYMBOLS [ON|OFF] Indicates whether symbol searches should be
confined to global symbols or should search all
symbols. If SEARCH_ALL_SYMBOLS is set to
on, any request for a symbol searches the entire
symbol table contents. This is equivalent to a
symbol search performed on a target server
launched with the -A option. Note that if the
SEARCH_ALL_SYMBOLS flag is set to on,
there is a considerable performance impact on
commands performing symbol manipulation.

INTERPRETER [C|Tcl|Cmd|Gdb] Indicates the host shell’s current interpreter
mode and permits the user to switch from one
mode to another.

Table 2-2 Host Shell Environment Variables (cont’d)

Variable Result

Wind River Workbench
Host Shell User’s Guide, 3.0

16

SH_GET_TASK_IO [ON|OFF] Sets the I/O redirection mode for called
functions. The default is ON, which redirects
input and output of called functions to windsh.
To have input and output of called functions
appear in the target console, set
SH_GET_TASK_IO to OFF.

LD_CALL_XTORS [ON|OFF] Sets the C++ strategy related to constructors
and destructors. The default is “target”, which
causes windsh to use the value set on the target
using cplusXtorSet(). If LD_CALL_XTORS is
set to ON, the C++ strategy is set to automatic
(for the current WindSh only). OFF sets the C++
strategy to manual for the current shell.

LD_SEND_MODULES [ON|OFF] Sets the load mode. The default ON causes
modules to be transferred to the target server.
This means that any module the host shell can
see can be loaded. If the variable is OFF, the
target server must be able to see the module to
load it.

LD_PATH pathname Sets the search path for modules using the
separator “;”. When a ld() command is issued,
windsh first searches the current directory and
loads the module if it finds it. If not, windsh
searches the directory path for the module.

LD_COMMON_MATCH_ALL
[ON|OFF]

Sets the loader behavior for common symbols. If
it is set to on, the loader tries to match a
common symbol with an existing one. If a
symbol with the same name is already defined,
the loader take its address. Otherwise, the
loader creates a new entry. If set to off, the
loader does not try to find an existing symbol. It
creates an entry for each common symbol.

Table 2-2 Host Shell Environment Variables (cont’d)

Variable Result

2 Using the Host Shell
2.4 Setting Shell Environment Variables

17

2

RTP_CREATE_ATTACH [ON|OFF] When RTP support is configured in the system,
this option indicates whether the shell should
automatically attach to any RTPs launched from
the host shell (using the host shell’s command
interpreter).

VXE_PATH .pathname When RTP support is configured in the system,
this option indicates the path in which the host
shell should search for RTPs to launch. If this is
set to “.” the full pathname of an RTP should be
supplied to the command to launch an RTP.

ROOT_PATH_MAPPING value Indicates how host and target paths should be
mapped to the host file system on which the
backend used by the host shell is running. If this
value is not set, a direct path mapping is
assumed (for example, a pathname given by
/folk/user is searched; no translation to another
path is performed).

LINE_LENGTH value Indicates the maximum number of characters
permitted in one line of the host shell’s window.

STRING_FREE [manual|automatic] Indicates whether strings allocated on the target
by the host shell should be freed automatically
by the shell, or whether they should be left for
the user to free manually using the C interpreter
API strFree().

SEARCH_ALL_SYMBOLS [ON|OFF] Indicates whether symbol searches should be
confined to global symbols or should search all
symbols. If SEARCH_ALL_SYMBOLS is set to
on, any request for a symbol searches the entire
symbol table contents. This is equivalent to a
symbol search performed on a target server
launched with the -A option. Note that if the
SEARCH_ALL_SYMBOLS flag is set to on,
there is a considerable performance impact on
commands performing symbol manipulation.

INTERPRETER [C|Tcl|Cmd|Gdb] Indicates the host shell’s current interpreter
mode and permits the user to switch from one
mode to another.

Table 2-2 Host Shell Environment Variables (cont’d)

Variable Result

Wind River Workbench
Host Shell User’s Guide, 3.0

18

SH_GET_TASK_IO [ON|OFF] Sets the I/O redirection mode for called
functions. The default is ON, which redirects
input and output of called functions to windsh.
To have input and output of called functions
appear in the target console, set
SH_GET_TASK_IO to OFF.

LD_CALL_XTORS [ON|OFF] Sets the C++ strategy related to constructors
and destructors. The default is “target”, which
causes windsh to use the value set on the target
using cplusXtorSet(). If LD_CALL_XTORS is
set to ON, the C++ strategy is set to automatic
(for the current WindSh only). OFF sets the C++
strategy to manual for the current shell.

LD_SEND_MODULES [ON|OFF] Sets the load mode. The default ON causes
modules to be transferred to the target server.
This means that any module the host shell can
see can be loaded. If the variable is OFF, the
target server must be able to see the module to
load it.

LD_PATH pathname Sets the search path for modules using the
separator “;”. When a ld() command is issued,
windsh first searches the current directory and
loads the module if it finds it. If not, windsh
searches the directory path for the module.

LD_COMMON_MATCH_ALL
[ON|OFF]

Sets the loader behavior for common symbols. If
it is set to on, the loader tries to match a
common symbol with an existing one. If a
symbol with the same name is already defined,
the loader take its address. Otherwise, the
loader creates a new entry. If set to off, the
loader does not try to find an existing symbol. It
creates an entry for each common symbol.

Table 2-2 Host Shell Environment Variables (cont’d)

Variable Result

2 Using the Host Shell
2.4 Setting Shell Environment Variables

19

2

DSM_HEX_MOD [ON|OFF] Sets the disassembling “symbolic + offset”
mode. When set to off the “symbolic + offset”
address representation is turned on and
addresses inside the disassembled instructions
are given in terms of “symbol name + offset.”
When set to on these addresses are given in
hexadecimal.

LINE_EDIT_MODE [vi|emacs] Sets the line edit mode to use. Set to emacs or vi.
Default is vi.

RECORD [ON|OFF] Enable input/output logging. See 2.7 Host Shell
Logging, p.22.

RECORD_FILE filename Specify a file for input/output logging. See
2.7 Host Shell Logging, p.22.

RECORD_TYPE [input|output|all] Specify type of input/output logging: input
(input only), output (output only), or all (both
input and output.) See 2.7 Host Shell Logging,
p.22.

SINGLE_STEP [ON|OFF] By default this variable is set to OFF. When set
to ON, any script you call is executed one line at
a time. After each single-step, you can resume
the script by pressing any key on your
keyboard.

C_OUTPUT_GET [ON|OFF] This variable is for use when calling to the C
interpreter from the Tcl interpreter.

When set to ON, the output returned to the Tcl
interpreter is the data displayed on the shell's
standard output.

When set to OFF, the output returned to the Tcl
interpreter is the result of the call to the C
interpreter.

BP_PRINT [ON|OFF] When this variable is set to OFF, the shell will
not display a message on standard output when
a breakpoint is hit.

Table 2-2 Host Shell Environment Variables (cont’d)

Variable Result

Wind River Workbench
Host Shell User’s Guide, 3.0

20

2.5 Path Mapping

Since the host shell uses host paths to handle VxWorks 6.x RTPs and Linux
processes in both the command and GDB interpreters, a path substitution
mechanism operates to send the right target path to the debugger server.

This mechanism converts a host path passed on the command line to a target path
understandable by both the debugger framework and the target, but you must
provide the host shell with additional information before it can perform the
conversion. Two shell environment variables are used to do this conversion: the
ROOT_PATH_MAPPING and VXE_PATH variables.

The ROOT_PATH_MAPPING Variable

The ROOT_PATH_MAPPING environment variable is necessary for VxWorks 6.x
and Linux targets. It defines path substitution pairs of the form
[tgtpath1,hostpath1][tgtpath2,hostpath2]…

In an example where the host path is C:/mydirectory/myrtp.vxe and the target
path is hostname:/home/users/myName/mydirectory/myrtp.vxe, the command is:

-> tcl
tcl> shConfig ROOT_PATH_MAPPING \[hostname:/home/users/myName/,C:/\]

EXC_PRINT [ON|OFF] When this variable is set to OFF, the shell will
not display a message on standard output when
an exception is encountered.

VIO_PRINT [ON|OFF] When this variable is set to OFF, any data
written to VIO will not be displayed in the shell.

LD_UNLOAD_FIRST [ON|OFF] If this variable is set to ON, then when
downloading any kernel module, if there is
already a loaded kernel module with the same
name, the shell unloads the existing module
before downloading the new module.

Table 2-2 Host Shell Environment Variables (cont’d)

Variable Result

2 Using the Host Shell
2.5 Path Mapping

21

2

Or in GDB mode,

(gdb) set tgtpathmapping [hostname:/home/users,/home/users]

(Note that in the GDB interpreter, square brackets do not have to be escaped.)

With this information, the host shell can compute the correct target path and send
it to the debugger server. Note that the debugger server also needs this
ROOT_PATH_MAPPING setting to retrieve the RTP or process file in order to
parse the symbols, but the debugger server will send the path of this file directly
to the target without any transformation by the host shell.

The VXE_PATH Variable

The VXE_PATH environment variable is necessary only for VxWorks 6.x targets. It
is set in the command interpreter.

If, for example, the RTPs are located at /folk/myName/rtp/bin/, then you can set
VXE_PATH to /folk/myName/rtp/bin:

[vxWorks *]# set config VXE_PATH=/folk/myName/rtp/bin
[vxWorks *]# helloworld.vxe
Hello World RTP!

This variable can contain several host paths separated by semi-colons, and is used
as a PATH variable to indicate the locations in which the host shell should search
for RTPs to launch.

If both VXE_PATH and ROOT_PATH_MAPPING are set, then the host shell
reads successively each path in VXE_PATH and builds a full RTP path with the
RTP passed to the command line. If this full host path matches one of the host paths
stored in the ROOT_PATH_MAPPING variable, the host shell performs the
corresponding path substitution on it to build a target path.

The result of this substitution is tested to discover if it is reachable from the target
(by a stat performed on the target). If it is reachable, then this target path is sent to
the debugger framework; if not, the host shell tries to apply another path
substitution and when it reaches the end of ROOT_PATH_MAPPING, it retries
other combinations with the next path stored in VXE_PATH.

Wind River Workbench
Host Shell User’s Guide, 3.0

22

2.6 Running the Host Shell in Batch Mode

The host shell can also be run in batch mode, with commands passed to the host
shell using the -c option followed by the command(s) to execute.

The commands must be delimited with double quote characters. The default
interpreter mode used to execute the commands is the C interpreter; to execute
commands in a different mode, specify the mode with the -m[ode] option. It is not
possible to execute a mixed mode command with the -c option.

For example:

1. To launch the host shell in batch mode, executing the command interpreter
commands task and rtp task, type the following:

% hostShell -m cmd -c "task ; rtp task" tgtsvr@host

The -m option indicates that the commands should be executed by the
Command interpreter.

2. To launch the host shell in batch mode, executing the tcl mode commands puts
and expr, type the following:

% hostShell -m tcl -c "puts helloworld; expr 33 + 22" tgtsvr@host

Batch mode is useful for scripting automated tests, or automatically run
applications, or system benchmarks, as part of a nightly build and test
environment.

2.7 Host Shell Logging

The host shell uses three configuration variables to control input/output logging:
RECORD_TYPE, RECORD_FILE, and RECORD. You can set these variables using
the Tcl routine shConfig.

Since shConfig is a Tcl routine, you must either call it from within the host shell’s
Tcl interpreter, or, if you call it from within another interpreter, you must precede
the shConfig command with the routine shEval and the Tcl special character
(shEval tcl).

RECORD_TYPE can be set to any of the following:

■ input - Only user commands are logged; shell output is not logged.

2 Using the Host Shell
2.8 Host Shell Scripting

23

2

■ output - Only shell output is logged; user commands are not logged.

■ all - Both user commands and shell output are logged.

RECORD_FILE specifies the file to which data is logged, using the syntax

tcl> shConfig RECORD_FILE filename

If you enable logging without setting a value for RECORD_FILE, then the shell
creates a file in the temp directory of the host upon which the host shell is running,
and displays a message showing the location of the logging file. For example:

tcl> shConfig RECORD on
Started recording commands in '/tmp/shellRecordFile10406.cmds' (created).

Set the variable RECORD to ON to enable logging, and OFF to disable logging. If,
within a shell session, you alternately set RECORD between ON and OFF, and the
RECORD_FILE value remains the same (or is not specified), then the logging file is
overwritten each time you set RECORD back to ON.

2.8 Host Shell Scripting

You can run a script from within any of the host shell interpreters.

Within the command interpreter or the C interpreter, you can run a script by using
the redirection character “<“ followed by the absolute path to the script file. For
example, to run the script myScript, located at C:/tmp, in the C interpreter, enter
the following:

-> < C:/tmp/myScript

In the command interpreter, use the same command.

In either the GDB interpreter or the Tcl interpreter, run a script using the source
command, with the absolute path to the script as the argument.

tcl> source C:/tmp/myScript

or

(gdb) source C:/tmp/myScript

You can also invoke the host shell with a startup script using the command-line
option -s. For example:

% hostShell -s C:/tmp/myScript %tgtsvr%

Wind River Workbench
Host Shell User’s Guide, 3.0

24

2.8.1 Single-Stepping Scripts

The host shell allows you to single step scripts, allowing you to see the result of
each command before the next one executes.

To enable single-stepping in the GDB interpreter, the C interpreter, or the
command interpreter, enable the shell environment variable SINGLE_STEP, using
one of the following commands:

For the GDB interpreter:

(gdb) set config SINGLE_STEP on

For the C interpreter:

-> shEval tcl shConfig SINGLE_STEP on

For the command interpreter:

[vxWorks*]# set config SINGLE_STEP=on

With the SINGLE_STEP variable enabled, the shell pauses after executing each line.
Resume the script by pressing any key on your keyboard.

Note that you may not call any shell routine while stepping; that is, when the script
is paused, your only available action is to resume it. You cannot call any shell
routine while the script is paused.

2.8.2 Stepping in the Tcl Interpreter

The SINGLE_STEP variable does not work for the Tcl interpreter, because the host
shell passes the Tcl source command to the Tcl interpreter and has no more
interaction with the script.

You can single step a Tcl script by editing it to call the routine
::hostShell::tclShellStdinGet at the end of each line you want to step.

If you write a Tcl script that contains a loop, you may wish to single step that loop.
Using standard Tcl, you would do this by calling get stdin within the loop.
However, in the host shell, if you execute the Tcl script from an input file, then the
host shell's input is redirected to that file, and therefore the call to get stdin will be
blocked.

To single step a Tcl loop executed from a script, call ::hostShell::tclShellStdinGet
instead of the standard get stdin routine. The tclShellStdinGet routine redirects
the shell's input to stdin, enabling you to enter data using the keyboard, and
therefore letting you resume the script when you wish.

2 Using the Host Shell
2.9 Host Shell Features

25

2

For information on Tcl scripting, see see 6.8 Tcl Scripting, p.123.

2.9 Host Shell Features

This section describes some of the features available in the host shell.

2.9.1 I/O Redirection

This feature is available only for VxWorks 6.x targets.

Developers often call routines that display data on standard output or accept data
from standard input. By default the standard output and input streams are
directed to the shell. For example, in a default configuration, invoking printf()
from the shell gives the following display:

-> printf("Hello World\n")
Hello World!
value = 13 = 0xd
->

You can modify this using the Tcl procedure shConfig as follows:

-> shEval tcl shConfig SH_GET_TASK_IO off
->
-> printf("Hello World!\n")
value = 13 = 0xd
->

The shell now reports the printf() result, indicating that 13 characters have been
printed. The output, however, goes to the target’s standard output, not to the shell.

To determine the current configuration, use shConfig. If you issue the command
without an argument, all parameters are listed. Use an argument to list only one
parameter.

-> shEval tcl shConfig SH_GET_TASK_IO
SH_GET_TASK_IO = off

For more information on shConfig, see 2.4 Setting Shell Environment Variables, p.14.

The standard input and output are redirected for the function called from the shell.
If the function called from the shell spawns other tasks, the input and output of the

Wind River Workbench
Host Shell User’s Guide, 3.0

26

spawned tasks are not redirected to the shell. To have all input and output
redirected to the shell, use the following Tcl script:

proc vioSet {} {
Set stdin, stdout, and stderr to /vio/0 if not already in use
if { [shParse {tstz = open ("/vio/0",2,0)}] != -1 } {

shParse {vf0 = tstz};
shParse {ioGlobalStdSet (0,vf0)} ;
shParse {ioGlobalStdSet (1,vf0)} ;
shParse {ioGlobalStdSet (2,vf0)} ;
shParse {printf ("Std I/O set here!\n")}

} else {
shParse {printf ("Std I/O unchanged.\n")}

}
}

2.9.2 Symbol Matching

Start to type any target symbol name and then type CTRL+D. The shell
automatically lists all symbols matching the pattern:

[vxWorks] # sem[CTRL+D]
semPxShow semShow
Symbol matching in vxKernel (PD ID 0x1efd40)
semTerminate semTakeTbl semTake semSmTypeGetRtn
semSmShowRtn semSmInfoRtn semShowInit semShow
semQPut semQInit semQGet semQFlushDefer
semQFlush semOTake semMTake semMPendQPut
semMLibInit semMInit semMGiveKernWork semMGiveKern
semMGiveForce semMGive semMCreate semMCoreInit
semLibInit semInvalid semIntRestrict semInfo
semGiveTbl semGiveDeferTbl semGiveDefer semGive
semFlushTbl semFlushDeferTbl semFlushDefer semFlush
semDestroy semDelete semClear semClassId
semClass semCTake semCLibInit semCInit
semCGiveDefer semCGive semCCreate semCCoreInit
semBTake semBLibInit semBInit semBGiveDefer
semBGive semBCreate semBCoreInit
[vxWorks] # sem

2.9.3 Directory and File Listing

You can also use CTRL+D to list all the files and directories that match a certain
string. For example, to list all files and directories under R: that begin with t, type
the following:

[vxWorks] # r:/t[CTRL+D]

NOTE: Symbol matching is not available for the GDB interpreter.

2 Using the Host Shell
2.9 Host Shell Features

27

2

t2cp2/ t2i86config/
t3Keys/ t3pen0107b/
taskSpawn TDK-13440_000504_104211_tar.gz
TDK-13671_001211_160045/ TORHELLO.WAV
tornadoARMt2/ tornadoi86t2/
tornadoppc/ torVars.bat
trgsh/ triggering/
tsr152294src/ tsr154738/
[vxWorks] # r:/t

Directory and file listing is supported only in the host shell, not the kernel shell.
Also, directory and file listing is not available for the GDB interpreter.

2.9.4 Target Symbol and Path Completion

Start to type any target symbol name or any existing directory name and then type
TAB. The shell automatically completes the command or directory name for you.
If there are multiple options, it prints them for you and then reprints your entry.
You can add one or more letters and then type TAB again until the path or symbol
is complete.

Symbol completion is supported in both the host shell and the kernel shell. Path
completion is supported only in the host shell.

2.9.5 Synopsis Printing

Once you have typed the complete function name followed by a space, typing
CTRL+D (not TAB) again prints the function synopsis, then reprints the function
name ready for your input. (This function is not supported in the kernel shell.)

[vxWorks] # _taskIdDefault [CTRL+D]
taskIdDefault() - set the default task ID (WindSh)

int taskIdDefault
{
int tid /* user-supplied task ID; if 0, return default */
)

[vxWorks] # _taskIdDefault

If the routine exists on both host and target, the hostShell synopsis is printed. To
print the target synopsis of a function, add the meta-character @ before the
function name.

You can extend the synopsis printing function to include your own routines. To do
this, follow these steps:

Wind River Workbench
Host Shell User’s Guide, 3.0

28

1. Create the files that include the new routines following Wind River coding
conventions.

2. Include these files in your project.

3. Add the filenames to the DOC_FILES macro in your makefile.

4. Go to the top of your project tree and run make synopsis:

[vxWorks] # cd installDir/vxworks-6.x/target/src/your_project
[vxWorks] # make synopsis

This adds your project file to the installDir/vxworks-6.x/host/resource/synopsis
directory.

2.9.6 Data Conversion

Data conversion is available only in the C interpreter.

The shell prints all integers and characters in both decimal and hexadecimal, and
if possible, as a character constant or a symbolic address and offset.

-> 68
value = 68 = 0x44 = 'D'
-> 0xf5de
value = 62942 = 0xf5de = _init + 0x52
-> 's'
value = 115 = 0x73 = 's'

2.9.7 Data Calculation

Data calculation is available only in the C interpreter.

Almost all C operators can be used for data calculation. Use “(” and “)” to force
order of precedence.

-> (14 * 9) / 3
value = 42 = 0x2a = '*'
-> (0x1355 << 3) & 0x0f0f
value = 2568 = 0xa08
-> 4.3 * 5
value = 21.5

NOTE: Synopsis printing is not available for the GDB interpreter.

2 Using the Host Shell
2.10 Stopping the Host Shell

29

2

Calculations with Variables

[vxWorks] # (j + k) * 3
value = ...
[vxWorks] # *(j + 8 * k)
(address 0xnnnnnn:: value = 0 = 0x0
[vxWorks] -> x = (val1 - val2) / val3
new symbol "x" added to symbol table
address = 0xnnnnnn: value = 0 = 0x0
[vxWorks] # f = 1.41 * 2
new symbol "f" added to symbol table
f = 0x7d4746f8: value = 2.82

Variable f gets an 8-byte floating point value.

2.10 Stopping the Host Shell

Regardless of how you start it, you can terminate a host shell session by typing exit
or quit at the prompt or pressing CTRL+D. If the shell is not accepting input (for
example, if it has lost connection to the target server) you can use the interrupt key
(CTRL+BREAK on Windows; CTRL+C on Linux or Solaris.)

2.11 Host Shell Architecture

The host shell integrates host and target resources in such a way that it creates the
illusion of executing entirely on the target itself. However, most interactions with
the shell exploit the resources of both host and target. Table 2-3 shows how the
shell distributes the interpretation and execution of the following simple
expression:

-> dir = opendir ("/myDev/myFile")

Parsing the expression is the activity that controls overall execution, and
dispatches the other execution activities. This takes place on the host, in the shell’s
C interpreter, and continues until the entire expression is evaluated and the shell
displays its result.

Wind River Workbench
Host Shell User’s Guide, 3.0

30

To avoid repetitive clutter, Table 2-3 omits the following important steps, which
must be carried out to link the activities in the three contexts (and two systems)
shown in each column of the table:

Table 2-3 Interpreting: dir = opendir(“/myDev/myFile”)

Host Shell (On Host)
Target Server and Symbol
Table (On Host) Target Agent (On Target)

Parse the string
“/myDev/myFile”.

Allocate memory for the
string; return address A.

Write “/myDev/myFile”;
return address A.

Parse the name opendir.

Look up opendir; return
address B.

Parse the function call
B(A); wait for the result.

Spawn a task to run opendir()
at address A, passing address
B as an argument, and signal
result C when done.

Retrieve C from target agent
and pass it to host shell.

Parse the symbol dir.

Look up dir (fails.)

Request a new symbol table
entry dir.

Define dir; return symbol D.

Parse the assignment D=C.

Allocate agent-pool memory
for the value of dir.

Write the value of dir.

2 Using the Host Shell
2.11 Host Shell Architecture

31

2

1. After every C-interpreter step, the shell program sends a request to the target
server representing the next activity required.

2. The target server receives each such request, and determines whether to
execute it in its own context on the host. If not, it passes an equivalent request
on to the target agent to execute on the target.

The first access to server and agent is to allocate storage for the string
“/myDev/myFile” on the target and store it there, so that subroutines such as
opendir() have access to it. There is a pool of target memory reserved for host
interactions. Because this pool is reserved, it can be managed from the host system.
The server allocates the required memory, and informs the shell of its location; the
shell then issues the requests to actually copy the string to that memory. This
request reaches the agent on the target, and it writes the 14 bytes (including the
terminating null) there.

The shell’s C interpreter must now determine what the name opendir represents.
Because opendir() is not one of the shell’s own commands, the shell looks up the
symbol (through the target server) in the symbol table.

The C interpreter now needs to evaluate the function call to opendir() with the
particular argument specified, now represented by a memory location on the
target. It instructs the agent (through the server) to spawn a task on the target for
that purpose, and awaits the result.

As before, the C interpreter looks up a symbol name (dir) through the target server;
when the name turns out to be undefined, it instructs the target server to allocate
storage for a new int and to make an entry pointing to it with the name dir in the
symbol table. Again these symbol-table manipulations take place entirely on the
host.

The C interpreter now has an address (in target memory) corresponding to dir on
the left of the assignment statement; and it has the value returned by opendir() on
the right of the assignment statement. It instructs the agent (again, through the
server) to record the result at the dir address, and evaluation of the statement is
complete.

2.11.1 Layers of Interpretation

To the user, the host shell seems to be a seamless environment; but in fact, the
characters you type in the shell go through several layers of interpretation, as
illustrated by Figure 2-1. First, input is examined for special editing keystrokes
(described in A. Using the Host Shell Line Editor.) Then as much interpretation as
possible is done in the host shell itself. In particular, execution of any subroutine is

Wind River Workbench
Host Shell User’s Guide, 3.0

32

first attempted in the shell itself; if a shell primitive with that name exists, it runs
without any further checking. Only when a subroutine call does not match any
shell primitives does the host shell call a target routine.

For lists of host shell primitives, see the following chapters.

Figure 2-1 Layers of Interpretation in the Host Shell

line
editor?

shell
built-in?

target
routine

Keyboard

Host

Target

CTRL+H, CTRL+S, ...

i(), lkup(), sp(), ...

dosFsMkFs(),
semTake(), ...

33

 3
Using the C Interpreter with

VxWorks 6.x

3.1 Introduction 35

3.2 C Interpreter Limitations 35

3.3 Host and Kernel Shell Differences 36

3.4 Running Target Routines From the Shell 38

3.5 Rebooting from the Shell 38

3.6 Using the Host Shell for System-Mode Debugging 39

3.7 Interrupting a Shell Command 43

3.8 Task References 44

3.9 Data Types 45

3.10 Expressions 47

3.11 Assignments 50

3.12 Comments 51

3.13 Strings 52

3.14 Ambiguity of Arrays and Pointers 53

3.15 Pointer Arithmetic 54

3.16 Redirection in the C Interpreter 54

3.17 C++ Interpretation 57

3.18 C Interpreter Primitives 60

Wind River Workbench
Host Shell User’s Guide, 3.0

34

3.19 Resolving Name Conflicts Between Host and Target 72

3.20 Examples 73

3 Using the C Interpreter with VxWorks 6.x
3.1 Introduction

35

3

3.1 Introduction

This chapter describes the behavior of the C interpreter when used with a
VxWorks 6.x target.

Note that C interpreter routine calls return 32-bit values only.

The host shell running in C interpreter mode interprets and executes almost all
C-language expressions and allows prototyping and debugging in kernel space (it
does not provide access to processes; use the Cmd interpreter mode to debug
VxWorks 6.x RTP applications, as described in 4. Using the Command Interpreter
with VxWorks 6.x.)

Some of the commands (or routines) that you can execute from the shell are built
into the host shell, rather than running as function calls on the target. These
commands parallel interactive utilities that can be linked into the operating system
itself. By using the host shell commands, you minimize the impact on both target
memory and performance.

The shell parses and evaluates its input one line at a time. A line may consist of a
single shell statement or several shell statements separated by semicolons. A
semicolon is not required on a line containing only a single statement. A statement
cannot continue on multiple lines.

Shell statements are either C expressions or assignment statements. Either kind of
statement may call host shell commands or target routines.

3.2 C Interpreter Limitations

The C interpreter in the shell is not a complete interpreter for the C language. The
following C features are not present in the host shell.

■ Control structures

The shell interprets only C expressions (and comments). The shell does not
support C control structures such as if, goto, and switch statements, or do,
while, and for loops. Control structures are rarely needed during shell
interaction. If you do come across a situation that requires a control structure,
you can use the Tcl interface to the shell instead of using its C interpreter
directly.

Wind River Workbench
Host Shell User’s Guide, 3.0

36

■ Compound or derived types

No compound types (struct or union types) or derived types (typedef) are
recognized in the shell C interpreter.

■ Macros

No C preprocessor macros (or any other preprocessor facilities) are available
in the shell. For constant macros, you can define variables in the shell with
similar names to the macros. You can automate the effort of defining any
variables you need repeatedly, by using an initialization script.

For control structures, or display and manipulation of types that are not supported
in the shell, you might also consider writing auxiliary subroutines to provide these
services during development; you can call such subroutines at will from the shell,
and later omit them from your final application.

There are also certain limitations for C++ expressions: see 3.17 C++ Interpretation,
p.57.

3.3 Host and Kernel Shell Differences

The host and kernel shells are almost identical. However, some of the commands
(or routines) that you can execute from the shell are built into the host shell, rather
than running as function calls on the target. These facilities parallel interactive
utilities that can be linked into the target operating system itself. By using the host
commands, you can minimize the impact on both target memory and
performance.

Most of the shell commands correspond to similar routines that can be linked into
the target operating system for use with the target-resident version of the shell.
However, the target-resident routines differ in some details. For reference
information on a shell command, be sure to consult the windsh reference entry.

! CAUTION: Although there are usually entries with the same name in the VxWorks
API references, these entries describe related target routines, not the shell
commands.

3 Using the C Interpreter with VxWorks 6.x
3.3 Host and Kernel Shell Differences

37

3

Table 3-1 shows the differences between the host and kernel shells. For additional
information on the kernel shell, see the VxWorks Kernel Programmer’s Guide: Target
Tools.

For information on shell commands, see the reference entries for the commands by
opening Wind River Workbench and selecting Help > Help Contents > Wind
River Documentation > References > Host Tools > Wind River Host Shell API
Reference > Routines Index.

3.3.1 Function Calls in the Kernel

This section applies only to the C interpreter.

When using the kernel shell, function calls are executed by the shell task in the
kernel and are therefore unbreakable.

-> b printf
value = 0 = 0x0
-> printf "Hello world\n"
Hello world
value = 12 = 0xc

In order to make the call break, you must use sp() to spawn a task to run the
function.

-> sp printf, "Hello world\n"
task spawned: tid = 0x1f4008, name = t1
value = 0 = 0x0
->
Break at 0x00032cd8:printf Task: 0x001f4008

In the host shell, all function calls are breakable. This is because the host shell
always creates a task to execute a function.

Table 3-1 Host Shell and Kernel Shell Differences

Features Available in Mode Host Shell Kernel Shell

Symbol completion C mode, cmd mode,
Tcl mode

Yes Yes

Path completion All modes Yes No

Synopsis printing (CTRL+D) C mode, cmd mode,
gdb mode

Yes No

HTML help (CTRL+W) C mode, gdb mode Yes No

Wind River Workbench
Host Shell User’s Guide, 3.0

38

3.4 Running Target Routines From the Shell

All target routines are available from the host shell. This includes both VxWorks
routines and your kernel application routines. This lets you test and debug your
applications using all the host resources while having minimal impact on how the
target performs and how the application behaves.

3.4.1 Invocations of VxWorks Subroutines

-> taskSpawn ("tmyTask", 10, 0, 1000, myTask, fd1, 300)
value = …
-> fd = open ("file", 0, 0)
new symbol "fd" added to symbol table
fd = (…address_of_fd…): value = …

3.4.2 Invocations of Application Subroutines

-> testFunc (123)
value = …

-> myValue = myFunc (1, &val, testFunc (123))
myValue = (…address_of_myValue…): value = …

-> myDouble = (double ()) myFuncWhichReturnsADouble (x)
myDouble = (…address_of_myDouble…): value = …

3.5 Rebooting from the Shell

In an interactive real-time development session, it is sometimes convenient to
restart everything to make sure the target is in a known state. The host shell
provides the reboot() command or CTRL+X for this purpose.

When you execute reboot() or type CTRL+X, the following reboot sequence occurs:

1. The shell displays a message to confirm rebooting has begun.

-> reboot
Rebooting...

2. The target reboots.

3 Using the C Interpreter with VxWorks 6.x
3.6 Using the Host Shell for System-Mode Debugging

39

3

3. The original target server on the host detects the target reboot and restarts
itself, with the same configuration as previously. The target-server
configuration option -Bt (timeout) and -Br (retries) govern how long the new
server waits for the target to reboot, and how many times the new server
attempts to reconnect; see the tgtsvr reference entry.

4. The shell detects the target-server restart and begins an automatic-restart
sequence (initiated any time it loses contact with the target server for any
reason), indicated with the following message:

Target connection has been lost. Restarting shell...

followed by either:

Waiting to attach to target server

(indicates that the target server is restarting, the host shell is waiting for
the attachment)

or

Waiting to attach to target agent

(indicates that the host shell is attached to the target server, but the target
server is not yet attached to the target agent.)

When the host shell establishes contact with the new target server, it displays the
prompt and awaits your input.

3.6 Using the Host Shell for System-Mode Debugging

The bulk of this chapter discusses the shell in its most frequent style of use:
attached to a normally running VxWorks system, through a target agent running
in task mode. However, you can also use the shell with a system-mode agent.
Entering system mode stops the entire target system: all tasks, the kernel, and all

! CAUTION: If the target server timeout (-Bt) and retry count (-Br) options are too
low for your target and your connection method, the new target server may
abandon execution before the target finishes rebooting. The default timeout is one
second, and the default retry count is three; thus, by default the target server waits
three seconds for the target to reboot. If the shell does not restart in a reasonably
short time after a reboot(), try starting a new target server manually.

Wind River Workbench
Host Shell User’s Guide, 3.0

40

interrupt service requests (ISRs.) Similarly, breakpoints affect all tasks. One major
shell feature is not available in system mode: you cannot execute expressions that
call target-resident routines. You can still spawn tasks, but bear in mind that,
because the entire system is stopped, a newly-spawned task can only execute when
you allow the kernel to run long enough to schedule that task.

Depending on how the target agent is configured, you may be able to switch
between system mode and task mode. When the agent supports mode switching,
the following host shell commands control system mode:

■ sysSuspend()

Enter system mode and stop the target system.

■ sysResume()

Return to task mode and resume execution of the target system.

The following commands determine the state of the system and the agent:

■ agentModeShow()

Show the agent mode (system or task).

■ sysStatusShow()

Show the system context status (suspended or running).

The following shell commands behave differently in system mode:

■ b()

Set a system-wide breakpoint; the system stops when this breakpoint is
encountered by any task, or the kernel, or an ISR.

■ c()

Resume execution of the entire system (but remain in system mode).

■ i()

Display the state of the system context and the mode of the agent.

■ s()

Single-step the entire system.

■ sp()

Add a task to the execution queue. The task does not begin to execute until you
continue the kernel or step through the task scheduler.

3 Using the C Interpreter with VxWorks 6.x
3.6 Using the Host Shell for System-Mode Debugging

41

3

Example

This example uses system mode to debug a system interrupt.

In this case, usrClock() is attached to the system clock interrupt handler, which is
called at each system clock tick when VxWorks is running. First suspend the
system and confirm that it is suspended using either i() or sysStatusShow().

-> sysSuspend
value = 0 = 0x0
->
-> i
NAME ENTRY TID PRI STATUS PC SP ERRNO DELAY
--------- ---------- -------- ----- ------- ------- ------- ----- -----
tExcTask _excTask 3e8f98 0 PEND 47982 3e8ef4 0 0
tLogTask _logTask 3e6670 0 PEND 47982 3e65c8 0 0
tWdbTask 0x3f024 398e04 3 PEND 405ac 398d50 30067 0
tNetTask _netTask 3b39e0 50 PEND 405ac 3b3988 0 0

Agent mode : Extern
System context : Suspended
value = 0 = 0x0
->
-> sysStatusShow
System context is suspended
value = 0 = 0x0

Next, set the system mode breakpoint on the entry point of the interrupt handler
you want to debug. Since the target agent is running in system mode, the
breakpoint will automatically be a system mode breakpoint, which you can
confirm with the b() command. Resume the system using c() and wait for it to enter
the interrupt handler and hit the breakpoint.

-> b usrClock
value = 0 = 0x0
-> b
0x00022d9a: _usrClock Task: SYSTEM Count: 0
value = 0 = 0x0
-> c
value = 0 = 0x0
->
Break at 0x00022d9a: _usrClock Task: SYSTEM

You can now debug the interrupt handler. For example, you can determine which
task was running when system mode was entered using taskIdCurrent() and i().

-> taskIdCurrent
_taskIdCurrent = 0x838d0: value = 3880092 = 0x3b349c
-> i
NAME ENTRY TID PRI STATUS PC SP ERRNO DELAY
--------- ---------- -------- ----- ------- ------- ------- ----- -----
tExcTask _excTask 3e8a54 0 PEND 4eb8c 3e89b4 0 0
tLogTask _logTask 3e612c 0 PEND 4eb8c 3e6088 0 0
tWdbTask 0x44d54 389774 3 PEND 46cb6 3896c0 0 0

Wind River Workbench
Host Shell User’s Guide, 3.0

42

tNetTask _netTask 3b349c 50 READY 46cb6 3b3444 0 0

Agent mode : Extern
System context : Suspended
value = 0 = 0x0

You can trace all the tasks except the one that was running when you placed the
system in system mode and you can step through the interrupt handler.

-> tt tLogTask
4da78 _vxTaskEntry +10 : _logTask (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
3f2bc _logTask +18 : _msgQReceive (3e62e4, 3e60dc, 20, ffffffff)
27e64 _msgQReceive +1ba: _qJobGet ([3e62e8, ffffffff, 0, 0, 0, 0])
value = 0 = 0x0
-> l
_usrClock
00022d9a 4856 PEA (A6)
00022d9c 2c4f MOVEA .L A7,A6
00022d9e 61ff 0002 3d8c BSR _tickAnnounce
00022da4 4e5e UNLK A6
00022da6 4e75 RTS
00022da8 352e 3400 MOVE .W (0x3400,A6),-(A2)
00022dac 4a75 6c20 TST .W (0x20,A5,D6.L*4)
00022db0 3234 2031 MOVE .W (0x31,A4,D2.W*1),D1
00022db4 3939 382c 2031 MOVE .W 0x382c2031,-(A4)
00022dba 343a 3337 MOVE .W (0x3337,PC),D2
value = 0 = 0x0
-> s
d0 = 3e d1 = 3700 d2 = 3000 d3 = 3b09dc
d4 = 0 d5 = 0 d6 = 0 d7 = 0
a0 = 230b8 a1 = 3b3318 a2 = 3b3324 a3 = 7e094
a4 = 38a7c0 a5 = 0 a6/fp = bcb90 a7/sp = bcb84
sr = 2604 pc = 230ba

000230ba 2c4f MOVEA .L A7,A6
value = 0 = 0x0

Return to task mode and confirm that return by calling i().

-> sysResume
value = 0 = 0x0
-> i
NAME ENTRY TID PRI STATUS PC SP ERRNO DELAY
--------- ---------- -------- ----- ------- ------- ------- ----- -----
tExcTask _excTask 3e8f98 0 PEND 47982 3e8ef4 0 0
tLogTask _logTask 3e6670 0 PEND 47982 3e65c8 0 0
tWdbTask 0x3f024 398e04 3 READY 405ac 398d50 30067 0
tNetTask _netTask 3b39e0 50 PEND 405ac 3b3988 0 0
value = 0 = 0x0

If you want to debug an application you have loaded dynamically, set an
appropriate breakpoint and spawn a task which runs when you continue the
system:

-> sysSuspend
value = 0 = 0x0
-> ml < test.o

3 Using the C Interpreter with VxWorks 6.x
3.7 Interrupting a Shell Command

43

3

Loading /view/didier.temp/vobs/wpwr/target/lib/objMC68040gnutest//test.o
/
value = 400496 = 0x61c70 = _rn_addroute + 0x1d4
-> b address
value = 0 = 0x0
-> sp test
value = 0 = 0x0
-> c

The application breaks on address when the instruction at address is executed.

3.7 Interrupting a Shell Command

Occasionally it is desirable to abort the shell’s evaluation of a statement. For
example, an invoked routine may loop excessively, suspend, or wait on a
semaphore. This may happen as the result of errors in arguments specified in the
invocation, errors in the implementation of the routine itself, or simply oversight
as to the consequences of calling the routine.

To regain control of the shell in such cases, press the interrupt character on the
keyboard, usually CTRL+BREAK for Windows or CTRL+C for Linux and Solaris.
This makes the shell stop waiting for a result and allows input of a new statement.
Any remaining portions of the statement are discarded and the task that ran the
function call is deleted.

Pressing CTRL+BREAK or CTRL+C is also necessary to regain control of the shell
after calling a routine on the target that ends with exit() rather than return().

Occasionally a subroutine invoked from the shell may incur a fatal error, such as a
bus/address error or a privilege violation. When this happens, the failing routine
is suspended. If the fatal error involved a hardware exception, the shell
automatically notifies you of the exception. For example:

-> sp taskSpawn,-4
Excption number 11: Task: 0x264ed8 (tCallTask)

In cases like this, you do not need to type CTRL+BREAK to recover control of the
shell; it automatically returns to the prompt, just as if you had interrupted.
Whether you interrupt or the shell does it for you, you can proceed to investigate
the cause of the suspension.

An interrupted routine may have left things in a state which was not cleared when
you interrupted it. For instance, a routine may have taken a semaphore, which

Wind River Workbench
Host Shell User’s Guide, 3.0

44

cannot be given automatically. Be sure to perform manual cleanup if you are going
to continue the application from this point.

3.8 Task References

Most VxWorks routines that take an argument representing a task require a task
ID. However, when invoking routines interactively, specifying a task ID can be
cumbersome, since the ID is an arbitrary and possibly lengthy number.

To accommodate interactive use, shell expressions can reference a task by either
task ID or task name. The shell attempts to resolve a task argument to a task ID as
follows: if no match is found in the symbol table for a task argument, the shell
searches for the argument in the list of active tasks. When it finds a match, it
substitutes the task name with its matching task ID. In symbol lookup, symbol
names take precedence over task names.

When you enter any command, the shell attempts to match it in the following
order: shell command, symbol, task name.

By convention, task names are prefixed by s1, s2, and so on: s to show that they
were started by the shell, and 1, 2, and so on for the tool number of that shell. Task
names are completed by u0, u1, and so on, where the integer indicates the task
number. The integer is incremented by one each time the shell spawns a new task.

This avoids name conflicts with entries in the symbol table. The names of system
tasks and the default task names assigned when tasks are spawned use this
convention. Wind River recommends that you adopt a similar convention for tasks
named in your applications.

The “Current” Task and Address

A number of commands, for example c(), s(), and ti(), take a task parameter that
can be omitted. If omitted, the current task is used. The l() and d() commands use
the current address if no address is specified. The current task and address are set
when:

■ A task hits a breakpoint or an exception trap. The current address is the
address of the instruction that caused the break or exception.

3 Using the C Interpreter with VxWorks 6.x
3.9 Data Types

45

3

■ A task is single-stepped. The current address is the address of the next
instruction to be executed.

■ Any of the commands that use the current task or address are executed with a
specific task parameter. The current address will be the address of the byte
following the last byte that was displayed or disassembled.

3.9 Data Types

The most significant difference between the shell C-expression interpreter and a C
compiler lies in the way that they handle data types. The shell does not accept any
C declaration statements, and no data-type information is available in the symbol
table. Instead, an expression’s type is determined by the types of its terms.

Unless you use explicit type-casting, the shell makes the following assumptions
about data types:

■ In an assignment statement, the type of the left hand side is determined by the
type of the right hand side.

■ If floating-point numbers and integers both appear in an arithmetic
expression, the resulting type is a floating-point number.

Data types are assigned to various elements, as shown in Table 3-2.

A constant or variable can be treated as a different type than what the shell
assumes by explicitly specifying the type with the syntax of C type-casting.
Functions that return values other than integers require a slightly different

Table 3-2 C Interpreter Data-Type Assumptions

Element Data Type

variable int

variable used as a floating-point double

return value of subroutine int

constant with no decimal point int/long

constant with decimal point double

Wind River Workbench
Host Shell User’s Guide, 3.0

46

type-casting; see 3.10.4 Function Calls, p.48. Table 3-3 shows the various data types
available in the shell C interpreter, with examples of how they can be set and
referenced.

Strings, or character arrays, are not treated as separate types in the C interpreter.
To declare a string, set a variable to a string value. (Memory allocated for string
constants is never freed by the shell.) For example:

-> ss = "any string"

The variable ss is a pointer to the string any string. To display ss, enter

-> d ss

The d() command displays the memory where ss is pointing. You can also use
printf() to display strings.

The shell places no type restrictions on the application of operators. For example,
the shell expression

 *(70000 + 3 * 16)

evaluates to the 4-byte integer value at memory location 70048.

Table 3-3 Data Types in the C Interpreter

Type Bytes Set Variable Display Variable

int 4 x = 99 x
(int) x

long 4 x = 33
x = (long)33

x
(long_ x

short 2 x = (short)20 (short) x

char 1 x = ‘A’
x = (char)65
x = (char)0x41

(char)x

double 8 x = 11.2
x = (double)11.2

(double) x

float 4 x = (float)5.42 (float) x

3 Using the C Interpreter with VxWorks 6.x
3.10 Expressions

47

3

3.10 Expressions

Shell expressions consist of literals, symbolic data references, function calls, and
the usual C operators.

3.10.1 Literals

The shell interprets the literals in Table 3-4 in the same way as the C compiler, with
one addition: the shell also allows hex numbers to be preceded by $ instead of 0x.

3.10.2 Variable References

Shell expressions may contain references to variables whose names have been
entered in the system symbol table. Unless a particular type is specified with a
variable reference, the variable’s value in an expression is the 4-byte value at the
memory address obtained from the symbol table. It is an error if an identifier in an
expression is not found in the symbol table, except in the case of assignment
statements.

C compilers usually prefix all user-defined identifiers with an underscore, so that
myVar is actually in the symbol table as _myVar. The identifier can be entered
either way to the shell; the shell searches the symbol table for a match either with
or without a prefixed underscore.

You can also access data in memory that does not have a symbolic name in the
symbol table, as long as you know its address. To do this, apply the C indirection

Table 3-4 Literals in the C Interpreter

Literal Example

decimal numbers 143967

octal numbers 017734

hex numbers 0xf3ba or $f3ba

floating point numbers 555.555

character constants ‘x’ and ‘$’

string constants “This is a string.”

Wind River Workbench
Host Shell User’s Guide, 3.0

48

operator “*” to a constant. For example, *0x10000 refers to the 4-byte integer value
at memory address 10000 hex.

3.10.3 Operators

The shell interprets the operators in Table 3-5 in the same way as the C compiler.

The shell assigns the same precedence to the operators as the C compiler. However,
unlike the C compiler, the shell always evaluates both operands of the logical
binary operators || and &&.

3.10.4 Function Calls

Shell expressions may contain calls to C functions (or C-compatible functions)
whose names have been entered in the system symbol table; they may also contain
function calls to host shell commands that execute on the host.

The shell executes such function calls in tasks spawned for the purpose, with the
specified arguments and default task parameters; if the task parameters make a
difference, you can call taskSpawn() instead of calling functions from the shell
directly. The value of a function call is the 4-byte integer value returned by the
function. The shell assumes that all functions return integers. If a function returns
a value other than an integer, the shell must know the data type being returned
before the function is invoked. This requires a slightly unusual syntax because you
must cast the function, not its return value. For example:

-> floatVar = (float ()) funcThatReturnsAFloat (x,y)

Table 3-5 Operators in the C Interpreter

Operator Type Operators

arithmetic + - * / unary-

relational == != < > <= >=

shift << >>

logical || && !

bitwise | & ~ ^

address and indirection & *

3 Using the C Interpreter with VxWorks 6.x
3.10 Expressions

49

3
The shell can pass up to ten arguments to a function. In fact, the shell always passes
exactly ten arguments to every function called, passing values of zero for any
arguments not specified. This is harmless because the C function-call protocol
handles passing of variable numbers of arguments. However, it allows you to omit
trailing arguments of value zero from function calls in shell expressions.

Function calls can be nested. That is, a function call can be an argument to another
function call. In the following example, myFunc() takes two arguments: the return
value from yourFunc() and myVal. The shell displays the value of the overall
expression, which in this case is the value returned from myFunc().

myFunc (yourFunc (yourVal), myVal);

Shell expressions can also contain references to function addresses instead of
function invocations. As in C, this is indicated by the absence of parentheses after
the function name. Thus the following expression evaluates to the result returned
by the function myFunc2() plus 4:

4 + myFunc2 ()

However, the following expression evaluates to the address of myFunc2() plus 4:

4 + myFunc2

An important exception to this occurs when the function name is the very first item
encountered in a statement. See 3.10.5 Arguments to Commands, p.49.

Shell expressions can also contain calls to functions that do not have a symbolic
name in the symbol table, but whose addresses are known to you. To do this,
simply supply the address in place of the function name. Thus the following
expression calls a parameter-less function whose entry point is at address 10000
hex:

0x10000 ()

3.10.5 Arguments to Commands

In practice, most statements input to the shell are function calls. To simplify this
use of the shell, an important exception is allowed to the standard expression
syntax required by C. When a function name is the very first item encountered in
a shell statement, the parentheses surrounding the function’s arguments may be
omitted. Thus the following shell statements are synonymous:

NOTE: The examples in this book assume you are using the default shell prompts.
However, you can change the C interpreter prompt to anything you like using the
shellPromptSet() routine.

Wind River Workbench
Host Shell User’s Guide, 3.0

50

-> rename ("oldname", "newname")
-> rename "oldname", "newname"

as are:

->evtBufferAddress ()
->evtBufferAddress

However, note that if you wish to assign the result to a variable, the function call
cannot be the first item in the shell statement—thus, the syntactic exception above
does not apply. The following captures the address, not the return value, of
evtBufferAddress():

-> value = evtBufferAddress

3.11 Assignments

The shell C interpreter accepts assignment statements in the form:

addressExpression = expression

The left side of an expression must evaluate to an addressable entity; that is, a legal
C value.

3.11.1 Typing and Assignment

The data type of the left side is determined by the type of the right side. If the right
side does not contain any floating-point constants or non-integer type-casts, then
the type of the left side will be an integer. The value of the right side of the
assignment is put at the address provided by the left side. For example, the
following assignment sets the 4-byte integer variable x to 0x1000:

-> x = 0x1000

The following assignment sets the 4-byte integer value at memory address 0x1000
to the current value of x:

-> *0x1000 = x

The following compound assignment adds 300 to the 4-byte integer variable x:

-> x += 300

The following adds 300 to the 4-byte integer at address 0x1000:

3 Using the C Interpreter with VxWorks 6.x
3.12 Comments

51

3

-> *0x1000 += 300

The following compound operators are available:

++ *= &=
-- /= |=
+= %= ^=
-=

3.11.2 Automatic Creation of New Variables

New variables can be created automatically by assigning a value to an undefined
identifier (one not already in the symbol table) with an assignment statement.

When the shell encounters such an assignment, it allocates space for the variable
and enters the new identifier in the symbol table along with the address of the
newly allocated variable. The new variable is set to the value and type of the
right-side expression of the assignment statement. The shell prints a message
indicating that a new variable has been allocated and assigned the specified value.

For example, if the identifier fd is not currently in the symbol table, the following
statement creates a new variable named fd and assigns to it the result of the
function call:

-> fd = open ("file", 0)

3.12 Comments

The shell allows two kinds of comments.

First, comments of the form /* … */ can be included anywhere on a shell input line.
These comments are simply discarded, and the rest of the input line evaluated as
usual.

Second, any line whose first non-blank character is # is ignored completely.

Wind River Workbench
Host Shell User’s Guide, 3.0

52

3.13 Strings

When the shell encounters a string literal (“…”) in an expression, it allocates space
for the string including the null-byte string terminator. The value of the literal is
the address of the string in the newly allocated storage. For instance, the following
expression allocates 12 bytes from the target-agent memory pool, enters the string
in those 12 bytes (including the null terminator), and assigns the address of the
string to x:

-> x = "hello world"

Even when a string literal is not assigned to a symbol, memory is still permanently
allocated for it. For example, the following uses 12 bytes of memory that are never
freed:

-> printf ("hello world")

If strings were only temporarily allocated, and a string literal were passed to a
routine being spawned as a task, then by the time the task executed and attempted
to access the string, the shell would have already released, possibly even reused,
the temporary storage where the string was held.

After extended development sessions, the cumulative memory used for strings
may become noticeable. Use the routine strFree() to free up allocated strings. This
routine presents a list of all allocated strings along with their addresses. To free one
string, call strFree() with the address of the string as the argument. To free all
allocated strings, call strFree() with -1 as the argument.

3.13.1 Strings and Pathnames

In VxWorks, the directory and file segments of pathnames (for target-resident files
and devices) are separated with the slash character (/). This presents no difficulty
when subroutines require a pathname argument, because the / character has no
special meaning in C strings.

However, you can also refer from the shell to files that reside on a Windows host.
For host pathnames, you can use either a slash for consistency with the VxWorks
convention, or a backslash (\) for consistency with the Windows convention.

Because the backslash character is an escape character in C strings, you must
double any backslashes that you use in pathnames as strings. This applies only to
pathnames in C strings. No special syntax is required for pathnames that are
interpreted directly by the shell.

3 Using the C Interpreter with VxWorks 6.x
3.14 Ambiguity of Arrays and Pointers

53

3

You can use the ld() command with all of these variations of pathnames. The
following ld() invocations are all correct and equivalent:

-> ld < c:\fred\tests\zap.o
-> ld < c:/fred/tests/zap.o
-> ld 1,0,"c:\\fred\\tests\\zap.o"
-> ld 1,0,"c:/fred/tests/zap.o"

3.14 Ambiguity of Arrays and Pointers

In a C expression, a non-subscripted reference to an array has a special meaning,
namely the address of the first element of the array. The shell, to be compatible,
should use the address obtained from the symbol table as the value of such a
reference, rather than the contents of memory at that address. Unfortunately, the
information that the identifier is an array, like all data type information, is not
available after compilation. For example, if a module contains the following:

char string [] = "hello";

you might be tempted to enter a shell expression as in Example 1.

Example 1

-> printf (string)

While this would be correct in C, the shell will pass the first 4 bytes of the string
itself to printf(), instead of the address of the string. To correct this, the shell
expression must explicitly take the address of the identifier, as in Example 2.

Example 2

-> printf (&string)

To make matters worse, in C if the identifier had been declared a character pointer
instead of a character array:

char *string = "hello";

then to a compiler, Example 1 would be correct and Example 2 would be wrong.
This is especially confusing since C allows pointers to be subscripted exactly like
arrays, so that the value of string[0] would be “h” in either of the above
declarations.

Wind River Workbench
Host Shell User’s Guide, 3.0

54

Bear in mind that array references and pointer references in shell expressions are
different from their C counterparts. In particular, array references require an
explicit application of the address operator &.

3.15 Pointer Arithmetic

While the C language treats pointer arithmetic specially, the shell C interpreter
does not, because it treats all non-type-cast variables as 4-byte integers.

In the shell, pointer arithmetic is no different than integer arithmetic. Pointer
arithmetic is valid, but it does not take into account the size of the data pointed to.
Consider the following example:

-> *(myPtr + 4) = 5

Assume that the value of myPtr is 0x1000. In C, if myPtr is a pointer to a type char,
this would put the value 5 in the byte at address at 0x1004. If myPtr is a pointer to
a 4-byte integer, the 4-byte value 0x00000005 would go into bytes 0x1010–0x1013.
The shell, on the other hand, treats variables as integers, and therefore would put
the 4-byte value 0x00000005 in bytes 0x1004–0x1007.

3.16 Redirection in the C Interpreter

The shell provides a redirection mechanism for momentarily reassigning the
standard input and standard output file descriptors just for the duration of the
parse and evaluation of an input line. The redirection is indicated by the < and >
symbols followed by filenames, at the very end of an input line. No other syntactic
elements may follow the redirection specifications. The redirections are in effect for
all subroutine calls on the line.

For example, the following input line sets standard input to the file named input
and standard output to the file named output during the execution of copy():

-> copy < input > output

If the file to which standard output is redirected does not exist, the shell creates it.

3 Using the C Interpreter with VxWorks 6.x
3.16 Redirection in the C Interpreter

55

3

3.16.1 Ambiguity Between Redirection and C Operators

There is an ambiguity between redirection specifications and the relational
operators less than and greater than. The shell always assumes that an ambiguous
use of < or > specifies a redirection rather than a relational operation. Thus the
ambiguous input line:

-> x > y

writes the value of the variable x to the stream named y, rather than comparing the
value of variable x to the value of variable y. However, you can use a semicolon to
remove the ambiguity explicitly, because the shell requires that the redirection
specification be the last element on a line. Thus the following input lines are
unambiguous:

-> x; > y
-> x > y;

The first line prints the value of the variable x to the output stream y. The second
line prints on standard output the value of the expression “x greater than y.”

3.16.2 The Nature of Redirection

The redirection mechanism of the host shell is fundamentally different from that of
the Windows command shell, although the syntax and terminology are similar.

In the host shell, redirecting input or output affects only a command executed from
the shell. In particular, this redirection is not inherited by any tasks started while
output is redirected.

For example, you might be tempted to specify redirection streams when spawning
a routine as a task, intending to send the output of printf() calls in the new task to
an output stream, while leaving the shell’s I/O directed at the virtual console. This
stratagem does not work. For example, the shell input line:

-> taskSpawn (...myFunc...) > output

momentarily redirects the shell standard output during the brief execution of the
spawn routine, but does not affect the I/O of the resulting task.

To redirect the input or output streams of a particular task, call ioTaskStdSet()
once the task exists.

Wind River Workbench
Host Shell User’s Guide, 3.0

56

3.16.3 Scripts: Redirecting Shell I/O

A special case of I/O redirection concerns the I/O of the shell itself; that is,
redirection of the streams the shell’s input is read from, and its output is written to.
The syntax for this is simply the usual redirection specification, on a line that
contains no other expressions.

The typical use of this mechanism is to have the shell read and execute lines from
a file. For example, the input lines:

-> <startup

or

-> < c:\fred\startup

cause the shell to read and execute the commands in the file startup, either on the
current working directory (in the first example) or explicitly on the complete
pathname (in the second example.) If your working directory is \fred, then the two
examples are equivalent.

Such command files are called scripts. Scripts are processed exactly like input from
an interactive terminal. After reaching the end of the script file, the shell returns to
processing I/O from the original streams.

During execution of a script, the shell displays each command as well as any
output from that command. You can change this by invoking the shell with the -q
option (see 2Using the Host Shell, p.7.)

An easy way to create a shell script is from a list of commands you have just
executed in the shell. The history command h() prints a list of the last 20 shell
commands. The following creates the file c:\tmp\script with the current shell
history:

-> h > c:\tmp\script

The command numbers must be deleted from this file before using it as a shell
script.

Scripts can also be nested. That is, scripts can contain shell input redirections that
cause the shell to process other scripts.

! CAUTION: Input and output redirection must refer to files on a host file system. If
you have a local file system on your target, files that reside there are available to
target-resident subroutines, but not to the shell (unless you export them from the
target using NFS, and mount them on your host).

3 Using the C Interpreter with VxWorks 6.x
3.17 C++ Interpretation

57

3

C Interpreter Startup Scripts

Host shell scripts can be useful for setting up your working environment. You can
run a startup script through the shell C interpreter by specifying its name with the
-s option. For example:

C:\> windsh phobos -s c:\fred\startup

You can also use the -e option to run a Tcl expression at startup, or place Tcl
initialization in windsh.tcl under your home directory.

You can use startup scripts for setting system parameters to personal preferences:
defining variables, specifying the target’s working directory, and so forth. They
can also be useful for tailoring the configuration of your system without having to
rebuild the image. For example:

■ creating additional devices
■ loading and starting up application modules
■ adding a complete set of network host names and routes
■ setting NFS parameters and mounting NFS partitions

3.17 C++ Interpretation

Workbench supports both C and C++ as development languages. For information
about C++ development, see the VxWorks Kernel Programmer’s Guide: C++
Development.

Because C and C++ expressions are so similar, the host shell C-expression
interpreter supports many C++ expressions. The facilities explained in this chapter
are all available regardless of whether your source language is C or C++. In
addition, there are a few special facilities for C++ extensions. This section describes
those extensions.

! CAUTION: Wind River recommends that you set the shell environment variable
SH_GET_TASK_IO to OFF before you use redirection of input from scripts, or
before you copy and paste blocks of commands to the shell command line.
Otherwise commands might be taken as input for a command that precedes them,
and thus get lost.

Wind River Workbench
Host Shell User’s Guide, 3.0

58

The host shell is not a complete interpreter for C++ expressions. In particular:

■ The shell has no information about user-defined types.
■ There is no support for the :: operator.
■ Constructors, destructors, and operator functions cannot be called directly

from the shell.
■ Member functions cannot be called with the . or -> operators.

To exercise C++ facilities that are missing from the C interpreter, you can compile
and download routines that encapsulate the special C++ syntax.

3.17.1 Overloaded Function Names

If you have several C++ functions with the same name, distinguished by their
argument lists, call any of them as usual with the name they share. When the shell
detects the fact that several functions exist with the specified name, it lists them in
an interactive dialog, printing the matching functions’ signatures so that you can
recall the different versions and make a choice among them.

You make your choice by entering the number of the desired function. If you make
an invalid choice, the list is repeated and you are prompted to choose again. If you
enter 0 (zero), the shell stops evaluating the current command and prints a
message like the following:

undefined symbol: your_function_name

This can be useful, for example, if you misspelled the function name and you want
to abandon the interactive dialog. However, because the shell is an interpreter, not
a compiler, portions of the expression may already have executed (perhaps with
side effects) before you abandon execution in this way.

The following example shows how the support for overloaded names works. In
this example, there are four versions of a function called xmin(). Each version of
xmin() returns at least two arguments, but each version takes arguments of
different types.

-> l xmin
"xmin" is overloaded - Please select:

1: _xmin(double,double)
2: _xmin(long,long)
3: _xmin(int,int)
4: _xmin(float,float)

Enter <number> to select, anything else to stop: 1
_xmin(double,double):

3fe710 4e56 0000 LINK .W A6,#0
3fe714 f22e 5400 0008 FMOVE .D (0x8,A6),F0
3fe71a f22e 5438 0010 FCMP .D (0x10,A6),F0

3 Using the C Interpreter with VxWorks 6.x
3.17 C++ Interpretation

59

3

3fe720 f295 0008 FB .W #0x8f22e
3fe724 f22e 5400 0010 FMOVE .D (0x10,A6),F0
3fe72a f227 7400 FMOVE .D F0,-(A7)
3fe72e 201f MOVE .L (A7)+,D0
3fe730 221f MOVE .L (A7)+,D1
3fe732 6000 0002 BRA 0x003fe736
3fe736 4e5e UNLK A6
value = 4187960 = 0x3fe738 = _xmin(double,double) + 0x28

-> l xmin
"xmin" is overloaded - Please select:

1: _xmin(double,double)
2: _xmin(long,long)
3: _xmin(int,int)
4: _xmin(float,float)

Enter <number> to select, anything else to stop: 3
_xmin(int,int):

3fe73a 4e56 0000 LINK .W A6,#0
3fe73e 202e 0008 MOVE .L (0x8,A6),D0
3fe742 b0ae 000c CMP .L (0xc,A6),D0
3fe746 6f04 BLE 0x003fe74c
3fe748 202e 000c MOVE .L (0xc,A6),D0
3fe74c 6000 0002 BRA 0x003fe750
3fe750 4e5e UNLK A6
3fe752 4e75 RTS

_xmin(long,long):
3fe7544e560000 LINK .W A6,#0
3fe758202e0008 MOVE .L (0x8,A6),D0
value = 4187996 = 0x3fe75c = _xmin(long,long) + 0x8

In this example, the user calls the disassembler to list the instructions for xmin(),
then selects the version that computes the minimum of two double values. Next,
the user invokes the disassembler again, this time selecting the version that
computes the minimum of two int values. Note that a different routine is
disassembled in each case.

3.17.2 Automatic Name Demangling

Many shell debugging and system information functions display addresses
symbolically (for example, the l() routine). This might be confusing for C++,
because compilers encode a function’s class membership (if any) and the type and
number of the function’s arguments in the function’s linkage name. The encoding
is meant to be efficient for development tools, but not necessarily convenient for
human comprehension. This technique is commonly known as name mangling and
can be a source of frustration when the mangled names are exposed to the
developer.

To avoid this confusion, the debugging and system information routines in the
host shell print C++ function names in a demangled representation. Whenever the

Wind River Workbench
Host Shell User’s Guide, 3.0

60

shell prints an address symbolically, it checks whether the name has been mangled.
If it has, the name is demangled (complete with the function’s class name, if any,
and the type of each of the function’s arguments) and printed.

The following example shows the demangled output when lkup() displays the
addresses of the xmin() functions mentioned in the previous section.

-> lkup "xmin"
_xmin(double,double) 0x003fe710 text (templex.out)
_xmin(long,long) 0x003fe754 text (templex.out)
_xmin(int,int) 0x003fe73a text (templex.out)
_xmin(float,float) 0x003fe6ee text (templex.out)
value = 0 = 0x0

3.18 C Interpreter Primitives

3.18.1 Managing Tasks

Table 3-6 summarizes the host shell commands that manage VxWorks tasks. For
more detailed reference information, see the windsh reference entry (open Wind
River Workbench and select Help > Help Contents > Wind River
Documentation > References > Host Tools > Wind River Host Shell API
Reference > windsh.)

Table 3-6 Task Management Commands

Call Description

sp() Spawn a task with default parameters.

sps() Spawn a task, but leave it suspended.

tr() Resume a suspended task.

ts() Suspend a task.

td() Delete a task.

period() Spawn a task with entry point periodHost to call a function
periodically.

3 Using the C Interpreter with VxWorks 6.x
3.18 C Interpreter Primitives

61

3

The repeat() and period() commands spawn tasks whose entry points are
_repeatHost and _periodHost. The shell downloads these support routines when
you call repeat() or period(). (This download is not always reliable with remote
target servers.) These tasks may be controlled like any other tasks on the target; for
example, you can suspend or delete them with ts() or td() respectively.

3.18.2 Task Information

Table 3-7 summarizes the host shell commands that report task information. For
more detailed reference information, see the windsh reference entry (open Wind
River Workbench and select Help > Help Contents > Wind River
Documentation > References > Host Tools > Wind River Host Shell API
Reference > windsh.)

repeat() Spawn a task with entry point repeatHost to call a function
repeatedly.

taskIdDefault() Set or report the default (current) task ID. (For information on
how the current task is established an used, see The “Current”
Task and Address, p.44.)

Table 3-6 Task Management Commands

Call Description

Table 3-7 Task Information Commands

Call Description

i() Display system information. This command gives a snapshot of
what tasks are in the system, and some information about each
of them, such as state, PC, SP, and task control block (TCB)
address. To save memory, this command queries the target
repeatedly; thus, it may occasionally give an inconsistent
snapshot.

iStrict() Display the same information as i(), but query target system
information only once. At the expense of consuming more
intermediate memory, this guarantees an accurate snapshot.

Wind River Workbench
Host Shell User’s Guide, 3.0

62

The i() command is commonly used to get a quick report on target activity. If
nothing seems to be happening, i() is often a good place to start investigating. To
display summary information about all running tasks:

-> i
NAME ENTRY TID PRI STATUS PC SP ERRNO DELAY
-------- ---------- -------- --- ---------- ---------- --------- -------
tExcTask excTask 3ad290 0 PEND 4df10 3ad0c0 0 0
tLogTask logTask 3aa918 0 PEND 4df10 3aa748 0 0
tWdbTask 0x41288 3870f0 3 READY 23ff4 386d78 3d0004 0
tNetTask netTask 3a59c0 50 READY 24200 3a5730 0 0
tFtpdTask _ftpdTask 3a2c18 55 PEND 23b28 3a2938 0 0
value = 0 = 0x0

The w() and tw() commands allow you to see what object a task is pending on. w()
displays summary information for all tasks, while tw() displays object information

ti() Display task information. This command gives all the
information contained in a task’s task control block (TCB.) This
includes everything shown for that task by an i() command, plus
all the task’s registers, and the links in the TCB chain. If task is 0
(or the argument is omitted), the current task is reported.

w() Print a summary of each task’s pending information, task by
task. This routine calls taskWaitShow() in quiet mode on all
tasks in the system, or a specified task if the argument is given.

tw() Print information about the object the given task is pending on.
This routine calls taskWaitShow() on the given task in verbose
mode.

checkStack() Show a stack usage summary for a task, or for all tasks if no task
is specified. The summary includes the total stack size (SIZE),
the current number of stack bytes (CUR), the maximum number
of stack bytes used (HIGH), and the number of bytes never used
at the top of the stack (MARGIN = SIZE - HIGH). Use this
routine to determine how much stack space to allocate, and to
detect stack overflow. This routine does not work for tasks that
use the VX_NO_STACK_FILL option.

tt() Display a stack trace.

taskIdFigure() Report a task ID, given its name.

Table 3-7 Task Information Commands

Call Description

3 Using the C Interpreter with VxWorks 6.x
3.18 C Interpreter Primitives

63

3

for a specific task. Note that the OBJ_NAME field is used only for objects that have
a symbolic name associated with the address of their structure.

-> w

NAME ENTRY TID STATUS DELAY OBJ_TYPE OBJ_ID OBJ_NAME

tExcTask _excTask 3d9e3c PEND 0 MSG_Q(R) 3d9ff4 N/A
tLogTask _logTask 3d7510 PEND 0 MSG_Q(R) 3d76c8 N/A
tWdbTask _wdbCmdLoo 36dde4 READY 0 0
tNetTask _netTask 3a43d0 READY 0 0
u0 _smtask1 36cc2c PEND 0 MSG_Q_S(S) 370b61 N/A
u1 _smtask3 367c54 PEND 0 MSG_Q_S(S) 370b61 N/A
u3 _taskB 362c7c PEND 0 SEM_B 8d378 _mySem2
u6 _smtask1 35dca4 PEND 0 MSG_Q_S(S) 370ae1 N/A
u9 _task3B 358ccc PEND 0 MSG_Q(S) 8cf1c _myMsgQ
value = 0 = 0x0
->
-> tw u1

NAME ENTRY TID STATUS DELAY OBJ_TYPE OBJ_ID OBJ_NAME
--
u1 _smtask3 367c54 PEND 0 MSG_Q_S(S) 370b61 N/A

Message Queue Id : 0x370b61
Task Queueing : SHARED_FIFO
Message Byte Len : 100
Messages Max : 0
Messages Queued : 0
Senders Blocked : 2
Send Timeouts : 0
Receive Timeouts : 0

Senders Blocked:
TID CPU Number Shared TCB
---------- ---------- ----------
0x36cc2c 0 0x36e464
0x367c54 0 0x36e47c

value = 0 = 0x0
->

3.18.3 System Information

Table 3-8 summarizes the host shell commands that display information from the
symbol table, from the target system, and from the shell itself. For more detailed
reference information, see the windsh reference entry (open Wind River
Workbench and select Help > Help Contents > Wind River
Documentation > References > Host Tools > Wind River Host Shell API
Reference > windsh.)

Wind River Workbench
Host Shell User’s Guide, 3.0

64

The lkup() command takes a regular expression as its argument, and looks up all
symbols containing strings that match. In the simplest case, you can specify a
substring to see any symbols containing that string. For example, to display a list
containing routines and declared variables with names containing the string dsm,
do the following:

-> lkup "dsm"
_dsmData 0x00049d08 text (vxWorks)
_dsmNbytes 0x00049d76 text (vxWorks)
_dsmInst 0x00049d28 text (vxWorks)
mydsm 0x003c6510 bss (vxWorks)

Table 3-8 System Information Commands

Call Description

devs(0 List all devices known on the target system.

lkup() List symbols from the symbol table.

lkAddr() List symbols whose values are near a specified value.

d() Display target memory. You can specify a starting address,
size of memory units, and number of units to display.

l() Disassemble and display a specified number of instructions.

printErrno() Describe the most recent error status value.

version() Print operating system version information.

cd() Change the working directory on the host (does not affect
target.)

ls() List files in the host working directory.

pwd() Display the current host working directory.

help() Display a summary of shell commands.

h() Display or set the size of shell history.

shellHistory() Display or set the size of shell history.

shellPromptSet() Change the C interpreter shell prompt.

printLogo() Display the shell logo.

3 Using the C Interpreter with VxWorks 6.x
3.18 C Interpreter Primitives

65

3

Case is significant, but position is not (mydsm is shown, but myDsm would not
be). To explicitly write a search that would match either mydsm or myDsm, you
can use a regular expression, as in the following:

-> lkup "[dD]sm"

Regular-expression searches of the symbol table can be as simple or elaborate as
required. For example, the following simple regular expression displays the names
of three internal VxWorks semaphore functions:

-> lkup "sem.Take"
_semBTake 0x0002aeec text (vxWorks)
_semCTake 0x0002b268 text (vxWorks)
_semMTake 0x0002bc48 text (vxWorks)
value = 0 = 0x0
->

Another information command is a symbolic disassembler, l(). The command
syntax is:

l [addr[, n]]

This command lists n disassembled instructions, starting at addr. If n is 0 or not
given, the command uses the n from a previous l(), or if there is none, the default
value (10). If addr is 0, l() starts from where the previous l() stopped, or from where
an exception occurred (if there was an exception trap or a breakpoint since the last
l() command).

The disassembler uses any symbols that are in the symbol table. If an instruction
whose address corresponds to a symbol is disassembled (the beginning of a
routine, for instance), the symbol is shown as a label in the address field. Symbols
are also used in the operand field. The following is an example of disassembled
code for an MC680x0 target:

-> l printf
_printf

00033bce 4856 PEA (A6)
00033bd0 2c4f MOVEA .L A7,A6
00033bd2 4878 0001 PEA 0x1
00033bd6 4879 0003 460e PEA _fioFormatV + 0x780
00033bdc 486e 000c PEA (0xc,A6)
00033be0 2f2e 0008 MOVE .L (0x8,A6),-(A7)
00033be4 6100 02a8 BSR _fioFormatV
00033be8 4e5e UNLK A6
00033bea 4e75 RTS

This example shows the printf() routine. The routine does a LINK, then pushes the
value of std_out onto the stack and calls the routine fioFormatV(). Notice that
symbols defined in C (routine and variable names) are prefixed with an underscore
(_) by the compiler.

Wind River Workbench
Host Shell User’s Guide, 3.0

66

Perhaps the most frequently used system information command is d(), which
displays a block of memory starting at the address that is passed to it as a
parameter. As with any other routine that requires an address, the starting address
can be a number, the name of a variable or routine, or the result of an expression.

Several examples of variations on d() appear below.

Display starting at address 1000 decimal:

-> d (1000)

Display starting at 1000 hex:

-> d 0x1000

Display starting at the address contained in the variable foo:

-> d foo

The above is different from a display starting at the address of foo. For example, if
foo is a variable at location 0x1234, and that memory location contains the value
10000, d() displays starting at 10000 in the previous example and at 0x1234 in the
following:

-> d &foo

Display starting at an offset from the value of foo:

-> d foo + 100

Display starting at the result of a function call:

-> d func (foo)

Display the code of func() as a simple hex memory dump:

-> d func

3.18.4 System Modification and Debugging

Developers often need to change the state of the target, whether to run a new
version of some software module, to patch memory, or simply to single-step a
program. Table 3-9 summarizes the shell commands of this type. For more detailed
reference information, see the windsh reference entry (open Wind River
Workbench and select Help > Help Contents > Wind River

! CAUTION: Remember that the effect of a command may be different in the host and
kernel shells. If you mount a drive on the target at /ata0/, you will be unable to cd()
to it from the host shell, which has no concept of a target working directory.
However, if you use @cd, the kernel shell will recognize the device.

3 Using the C Interpreter with VxWorks 6.x
3.18 C Interpreter Primitives

67

3

Documentation > References > Host Tools > Wind River Host Shell API
Reference > windsh.)

Table 3-9 System Modification and Debugging Commands

Call Description

ld() Load an object module into memory and link it dynamically
into the runtime.

unld() Remove a dynamically-linked object module from target
memory, and free the storage it occupied.

m() Modify memory in width (byte, short, or long) starting at
addr. The m() command displays successive words in
memory on the terminal; you can change each word by
typing a new hex value, leave the word unchanged and
continue by typing ENTER, or return to the shell by typing
a dot (“.”).

mRegs() Modify register values for a specific task.

b() Set or display breakpoints, in a specified task or in all tasks.

bh() Set a hardware breakpoint.

s() Step a program to the next instruction.

so() Single-step, but step over a subroutine.

c() Continue from a breakpoint.

cret() Continue until the current subroutine returns.

bdall() Delete all breakpoints.

bd() Delete a breakpoint.

reboot() Return target control to the boot loader, then reset the target
server and reattach the shell.

bootChange() Modify the saved values of boot parameters.

sysSuspend() Enter system mode (if supported by the target-agent
configuration.)

sysResume() Return from system mode to task mode.

Wind River Workbench
Host Shell User’s Guide, 3.0

68

One of the most useful shell features for interactive development is the dynamic
linker. With the shell command ld(), you can download and link new portions of
the application. Because the linking is dynamic, you only have to rebuild the
particular piece you are working on, not the entire application. Download can be
cancelled with CTRL+C or by clicking Cancel in the load progress indicator
window.

The m() command provides an interactive way of manipulating target memory.

The remaining commands in this group are for breakpoints and single-stepping.
You can set a breakpoint at any instruction. When an eligible task executes that
instruction (as specified with the b() command), the task that was executing on the
target suspends, and a message appears at the shell. At this point, you can examine
the task’s registers, do a task trace, and so on. The task can then be deleted,
continued, or single-stepped.

If a routine called from the shell encounters a breakpoint, it suspends just as any
other routine would, but in order to allow you to regain control of the shell, such
suspended routines are treated in the shell as though they had returned 0. The
suspended routine is nevertheless available for your inspection.

When you use s() to single-step a task, the task executes one machine instruction,
then suspends again. The shell display shows all the task registers and the next
instruction to be executed by the task.

You can use the bh() command to set hardware breakpoints at any instruction or
data element. Instruction hardware breakpoints can be useful to debug code
running in ROM or flash EPROM. Data hardware breakpoints (watchpoints) are
useful if you want to stop when your program accesses a specific address.
Hardware breakpoints are available on Intel x86, MIPS, and some PowerPC
processors. The arguments of the bh() command are architecture-specific. For
more information, run the help() command. The number of hardware breakpoints
you can set is limited by the hardware; if you exceed the maximum number, you
will receive an error.

agentModeShow() Show the agent mode (system or task.)

sysStatusShow() Show the system context status (suspended or running.)

quit() or exit() Close the shell.

Table 3-9 System Modification and Debugging Commands

Call Description

3 Using the C Interpreter with VxWorks 6.x
3.18 C Interpreter Primitives

69

3

3.18.5 C++ Development

Table 3-10 describes commands that are intended specifically for C++ applications.

For more detailed reference information, see the windsh reference entry (open
Wind River Workbench and select Help > Help Contents > Wind River
Documentation > References > Host Tools > Wind River Host Shell API
Reference > windsh.)

Also see the VxWorks Kernel Programmer’s Guide: C++ Development.

In addition, you can use the Tcl routine shConfig to set the environment variable
LD_CALL_XTORS within a particular shell. This allows you to use a different C++
strategy in a shell than is used on the target. For more information on shConfig,
see 2.4 Setting Shell Environment Variables, p.14.

3.18.6 Object Display

Table 3-11 describes commands that display VxWorks objects. The browser
provides displays that are analogous to the output of many of these routines,
except that browser windows can update their contents periodically.

For more detailed reference information, see the windsh reference entry (open
Wind River Workbench and select Help > Help Contents > Wind River
Documentation > References > Host Tools > Wind River Host Shell API
Reference > windsh.)

Table 3-10 C++ Development Commands

Call Description

cplusCtors() Call static constructors manually.

cplusDtors() Call static destructors manually.

cplusStratShow() Report on whether current constructor/destructor strategy is
manual or automatic.

cplusXtorSet() Set constructor/destructor strategy.

Wind River Workbench
Host Shell User’s Guide, 3.0

70

Table 3-11 Object Display Commands

Call Description

show() Print information on a specified object in the shell
window.

classShow() Show information about a class of VxWorks kernel
objects. List available classes with lkup “ClassId”.

taskShow() Display information from a task’s task control block
(TCB.)

taskCreateHookShow() Show the list of task create routines.

taskDeleteHookShow() Show the list of task delete routines.

taskRegsShow() Display the contents of a task’s registers.

taskSwitchHookShow() Show the list of task switch routines.

taskWaitShow() Show information about the object a task is pended
on. Note that taskWaitShow() cannot give object IDs
for POSIX semaphores or message queues.

semShow() Show information about a semaphore.

semPxShow() Show information about a POSIX semaphore.

wdShow() Show information about a watchdog timer.

msgQShow() Show information about a message queue.

mqPxShow() Show information about a POSIX message queue.

iosDrvShow() Display a list of system drivers.

iosDevShow Display the list of devices in the system.

iosFdShow() Display a list of file descriptor names in the system.

memPartShow() Show partition blocks and statistics at specified level
of verbosity.

3 Using the C Interpreter with VxWorks 6.x
3.18 C Interpreter Primitives

71

3

3.18.7 Network Status Display

Table 3-12 describes commands that display information about the operating
system network. In order for a protocol-specific command to work, the
appropriate protocol must be included in your operating system configuration.

For more detailed reference information, see the windsh reference entry (open
Wind River Workbench and select Help > Help Contents > Wind River
Documentation > References > Host Tools > Wind River Host Shell API
Reference > windsh.)

memShow() Display the total amount of free and allocated space in
the system partition, the number of free and allocated
fragments, the average free and allocated fragment
sizes, and the maximum free fragment size. Show
current as well as cumulative values. With an
argument of 1, also display the free list of the system
partition; with an argument of 2, display the address
of each free block.

smMemShow() Display the amount of free space and statistics on
memory-block allocation for the shared-memory
system partition.

smMemPartShow() Display the amount of free space and statistics on
memory-block allocation for a specified
shared-memory partition.

moduleShow() Show the current status for all loaded modules.

moduleIdFigure() Report a loaded module’s module ID, given its name.

intVecShow() Display the interrupt vector table. This routine
displays information about the given vector or the
whole interrupt vector table if vector is equal to -1.
Note that intVecShow() is not supported on
architectures that do not use interrupt vectors.

Table 3-11 Object Display Commands

Call Description

Wind River Workbench
Host Shell User’s Guide, 3.0

72

3.19 Resolving Name Conflicts Between Host and Target

If you invoke a name that stands for a host shell command, the shell always
invokes that command, even if there is also a target routine with the same name.
Thus, for example, i() always runs on the host, regardless of whether you have the
VxWorks routine of the same name linked into your target.

However, you may occasionally need to call a target routine that has the same
name as a host shell command. The shell supports a convention allowing you to
make this choice: use the single-character prefix “@“ to identify the target version
of any routine. For example, to run a target routine named i(), invoke it with the
name @i().

Table 3-12 Network Status Display Commands

Call Description

hostShow() Display the host table.

icmpstatShow() Display statistics for Internet Control Message Protocol
(ICMP).

ifShow() Display the attached network interfaces.

inetstatShow() Display all active connections for Internet protocol sockets.

ipstatShow() Display IP statistics.

routestatShow() Display routing statistics.

tcpstatShow() Display all statistics for the TCP protocol.

tftpInfoShow() Get TFTP status information.

udpstatShow() Display statistics for the UDP protocol.

3 Using the C Interpreter with VxWorks 6.x
3.20 Examples

73

3

3.20 Examples

Execute C statements.

-> test = malloc(100); test[0] = 10; test[1] = test[0] + 2
-> printf("Hello!")

Download and dynamically link a new module.

-> ld < /usr/apps/someProject/file1.o

Create new symbols.

-> MyInt = 100; MyName = "Bob"

Show system information (task summary).

-> i

Show information about a specific task.

-> ti(s1u0)

Suspend a task, then resume it.

-> ts(s1u0)
-> tr(s1u0)

Show stack trace.

-> tt

Show current working directory; list contents of directory.

-> pwd
-> ls

Set a breakpoint.

-> b(0x12345678)

Step program to the next routine.

-> s

Call a VxWorks function; create a new symbol (my_fd).

-> my_fd = open ("file", 0, 0)

Call a function from your application.

-> someFunction (1,2,3)

Sometimes a routine in your application code will have the same name as a host
shell command. If such a conflict arises, you can direct the C interpreter to execute
the target routine, rather than the host shell command, by prefixing the routine
name with @, as shown in the example below.

Wind River Workbench
Host Shell User’s Guide, 3.0

74

Call an application function that has the same name as a shell command.

-> @i()

75

 4
Using the Command Interpreter

with VxWorks 6.x

4.1 Introduction 76

4.2 General Commands 77

4.3 Displaying Target Agent Information 78

4.4 Working with Memory 79

4.5 Displaying Object Information 79

4.6 Working with Symbols 79

4.7 Displaying, Controlling, and Stepping Through Tasks 82

4.8 Setting Shell Context Information 83

4.9 Displaying System Status 83

4.10 Using and Modifying Aliases 84

4.11 Launching RTPs 86

4.12 Event Scripting Commands 89

4.13 General Examples 94

Wind River Workbench
Host Shell User’s Guide, 3.0

76

4.1 Introduction

This chapter describes the behavior of the command interpreter, which can be used
only with a VxWorks 6.x target.

The host shell running in command interpreter mode allows debugging for
VxWorks 6.x RTP applications.

Some of the commands (or routines) that you can execute from the shell are built
into the host shell, rather than running as function calls on the target. These
commands parallel interactive utilities that can be linked into the operating system
itself. By using the host shell commands, you minimize the impact on both target
memory and performance.

The shell parses and evaluates its input one line at a time. A line may consist of a
single shell statement or several shell statements separated by semicolons. A
semicolon is not required on a line containing only a single statement. A statement
cannot continue on multiple lines.

To switch to command interpreter mode from any other mode, enter cmd at the
prompt and press ENTER. For example, the default mode of the host shell when
connected to a VxWorks 6.x target is the C interpreter mode. To switch to command
interpreter mode, enter the following:

-> cmd
[vxWorks]#

The command interpreter is command-oriented and does not understand C
language syntax. (For C syntax, use the C interpreter, as described in 3. Using the C
Interpreter with VxWorks 6.x.)

A command name is composed of one or more strings followed by option flags and
parameters. The command interpreter syntax is a mix of GDB and UNIX syntax.

The syntax of a command is as follows:

command [subcommand [... subcommand]] [options] [arguments] [;]

command and subcommand are alphanumeric strings that do not contain spaces.
arguments can be any string.

For example:

[vxWorks]# ls -l /folk/user
[vxWorks]# task delete t1
[vxWorks]# bp -t t1 0x12345678

4 Using the Command Interpreter with VxWorks 6.x
4.2 General Commands

77

4

The options and arguments strings may be processed differently by each command
and so can follow any format. Most of the commands follow the UNIX standard.
In that case, each argument and each option are separated by at least one space.

An option is composed of the dash character (-) plus one character (-o for example).
Several options can be gathered in the same string (-oats is identical to -o -a -t -s).
An option may have an extra argument (-f filename). The -- option is a special
option that indicates the end of the options string.

Arguments are separated by spaces. Therefore, if an argument contains a space, the
space has to be escaped by a backslash (“\”) character or surrounded by single or
double quotes. For example:

[vxWorks]# ls -l "/folk/user with space characters"
[vxWorks]# ls -l /folk/user\ with\ space\ characters

4.2 General Commands

Table 4-1 summarizes general command-interpreter commands.

Table 4-1 General Command Interpreter Commands

Command Description

alias Adds an alias or displays list of aliases.

bp Displays, sets, or unsets a breakpoint.

cat Concatenates and displays files.

cd Changes current directory.

expr Evaluates an expression.

help Displays the list of shell commands.

ls Lists the files in a directory.

more Browses and pages through a text file.

print errno Displays the symbol value of an errno.

pwd Displays the current working directory.

Wind River Workbench
Host Shell User’s Guide, 3.0

78

4.3 Displaying Target Agent Information

For information about the WDB target agent, see the VxWorks Kernel Programmer's
Guide: Target Tools.

Table 4-2 lists the commands related to the target agent.

quit Shuts down the shell.

reboot Reboots the system.

string free Frees a string allocated by the shell on the target.

unalias Removes an alias.

version Displays VxWorks version information.

Table 4-1 General Command Interpreter Commands (cont’d)

Command Description

Table 4-2 Command Interpreter Target Agent Commands

Command Description

help agent Displays a list of shell commands related to the target agent.

agent info Displays the agent mode: system or task.

agent status Displays the system context status: suspended or running. This
command can be completed successfully only if the agent is
running in system (external) mode.

agent system Sets the agent to system (external) mode then suspends the system,
halting all tasks. When the agent is in external mode, certain
commands (bp, task step, task continue) work with the system
context instead of a particular task context.

agent task Resets the agent to tasking mode and resumes the system.

4 Using the Command Interpreter with VxWorks 6.x
4.4 Working with Memory

79

4

4.4 Working with Memory

Table 4-3 shows commands related to memory.

4.5 Displaying Object Information

Table 4-4 shows commands that display information about objects.

4.6 Working with Symbols

Table 4-5 lists commands for displaying and setting values of symbols.

Table 4-3 Command Interpreter Memory Commands

Command Description

help memory Lists shell commands related to memory.

mem dump Displays memory.

mem modify Modifies memory values.

mem info Displays memory information.

mem list Disassembles and displays a specified number of instructions.

Table 4-4 Command Interpreter Object Commands

Command Description

help objects Lists shell commands related to objects.

object info Displays information about one or more specified objects.

object class Shows information about a class of objects.

Wind River Workbench
Host Shell User’s Guide, 3.0

80

4.6.1 Accessing a Symbol’s Contents and Address

The host shell command interpreter is a string-oriented interpreter, but you may
want to distinguish between symbol names, regular strings, and numerical values.

When a symbol name is passed as an argument to a command, you may want to
specify either the symbol address (for example, to set a hardware breakpoint on
that address) or the symbol value (to display it).

To do this, a symbol should be preceded by the character & to access the symbol’s
address, and $ to access a symbol’s contents. Any commands that specify a symbol
should now also specify the access type for that symbol. For example:

[vxWorks]# task spawn &printf %c $toto.r

In this case, the command interpreter sends the address of the text symbol printf
to the task spawn command. It accesses the contents of the data symbol toto and,
due to the .r suffix, it accesses the data symbol as a character.

The commands printf and echo are available in the shell for easy display of symbol
values.

4.6.2 Symbol Value Access

When specifying that a symbol is of a particular numerical value type, use the
following:

$symName[.type]

The special characters accepted for type are as follows:

Table 4-5 Command Interpreter Symbol Commands

Command Description

help symbols Lists shell commands related to symbols.

echo Displays a line of text or prints a symbol value.

printf Writes formatted output.

set or set symbol Sets the value of a symbol.

lookup Looks up a symbol.

4 Using the Command Interpreter with VxWorks 6.x
4.6 Working with Symbols

81

4

r = chaR
h = sHort
i = Integer (default)
l = Long

ll = Long Long
f = Float

d = Double

For example, if the value of the symbol name value is 0x10, type the following:

[vxWorks]# echo $value
0x10

But:

[vxWorks]# echo value
value

By default, the command interpreter considers a numerical value to be a 32-bit
integer. If a numerical string contains a “.” character, or the E or e characters (such
as 2.0, 2.1e1, or 3.5E2), the command interpreter considers the numerical value to
be a double value.

4.6.3 Symbol Address Access

When specifying that a symbol should be replaced by a string representing the
address of the symbol, precede the symbol name by a & character.

For example, if the address of the symbol name value is 0x12345678, type the
following:

[vxWorks]# echo &value
0x12345678

4.6.4 Special Consideration of Text Symbols

The “value” of a text symbol is meaningless, but the symbol address of a text
symbol is the address of the function. So to specify the address of a function as a
command argument, use a & character.

For example, to set a breakpoint on the printf() function, type the following:

[vxWorks]# bp &printf

Wind River Workbench
Host Shell User’s Guide, 3.0

82

4.7 Displaying, Controlling, and Stepping Through Tasks

Table 4-6 displays commands for working with tasks.

Table 4-6 Command Interpreter Task Commands

Command Description

help tasks Lists the shell commands related to working with tasks.

task Displays a summary of each tasks’s TCB.

task info Displays complete information from a task’s TCB.

task spawn Spawns a task with default parameters.

task stack Displays a summary of each tasks’s stack usage.

task delete Deletes one or more tasks.

task default Sets or displays the default task.

task trace Displays a stack trace of a task.

task regs Sets task register value.

show task regs Displays task register values.

task suspend Suspends a task or tasks.

task resume Resumes a task or tasks.

task hooks Displays task hook functions.

task stepover Single-steps a task or tasks.

task stepover Single steps, but steps over a subroutine.

task continue Continues from a breakpoint.

task stop Stops a task.

4 Using the Command Interpreter with VxWorks 6.x
4.8 Setting Shell Context Information

83

4

4.8 Setting Shell Context Information

Table 4-7 displays commands for displaying and setting context information.

4.9 Displaying System Status

Table 4-8 lists commands for showing system status information.

Table 4-7 Command Interpreter Shell Context Commands

Command Description

help set Lists shell commands related to setting context information.

set or
set symbol

Sets the value of an existing symbol. If the symbol does not exist,
and if the current working context is the kernel, a new symbol is
created and registered in the kernel symbol table.

set bootline Changes the boot line used in the boot ROMs.

set config Sets or displays shell configuration variables.

set cwc Sets the current working context of the shell session.

set history Sets the size of shell history. If no argument is specified, displays
shell history.

set prompt Changes the shell prompt to the string specified. The following
special characters are accepted:

%/ : current path
%n : current user
%m : target server name
%% : display % character
%c : current RTP name

unset config Removes a shell configuration variable from the current shell
session.

Wind River Workbench
Host Shell User’s Guide, 3.0

84

4.10 Using and Modifying Aliases

The command interpreter accepts aliases to speed up access to shell commands.
Table 4-9 lists the aliases that already exist; they can be modified, and you can add
new aliases. Aliases are visible from all shell sessions.

Table 4-8 Command Interpreter System Status Commands

Command Description

show bootline Displays the current boot line of the kernel.

show devices Displays all devices known to the I/O system.

show drivers Displays all system drivers in the driver list.

show fds Displays all opened file descriptors in the system.

show history Displays the history events of the current interpreter.

show lasterror Displays the last error value set by a command.

Table 4-9 Command Interpreter Aliases

Alias Definition

alias List existing aliases. Add a new alias by typing alias aliasname
“command”. For example, alias ll “ls -l”.

attach rtp attach

b bp

bd bp -u

bdall bp -u #*

bootChange set bootline

c task continue

checkStack task stack

4 Using the Command Interpreter with VxWorks 6.x
4.10 Using and Modifying Aliases

85

4

cret task continue -r

d mem dump

detach rtp detach

devs show devices

emacs set config LINE_EDIT_MODE=”emacs”

h show history

i task

jobs rtp attach

kill rtp detach

l mem list

lkAddr lookup -a

lkup lookup

m mem modify

memShow mem info

ps rtp

rtpc rtp continue

rtpd rtp delete

rtpi rtp task

rtps rtp stop

run rtp exec

s task step

so task stepover

td task delete

Table 4-9 Command Interpreter Aliases (cont’d)

Alias Definition

Wind River Workbench
Host Shell User’s Guide, 3.0

86

4.11 Launching RTPs

From the command interpreter, type the RTP executable pathname as a regular
command, adding any command arguments after the RTP executable pathname
(as in a UNIX shell).

[vxWorks]# /folk/user/TMP/helloworld.vxe
Launching process '/folk/user/TMP/helloworld.vxe' ...
Process '/folk/user/TMP/helloworld.vxe' (process Id = 0x471630) launched.
[vxWorks]# rtp

NAME ID STATUS ENTRY ADDR SIZE TASK CNT
------------ ---------- ----------- ---------- ---------- --------

[vxWorks]# /folk/user/TMP/cal 12 2004
Launching process '/folk/user/TMP/cal' ...
December 2004
S M Tu W Th F S

1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
Process '/folk/user/TMP/cal' (process Id = 0x2fdfb0) launched.

4.11.1 Redirecting Output to the Host Shell

To launch an RTP in the foreground, simply launch it as usual:

ti task info

tr task resume

ts task suspend

tsp task spawn

tt task trace

vi set config LINE_EDIT_MODE=”vi”

Table 4-9 Command Interpreter Aliases (cont’d)

Alias Definition

4 Using the Command Interpreter with VxWorks 6.x
4.11 Launching RTPs

87

4

[vxWorks]# rtp exec myRTP.exe

To launch an RTP in the background but redirect its output to the host shell,
include the -i option:

[vxWorks]# rtp exec -i myRTP.exe

To move the RTP to the background and stop it, press Ctrl+W. To resume an RTP
in the background that is stopped, use the command rtp background.

To move an RTP to the foreground, use the command rtp foreground.

To kill the RTP, press Ctrl+C.

To redirect output for all processes to the host shell, use the Tcl function vioSet as
shown below:

proc vioSet {} {
#Set stdin, stdout, and stderr to /vio/0 if not already in use
puts stdout "set stdin stdout stderr here (y/n)?"
if { [shParse {tstz = open ("/vio/0",2,0)}] != -1 } {

shParse {vf0 = tstz};
shParse {ioGlobalStdSet (0,vf0)} ;
shParse {ioGlobalStdSet (1,vf0)} ;
shParse {ioGlobalStdSet (2,vf0)} ;
shParse {logFdSet (vf0);}
shParse {printf ("Std I/O set here!

} else {
shParse {printf ("Std I/O unchanged.

}
}

4.11.2 Monitoring and Debugging RTPs

Table 4-10 displays the commands related to RTPs.

Table 4-10 Command Interpreter RTP Commands

Command Description

help RTP Displays a list of the shell commands related to RTPs.

help rtp Displays shell commands related to RTPs, with synopses.

rtp Displays a list of processes.

rtp stop Stops a process.

Wind River Workbench
Host Shell User’s Guide, 3.0

88

4.11.3 Setting Breakpoints

The bp command displays, sets, or unsets a breakpoint in the kernel, in an RTP, for
any task, for a particular task, or for a particular context. A breakpoint number is
assigned to each breakpoint, which can be used to remove that breakpoint.

Enter bp with no arguments to display breakpoints currently set.

Syntax

bp [-p rtpIdNameNumber] [-t taskId] [[-u {bp_number | bp_addr} ...] | [-n count] [-h
type] [-q] [-a] [expr]]

Use the special character #* as the breakpoint number, or the special character * as
the breakpoint address, to unset all breakpoints.

rtp continue Continues a process.

rtp delete Deletes a process (or list of processes).

rtp info Displays process information.

rtp exec Executes a process.

rtp attach Attaches the shell session to a process.

rtp detach Detaches the shell session from a process.

set cwc Sets the current working context of the shell session.

rtp task Lists tasks running within a particular RTP.

rtp foreground Brings the current or specified process to the shell foreground.

rtp background Runs the current or specified process in the shell background.

Table 4-10 Command Interpreter RTP Commands (cont’d)

Command Description

4 Using the Command Interpreter with VxWorks 6.x
4.12 Event Scripting Commands

89

4

You can set breakpoints in a memory context only if the current working memory
context is set to that memory context.

4.12 Event Scripting Commands

This section describes commands used with Tcl event scripting (see 6.8 Tcl
Scripting, p.123.)

handler add

Add an event handler to the shell.

Syntax

handler add [-e event_type] [-b breakpoint_number] [-d] [-n] [tcl_script|tcl_routine_name]

The host shell calls the handler when the specified event is encountered. You can
specify the following options:

-e event_type

Table 4-11 bp Command Options

Option Description

-a Stop all tasks in a context.

-n Specify count passes before breakpoint is hit.

-h Specify a hardware breakpoint.

-p Apply the breakpoint to a specific RTP.

-q Do not send notification when the breakpoint is hit.

-t Apply the breakpoint to a specific task.

-u Unset breakpoint.

Wind River Workbench
Host Shell User’s Guide, 3.0

90

This is the event that triggers the handler. By default, this is the stopped event.
event_type is any of the events sent by the backend server. Table 4-12 shows a
list of the most important event types.

-b breakpoint_number

If you want the host shell to call the handler when a breakpoint is hit, you can
specify the breakpoint number with this option. If this option is not specified,
all breakpoints will trigger the handler.

-d

Disable the handler. By default, the handler is enabled.

-n

Do not run the default handler for this event. By default, the default handler
will run after the user handler.

You can specify the handler to be executed when the event is encountered by using
this command as a Tcl routine, giving a full path to a Tcl script, or entering the
script manually at the tcl> prompt in the Tcl interpreter.

handler show

Show any event handlers you have registered.

Table 4-12 Event Types

Event Name Meaning Reason

stopped Target has stopped. One of the following:

breakpoint-hit

signal-received

end-stepping-range

exited

watchpoint-trigger

user-stopped

context-start Context has started. A kernel task or real-time process has started.

context-exit Context has exited. A kernel task or real-time process has exited.

4 Using the Command Interpreter with VxWorks 6.x
4.12 Event Scripting Commands

91

4

Syntax

handler show

handler remove

Remove a specified event handler.

Syntax

handler remove [-a]

This command removes the user event handler specified by the handler ID.

If you specify the flag -a, all handlers are removed.

handler enable

Enable the user event handler.

Syntax

handler enable [-a] [-d]

This command enables the user event handler specified by the handler ID.

If you specify the flag -a, all handlers are enabled.

If you specify the flag -d, the handler is disabled.

4.12.1 Limitations

Handlers have the following limitations:

■ One handler per event type or event ID.

■ If you register a handler for an event that already has a handler, the original
handler is overwritten.

■ If the handler is specified to be triggered by an event ID, then when the event
is removed, the handler is also removed.

■ If your handler calls one of the shell's interpreters, it must use the shell
function shEval followed by the interpreter name and then the command. The
interpreter name alone followed by the command will not succeed.

Wind River Workbench
Host Shell User’s Guide, 3.0

92

■ When using eventpoint scripting on slow or remote target connections, the
performance of the host shell is significantly affected. This is principally due
to the length of time required by the backend to communicate with the target.
Therefore Wind River recommends that you make use of the eventpoint
scripting capability on local targets, and limit as far as possible the amount of
event exchange between the host shell and the target when a script is called.
(For example, launch RTPs without VIO redirection; make event handlers very
short with as few calls to backend or shell APIs as possible; where possible,
limit the use of recurrent event handlers.)

■ If you specify a handler that listens for the context-start event, you must be
careful when calling any of the shell APIs to create a context (for example, the
C interpreter's sp() command or the Cmd interpreter's rtp exec command.)
These shell APIs also listen for the context-start event and act upon that event.
If your handler uses a while loop, the shell is likely to hang and the call to one
of the APIs to create a context will not succeed. As a workaround, you can
create a context using the GDB/MI commands directly, through the GDB
interpreter's mi commands, and not rely on the shell's APIs, as shown in the
following example:

The user wishes to add a user handler listening for the context-start event.
When the event is received, the handler calls a GDB/MI command to resume
the context, and then loop until the context exits.

proc taskWatchHandler {evt} {
regexp {thread-id=\"([^\"]+)} $evt dummy threadId
shEval gdb mi "-wrs-tos-object-modify -t $threadId KernelTask

taskResume --"
set taskId [expr int([taskIdGet $threadId])]
puts "taskWatchHandler Task $taskId"
while {1} {
set taskList [shEval cmd task]
set idx 0
set taskFound 0
foreach task [split $taskList "\n"] {

set id [lindex $task 2]
if {![catch {expr int($id)} err]} {
if {$err == $taskId} {

set taskFound 1
}
}

}
if {!$taskFound} {

puts "TASK EXITED"
return

}
after 1000
}

}

4 Using the Command Interpreter with VxWorks 6.x
4.12 Event Scripting Commands

93

4

In the shell, the user registers the handler and then creates a task calling
taskDelay(500). The handler is called and it reports when the task has exited.

[vxWorks *]# lkup taskDelay
taskDelay 0x6012be20 text (ctdt.c)
taskDelaySc 0x60130c20 text (ctdt.c)
[vxWorks *]# handler add -e context-start taskWatchHandler
Added user handler id: 2
[vxWorks *]# gdb mi -wrs-tos-object-create KernelTask taskSpawn -- s2u1
100 83886097 0 20000 0x6012be20 true false 0x64 0x0 0x0 0x0 0x0 0x0 0x0
0x0 0x0 0
^done,thread-id="39"
[vxWorks *]# taskWatchHandler Task 1617033120
TASK EXITED

4.12.2 Event Scripting Example

In this example, a handler has been added that overrides the default breakpoint
handler. The handler calls the command interpreter's task command, and then
calls continue. The call to handler show describes the handler that has just been
added. A breakpoint is then set on printf and a task spawned to call printf; when
the breakpoint is hit, the handler is called.

[vxWorks *]# handler add -n
Type Tcl script to be executed when event is encoutered.
End with a line saying just "end".
puts "Breakpoint hit!!"
shEval cmd task
shEval cmd c
end
User Handler Added: 1
[vxWorks *]# handler show
Id Event Type Handler Enabled BreakpointId
--- -------------------- -------------------- ---------- -------------
1 stopped puts "Breakpoint hit yes ALL

shEval cmd task
shEval cmd c

--- -------------------- -------------------- ---------- -------------
[vxWorks *]# bp &printf
[vxWorks *]# C sp printf, "coucou"
task spawned: id = 0x616ffd08, name = s2u0
value = 1634729224 = 0x616ffd08
[vxWorks *]# Breakpoint hit!!

NAME ENTRY TID PRI STATUS PC ERRNO DELAY
---------- ------------ ---------- --- ---------- ---------- ---------- -----
tJobTask jobTask 0x6038e2a0 0 Pend 0x60126df4 0 0
tExcTask excTask 0x6018e1d0 0 Pend 0x60126df4 0 0
tLogTask logTask 0x6039bc20 0 Pend 0x60124dab 0 0
tNbioLog nbioLogServe 0x60392010 0 Pend 0x60126df4 0 0
tShell0 shellTask 0x6052d190 1 Pend 0x60126df4 0 0

Wind River Workbench
Host Shell User’s Guide, 3.0

94

tWdbTask wdbTask 0x6038bbd8 3 Ready 0x60126df4 0 0
tErfTask erfServiceTa 0x60447c40 10 Pend 0x60127414 0 0
tAioIoTask aioIoTask 0x60457c00 50 Pend 0x60127414 0 0
tAioIoTask aioIoTask 0x604399a8 50 Pend 0x60127414 0 0
tNetTask netTask 0x603a3020 50 Pend 0x60126df4 0 0
tAioWait aioWaitTask 0x604396d0 51 Pend 0x60126df4 0 0
s2u0 printf 0x616ffd08 100 Stop 0x60034c90 0 0

[vxWorks *]# task
NAME ENTRY TID PRI STATUS PC ERRNO DELAY

---------- ------------ ---------- --- ---------- ---------- ---------- -----
tJobTask jobTask 0x6038e2a0 0 Pend 0x60126df4 0 0
tExcTask excTask 0x6018e1d0 0 Pend 0x60126df4 0 0
tLogTask logTask 0x6039bc20 0 Pend 0x60124dab 0 0
tNbioLog nbioLogServe 0x60392010 0 Pend 0x60126df4 0 0
tShell0 shellTask 0x6052d190 1 Pend 0x60126df4 0 0
tWdbTask wdbTask 0x6038bbd8 3 Ready 0x60126df4 0 0
tErfTask erfServiceTa 0x60447c40 10 Pend 0x60127414 0 0
tAioIoTask aioIoTask 0x60457c00 50 Pend 0x60127414 0 0
tAioIoTask aioIoTask 0x604399a8 50 Pend 0x60127414 0 0
tNetTask netTask 0x603a3020 50 Pend 0x60126df4 0 0
tAioWait aioWaitTask 0x604396d0 51 Pend 0x60126df4 0 0
[vxWorks *]#

4.13 General Examples

List the contents of a directory.

[vxWorks]# ls -l /folk/usr

Create an alias.

[vxWorks]# alias ls "ls -l"

Summarize task control blocks (TCBs).

[vxWorks]# task

Suspend a task, then resume it.

[vxWorks]# task suspend t1
[vxWorks]# task resume t1

Set a breakpoint for a task at a specified address.

[vxWorks]# bp -t t1 0x12345678

Set a breakpoint on a function.

[vxWorks]# bp &printf

4 Using the Command Interpreter with VxWorks 6.x
4.13 General Examples

95

4

Show the address of someInt.

[vxWorks]# echo &someInt

Step over a task from a breakpoint.

[vxWorks]# task stepover t1

Continue a task.

[vxWorks]# task continue t1

Delete a task.

[vxWorks]# task delete t1

Run an RTP application.

[vxWorks]# /folk/user/TMP/helloworld.vxe

Run an RTP application, passing parameters to the executable.

[vxWorks]# cal.vxe -j 2002

Run an RTP application, passing options to the executable and to the RTP loader
(in this case, setting the stack size to 8K).

[vxWorks]# rtp exec -u 8096 /folk/user/TMP/foo.vxe -q

List RTPs or show brief information about a specific RTP.

[vxWorks]# rtp [rtpID]

Show details about an RTP.

[vxWorks]# rtp info [rtpID]

Stop an RTP, then continue it.

[vxWorks]# rtp stop 0x43210
[vxWorks]# rtp continue 0x43210

Wind River Workbench
Host Shell User’s Guide, 3.0

96

97

 5
Using the GDB Interpreter

5.1 Introduction 98

5.2 General GDB Commands 98

5.3 Working with Breakpoints 99

5.4 Specifying Files to Debug 100

5.5 Running and Stepping Through a File 100

5.6 Displaying Disassembly and Memory Information 101

5.7 Examining Stack Traces and Frames 102

5.8 Displaying Information and Expressions 102

5.9 Displaying and Setting Variables 104

5.10 Working with Signals 105

5.11 Event Scripting 108

5.12 Wind River On-Chip Debugging GDB Commands 112

Wind River Workbench
Host Shell User’s Guide, 3.0

98

5.1 Introduction

The GDB interpreter provides a command-line GDB interface to the host shell, and
permits the use of GDB commands to debug a target.

For Linux and standalone (no operating system) targets, the GDB interpreter is the
default mode. For VxWorks 6.x targets, change to the GDB interpreter from any
other interpreter by entering gdb at the prompt. For example, to change to GDB
mode from C mode, enter the following:

-> gdb
(gdb)

The GDB interpreter includes several Wind River-specific commands; these
commands are prefaced with the prefix wrs- to prevent confusion with existing or
future GDB commands. These commands are listed in 5.12 Wind River On-Chip
Debugging GDB Commands, p.112.

5.2 General GDB Commands

This section lists general commands available within the GDB interpreter.

Table 5-1 General GDB Commands

Command Syntax Description

help help command Print a description of command.

cd cd directory Change the working directory.

pwd pwd Print the working directory.

path path pathname Append pathname to the PATH variable.

show path show path Show the PATH variable.

echo echo string Echo a string.

list list [line|symbol|filename] Display ten lines of a source file, centered
around a line number or symbol.

shell shell command Run a shell command.

5 Using the GDB Interpreter
5.3 Working with Breakpoints

99

5

5.3 Working with Breakpoints

This section lists commands available for setting and manipulating breakpoints.

source source filename Run a script of GDB commands.

directory directory dir Append a directory to the DIRECTORY
variable (for source file searches.)

quit q or quit Quit the host shell.

Table 5-1 General GDB Commands

Command Syntax Description

Table 5-2 Breakpoint Commands

Command Syntax Description

break break [line|symbol] filename [if expr]

or

b [line|symbol] filename [if expr]

Set a breakpoint.

tbreak tbreak [line|symbol] filename [if expr]

or

t [line|symbol] filename [if expr]

Set a temporary breakpoint.

enable enable breakpoint_id Enable a breakpoint.

disable disable breakpoint_id Disable a breakpoint.

delete delete breakpoint_id Delete a breakpoint.

clear clear breakpoint_id Clear a breakpoint.

cond cond breakpoint_id condition Change a breakpoint condition
(re-initializes the breakpoint).

ignore ignore breakpoint_id n Ignore a breakpoint n times
(re-initializes the breakpoint).

Wind River Workbench
Host Shell User’s Guide, 3.0

100

5.4 Specifying Files to Debug

This section lists commands that specify the file(s) to be debugged.

5.5 Running and Stepping Through a File

This section lists commands to run and step through programs.

Table 5-3 File Specification Commands

Command Syntax Description

file file filename Define filename as the program to be
debugged.

exec-file exec-file filename Specify that the program to be run is
located in filename.

load load filename Load a module.

unload unload filename Unload a module.

attach attach process_id Attach to a process.

detach detach Detach from the attached process.

thread thread thread_id Select a thread as the current task to
debug.

add-symbol-file add-symbol-file filename addr Read additional symbol table
information from the file located at
memory address addr.

Table 5-4 Run/Step Commands

Command Syntax Description

run run Run a process for debugging (use set arguments
and set environment if your program needs them).

kill kill process_id Kill a process.

5 Using the GDB Interpreter
5.6 Displaying Disassembly and Memory Information

101

5

5.6 Displaying Disassembly and Memory Information

This section lists commands for disassembling code and displaying contents of
memory.

interrupt interrupt Interrupt a running task or process.

continue continue Continue an interrupted task or process.

step step [n] Step one instruction. If n is used, step n times.

stepi stepi [n] Step one assembly-language instruction. If n is
used, step n times.

next next [n] Continue to the next source line in the current stack
frame. If n is used, continue through n lines.

nexti nexti [n] Execute one assembly-language instruction. If the
instruction is a function call, proceed until the
function returns. If n is used, execute n instructions.

until until Continue running until a source line past the
current line in the current stack frame is reached.

jump jump addr Move the instruction pointer to addr.

finish finish Finish execution of current block.

Table 5-4 Run/Step Commands

Command Syntax Description

Wind River Workbench
Host Shell User’s Guide, 3.0

102

5.7 Examining Stack Traces and Frames

This section lists commands for selecting and displaying stack frames.

5.8 Displaying Information and Expressions

This section lists commands that display functions, registers, expressions, and
other debugging information.

Table 5-5 Disassembly Commands

Command Syntax Description

disassemble disassemble addr Disassemble code at a specified address.

x x [/format] addr Display memory starting at addr.

format is one of the formats used by print:
either s for a null-terminated string, or i for
a machine instruction.

Initially, the default is x for hexadecimal;
but the default changes each time you use
either x or print.

Table 5-6 Stack Trace Commands

Command Syntax Description

bt bt [n] Display back trace of n frames.

frame frame [n] Select frame number n

up up [n] Move n frames up the stack.

down down [n] Move n frames down the stack.

5 Using the GDB Interpreter
5.8 Displaying Information and Expressions

103

5

5.8.1 info

Display information on a specified option.

Syntax

info option

The info command takes the following options:

■ args - Shows function arguments.

■ breakpoints - Shows breakpoints.

■ commands - Shows commands to be executed when a breakpoint is hit.

■ display - Shows expressions to display when the program stops.

■ extensions - Shows file extensions (c, cpp, and so on.)

■ functions - Shows all functions.

■ locals - Shows local variables.

■ proc - Show /proc process information about any running process.

■ registers - Shows contents of registers.

■ source - Shows current source file.

■ sources - Shows all source files of current process.

■ symbol addr- Shows the symbol at address addr.

■ system - Shows which debug mode is running on the target.

■ target - Displays information about the target.

■ threads - Shows all threads.

■ variables - Shows all global and static variable names.

■ warranty - Shows disclaimer information.

■ watchpoints - Same as breakpoints.

5.8.2 print

Evaluate and print an expression.

Wind River Workbench
Host Shell User’s Guide, 3.0

104

The accessible variables are those of the lexical environment of the selected stack
frame, plus all those whose scope is global or an entire file.

The command prints a specified number of objects of a specified size according to
a specified format.

Syntax

print /count format size expression

count is a repeat count.

format can be any of the following:

■ o (octal)
■ x (hex)
■ d (decimal)
■ u (unsigned decimal),
■ t (binary)
■ a (address)
■ i (instruction)
■ s (string)

size can be any of the following:

■ b (byte)
■ h (half word)
■ w (word)
■ g (giant, 8 bytes)

5.9 Displaying and Setting Variables

This section lists commands for displaying and setting variables.

NOTE: The options f (float) and c (char) are not supported. The debugger
returns the natural value for the given expression by default.

5 Using the GDB Interpreter
5.10 Working with Signals

105

5

5.10 Working with Signals

This section lists commands for handling, sending, and killing POSIX-style process
signals on the target.

5.10.1 handle

Specify how to handle a given signal.

Syntax

handle [signal_name | all] action

Table 5-7 Variable Commands

Command Syntax Description

set args set args arguments Specify the arguments to be
used the next time a debugged
program is run.

set emacs set emacs Set display to emacs mode.

set environment set environment varname=value Set environment variable
varname to value. value may be
any string interpreted by the
program.

set tgtpathmapping set tgtpathmapping Set target to host pathname
mappings.

set variable set variable expression Set variable value to expression.

show args show args Show arguments of the
debugged program.

show environment show environment Show environment of the
debugged program.

NOTE: This section applies only to Linux targets.

Wind River Workbench
Host Shell User’s Guide, 3.0

106

signal_name is the symbolic name of the signal, for example SIGSEGV. Setting this
argument to ALL specifies all signals except those used by the debugger, typically
SIGTRAP and SIGINT. To find available signals for your target operating system,
use the command INFO HANDLE.

action can be any of the following:

■ stop - Re-enter the debugger if this signal occurs.

■ nostop - Do not re-enter the debugger if this signal occurs.

■ pass - Allow the program to see this signal.

■ nopass - Do not allow the program to see this signal.

pass and stop may be combined.

Example

(gdb) handle SIGINT stop
Signal Stop Print Pass to program Description
SIGINT true NotSupported true Interrupt

5.10.2 info handle

Display available signals for the target operating system.

Syntax

info handle

Example

(gdb) info handle
Signal Stop Print Pass to program Description

SIGHUP false NotSupported true Hangup
SIGINT true NotSupported true Interrupt
SIGQUIT false NotSupported true Quit
SIGILL true NotSupported false Illegal Instruction
SIGTRAP false NotSupported true Trap
SIGABRT false NotSupported true Abort
SIGBUS true NotSupported false Bus Error
SIGFPE false NotSupported true Floating Point

Exception
SIGKILL false NotSupported true Kill
SIGUSR1 false NotSupported true User
SIGSEGV true NotSupported false Segmentation

Violation
SIGUSR2 false NotSupported true User
SIGPIPE false NotSupported true Broken Pipe

5 Using the GDB Interpreter
5.10 Working with Signals

107

5

SIGALRM false NotSupported true Alarm Clock
Expiration

SIGTERM false NotSupported true Software Termination
SIGSTKFLT false NotSupported true Stack overflow
SIGCHLD false NotSupported true Child Exited
SIGCONT false NotSupported true Continuation
SIGSTOP false NotSupported true Stop
SIGTSTP false NotSupported true Stop from tty
SIGTTIN false NotSupported true Background tty read
SIGTTOU false NotSupported true Background tty output
SIGURG false NotSupported true Urgent Condition on

I/O Channel
SIGXCPU false NotSupported true CPU Time Limit

Exceeded
SIGXFSZ false NotSupported true File Size Limit

Exceeded
SIGVTALARM false NotSupported true Virtual Time Alarm
SIGPROF false NotSupported true Profiling Time Alarm
SIGWINCH false NotSupported true Window Changed
SIGIO false NotSupported true I/O Ready

5.10.3 signal

Continue a running program, while giving it a specified signal.

Syntax

signal [signal_name | 0]

Specify 0 as the argument to continue the program without giving it a signal.

5.10.4 send signal

Send a specified signal to a specified program.

Syntax

send signal signal_name [program]

If you do not specify a program, the signal is sent to the current program.

Example

In this example, a breakpoint is set at the symbol main. Then the signal SIGINT is
sent to the running program.

(gdb) b main
Breakpoint 5 at 0x80484DC: file signalTest.c, line 115.

Wind River Workbench
Host Shell User’s Guide, 3.0

108

(gdb) run
Starting program: .../signalTest

Breakpoint 5, main (argc=1, argv=0xBFFFD144) at signalTest.c:115

(gdb) send signal SIGINT
Sending signal SIGINT to program.

(gdb) c
Continuing.
Program received signal SIGINT, Interrupt at 0x80484DC

(gdb) signal SIGINT
Continuing with signal SIGINT.
(gdb) Program exited normally.

5.11 Event Scripting

This section lists commands for use with Tcl event scripting (see 6.8 Tcl Scripting,
p.123.)

5.11.1 Event Scripting Commands

display

Print the value of an expression each time the program stops.

Syntax

display [/FMT i|s] expression

You can use the option /FMT to set the format: either s for a null-terminated string,
or i for a machine instruction.

The command display with no arguments displays all currently requested
auto-display expressions. Use undisplay to cancel a display request.

undisplay

Cancel display of expressions when the program stops.

5 Using the GDB Interpreter
5.11 Event Scripting

109

5

Syntax

undisplay args

args are the code numbers of the expressions to stop displaying. For a current list
of code numbers, use the command info display.

The command undisplay with no arguments cancels all automatic-display
expressions.

This command is equivalent to the command delete display.

info display

Lists expressions currently specified to display when the program stops, with code
numbers.

Syntax

info display

enable display

Enable expressions to be displayed when the program stops.

Syntax

enable display args

args are the code numbers of the expressions to resume displaying. For a current
list of code numbers, use the command info display.

The command enable display with no arguments enables all automatic-display
expressions.

disable display

Disable display of expressions when the program stops.

Syntax

disable display args

Wind River Workbench
Host Shell User’s Guide, 3.0

110

args are the code numbers of the expressions to stop displaying.For a current list of
code numbers, use the command info display.

The command disable display with no arguments disables all automatic-display
expressions.

commands

Set commands to be executed when a breakpoint is hit.

Syntax

commands breakpoint_number

If you do not enter a breakpoint number, the shell targets the breakpoint that was
most recently set.

The commands themselves follow starting on the next line. To indicate the end of
the commands, use the line end.

Example

commands 123
silent
command_1
command_2
command_3
end

If you use silent as the first command, no output is printed when the breakpoint is
hit, except any output specified by the subsequent commands.

info commands

Lists commands to be executed when a breakpoint is hit.

Syntax

info commands

enable commands

Enable commands to be executed when a breakpoint is hit.

5 Using the GDB Interpreter
5.11 Event Scripting

111

5

Syntax

enable commands args

args are the code numbers of the commands to enable. For a list of code numbers,
use the command info commands.

The command enable commands with no arguments enables all
automatic-execution commands.

disable commands

Disable the ability to execute commands when a breakpoint is hit.

Syntax

disable commands args

args are the code numbers of the commands to stop executing. For a list of code
numbers, use the command info commands.

The command disable commands with no arguments disables all
automatic-execution commands.

5.11.2 Event Scripting Example

This example downloads a real-time process (RTP) and sets a breakpoint within
that RTP. The user then calls commands, indicating that when the breakpoint is hit,
the shell should call the GDB command info proc. The user then runs the RTP, the
breakpoint is hit and the shell calls the command info proc. The user then calls
display, indicating two variables to watch each time the program stops. The user
calls step several times, and each time the step completes, the shell displays the
value of the auto-watch variables.

(gdb) file /usr/bin/SIMPENTIUMdiab/printTest.vxe
Reading symbols from /usr/bin/SIMPENTIUMdiab/printTest.vxe...done
(gdb) b 46
Breakpoint 2 at 0x63000316: file printTest.c, line 46.
(gdb) commands
Type commands for when breakpoint 2 is hit, one per line.
End with a line saying just "end".
info proc
end
(gdb) run
Starting program: /usr/bin/SIMPENTIUMdiab/printTest.vxe

Breakpoint 2, func (val=3.14000000000000, val0=12345) at printTest.c:46

Wind River Workbench
Host Shell User’s Guide, 3.0

112

46 dummy1 = val0;
0x60556010 16 /usr/bin/SIMPENTIUMdiab/printTest.vxe 0x630002B1
RTP_GLOBAL_SYMBOLS|RTP_DEBUG RTP_NORMAL

(gdb) display dummy1
0: dummy1 = 48
(gdb) display dummy2
1: dummy2 = 8.60716350995449E+168
(gdb) step
0x6300031C 47 dummy2 = val;
0: dummy1 = 12345
1: dummy2 = 8.60716350995449E+168
(gdb) info display
Auto-display expressions now in effect:
Num Enb Expression
0 y dummy1
1 y dummy2
(gdb)

5.12 Wind River On-Chip Debugging GDB Commands

This section lists GDB mode commands that are specific to Wind River On-Chip
Debugging (OCD.)

5.12.1 target ocd

Spawn a backend server, connect to it, and connect to a target. If the host shell is
already connected to a backend server, this command simply connects to a target
using that backend server.

Syntax

target ocd target-id

target-id is one of the target IDs from the output of the wrsregquery command, or
the target-id given to an earlier wrsdeftarget command.

There is no corresponding command to disconnect from the target or backend
server. Once connected to a backend server and a target, the host shell remains
connected until the user terminates the host shell.

5 Using the GDB Interpreter
5.12 Wind River On-Chip Debugging GDB Commands

113

5

If the host shell is not connected to a backend server when this command is issued,
the host shell spawns a backend server and connects to it before sending GDB/MI
messages.

5.12.2 wrsdeftarget

Create a new target definition.

Syntax

wrsdeftarget target-id --core core-name --cpuplugin cpu-plugin [--targetplugin
target-plugin] param=value [param=value ...]

target-id is a user-supplied name for this target definition.

core-name is the type of the target CPU.

cpu-plugin is the name of the CPU plugin.

target-plugin is the name of the target plugin.

param is one of the parameter names shown in Table 5-8.

NOTE: If you omit the --targetplugin option, the host shell uses ocdtargetplugin
by default.

Wind River Workbench
Host Shell User’s Guide, 3.0

114

Example 1

wrsdeftarget mytarget --core MPC8260 --cpuplugin 82xxcpuplugin DEVICE=’Wind
River ICE’ STYLE=ETHERNET ADDR=123.456.789.012 BFNAME=WindRiverSBC8260.brd

Example 2

wrsdeftarget mytarget --core MPC8260 --cpuplugin 82xxcpuplugin DEVICE=’Wind

River Probe’ STYLE=USBDEVICE ADDR=PRO12345

If the host shell is not connected to a backend server when you issue this
command, the host shell spawns a backend server and connects to it before
sending GDB/MI messages.

The new target definition is transient; it does not persist beyond the lifetime of the
backend server session in which it was created.

This command does not modify the contents of the Wind River Registry.

Table 5-8 wrsdeftarget Parameter Names

Parameter Name Description

DEVICE Specifies the device that is being connected to. Its value is one of
the following strings, enclosed in double quotes:

■ Wind River ICE - Connects to a Wind River ICE SX
tool. For this DEVICE type, the BFNAME parameter is
required; for other DEVICE types, the BFNAME
parameter is optional.

■ Wind River Probe - Connects to a Wind River Probe
tool.

■ Wind River ISS - Connects to the Wind River
Instruction Set Simulator. For this DEVICE type, STYLE
and ADDR are unnecessary.

STYLE Specifies the style of the connection and how the ADDR
parameter is interpreted. The value of this parameter can be either
of the keywords ETHERNET or USBDEVICE.

ADDR Specifies the connection address. When the parameter STYLE is
set to ETHERNET, the value of ADDR is either an IP address or
a hostname. When STYLE is set to USBDEVICE, the value of
ADDR is the serial number printed on the back of your Wind
River Probe.

BFNAME Specifies the host pathname of the board descriptor file.

5 Using the GDB Interpreter
5.12 Wind River On-Chip Debugging GDB Commands

115

5

5.12.3 wrsregquery

wrsregquery queries the Wind River registry to obtain target definition
information. Target definitions can later be given to the wrsdeftarget command
(see 5.12.2 wrsdeftarget, p.113) to connect to a specific target.

Syntax

wrsregquery

The output is a list of target definitions having the format target-id, target-name.

target-id is a unique identifier specifying a target definition.

target-name is a non-unique human-readable version of the target definition.

Example

(gdb) wrsregquery
jsmith_1136574941992, WRISS_MPC8260
jsmith_1136836847022, vxsim0
jsmith_1140032123849, WRICE_MPC8260

This command does not display backend servers, even though the Wind River
registry contains a list of backend servers running on the same host, because the
host shell will only connect to the backend server specified by the -ds
command-line option, or to a newly spawned backend server.

5.12.4 Reset and Download Commands

Wind River has created several GDB mode commands to allow you to perform the
equivalent of a Wind River Workbench On-Chip Debugging reset and download
operation. Table 5-9 lists these commands.

For full syntax and examples for these commands, see 7. Executing an OCD Reset
and Download.

Wind River Workbench
Host Shell User’s Guide, 3.0

116

Table 5-9 Reset and Download Commands

Command Description

wrsdownload This command has three separate syntaxes:

– Download executables and raw data to the target.

– Erase flash memory on the target.

– Program flash memory on the target.

These three syntaxes cannot be used at the same time. (That is, you
cannot specify more than one kind of operation in the arguments
for one wrsdownload command.)

wrsmemmap Specify whether the debugger backend has read/write
access to target memory, and where in target memory such
access is allowed. This command only affects the backend. It
does not affect memory map registers on the target, and does
not cause a state change.

wrspassthru Pass commands directly to the firmware without interpretation.

wrsplayback Play a file of commands directly to the firmware.

wrsreset Reset one or more target cores.

wrsupload Upload data from target memory.

117

 6
Using the Tcl Interpreter

6.1 Introduction 117

6.2 Controlling the Target 118

6.3 Accessing the WTX Tcl API 120

6.4 Calling Target Routines 120

6.5 Passing Values to Target Routines 121

6.6 Calling Under C Control 121

6.7 Shell Initialization 122

6.8 Tcl Scripting 123

6.1 Introduction

The Tcl interpreter allows you to access the WTX Tcl API, and to exploit Tcl’s
sophisticated scripting capabilities to write complex scripts to help you debug and
monitor your target.

The Tcl interpreter is available for all target operating systems. To switch to the Tcl
interpreter from another mode, type the Tcl special character tcl at the prompt; the
prompt changes to tcl> to remind you of the shell’s new mode. If you are in another
interpreter mode and want to use a Tcl command without changing to Tcl mode,
type shEval tcl before your line of Tcl code.

Wind River Workbench
Host Shell User’s Guide, 3.0

118

The following example uses the C interpreter to define a variable in the symbol
table, then switch to the Tcl interpreter to define a similar Tcl variable in the shell
itself, and then switch back to the C interpreter:

-> foo="bar"
new symbol "foo" added to symbol table.
foo = 0x3616e8: value = 3544824 = 0x3616f8 = foo + 0x10
-> tcl
tcl> set foo {bar}
bar
tcl> C
->

On startup, you can use the option -Tclmode (or -T) to start with the Tcl interpreter.

Using the shell’s Tcl interface allows you to extend the shell with your own
procedures, and also provides a set of control structures which you can use
interactively. The Tcl interpreter also gives you access to command-line utilities on
your development host.

6.2 Controlling the Target

In the Tcl interpreter, you can create custom commands, or use Tcl control
structures for repetitive tasks, while using the building blocks that allow the C
interpreter and the host shell commands to control the target remotely. These
building blocks as a whole are called the wtxtcl procedures.

For example, wtxMemRead returns the contents of a block of target memory
(given its starting address and length). That command in turn uses a special
memory-block data type designed to permit memory transfers without
unnecessary Tcl data conversions. The following example uses wtxMemRead,
together with the memory-block routine memBlockWriteFile, to write a Tcl
procedure that dumps target memory to a host file. Because almost all the work is
done on the host, this procedure works whether or not the target run-time
environment contains I/O libraries or any networked access to the host file system.

tgtMemDump - copy target memory to host file
#

! CAUTION: You may not embed Tcl evaluation inside a C expression; the tcl prefix
works only as the first non-blank character on a line, and passes the entire line
following it to the Tcl interpreter.

6 Using the Tcl Interpreter
6.2 Controlling the Target

119

6

SYNOPSIS:
tgtMemDump hostfile start nbytes

proc tgtMemDump {fname start nbytes} {
set memHandle [wtxMemRead $start $nbytes]
memBlockWriteFile $memHandle $fname

}

For reference information on the wtxtcl routines available in the host shell, see the
online help: in Workbench, select Help > Help Contents > Wind River
Documentation > References > Host Tools > WTX Tcl Library Reference.

All of the commands defined for any other interpreter interpreter are also available
from the Tcl level. To use another interpreter’s commands, use the shEval
command followed by the special character for the interpreter you want and then
the command.

For example, to call the C interpreter command i() from the Tcl interpreter, use the
following command:

tcl> shEval C i

The output of a call to another interpreter can be written to a Tcl variable. For
example, to write the list of real-time processes returned by the command
interpreter's RTP command into the Tcl variable rtpList, enter the following:

tcl> set rtpList [shEval cmd rtp]

The behaviour for the C interpreter is slightly different. Since you can call target
functions with the C interpreter, you may wish to recuperate the result of that
target function call. To do so, enter the following:

tcl> set sysClk [shEval C sysClkRateGet]

The Tcl variable sysClk now contains the value returned by sysClkRateGet().

If you want to set a Tcl variable to the value that is displayed on standard output
when a C interpreter routine is called, set the shell configuration variable
C_OUTPUT_GET to ON. With this variable set to ON, the following call writes the
list of tasks as displayed on standard output to the Tcl variable taskList.

tcl> shConfig C_OUTPUT_GET on
tcl> set taskList [shEval C i]

In some cases, it is more convenient to call a wtxtcl routine instead.

For example, you can call the dynamic linker using ld from the Tcl interpreter, but
the argument that names the object module may not seem intuitive: it is the
address of a string stored on the target. It is more convenient to call the underlying
wtxtcl command. In the case of the dynamic linker, the underlying wtxtcl

Wind River Workbench
Host Shell User’s Guide, 3.0

120

command is wtxObjModuleLoad, which takes an ordinary Tcl string as its
argument.

6.3 Accessing the WTX Tcl API

The Wind River Tool Exchange (WTX) Tcl API allows you to launch and kill a
process, and to apply several actions to it such as debugging actions (continue,
stop, step), memory access (read, write, set), perform gopher string evaluation, and
redirect I/O at launch time.

A real time process (RTP) can be seen as a protected memory area. One or more
tasks can run in an RTP or in the kernel memory context as well. It is not possible
to launch a task or perform load actions in an RTP, therefore an RTP is seen by the
target server only as a memory context.

For a complete reference of WTX Tcl API commands, see the online help: in
Workbench, select Help > Help Contents > Wind River Documentation >
References > Host Tools > WTX Tcl Library Reference.

6.4 Calling Target Routines

The shParse utility allows you to embed calls to the C interpreter in Tcl
expressions; the most frequent application is to call a single target routine, with the
arguments specified (and perhaps capture the result). For example, the following
sends a logging message to your target console:

tcl> shParse {logMsg("foobar\n")}
32

You can also use shParse to call host shell commands more conveniently from the
Tcl interpreter, rather than using their wtxtcl building blocks. For example, the
following is a convenient way to spawn a task from Tcl, using the C interpreter
command sp(), if you do not remember the underlying wtxtcl command:

6 Using the Tcl Interpreter
6.5 Passing Values to Target Routines

121

6

tcl> shParse {sp appTaskBegin}
task spawned: id = 25e388, name = u1
0

6.5 Passing Values to Target Routines

Because shParse accepts a single, ordinary Tcl string as its argument, you can pass
values from the Tcl interpreter to C subroutine calls by using Tcl facilities to
concatenate the appropriate values into a C expression.

For example, a more realistic way of calling logMsg() from the Tcl interpreter
would be to pass, as its argument, the value of a Tcl variable rather than a literal
string. The following example evaluates the Tcl variable tclLog and inserts its
value (with a newline appended) as the logMsg() argument:

tcl> shParse "logMsg(\"$tclLog\\n\")"
32

6.6 Calling Under C Control

To use a Tcl command and return immediately to the C interpreter, you can type a
single line of Tcl prefixed with the shEval command and the Tcl special character
tcl (rather than using tcl by itself to toggle into Tcl mode). For example:

-> shEval tcl set test foobar; puts "This is $test."
This is foobar.
->

Notice that the -> prompt indicates that you are still in the C interpreter, even
though you just executed a line of Tcl.

For example, you may want to use Tcl control structures to supplement the
facilities of the C interpreter. Suppose you have an application under development

! CAUTION: You may not embed Tcl evaluation inside a C expression; the shEval tcl
prefix works only as the first nonblank character on a line, and passes the entire
line following it to the Tcl interpreter.

Wind River Workbench
Host Shell User’s Guide, 3.0

122

that involves several collaborating tasks; in an interactive development session,
you may need to restart the whole group of tasks repeatedly. You can define a Tcl
variable with a list of all the task entry points, as follows:

-> shEval tcl set appTasks {appFrobStart appGetStart appPutStart …}
appFrobStart appGetStart appPutStart …

Then whenever you need to restart the whole list of tasks, you can use something
like the following:

-> shEval tcl foreach it $appTasks {shParse "sp($it)"}
task spawned: id = 25e388, name = u0
task spawned: id = 259368, name = u1
task spawned: id = 254348, name = u2
task spawned: id = 24f328, name = u3

6.6.1 Potential Problems

The HOME environment variable must be accessible and writeable in order to call
to another interpreter from the Tcl interpreter. If this variable is not accessible,
attempting to call to another interpreter from the Tcl interpreter returns the
following error:

""

When a call to an external interpreter from the Tcl interpreter occurs, the host shell
writes a temporary file to the directory indicated by the HOME variable. Therefore
if that directory is not accessible and writable, the call to the external interpreter
fails.

On Windows hosts, the shell first attempts to access the directory indicated by
HOME, then HOMEDRIVE/HOMEPATH, and finally your installation directory. If
any of these directories cannot be accessed, the call fails.

On UNIX hosts, the shell first attempts to access the directory indicated by HOME,
and then your installation directory. If either directory cannot be accessed, the call
fails.

6.7 Shell Initialization

When you execute an instance of the host shell, it begins by looking for a file called
windsh.tcl in two places: first under

6 Using the Tcl Interpreter
6.8 Tcl Scripting

123

6

installDir/workbench-3.x/foundation/build/resource/windsh, and then in the
directory specified by the HOME environment variable (if that environment
variable is defined). In each of these directories, if the file exists, the shell reads and
executes its contents as Tcl expressions before beginning to interact. You can use
this file to automate any initialization steps you perform repeatedly.

You can also specify a Tcl expression to execute initially on the host shell command
line, with the option -e tcl_expression. For example, you can test an initialization file
before saving it as windsh.tcl using this option, as follows:

% windsh phobos -e "source c:\\fred\\tcltest"

6.7.1 Shell Initialization File

This file causes I/O for target routines called in the host shell to be directed to the
target’s standard I/O rather than to the host shell. It changes the default C++
strategy to automatic for this shell, sets a path for locating load modules, and
causes modules not to be copied to the target server.

Redirect Task I/O to WindSh
shConfig SH_GET_TASK_IO off
Set C++ strategy
shConfig LD_CALL_XTORS on
Set Load Path
shConfig LD_PATH "/home/username/project/app;/home/username/project/test"
Let the Target Server directly access the module
shConfig LD_SEND_MODULES off

6.8 Tcl Scripting

From any of the host shell interpreters, a single command can be executed by any
other interpreter by prefixing it with the appropriate command prefix. For
example, when the host shell is in Tcl mode, the following command executes the
single GDB mode command continue, leaving the host shell in Tcl mode:

tcl> shEval gdb continue

In this way, Tcl scripts executed by the host shell can issue GDB mode commands
to perform OCD debugging operations, such as a reset and download operation.

The host shell can be made to execute a Tcl script by invoking it as follows:

Wind River Workbench
Host Shell User’s Guide, 3.0

124

%hostShell -m Tcl -q -s script-pathname

The –q option is optional; it tells the host shell not to echo script commands as they
are executed.

6.8.1 Event Scripting

The host shell can also execute Tcl scripts when an event is encountered. The user
indicates the script to execute and the event type that will trigger the script or the
breakpoint ID that will trigger the script.

You must provide one of the following:

■ The name of the procedure to execute.

■ The name and location of the Tcl script to execute.

■ The Tcl script to enter, typed interactively at the tcl> prompt in the host shell.

You may also enter the following optional information:

■ The event that will trigger the execution. (By default, this is the stopped event.)

■ Whether the handler is enabled or disabled. (By default, it is enabled.)

■ For breakpoint events, the ID of the breakpoint that will trigger the handler. (If
no ID is indicated, all breakpoints will trigger the handler.)

■ Whether the default handler for the event should run after this new handler.
(By default, the default handler will run.)

When the event is hit, you have two choices:

■ Execute a script (in which case you should indicate the path to the script to
execute.)

■ Execute a Tcl routine (in which case you should have previously sourced the
file containing the Tcl routine, either by using Tcl's source code or by adding
some code to the shell's startup procedures.)

If no argument is specified, you may enter Tcl code to execute at the tcl> prompt in
the host shell. The line end indicates the end of the script.

Your script should be written in Tcl. You have access to the target through the Gnu
Debugger/Machine Interface (GDB/MI) synchronous commands and the API
gdb mi. You can call the other interpreters by prefixing a command with the
interpreter you wish to call for that command. For example, to call the C
interpreter's i() command, you would write

6 Using the Tcl Interpreter
6.8 Tcl Scripting

125

6

shEval C i

You can copy the output from calls to other interpreters into Tcl variables, and
manipulate them using standard Tcl.

If you wish to process the event that triggered the user handler, then your handler
should take the form of a Tcl procedure having one argument. The argument sent
to that procedure when the event type is encountered will be the triggering event
itself. You may then process the event to extract the various data fields using
standard Tcl string parsing procedures.

An example user handler:

proc breakpointHandler {evt} {
puts "Breakpoint Hit event received $evt"

}

When registering the script, you may indicate whether the script is enabled (that
is, whether it should be executed upon the next occurrence of the event specified)
or you may register the script in disabled mode and enable it later, using an API.

When writing your script, Wind River recommends that you pay close attention to
re-entrancy issues. If the script enters an infinite loop, you can exit the loop by
typing Ctrl+C.

API Description

The host shell uses both command interpreter and GDB interpreter APIs for
eventpoint scripting.

The command interpreter commands are:

■ handler add
■ handler show
■ handler remove
■ handler enable

For descriptions of these commands, see 4.12 Event Scripting Commands, p.89.

The GDB interpreter commands are:

■ display
■ undisplay
■ info display
■ enable display
■ disable display
■ commands

Wind River Workbench
Host Shell User’s Guide, 3.0

126

■ info commands
■ enable commands
■ disable commands

For descriptions of these commands, see 5.11 Event Scripting, p.108.

127

 7
Executing an OCD Reset and

Download

7.1 Introduction 127

7.2 Set Target Registers 128

7.3 Play Back Firmware Commands 129

7.4 Reset One or More Cores 130

7.5 Download Executables and Data and Program Flash 130

7.6 Run the Target 132

7.7 Set a Hardware Breakpoint 132

7.8 Configure Target Memory Map 132

7.9 Pass Through Command to Firmware 134

7.10 Upload from Target Memory 134

7.1 Introduction

The host shell uses several commands to perform the equivalent of a Workbench
on-chip debugging (OCD) reset and download operation. Rather than implement
a single monolithic command having many options and optional arguments,
several simpler commands are provided that can be used together to achieve a
variety of goals.

Wind River Workbench
Host Shell User’s Guide, 3.0

128

If you need to invoke multiple commands repeatedly, you can create Tcl
procedures.

The OCD reset and download workflow has the following steps:

1. Optionally play firmware commands to configure target registers.

2. Reset one or more cores, optionally initializing registers.

3. Optionally download one or more executables (optionally verifying the
correctness of the download).

4. Optionally set the instruction pointer to an absolute address, the start address
specified in the downloaded file, the address of a symbol (for example, main),
or the address of a source line number (for example, foo.c:123).

5. Optionally play back firmware commands for post-reset target configuration.

6. Optionally set a breakpoint.

7. Optionally run the target.

All of these steps can be performed using GDB mode host shell commands, as
described in this chapter.

7.2 Set Target Registers

Use the GDB mode set command to set target registers.

Syntax

set $register_name = option

option can take any of the following four forms:

■ filename:line_number

set $pc = foo.c:113

Set the Program Counter to line 113 of the file foo.c.

NOTE: If the specified line number does not correspond to executable code, the
host shell returns an error.

7 Executing an OCD Reset and Download
7.3 Play Back Firmware Commands

129

7

■ address

set $pc = 0xfff000f0

Set the Program Counter to address 0xfff000f0.

■ program_symbol (typically a function name)

set $pc = main

Set the Program Counter to the beginning of the function main.

■ program_symbol + constant

set $pc = main + 0x60

7.3 Play Back Firmware Commands

Use the GDB mode wrsplayback command to play a file of commands directly to
the firmware.

Syntax

wrsplayback [--quiet | --q] pathname

pathname identifies the full path to an object file suitable for downloading to the
target. This file must be accessible by the backend.

By default, the wrsplayback command returns human-readable status messages
as they are received from the backend.

NOTE: In most cases you can use a GDB mode command from a Tcl prompt by
preceding it with the command gdb. However, because the set command is valid
in both GDB mode and Tcl mode, the syntax

tcl> gdb set $pc= address

will return an error:

can't read "pc": no such variable

To avoid this problem, precede the set command’s argument with a backslash:

tcl> gdb set \$pc= address

Wind River Workbench
Host Shell User’s Guide, 3.0

130

Use the option --quiet or -q to set the wrsplayback command not to return status
messages.

With either option (that is, whether status messages are displayed to the user or
not) the wrsplayback command waits for the playback to complete.

7.4 Reset One or More Cores

Use the GDB mode wrsreset command to reset one or more target cores.

Syntax

wrsreset [--tied | -t] [--noinitregs | -n] corename_1 [corename_2 ...]

The - -tied option performs a tied reset of all specified cores.

The - -noinitregs option specifies that target registers will not be initialized. If the
- -noinitregs option is omitted, target registers will be initialized by default.

7.5 Download Executables and Data and Program Flash

The GDB mode wrsdownload command has three separate syntaxes: one for
downloading executables and raw data to the target; one for erasing flash memory
on the target; and one for programming flash memory on the target. These three
syntaxes cannot be used at the same time. (That is, you cannot specify more than
one kind of operation in the arguments for one wrsdownload command.)

Erasing and programming flash are optional steps in a reset and download
operation. However, if you use the erase and program syntaxes, you must issue the
wrsdownload command three times: once to download code and data; once to
erase flash; and once to program flash.

7 Executing an OCD Reset and Download
7.5 Download Executables and Data and Program Flash

131

7

Download Executables and Data

First, use the wrsdownload command to download executables and data, using
the following syntax.

Syntax 1

wrsdownload [{--offset | -o} byte_offset] [{--modulename | -m} modulename]
[--symbolsonly | -s] [--nosymbols | n] pathname

byte_offset is the byte offset to apply to the download.

modulename is the logical name for the object file.

The --symbolsonly or -s option suppresses transfer of any data to target memory
(but still loads symbols from pathname.)

The --nosymbols or -n option suppresses loading symbols from pathname (but still
downloads the file to the target.)

pathname is the full path to the file to download.

Erase Flash Memory (Optional)

Erase a specified area of flash memory on the target, using the following syntax.

Syntax 2

wrsdownload {--eraseFlash | -e} start_address end_address

This command erases the content of flash memory from start_address to
end_address.

Program Flash Memory (Optional)

Program flash using the following syntax:

Syntax 3

wrsdownload {--flash | -f} address pathname

This command loads the file at pathname to flash memory, beginning at address.

Wind River Workbench
Host Shell User’s Guide, 3.0

132

7.6 Run the Target

First, use the GDB mode attach command to attach to a specific thread or to system
mode.

Example

attach system

Next, use the GDB mode continue command to make an OCD target begin
execution at the current instruction pointer.

Syntax

continue

7.7 Set a Hardware Breakpoint

Set hardware breakpoints using the GDB mode hbreak command.

Syntax

hbreak [address | file:line | symbol] [if condition] [--hx param=value ...]
[--sx param=expr ...]

The --hx and --sx options correspond to the equivalent options to the GDB/MI
command -wrs-break-insert, and param is any target-specific parameter that is
valid in that GDB/MI command. The hbreak command will not validate
tarrget-specific parameters.

7.8 Configure Target Memory Map

Use the GDB mode wrsmemmap command to specify whether the debugger
backend has read/write access to target memory, and where in target memory
such access is allowed. This command only affects the backend. It does not affect
memory map registers on the target, and does not cause a state change.

7 Executing an OCD Reset and Download
7.8 Configure Target Memory Map

133

7

Syntax

wrsmemmap { --access | --noaccess }
{ offset size { --inv |

[-r bitsize[|bitsize]...]
[-w bitsize[|bitsize]...] | -rw bitsize[|bitsize]... }

 } ...

This command will not check the validity of the numeric arguments, but it will
communicate any errors reported by the backend.

Example 1

With the --access option set, all of memory is accessible to reads or writes; but
within the range specifed, there are modifications to the access privileges. So, for
example, the command

wrsmemmap --access 0x14000 4000 -rw 8|16|32

allows you to read only the 4000-byte block of memory starting at address 0x14000,
with accesses of 8, 16, or 32 bits.

Example 2

With the --noaccess option set, all of memory is inaccessible to reads or writes; but
within the range specified there are modifications to the access privileges. The
command

wrsmemmap --noaccess 0x14000 4000 -rw 16

allows you to read and write the 4000-byte block of memory starting at address
0x14000 with 16-bit accesses.

Example 3

The --inv option will invert the defined access setting without changing the
undefined settings, as in the following example:

First, enter the command

wrsmemmap --access 0x14000 4000 -r 8|16|32

This allows read-only access starting at address 0x14000. You can now read that
memory location but you cannot write to it. A read at 0x14000 provides data, but
a write returns the error

GDB/MI Error: Invalid 'write' access for address '0x00014000'

Next, enter the command

wrsmemmap --access 0x14000 4000 --inv

Wind River Workbench
Host Shell User’s Guide, 3.0

134

This inverts the previously defined setting. The previously defined setting allowed
a read, so the inverted setting does not. Now a read or a write at 0x14000 returns
an access error.

7.9 Pass Through Command to Firmware

Use the GDB mode wrspassthru command to pass commands directly to the
firmware without interpretation.

Syntax

wrspassthru command

command is an arbitrary sequence of space-separated strings. These strings are
concatenated with a single space between each, and passed as a single command
to the firmware.

Use this command to configure a target’s flash memory by issuing configuration
(CF) commands to the firmware. For information on the CF command, see the Wind
River Workbench On-Chip Debugging Command Reference.

7.10 Upload from Target Memory

Use the GDB mode wrsupload command to upload data from target memory.

Syntax

wrsupload [{ --style | -s } file_style] [--append | -a] start_address byte_count filename

--style specifies the type of file to create. Currently the only supported file_style is
RAWBIN. If you do not specify a style, the shell uses RAWBIN by default.

--append appends the uploaded data to filename instead of overwriting it.

135

PAR T II

VxWorks 653 Targets

8 Overview for VxWorks 653 137

9 Using the Host Shell with VxWorks 653 153

10 Using the C Interpreter with VxWorks 653 171

11 Using the Tcl Interpreter with VxWorks 653 209

Wind River Workbench
Host Shell User’s Guide, 3.0

136

137

 8
Overview for VxWorks 653

8.1 Introduction 137

8.2 Starting the Host Shell 138

8.3 Switching Interpreters 140

8.4 Setting Shell Environment Variables 141

8.5 Path Mapping 144

8.6 Host Shell Features 145

8.7 Stopping the Host Shell 148

8.8 Host Shell Architecture 148

8.1 Introduction

This part of the document describes host shell support for VxWorks 653 targets.

You can use the host shell to invoke operating-system and application subroutines,
and to monitor and debug applications in the VxWorks 653 kernel domain.

Because VxWorks 653 uses the protection domain paradigm, loading a module
and calling a routine in a partition from the host shell (or from the target shell) is
prohibited.

Wind River Workbench
Host Shell User’s Guide, 3.0

138

8.2 Starting the Host Shell

You can start the host shell from a command prompt or from within the Workbench
GUI.

8.2.1 Starting the Host Shell from the Command Prompt

Setting Your Environment

Before launching the host shell, you must use the command wrenv to set up your
environment. If you do not set your environment, the prompt returns the following
error:

WIND_FOUNDATION_PATH must be set to start the Host Shell

To set your environment, enter the following command from your installation
directory:

%wrenv -p target_OS_version

For example, to connect to a VxWorks 653 2.x target, enter

%wrenv -p vxworks653-2.x

Starting the Target Server

To start a target server, use the tgtsvr command. For example, to start a target
server called myTgtsvr on a target with the IP address 123.456.78.90, enter the
following command from your installation directory:

% tgtsvr 123.456.78.90 -n myTgtsvr

To see all available options for the tgtsvr command, enter tgtsvr -h.

Note that you must set up your environment with the wrenv command before
using the tgtsvr command.

Starting the Shell

Once you have attached a target server to the target, start the shell using the
windsh command.

%windsh [options] target_server

8 Overview for VxWorks 653
8.2 Starting the Host Shell

139

8

Host Shell Startup Options

Table 8-1 summarizes startup options. For example, to connect to a running
simulator, type the following:

%windsh vxsim0@hostname

You may run as many different host shells attached to the same target as you wish.
The output from a function called in a particular shell appears in the window from
which it was called, unless you change the shell defaults using shConfig (see
8.4 Setting Shell Environment Variables, p.141).

NOTE: When you start the host shell, a second shell window appears, running the
Debug server. You can minimize this second window to reclaim screen space, but
do not close it.

Table 8-1 Host Shell Startup Options

Option Description

-N, -noconnection Specifies that the host shell will not connect to the
backend server on startup. This allows a Tcl script to
control the host shell.

-n, -noinit Do not read home Tcl initialization file.

-T, -Tclmode Start in Tcl mode.

-m[ode] Indicates mode to start in: C (C) or Tcl (Tcl|tcl|TCL).

-v, -version Display host shell version.

-h, -help Print help.

-p, -poll Sets event poll interval in milliseconds; the default is
200.

-e, -execute Executes Tcl expression after initialization.

-c, -command Executes expression and exits shell (batch mode).

-r, -root mappings Root pathname mappings.

-ds[backend_server_session] Debugger Server session to use.

-dp[backend_server_port] Debugger Server port to use.

Wind River Workbench
Host Shell User’s Guide, 3.0

140

8.2.2 Starting the Host Shell from Workbench

If you have established a target connection, you can start the host shell from the
Remote Systems view in Workbench. For creating target connections, see the Wind
River Workbench User’s Guide: Connecting to Targets.

In the Remote Systems view, right-click on your target connection name and select
Target Tools > Host Shell. The Host Shell Properties dialog appears. You can
specify startup options from Table 8-1 in this dialog, or leave them at their defaults.
Click OK to start the host shell.

8.3 Switching Interpreters

At times you may want to switch from one interpreter to another. From a prompt,
type these special commands and then press Enter:

■ C to switch to the C interpreter. The prompt changes to ->.

■ ? to switch to the Tcl interpreter. The prompt changes to tcl>.

8.3.1 Evaluating Statements in Different Modes

You can use the above commands to evaluate a statement native to a different
interpreter for the one you are using.

-host Retrieves target server information from host’s
registry.

-s, -startup Specifies the startup file of shell commands to execute.

-q, -quiet Turns off echo of script commands as they are
executed.

-dt target Backend target definition name.

Table 8-1 Host Shell Startup Options (cont’d)

Option Description

8 Overview for VxWorks 653
8.4 Setting Shell Environment Variables

141

8

To evaluate a statement native to another interpreter when using a VxWorks 653
target, precede the command with the special character from the list above. For
example, to evaluate a C interpreter command from within the Tcl interpreter, type
the following:

tcl> C test = malloc(100); test[0] = 10; test[1] = test[0] + 2

To evaluate a Tcl interpreter command from within the C interpreter, type the
following:

-> ? set $pc = 0x14200

8.4 Setting Shell Environment Variables

The host shell has a set of environment variables that configure different aspects of
the shell’s interaction with the target and with the user. These environment
variables can be displayed and modified using the Tcl routine shConfig. Table 8-2
provides a list of the host shell’s environment variables and their significance.

Since shConfig is a Tcl routine, it should be called from within the shell’s Tcl
interpreter; it can also be called from within the C interpreter if you precede the
shConfig command with a question mark (? shConfig variable option).

For example, to switch from vi mode to emacs mode when using the C interpreter,
type the following:

-> ? shConfig LINE_EDIT_MODE emacs

When in command interpreter mode, you can use the commands set config and
show config to set and display the environment variables listed in Table 8-2. Not
all of the listed environment variables are valid for all targets.

Wind River Workbench
Host Shell User’s Guide, 3.0

142

Table 8-2 Host Shell Environment Variables

Variable Result

ROOT_PATH_MAPPING Indicates how host and target paths should
be mapped to the host file system on which
the backend used by the host shell is
running. If this value is not set, a direct path
mapping is assumed (for example, a
pathname given by /folk/user is searched; no
translation to another path is performed).

LINE_LENGTH Indicates the maximum number of
characters permitted in one line of the host
shell’s window.

STRING_FREE [manual|automatic] Indicates whether strings allocated on the
target by the host shell should be freed
automatically by the shell, or whether they
should be left for the user to free manually
using the C interpreter API strFree().

SEARCH_ALL_SYMBOLS [on|off] Indicates whether symbol searches should
be confined to global symbols or should
search all symbols. If
SEARCH_ALL_SYMBOLS is set to on, any
request for a symbol searches the entire
symbol table contents. This is equivalent to a
symbol search performed on a target server
launched with the -A option. Note that if the
SEARCH_ALL_SYMBOLS flag is set to on,
there is a considerable performance impact
on commands performing symbol
manipulation.

INTERPRETER [C|Tcl] Indicates the host shell’s current interpreter
mode and permits the user to switch from
one mode to another.

8 Overview for VxWorks 653
8.4 Setting Shell Environment Variables

143

8

SH_GET_TASK_IO Sets the I/O redirection mode for called
functions. The default is on, which redirects
input and output of called functions to
windsh. To have input and output of called
functions appear in the target console, set
SH_GET_TASK_IO to off.

LD_CALL_XTORS Sets the C++ strategy related to constructors
and destructors. The default is “target”,
which causes windsh to use the value set on
the target using cplusXtorSet(). If
LD_CALL_XTORS is set to on, the C++
strategy is set to automatic (for the current
WindSh only). Off sets the C++ strategy to
manual for the current shell.

LD_SEND_MODULES Sets the load mode. The default on causes
modules to be transferred to the target
server. This means that any module WindSh
can see can be loaded. If
LD_SEND_MODULES if off, the target server
must be able to see the module to load it.

LD_PATH Sets the search path for modules using the
separator “;”. When a ld() command is
issued, windsh first searches the current
directory and loads the module if it finds it.
If not, windsh searches the directory path
for the module.

LD_COMMON_MATCH_ALL Sets the loader behavior for common
symbols. If it is set to on, the loader tries to
match a common symbol with an existing
one. If a symbol with the same name is
already defined, the loader take its address.
Otherwise, the loader creates a new entry. If
set to off, the loader does not try to find an
existing symbol. It creates an entry for each
common symbol.

Table 8-2 Host Shell Environment Variables (cont’d)

Variable Result

Wind River Workbench
Host Shell User’s Guide, 3.0

144

8.5 Path Mapping

Since the host shell uses host paths to handle processes, a path substitution
mechanism operates to send the right target path to the debugger server.

This mechanism converts a host path passed on the command line to a target path
understandable by both the debugger framework and the target, but you must
provide the host shell with additional information before it can perform the
conversion. To perform this conversion, use the ROOT_PATH_MAPPING
variable.

The ROOT_PATH_MAPPING Variable

The ROOT_PATH_MAPPING shell environment variable defines path
substitution pairs of the form [tgtpath1,hostpath1][tgtpath2,hostpath2]…

In an example where the host path is C:/mydirectory/myrtp.vxe and the target
path is hostname:/home/users/myName/mydirectory/myrtp.vxe, the command is:

-> ?
tcl> shConfig ROOT_PATH_MAPPING \[hostname:/home/users/myName/,C:/\]

(Note that square brackets must be escaped with a backslash.)

DSM_HEX_MOD Sets the disassembling “symbolic + offset”
mode. When set to off the “symbolic +
offset” address representation is turned on
and addresses inside the disassembled
instructions are given in terms of “symbol
name + offset.” When set to on these
addresses are given in hexadecimal.

LINE_EDIT_MODE Sets the line edit mode to use. Set to emacs or
vi. Default is vi.

Table 8-2 Host Shell Environment Variables (cont’d)

Variable Result

8 Overview for VxWorks 653
8.6 Host Shell Features

145

8

With this information, the host shell can compute the correct target path and send
it to the debugger server. Note that the debugger server also needs this
ROOT_PATH_MAPPING setting to retrieve the process file in order to parse the
symbols, but the debugger server will send the path of this file directly to the target
without any transformation by the host shell.

8.6 Host Shell Features

This section describes some of the features available in the host shell.

8.6.1 Symbol Matching

Start to type any target symbol name and then type CTRL+D. The shell
automatically lists all symbols matching the pattern:

[coreOS] -> sem[CTRL+D]
semPxShow semShow
Symbol matching in coreOS (PD ID 0x1efd40)
semTerminate semTakeTbl semTake semSmTypeGetRtn
semSmShowRtn semSmInfoRtn semShowInit semShow
semQPut semQInit semQGet semQFlushDefer
semQFlush semOTake semMTake semMPendQPut
semMLibInit semMInit semMGiveKernWork semMGiveKern
semMGiveForce semMGive semMCreate semMCoreInit
semLibInit semInvalid semIntRestrict semInfo
semGiveTbl semGiveDeferTbl semGiveDefer semGive
semFlushTbl semFlushDeferTbl semFlushDefer semFlush
semDestroy semDelete semClear semClassId
semClass semCTake semCLibInit semCInit
semCGiveDefer semCGive semCCreate semCCoreInit
semBTake semBLibInit semBInit semBGiveDefer
semBGive semBCreate semBCoreInit
[coreOS] -> sem

8.6.2 Directory and File Listing

You can also use CTRL+D to list all the files and directories that match a certain
string. For example, to list all files and directories under R: that begin with t, type
the following:

[coreOS] -> r:/t[CTRL+D]

Wind River Workbench
Host Shell User’s Guide, 3.0

146

t2cp2/ t2i86config/
t3Keys/ t3pen0107b/
taskSpawn TDK-13440_000504_104211_tar.gz
TDK-13671_001211_160045/ TORHELLO.WAV
tornadoARMt2/ tornadoi86t2/
tornadoppc/ torVars.bat
trgsh/ triggering/
tsr152294src/ tsr154738/
[coreOS] -> r:/t

Directory and file listing is supported only in the host shell, not the target shell.

8.6.3 Target Symbol and Path Completion

Start to type any target symbol name or any existing directory name and then type
TAB. The shell automatically completes the command or directory name for you.
If there are multiple options, it prints them for you and then reprints your entry.
You can add one or more letters and then type TAB again until the path or symbol
is complete.

Symbol completion is supported in both the host shell and the target shell. Path
completion is supported only in the host shell.

8.6.4 Synopsis Printing

Once you have typed the complete function name followed by a space, typing
CTRL+D (not TAB) again prints the function synopsis, then reprints the function
name ready for your input. (This function is not supported in the target shell.)

[coreOS] -> _taskIdDefault [CTRL+D]
taskIdDefault() - set the default task ID (WindSh)

int taskIdDefault
{
int tid /* user-supplied task ID; if 0, return default */
)

[coreOS] -> _taskIdDefault

If the routine exists on both host and target, the hostShell synopsis is printed. To
print the target synopsis of a function, add the meta-character @ before the
function name.

You can extend the synopsis printing function to include your own routines. To do
this, follow these steps:

8 Overview for VxWorks 653
8.6 Host Shell Features

147

8

1. Create the files that include the new routines following Wind River coding
conventions.

2. Include these files in your project.

3. Add the filenames to the DOC_FILES macro in your makefile.

4. Go to the top of your project tree and run make synopsis:

[coreOS] -> cd installDir/vxworks-version/target/src/your_project
[coreOS] -> make synopsis

This adds your project file to the
installDir/vxworks-version/host/resource/synopsis directory.

8.6.5 Data Conversion

Data conversion is available only in the C interpreter.

The shell prints all integers and characters in both decimal and hexadecimal, and
if possible, as a character constant or a symbolic address and offset.

[coreOS] -> 68
value = 68 = 0x44 = 'D'
-> 0xf5de
value = 62942 = 0xf5de = _init + 0x52
[coreOS] -> 's'
value = 115 = 0x73 = 's'

8.6.6 Data Calculation

Data calculation is available only in the C interpreter.

Almost all C operators can be used for data calculation. Use “(” and “)” to force
order of precedence.

[coreOS] -> (14 * 9) / 3
value = 42 = 0x2a = '*'
[coreOS] -> (0x1355 << 3) & 0x0f0f
value = 2568 = 0xa08
[coreOS] -> 4.3 * 5
value = 21.5

Calculations with Variables

[coreOS] -> (j + k) * 3
value = ...

Wind River Workbench
Host Shell User’s Guide, 3.0

148

[coreOS] -> *(j + 8 * k)
(address 0xnnnnnn:: value = 0 = 0x0 (PD NAME: coreOS)
[coreOS] -> x = (val1 - val2) / val3
new symbol "x" added to symbol table
address = 0xnnnnnn: value = 0 = 0x0 (PD NAME: coreOS)
[coreOS] -># f = 1.41 * 2
new symbol "f" added to symbol table
f = 0x7d4746f8: value = 2.82 (PD NAME: coreOS)

Variable f gets an 8-byte floating point value.

8.7 Stopping the Host Shell

Regardless of how you start it, you can terminate a host shell session by typing exit
or quit at the prompt or pressing CTRL+D. If the shell is not accepting input (for
example, if it has lost connection to the target server) you can use the interrupt key
(CTRL+BREAK.)

For more information, see the host shell reference pages. You can access these
pages by opening Wind River Workbench and selecting Help > Help Contents >
Wind River Documentation > References > Host Tools > Wind River Host Shell
API Reference and Help > Help Contents > Wind River Documentation >
References > Host Tools > Wind River VxWorks 653 Shell.

8.8 Host Shell Architecture

The host shell integrates host and target resources in such a way that it creates the
illusion of executing entirely on the target itself. However, most interactions with
the shell exploit the resources of both host and target. Table 8-3 shows how the
shell distributes the interpretation and execution of the following simple
expression:

-> dir = opendir ("/myDev/myFile")

Parsing the expression is the activity that controls overall execution, and
dispatches the other execution activities. This takes place on the host, in the shell’s

8 Overview for VxWorks 653
8.8 Host Shell Architecture

149

8

C interpreter, and continues until the entire expression is evaluated and the shell
displays its result.

Table 8-3 Interpreting: dir = opendir(“/myDev/myFile”)

Host Shell (On Host)
Target Server and Symbol
Table (On Host) Target Agent (On Target)

Parse the string
“/myDev/myFile”.

Allocate memory for the
string; return address A.

Write “/myDev/myFile”;
return address A.

Parse the name opendir.

Look up opendir; return
address B.

Parse the function call
B(A); wait for the result.

Spawn a task to run opendir()
at address A, passing address
B as an argument, and signal
result C when done.

Retrieve C from target agent
and pass it to host shell.

Parse the symbol dir.

Look up dir (fails.)

Request a new symbol table
entry dir.

Define dir; return symbol D.

Parse the assignment D=C.

Allocate agent-pool memory
for the value of dir.

Write the value of dir.

Wind River Workbench
Host Shell User’s Guide, 3.0

150

To avoid repetitive clutter, Table 8-3 omits the following important steps, which
must be carried out to link the activities in the three contexts (and two systems)
shown in each column of the table:

1. After every C-interpreter step, the shell program sends a request to the target
server representing the next activity required.

2. The target server receives each such request, and determines whether to
execute it in its own context on the host. If not, it passes an equivalent request
on to the target agent to execute on the target.

The first access to server and agent is to allocate storage for the string
“/myDev/myFile” on the target and store it there, so that subroutines such as
opendir() have access to it. There is a pool of target memory reserved for host
interactions. Because this pool is reserved, it can be managed from the host system.
The server allocates the required memory, and informs the shell of its location; the
shell then issues the requests to actually copy the string to that memory. This
request reaches the agent on the target, and it writes the 14 bytes (including the
terminating null) there.

The shell’s C interpreter must now determine what the name opendir represents.
Because opendir() is not one of the shell’s own commands, the shell looks up the
symbol (through the target server) in the symbol table.

The C interpreter now needs to evaluate the function call to opendir() with the
particular argument specified, now represented by a memory location on the
target. It instructs the agent (through the server) to spawn a task on the target for
that purpose, and awaits the result.

As before, the C interpreter looks up a symbol name (dir) through the target server;
when the name turns out to be undefined, it instructs the target server to allocate
storage for a new int and to make an entry pointing to it with the name dir in the
symbol table. Again these symbol-table manipulations take place entirely on the
host.

The C interpreter now has an address (in target memory) corresponding to dir on
the left of the assignment statement; and it has the value returned by opendir() on
the right of the assignment statement. It instructs the agent (again, through the
server) to record the result at the dir address, and evaluation of the statement is
complete.

8 Overview for VxWorks 653
8.8 Host Shell Architecture

151

8

8.8.1 Layers of Interpretation

To the user, the host shell seems to be a seamless environment; but in fact, the
characters you type in the shell go through several layers of interpretation, as
illustrated by Figure 8-1. First, input is examined for special editing keystrokes
(described in A. Using the Host Shell Line Editor.) Then as much interpretation as
possible is done in the host shell itself. In particular, execution of any subroutine is
first attempted in the shell itself; if a shell primitive with that name exists, it runs
without any further checking. Only when a subroutine call does not match any
shell primitives does the host shell call a target routine.

For lists of host shell primitives, see the chapters in this book for each interpreter.

Figure 8-1 Layers of Interpretation in the Host Shell

line
editor?

shell
built-in?

target
routine

Keyboard

Host

Target

CTRL+H, CTRL+S, ...

i(), lkup(), sp(), ...

dosFsMkFs(),
semTake(), ...

Wind River Workbench
Host Shell User’s Guide, 3.0

152

153

 9
Using the Host Shell with

VxWorks 653

9.1 Introduction 154

9.2 Domain Selection and Identification 154

9.3 Running Target Routines From the Shell 156

9.4 Function Calls from User Domains 156

9.5 Rebooting from the Host Shell 157

9.6 Task-Mode Debugging 158

9.7 Stack Tracing 161

9.8 Disassembler 161

9.9 Using the Host Shell for System-Mode Debugging 162

9.10 Interrupting a Shell Command 165

9.11 Working With Shared Library and Data Domains 167

9.12 Loading From the Shell 167

Wind River Workbench
Host Shell User’s Guide, 3.0

154

9.1 Introduction

This chapter describes some of the uses of the host shell when using a VxWorks 653
target.

9.2 Domain Selection and Identification

The domain in which shell commands are issued must be selected before the
commands are issued. At startup, the default current working protection domain
for the shell is the kernel domain, which by default is named coreOS. Use the colon
operator to switch from one protection domain to another; that is, to set the
“current working protection domain” for subsequent shell commands.

The command syntax for setting the protection domain is

:pdNameOrId

where the variable pdNameOrId can be the protection domain ID, the domain
name, or a string matching the beginning of the domain name. It can also be a
symbol name, which can be useful for scripting.

Example

In this example, use the pdShow command to display a list of available protection
domains, then use the colon operator to change from the default kernel domain
coreOS to the domain part1. In the domain part1, use the pi command to display
a list of internal sub-tasks for that domain. Then use the colon operator to return to
the kernel domain.

Note that the prompt includes the name of the current working protection domain.

[coreOS] -> pdShow

NAME ID TYPE START ADRS SIZE L PRI H PRI TASK CNT
----------- ----------- ------------ ----------- ---------- ----- ----- -----
coreOS 0x2026f100 KERNEL 0x20000000 0xb10000 255 0 15
pos 0x2037a820 SYSTEM LIB 0x50000000 0x80000 0 0 0
apexPartit > 0x2037d1e0 APPLICATION 0x28000000 0x300000 255 100 1
posixParti > 0x203987a0 APPLICATION 0x28000000 0x300000 255 100 1
part1 0x203c6d80 APPLICATION 0x28000000 0x300000 255 100 1
part2 0x203f3418 APPLICATION 0x28000000 0x300000 255 100 1
value = 0 = 0x0

9 Using the Host Shell with VxWorks 653
9.2 Domain Selection and Identification

155

9

[coreOS] -> :part1
[part1] -> pi

NAME ENTRY TID PRI STATUS PC ERRNO
---------- ---------- ---------- --- ------------ ---------- ---------
tSelGblF > 0x50010930 0x282b4388 1 PEND 0x50020a62 0
tExcTask 0x50006c70 0x28294f40 0 PEND 0x50020a62 0
tLogTask 0x5000ba90 0x28274388 0 PEND 0x50020a62 0
tp3_1 0x2800020d 0x2825ad00 100 DELAY 0x50020a62 0
tp3_2 0x2800020d 0x2823ad00 100 DELAY 0x50020a62 0
value = 0 = 0x0
[part1] -> :coreOS
[coreOS] ->

Using the colon operator without an argument returns you to the kernel domain.

You can also use the colon operator with shell commands to identify the domain
in which a symbol resides (symbol names can be duplicated across domains). The
syntax is

symbol:pdNameOrId

To reference the symbol task1 in protection domain dExPd, use task1:dExPd or
task1:0xcb430.

[coreOS] -> l task1:dExPd
Disassembly for dExPd (PD ID 0xcb430)

task1:
0x20014078 9421ffe0 stwu r1,-32(r1)
0x2001407c 7c0802a6 mfspr r0,LR
0x20014080 93e1001c stw r31,28(r1)
0x20014084 90010024 stw r0,36(r1)
0x20014088 7c3f0b78 or r31,r1,r1
0x2001408c 907f0008 stw r3,8(r31)
0x20014090 3d202001 lis r9,8193
0x20014094 3d602001 lis r11,8193
0x20014098 3d402001 lis r10,8193
0x2001409c 386a6040 addi r3,r10,24640

value = 536952888 = 0x20014038
1

The following syntax allows you to switch temporarily to another domain to run a
command, in this case d:

[coreOS] -> :pd1 d 0x20000000

This is the equivalent of running the following group of commands:

[coreOS] -> :pd1
[pd1] -> d 0x20000000
[pd1] -> :
[coreOS] ->

NOTE: The shell does not recognize the syntax address:pdNameOrId.

Wind River Workbench
Host Shell User’s Guide, 3.0

156

9.3 Running Target Routines From the Shell

All target routines are available from the host shell. This lets you test and debug
your applications using all the host resources while having minimal impact on
how the target performs and how the application behaves.

9.3.1 Invocations of VxWorks 653 Subroutines

[coreOS] -> taskSpawn ("tmyTask", 10, 0, 1000, myTask, fd1, 300)
value = …
[coreOS] -> fd = open ("file", 0, 0)
new symbol "fd" added to "vsKernel" symbol table
fd = (…address_of_fd…): value = …

9.4 Function Calls from User Domains

From a user protection domain, several different types of calls are possible.

■ Call functions in the application that has been loaded in the user protection
domain.

■ Call links created by the loader.

■ Call any entry points that can be found in the link path of the user domain. If
the given function is not found in the user domain, the shell searches for the
function in the link path. If the symbol is found the in link path, the function is
called. For example:

[test] -> lkup ""
value = 0 = 0x0
[test] -> printf "Hello\n"
Hello
value = 6 = 0x6
[test] -> lkup ""
Symbol Table for test (PD ID 0x1f2198)
printf 0x200000a0 text link ---> vxWorks
value = 0 = 0x0
[test] ->

There are three different ways to call a function in a user domain. The only way to
make breakable calls is to use sp(). One way to call a function in a user domain is
to switch to that domain and call the function directly:

9 Using the Host Shell with VxWorks 653
9.5 Rebooting from the Host Shell

157

9

[coreOS] -> :appl
[appl] -> applStart
value = 0 = 0x0

Another method is to use the :pdNameOrId command syntax. This syntax changes
the current working protection domain of the shell only for the execution of the
given command. This example executes the function applStart in the domain appl:

[coreOS] -> :appl applStart
value = 0 = 0x0
[coreOS] ->

9.5 Rebooting from the Host Shell

In an interactive real-time development session, it is sometimes convenient to
restart everything to make sure the target is in a known state. The host shell
provides the reboot() command or CTRL+X for this purpose.

When you execute reboot() or type CTRL+X, the following reboot sequence occurs:

1. The shell displays a message to confirm rebooting has begun.

reboot
Rebooting...

2. The target reboots.

3. The original target server on the host detects the target reboot and restarts
itself, with the same configuration as previously. The target-server
configuration option -k[eepAlive] (delay) governs the frequency of target
pings; see the tgtsvr reference entry.

4. The shell detects the target-server restart and begins an automatic-restart
sequence (initiated any time it loses contact with the target server for any
reason), indicated with the following messages:

[coreOS] -> Rebooting...
Waiting to attach to target server (press CTRL+C to stop) |
Waiting to attach to target agent (press CTRL+C to stop)

///// ///// ///// ///// ///// |

■ “Waiting to attach to target server”

The target server is restarting, the host shell is waiting for the attachment.

Wind River Workbench
Host Shell User’s Guide, 3.0

158

■ “Waiting to attach to target agent”

The host shell is attached to the target server, but the target server is not yet
attached to the target agent.

When the host shell establishes contact with the new target server, it displays the
prompt and awaits your input.

9.6 Task-Mode Debugging

9.6.1 Task Breakpoints

The host shell allows you to set breakpoints in your code using the shell command
b(). When setting a breakpoint it is important to remember that there may be
several locations with the same symbol name (if the same module has been loaded
into multiple protection domains) and multiple instances of the same address (if
multiple user protection domains exist). For this reason you must select the
protection domain in which you want to set the breakpoint before using b().

■ You can set a breakpoint on the kernel function printf() for all tasks and all
protection domains. All breakable tasks referencing printf() will hit this
breakpoint:

[coreOS] -> b printf

■ If you specify a particular task, for example task1, only that task can hit the
breakpoint:

[coreOS] -> b printf,task1

■ If you specify a particular protection domain, only tasks owned by that
domain can hit the breakpoint. In this example, only tasks owned by pd1 will
hit the breakpoint on the kernel function printf():

[coreOS] -> b printf,pd1

■ Finally, you can always restrict the breakpoint to a specific task as well as to a
specific version of the routine:

[coreOS] -> b pd1ApplStart:pd1,task1

■ If you specify a particular shared library, only tasks owned by domains
attached to that shared library will hit the breakpoint:

9 Using the Host Shell with VxWorks 653
9.6 Task-Mode Debugging

159

9

[coreOS] -> b printf:sl, sl

Once the breakpoint has been set, use the assembler level step and continue
functions (s() and c()) to step through the code. When you step into a system call
(from a user protection domain into a kernel function) you see two things:

■ Whether the breakpoint has been set on the link using the colon separator:

[pd1] -> b printf:pd1

the linkage code that transfers control to the kernel is stepped through.

■ If the breakpoint has been set on the link using the colon separator, the first
instruction of the kernel function is displayed twice. This is normal. Closer
examination of the register dump shows that the context has changed, causing
the double display. The debugging sub-system has skipped over the exception
handling code and gone directly to the kernel function. For more information
on this, see the reference entry for dbgLib.

Invoking b() with no arguments lists all breakpoints and shows the protection
domain in addition to other information.

[coreOS] -> b
ADDRESS SYMBOL TASK PD CNT TYPE
---------- ------------------- ---------- ---------- --- ---------------
0x200000a0 printf all 0x000fb0a8 0
value = 0 = 0x0

9.6.2 Protection Domain Breakpoints

A protection domain breakpoint stops all breakable tasks in the protection domain
owning the task that encounters the breakpoint. The shell command pdb() sets or
displays protection domain breakpoints.

pdb addr [,context[,count]]
■ addr

This argument can be specified numerically or symbolically with an optional
offset.

■ context

A task or a protection domain. If context is a task, the breakpoint applies to the
specified task. If context is a protection domain, the breakpoint applies to all
breakable tasks owned by the specified protection domain. If context is zero or
omitted, the breakpoint applies to all breakable tasks.

■ count

Wind River Workbench
Host Shell User’s Guide, 3.0

160

If count is zero or omitted, the breakpoint occurs every time it is hit. If count is
specified, the break does not occur until an eligible task hits the breakpoint
count + one times. (In other words, the breakpoint is ignored the first count
times it is hit.)

There is also a hardware breakpoint routine, pdbh(). This routine stops all
breakable tasks in the protection domain that owns the task that encounters the
breakpoint.

Example

This example stops all tasks owned by the domain tel on the first printf() call
performed by the application. The application is frequently calling printf(), and
therefore the breakpoint will be hit shortly after it is set.

Using i() shows that all tasks in the user domain are in the BREAK state. The
BREAK state is a new task status that distinguishes a task stopped by the debugger
(marked BREAK.)

[tel] -> pdb printf
value = 0 = 0x0

[tel] -> b

ADDRESS SYMBOL TASK PD CNT TYPE
---------- ------------------- ---------- ---------- --- ---------------
0x20000100 printf all 0x001f2ea8 0 PD break
value = 0 = 0x0

[tel] ->
PD Break at 0x20000100:printf Task: 0x001f63f8 (tPlayer1)

PD : 0x001f2ea8 (tel)

[tel] -> i

NAME ENTRY TID PRI STATUS PC ERRNO PD ID
---------- ---------- ---------- --- --------- ----------- ------- ----------
tMgrTask mgrTask 0x100008 0 PEND 0xaafe8 0 0xed7cc
tExcTask excTask 0x1004c0 0 PEND 0xaafe8 0 0xed7cc
tLogTask logTask 0x104940 0 PEND 0xaafe8 0 0xed7cc
tShell shell 0x1dfa10 1 READY 0x77aac 0 0xed7cc
tWdbTask 0x880b0 0x1e0fb8 3 PEND 0x66040 0 0xed7cc
tNetTask netTask 0x145628 50 READY 0x66040 0 0xed7cc
tOperator operator > 0x1ff6a8 150 PEND+BRK 0x66040 0 0x1f2ea8
tPlayer1 playerTask 0x1f63f8 200 BREAK 0x20000100 0 0x1f2ea8
tPlayer2 playerTask 0x1f66e0 200 BREAK 0x20014420 0 0x1f2ea8
tPlayer3 playerTask 0x1f4830 200 BREAK 0x20014420 0 0x1f2ea8
value = 0 = 0x0
[tel] ->

9 Using the Host Shell with VxWorks 653
9.7 Stack Tracing

161

9

The c() command supports both tasks or protection domains, so it is possible to
continue all tasks of a given protection domain. The following command continues
all tasks of the domain tel:

[tel] -> c tel

9.7 Stack Tracing

The following example sets a breakpoint on the kernel function fioFormatV().
Then it calls func() in a user domain; func() makes a call to printf(), which uses
fioFormatV(). The application is frequently calling printf(), and therefore the
breakpoint will be hit shortly after it is set. Once the breakpoint is hit, you can trace
the call using tt().

[pd1] -> b fioFormatV:vxWorks
value = 0 = 0x0

[pd1] -> b

ADDRESS SYMBOL TASK PD CNT TYPE
---------- ------------------- ---------- ---------- --- ---------------
0x00033324 fioFormatV all 0x000fb0a8 0
value = 0 = 0x0

Break at 0x00033324:fioFormatV Task: 0x001fa5d0 (pdt2)
PD : 0x000fb0a8 (pd1)

Called function encountered a breakpoint (returning 0).
value = 0 = 0x0

[pd1] -> ptt
0x200140b0 func +38 : printf ()
0x00032d54 printf +7c : fioFormatV ()
value = 0 = 0x0

9.8 Disassembler

The routine l() allows you to specify the protection domain of the code to be
disassembled.

Wind River Workbench
Host Shell User’s Guide, 3.0

162

-> l startPDs:myPd
Disassembly for myPd (PD ID 0xbef88)

startPDs:
0x814a20 9421ff68 stwu r1,-152(r1)
0x814a24 7c0802a6 mfspr r0,LR
0x814a28 93410080 stw r26,128(r1)
0x814a2c 93610084 stw r27,132(r1)
0x814a30 93810088 stw r28,136(r1)
0x814a34 93a1008c stw r29,140(r1)
0x814a38 93c10090 stw r30,144(r1)
0x814a3c 93e10094 stw r31,148(r1)
0x814a40 9001009c stw r0,156(r1)
0x814a44 7c7b1b78 or r27,r3,r3
value = 8473160 = 0x814a48 = startPDs + 0x28

l() now displays the ID of the protection domain where the text resides.

9.9 Using the Host Shell for System-Mode Debugging

The bulk of this chapter discusses the shell in its most frequent style of use:
attached to a normally running VxWorks 653 system, through a target agent
running in task mode. However, you can also use the shell with a system-mode
agent. Entering system mode stops the entire target system: all tasks, the kernel,
and all interrupt service requests (ISRs.) Similarly, breakpoints affect all tasks. One
major shell feature is not available in system mode: you cannot execute expressions
that call target-resident routines. You can still spawn tasks, but bear in mind that,
because the entire system is stopped, a newly-spawned task can only execute when
you allow the kernel to run long enough to schedule that task.

Depending on how the target agent is configured, you may be able to switch
between system mode and task mode. When the agent supports mode switching,
the following host shell commands control system mode:

■ sysSuspend()

Enter system mode and stop the target system.

■ sysResume()

Return to task mode and resume execution of the target system.

The following commands determine the state of the system and the agent:

■ agentModeShow()

9 Using the Host Shell with VxWorks 653
9.9 Using the Host Shell for System-Mode Debugging

163

9

Show the agent mode (system or task).

■ sysStatusShow()

Show the system context status (suspended or running).

The following shell commands behave differently in system mode:

■ b()

Set a system-wide breakpoint; the system stops when this breakpoint is
encountered by any task, or the kernel, or an ISR.

■ c()

Resume execution of the entire system (but remain in system mode).

■ i()

Display the state of the system context and the mode of the agent.

■ s()

Single-step the entire system.

■ sp()

Add a task to the execution queue. The task does not begin to execute until you
continue the kernel or step through the task scheduler.

Example

This example uses system mode to debug a system interrupt.

In this case, usrClock() is attached to the system clock interrupt handler, which is
called at each system clock tick when VxWorks is running. First suspend the
system and confirm that it is suspended using either i() or sysStatusShow().

[coreOS] -> sysSuspend
value = 0 = 0x0
[coreOS] ->
[coreOS] -> i
NAME ENTRY TID PRI STATUS PC SP ERRNO DELAY
--------- ---------- -------- ----- ------- ------- ------- ----- -----
tExcTask _excTask 3e8f98 0 PEND 47982 3e8ef4 0 0
tLogTask _logTask 3e6670 0 PEND 47982 3e65c8 0 0
tWdbTask 0x3f024 398e04 3 PEND 405ac 398d50 30067 0
tNetTask _netTask 3b39e0 50 PEND 405ac 3b3988 0 0

Agent mode : Extern
System context : Suspended
value = 0 = 0x0
[coreOS] ->
[coreOS] -> sysStatusShow

Wind River Workbench
Host Shell User’s Guide, 3.0

164

System context is suspended
value = 0 = 0x0

Next, set the system mode breakpoint on the entry point of the interrupt handler
you want to debug. Since the target agent is running in system mode, the
breakpoint will automatically be a system mode breakpoint, which you can
confirm with the b() command. Resume the system using c() and wait for it to enter
the interrupt handler and hit the breakpoint.

[coreOS] -> b usrClock
value = 0 = 0x0
[coreOS] -> b
0x00022d9a: _usrClock Task: SYSTEM Count: 0
value = 0 = 0x0
[coreOS] -> c
value = 0 = 0x0
[coreOS] ->
Break at 0x00022d9a: _usrClock Task: SYSTEM

You can now debug the interrupt handler. For example, you can determine which
task was running when system mode was entered using taskIdCurrent() and i().

[coreOS] -> taskIdCurrent
_taskIdCurrent = 0x838d0: value = 3880092 = 0x3b349c
[coreOS] -> i
NAME ENTRY TID PRI STATUS PC SP ERRNO DELAY
--------- ---------- -------- ----- ------- ------- ------- ----- -----
tExcTask _excTask 3e8a54 0 PEND 4eb8c 3e89b4 0 0
tLogTask _logTask 3e612c 0 PEND 4eb8c 3e6088 0 0
tWdbTask 0x44d54 389774 3 PEND 46cb6 3896c0 0 0
tNetTask _netTask 3b349c 50 READY 46cb6 3b3444 0 0

Agent mode : Extern
System context : Suspended
value = 0 = 0x0

You can trace all the tasks except the one that was running when you placed the
system in system mode and you can step through the interrupt handler.

[coreOS] -> tt tLogTask
4da78 _vxTaskEntry +10 : _logTask (0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
3f2bc _logTask +18 : _msgQReceive (3e62e4, 3e60dc, 20, ffffffff)
27e64 _msgQReceive +1ba: _qJobGet ([3e62e8, ffffffff, 0, 0, 0, 0])
value = 0 = 0x0
[coreOS] -> l
_usrClock
00022d9a 4856 PEA (A6)
00022d9c 2c4f MOVEA .L A7,A6
00022d9e 61ff 0002 3d8c BSR _tickAnnounce
00022da4 4e5e UNLK A6
00022da6 4e75 RTS
00022da8 352e 3400 MOVE .W (0x3400,A6),-(A2)
00022dac 4a75 6c20 TST .W (0x20,A5,D6.L*4)
00022db0 3234 2031 MOVE .W (0x31,A4,D2.W*1),D1
00022db4 3939 382c 2031 MOVE .W 0x382c2031,-(A4)

9 Using the Host Shell with VxWorks 653
9.10 Interrupting a Shell Command

165

9

00022dba 343a 3337 MOVE .W (0x3337,PC),D2
value = 0 = 0x0
[coreOS] -> s
d0 = 3e d1 = 3700 d2 = 3000 d3 = 3b09dc
d4 = 0 d5 = 0 d6 = 0 d7 = 0
a0 = 230b8 a1 = 3b3318 a2 = 3b3324 a3 = 7e094
a4 = 38a7c0 a5 = 0 a6/fp = bcb90 a7/sp = bcb84
sr = 2604 pc = 230ba

000230ba 2c4f MOVEA .L A7,A6
value = 0 = 0x0

Return to task mode and confirm that return by calling i().

[coreOS] -> sysResume
value = 0 = 0x0
[coreOS] -> i
NAME ENTRY TID PRI STATUS PC SP ERRNO DELAY
--------- ---------- -------- ----- ------- ------- ------- ----- -----
tExcTask _excTask 3e8f98 0 PEND 47982 3e8ef4 0 0
tLogTask _logTask 3e6670 0 PEND 47982 3e65c8 0 0
tWdbTask 0x3f024 398e04 3 READY 405ac 398d50 30067 0
tNetTask _netTask 3b39e0 50 PEND 405ac 3b3988 0 0
value = 0 = 0x0

If you want to debug an application you have loaded dynamically, set an
appropriate breakpoint and spawn a task which runs when you continue the
system:

[coreOS] -> sysSuspend
value = 0 = 0x0
[coreOS] -> ml < test.o
Loading /view/didier.temp/vobs/wpwr/target/lib/objMC68040gnutest//test.o
/
value = 400496 = 0x61c70 = _rn_addroute + 0x1d4
[coreOS] -> b address
value = 0 = 0x0
[coreOS] -> sp test
value = 0 = 0x0
[coreOS] -> c

The application breaks on address when the instruction at address is executed.

9.10 Interrupting a Shell Command

Occasionally it is desirable to abort the shell’s evaluation of a statement. For
example, an invoked routine may loop excessively, suspend, or wait on a
semaphore. This may happen as the result of errors in arguments specified in the

Wind River Workbench
Host Shell User’s Guide, 3.0

166

invocation, errors in the implementation of the routine itself, or simply oversight
as to the consequences of calling the routine.

To regain control of the shell in such cases, press the interrupt character on the
keyboard, usually CTRL+BREAK or CTRL+C. This makes the shell stop waiting for
a result and allows input of a new statement. Any remaining portions of the
statement are discarded and the task that ran the function call is deleted.

Pressing CTRL+BREAK or CTRL+C is also necessary to regain control of the shell
after calling a routine on the target that ends with exit() rather than return().

Occasionally a subroutine invoked from the shell may incur a fatal error, such as a
bus/address error or a privilege violation. When this happens, the failing routine
is suspended. If the fatal error involved a hardware exception, the shell
automatically notifies you of the exception. For example:

[coreOS] -> sp taskSpawn,-4
task spawned: id = 0x20153b50, name = s1u0
value = 538262352 = 0x20153b50

Exception number 0xb: Task: 0x20153b50 (s1u0)
Segmentation violation
program counter: 0x20008740
next program counter: 0x20008744
processor status: 0xfe801001
access address: 0xfffffffc
0x2002e038 vxTaskEntry +c : taskSpawn (fffffffc, 0, 0, 0, 0, 0)
0x20028fa8 taskSpawn +7c : taskCreate (fffffffc, 0, 0, 0, 0, 0)
0x2002909c taskCreate +a8 : pdTaskCreate (0, fffffffc, 0, 0, 0, 0)
0x200607fc pdTaskCreate +864: taskInit (20155650, fffffffc, 0, 805,
2046400 0, c000)
0x20029a78 taskInit +7f8: objNameSet (20155650, fffffffc, 0, 5, 8,
0)
0x2004e958 objNameSet +24 : strlen (fffffffc, 0, 0, 0, 0, 0)
[coreOS] ->

In cases like this, you do not need to type CTRL+BREAK to recover control of the
shell; it automatically returns to the prompt, just as if you had interrupted.
Whether you interrupt or the shell does it for you, you can proceed to investigate
the cause of the suspension.

An interrupted routine may have left things in a state which was not cleared when
you interrupted it. For instance, a routine may have taken a semaphore, which
cannot be given automatically. Be sure to perform manual cleanup if you are going
to continue the application from this point.

9 Using the Host Shell with VxWorks 653
9.11 Working With Shared Library and Data Domains

167

9

9.11 Working With Shared Library and Data Domains

When the current working protection domain of the shell is set to a shared library
or shared data domain, it is possible to use the shell commands, but not to call
functions. For example:

[sl] -> printf "Hello"
Error: Cannot call a function in a shared library.
[sl] -> :sd
[sd] -> printf "Hello"
Error: Cannot call a function from a shared memory region.
[sd] ->

Modifying data of the shared library has no impact on user protection domains
that are already attached to the shared library.

9.12 Loading From the Shell

9.12.1 Incremental Loading

During the development process, the shell allows you to test partially developed
applications. An application need not be stored in one big object module. Instead,
it can be broken into several smaller object modules corresponding to the various
logical parts of the application. The loader allows you to load these smaller object
modules independently for testing.

Dynamic loading and unloading is supported only in the VxWorks 653 kernel
domain.

9.12.2 Dynamic Linking

Loading an object module is done in four steps:

! CAUTION: Dynamic loading and unloading is contrary to the static nature of the
VxWorks 653 operating system. The feature described in this section is still
supported for backwards compatibility with previous versions of VxWorks 653,
but Wind River does not recommend its use.

Wind River Workbench
Host Shell User’s Guide, 3.0

168

1. Unload the existing version of the module, if any (host shell only).

2. Copy the file content (the sections) into target memory.

3. Relocate the sections at their installation addresses.

4. Link the new code with the code already in place.

The linking process uses symbols to establish the relation between the
newly-loaded code and the code pre-existing in the system. An object module
holds unresolved symbols for all external references to functions or data. The goal
of the loader is to find matching symbols in the system and link each of the
module’s external references to the code that these symbols refer to.

The loader uses the link path to find the requested symbols. The link path specifies
where and in which order of preference the loader should look for symbols. Each
protection domain is created with the following default link path .:coreOS. The
leading dot represents the current domain, and coreOS is, by default, the name of
the kernel protection domain. The loader interprets this link path as follows: look
first in the current domain’s symbol table; then, if the symbol is not found there,
look in the kernel domain’s symbol table.

If required, the link path of each domain can be changed by using linkPathSet().
For instance, if a shared library domain exists and must be considered when
looking for symbols, an application domain’s link path would become
.:sharedCode:coreOS, where sharedCode is the name of the shared library domain.

If the loader cannot find the requested symbols, it issues an error message. If the
out of order load feature is in use, it is possible to load additional code holding the
missing symbols, and to have the previously loaded code re-linked accordingly.

9.12.3 Object Module Load Path

In order to download an object module dynamically to the target, both the host
shell and the target server must be able to locate the file. If path naming
conventions are different between the host shell and the target server, the two
systems may both have access to the file, but it may be mounted with different
pathnames. This situation arises often in environments where UNIX and Windows
systems are networked together, because the path naming convention is different:
the UNIX /usr/fred/applic.o may well correspond to the Windows

NOTE: It is not possible to look for symbols in another application protection
domain. If this is necessary, the required code must be moved into a shared library
domain.

9 Using the Host Shell with VxWorks 653
9.12 Loading From the Shell

169

9

n:\fred\applic.o. If you encounter this problem, check to be sure the
LD_SEND_MODULES variable of shConfig is set to ON or use the LD_PATH facility
to tell the target server about the path known to the shell.

Example: Alternate Path Names

-> ml < /usr/david/project/test/test.o
Loading /usr/david/project/test/test.o
WTX Error 0x2 (no such file or directory)
value = -1 = 0xffffffff
-> ?shConfig LD_PATH "/usr/david/project/test;C:\project\test"
-> ml < test.o
Loading C:\project\test\test.o
value = 17427840 = 0x109ed80

For more information on using LD_PATH and other shConfig facilities, see
8.4 Setting Shell Environment Variables, p.141.

Certain host shell commands and browser utilities imply dynamic downloads of
auxiliary target-resident code. These subroutines fail in situations where the shell
and target-server view of the file system is incompatible. To get around this
problem, download the required routines explicitly from the host where the target
server is running (or configure the routines statically into the VxWorks image).
Once the supporting routines are on the target, any host can use the corresponding
shell and browser utilities. Table 9-1 lists the affected utilities.

9.12.4 Loader Defaults

Default loader behavior differs between the host shell and the target shell. In the
host shell, LD_COMMON_MATCH_ALL is set to ON by default. Thus if you load
two modules containing the same common symbols, the result is the creation of

NOTE: If you call ml() with an explicit argument list, any instances of the backslash
character in Windows paths must be either be changed to forward slashes
(n:/fred/applic.o) or else doubled (n:\\fred\\applic.o). If you supply the module
name with the redirection symbol instead, no double backslashes are necessary.

Table 9-1 Shell Utilities with Target-Resident Components

Utility Supporting Module

repeat() repeatHost.o

period() periodHost.o

Wind River Workbench
Host Shell User’s Guide, 3.0

170

one occurrence of the symbol related to the first module. The second module is
linked to the first one through a common symbol.

In the target shell, LD_COMMON_MATCH_ALL is set to OFF by default. Thus if you
load two modules containing the same common symbols, the result is the creation
of two separate symbols of the same name, one for each module.

171

 10
Using the C Interpreter with

VxWorks 653

10.1 Introduction 172

10.2 Host and Target Shell Differences 172

10.3 Task References 174

10.4 Data Types 175

10.5 Expressions 177

10.6 Assignments 181

10.7 Comments 182

10.8 Strings 182

10.9 Ambiguity of Arrays and Pointers 183

10.10 Pointer Arithmetic 184

10.11 C Interpreter Limitations 185

10.12 Redirection in the C Interpreter 186

10.13 C++ Interpretation 189

10.14 C Interpreter Primitives 192

10.15 Resolving Name Conflicts Between Host and Target 207

10.16 Examples 207

Wind River Workbench
Host Shell User’s Guide, 3.0

172

10.1 Introduction

This chapter describes the behavior of the C interpreter when used with a
VxWorks 653 target.

Note that C interpreter routine calls return 32-bit values only.

The host shell running in C interpreter mode interprets and executes almost all
C-language expressions and allows prototyping and debugging in kernel space; it
does not provide access to processes.

The shell parses and evaluates its input one line at a time. A line may consist of a
single shell statement or several shell statements separated by semicolons. A
semicolon is not required on a line containing only a single statement. A statement
cannot continue on multiple lines.

Shell statements are either C expressions or assignment statements. Either kind of
statement may call host shell commands or target routines.

10.2 Host and Target Shell Differences

The host and target shells are almost identical. However, some of the commands
(or routines) that you can execute from the shell are built into the host shell, rather
than running as function calls on the target. These facilities parallel interactive
utilities that can be linked into the target operating system itself. By using the host
commands, you can minimize the impact on both target memory and
performance.

Most of the shell commands correspond to similar routines that can be linked into
the target operating system for use with the target-resident version of the shell.
However, the target-resident routines differ in some details. For reference
information on a shell command, be sure to consult the windsh reference entry.

Table 10-1 shows the differences between the host and target shells. For additional
information on the target shell, open Wind River Workbench and select Help >

! CAUTION: Although there are usually entries with the same name in the
VxWorks 653 API references, these entries describe related target routines, not the
shell commands.

10 Using the C Interpreter with VxWorks 653
10.2 Host and Target Shell Differences

173

10

Help Contents > Wind River Documentation > References > Host Tools > Wind
River VxWorks 653 Shell > Routines Index.

For information on shell commands, see the reference entries for the commands by
opening Wind River Workbench and selecting Help > Help Contents > Wind
River Documentation > References > Host Tools > Wind River Host Shell API
Reference > Routines Index.

10.2.1 Protection Domain Breakpoints

pdb addr [,context[,count[,quiet]]]
addr

This argument can be specified numerically or symbolically with an optional
offset.

context

A task or a protection domain. If context is a task, the breakpoint applies to the
specified task. If context is a protection domain, the breakpoint applies to all
breakable tasks owned by the specified protection domain. If context is zero or
omitted, the breakpoint applies to all breakable tasks.

count

If count is zero or omitted, the breakpoint occurs every time it is hit. If count is
specified, the break does not occur until an eligible task hits the breakpoint count
plus one times. (In other words, the breakpoint is ignored the first count times it is
hit.)

quiet

A target-shell-only argument. When set, it suppresses debugging information
destined for the console when the breakpoint is hit. It is included to support

Table 10-1 Host Shell and Target Shell Differences – VxWorks 653

Features Available in Mode Host Shell Target Shell

Symbol completion C mode, Tcl mode Yes Yes

Path completion C mode, Tcl mode Yes No

Synopsis printing (CTRL+D) C mode Yes No

HTML help (CTRL+W) C mode Yes No

Wind River Workbench
Host Shell User’s Guide, 3.0

174

external source code debuggers that handle the breakpoint user interface
themselves.

10.2.2 Function Calls in the Kernel Domain

This section applies only to the C interpreter.

When using the target shell, function calls are executed by the shell task in the
kernel and are therefore unbreakable.

[coreOS] -> b printf
value = 0 = 0x0
[coreOS] -> printf "Hello world\n"
Hello world
value = 12 = 0xc

In order to make the call break, you must use sp() to spawn a task to run the
function.

[coreOS] -> sp printf, "Hello world\n"
task spawned: tid = 0x1f4008, name = pdt1
value = 0 = 0x0
[coreOS] ->
Break at 0x00032cd8:printf Task: 0x001f4008 (pdt1)
PD : 0x000ed7cc (coreOS)

In the host shell, all function calls are breakable. This is because the host shell
always creates a task to execute a function.

10.3 Task References

Most VxWorks 653 routines that take an argument representing a task require a
task ID. However, when invoking routines interactively, specifying a task ID can
be cumbersome, since the ID is an arbitrary and possibly lengthy number.

To accommodate interactive use, shell expressions can reference a task by either
task ID or task name. The shell attempts to resolve a task argument to a task ID as
follows: if no match is found in the symbol table for a task argument, the shell
searches for the argument in the list of active tasks. When it finds a match, it
substitutes the task name with its matching task ID. In symbol lookup, symbol
names take precedence over task names.

10 Using the C Interpreter with VxWorks 653
10.4 Data Types

175

10

When you enter any command, the shell attempts to match it in the following
order: shell command, symbol, task name, and protection domain name.

By convention, task names are prefixed with a u for tasks started from the shell,
and with a pdt for tasks started from the target itself. In addition, tasks started from
a shell are prefixed by s1, s2, and so on to indicate which shell they were started
from. This avoids name conflicts with entries in the symbol table. The names of
system tasks and the default task names assigned when tasks are spawned use this
convention. For example, tasks spawned with the shell command sp() in the first
shell opened are given names such as s1u0 and s1u1. Tasks spawned with the
second shell opened have names such as s2u0 and s2u1. Wind River recommends
that you adopt a similar convention for tasks named in your applications.

The “Current” Task and Address

A number of commands, for example c(), s(), and ti(), take a task parameter that
can be omitted. If omitted, the current task is used. The l() and d() commands use
the current address if no address is specified. The current task and address are set
when:

■ A task hits a breakpoint or an exception trap. The current address is the
address of the instruction that caused the break or exception.

■ A task is single-stepped. The current address is the address of the next
instruction to be executed.

■ Any of the commands that use the current task or address are executed with a
specific task parameter. The current address will be the address of the byte
following the last byte that was displayed or disassembled.

10.4 Data Types

The most significant difference between the shell C-expression interpreter and a C
compiler lies in the way that they handle data types. The shell does not accept any
C declaration statements, and no data-type information is available in the symbol
table. Instead, an expression’s type is determined by the types of its terms.

Unless you use explicit type-casting, the shell makes the following assumptions
about data types:

Wind River Workbench
Host Shell User’s Guide, 3.0

176

■ In an assignment statement, the type of the left hand side is determined by the
type of the right hand side.

■ If floating-point numbers and integers both appear in an arithmetic
expression, the resulting type is a floating-point number.

Data types are assigned to various elements, as shown in Table 10-2.

A constant or variable can be treated as a different type than what the shell
assumes by explicitly specifying the type with the syntax of C type-casting.
Functions that return values other than integers require a slightly different
type-casting; see 10.5.4 Function Calls, p.179. Table 10-3 shows the various data
types available in the shell C interpreter, with examples of how they can be set and
referenced.

Table 10-2 C Interpreter Data-Type Assumptions

Element Data Type

variable int

variable used as a floating-point double

return value of subroutine int

constant with no decimal point int/long

constant with decimal point double

Table 10-3 Data Types in the C Interpreter

Type Bytes Set Variable Display Variable

int 4 x = 99 x
(int) x

long 4 x = 33
x = (long)33

x
(long_ x

short 2 x = (short)20 (short) x

char 1 x = ‘A’
x = (char)65
x = (char)0x41

(char)x

double 8 x = 11.2
x = (double)11.2

(double) x

float 4 x = (float)5.42 (float) x

10 Using the C Interpreter with VxWorks 653
10.5 Expressions

177

10

Strings, or character arrays, are not treated as separate types in the C interpreter.
To declare a string, set a variable to a string value. (Memory allocated for string
constants is never freed by the shell.) For example:

-> ss = "any string"

The variable ss is a pointer to the string any string. To display ss, enter

-> d ss

The d() command displays the memory where ss is pointing. You can also use
printf() to display strings.

The shell places no type restrictions on the application of operators. For example,
the shell expression

 *(70000 + 3 * 16)

evaluates to the 4-byte integer value at memory location 70048.

10.5 Expressions

Shell expressions consist of literals, symbolic data references, function calls, and
the usual C operators.

10.5.1 Literals

The shell interprets the literals in Table 10-4 in the same way as the C compiler,
with one addition: the shell also allows hex numbers to be preceded by $ instead
of 0x.

Table 10-4 Literals in the C Interpreter

Literal Example

decimal numbers 143967

octal numbers 017734

hex numbers 0xf3ba or $f3ba

floating point numbers 555.555

Wind River Workbench
Host Shell User’s Guide, 3.0

178

10.5.2 Variable References

Shell expressions may contain references to variables whose names have been
entered in the system symbol table. Unless a particular type is specified with a
variable reference, the variable’s value in an expression is the 4-byte value at the
memory address obtained from the symbol table. It is an error if an identifier in an
expression is not found in the symbol table, except in the case of assignment
statements.

C compilers usually prefix all user-defined identifiers with an underscore, so that
myVar is actually in the symbol table as _myVar. The identifier can be entered
either way to the shell; the shell searches the symbol table for a match either with
or without a prefixed underscore.

You can also access data in memory that does not have a symbolic name in the
symbol table, as long as you know its address. To do this, apply the C indirection
operator “*” to a constant. For example, *0x10000 refers to the 4-byte integer value
at memory address 10000 hex.

10.5.3 Operators

The shell interprets the operators in Table 10-5 in the same way as the C compiler.

character constants ‘x’ and ‘$’

string constants “This is a string.”

Table 10-4 Literals in the C Interpreter

Literal Example

Table 10-5 Operators in the C Interpreter

Operator Type Operators

arithmetic + - * / unary-

relational == != < > <= >=

shift << >>

logical || && !

10 Using the C Interpreter with VxWorks 653
10.5 Expressions

179

10

The shell assigns the same precedence to the operators as the C compiler. However,
unlike the C compiler, the shell always evaluates both operands of the logical
binary operators || and &&.

10.5.4 Function Calls

Shell expressions may contain calls to C functions (or C-compatible functions)
whose names have been entered in the system symbol table; they may also contain
function calls to host shell commands that execute on the host.

The shell executes such function calls in tasks spawned for the purpose, with the
specified arguments and default task parameters; if the task parameters make a
difference, you can call taskSpawn() instead of calling functions from the shell
directly. The value of a function call is the 4-byte integer value returned by the
function. The shell assumes that all functions return integers. If a function returns
a value other than an integer, the shell must know the data type being returned
before the function is invoked. This requires a slightly unusual syntax because you
must cast the function, not its return value. For example:

-> floatVar = (float ()) funcThatReturnsAFloat (x,y)

The shell can pass up to ten arguments to a function. In fact, the shell always passes
exactly ten arguments to every function called, passing values of zero for any
arguments not specified. This is harmless because the C function-call protocol
handles passing of variable numbers of arguments. However, it allows you to omit
trailing arguments of value zero from function calls in shell expressions.

Function calls can be nested. That is, a function call can be an argument to another
function call. In the following example, myFunc() takes two arguments: the return
value from yourFunc() and myVal. The shell displays the value of the overall
expression, which in this case is the value returned from myFunc().

bitwise | & ~ ^

address and indirection & *

Table 10-5 Operators in the C Interpreter

Operator Type Operators

NOTE: The examples in this book assume you are using the default shell prompts.
However, you can change the C interpreter prompt to anything you like using the
shellPromptSet() routine.

Wind River Workbench
Host Shell User’s Guide, 3.0

180

myFunc (yourFunc (yourVal), myVal);

Shell expressions can also contain references to function addresses instead of
function invocations. As in C, this is indicated by the absence of parentheses after
the function name. Thus the following expression evaluates to the result returned
by the function myFunc2() plus 4:

4 + myFunc2 ()

However, the following expression evaluates to the address of myFunc2() plus 4:

4 + myFunc2

An important exception to this occurs when the function name is the very first item
encountered in a statement. See 10.5.5 Arguments to Commands, p.180.

Shell expressions can also contain calls to functions that do not have a symbolic
name in the symbol table, but whose addresses are known to you. To do this,
simply supply the address in place of the function name. Thus the following
expression calls a parameter-less function whose entry point is at address 10000
hex:

0x10000 ()

10.5.5 Arguments to Commands

In practice, most statements input to the shell are function calls. To simplify this
use of the shell, an important exception is allowed to the standard expression
syntax required by C. When a function name is the very first item encountered in
a shell statement, the parentheses surrounding the function’s arguments may be
omitted. Thus the following shell statements are synonymous:

-> rename ("oldname", "newname")
-> rename "oldname", "newname"

as are:

->evtBufferAddress ()
->evtBufferAddress

However, note that if you wish to assign the result to a variable, the function call
cannot be the first item in the shell statement—thus, the syntactic exception above
does not apply. The following captures the address, not the return value, of
evtBufferAddress():

-> value = evtBufferAddress

10 Using the C Interpreter with VxWorks 653
10.6 Assignments

181

10

10.6 Assignments

The shell C interpreter accepts assignment statements in the form:

addressExpression = expression

The left side of an expression must evaluate to an addressable entity; that is, a legal
C value.

10.6.1 Typing and Assignment

The data type of the left side is determined by the type of the right side. If the right
side does not contain any floating-point constants or non-integer type-casts, then
the type of the left side will be an integer. The value of the right side of the
assignment is put at the address provided by the left side. For example, the
following assignment sets the 4-byte integer variable x to 0x1000:

-> x = 0x1000

The following assignment sets the 4-byte integer value at memory address 0x1000
to the current value of x:

-> *0x1000 = x

The following compound assignment adds 300 to the 4-byte integer variable x:

-> x += 300

The following adds 300 to the 4-byte integer at address 0x1000:

-> *0x1000 += 300

The following compound operators are available:

++ *= &=
-- /= |=
+= %= ^=
-=

10.6.2 Automatic Creation of New Variables

New variables can be created automatically by assigning a value to an undefined
identifier (one not already in the symbol table) with an assignment statement.

When the shell encounters such an assignment, it allocates space for the variable
and enters the new identifier in the symbol table along with the address of the
newly allocated variable. The new variable is set to the value and type of the

Wind River Workbench
Host Shell User’s Guide, 3.0

182

right-side expression of the assignment statement. The shell prints a message
indicating that a new variable has been allocated and assigned the specified value.

For example, if the identifier fd is not currently in the symbol table, the following
statement creates a new variable named fd and assigns to it the result of the
function call:

-> fd = open ("file", 0)

10.7 Comments

The shell allows two kinds of comments.

First, comments of the form /* … */ can be included anywhere on a shell input line.
These comments are simply discarded, and the rest of the input line evaluated as
usual.

Second, any line whose first non-blank character is # is ignored completely.

10.8 Strings

When the shell encounters a string literal (“…”) in an expression, it allocates space
for the string including the null-byte string terminator. The value of the literal is
the address of the string in the newly allocated storage. For instance, the following
expression allocates 12 bytes from the target-agent memory pool, enters the string
in those 12 bytes (including the null terminator), and assigns the address of the
string to x:

-> x = "hello world"

Even when a string literal is not assigned to a symbol, memory is still permanently
allocated for it. For example, the following uses 12 bytes of memory that are never
freed:

-> printf ("hello world")

10 Using the C Interpreter with VxWorks 653
10.9 Ambiguity of Arrays and Pointers

183

10

If strings were only temporarily allocated, and a string literal were passed to a
routine being spawned as a task, then by the time the task executed and attempted
to access the string, the shell would have already released, possibly even reused,
the temporary storage where the string was held.

After extended development sessions, the cumulative memory used for strings
may be noticeable. If this becomes a problem, restart your target server.

10.8.1 Strings and Pathnames

In VxWorks 653, the directory and file segments of pathnames (for target-resident
files and devices) are separated with the slash character (/). This presents no
difficulty when subroutines require a pathname argument, because the / character
has no special meaning in C strings.

However, you can also refer from the shell to files that reside on a Windows host.
For host pathnames, you can use either a slash for consistency with the VxWorks
convention, or a backslash (\) for consistency with the Windows convention.

Because the backslash character is an escape character in C strings, you must
double any backslashes that you use in pathnames as strings. This applies only to
pathnames in C strings. No special syntax is required for pathnames that are
interpreted directly by the shell.

You can use the shell’s ml() command with all of these variations of pathnames.
The following ml() invocations are all correct and equivalent:

-> ml < c:\fred\tests\zap.o
-> ml < c:/fred/tests/zap.o
-> ml 1,0,"c:\\fred\\tests\\zap.o"
-> ml 1,0,"c:/fred/tests/zap.o"

10.9 Ambiguity of Arrays and Pointers

In a C expression, a non-subscripted reference to an array has a special meaning,
namely the address of the first element of the array. The shell, to be compatible,
should use the address obtained from the symbol table as the value of such a
reference, rather than the contents of memory at that address. Unfortunately, the
information that the identifier is an array, like all data type information, is not
available after compilation. For example, if a module contains the following:

Wind River Workbench
Host Shell User’s Guide, 3.0

184

char string [] = "hello";

you might be tempted to enter a shell expression as in Example 1.

Example 1

-> printf (string)

While this would be correct in C, the shell will pass the first 4 bytes of the string
itself to printf(), instead of the address of the string. To correct this, the shell
expression must explicitly take the address of the identifier, as in Example 2.

Example 2

-> printf (&string)

To make matters worse, in C if the identifier had been declared a character pointer
instead of a character array:

char *string = "hello";

then to a compiler, Example 1 would be correct and Example 2 would be wrong.
This is especially confusing since C allows pointers to be subscripted exactly like
arrays, so that the value of string[0] would be “h” in either of the above
declarations.

Bear in mind that array references and pointer references in shell expressions are
different from their C counterparts. In particular, array references require an
explicit application of the address operator &.

10.10 Pointer Arithmetic

While the C language treats pointer arithmetic specially, the shell C interpreter
does not, because it treats all non-type-cast variables as 4-byte integers.

In the shell, pointer arithmetic is no different than integer arithmetic. Pointer
arithmetic is valid, but it does not take into account the size of the data pointed to.
Consider the following example:

-> *(myPtr + 4) = 5

Assume that the value of myPtr is 0x1000. In C, if myPtr is a pointer to a type char,
this would put the value 5 in the byte at address at 0x1004. If myPtr is a pointer to
a 4-byte integer, the 4-byte value 0x00000005 would go into bytes 0x1010–0x1013.

10 Using the C Interpreter with VxWorks 653
10.11 C Interpreter Limitations

185

10

The shell, on the other hand, treats variables as integers, and therefore would put
the 4-byte value 0x00000005 in bytes 0x1004–0x1007.

10.11 C Interpreter Limitations

The C interpreter in the shell is not a complete interpreter for the C language. The
following C features are not present in the host shell.

■ Control structures

The shell interprets only C expressions (and comments). The shell does not
support C control structures such as if, goto, and switch statements, or do,
while, and for loops. Control structures are rarely needed during shell
interaction. If you do come across a situation that requires a control structure,
you can use the Tcl interface to the shell instead of using its C interpreter
directly.

■ Compound or derived types

No compound types (struct or union types) or derived types (typedef) are
recognized in the shell C interpreter.

■ Macros

No C preprocessor macros (or any other preprocessor facilities) are available
in the shell. For constant macros, you can define variables in the shell with
similar names to the macros. You can automate the effort of defining any
variables you need repeatedly, by using an initialization script.

For control structures, or display and manipulation of types that are not supported
in the shell, you might also consider writing auxiliary subroutines to provide these
services during development; you can call such subroutines at will from the shell,
and later omit them from your final application.

Wind River Workbench
Host Shell User’s Guide, 3.0

186

10.12 Redirection in the C Interpreter

The shell provides a redirection mechanism for momentarily reassigning the
standard input and standard output file descriptors just for the duration of the
parse and evaluation of an input line. The redirection is indicated by the < and >
symbols followed by filenames, at the very end of an input line. No other syntactic
elements may follow the redirection specifications. The redirections are in effect for
all subroutine calls on the line.

For example, the following input line sets standard input to the file named input
and standard output to the file named output during the execution of copy():

-> copy < input > output

If the file to which standard output is redirected does not exist, the shell creates it.

10.12.1 Ambiguity Between Redirection and C Operators

There is an ambiguity between redirection specifications and the relational
operators less than and greater than. The shell always assumes that an ambiguous
use of < or > specifies a redirection rather than a relational operation. Thus the
ambiguous input line:

-> x > y

writes the value of the variable x to the stream named y, rather than comparing the
value of variable x to the value of variable y. However, you can use a semicolon to
remove the ambiguity explicitly, because the shell requires that the redirection
specification be the last element on a line. Thus the following input lines are
unambiguous:

-> x; > y
-> x > y;

The first line prints the value of the variable x to the output stream y. The second
line prints on standard output the value of the expression “x greater than y.”

10.12.2 The Nature of Redirection

The redirection mechanism of the host shell is fundamentally different from that of
the Windows command shell, although the syntax and terminology are similar.

10 Using the C Interpreter with VxWorks 653
10.12 Redirection in the C Interpreter

187

10

In the host shell, redirecting input or output affects only a command executed from
the shell. In particular, this redirection is not inherited by any tasks started while
output is redirected.

For example, you might be tempted to specify redirection streams when spawning
a routine as a task, intending to send the output of printf() calls in the new task to
an output stream, while leaving the shell’s I/O directed at the virtual console. This
stratagem does not work. For example, the shell input line:

-> taskSpawn (...myFunc...) > output

momentarily redirects the shell standard output during the brief execution of the
spawn routine, but does not affect the I/O of the resulting task.

To redirect the input or output streams of a particular task, call ioTaskStdSet()
once the task exists.

10.12.3 Scripts: Redirecting Shell I/O

A special case of I/O redirection concerns the I/O of the shell itself; that is,
redirection of the streams the shell’s input is read from, and its output is written to.
The syntax for this is simply the usual redirection specification, on a line that
contains no other expressions.

The typical use of this mechanism is to have the shell read and execute lines from
a file. For example, the input lines:

-> <startup

or

-> < c:\fred\startup

cause the shell to read and execute the commands in the file startup, either on the
current working directory (in the first example) or explicitly on the complete
pathname (in the second example.) If your working directory is \fred, then the two
examples are equivalent.

Such command files are called scripts. Scripts are processed exactly like input from
an interactive terminal. After reaching the end of the script file, the shell returns to
processing I/O from the original streams.

During execution of a script, the shell displays each command as well as any
output from that command. You can change this by invoking the shell with the -q
option (see Host Shell Startup Options, p.139.)

Wind River Workbench
Host Shell User’s Guide, 3.0

188

An easy way to create a shell script is from a list of commands you have just
executed in the shell. The history command h() prints a list of the last 20 shell
commands. The following creates the file c:\tmp\script with the current shell
history:

-> h > c:\tmp\script

The command numbers must be deleted from this file before using it as a shell
script.

Scripts can also be nested. That is, scripts can contain shell input redirections that
cause the shell to process other scripts.

C Interpreter Startup Scripts

Host shell scripts can be useful for setting up your working environment. You can
run a startup script through the shell C interpreter by specifying its name with the
-s option. For example:

C:\> windsh phobos -s c:\fred\startup

You can also use the -e option to run a Tcl expression at startup, or place Tcl
initialization in windsh.tcl under your home directory.

You can use startup scripts for setting system parameters to personal preferences:
defining variables, specifying the target’s working directory, and so forth. They
can also be useful for tailoring the configuration of your system without having to
rebuild the image. For example:

■ creating additional devices
■ loading and starting up application modules

! CAUTION: Input and output redirection must refer to files on a host file system. If
you have a local file system on your target, files that reside there are available to
target-resident subroutines, but not to the shell (unless you export them from the
target using NFS, and mount them on your host).

! CAUTION: Wind River recommends that you set the shell environment variable
SH_GET_TASK_IO to OFF before you use redirection of input from scripts, or
before you copy and paste blocks of commands to the shell command line.
Otherwise commands might be taken as input for a command that precedes them,
and thus get lost.

10 Using the C Interpreter with VxWorks 653
10.13 C++ Interpretation

189

10

■ adding a complete set of network host names and routes
■ setting NFS parameters and mounting NFS partitions

10.13 C++ Interpretation

Workbench supports both C and C++ as development languages. For information
about C++ development, see the VxWorks 653 Programmer’s Guide: Developing C++
Applications.

Because C and C++ expressions are so similar, the host shell C-expression
interpreter supports many C++ expressions. The facilities explained in this chapter
are all available regardless of whether your source language is C or C++. In
addition, there are a few special facilities for C++ extensions. This section describes
those extensions.

The host shell is not a complete interpreter for C++ expressions. In particular:

■ The shell has no information about user-defined types.
■ There is no support for the :: operator.
■ Constructors, destructors, and operator functions cannot be called directly

from the shell.
■ Member functions cannot be called with the . or -> operators.

To exercise C++ facilities that are missing from the C interpreter, you can compile
and download routines that encapsulate the special C++ syntax.

10.13.1 Overloaded Function Names

If you have several C++ functions with the same name, distinguished by their
argument lists, call any of them as usual with the name they share. When the shell
detects the fact that several functions exist with the specified name, it lists them in
an interactive dialog, printing the matching functions’ signatures so that you can
recall the different versions and make a choice among them.

You make your choice by entering the number of the desired function. If you make
an invalid choice, the list is repeated and you are prompted to choose again. If you
enter 0 (zero), the shell stops evaluating the current command and prints a
message like the following:

Wind River Workbench
Host Shell User’s Guide, 3.0

190

undefined symbol: your_function_name

This can be useful, for example, if you misspelled the function name and you want
to abandon the interactive dialog. However, because the shell is an interpreter, not
a compiler, portions of the expression may already have executed (perhaps with
side effects) before you abandon execution in this way.

The following example shows how the support for overloaded names works. In
this example, there are four versions of a function called xmin(). Each version of
xmin() returns at least two arguments, but each version takes arguments of
different types.

-> l xmin
"xmin" is overloaded - Please select:

1: _xmin(double,double)
2: _xmin(long,long)
3: _xmin(int,int)
4: _xmin(float,float)

Enter <number> to select, anything else to stop: 1
_xmin(double,double):

3fe710 4e56 0000 LINK .W A6,#0
3fe714 f22e 5400 0008 FMOVE .D (0x8,A6),F0
3fe71a f22e 5438 0010 FCMP .D (0x10,A6),F0
3fe720 f295 0008 FB .W #0x8f22e
3fe724 f22e 5400 0010 FMOVE .D (0x10,A6),F0
3fe72a f227 7400 FMOVE .D F0,-(A7)
3fe72e 201f MOVE .L (A7)+,D0
3fe730 221f MOVE .L (A7)+,D1
3fe732 6000 0002 BRA 0x003fe736
3fe736 4e5e UNLK A6
value = 4187960 = 0x3fe738 = _xmin(double,double) + 0x28

-> l xmin
"xmin" is overloaded - Please select:

1: _xmin(double,double)
2: _xmin(long,long)
3: _xmin(int,int)
4: _xmin(float,float)

Enter <number> to select, anything else to stop: 3
_xmin(int,int):

3fe73a 4e56 0000 LINK .W A6,#0
3fe73e 202e 0008 MOVE .L (0x8,A6),D0
3fe742 b0ae 000c CMP .L (0xc,A6),D0
3fe746 6f04 BLE 0x003fe74c
3fe748 202e 000c MOVE .L (0xc,A6),D0
3fe74c 6000 0002 BRA 0x003fe750
3fe750 4e5e UNLK A6
3fe752 4e75 RTS

_xmin(long,long):
3fe7544e560000 LINK .W A6,#0
3fe758202e0008 MOVE .L (0x8,A6),D0
value = 4187996 = 0x3fe75c = _xmin(long,long) + 0x8

10 Using the C Interpreter with VxWorks 653
10.13 C++ Interpretation

191

10

In this example, the user calls the disassembler to list the instructions for xmin(),
then selects the version that computes the minimum of two double values. Next,
the user invokes the disassembler again, this time selecting the version that
computes the minimum of two int values. Note that a different routine is
disassembled in each case.

10.13.2 Automatic Name Demangling

Many shell debugging and system information functions display addresses
symbolically (for example, the l() routine). This might be confusing for C++,
because compilers encode a function’s class membership (if any) and the type and
number of the function’s arguments in the function’s linkage name. The encoding
is meant to be efficient for development tools, but not necessarily convenient for
human comprehension. This technique is commonly known as name mangling and
can be a source of frustration when the mangled names are exposed to the
developer.

To avoid this confusion, the debugging and system information routines in the
host shell print C++ function names in a demangled representation. Whenever the
shell prints an address symbolically, it checks whether the name has been mangled.
If it has, the name is demangled (complete with the function’s class name, if any,
and the type of each of the function’s arguments) and printed.

The following example shows the demangled output when lkup() displays the
addresses of the xmin() functions mentioned in the previous section.

-> lkup "xmin"
_xmin(double,double) 0x003fe710 text (templex.out)
_xmin(long,long) 0x003fe754 text (templex.out)
_xmin(int,int) 0x003fe73a text (templex.out)
_xmin(float,float) 0x003fe6ee text (templex.out)
value = 0 = 0x0

Wind River Workbench
Host Shell User’s Guide, 3.0

192

10.14 C Interpreter Primitives

10.14.1 Managing Tasks

Table 10-6 summarizes the commands that manage tasks. For more detailed
reference information, see the windsh reference entry (open Wind River
Workbench and select Help > Help Contents > Wind River
Documentation > References > Host Tools > Wind River Host Shell API
Reference > windsh.)

The repeat() and period() commands spawn tasks whose entry points are
_repeatHost and _periodHost. The shell downloads these support routines when
you call repeat() or period(). (This download is not always reliable with remote
target servers.) These tasks may be controlled like any other tasks on the target; for
example, you can suspend or delete them with ts() or td() respectively.

Table 10-6 Task Management Commands

Call Description

sp() Spawn a task with default parameters.

sps() Spawn a task, but leave it suspended.

tr() Resume a suspended task.

ts() Suspend a task.

td() Delete a task.

period() Spawn a task with entry point periodHost to call a function
periodically.

repeat() Spawn a task with entry point repeatHost to call a function
repeatedly.

taskIdDefault() Set or report the default (current) task ID. (For information on
how the current task is established an used, see The “Current”
Task and Address, p.175.)

trace() Trace the execution of a task or object).

10 Using the C Interpreter with VxWorks 653
10.14 C Interpreter Primitives

193

10

10.14.2 Task Information

Table 10-7 summarizes the host shell commands that report task information. For
more detailed reference information, see the windsh reference entry (open Wind
River Workbench and select Help > Help Contents > Wind River
Documentation > References > Host Tools > Wind River Host Shell API
Reference > windsh.)

Table 10-7 Task Information Commands

Call Description

i() Display system information. This command gives a snapshot of
what tasks are in the system, and some information about each
of them, such as state, PC, and protection domain ID. To save
memory, this command queries the target repeatedly; thus, it
may occasionally give an inconsistent snapshot.

iStrict() Display the same information as i(), but query target system
information only once. At the expense of consuming more
intermediate memory, this guarantees an accurate snapshot.

ti() Display task information. This command gives all the
information contained in a task’s task control block (TCB.) This
includes everything shown for that task by an i() command, plus
all the task’s registers, and the links in the TCB chain. If task is 0
(or the argument is omitted), the current task is reported.

w() Print a summary of each task’s pending information, task by
task. This routine calls taskWaitShow() in quiet mode on all
tasks in the system, or a specified task if the argument is given.

tw() Print information about the object the given task is pending on.
This routine calls taskWaitShow() on the given task in verbose
mode.

checkStack() Show a stack usage summary for a task, or for all tasks if no task
is specified. The summary includes the total stack size (SIZE),
the current number of stack bytes (CUR), the maximum number
of stack bytes used (HIGH), and the number of bytes never used
at the top of the stack (MARGIN = SIZE - HIGH). Use this
routine to determine how much stack space to allocate, and to
detect stack overflow. This routine does not work for tasks that
use the VX_NO_STACK_FILL option.

Wind River Workbench
Host Shell User’s Guide, 3.0

194

The i() command is commonly used to get a quick report on target activity. If
nothing seems to be happening, i() is often a good place to start investigating. To
display summary information about all running tasks:

[coreOS] -> i
NAME ENTRY TID PRI STATUS PC ERRNO PD ID
-------- ---------- -------- --- ---------- ---------- --------- -------
tMgrTask mgrTask 0xeabfc 0 PEND 0xa09f0 0 0xd7cf8
tExcTask excTask 0xe8a30 0 PEND 0xa09f0 0 0xd7cf8
tLogTask logTask 0xee018 0 PEND 0xa09f0 0 0xd7cf8
tShell shell 0x14c018 1 PEND 0xb26bc 0 0xd7cf8
tWdbTask wdbTask 0x19b478 3 READY 0xb2a24 0 0xd7cf8
tNetTask netTask 0xf0a70 50 READY 0x561b4 0 0xd7cf8
value = 0 = 0x0

The w() and tw() commands allow you to see what object a task is pending on. w()
displays summary information for all tasks, while tw() displays object information
for a specific task. Note that the OBJ_NAME field is used only for objects that have
a symbolic name associated with the address of their structure.

[coreOS] -> w
NAME ENTRY TID STATUS DELAY OBJ_TYPE OBJ_ID OBJ_NAME
--------- --------- --------- --------- ----- ---------- ---------- ----
tMgrTask mgrTask 0xeabfc PEND 0 MSG_Q(R) 0xeab08 N/A
tExcTask excTask 0xe8a30 PEND 0 MSG_Q(R) 0xe8824 N/A
tLogTask logTask 0xee018 PEND 0 MSG_Q(R) 0xec63c N/A
tShell shell 0x14c018 PEND 0 SEM_B 0xec01c N/A
tWdbTask wdbTask 0x19b478 READY 0
tNetTask netTask 0xf0a70 READY 0
u0 smtask1 0x36cc2c PEND 0 MSG_Q_S(S) 0xf0b61 N/A
u1 smtask3 0x367c54 PEND 0 MSG_Q_S(S) 0xf0b61 N/A
u3 taskB 0x362c7c PEND 0 SEM_B 0xfd378 _mySem2
u6 smtask1 0x35dca4 PEND 0 MSG_Q_S(S) 0xf0ae1 N/A
u9 task3B 0x358ccc PEND 0 MSG_Q(S) 0xfcf1c _myMsgQ
value = 0 = 0x0
[coreOS] -> tw tLogTask
NAME ENTRY TID STATUS DELAY OBJ_TYPE OBJ_ID OBJ_NAME
--------- --------- ------- -------- ------- --------- ------- ---------
tLogTask logTask 0xee018 PEND 0 MSG_Q(R) 0xec63c N/A

Message Queue Id : 0xec63c
Task Queueing : FIFO
Message Byte Len : 32
Messages Max : 50
Messages Queued : 0

tt() Display a stack trace.

taskIdFigure() Report a task ID, given its name.

Table 10-7 Task Information Commands

Call Description

10 Using the C Interpreter with VxWorks 653
10.14 C Interpreter Primitives

195

10

Messages Queued High : 0
Receivers Blocked : 1
Send Timeouts : 0
Receive Timeouts : 0

Receivers Blocked:

NAME TID PRI TIMEOUT
---------- ---------- --- -------
tLogTask 0xee018 0 0

value = 0 = 0x0

10.14.3 Displaying System Information

Table 10-8 summarizes the host shell commands that display information from the
symbol table, from the target system, and from the shell itself. For more detailed
reference information, see the windsh reference entry (open Wind River
Workbench and select Help > Help Contents > Wind River
Documentation > References > Host Tools > Wind River Host Shell API
Reference > windsh.)

Table 10-8 System Information Commands

Call Description

devs() List all devices known on the target system.

lkup() List symbols from the symbol table.

lkAddr() List symbols whose values are near a specified value.

d() Display target memory. You can specify a starting address,
size of memory units, and number of units to display.

l() Disassemble and display a specified number of instructions;
optionally specify protection domain.

printErrno() Describe the most recent error status value.

version() Print operating system version information.

cd() Change the working directory on the host (does not affect
target.)

ls() List files in the host working directory.

pwd() Display the current host working directory.

Wind River Workbench
Host Shell User’s Guide, 3.0

196

The lkup() command takes a regular expression as its argument, and looks up all
symbols containing strings that match. In the simplest case, you can specify a
substring to see any symbols containing that string that are already loaded in the
current protection domain. For example, to display a list containing routines and
declared variables with names containing the string dsm, do the following:

-> lkup "dsm"
Symbol Table for coreOS (PD ID 0xd7cf8)
dsmNbytes 0x0001eed0 text
dsmInst 0x0001ee78 text
value = 0 = 0x0

Case is significant, but position is not (mydsm is shown, but myDsm would not
be). To explicitly write a search that would match either mydsm or myDsm, you
can use a regular expression, as in the following:

-> lkup "[dD]sm"
Symbol Table for coreOS (PD ID 0xd7cf8)
dsmNbytes 0x0001eed0 text
dsmInst 0x0001ee78 text
_dbgDsmInstRtn 0x000cfc3c data
value = 0 = 0x0
->

Regular-expression searches of the symbol table can be as simple or elaborate as
required. For example, the following simple regular expression displays the names
of three internal VxWorks semaphore functions:

-> lkup "sem.Take"
Symbol Table for coreOS (PD ID 0xd7cf8)
semOTake 0x000b2794 text entry
semMTake 0x000b2960 text entry
semCTake 0x000b27ec text entry
semBTake 0x000b2480 text entry
value = 0 = 0x0
->

help() Display a summary of shell commands.

h() Display or set the size of shell history.

shellHistory() Display or set the size of shell history.

shellPromptSet() Change the C interpreter shell prompt.

printLogo() Display the shell logo.

Table 10-8 System Information Commands

Call Description

10 Using the C Interpreter with VxWorks 653
10.14 C Interpreter Primitives

197

10

To see a symbol in another protection domain, it is necessary to specify the
protection domain. The following command displays all the symbols in the
protection domain ldTest. It also uses the option 0x8 to add pending symbols to the
displayed output. For more information on pending symbols, see the Wind River
Workbench User’s Guide, VxWorks 653 Version: Tools.

-> lkup "",0x8,ldTest
Symbol Table for ldTest (PD ID 0xca430)
gooFunc 0x02414fc8 text pend! (module_3.o)
fooVar 0x02415fe0 data (module_1.o)
printf 0x02400080 text link ---> kernel
looFunc 0x02414f50 text (module_3.o)
fooFunc 0x02414ed8 text (module_1.o)
[coreOS] ->

You can achieve the same result by switching to the ldTest protection domain and
then not specifying the domain in the lkup() command.

-> :ldTest
[ldTest] -> lkup "",0x8
gooFunc 0x02414fc8 text pend! (module_3.o)
fooVar 0x02415fe0 data (module_1.o)
printf 0x02400080 text link ---> kernel
looFunc 0x02414f50 text (module_3.o)
fooFunc 0x02414ed8 text (module_1.o)
->

Table 10-9 lists options for the lkup() command.

Table 10-9 lkup() Options

Option Value Description

LKUP_ALL 0x0 Print everything registered in the symbol tables.
(This is the default.)

LKUP_DETAILS 0x1 Print additional information about the symbols,
including the name of the modules that use a given
symbol.

LKUP_LINKS 0x2 Restrict output to the links to symbols in other
protection domains.

LKUP_ENTRY 0x4 Restrict output to the protection domain’s entry
points.

Wind River Workbench
Host Shell User’s Guide, 3.0

198

Another information command is a symbolic disassembler, l(). The command
syntax is:

l [addr[, n]]

This command lists n disassembled instructions, starting at addr. If n is 0 or not
given, the command uses the n from a previous l(), or if there is none, the default
value (10). If addr is 0, l() starts from where the previous l() stopped, or from where
an exception occurred (if there was an exception trap or a breakpoint since the last
l() command).

The disassembler uses any symbols that are in the symbol table. If an instruction
whose address corresponds to a symbol is disassembled (the beginning of a
routine, for instance), the symbol is shown as a label in the address field. Symbols
are also used in the operand field. The following is an example of disassembled
code for a PowerPC target:

[coreOS] -> l printf
Disassembly for coreOS (PD ID 0x3577f4)

printf:
0x0013edd4 9421ff80 stwu r1,-128(r1)
0x0013edd8 7c0802a6 mfspr r0,LR
0x0013eddc 90a10010 stw r5,16(r1)
0x0013ede0 3ca00014 lis r5,0x14 # 20
0x0013ede4 9081000c stw r4,12(r1)
0x0013ede8 38a501d0 addi r5,r5,0x1d0 # 464
0x0013edec 90c10014 stw r6,20(r1)
0x0013edf0 38810070 addi r4,r1,0x70 # 112
0x0013edf4 90010084 stw r0,132(r1)
0x0013edf8 38c00001 li r6,0x1 # 1
value = 0 = 0x0
[coreOS] ->

This example shows the printf() routine. The routine does a LINK, then pushes the
value of std_out onto the stack and calls the routine fioFormatV(). Notice that
symbols defined in C (routine and variable names) are prefixed with an underscore
(_) by the compiler.

LKUP_PENDING 0x8 Restrict output to the pending symbols required by
the modules within the protection domain.

LKUP_SYSMS 0x10 Restrict output to the symbols declared within the
protection domain. Do not show links, entry points,
or pending symbols.

Table 10-9 lkup() Options

Option Value Description

10 Using the C Interpreter with VxWorks 653
10.14 C Interpreter Primitives

199

10

Perhaps the most frequently used system information command is d(), which
displays a block of memory starting at the address that is passed to it as a
parameter. As with any other routine that requires an address, the starting address
can be a number, the name of a variable or routine, or the result of an expression.

Several examples of variations on d() appear below.

Display starting at address 1000 decimal:

-> d (1000)

Display starting at 1000 hex:

-> d 0x1000

Display starting at the address contained in the variable foo:

-> d foo

The above is different from a display starting at the address of foo. For example, if
foo is a variable at location 0x1234, and that memory location contains the value
10000, d() displays starting at 10000 in the previous example and at 0x1234 in the
following:

-> d &foo

Display starting at an offset from the value of foo:

-> d foo + 100

Display starting at the result of a function call:

-> d func (foo)

Display the code of func() as a simple hex memory dump:

-> d func

10.14.4 Modifying and Debugging the Target

Developers often need to change the state of the target, whether to run a new
version of some software module, to patch memory, or simply to single-step a
program. This section summarizes the shell commands of this type. For more
detailed reference information, see the windsh reference entry (open Wind River
Workbench and select Help > Help Contents > Wind River

! CAUTION: Remember that the effect of a command may be different in the host and
target shells. If you mount a drive on the target at /ata0/, you will be unable to cd()
to it from the host shell, which has no concept of a target working directory.
However, if you use @cd, the target shell will recognize the device.

Wind River Workbench
Host Shell User’s Guide, 3.0

200

Documentation > References > Host Tools > Wind River Host Shell API
Reference > windsh.)

Table 10-10 System Modification and Debugging Commands

Call Description

ml() Load an object module into memory and link it dynamically
into the runtime.

mlr() Load an object module into memory, link it dynamically into
the runtime, and run it.

ld() Obsolete; replaced by ml(). Available for backward
compatibility.

mu() Remove a dynamically-linked object module from target
memory, and free the storage it occupied.

unld() Obsolete; replaced by mu(). Available for backward
compatibility.

m() Modify memory in width (byte, short, or long) starting at
addr. The m() command displays successive words in
memory on the terminal; you can change each word by
typing a new hex value, leave the word unchanged and
continue by typing ENTER, or return to the shell by typing
a dot (“.”).

mRegs() Modify register values for a specific task.

b() Set or display breakpoints, in a specified task or in all tasks.

pdb() Set or display protection domain breakpoints.

bh() Set a hardware breakpoint.

pdbh() Set a hardware protection domain breakpoint.

s() Step a program to the next instruction.

so() Single-step, but step over a subroutine.

c() Continue from a breakpoint.

cret() Continue until the current subroutine returns.

bdall() Delete all breakpoints.

bd() Delete a breakpoint.

10 Using the C Interpreter with VxWorks 653
10.14 C Interpreter Primitives

201

10

One of the most useful shell features for interactive development is the dynamic
linker. With the shell command ml(), you can download and link new portions of
the application. Because the linking is dynamic, you only have to rebuild the
particular piece you are working on, not the entire application. Download can be
cancelled with CTRL+C or by clicking Cancel in the load progress indicator
window.

The m() command provides an interactive way of manipulating target memory.

The remaining commands in this group are for breakpoints and single-stepping.
You can set a breakpoint at any instruction. When an eligible task executes that
instruction (as specified with the b() command), the task that was executing on the
target suspends, and a message appears at the shell. At this point, you can examine
the task’s registers, do a task trace, and so on. The task can then be deleted,
continued, or single-stepped.

If a routine called from the shell encounters a breakpoint, it suspends just as any
other routine would, but in order to allow you to regain control of the shell, such
suspended routines are treated in the shell as though they had returned 0. The
suspended routine is nevertheless available for your inspection.

When you use s() to single-step a task, the task executes one machine instruction,
then suspends again. The shell display shows all the task registers and the next
instruction to be executed by the task.

You can use the bh() command to set hardware breakpoints at any instruction or
data element. Instruction hardware breakpoints can be useful to debug code

reboot() Return target control to the boot loader, then reset the target
server and reattach the shell.

bootChange() Modify the saved values of boot parameters.

sysSuspend() Enter system mode (if supported by the target-agent
configuration.)

sysResume() Return from system mode to task mode.

agentModeShow() Show the agent mode (system or task.)

sysStatusShow() Show the system context status (suspended or running.)

quit() or exit() Close the shell.

Table 10-10 System Modification and Debugging Commands

Call Description

Wind River Workbench
Host Shell User’s Guide, 3.0

202

running in ROM or flash EPROM. Data hardware breakpoints (watchpoints) are
useful if you want to stop when your program accesses a specific address.
Hardware breakpoints are available on Intel x86, MIPS, and some PowerPC
processors. The arguments of the bh() command are architecture-specific. For
more information, run the help() command. The number of hardware breakpoints
you can set is limited by the hardware; if you exceed the maximum number, you
will receive an error.

10.14.5 Protection Domains

This section describes routines that relate exclusively to protection domains. To
view task information on a per-domain basis, or to spawn a task in a specific
protection domain, use pdi(). You can also spawn a task in a user domain with sp()
if it is the current working domain of the shell. There are show routines for
domains in general, as well as specific routines for shared data and shared library
domains. The pdHelp() routine displays a summary of the protection domain
related utility functions with a short description of each.

For more detailed reference information, see the windsh reference entry (open
Wind River Workbench and select Help > Help Contents > Wind River
Documentation > References > Host Tools > Wind River Host Shell API
Reference > windsh.)

10.14.6 C++ Development

This section describes commands that are intended specifically for C++
applications.

Table 10-11 Protection Domain Commands

Call Description

pdi() Display tasks on a per-protection-domain basis.

pdShow() Display information for protection domains.

sdShow() Display information about a shared data protection domain.

slShow() Display information about a shared library protection domain.

pdHelp() Display protection domain shell function synopsis.

10 Using the C Interpreter with VxWorks 653
10.14 C Interpreter Primitives

203

10

For more detailed reference information, see the windsh reference entry (open
Wind River Workbench and select Help > Help Contents > Wind River
Documentation > References > Host Tools > Wind River Host Shell API
Reference > windsh.)

Also see the VxWorks 653 Programmer’s Guide: Developing C++ Applications.

In addition, you can use the Tcl routine shConfig to set the environment variable
LD_CALL_XTORS within a particular shell. This allows you to use a different C++
strategy in a shell than is used on the target. For more information on shConfig,
see 8.4 Setting Shell Environment Variables, p.141.

10.14.7 Object Display

This section describes commands that display operating system objects. The
browser provides displays that are analogous to the output of many of these
routines, except that browser windows can update their contents periodically.

For more detailed reference information, see the windsh reference entry (open
Wind River Workbench and select Help > Help Contents > Wind River
Documentation > References > Host Tools > Wind River Host Shell API
Reference > windsh.)

Table 10-12 C++ Development Commands

Call Description

cplusCtors() Call static constructors manually.

cplusDtors() Call static destructors manually.

cplusStratShow() Report on whether current constructor/destructor strategy is
manual or automatic.

cplusXtorSet() Set constructor/destructor strategy.

Wind River Workbench
Host Shell User’s Guide, 3.0

204

Table 10-13 Object Display Commands

Call Description

show(0 Print information on a specified object in the shell
window.

classShow() Show information about a class of kernel objects. List
available classes with lkup “ClassId”.

taskShow() Display information from a task’s task control block
(TCB), including protection domain information.

taskCreateHookShow() Show the list of task create routines.

taskDeleteHookShow() Show the list of task delete routines.

taskRegsShow() Display the contents of a task’s registers.

taskSwitchHookShow() Show the list of task switch routines.

taskWaitShow() Show information about the object a task is pended
on. Note that taskWaitShow() cannot give object IDs
for POSIX semaphores or message queues.

semShow() Show information about a semaphore.

semPxShow() Show information about a POSIX semaphore.

wdShow() Show information about a watchdog timer.

msgQShow() Show information about a message queue.

mqPxShow() Show information about a POSIX message queue.

iosDrvShow() Display a list of system drivers.

iosDevShow Display the list of devices in the system.

iosFdShow() Display a list of file descriptor names in the system.

memPartShow() Show partition blocks and statistics at specified level
of verbosity.

10 Using the C Interpreter with VxWorks 653
10.14 C Interpreter Primitives

205

10

memShow() Display the total amount of free and allocated space in
the system partition, the number of free and allocated
fragments, the average free and allocated fragment
sizes, and the maximum free fragment size. Show
current as well as cumulative values. With an
argument of 1, also display the free list of the system
partition; with an argument of 2, display the address
of each free block.

smMemShow() Display the amount of free space and statistics on
memory-block allocation for the shared-memory
system partition.

smMemPartShow() Display the amount of free space and statistics on
memory-block allocation for a specified
shared-memory partition.

moduleShow() Show the current status for all loaded modules.

moduleIdFigure() Report a loaded module’s module ID, given its name.

intVecShow() Display the interrupt vector table. This routine
displays information about the given vector or the
whole interrupt vector table if vector is equal to -1.
Note that intVecShow() is not supported on
architectures that do not use interrupt vectors.

memAttrShow() Display information about all the typed partitions for
a given protection domain.

memAttrPartShow() Display statistics of a given typed partition.

objShowAll() Show all information on an object.

objNameShow() Display information about named objects.

pdShow() Display information for protection domains.

sdShow() Display information about a shared data protection
domain.

slShow() Display information about a shared library protection
domain.

pgPoolLstShow() Show data of a list of page pools.

Table 10-13 Object Display Commands

Call Description

Wind River Workbench
Host Shell User’s Guide, 3.0

206

10.14.8 Network Status Display

This section describes commands that display information about the operating
system network. In order for a protocol-specific command to work, the
appropriate protocol must be included in your operating system configuration.

For more detailed reference information, see the windsh reference entry (open
Wind River Workbench and select Help > Help Contents > Wind River
Documentation > References > Host Tools > Wind River Host Shell API
Reference > windsh.)

pgPoolShow() Show data of a page pool.

pgMgrShow() Display information about a page manager.

Table 10-13 Object Display Commands

Call Description

Table 10-14 Network Status Display Commands

Call Description

hostShow() Display the host table.

icmpstatShow() Display statistics for Internet Control Message Protocol
(ICMP).

ifShow() Display the attached network interfaces.

inetstatShow() Display all active connections for Internet protocol sockets.

ipstatShow() Display IP statistics.

routestatShow() Display routing statistics.

tcpstatShow() Display all statistics for the TCP protocol.

tftpInfoShow() Get TFTP status information.

udpstatShow() Display statistics for the UDP protocol.

10 Using the C Interpreter with VxWorks 653
10.15 Resolving Name Conflicts Between Host and Target

207

10

10.15 Resolving Name Conflicts Between Host and Target

If you invoke a name that stands for a host shell command, the shell always
invokes that command, even if there is also a target routine with the same name.
Thus, for example, i() always runs on the host, regardless of whether you have the
VxWorks routine of the same name linked into your target.

However, you may occasionally need to call a target routine that has the same
name as a host shell command. The shell supports a convention allowing you to
make this choice: use the single-character prefix “@“ to identify the target version
of any routine. For example, to run a target routine named i(), invoke it with the
name @i().

10.16 Examples

Execute C statements.

-> test = malloc(100); test[0] = 10; test[1] = test[0] + 2
-> printf("Hello!")

Download and dynamically link a new module.

-> ld < /usr/apps/someProject/file1.o

Create new symbols.

-> MyInt = 100; MyName = "Bob"

Show system information (task summary).

-> i

Show information about a specific task.

-> ti(s1u0)

Suspend a task, then resume it.

-> ts(s1u0)
-> tr(s1u0)

Show stack trace.

-> tt

Show current working directory; list contents of directory.

Wind River Workbench
Host Shell User’s Guide, 3.0

208

-> pwd
-> ls

Set a breakpoint.

-> b(0x12345678)

Step program to the next routine.

-> s

Call a VxWorks function; create a new symbol (my_fd).

-> my_fd = open ("file", 0, 0)

Call a function from your application.

-> someFunction (1,2,3)

Sometimes a routine in your application code will have the same name as a host
shell command. If such a conflict arises, you can direct the C interpreter to execute
the target routine, rather than the host shell command, by prefixing the routine
name with @, as shown in the example below.

Call an application function that has the same name as a shell command.

-> @i()

209

 11
Using the Tcl Interpreter with

VxWorks 653

11.1 Introduction 209

11.2 Controlling the Target 210

11.3 Accessing the WTX Tcl API 211

11.4 Calling Target Routines 212

11.5 Passing Values to Target Routines 212

11.6 Calling Under C Control 213

11.7 Shell Initialization 213

11.1 Introduction

The Tcl interpreter allows you to access the WTX Tcl API, and to exploit Tcl’s
sophisticated scripting capabilities to write complex scripts to help you debug and
monitor your target.

To switch to the Tcl interpreter from another mode, type a question mark (?) at the
prompt; the prompt changes to tcl> to remind you of the shell’s new mode. If you
are in another interpreter mode and want to use a Tcl command without changing
to Tcl mode, type a ? before your line of Tcl code.

Wind River Workbench
Host Shell User’s Guide, 3.0

210

The following example uses the C interpreter to define a variable in the symbol
table, then switch to the Tcl interpreter to define a similar Tcl variable in the shell
itself, and then switch back to the C interpreter:

-> foo="bar"
new symbol "foo" added to symbol table.
foo = 0x3616e8: value = 3544824 = 0x3616f8 = foo + 0x10
-> ?
tcl> set foo {bar}
bar
tcl> C
->

On startup, you can use the option -Tclmode (or -T) to start with the Tcl interpreter.

Using the shell’s Tcl interface allows you to extend the shell with your own
procedures, and also provides a set of control structures which you can use
interactively. The Tcl interpreter also gives you access to command-line utilities on
your development host.

11.2 Controlling the Target

In the Tcl interpreter, you can create custom commands, or use Tcl control
structures for repetitive tasks, while using the building blocks that allow the C
interpreter and the host shell commands to control the target remotely. These
building blocks as a whole are called the wtxtcl procedures.

For example, wtxMemRead returns the contents of a block of target memory
(given its starting address and length). That command in turn uses a special
memory-block data type designed to permit memory transfers without
unnecessary Tcl data conversions. The following example uses wtxMemRead,
together with the memory-block routine memBlockWriteFile, to write a Tcl
procedure that dumps target memory to a host file. Because almost all the work is
done on the host, this procedure works whether or not the target run-time
environment contains I/O libraries or any networked access to the host file system.

tgtMemDump - copy target memory to host file
#

! CAUTION: You may not embed Tcl evaluation inside a C expression; the ? prefix
works only as the first non-blank character on a line, and passes the entire line
following it to the Tcl interpreter.

11 Using the Tcl Interpreter with VxWorks 653
11.3 Accessing the WTX Tcl API

211

11

SYNOPSIS:
tgtMemDump hostfile start nbytes

proc tgtMemDump {fname start nbytes} {
set memHandle [wtxMemRead $start $nbytes]
memBlockWriteFile $memHandle $fname

}

For reference information on the wtxtcl routines available in the host shell, see the
online help: in Workbench, select Help > Help Contents > Wind River
Documentation > References > Host Tools > WTX Tcl Library Reference.

All of the commands defined for the C interpreter (see 10. Using the C Interpreter
with VxWorks 653) are also available, with a double-underscore prefix, from the Tcl
level; for example, to call i() from the Tcl interpreter, run the Tcl procedure _ _i.
However, in many cases, it is more convenient to call a wtxtcl routine instead,
because the host shell commands are designed to operate in the C interpreter
context.

For example, you can call the dynamic linker using ld from the Tcl interpreter, but
the argument that names the object module may not seem intuitive: it is the
address of a string stored on the target. It is more convenient to call the underlying
wtxtcl command. In the case of the dynamic linker, the underlying wtxtcl
command is wtxObjModuleLoad, which takes an ordinary Tcl string as its
argument.

11.3 Accessing the WTX Tcl API

The Wind River Tool Exchange (WTX) Tcl API allows you to launch and kill a
process, and to apply several actions to it such as debugging actions (continue,
stop, step), memory access (read, write, set), perform gopher string evaluation, and
redirect I/O at launch time.

A real time process (RTP) can be seen as a protected memory area. One or more
tasks can run in an RTP or in the kernel memory context as well. It is not possible
to launch a task or perform load actions in an RTP, therefore an RTP is seen by the
target server only as a memory context.

For a complete reference of WTX Tcl API commands, see the online help: in
Workbench, select Help > Help Contents > Wind River Documentation >
References > Host Tools > WTX Tcl Library Reference.

Wind River Workbench
Host Shell User’s Guide, 3.0

212

11.4 Calling Target Routines

The shParse utility allows you to embed calls to the C interpreter in Tcl
expressions; the most frequent application is to call a single target routine, with the
arguments specified (and perhaps capture the result). For example, the following
sends a logging message to your target console:

tcl> shParse {logMsg("foobar\n")}
32

You can also use shParse to call host shell commands more conveniently from the
Tcl interpreter, rather than using their wtxtcl building blocks. For example, the
following is a convenient way to spawn a task from Tcl, using the C interpreter
command sp(), if you do not remember the underlying wtxtcl command:

tcl> shParse {sp appTaskBegin}
task spawned: id = 25e388, name = u1
0

11.5 Passing Values to Target Routines

Because shParse accepts a single, ordinary Tcl string as its argument, you can pass
values from the Tcl interpreter to C subroutine calls by using Tcl facilities to
concatenate the appropriate values into a C expression.

For example, a more realistic way of calling logMsg() from the Tcl interpreter
would be to pass, as its argument, the value of a Tcl variable rather than a literal
string. The following example evaluates the Tcl variable tclLog and inserts its
value (with a newline appended) as the logMsg() argument:

tcl> shParse "logMsg(\"$tclLog\\n\")"
32

11 Using the Tcl Interpreter with VxWorks 653
11.6 Calling Under C Control

213

11

11.6 Calling Under C Control

To use a Tcl command and return immediately to the C interpreter, you can type a
single line of Tcl prefixed with the ? character (rather than using ? by itself to toggle
into Tcl mode). For example:

-> ?set test foobar; puts "This is $test."
This is foobar.
->

Notice that the -> prompt indicates that you are still in the C interpreter, even
though you just executed a line of Tcl.

For example, you may want to use Tcl control structures to supplement the
facilities of the C interpreter. Suppose you have an application under development
that involves several collaborating tasks; in an interactive development session,
you may need to restart the whole group of tasks repeatedly. You can define a Tcl
variable with a list of all the task entry points, as follows:

-> ? set appTasks {appFrobStart appGetStart appPutStart …}
appFrobStart appGetStart appPutStart …

Then whenever you need to restart the whole list of tasks, you can use something
like the following:

-> ? foreach it $appTasks {shParse "sp($it)"}
task spawned: id = 25e388, name = u0
task spawned: id = 259368, name = u1
task spawned: id = 254348, name = u2
task spawned: id = 24f328, name = u3

11.7 Shell Initialization

When you execute an instance of the host shell, it begins by looking for a file called
windsh.tcl in two places: first under
installDir/workbench-3.x/foundation/build/resource/windsh, and then in the
directory specified by the HOME environment variable (if that environment
variable is defined). In each of these directories, if the file exists, the shell reads and

! CAUTION: You may not embed Tcl evaluation inside a C expression; the ? prefix
works only as the first nonblank character on a line, and passes the entire line
following it to the Tcl interpreter.

Wind River Workbench
Host Shell User’s Guide, 3.0

214

executes its contents as Tcl expressions before beginning to interact. You can use
this file to automate any initialization steps you perform repeatedly.

You can also specify a Tcl expression to execute initially on the host shell command
line, with the option -e tcl_expression. For example, you can test an initialization file
before saving it as windsh.tcl using this option, as follows:

% windsh phobos -e "source c:\\fred\\tcltest"

11.7.1 Shell Initialization File

This file causes I/O for target routines called in the host shell to be directed to the
target’s standard I/O rather than to the host shell. It changes the default C++
strategy to automatic for this shell, sets a path for locating load modules, and
causes modules not to be copied to the target server.

Redirect Task I/O to WindSh
shConfig SH_GET_TASK_IO off
Set C++ strategy
shConfig LD_CALL_XTORS on
Set Load Path
shConfig LD_PATH "/home/username/project/app;/home/username/project/test"
Let the Target Server directly access the module
shConfig LD_SEND_MODULES off

215

PART II I

Appendices

A Using the Host Shell Line Editor 217

B Single Step Compatibility 225

Wind River Workbench
Host Shell User’s Guide, 3.0

216

217

 A
Using the Host Shell Line Editor

A.1 Introduction 217

A.2 vi-Style Editing 218

A.3 emacs-Style Editing 221

A.4 Command Matching 223

A.1 Introduction

This appendix applies to all target operating systems.

The host shell provides various line editing facilities available from the library
ledLib (Line Editing Library). ledLib serves as an interface between the user input
and the underlying command-line interpreters, and facilitates the user’s
interactive shell session by providing a history mechanism and the ability to scroll,
search, and edit previously typed commands. Any input is treated by ledLib until
the user presses the ENTER key, at which point the command typed is sent on to
the appropriate interpreter.

The line editing library also provides command completion, path completion,
command matching, and synopsis printing functionality.

Wind River Workbench
Host Shell User’s Guide, 3.0

218

A.2 vi-Style Editing

The ESC key switches the shell from normal input mode to edit mode. The history
and editing commands in Table A-1 and Table A-3 are available in edit mode.

Some line editing commands switch the line editor to insert mode until an ESC is
typed (as in vi) or until an ENTER gives the line to one of the shell interpreters.
ENTER always gives the line as input to the current shell interpreter, from either
input or edit mode.

In input mode, the shell history command h() displays up to 20 of the most recent
commands typed to the shell; older commands are lost as new ones are entered.
You can change the number of commands kept in history by running h() with a
numeric argument. To locate a previously typed line, press ESC followed by one
of the search commands listed in Table A-2; you can then edit and execute the line
with one of the commands from the table.

A.2.1 Switching Modes and Controlling the Editor

Table A-1 lists commands that give you basic control over the editor.

Table A-1 vi-Style Basic Control Commands

Command Description

h [size] Displays shell history if no argument is given; otherwise sets
history buffer to size.

ESC Switch to line editing mode from regular input mode.

ENTER Give line to current interpreter and leave edit mode.

CTRL+D Complete symbol or pathname (edit mode), display synopsis of
current symbol (symbol must be complete, followed by a space), or
end shell session (if the command line is empty).

[tab] Complete symbol or pathname (edit mode).

CTRL+H Delete a character (backspace).

CTRL+U Delete entire line (edit mode).

CTRL+L Redraw line (edit mode).

A Using the Host Shell Line Editor
A.2 vi-Style Editing

219

A

A.2.2 Moving and Searching in the Editor

Table A-2 lists commands for moving and searching in input mode.

CTRL+S Suspend output.

CTRL+Q Resume output.

CTRL+W Display HTML reference entry for a routine.

Table A-1 vi-Style Basic Control Commands (cont’d)

Command Description

Table A-2 vi-Style Movement and Search Commands

Command Description

nG Go to command number n. The default value for n is 1.

/s or ?s Search for string s backward or forward in history.

n Repeat last search.

nk or n- Get nth previous shell command.

nj or n+ Get nth next shell command.

nh Go left n characters (also CTRL+H).

nl or SPACE Go right n characters.

nw or nW Go n words forward, or n large words. Words are separated by
spaces or punctuation; large words are separated by spaces only.

ne or nE Go to end of the nth next word, or nth next large word.

nb or nB Go back n words, or n large words.

$ Go to end of line.

0 or ^ Go to beginning of line, or to first nonblank character.

fc or Fc Find character c, searching forward or backward.

Wind River Workbench
Host Shell User’s Guide, 3.0

220

A.2.3 Inserting and Changing Text

Table A-3 lists commands to insert and change text in the editor.

A.2.4 Deleting Text

Table A-4 shows commands for deleting text.

Table A-3 vi-Style Insertion and Change Commands

Command Description

a or A ...ESC Append, or append at end of line (ESC ends input).

i or I ...ESC Insert, or insert at beginning of line (ESC ends input).

ns ...ESC Change n characters (ESC ends input).

cw ...ESC Change word (ESC ends input).

cc or S ...ESC Change entire line (ESC ends input).

c$ or C ...ESC Change from cursor to end of line (ESC ends input).

c0 ...ESC Change from cursor to beginning of line (ESC ends input).

R ...ESC Type over characters (ESC ends input).

nrc Replace the following n characters with c.

~ Toggle between lower and upper case.

Table A-4 vi-Style Commands for Deleting Text

Command Description

nx or nX Delete next n characters or previous n characters, starting at cursor.

dw Delete word.

dd Delete entire line (also CTRL+U).

d$ or D Delete from cursor to end of line.

d0 Delete from cursor to beginning of line.

A Using the Host Shell Line Editor
A.3 emacs-Style Editing

221

A

A.2.5 Put and Undo Commands

Table A-5 shows put and undo commands.

A.3 emacs-Style Editing

The shell history mechanism is similar to the UNIX Tcsh shell history facility, with
a built-in line editor similar to emacs that allows previously typed commands to
be edited. The command h() displays the 20 most recent commands typed into the
shell; old commands fall off the top as new ones are entered.

To edit a command, the arrow keys can be used on most of the terminals. Up arrow
and down arrow move up and down through the history list, like CTRL+P and
CTRL+N. Left arrow and right arrow move the cursor left and right one character,
like CTRL+B and CTRL+F.

A.3.1 Moving the Cursor

Table A-6 lists commands for moving the cursor in emacs mode.

Table A-5 vi-Style Put and Undo Commands

Command Description

p or P Put last deletion after cursor, or in front of cursor.

u Undo last command.

Table A-6 emacs-Style Cursor Motion Commands

Command Description

CTRL+B Move cursor back (left) one character.

CTRL+F Move cursor forward (right) one character.

ESC+b Move cursor back one word.

ESC+f Move cursor forward one word.

Wind River Workbench
Host Shell User’s Guide, 3.0

222

A.3.2 Deleting and Recalling Text

Table A-7 shows commands for deleting and recalling text.

A.3.3 Special Commands

Table A-8 shows some special emacs-mode commands.

CTRL+A Move cursor to beginning of line.

CTRL+E Move cursor to end of line.

Table A-6 emacs-Style Cursor Motion Commands (cont’d)

Command Description

Table A-7 emacs-Style Deletion and Recall Commands

Command Description

DEL or CTRL+H Delete character to left of cursor.

CTRL+D Delete character under cursor.

ESC+d Delete word.

ESC+DEL Delete previous word.

CTRL+K Delete from cursor to end of line.

CTRL+U Delete entire line.

CTRL+P Get previous command in the history.

CTRL+N Get next command in the history.

!n Recall command n from the history.

!substr Recall first command from the history matching substr.

Table A-8 Special emacs-Style Commands

Command Description

CTRL+U Delete line and leave edit mode.

A Using the Host Shell Line Editor
A.4 Command Matching

223

A

A.4 Command Matching

Whenever the beginning of a command is followed by CTRL+D, ledLib lists any
commands that begin with the string entered.

To avoid ambiguity, the commands displayed depend upon the current interpreter
mode. For example, if a command string is followed by CTRL+D from within the
C interpreter, ledLib attempts to list any VxWorks symbols matching the pattern.
If the same is performed from within the command interpreter, ledLib attempts to
list any commands available from within command mode that begin with that
string.

A.4.1 Directory and File Matching

You can also use CTRL+D to list all the files and directories that match a certain
string. This functionality is available from all interpreter modes.

A.4.2 Command and Path Completion

ledLib attempts to complete any string typed by the user that is followed by the
TAB character (for commands, the command completion is specific to the currently
active interpreter).

Path completion attempts to complete a directory name when the TAB key is
pressed. This functionality is available from all interpreter modes.

CTRL+L Redraw line.

CTRL+D Complete symbol name.

ENTER Give line to interpreter and leave edit mode.

Table A-8 Special emacs-Style Commands (cont’d)

Command Description

Wind River Workbench
Host Shell User’s Guide, 3.0

224

225

 B
Single Step Compatibility

B.1 Introduction 225

B.2 Scripting 226

B.3 SingleStep Command Equivalents 226

B.4 SingleStep read Command Compatibility 230

B.5 SingleStep write Command Compatibility 232

B.6 SingleStep Variable Compatibility 233

B.1 Introduction

This chapter describes backward compatibility for previous users of Wind River
SingleStep.

In this release, Wind River has used the host shell to implement a replacement for
SingleStep scripting functionality.

The host shell provides a Tcl interpreter in place of SingleStep’s C shell. Tcl offers
superior control constructs (i.e., arrays, namespaces, exceptions, and so on) and the
ability to bind to native code libraries.

In the host shell, Tcl variables take the place of a subset of SingleStep’s debugger
and shell variables. These variables are given default values by the host shell’s
startup Tcl code.

Wind River Workbench
Host Shell User’s Guide, 3.0

226

When the host shell starts, it sources the file value/.wind/wb/windsh.tcl, where
value is the value of the environment variable HOME; or, if that variable is not
defined, the value of the environment variable WIND_FOUNDATION_PATH. You
can edit this file to contain arbitrary Tcl commands to execute every time the host
shell starts. In particular, commands in this file can modify the default value of Tcl
variables used to provide SingleStep compatibility.

B.2 Scripting

The host shell will not execute SingleStep scripts. Existing SingleStep scripts must
be manually converted, using the equivalents described in this chapter.

The host shell does not have all of the scripting functionality of SingleStep; in
particular, pROBE+ and pRISM+ debugger variables are not supported. See
B.6 SingleStep Variable Compatibility, p.233.

B.3 SingleStep Command Equivalents

Table B-1 enumerates each SingleStep command, along with its description and
the equivalent host shell command (if any). There are 72 SingleStep commands.
Some have equivalent host shell commands, some have no equivalent host shell
commands, and some have similar but not exactly equivalent host shell
commands.

Table B-1 SingleStep Command Equivalents

SingleStep
Command Description Host Shell Equivalent

? Print value of expression print (GDB mode)

@ Set shell variable to
expression

set (Tcl mode)

alias Create command aliases proc (Tcl mode)

B Single Step Compatibility
B.3 SingleStep Command Equivalents

227

B

args Display own arguments None.

asm Assemble into memory None.

break Set a breakpoint break or hbreak (GDB mode). These
commands are not as functional as the
SingleStep break command.

cache Display instruction/data
cache

None.

call Call function or subroutine None.

cd Change directory cd (cmd and Tcl modes)

cflush Flush cache memory None.

continue Continue loop continue (Tcl mode)

control Enable diagnostics None.

copymem Copy memory None.

curtask Set current task attach (GDB mode)

debug Select program to debug No single equivalent. This command maps
to the wrsreset and wrsdownload
commands.

echo Display arguments puts (Tcl mode)

exit Exit debugger or script exit (Tcl mode)

false No-op that always fails false (Tcl procedure defined in host shell
startup script)

flash Flash programmer
commands

wrspassthru (GDB mode)

foreach Loop through a list foreach (Tcl mode)

glob Display arguments None.

Table B-1 SingleStep Command Equivalents

SingleStep
Command Description Host Shell Equivalent

Wind River Workbench
Host Shell User’s Guide, 3.0

228

go Run the target Similar command: continue (GDB mode).
The continue command does not support
the –n and –i options from the go
command.

goto Execute to a location Similar commands: set and continue (GDB
mode). This is equivalent to setting the
instruction pointer and issuing a continue
command.

help

help Display help on commands help (GDB mode)

history Display command history None.

if Conditional execution if (Tcl mode)

jobs Report background jobs None.

kernel Display kernel objects None.

load Load memory None. (Downloads Block Binary files,
which the host shell does not support.)

loadi Load a memory image wrsdownload (GDB mode)

loop Execute until here again Similar commands: tbreak and continue
(GDB mode). This is equivalent to setting a
temporary breakpoint and issuing a
continue command.

loopbreak Break a loop break (Tcl mode)

mem Specify a memory map wrsmemmap (GDB mode)

module Load or unload symbols Similar command: wrsdownload (GDB
mode)

nop No operation ; (Tcl mode)

offset For position independence None.

osboot Boot probe+ None.

Table B-1 SingleStep Command Equivalents

SingleStep
Command Description Host Shell Equivalent

B Single Step Compatibility
B.3 SingleStep Command Equivalents

229

B

probe Pass command to probe+ None.

pwd Print working directory pwd (Tcl mode)

read Read a variable or memory Similar commands: print and x (GDB
mode).

regs Display registers print and info registers (GDB mode)

repeat Repeat a command Similar commands: for or while (Tcl
mode).

reset Reset the target Similar command: wrsreset (GDB mode).

see See contents of files None.

set Set debugger variable Similar command: set (Tcl mode). (In the
host shell, all variables are Tcl variables.)

setenv Set an environment
variable

set env(varname) value (Tcl mode)

shift Shift a variable set argv [lreplace $argv 0 0] (Tcl mode)

sizeof Display size of variables None.

sleep Simulate sleep mode after (Tcl mode)

source Execute from a file source (Tcl mode)

stack Display the call stack bt (GDB mode)

status Get target status None.

step Step one statement step (GBD mode)

stop Stop the target None.

targetio Share target i/o spaces None.

true Generate success status true (Tcl procedure defined in host shell
startup script.)

typeof Display variable types None.

umask Get/set creation mask None.

Table B-1 SingleStep Command Equivalents

SingleStep
Command Description Host Shell Equivalent

Wind River Workbench
Host Shell User’s Guide, 3.0

230

B.4 SingleStep read Command Compatibility

The SingleStep read command has a complex syntax that has no exact equivalent
in the host shell. Existing host shell GDB mode commands provide most of the

unalias Remove an alias Similar command: proc (Tcl mode). The
closest thing the host shell can do to
emulate unalias is to redefine the Tcl
procedure to do nothing.

unset Remove a shell variable unset (Tcl mode)

unsetenv Remove an environment
variable

array unset env varname (Tcl mode).

update Control view updates
(graphical)

None.

upload Upload memory Similar command: wrsupload (GDB mode)

visible Execute DOS command exec (Tcl mode). The exec command works
on every platform, not just Windows.

wait Wait for child processes None.

watch Watch a variable None.

wedit Edit source code
(graphical)

None.

where Display context list (GDB mode)

whereis Find files in the path None.

while Command loop while (GDB mode)

write Write variables or memory Similar commands: print (GDB mode) or
mem modify (Cmd mode).

Table B-1 SingleStep Command Equivalents

SingleStep
Command Description Host Shell Equivalent

B Single Step Compatibility
B.4 SingleStep read Command Compatibility

231

B

same functionality as the read command. Table B-2 shows how various SingleStep
read commands map to host shell GDB mode commands.

Table B-2 SingleStep read Command Compatibility

SingleStep read Command Description Host Shell Equivalent

read x Display value of variable x. print x

read x y z Display values of three
variables.

GDB mode: print x; print y; print z

Tcl mode: foreach var {x y z} {eval “puts \$$var”}

read -1#arg Display variable arg from
first function on stack.

None.

read file.c#var Display static variable var
from file.c.

print file.c:var

read main Disassemble starting at
main.

disassemble main

read 0x4000 Dump starting at address
0x4000.

x /32xw 0x4000

read -ux CPU:0x3FF00=long Read the MBAR register of
a 68360.

None.

read -Rux 0x7E02=char Read one byte at address
0x7E02.

x /1xb 0x7e02

read -F 0x4000 Disassemble starting at
0x4000.

disassemble 0x4000

read var=long Display variable var as if it
were a long.

print (long)var

read 0x120=(sym) Display 0x120 using type
from variable sym.

None.

read *p Display whatever p points
to.

print *p

read a[5] Display the fifth element of
array a.

print [a]5

read str.mem Display member mem. print str.mem

Wind River Workbench
Host Shell User’s Guide, 3.0

232

B.5 SingleStep write Command Compatibility

The SingleStep write command has a complex syntax that has no exact equivalent
in the host shell. Existing host shell GDB mode commands provide most of the
same functionality as the write command. Table B-3 shows how various SingleStep
read commands map to host shell GDB mode commands.

read p->mem Display member mem. print p->mem

read Continue previous read. None.

Table B-2 SingleStep read Command Compatibility

SingleStep read Command Description Host Shell Equivalent

Table B-3 SingleStep write Command Compatibility

SingleStep write Command Description Host Shell Equivalent

write var=99 Write value 99 to variable
var.

set var=99

write x=1 y=2 z=3 Write values to multiple
variables.

set x=1; set y=2; set z=3

write *ptr=88 Write value to destination
of a pointer.

set *ptr = 88

write obj.member=77 Write value to member of
structure or class.

set obj.member = 77

write –b 0x1000=99 Write the value 99 to the
byte at 0x1000.

set *(char *)0x1000 = 99

write –w 0x1000=999 Write the value 999 to the
word at 0x1000.

set *(short *)0x1000 = 999

write –l 0x1000=99999 Write the value 99999 to
the longword at 0x1000.

set *(long *)0x1000 = 99999

B Single Step Compatibility
B.6 SingleStep Variable Compatibility

233

B

The following SingleStep write command options are not implemented in the host
shell:

■ -c count
■ -q
■ -r
■ -u
■ -x
■ -H
■ -W

B.6 SingleStep Variable Compatibility

Table B-4 enumerates each SingleStep debugger and shell variable along with its
description and the equivalent host shell variable (if any). There are 44 SingleStep
variables. Some have equivalent host shell variables, some have no equivalent host
shell variables, and some have similar but not exactly equivalent host shell
variables.

SingleStep had two variable namespaces: debugger variables and shell variables.
The host shell only has the Tcl variable namespace.

write –s 0x1000=3.14 Write the value 3.14 to the
single-precision float at
0x1000.

set *(float *)0x1000 = 3.14

write –d 0x1000=3.14 Write value 3.14 to the
double-precision float at
0x1000.

set *(double *)0x1000 = 3.14

write –e 0x1000=3.14 Write value 3.14 to the
extended-precision float at
0x1000.

None.

write -f 99 x y z Write value 99 to variables
x, y, and z.

No GDB mode equivalent.

In Tcl mode: foreach var {x y z} {set $var 99}

Table B-3 SingleStep write Command Compatibility

SingleStep write Command Description Host Shell Equivalent

Wind River Workbench
Host Shell User’s Guide, 3.0

234

Table B-4 SingleStep Variable Equivalents

SingleStep
Variable Description Host Shell Equivalent

altsep Word separator None

altshell Alternate shell None

argv List of arguments None

backtick Command substitution character None

breaknums Breakpoint numbers breaknums

cdpath Directory search path None

child Background process id None

debugblk Download data file None

debugchip Processor name None

debugdb Symbol database file None

debugdb2 Symbol database file None

debugout Linker output file None

echo Echo commands None

hexreplace Floats in hex None

histchars History substitution characters None

history Size of history list None

home Home directory Equivalent expression:
$env(HOME)

ignoreeof Ignore eof characters None

kanji_code Kanji codes None

litebold Highlight sequence None

liteoff No source highlight None

liteon Turn on highlighting None

mail Files for mail None

B Single Step Compatibility
B.6 SingleStep Variable Compatibility

235

B

morelines Lines for display None

no_binary_msg ASCII download None

noclobber Do not overwrite files None

noglob No file name substitution None

nonomatch No match complaint None

ovlflags Overlay flags None

path Executable search path $env(PATH)

product Version of debugger Equivalent expression:
[tclShellVersionGet]

prompt Command line prompt None

random Random seed value Equivalent expressions: expr
srand(N) or expr rand()

root Root directory name root

shell Primary shell name None

srclines Lines for source window None

srclist Source file path list None

srcpath Source file path list None

status Command return status None

stkberr Stack error checking None

unixwild Wild card style None

vectaddr Vector address None

vectskip Exception vector list None

verbose Verbose information None

Table B-4 SingleStep Variable Equivalents

SingleStep
Variable Description Host Shell Equivalent

	Wind River Workbench Host Shell User's Guide, 3.0
	Contents
	1 Overview
	1.1 Introduction
	1.1.1 Target Operating System Configuration
	1.1.2 Reference Pages

	Part 1 VxWorks 6.x, Linux, and Standalone Targets
	2 Using the Host Shell
	2.1 Introduction
	2.2 Starting the Host Shell
	2.2.1 Starting the Host Shell from the Command Prompt
	Setting Your Environment
	Starting the Target Server
	Starting the Host Shell
	Starting the Host Shell from an Existing Connection
	Host Shell Startup Options

	2.2.2 Starting the Host Shell from Workbench
	2.2.3 Starting a Standalone Host Shell with an OCD Connection
	Starting the Host Shell
	Connecting to a Target

	2.3 Switching Interpreters
	2.3.1 Evaluating Statements in Different Modes

	2.4 Setting Shell Environment Variables
	2.5 Path Mapping
	The ROOT_PATH_MAPPING Variable
	The VXE_PATH Variable

	2.6 Running the Host Shell in Batch Mode
	2.7 Host Shell Logging
	2.8 Host Shell Scripting
	2.8.1 Single-Stepping Scripts
	2.8.2 Stepping in the Tcl Interpreter

	2.9 Host Shell Features
	2.9.1 I/O Redirection
	2.9.2 Symbol Matching
	2.9.3 Directory and File Listing
	2.9.4 Target Symbol and Path Completion
	2.9.5 Synopsis Printing
	2.9.6 Data Conversion
	2.9.7 Data Calculation
	Calculations with Variables

	2.10 Stopping the Host Shell
	2.11 Host Shell Architecture
	2.11.1 Layers of Interpretation

	3 Using the C Interpreter with VxWorks 6.x
	3.1 Introduction
	3.2 C Interpreter Limitations
	3.3 Host and Kernel Shell Differences
	3.3.1 Function Calls in the Kernel

	3.4 Running Target Routines From the Shell
	3.4.1 Invocations of VxWorks Subroutines
	3.4.2 Invocations of Application Subroutines

	3.5 Rebooting from the Shell
	3.6 Using the Host Shell for System-Mode Debugging
	3.7 Interrupting a Shell Command
	3.8 Task References
	The “Current” Task and Address

	3.9 Data Types
	3.10 Expressions
	3.10.1 Literals
	3.10.2 Variable References
	3.10.3 Operators
	3.10.4 Function Calls
	3.10.5 Arguments to Commands

	3.11 Assignments
	3.11.1 Typing and Assignment
	3.11.2 Automatic Creation of New Variables

	3.12 Comments
	3.13 Strings
	3.13.1 Strings and Pathnames

	3.14 Ambiguity of Arrays and Pointers
	3.15 Pointer Arithmetic
	3.16 Redirection in the C Interpreter
	3.16.1 Ambiguity Between Redirection and C Operators
	3.16.2 The Nature of Redirection
	3.16.3 Scripts: Redirecting Shell I/O
	C Interpreter Startup Scripts

	3.17 C++ Interpretation
	3.17.1 Overloaded Function Names
	3.17.2 Automatic Name Demangling

	3.18 C Interpreter Primitives
	3.18.1 Managing Tasks
	3.18.2 Task Information
	3.18.3 System Information
	3.18.4 System Modification and Debugging
	3.18.5 C++ Development
	3.18.6 Object Display
	3.18.7 Network Status Display

	3.19 Resolving Name Conflicts Between Host and Target
	3.20 Examples

	4 Using the Command Interpreter with VxWorks 6.x
	4.1 Introduction
	4.2 General Commands
	4.3 Displaying Target Agent Information
	4.4 Working with Memory
	4.5 Displaying Object Information
	4.6 Working with Symbols
	4.6.1 Accessing a Symbol’s Contents and Address
	4.6.2 Symbol Value Access
	4.6.3 Symbol Address Access
	4.6.4 Special Consideration of Text Symbols

	4.7 Displaying, Controlling, and Stepping Through Tasks
	4.8 Setting Shell Context Information
	4.9 Displaying System Status
	4.10 Using and Modifying Aliases
	4.11 Launching RTPs
	4.11.1 Redirecting Output to the Host Shell
	4.11.2 Monitoring and Debugging RTPs
	4.11.3 Setting Breakpoints

	4.12 Event Scripting Commands
	handler add
	handler show
	handler remove
	handler enable
	4.12.1 Limitations
	4.12.2 Event Scripting Example

	4.13 General Examples

	5 Using the GDB Interpreter
	5.1 Introduction
	5.2 General GDB Commands
	5.3 Working with Breakpoints
	5.4 Specifying Files to Debug
	5.5 Running and Stepping Through a File
	5.6 Displaying Disassembly and Memory Information
	5.7 Examining Stack Traces and Frames
	5.8 Displaying Information and Expressions
	5.8.1 info
	5.8.2 print

	5.9 Displaying and Setting Variables
	5.10 Working with Signals
	5.10.1 handle
	5.10.2 info handle
	5.10.3 signal
	5.10.4 send signal

	5.11 Event Scripting
	5.11.1 Event Scripting Commands
	display
	undisplay
	info display
	enable display
	disable display
	commands
	info commands
	enable commands
	disable commands

	5.11.2 Event Scripting Example

	5.12 Wind River On-Chip Debugging GDB Commands
	5.12.1 target ocd
	5.12.2 wrsdeftarget
	5.12.3 wrsregquery
	5.12.4 Reset and Download Commands

	6 Using the Tcl Interpreter
	6.1 Introduction
	6.2 Controlling the Target
	6.3 Accessing the WTX Tcl API
	6.4 Calling Target Routines
	6.5 Passing Values to Target Routines
	6.6 Calling Under C Control
	6.6.1 Potential Problems

	6.7 Shell Initialization
	6.7.1 Shell Initialization File

	6.8 Tcl Scripting
	6.8.1 Event Scripting
	API Description

	7 Executing an OCD Reset and Download
	7.1 Introduction
	7.2 Set Target Registers
	7.3 Play Back Firmware Commands
	7.4 Reset One or More Cores
	7.5 Download Executables and Data and Program Flash
	Download Executables and Data
	Erase Flash Memory (Optional)
	Program Flash Memory (Optional)

	7.6 Run the Target
	7.7 Set a Hardware Breakpoint
	7.8 Configure Target Memory Map
	7.9 Pass Through Command to Firmware
	7.10 Upload from Target Memory

	Part II VxWorks 653 Targets
	8 Overview for VxWorks 653
	8.1 Introduction
	8.2 Starting the Host Shell
	8.2.1 Starting the Host Shell from the Command Prompt
	Setting Your Environment
	Starting the Target Server
	Starting the Shell
	Host Shell Startup Options

	8.2.2 Starting the Host Shell from Workbench

	8.3 Switching Interpreters
	8.3.1 Evaluating Statements in Different Modes

	8.4 Setting Shell Environment Variables
	8.5 Path Mapping
	The ROOT_PATH_MAPPING Variable

	8.6 Host Shell Features
	8.6.1 Symbol Matching
	8.6.2 Directory and File Listing
	8.6.3 Target Symbol and Path Completion
	8.6.4 Synopsis Printing
	8.6.5 Data Conversion
	8.6.6 Data Calculation
	Calculations with Variables

	8.7 Stopping the Host Shell
	8.8 Host Shell Architecture
	8.8.1 Layers of Interpretation

	9 Using the Host Shell with VxWorks 653
	9.1 Introduction
	9.2 Domain Selection and Identification
	9.3 Running Target Routines From the Shell
	9.3.1 Invocations of VxWorks 653 Subroutines

	9.4 Function Calls from User Domains
	9.5 Rebooting from the Host Shell
	9.6 Task-Mode Debugging
	9.6.1 Task Breakpoints
	9.6.2 Protection Domain Breakpoints

	9.7 Stack Tracing
	9.8 Disassembler
	9.9 Using the Host Shell for System-Mode Debugging
	9.10 Interrupting a Shell Command
	9.11 Working With Shared Library and Data Domains
	9.12 Loading From the Shell
	9.12.1 Incremental Loading
	9.12.2 Dynamic Linking
	9.12.3 Object Module Load Path
	9.12.4 Loader Defaults

	10 Using the C Interpreter with VxWorks 653
	10.1 Introduction
	10.2 Host and Target Shell Differences
	10.2.1 Protection Domain Breakpoints
	10.2.2 Function Calls in the Kernel Domain

	10.3 Task References
	The “Current” Task and Address

	10.4 Data Types
	10.5 Expressions
	10.5.1 Literals
	10.5.2 Variable References
	10.5.3 Operators
	10.5.4 Function Calls
	10.5.5 Arguments to Commands

	10.6 Assignments
	10.6.1 Typing and Assignment
	10.6.2 Automatic Creation of New Variables

	10.7 Comments
	10.8 Strings
	10.8.1 Strings and Pathnames

	10.9 Ambiguity of Arrays and Pointers
	10.10 Pointer Arithmetic
	10.11 C Interpreter Limitations
	10.12 Redirection in the C Interpreter
	10.12.1 Ambiguity Between Redirection and C Operators
	10.12.2 The Nature of Redirection
	10.12.3 Scripts: Redirecting Shell I/O
	C Interpreter Startup Scripts

	10.13 C++ Interpretation
	10.13.1 Overloaded Function Names
	10.13.2 Automatic Name Demangling

	10.14 C Interpreter Primitives
	10.14.1 Managing Tasks
	10.14.2 Task Information
	10.14.3 Displaying System Information
	10.14.4 Modifying and Debugging the Target
	10.14.5 Protection Domains
	10.14.6 C++ Development
	10.14.7 Object Display
	10.14.8 Network Status Display

	10.15 Resolving Name Conflicts Between Host and Target
	10.16 Examples

	11 Using the Tcl Interpreter with VxWorks 653
	11.1 Introduction
	11.2 Controlling the Target
	11.3 Accessing the WTX Tcl API
	11.4 Calling Target Routines
	11.5 Passing Values to Target Routines
	11.6 Calling Under C Control
	11.7 Shell Initialization
	11.7.1 Shell Initialization File

	Part III Appendices
	A Using the Host Shell Line Editor
	A.1 Introduction
	A.2 vi-Style Editing
	A.2.1 Switching Modes and Controlling the Editor
	A.2.2 Moving and Searching in the Editor
	A.2.3 Inserting and Changing Text
	A.2.4 Deleting Text
	A.2.5 Put and Undo Commands

	A.3 emacs-Style Editing
	A.3.1 Moving the Cursor
	A.3.2 Deleting and Recalling Text
	A.3.3 Special Commands

	A.4 Command Matching
	A.4.1 Directory and File Matching
	A.4.2 Command and Path Completion

	B Single Step Compatibility
	B.1 Introduction
	B.2 Scripting
	B.3 SingleStep Command Equivalents
	B.4 SingleStep read Command Compatibility
	B.5 SingleStep write Command Compatibility
	B.6 SingleStep Variable Compatibility

