WIND RIVER

Wind RiverCompiler

ERROR MESSAGES REFERENCE

5.6

Copyright 2007 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, Tornado, and VxWorks are registered trademarks of Wind River Systems, Inc.
The Wind River logo is a trademark of Wind River Systems, Inc. Any third-party
trademarks referenced are the property of their respective owners. For further information
regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDirlproduct_name/3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
US.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:
http://www.windriver.com

For more information related to this product, or to contact Customer Support, please visit the
following URL

http://www.windriver.com/support

Wind River Compiler Error Messages Reference, 5.6

6 Nov 07
Part #: DOC-16209-ND-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

Contents

Error MeSSAQeS ..ccocueiiiirrrimmnmmmmnssssssrsnnssnmmsssssssssssssnsnmmnsssssssssessnnnmmnnnssss 1
11 Introduction 1
1.1.1 Compiler Message Formatcccooviiiiiiiiiniiiiiccce, 1
1.1.2 Errors in asm Macros and asm Strings ..o, 2
1.2 Compiler Error Messages 3
121 Messages Generated by ctoacccoeueveiiiiiiiciiice 3
122 Messages Generated by etoa ..o 68
1.3 Assembler Error Messages 124
1.4 Linker Error Messages 124
14.1 Linker Message FOrmatc.cccccoovoiiiniiniicciniccceccecccces 124
142 Linker Message Detailccccoooiiiiiiiniiiiiicccc 125

fii

Wind River Compiler
Error Messages Reference, 5.6

Error Messages

1.1 Introduction 1

1.2 Compiler Error Messages 3

1.3 Assembler Error Messages 124
1.4 Linker Error Messages 124

1.1 Introduction

This book provides information on messages generated by the compilers and other
tools.

In analyzing messages, remember that a message can be generated for code which
is apparently correct. Such a message is often the result of earlier errors. If a
message persists after all other errors have been cleared, please report the
circumstances to Customer Support.

1.1.1 Compiler Message Format

Compiler messages have the form:

“filev, line #: severity-level (compiler:error#) : message

Wind River Compiler
Error Messages Reference, 5.6

Messages have one of four severity-level values as follows. The severity level for each
message is shown in parentheses in the message description; for example, (w) for
a warning message.

Table 1-1 Compiler Message Severity Levels

Severity Compilation Object File

Level Type Continues Produced Notes

i Information Yes Yes Usually provides detailed
information for an earlier
message.

w Warning Yes Yes

e Error Yes No

f Fatal No No

The severity level of a message can be changed with the -e command-line option.
See the user’s guide for more information about -e and command-line options in general.

In each message, “compiler” identifies the compiler reporting the error: dec for the
C compiler or dplus for the C++ compiler.

Example:

"errl.c", line 2: error (dcc:1525): identifier i not declared

1.1.2 Errors in asm Macros and asm Strings

Errors in assembly code embedded in C or C++ using asm macros or asm string
statements are caught by the assembler, not by the compiler.

If the -S option is not used, the compiler will generate a temporary assembly file
which is discarded after assembly. To preserve the assembly file for use in
diagnosing errors reported in asm macros or asm strings, either:

» Use the -Xkeep-assembly-file and -Xpass-source command-line options to
generate an annotated assembly file along with the object file.

» Use the -S option to stop after compilation, along with the -Xpass-source
option, and then assemble the file explicitly using das.

1 Error Messages
1.2 Compiler Error Messages

1.2 Compiler Error Messages

Compiler error messages are divided up as follows:
= those generated by ctoa and dtoa (the legacy C and C++ frontends)—see below

» those generated by etoa (the newer, EDG-based compiler for C, C99, and
C++)—see page 68

When a message is shared by compilers, the same error message number is used
for all instances.

1.2.1 Messages Generated by ctoa

The messages in this section are generated by ctoa, the default C frontend, and
dtoa, the legacy C++ frontend. To use dtoa, use the -Xc++-o0ld compiler option.
Messages generated by etoa (invoked by default for C++ and for C with -Xc-new)
are listed beginning on page 68.

Numbered messages are issued by the compiler subprogram. Unnumbered
messages are issued by the driver and are listed first.

(driver) can’t find program program_name
prog prog
program_name will be the name of some component of the compiler or other
tool. (f)

Possible causes:

» The compiler is not installed properly.

* One of the compiler files has been deleted, hidden, or protected.
= The dtools.conf or other configuration file is incorrect.

(driver) can’t fork

The system cannot start a new process. (f)
(driver) missing comma in -Y option

The -Yc,dir option must include a comma. (f)
(driver) illegal output name file

Specific output filenames given with the -o option are invalid to avoid
common typing mistakes. (f)

dplus a.c -o b.c # b.c is an illegal output file name

Wind River Compiler
Error Messages Reference, 5.6

(driver) invalid option unknown
The driver was started with an unrecognizable -W or -Y option. Note: -X
options that are not recognized generate an “unknown option” message, and
unrecognized but otherwise valid non -X options are passed to the linker. (f)

(driver) program tool-name terminated

The given executable has detected an internal error. May result from other
errors reported earlier. If the problem does not appear to be a consequence of
some earlier error, please report it to Customer Support. (f)

1000: (general compiler error)
The compiler has detected an internal error. May result from other errors
reported earlier. If the problem does not appear to be a consequence of some
earlier error, please report it to Customer Support. (f)

1001: illegal argument type
The operand cannot be used with the operator. (e)

if (1 > pointer)

1003: function takes no arguments
Function was defined without arguments, but was called with arguments. (e)
int fun () {}
main () {
fun (1) ;
}
1004: wrong number of arguments
Number of arguments given does not match prototype or function definition,
(w) in C modules if -Xpcc or -Xk-and-r or -Xmismatch-warning, (e) otherwise.

int fn(int, int); ... fn(1,2,3);

1006: string in string
The compiler has detected an internal error. May result from other errors
reported earlier. If the problem does not appear to be a consequence of some
earlier error, please report it to Customer Support. (f)

1007: ambiguous conversion -- cannot cast operand
The compiler cannot find an unambiguous way to convert an item from one
type to another. (e)

1010: Operator, type-designator, argument must be of pointer or integral type
An operator that requires an integral or pointer type was applied to a different
type.

float f£;
f = ~f;

1 Error Messages
1.2 Compiler Error Messages

1012: operator, type-designator, argument must be of pointer or arithmetic type
The operator requires a pointer or arithmetic type operand. (e)
struct S {
int i;
¥si
struct S *p;
*p -> 1 =3; /7
1013: left argument must be of integral type
The left operand must be an integral type. (e)

pointer | 3;

1015: type-designator, operator, type-designator, left argument must be of arithmetic
type

The operand to the left of the operator must be of arithmetic type. (e)

pointer * 2;

pointer / 2;
1017: right argument must be of integral type

The right operand must be an integral type. (e)

7 | pointer;

1019: type-designator, operator, type-designator, right argument must be of
arithmetic type
The operand on the right of the operator must be of arithmetic type. (e)
2 * pointer;
2 / pointer;
1025: division by zero
The compiler has detected a source expression that would result in a division
by 0 during target execution. (w)

int z = 0; £fn(10/z);

1028: type-designator [type-designator] requires a pointer and an int
A subscripted expression requires a pointer and an integer. (e)
main() {

int x;
x[3]=4;
}

1030: can’t take address of main
Special rules for the function main() are violated. (e)
int *p;

p = main;

Wind River Compiler
Error Messages Reference, 5.6

1031: can’t take address of a cast expression
The address operator requires an lvalue for its operand. (e)
int i, *p;
float £;
p = &(int) f;
1032: (anachronism) address of bound member function
The correct way to refer to the address of a member function is to use the “::”
operator. The C method, using the dot “.” operator, causes the compiler to
generate the “anachronism” warning. (w)
class C {
public:

fun();
} ¢

main () {
class C * p;
p= &c.fun; // 0ld way to reference a function
}
1033: can’t take address of expression
Cannot use “&” or other means to find the address of the expression. (e)
int *pointer;
&pointer++;
1034: can’t take address of bit-field expression
The address of bit-fields is not available. (e)
int *p;
struct {
int 1:3;
}s;
p = &s.1i;
1041: returning from function with address of local variable
A return statement should not return the address of a local variable. That stack
area will not be valid after the return. (w)
int 1i;
return &i;

"o

1042: ?"type-designator™:" type-designator, bad argument type(s)
Incompatible types have been used with the conditional operator. (e)

int i, *pointer, *p;
p = (2>1) ? i : pointer;

1043: trying to decrement object of type bool
A a boolean cannot be decremented. (e)

1 Error Messages
1.2 Compiler Error Messages

bool b;
b--;

1044: assignment to constant expression
A constant cannot be assigned a value after the constant is defined. (e)

const int i=5;
i=7;

1045: assignment to non-lvalue of type type-designator
The operand being assigned is not an lvalue type. (e)

const ¢ = 5;
c =17;

1046: assignment from type-designator to type-designator
An attempt has been made to assign a type to an incompatible type. (e)

int i, 3;
i=&3;
1047: trying to assign "ptr to const" to "ptr"
A pointer to a const cannot be assigned to an ordinary pointer. (e)

const int *pc; int pi; ... pi = pc;
1050: bad left argument to operator operator not a pointer
The operator requires a pointer for its left operand. (e)

int intl, 3j;
intl -> j=3;

1051: not a class/struct/union expression before ...
The left hand side of a “.” or “.*” or “->" or “->*" operator must be of type class
or pointer to class. (e)

5->a = 128; // 5 is not a pointer to a class

1055: illegal function call
The function call is not valid. (e)
int i;
i)
1056: illegal function definition
A function definition is invalid. (e)
fun(iint 1i);
1057: main() may not be called from within a program
Calling main() is not permitted. (e)

fun () {
main() ;

}

Wind River Compiler
Error Messages Reference, 5.6

1059: (compiler error)
The compiler has detected an internal error. May result from other errors
reported earlier. If the problem does not appear to be a consequence of some
earlier error, please report it to Customer Support. (f)

1060: assignment operator "=" found where "==" expected
Encountered a conditional where the left hand side is assigned a constant
value: (w)
if (i = 0) ... /* should possibly be i == 0) */

1061: illegal cast from type-designator to type-designator
An attempt is made to perform a cast to an invalid type, i.e., a structure or

array type. (e)
struct a = (struct abc)x;

1063: ambiguous conversion from type-designator to type-designator
The compiler cannot find an unambiguous way to convert an item from one
type to another. (e)

1074: illegal cast
An attempt is made to perform a cast to an invalid type, i.e., a structure or

array type. (e)
1075: friend declaration outside class/struct/union declaration
The keyword friend is used in a invalid context (e)

friend class foo {

};

1076: static only allowed inside { } in a linkage specification
Attempt to declare a static object in a one-line linkage specification. (e)

extern "C" static int i; // static + extern at same time?

1077: typedefs cannot have external linkage
Linkage specification ignored for typedef, cannot have "C" or "C++" linkage.

(w)
extern "C" typedef int foo;

1079: identifier name previously declared linkage
The identifier was already declared with another linkage specification. (e)

int foo;
extern "C" int foo;

1080: inconsistent storage class specification for name
The identifier was already declared, with another storage class. (e)

1 Error Messages
1.2 Compiler Error Messages

bar ()

{
int foo; // foo is auto by default
static int foo; // now static

}

1081: illegal storage class
External variables cannot be automatic. Parameters cannot be automatic,
static, external, or typedef. (e)

int fn(i)
static int i; { ... }

1082: illegal storage class
A variable has been declared, but cannot legally be assigned to storage. (e)

register int r; // Outside of any function

1083: only functions can be inline
The inline keyword was applied to a non-function, for example, a variable. (e)

1084: only non-static member functions can be virtual
For example, operators new and delete cannot be virtual.

virtual void *operator new(size_t size){...}

1086: redeclaration of identifier
It is invalid to redeclare a variable on the same block level. (e)

int a; double a;

1087: redeclaration of function
A function was already declared. May be caused by mis-typing the names of
similar functions. (e)

1088: illegal declaration
Common causes and examples: (e)
A scalar variable can only be initialized to a single int i =1, 2;
value of its type.
Functions cannot return arrays or functions. char fn() [10];

Variables cannot be of type void. (Usually caused by void a;
a missing asterisk, e.g. void *p; is correct.)

Only one void is allowed as function argument. int fn(void, void);

An array cannot contain functions.

Wind River Compiler
Error Messages Reference, 5.6

1089: illegal initializer
An initializer is not of the proper form for the object being initialized. Often
caused by a type mismatch or a missing member in a structure constant. (e)

1090: static/external initializers must be constant expressions
Static initializations can only contain constant expressions. (e)
static int 1 = j+3;

1091: string too long
A string initializer is larger than the array it is initializing. (e)
char str([3] = "abcd";

1092: too many initializers
The number of initializers supplied exceeds the number of members in a
structure or array. (e)

int ar(3] = { 1,2,3,4 };

1094: illegal type for identifier identifier
This can indicate a template was instantiated with the wrong arguments. (e)

template<class T>
class C{};

C<int, int> WrongArgs;

1096: typedef may not have the same name as its class
Only constructors and destructors for a class may have the same name as the
class. (e)

1097: function-declaration in wrong context
A function may not be declared inside a struct or union declaration. (e)

struct { int £(); };

1098: only non-static member functions can be string
Only non-static member functions can be const or volatile.
class A {
static foo() const;
Yi
1099: all dimensions must be specified for non-static arrays
For an array in a class all dimensions must be specified, even if the array is not
static. (e)

1100: member is incomplete
The structure member has an incomplete type, i.e., an empty array or
undefined structure. (e)

struct { int ar[]; };

10

1 Error Messages
1.2 Compiler Error Messages

1101: anonymous union member may not have the same name as its class
Only constructors and destructors for a class may have the same name as the
class. (e)

1102: anonymous unions can’t have member functions
1103: anonymous unions can’t have protected or private members

1104: name of anonymous union member narme already defined
An identifier with the same name as an anonymous union member was
already declared in the scope. (e)
int i;
static union {
int i; // i already declared
}
1105: anonymous unions in file scope must be static
A special rule for an anonymous unions is violated. (e)

1106: friends can’t be virtual
A friend is not a member of the class; it cannot be virtual. (e)

1107: conversion functions must be members of a class
It is not valid to define a conversion function that is not a class member. A
conversion function cannot take arguments. A conversion function cannot
convert to the type of the class if it is a member of, or a reference to it. (e)

1108: member function declared as friend in its own class
Invalid declaration. (e)
class A {
foo(int) ;
friend A::foo(int);
}
1110: identifier identifier is not a member of class class-name

The identifier to the right of :: is not in the class on the left side. (e)

1111: identifier identifier not member of struct/union
The expression on the right side of a “.” or “->” operator is not a member of the
left side’s struct or union type. (e)

1112: member declaration without identifier
A struct or union declaration contains an incomplete member having a type
but no identifier. (w)

struct foo { int; ...};
struct { struct bar { ... }; ... };

11

Wind River Compiler
Error Messages Reference, 5.6

1113: identifier name used both as member and in access declaration
A use of the name would be ambiguous. (e)
class A {
public:

int foo;
Y

struct B : private A {
int foo;
A::foo;
Yi
1114: array is incompletely specified
An array cannot be declared with an incomplete type. (e)
int al[l]; // No array size
1115: type ... is incomplete
Attempt to access a member in an incomplete type. (e)

1117: identifier identifier not an argument
An identifier that is not in the parameter list was encountered in the
declaration list of an old-style function. (e)

f(a) int b; { ... }

1120: constant expression expected
The expression used in an enumerator list is not a constant. (e)

enum a { b = £(), ¢ };

1121: integer constant expression expected
The size of an array must be computable at compile time. (e)

int ar(fn()];

1123: illegal type of switch-expr
A switch expression is of a non-integral type. (e)

1124: duplicate default labels
A switch has should not have more than one default label.

1125: int constant expected
A bit-field width must be an integer constant. (e)

1126: case expression should be integral constant
Case expressions must be integral constants. (e)

int 1,3;
switch (i) {
case j:

i=8;

12

1 Error Messages
1.2 Compiler Error Messages

1127: duplicate case constants
A case constant should not occur more than once in a switch statement. (e)

case 1l: ... case 1:

1127: duplicate case constants
Duplicate case constants were detected. (e)
main() {
int year, Jj;
switch (year) {
case 2000:
j = 8;
case 2000:
j=9;
}

1128: function must return a value
Found a return statement with no value in a function. (e)
int foo()
{
return; // Must return a value.
}
1129: constructor and destructor may return no value
A constructor or destructor must not return a value. (e)

1130: parameter decl. not compatible with prototype
There is a mismatch between a prototype and the corresponding function
declaration in either number of parameters or parameter types. (e)
int fn(int, int);
int fn(int a, float b) { ... }
1131: multiple initializations
A variable was initialized more than once. (e)

static int a
static int a

4;
5;
1133: extern objects can only be initialized in file scope

An extern object cannot be initialized inside a function. (e)

main () {
extern int i=7;

}

1133: extern objects can only be initialized in file scope
Attempt to initialize an extern object in a function. (e)

13

Wind River Compiler
Error Messages Reference, 5.6

foo ()
{

extern int one = 1;

}

1134: can’t initialize arguments
It is not valid to attempt to initialize function parameters. (e)

f(i) int 1 =5; { ... }

1135: can’t init typedefs
A typedef declaration cannot have an initializer. (e)

typedef unsigned int uint = 5;

1136: initialization of automatic aggregates is an ANSI extension
When the compiler is run in PCC compatibility mode on a C module (-Xpcc),
it will report initialization of automatic aggregate types. (w)

£() { int ar([3] = {1,2,3}; ... }
1140: too many parameters for operator ...
Overloaded operator declared with too many parameters. (e)

1141: too few parameters for operator ...
Overloaded operator declared with too few parameters. (e)

1142: second argument to postfix operator "++" or "--" must be of type int
The argument is of the wrong type. (e)
struct A {

operator++ (double); // Arg type must be int
Y

1143: operator->() must return class or reference to class

1144: operator ... can only be overloaded for classes
The operators “,” and “=" and the unary “&” can only be overloaded for
classes. (e)

1145: operator . . . must be a non-static member function
The operators (), [1, and -> must be non-static member functions. These
operators can only be defined for classes. (e)

1146: non-member operator function must take at least one argument of class or
enum type or reference to class or enum type
A non-member operator function must take at least one argument, which is of
a class or enum type or a reference to a class or enum type. (e)

Date operator+(int i, j){...}

14

1 Error Messages
1.2 Compiler Error Messages

1147: constructors can’t be declared string
Constructors cannot be declared static or virtual.

1148: constructors can’t have a return type
A constructor declaration is invalid. (e)

1149: constructor is illformed, must have other parameters
A constructor declaration is invalid. (e)

1151: can’t have a destructor in a nameless class/struct/union
A nameless class cannot have a destructor since the destructor takes its name
from the class. (e)
class {
~foo();
}i:
1152: destructors must have same name as the class/struct/union
The destructor declaration is invalid. (e)

1153: destructors may have no return type
const ~k(){}

1154: destructors can’t be declared string
Destructors cannot be declared static.

1155: destructors may take no arguments
The destructor declaration is invalid. (e)

1156: conversion functions may take no arguments
It is not valid to define a conversion function that is not a class member. A
conversion function cannot take arguments. A conversion function cannot
convert to the type of the class if it is a member of, or a reference to it. (e)

1157: conversion to original class or reference to it
It is not valid to define a conversion function that is not a class member. A
conversion function cannot take arguments. A conversion function cannot
convert to the type of the class if it is a member of, or a reference to it. (e)

1159: no type found for identifier, can be omitted for member functions only
The identifier has not been declared. (e)

1160: class already has operator delete with number of argument(s)
The delete operator cannot be overloaded. (e)

1161: member operator functions can’t be static
Operator functions in a class cannot be declared static. (e)

1162: member of abstract class
A class member cannot be of abstract type. (e)

15

Wind River Compiler
Error Messages Reference, 5.6

1163: unions can’t have virtual member functions
Union cannot have virtual functions as members. (e)

1164: member function of local class must be defined in class definition
Because functions cannot be defined in other functions, any function in a local
class must be defined in the class body. (e)

1165: redeclaration of member identifier

A member occurs more than once in a struct, union, or class. (e)
struct { int ml; int ml; };

1166: member name already declared
Attempt to re-declare a member. (e)
class A {
int a;
int a; // Already declared
Yi
1167: static data member may not have the same name as its class
Only constructors and destructors for a class may have the same name as the
class. (e)

1168: a local class can’t have static data members
Only non-static members can be used in a local class. (e)

1169: unions can’t have static data members
Union cannot have static data members. (e)

1170: illegal union member
An object of a class with a constructor, a destructor, or a user defined
assignment operator cannot be a member of a union. (e)

1171: illegal storage class for class member
A class member cannot be auto, register, or extern. (e)

1172: parameter has no identifier
When declaring a function, a name as well as a type, must be supplied for each
parameter. (e)

int fn(int a, int) { ... }

1173: compiler out of sync: probably missing ";" or "}

int i int j; missing ;" after i
dribble f; should be double

1174: ellipsis not allowed as argument to overloaded operator
Cannot declare an overloaded operator with “...” as arguments. (e)

16

1 Error Messages
1.2 Compiler Error Messages

1175: ellipsis not allowed in pascal functions
Functions declared with the pascal keyword are not allowed to have a variable
number of arguments as indicated by an ending ellipsis “...”. (e)

1176: argument # to string must be of type size_t
For example, operator delete’s second argument must be of type size_t
void operator delete(void *type, int x){
free(type) ;
}
1177: string must return void *
For example the operator new must return a void pointer.

int *operator new(size_t size){...}

1179: string takes one or two arguments
For example, operator delete takes one or two arguments (e).

void operator delete(void *type, size_t size, int x){...}

1180: operator delete must have a first argument of type void *
The first argument of delete must be of type void*.
void operator delete(int x)({
free(x);
}
1181: string must return void
For example, operator delete must return void.

int operator delete(void *type){...}

1182: class class-name has no constructor
It is invalid to initialize an object that does not have a constructor by using the
constructor initialization syntax. (e)

struct A {
int b, c;

Y

A a(l,2);

1183: temporary inserted for non-const reference

The compiler made a temporary copy of a variable used in an assignment to a
C++ reference. (w)

void getCount (unsigned int& count)
{

count = 5;

return;

}

signed int x = 100;
getCount (x) ;

17

Wind River Compiler
Error Messages Reference, 5.6

In this example, the compiler makes a temporary copy of x and passes the copy
(cast to unsigned int) to getCount. Hence it is the copy of x, and not x itself,
that is modified by getCount; after the function executes, the value of x is still

100, not 5.

1184: temporary inserted for reference return
Vint& constantl ()
{

return 1;

}

1186: const member identifier must have initializer
A constant member of a class must be initialized. (e)

class line{
const int length;

b
1188: jump past initializer
An object cannot be accessed before it has been constructed.

class C
{

public:

int i;

C(int ii) : 4i(ii) {2}
Y

void AllAlarmsOnOff (int function)
{

switch (function)

{
case 1:
C c(0);
break;

default:
c.i =12; // invalid access

break;
}
1190: this cannot be used outside a class member function body
1192: mismatching parenthesis, bracket or ? : around expression

Mostly likely, a parenthesis or bracket was left out of an expression, or the
and “:” in a conditional expression where interchanged. (e)

“nyrr
H

int i = (5 + 4]; // 1 should have been a)

1193: missing operand for operator
An operand is missing. (e)

i& ;

18

1 Error Messages
1.2 Compiler Error Messages

1194: (compiler error)
The compiler has detected an internal error. May result from other errors

reported earlier. If the problem does not appear to be a consequence of some
earlier error, please notify Customer Support. (f)

1195: missing operand somewhere before
An operand was left out of an expression. (e)

1196: missing expression inside parenthesis
An expression was expected between the parentheses. (e)

i=(0) ;

1197: missing operand for operator ... inside parenthesis
An operand was left out of an expression. (e)

1198: too many operands inside parenthesis
An operator between the operands is missing. (e)

1199: missing expression inside brackets
An expression was expected between the brackets. (e)

int x[5];
int 1 = x[]; // x must be subscripted

1200: missing operand for operator ... inside brackets
1201: too many operands inside brackets

1202: missing operator before string
An operator is needed before string.

i = (2>1) 3: 4; // Conditional operator needs '?'

1205: operator ? without matching :
Operator “?” must be followed by a “:” . (e)

int 1 = 4 ? 5; // Missing : part

1207: syntax error near token
The parser has found an unexpected token. (e)

if (a ==1 (/* missing ')' */

1208: expression expected
Could not find an expression where it was expected. (e)

if () { // The condition is missing.

}

19

Wind River Compiler
Error Messages Reference, 5.6

1209: illegal expression
There was something wrong with the expression. Another error has probably
already been reported. (e)

1210 to 1216: (compiler error)
The compiler has detected an internal error. May result from other errors
reported earlier. If the problem does not appear to be a consequence of some
earlier error, please notify Customer Support. (f)

For users searching online: 1211, 1212, 1213, 1214, 1215, 1216.

1219: (internal error)
The compiler has detected an internal error. May result from other errors
reported earlier. If the problem does not appear to be a consequence of some
earlier error, please report it to Customer Support. (f)

1221: don’t know size of object
The sizeof operator is used on an incompletely specified array or undefined
structure, or an array of objects of unknown size is declared. (e)

extern int ar[]; sz = sizeof(ar);

1224: type must have default constructor
The class must have a default constructor. (e)

1227: EOF in comment
The source file ended in a comment. (w) if -Xpcc, (e) otherwise.

1228: too many characters in character constant
A character constant has more than four characters. The limit is four on 32 bit
machines. (e)

tabcd'; /* ok */
'abcde'; /* not ok */

int il

int i2
1229: EOF in character constant

The source file ended at an unexpected place during parsing. (f)

1230: newline in character constant
Vchar TAB = '\t;

1231: empty character constant
There are no characters in a character constant. If an empty string is desired,
use string quotes . (e)

int i3 = ''; /* This is two single quotes characters. */

20

1 Error Messages
1.2 Compiler Error Messages

1232: too many characters in wide character constant

1234: newline in wide character constant
A newline is in a wide character constant.

Example: in the following, the wide character constant is intended to be L'ab’,
but is broken across two lines.

int 1 = L'a
b';

1235: empty wide character constant
Empty wide character constants are not allowed:

int i = L'';
1236: EOF in string constant
The source file ended at an unexpected place during parsing. (f)

1237: newline in string constant
The end of a line was found while parsing a string constant. Usually caused by
a missing double quote character at the end of the constant. (e)

char * message = "Not everything that counts can be counted.

1238: illegal hex constant

Reported whenever an “x” or “X” is found in a numeric constant and is not
prefixed with a single zero. (e)
i = lxab;

1239: too long constant
A numeric constant is longer than 256 characters. (e)

1240: floating point value (...) out of range
A floating point constant exceeds the range of the representation format. (e)

double d = 1e10000;

1241: floating point overflow
Floating point overflow occurred during constant evaluation. (e)

float £=4E200;

1242: bad octal constant
A numeric constant with a leading zero is an octal constant and can only
contain digits 0 through 7. (w)

i = 078; // '8' is invalid in an octal constant

1243: constant out of range
Constant overflows its type. (e)

21

Wind River Compiler
Error Messages Reference, 5.6

int 1 = 4294967299; // Constant bigger than ULONG_MAX

1243: constant out of range [operator]
A constant is out of the range of the context in which it is used. If the operator
is present, it shows the operator near the use of the invalid constant. (w)

int j = Oxffffffffff;

1244: constant out of range (string)
An invalid constant was used. (w)
const int x=0xfffffffff;
if ((char)c==257)

1245: illegal character: 0 (octal)
The source file contains a character with octal code n that is not defined in the
C language. This can only occur outside of a string constant, character
constant, or comment. (e)

name$from$PLM = 1;

1246: no value associated with token
The compiler has detected an internal error. May result from other errors
reported earlier. If the problem does not appear to be a consequence of some
earlier error, please report it to Customer Support. (f)

1247: syntax error after string, expecting string
The expression is missing a semicolon or some token. (e)
int i

1248, 1249: label identifier already exists
A label can only refer to a single place in a function. (e)

1250: 1abel identifier not defined
The label used in a goto statement is not defined. (e)

1251: label identifier not used
The label is never used. One possible cause is the misspelling of a label. This
message appears if the -Xlint option is used. (w)
main () {
agian: // typo?
goto again;
}
1252: typedef specifier may not be used in a function definition
Bad use of the typedef specifier. (e)

typedef int foo()
{

22

1 Error Messages
1.2 Compiler Error Messages

}

1253: virtual specifier may only be used inside a class declaration
Function cannot be declared virtual outside class body. (e)
struct A {

foo();
};
virtual A::foo() {} // Not virtual in the class declaration

1254: redefinition of function
The function is already defined. (e)
int foo() {}
int foo() {}

1255: unions may not have base classes
Union cannot have base classes. (e)

1256: unions can’t be base classes
Union cannot be used as base classes. (e)

1257: inconsistent exception specifications
Two function declarations specify different exceptions. (e)
int foo() throw (double);
int foo() throw (int);
1258: exception handling disabled
Exception handling has been turned off. Use -Xexception=1 to enable it. (e)

1259: rtti disabled
RTTI (run-time type information) can be enabled or disabled through the
-Xrtti-... option. See the User’s Guide for more information on this option.

1260: non-unique struct/union reference
In PCC mode (-Xpcc) the compiler attempts to locate a member of another
struct if given an invalid reference. If no unique member can be found, this
error is issued. (e)
struct a { int i; int m; };
struct b { int m; int n; };
int i; ... i->m = 1;
1261: insufficient access rights to member-name in base-class-name base class of
derived-class-name

Attempt to access a member in a private or protected base class. (e)

1264: main can’t be overloaded
Special rules for the function main() are violated. (e)

23

Wind River Compiler
Error Messages Reference, 5.6

1265: can’t distinguish function_namel from function_name2
Two overloaded functions cannot be distinguished from each other; they
effectively have the same number and types of arguments in the same order.

(e)

int foo(int);
int foo(int &);
1266: function function-name already has “C” linkage
Only one of a set of overloaded functions can have "C" linkage. (e)
extern "C" foo(int);
extern "C" foo(double);
1268: only virtual functions can be pure
Pure specifier found after non-virtual function. (e)
class foo {
bar() = 0 // Must be virtual
}i
1269: identifier is not a struct/class/union member
The identifier is not a member of a structure, class, or union. (e)
int 1i;
i.j = 3; // Jj is not a member of a structure.
1272: member name used outside non-static member function
Attempt to reference a class member directly in a static member function or an
inlined friend function. That is invalid in a function where keyword this
cannot be used. (e)

1275: error string
This error number can indicate a number of different kinds of errors. In some
cases, this message gives additional information about an error message
displayed above this one. For example, if a function call is ambiguous, this
error prints the names of candidate functions.

1276: can’t use ... in default argument expression
Class members can only be used in default arguments if they are static.
Function arguments cannot be used in default arguments. Local variables
cannot be used unless they are declared extern. (e)

int foo(int a, int b = a)

{

}

24

1 Error Messages
1.2 Compiler Error Messages

1278: can’t restrict access to identifier
An access declaration cannot restrict access to a member that is accessible in
the base class, nor can an access declaration enable access to a member that is
not accessible in the base class. (e)

1279: can’t enable access to identifier

1281: no function matches call to string

The compiler did not find a match for a class method, or a template function.
This can also indicate that a class does not have a default constructor. (e)

class line{

public:
line() {}

};

line 1(5,6);

Second example:

template< class T> T max(T a, T b) {
return(a>b) ? a : b;

main() {
int i;
char c;
max(i,c);
}
1282: can’t resolve function call, possible candidates:
An overloaded function was called, but the function arguments did not match
any prototype. (e)
fun(int i) {}

fun (char c) {}

main() {
float £;
fun(f) ;
}
1285: ambiguous reference to identifier, could be candidatel candidate? ...
The identifier could not be resolved unambiguously. The error message is
followed by a list of possible candidates. (e)
struct A { int a; };

struct B { int a; };
struct C : public A, public B {};

foo ()

c.a = 1; // Which a, A::a or B::a?

25

Wind River Compiler
Error Messages Reference, 5.6

1288: return type not compatible with ...
A virtual function has a return type that is incompatible with the return type
of the virtual function in the base class. (w)

1292: too many arguments for function style cast to string
Function style casts to a basic type or a union type can only take a single
argument. (e)
int i = int (3.4, 5.6);
1293: non-type in new expression
A new expression requires a type.

class list {};

class list * cp;
cp = new lis; // Spelled wrong

1294: type in new expression is abstract
The type in a new expression must not be abstract.

1295: first dimension must be an integral expression
The first dimension of an array type in a new expression must be an integral
expression. (e)
double d;
int *p = new int[d];
1296: can’t create void objects
The type in a new expression was void.
void *p = new void;

1297: type in new expression is incompletely specified

1298: object of abstract class
Attempt to declare an object of an abstract class. (e)

1298: can’t construct object of abstract type
The type in a new expression is of abstract class. (e)
struct A {
virtual foo() = 0;
Yi
A *p = new A;
1299: can’t construct objects of array type
Array elements in an array allocated with new cannot be given initial values.

(e)

struct A {};
A *p = new A[5](1,2,3,4,5);

26

1 Error Messages
1.2 Compiler Error Messages

1304: already volatile
A variable was declared volatile more than once. (w)

int * volatile volatile foo;

1305 to 1336: (compiler error)
The compiler has detected an internal error. May result from other errors
reported earlier. If the problem does not appear to be a consequence of some
earlier error, please report it to Customer Support. (f)

For users searching online: 1305, 1306, 1307, 1308, 1309, 1310, 1311, 1312, 1313,
1314,1315,1316,1317,1318,1319, 1320, 1321, 1322, 1323, 1324, 1325, 1326, 1327,
1328, 1329, 1330, 1331, 1332, 1333, 1334, 1335, and 1336.

1337: EOF in inline function body
The end of the source file was found while parsing an inline function. (f)

1338: arguments do not match template
The actual template argument types must match the declaration exactly. (e)
template<int size>
class foo {

/] ...
};

foo<7, 7> qux;

1339: arguments do not match template template name
The arguments do not match the template.

template<class T>
class C{};

C<int, int> WrongArgs;
1340: can’t recover from earlier errors

Certain earlier errors have made it impossible for the parser to continue. (f)

1341: compiler out of sync: mismatching parens in inline function
The compiler is unable to parse an inline function. Check the function to see if
the parentheses are nested correctly. (f)

1344: syntax error - unexpected end of file
The parser has found an unexpected token. (e)

1347: identifier name used as template name
The identifier cannot be used as a class, struct, or union tag since it is already
a template name. (e)

27

Wind River Compiler
Error Messages Reference, 5.6

template<class T>
class foo {

Y

struct foo {
}

1354: "'0" expected in pure specifier
A value other than 0 was found in a pure specifier. (e)
class foo {

virtual bar() = 5; // Should have been 0
}

1355: all dimensions but the first must be positive constant integral expressions
The first dimension of an array may be empty in some contexts. In a
multi-dimensional array, no other dimensions may be empty (and none may
be negative). (e)

int arrayl[-41;

1360: base class expected
Base class not found after “:” or “,” in a class definition. (e)

class A : {}; // The base class is missing

1361: can’t initialize ... with a list

An object of a class which has constructors, bases, or non-public members
cannot be initialized as an aggregate.
struct foo {
private:
int i
public:
int 3, k;
}i

foo bar = { 1, 2, 3 }; // 1 1s private

1362: can’t nest function definitions
Functions cannot be defined inside other functions.

void foo()
{

void bar() { } // No nesting
}

1367: class class-name used twice as direct base class
Cannot use the same class as a base class more than once. (e)

class A {};

class B : A, A {};

28

1 Error Messages
1.2 Compiler Error Messages

1368: class name expected after ~
Encountered “~” in a class, apparently to declare a destructor, but it was not
followed by the class name. (e)

class foo {

Yi '
1370: class/struct/union cannot be declared specifier
A function specifier is applied to a definition of a class, struct, or union. (e)

inline class foo { /* inline is invalid for a class */
Y

1371: conflicting declaration specifiers: specifier] specifier2
Illegal mixing of auto, static, register, extern, typedef and/or friend. (e)

extern static int foo;

1372: conflicting type declarations
More than one type specified in a declaration. (e)

int double foo;

1373: enumerator may not have same name as its class
Only constructors and destructors for a class may have the same name as the
class. (e)

1376: function function name is not a member of class class name
A function was not declared, it was misspelled, or the parameters were not
used consistently. (e)
class line{
lint(int 1); // Misspelled
Yi
line::line(int 1) {}
1378: function function name is not found
A function call referred to a function that was not found. (e)
static int fun();
main () {
fun();
}
1379, 1380: identifier ... declared as struct or class. Use struct or class specifier
identifier ... declared as union. Use union specifier
There was a type mismatch between the declaration and the use of an
identifier. (e)

29

Wind River Compiler
Error Messages Reference, 5.6

union u {
}i
struct u foo; // u was a union, cannot also be struct

1381: identifier name not a nested class nor a base class
Something that is not a class was used as a base class. (e)

1383: identifier identifier is not a type
What appeared to be a declaration began with an identifier that is not the name
of a type.

INT I;

1384: identifier name not a direct member
Attempt to initialize a variable that is not a direct member of the class. (e)

struct B { int b; };

struct C : public B {

int c;

C(int i) : c(i), b(i) {} // Can’t initialize b here
}

1385: identifier identifier not a static member of class class name
Invalid declaration. (e)

struct A {
int i;
}i

int A::1;

1386: identifier identifier not declared in string
An identifier is used but not declared. Check the identifier for spelling errors.

(e)

1388: identifier identifier not declared
An identifier was used without being declared. (e)

1391: identifier name is not a class
An identifier that is not a class was used before “::”.

1394: illegal expression
A break statement is only allowed inside a for, while, do or switch statement.

(e)
A continue is only allowed inside a for, while or do statement. (e)

A default or case label is only allowed inside a switch statement. (e)

30

1 Error Messages
1.2 Compiler Error Messages

1395: illegal function specifier for argument
A parameter cannot be declared inline or virtual.

void foo(inline int);

1397: illegal storage class for class/struct/union
A storage class other than extern is specified for a definition of a class, struct,
or union. (e)

auto class foo {

Y

1403: main can’t be declared string
Special rules for the function main() are violated. (e)

1404: mem initializers only allowed for constructors
Members can only be initialized with the member initializer syntax in
constructors. (e)
class A {

int i;
int foo() : i(4711) {} // Not a constructor
}

1405: missing argument declaration
Argument declaration omitted. (e)
class bar {

foo(, int);
Yi

1410: no default arguments for overloaded operators

Overloaded operators cannot have default arguments. (e)

1411: no redefinition of default arguments
An argument can be given a default value only once in a set of overloaded
functions. (e)

void foo(int
void foo(int

17);
4711) ;

1412: no return type may be specified for conversion functions
The return type of conversion function is implicit. (e)

class foo {
double operator int(); // Cannot specify type
}

1414: non-extern object name of type type-name must be initialized
A const object must be initialized unless it is extern.

31

Wind River Compiler
Error Messages Reference, 5.6

1415: non-extern reference name must be initialized
References and const objects, which are not declared extern, must be
initialized. So must objects of classes that have constructors but no default
constructors. (e)

const struct S &structure;

1417: only functions can have pascal calling conventions
int pascal 1i;

1418: only static constant member of integral type may have initializer
A member that is a static integral type can be initialized; others cannot. (e)

struct {
const int *p =0x3333;
Ysi
1419: operator ... cannot be overloaded
‘o7 o7

It is invalid to overload any of the operators “.” or or “?:".

1420: parenthesized expression-list expected after type typename

1423: redeclaration of symbol ...
A symbol in an enumerated type clashes with an earlier declaration. (e)

1427: static function declared in a function
There is no use declaring a static function inside another function. (e)

void foo()
{

static void bar();

bar(); // Call to bar, but where can it be defined?
}

1428: static member ... can’t be initialized
A static class member cannot be initialized in a member initializer. (e)

class A {

static int si;

A(int ii) : si(ii) {}
}i

1429: string literal expected in asm definition
String missing in an asm statement.

asm() ; // the parentheses should contain an instruction

1430: subsequent argument without default argument
Only the trailing parameters may have default arguments. (e)

void foo(int = 4711, double);

32

1 Error Messages
1.2 Compiler Error Messages

1431: syntax error - catch handler expected after try
The parser has found an unexpected token. (e)

1432: syntax error - catch without matching try
The parser has found an unexpected token. (e)

1433: syntax error - class key seen after type. Missing ;?
The parser has found an unexpected token. (e)

1434: syntax error - class name expected after :
The parser has found an unexpected token. (e)

1435: syntax error - colon expected after access specifier
The parser has found an unexpected token. (e)

1436: syntax error - declarator expected after ...
The parser has found an unexpected token. (e)

1437: syntax error - declarator expected after type
The parser has found an unexpected token. (e)

1438: syntax error - declarator or semicolon expected after class definition
The parser has found an unexpected token. (e)

1439: syntax error - else without matching if
The parser has found an unexpected token. (e)

1441: syntax error - identifier expected after ...
The parser has found an unexpected token. (e)

1442: syntax error - initializer expected after =
The parser has found an unexpected token. (e)

1444: syntax error - keyword operator must be followed by an operator or a type
specifier
The parser has found an unexpected token. (e)

1446: syntax error - type tag expected after keyword enum
The parser has found an unexpected token. (e)

1454: type defined in return type (forgotten “;”?)
It is illegal to define a type in the function return type. (e)

struct foo {} bar()
{
}

1455: type definition in bad context
A type was defined where it was not allowed. (e)

33

Wind River Compiler
Error Messages Reference, 5.6

1456: type definition in condition
Types cannot be defined in conditions. (e)

if (struct foo { int i } bar) {
/] ...
}

1457: type definition not allowed in argument list
Types cannot be defined in argument lists. (e)

int foo(struct bar int a; } barptr);

1460: type expected after new
A new expression requires a type. (e)

p = new;
1461: type expected for ...
No type found in declaration of a variable. (e)
1462: type expected in template parameter
This could indicate a misspelling of a template parameter. (e)
template<classT> ...;

1463: type expected in arg-declaration-clause
An argument type is missing in a function declaration. (e)

class bar {
foo (imt) ;
}i

1464: type expected in cast
Found something that was not a type in a cast expression. (e)

1465: type expected
Found an expression that was not a type where a type was expected. (e)

1466: type in new expression can’t be string
A type in a new expression cannot be pascal or asm.

1467: type in new expression may not contain class/struct/enum declarations
Cannot declare types in a new expression. Nor can the types used in a new
expression be const, volatile, pascal, or asm. The type used must be
completely specified and cannot have pure virtual functions. (e)

void *p = new enum foo { bar };

1469: unknown language string in linkage specifier: ...
Only "C" and "C++" allowed in linkage specifiers. (e)

extern "F77 { // Don't know anything about F77 linkage}

34

1 Error Messages
1.2 Compiler Error Messages

1477: already const
A variable was declared const more than once. (w)

int * const const foo;

1479: comma at end of enumerator list ignored
A superfluous comma at the end of a list of enumerators was ignored. (w)

enum foo { bar, };

1480: enumerators can’t have external linkage
extern cannot be specified for enum declarations. (e)

extern enum foo { bar };

1481: function function-name not declared
If the -Xforce-declarations option is used, the compiler will generate this error
message when a function is used before it has been declared. (w)

1484: missing declarator in typedef
No declarator was given in a typedef statement. (e)

typedef class foo {
VA
Y

1485: old style function definition
A function was defined using the older K & R C syntax. This is invalid in C++.

(w)

int foo(a, b)
int a, b

{

}

1486: initializer that is a brace-enclosed list may contain only constant
expressions
A variable was initialized using a brace-enclosed list containing an expression
(such as a variable) that cannot be evaluated during compilation.

int 1 = 12;
int x[] = {1, 2, 3, 43};
This is allowed in C++ but not in C.

1488: redeclaration of parameter identifier
One of a function’s parameters is shadowed by a declaration within the
function, (w) if -Xpcc or -Xk-and-r, (e) otherwise.

fl(int a) { int a; ... }

35

Wind River Compiler
Error Messages Reference, 5.6

1489: redundant semicolon ignored
Found an extra semicolon among the members of a function. (w)

class A {
int a;
Yi

1492: virtual specified both before and after access specifier
Syntax error. (w)
class A {};
class B : virtual public virtual A {};

1493: redeclaration of ...

A function has been redeclared to something else. (e)
int i(int);

double 1i(int);

double i(int i) {...}

1494: non-extern object identifier of type type-designator must be initialized
This message may indicate that a const member of a class/structure/union
was not initialized. (e)
class C {

const int ci;
}oc;

1495: non-extern const object name must be initialized

A const object must be initialized unless it is extern.

const char c;

1497: too many declaration levels
An internal stack overflowed. This is unlikely to happen in the absence of
other errors. (f)

1498: internal table-overflow
Internal stack overflowed. May occur with extremely complex, deeply nested
code. To work-around, simplify or modularize the code. If the problem does
not appear to be a consequence of some earlier error, please report it to
Customer Support. (f)

1500: function <function_name> has no prototype
The function function_name was used without a preceding prototype
declaration. In C,

void £();

is a declaration but not a prototype declaration—it declares f to be a function
but says nothing about the number or type of arguments it takes. This warning

36

1 Error Messages
1.2 Compiler Error Messages

is returned when an attempt has been made to use f without making a
prototype declaration of it first.

This warning is returned only when the command line option
-Xforce-prototypes is used. (w)

1501: function-pointer has no prototype
A function pointer was used but was declared to have a type that lacks a
prototype. In C,

void (*f) ();

declares f to be a function pointer but says nothing about the number or type
of arguments it takes. This warning is returned when an attempt has been
made to use f without making a prototype declaration of it first.

This warning is returned only when the command line option
-Xforce-prototypes is used. (w)

1504: arglist in declaration
An old style function declaration is found in the wrong context. (w)

£f1() { int f2(a,b,c); ... }

1507: end of memory
Ran out of virtual memory during compilation. The compiler first attempts to
skip some optimizations in order to use less memory, however this error can
occur for large functions on machines with limited memory. Note: initialized
arrays require the compiler to hold all initial data and can contribute to this
error. If the problem does not appear to be a consequence of some earlier error,
please report it to Customer Support. (f)

1509: expression involving packed member too complicated
This indicates that the processor does not support “compound assignment”
for volatile members of packed structures.

structl.a |=3; // May have to use structl.a = structl.al3

1511: can’t access short or int bit-fields in packed structures unless the
architecture supports atomic unaligned accesses (-Xmin-align=1)
Packed structures cannot contain bit-fields unless the architecture support
atomic unaligned access. To see if the architecture supports atomic unaligned
access, compile a file with the -S option and then examine the .s assembly file.
Look for the -X93 option in the header. If X93=1, the architecture supports
atomic unaligned access. (e)

37

Wind River Compiler
Error Messages Reference, 5.6

#pragma pack (1)
struct S {
int j:3;
Yi
1513: byte swapped structures can’t contain bit-field
Bit-fields are not allowed in byte-swapped structures. (e)
#pragma pack (,,1l) // Byte swap
struct s {
int j:3;
}
1515: profile information out of date
The file given with the -Xfeedback option is out of date or has an old format.
Re-compile with the -Xblock-count option and create a new profiling file. (e)

1516: parameter parameter name is never used
A parameter to a function is not used. This message appears if the -Xlint
option is used. (w)

fun (int 1) {};

1517: function function name is never used
A static function was declared but not used. This message appears if the -Xlint
option is used. In the example, the file consists of one line. (w)

static fun();

For C89, inline functions return a different warning; see 1788: inline function
inline_function is never used, p.57.

1518: variable identifier is never used
A variable is never used. This message appears if the -Xlint option is used. (w)
fun () {
int i;
}
1519: expression not used
The compiler has detected all or part of an expression which will never be

used. (w)

a+b; /* statement with no side effects */
a=(10,b+c) ; /* 10 is not used */

S++; / the '*' is not needed: s++; /

Note: the compiler will not issue this warning for an expression consisting
solely of a reference to a volatile variable.

38

1 Error Messages
1.2 Compiler Error Messages

1520: large structure is used as argument

The size of a structure passed as an argument to a function equals or exceeds
the size specified by -Xstruct-arg-warning. (This message is returned only
when the command-line option -Xstruct-arg-warning is used.) (w)

1521: missing return expression
A function is defined with a return type, but does not return a value. This
message appears if the -Xlint option is used. (w)
float fun(){
return;
}
1522: statement not reached
A statement can never be executed. This message appears if the -Xlint option
is used. (w)
main() {
int never;
return 0;
never=6;
}
1523: can’t recognize storage mode unknown
The storage mode specified in an asm macro is unknown. See the User’s Guide
for more information on embedding assembly code. (e)

1524: too many enhanced asm parameters
There can be a maximum of 20 parameters and labels used in an asm macro.
See the User’s Guide for more information on embedding assembly code..

1525: identifier identifier not declared
An identifier was not declared. (e)
fun () {
return i;
}
1526: asm macro line too long
A very long line was given in an asm macro. See the User’s Guide for more
information on embedding assembly code. (e)

1527: non-portable mix of old and new function declarations
A function declaration was made in accordance to an older C standard. In K &
R C, chars and shorts are promoted to int, and floats are promoted to double
just before a call is made to a function. However, in ANSI C, the arguments
match the prototype at the call site. (w)

39

Wind River Compiler
Error Messages Reference, 5.6

1528: can’t initialize variable of type type_designator
Some types do not allow initialization. (e)

void a = 1;

1534: only first array size may be omitted
The size of the first dimension of an array can be omitted; all others must be
specified. (e)
int x[311[];

1535: illegal width of bit-field
A bit-field width is greater than the underlying type used for the bit-field. (e)

Example for a target with 32 bit integers:
struct { int 1:33; }

1536: bit-field must be int or unsigned
The compiler detected an unsupported bit-field type. (e)

struct { float a:4; };

1541: redeclaration of struct/union/enum ...
A struct, union, or enum tag name was used more than once: (e)

struct t1 { ... }; struct tl { ... };

1542: redeclaration of member variable name
A member has been declared more than once. (e)
struct{
int 1i;
int i;
}i

1543: negative subscript not allowed
The size of an array cannot be negative. (e)

int ar[-10];

1544: zero subscript not allowed
An array of zero size cannot be declared when compiling for strict ANSI C
(-X7=2, or -Xdialect-strict-ansi). (w)

int x[0];

1546: dangerous to take address of member of packed or swapped structure
Using the address of a packed or byte-swapped structure is not recommended.

(w)

#pragma pack (2,2,1)

ptr = &(structl.i);

40

1 Error Messages
1.2 Compiler Error Messages

1547: can’t take address of object
Trying to take the address of a function, constant, or register variable that is
not stored in memory. (e)

register int r; fn(&r);

1548: can’t do sizeof on bit-field
The sizeof function does not work on bit-fields. (e)
struct {
int j:3;
} structl;
i = sizeof(structl.j);
1549: illegal value
Only certain expressions can be on the left hand side of an assignment. (e)
a+tb = 1;
(a ?b:c)=2; /* not valid in C modules*/
1550: can’t push identifier
It is invalid to use an expression of type function or void as an argument. (e)

void *pv; int (*pf) (); fn(*pv, *pf);

1551: argument [identifier] type does not match prototype
The type of an argument to a function is not compatible with its type as given
in the function’s prototype. (w) if -Xpcc or -Xk-and-r or -Xmismatch-warning,
(e) otherwise.

int f(char *), i; ... 1 = f(&i);

1552: initializer type "type" incompatible with object type "type"
The type of an initializer is not compatible with the type of the variable, (w) if
-Xpcc or -Xmismatch-warning, (e) otherwise.

char c; int *ip = &c;

1553: too many errors, good bye

The compiler has found so many errors that it does not seem worthwhile to
continue. (f)

1554: illegal type(s): type-signatures
The operators of an expression do not have the correct or compatible types, (w)
if -Xpcc or -Xk-and-r or -Xmismatch-warning, (e) otherwise. This message
may also indicate an attempt has been made to find the sum of two pointers.
int *pi, **ppi; ... if (pi =

ppi)
#illegal types: ptr-to-int !

ptr-to-ptr-to-int
int *p, *q;

P =p+a // Attempt to add pointers

#illegal types: ptr-to-int '+' ptr-to-ptr-to-int

41

Wind River Compiler
Error Messages Reference, 5.6

1555: not a struct/union reference
The left hand side of a “->” or “.” expression is not of struct or union type. If
-Xpcc is specified the offset of the given member name in another struct or
union is used. (w) if -Xpcc, -Xk-and-r, or -Xmismatch-warning, (e) otherwise.

1556: volatile packed member cannot be accessed atomically
For the selected processor, a packed member cannot be accessed atomically if
it is volatile. (w)
#pragma pack(l, 1)

struct {
volatile int v;
} s
s.v =3; /* generates error 1556 */
1560: unknown pragma

The pragma is not recognized. (w)
#pragma tist
1561: unknown option -Xunknown

The compiler was started with an -X option that is not recognized. (w)

1562: bad #pragma use_section: section section name not defined
A #pragma use_section command has not been correctly given. (w)

#pragma section DATA3 // Correct
#pragma use_section x // Omitted section class name DATA3

1563: bad #pragma [name]
If issued without the name, the compiler did not recognize the pragma. If
issued with a name, there is a problem with either the operands to the pragma
or the context in which it appears. (w)

1564: bad #pragma pack
The #pragma pack statement is not correct. (w)
#pragma pack(1l,2,3,4) // Takes up to three arguments

1565: illegal constant in #pragma pack
An invalid constant has been used in a pack pragma. (w)

#pragma pack(7) // Must use powers of 2 for alignment

1566 to 1572: obsolete messages
Messages numbered 1566 to 1572 should not appear because they refer to
obsolete features.

1573: user’s error string
Error number 1573 can be used to display any string the user chooses when

42

1 Error Messages
1.2 Compiler Error Messages

» the compiler compiles this file, by use of #pragma error string:
#pragma error Now compiling test.c; // compilation continues

» the compiler stops because of an error, by use of error string:
#error // This terminates the compilation process

1574: can’t open file for input
The given file cannot be opened. (f)

1575: can’t open file for output
The given file cannot be opened. (f)

1577: can’t open profiling file file
The file given with the -Xfeedback=file option cannot be opened. (w)

1578: profile file is of wrong version (file)
The file given with the -Xfeedback option is out of date or has an old format.
Re-compile with the -Xblock-count option and create a new profiling file. (e)

1579: profile file file is corrupted
The file given with the -Xfeedback option is corrupted. Re-compile with the
-Xblock-count option and create a new profiling file. (e)

1580: can’t find current module in profile file ...
No data about the current source file is available in the profiling file. (w)

Possible causes:

= No function in the current file was actually executed during profiling.
= The profiling file belongs to another executable program.

1584: illegal declaration-attribute
A declaration contains an invalid combination of declaration specifiers. (w)

unsigned double foo;

1585: global register register name is already used
The global register has already been reserved. (w)

rld
rl4d

#pragma global_register counter
#pragma global_register kounter

1586: cannot use scratch registers for global register variables
Scratch registers cannot be used for global register variables. (w)

#pragma global_register counter:wnndrngﬁw%nmne

1587: global register register-name is invalid
Found an unrecognized register name in a global_register pragma. (w)

43

Wind River Compiler
Error Messages Reference, 5.6

1588: no .cd file specified!
The target description (.cd) file was not specified.

The compiler reads a target description file during initialization (see the User’s
Guide). Normally, when the dec command is given, the .cd file is
automatically specified. To find out the .cd filename for your selected target
configuration, run decc with the -# option to display all of the commands
generated, and look at the -M option for the ctoa program. (f)

Likely causes:

» The compiler is not installed properly.
* One of the compiler files has been deleted, hidden, or protected.
= The dtools.conf or other configuration file is incorrect.

1589: can’t open .cd file!
See error 1588 for a description of the .cd file and likely causes.

1590: .cd file is of wrong type!
See error 1588 for a description of the .cd file and likely causes.

1591: .cd file is of wrong version!
See error 1588 for a description of the .cd file and likely causes.

1592: cd file file too small?!
See error 1588 for a description of the .cd file and likely causes.

1593: rite error
Write to output file failed. (f)

1595: illegal arg to function name
The compiler has detected an internal error. May result from other errors
reported earlier. If the problem does not appear to be a consequence of some
earlier error, please report it to Customer Support. (f)

1596: test version of compiler: File is too big!
This error is generated when certain limits in an evaluation copy of the
compiler are exceeded. (f)

1597: test version of compiler: Can’t continue!
This error is generated when certain limits in an evaluation copy of the
compiler are exceeded. (f)

1598: no matching asm pattern exists
While scanning an asm macro, no storage-mode-line matching the given
parameters was found. See the User’s Guide for more information on
embedding assembly code.

44

1 Error Messages
1.2 Compiler Error Messages

1599: expression too complex. Try to simplify
Can occur if an expression is too complex to compile. Should not happen on
most modern processors. Can occur on a processor with few registers and no
built-in stack support. (f)

1600: no table entry found!
The compiler has detected an internal error. May result from other errors
reported earlier. If the problem does not appear to be a consequence of some
earlier error, please report it to Customer Support. (f)

1601: address taken in initializer (PIC)
Position-independent code. A static initializer containing the address of a
variable or string has been found when generating position-independent code.
Such address values cannot be position-independent. (w) or (e) depending on
whether -Xstatic-addr-warning or -Xstatic-addr-error is used.

1602: variable ... is incomplete
A variable is defined with a type that is incomplete. (e)
struct a;
struct a b;

1603: logic error in internal-identification
The compiler has detected an internal error. May result from other errors
reported earlier. If the problem does not appear to be a consequence of some
earlier error, please report it to Customer Support. (f)

1604: useless assignment to variable identifier. Assigned value not used
The variable assignment has no effect, since the assigned value is not used.
This message appears if the -Xlint option is used. (w)
fun () {
int i=1;
}
1605: not enough memory for reaching analysis
Certain optimizations, called “reaching analysis”, will be skipped if the host
machine cannot provide enough memory to execute them. The compiler
continues, but produces less than optimal code. (w)

1606: conditional expression or part of it is always true/false
A conditional test is made, but the results will always be the same. This
message appears if the -Xlint option is used. (w)
int main(){
int i = 3;
if (i < 6)
return 4;

45

Wind River Compiler
Error Messages Reference, 5.6

1607: variable name is used before set
During optimization, the compiler discovers a variable that is used before it is
set. (w)

func() { int a; if (a == 0) ... }

1608: variable identifier might be used before set
A variable may have been used before it was given a value. (w)
fun () {
int 1i,3;
i=3; // j 1is used before set
}
1609: illegal option -Dinvalid_name
The preprocessor was invoked with the -D option and an invalid name.
Names must start with a letter or underscore. (w)

1611: argument list not terminated
The end of the source file was found in a macro argument list. (w) if -Xpcc, (e)
otherwise.

1612: EOF inside #if
The source file ended before a terminating #endif was found to match an
earlier #if or #ifdef. If not caused by a missing #endif, then it is frequently
caused by an unclosed comment or unclosed string. (w) if -Xpcc, (e) otherwise.

1617: syntax error in #if
The expression in an #if directive is incorrect, (w) if -Xpcc, (e) otherwise.

#if a *
1618: too complex #if expression

The expression in an #if directive overflowed an internal stack. This is unlikely
to happen in the absence of other errors, (w) if -Xpcc, (e) otherwise.

1619: include nesting too deep
The preprocessor cannot nest header files deeper than 100 levels, (w) if -Xpcc,
(e) otherwise.

1621: can’t find header file unknown
The preprocessor cannot find a file named in an #include directive. (w) if
-Xpcc, (e) otherwise.

1622: found #elif, #else, or endif without #if
Found an #elif, #else, or #endif directive without a matching #if or #ifdef. (w)
if -Xpcc, (e) otherwise.

46

1 Error Messages
1.2 Compiler Error Messages

1623: bad include syntax
The #include directive is not followed by < or " or the filename is too long. (w)
if -Xpcc, (e) otherwise.

1624, 1625: illegal macro name

illegal macro definition
Macro names and arguments must start with a letter or underscore, (w) if
-Xpcc, (e) otherwise.

1626: illegal redefinition of macro_name
LINE,_FILE_,_ DATE_,_ TIME_, defined, and _ STDC__cannot be
redefined, (w) if -Xpcc, (e) otherwise.

1627: macro macro name redefined
The macro was previously defined. (w)
#define PI 3.14
#define PI 3.1416
1629: undefined control
Undefined or unsupported directive found after #, (w) if -Xpcc, (e) otherwise.

#pragmo

1630: illegal assert name
An #assert name must be an identifier and must be preceded by a “#”
character, (w) if -Xpcc, (e) otherwise.

1631: macro identifier: argument mismatch
Either too few or too many arguments supplied when using a macro, (w) if
-Xpcc, (e) otherwise.
#define M(a,b) (a+b)
i=M(1,2,3);
1632: recursive macro macro name
A recursive macro has been detected. The error occurs when the macro
substitution occurs, line 4 in this case: (e)
#define max(A,B) A>B ? A : max(A,B)
main () {
int i=1,3=2,%;
k = max(i,j); // Reports error for this line.
}
1633: parse error
The complier was not able to parse the expression. (e)

x = multiply(y,); // Comma, but no second argument
main (} // Typed } instead of

47

Wind River Compiler
Error Messages Reference, 5.6

1635: license error: error message
An error occurred when checking the license for the software tools. The error
message describes the problem (no server for this feature, etc.). Please refer to
your Getting Started manual or contact Customer Support. (f)

1638: illegal error level error level in option option name
The -exn option was used with an invalid error level. The -e option is used for
increasing the severity of error messages for a particular error. (w)

dcc -e99 test.c // 99 is invalid error level

1640: illegal error message number message number
The -exn option was used with an invalid error message number. The -e option
is used for increasing the severity of error messages for a particular error. (w)

dcc -ewl0000 test.c // There is no message number 10000

1641: cannot reduce severity of error message number below error level
% dcc -ewl6l4d test.c
warning (dcc:1641): Cannot reduce severity
of message 1641 below "error"
1643: narrowing or signed-to-unsigned type conversion found: type to type
A type conversion from signed to unsigned, or a narrowing type conversion
has been found. This message appears if the -Xlint option is used. (w)
main() {
int i;
char c;
c = 1ij;
}
1647: non-string method invocation expression on string object expression
This error indicates a mismatch between an invocation and the declaration of
a method.

For example, non-const method invocation in const object. Methods of const
objects must be const.

class C {

int 1i;

public:
£() {1 =12; }
c() {1}

Y
const C c;
main() {

c.£0);
}

48

1 Error Messages
1.2 Compiler Error Messages

"x.cpp", line 11: error (1647): non-const method
invocation f() on const object c

1650: no profiling information found in database database name
This applies to programs compiled and run in the RTA (Run-time Analysis
tools). (w)

A program was compiled with the option -Xprof-feedback=database directory,
and the profiling information was not found in the database directory. The
normal sequence of events is:

a. A program is compiled with an -Xprof-type option that adds profiling
code to the program.

b. The program is run and profiling information is collected using the RTA.

c. The program is compiled with the -Xprof-feedback option, and the
compiler uses the profiling information to optimize the code.

Possible causes of the error:

* The wrong database directory was specified.
» The database does not contain profiling data.

1651: can’t find profiling information for function in database
A program was compiled with the option -Xprof-feedback=database directory,
and the profiling information was not found for the function. See error 1650,
above, for a brief explanation of the situations where this error occurs. (w)

Possible causes of the error:

* The module was not compiled with an -Xprof-type option that would add
code for instrumentation.

* The program was not run; so profiling data was not collected.

1657: initializer method name initializes neither a direct base nor a member
Only classes that are direct bases or virtual bases can be used in a member
initializer. (e)

struct A { A(int); };
struct B : public A { B(int); };

struct C : public B {

C(int 1) : A(i) {} // Can’t initialize A here
Y

49

Wind River Compiler
Error Messages Reference, 5.6

1663: inline of function does not occur in routine function - try increasing value
of -Xinline
This warning is generated whenever the inline keyword is specified but the
compiler does not inline the function. Increasing the value of -Xinline or
-Xparse-size can help, but there are other reasons for not inlining a function.

1665: long long bit-fields are not supported
long long cannot be used with bit-fields. (w)
struct {
long long story:3;
}
1671: non-portable behavior: operands of type are promoted to unsigned type
only in non-ANSI mode
When a non-ANSI compilation mode is used, for example, -Xpcc, this warning
appears when the compiler selects an unsigned integral type for an expression
which would have been signed under ANSI mode. This message appears if the
-Xlint option is used. Use -X1int=0x200 to suppress this message. (w)

1672: scope of tag tag is only this declaration/definition
The tag referred to in a parameter list does not have a prior definition. (w)

/* struct bar does not have a definition before this point */
foo(struct bar a);

1674: template argument argument should be pointer/reference to object with
external linkage
Arguments for template functions need to be pointers or references to objects
with external linkage. (e)

template <class T, int& Size>
class Base {

o

class A {

)

static int local_linkage_int;

Base<A, local_linkage_int> ob;

1675: sizeof expression assumed to contain type-id type-id (use “typename”)
When a type-id is used in a sizeof expression, the compiler assumes that this
is intended; otherwise a typename should be used instead. (w)

50

1 Error Messages
1.2 Compiler Error Messages

template <class T, int& Size>
class Base {

void incr ()

{
Size = Size + sizeof(d);

}
i
1676: class class is abstract because it doesn’t override pure virtual function

A class that has un-overridden pure virtual functions is an “abstract class” and
cannot be instantiated. (i)

1677: executable executable name not found in profiling database database name
This applies to programs compiled and run in the RTA (Run-time Analysis
tools). (w)

The specified executable was not found.

1678: snapshot snapshot name not found in profiling database database name
This applies to programs compiled and run in the RTA (Run-time Analysis
tools). (w)

The snapshot containing profiling information was not found.

1679: no definition found for inline function function
The template member function referred to has no definition. (w)

1680: delete called on incomplete type type
The delete operator is called on a pointer to a type whose full declaration has
been deferred. (w)

1682: "(unsigned) long long" type is not supported by the ANSI standard
The ANSI standard does not support the long long type. (w; future error)

long long x;

1683: non-int bit-fields are not supported by the ANSI standard
The ANSI standard allows bit-fields of integer type only. (w; future error)

struct foo {
char x:2;

};

1696: intrinsic function name must have n argument(s)
The number of arguments passed to an intrinsic function is incorrect. (e)

int a, b;

a = _ ffl(a, b);

51

Wind River Compiler
Error Messages Reference, 5.6

1697: invalid types on arguments to intrinsic function name
An argument of an invalid type is passed to an intrinsic function. (e)

char *ptr;
int a;

a = _ _ffl(ptr);

1700: implicit intrinsic function name must have n argument(s) - when the
intrinsic is enabled, optional user prototype must match
When an enabled intrinsic function is redefined, the number of arguments
must be the same. (e)

unsigned int __ffl (unsigned int x, unsigned int y)

{
}

1701: invalid types on prototype to intrinsic function name - when the intrinsic is
enabled, optional user prototype must match
When an enabled intrinsic function is redefined, the prototypes must match.

(e)

unsigned int _ ffl(int a)

{
}

1702: prototype return type of intrinsic function name should be type - when the
intrinsic is enabled, optional user prototype must match
When an enabled intrinsic function is redefined, the return type must match.

(e)

void __ffl(unsigned int a)

{

}

1703: function name matches intrinsic function name - rename function or disable
the intrinsic with -Xintrinsic-mask

A function with the same name as an intrinsic function has been defined. The
function should be renamed or intrinsic functions should be disabled. (w)

unsigned int __ffl (unsigned int x)

{

}

1704: structure or union cannot contain a member with an incomplete type
Structures or unions should not contain fields of incomplete type. (w; future
error)

52

1 Error Messages
1.2 Compiler Error Messages

struct x
{
void a;
Y
1707: invalid pointer cast/assignment from/to __ X mem/__Y mem
The pointer assignment is invalid because it is between locations in two
different memory banks. (e)

1708: cannot take address of an intrinsic function
An intrinsic function, which represents a specific CPU instruction, has no
location in memory.

1709: unsupported GNU Extension : inline assembler code
The compiler does not translate extended GNU inline assembler syntax (such
as register usage specification). (e)

1710: macro macroname: vararg argument count does not match. expected n or
more but given m
Too few arguments are passed to a vararg macro. (w)

#define TEST INFO_1(fmt, val, ...) printf (fmt, val, __VA_ARGS_)
TEST_INFO_1("vall = %d, val2 = %d", 12);

1711: undefined identifier identifier used in constant expression
An undefined macro name occurs in a #if preprocessor directive. To disable
this warning, use -Xmacro-undefined-warn. (w)

#if (FooDefl == FooDef2)
...
#endif

1712: only vector literals may be used in vector initializations
Vectors can be initialized only with vector constants. (e)

vector int al2] = {1, 2};
1713: invalid assert name narme
1714: invalid macro name name
1715: no input file given
1716: memory unavailable
1717: unterminated comment
1718: unterminated character or string constant
1719: duplicate parameter name param in macro macro

1720: implicit include file “file” not found

53

Wind River Compiler
Error Messages Reference, 5.6

1721: missing ">" in “#include <filename> syntax"
1722: junk after "#include <filename>"

1723: junk after "#include “filename”

1724: "#include" expects <filename> or “filename”
1725: #if nesting too deep

1726: #include file nesting too deep. possible recursion
1727: unmatched condition. block starts on line n
1728: unmatched condition

1729: unbalanced condition

1730: undefined control after expr

1731: EOF inside #... conditional

1732,
1733: illformed macro parameter list in macro macro

1734: invalid macro name name

1735: invalid argument to macro

1736: illformed macro invocation

1737: invalid assert name name

1738: "##" at start of macro definition

1739: "#" precedes non macro argument name or empty argument
1740: macro macro: argument count does not match. expected n but given m
1741: redefinition of macro "macro". previously defined here
1742: predefined macro macro redefined

1743: empty token-sequence in "#assert"

1744: no closing ")" in "#assert"

1745: garbage at the end of "#assert"

1746: invalid number in #line

1747: only a string is allowed after #line <num>

1748: string expected after #error

54

1 Error Messages
1.2 Compiler Error Messages

1749: string expected after #ident

1750: # directive not understood

1751: "defined" without an identifier

1752: no closing ")" in "defined"

1753: bad digit in number

1754: bad number in #if...

1755: floating point number not allowed in #if...

1756: wide character constant value undefined

1757: undefined escape sequence in character constant
1758: empty character constant

1759: multi-character character constant

1760: octal character constant does not fit in a byte
1761: hex character constant does not fit in a byte
1762: character constant taken as unsigned

1763: garbage at the end of condition argument

1764: illegal identifier identifier in condition

1767: can’t find include file file in the include path
1768: invalid "vector bool" constant, valid values 0, 1 or -1
1769: the called object is not a function

1770: array is too large
There is a physical limitation on the amount of space that can be allocated for
an array. (e)

1771: reserved identifiers "__FUNCTION_ " and " PRETTY_FUNCTION__" may
only be used inside a function
The special identifiers _ FUNCTION__and _ PRETTY_FUNCTION__, which
return the name of the current function, can be used only within a function. (e)

1772: possible redundant expression
The compiler has encountered a valid but redundant operation, such as x&x.
This message appears if the -Xlint option is used. (w)

1773: quoted section name cannot be empty, set to: default name
Quoted section names cannot be empty (“” or “ "). For example,

55

Wind River Compiler
Error Messages Reference, 5.6

.section " ",4,rx
will be changed to:
.section "default_section_name" ,4,rx

where the default section name is determined by context. (w)

1774: asm macro must be completed with "}" in the very first position
An asm macro must conclude with a right brace ("}") in the first column of a
new line. The example below shows a valid asm macro. (e)
asm void setsr (unsigned short value)
{
smem value;
move.w value,d0

move.w dO,sr

}

1775: deprecated use of constructor/destructor ignored, use attribute keyword
The compiler encountered an initialization or finalization function declared
with the obsolete prefix _STI__nn_or _STD__nn_. Use the __attribute__
keyword to identify initialization and finalization functions, or specify
-Xinit-section=2 to use old-style initialization and finalization sections. (f)

1776: constructor/destructor priority out of range (number)
The specified priority is out of range. The default range is 0-65535; but if
-Xinit-section=2 is enabled, the range is 0-99. (e)

1777: default constructor/destructor priority out of range, setting to lowest
The priority for default constructors and destructors has been set with
-Xinit-section-default-pri to a value that is out of range. The default range is
0-65535; but if -Xinit-section=2 is enabled, the range is 0-99. (w)

1778: option -Xc++-old is deprecated and dtoa will be removed in a future
release
-Xc++-o0ld, which invokes an obsolete version of the C++ compiler, will not be
supported indefinitely. Legacy projects should be ported to the latest C++
compiler. See the User’s Guide for more information. (w)

1779: CODE section without execute access mode: section-name
A CODE section has been created with a specified access mode that does not
include execute permission. For example:

#pragma section CODE ".SOME_CODE_SECTION" RW far-code

In this example, RW (read-write) is not a valid access mode, since a CODE
section must allow execution. X (execute) should be added to the access mode.

(e)

56

1 Error Messages
1.2 Compiler Error Messages

1780: non-int bitfields not allowed in packed structures
Bit-fields of type char or short are nonstandard. Depending on the compilation
target, such bit-fields can result in faulty code when they occur in packed
structures. For example:

struct {

ﬁﬁéigned short foo:11;
} Aﬁéééribute*,((packed)) structl
Replace unsigned short with int. (e)

1788: inline function inline_function is never used
A static function was declared as inline but was not called. This message
appears if the -Xlint option is used.

This warning appears for C89 code only. Note that for C89, the function must
be declared using #pragma inline and compiled using optimization (-XO). For
more information, see also 1517: function function name is never used, p.38, and
the sections on inline pragmas in the User’s Guide. (w)

1793: conflicting types for section section:
An attempt has been made to mix types of information in a single object-file
section; for example, constant data (such as a string constant) into a section
reserved for code or variables.

In this example, the compiler assumes from the first statement that the section
.mydata is intended to be of the DATA section class, whereas the second
statement assumes that .mydata will be a CONST section class:

__attribute_ ((section(".mydata"))) int var = 1;
__attribute__ ((section(".mydata"))) const int const_var = 2;

1794: expensive optimizations disabled for function '%0s": size (%1d) > size
specified with -Xopt-limit (%2d)

1795: Semicolon found in assembly statement but neither -Xsemi-is-newline nor
-Xsemi-is-comment has been specified

1796: __thread not supported in the specified target environment
1797: __thread variable used in initializer

2000: undeclared identifier : %0L

2001: invalid assignment conversion : %1L to %0L

2002: value %0d out of range for byte

2003: value %0d out of range for char

57

Wind River Compiler
Error Messages Reference, 5.6

2004:
2005:
2006:
2007:
2008:
2009:
2010:
2011:
2012:
2013:
2014:
2015:
2016:
2017:

%2s

2018:
2019:
2020:
2021:
2022:
2023:
2024:
2025:
2026:
2027:
2028:
2029:

2030

58

value %0d out of range for short

value out of range for int

value out of range for long

type does not allow const initializer

%0L is an invalid type for assignment/initialization/case of int variable
type of initializer value must be integral

float cannot be initialized with a double

char must be initialized with a char or integer literal
type on question test must be boolean

casts to and from boolean not allowed

casts between primitive and reference types not allowed
undeclared type : %0s

redeclaration of %0K

ambiguous reference to field %0s : defined in interface %1s and interface

ambiguous reference to field %0s : defined in super %1s and interface %2s
invalid type for new expression : %0L: must be a reference type
undeclared method : %0L

cannot assign primitive type to reference type

invalid assignment conversion : %1K is not a subclass of %0K

invalid assignment conversion : %1K does not implement %0K

invalid assignment conversion : %0K is not a super-interface of %1K
invalid assignment conversion : interfaces can only assign to class Object
new type must be a class or array

number of parameters must match definition for method %0K

parameter type mismatch: %1L does not convert to %0L

casts to null type not allowed

: null to primitive casts not allowed

1 Error Messages
1.2 Compiler Error Messages

2031: invalid cast : %1K is not a subclass of %0K nor vice versa

2032: invalid cast : %1K cannot implement %0K

2033: comparison operand type must be numeric

2034: cannot do (in)equality comparison between primitive and reference types
2035: bitwise complement operand must be integral

2036: logical complement operand must be boolean

2037: unary operand must be numeric

2038: binary operand must be numeric

2039: bad type on bitwise/logical operand

2040: logical operand type must be boolean

2041: shift operand type must be integral

2042: conditional expression must be boolean

2043: conditional expression in DO statement must be boolean
2044: conditional expression in FOR statement must be boolean
2045: cannot assign class type to an array type

2046: cannot assign interface type to an array type

2047: Object is the only class arrays can assign to

2048: Cloneable is the only interface arrays can assign to

2049: Base types of arrays must exactly match if one is a primitive type for
assignment

2050: Base types of arrays must exactly match if one is a primitive type for
casting

2051: only class Object can cast to an array type

2052: array only casts to classes Object and String
2053: Cloneable is the only interface arrays can cast to
2054: illegal cast from interface type to array type
2055: array access on non-array type

2056: EOF in comment

2057: EOF in character constant

59

Wind River Compiler
Error Messages Reference, 5.6

2058:
2059:
2060:
2061:
2062:
2063:
2064:
2065:
2066:
2067:
2068:
2069:
2070:
2071:
2072:
2073:
2074:
2075:
2076:
2077:
2078:
2079:
2080:
2081:
2082:
2083:
2084:
2085:

60

EOF in string constant

line terminator in character constant

line terminator in string constant

empty character constant

missing ending single quote in character constant
illegal escape character : %0s

illegal hex constant

illegal octal constant

illegal character : %0s

non-zero float value rounded to zero

floating point value (%0s) out of range
option %0s ignored

empty file

duplicate modifier

invalid field modifier : %0s

only one access(protected,private,public) modifier is allowed
invalid constant(interface) field modifier : %0s
invalid method modifier : %0s

invalid abstract method modifier : %0s

invalid constructor modifier : %0s

invalid class modifier : %0s

invalid interface modifier : %0s

field cannot be both volatile and final

cannot assign to final class variable %0K in a method
this or super cannot occur in static scope

abstract method cannot also be %0s

abstract method must be in an abstract class

%0s method cannot have a body. It should be specified only with a ;

1 Error Messages
1.2 Compiler Error Messages

2086: missing body. If a method is neither abstract nor native, it must have a
body

2087: missing type on method %0s in class %1s

2088: final variable %0K must be initialized

2089: cannot create an instance of abstract class %0K

2090: super class %0K must be a class

2091: cannot extend final super class %0K

2092: class cannot be abstract and final

2093: implements class %0K is not an interface

2094: only one public class per compilation unit allowed

2095: Cannot use instance variable %0K in static initialization
2096: Explicit this/super must be first statement of a constructor
2097: invalid cast : %0K cannot implement %1K

2098: extra semicolon. Ignored

2099: abstract method %0K not implemented in class %1K
2100: interface method %0K in interface %1K not implemented
2101: Cannot access private member %0s of base class %1K
2102: Cannot call super class constructor %0s by name

2103: Cannot hide static final method %0K of super class %1K

2104: Cannot override static method %0K of super class %1K with an instance
method

2105: Cannot override instance method %0K of super class %1K with a static
method

2106: Cannot override final method %0K of super class %1K

2107: Access on overriding method %0K must be at least as great as that of the
overridden method in %1K

2108: Cannot change method return types in override method %0K from %1K

2109: Cannot override default access method %0K of super class %1K with a
private method

61

Wind River Compiler
Error Messages Reference, 5.6

2110: Cannot override public access method %0K of super class %1K with a
non-public method

2111: Protected access method %0K of super class %1K can only be overridden
with a protected or public method

2112: interface method %0K of interface %1K cannot be implemented with a
static function

2113: interface method %0s of interface %1s has different return type than
interface %2s

2114: Cannot override abstract method %0s of interface class %1s in class %?2s
with a static method

2115: static %0K cannot be initialized in an instance initializer block
2116: Constructor cannot call itself

2117: A static initializer cannot contain a return statement

2118: A constructor cannot contain a return with an expression

2119: Cannot invoke the private constructor/method %0K of class %1L
2120: Cannot invoke the protected constructor/method %0K of class %1L
2121: Constructor for class %0K not found

2122: Array index must be type int or promotable to int

2123: Subscript type must be int or promotable to int

2124: Array initializer for non-array type %0L: extra braces

2125: continue/break identifier not in the scope of a defined label
2126: continue/break label does not exist in this scope

2127: break must be nested within a for, do, while, or switch

2128: continue must be nested within a for, do, or while

2129: same label %0s cannot be nested within itself

2130: switch expression must be char, byte, short, or int

2131: only one default allowed per switch

2132: case value must be constant

2133: duplicate case value %0d

2134: return must have an expression if method is declared to return a value

62

1 Error Messages
1.2 Compiler Error Messages

2135: void method cannot return an expression

2136: return expression type %1L is not assignable to return type %0L

2137: synchronized expression must be a reference type

2138: missing expression in synchronized statement

2139: field %0K not found in type %1L

2140: ambiguous invocation of method %0K

2141: cannot invoke instance method %0K from inside a static method
2142: pre or post in(dec)rement must be to a variable of numeric type

2143: cannot cast to or from void type

2144: (in)equality comparison with a boolean must be with another boolean
2145: (in)equality operand cannot be a void method

2146: colon operand cannot be a void method

2147: colon operand cannot be a mix between primitive and reference types
2148: colon operands cannot mix a boolean and a non-boolean

2149: one side of colon operator must be assignable to other side

2150: left operand of instanceof must be a reference type or null

2151: right operand of instanceof must be a reference type

2152: (in)equality reference operands must be castable to each other in at least
one direction

2153: Right instanceof operand must be castable to the left operand type

2154: Final is the only modifier allowed on local variable declarations

2155: invalid cast from %0K to %1K: they share a method with different return
types

2156: Final is the only modifier allowed on formal parameter declarations
2157: internal error message problem

2158: local variable %0K is not definitely initialized

2159: unreachable statement

2160: statement(s) inside while false will not be reached

2161: for expression is false so statement(s) will not be reached

63

Wind River Compiler
Error Messages Reference, 5.6

2162: import %0s not found

2163: class %0L is ambiguous: it is defined in multiple package imports: %1L
and %2L

2164: cannot open dependency file %0L

2165: cannot call abstract method %0K

2166: a non-void method must have a return at all exit points
2167: instance %0K cannot be referenced before construction

2168: Constructor cannot create a call chain cycle with other constructors of its
class

2169: public interface method %0K in interface %1K must implemented with a
public method

2170: extension .java missing for file name %0s

2171: cannot create dependency file %0s

2172: class java.lang.Object cannot have super

2173: no public class found in compilation unit

2174: circular super class hierarchy for class %0s

2175: circular interface hierarchy for interface %0K

2176: local variable %0K is not final

2177: cannot qualify %0K: it is the basic type %1L

2178: invalid forward reference in initializer to %0K

2179: throw expresson must be assignable to java.lang.Throwable
2180: throws type %0K must be assignable to java.lang.Throwable

2181: throw type %0K must be caught in an enclosing catches clause or be
declared in the method's throws clause

2182: method %0K cannot have throw class %2K if it is not thrown in the
hidden/overridden method in class %1K

2183: %0L is not a public class
2184: %0L is also a class or interface

2185: %0L is also a package

64

1 Error Messages
1.2 Compiler Error Messages

2186: redeclaration of %0L: a class or identifier can only be declared once per
package (remove unnecessary .class files)

2187: cannot open source file %0L

2188: instance %0K cannot be used in a static method or static initializer block
2189: Cannot reference the private field %0K of class %1L

2190: Cannot reference the protected field %0K of class %1L

2191: Cannot reference the default access field %0K of class %1L from another
package

2192: Cannot invoke the default access constructor/method %0K of class %1L
from another package

2193: interface %1K of package %0L needs to be public to be accessible outside
of its package

2194: invalid forward reference in static initializer to %0K
2195: interface %0K is duplicated in a single implements clause

2196: ambiguous reference to method %0s : defined in interface %1s and
interface %2s

2197: ambiguous reference to method %0s : defined in super %1s and interface
%2s

2198: catch type %0L must be assignable to java.lang.Throwable
2199: catch clause not reachable

2200: cannot invoke non-static method %0K.%1K with a MethodName of the
form TypeName . Identifier

2201: cannot reference non-static field %0K.%1K with an ExpressionName of the
form TypeName . Identifier

2202: parse error processing SwitchBlock: skipping to end of switch: switch
block must begin with a label

2203: invalid dimension expression
2204: invalid synchronized expression
2205: invalid class name

2206: invalid method name

2207: invalid field name

65

Wind River Compiler
Error Messages Reference, 5.6

2208: invalid type name

2209: parse error processing: skipping to next semi-colon
2210: invalid array initializer: missing or invalid terms
2211: invalid class member: skipping to next semi colon
2212: tokens after end of compilation unit

2213: invalid import declaration

2214: missing parenthesis in method header

2215: missing comma in parameter list

2216: skipping to end of parameter list

2217: an interface method declaration cannot have an implementation
2218: interface cannot have static initializer

2219: invalid while expression

2220: invalid do while expression

2221: invalid for update

2222: invalid for expression

2223: invalid for initializer

2224: invalid for construct: skipping to right parenthesis
2225: invalid while statement

2226: invalid do while statement

2227: invalid for statement

2228: parse error: skipping to end of block

2229: parse error: skipping to end of class body

2230: this or super cannot occur in interface scope

2231: static method %0K not allowed in inner class

2232: static field not allowed in inner class

2233: Can't make a reference from a static inner class to non-static %0K

2234: the outer local/parameter %0K must be declared final for an inner class
reference

66

1 Error Messages
1.2 Compiler Error Messages

2235: ambiguous reference to %0K: either preface it with this. to refer to the
outer field or rename the outer local

2236: a super from a constructor derived from an inner class must be qualified
with a reference to the super's outer class

2237: only calls to inner class supers should be qualified

2238: a qualified super should be qualifed with a reference to the super's outer
class %1K, not %0K

2239: invalid block nested class modifier : %0s

2240: inner class name %0L cannot match any outer class names

2241: A instance initializer cannot contain a return statement

2242: circularity error: super class name %0L cannot match any outer class names
2243: cannot call super class constructor from Object since it has no super class

2244: blank final variable %0K can be initialized once and only once along any
execution path

2245: cannot assign to final qualified field %0K.%1K
2246: cannot assign multiple times to class final %0K
2247: static %0K cannot be initialized in a constructor

2248: instance %0K should only be initialized in constructors that don't make
explicit this calls

2249: cannot modify final parameter %0K

2250: interface type %0K can only be used as a new type as part of an ambiguous
class declaration

2251: ambiguous class that implements interface type %0K must have an empty
argument list since its superclass is Object

2252: cannot create default constructor for class %1K since super's constructor
thrown exception %0K must be handled

2253: target implementation does not support long data type: using int instead
2254: seek failure for dependency in archive %0L
2255: this qualifier %0K must be an outer class

2256: new of an inner type %0K must be qualified with an instance of the outer
type %1K

67

Wind River Compiler
Error Messages Reference, 5.6

2257: inner class %2K cannot inherit a static %0K from interface %1K

2258: Only the first main function will be used as the entry point

2259: unrecognized pre-processor directive %0s

2260: verification error: %0s

2261: invalid directory for -d : %0s: cannot create

2262: cannot create package file %0s for package %1s

2263: cannot find needed constructor in class %0K

2264: missing argument list (parentheses) in new invocation

2265: throws expression must be comma separated list of classes: expecting '{'
2266: class %0L must be public to be accessed from another package

2267: primary expression must be of type %1K to correspond with the enclosing
class of the 'new' type %0K

2268: primary expression must be of an enclosing type of 'new' type %0K
2269: inner class import not found for %0L
2270: cannot import %0L: it's not a class

2271: public class %0L must be defined in a file called %1L.java

1.2.2 Messages Generated by etoa

The messages in this section are generated by etoa, which is the default frontend
for C++, and which may be invoked for C with the -Xc-new option. To use the
legacy C++ compiler, dtoa, use the -Xc++-old option. Messages generated by dtoa
and the default C compiler, ctoa, are listed beginning on page 3.

No further documentation is currently available for these messages. If a message
if unclear, contact Customer Support.

The severity of some C++ diagnostics (information, warning, error, or fatal) varies
according to the circumstances under which the message is generated.

4000: unknown error
4001: last line of file ends without a newline
4002: last line of file ends with a backslash

4003: #include file “xxxx” includes itself

68

4004:
4005:
4006:
4007:
4008:
4009:
4010:
4011:
4012:
4013:
4014:
4015:
4016:
4017:
4018:
4019:
4020:
4021:
4022:
4023:
4024:
4025:
4026:
4027:
4028:
4029:
4030:
4031:

1 Error Messages
1.2 Compiler Error Messages

out of memory

could not open source file “xxxx”

comment unclosed at end of file

unrecognized token

missing closing quote

nested comment is not allowed

"#" not expected here

unrecognized preprocessing directive

parsing restarts here after previous syntax error
expected a file name

extra text after expected end of preprocessing directive
“xxxx” is not a file containing source text

“xxxx” is not a valid source file name

expected a "]"

expected a")"

extra text after expected end of number

identifier “xxxx” is undefined

type qualifiers are meaningless in this declaration
invalid hexadecimal number

integer constant is too large

invalid octal digit

quoted string should contain at least one character
too many characters in character constant
character value is out of range

expression must have a constant value

expected an expression

floating constant is out of range

expression must have integral type

69

Wind River Compiler
Error Messages Reference, 5.6

4032: expression must have arithmetic type

4033: expected a line number

4034: invalid line number

4035: #error directive: xxxx

4036: the #if for this directive is missing

4037: the #endif for this directive is missing

4038: directive is not allowed -- an #else has already appeared
4039: division by zero

4040: expected an identifier

4041: expression must have arithmetic or pointer type

4042: operand types are incompatible (type and type)

4043: expression must have integral or pointer type

4044: expression must have pointer type

4045: #undef may not be used on this predefined name
4046: this predefined name may not be redefined

4047: incompatible redefinition of macro entity

4048: cast between pointer-to-object and pointer-to-function
4049: duplicate macro parameter name

4050: "##" may not be first in a macro definition

4051: "##" may not be last in a macro definition

4052: expected a macro parameter name

4053: expected a ":"

4054: too few arguments in macro invocation

4055: too many arguments in macro invocation

4056: operand of sizeof may not be a function

4057: this operator is not allowed in a constant expression
4058: this operator is not allowed in a preprocessing expression

4059: function call is not allowed in a constant expression

70

4060:
4061:
4062:
4063:
4064:
4065:
4066:
4067:
4068:
4069:
4070:
4071:
4072:
4073:
4074:
4075:
4076:
4077:
4078:
4079:
4080:
4081:
4082:
4083:
4084:
4085:
4086:
4087:

1 Error Messages
1.2 Compiler Error Messages

this operator is not allowed in an integral constant expression
integer operation result is out of range

shift count is negative

shift count is too large

declaration does not declare anything

expected a ;"

enumeration value is out of "int" range

expected a "}"

integer conversion resulted in a change of sign
integer conversion resulted in truncation
incomplete type is not allowed

operand of sizeof may not be a bit field

operand of "&" may not be a constant

operand of "&" in an initializer must be static
invalid operand of "&"

operand of "' must be a pointer

argument to macro is empty

this declaration has no storage class or type specifier
a parameter declaration may not have an initializer
expected a type specifier

a storage class may not be specified here

more than one storage class may not be specified
storage class is not first

type qualifier specified more than once

invalid combination of type specifiers

invalid storage class for a parameter

invalid storage class for a function

a type specifier may not be used here

71

Wind River Compiler
Error Messages Reference, 5.6

4088:
4089:
4090:
4091:
4092:
4093:
4094:
4095:
4096:
4097:
4098:
4099:
4100:
4101:
4102:
4103:
4104:
4105:
4106:
4107:
4108:
4109:
4110:
4111:
4112:
4113:
4114:

4115

72

array of functions is not allowed

array of void is not allowed

function returning function is not allowed

function returning array is not allowed

identifier-list parameters may only be used in a function definition
function type may not come from a typedef

the size of an array must be greater than zero

array is too large

a translation unit must contain at least one declaration
a function may not return a value of this type

an array may not have elements of this type

a declaration here must declare a parameter
duplicate parameter name

“xxxx” has already been declared in the current scope
forward declaration of enum type is nonstandard
class is too large

struct or union is too large

invalid size for bit field

invalid type for a bit field

zero-length bit field must be unnamed

signed bit field of length 1

expression must have (pointer-to-) function type
expected either a definition or a tag name

statement is unreachable

expected "while"

this use of a default argument is nonstandard
entity-kind "entity” was referenced but not defined

: a continue statement may only be used within a loop

4116:
4117:
4118:
4119:
4120:
4121:
4122:
4123:
4124:
4125:
4126:
4127:
4128:
4129:
4130:
4131:
4132:
4133:
4134:
4135:
4136:
4137:
4138:
4139:
4140:
4141:
4142:
4143:

1 Error Messages
1.2 Compiler Error Messages

a break statement may only be used within a loop or switch
non-void entity-kind “entity” should return a value

a void function may not return a value

cast to type “type” is not allowed

return value type does not match the function type

a case label may only be used within a switch

a default label may only be used within a switch

case label value has already appeared in this switch
default label has already appeared in this switch
expected a "("

expression must be an lvalue

expected a statement

loop is not reachable from preceding code

a block-scope function may only have extern storage class
expected a "{"

expression must have pointer-to-class type

expression must have pointer-to-struct-or-union type
expected a member name

expected a field name

entity-kind "entity” has no member “xxxx”

entity-kind "entity” has no field “xxxx”

expression must be a modifiable lvalue

taking the address of a register variable is not allowed
taking the address of a bit field is not allowed

too many arguments in function call

unnamed prototyped parameters not allowed when body is present
expression must have pointer-to-object type

program too large or complicated to compile

73

Wind River Compiler
Error Messages Reference, 5.6

4144

4145:
4146:
4147:
4148:
4149:
4150:
4151:
4152:
4153:
4154:
4155:
4156:
4157:
4158:
4159:
4160:
4161:
4162:
4163:
4164:
4165:
4166:
4167:
4168:
4169:
4170:
4171:

74

: a value of type “type” cannot be used to initialize an entity of type "type”
entity-kind "entity” may not be initialized

too many initializer values

declaration is incompatible with entity-kind “entity” (declared at line xxxx)
entity-kind "entity” has already been initialized

a global-scope declaration may not have this storage class

a type name may not be redeclared as a parameter

a typedef name may not be redeclared as a parameter

conversion of nonzero integer to pointer

expression must have class type

expression must have struct or union type

old-fashioned assignment operator

old-fashioned initializer

expression must be an integral constant expression

expression must be an lvalue or a function designator

declaration is incompatible with previous “entity” (declared at line xxxx)
name conflicts with previously used external name “xxxx”
unrecognized #pragma

expression must have arithmetic, pointer, or void type

could not open temporary file “xxxx”

name of directory for temporary files is too long (“xxxx”)

too few arguments in function call

invalid floating constant

argument of type “type” is incompatible with parameter of type "type”
a function type is not allowed here

expected a declaration

pointer points outside of underlying object

invalid type conversion

4172:
4173:
4174:
4175:
4176:
4177:
4178:
4179:
4180:
4181:
4182:
4183:
4184:
4185:
4186:
4187:
4188:
4189:
4190:
4191:
4192:
4193:
4194:
4195:
4196:
4197:
4198:
4199:

1 Error Messages
1.2 Compiler Error Messages

external/internal linkage conflict with previous declaration
floating-point value does not fit in required integral type
expression has no effect

subscript out of range

constant string subscript out of range

entity-kind "entity” was declared but never referenced

"&" applied to an array has no effect

right operand of "%" is zero

argument is incompatible with formal parameter

argument is incompatible with corresponding format string conversion
could not open source file “xxxx” (no directories in search list)
type of cast must be integral

type of cast must be arithmetic or pointer

dynamic initialization in unreachable code

pointless comparison of unsigned integer with zero

use of "=" where "=="may have been intended

enumerated type mixed with another type

error while writing xxxx file

invalid intermediate language file

type qualifier is meaningless on cast type

unrecognized character escape sequence

zero used for undefined preprocessing identifier

expected an asm string

an asm function must be prototyped

an asm function may not have an ellipsis

asm may only be used to declare a function

an asm function may not have a storage class

asm return value size does not match function return type

75

Wind River Compiler
Error Messages Reference, 5.6

4200:
4201:
4202:
4203:
4204:
4205:
4206:
4207:
4208:
4209:
4210:
4211:
4212:
4213:
4214:
4215:
4216:
4217:
4218:
4219:
4220:
4221:
4222:
4223:
4224:
4225:
4226:
4227:

76

asm parameter size does not match function parameter size
expected a "%"

invalid combination of asm control specifiers

extra text after expected end of asm control line

expected an asm control specifier

this asm name is already defined

invalid register name

an asm parameter may not have void type

expected an asm type specification

invalid asm type specification

invalid asm type width

invalid asm constant

an asm temporary may not have this type

this parameter may not be referenced because it has no type
the return value may not be referenced because its type is void
invalid register specifier

an expansion leaf must have at least one expansion line

the return value may not be referenced because it has no type
the return value may not have this asm type

error while deleting file “xxxx”

integral value does not fit in required floating-point type
floating-point value does not fit in required floating-point type
floating-point operation result is out of range

function declared implicitly

the format string requires additional arguments

the format string ends before this argument

invalid format string conversion

macro recursion

4228:
4229:
4230:
4231:
4232:
4233:
4234:
4235:
4236:
4237:
4238:
4239:
4240:
4241:
4242:
4243:
4244:
4245:
4246:
4247:
4248:
4249:
4250:
4251:
4252:
4253:
4254:
4255:

1 Error Messages
1.2 Compiler Error Messages

trailing comma is nonstandard

bit field cannot contain all values of the enumerated type
nonstandard type for a bit field

declaration is not visible outside of function

old-fashioned typedef of "void" ignored

left operand is not a struct or union containing this field

pointer does not point to struct or union containing this field
variable “xxxx” was declared with a never-completed type
controlling expression is constant

selector expression is constant

invalid specifier on a parameter

invalid specifier outside a class declaration

duplicate specifier in declaration

a union is not allowed to have a base class

multiple access control specifiers are not allowed

class or struct definition is missing

qualified name is not a member of class "type” or its base classes
a nonstatic member reference must be relative to a specific object
a nonstatic data member may not be defined outside its class
entity-kind "entity” has already been defined

pointer to reference is not allowed

reference to reference is not allowed

reference to void is not allowed

array of reference is not allowed

reference entity-kind "entity” requires an initializer

expected a","

type name is not allowed

type definition is not allowed

77

Wind River Compiler
Error Messages Reference, 5.6

4256:
4257:
4258:
4259:
4260:
4261:
4262:
4263:
4264:
4265:
4266:
4267:
4268:
4269:
4270:
4271:
4272:
4273:
4274:
4275:
4276:
4277:
4278:
4279:
4280:
4281:
4282:
4283:

78

invalid redeclaration of type name “entity” (declared at line xxxx)
const entity-kind “entity” requires an initializer

"this" may only be used inside a nonstatic member function
constant value is not known

explicit type is missing ("int" assumed)

access control not specified (“xxxx” by default)

not a class or struct name

duplicate base class name

invalid base class

entity-kind "entity” is inaccessible

“entity” is ambiguous

old-style parameter list (anachronism)

declaration may not appear after executable statement in block
implicit conversion to inaccessible base class “type” is not allowed
name is not a member of a base class of “xxxx”

access adjustment in a "private" section is not allowed
increasing an inherited member's access is not allowed
restricting an inherited member's access is not allowed
improperly terminated macro invocation

invalid access declaration -- %nol is hidden by %no2

name followed by "::" must be a class or namespace name
invalid friend declaration

a constructor or destructor may not return a value

invalid destructor declaration

declaration of a member with the same name as its class
global-scope qualifier (leading "::") is not allowed

the global scope has no “xxxx”

qualified name is not allowed

1 Error Messages
1.2 Compiler Error Messages

4284: NULL reference is not allowed

4285: initialization with "{...}" is not allowed for object of type "type”
4286: base class “type” is ambiguous
4287: derived class “type” contains more than one instance of class "type”

4288: cannot convert pointer to base class “type” to pointer to derived class “type”
-- base class is virtual

4289: no instance of constructor “entity” matches the argument list

4290: copy constructor for class “type” is ambiguous

4291: no default constructor exists for class “type”

4292: “xxxx” is not a nonstatic data member or base class of class “type”

4293: indirect nonvirtual base class is not allowed

4294: invalid union member -- class “type” has a disallowed member function
4295: cannot overload functions -- parameter types are too similar

4296: invalid use of non-lvalue array

4297: expected an operator

4298: inherited member is not allowed

4299: cannot determine which instance of entity-kind “entity” is intended
4300: a pointer to a bound function may only be used to call the function
4301: typedef name has already been declared (with same type)

4302: entity-kind "entity” has already been defined

4303: type does not match any instance of %n

4304: no instance of entity-kind "entity” matches the argument list

4305: type definition is not allowed in function return type declaration

4306: default argument not at end of parameter list

4307: redefinition of default argument

4308: more than one instance of entity-kind “entity” matches the argument list:
4309: more than one instance of constructor “entity” matches the argument list:

4310: default argument of type "type” is incompatible with parameter of type

79

Wind River Compiler
Error Messages Reference, 5.6

4311: cannot overload functions distinguished by return type alone
4312: no suitable user-defined conversion from “type” to "type” exists
4313: type qualifier is not allowed on this function

4314: only nonstatic member functions may be virtual

4315: the object has cv-qualifiers that are not compatible with the member
function

4316: program too large to compile (too many virtual functions)

4317: return type is not identical to nor covariant with return type “type” of
overridden virtual function entity-kind “entity”

4318: override of virtual entity-kind "entity” is ambiguous

4319: pure specifier ("= 0") allowed only on virtual functions

4320: badly-formed pure specifier (only "= 0" is allowed)

4321: data member initializer is not allowed

4322: object of abstract class type “type” is not allowed:

4323: function returning abstract class “type” is not allowed:

4324: duplicate friend declaration

4325: inline specifier allowed on function declarations only

4326: "inline" is not allowed

4327: invalid storage class for an inline function

4328: invalid storage class for a class member

4329: local class member entity-kind "entity” requires a definition
4330: entity-kind "entity” is inaccessible

4331: direct path to base class %t gives less access than indirect path
4332: class “type” has no copy constructor to copy a const object
4333: defining an implicitly declared member function is not allowed
4334: class “type” has no suitable copy constructor

4335: linkage specification is not allowed

4336: unknown external linkage specification

80

1 Error Messages
1.2 Compiler Error Messages

4337: linkage specification is incompatible with previous “entity” (declared at
line xxxx)

4338: more than one instance of overloaded function “entity” has "C" linkage
4339: class “type” has more than one default constructor

4340: value copied to temporary, reference to temporary used

4341: "operatorxxxx" must be a member function

4342: operator may not be a static member function

4343: no arguments allowed on user-defined conversion

4344: too many parameters for this operator function

4345: too few parameters for this operator function

4346: nonmember operator requires a parameter with class type

4347: default argument is not allowed

4348: more than one user-defined conversion from “type” to “type” applies:
4349: no operator “xxxx” matches these operands

4350: more than one operator “xxxx” matches these operands:

4351: first parameter of allocation function must be of type "size_t"
4352: allocation function requires "void *" return type

4353: deallocation function requires "void" return type

4354: first parameter of deallocation function must be of type "void *"
4355: second parameter of deallocation function must be of type "size_t"
4356: type must be an object type

4357: base class “type” has already been initialized

4358: base class name required -- “type” assumed (anachronism)

4359: entity-kind "entity” has already been initialized

4360: name of member or base class is missing

4361: assignment to "this" (anachronism)

4362: "overload" keyword used (anachronism)

4363: invalid anonymous union -- nonpublic member is not allowed

81

Wind River Compiler
Error Messages Reference, 5.6

4364:
4365:
4366:
4367:
4368:
4369:
4370:
4371:
4372:
4373:
4374:
4375:
4376:
4377:
4378:
4379:
4380:
4381:
4382:

invalid anonymous union -- member function is not allowed
anonymous union at global or namespace scope must be declared static
entity-kind "entity” provides no initializer for:

implicitly generated constructor for class “type” cannot initialize:
entity-kind "entity” defines no constructor to initialize the following;:
entity-kind "entity” has an uninitialized const or reference member
entity-kind "entity” has an uninitialized const field

class “type” has no assignment operator to copy a const object

class “type” has no suitable assignment operator

ambiguous assignment operator for class “type”

const or volatile qualifier is not allowed

declaration requires a typedef name

unknown error

"virtual" is not allowed

"static" is not allowed

cast of bound function to normal function pointer (anachronism)
expression must have pointer-to-member type

extra";" ignored

nonstandard member constant declaration (standard form is a static const

integral member)

4383:
4384:
4385:
4386:
4387:
4388:
4389:
4390:

82

a pointer to const may not be deleted

no instance of overloaded “entity” matches the argument list
operator delete() may not be overloaded

no instance of entity-kind "entity” matches the required type
delete array size expression used (anachronism)
"operator->" for class %t1 returns invalid type %t2

a cast to abstract class “type” is not allowed:

function "main" may not be called or have its address taken

4391:
4392:
4393:
4394:
4395:
4396:
4397:
4398:
4399:

1 Error Messages
1.2 Compiler Error Messages

a new-initializer may not be specified for an array

member function “entity” may not be redeclared outside its class
pointer to incomplete class type is not allowed

reference to local variable of enclosing function is not allowed
single-argument function used for postfix “xxxx” (anachronism)
access adjustment is not allowed -- mixed accessibility for %n
implicitly generated assignment operator cannot copy:

cast to array type is nonstandard (treated as cast to "type”)

entity-kind "entity” has an operator newxxxx() but no default operator

deletexxxx()

4400: entity-kind "entity” has a default operator deletexxxx() but no operator

newxxxx()

4401:
4402:
4403:
4404:
4405:
4406:
4407:
4408:
4409:
4410:

destructor for base class “type” is not virtual
%n has no accessible constructors
entity-kind "entity” has already been declared

function "main" may not be declared inline

member function with the same name as its class must be a constructor

using nested entity-kind "entity” (anachronism)

a destructor may not have parameters

copy constructor for class “fype” may not have a parameter of type "type”

entity-kind "entity” returns incomplete type “type”

protected entity-kind “entity” is not accessible through a "type” pointer or

object

4411:
4412:
4413:
4414:
4415:
4416:

a parameter is not allowed

an "asm" declaration is not allowed here

no suitable conversion function from “type” to "type” exists
delete of pointer to incomplete class

no suitable constructor exists to convert from “type” to "type”

more than one constructor applies to convert from “type” to "type”:

83

Wind River Compiler
Error Messages Reference, 5.6

4417:
4418:
4419:
4420:
4421:
4422:
4423:
4424:
4425:
4426:
4427:
4428:
4429:
4430:
4431:
4432:

4433

more than one conversion function from “type” to “type” applies:

more than one conversion function from “type” to a built-in type applies:
const %n

reference %n

Y%npT

built-in operator “xxxx”

%no (ambiguous by inheritance)

a constructor or destructor may not have its address taken

dollar sign ("$") used in identifier

temporary used for initial value of reference to non-const (anachronism)
qualified name is not allowed in member declaration

enumerated type mixed with another type (anachronism)

the size of an array in "new" must be non-negative

returning reference to local temporary

const qualifier dropped in initializing reference to non-const

"enum" declaration is not allowed

: qualifiers dropped in binding reference of type “type” to initializer of type

” type ”

4434
valu

4435

4436:
4437:
4438:
4439:
4440:
4441:
4442:
4443:

84

: areference of type "type” (not const-qualified) cannot be initialized with a
e of type "type”

: a pointer to function may not be deleted

conversion function must be a nonstatic member function

template declaration is not allowed here

expected a "<"

expected a ">"

template parameter declaration is missing

argument list for entity-kind "entity is missing

too few arguments for entity-kind “entity”

too many arguments for entity-kind “entity”

1 Error Messages
1.2 Compiler Error Messages

4444: template parameter for a function template must be a type

4445: entity-kind "entity” is not used in declaring the parameter types of entity-kind
“entity”

4446: two nested types have the same name: “entity” and “entity” (declared atline
xxxx) (cfront compatibility)

4447: global "entity” was declared after nested “entity” (declared at line xxxx)
(cfront compatibility)

4448: template parameter %no was declared but never referenced

4449: more than one instance of entity-kind “entity” matches the required type
4450: the type "long long" is nonstandard

4451: omission of “xxxx” is nonstandard

4452: return type may not be specified on a conversion function

4453: detected during;:

4454: instantiation of %nt %p

4455: implicit generation of %nt %p

4456: excessive recursion at instantiation of entity-kind "entity”

4457: “xxxx” is not a function or static data member

4458: argument of type “type” is incompatible with template parameter of type
“type”

4459: initialization requiring a temporary or conversion is not allowed
4460: declaration of “xxxx” hides function parameter

4461: initial value of reference to non-const must be an lvalue

4462: implicit definition of %nt %p

4463: "template" is not allowed

4464: "type” is not a class template

4465: static data member may not be an anonymous union

4466: "main" is not a valid name for a function template

4467: invalid reference to entity-kind “entity” (union/nonunion mismatch)

4468: a template argument may not reference a local type

85

Wind River Compiler
Error Messages Reference, 5.6

4469: tag kind of xxxx is incompatible with declaration of entity-kind “entity”
(declared at line xxxx)

4470: the global scope has no tag named “xxxx”

4471: entity-kind "entity” has no tag member named “xxxx”

4472: member function typedef (allowed for cfront compatibility)

4473: entity-kind "entity” may be used only in pointer-to-member declaration
4474: unknown error

4475: a template argument may not reference a non-external entity

4476: name followed by "::~" must be a class name or a type name

4477: destructor name does not match name of class “type”

4478: type used as destructor name does not match type “type”

4479: entity-kind "entity” redeclared "inline" after being called

4480: destructor name does not match left operand of "->" or "."

4481: invalid storage class for a template declaration

4482: entity-kind "entity” is an inaccessible type (allowed for cfront compatibility)
4483: a return type is not allowed

4484: invalid explicit instantiation declaration

4485: entity-kind "entity” is not an entity that can be instantiated

4486: compiler generated entity-kind “entity” cannot be explicitly instantiated
4487: inline entity-kind "entity” cannot be explicitly instantiated

4488: pure virtual %n cannot be explicitly instantiated

4489: entity-kind "entity” cannot be instantiated -- no template definition was
supplied

4490: entity-kind "entity” cannot be instantiated -- it has been explicitly
specialized

4491: class %t has no constructor

4492: % must be used in a parameter without a default value in entity-kind
“entity”

4493: no instance of entity-kind “entity” matches the specified type

86

1 Error Messages
1.2 Compiler Error Messages

4494: declaring a void parameter list with a typedef is nonstandard

4495: global entity-kind "entity” used instead of entity-kind "entity” (cfront
compatibility)

4496: template parameter “xxxx” may not be redeclared in this scope
4497: declaration of “xxxx” hides template parameter

4498: template argument list must match the parameter list

4499: conversion function to convert from %t1 to %t2 is not allowed
4500: extra parameter of postfix "operatorxxxx" must be of type "int"
4501: an operator name must be declared as a function

4502: operator name is not allowed

4503: entity-kind "entity” cannot be specialized in the current scope

4504: nonstandard form for taking the address of a member function
4505: too few template parameters -- does not match previous declaration
4506: too many template parameters -- does not match previous declaration
4507: function template for operator delete(void *) is not allowed

4508: class template and template parameter may not have the same name
4509: %no2 cannot be used to designate constructor for %n2

4510: a template argument may not reference an unnamed type

4511: enumerated type is not allowed

4512: type qualifier on a reference type is not allowed

4513: a value of type "type” cannot be assigned to an entity of type "type”
4514: pointless comparison of unsigned integer with a negative constant
4515: cannot convert to incomplete class “type”

4516: const object requires an initializer

4517: object has an uninitialized const or reference member

4518: nonstandard preprocessing directive

4519: entity-kind "entity” may not have a template argument list

4520: initialization with "{...}" expected for aggregate object

87

Wind River Compiler
Error Messages Reference, 5.6

4521: pointer-to-member selection class types are incompatible (“type” and
"type”)

4522: pointless friend declaration

4523: "." used in place of "::" to form a qualified name

4524: non-const function called for const object (anachronism)

4525: a dependent statement may not be a declaration

4526: a parameter may not have void type

4527: instantiation of %na %p

4528: processing of template argument list for %na %p

4529: this operator is not allowed in a template argument expression
4530: try block requires at least one handler

4531: handler requires an exception declaration

4532: handler is masked by default handler

4533: handler is potentially masked by previous handler for type “type”
4534: use of a local type to specify an exception

4535: redundant type in exception specification

4536: exception specification is incompatible with that of previous entity-kind
“entity” (declared at line xxxx):

4537: previously specified: no exceptions will be thrown
4538: previously omitted: %t

4539: previously specified but omitted here: %t

4540: support for exception handling is disabled

4541: omission of exception specification is incompatible with previous
entity-kind "entity” (declared at line xxxx)

4542: could not create instantiation request file “xxxx”

4543: non-arithmetic operation not allowed in nontype template argument
4544: use of a local type to declare a nonlocal variable

4545: use of a local type to declare a function

4546: transfer of control bypasses initialization of:

88

1 Error Messages
1.2 Compiler Error Messages

4547: %nd

4548: transfer of control into an exception handler

4549: entity-kind "entity” is used before its value is set

4550: entity-kind "entity” was set but never used

4551: entity-kind "entity” cannot be defined in the current scope
4552: exception specification is not allowed

4553: external/internal linkage conflict for entity-kind “entity” (declared at line
XXXX)

4554: entity-kind "entity” will not be called for implicit or explicit conversions
4555: tag kind of xxx is incompatible with template parameter of type “fype”
4556: function template for operator new(size_t) is not allowed

4557: invalid access declaration -- inherited name “xxxx” is ambiguous
4558: pointer to member of type “fype” is not allowed

4559: ellipsis is not allowed in operator function parameter list

4560: "entity” is reserved for future use as a keyword

4561: invalid macro definition:

4562: invalid macro undefinition:

4563: invalid preprocessor output file

4564: cannot open preprocessor output file

4565: IL file name must be specified if input is

4566: invalid IL output file

4567: cannot open IL output file

4568: invalid C output file

4569: cannot open C output file

4570: error in debug option argument

4571: invalid option:

4572: back end requires name of IL file

4573: could not open IL file

89

Wind River Compiler
Error Messages Reference, 5.6

4574:
4575:
4576:
4577:
4578:
4579:
4580:
4581:
4582:
4583:
4584:
4585:
4586:
4587:
4588:
4589:
4590:
4591:
4592:
4593:
4594:
4595:
4596:
4597:
4598:
4599:

invalid number:

incorrect host CPU id

invalid instantiation mode:

missing include file directory name

invalid error limit:

invalid raw-listing output file

cannot open raw-listing output file

invalid cross-reference output file

cannot open cross-reference output file

invalid error output file

cannot open error output file

virtual function tables can only be suppressed when compiling C++
anachronism option can be used only when compiling C++
instantiation mode option can be used only when compiling C++
automatic instantiation mode can be used only when compiling C++
implicit template inclusion mode can be used only when compiling C++
exception handling option can be used only when compiling C++
strict ANSI mode is incompatible with K&R mode

strict ANSI mode is incompatible with cfront mode

missing source file name

output files may not be specified when compiling several input files
too many arguments on command line

an output file was specified, but none is needed

IL display requires name of IL file

a template parameter may not have void type

excessive recursive instantiation of entity-kind "entity” due to instantiate-all

mode

4600:

90

strict ANSI mode is incompatible with allowing anachronisms

4601:
4602:
4603:
4604:
4605:
4606:
4607:
4608:
4609:
4610:
4611:

1 Error Messages
1.2 Compiler Error Messages

a throw expression may not have void type
local instantiation mode is incompatible with automatic instantiation

parameter of abstract class type “type” is not allowed:

array of abstract class “fype” is not allowed:

floating-point template parameter is nonstandard

this pragma must immediately precede a declaration

this pragma must immediately precede a statement

this pragma must immediately precede a declaration or statement

this kind of pragma may not be used here

%nfl does not match %no2 -- virtual function override intended?

overloaded virtual function “entity” is only partially overridden in

entity-kind "entity”

4612:
4613:
4614:
4615:
4616:
4617:
4618:
4619:
4620:
4621:
4622:
4623:
4624:
4625:
4626:

specific definition of inline template function must precede its first use
invalid error tag:

invalid error number:

parameter type involves pointer to array of unknown bound
parameter type involves reference to array of unknown bound
pointer-to-member-function cast to pointer to function

struct or union declares no named members

nonstandard unnamed field

nonstandard unnamed member

a function type cannot be used as a template argument
invalid precompiled header output file

cannot open precompiled header output file

“xxxx” is not a type name

cannot open precompiled header input file

precompiled header file “xxxx” is either invalid or not generated by this

version of the compiler

4627:

precompiled header file “xxxx” was not generated in this directory

91

Wind River Compiler
Error Messages Reference, 5.6

4628: header files used to generate precompiled header file “xxxx” have changed

4629: the command line options do not match those used when precompiled
header file “xxxx” was created

4630: the initial sequence of preprocessing directives is not compatible with
those of precompiled header file “xxxx”

4631: unable to obtain mapped memory

4632: “xxxx”: using precompiled header file “xxxx”

4633: “xxxx” creating precompiled header file “xxxx”

4634: memory usage conflict with precompiled header file “xxxx”
4635: invalid PCH memory size

4636: PCH options must appear first in the command line

4637: insufficient memory for PCH memory allocation

4638: precompiled header files may not be used when compiling several input
files

4639: insufficient preallocated memory for generation of precompiled header
file (“xxxx” bytes required)

4640: very large entity in program prevents generation of precompiled header
file

4641: “xxxx” is not a valid directory

4642: cannot build temporary file name

4643: "restrict" is not allowed

4644: a pointer or reference to function type may not be qualified by "restrict"
4645: “xxxx” is an unrecognized __declspec attribute

4646: a calling convention modifier may not be specified here

4647: conflicting calling convention modifiers

4648: strict ANSI mode is incompatible with Microsoft mode

4649: cfront mode is incompatible with Microsoft mode

4650: calling convention specified here is ignored

4651: a calling convention may not be followed by a nested declarator

4652: calling convention is ignored for this type

92

1 Error Messages
1.2 Compiler Error Messages

4653: calling conventions may only be applied to function types

4654: declaration modifiers are incompatible with previous declaration
4655: the modifier “xxxx” is not allowed on this declaration
4656: transfer of control into a try block

4657: inline specification is incompatible with previous “entity” (declared at line
XXXX)

4658: closing brace of template definition not found

4659: wchar_t keyword option can be used only when compiling C++
4660: invalid packing alignment value

4661: expected an integer constant

4662: call of pure virtual function

4663: invalid source file identifier string

4664: a class template cannot be defined in a friend declaration

4665: "asm" is not allowed

4666: "asm" must be used with a function definition

4667: "asm" function is nonstandard

4668: ellipsis with no explicit parameters is nonstandard

4669: "&..." is nonstandard

4670: invalid use of "&..."

4671: alternative token option can be used only when compiling C++

4672: temporary used for initial value of reference to const volatile
(anachronism)

4673: a reference of type “type” cannot be initialized with a value of type “type”
4674: initial value of reference to const volatile must be an lvalue

4675: SVR4 C compatibility option can be used only when compiling ANSI C
4676: using out-of-scope declaration of entity-kind “entity” (declared at line xxxx)
4677: strict ANSI mode is incompatible with SVR4 C mode

4678: call of entity-kind "entity”declared at line xxxx) cannot be inlined

4679: entity-kind "entity” cannot be inlined

93

Wind River Compiler
Error Messages Reference, 5.6

4680: invalid PCH directory:

4681: expected __except or __finally

4682: a __leave statement may only be used within a __try

4683: detected during instantiation of %nt %p

4684: detected during implicit generation of %nt %p

4685: detected during instantiation of %na %p

4686: detected during processing of template argument list for %na %p
4687: detected during implicit definition of %nt %p

4688: “xxxx” not found on pack alignment stack

4689: empty pack alignment stack

4690: RTTI option can be used only when compiling C++

4691: entity-kind "entity”, required for copy that was eliminated, is inaccessible

4692: entity-kind "entity”, required for copy that was eliminated, is not callable
because reference parameter cannot be bound to rvalue

4693: <typeinfo> must be included before typeid is used
4694: “xxxx” cannot cast away const or other type qualifiers

4695: the type in a dynamic_cast must be a pointer or reference to a complete
class type, or void *

4696: the operand of a pointer dynamic_cast must be a pointer to a complete class
type

4697: the operand of a reference dynamic_cast must be an lvalue of a complete
class type

4698: the operand of a runtime dynamic_cast must have a polymorphic class type
4699: bool option can be used only when compiling C++

4700: invalid storage class for condition declaration

4701: an array type is not allowed here

4702: expected an "="

4703: expected a declarator in condition declaration

4704: “xxxx”, declared in condition, may not be redeclared in this scope

94

1 Error Messages
1.2 Compiler Error Messages

4705: default template arguments are not allowed for function templates

4706: expected a"," or ">"

4707: expected a template parameter list

4708: incrementing a bool value is deprecated

4709: bool type is not allowed

4710: offset of base class “entity” within class "entity” is too large
4711: expression must have bool type (or be convertible to bool)
4712: array new and delete option can be used only when compiling C++
4713: entity-kind "entity” is not a variable name

4714: _based modifier is not allowed here

4715: _ based does not precede a pointer operator, __based ignored
4716: variable in __based modifier must have pointer type

4717: the type in a const_cast must be a pointer, reference, or pointer to member
to an object type

4718: a const_cast can only adjust type qualifiers; it cannot change the
underlying type

4719: mutable is not allowed

4720: redeclaration of entity-kind “entity” is not allowed to alter its access
4721: nonstandard format string conversion

4722: use of alternative token "<:" appears to be unintended
4723: use of alternative token "%:" appears to be unintended
4724: namespace definition is not allowed

4725: name must be a namespace name

4726: namespace alias definition is not allowed

4727: namespace-qualified name is required

4728: a namespace name is not allowed

4729: invalid combination of DLL attributes

4730: entity-kind "entity” is not a class template

4731: array with incomplete element type is nonstandard

95

Wind River Compiler
Error Messages Reference, 5.6

4732:
4733:
4734:

allocation operator may not be declared in a namespace
deallocation operator may not be declared in a namespace

entity-kind "entity” conflicts with using-declaration of entity-kind “entity”

(declared at line xxxx)

4735:
4736:
4737:
4738:
4739:
4740:
4741:
4742:

4743

using-declaration of entity-kind "entity” conflicts with entity-kind “entity”
namespaces option can be used only when compiling C++
using-declaration ignored -- it refers to the current namespace

a class-qualified name is required

argument types are: (%s)

operand types are: %s

using-declaration of %n ignored

entity-kind "entity” has no actual member “xxxx”

: global-scope qualifier (leading "::") on friend declaration is nonstandard
4744:
4745:
4746:
4747:
4748:
4749:
4750:

incompatible memory attributes specified

memory attribute ignored

memory attribute may not be followed by a nested declarator
memory attribute specified more than once

calling convention specified more than once

a type qualifier is not allowed

entity-kind "entity” (declared at line xxxx) was used before its template was

declared

4751:

static and nonstatic member functions with same parameter types cannot

be overloaded

4752:
4753:
4754:
4755:
4756:
4757:

96

no prior declaration of entity-kind "entity”

a template-id is not allowed

a class-qualified name is not allowed

entity-kind "entity” may not be redeclared in the current scope
qualified name is not allowed in namespace member declaration

entity-kind "entity” is not a type name

4758:
4759:
4760:
4761:
4762:
4763:
4764:
4765:

4766
that

4767
4768

1 Error Messages
1.2 Compiler Error Messages

explicit instantiation is not allowed in the current scope

entity-kind "entity” cannot be explicitly instantiated in the current scope
entity-kind "entity” explicitly instantiated more than once

typename may only be used within a template

special_subscript_cost option can be used only when compiling C++
typename option can be used only when compiling C++

implicit typename option can be used only when compiling C++
nonstandard character at start of object-like macro definition

: exception specification for virtual entity-kind "entity” is incompatible with
of overridden entity-kind "entity”

: conversion from pointer to smaller integer

: exception specification for implicitly declared virtual entity-kind “entity” is

incompatible with that of overridden entity-kind “entity”

4769

4770:
4771:
4772:
4773:
4774:
4775:
4776:

: “entity”, implicitly called from entity-kind “entity”, is ambiguous
option "explicit" can be used only when compiling C++

"explicit" is not allowed

declaration conflicts with “xxxx” (reserved class name)

only "()" is allowed as initializer for array entity-kind "entity”
"virtual" is not allowed in a function template declaration

invalid anonymous union -- class member template is not allowed

template nesting depth does not match the previous declaration of

entity-kind "entity”

4777
4778
4779

: this declaration cannot have multiple "template <...>" clauses
: option to control the for-init scope can be used only when compiling C++

: “xxxx”, declared in for-loop initialization, may not be redeclared in this

scope

4780

: reference is to entity-kind "entity” (declared atline xxxx) -- under old for-init

scoping rules it would have been entity-kind "entity” (declared at line xxxx)

4781

: option to control warnings on for-init differences can be used only when

compiling C++

97

Wind River Compiler
Error Messages Reference, 5.6

4782: definition of virtual entity-kind "entity” is required here

4783: empty comment interpreted as token-pasting operator "##"

4784: a storage class is not allowed in a friend declaration

4785: template parameter list for “entity” is not allowed in this declaration
4786: entity-kind "entity” is not a valid member class or function template
4787: not a valid member class or function template declaration

4788: a template declaration containing a template parameter list may not be
followed by an explicit specialization declaration

4789: explicit specialization of entity-kind “entity” must precede the first use of
entity-kind "entity”

4790: explicit specialization is not allowed in the current scope

4791: partial specialization of entity-kind “entity” is not allowed

4792: entity-kind "entity” is not an entity that can be explicitly specialized

4793: explicit specialization of entity-kind “entity” must precede its first use
4794: template parameter “fype” may not be used in an elaborated type specifier
4795: specializing entity-kind "entity” requires "template<>" syntax

4796: "template<>" syntax is required when declaring a member function
template instance as a friend

4797: nonstandard "asm" declaration is not supported inside a template
4798: option "old_specializations" can be used only when compiling C++

4799: specializing entity-kind "entity” without "template<>" syntax is
nonstandard

4800: this declaration may not have extern "C" linkage
4801: “xxxx” is not a class or function template name in the current scope

4802: specifying a default argument when redeclaring an unreferenced function
template is nonstandard

4803: specifying a default argument when redeclaring an already referenced
function template is not allowed

4804: cannot convert pointer to member of base class “fype” to pointer to member
of derived class "type” -- base class is virtual

98

1 Error Messages
1.2 Compiler Error Messages

4805: exception specification is incompatible with that of entity-kind "entity”
(declared at line xxxx):'

4806: omission of exception specification is incompatible with entity-kind
“entity” (declared at line xxxx)

4807: unexpected end of default argument expression
4808: default-initialization of reference is not allowed
4809: uninitialized entity-kind "entity” has a const member
4810: uninitialized base class “type” has a const member

4811: const entity-kind “entity” requires an initializer -- class "type” has no
explicitly declared default constructor

4812: const object requires an initializer -- class “fype“has no explicitly declared
default constructor

4813: option "implicit_extern_c_type_conversion" can be used only when
compiling C++

4814: strict ANSI mode is incompatible with long preserving rules
4815: type qualifier on return type is meaningless

4816: in a function definition a type qualifier on a "void" return type is not
allowed

4817: static data member declaration is not allowed in this class

4818: template instantiation resulted in an invalid function declaration
4819: "..." is not allowed

4820: option "extern_inline" can be used only when compiling C++
4821: extern inline entity-kind "entity” was referenced but not defined
4822: invalid destructor name for type “type”

4823: use of %n in a destructor call is nonstandard

4824: destructor reference is ambiguous -- both entity-kind "entity” and entity-kind
“entity” could be used

4825: virtual inline entity-kind "entity” was never defined
4826: entity-kind "entity” was never referenced

4827: only one member of a union may be specified in a constructor initializer
list

99

Wind River Compiler
Error Messages Reference, 5.6

4828: support for "new[]" and "delete[]" is disabled
4829: "double" used for "long double" in generated C code

4830: entity-kind "entity” has no corresponding operator delete”xxxx” (to be called
if an exception is thrown during initialization of an allocated object)

4831: support for placement delete is disabled
4832: no appropriate operator delete is visible
4833: pointer or reference to incomplete type is not allowed

4834: invalid partial specialization -- entity-kind "entity” is already fully
specialized

4835: incompatible exception specifications
4836: returning reference to local variable
4837: omission of explicit type is nonstandard ("int" assumed)

4838: more than one partial specialization matches the template argument list of
entity-kind "entity”

4839: %no

4840: a template argument list is not allowed in a declaration of a primary
template

4841: partial specializations may not have default template arguments

4842: entity-kind "entity” is not used in template argument list of entity-kind
“entity”

4843: the type of partial specialization template parameter %n depends on
another template parameter

4844: the template argument list of the partial specialization includes a nontype
argument whose type depends on a template parameter

4845: this partial specialization would have been used to instantiate entity-kind
“entity”

4846: this partial specialization would have been made the instantiation of
entity-kind "entity” ambiguous

4847: expression must have integral or enum type
4848: expression must have arithmetic or enum type

4849: expression must have arithmetic, enum, or pointer type

100

1 Error Messages
1.2 Compiler Error Messages

4850: type of cast must be integral or enum
4851: type of cast must be arithmetic, enum, or pointer
4852: expression must be a pointer to a complete object type

4853: a partial specialization of a member class template must be declared in the
class of which it is a member

4854: a partial specialization nontype argument must be the name of a nontype
parameter or a constant

4855: return type is not identical to return type “type” of overridden virtual
function entity-kind "entity”

4856: option "guiding_decls" can be used only when compiling C++

4857: a partial specialization of a class template must be declared in the
namespace of which it is a member

4858: entity-kind "entity” is a pure virtual function

4859: pure virtual entity-kind “entity” has no overrider

4860: __declspec attributes ignored

4861: invalid character in input line

4862: function returns incomplete type “type”

4863: effect of this "#pragma pack" directive is local to entity-kind "entity”
4864: “xxxx” is not a template

4865: a friend declaration may not declare a partial specialization

4866: exception specification ignored

4867: declaration of "size_t" does not match the expected type "type”

4868: space required between adjacent ">" delimiters of nested template
argument lists (">>" is the right shift operator)

4869: could not set locale “xxxx” to allow processing of multibyte characters
4870: invalid multibyte character sequence

4871: template instantiation resulted in unexpected function type of “type”1 (the
meaning of a name may have changed since the template declaration -- the type
of the template is "type”)

4872: ambiguous guiding declaration -- more than one function template “entity”
matches type "type”

101

Wind River Compiler
Error Messages Reference, 5.6

4873: non-integral operation not allowed in nontype template argument
4874: option "embedded_c++" can be used only when compiling C++
4875: Embedded C++ does not support templates

4876: Embedded C++ does not support exception handling

4877: Embedded C++ does not support namespaces

4878: Embedded C++ does not support run-time type information
4879: Embedded C++ does not support the new cast syntax

4880: Embedded C++ does not support using-declarations

4881: Embedded C++ does not support "mutable"

4882: Embedded C++ does not support multiple or virtual inheritance
4883: invalid Microsoft version number:

4884: pointer-to-member representation “xxxx” has already been set for
entity-kind "entity”

4885: "type” cannot be used to designate constructor for “type”
4886: invalid suffix on integral constant

4887: operand of __uuidof must have a class or enum type for which
__declspec(uuid("...")) has been specified

4888: invalid GUID string in __declspec(uuid("..."))

4889: option "vla" can be used only when compiling C

4890: variable length array with unspecified bound is not allowed

4891: an explicit template argument list is not allowed on this declaration

4892: an entity with linkage cannot have a type involving a variable length array
4893: a variable length array cannot have static storage duration

4894: entity-kind "entity” is not a template

4895: variable length array dimension (declared %p)

4896: expected a template argument

4897: explicit function template argument lists are not supported yet in
expression contexts

4898: nonmember operator requires a parameter with class or enum type

102

1 Error Messages
1.2 Compiler Error Messages

4899: option "enum_overloading" can be used only when compiling C++
4900: using-declaration of entity-kind “entity” is not allowed

4901: qualifier of destructor name “type” does not match type “type”
4902: type qualifier ignored

4903: option "nonstd_qualifier_deduction" can be used only when compiling
C++

4904: a function declared "dllimport" may not be defined

4905: incorrect property specification; correct form is
__declspec(property(get=namel,put=name2))

4906: property has already been specified
4907: __declspec(property) is not allowed on this declaration

4908: member is declared with __declspec(property), but no "get" function was
specified

4909: the __declspec(property) "get" function “xxxx” is missing

4910: member is declared with __declspec(property), but no "put" function was
specified

4911: the __declspec(property) "put" function “xxxx” is missing

4912: ambiguous class member reference -- entity-kind “entity” used in preference
to entity-kind "entity” (declared at line xxxx)

4913: missing or invalid segment name in __declspec(allocate("..."))
4914: _ declspec(allocate) is not allowed on this declaration
4915: a segment name has already been specified

4916: cannot convert pointer to member of derived class “type” to pointer to
member of base class "type” -- base class is virtual

4917: invalid directory for instantiation files:

4918: option "one_instantiation_per_object" can be used only when compiling
C++

4919: invalid output file: “xxxx”
4920: cannot open output file: “xxxx”

4921: an instantiation information file name may not be specified when
compiling several input files

103

Wind River Compiler
Error Messages Reference, 5.6

4922: option "one_instantiation_per_object" may not be used when compiling
several input files

4923: more than one command line option matches the abbreviation “--xxxx”:
4924: --%s

4925: a type qualifier cannot be applied to a function type

4926: cannot open definition list file: “xxxx”

4927: late/early tiebreaker option can be used only when compiling C++
4928: incorrect use of va_start

4929: incorrect use of va_arg

4930: incorrect use of va_end

4931: pending instantiations option can be used only when compiling C++
4932: invalid directory for #import files:

4933: an import directory can be specified only in Microsoft mode

4934: a member with reference type is not allowed in a union

4935: "typedef" may not be specified here

4936: redeclaration of entity-kind “entity” alters its access

4937: a class or namespace qualified name is required

4938: return type "int" omitted in declaration of function "main"

4939: pointer-to-member representation “xxxx” is too restrictive for entity-kind
“entity”

4940: missing return statement at end of non-void entity-kind "entity”
4941: duplicate using-declaration of “entity” ignored

4942: enum bit-fields are always unsigned, but enum “type” includes negative
enumerator

4943: option "class_name_injection" can be used only when compiling C++
4944: option "arg_dep_lookup" can be used only when compiling C++
4945: option "friend_injection" can be used only when compiling C++
4946: name following "template" must be a member template

4947: name following "template" must have a template argument list

104

1 Error Messages
1.2 Compiler Error Messages

4948: nonstandard local-class friend declaration -- no prior declaration in the
enclosing scope

4949: specifying a default argument on this declaration is nonstandard
4950: option "nonstd_using_decl" can be used only when compiling C++
4951: return type of function "main" must be "int"

4952: a nontype template parameter may not have class type

4953: a default template argument cannot be specified on the declaration of a
member of a class template

4954: a return statement is not allowed in a handler of a function try block of a
constructor

4955: ordinary and extended designators cannot be combined in an initializer
designation

4956: the second subscript must not be smaller than the first
4957: option "designators" can be used only when compiling C
4958: option "extended_designators" can be used only when compiling C

4959: declared size for bit field is larger than the size of the bit field type;
truncated to “xxxx” bits

4960: type used as constructor name does not match type “type”

4961: use of a type with no linkage to declare a variable with linkage
4962: use of a type with no linkage to declare a function

4963: return type may not be specified on a constructor

4964: return type may not be specified on a destructor

4965: incorrectly formed universal character name

4966: universal character name specifies an invalid character

4967: a universal character name cannot designate a character in the basic
character set

4968: this universal character is not allowed in an identifier

4969: the identifier _ VA_ARGS__ can only appear in the replacement lists of
variadic macros

4970: the qualifier on this friend declaration is ignored

105

Wind River Compiler
Error Messages Reference, 5.6

4971:
4972:
4973:
4974:
4975:
4976:
4977:
4978:
4979:

array range designators cannot be applied to dynamic initializers
property name cannot appear here

"inline" used as a function qualifier is ignored

option "compound_literals" can be used only when compiling C

a variable-length array type is not allowed

a compound literal is not allowed in an integral constant expression
a compound literal of type “type” is not allowed

a template friend declaration cannot be declared in a local class

ambiguous "?" operation: second operand of type “type” can be converted

to third operand type “type”, and vice versa

4980:

call of an object of a class type without appropriate operator() or

conversion functions to pointer-to-function type

4981:
4982:

surrogate function from conversion %np

there is more than one way an object of type “fype” can be called for the

argument list:

4983:
4984:
4985:
4986:
4987:
4988:

typedef name has already been declared (with similar type)
operator new and operator delete cannot be given internal linkage
storage class "mutable" is not allowed for anonymous unions
invalid precompiled header file

abstract class type “type” is not allowed as catch type:

a qualified function type cannot be used to declare a nonmember function

or a static member function

4989:
4990:
4991:
4992:
4993:
4994:

a qualified function type cannot be used to declare a parameter
cannot create a pointer or reference to qualified function type
extra braces are nonstandard

invalid macro definition:

subtraction of pointer types “type” and "type” is nonstandard

an empty template parameter list is not allowed in a template template

parameter declaration

4995:

106

expected "class"

1 Error Messages
1.2 Compiler Error Messages

4996: the "class" keyword must be used when declaring a template template
parameter

4997: entity-kind "entity” is hidden by “entity” -- virtual function override
intended?

4998: a qualified name is not allowed for a friend declaration that is a function
definition

4999: entity-kind "entity” is not compatible with entity-kind "entity”
5000: a storage class may not be specified here

5001: class member designated by a using-declaration must be visible in a direct
base class

5002: Sun mode is incompatible with Microsoft mode
5003: Sun mode is incompatible with cfront mode
5004: strict ANSI mode is incompatible with Sun mode
5005: Sun mode is only allowed when compiling C++

5006: a template template parameter cannot have the same name as one of its
template parameters

5007: recursive instantiation of default argument

5008: a parameter of a template template parameter cannot depend on the type
of another template parameter

5009: entity-kind “entity” is not an entity that can be defined

5010: destructor name must be qualified

5011: friend class name may not be introduced with "typename"
5012: a using-declaration may not name a constructor or destructor

5013: a qualified friend template declaration must refer to a specific previously
declared template

5014: invalid specifier in class template declaration

5015: argument is incompatible with formal parameter

5016: option "dep_name" can be used only when compiling C++

5017: loop in sequence of "operator->" functions starting at class “type”

5018: entity-kind "entity” has no member class “xxxx”

107

Wind River Compiler
Error Messages Reference, 5.6

5019:
5020:
5021:
5022:
5023:
5024:
5025:
5026:
5027:
5028:
5029:

5030
func

5031
func

5032:
5033:
5034:
5035:
5036:
5037:
5038:
5039:
5040:

5041

the global scope has no class named “xxxx”

recursive instantiation of template default argument

access declarations and using-declarations cannot appear in unions
“entity” is not a class member

nonstandard member constant declaration is not allowed

option "ignore_std" can be used only when compiling C++
option "parse_templates" can be used only when compiling C++
option "dep_name" cannot be used with "no_parse_templates"
language modes specified are incompatible

invalid redeclaration of nested class

type containing an unknown-size array is not allowed

: a variable with static storage duration cannot be defined within an inline
tion

: an entity with internal linkage cannot be referenced within an inline
tion with external linkage

argument type “type” does not match this type-generic function macro
variable length array %nod

friend declaration cannot add default arguments to previous declaration
entity-kind "entity” cannot be declared in this scope

the reserved identifier “xxxx” may only be used inside a function

this universal character cannot begin an identifier

expected a string literal

unrecognized STDC pragma

expected "ON", "OFF", or "DEFAULT"

:a STDC pragma may only appear between declarations in the global scope

or before any statements or declarations in a block scope

5042
5043
5044

108

: incorrect use of va_copy
: “xxxx” can only be used with floating-point types

: complex type is not allowed

5045
5046
5047
5048
5049
5050
5051

1 Error Messages
1.2 Compiler Error Messages

: invalid designator kind

: floating-point value cannot be represented exactly

: complex floating-point operation result is out of range

: conversion between real and imaginary yields zero

: an initializer cannot be specified for a flexible array member
: imaginary *= imaginary sets the left-hand operand to zero

: standard requires that entity-kind “entity” be given a type by a subsequent

declaration ("int" assumed)

5052
5053
5054

: a definition is required for inline entity-kind "entity”
: conversion from integer to smaller pointer

: a floating-point type must be included in the type specifier for a_Complex

or _Imaginary type

5055
5056
5057

5058:
5059:
5060:
5061:
5062:
5063:
5064:
5065:
5066:
5067:
5068:
5069:
5070:

anot

: #pragma error: %s

: #pragma info: %s

: #pragma warning: %s

expression must be a vector type or have a constant value
use of obsolete feature: %s

too few initializer values

vector argument requires a prototype

vector type specifier is not first

operand of vec_step must be a vector type

types cannot be declared in anonymous unions
returning pointer to local variable

returning pointer to local temporary

option "export" can be used only when compiling C++
option "export" cannot be used with "no_dep_name"
option "export" cannot be used with "implicit_include"

declaration of entity-kind “entity” is incompatible with a declaration in
her translation unit

109

Wind River Compiler
Error Messages Reference, 5.6

5071: the other declaration is xxxx”

5072: detected during compilation of secondary translation unit “xxxx”

5073: compilation of secondary translation unit “xxxx”

5074: a field declaration cannot have a type involving a variable length array

5075: declaration of entity-kind "entity” had a different meaning during
compilation of “xxxx”

5076: expected "template"

5077: "export" cannot be used on an explicit instantiation

5078: "export" cannot be used on this declaration

5079: a member of an unnamed namespace cannot be declared "export"
5080: a template cannot be declared "export" after it has been defined
5081: a declaration cannot have a label

5082: support for exported templates is disabled

5083: cannot open exported template file: “xxxx”

5084: entity-kind "entity” already defined during compilation of “xxxx”
5085: entity-kind "entity” already defined in another translation unit
5086: a non-static local variable may not be used in a __based specification

5087: the option to list makefile dependencies may not be specified when
compiling more than one translation unit

5088: the option to list included files may not be specified when compiling more
than one translation unit

5089: the option to generate preprocessed output may not be specified when
compiling more than one translation unit

5090: a field with the same name as its class cannot be declared in a class with a
user-declared constructor

5091: "implicit_include" cannot be used when compiling more than one
translation unit

5092: exported template file “xxxx” is corrupted

5093: entity-kind “entity” cannot be instantiated -- it has been explicitly
specialized in the translation unit containing the exported definition

110

1 Error Messages
1.2 Compiler Error Messages

5094: object type is: %s

5095: the object has cv-qualifiers that are not compatible with the member
entity-kind "entity”

5096: no instance of entity-kind “entity” matches the argument list and object (the
object has cv-qualifiers that prevent a match)

5097: an attribute specifies a mode incompatible with “type”
5098: there is no type with the width specified

5099: invalid alignment value specified by attribute

5100: invalid attribute for "type”

5101: invalid attribute for entity-kind "entity”

5102: invalid attribute for parameter

5103: attribute “xxxx” does not take arguments

5104: attribute “xxxx” requires arguments

5105: expected an attribute name

5106: there is no attribute “xxxx”

5107: attributes may not appear here

5108: invalid argument to attribute “xxxx”

5109: the "packed" attribute is ignored in a typedef

5110: in "goto *expr", expr must have type "void *"

5111: "goto *expr" is nonstandard

5112: taking the address of a label is nonstandard

5113: file name specified more than once:

5114: #warning directive: “xxxx”

5115: attribute “xxxx” is only allowed in a function definition

5116: the "transparent_union" attribute only applies to unions, and "type” is not
a union

5117: the "transparent_union" attribute is ignored on incomplete types

5118: “type” cannot be transparent because entity-kind “entity” does not have the
same size as the union

111

Wind River Compiler
Error Messages Reference, 5.6

5119: “type” cannot be transparent because it has a field of type “type” which is
not the same size as the union

5120: only parameters can be transparent
5121: the “xxxx” attribute does not apply to local variables
5122: attributes are not permitted in a function definition

5123: declarations of local labels should only appear at the start of statement
expressions

5124: the second constant in a case range must be larger than the first
5125: an asm name is not permitted in a function definition

5126: an asm name is ignored “xxxx”

5128: modifier letter “xxxx” ignored in asm operand

5129: unknown asm constraint modifier “xxxx”'

A\

5130: unknown asm constraint letter "“xxxx”"'

5131: asm operand has no constraint letter

5132: an asm output operand must have one of the '=' or '+' modifiers
5133: an asm input operand may not have the '=' or '+' modifiers

5134: too many operands to asm statement (maximum is 30; '+' modifier adds an
implicit operand)

5135: too many colons in asm statement

5136: register “xxxx” used more than once

5137: register “xxxx” is both used and clobbered
5138: register “xxxx” clobbered more than once

5139: register “xxxx” has a fixed purpose and may not be used in an asm
statement

5140: register “xxxx” has a fixed purpose and may not be clobbered in an asm
statement

5141: an empty clobbers list must be omitted entirely
5142: expected an asm operand

5143: expected a register to clobber

112

1 Error Messages
1.2 Compiler Error Messages

5144: "format" attribute applied to entity-kind "entity” which does not have
variable arguments

5145: first substitution argument is not the first variable argument
5146: format argument index is greater than number of parameters
5147: format argument does not have string type

5148: the "template" keyword used for syntactic disambiguation may only be
used within a template

5149: a debug option must be specified on the command-line for the db_opt
pragma to be used

5150: more than one preinclude option specified

5151: attribute does not apply to non-function type "type”
5152: arithmetic on pointer to void or function type

5153: storage class must be auto or register

5154: “type” would have been promoted to “type” when passed through the
ellipsis parameter; use the latter type instead

5155: “xxxx” is not a base class member

5156: __super cannot appear after ":"

5157: __super may only be used in a class scope

5158: __super must followed by "::"

5159: [%s instantiation contexts not shown]

5160: mangled name is too long

5161: declaration aliased to unknown entity “xxxx”

5162: declaration does not match its alias entity-kind "entity”
5163: entity declared as alias cannot have definition

5164: variable-length array field type will be treated as zero-length array field
type

5165: nonstandard cast on lvalue ignored

5166: unrecognized flag name

5167: void return type cannot be qualified

5168: the auto specifier is ignored here (invalid in standard C/C++)

113

Wind River Compiler
Error Messages Reference, 5.6

5169:
5170:

a reduction in alignment without the "packed" attribute is ignored

a member template corresponding to “entity” is declared as a template of a

different kind in another translation unit

5171:
5172:
5173:
5174:
5175:
5176:
5177:
5178:
5179:

excess initializers are ignored

va_start should only appear in a function with an ellipsis parameter
the "short_enums" option is only valid in GNU C mode

invalid export information file “xxxx” at line number “xxxx”
statement expressions are only allowed in block scope

from translation unit

an asm name is ignored on a non-register automatic variable

inline function also declared as an alias; definition ignored

cannot initialize _ev64_opaque__ from a brace enclosed list (first cast to a

specific ev64 type)

5180:
5181:
5182:
5183:
5184:
5185:

priority out of range

improper object type or scope, attribute ignored

inline entity-kind "entity” was declared but never referenced
unrecognized UPC pragma

shared block size does not match one previously specified

bracketed expression is assumed to be a block size specification rather

than an array dimension

5186:
5187:
5188:
5189:
5190:
5191:
5192:

the block size of a shared array must be greater than zero
multiple block sizes not allowed

strict or relaxed requires shared

THREADS not allowed in this context

block size specified exceeds the maximum value of “xxxx”
function returning shared is not allowed

only arrays of a shared type can be dimensioned to a multiple of

THREADS

5193:

one dimension of an array of a shared type must be a multiple of

THREADS when the number of threads is nonconstant

114

1 Error Messages
1.2 Compiler Error Messages

5194: shared type inside a struct or union is not allowed

5195: parameters may not have shared types

5196: a dynamic THREADS dimension requires a definite block size
5197: shared variables must be static or extern

5198: argument of upc_blocksizeof is a pointer to a shared type (not shared type
itself)

5199: affinity expression ignored in nested upc_forall

5200: branching into or out of a upc_forall loop is not allowed

5201: affinity expression must have a shared type or point to a shared type
5202: affinity has shared type (not pointer to shared)

5203: shared void* types can only be compared for equality

5204: UPC mode is incompatible with C++ and K&R modes

5205: null (zero) character in input line ignored

5206: null (zero) character in string or character constant

5207: null (zero) character in header name

5208: declaration in for-initializer hides a declaration in the surrounding scope
5209: the hidden declaration is at line “xxxx”

5210: the prototype declaration of entity-kind “entity” (declared at line xxxx) is
ignored after this unprototyped redeclaration

5211: attribute ignored on typedef of class or enum types

5212: entity-kind "entity” must have external C linkage

5213: variable declaration hides declaration in for-initializer

5214: typedef “xxxx” may not be used in an elaborated type specifier
5215: call of zero constant ignored

5216: parameter “xxxx” may not be redeclared in a catch clause of function try
block

5217: the initial explicit specialization of entity-kind "entity” must be declared in
the namespace containing the template

5218: "cc" clobber ignored

115

Wind River Compiler
Error Messages Reference, 5.6

5219: "template" must be followed by an identifier

5220: MYTHREAD not allowed in this context

5221: layout qualifier cannot qualify pointer to shared
5222: layout qualifier cannot qualify an incomplete array
5223: declaration of “xxxx” hides handler parameter
5224: nonstandard cast to array type ignored

5225: this pragma cannot be used in a _Pragma operator (a #pragma directive
must be used)

5226: field uses tail padding of a base class

5227: GNU C++ compilers may use bit field padding

5228: use of %nd is deprecated: %s

5229: an asm name is not allowed on a nonstatic member declaration
5230: unrecognized format function type “xxxx” ignored

5231: base class “entity” uses tail padding of base class “entity”

5232: the "init_priority" attribute can only be used for definitions of static data
members and namespace scope variables of class types

5233: requested initialization priority is reserved for internal use

5234: this anonymous union/struct field is hidden by entity-kind "entity”
(declared at line xxxx)

5235: invalid error number

5236: invalid error tag

5237: expected an error number or error tag

5238: size of class is affected by tail padding

5239: labels can be referenced only in function definitions

5240: transfer of control into a statement expression is not allowed

5241: transfer of control out of a statement expression is not allowed

5242: this statement is not allowed inside of a statement expression

5243: a non-POD class definition is not allowed inside of a statement expression

5244: destructible entities are not allowed inside of a statement expression

116

1 Error Messages
1.2 Compiler Error Messages

5245: a dynamically-initialized local static variable is not allowed inside of a
statement expression

5246: a variable-length array is not allowed inside of a statement expression
5247: a statement expression is not allowed inside of a default argument
5248: nonstandard conversion between pointer to function and pointer to data
5249: interface types cannot have virtual base classes

5250: interface types cannot specify "private" or "protected"

5251: interface types can only derive from other interface types

5252: “type”is an interface type

5253: interface types cannot have typedef members

5254: interface types cannot have user-declared constructors or destructors
5255: interface types cannot have user-declared member operators

5256: interface types cannot be declared in functions

5257: cannot declare interface templates

5258: interface types cannot have data members

5259: interface types cannot contain friend declarations

5260: interface types cannot have nested classes

5261: interface types cannot be nested class types

5262: interface types cannot have member templates

5263: interface types cannot have static member functions

5264: this pragma cannot be used in a __pragma operator (a #pragma directive
must be used)

5265: qualifier must be base class of "type”

5266: declaration must correspond to a pure virtual member function in the
indicated base class

5267: integer overflow in internal computation due to size or complexity of
//type ”
5268: integer overflow in internal computation

5269: _ w64 can only be specified on int, long, and pointer types

117

Wind River Compiler
Error Messages Reference, 5.6

5270: potentially narrowing conversion when compiled in an environment
where int, long, or pointer types are 64 bits wide

5271: current value of pragma pack is “xxxx”

5272: arguments for pragma pack(show) are ignored

5273: invalid alignment specifier value

5274: expected an integer literal

5275: earlier __declspec(align(...)) ignored

5276: expected an argument value for the “xxxx” attribute parameter
5277: invalid argument value for the “xxxx” attribute parameter
5278: expected a boolean value for the “xxxx” attribute parameter
5279: a positional argument cannot follow a named argument in an attribute
5280: attribute “xxxx” 1 has no parameter named “xxxx”

5281: expected an argument list for the “xxxx” attribute

5282: expected a"," or "]"

5283: attribute argument “xxxx” has already been given a value
5284: a value cannot be assigned to the “xxxx” attribute

5285: a throw expression may not have pointer-to-incomplete type
5286: alignment-of operator applied to incomplete type

5287: “xxxx” may only be used as a standalone attribute

5288: “xxxx” attribute cannot be used here

5289: unrecognized attribute “xxxx”

5290: attributes are not allowed here

5291: invalid argument value for the “xxxx” attribute parameter
5292: too many attribute arguments

5293: conversion from inaccessible base class “type” is not allowed
5294: option "export" requires distinct template signatures

5295: narrow and wide string literals cannot be concatenated

”

5296: GNU layout bug not emulated because it places virtual base “entity
outside “entity” object boundaries

118

1 Error Messages
1.2 Compiler Error Messages

5297: virtual base “entity” placed outside “entity” object boundaries
5298: nonstandard qualified name in namespace member declaration

5299: reduction in alignment ignored

5300: const qualifier ignored

5301: return statement in function marked with "noreturn"

5302: invalid GNU asm qualifiers

5303: non-POD class type passed through ellipsis

5304: a non-POD class type cannot be fetched by va_arg

5305: the 'u' or 'U' suffix must appear before the 'l' or 'L' suffix in a fixed-point
literal

5306: option "fixed_point" can be used only when compiling C
5307: integer operand may cause fixed-point overflow

5308: fixed-point constant is out of range

5309: fixed-point value cannot be represented exactly

5310: constant is too large for long long; given unsigned long long type
(nonstandard)

5311: layout qualifier cannot qualify pointer to shared void
5312: duplicate THREADS in multidimensional array type
5313: a strong using-directive may only appear in a namespace scope

5314: entity-kind "entity” declares a non-template function -- add <> to refer to a
template instance

5315: operation may cause fixed-point overflow

5316: expression must have integral, enum, or fixed-point type

5317: expression must have integral or fixed-point type

5318: function declared with "noreturn" does return

5319: asm name ignored because it conflicts with a previous declaration
5320: class member typedef may not be redeclared

5321: taking the address of a temporary

5322: attributes are ignored on a class declaration that is not also a definition

119

Wind River Compiler
Error Messages Reference, 5.6

5323:
5324:
5325:
5326:
5327:
5328:
5329:
5330:
5331:
5332:
5333:
5334:

fixed-point value implicitly converted to floating-point type
fixed-point types have no classification

a template parameter may not have fixed-point type
hexadecimal floating-point constants are not allowed

option "named_address_spaces" can be used only when compiling C
floating-point value does not fit in required fixed-point type
value cannot be converted to fixed-point value exactly
fixed-point conversion resulted in a change of sign

integer value does not fit in required fixed-point type
fixed-point operation result is out of range

multiple named address spaces

variable with automatic storage duration cannot be stored in a named

address space

5335:
5336:
5337:
5338:
5339:
5340:
5341:
5342:
5343:

type cannot be qualified with named address space

function type cannot be qualified with named address space
field type cannot be qualified with named address space
fixed-point value does not fit in required floating-point type
fixed-point value does not fit in required integer type

value does not fit in required fixed-point type

option "named_registers" can be used only when compiling C
a named-register storage class is not allowed here

entity-kind "entity” (declared at line xxxx) redeclared with incompatible

named-register storage class

5344:
5345:
5346:

named-register storage class cannot be specified for aliased variable
named-register storage specifier is already in use

option "embedded_c" cannot be combined with options to control

individual Embedded C features

5347:
5348:

120

invalid EDG_BASE directory:

cannot open predefined macro file: “xxxx”

1 Error Messages
1.2 Compiler Error Messages

5349: invalid predefined macro entry at line xxxx: xxxx
5350: invalid macro mode name “xxxx”
5351: incompatible redefinition of predefined macro “xxxx”

5352: redeclaration of entity-kind "entity” (declared at line xxxx) is missing a
named-register storage class

5353: named register is too small for the type of the variable

5354: arrays cannot be declared with named-register storage class

5355: const_cast to enum type is nonstandard

5356: option "embedded_c" can be used only when compiling C

5357: a named address space qualifier is not allowed here

5358: an empty initializer is invalid for an array with unspecified bound
5359: function returns incomplete class type “type”

5360: entity-kind “entity” has already been initialized; the out-of-class initializer
will be ignored

5361: declaration hides entity-kind “entity”

5362: a parameter cannot be allocated in a named address space

5363: invalid suffix on fixed-point or floating-point constant

5364: a register variable cannot be allocated in a named address space
5365: expected "SAT" or "DEFAULT"

5366: entity-kind “entity” has no corresponding member operator deletexxxx (to
be called if an exception is thrown during initialization of an allocated object)

5367: a thread-local variable cannot be declared with "dllimport" or "dllexport"
5368: a function return type cannot be qualified with a named address space

5369: an initializer cannot be specified for a flexible array member whose
elements have a nontrivial destructor

5370: an initializer cannot be specified for an indirect flexible array member
5371: invalid GNU version number:
5372: variable attributes appearing after a parenthesized initializer are ignored

5373: the result of this cast cannot be used as an lvalue

121

Wind River Compiler
Error Messages Reference, 5.6

5374: negation of an unsigned fixed-point value

5375: this operator is not allowed at this point; use parentheses
5376: flexible array member initializer must be constant

5377: register names can only be used for register variables
5378: named-register variables cannot have void type

5379: __declspec modifiers not valid for this declaration

5380: parameters cannot have link scope specifiers

5381: multiple link scope specifiers

5382: link scope specifiers can only appear on functions and variables with
external linkage

5383: a redeclaration cannot weaken a link scope
5384: link scope specifier not allowed on this declaration
5385: nonstandard qualified name in global scope declaration

5386: implicit conversion of a 64-bit integral type to a smaller integral type
(potential portability problem)

5387: explicit conversion of a 64-bit integral type to a smaller integral type
(potential portability problem)

5388: conversion from pointer to same-sized integral type (potential portability
problem)

5389: the "sun_linker_scope" option is only valid in Sun mode

5390: friend specifier is not allowed in a class definition; friend specifier is
ignored

5391: only static and extern variables can use thread-local storage
5392: multiple thread-local storage specifiers

5393: virtual entity-kind "entity” was not defined (and cannot be defined
elsewhere because it is a member of an unnamed namespace)

5394: carriage return character in source line outside of comment or
character/string literal

5395: expression must have fixed-point type

5396: invalid use of access specifier is ignored

122

1 Error Messages
1.2 Compiler Error Messages

5397: pointer converted to bool

5398: pointer-to-member converted to bool

5399: storage specifier ignored

5400: dllexport and dllimport are ignored on class templates

5401: base class dllexport/dllimport specification differs from that of the derived
class

5402: redeclaration cannot add dllexport/dllimport to “entity” (declared at line
XXXX)

5403: dllexport/dllimport conflict with “entity”; dllexport assumed
5404: cannot define dllimport entity
5405: dllexport/dllimport requires external linkage

5406: a member of a class declared with dllexport/dllimport cannot itself be
declared with such a specifier

5407: field of class type without a DLL interface used in a class with a DLL
interface

5408: parenthesized member declaration is nonstandard
5409: white space between backslash and newline in line splice ignored
5410: dllexport/dllimport conflict with “entity”; dllimport/dllexport dropped

5411: invalid member for anonymous member class -- class “type” has a
disallowed member function

5412: nonstandard reinterpret_cast
5413: positional format specifier cannot be zero

5414: a local class cannot reference a variable-length array type from an
enclosing function

5415: member entity-kind “entity” already has an explicit dllexport/dllimport
specifier

5416: a variable-length array is not allowed in a function return type

5417: variable-length array type is not allowed in pointer to member of type
//type[[

5418: the result of a statement expression cannot have a type involving a
variable-length array

123

Wind River Compiler
Error Messages Reference, 5.6

1.3 Assembler Error Messages

Assembler messages have the format:
“filer, line #: severity: message

Three kinds of messages are generated. The severity values for each as they appear
in messages are as follows.

warning
Warning: a message will be printed, assembly will continue, and an output file
will be produced.

error
Error: a message will be printed, assembly will continue, but no output will be
generated.

fatal
Fatal: a message will be printed and assembly aborted.

Assembler messages are intended to be clear in the context of the error and are not
listed here. Please report unclear assembler error messages to Customer Support.

1.4 Linker Error Messages

1.4.1 Linker Message Format

Linker messages have the format:
DLD.EXE: message
Where relevant, the file and line are included in the message.

The severity level for each message is shown in parentheses in the message
description. A warning (w) generates a diagnostic message, but linking continues
and an output file is produced. An error (e) causes the linker to abort.

124

1 Error Messages
1.4 Linker Error Messages

1.4.2 Linker Message Detail

"" (0x...) is assigned invalid value: 0x...

Assignment to “.” creates a gap in section data. The size of this gap should not
be negative and should be less 0x4000000. (e)

Absolute section has invalid name: name
Absolute section name must be “.abs.hexNumber”. (e)

An unknown or incorrect option has been provided
The linker does not recognize an option flag that has been passed to it. (w)

Archive file filename does not have symbol table
An archive file must have a symbol table to be usable by the linker. Use dar to
create the table. (e)

ASSERT failed: assertion
(Message may include the assert expression.) Contact Customer Support. (e)

Assignment to symbol "symbol" in the LECL file is ignored

The symbol is defined in an input object file
The linker command file cannot redefine a symbol that is already defined in an
input object file. (w)

Cannot allocate 0x... bytes of memory for "name"
The MEMORY directive in the linker command language is used to specify
the regions from which the linker can allocate memory. When there is not
enough space to contain a group, section, or NEXT directive, an error message
is generated. (e)

Cannot allocate branch island
The linker cannot calculate the address or size of a branch island. The circular
dependencies are too complex. (e)

Cannot calculate address of group
Complex circular dependencies cannot be resolved. Linker command
language and implicit linking rules constitute an equation system which can
be unsolvable, resulting in this or similar error message. (e)

Cannot calculate address of section section
Complex circular dependencies cannot be resolved. Linker command
language and implicit linking rules constitute an equation system which can
be unsolvable, resulting in this or similar error message. (e)

125

Wind River Compiler
Error Messages Reference, 5.6

Cannot calculate OVERFLOW size expression
Complex circular dependencies cannot be resolved. An expression value
depends on the address or size of a symbol or section, which in turn depends
directly or implicitly on the expression value. Example:

X = SIZEOF(Y); Y (DATA) : { . = . + X; }

Linker command language and implicit linking rules constitute an equation
system which can be unsolvable, resulting in this or similar error message. (e)

Cannot calculate size of group
Complex circular dependencies cannot be resolved. Linker command
language and implicit linking rules constitute an equation system which can
be unsolvable, resulting in this or similar error message. (e)

Cannot create branch island - section section is too large
Branch islands are created between input sections. If an input section is too
large it might not be possible to create an island for that branch.

Cannot create Branch Island for Arm to Thumb call, function name
Contact Customer Support. (e)

Cannot create Branch Island for Thumb to Arm call, function name
Contact Customer Support. (e)

Cannot create position independent branch island: _ SDA2_BASE_ is undefined
-Xpic-only needs the symbol _ SDA2_BASE_ to be defined. (e)

Cannot evaluate expression
Complex circular dependencies cannot be resolved. Linker command
language and implicit linking rules constitute an equation system which can
be unsolvable, resulting in this or similar error message. (e)

Cannot evaluate fill value expression
Complex circular dependencies cannot be resolved. Linker command
language and implicit linking rules constitute an equation system which can
be unsolvable, resulting in this or similar error message. (e)

Cannot evaluate value of symbol symbol
Complex circular dependencies cannot be resolved. Linker command
language and implicit linking rules constitute an equation system which can
be unsolvable, resulting in this or similar error message. (e)

Cannot find matching input sections for"..."
Input section specification does not match any input. (w)

126

1 Error Messages
1.4 Linker Error Messages

Cannot find overflow output section "section"
Invalid section name in OVERFLOW statement. No such section defined in
linker command file. (e)

Cannot get current directory name
Call to getewd() failed. (e)

Cannot rename "filename", error: message
The host operating system reported an error renaming the file. Check the
permissions on the directory where the file resides. This usually means that
you are not permitted to write in that directory. (e)

Cannot write relocation table: relocation type 0x... is not supported by COFF
This can occur when input and output have different formats (ELF to COFF)
and some relocations cannot be converted. (e)

Cannot allocate memory (NEXT)
The MEMORY directive in the linker command language is used to specify the
regions from which the linker can allocate memory. When there is not enough
space to contain a group, section, or NEXT directive, an error message is
generated. (e)

",non

Cannot calculate size of section "section™: "." (0x...) is assigned invalid value: Ox...
Can’t calculate size of section section: it depends on section address ...

Can’t calculate size of section section: it depends on section address....

The section might require alignment specification
Complex circular dependencies cannot be resolved. Linker command
language and implicit linking rules constitute an equation system which can
be unsolvable, resulting in this or similar error message. (e)

Can’t create file name

Can't create file name: ...
The host operating system returned an error when dld tried to create a file. The
permissions in the current directory probably don’t allow your dld command
to write in the directory. (e)

Can’t create tempfile name: ...
The host operating system returned an error when dld tried to create a file. The
permissions in the current directory probably don’t allow your dld command
to write in the directory. (e)

Can't find file: filename
The linker cannot locate the specified file. (e)

127

Wind River Compiler
Error Messages Reference, 5.6

Can’t find library: libname.a
The linker cannot locate the specified library. (e)

Can’t find output section section
Invalid section name in linker command language expression. (e)

Can’t find section section
Invalid section name in linker command language expression. (e)

Can’t Iseek on name: ...
Possibly an external task has shortened the file. More likely, this represents an
internal error in the dld code. Please collect a test case to reproduce the
problem and contact Customer Support. (e)

Can't open filename: ...
The host operating system returned an error when dld tried to read the file.
Check the permissions on the file and the full pathname to the file. Perhaps
there is a spelling error in the path. (e)

Can’t open tempfile name: ...
The host operating system returned an error when dld tried to read the file.
Check the permissions on the file and the full pathname to the file. Perhaps
there is a spelling error in the path. (e)

Can't search unused sections, main entry symbol "symbol" is undefined
This warning should not be generated since the current linker deletes such
symbols silently. (w)

Can't search unused sections, main entry symbol "symbol" has absolute address
This warning should not be generated since the current linker deletes such
symbols silently. (w)

COMMON object is eclipsed by a function definition:
Function name: name
File: filename

A symbol of type function is defined with the same name as a COMMON
object. (w)

Compression switch function "function" is undefined

PowerPC compressed code only. When -Xmixed-compression is on, symbols
__switch_to_uncompressed and __switch_to_compressed must be defined in
an input object files. (e)

128

1 Error Messages
1.4 Linker Error Messages

Don’t know where to allocate input section:
no matching input specification found in linker command file.
Section name: section
File: filename

Change linker command file to include explicit instructions on how to link this
section. If the “section name” referred to in the message is .ctors or .dtors, you
may be using an old linker command file that specifies .init and .fini instead
of .ctors and .dtors. (w)

Don’t know where to put COMMONSs! No .bss and no COMMON directive
Found a COMMON variable but linker command file has no .bss nor
COMMON. (e)

Don’t know where to put small COMMONSs! No .sbss and no SCOMMON
directive
Found a small COMMON variable but linker command file has no .sbss nor
SCOMMON. (e)

End of memory
All internal structures used in the linker are dynamically allocated. When the
host operating system cannot provide more memory, the linker aborts with an
error message. On UNIX, change the amount of memory your shell allows
with the limit or ulimit command; if that does not work, increase your swap
area. On Windows, increase your swap area (virtual memory). (e)

Environment variable "RTAPROJECT" must be set
The variable must be set when -Xgenerate-vmap is used. (This option is not
intended to be set by the user.) (e)

Failed to read file name: ...
The host operating system reported a read error. Perhaps the file’s permissions
were changed by another task after dld opened it successfully. (e)

Failed to read file name: file is empty
The host operating system reported less data in the input file than dld
expected. Probably the file is corrupted or was only partially written because
the file system filled up before its writes were completed. You should recreate
the file and retry your dld command. (e)

Failed to read file name from archive name
The host operating system reported a read error. Perhaps the file’s permissions
were changed by another task after dld opened it successfully. (e)

Failed to read from file name: ...

129

Wind River Compiler
Error Messages Reference, 5.6

Failed to read from file name(...): ...
The host operating system reported a read error. Perhaps the file’s permissions
were changed by another task after dld opened it successfully. (e)

Failed to read from file name: end of file
The host operating system reported less data in the input file than dld
expected. Probably the file is corrupted or was only partially written because
the file system filled up before its writes were completed. You should recreate
the file and retry your dld command. (e)

Failed to write to file name: ...
The host operating system reported a write error. Perhaps the file’s
permissions were changed by another task after dld opened it successfully.
Perhaps the file partition has filled up, leaving insufficient room for the file. (e)

File filename does not have symbol table section

File filename(...) does not have symbol table section
Invalid input file: no symbol table. (e)

File filename has invalid relocation section
File filename(...) has invalid relocation section
Invalid input file: invalid reference to relocation information. (e)

File has wrong byte order, file filename
Invalid ELF header: Byte order neither big-endian nor little-endian. (e)

File has wrong class, file filename
Invalid or unsupported ELF class in input file header. (e)

File has wrong version, file filename
Invalid or unsupported ELF version in input file header. (e)

File is not an ELF file, file filename
Linker assumed file to be ELF but it does not have valid ELF header. (e)

File filename is not of known format
Supported formats are COFF, ELF, archive, and linker command language. (e)

File "filename", section "section", offset Ox...: Invalid relocation:
Input object file has relocation entry which cannot be processed. (e)

File type is not COFF, file filename
Contact Customer Support. (e)

File type is not ELF, file filename
Contact Customer Support. (e)

130

1 Error Messages
1.4 Linker Error Messages

Generation of relocation entries without a symbol table is not possible
Invalid -s option. (e)

... has BIND address, "> area-name" specification is ignored
Contact Customer Support. (w)

Illegal -B option
-B must be followed by “=". (e)

Illegal expression
Contact Customer Support. (e)

Illegal filename prefix COMMON], only * is allowed
Input specification must be *[COMMON], not xyz.o[COMMON]. (e)

Illegal option option
Option is not recognized. (w or e)

Illegal option -Xoption
Option is not recognized. (e)

Illegal usage of HEADERSZ in LECL file
Contact Customer Support. (e)

Illegal -Y option
-Y must be followed by “,”. (e)

In file "filename", Section "section
Section offset Ox..,
Symbol "symbol"
Invalid relocation entry
Input file has broken symbol table or relocation information. (e)

In file filename, symbol symbol has invalid value:
symbol is undefined (state 0x...), but value is not zero - Ox...
Invalid input file: The symbol table is defective. (w)

In LECL file "filename", line number,
name is not allocable, "> name" specification is ignored
Section or group is not allocatable; see ELF for section attributes. (w)

Input contains mix of little-endian and big-endian object files:
Aborted...
Linking a mix of little-endian and big-endian object files is not supported. (e)

131

Wind River Compiler
Error Messages Reference, 5.6

Input contains mix of PPC COFF and ELF object files:
PPC COFF and ELF object files have incompatible calling conventions
Mixing PowerPC COFF and PowerPC ELF is dangerous. (w)

Input files contain code for mixed processors:
Only one file for each processor type is listed
Mixing code generated for different CPU types is dangerous. (w)

Insufficient memory
All internal structures used in the linker are dynamically allocated. When the
host operating system cannot provide more memory, the linker aborts with an
error message. On UNIX, change the amount of memory your shell allows
with the limit or ulimit command; if that does not work, increase your swap
area. On Windows, increase your swap area (virtual memory). (e)

Internal error: cannot calculate COFF header size
Contact Customer Support. (e)

Internal error: cannot calculate ELF header size
Contact Customer Support. (e)

Internal error: can’t ADD symbol to non-hashed table
Contact Customer Support. (e)

Internal error: error counting undefines
Contact Customer Support. (e)

Internal error: illegal output file type
Contact Customer Support. (e)

Internal error: illegal/unsupported output format ...
Contact Customer Support. (e)

Internal error: no output file type set
Contact Customer Support. (e)

Internal error: not relocinfo
Contact Customer Support. (e)

Internal error: output buffer overflow
Contact Customer Support. (e)

Internal error: should not happen
Contact Customer Support. (e)

Invalid archive format, file filename
Archive file has invalid format. (e)

132

1 Error Messages
1.4 Linker Error Messages

Invalid archive symbol table, file: filename
Invalid input file: The symbol table is defective. (e)

Invalid file header, file filename in archive archive
Contact Customer Support. (e)

Invalid fill pattern alignment, must be 1, 2, or 4
Invalid fill specification in section definition (SECTIONS command). (e)

Invalid fill pattern size, must be 1, 2, or 4
Invalid fill specification in section definition (SECTIONS command). (e)

Invalid option format: option
Valid format is -optionName[=number]. (e)

Invalid relocation info:
File "filename”
Section "section”
Section address 0x...size 0Ox...
Relocating reference at address Ox...
Can’t relocate
Input object file has broken relocation information. (e)

Invalid section header in file “filename”, section name “name”
Invalid input file: Invalid COMDAT section header. (e)

Invalid value of -Xmax-long-branch= option
The option sets the maximum branch offset which does not need a branch
island. Some targets (like the PowerPC) have short and long branch
instructions. Valid values are 2..0x7fffffff; using the option without a value is
an error. (e)

Invalid value of -Xmax-short-branch= option
Valid values are 2..0x7fffftff. Using the option without a value is an error. (e)

Machine type not supported, file filename
Machine type not supported, file filename(...)

Invalid input file: unsupported target CPU. (e)

Memory area “area-name” is full
Memory area specified in “> area-name” is full. (e)

Memory area “area-name” is undefined
Invalid name in “> area-name” specification. (e)

Memory block extends over 32 bit address range: ...
memory address + memory size >= 0x100000000. (w)

133

Wind River Compiler
Error Messages Reference, 5.6

Next alignment with zero!
Invalid argument of NEXT(). (e)

No main entry point defined
Executable output needs an entry point. (e)

No section names in file filename
Invalid input file: no section names string table. (e)

No string table in file filename
Invalid input file: no string table. (e)

Nothing to link
No object files are given in the command line. (e)

Only one COMMON allowed in LECL file
More than one input specification like *[COMMON] is not allowed in the linker
command file. (e)

Only one SCOMMON allowed in LECL file
More than one input specification like *[SCOMMON] is not allowed in the
linker command file. (e)

Out of memory reading archive archive
All internal structures used in the linker are dynamically allocated. When the
host operating system cannot provide more memory, the linker aborts with an
error message. On UNIX, change the amount of memory your shell allows
with the limit or ulimit command; if that does not work, increase your swap
area. On Windows, increase your swap area (virtual memory). (e)

Output file format not specified
Contact Customer Support. (e)

Output section “section” contains mix of compiled for compression and normal
sections: The output section will not be prepared for compression
Mixing compressed and normal code in one section is illegal. (w)

Output sections: have overlapping load addresses
Incompatible specification of output sections. (e)

Output sections: have overlapping run-time addresses
Incompatible specification of output sections. (e)

Overlapping memory block block
Two or more MEMORY directives define the same memory area. (w)

Redeclaration of symbol
More than one definition of a symbol which is not COMMON or weak.

134

1 Error Messages
1.4 Linker Error Messages

Register number in REGISTER() section specification must be in 0..n range
Invalid register specification. (e)

Relocation error in file filename: section section refers to local symbol symbol in
section section and section section is not taken to output
Linker failed to remove unused sections properly. file a SPR. Contact
Customer Support. (e)

Relocation error in file filename:
section section refers to local symbol symbol at section section and
section section is purged COMDAT section
Linker failed to remove unused COMDAT sections. Contact Customer
Support. (e)

Relocation info is not properly sorted, file filename, section section
Relocation info is not properly sorted, file filename(...), section section

Input file has broken relocation information. (e)

Section .data (DATA) is not defined
COFF output must have a .data section. (e)

Section e_shstrndx is not a SHT_STRTAB in file "filename"

Section e_shstrndx is not a SHT STRTAB in file "filename(...)"
Invalid input file: invalid ELF header. (e)

Section section extends over 32-bit address range
section address + section size >= 0x100000000. (w)

Section .text (TEXT) is not defined
COFF output must have a .text section. (e)

Symbol “symbol” can’t be declared relative
Symbol is declared as "... @ ... = ...
Section "section" is empty - can’t be used for relative declaration
A section must have some input section to make relative declaration possible.

(w)

Symbol “symbol” can’t be declared relative

Symbol is declared as "... @ ... = ..."

Symbol "symbol" is absolute - can’t be used for relative declaration
Base symbol must be declared inside a section. (w)

Symbol definition “name” not found
Symbol name is used in linker command file but symbol is undefined. (e)

135

Wind River Compiler
Error Messages Reference, 5.6

Symbol definitions missing at index index in name
Contact Customer Support. (e)

Symbol “symbol” has unknown binding type
Contact Customer Support. (e)

Symbol symbol has unknown section index
Invalid symbol table in input ELF file. (w)

Symbol symbol has unknown symbol type
Input file has a symbol of an unknown or unsupported type. (e)

Symbol symbol in name is defined in unknown section
Invalid section table in input ELF file. (w)

Symbol symbol is declared with more than one size
Symbol symbol is declared with more than one size (1 and m)

Conflicting definition for a COMMON variable. (w)

Symbol symbol is undefined but not used
This warning should not be generated since the current linker deletes such
symbols silently. (w)

Symbol name missing. Must be defined when using shared libraries.
This message is no longer used. (e)

Symbol or section "name” not found
Invalid name in relative symbol definition in linker command file. (e)

Symbol _SDA_BASE_ is undefined

Symbol _SDA2_BASE_ is undefined

Symbol _SDA3_BASE_ is undefined
The symbol _SDAx_BASE_ is needed to process SDA (Small Data Area)
relocations. (e)

Target architecture is not specified
Unknown target. (e)

Undefined symbol "“symbol”

Undefined symbol “symbol” in file "filename”

Undefined symbol “symbol” in file "filename(...)”
An undefined symbol is referenced. (w)

Undefined symbols found - no output written
The MEMORY directive in the linker command language is used to specify the
regions from which the linker can allocate memory. When there is not enough

136

1 Error Messages
1.4 Linker Error Messages

space to contain a group, section, or NEXT directive, an error message is
generated. (e)

Unknown relocation type in name
Contact Customer Support. (e)

Unsupported file format: "name”
Supported formats are COFF, ELF, archive, and linker command language. (e)

Unsupported file type in archive
Supported formats in archives are COFF and ELF. (e)

Unsupported output file format
Selected combination of object-file format and target is not supported. (e)

Unsupported relocation type ...
Unsupported relocation type in file "filename”
Input file has unsupported relocation type. (e)

Unused symbols search failure, symbol: symbol
The linker failed while attempting to find and delete unused symbols in object
files. This could be caused by a linker bug, or by an object file that is corrupt,
invalid, or in an unsupported format. (e)

Use -Xmixed-compression command line option to enable generation of
compression switches
PowerPC compressed code only. The switches are codes which change the
CPU mode from compressed code to normal code and back. (e)

Value of "." is undefined outside a section or group
Illegal use of “.” in linker command file. (e)

-Xstop-on-warning is on, linking aborted
The linker stopped after issuing a warning because the -Xstop-on-warning
option is enabled. (e)

137

Wind River Compiler
Error Messages Reference, 5.6

138

	Wind River Compiler Error Messages Reference, 5.6
	Contents
	1 Error Messages
	1.1 Introduction
	1.1.1 Compiler Message Format
	1.1.2 Errors in asm Macros and asm Strings

	1.2 Compiler Error Messages
	1.2.1 Messages Generated by ctoa
	1.2.2 Messages Generated by etoa

	1.3 Assembler Error Messages
	1.4 Linker Error Messages
	1.4.1 Linker Message Format
	1.4.2 Linker Message Detail

