
Wind River
Network Stack
for VxWorks 6

PROGRAMMER'S GUIDE
Volume 2: Application Protocols

®

6.6

®

Wind River Network Stack for VxWorks 6 Programmer's Guide, 6.6

Copyright © 2007 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, Tornado, and VxWorks are registered trademarks of Wind River Systems, Inc.
The Wind River logo is a trademark of Wind River Systems, Inc. Any third-party
trademarks referenced are the property of their respective owners. For further information
regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDir/productName/3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:

http://www.windriver.com

For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

Wind River Network Stack for VxWorks 6 Programmer's Guide, 6.6 : Volume 2: Application Protocols

6 Nov 07
Part #: DOC-16136-ND-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

iii

Contents

1 Overview ... 1

1.1 Introduction ... 1

1.2 Technology Overview ... 2

1.2.1 Product Overview .. 3

1.3 Additional Documentation .. 3

Wind River Documentation .. 3
Online Resources .. 4
Books .. 4

2 Network Application Protocols .. 5

2.1 Introduction ... 5

2.2 Ping ... 6

2.2.1 Ping Commands ... 7

2.2.2 Ping6 commands .. 9

2.3 DNS ... 11

Technology Overview ... 11

2.3.1 Component Overview ... 12

2.3.2 Conformance to Standards ... 13

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

iv

2.3.3 Configuring and Building DNS ... 13

2.3.4 Using nslookup from the Command Interpreter 16

2.4 SNTP ... 17

2.4.1 Configuring and Building SNTP .. 18

2.5 FTP ... 23

2.5.1 Configuring and Building FTP ... 24

2.5.2 Using the FTP Client from the Command Interpreter 29

2.6 TFTP .. 31

2.6.1 Configuring and Building TFTP .. 32

2.7 RSH ... 34

2.7.1 Configuring and Building RSH .. 35

2.7.2 Enabling Access to an RSH User .. 35

2.8 RPC .. 36

2.8.1 Configuring and Building RPC .. 37

2.9 rlogin ... 37

2.9.1 Configuring and Building rlogin ... 37

2.10 Telnet .. 39

2.10.1 Configuring and Building Telnet ... 39

2.11 Creating a netDrv Device for RSH or FTP ... 41

3 Wind River DHCP and DHCPv6: Overview .. 45

3.1 Introduction ... 45

3.1.1 Architectural Overview: Client, Server, and Relay Agent 46

3.1.2 DHCPv6 ... 46

3.1.3 Build Configuration Parameters and sysvars 46

 Contents

v

4 Wind River DHCP: Server .. 49

4.1 Introduction ... 49

Conformance to Standards ... 49

4.1.1 Server Overview ... 50

4.1.2 Server Components .. 51

4.2 Including the DHCP Server in a Build .. 52

4.3 Setting Up Addresses, Options, Subnets and Hosts 59

4.3.1 Configuring the Server with the ipdhcps_netconf_sysvar Array 59

4.3.2 Configuring the Server with Shell Commands 62

DHCP Server Shell Commands ... 62

4.4 Implementing Hook Routines for Initialization and Shutdown 66

4.4.1 The ipdhcps_start_hook() Routine ... 66

4.4.2 The ipdhcps_stop_hook() Routine .. 70

4.4.3 DHCP Server API Routines .. 71

4.5 Setting Options in Shell Commands and API Routines 72

4.5.1 Using Standard DHCP Options in Shell Commands and APIs 72

4.5.2 Using Wind River-Specific Options in Shell Commands and APIs . 80

5 Wind River DHCP: Relay Agent .. 83

5.1 Introduction ... 83

Relay Agent Overview .. 83
Conformance to Standards ... 84

5.2 Including the DHCP Relay Agent in a Build .. 85

5.3 Configuring the Relay Agent with the ipdhcpr_netconf_sysvar Array 87

5.4 Using Shell Commands ... 88

5.5 Implementing the ipdhcpr_start_hook() Routine ... 89

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

vi

5.5.1 DHCP Relay Agent API Routines .. 91

6 Wind River DHCP: Client ... 93

6.1 Introduction ... 93

6.1.1 Conformance to Standards ... 94

6.2 Including the DHCP Client in a Build ... 95

6.3 Using Shell Commands ... 100

6.4 Implementing the ipdhcpc_option_callback() Routine 101

6.4.1 DHCP Options Not Initially Implemented in the Client 103

7 Wind River DHCPv6: Server and Relay Agent 107

7.1 Introduction ... 107

7.2 Assigning Client-specific Authentication Keys ... 110

8 Wind River DHCPv6: Client ... 113

8.1 Introduction ... 113

8.1.1 Configuring the DHCPv6 Client .. 114

8.1.2 Conformance to Standards ... 118

8.2 Including the DHCPv6 Client in a Build ... 120

8.3 Using Shell Commands ... 132

9 Creating Network Applications as RTPs .. 135

9.1 Introduction ... 135

9.2 Running Network Applications in RTPs .. 136

9.2.1 General Network/RTP Incompatibilities ... 137

9.3 Working with Application RTPs ... 137

 Contents

vii

9.3.1 Building an RTP ELF Object File for a Network Application 137

9.3.2 Launching an RTP .. 139

9.3.3 Identifying the RTP Constructor Routine in a Library 140

9.3.4 Shutting down an RTP Application .. 141

9.4 Using Socket Connections with RTPs .. 142

10 Internet and Local Domain Sockets ... 145

10.1 Introduction ... 145

10.2 Configuring VxWorks for Sockets .. 147

10.3 Using Sockets in VxWorks ... 150

Communications Domains ... 151
Socket Types ... 153

10.4 Working with Local Domain Sockets ... 154

10.5 Working with Internet Domain Sockets .. 156

10.5.1 Creating the Connection for Internet Domain Stream Sockets 164

10.5.2 Sending and Receiving Data Using Internet Domain Sockets 166

10.5.3 Closing or Shutting Down an Internet Domain Socket Connection . 167

10.5.4 Support Routines for Working with Internet Addresses 168

Index .. 171

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

viii

1

 1
Overview

1.1 Introduction 1

1.2 Technology Overview 2

1.3 Additional Documentation 3

1.1 Introduction

The Wind River Network Stack is a dual IPv4/IPv6 TCP/IP stack that is designed
for use in modern, embedded real-time systems. It includes many services and
protocols that you can use to build networking applications.

This is the third volume of the Wind River Network Stack Programmer's Guide. For
information on the following topics, see the Overview chapter of the Wind River
Network Stack Programmer's Guide, Volume 1:

■ an overview of the Wind River Network Stack
■ a list of features unique to Wind River platforms
■ a guide to relevant additional documentation
■ where to get the latest release information

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

2

1.2 Technology Overview

This manual documents the following technologies that are part of the Wind River
Network Stack:

■ ping

The ping utility tests whether a particular host is reachable on the network.

■ DNS

Domain Name Server (DNS) is a distributed database that applications can use
to translate host names to IP addresses and back.

■ SNTP

The Simple Network Time Protocol (SNTP) synchronizes the clocks of
computer systems over packet-switched, variable-latency data networks.

■ FTP

File Transfer Protocol (FTP) enables the exchange of files over a TCP/IP
network.

■ TFTP

Trivial File Transfer Protocol (TFTP) is a simple protocol used to exchange files
with a remote server.

■ RSH

The remote shell (RSH) allows users to remotely log in to servers and execute
commands.

■ RPC

Remote Procedure Call (RPC) allows a process on one machine to call a
procedure that is executed by another process on another machine.

■ rlogin

rlogin allows remote shell access to and from a target.

■ telnet

telnet is provides command-line login sessions between hosts on a network.

■ DHCP

The Dynamic Host Configuration Protocol (DHCP) automates the
configuration of computers that use TCP/IP.

1 Overview
1.3 Additional Documentation

3

1
■ sockets

Using sockets, you can send and receive data over an IP network,
communicate with other processes, access IP multicasting functionality, and
review and modify the routing tables.

This manual also describes how to create network applications as Real-Time
Processes (RTPs).

1.2.1 Product Overview

The technologies listed above are components that may be included in or excluded
from your project build, depending on its needs.

1.3 Additional Documentation

The following sections describe additional documentation about the technologies
described in this book.

Wind River Documentation

The Wind River Network Stack is described in the three volumes of the Wind River
Network Stack Programmer’s Guide:

■ Volume 1 has an overview with general information about the network stack,
and describes the Network and Transport layers.

■ Volume 2 (this volume) describes application-layer protocols and socket
programming.

■ Volume 3 describes interfaces, drivers, and the MUX, which is an abstraction
layer between drivers and protocols or services.

The Getting Started guide for your Platform includes instructions on how to build
a component or product into VxWorks, either through the Workbench Kernel
Editor or the vxprj utility.

For information on using Workbench to create a VxWorks Image Project and to
include build components, see the Wind River Workbench User’s Guide for VxWorks.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

4

For information on using the vxprj command-line utility, see the VxWorks
Command-Line Tools User’s Guide.

For more information on RTPs, and information on RTP projects in Workbench, see
the Wind River Workbench User’s Guide and the VxWorks Programmer’s Guide.

For information on Transparent Inter-Process Communication (TIPC) domain
sockets, see the Wind River TIPC for VxWorks 6 Programmer’s Guide.

The Wind River Platforms for VxWorks Migration Guide details how to migrate from
an earlier release of the network stack.

Online Resources

Online resources are as follows:

■ The Internet Engineering Task Force, http://www.ietf.org

Books

Additional documentation is as follows:

■ Internetworking with TCP/IP, Volume I: Principles, Protocols, and Architecture,
Douglas E. Comer.

■ UNIX Network Programming, Volume 2, Second Edition by W. Richard Stevens

http://www.ietf.org

5

 2
Network Application Protocols

2.1 Introduction 5

2.2 Ping 6

2.3 DNS 11

2.4 SNTP 17

2.5 FTP 23

2.6 TFTP 31

2.7 RSH 34

2.8 RPC 36

2.9 rlogin 37

2.10 Telnet 39

2.11 Creating a netDrv Device for RSH or FTP 41

2.1 Introduction

This chapter describes the network application protocols in the Wind River
Network Stack and the configuration components and parameters associated with
each.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

6

Including Application Protocols in Projects

The Getting Started guide for your Platform includes instructions on how to build
a component or product into VxWorks, either through the Workbench Kernel
Editor or the vxprj utility. The remainder of this chapter describes the various
network application protocol components and their configuration parameters.

Dynamic Configuration of Application Protocol Components

You can configure network application protocol components through the
Workbench Kernel Editor at build-time, or through the sysvar command at
run-time. There are equivalent sysvar command variables for most configuration
parameters. You can find the names of these variables in the configuration
parameter tables in this book. For information on how to use the sysvar command,
see Wind River Network Stack for VxWorks 6 Programmer’s Guide, Volume 1: Transport
and Network Protocols.

Shell Commands

Issue shell commands for the components described in this chapter from the
VxWorks command interpreter. For information on including and using shell
commands, see Wind River Network Stack for VxWorks 6 Programmer’s Guide, Volume
1: Transport and Network Protocols.

2.2 Ping

The ping utility tests whether a particular host is reachable on the network.

Technology Overview

Ping sends ICMP echo requests (ECHO_REQUEST packets) to the target host and
listens for replies (ECHO_RESPONSE packets). The Wind River Network Stack
implements ping for both IPv4 and IPv6.

Component Overview

Wind River supplies a ping implementation that includes the ping and ping6
commands and the API wrappers (for backward compatibility) that encapsulate
the commands. You execute ping from the command line.

2 Network Application Protocols
2.2 Ping

7

2

Configuring and Building Ping

The Wind River Network Stack has the following ping client configuration
components:

■ IPCOM ping commands (INCLUDE_IPPING_CMD)
■ IPCOM ping6 commands (INCLUDE_IPPING6_CMD)
■ PING client (INCLUDE_PING)
■ PING6 client (INCLUDE_PING6)

PING Client and PING6 Client

The INCLUDE_PING and INCLUDE_PING6 components pull in wrappers for the
ping and ping6 shell commands. These wrappers are for backward compatibility
with an earlier release of the Wind River Network Stack, and you need not use
them in new applications. For details on migrating from an earlier release of the
network stack see the Migration Guide for your Platform.

2.2.1 Ping Commands

Include the INCLUDE_IPPING_CMD component in your project in order to enable
the ping shell command.

Using Ping from the Command Interpreter

Syntax:

ping [-AbDnrx] [-c count | -t] [-I interfaceName] [-Q tos] [-s size] [-S sourceAddress] [-t
ttl] [-V routeTable] [-w timeout] host

Description:

ping sends an ICMP ECHO_REQUEST datagram to elicit an ICMP
ECHO_RESPONSE from a host or gateway. ECHO_REQUEST datagrams—pings—
have an IP and an ICMP header, followed by a struct timeval and then an arbitrary
number of pad bytes used to fill out the packet.

The command-line options are described in Table 2-1.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

8

Table 2-1 Ping Shell Command Options

Option Description

-A Add router alert option to each sent ping request.

-b Allow the pinging of a broadcast address.

-c count Stop after sending (and waiting the specified delay to receive) count
number of ECHO_RESPONSE packets. Set count to -1 if you do not
want the ping to end on its own.

-D Set the “DF” (don’t fragment) flag on each sent ping request.

-I
interfaceName

Specify the outgoing interface.

-n Use numeric output only. Ping will not attempt to look up names for
host addresses.

-Q tos Specify the Type of Service field in the IPv4 header.

-r Bypass the normal routing tables and send ping requests directly to
a host on an attached network, by setting the SO_DONTROUTE
option..

-s size Set the number of data bytes to be sent. The default is 56, which
translates into 64 ICMP data bytes when combined with the 8 bytes
of ICMP header data.

-S
sourceAddress

Set the address to use as a source address when sending.

-t ttl Set the time to live (TTL), in hops.

-V routeTable Set the route table to the one specified by the index number
routeTable. The default is 0 (zero). This option is only valid if you
have enabled virtual routing.

-w timeout Set the number of milliseconds between ping requests. The default
is 1000 milliseconds.

-x Send a ICMP timestamp request instead of a ECHO request.

host The IPv4 address of the host to ping.

2 Network Application Protocols
2.2 Ping

9

2

ping sends 4 datagrams by default, one per second, and prints one line of output
for every ECHO_REQUEST returned. ping computes, and may display, round-trip
times and packet loss statistics.

TTL

The TTL value of an IP packet represents the maximum number of “hops,” or
routers, that the packet can go through before it is discarded. Typically each router
will decrement the TTL field by exactly one when forwarding the packet and will
discard the packet if its TTL field reaches zero.

The TCP/IP specification states that the TTL field for TCP packets should initially
be set to 60, but many systems set it to smaller values (4.3BSD uses 30, 4.2BSD uses
15). The maximum value of this field is 255. Most UNIX systems set the TTL field
of ICMP ECHO_REQUEST packets to 255.

Normally, ping outputs the TTL value from the packet it receives. When a remote
system receives a ping packet, it can do one of three things with the TTL field in
response:

■ Leave it unchanged; this is what Berkeley UNIX systems did before the
4.3BSD-Tahoe release. In this case the TTL value in the packet will be 255
minus the number of routers in the round-trip path.

■ Set it to 255; this is what current Berkeley UNIX systems and the network stack
do. In this case the TTL value in the packet will be 255 minus the number of
routers in the path from the remote system to the pinging host.

■ Set it to some other value. Some machines use the same value for ICMP
packets that they use for TCP packets, for example either 30 or 60.

2.2.2 Ping6 commands

Include the INCLUDE_IPPING6_CMD component in your project in order to enable
the ping6 shell command.

Using ping6 from the Command Interpreter

Syntax

ping6 [-c count | -t] [-F label] [-h limit] [-n] [-r] [-Q class] [-S sourceAddress] [-T] [-s packetSize]
[-V routeTable] [-w timeout] [hop ...] host

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

10

Description

ping6 sends the ICMPv6 ICMP6_ECHO_REQUEST datagram to elicit an
ICMP6_ECHO_REPLY from a host or gateway. ICMP6_ECHO_REQUEST
datagrams—pings—have an IPv6 header and an ICMPv6 header formatted as
documented in RFC 2463.

The command-line options are described in Table 2-2.

Table 2-2 Ping6 Shell Command Options

Option Description

-c count Stop after sending (and receiving) count number of
ICMP6_ECHO_REPLY packets. Set count to -1 if you do not want
ping6 to stop on its own (or use the “-t” option).

-F label Specify the flow label in the IPv6 header.

-h limit Set the IPv6 hop limit.

-n Request numeric output only; ping6 will not attempt to look up
names for host addresses.

-Q class Specify the traffic class in the IPv6 header.

-r Bypass the normal routing tables and send directly to a host on
an attached network.

-S sourceAddress Specify the source address to use when sending.

-s packetSize Set the number of data bytes to be sent. The default is 56, which
translates into 64 ICMP data bytes when combined with the 8
bytes of ICMP header data.

-T Prefer temporary address as source; sets the
IPV6_PREFER_SRC_TMP socket option.

-t Ping the specified host continuously (this is equivalent to using
“-c -1”).

-V routeTable Set the route table to the one specified by the index number
routeTable. The default is 0 (zero). This option is only valid if you
have enabled virtual routing.

-w timeout Set the number of milliseconds between ping requests, default is
1000 ms.

2 Network Application Protocols
2.3 DNS

11

2

When using ping6 to isolate faults, run it first on the local host, to verify that the
local network interface is up and running. Then, ping hosts and gateways further
and further away. ping6 computes round-trip times and packet loss statistics.

2.3 DNS

Domain Name Server (DNS) is a distributed database that applications can use to
translate host names to IP addresses and back. DNS uses a client/server
architecture. The client is also known as the resolver. The server is also called the
name server.

Technology Overview

The DNS has three major components:

■ domain name space and resource records
■ name servers
■ resolvers

Domain Name Space

The domain name space and resource records specify a tree structured name space
and data associated with the names. Conceptually, each node and leaf of the
domain name space tree names a set of information, and query operations are
attempts to extract specific types of information from a particular set. A query
names the domain name of interest and describes the type of resource information
that is desired. For example, the Internet uses some of its domain names to identify
hosts; queries for address resources return Internet host addresses.

hop 0 or more IPv6 addresses of intermediate hosts that should be
visited before reaching the final host.

host The IPv6 address of the final destination node.

Table 2-2 Ping6 Shell Command Options (cont’d)

Option Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

12

Name servers

Name servers hold information about the domain tree’s structure and set
information. A name server may cache structure or set information about any part
of the domain tree, but in general a particular name server has complete
information about a subset of the domain space, and pointers to other name
servers that it can use to find information from any other part of the domain tree.
Name servers know the parts of the domain tree for which they have complete
information; a name server is said to be an authority for these parts of the name
space. Authoritative information is organized into units called zones, and these
zones can be automatically distributed to the name servers, which provide
redundant service for the data in a zone.

Resolvers

Resolvers, or DNS clients, extract information from name servers in response to
client requests. Resolvers must be able to access at least one name server and use
that name server’s information to answer a query either directly, or by pursuing
the query using referrals to other name servers. A resolver will typically be a
system routine that is directly accessible to your program; hence no protocol is
necessary between the resolver and your program.

2.3.1 Component Overview

The Wind River DNS client allows name-to-address lookups as well as
address-to-name lookups for systems running IPv4 or dual IPv4/IPv6 stacks. For
a list of implemented RFCs and exceptions, see 2.3.2 Conformance to Standards, p.13.

The DNS client includes the following features:

■ a DNS client (stub resolver) conforming to RFC 1034 and RFC 1035

■ one primary and up to three backup name servers

■ local caching of resource records

■ name-to-address lookups capable of querying for IPv4 addresses as well as
IPv6 (RFC 3596) addresses

■ address-to-name lookups for IPv4 and IPv6 (RFC 3596) addresses

■ the ipdnsc_getipnodebyname() and ipdnsc_getipnodebyaddr() routines as
per RFC 2553

2 Network Application Protocols
2.3 DNS

13

2

– These routines are reentrant versions of the gethostbyname() and
gethostbyaddr() functions. You can use them to perform DNS lookup of
both IPv4 and IPv6 addresses.

■ a shell command, nslookup, that you can call to perform a name-to-address or
address-to-name lookup

2.3.2 Conformance to Standards

The following standards are an incomplete list of the many RFCs describing the
DNS. DNS for IPv6 is still not fully standardized and discussions are underway in
various IETF Working Groups.

■ RFC 1034: Domain Names OE Concepts and Facilities
■ RFC 1035: Domain Names OE Implementation and Specification
■ RFC 3596: DNS Extensions to Support IP Version 6

Exceptions

Wind River’s DNS implementation (IPDNSC) has the following exceptions to the
DNS standards:

■ Wind River DNS does not allow iterative resolver lookups. The DNS client
requires the DNS server to enable recursive lookups.

■ Wind River DNS does not allow A6 records.

2.3.3 Configuring and Building DNS

The Wind River Network Stack uses the following DNS resolver configuration
components:

DNS Client (INCLUDE_IPDNSC)
This component includes the configuration parameters described in Table 2-3.

IPCOM nslookup commands (INCLUDE_IPNSLOOKUP_CMD)
This component is described in Configuring SNTP from the Command Interpreter,
p.18.

The parameters used to configure DNS are described in Table 2-3.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

14

Table 2-3 Wind River DNS Client Configuration Parameters

Workbench Description, Parameter Name, and sysvar
Default Value

and Type

DNS domain name
DNSC_DOMAIN_NAME
ipdnsc.domainname

The domain where the local host is located. If you do not
define this parameter, DNS is not aware of the local domain
name and DNS users must provide fully qualified domain
names in address lookups even for hosts in the same
domain as the local host.

"windriver.com"

char *

DNS primary name server
DNSC_PRIMARY_NAME_SERVER
ipdnsc.primaryns

The address of the primary name server. If you do not
define this parameter, DNS does not use any primary name
server.

""

char *

DNS secondary name server
DNSC_SECONDARY_NAME_SERVER
ipdnsc.secondaryns

The address of the secondary name server. If you do not
define this parameter, DNS does not use a secondary name
server.

""

char *

DNS tertiary name server
DNSC_TERTIARY_NAME_SERVER
ipdnsc.tertiaryns

The address of the tertiary name server. If you do not define
this parameter, DNS does not use a tertiary name server.

""

char *

DNS quaternary name server
DNSC_QUATERNARY_NAME_SERVER
ipdnsc.quaternaryns

The address of the quaternary name server. If you do not
define this parameter, DNS does not use a quaternary name
server.

""

char *

2 Network Application Protocols
2.3 DNS

15

2

DNS server listening port
DNSC_SERVER_PORT
ipdnsc.port

The port that the DNS client uses for DNS queries. If you do
not define this parameter, the DNS client uses the default
DNS port.

"53"

char *

Number of retries for DNS queries
DNSC_RETRIES
ipdnsc.retries

The number of retries on each name server. If you do not
define this parameter, DNS uses the default value.

"2"

char *

Timeout in seconds when waiting for responses to DNS
queries
DNSC_TIMEOUT
ipdnsc.timeout

The number of seconds before a retry if the DNS server fails
to answer. If you do not define this parameter, DNS uses
the default value.

"10"

char *

Zone for IPv4 address to name lookups
DNSC_IP4_ZONE
ipdnsc.ip4.zone

The zone for the DNS client to use for address-to-name
lookups of IPv4 addresses.

"in-addr.arpa"

char *

Zone for IPv6 address to name lookups
DNSC_IP6_ZONE
ipdnsc.ip6.zone

The zone for the DNS client to use for address-to-name
lookups of IPv6 addresses. Use the string ip6.int for RFC
1886 or ip6.arpa for RFC 3152.

"ip6.int"

char *

Table 2-3 Wind River DNS Client Configuration Parameters (cont’d)

Workbench Description, Parameter Name, and sysvar
Default Value

and Type

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

16

2.3.4 Using nslookup from the Command Interpreter

nslookup—DNS query command

Syntax

nslookup [-cf] [-r retries] [-t timeout] [-v version] host [nameServer]

Description

nslookup queries an Internet name server for information about a host. The host
may be a domain name or an Internet v4 or v6 address. The nameServer is optional;
if you include it (as an Internet address), nslookup will use that name server rather
than the default.

The command-line options are described in Table 2-4.

Table 2-4 nslookup Shell Command Options

Option Description

-c Use the DNS resolver’s local cache. The default is to always perform
the name server lookup and not to use the cache.

-f Flush the DNS resolver cache and then exit immediately.

-r retries Set the number of retries nslookup attempts if the name server fails
to answer.

-t timeout Set how long nslookup waits for an answer from the name server
before it retries.

-v version Set the type of address that is requested in a name-to-address
lookup, either 4 (IPv4) or 6 (IPv6). If you do not indicate the version
by using the -v flag, nslookup first tries to find an IPv6 address and
then, if it cannot find one, it tries to find an IPv4 address.

2 Network Application Protocols
2.4 SNTP

17

2

2.4 SNTP

This section describes the Simple Network Time Protocol (SNTP).

Technology Overview

Network Time Protocol (NTP) synchronizes the clocks of computer systems over
packet-switched, variable-latency data networks. The SNTP is a less complex form
of NTP that does not store information about previous communication.

You can use SNTP when you do not require a full NTP implementation.

Component Overview

Wind River SNTP is compatible with versions one to four of the SNTP protocol. It
handles both IPv4 and IPv6. The SNTP client and server are mutually exclusive
components; you may enable only one or the other in a project.

SNTP Client

You can configure the SNTP client to operate in unicast or multicast mode. In
unicast mode the client polls SNTP servers for time updates. In multicast mode it
listens for SNTP server broadcasts or multicasts.

SNTP Server

The SNTP server is disabled by default. For instructions on enabling it, see SNTP
Server, p.21. You can configure the SNTP server to operate in unicast or multicast
mode. The unicast mode handles requests from SNTP clients. The multicast mode
broadcasts or multicasts SNTP messages periodically, in addition to handling
requests from SNTP clients.

SNTP shell command

Wind River SNTP includes a shell command that you can use to update the system
time and to do SNTP debugging. See Configuring SNTP from the Command
Interpreter, p.18.

Conformance to Standards

Wind River SNTP conforms to RFC 2030: Simple Network Time Protocol (SNTP)
Version 4 for IPv4, IPv6 and OSI.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

18

2.4.1 Configuring and Building SNTP

The Wind River Network Stack includes the following SNTP configuration
components:

■ IPCOM SNTP commands (INCLUDE_IPSNTP_CMD)
■ SNTP Client (INCLUDE_IPSNTPC)
■ SNTP Server (INCLUDE_IPSNTPS)
■ SNTP common configurations (INCLUDE_IPSNTP_COMMON)

Configuring SNTP from the Command Interpreter

sntp—sets the local date and time by using SNTP

Syntax

sntp [-bv] [-i interfaceName] [-p port] [-t timeout] {server | mcastAddress}

Description

sntp polls an (S)NTP server for the current date and time until it receives a
response or the timeout period expires. If it receives a valid response it updates the
local date and time. You can also set sntp to wait for a (S)NTP server multicast or
broadcast.

Mandatory parameters

server
The host name or Internet address of the SNTP server. You must indicate the
server unless you use the -b or -i flags.

mcastAddress
The multicast group that the SNTP client should join if it listens for server
multicasts. This parameter is mandatory if you set the -i flag.

Options

The options are described in Table 2-5.

2 Network Application Protocols
2.4 SNTP

19

2

SNTP Client

The parameters used to configure the SNTP client in Workbench are described in
Table 2-6.

Table 2-5 SNTP Shell Command Options

Option Description

-b Wait for an (S)NTP server IPv4 broadcast.

-i
interfaceName

Wait for (S)NTP server multicasts on the specified interface.

-p port Set the (S)NTP server’s listening port. The default is 123.

-t timeout Set the maximum time (in seconds) to wait for an answer from
the (S)NTP server. A timeout value of negative one means that
the program will wait forever. The default is three seconds.

-v Show the IPSNTP product version.

Table 2-6 Wind River SNTP Client Configuration Parameters

Workbench Description, Parameter Name, and sysvar
Default Value

and Type

Backup server IPv4 address
SNTPC_BACKUP_IPV4_ADDR
ipsntp.client.backup.addr

The IPv4 address of the backup SNTP server.

"10.1.2.40"

char *

Backup server IPv6 address
SNTPC_BACKUP_IPV6_ADDR
ipsntp.client.backup.addr6

The IPv6 address of the backup SNTP server.

"2001::28"

char *

Number of retransmissions
SNTPC_POLL_COUNT
ipsntp.client.poll.count

The number of retransmissions the client attempts on each
SNTP server.

"3"

char *

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

20

Primary server IPv4 address
SNTPC_PRIMARY_IPV4_ADDR
ipsntp.client.primary.addr

The IPv4 address of the primary SNTP server.

"10.1.2.90"

char *

Primary server IPv6 address
SNTPC_PRIMARY_IPV6_ADDR
ipsntp.client.primary.addr6

The IPv6 address of the primary SNTP server.

"2001::90"

char *

SNTP multicast client mode IPv6 interface
SNTPC_MULTICAST_MODE_IPV6_IF
ipsntp.client.multi.if6

The SNTP multicast client mode IPv6 interface.

""

char *

SNTP multicast client mode IPv6 multicast group
SNTPC_MULTICAST_GROUP_IPV6_ADDR
ipsntp.client.multi.addr6

The SNTP multicast client mode IPv6 multicast group.

"ff05::101"

char *

SNTP multicast client mode interface
SNTPC_MULTICAST_MODE_IF
ipsntp.client.multi.if

The SNTP multicast client mode interface.

""

char *

SNTP multicast client mode multicast group
SNTPC_MULTICAST_GROUP_ADDR
ipsntp.client.multi.addr

The SNTP multicast client mode multicast group.

"224.0.1.1"

char *

SNTP unicast client mode poll interval
SNTPC_POLL_INTERVAL
ipsntp.client.poll.interval

The SNTP client unicast mode poll interval. Set this to zero
for multicast mode only.

"1024"

char *

Table 2-6 Wind River SNTP Client Configuration Parameters (cont’d)

Workbench Description, Parameter Name, and sysvar
Default Value

and Type

2 Network Application Protocols
2.4 SNTP

21

2

SNTP Server

The SNTP server is disabled by default. The SNTP client and server are mutually
exclusive; you may enable only one or the other in a build. The SNTP client
(INCLUDE_IPSNTPC) is automatically included if the network stack is built with
SNTP.

To enable the SNTP server:

1. Open installDir/components/ip_net2-6.n/ipsntp/config/ipsntp_config.h.

2. Comment out the client define:

#define IPSNTP_USE_CLIENT

3. Uncomment the server define:

#define IPSNTP_USE_SERVER

4. Re-build the project.

The configuration parameters used to configure the SNTP server in Workbench are
described in Table 2-7.

Seconds between retransmissions
SNTPC_POLL_TIMEOUT
ipsntp.client.poll.timeout

The number of seconds between retransmissions.

"2"

char *

SNTP port
SNTP_LISTENING_PORT
ipsntp.udp.port

The SNTP listening port.

"123"

char *

Table 2-6 Wind River SNTP Client Configuration Parameters (cont’d)

Workbench Description, Parameter Name, and sysvar
Default Value

and Type

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

22

Table 2-7 Wind River SNTP Server Configuration Parameters

Workbench Description, Parameter Name, and sysvar
Default Value

and Type

SNTP multicast mode IPv4 destination address
SNTPS_IPV4_MULTICAST_ADDR
ipsntp.server.mcast.addr

The SNTP multicast mode IPv4 destination address.

"10.1.255.255"

char *

SNTP multicast mode IPv6 destination address
SNTPS_IPV6_MULTICAST_ADDR
ipsntp.server.mcast.addr6

The SNTP server multicast mode IPv6 destination address.

"FF05::1"

char *

SNTP multicast mode TTL
SNTPS_MULTICAST_TTL
ipsntp.server.mcast.ttl

The SNTP multicast mode time to live.

"1"

char *

SNTP multicast mode send interval
SNTPS_MULTICAST_INTERVAL
ipsntp.server.mcast.interval

The SNTP multicast mode send interval in seconds. Set this
to zero for unicast mode only.

"3600"

char *

SNTP server precision
SNTPS_PRECISION
ipsntp.server.precision

The SNTP server precision. The precision is
2SNTPS_PRECISION seconds.

"-6"

char *

2 Network Application Protocols
2.5 FTP

23

2

2.5 FTP

File Transfer Protocol (FTP) is for exchanging files over any TCP/IP network.

Technology Overview

An FTP server listens on the network for connection requests from another
computer, the FTP client, which connects to the FTP server using FTP client
software. The FTP client can then manipulate files on the server, for instance
uploading, downloading, renaming, and deleting them.

The FTP protocol does not use cryptographically secure communication, so do not
use it to transfer confidential data over insecure lines. However, the FTP client and
server perform a number of security checks that will prevent some attacks. You can
also use FTP over a secure protocol such as IPSec to provide secure file transfer.

Component Overview

The Wind River FTP implementation includes a client and server, and an FTP for
backward compatibility. IPv4 and IPv6 are implemented in the same module.

SNTP server stratum
SNTPS_STRATUM
ipsntp.server.stratum

The SNTP server stratum.

"9"

char *

SNTP port
SNTP_LISTENING_PORT
ipsntp.udp.port

The SNTP listening port. SNTP uses this port to send a
request to another SNTP server, and also to listen for
requests from other clients.

"123"

char *

Table 2-7 Wind River SNTP Server Configuration Parameters (cont’d)

Workbench Description, Parameter Name, and sysvar
Default Value

and Type

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

24

Conformance to Standards

Wind River FTP conforms to the following standards:

■ RFC 959: File Transfer Protocol
■ RFC 1123: Requirements for Internet Hosts—Application and Support
■ RFC 2428: FTP Extensions for IPv6 and NAT
■ RFC 2577: FTP Security Considerations

Exceptions

Wind River FTP implements only the stream transmission mode of RFC 959, and
not the block or compressed transmission modes.

2.5.1 Configuring and Building FTP

The Wind River Network Stack contains the following FTP configuration
components:

■ FTP Client (INCLUDE_IPFTPC)
■ FTP Client Backend (INCLUDE_FTP)
■ FTP Server (INCLUDE_IPFTPS)
■ FTP6 Client Backend (INCLUDE_FTP6)
■ IPCOM FTP client commands (INCLUDE_IPFTP_CMD)

FTP Client

You can access the Wind River FTP client in two ways—through an API and
through the command interpreter (part of the VxWorks kernel shell) using shell
commands. This means that an application can select to use only the API, and
include customized FTP functionality in proprietary software.

The commands coexist with the API—they actually use the API—which means
that both interfaces can be used in the same application.

FTP Client Backend and FTP6 Client Backend

These components are for backward compatibility with a previous release of the
Wind River Network Stack, and need not be used for new applications. For details
on migrating from a previous release of the network stack see the Wind River
Platforms for VxWorks Migration Guide.

2 Network Application Protocols
2.5 FTP

25

2

FTP Server

The parameters used to configure the FTP server in Workbench are described in
Table 2-9.

Table 2-8 Wind River FTP Client Backend Configuration Parameters

Workbench Description and Parameter Name
Default Value

and Type

Debug logging facilities in ftpLib
FTP_DEBUG_OPTIONS

Enable various debugging facilities within ftpLib.

0

int

FTP Transient response maximum retry limit
FTP_TRANSIENT_MAX_RETRY_COUNT

Maximum number of retries when an FTP_TRANSIENT
response is encountered

100

int

FTP timeout
FTP_TIMEOUT

FTP timeout.

0

long

FTP transient fatal function
FTP_TRANSIENT_FATAL

Should a transient response be retried or aborted

ftpTransientFatal

Time delay between retries after FTP_TRANSIENT
encountered
FTP_TRANSIENT_RETRY_INTERVAL

The time interval (in clock ticks) between reissuing a
command.

0

int

FTP6_REPLYTIMEOUT
FTP6_REPLYTIMEOUT

The timeout in seconds, while waiting for a reply from
the FTP server

10

long

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

26

Table 2-9 Wind River FTP Server Configuration Parameters

Workbench Description, Parameter Name, and sysvar Default Value

Authentication attempts before disconnect
FTPS_AUTH_ATTEMPTS
ipftps.authentications

The number of times the server will allow a client to
attempt to authenticate itself before the server disconnects.

"3"

char *

Authentication callback routine
FTPS_AUTH_CALLBACK_HOOK

You can use your own routine to authenticate clients. To do
this, specify a function pointer for the
FTPS_AUTH_CALLBACK_HOOK. The FTP server will call
this routine to authenticate clients.

The prototype for this routine is as follows:

int myAuthenticateCallback (Ipftps_session * session,
char * password);

It should return 0 (zero) if the password is valid for the
session, or 1 (one) if you cannot validate the password.

If you do not specify an authentication routine, the server
will call its own default authentication callback routine that
allows read-only access to the user anonymous with no
password.

If you set a function pointer here, you must also set the
FTPS_INSTALL_CALLBACK_HOOK to TRUE in order to
install this callback hook.

NULL

funcptr

Install ftp server callback routine
FTPS_INSTALL_CALLBACK_HOOK

Indicates whether the FTP server uses the authentication
callback routine that you specified by the configuration
parameter FTPS_AUTH_CALLBACK_HOOK to authenticate
clients.

If this is FALSE, the server instead uses its own
authentication routine—one that allows the user
anonymous with no password.

FALSE

BOOL

2 Network Application Protocols
2.5 FTP

27

2

Data receive timeout
FTPS_RECV_TIMEOUT
ipftps.receive_timeout

The timeout value in seconds when the server is receiving
data from the client. If the server does not get any data from
the client in this many seconds, the server terminates the
connection.

"30"

char *

Data send timeout
FTPS_SEND_TIMEOUT
ipftps.send_timeout

The timeout value in seconds when the server is sending
data to the client. If the server is unable to transmit any data
to the client for this many seconds, the server terminates the
connection.

"30"

char *

Enable proxy FTP support
FTPS_ENABLE_PROXY
ipftps.proxy

Specifies whether to enable proxy FTP. "1" means enable,
"0" means disable.

"0"

char *

FTP initial directory
FTPS_INITIAL_DIR
ipftps.dir

The directory on the server that a client starts in when it
initiates an FTP session.

IPCOM_FILE_
ROOT

char *

FTP root directory
FTPS_ROOT_DIR
ipftps.root

The topmost directory that the client is allowed to see.

"/"

char *

Table 2-9 Wind River FTP Server Configuration Parameters (cont’d)

Workbench Description, Parameter Name, and sysvar Default Value

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

28

Local port base number
FTPS_LOCAL_PORT_BASE
ipftps.lportbase

Defines the port range the server uses for the data
connection. A value of "0" instructs the server to use port 20.
The default value of "49151" instructs the server to use ports
49152-65535.

"49151"

char *

Max number of simultaneous sessions
FTPS_MAX_SESSIONS
ipftps.max_sessions

The maximum number of simultaneous FTP sessions.

"8"

char *

Peer port base number
FTPS_PEER_PORT_BASE
ipftps.pportbase

The base of the port range that the client is allowed to use
for PORT and EPRT commands when it establishes the data
connection. Set this to "65535" to disable the PORT and
EPRT commands entirely (which Wind River recommends
for maximum security). The default value, "1023" prevents
the server from making any connections to ports 0-1023 on
a client.

"1023"

char *

Read/write mode
FTPS_MODE
ipftps.readonly

The access mode. Read-only mode disables write access to
the file system, which means that only read commands will
be accepted. The default value is "0", which means
read/write access. Set this to "1" for read-only access.

"0"

char *

Reported system type
FTPS_SYS_TYPE
ipftps.system

The operating system name.

"UNIX"

char *

Table 2-9 Wind River FTP Server Configuration Parameters (cont’d)

Workbench Description, Parameter Name, and sysvar Default Value

2 Network Application Protocols
2.5 FTP

29

2

2.5.2 Using the FTP Client from the Command Interpreter

ftp—starts and configures the FTP client

Syntax

ftp [-a family] [-i] [-l base] [-r base] [-p pMode] [-P port] [-v vMode] [-x xMode] host

Description

ftp starts and configures the FTP client.

Options

The command-line options are described in Table 2-10.

Server port number
FTPS_PORT_NUM
ipftps.port_number

The port number the FTP server uses for the control
connection.

"21"

char *

Time to sleep after authentication fail
FTPS_SLEEP_TIME
ipftps.authsleep

How many seconds the server sleeps before it replies to an
unsuccessful authentication attempt.

"5"

char *

User inactivity timeout
FTPS_INACTIVITY_TIMEOUT
ipftps.session_timeout

The timeout in seconds when the server waits for a
command from the client.

"300"

char *

Table 2-9 Wind River FTP Server Configuration Parameters (cont’d)

Workbench Description, Parameter Name, and sysvar Default Value

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

30

Table 2-10 FTP Client Shell Command Options

Option Description

-a family Set the address family to use when connecting to a server. The default
is 0. Possible values are as follows:

■ 0 – IPv4 or IPv6
■ 4 – IPv4 only
■ 6 – IPv6 only

-i Disable IP address match for control and data. Without this flag, the
control and data connection are required to have the same IP address
(which disables proxy FTP).

-l base Set the lower limit for the client data port number. For instance, a
value of 1023 means to use a random port in the range 1024-65535. A
value of 0 will let the client operating system select a port. The default
value is 0.

-r base Set the lower limit for server data port number. A value of 1023 will
only allow server ports in the range 1024-65535. The default value is
1023.

-p pMode Select passive or active mode. The default value is 3, but reverts to 1
if the server does not use extended mode.

■ 0 – Use only active mode.
■ 1 – Try passive mode, but revert to active mode if passive

mode is not allowed.
■ 2 – Use only passive mode.
■ 3 – Lock the server in extended passive mode, which means

that the server will require that extended passive mode is
used for all future data connections.

-P port Set the server port number.

-v vMode Set the verbosity level, which controls the detail of console messages.
The default value is 2.

■ 0 – brief mode
■ 1 – verbose mode
■ 2 – verbose mode + server output
■ 3 – verbose mode + client and server output

2 Network Application Protocols
2.6 TFTP

31

2

2.6 TFTP

Trivial File Transfer Protocol (TFTP) reads and writes files on a remote server.

Technology Overview

TFTP is a basic form of FTP; it uses a minimal amount of memory, cannot list
directory contents, and has no authentication or encryption mechanisms. Unlike
FTP, which uses the TCP transport layer protocol (port 21), TFTP uses the UDP
(port 69) as its transport protocol.

Component Overview

Wind River TFTP implements the following features:

■ a TFTP server and client conforming to RFC 1350
■ a TFTP server that listens to both IPv4 and IPv6 connections
■ multiple client connections
■ both octet and netascii modes
■ an API to enable TFTP client operations
■ communication over IPv4 or IPv6
■ a shell command to transfer files to and from the target

Conformance to Standards

Wind River TFTP conforms to RFC 1350: The TFTP Protocol (Revision 2).

-x xMode Select the extended mode commands EPRT (extended port) and EPSV
(extended passive) for IPv4 connections. The default value is 1.

■ 0 – Never use extended commands.
■ 1 – First try extended commands, but fall back to normal if

those are not allowed.
■ 2 – Always use extended commands.

host The host name or IP address of the FTP server.

Table 2-10 FTP Client Shell Command Options (cont’d)

Option Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

32

2.6.1 Configuring and Building TFTP

The Wind River Network Stack has the following TFTP configuration
components:

■ IPCOM TFTP Commands (INCLUDE_IPTFTP_CLIENT_CMD)
■ TFTP Client (INCLUDE_IPTFTPC)
■ TFTP Client APIs (INCLUDE_TFTP_CLIENT)
■ TFTP Server (INCLUDE_IPTFTPS)
■ TFTP Common Configurations (INCLUDE_IPTFTP_COMMON)

Configuring TFTP from the Command Interpreter

tftp—transfer files using TFTP from the shell

Syntax

tftp [-a] host {get | put} source [destination]

Description

tftp is used to transfer files using the TFTP protocol.

Mandatory parameters

host
The IP address of the host to transfer files with.

get | put
Specify get to receive a file or put to transmit a file.

source
The name of the file to transmit or receive.

Options

-a
Use netascii mode (default is to use binary/octet mode).

destination
The name of the file after it is transmitted or received.

TFTP Client

The TFTP client works over both IPv4 and IPv6. The INCLUDE_IPTFTPC
component has no configuration parameters. For common TFTP configurations,
see TFTP Common Configurations, p.33.

2 Network Application Protocols
2.6 TFTP

33

2

You can invoke the TFTP client through a shell command described in Configuring
TFTP from the Command Interpreter, p.32, or from custom programs using the
IPTFTPC API. For more information on the functionality associated with this
component, see the reference entry for tftp.

TFTP Client APIs

Do not use the INCLUDE_TFTP_CLIENT API; use the IPTFTPC API. The
INCLUDE_TFTP_CLIENT component is for backward compatibility with a
previous release of the Wind River Network Stack, and to carry forward certain
routines not provided in the TFTP client IPTFTPC. For more information on this
component, see the reference entry for tftpLib.

For details on migrating from a previous release of the network stack see the Wind
River Platforms for VxWorks Migration Guide.

TFTP Server

The TFTP server works over both IPv4 and IPv6. The INCLUDE_IPTFTPS
component has no configuration parameters. For common TFTP configuration
parameters, see TFTP Common Configurations, p.33.

TFTP Common Configurations

The INCLUDE_IPTFTP_COMMON component provides configuration parameters
that you can set to determine how TFTP will operate.

The parameters you can set to configure TFTP are described in Table 2-11.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

34

2.7 RSH

This section describes the Wind River Network Stack remote shell (RSH).

Technology Overview

RSH allows users to remotely log in to remote systems and execute commands
there. The remote system must be running the rshd daemon.

Table 2-11 Wind River TFTP Common Configuration Parameters

Workbench Description, Parameter Name, and sysvar Default Value

TFTP number of retries
TFTPS_RETRIES
iptftp.retries

The number of times TFTP will resend a
message if it does not receive an
acknowledgment from the peer. Both the
client and the server use this parameter.

"2"

char *

TFTP retransmit timeout in seconds
TFTPS_RETRANSMIT_TIMEOUT
iptftp.timeout

The time to wait before until the first retry is
sent, in seconds. Further retries use an
exponential back-off algorithm. This
parameter is used by both the client and
server.

"5"

char *

TFTP server working directory
TFTPS_DIRS
iptftp.dir

The TFTP server working directory.

IPCOM_FILE_ROOT "tftpDir"

char *

2 Network Application Protocols
2.7 RSH

35

2

Component Overview

The Wind River Network Stack implements the standard RSH client, but does not
include an equivalent to the rshd daemon. For this reason, remote systems cannot
use rsh to run commands remotely on a Wind River Network Stack host.

For more information on how to use RSH under the Wind River Network Stack,
see the remLib reference entries.

2.7.1 Configuring and Building RSH

Add RSH to the Wind River Network Stack by including the Remot Command
(INCLUDE_REMLIB) configuration component.

The INCLUDE_REMLIB component pulls in remLib, the library that implements
the RSH protocol in VxWorks. Using this RSH implementation, a VxWorks target
can execute commands on remote systems that run an rshd shell server. The
command results return on standard output (STDOUT) and standard error
(STDERR) over socket connections. This library also includes rcmd_af(), with
which you can execute commands on a remote machine over either IPv4 or IPv6
sockets.

The network stack initialization code calls remLibInit() to initialize the RSH
client. It passes in the value of the configuration parameter
RSH_STDERR_SETUP_TIMEOUT:

remLibInit (RSH_STDERR_SETUP_TIMEOUT);

With this configuration parameter (Timeout interval for second RSH connection
if any) you can specify how long an rcmd() or rcmd_af() call waits for a return
from its internal call to select(). The default value of this configuration parameter
is negative one, or WAIT_FOREVER, which indicates that there is no timeout.

2.7.2 Enabling Access to an RSH User

An RSH request includes the name of the requesting user. The receiving host can
honor or ignore the request based on the user name and the site from which the
request originates. How you set up a receiving system to allow access to particular
users and sites depends on the specifics of the receiving system’s OS and
networking software. See that documentation for details.

For UNIX hosts running the BSD rshd, an RSH request is honored only if it
originated on a known system by a user with local login privileges (though you

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

36

can use the -l option to configure the BSD rshd to omit this verification). The
system administrator specifies the list of known systems in either of two locations.
The first location, the /etc/hosts.equiv file (UNIX) or the /etc/hosts.allow file
(Linux), maintains a list of all systems from which remote access is allowed for all
users that have local accounts. The second location, a ~userName/.rhosts file,
maintains a list of systems from which remote access is allowed for the particular
user, userName.

Which method you use depends on your security needs. In most environments,
adding system names to the /etc/hosts.equiv file is considered too dangerous.
Thus, for most environments, the preferred method is to add system names to a
~userName/.rhosts file. The format for this file is one system name per line.

2.8 RPC

This section describes the Wind River Network Stack Remote Procedure Call
(RPC) implementation.

Technology Overview

RPC allows a process on one machine to call a procedure that is executed by
another process on another machine. It implements a client-server model of task
interaction. In this model, client tasks request services of server tasks and then wait
for replies. RPC formalizes this model and provides a standard protocol for
passing requests and returning replies.

Component Overview

Using RPC, a VxWorks task or host machine process can invoke routines that are
executed on other VxWorks or host machines. For more information, see RFC 1831
and the reference entry for rpcLib.

The Wind River RPC implementation is a kernel-only implementation. Each task
that wants to make an RPC-related call must first call rpcTaskInit().

Conformance to Standards

Wind River RPC conforms to RFC 1831: RPC: Remote Procedure Call Protocol
Specification Version 2.

2 Network Application Protocols
2.9 rlogin

37

2

2.8.1 Configuring and Building RPC

The Wind River Network Stack includes the following RPC configuration
components:

RPC
The INCLUDE_RPC component pulls in rpcLib and other modules that
implement RPC. For information on the API associated with the modules in
this component, see the rpcLib reference entry.

XDR
The INCLUDE_XDR component pulls in modules that implement generic XDR
(External Data Representation) routines as described in RFC 1014. There is no
API or configuration parameters associated with this component.

XDR boolean support
The INCLUDE_XDR_BOOL_T component pulls in modules that supply the
XDR routine for bool_ts. There is no API or configuration parameters
associated with this component.

2.9 rlogin

This section describes the Wind River Network Stack rlogin implementation.
rlogin allows remote shell access to and from a target. The Wind River
implementation of rlogin works over both IPv4 and IPv6.

2.9.1 Configuring and Building rlogin

The RLOGIN (INCLUDE_RLOGIN) component of the Wind River Network Stack
enables rlogin. To password-protect the rlogin shell, you must also include
TELNET/FTP password protection (INCLUDE_SECURITY).

! CAUTION: If you include the INCLUDE_SECURITY component for rlogin
authentication, change the default user name and password to prevent
unauthorized access from a source that is familiar with the default settings (see
rlogin password protection, p.38).

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

38

RLOGIN

The INCLUDE_RLOGIN component pulls in rlogLib, a library that implements
rlogin. This component requires the INCLUDE_NET_HOST_SETUP component.

Using the client, you can log in to a host system from a VxWorks terminal. Using
the server, you can log in to VxWorks from a host system. For more information
on the Wind River Network Stack implementation of rlogin(), see the reference
entry for rlogLib.

rlogin password protection

The INCLUDE_SECURITY component provides rlogin password protection. This
component depends on the configuration parameters LOGIN_USER_NAME and
LOGIN_PASSWORD to supply a user name and a password for that user name.
These parameters are described in Table 2-13.

Connecting to Host Systems

When a VxWorks client system connects to a Windows host system, the ability of
VxWorks to remotely log in depends on the version of Windows and the
networking software on the Windows host. See that documentation for details.

For a VxWorks client to connect to a UNIX host system, the UNIX host must grant
access permission to the VxWorks client by entering its system name either in the
.rhosts file (in the client’s home directory) or in the /etc/hosts.equiv file. For more
information, see 2.7.2 Enabling Access to an RSH User, p.35.

Table 2-12 Wind River rlogin Password Configuration Parameters

Workbench Description and Parameter Name Default Value

rlogin/telnet encrypted password
LOGIN_PASSWORD

The rlogin password.

"RcQbRbzRyc"

rlogin/telnet user name
LOGIN_USER_NAME

The rlogin user name.

"target"

2 Network Application Protocols
2.10 Telnet

39

2

2.10 Telnet

Telnet provides command-line login sessions between hosts on a network. The
Wind River implementation of telnet works over both IPv4 and IPv6.

Conformance to Standards

Wind River telnet conforms to RFC 854: Telnet Protocol Specification.

2.10.1 Configuring and Building Telnet

The Wind River Network Stack has the following telnet configuration
components:

■ TELNET client (INCLUDE_TELNET_CLIENT)
■ TELNET/FTP password protection (INCLUDE_SECURITY)
■ Telnet Server (INCLUDE_IPTELNETS)

TELNET client

The INCLUDE_TELNET_CLIENT component pulls in the telnetcLib module and
the VxWorks telnet client, a lightweight implementation of the client side of the
telnet protocol (RFC 854). This client works over both IPv4 and IPv6, provides all
the essential features of NVT (Network Virtual Terminal), and can function as an
interface between terminal and terminal-oriented processes. For details, see the
telnetcLib reference entry.

TELNET/FTP password protection

The INCLUDE_SECURITY component provides telnet password protection. This
component depends on the configuration parameters LOGIN_USER_NAME and
LOGIN_PASSWORD to supply a user name and a password for that user name.

! CAUTION: If you include the INCLUDE_SECURITY component for telnet
authentication, change the configuration parameters LOGIN_USER_NAME and
LOGIN_PASSWORD to prevent unauthorized access from a source that is familiar
with the default settings.

NOTE: By default, the client sends an ECHO at start up. It works in default mode
only when it receives DO and DONOT from a remote telnet server.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

40

The parameters that you use to configure the user name and password are
described in Table 2-13.

Telnet Server

The telnet server enables other machines or users to remotely log in to the target
and access the target’s shell. This allows those remote users to execute shell
commands and programs whose output and input are displayed on the remote
terminal. The telnet server connects by default to the VxWorks shell.

The telnet server implements the following features:

■ allows multiple connections

■ listens to connections from both IPv4 and IPv6 sockets if these are available in
the TCP/IP stack

■ authenticates users

■ allows users to connect to an underlying shell

■ optionally echoes user-typed characters

The parameters you can use to configure the telnet server are described in
Table 2-14.

Table 2-13 Wind River Telnet Password Configuration Parameters

Workbench Description and Parameter Name Default Value

rlogin/telnet encrypted password
LOGIN_PASSWORD

The telnet password.

"RcQbRbzRyc"

rlogin/telnet user name
LOGIN_USER_NAME

The telnet login user name.

"target"

2 Network Application Protocols
2.11 Creating a netDrv Device for RSH or FTP

41

2

2.11 Creating a netDrv Device for RSH or FTP

The Wind River Network Stack provides an implementation of an RSH client. The
Wind River Network Stack also provides an implementation of both an FTP client
and an FTP server.

A VxWorks application can use RSH to run commands on a remote system and
receive the command results on standard output and standard error over socket
connections. To execute commands remotely, RSH requires that the remote system
runs the server side of RSH and that the remote system grant access privileges to
the user specified in the RSH request. On a UNIX system, the RSH server is
implemented using the rshd shell daemon, and access privileges are controlled by
a .rhosts file. On a Wind River Network Stack host, there is no equivalent to rshd.
Thus, remote systems cannot use RSH to run commands on a Wind River
Network Stack host.

Using netDrv Drivers

You can use RSH and FTP directly, but you can also use them indirectly to
download files through the mediation of the netDrv driver. Using netDrv in this
way is especially convenient when a target needs to download a run-time image at
boot time.

Table 2-14 Wind River Telnet Server Configuration Parameters

Workbench Description and Parameter Name
Default Value

and Type

IPCOM telnet port
IPCOM_TELNET_PORT

The telnet server port in host endian.

"23"

char *

Telnet authentication
IPCOM_TELNET_AUTH_ENABLED

Specifies whether to use authentication for telnet
connections. Set this to 1 to require telnet users to be
authenticated. This parameter is only meaningful if the
stack is built with INCLUDE_IPCOM_USE_AUTH.

"0"

char *

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

42

The netDrv driver facilitates access to remote files over the network using RSH
and FTP. If you create a network device with netDevCreate(), you can access files
on a remote UNIX machine as if they were local.

When you open a remote file through a netDrv driver, this copies the entire file
over the network into a local buffer. When you create a remote file, this opens an
empty local buffer. Any reads, writes, or ioctl() calls that you make apply only to
the local copy of the file. If you modify the file, when you close it the local copy will
be sent back over the network to overwrite the copy on the remote UNIX machine
(unless you opened the file in read-only mode).

Setting the User ID for Remote File Access with RSH or FTP

Since the netDrv driver uses RSH or FTP to provide access to the remote file
system, in order to use a netDrv driver to access remote files you must set your
user name and password to what the remote system expects for RSH or FTP
clients. From VxWorks, you can specify the user name and password for remote
requests by calling iam():

iam ("userName", "password");

The first argument to iam() is the user name that identifies you when you access
remote systems. The second argument is the FTP password. This is ignored if RSH
is being used, and can be specified as NULL or 0 (zero).

For example, the following command tells VxWorks that all accesses to remote
systems with RSH or FTP are through user darger, and if FTP is used, the password
is unreal:

-> iam "darger", "unreal"

Setting File Permissions on the Remote System

For a VxWorks system to access a particular file on a host, you must set
permissions on the host system appropriately. The user name as seen from the host
must have permission to read that file (and write it, if necessary). That user name
must also have permission to access all directories in the path to the file. The easiest
way to check this is to log in to the host with the user name VxWorks uses, and try
to read or write the file in question. If you cannot do this, neither can the VxWorks
system.

NOTE: When a VxWorks boot program downloads a run-time image from a remote
network source using a netDrv instance, it relies upon either the FTP or RSH
protocols. The boot program relies upon the values that you specified for the user
name and password in the boot line.

2 Network Application Protocols
2.11 Creating a netDrv Device for RSH or FTP

43

2

Creating a netDrv Instance

Although you can use netDrv at boot time to download a run-time image, netDrv
is not limited to boot time or run-time images. It is a generic I/O device that you
can use to access files on a remote networked system. To include netDrv, use the
INCLUDE_NET_DRV configuration component.

To use netDrv, you must create a netDrv instance for each system on which you
want to access files. You can then use this device in standard VxWorks I/O device
calls such as open(), read(), write(), and close(). To create a netDrv device, call
netDevCreate():

netDevCreate ("deviceName", "host", protocol);

Its arguments are:

deviceName
The name of the device to be created. Typically, you compose the device name
using the host name followed by a colon.

host
The Internet address of the host in dot notation, or the name of the remote
system as specified in a previous call to hostAdd().

protocol
The file transfer protocol: 0 for RSH or 1 for FTP.

For example, the following call creates a new I/O device on VxWorks called mars:,
which accesses files on the host system mars using RSH:

-> netDevCreate "mars:", "mars", 0

After a network device is created, files on that host are accessible by appending the
host pathname to the device name. For example, the filename
mars:/usr/darger/myfile refers to the file /usr/darger/myfile on the mars system.
You can read or write to this file as if it were a local file. For example, the following
shell command opens that file for I/O access:

-> fd = open ("mars:/usr/darger/myfile", 2)

Using netDrv to Download Run-Time Images

The VxWorks network startup routine, usrNetInit() in usrNetwork.c, in a
VxWorks boot program automatically creates a netDrv instance for the host name
that you specified in the VxWorks boot parameters. The boot program then uses
this device to download an image from that host.

Whether the netDrv instance uses FTP or RSH to download the image depends on
whether the boot parameters include an FTP password. If an FTP password is

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

44

present, netDrv uses FTP; otherwise, netDrv uses RSH. When you create a boot
program that must download an image using an RSH or an FTP client, you must
include the RSH or FTP client components in your build.

Consider the system shown in Figure 2-1. CPU 1 can use FTP to download its
run-time image from the storage device accessible through CPU 0. Note that
vxClient must include a non-empty ftp password field in its boot parameter. By
including an FTP password, vxClient tells netDrv to use FTP.

Whether the FTP server on CPU 0 checks the validity of the password depends on
whether that FTP server has been configured with security turned off (the default)
or on.

Figure 2-1 FTP Boot Example

CPU 1CPU 0

vxServer

10.27.0.210.27.0.1

/sd0/vx2

 Disk

vxClient

45

 3
Wind River DHCP and

DHCPv6: Overview

3.1 Introduction

The Dynamic Host Configuration Protocol (DHCP) is an Internet protocol that
automates the configuration of computers that use TCP/IP. You can use DHCP to
automatically assign IP addresses, deliver TCP/IP stack configuration parameters
such as the subnet mask and default router, and provide other configuration
information, such as the addresses for printer, time, and news servers. DHCP is
specified in RFC 2131: Dynamic Host Configuration Protocol and RFC 2132: DHCP
Options and BOOTP Vendor Extensions.

The Wind River Network Stack includes a server, client, and relay agent for both
DHCP and DHCPv6. The chapters that follow this overview describe these
implementations.

DHCP extends an earlier protocol, Bootstrap Protocol (BOOTP, see RFCs 951 and
1542), and you can configure most DHCP servers, including the Wind River DHCP
server, to allow requests from BOOTP clients.

When a DHCP server assigns an IP address to a client, it gives the client a lease on
that address for a specific length of time. Clients can renew their leases before they
expire. When a lease expires, the server can reassign the IP address to a different
computer. This allows the server to maintain a pool of IP addresses that it reuses
as computers join and leave the network.

Although the primary purpose of DHCP is dynamic configuration, it can also
assign a client a static, permanent IP address and configuration. In such a case, the
client is given a lease of infinite duration.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

46

3.1.1 Architectural Overview: Client, Server, and Relay Agent

DHCP uses a client-server model. DHCP clients obtain configuration information
from a DHCP server. DHCP servers maintain databases with lease and
configuration information and provide this information to DHCP clients.

A DHCP client obtains configuration information by broadcasting a message to
locate one or more DHCP servers. Routers are generally configured to block
broadcast messages, which would prevent a client’s broadcast message from
reaching a DHCP server that is not on the same subnet as the client. DHCP
overcomes this problem through the use of a relay agent. The relay agent relays
messages from the client’s subnet to servers on other subnets. Typically the relay
agent resides on a router, but this is not a requirement.

A DHCP client may receive lease offers from multiple servers, at which point it
may choose the offer that best meets its requirements.

3.1.2 DHCPv6

DHCPv6 (RFC 3315: Dynamic Host Configuration Protocol for IPv6) is DHCP for
IPv6. In its functionality and architecture DHCPv6 is similar to DHCP for IPv4, but
there are important differences. Many of these reflect the change in addressing
from IPv4 to IPv6, but there are also changes in other areas. For example, DHCPv6
introduces changes in messaging and message formats and you configure it with
a different set of configuration options.

3.1.3 Build Configuration Parameters and sysvars

The DHCP-related configuration components provides several configuration
parameters, which are listed in tables in the following chapters. For each
parameter, the table gives the Workbench name, macro name, and sysvar.

At run time, you can set most of these parameters, and many additional ones,
through shell commands (see 4.3.2 Configuring the Server with Shell Commands,
p.62) or by implementing a routine that reads a configuration file at startup (see
Example 4-3).

Note the following characteristics of parameters and parameter values:

■ Those parameters that are strings (type = char *) must be entered as quoted
strings, including the quotation marks.

3 Wind River DHCP and DHCPv6: Overview
3.1 Introduction

47

3

■ Many parameters allow a semicolon-separated list of entries in the following
format:

"interfaceName=value;interfaceName=value;interfaceName=value"

The following is an example (see the table entry for Interface Status List, p.
123):

"eth0=automatic;eth1=enable;vlan21=enable"

■ If a static configuration parameter accepts a list of entries, you can use the
corresponding sysvar shell command multiple times to enter parameter
values.

For example, the following sequence of shell commands accomplishes the
same thing as the Interface Status List parameter setting example in the
preceding bullet item:

-> sysvar set ipdhcpc6.if.enum.eth0 automatic
-> sysvar set ipdhcpc6.if.enum.eth1 enable
-> sysvar set ipdhcpc6.if.enum.vlan21 enable

■ There is no default value for a parameter that allows a list of entries, but in
many cases, there is a default value for the value side of an interfaceName=value
pair. In such cases, this is the value shown in the “Default Value” column of
the table.

For example, the Interface Information Refresh Min Status List
(DHCPC6_IF_INFO_REFRESH_MIN_LIST) parameter allows you to list
individual interfaces and time intervals for refreshing stateless information.
The default time interval is 600 seconds. Therefore, the “Default Value”
column shows "600", and you do not need to list interfaces that use the default
interval.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

48

49

 4
Wind River DHCP: Server

4.1 Introduction 49

4.2 Including the DHCP Server in a Build 52

4.3 Setting Up Addresses, Options, Subnets and Hosts 59

4.4 Implementing Hook Routines for Initialization and Shutdown 66

4.5 Setting Options in Shell Commands and API Routines 72

4.1 Introduction

This chapter describes the Wind River DHCP server implementation. For a general
overview of DHCP, see the preceding chapter, 3. Wind River DHCP and DHCPv6:
Overview.

Conformance to Standards

The Wind River DHCP server implements the server portions of RFC 2131:
Dynamic Host Configuration Protocol, and it also implements certain options and
vendor extensions in RFC 2132: DHCP Options and BOOTP Vendor Extensions and
RFC 2242: NetWare/IP Domain Name and Information.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

50

RFC 2131, Dynamic Host Configuration Protocol

The server implements all server-related features of RFC 2131.

RFC 2132, DHCP Options and BOOTP Vendor Extensions

The server implements all options and vendor extensions in RFC 2132, with the
exception of the following options:

■ 60 – Vendor class identifier
■ 66 – TFTP server
■ 67 – Bootfile name

There is a Wind River-specific option for setting a bootfile name; see the entry for
boot-file in Table 4-4.

RFC 2242, NetWare/IP Domain Name and Information

RFC 2242 adds two option codes for the NetWare/IP product: Option code 62
(NetWare/IP Domain Name) and option code 63 (Netware/IP Information. The
Wind River DHCP server implements option code 62, but does not implement
option code 63.

4.1.1 Server Overview

The Wind River DHCP server provides IP addresses and option settings to DHCP
clients. The option settings are of two types:

■ DHCP options, as defined in RFC 2132 and RFC 2242 (see 4.5 Setting Options in
Shell Commands and API Routines, p.72, Table 4-3)

■ Wind River-specific configuration options (see 4.5 Setting Options in Shell
Commands and API Routines, p.72, Table 4-4)

You can configure the information the DHCP server provides to clients in three
ways:

■ Set global defaults

You can set defaults for all options. You can also specify a default set of IP
addresses if your DHCP server provides addresses only to clients on a single
subnet.

4 Wind River DHCP: Server
4.1 Introduction

51

4

■ Assign IP addresses and options on a subnet-by-subnet basis, dynamically

For each subnet your DHCP server covers, you can specify options and a set
of addresses for clients on that subnet. The option settings you specify for a
subnet override any global default settings for the same options.

■ Assign IP addresses and options to individual hosts, statically

You can also assign a static IP address and an individualized set of options to
individual clients. The option settings you specify for an individual host
override any global default settings or subnet settings for the same options.

You can configure information about addresses, options, subnets, and hosts, both
statically at build time and dynamically at run time, see 4.3 Setting Up Addresses,
Options, Subnets and Hosts, p.59.

4.1.2 Server Components

The Wind River DHCP server includes a configuration database, a lease database
and a single process, the DHCPS server daemon.

The DHCPS Daemon

The DHCPS daemon handles client requests in the following way:

1. It checks each packet received to ensure that it is a DHCP or BOOTP packet.

2. It looks for a subnet in its configuration database that matches the client’s
subnet. If the request came directly from the client, the server interprets the
subnet of the interface on which the request was received as the client’s subnet.
If the server receives the request through a relay agent, the server interprets
the relay agent’s subnet as the client’s subnet.

3. It scans its lease database for a lease matching the client’s identification key
(which is either the client’s link-layer address or a client identifier). If the
server finds such a lease, it responds to the client’s request based on the lease.
If the server does not find a lease, it offers the client a new lease based on the
client’s subnet and the client’s request.

The Configuration Database

The configuration database stores the information you configure for global default
values, subnets, individual hosts, and options.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

52

The Lease Database

The lease database contains all leases currently in effect and all leases previously
used by clients that are now either expired or released. The server uses this
database to keep track of the state of clients with active leases and to give clients
whose leases are no longer in effect the same addresses and options they had in the
past.

You can save and restore this lease database so that the server does not have to
rebuild it from scratch each time it starts up. The ipdhcps_lease_db_dump()
routine dumps the database to a buffer (you need to implement additional
operations to write this database buffer to a file). The ipdhcps_lease_db_restore()
routine restores the database from a buffer (you need to implement whatever
operations are necessary to get the database data into the buffer in the first place).

To restore the database at startup, implement the ipdhcps_start_hook() routine to
call ipdhcps_lease_db_restore(). For an example, see Example 4-2Restoring the
Lease Database at Startup, p.67. The server calls ipdhcps_start_hook() when it
starts.

To dump the database when the server shuts down, implement the
ipdhcps_stop_hook() routine to call ipdhcps_lease_db_dump(). For an example,
see Example 4-4Dumping the Lease Database at Shutdown, p.70. The server calls
ipdhcps_stop_hook() when you shut the server down.

4.2 Including the DHCP Server in a Build

To include the DHCP server in a VxWorks build, include the DHCP Server
(INCLUDE_IPDHCPS) build component.

DHCP Server Configuration Parameters

The DHCP Server (INCLUDE_IPDHCPS) build component has a number of
configuration parameters. Table 4-1 lists and describes each parameter. See
3.1.3 Build Configuration Parameters and sysvars, p.46 for more information on
setting these parameters.

4 Wind River DHCP: Server
4.2 Including the DHCP Server in a Build

53

4

Table 4-1 DHCP Server Build Parameters

Workbench Description, Parameter Name, and sysvar
Default Value
& Data Type

UDP port used by the DHCP server
DHCPS_SERVER_PORT
ipdhcps.server_port

The port on the DHCP server to which a client sends DHCP
messages.

"67"

char *

UDP port used by the dhcp/bootp clients
DHCPS_CLIENT_PORT
ipdhcps.client_port

The port on a DHCP/BOOTP client to which the DHCP server
sends DHCP messages.

"68"

char *

Default lease time
DHCPS_DEFAULT_LEASE_TIME
ipdhcps.default_lease_time

The default length of time, in seconds, that a client can hold a
dynamic lease before it expires, or "forever" to indicate a
permanent lease. You can also configure this at run time.

"864000"
(10 days)

char *

Maximum lease time
DHCPS_MAX_LEASE_TIME
ipdhcps.max_lease_time

The maximum length of time, in seconds, that a client can hold
a dynamic lease before it expires, or "forever" to indicate a
permanent lease. You can also configure this at run time.

"8640000"
(100 days)

char *

Minimum lease time
DHCPS_MIN_LEASE_TIME
ipdhcps.min_lease_time

The minimum length of time, in seconds, that a client can hold
a dynamic lease before it expires. You can also configure this at
run time.

"60"

char *

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

54

Lease renewal time
DHCPS_RENEWAL_TIME
ipdhcps.renewal_time

Either "disabled" or the length of time, in seconds, after which
a client must request its lease to be extended, if it wants to keep
its IP address. If set to "disabled", the server does not send a
renewal time to clients. You can also configure this at run time.

"disabled"

char *

Lease rebinding time
DHCPS_REBINDING_TIME
ipdhcps.rebinding_time

Either "disabled" or the length of time, in seconds, after which
a client must attempt to rebind a lease if it has failed to renew it.
If set to "disabled", the server does not send a rebinding time to
clients. You can also configure this at run time.

"disabled"

char *

Abandoned state max time
DHCPS_ABANDONED_STATE_MAX_TIME
ipdhcps.in_abandoned_state_max_time

The length of time, in seconds, that must pass before an
abandoned lease can be released and is free for reuse, or
"forever" to indicate that the lease must not be released. A lease
is considered to be abandoned when a client has explicitly
declined it because the address bound to the offered lease is
already in use by another host.

"8640000"
(100 days)

char *

Expired state max time
DHCPS_EXPIRED_STATE_MAX_TIME
ipdhcps.in_expired_state_max_time

Either "forever" or the length of time, in seconds, that must pass
before an expired lease can be assigned to another client. When
a lease expires, the server keeps it in the lease database in case
the client it belonged to wants to claim it again.

"forever"

char *

Table 4-1 DHCP Server Build Parameters (cont’d)

Workbench Description, Parameter Name, and sysvar
Default Value
& Data Type

4 Wind River DHCP: Server
4.2 Including the DHCP Server in a Build

55

4
Released state max time
DHCPS_RELEASED_STATE_MAX_TIME
ipdhcps.in_release_state_max_time

Either "forever" or the length of time, in seconds, that must pass
before a released lease can be assigned to another client. The
server puts the lease in the released state when the client
holding it tells the server to release it. The server holds it in the
lease database in case the client wants to claim it again.

"forever"

char *

Offered state max time
DHCPS_OFFERED_STATE_MAX_TIME
ipdhcps.in_offered_state_max_time

The length of time, in seconds, that must pass before the server
assigns an a lease that is in the “offered” state to another client,
or "forever" to indicate that the lease may not be assigned to
another client. A lease is in an offered state when the server has
offered it to a client but that client has not yet bound to it.

"10"

char *

Lease for bootp client max time
DHCPS_LEASE_BOOTPC_MAX_TIME
ipdhcps.in_bootp_state_max_time

Either "forever" or the length of time, in seconds, that must pass
before the server can assign a lease held by a BOOTP client to
another client.

"forever"

char *

Table 4-1 DHCP Server Build Parameters (cont’d)

Workbench Description, Parameter Name, and sysvar
Default Value
& Data Type

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

56

Allow decline
DHCPS_ALLOW_DECLINE
ipdhcps.allow_decline

Either "true" or "false". If "true", the server accepts DHCP
Decline messages. If "false", the server silently ignores such
messages.

Clients send messages of type DHCP Decline when they want
to notify the server that an IPv4 address conflict has occurred,
and the address offered by the server is already in use by
another host.

The default server response is to consider the lease containing
the address to be abandoned. However, this makes the server
vulnerable to a malfunctioning client or a denial of service
attack that could empty the server’s address pools. For this
reason, you can set the server to ignore client declines.

"true"

char *

Packet size
DHCPS_PKT_SIZE
ipdhcps.packet_size

The size, in bytes, of packets sent by the DHCP server. The
value must be at least 576 bytes. If you set this to a higher value,
when a client contacts the server, the server informs the client of
the packet size.

"576"

char *

Allow bootp
DHCPS_ALLOW_BOOTP
ipdhcps.allow_bootp

Either "true" or "false". If "true", the server accepts requests
from BOOTP clients. You can also configure this at run time.

"true"

char *

Table 4-1 DHCP Server Build Parameters (cont’d)

Workbench Description, Parameter Name, and sysvar
Default Value
& Data Type

4 Wind River DHCP: Server
4.2 Including the DHCP Server in a Build

57

4
Allow dynamic bootp
DHCPS_ALLOW_DYNAMIC_BOOTP
ipdhcps.allow_dynamic_bootp

Either "true" or "false". If "true", the server may assign dynamic
leases to BOOTP clients. If set to "false", the server assigns only
static leases to BOOTP clients. Because BOOTP clients are not
able to release their leases, Wind River recommends that you
always set Allow dynamic bootp to "false". You can also
configure this at run time.

"false"

char *

Check address
DHCPS_DO_ICMP_ADDRESS_CHECK
ipdhcps.do_icmp_address_check

Either "true" or "false". If "true", the server sends an ICMP ping
to check an address before offering it to a client.

"false"

char *

Authorized dhcp relay agent
DHCPS_AUTHORIZED_AGENTS
ipdhcps.authorized_agents

Either "any" or a space-delimited list of IP addresses of DHCP
relay agents that are authorized to access the server.

"any"

char *

DHCP server network pre-configuration
DHCPS_NETCONF_SYSVAR
sysvar: None.

Either "true" or "false". If "true", you can statically configure the
server by entering configuration values in the
ipdhcps_netconf_sysvar array in the ipdhcps_config.c file. For
information on configuring the server in this way, see
4.3.1 Configuring the Server with the ipdhcps_netconf_sysvar Array,
p.59.

NULL

void *

Table 4-1 DHCP Server Build Parameters (cont’d)

Workbench Description, Parameter Name, and sysvar
Default Value
& Data Type

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

58

Install dhcp server callback routines
DHCPS_INSTALL_CALLBACK_HOOK
sysvar: None.

If set to TRUE, you can include your versions of the
ipdhcps_start_hook() and ipdhcps_stop_hook() routines in
the build.

FALSE

BOOL

DHCP server startup callback routine
DHCPS_START_CALLBACK_HOOK
sysvar: None.

A function pointer to an implementation of the
ipdhcps_start_hook() routine. The server calls this hook
routine at startup. You can use this routine to perform
operations such as restoring the lease database from a file and
reading parameter settings from a configuration file (see
4.4.1 The ipdhcps_start_hook() Routine, p.66). If you set this
parameter, you must also set the Install dhcp server callback
routines parameter to TRUE.

NULL

funcptr

DHCP server termination callback routine
DHCPS_STOP_CALLBACK_HOOK
sysvar: None.

A function pointer to an implementation of the
ipdhcps_stop_hook() routine. The server calls this hook
routine just before the DHCP daemon exits. You can use this
routine to dump the lease database to a file and perform other
cleanup operations (see 4.4.2 The ipdhcps_stop_hook() Routine,
p.70). If you set this parameter, you must also set the Install
dhcp server callback routines parameter to TRUE.

NULL

funcptr

Table 4-1 DHCP Server Build Parameters (cont’d)

Workbench Description, Parameter Name, and sysvar
Default Value
& Data Type

4 Wind River DHCP: Server
4.3 Setting Up Addresses, Options, Subnets and Hosts

59

4

4.3 Setting Up Addresses, Options, Subnets and Hosts

You can configure the DHCP server’s initial state—IP addresses, options, subnets,
hosts, and default settings—either statically or dynamically.

To statically configure DHCP, enter the configuration settings in the
ipdhcps_netconf_sysvar array, see 4.3.1 Configuring the Server with the
ipdhcps_netconf_sysvar Array, p.59.

To dynamically configure DHCP, either issue shell commands (see
4.3.2 Configuring the Server with Shell Commands, p.62) or implement the
ipdhcps_start_hook() routine to read a configuration file at startup (see 4.4.1 The
ipdhcps_start_hook() Routine, p.66).

4.3.1 Configuring the Server with the ipdhcps_netconf_sysvar Array

You can statically configure the server by entering commands and parameter
values in the ipdhcps_netconf_sysvar array. To do this you must enable this array
by setting the DHCP server network pre-configuration
(DHCPS_NETCONF_SYSVAR) build parameter to "true" (see DHCP Server
Configuration Parameters, p.52, Table 4-1).

You can find the ipdhcps_netconf_sysvar array in the ipdhcps_config.c file. For a
list of valid commands, see Commands Available in the ipdhcps_netconf_sysvar Array,
p.60. The path to ipdhcps_config.c is:

installDir/components/ip_net2-6.n/osconfig/vxworks/src/ipnet/ipdhcps_config.c

With the exception of the last entry in the array, entries have the following form:

{"ipdhcps.netconf.index", "command arguments"}

where

index is an index into the ipdhcps_netconf_sysvar array, and

command is a two-word expression, such as the command subnet add, which
is used to add a subnet to the configuration database.

The last entry in the array must always be:

{IP_NULL, IP_NULL}

The following example adds subnet 10.1.0.0 with subnet mask 255.255.0.0 to the
configuration database in the first element in the ipdhcps_netconf_sysvar array:

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

60

IP_STATIC IP_CONST Ipcom_sysvar ipdhcps_netconf_sysvar[] =
{
{"ipdhcps.netconf.00", "subnet add 10.1.0.0 255.255.0.0"},
...
{IP_NULL, IP_NULL}
}

Commands Available in the ipdhcps_netconf_sysvar Array

You can use the following commands in the DHCP static configuration array:

subnet add netAddress mask
Add a subnet with the specified network address and mask to the
configuration database. The following example adds the 10.1.x.x subnet:

{"ipdhcps.netconf.00", "subnet add 10.1.0.0 255.255.0.0"}

pool add subnet firstAddress lastAddress
Add an address pool to a subnet, for example:

{"ipdhcps.netconf.01", "pool add 10.1.0.0 10.1.0.5 10.1.0.99"}

host add hostIPaddress [-h linkLayerAddress | -i clientID]
Add the specified host to the configuration database. To specify the host, use
the host’s IP address and, optionally, a link-layer address or a client identifier
(see dhcps host, p.63). The following example adds a host with the client
identifier of "LabSys1" with the IP address 10.0.0.142:

{"ipdhcps.netconf.13", "host add 10.0.0.142 -i \"LabSys1\""}

option add address optionCode value
Add a DHCP option, as listed in RFC 2132, to the server’s default set of options
or to the options associated with a specified host address or subnet address. To
add an option to the default set, use default as the address.

For a table of the options available on the Wind River DHCP server, see
4.5.1 Using Standard DHCP Options in Shell Commands and APIs, p.72, Table 4-3.
The following DHCP options are not available:

■ Vendor class identifier (option code 60)
■ TFTP server (option code 66)
■ Bootfile name (option code 67; there is a Wind-River specific option for

setting a bootfile name; see the entry for boot-file in Table 4-4)

The following example adds two routers to subnet 192.168.2.x. The DHCP
option code to add routers is 3.

{"ipdhcps.netconf.09", "option add 192.168.2.0 3 192.168.2.1
192.168.2.2"}

4 Wind River DHCP: Server
4.3 Setting Up Addresses, Options, Subnets and Hosts

61

4

config set address optionCode value
The config set command applies to options that are specific to Wind River’s
DHCP implementation. For information on these options, see 4.5.2 Using Wind
River-Specific Options in Shell Commands and APIs, p.80, Table 4-4.

This command adds a dhcps config option to the default set of options or to
the options associated with a specified host address or subnet address. To add
an option to the default set, use default as the address.

The following example specifies a boot file for host 10.0.0.141:

{"ipdhcps.netconf.18", "config set 10.0.0.141 boot-file
/boot/hostZ.boot"}

Example 4-1 Sample ipdhcps_netconf_sysvar Array

The following example shows sample entries in an ipdhcps_netconf_sysvar array:

IP_STATIC IP_CONST Ipcom_sysvar ipdhcps_netconf_sysvar[] =
{
/* Add subnet 192.168.2.0 with netmask 255.255.255.0 */
{"ipdhcps.netconf.01", "subnet add 192.168.2.0 255.255.255.0"},

/* Add an address pool to the subnet */
{"ipdhcps.netconf.02", "pool add 192.168.2.0 192.168.2.10 192.168.2.50"},

/* Add a domain name (dhcp option 15) to the subnet */
{"ipdhcps.netconf.03", "option add 192.168.2.0 15 blue.net"},

/* Add two routers (dhcp option 3) to the subnet */
{"ipdhcps.netconf.04",
"option add 192.168.2.0 5 192.168.2.1 192.168.2.2"},

/*
* Add a static route (dhcp option 33) to the subnet
* (10.1.0.0->192.168.2.2)
*/
{"ipdhcps.netconf.5", "option add 192.168.2.0 33 10.1.0.0 192.168.2.2"},

/* Set max lease time to 120 seconds on the subnet */
{"ipdhcps,netconf.6", "config set 192.168.2.0 max-lease-time 120"},

/* Add a host with the client identifier 'HostOne' */
{"ipdhcps.netconf.7", "host add 10.0.0.142 -i \"HostOne\""},

/* Add a host name (dhcp option 12) for HostOne */
{"ipdhcps.netconf.8", "option add 10.0.0.142 12 blue-host"},

/* Add a router (dhcp option 3) to HostOne */
{"ipdhcps.netconf.9", "option add 10.0.0.142 3 10.1.0.1"},

/* Add a host with a standard Ethernet MAC address */
{"ipdhcps.netconf.10", "host add 10.0.0.141 -h 00:01:02:03:04:05"},

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

62

/* Add a host name (dhcp option 12) for this host */
{"ipdhcps.netconf.11", "option add 10.0.0.141 12 yellow-host"},

/* Set up a boot file for yellow-host */
{"ipdhcps.netconf.12",
"config set 10.0.0.141 boot-file /boot/yellow-host.boot"},

/* Set up a boot server for yellow-host to boot from */
{"ipdhcps.netconf.13",
"config set 10.0.0.141 next-server-name black-server"},

/* Set the global default lease time to 600 seconds */
{"ipdhcps.netconf.14", "config set default default-lease-time 600"},

/* Set the global default ARP-cache timeout to 60 seconds */
{"ipdhcps.netconf.15", "option add default 35 60"},

...

/* Mark the end of the option list*/
{ IP_NULL, IP_NULL}
};

4.3.2 Configuring the Server with Shell Commands

You can configure the server at run time in two ways:

1. You can dynamically configure the server using DHCP shell commands. The
shell commands are described in this section.

2. You can also configure the server by writing the ipdhcps_start_hook() routine
to read a configuration file when the DHCP daemon starts up, see 4.4.1 The
ipdhcps_start_hook() Routine, p.66.

In either case, two sets of configuration parameters are available. The first set is
made up of DHCP options specified in RFC 2132: DHCP Options and BOOTP
Vendor Extensions (see 4.5 Setting Options in Shell Commands and API Routines, p.72,
Table 4-3). The second set is made up of Wind River-specific configuration options
(see 4.5 Setting Options in Shell Commands and API Routines, p.72, Table 4-4).

DHCP Server Shell Commands

DHCP server shell commands start with the key word dhcps and have the form:

dhcps command subcommand [0 or more arguments]

4 Wind River DHCP: Server
4.3 Setting Up Addresses, Options, Subnets and Hosts

63

4

For example, the following command adds a new subnet with a specified network
address and mask to the DHCP server’s configuration database:

-> dhcps subnet add 10.1.2.0 255.255.255.0

The seven DHCP server shell commands are described in the following sections:

dhcps subnet

dhcps subnet list

List all of the subnets in the configuration database.

dhcps subnet add netAddress mask
Add a subnet with the specified network address and mask to the
configuration database.

dhcps subnet delete address
Delete the subnet with the specified network address from the configuration
database.

dhcps pool

dhcps pool list subnet
List all of the address pools that are available on a specified subnet.

dhcps pool add subnet firstAddress lastAddress
Add an address pool to a subnet.

dhcps pool delete firstAddress lastAddress
Delete an address pool from a subnet.

dhcps host

A network administrator assigns static IP addresses and identifiers to hosts in the
configuration database.

dhcps host list

List all of the hosts in the configuration database.

dhcps host add hostIPaddress [-h linkLayerAddress | -i clientIdentifier]
Add the specified host to the configuration database. To specify the host, use
the host’s IP address and, optionally, a link-layer address or a client identifier:

linkLayerAddress
This is the host’s hardware address “typed by the type of hardware to
accommodate possible duplication of hardware addresses resulting from
bit-ordering problems in a mixed-media...” (RFC 2131, section 2.1)

clientIdentifier
A client identifier, as defined in RFC 2131, section 2.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

64

dhcps host delete hostIPaddress
Delete the specified host from the configuration database.

dhcps lease

dhcps lease list

List all of the entries in the lease database.

dhcps lease flush [-s bindingState | -h linkLayerAddress | -i clientID | -a IPv4address]
Delete one or more leases from the lease database, based on the following
search criteria:

bindingState
Flush all leases in the specified state—one of the following:

– active
– expired
– released
– abandoned
– bootp

linkLayerAddress
The hardware address of the client whose lease is to be flushed, as entered
in the dhcps host add command (see dhcps host, p.63).

clientID
The client identifier of the client whose lease is to be flushed, as defined in
RFC 2131, section 2.

IPv4address
The IP address of the client whose lease is to be flushed.

When you flush a lease, this deletes it from the lease database and frees the IP
address associated with the lease, which DHCP can then reassign to a different
host.

dhcps option

The dhcps option command applies to DHCP options specified in RFC 2132. For a
table of these options as used with the Wind River DHCP server, see 4.5 Setting
Options in Shell Commands and API Routines, p.72, Table 4-3.

dhcps option list address
List the DHCP option values that apply to the specified host or subnet address.
To list the server’s default values for DHCP options, use default as the
address.

4 Wind River DHCP: Server
4.3 Setting Up Addresses, Options, Subnets and Hosts

65

4

dhcps option add address optionCode value
Add a DHCP option to the default set of options or to the options associated
with a specified host address or subnet address. To add an option to the default
set, use default as the address.

dhcps option delete address optionCode
Delete a DHCP network option from the default set of options or from the
options associated with a specified host address or subnet address. To delete
an option from the default set, use default as the address.

dhcps config

The dhcps config command applies to options that are specific to Wind River’s
DHCP implementation. For information on these options, see 4.5 Setting Options in
Shell Commands and API Routines, p.72, Table 4-4.

dhcps config list address
List the server’s default set of dhcps config options or the options associated
with a specific host address or subnet address. To list the default options, use
default as the address.

dhcps config set address optionCode value
Set the value of a dhcps config option in either the server’s default set of
options or in the options associated with a specified host address or subnet
address. To set an option in the server’s default set, use default as the address.

dhcps config reset address optionCode
Reset the value of a DHCP config option. If you enter a host or subnet address
for address, this resets the config option to the current value of the option in the
server’s default set of options. If you enter default for address, this resets the
server’s default value for the option to the value it had at system startup.

dhcps interface

dhcps interface list

List the interfaces that the DHCP server can use.

dhcps interface enable interfaceName
Allow the DHCP server to use the specified interface; that is, instruct the
DHCP server to listen for DHCPDISCOVER messages that arrive on that
interface.

dhcps interface disable interfaceName
Disable the use of the specified interface by the DHCP server.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

66

4.4 Implementing Hook Routines for Initialization and Shutdown

If you want the DHCP server to do any custom processing of your choosing at
startup or shutdown, you can implement this through the ipdhcps_start_hook()
and ipdhcps_stop_hook() routines. For instance, you may want to restore the
lease database at startup, and store this database to a file at shutdown. These hook
routines are described in this section.

To use your own custom hook routines, you must complete the following steps:

1. Write your routine or routines, according to the instructions in 4.4.1 The
ipdhcps_start_hook() Routine, p.66 and 4.4.2 The ipdhcps_stop_hook() Routine,
p.70.

2. Set the configuration parameter DHCPS_INSTALL_CALLBACK_HOOK to
TRUE. See 4.2 Including the DHCP Server in a Build, p.52.

3. Set either or both of the configuration parameters
DHCPS_START_CALLBACK_HOOK and DHCPS_STOP_CALLBACK_HOOK to
point to your custom hook routines. See 4.2 Including the DHCP Server in a
Build, p.52.

4. Rebuild your target.

4.4.1 The ipdhcps_start_hook() Routine

The DHCPS daemon calls the ipdhcps_start_hook() routine at startup. The
signature of ipdhcps_start_hook() is:

IP_GLOBAL int ipdhcps_start_hook (void)

This routine returns zero to indicate that initialization has succeeded (or one to
indicate a failure)

Write ipdhcps_start_hook() to do any initialization you need to accomplish,
which may include calling any of the DHCP server API. You can use this API to
restore the lease database and to configure the server with global defaults, subnets,
hosts, and options. For a list and brief descriptions of the routines in the API, see
4.4.3 DHCP Server API Routines, p.71. For detailed information about individual
routines, see the API reference pages.

You can implement ipdhcps_start_hook() to configure the server by reading a
configuration file at startup. For an example of this, see Example 4-3. You could
also call DHCP-server API routines with hard-coded arguments, however this is
equivalent to statically configuring the server through entries in the

4 Wind River DHCP: Server
4.4 Implementing Hook Routines for Initialization and Shutdown

67

4

netconf_sysvar array entries in the dhcps_config.c file, which is simpler and less
error prone.

Example 4-2 Restoring the Lease Database at Startup

The following implementation of ipdhcps_start_hook() assumes that the data for
the lease database is in a file. It reads this file into a buffer and then calls
ipdhcps_lease_db_restore().

IP_GLOBAL int ipdhcps_start_hook (void)
{
IP_FILE fd;
struct stat statbuf;
void * buf;

/* Get size of dump file */
stat ("/opt/ipdhcps/dumpfile", &statbuf);

/* Transfer data from file to a data buffer */
fd = fopen ("/opt/ipdhcps/dumpfile", "r");
buf = malloc (statbuf.st_size);
fread (buf, statbuf.st_size, 1, fd);

/* Restore lease database from file */
ipdhcps_lease_db_restore (buf);

fclose (fd);
free (buf);

return (0);
}

Example 4-3 Reading Configuration Values from a File

The following sample implementation of the ipdhcps_start_hook() routine reads
a configuration file in which each line is a string that corresponds to a
DHCP-server shell command (see DHCP Server Shell Commands, p.62) without the
initial dhcps command identifier, as in the following example:

subnet add 10.1.0.0 255.255.0.0

The routine parses the command string using the getOptServ() routine (for more
detailed information, see the getOptServ() reference page) and then calls the
ipdhcps_cmd_dhcps() routine, which executes the command (for more
information on the ipdhcps_cmd_dhcps() routine, see The ipdhcps_cmd_dhcps()
routine, p.69).

IP_GLOBAL int ipdhcps_start_hook (void)
{
IP_FILE * fd = IP_NULL;
char * cmdbuf = IP_NULL;
char args[100];

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

68

const char * cfgfile = "/home/dhcpServer/dhcps.conf";
const char * cmd = "dhcps ";
int argc;
char * tempargv = [106 + 2];
char ** argv = tempargv;
int ret = -1;

if ((fd = fopen(cfgfile,"r")) == 0)
{
logMsg ("DHCPS ERROR: Failed to open configuration file %s\n",

cfgfile, 0, 0, 0, 0, 0);
goto leave;
}

/*
* The config file consists of command line arguments that are
* understood by the DHCP server's shell tool
*/

/* Read the command lines one by one and execute */
while (fgets (args, sizeof (args), fd) != IP_NULL)

{
/* Remove the trailing EOLN */
args [strlen (args) - 1] = 0;

/* Compose a complete command args */
cmdbuf = malloc (strlen (args) + strlen (cmd) + 1);

if (cmdbuf == IP_NULL)
{
logMsg ("DHCPS ERROR: failed to allocate buffer\n",

0, 0, 0, 0, 0, 0);
goto leave;
}

strcpy (cmdbuf, cmd);
strcat (cmdbuf, args);

if (getOptServ (cmdbuf, "ipdhcps_start_hook", &argc, argv, 106 + 2)
!= OK)
{
logMsg ("DHCPS ERROR: failed to parse command '%s'\n",

args, 0, 0, 0, 0, 0);
goto leave;
}

/* Let the dhcps command tool execute */
if (ipdhcps_cmd_dhcps (argc, argv) != OK)

{
logMsg ("DHCPS ERROR: failed to execute command '%s'\n",

args, 0, 0, 0, 0, 0);
goto leave;
}

free (cmdbuf);
cmdbuf = NULL;

4 Wind River DHCP: Server
4.4 Implementing Hook Routines for Initialization and Shutdown

69

4

}

ret = OK;

leave:

if (fd)
fclose (fd);

if (cmdbuf)
free (cmdbuf);

return ret;
}

Sample Configuration File

subnet add 10.1.0.0 255.255.0.0
pool add 10.1.0.0 10.1.0.5 10.1.0.99
pool add 10.1.0.0 10.1.0.199 10.1.0.249
option add 10.1.0.0 15 green.net
option add 10.1.0.0 3 10.1.0.1
option add 10.1.0.0 5 10.1.0.2
subnet add 192.168.2.0 255.255.255.0
pool add 192.168.2.0 192.168.2.10 192.168.2.50
option add 192.168.2.0 15 blue.net
option add 192.168.2.0 3 192.168.2.1 192.168.2.2
option add 192.168.2.0 33 10.1.0.0 192.168.2.2
config set 192.168.2.0 max-lease-time 120
config set 192.168.2.0 default-lease-time 60
host add 10.1.0.142 -i \0Jack's lap top
option add 10.1.0.142 12 blue-host
host add 10.1.0.141 -h BE:60:13:F7:F8:0F
option add 10.1.0.141 12 yellow-host
config set 10.1.0.141 boot-file /boot/yellow-host.boot
config set 10.1.0.141 next-server-name black-server
config set default default-lease-time 600
config set default allow-bootp false
config set 10.1.0.0 do-icmp-address-check true
class add 10.1.0.0 first-class vendor first
class add default second-class vendor second
option add 10.1.0.0 35 10
option add 10.1.0.0 -c first-class 35 20
option add default 35 60
option add default -c second-class 35 40
config set 10.1.0.0 authorized-agents 10.1.0.2 10.1.0.3

The ipdhcps_cmd_dhcps() routine

The ipdhcps_cmd_dhcps() routine executes a DHCP-server shell command. The
syntax for the ipdhcps_cmd_dhcps() routine is:

IP_GLOBAL int ipdhcps_cmd_dhcps (int argc, char ** argv)

where:

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

70

argc is the number of strings in the array pointed to by the argv parameter.

argv is an array of strings that constitute the elements of a DHCP-server shell
command, without the initial dhcps identifier. The required elements in the array
are:

command subcommand { 0 or more arguments }

For example, for the subnet add shell command, argv could contain the
following strings:

"subnet" "add" "10.1.0.0" "255.255.0.0"

The ipdhcps_cmd_dhcps() routine returns 0 on success.

4.4.2 The ipdhcps_stop_hook() Routine

The DHCPS daemon automatically calls the ipdhcps_stop_hook() routine
immediately before the server exits. The signature of ipdhcps_stop_hook() is:

IP_GLOBAL int ipdhcps_stop_hook (void)

This routine returns zero to indicate that the hook routine has succeeded (or one to
indicate a failure)

You can write an implementation of the ipdhcps_stop_hook() routine that does
any shutdown and cleanup processing necessary to your application, including
dumping the lease database using the ipdhcps_lease_db_dump() API.

Example 4-4 Dumping the Lease Database at Shutdown

The following implementation of ipdhcps_stop_hook() reads the contents of the
lease database into a buffer using the ipdhcps_lease_db_dump() API and then
writes that buffer to a file:

IP_GLOBAL int ipdhcps_stop_hook ()
{
void * buf;
IP_FILE * fd;
int n;

/* Dump the lease database */
n = ipdhcps_lease_db_dump (&buf);

/* Write it to a file */
fd = fopen ("/opt/ipdhcps/dumpfile", "w+");
fwrite (buf, n, 1, fd);

fclose (fd);
free (buf);

4 Wind River DHCP: Server
4.4 Implementing Hook Routines for Initialization and Shutdown

71

4

return (0);
}

4.4.3 DHCP Server API Routines

Table 4-2 lists the API routines available to DHCP server applications and gives a
brief description of each routine. For more detailed information, see the reference
pages for these routines.

Table 4-2 DHCP-Server APIs

Routine Description

ipdhcps_subnet_add() Add a new subnet to the configuration database.

ipdhcps_subnet_delete() Delete a subnet from the configuration database.

ipdhcps_pool_add() Add a new address pool to an existing subnet.

ipdhcps_pool_delete() Delete an existing address pool from a subnet.

ipdhcps_host_add() Add a new host to the configuration database.

ipdhcps_host_delete() Delete a host from the configuration database.

ipdhcps_dhcp_option_add() Add a set of DHCP options to a subnet or host.

ipdhcps_dhcp_option_delete() Delete a DHCP option.

ipdhcps_config_option_set() Set configuration options on a subnet or host.

ipdhcps_config_option_reset() Reset a configuration option to its default value.

ipdhcps_interface_status_set() Set the status of an interface.

ipdhcps_lease_db_dump() Dump entries in the lease database to a buffer.

ipdhcps_lease_db_restore() Initialize the lease database.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

72

4.5 Setting Options in Shell Commands and API Routines

You can set standard DHCP options and Wind River-specific options statically in
the ipdhcps_config.c file. In this case, use numerical codes for individual options,
as given in Table 4-3 (from RFC 2132) and Table 4-4.

You can also set DHCP options through shell commands. In this case, you enter the
name of an option as specifically required by the shell. For example, for option
code 1, you need to enter “subnet mask” as the option name (see Table 4-3).

Finally, if you set DHCP option values through DHCP server API routines, instead
of directly entering a numerical option value, enter a macro value for the code. For
example, for option code 1, use IPDHCPS_OPTCODE_SUBNET_MASK (see
Table 4-3 and Table 4-4 for lists of these macros).

4.5.1 Using Standard DHCP Options in Shell Commands and APIs

The following table lists the standard DHCP options available in Wind River
DHCP, ordered by code number, and gives their macro names and shell names as
required in API routines and shell commands.

Table 4-3 DHCP Options As Used in Shell Commands and APIs

Code
Macro for Configuration Option, and

Option Name in Shell Command Option Type

1 IPDHCPS_OPTCODE_SUBNET_MASK
subnet mask

IPv4 address

2 IPDHCPS_OPTCODE_TIME_OFFSET
time offset

32-bits

3 IPDHCPS_OPTCODE_ROUTERS
router(s)

list of IPv4
addresses

4 IPDHCPS_OPTCODE_TIME_SERVERS
time server(s)

list of IPv4
addresses

5 IPDHCPS_OPTCODE_NAME_SERVERS
name server(s)

list of IPv4
addresses

6 IPDHCPS_OPTCODE_DOMAIN_NAME_SERVERS
domain name server(s)

list of IPv4
addresses

4 Wind River DHCP: Server
4.5 Setting Options in Shell Commands and API Routines

73

4
7 IPDHCPS_OPTCODE_LOG_SERVERS

log server(s)
list of IPv4
addresses

8 IPDHCPS_OPTCODE_COOKIE_SERVERS
cookie server(s)

list of IPv4
addresses

9 IPDHCPS_OPTCODE_LPR_SERVERS
lpr server(s)

list of IPv4
addresses

10 IPDHCPS_OPTCODE_IMPRESS_SERVERS
impress server(s)

list of IPv4
addresses

11 IPDHCPS_OPTCODE_RESOURCE_LOCATION_SERVERS
resource location server(s)

list of IPv4
addresses

12 IPDHCPS_OPTCODE_HOST_NAME
host name

string

13 IPDHCPS_OPTCODE_BOOT_SIZE
boot file size

16-bits

14 IPDHCPS_OPTCODE_MERIT_DUMP
merit dump path

string

15 IPDHCPS_OPTCODE_DOMAIN_NAME
domain name

string

16 IPDHCPS_OPTCODE_SWAP_SERVER
swap server(s)

IPv4 address

17 IPDHCPS_OPTCODE_ROOT_PATH
root path

string

18 IPDHCPS_OPTCODE_EXTENSIONS_PATH
extensions path

string

19 IPDHCPS_OPTCODE_IP_FORWARDING
ip forwarding

boolean

20 IPDHCPS_OPTCODE_NON_LOCAL_SOURCE_ROUTING
non local source routing

boolean

Table 4-3 DHCP Options As Used in Shell Commands and APIs (cont’d)

Code
Macro for Configuration Option, and

Option Name in Shell Command Option Type

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

74

7 IPDHCPS_OPTCODE_LOG_SERVERS
log server(s)

list of IPv4
addresses

8 IPDHCPS_OPTCODE_COOKIE_SERVERS
cookie server(s)

list of IPv4
addresses

9 IPDHCPS_OPTCODE_LPR_SERVERS
lpr server(s)

list of IPv4
addresses

10 IPDHCPS_OPTCODE_IMPRESS_SERVERS
impress server(s)

list of IPv4
addresses

11 IPDHCPS_OPTCODE_RESOURCE_LOCATION_SERVERS
resource location server(s)

list of IPv4
addresses

12 IPDHCPS_OPTCODE_HOST_NAME
host name

string

13 IPDHCPS_OPTCODE_BOOT_SIZE
boot file size

16-bits

14 IPDHCPS_OPTCODE_MERIT_DUMP
merit dump path

string

15 IPDHCPS_OPTCODE_DOMAIN_NAME
domain name

string

16 IPDHCPS_OPTCODE_SWAP_SERVER
swap server(s)

IPv4 address

17 IPDHCPS_OPTCODE_ROOT_PATH
root path

string

18 IPDHCPS_OPTCODE_EXTENSIONS_PATH
extensions path

string

19 IPDHCPS_OPTCODE_IP_FORWARDING
ip forwarding

boolean

20 IPDHCPS_OPTCODE_NON_LOCAL_SOURCE_ROUTING
non local source routing

boolean

Table 4-3 DHCP Options As Used in Shell Commands and APIs (cont’d)

Code
Macro for Configuration Option, and

Option Name in Shell Command Option Type

4 Wind River DHCP: Server
4.5 Setting Options in Shell Commands and API Routines

75

4
21 IPDHCPS_OPTCODE_POLICY_FILTER

policy filter
list of IPv4
address pairs

22 IPDHCPS_OPTCODE_MAX_DGRAM_REASSEMBLY
max datagram reassembly

16-bits

23 IPDHCPS_OPTCODE_DEFAULT_IP_TTL
ip time to live

8-bits

24 IPDHCPS_OPTCODE_PATH_MTU_AGING_TIMEOUT
path mtu aging timeout

32-bits

25 IPDHCPS_OPTCODE_PATH_MTU_PLATEAU_TABLE
path mtu plateau table

list of 16-bit
values

26 IPDHCPS_OPTCODE_INTERFACE_MTU
interface mtu

16-bits

27 IPDHCPS_OPTCODE_ALL_SUBNETS_LOCAL
all subnets local

boolean

28 IPDHCPS_OPTCODE_BROADCAST_ADDRESS
broadcast address

IPv4 address

29 IPDHCPS_OPTCODE_PERFORM_MASK_DISCOVERY
perform mask discovery

boolean

30 IPDHCPS_OPTCODE_MASK_SUPPLIER
subnet mask supplier

boolean

31 IPDHCPS_OPTCODE_ROUTER_DISCOVERY
perform router discovery

boolean

32 IPDHCPS_OPTCODE_ROUTER_SOLICITATION_ADDRESS
router solicitation address

IPv4 address

33 IPDHCPS_OPTCODE_STATIC_ROUTES
static routes

list of IPv4
address pairs

34 IPDHCPS_OPTCODE_TRAILER_ENCAPSULATION
trailer encapsulation

boolean

Table 4-3 DHCP Options As Used in Shell Commands and APIs (cont’d)

Code
Macro for Configuration Option, and

Option Name in Shell Command Option Type

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

76

7 IPDHCPS_OPTCODE_LOG_SERVERS
log server(s)

list of IPv4
addresses

8 IPDHCPS_OPTCODE_COOKIE_SERVERS
cookie server(s)

list of IPv4
addresses

9 IPDHCPS_OPTCODE_LPR_SERVERS
lpr server(s)

list of IPv4
addresses

10 IPDHCPS_OPTCODE_IMPRESS_SERVERS
impress server(s)

list of IPv4
addresses

11 IPDHCPS_OPTCODE_RESOURCE_LOCATION_SERVERS
resource location server(s)

list of IPv4
addresses

12 IPDHCPS_OPTCODE_HOST_NAME
host name

string

13 IPDHCPS_OPTCODE_BOOT_SIZE
boot file size

16-bits

14 IPDHCPS_OPTCODE_MERIT_DUMP
merit dump path

string

15 IPDHCPS_OPTCODE_DOMAIN_NAME
domain name

string

16 IPDHCPS_OPTCODE_SWAP_SERVER
swap server(s)

IPv4 address

17 IPDHCPS_OPTCODE_ROOT_PATH
root path

string

18 IPDHCPS_OPTCODE_EXTENSIONS_PATH
extensions path

string

19 IPDHCPS_OPTCODE_IP_FORWARDING
ip forwarding

boolean

20 IPDHCPS_OPTCODE_NON_LOCAL_SOURCE_ROUTING
non local source routing

boolean

Table 4-3 DHCP Options As Used in Shell Commands and APIs (cont’d)

Code
Macro for Configuration Option, and

Option Name in Shell Command Option Type

4 Wind River DHCP: Server
4.5 Setting Options in Shell Commands and API Routines

77

4
21 IPDHCPS_OPTCODE_POLICY_FILTER

policy filter
list of IPv4
address pairs

22 IPDHCPS_OPTCODE_MAX_DGRAM_REASSEMBLY
max datagram reassembly

16-bits

23 IPDHCPS_OPTCODE_DEFAULT_IP_TTL
ip time to live

8-bits

24 IPDHCPS_OPTCODE_PATH_MTU_AGING_TIMEOUT
path mtu aging timeout

32-bits

25 IPDHCPS_OPTCODE_PATH_MTU_PLATEAU_TABLE
path mtu plateau table

list of 16-bit
values

26 IPDHCPS_OPTCODE_INTERFACE_MTU
interface mtu

16-bits

27 IPDHCPS_OPTCODE_ALL_SUBNETS_LOCAL
all subnets local

boolean

28 IPDHCPS_OPTCODE_BROADCAST_ADDRESS
broadcast address

IPv4 address

29 IPDHCPS_OPTCODE_PERFORM_MASK_DISCOVERY
perform mask discovery

boolean

30 IPDHCPS_OPTCODE_MASK_SUPPLIER
subnet mask supplier

boolean

31 IPDHCPS_OPTCODE_ROUTER_DISCOVERY
perform router discovery

boolean

32 IPDHCPS_OPTCODE_ROUTER_SOLICITATION_ADDRESS
router solicitation address

IPv4 address

33 IPDHCPS_OPTCODE_STATIC_ROUTES
static routes

list of IPv4
address pairs

34 IPDHCPS_OPTCODE_TRAILER_ENCAPSULATION
trailer encapsulation

boolean

Table 4-3 DHCP Options As Used in Shell Commands and APIs (cont’d)

Code
Macro for Configuration Option, and

Option Name in Shell Command Option Type

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

78

35 IPDHCPS_OPTCODE_ARP_CACHE_TIMEOUT
arp cache timeout

32-bits

36 IPDHCPS_OPTCODE_IEEE802_3_ENCAPSULATION
ethernet encapsulation

boolean

37 IPDHCPS_OPTCODE_DEFAULT_TCP_TTL
default tcp time to live

8-bits

38 IPDHCPS_OPTCODE_TCP_KEEPALIVE_INTERVAL
tcp keep alive interval

32-bits

39 IPDHCPS_OPTCODE_TCP_KEEPALIVE_GARBAGE
tcp keep alive garbage

boolean

40 IPDHCPS_OPTCODE_NIS_DOMAIN
nis domain

string

41 IPDHCPS_OPTCODE_NIS_SERVERS
nis server(s)

list of IPv4
addresses

42 IPDHCPS_OPTCODE_NTP_SERVERS
ntp server(s)

list of IPv4
addresses

43 IPDHCPS_OPTCODE_VENDOR_ENCAPSULATED_OPTIONS
vendor encapsulated options

string

44 IPDHCPS_OPTCODE_NETBIOS_NAME_SERVERS
netbios name server(s)

list of IPv4
addresses

45 IPDHCPS_OPTCODE_NETBIOS_DD_SERVER
netbios dgram distr server(s)

list of IPv4
addresses

46 IPDHCPS_OPTCODE_NETBIOS_NODE_TYPE
netbios node type

8-bits

47 IPDHCPS_OPTCODE_NETBIOS_SCOPE
netbios scope

string

48 IPDHCPS_OPTCODE_FONT_SERVERS
X font server(s)

list of IPv4
addresses

Table 4-3 DHCP Options As Used in Shell Commands and APIs (cont’d)

Code
Macro for Configuration Option, and

Option Name in Shell Command Option Type

4 Wind River DHCP: Server
4.5 Setting Options in Shell Commands and API Routines

79

4
49 IPDHCPS_OPTCODE_X_DISPLAY_MANAGER

X display manager
list of IPv4
addresses

58 — —

59 — —

61 IPDHCPS_OPTCODE_CLIENT_IDENTIFIER
—

—

62 IPDHCPS_OPTCODE_NWIP_DOMAIN
—

—

64 IPDHCPS_OPTCODE_NISPLUS_DOMAIN
nis+ domain

string

65 IPDHCPS_OPTCODE_NISPLUS_SERVERS
nis+ server(s)

list of IPv4
addresses

68 IPDHCPS_OPTCODE_HOME_AGENTS
mobile ip home agent

list of IPv4
addresses

69 IPDHCPS_OPTCODE_SMTP_SERVERS
smtp server(s)

list of IPv4
addresses

70 IPDHCPS_OPTCODE_POP3_SERVERS
pop3 server(s)

list of IPv4
addresses

71 IPDHCPS_OPTCODE_NNTP_SERVERS
nntp server(s)

list of IPv4
addresses

72 IPDHCPS_OPTCODE_WWW_SERVERS
www server(s)

list of IPv4
addresses

73 IPDHCPS_OPTCODE_FINGER_SERVERS
finger server(s)

list of IPv4
addresses

74 IPDHCPS_OPTCODE_IRC_SERVERS
irc server(s)

list of IPv4
addresses

Table 4-3 DHCP Options As Used in Shell Commands and APIs (cont’d)

Code
Macro for Configuration Option, and

Option Name in Shell Command Option Type

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

80

4.5.2 Using Wind River-Specific Options in Shell Commands and APIs

Table 4-4 lists the configuration options specific to the Wind River implementation
of DHCP, and gives their the macro names and shell names as required in APIs
and shell commands.

75 IPDHCPS_OPTCODE_STREETTALK_SERVERS
street talk server(s)

list of IPv4
addresses

76 IPDHCPS_OPTCODE_STDA_SERVERS
stda server(s)

list of IPv4
addresses

Table 4-3 DHCP Options As Used in Shell Commands and APIs (cont’d)

Code
Macro for Configuration Option, and

Option Name in Shell Command Option Type

Table 4-4 Configuration Options Specific to Wind River DHCP

Code
Macro for Configuration Option, and

Option Name in Shell Command Description
Option
Type

0x8006 IPDHCPS_CONFCODE_ALLOW_BOOTP
allow-bootp

Enable the server to
accept requests from
BOOTP clients. You can
also set this option as a
build parameter.

boolean

0x8007 IPDHCPS_CONFCODE_ALLOW_DYNAMIC_BOOTP
allow-dynamic-bootp

Enable the server to
accept dynamic leases for
BOOTP. You can also set
this option as a build
parameter.

boolean

0x800a IPDHCPS_CONFCODE_BOOT_FILE
boot-file

Set the name of the boot
file.

string

0x8001 IPDHCPS_CONFCODE_LEASE_TIME_DFLT
default-lease-time

Set the default lease time
for clients, in seconds.
You can also set this
option as a build
parameter. Give the
option in host byte order.

integer

4 Wind River DHCP: Server
4.5 Setting Options in Shell Commands and API Routines

81

4
0x8002 IPDHCPS_CONFCODE_LEASE_TIME_MAX

max-lease-time
Set the maximum lease
time for clients, in
seconds. You can also set
this option as a build
parameter. Give the
option in host byte order.

integer

0x8003 IPDHCPS_CONFCODE_LEASE_TIME_MIN
min-lease-time

Set the minimum lease
time for clients, in
seconds. You can also set
this option as a build
parameter. Give the
option in host byte order.

integer

0x8008 IPDHCPS_CONFCODE_NEXT_SERVER_NAME
next-server-name

Give the name of the next
server in the boot chain.

string

0x8009 IPDHCPS_CONFCODE_NEXT_SERVER_IP
next-server-ip

Give the IPv4 address of
the next server in the boot
chain, in network byte
order.

four
bytes

0x8005 IPDHCPS_CONFCODE_REBINDING_TIME
rebinding-time

Set the lease rebinding
time for clients, in
seconds. You can also set
this option as a build
parameter. Give this
option in host byte order.

integer

0x8004 IPDHCPS_CONFCODE_RENEWAL_TIME
renewal-time

Set the lease renewal time
for clients, in seconds.
You can also set this
option as a build
parameter. Give the
option in host byte order.

integer

Table 4-4 Configuration Options Specific to Wind River DHCP (cont’d)

Code
Macro for Configuration Option, and

Option Name in Shell Command Description
Option
Type

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

82

83

 5
Wind River DHCP: Relay Agent

5.1 Introduction 83

5.2 Including the DHCP Relay Agent in a Build 85

5.3 Configuring the Relay Agent with the ipdhcpr_netconf_sysvar
Array 87

5.4 Using Shell Commands 88

5.5 Implementing the ipdhcpr_start_hook() Routine 89

5.1 Introduction

This chapter describes the Wind River DHCP relay agent. For a general overview
of DHCP, see 3. Wind River DHCP and DHCPv6: Overview.

Relay Agent Overview

A relay agent is an Internet host or router that passes DHCP messages between
DHCP clients and DHCP servers. There can be multiple relay agents between a
client and a server. A DHCP relay agent is also a BOOTP relay agent, as specified
in RFCs 951 and 1542. The Wind River DHCP relay agent runs as a daemon process
that acts as a stateless message forwarder between a DHCP client and a DHCP
server. The relay agent examines each packet in a DHCP or BOOTP message.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

84

Packets Sent to a DHCP Server

When the relay agent receives a message from a DHCP client, it forwards the
message on to all the DHCP servers that the relay agent knows about.

The DHCP/BOOTP header in DHCP packets contains an “agent” field that is
meant to contain the IP address of the first relay agent that handles a request by a
client. The address indicates the network segment on which the client is located.
Before forwarding a DHCP packet to a server, the relay agent checks the
DHCP/BOOTP header to see if it already contains an agent address. If it does not,
the relay agent assumes that it is the first agent to see the message and it fills the
field with the address of the interface on which it received the message, before
passing the message on.

Packets Sent to the Client

If a relay agent receives a packet intended for a DHCP client, the relay agent checks
the “agent” field and takes one of the following actions:

■ If the agent field contains the address of one of its own interfaces, the agent
relays the packet directly to the client.

■ If the agent field contains an address that does not belong to one of its
interfaces but matches the subnet of an other relay agent, the relay agent
forwards the packet to the next agent.

■ If the address in the agent field does not match a known agent or one of its own
interfaces, the relay agent broadcasts the message on the subnet identified in
the address.

Conformance to Standards

The Wind River DHCP relay agent implements all relay agent-specific features of
RFC 951: Bootstrap Protocol, and RFC 1542: Clarifications and Extensions for the
Bootstrap Protocol.

5 Wind River DHCP: Relay Agent
5.2 Including the DHCP Relay Agent in a Build

85

5

5.2 Including the DHCP Relay Agent in a Build

To include the DHCP relay agent in a VxWorks build, you must include the DHCP
Relay Agent (INCLUDE_IPDHCPR) build component.

Build Configuration Parameters

The DHCP Relay Agent (INCLUDE_IPDHCPR) build component has a number of
configuration parameters. Table 5-1 lists and describes each parameter. See
3.1.3 Build Configuration Parameters and sysvars, p.46 for more information on
setting these parameters.

Table 5-1 DHCP Relay-Agent Build Parameters

Workbench Description, Parameter Name, and sysvar
Default Value
& Data Type

UDP port used by the dhcp server
DHCPR_SERVER_PORT
ipdhcpr.ServerPort

The UDP port on which the DHCP server receives messages.
Enter the value as a quoted string.

"67"

char *

UDP port used by the dhcp/bootp clients
DHCPR_CLIENT_PORT
ipdhcpr.ClientPort

The UDP port on which the DHCP client receives messages.
Enter the value as a quoted string.

"68"

char *

Max dhcp relay packet size
DHCPR_MAX_PKT_SIZE
ipdhcpr.PacketSize

The maximum packet size, in bytes, the DHCP relay agent will
use when sending and receiving packets. The size may never be
less than 576 bytes, which is the standard packet size for DHCP.

"576"

char *

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

86

Maximum number of hops
DHCPR_HOPS_THRESHOLD
ipdhcpr.HopsThreshold

The maximum number of relay agents allowed between a
DHCP client and a DHCP server. The agent silently drops
packets with a hop count greater than this setting.

"3"

char *

DHCP relay network pre-configuration
DHCPR_NETCONF_SYSVAR
sysvar: None.

Either "true" or "false". If "true", you can statically configure the
relay agent by entering configuration values in the
ipdhcpr_netconf_sysvar array in the ipdhcpr_config.c file. For
information on entering values into the array, see
5.3 Configuring the Relay Agent with the ipdhcpr_netconf_sysvar
Array, p.87.

NULL

void *

Install dhcp relay callback routine
DHCPR_INSTALL_CALLBACK_HOOK
sysvar: None.

Set this to TRUE if you implement the ipdhcpr_start_hook()
routine (and also set the following parameter to point to your
implementation of that routine). For information on
ipdhcpr_start_hook(), see 5.5 Implementing the
ipdhcpr_start_hook() Routine, p.89.

FALSE

BOOL

DHCP relay startup callback routine
DHCPR_START_CALLBACK_HOOK
sysvar: None.

If you set this function pointer and set the Install dhcp relay
callback routine parameter to TRUE, the DHCP relay agent
calls this routine—your implementation of the
ipdhcpr_start_hook() routine—when it starts. For information
on ipdhcpr_start_hook(), see 5.5 Implementing the
ipdhcpr_start_hook() Routine, p.89.

NULL

funcptr

Table 5-1 DHCP Relay-Agent Build Parameters (cont’d)

Workbench Description, Parameter Name, and sysvar
Default Value
& Data Type

5 Wind River DHCP: Relay Agent
5.3 Configuring the Relay Agent with the ipdhcpr_netconf_sysvar Array

87

5

5.3 Configuring the Relay Agent with the ipdhcpr_netconf_sysvar
Array

You can statically configure the relay agent by entering commands and parameter
values in the ipdhcpr_netconf_sysvar array in the ipdhcpr_config.c file. For a list
of the commands, see Setting Commands in the ipdhcpr_netconf_sysvar Array, p.87.
The path to ipdhcpr_config.c is:

installDir/components/ip_net2-6.n/osconfig/vxworks/src/ipnet/ipdhcpr_config.c

With the exception of the last entry in the array, entries have the following form:

{"ipdhcpr.netconf.index", "command action"}

In these entries, replace index, command, and action as follows:

index is an index into the ipdhcpr_netconf_sysvar array, and

command is an expression followed by an action, such as add, enable, or
disable, as in the command server add, which is used to add a DHCP server
to the relay agent’s list of DHCP servers.

The last entry in the array must always be:

{IP_NULL, IP_NULL}

In the following example the first element in the ipdhcpr_netconf_sysvar array
adds DHCP server 10.1.0.2 to the relay agent’s list of DHCP servers:

IP_STATIC IP_CONST Ipcom_sysvar ipdhcpr_netconf_sysvar[] =
{
{"ipdhcpr.netconf.00", "server add 10.1.0.2"},
...
{IP_NULL, IP_NULL}
};

Setting Commands in the ipdhcpr_netconf_sysvar Array

You can use the following three commands in the DHCP relay agent configuration
array:

server add address
Add a DHCP server to the relay agent’s list of DHCP servers.

interface enable interfaceName
Enable an interface for DHCP.

interface disable interfaceName
Disable an interface for DHCP. By default, all interfaces are enabled for
DHCP. You can use this command to disable specific interfaces for DHCP.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

88

Example 5-1 Sample ipdhcpr_netconf_sysvar Array

The following example shows sample entries in an ipdhcpr_netconf_sysvar array:

IP_STATIC IP_CONST Ipcom_sysvar ipdhcpr_netconf_sysvar[] =
{
/* Add DHCP server 10.1.0.2 */
{"ipdhcpr.netconf.00", "server add 10.1.0.2"},

/* Add DHCP server 192.168.1.1 */
{"ipdhcpr.netconf.00", "server add 192.168.1.1"},

/* Enable interface eth1 for DHCP */
{"ipdhcpr.netconf.00", "interface enable eth1"},

/* Mark the end of the array */
{IP_NULL, IP_NULL}
};

5.4 Using Shell Commands

The relay agent provides two shell commands, the dhcpr server shell command
and the dhcpr interface shell command.

Use the dhcpr server shell command to list all DHCP servers known to the relay
agent, to add a server to the relay agent’s list of servers, or to delete a server from
this list.

Use the dhcpr interface shell command to list all interfaces enabled for DHCP, or
to enable or disable individual interfaces for DHCP.

The dhcpr server and dhcpr interface shell commands are as follows:

dhcpr server list

List all DHCP servers known to the relay agent.

dhcpr server add address
Add a DHCP server to the relay agent’s list of DHCP servers.

dhcpr server delete address
Delete a DHCP server from the relay agent’s list of DHCP servers.

dhcpr interface list

List all interfaces enabled for DHCP on the relay agent.

5 Wind River DHCP: Relay Agent
5.5 Implementing the ipdhcpr_start_hook() Routine

89

5

dhcpr interface enable interfaceName
Enable the specified interface for DHCP.

dhcpr interface disable interfaceName
Disable the specified interface for DHCP.

By default, the relay agent enables all running interfaces for DHCP at startup
(aside from the loopback interface and those interfaces, such as a PPP interface,
that are not capable of broadcasting messages).

5.5 Implementing the ipdhcpr_start_hook() Routine

If you want to do some custom initialization at DHCP relay-agent startup, you can
implement this in the form of an ipdhcpr_start_hook() initialization routine that
the relay-agent will call when it starts. For instance, you can implement
ipdhcpr_start_hook() to configure the relay agent by reading a configuration file
at startup. The following section includes an example of this.

The signature of ipdhcpr_start_hook() is:

IP_GLOBAL int ipdhcpr_start_hook (void);

This routine returns zero to indicate that initialization has succeeded (or one to
indicate a failure)

You can implement ipdhcpr_start_hook() to call any DHCP relay-agent API
routine. For a list and brief descriptions of the API routines, see 5.5.1 DHCP Relay
Agent API Routines, p.91. For detailed information about individual API routines,
see their reference pages.

To enable your implementation of the ipdhcpr_start_hook() routine, you must set
the Install dhcp relay callback routine and DHCP relay callback startup routine
configuration parameters appropriately. See Table 5-1.

Example 5-2 Reading Configuration Values from a File

The following is a sample implementation of the ipdhcpr_start_hook() routine
that configures the relay-agent based on the contents of a configuration file, and a
sample configuration file for this hook routine to operate on.

IP_GLOBAL int ipdhcpr_start_hook (void)
{
IP_FILE * fd = IP_NULL;

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

90

char * cmdbuf = IP_NULL;
char args[100];
const char * cfgfile = "/home/dhcpRelay/dhcpr.conf";
const char * cmd = "dhcpr ";
int argc;
char * tempargv = [106 + 2];
char ** argv = tempargv;
int ret = -1;

if ((fd = fopen (cfgfile,"r")) == 0)
{
logMsg ("DHCP_RELAY ERROR: Failed to open configuration file %s\n",

cfgfile, 0, 0, 0, 0, 0);
goto leave;
}

/*
* The config file consists of command line arguments that are
* understood by the relay agent's shell tool
*/

/* Read the command lines one by one and execute */
while (fgets (args, sizeof (args), fd) != IP_NULL)

{
/* Remove the trailing EOLN */
args [strlen (args) - 1] = 0;

/* Compose a complete command args */
cmdbuf = malloc (strlen (args) + strlen (cmd) + 1);

if (cmdbuf == IP_NULL)
{
logMsg ("DHCP_RELAY ERROR: failed to allocate buffer\n",

0, 0, 0, 0, 0, 0);
goto leave;
}

strcpy (cmdbuf, cmd);
strcat (cmdbuf, args);

if (getOptServ (cmdbuf, "ipdhcpr_start_hook", &argc, argv, 106 + 2)
!= OK)
{
logMsg ("DHCP_RELAY ERROR: failed to parse command '%s'\n",

args, 0, 0, 0, 0, 0);
goto leave;
}

/* Let the relay agent's command tool execute */
if (ipdhcpr_cmd_dhcpr (argc, argv) != OK)

{
logMsg ("DHCP_RELAY ERROR: failed to execute command '%s'\n",

args, 0, 0, 0, 0, 0);
goto leave;
}

5 Wind River DHCP: Relay Agent
5.5 Implementing the ipdhcpr_start_hook() Routine

91

5

free (cmdbuf);
cmdbuf = NULL;
}

ret = OK;

leave:

if (fd)
fclose (fd);

if (cmdbuf)
free (cmdbuf);

return ret;
}

Sample Configuration File

server add 10.1.0.2
server add 192.168.1.1
interface enable eth1

5.5.1 DHCP Relay Agent API Routines

There are four API routines available to DHCP relay-agent applications:

ipdhcpr_server_add()
Add a new server address to the DHCP relay agent.

ipdhcpr_server_delete()
Delete a server address.

ipdhcpr_interface_status_set()
Set the status of an interface on the relay agent.

ipdhcpr_start_hook()
This is a callback for start-up operations.

For more detailed information, see the API reference pages for these routines.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

92

93

 6
Wind River DHCP: Client

6.1 Introduction 93

6.2 Including the DHCP Client in a Build 95

6.3 Using Shell Commands 100

6.4 Implementing the ipdhcpc_option_callback() Routine 101

6.1 Introduction

This chapter describes the Wind River DHCPv4 client. For a general overview of
Wind River DHCP, see 3. Wind River DHCP and DHCPv6: Overview.

DHCPv4 Client Overview

A Wind River DHCP client obtains an IP address and additional configuration
information from a DHCP server.

When a DHCP client starts, it scans through all available interfaces and checks the
interface flags on each one. If the interface is up (IP_IFF_UP flag is set) and its
DHCP flag (IP_IFF_X_DHCPRUNNING) is set, the client opens a DHCP session
over it.

The client initiates a DHCP session on an interface by broadcasting a
DHCPDISCOVER message over the interface. It broadcasts the message repeatedly
until it gets a response from a DHCP server. The server’s response message

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

94

contains an IP address for the client and a lease time that determines how long the
address can be used. The client configures the interface with the address and keeps
track of its lease time. The client contacts the server for lease renewal before the
lease expires.

The response message from a DHCP server typically contains a number of
configuration parameters (DHCP options) for the client, such as an interface
subnet mask, an interface broadcast address, a default gateway, DNS servers, a
DNS domain, and vendor-specific options. For each option, before it does anything
else, the client calls ipdhcpc_option_callback(), a callback routine that you can
implement to perform operations on DHCP options before any further processing
by the client (see 6.4 Implementing the ipdhcpc_option_callback() Routine, p.101).

6.1.1 Conformance to Standards

The Wind River DHCP client implements client portions of RFC 2131: Dynamic
Host Configuration Protocol, and recognizes options and vendor extensions in RFC
2132: DHCP Options and BOOTP Vendor Extensions, and other specifications. In
some cases, the client explicitly handles an option. In other cases, the client has no
pre-existing implementation for handling an option, but allows you to implement
operations for handling the option in the ipdhcpc_option_callback() routine (see
6.4 Implementing the ipdhcpc_option_callback() Routine, p.101).

Implementation of DHCP Options

Table 6-1 lists the DHCP options that the client handles directly.

Table 6-1 DHCP Options Implemented in the DHCP Client

Option Code Macro Name

0 IPDHCPC_OPTCODE_PAD

1 IPDHCPC_OPTCODE_SUBNET_MASK

3 IPDHCPC_OPTCODE_ROUTERS

6 IPDHCPC_OPTCODE_DOMAIN_NAME_SERVERS

15 IPDHCPC_OPTCODE_DOMAIN_NAME

42 IPDHCPC_OPTCODE_NTP_SERVERS

51 IPDHCPC_OPTCODE_DHCP_LEASE_TIME

6 Wind River DHCP: Client
6.2 Including the DHCP Client in a Build

95

6

If you want the DHCP client to handle options that are not listed in Table 6-1, you
must handle them in the ipdhcpc_option_callback() routine (see 6.4 Implementing
the ipdhcpc_option_callback() Routine, p.101).

6.2 Including the DHCP Client in a Build

To include the DHCP client in a VxWorks build, include the DHCP Client
(INCLUDE_IPDHCPC) build component.

Build Configuration Parameters

The DHCP Client (INCLUDE_IPDHCPC) build component provides a number of
configuration parameters. Table 6-2 lists and describes each parameter. See
3.1.3 Build Configuration Parameters and sysvars, p.46 for more information on
setting these parameters.

53 IPDHCPC_OPTCODE_DHCP_MESSAGE_TYPE

54 IPDHCPC_OPTCODE_DHCP_SERVER_IDENTIFIER

55 IPDHCPC_OPTCODE_DHCP_PARAMETER_REQUEST_LIST

56 IPDHCPC_OPTCODE_DHCP_MESSAGE

57 IPDHCPC_OPTCODE_DHCP_MAX_MESSAGE_SIZE

58 IPDHCPC_OPTCODE_DHCP_RENEWAL_TIME

59 IPDHCPC_OPTCODE_DHCP_REBINDING_TIME

61 IPDHCPC_OPTCODE_DHCP_CLIENT_IDENTIFIER

Table 6-1 DHCP Options Implemented in the DHCP Client (cont’d)

Option Code Macro Name

NOTE: An earlier version of DHCP for VxWorks allowed you to instruct the DHCP
client not to allow the server to set its IP address, but only certain other network
information. A client using DHCP in this way would set its IP address using some
other method. The current version of DHCP does not allow this.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

96

Table 6-2 DHCP-Client Build Parameters

Workbench Description, Parameter Name, and sysvar
Default Value &

Data Type

DHCP client port
DHCPC_CLIENT_PORT
ipdhcpc.client_port

The port on which a DHCP client receives messages from the
DHCP server. Enter the value as a quoted string.

"68"

char *

DHCP server port
DHCPC_SERVER_PORT
ipdhcpc.server_port

The DHCP server port to which the client sends messages.
Enter the value as a quoted string.

"67"

char *

Global list of requested dhcp options
DHCPC_REQ_OPTS
ipdhcpc.requested_options

Specifies a comma-delimited list of DHCP option numbers
(see RFC 2132) that the DHCP client wants the DHCP server
to provide. For example, the following entry asks the server
to provide a subnet mask, IP addresses for domain name
servers, a broadcast address, and the IP address of an NTP
server: "1,6,28,42".

NULL

char *

Global client identifier
DHCPC_CLIENT_ID
ipdhcpc.client_identifier

The name that the client wants the DHCP server to use to
identify it. Enter the name as a quoted string. For example:
"phantastica".

NULL

char *

RFC2131 Initialization Delay identifier
DHCPC_RFC2131_INIT_DELAY
ipdhcpc.rfc2131_init_delay

Either "1" or "0". If set to "1", the DHCP client waits a random
number of seconds before resending DHCPDISCOVER
messages to locate DHCP servers. If set to "0" there is no
delay.

"1"

char *

6 Wind River DHCP: Client
6.2 Including the DHCP Client in a Build

97

6

RFC2131 Exponential Back-off Delay
DHCPC_RFC2131_EXP_BACKOFF
ipdhcpc.rfc2131_exponential_backoff

Either "1" or "0". If set to "1", the DHCP client waits a random
number of seconds before resending DHCPREQUEST
messages. If set to "0" there is no delay.

"1"

char *

Number of DHCP client retries
DHCPC_DISCOVER_RETRIES
ipdhcpc.discover_retries

If the DHCP client sends a DHCPDISCOVER message to find
a DHCP server and does not get a response, this parameter
determines the maximum number of times the client retries.

"4"

char *

DHCP offer time-out in milliseconds
DHCPC_OFFER_TIMEOUT
ipdhcpc.offer_timeout

The length of time, in milliseconds, that the DHCP client
waits for a response to a DHCPDISCOVER message before it
resends the message.

"2000"

char *

Table 6-2 DHCP-Client Build Parameters (cont’d)

Workbench Description, Parameter Name, and sysvar
Default Value &

Data Type

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

98

Interface specific list of requested dhcp options
DHCPC_IF_REQ_OPTS_LIST
ipdhcpc.interfaceName.requested_options

The DHCP options that the client wants the server to
provide to an interface or interfaces.

Use the following format for the configuration parameter:

interfaceName=options;interfaceName=options;interfaceName=options;...

where interfaceName is the name of an interface and options is
a comma separated list of DHCP options (see RFC 2132). For
example:

“eth0=1,6,28,42;eth1=1,3,5,40,41"

For the sysvar, use the following format:

sysvar set ipdhcpc.interfaceName.requested_options options

For example:

sysvar set ipdhcpc.eth0.requested_options 1,6,28,42

""

char *

Table 6-2 DHCP-Client Build Parameters (cont’d)

Workbench Description, Parameter Name, and sysvar
Default Value &

Data Type

6 Wind River DHCP: Client
6.2 Including the DHCP Client in a Build

99

6

Interface specific list of client identifier
DHCPC_IF_CLIENT_ID_LIST
ipdhcpc.interfaceName.client_identifier

The name or names the client wants the DHCP server to use
to identify it on an interface or interfaces.

Use the following format for the configuration parameter:

interfaceName=clinetID;interfaceName=clientID;interfaceName=clientID;...

where interfaceName is the name of an interface and clientID
is a character string identifying the client on an interface. For
example:

"eth0=id1;eth1=id2;eth2=id3"

For the sysvar, use the following format:

sysvar set ipdhcpc.interfaceName.client_itentifier clientID

For example:

sysvar set ipdhcpc.eth0.client_identifier id1

""

char *

Table 6-2 DHCP-Client Build Parameters (cont’d)

Workbench Description, Parameter Name, and sysvar
Default Value &

Data Type

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

100

6.3 Using Shell Commands

There are no shell commands specific to the DHCP client. You can use the ipd shell
command to start and stop the DHCP-client daemon. You can use the ifconfig
shell command to enable or disable DHCP on an interface and to display the
current status of an interface. The various ipd and ifconfig commands are as
follows:

ipd start ipdhcpc

Start the DHCP client (after stopping it with ipd kill ipdhcpc).

Install dhcp client callback routine
DHCPC_INSTALL_CALLBACK_HOOK
sysvar: None.

If set to TRUE, you can implement the
ipdhcpc_option_callback() routine and include it in the
build. If set to FALSE, the default version of the callback,
which does not perform any operations, is called. For
information on ipdhcpc_option_callback(), (see
6.4 Implementing the ipdhcpc_option_callback() Routine, p.101.

FALSE

BOOL

Option callback routine
DHCPC_OPTION_CALLBACK_HOOK
sysvar: None.

If the Install dhcp client callback routine
(DHCPC_INSTALL_CALLBACK_HOOK) parameter is set to
TRUE, you must set this parameter to point to your
implementation of the ipdhcpc_option_callback() routine.
With the ipdhcpc_option_callback() routine, you can
define your own operations on individual DHCP options
(see 6.4 Implementing the ipdhcpc_option_callback() Routine,
p.101.

NULL

funcptr

Table 6-2 DHCP-Client Build Parameters (cont’d)

Workbench Description, Parameter Name, and sysvar
Default Value &

Data Type

6 Wind River DHCP: Client
6.4 Implementing the ipdhcpc_option_callback() Routine

101

6

ipd kill ipdhcpc

Stop the DHCP client.

ifconfig interfaceName dhcp
Enable the interface interfaceName for DHCP and start a DHCP session on it.

ifconfig interfaceName -dhcp
Close the current session on interface interfaceName and disable DHCP on it.

ifconfig interfaceName
Show the current status and configuration of interface interfaceName. For
example:

-> ifconfig "eth0"

eth0 Link type:6 HWaddr 00:0a:01:02:44:02
inet 10.1.1.231 broadcast 10.1.255.255 mask 255.255.0.0
inet6 unicast FEC0::1:20A:1FF:FE02:4402
inet6 unicast FEC0::A9:20A:1FF:FE02:4402
inet6 unicast FEC0::1:0:0:0:82
inet6 multicast FF02::1%eth0
inet6 unicast FE80::20A:1FF:FE02:4402%eth0
UP RUNNING BROADCAST MULTICAST DHCP
MTU:1500 metric:1 rtab:0
RX packets:62 mcast:1 errors:0 dropped:2
TX packets:11 mcast:3 errors:0
collisions:0 unsupported proto:45
RX bytes:4989 TX bytes:1562

6.4 Implementing the ipdhcpc_option_callback() Routine

There are many DHCP options that the DHCP client does not handle directly (see
6.4.1 DHCP Options Not Initially Implemented in the Client, p.103, Table 6-3). You can
implement your own handler for these options through the
ipdhcpc_option_callback() routine. You can also implement this routine to
provide special treatment of any of the DHCP options that the client already
handles. For a list of those options, see 6.1.1 Conformance to Standards, p.94,
Table 6-1.

For each option in a DHCP-server message, the client calls
ipdhcpc_option_callback() before it performs any other action involving the
option. The signature of ipdhcpc_option_callback() is:

IP_PUBLIC Ip_err ipdhcpc_option_callback (Ip_u8 * option)

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

102

The option parameter points to an option in a DHCP-server message, where:

■ option[0] is a DHCP option code.

■ option[1] is the length of option, in bytes.

■ option[2] is the first element containing data for the option.

Write your ipdhcpc_option_callback() routine to return one of the following two
values:

IP_TRUE
Indicates that the DHCP client should continue to process the option.

IP_FALSE
Indicates that the DHCP client should do nothing further with the option.

If you do not implement the ipdhcpc_option_callback() routine, the client uses a
default version of the routine that performs no operations on any options and
returns IP_TRUE.

Example 6-1 A Sample Implementation of ipdhcpc_option_callback()

The following sample implementation of the ipdhcpc_option_callback() routine
checks the option parameter to see if it contains the DHCP option code for
specifying a host name—IPDHCPC_OPTCODE_HOST_NAME. If it does, the
routine assigns the host name specified in the option parameter to the client.

/*
* DHCPC_INSTALL_CALLBACK_HOOK = TRUE
* DHCPC_OPTION_CALLBACK_HOOK = myDhcpClientHook
*/

#include <ipcom_type.h>
#include <ipdhcpc_config.h>
#include <ipdhcpc.h>

Ip_err myDhcpClientHook (Ip_u8 * option)
{
char myHostName[20];
unsigned char length;

switch (*option)
{
case IPDHCPC_OPTCODE_HOST_NAME:

gethostname (myHostName, 20);
printf ("Host name before change is %s\n", myHostName);
option++;
length = *option;
option++;
strcpy (myHostName, (char *)option);
myHostName[length] = '\0'; /* Insert \0 at the end */

6 Wind River DHCP: Client
6.4 Implementing the ipdhcpc_option_callback() Routine

103

6

sethostname (myHostName, length);
gethostname (myHostName, 20);
printf ("Host name changed to %s\n", myHostName);
break;

default:
printf ("Got option %d. Do nothing with it\n", *option);
break;

}
}

6.4.1 DHCP Options Not Initially Implemented in the Client

The table that follows lists macro names of DHCP option codes that are not
implemented in the Wind River DHCP client, but that you can implement through
the ipdhcpc_option_callback() routine. DHCP options that have built-in
implementations in the client are listed in 6.1.1 Conformance to Standards, p.94,
Table 6-1.

Table 6-3 Macros for DHCP Options Not Implemented in the Client

Macro for DHCP Option Code Code Option Value Type

IPDHCPC_OPTCODE_ALL_SUBNETS_LOCAL 27 boolean

IPDHCPC_OPTCODE_ARP_CACHE_TIMEOUT 35 32-bits

IPDHCPC_OPTCODE_BOOT_SIZE 13 16-bits

IPDHCPC_OPTCODE_BROADCAST_ADDRESS 28 IPv4 address

IPDHCPC_OPTCODE_CLIENT_IDENTIFIER 61 (varies)

IPDHCPC_OPTCODE_COOKIE_SERVERS 8 list of IPv4 addresses

IPDHCPC_OPTCODE_DEFAULT_IP_TTL 23 8-bits

IPDHCPC_OPTCODE_DEFAULT_TCP_TTL 37 8-bits

IPDHCPC_OPTCODE_DHCP_OPTION_OVERLOAD 52 8-bits

IPDHCPC_OPTCODE_DHCP_REQUESTED_ADDRESS 50 IPv4 address

IPDHCPC_OPTCODE_EXTENSIONS_PATH 18 string

IPDHCPC_OPTCODE_FINGER_SERVERS 73 list of IPv4 addresses

IPDHCPC_OPTCODE_FONT_SERVERS 48 list of IPv4 addresses

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

104

IPDHCPC_OPTCODE_HOME_AGENTS 68 list of IPv4 addresses

IPDHCPC_OPTCODE_HOST_NAME 12 string

IPDHCPC_OPTCODE_IEEE802_3_ENCAPSULATION 36 boolean

IPDHCPC_OPTCODE_IMPRESS_SERVERS 10 list of IPv4 addresses

IPDHCPC_OPTCODE_INTERFACE_MTU 26 16-bits

IPDHCPC_OPTCODE_IP_FORWARDING 19 boolean

IPDHCPC_OPTCODE_IRC_SERVERS 74 list of IPv4 addresses

IPDHCPC_OPTCODE_LOG_SERVERS 7 list of IPv4 addresses

IPDHCPC_OPTCODE_LPR_SERVERS 9 list of IPv4 addresses

IPDHCPC_OPTCODE_MASK_SUPPLIER 30 boolean

IPDHCPC_OPTCODE_MAX_DGRAM_REASSEMBLY 22 16-bits

IPDHCPC_OPTCODE_MERIT_DUMP 14 string

IPDHCPC_OPTCODE_NAME_SERVERS 5 list of IPv4 addresses

IPDHCPC_OPTCODE_NETBIOS_DD_SERVER 45 list of IPv4 addresses

IPDHCPC_OPTCODE_NETBIOS_NAME_SERVERS 44 list of IPv4 addresses

IPDHCPC_OPTCODE_NETBIOS_NODE_TYPE 46 8-bits

IPDHCPC_OPTCODE_NETBIOS_SCOPE 47 string

IPDHCPC_OPTCODE_NIS_DOMAIN 40 string

IPDHCPC_OPTCODE_NIS_SERVERS 41 list of IPv4 addresses

IPDHCPC_OPTCODE_NON_LOCAL_SOURCE_ROUTING 20 boolean

IPDHCPC_OPTCODE_PATH_MTU_AGING_TIMEOUT 24 32-bits

IPDHCPC_OPTCODE_PATH_MTU_PLATEAU_TABLE 25 list of 16-bit values

IPDHCPC_OPTCODE_PERFORM_MASK_DISCOVERY 29 boolean

Table 6-3 Macros for DHCP Options Not Implemented in the Client (cont’d)

Macro for DHCP Option Code Code Option Value Type

6 Wind River DHCP: Client
6.4 Implementing the ipdhcpc_option_callback() Routine

105

6

IPDHCPC_OPTCODE_POLICY_FILTER 21 list of IPv4 address pairs

IPDHCPC_OPTCODE_RESOURCE_LOCATION_SERVERS 11 list of IPv4 addresses

IPDHCPC_OPTCODE_ROOT_PATH 17 string

IPDHCPC_OPTCODE_ROUTER_DISCOVERY 31 boolean

IPDHCPC_OPTCODE_ROUTER_SOLICITATION_ADDRESS 32 IPv4 address

IPDHCPC_OPTCODE_STATIC_ROUTES 33 list of IPv4 address pairs

IPDHCPC_OPTCODE_SWAP_SERVER 16 IPv4 address

IPDHCPC_OPTCODE_TCP_KEEPALIVE_GARBAGE 39 boolean

IPDHCPC_OPTCODE_TCP_KEEPALIVE_INTERVAL 38 32-bits

IPDHCPC_OPTCODE_TIME_OFFSET 2 32-bits

IPDHCPC_OPTCODE_TIME_SERVERS 4 list of IPv4 addresses

IPDHCPC_OPTCODE_TRAILER_ENCAPSULATION 34 boolean

IPDHCPC_OPTCODE_VENDOR_CLASS_IDENTIFIER 60 32-bit unsigned integer

IPDHCPC_OPTCODE_VENDOR_ENCAPSULATED_OPTIONS 43 string

IPDHCPC_OPTCODE_X_DISPLAY_MANAGER 49 list of IPv4 addresses

Table 6-3 Macros for DHCP Options Not Implemented in the Client (cont’d)

Macro for DHCP Option Code Code Option Value Type

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

106

107

 7
Wind River DHCPv6:

Server and Relay Agent

7.1 Introduction 107

7.2 Assigning Client-specific Authentication Keys 110

7.1 Introduction

This chapter describes the Wind River DHCPv6 server and relay agent
implementations. For a general overview of DHCP, see 3. Wind River DHCP and
DHCPv6: Overview.

The Wind River DHCPv6 server provides IP addresses and option settings to
DHCPv6 clients.

A relay agent is an Internet host or router that passes DHCP messages between
DHCPv6 clients and DHCPv6 servers. There can be multiple relay agents between
a client and a server.

Including the DHCPv6 Server or Relay Agent in a Build

To include the DHCPv6 server or relay agent in a VxWorks build, include the
DHCP6 Server (INCLUDE_IPDHCPS6) build component. In addition, to have
access to shell commands for the server or relay agent, include the IPCOM DHCP6
Server commands (INCLUDE_IPDHCPS6_CMD) build component.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

108

Build Configuration Parameters

The DHCP6 Server (INCLUDE_IPDHCPS6) build component has several
configuration parameters. Table 7-1 lists and describes each parameter. See
3.1.3 Build Configuration Parameters and sysvars, p.46 for more information on how
to set these parameters.

Table 7-1 DHCP Server Build Configuration Parameters

Workbench Description, Parameter Name, and sysvar
Default Value
& Data Type

DHCPV6 Authentication Realm
DHCPS6_AUTHENTICATION_REALM
ipdhcps6.authrealm

The Authentication Realm as described in section 21.4.1 of RFC
3315.

This parameter, in addition to setting the DHCPV6
authentication realm, also controls whether the DHCPv6 server
will generate DHCPv6 replies using authentication at all. If you
leave this parameter in its default value of "" the server will not
do authenticated exchanges. Set this parameter to anything
other than "" to turn on the authentication capability.

""

char *

DCHPV6 Authentication HMAC-MD5 Key
DHCPS6_HMAC_MD5_SECRET
ipdhcps6.authkey

The default authentication key that the server will use for
message authentication, if a client requests authentication but
the server does not know of a client-specific key for that client.

(To set a client-specific authentication key for a client, see
7.2 Assigning Client-specific Authentication Keys, p.110.)

Specify the key as an ASCII string, starting with the prefix "0x"
and followed by an even number of hexadecimal digits, for
example: "0x0123456789abcdef". The string length that you can
give in the kernel configurator is limited to 130 bytes, which
translates to a key length of up to 64 bytes.

If you leave this parameter at its default value of "", only clients
that have had a specific key assigned to them will be able to use
authenticated DHCPv6 communications.

""

char *

7 Wind River DHCPv6: Server and Relay Agent
7.1 Introduction

109

7

Mode
DHCPS6_MODE
ipdhcps6.mode

Determines whether the router runs as a DHCPv6 server
("server") or relay agent ("relay").

"server"

char *

Interface Name
DHCPS6_DUID_IFNAME
ipdhcps6.duid.ifname

The name of the interface whose link-layer address the server is
to use as its DHCPv6 unique ID (DUID), for example: "eth0".

You must enter a value for this parameter or the DHCP server
will not start. When the server starts, the DUID is written to the
system log.

""

char *

Allow Rapid Commit
DHCPS6_ALLOW_RAPID_COMMIT
ipdhcps6.server.allow_rapid_commit

If set to "yes", the server allows rapid commits.

"yes"

char *

Table 7-1 DHCP Server Build Configuration Parameters (cont’d)

Workbench Description, Parameter Name, and sysvar
Default Value
& Data Type

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

110

7.2 Assigning Client-specific Authentication Keys

To assign a separate authentication key for a specific clients, based on their client
DUID, use the following routines:

Hop Count Limit
DHCPS6_MAXHOP_COUNT
ipdhcps6.relay.hop_count_limit

(Relay agents only) The maximum number of hops allowed
when forwarding DHCPv6 requests.

"32"

char *

Interface Relay Map List
DHCPS6_IF_RELAY_MAP_LIST
ipdhcps6.relay.map.inInterfaceName

(Relay agents only) For each interface that receives DHCP
messages, this parameter specifies either an outgoing interface
to use for multicasting messages or a unicast destination
address.

The format for a configuration parameter entry is:

"inInterfaceName=[outInterfaceName|destinationAddress]"

Enter interface pairs as a string, with individual entries
separated by semicolons. The following are configuration
parameter examples:

"eth0=eth1"
"eth0=eth1;eth2=2001:DB8:123::2:1"

The following are the equivalent sysvar examples:

sysvar set ipdhcps6.relay.map.eth0 eth1

sysvar set ipdhcps6.relay.map.eth0 eth1
sysvar set ipdhcps6.relay.map.eth2 2001:DB8:123::2:1

""

char *

Table 7-1 DHCP Server Build Configuration Parameters (cont’d)

Workbench Description, Parameter Name, and sysvar
Default Value
& Data Type

7 Wind River DHCPv6: Server and Relay Agent
7.2 Assigning Client-specific Authentication Keys

111

7

ipdhcps6_authdb_create_ll_duid()

/* create a DUID based on link-layer address: section 9.4 RFC3315*/
IP_GLOBAL Ipdhcps6_duid *

ipdhcps6_authdb_create_ll_duid (int len, Ip_u16 hwtype, Ip_u8 * macaddr)

The parameters to this routine are as follows:

len – length of the hardware address (mac address)

hwtype – the hardware type code. Most likely to be 0x1 (ethernet)

macaddr – pointer to a byte string containing the hardware address.

This routine returns a pointer to the newly created DUID structure, or IP_NULL if
the routine fails.

ipdhcps6_authdb_add_client_authkey()

/* associate an authentication key with a specific client */
IP_GLOBAL IP_err

ipdhcps6_authdb_add_client_authkey (Ipdhcps6_duid * client_duid,
Ip_u8 * key, int keylen)

Given a previously created client DUID structure, and a key/key length pair, this
routine creates an entry in the internal authentication database assigning the key
to the given client.

This routine returns IPCOM_SUCCESS if successful, or IPCOM_ERR_FAILED if not.

Example 7-1 Example Code: Assigning an Authentication Key to a Client

The client has an ethernet mac address of 01:02:03:04:05:06, and we wish to assign
a specific authentication key of "this is a secret".

void assign_example (void)
{
Ipdhcps6_duid * client_duid;

Ip_u8 macaddr[] = { 0x1, 0x2, 0x3, 0x4, 0x5, 0x6 };
char * key = "this is a secret";
int keylen = strlen (key);

client_duid = ipdhcps6_authdb_create_ll_duid (6, 0x1, macaddr);
if (IP_NULL == client_duid)

{
LOG_ERROR_SOMEHOW ("couldnt create client duid");
return;
}

NOTE: Currently, len is ignored. ipdhcps6_authdb_create_ll_duid() uses
only the first six bytes of macaddr to identify the client.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

112

if (IPCOM_SUCCESS !=
ipdhcps6_authdb_add_client_authkey (client_duid, (IP_u8 *) key, keylen))

{
LOG_ERROR_SOMEHOW ("could not associate key with client duid");
}

}

The return value from ipdhcps6_authdb_create_ll_duid() is a pointer to a
memory area obtained by a call to ipcom_malloc(). Once you have called
ipdhcps6_authdb_add_client_authkey() to associate the key with the client
DUID in that memory region, you may release this memory area by calling
ipcom_free(). However, you may wish to keep this DUID (and the memory region
that contains it) for a later call to ipdhcps6_authdb_delete_client_authkey().

ipdhcps6_authdb_delete_client_authkey()

/* To delete a specific clients auth key entry */
IP_GLOBAL IP_err

ipdhcps6_authdb_delete_client_authkey (Ipdhcps6_duid *client_duid);

This call deletes any client-specific key associated with the given client DUID.
Returns IPCOM_SUCCESS if successful, IPCOM_ERR_FAILED on failure.

NOTE: This assignment procedure is sufficient for clients that send DUID’s of type
LL (link-layer-address) or LLT (link-layer-address + time). Assigning a
client-specific key to clients which send an EN (enterprise number) type DUID is
currently unsupported (but is planned in a future release).

113

 8
Wind River DHCPv6: Client

8.1 Introduction 113

8.2 Including the DHCPv6 Client in a Build 120

8.3 Using Shell Commands 132

8.1 Introduction

This chapter describes the Wind River DHCPv6 client. For a general overview of
DHCP and DHCPv6, see 3. Wind River DHCP and DHCPv6: Overview.

Client Overview

The Wind River DHCP client runs as a single process that listens to both ICMPv6
router advertisements and routing socket messages. The client sends queries to
DHCP servers to ask for either stateless or stateful information, depending on how
you configure the client. In the case of stateful information, the client periodically
communicates with the server to update configuration information and extend
any existing leases.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

114

8.1.1 Configuring the DHCPv6 Client

You can statically configure a number of client parameters. Most of the static
parameter settings either determine the kind of information that interfaces can
receive or give hints to DHCPv6 servers about the settings the client prefers (see
Build Configuration Parameters, p.120). To display information about configuration
settings and to refresh or release the settings for interfaces, you can use shell
commands (see 8.3 Using Shell Commands, p.132).

Some of the static configuration parameters allow you to specify whether or not an
interface handles specific types of configuration information. A third option is to
specify that an interface operates in automatic mode, as described in the next
section.

Automatic Mode

Router advertisement messages contain an M field, for a Managed address
configuration flag, and an O field, for an Other stateful configuration flag (see
RFC 2461: Neighbor Discovery for IP Version 6). When you set a static build
parameter to automatic, the affected interfaces operate in accord with the M and
O settings in the most recently received router advertisement message. The
settings are interpreted as follows:

■ If the Managed address configuration flag (M) is set, interfaces configure IPv6
addresses using stateful autoconfiguration.

■ If the Other stateful configuration flag (O) is set, interfaces use stateful
autoconfiguration to obtain information other than IPv6 addresses.

If the Managed address configuration flag is set, the Other stateful configuration
flag must also be set. The client cannot use stateful address autoconfiguration
without accepting additional stateful information from a DHCP server.

Assigning Server-specific Authentication Keys

To assign an authentication key to a specific DHCPv6 server, based on its server
DUID, use the following routines:

ipdhcpc6_authdb_create_ll_duid()

/* create a DUID based on link-layer address: section 9.4 RFC3315 */
Ipdhcpc6_duid *

ipdhcpc6_authdb_create_ll_duid (int len, Ip_u16 hwtype, Ip_u8 * macaddr)

The parameters to this routine are as follows:

len – the length of the hardware address (mac address)

8 Wind River DHCPv6: Client
8.1 Introduction

115

8

hwtype – the hardware type code, usually 0x1 (ethernet)

macaddr – a pointer to a byte string containing the hardware address

ipdhcpc6_authdb_create_ll_duid() returns a pointer to the newly created DUID
structure, or IP_NULL if the routine fails.

ipdhcps6_authdb_add_server_authkey()

/* associate an authentication key with a specific server */
Ip_err ipdhcps6_authdb_add_server_authkey (Ipdhcpc6_duid * server_duid,

Ip_u8 * key, int keylen)

Given a previously created server DUID structure, and a key/key length pair, this
routine creates an entry in the internal authentication database assigning the key
to the given server.

This routine returns IPCOM_SUCCESS if successful, or IPCOM_ERR_FAILED if not.

Example 8-1 Assigning an Authentication Key to a Server

In this example, the server has an ethernet mac address of 01:02:03:04:05:06, and we
want to assign a specific authentication key of "this is a secret".

void assign_example (void)
{
Ipdhcpc6_duid * server_duid;

Ip_u8 macaddr[] = { 0x1, 0x2, 0x3, 0x4, 0x5, 0x6 };
char * key = "this is a secret";
int keylen = strlen (key);

server_duid = ipdhcpc6_authdb_create_ll_duid (6, 0x1, macaddr);
if (IP_NULL == client_duid)

{
LOG_ERROR_SOMEHOW ("could not create server duid");
return;
}

if (IPCOM_SUCCESS !=
ipdhcpc6_authdb_add_server_authkey (server_duid, (IP_u8 *) key, keylen))

{
LOG_ERROR_SOMEHOW ("couldnt associate key with server duid");
}

}

NOTE: The len parameter is currently ignored;
ipdhcpc6_authdb_create_ll_duid() uses only the first six bytes of macaddr to
identify the server.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

116

The return value from ipdhcpc6_authdb_create_ll_duid() is a pointer to a
memory area obtained with a call to ipcom_malloc(). After you call
ipdhcpc6_authdb_add_server_authkey() to associate the key with the server
DUID, you may release the memory region containing the DUID by calling
ipcom_free(). However, you may wish to keep it around for a later call to
ipdhcps6_authdb_server_no_auth().

ipdhcps6_authdb_server_no_auth()

/* To delete a specific servers auth key entry */
 Ip_err ipdhcps6_authdb_server_no_auth (Ipdhcps6_duid * client_duid);

This call deletes any server-specific key associated with the given server DUID,
then returns IPCOM_SUCCESS if successful, or IPCOM_ERR_FAILED otherwise.

Run-time Configuration of the DHCPv6 Authentication Parameters

A DHCPV6-enabled device will probably need to configure itself in the field, after
manufacture. If you set the DHCPC6_AUTHENTICATION_REALM configuration
parameter to anything other than the default setting (""), the DHCPV6 client task
will block on startup, waiting for this run-time configuration to take place. This
blocking behavior does not occur if you set DHCPC6_AUTHENTICATION_REALM
to the default ("").

After a device completes such configuration, it must call
ipdhcpc6_user_authdb_config_finished() to notify the DHCPV6 client that
configuration is complete. Only then will the DHCPV6 client become operational.

Write a routine to do this run-time configuration, and invoke this routine at device
startup, for instance, from usrAppInit().

The simplest run-time configuration routine (which does nothing except to notify
the DHCPV6 client that it can go ahead and start up) would be the following:

extern void ipdhcpc6_user_authdb_config_finished (void);
runtimeConfigureDHCPV6auth (void)

{
ipdhcpc6_user_authdb_config_finished ();
}

A device that needs to configure authentication parameters, but does not have any
information about its configuration available at kernel configuration time, must set

NOTE: This assignment procedure is sufficient for servers that send DUIDs of type
LL (link-layer-address) or LLT (link-layer-address + time). Assigning a
server-specific key to servers that send an EN (enterprise number) type DUID is
currently not supported.

8 Wind River DHCPv6: Client
8.1 Introduction

117

8

the DHCPC6_AUTHENTICATION_REALM kernel configuration parameter to some
non-empty-string value, such as "yes", and then provide a runtime configuration
routine that configures the device at startup using values obtained from the end
user, NVRAM storage, and so forth.

Call the following routines to configure the authentication parameters:

Ip_err ipdhcpc6_set_auth_realm (int len, Ip_u8 * realm);

Set the authentication realm for the DHCPV6 client. This overwrites the
DHCPC6_AUTHENTICATION_REALM configuration parameter.

Parameters:

len – the length of the byte string pointed to by the realm parameter.

realm – a pointer to the realm string. It does not need to be null-terminated.

This routine returns IPCOM_SUCCESS if successful, or IPCOM_ERR_FAILED if
the supplied realm length is too large.

The DHCPC6_AUTHENTICATION_REALM parameter is limited to 128 bytes.

Ip_err ipdhcpc6_set_default_auth_key (int len, Ip_u8 * key);

Set the default authentication key for the DHCPV6 client. This overwrites the
DHCPC6_HMAC_MD5_SECRET configuration parameter.

Parameters:

len – the length of the byte string pointed to by the realm parameter. The key
length is limited to 64 bytes.

key – a pointer to the authentication key, supplied as a raw byte sequence. It
may contain null bytes.

This routine returns IPCOM_SUCCESS if successful, or IPCOM_ERR_FAILED if
the supplied key is too large.

Ipdhcpc6_duid * ipdhcpc6_authdb_create_ll_duid
(int len, Ip_u16 hwtype, Ip_u8 * macaddr)

Ip_err ipdhcps6_authdb_add_server_authkey
(Ipdhcpc6_duid * server_duid, Ip_u8 * key, int keylen)

These two routines are described in Assigning Server-specific Authentication
Keys, p.114.

void ipdhcpc6_user_authdb_config_finished (void);

Call this routine to notify the DHCPV6 client that initial run-time
configuration is complete, and so the DHCPV6 client may start.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

118

Initializing the client replay-detection counters

DHCPV6 authentication incorporates an anti-replay mechanism to protect against
replay attacks. Each client/server pair maintains an 8-byte counter which must
monotonically increase with each DHCPV6 message sent. This can be problematic
if a client has previously established a session with a given server, and then
experiences a reboot. Unless the client has some way of initializing the starting
value of this counter to a value greater than its value before it rebooted, it may be
refused authenticated service with that server.

Wind River recommends that you tie the replay counter to the time in some
fashion. Some DHCPV6 clients and servers use an NTP format timestamp as their
anti-replay counter. If your target environment has a time/date reference available
to it, or a number-of-reboots counter, or something of this sort, Wind River
recommends that you use that information at start up to initialize the anti-replay
counter. Use the following routine to set the anti-replay counter:

IP_GLOBAL void ipdhcpc6_set_replay_counters (Ip_u32 high, Ip_u32 low);

■ high –upper 4 bytes of the anti-replay counter

■ low – lower 4 bytes of the anti-replay counter

You can obtain the current value of the replay counter at any time by calling the
following routine:

IP_GLOBAL void ipdhcpc6_get_replay_counters (Ip_u32 *high, Ip_u32 *low);

■ high – pointer to location where upper 4 bytes of the anti-replay counter
will be written

■ low – pointer to location where lower 4 bytes of the anti-replay counter
will be written

8.1.2 Conformance to Standards

RFC 3315: Dynamic Host Configuration Protocol for IPv6, is the primary specification
of DHCP for IPv6, although a number of other RFCs are also relevant to the
implementation of a DHCPv6 client.

Implementation of RFC 3315, Dynamic Host Configuration Protocol for IPv6

The Wind River DHCPv6 client implements the client portions of RFC 3315, with
the following exceptions:

8 Wind River DHCPv6: Client
8.1 Introduction

119

8

■ Reconfigure messages

The Wind River DHCPv6 client does not include Reconfigure messages.
Reconfigure messages are described in RFC 3315, section 5.3, “DHCP Message
Types.” This means the Reconfiguration options OPTION_RECONF_MSG and
OPTION_RECONF_ACCEPT do not work.

■ Vendor or user-defined options

The Wind River DHCPv6 client does not allow vendor- or user-defined
configuration options. This means the following options do not work:
OPTION_USER_CLASS, OPTION_VENDOR_CLASS, and
OPTION_VENDOR_OPTS.

■ Temporary address assignments

The Wind River DHCPv6 client does not include the assignment of temporary
addresses, as described in RFC 3041: Privacy Extensions for Stateless Address
Autoconfiguration in IPv6.

DHCPv6 Configuration Options Implemented by the Wind River DHCPv6 Client

The Wind River DHCPv6 client implements all configuration options in the
following RFCs:

■ RFC 3646: DNS Configuration options for Dynamic Host Configuration Protocol for
IPv6

■ RFC 4075: Simple Network Time Protocol (SNTP) Configuration Option for
DHCPv6

■ RFC 4242: Information Refresh Time Option for Dynamic Host Configuration
Protocol for IPv6

The Wind River DHCPv6 client does not include vendor-specific and user-defined
configuration options or configuration options contained in RFCs that are not
listed here.

Stateless DHCP Configuration

The DHCPv6 client implements all client-relevant features of RFC 3736: Stateless
Dynamic Host Configuration Protocol (DHCP) Service for IPv6.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

120

8.2 Including the DHCPv6 Client in a Build

To include the DHCPv6 client in a VxWorks build, include the DHCP6 Client
(INCLUDE_IPDHCPC6) build component.

Build Configuration Parameters

The DHCP6 Client (INCLUDE_IPDHCPC6) build component provides a number of
configuration parameters. Table 8-1 lists and describes each parameter. See
3.1.3 Build Configuration Parameters and sysvars, p.46 for more information on
setting these parameters.

8 Wind River DHCPv6: Client
8.2 Including the DHCPv6 Client in a Build

121

8

Table 8-1 DHCPv6 Client Build Parameters

Workbench Description, Parameter Name, and sysvar
Default Value
& Data Type

Workbench description: none
DHCPC6_AUTHENTICATION_REALM
sysvar: none

The Authentication Realm as described in section 21.4.1 of RFC 3315.

This parameter, in addition to setting the DHCPV6 authentication realm, also
controls whether the DHCPv6 client will generate DHCPv6 requests asking for
authenticated DHCPv6 service. If you leave this parameter in its default value of
"" the server will not do authenticated exchanges. Set this parameter to anything
other than "" to turn on the authentication capability.

The authentication realm is size limited to 128 bytes.

See Run-time Configuration of the DHCPv6 Authentication Parameters, p.116 for
more details.

""

char *

Workbench description: none
DHCPC6_HMAC_MD5_SECRET
sysvar: none

The default authentication key that the client will use for message
authentication, if you configure the client for authenticated DHCPv6 operation
and it receives a message from a server for which you have not configured a
specific key. (To learn how to assign a key to a server, see Assigning Server-specific
Authentication Keys, p.114.)

Specify the key as an ASCII string, starting with the prefix "0x" and followed by
an even number of hexadecimal digits, for example: "0x0123456789abcdef". The
string length that you can give in the kernel configurator is limited to 130 bytes,
which translates to a key length of up to 64 bytes.

If you leave this parameter at its default value of "", the client will use only those
replies from servers to which the client has a specific key mapped for DHCPv6
exchanges.

See Run-time Configuration of the DHCPv6 Authentication Parameters, p.116 for
more details.

""

char *

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

122

DUID Type
DHCPC6_DUID_TYPE
ipdhcpc6.duid.type

The type of DHCP Unique ID (DUID) the client uses. The possible values are:

■ "ll" (link-layer)
■ "llt" (link-layer plus timestamp)
■ "en" (enterprise)

"ll"

char *

DUID Interface
DHCPC6_DUID_IF
ipdhcpc6.duid.if

For ll and llt DUIDs, the interface whose link-layer address the client is to use,
for example: "eth0". If you do not specify an interface, the client selects the first
DHCP-enabled interface it finds.

""

char *

DUID EN Number
DHCPC6_DUID_EN_NUM
ipdhcpc6.duid.en.number

For en DUIDs, the enterprise number to use when the client generates a DUID.
If you set this value, you must make sure that no value is set for the DUID EN
Value (DHCPC6_DUID_EN_VAL) parameter (see the next table entry).

"10000"

char *

DUID EN Value
DHCPC6_DUID_EN_VAL
ipdhcpc6.duid.value

For en DUIDs, the enterprise value to use when the client generates a DUID. If
you set this value, you must make sure that no value is set for the DUID EN
Number (DHCPC6_DUID_EN_NUM) parameter (see the preceding table entry).

The value entered for this parameter must be a string, but the string can contain
a hexadecimal value. Each of the following are valid entries:

"0xabcdef"
"duid123"

"0xabcdef"

char *

Table 8-1 DHCPv6 Client Build Parameters (cont’d)

Workbench Description, Parameter Name, and sysvar
Default Value
& Data Type

8 Wind River DHCPv6: Client
8.2 Including the DHCPv6 Client in a Build

123

8

Interface Status List
DHCPC6_IF_ENUM_LIST
ipdhcpc6.if.enum.interfaceName="status"

Whether or not individual interfaces are enabled for DHCP. For each interface,
enter one of the following values: "enable", "disable", or "automatic". For the
interpretation of "automatic", see Automatic Mode, p.114.

The following are configuration parameter examples:

"eth0=automatic"
"eth0=automatic;eth1=enable"

The following are the equivalent sysvar examples:

sysvar set ipdhcpc6.enum.eth0 automatic

sysvar set ipdhcpc6.enum.eth0 automatic
sysvar set ipdhcpc6.enum.eth1 enable

""

char *

Interface Rapid Commit Status List
DHCPC6_IF_RAPID_COMMIT_LIST
ipdhcpc6.if.interfaceName.rapid_commit="status"

Determines whether individual interfaces can use the DHCPv6 Rapid Commit
option. For each interface, enter either "enable" or "disable".

The following are configuration parameter examples:

"eth0=enable"
"eth0=enable;eth1=enable"

The following are the equivalent sysvar examples:

sysvar set ipdhcpc6.if.eth0.rapid_commit enable

sysvar set ipdhcpc6.if.eth0.rapid_commit enable
sysvar set ipdhcpc6.if.eth1.rapid_commit enable

""

char *

Table 8-1 DHCPv6 Client Build Parameters (cont’d)

Workbench Description, Parameter Name, and sysvar
Default Value
& Data Type

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

124

Interface Information Only Status List
DHCPC6_IF_INFORMATION_ONLY_LIST
ipdhcpc6.if.interfaceName.information_only="status"

Whether or not an interface only requests stateless information. For each
interface, enter either "enable" or "disable".

The following are configuration parameter examples:

"eth0=enable"
"eth0=enable;eth1=enable"

The following are the equivalent sysvar examples:

sysvar set ipdhcpc6.if.eth0.information_only enable

sysvar set ipdhcpc6.if.eth0.information_only enable
sysvar set ipdhcpc6.if.eth1.information_only enable

""

char *

Interface DNS Status List
DHCPC6_IF_DNS_LIST
ipdhcpc6.if.interfaceName.dns="status"

For interfaces that are able to receive stateless information, whether or not an
individual interface can request information about DNS servers and Domain
Search Lists. For each interface, enter either "enable" or "disable".

The following are configuration parameter examples:

"eth0=enable"
"eth0=enable;eth1=enable"

The following are the equivalent sysvar examples:

sysvar set ipdhcpc6.if.eth0.dns enable

sysvar set ipdhcpc6.if.eth0.dns enable
sysvar set ipdhcpc6.if.eth1.dns enable

""

char *

Table 8-1 DHCPv6 Client Build Parameters (cont’d)

Workbench Description, Parameter Name, and sysvar
Default Value
& Data Type

8 Wind River DHCPv6: Client
8.2 Including the DHCPv6 Client in a Build

125

8

Interface SNTP Status List
DHCPC6_IF_SNTP_LIST
ipdhcpc6.if.interfaceName.sntp="status"

For interfaces that are able to receive stateless information, whether or not an
individual interface can request information about available SNTP (Simple
Network Time Protocol) servers. For each interface, enter either "enable" or
"disable".

The following are configuration parameter examples:

"eth0=enable"
"eth0=enable;eth1=enable"

The following are the equivalent sysvar examples:

sysvar set ipdhcpc6.if.eth0.sntp enable

sysvar set ipdhcpc6.if.eth0.sntp enable
sysvar set ipdhcpc6.if.eth1.sntp enable

""

char *

Interface Information Refresh Status List
DHCPC6_IF_INFO_REFRESH_LIST
ipdhcpc6.if.interfaceName.information_refresh="status"

For interfaces that are able to receive stateless information, whether or not an
individual interface requests a refresh time-interval from the DHCP server. The
client uses the time-interval to determine how often it needs to refresh its
stateless information. For each interface, enter either "enable" or "disable".

The following are configuration parameter examples:

"eth0=enable"
"eth0=enable;eth1=enable"

The following are the equivalent sysvar examples:

sysvar set ipdhcpc6.if.eth0.information_refresh enable

sysvar set ipdhcpc6.if.eth0.information_refresh enable
sysvar set ipdhcpc6.if.eth1.information_refresh enable

""

char *

Table 8-1 DHCPv6 Client Build Parameters (cont’d)

Workbench Description, Parameter Name, and sysvar
Default Value
& Data Type

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

126

Interface Information Refresh Status List
DHCPC6_IF_INFO_REFRESH_MIN_LIST
ipdhcpc6.if.interfaceName.information_refresh.minimum="time"

For interfaces that are able to receive stateless information, the minimum time
interval, in seconds, for a client to use in refreshing stateless information.

The following are configuration parameter examples:

"eth0=900"
"eth0=900;vlan21=1200"

The following are the equivalent sysvar examples:

sysvar set ipdhcpc6.if.eth0.information_refresh.minimum 900

sysvar set ipdhcpc6.if.eth0.information_refresh.minimum 900
sysvar set ipdhcpc6.if.vlan21.information_refresh.minimum 1200

""

char *

Interface Information Refresh Status List
DHCPC6_IF_INFO_REFRESH_DEFAULT_LIST
ipdhcpc6.if.interfaceName.information_refresh.default="time"

For interfaces that are able to receive stateless information, the default time
interval, in seconds, for a client to use in refreshing stateless information.

The following are configuration parameter examples:

"eth0=43200"
"eth0=43200;eth1=129600"

The following are the equivalent sysvar examples:

sysvar set ipdhcpc6.if.eth0.information_refresh.default 43200

sysvar set ipdhcpc6.if.eth0.information_refresh.default 43200
sysvar set ipdhcpc6.if.eth1.information_refresh.default 129600

""

char *

Table 8-1 DHCPv6 Client Build Parameters (cont’d)

Workbench Description, Parameter Name, and sysvar
Default Value
& Data Type

8 Wind River DHCPv6: Client
8.2 Including the DHCPv6 Client in a Build

127

8

Interface Information Refresh Status List
DHCPC6_IF_INFO_REFRESH_MAX_LIST
ipdhcpc6.if.interfaceName.information_refresh.maximum="time"

For interfaces that are able to receive stateless information, the maximum time
interval, in seconds, for a client to wait before refreshing stateless information. If
no value is entered for an interface, there is no time limit on the interface.

The following are configuration parameter examples:

"eth0=1728400"
"eth0=1728400;eth1=1728400"

The following are the equivalent sysvar examples:

sysvar set ipdhcpc6.if.eth0.information_refresh.maximum 1728400

sysvar set ipdhcpc6.if.eth0.information_refresh.maximum 1728400
sysvar set ipdhcpc6.if.eth1.information_refresh.maximum 1728400

""

char *

Interface IA_NA Default List
DHCPC6_IF_IA_NA_DEFAULT_LIST
ipdhcpc6.if.interfaceName.ia_na.enum.default="status"

For interfaces that are able to receive stateful information, whether or not an
individual interface is part of the default IANA.

The Wind River Network Stack allows only one default Identity Association for
Non-temporary Addresses (IANA) when you configure it statically. You can
dynamically configure other IANAs.

For each interface, enter either "enable" (meaning that the interface uses the
default IANA) or "disable" (meaning that the default IANA is disabled, though
you may still retrieve stateless information). The following are configuration
parameter examples:

"eth0=enable"
"eth0=enable;eth1=enable"

The following are the equivalent sysvar examples:

sysvar set ipdhcpc6.if.eth0.ia_na.enum.default enable

sysvar set ipdhcpc6.if.eth0.ia_na.enum.default enable
sysvar set ipdhcpc6.if.eth1.ia_na.enum.default enable

""

char *

Table 8-1 DHCPv6 Client Build Parameters (cont’d)

Workbench Description, Parameter Name, and sysvar
Default Value
& Data Type

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

128

Interface IAID List
DHCPC6_IF_IA_NA_DEFAULT_IAID_LIST
ipdhcpc6.if.interfaceName.ia_na.default.iaid="iaid"

This parameter assigns an Identity Association ID (IAID) to individual interfaces
that are part of the default IANA. The IAID for each interface must be unique
among all IAIDs for IANAs.

For each interface, enter the interface name and IAID. The following are
configuration parameter examples:

"eth0=1"
"eth0=1;eth1=2;vlan21=3"

The following are the equivalent sysvar examples:

sysvar set ipdhcpc6.if.eth0.ia_na.default.iaid 1

sysvar set ipdhcpc6.if.eth0.ia_na.default.iaid 1
sysvar set ipdhcpc6.if.eth1.ia_na.default.iaid 2
sysvar set ipdhcpc6.if.vlan21.ia_na.default.iaid 3

""

char *

Interface Default Hints Status List
DHCPC6_IF_HINTS_DEFAULT_ENUM_LIST
ipdhcpc6.if.interfaceName.ia_na.default.hints.enum.default="status"

For interfaces belonging to the default IANA, which interfaces can send hints to
the DHCP server for preferred prefixes and timeout intervals.

For each interface, enter either "enable" or "disable". The following are
configuration parameter examples:

"eth0=enable"
"eth0=enable;vlan2=disable"

The following are the equivalent sysvar examples:

sysvar set ipdhcpc6.if.eth0.ia_na.default.hints.enum.default enable

sysvar set ipdhcpc6.if.eth0.ia_na.default.hints.enum.default enable
sysvar set ipdhcpc6.if.vlan2.ia_na.default.hints.enum.default disable

""

char *

Table 8-1 DHCPv6 Client Build Parameters (cont’d)

Workbench Description, Parameter Name, and sysvar
Default Value
& Data Type

8 Wind River DHCPv6: Client
8.2 Including the DHCPv6 Client in a Build

129

8

Interface Prefix Hints List
DHCPC6_IF_HINTS_DEFAULT_PREFIX_LIST
ipdhcpc6.if.interfaceName.ia_na.default.hints.default.prefix="prefix"

For interfaces that can send hints (see the table entry for Interface Default Hints
Status List), the preferred prefix for individual interfaces.

For each interface, enter the interface name and the preferred prefix. The
following are configuration parameter examples:

"eth0=2001:DB8::"
"eth0=2001:DB8::;eth1=2001:DB8:02::"

The following are the equivalent sysvar examples:

sysvar set ipdhcpc6.if.eth0.ia_na.default.hints.default.prefix 2001:DB8::

sysvar set ipdhcpc6.if.eth0.ia_na.default.hints.default.prefix 2001:DB8::
sysvar set ipdhcpc6.if.eth1.ia_na.default.hints.default.prefix 2001:DB8:02::

""

char *

Interface Hints Valid List
DHCPC6_IF_HINTS_DEFAULT_VALID_LIST
ipdhcpc6.if.interfaceName.ia_na.default.hints.default.valid="time"

For interfaces that can send hints (see the table entry for Interface Default Hints
Status List), the valid lifetime (see RFC 2462) that an individual interface wants
the server to assign to IPv6 addresses.

For each interface, enter the interface name and a lifetime. The lifetime specified
for an interface must be greater than or equal to the interface’s preferred lifetime
(see the table entry for Interface Preferred List). The following are configuration
parameter examples:

"eth0=6000"
"eth0=6000;eth1=5000;vlan21=7000"

The following are the equivalent sysvar examples:

sysvar set ipdhcpc6.if.eth0.ia_na.default.hints.default.valid 6000

sysvar set ipdhcpc6.if.eth0.ia_na.default.hints.default.valid 6000
sysvar set ipdhcpc6.if.eth1.ia_na.default.hints.default.valid 5000
sysvar set ipdhcpc6.if.vlan21.ia_na.default.hints.default.valid 7000

""

char *

Table 8-1 DHCPv6 Client Build Parameters (cont’d)

Workbench Description, Parameter Name, and sysvar
Default Value
& Data Type

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

130

Interface Preferred List
DHCPC6_IF_HINTS_DEFAULT_PREFERRED_LIST
ipdhcpc6.if.interfaceName.ia_na.default.hints.default.preferred="time"

For interfaces that can send hints (see the table entry for Interface Default Hints
Status List), the preferred lifetime (see RFC 2462) that an individual interface
wants the server to assign to IPv6 addresses.

For each interface, enter the interface name and a preferred lifetime, in seconds.
The preferred lifetime specified for an interface must be less than or equal to the
interface’s valid lifetime (see the table entry for Interface Hints Valid List). The
following are configuration parameter examples:

"eth0=7000"
"eth0=7000;eth1=6000;vlan21=8000"

The following are the equivalent sysvar examples:

sysvar set ipdhcpc6.if.eth0.ia_na.default.hints.default.preferred 7000

sysvar set ipdhcpc6.if.eth0.ia_na.default.hints.default.preferred 7000
sysvar set ipdhcpc6.if.eth1.ia_na.default.hints.default.preferred 5000
sysvar set ipdhcpc6.if.vlan21.ia_na.default.hints.default.preferred 8000

""

char *

Table 8-1 DHCPv6 Client Build Parameters (cont’d)

Workbench Description, Parameter Name, and sysvar
Default Value
& Data Type

8 Wind River DHCPv6: Client
8.2 Including the DHCPv6 Client in a Build

131

8

Interface Renew List
DHCPC6_IF_HINTS_DEFAULT_RENEW_LIST
ipdhcpc6.if.interfaceName.ia_na.default.hints.renew="time"

For interfaces that can send hints (see the table entry for Interface Default Hints
Status List), the amount of time individual interfaces want the server to add to
their valid and preferred lifetimes before the server requires address renewal.

For each interface, enter the interface name and a renewal extension time, in
seconds. The following are configuration parameter examples:

"eth0=7000"
"eth0=7000;eth1=6000;vlan21=8000"

The following are the equivalent sysvar examples:

sysvar set ipdhcpc6.if.eth0.ia_na.default.hints.renew 7000

sysvar set ipdhcpc6.if.eth0.ia_na.default.hints.renew 7000
sysvar set ipdhcpc6.if.eth1.ia_na.default.hints.renew 6000
sysvar set ipdhcpc6.if.vlan21.ia_na.default.hints.renew 8000

""

char *

DHCPC Client Interface Rebind List
DHCPC6_IF_HINTS_DEFAULT_REBIND_LIST
ipdhcpc6.if.interfaceName.ia_na.default.hints.rebind="time"

For interfaces that can send hints (see the table entry for Interface Default Hints
Status List), a desired rebind time for individual interfaces. The rebind time is
similar to the renewal extension time (see the table entry for Interface Renew
List), but applies only when the client has sent a Renew message without
receiving a response (see RFC 3315).

For each interface, enter the interface name and a rebind time, in seconds. The
following are configuration parameter examples:

"eth0=7000"
"eth0=7000;eth1=6000;vlan21=8000"

The following are the equivalent sysvar examples:

sysvar set ipdhcpc6.if.eth0.ia_na.default.hints.rebind 7000

sysvar set ipdhcpc6.if.eth0.ia_na.default.hints.rebind 7000
sysvar set ipdhcpc6.if.eth1.ia_na.default.hints.rebind 6000
sysvar set ipdhcpc6.if.vlan21.ia_na.default.hints.rebind 8000

""

char *

Table 8-1 DHCPv6 Client Build Parameters (cont’d)

Workbench Description, Parameter Name, and sysvar
Default Value
& Data Type

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

132

8.3 Using Shell Commands

You can use shell commands to do the following:

■ View the current configuration of client interfaces.
■ Refresh the configuration of client interfaces.
■ Release the current configuration of client interfaces.

All DHCPv6 client shell commands start with the key word dhcpc6 and have the
form:

dhcpc6 [-v] command [interfaceName [iana [ianaName]]]

The parameters are as follows:

■ -v turns on verbose reporting.

■ command is one of the shell commands described below.

If the command is not followed by an interface specification, the command
applies to all interfaces.

■ interfaceName, if specified, is the name of an interface to which the
command applies.

■ iana, if specified, means that the command applies only to the
non-temporary identity associations (IANAs) bound to the specified
interface.

■ ianaName, if specified, is the name of the IANA to which the command
applies.

The individual commands are as follows:

dhcpc6 show

Show the current configuration of all DHCPv6 interfaces or of a specified
interface. For example, to show the configuration of interface eth0, with
verbose reporting turned on, enter:

-> dhcpc6 -v show eth0

The following is sample output from a dhcpc6 show command:

-> dhcpc6 show vlan100 ia_na default
Interpeak DHCPv6 Client:
DUID : 06:30:00:10:00:00:00:00:00:02
Interface: vlan100
Mode : enabled
Link State : up
Non-Temporary Identity Association default, 1:
Status : bound/idle

8 Wind River DHCPv6: Client
8.3 Using Shell Commands

133

8

Binding:
DHCP Server : 2001:DB8::200:FF:FE00:3
Renew/Rebind: 10/16
Lease : 2001:DB8:2::D/64 preferred 20 valid 40

dhcpc6 history show

Show the history of all DHCPv6 interfaces or of a specified interface. For
example, to show the history of all client interfaces, enter:

-> dhcpc6 history show

The following is sample output from this shell command:

-> dhcpc6 history show vlan100 ia_na default
Interpeak DHCPv6 Client:
DUID : 06:30:00:10:00:00:00:00:00:02
Interface: vlan100
Non-Temporary Identity Association default, 1:
History(6):
Sun Feb 18 21:32:11 2007: solicit/idle
Sun Feb 18 21:32:11 2007: solicit/solicit
Sun Feb 18 21:32:11 2007: solicit/soliciting
Sun Feb 18 21:32:14 2007: solicit/request
Sun Feb 18 21:32:14 2007: solicit/requesting
Sun Feb 18 21:32:14 2007: bound/idle

dhcpc6 history flush

Delete the history of all DHCPv6 interfaces or of a specified interface. The
following example deletes the history of the default IANA on interface
vlan100:

-> dhcpc6 history flush vlan100 ia_na default

dhcpc6 refresh

Request confirmation of current configuration information. If confirmation is
not received, the command tries to acquire information from the network. The
following example requests confirmation of non-temporary information on
interface eth0, restricted to the default IANA.

-> dhcpc6 refresh eth0 ia_na default

dhcpc6 release

Releases current configuration information for all interfaces or for a specified
interface. For example, to release all configuration information, enter:

-> dhcpc6 release

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

134

135

 9
Creating Network Applications

as RTPs

9.1 Introduction 135

9.2 Running Network Applications in RTPs 136

9.3 Working with Application RTPs 137

9.4 Using Socket Connections with RTPs 142

9.1 Introduction

A Real Time Process (RTP) is one that runs in isolation from the VxWorks kernel,
with its own symbol namespace and memory region.

VxWorks once only allowed kernel execution mode. Both user applications and
central functionality, such as that provided by the network stack, ran in the same
memory space. Now VxWorks has an RTP mode in addition to kernel mode. This
RTP mode is based on RTP Executable and Linking Format (ELF) object files. These
object files are fully-linked, relocatable executables with full name space isolation.
Using an RTP ELF object, you can isolate an application from the kernel and from
applications running in other RTPs. This isolation of an application to an RTP ELF
object allows for memory protection.

You do not have to run an application as an RTP. You can still run it in the kernel.
You are also free to run some applications in the kernel while others execute as
RTPs.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

136

The core network stack functionality, which consists of fundamental networking
protocols such as IP, TCP, UDP, the network interface drivers, and the MUX
functionality, runs in the kernel only. If your network application relies on direct
access to that functionality, it cannot be written as an RTP.

The standard socket APIs and the routing socket APIs are available to RTPs. If your
application limits (or can limit) its interaction with the network stack to standard
or routing socket API calls, your application is a good candidate to run in an RTP.

This chapter shows how to modify an existing network application to run as an
RTP. This chapter also shows how RTPs can use sockets.

For more information on RTPs, and on RTP projects in Workbench, see the Wind
River Workbench User’s Guide.

9.2 Running Network Applications in RTPs

Many network applications use a client/server model. The server side of the
application is typically implemented as a daemon that runs in the context of its
own independent task. The client side of the application is typically implemented
as a library whose routines execute in the context of the caller.

The network stack includes a sample implementation of a ping client as an RTP, in
the form of a .vxe file.

Running Ping in an RTP

To load the ping.vxe RTP, call rtpSp(). From a kernel shell, cd to the directory
containing the ping.vxe and issue the following command:

-> rtpSp "ping.vxe remoteSystem numberOfPackets options"

ping.vxe initializes the ping library, handles the ping request for the requested
number of packets, and exits. When ping exits, this shuts down the RTP. If you
specify a continuous ping (a ping with a numberOfPackets value of 0), ping runs
forever, or until you shut it down explicitly.

9 Creating Network Applications as RTPs
9.3 Working with Application RTPs

137

9

9.2.1 General Network/RTP Incompatibilities

Core network stack protocols such as IP, TCP, UDP, and the like run in kernel
space only, although RTPs may access them through socket connections and
sysctl() calls.

The MUX functionality and network interface drivers also run in kernel space
only. If you want to launch and configure a network interface, do so within the
kernel space. RTPs cannot create and configure network interfaces.

You can call most network show and configuration utilities from kernel space
only. The exception is the sysctl() routine, which RTPs may call.

Because of the isolation of an RTP memory space, RTPs cannot supply callback
routines to kernel-resident network protocols and services. A pointer to a routine
in an RTP memory space is meaningless in the kernel memory space.

9.3 Working with Application RTPs

All applications, whether running in the kernel or as RTPs, can communicate with
each other using AF_LOCAL sockets. In addition, RTP-based applications can
access kernel-resident services using sysctl() or system calls. If you add a new
kernel-resident service, you can extend the set of system calls to include that
service.

The following sections give an overview of how to work with RTPs. Included are
brief discussions of how to write, build, and launch an RTP. More information is
available in the VxWorks Programmer’s Guide.

9.3.1 Building an RTP ELF Object File for a Network Application

This section describes how to write and build a “Hello World” application to run
as an RTP. Although “Hello World” is not particularly representative of a network
application, porting “Hello World” to an RTP demonstrates the most basic
mechanics of creating an RTP.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

138

Example 9-1 Writing the Code for a “Hello World” RTP

Consider the “Hello World” C program:

int main
(
int argc, /* number of arguments */
char * argv[], /* array of arguments */
)
{

printf ("hello world\n");
return 0;

}

To create an RTP that uses this main(), you need to change it slightly to accept all
the inputs provided when an RTP executes its main().

int main
(
int argc, /* number of arguments */
char * argv[], /* array of arguments */
char * envp[], /* array of environment strings */
void * auxp /* implementation-specific auxiliary vector */
)
{

printf ("hello world\n");
return 0;

}

The argc and argv parameters serve their traditional function of passing in a count
of caller arguments as well as an array containing the arguments themselves. You
can use envp and auxp parameters to pass in whatever additional information
your RTP needs at run-time to configure its environment or any auxiliary
implementation-specific need.

Example 9-2 Building the Code for a “Hello World” RTP

To build the code given in Example 9-1 as an RTP ELF object file, you need a
makefile with the following basic format:

Makefile - makefile for hello world example RTP
#
DESCRIPTION
This file contains the makefile rules for building an example RTP

EXE = helloworld.vxe
OBJS = mainHello.o
include $(WIND_USR)/make/rules.rtp

This makefile assumes that the “Hello World” main() is defined in a file called
helloworld.c. To build the helloworld.vxe, you would run the following make:

$ make CPU=cpuType TOOL=toolChain

9 Creating Network Applications as RTPs
9.3 Working with Application RTPs

139

9

where:

cpuType is a valid CPU type, such as PPC32.

toolChain is a value such as diab or gnu

Setting up Pre-Entry-Point Initialization Routines

What if “Hello World” were not written to print the message but to use a
customized service to transmit the message over the Internet? Such services
typically require some initialization that must complete before an application can
use the service. Some libraries can instruct the system to automatically call their
initialization routine by converting their initialization routine into an RTP
constructor. For more information, see 9.3.3 Identifying the RTP Constructor Routine
in a Library, p.140.

Some utilities and services have initialization routines that must obtain
information at run-time (for instance, the IP address of a server). Such initialization
routines cannot be converted into RTP constructors. If your utility or service has
this sort of initialization routine, write your RTP main() to call the initialization
routine directly.

9.3.2 Launching an RTP

There are several ways to launch an RTP. From a kernel shell, you can use rtpSp():

-> rtpSp "ELFobjectFile [arg1 [...arg20]]"

For example:

-> rtpSp "path/ping.vxe remoteSystem numberOfPackets options"

If you use the command interpreter, you can omit the explicit call to rtpSp(). For
example:

path/ping.vxe remoteSystem numberOfPackets options

Alternatively, you can use rtpSpawn(), which is called internally by rtpSp().
rtpSpawn() gives you fine-grain control of RTP creation: It lets you specify the
main() task priority, its stack size, and supplemental data that the RTP can use to
configure its environment and the application it runs. Within an rtpSp() call, the
task priority is set to 220, and the stack size set to 40K bytes. If these default values
are not appropriate for your RTP, call rtpSpawn() instead. rtpSpawn() is a system
call and can be called from outside the kernel.

NOTE: The rtpSp() utility works in the kernel shell only, not the host shell.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

140

Calling rtpSpawn()

Because rtpSpawn() is implemented in the kernel as a system call, you can call it
from code running either in the kernel or in a previously launched RTP.
rtpSpawn() validates and then loads the RTP object file. The RTP then executes all
the initialization routines for libraries that the RTP references. Within each library,
the _WRS_CONSTRUCTOR attribute indicates the RTP initialization routine for the
library.

After validating, loading, and initializing the RTP, rtpSpawn() launches it as an
autonomous task. The task routine for this task is the main() provided by the RTP
ELF object file, named in the rtpFileName parameter to rtpSpawn(). Barring an
external shutdown, the life span of an RTP continues until any task within the RTP
calls exit() or until execution reaches the end brace of the RTP’s main().

Within the RTP main(), use the standard taskSpawn() and taskCreate() routines
to launch any additional tasks your application requires. These tasks run in the
context of the RTP and cannot survive the expiration of the RTP. Write these tasks
so that they shut themselves down with taskExit(), since this routine ends only the
task that calls it. A task that calls exit() from within an RTP shuts down the entire
RTP and all of its tasks.

9.3.3 Identifying the RTP Constructor Routine in a Library

If an RTP references any libraries in its main() routine, either directly or indirectly,
when the RTP first launches (after rtpSpawn() validates it) it runs the constructor
routines for those libraries. When the RTP is built, the system automatically
generates this list of constructor routines by processing the libraries that the RTP
references and making note of those library routines that are marked with the
_WRS_CONSTRUCTOR attribute. When you launch the RTP, the system calls each
of these constructor routines in an order that is determined by the priority in their
_WRS_CONSTRUCTOR attribute.

After these constructor routines return successfully, the RTP executes the RTP’s
main().

If you have written a library whose initialization routine you want the system to
call automatically as an RTP constructor, the syntax is as follows:

NOTE: Initialization routines that require run-time input cannot be RTP
constructors. You must call such initialization routines from the RTP main() or
from a child task launched from the RTP’s main().

9 Creating Network Applications as RTPs
9.3 Working with Application RTPs

141

9

_WRS_CONSTRUCTOR (functionName, priority)

functionName
The name of the initialization routine.

priority
Determines the execution order of the initialization routines for an RTP.
The lower the priority value, the higher the priority given to the routine.
For example, an initialization routine with a priority of 10 executes before
an initialization routine with a priority of 20. If two initialization routines
have the same priority, the execution order of those same-priority routines
is arbitrary. If one routine must execute before another, adjust the priority
values appropriately.

For an example of how to use _WRS_CONSTRUCTOR, consider the hypothetical
initialization routine, myLibInit():

STATUS myLibInit (void)
{
...
}

To make this initialization routine behave as an RTP constructor routine, rewrite its
declaration using the _WRS_CONSTRUCTOR format (and assign the constructor a
priority: in this example, 5):

_WRS_CONSTRUCTOR (myLibInit, 5)
{
...
}

The Wind River Compiler and the GNU compiler both have this mechanism.

9.3.4 Shutting down an RTP Application

An RTP shuts down entirely when any task in the RTP calls exit(). To avoid
accidentally shutting down an RTP, you need to be careful about when you call
exit(). You also need to avoid implicit calls to exit(). These occur if the execution
reaches the end brace of the main() routine.

One way to avoid an implicit exit() call is to call taskExit() before execution
reaches the routine end brace. As an alternative to taskExit(), you could call:

taskSuspend(0);

In most situations, a taskExit() call is the more elegant solution.

To abort an RTP from the outside, call rtpDelete(). As input, this routine requires
an RTP_ID that identifies the RTP that you want to delete. You receive this RTP_ID

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

142

as the returned value of the rtpSpawn() call that launches the RTP. You can also
get this ID by calling rtpShow(), which includes RTP IDs in its report.

As an alternative to rtpDelete(), you can use rtpKill() to send a SIGKILL (9) or a
SIGTERM (15) signal to the RTP. If the application installed a signal handler for
SIGTERM, a SIGTERM lets the application shut itself down in a controlled manner.
If the application has not installed a signal handler for SIGTERM, either SIGKILL
or SIGTERM abort the application.

9.4 Using Socket Connections with RTPs

For many network applications, BSD sockets in the Internet domain provide the
fundamental communication mechanism. The protocols and services that enable
Internet sockets reside in the kernel. If your application runs in the kernel, it can
access these socket services directly.

To make these services available to applications running as RTPs, the kernel
exports a set of routines as system calls. This set of socket-related calls includes all
the well-known routines in the BSD socket API plus the VxWorks-specific
connectWithTimeout() routine. See Table 9-1.

Table 9-1 Socket Calls

Routine Name Use

socket() Create an end point for communication.

bind() Associate a local address with a socket.

listen() Mark a socket as accepting connections.

accept() Accept a connection on a socket.

connect() Initiate a connection on a socket.

sendto() Send a message from a socket.

sendmsg() Send a message from a socket using a structure.

send() Send a message from a connected socket.

9 Creating Network Applications as RTPs
9.4 Using Socket Connections with RTPs

143

9

Using Sockets for Inter-Task Communication

In addition to Internet domain sockets, VxWorks allows local domain (AF_LOCAL)
sockets for communication among tasks, even tasks that execute in different
memory spaces (the kernel memory space and the various RTP memory spaces).
Under VxWorks, AF_LOCAL sockets allow only one set of communications
characteristics: bidirectional, reliable, sequenced, non-duplicated, and packet-based.
This socket communications style type is called SOCK_SEQPACKET.

For more information on AF_LOCAL sockets, see 10. Internet and Local Domain
Sockets.

recvfrom() Receive a message from a socket and capture the address of the
sender.

recv() Receive a message from a socket.

recvmsg() Receive a message from a socket and store it in a structure.

setsockopt() Set socket options.

getsockopt() Get socket options.

getsockname() Get the socket name.

getpeername() Get the name of the peer that is connected to the socket.

shutdown() Shut down the full-duplex connection on the socket.

Table 9-1 Socket Calls (cont’d)

Routine Name Use

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

144

145

 10
Internet and Local Domain

Sockets

10.1 Introduction 145

10.2 Configuring VxWorks for Sockets 147

10.3 Using Sockets in VxWorks 150

10.4 Working with Local Domain Sockets 154

10.5 Working with Internet Domain Sockets 156

10.1 Introduction

This chapter describes how to use the standard socket interface for Internet
domain sockets on a target running the Wind River Network Stack. Some mention
is made of routing sockets and local domain sockets.

For detailed information on the following related topics, refer to the appropriate
chapters:

using sockets in RTPs
See 9.4 Using Socket Connections with RTPs, p.142.

using routing sockets
See Wind River Network Stack for VxWorks 6 Programmer’s Guide, Volume 1:
Transport and Network Protocols.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

146

adding socket-support code to a new network service or protocol
See Wind River Network Stack for VxWorks 6 Programmer’s Guide, Volume 3:
Integrating a New Network Service.

Essential Background Reading

This chapter introduces the particulars of the Wind River Network Stack sockets
implementation. A discussion of how to work with sockets in general is beyond
the scope of this chapter.

The basic standard sockets API is documented as part of POSIX in IEEE Std. 1003.1,
with more advanced features documented in various RFCs (see Conformance to
Standards, p.146). For general socket programming information, see UNIX Network
Programming, Volume 2, Second Edition by W. Richard Stevens.

VxWorks Environment-Specific Socket Issues

Although the Wind River Network Stack is for the most part compatible with the
BSD socket interface, the particulars of the VxWorks environment do affect how
you use sockets.

Conformance to Standards

For IPv6 sockets in particular, read RFC 3493: Basic Socket Interface Extensions for
IPv6 and RFC 3542: Advanced Sockets API for IPv6. The Wind River Network Stack
Socket implementation implements these RFCs. It does not now implement any
proposals published only in the Internet drafts.

! WARNING: Because there are globally accessible file descriptors in the
task-independent address space of the VxWorks kernel or an RTP, you must take
precautions when closing a file descriptor (a socket descriptor is a variety of file
descriptor). In the VxWorks kernel, one task must not close a file descriptor that
another task is using, as this is not a safe operation. As a result of the close done by
a different task, an operation in progress on the descriptor might return an error
but also might experience an exception or other ill effects. Also, if an operation is
performed on the descriptor after it is closed, the operation would normally return
an error, but it could also affect another socket or file if the system reuses the
descriptor after the descriptor is closed.

To wake up a task that is blocked on a socket, either use shutdown(), set a timeout
on the socket function on which the task is blocked, or deliver an event (for
example, a message) over the socket on which the task is blocked. You can also set
up a semaphore-based locking mechanism that prevents the close while an
operation is pending on the descriptor.

10 Internet and Local Domain Sockets
10.2 Configuring VxWorks for Sockets

147

10

Include Files Referenced in this Chapter

This chapter makes reference to the include files, socket.h, in.h, in6.h, and tcp.h.
For components running in the kernel, the full pathnames of these files are as
follows:

■ installDir/vxworks-6.5/target/h/wrn/coreip/sys/socket.h

■ installDir/vxworks-6.5/target/h/wrn/coreip/netinet/in.h

■ installDir/vxworks-6.5/target/h/wrn/coreip/netinet6/in6.h

■ installDir/vxworks-6.5/target/h/wrn/coreip/netinet/tcp.h

For components running in RTPs, the full pathnames of the files are as follows :

■ installDir/vxworks-6.5/target/usr/h/wrn/coreip/sys/socket.h

■ installDir/vxworks-6.5/target/usr/h/wrn/coreip/netinet/in.h

■ installDir/vxworks-6.5/target/usr/h/wrn/coreip/netinet6/in6.h

■ installDir/vxworks-6.5/target/usr/h/wrn/coreip/netinet/tcp.h

10.2 Configuring VxWorks for Sockets

The Wind River Network Stack uses the following configuration components for
sockets:

■ Network Sockets (Folder)
– Netlink socket (INCLUDE_IPNET_USE_NETLINKSOCK)
– Socket backend (INCLUDE_IPNET_USE_SOCK_COMPAT)
– Socket support (INCLUDE_IPNET_SOCKET)
– routing socket support (INCLUDE_IPNET_USE_ROUTESOCK)

■ Socket API (INCLUDE_SOCKLIB)
■ Socket API System Call support (INCLUDE_SC_SOCKLIB)

NOTE: The update to RFC 3542 has changed some of the definitions in a way that
is not backward compatible. The IPv6 APIs in the network stack have changed to
match the updated RFC. For more information, see the release notes and RFC 3542.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

148

The Socket API (extensible interface) is the core component within this system. It
enables you to implement your own socket domain handler and mediates access
to registered socket back ends.

Netlink socket (INCLUDE_IPNET_USE_NETLINKSOCK)
Netlink sockets are not supported on VxWorks, but only in Linux Kernel
Mode.

Socket backend (INCLUDE_IPNET_USE_SOCK_COMPAT)
Include this component in any build that uses the socket API. Along with the
Socket support component, it provides the standard socket back end to the
socket API.

Socket support (INCLUDE_IPNET_SOCKET)
If you want to use sockets, you need to include this component in your build.
This is the standard socket implementation for the network stack. These
sockets have the same semantics and use the same structures as the BSD 4.4
socket API.

routing socket support (INCLUDE_IPNET_USE_ROUTESOCK)
Routing sockets are fully described in the Routing Sockets chapter of Wind River
Network Stack for VxWorks 6 Programmer’s Guide, Volume 1: Transport and
Network Protocols.

Socket API (INCLUDE_SOCKLIB)
If you write a socket application you must add this component to your build.
This component pulls in sockLib, a VxWorks library that implements the
standard socket interface layer. This layer mediates access to registered socket
back ends. If you include any of the other sockets components, this
automatically registers their socket back ends with the standard socket
interface layer.

For information on how to register additional socket back ends, see Wind River
Network Stack for VxWorks 6 Programmer’s Guide, Volume 3: Integrating a New
Network Service, and the sockLib reference entry.

Socket API System Call support (INCLUDE_SC_SOCKLIB)
You must include this component in your build if your build contains a
real-time process (RTP) that uses the socket API. This component pulls in

NOTE: This section focuses on components associated with network-related
sockets (that is, Internet sockets and routing sockets). Not described here is the
INCLUDE_UN_COMP component, which pulls in an implementation of the COMP
protocol. This protocol is required for AF_LOCAL domain SOCK_SEQPACKET type
sockets.

10 Internet and Local Domain Sockets
10.2 Configuring VxWorks for Sockets

149

10

sockScLib, a collection of socket API stubs that allow RTPs to use socket calls
even if the RTPs are in a different address space from the network stack.

This component is included automatically when RTP support, INCLUDE_RTP,
is included, and this component also requires the INCLUDE_RTP component.

The parameters used to configure sockets are described in Table 10-1.

Table 10-1 Socket Configuration Parameters

Workbench Description and Parameter Name
Default Value

and Type

Address Notify
IPNET_SOCK_ADDR_NOTIFY

If you set this to "1", when an address is removed from a
node on which socket applications are running, the stack
sends an ENETDOWN failure message to all socket owners
that bound their sockets to that address and that are
blocked on an accept() call.

Set this to "0" to turn off this notification, in which case the
socket owners will remain blocked on accept() in such a
circumstance.

"1"

char *

AnonPortMax
IPNET_SOCK_ANON_PORT_MAX

The highest port number that the system may use as an
ephemeral port number. The system assigns a port in the
ephemeral port number range from AnonPortMin to
AnonPortMax to a socket if that socket does not select its
own port with a bind() call.

"65535"

char *

AnonPortMin
IPNET_SOCK_ANON_PORT_MIN

The lowest port number that the system may use as an
ephemeral port number. The system assigns a port in the
ephemeral port number range from AnonPortMin to
AnonPortMax to a socket if that socket does not select its
own port with a bind() call.

"49152"

char *

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

150

10.3 Using Sockets in VxWorks

The Wind River Network Stack includes a standard socket interface to TCP and
UDP. Using sockets, you can do the following:

■ Send and receive data over an IP network.
■ Communicate with other processes.
■ Access IP multicasting functionality.
■ Review and modify the routing tables.

A socket is a communications endpoint to which you can bind an address. You use
this address to access the socket. Implicit in the idea of an endpoint is the notion of
a space that contains the endpoint. By convention, the space containing a socket is
called a communications domain. Valid addresses for a socket are defined in terms
of the socket’s communication domain.

This definition of a socket indicates that the socket metaphor is not necessarily
limited to a programming environment. For example, you can think of a telephone
as a socket. The telephone is a communications endpoint to which the phone

Default socket receive buffer size
IPNET_SOCK_DEFAULT_RECV_BUFSIZE

The default size of the socket receive buffer.

"10000"

char *

Default socket send buffer size
IPNET_SOCK_DEFAULT_SEND_BUFSIZE

The default size of the socket send buffer.

"10000"

char *

Maximum number of sockets
IPNET_SOCK_MAX

The maximum number of sockets in use. Note that because
a socket descriptor is a variety of file descriptor, the number
of sockets is also limited by the maximum number of file
descriptors, NUM_FILES, which defaults to 50.

1024

uint

Table 10-1 Socket Configuration Parameters (cont’d)

Workbench Description and Parameter Name
Default Value

and Type

10 Internet and Local Domain Sockets
10.3 Using Sockets in VxWorks

151

10

company has bound an address: a telephone number. This telephone number has
been chosen from the communications domain of valid telephone numbers.

Within a programming environment, a socket is often implemented as a descriptor
to which you bind an address. Associated with the descriptor are routines that can
read or write information to or from the descriptor. The type of address that you
can assign to the descriptor depends on the communications domain for the
socket. For more information on socket types, see Socket Types, p.153.

Communications Domains

BSD UNIX has a long list of domains for its sockets. Of these, VxWorks has only
the following:

■ the IPv4 Internet domain (AF_INET)
■ the IPv6 Internet domain (AF_INET6)
■ the routing domain (AF_ROUTE)
■ local domain sockets for inter-process communication (AF_LOCAL)
■ the Transparent Inter-Process Communication domain (AF_TIPC)
■ the Mobile IPv6 domain (AF_MOBILITY)

Internet Domain Sockets

Several operating systems use Internet domain socket connections to
communicate. Applications typically use sockets in the Internet domains to
exchange information with peers on remote host systems. You can also use sockets
in these domains to add or remove routing entries in the stack’s multicast forward
information base (routing table).

In the Internet domains, the VxWorks socket support functions let you define
socket endpoints using either IPv4 or IPv6 addresses.

■ Sockets in the IPv4 domain, AF_INET, bind to names defined in terms of an
IPv4 address and a port number.

■ Sockets in the IPv6 domain, AF_INET6, bind to names defined in terms of an
IPv6 address and a port number, and in some cases, a scope identifier.

NOTE: Neither the AF_TIPC domain sockets nor the AF_MOBILITY domain sockets
are described in this manual. For information on AF_TIPC sockets, see the Wind
River TIPC for VxWorks 6 Programmer’s Guide. For information on AF_MOBILITY
sockets, see the Wind River Network Stack for VxWorks 6 Programmer’s Guide, Volume
1: Transport and Network Protocols.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

152

Applications typically use sockets in the Internet domains to exchange information
with peers on remote host systems, but you can also use an Internet domain socket
to communicate with a peer on the local host. However in VxWorks there are more
efficient mechanisms for communication between local tasks, such as AF_LOCAL
sockets, TIPC, and message queues.

As much as possible, the socket API is IPv6/IPv4 agnostic. Thus, the sockLib calls
have been modified internally to respond appropriately to an IPv6 address, but
they do this only if the socket() call that created the socket specified the IPv6
address family. In addition, to pass in an IPv6 address, you need to use a
sockaddr_in6 structure that you have cast to a sockaddr structure.

Despite this adaptation to IPv6 addresses, there are some socket-mediated services
that will not work with IPv6 without modification. The IPv4 multicast application
in particular must be rewritten in order to support IPv6 multicasting, since that
part of the socket API differs substantially between the two protocols.

For more information on Internet domain sockets, see 10.5 Working with Internet
Domain Sockets, p.156.

Routing Sockets

Sockets in the routing domain, AF_ROUTE, communicate with the local route table.
Use a routing socket to make or to monitor changes to the route table.

For a description of how routes are ranked in the route table, and for more
information on routing sockets, see Wind River Network Stack for VxWorks 6
Programmer’s Guide, Volume 1: Transport and Network Protocols.

Local Domain Sockets

Sockets in the local domain, AF_LOCAL, bind to names modeled after the names of
files in a file system (no actual file system is necessary to use AF_LOCAL sockets).
In VxWorks, local domain socket names are implemented over Wind River’s
Connection-Oriented Message Passing (COMP) protocol. This protocol provides
an optimized transport (better performance than AF_INET or AF_INET6) for
applications that use the socket API to communicate between tasks that are
running on the same node. This method is able to communicate between RTPs and
the kernel, or among tasks running in different RTPs.

NOTE: The domain handler for the AF_LOCAL domain, COMP, is independent of
the network stack. If the only sockets you need to use are AF_LOCAL sockets, you
do not need to include a network stack in your VxWorks image.

10 Internet and Local Domain Sockets
10.3 Using Sockets in VxWorks

153

10

For more information on local domain sockets, see 10.4 Working with Local Domain
Sockets, p.154.

Raw Sockets

Raw sockets bypass the transport layer, which allows applications that use raw
sockets to implement their own transport-layer processing from outside of the
stack.

Socket Types

A socket’s type describes the communication style that the socket uses. VxWorks
includes the following socket communication styles or types:

SOCK_DGRAM
bidirectional, unreliable, not sequenced, possibly duplicated, message
oriented

SOCK_STREAM
bidirectional, reliable, sequenced, non-duplicated, stream oriented

SOCK_SEQPACKET
bidirectional, reliable, sequenced, non-duplicated, message oriented

SOCK_RAW
usually bidirectional, interface- and protocol-dependent; provides access to
internal network protocols and interfaces

SOCK_RDM
bidirectional, reliable, not sequenced, possibly duplicated, message oriented.
The Wind River Network Stack allows this type for AF_TIPC sockets only. For
more information, see Wind River TIPC for VxWorks 6 Programmer’s Guide.

The SOCK_DGRAM type is a connectionless communication style based on an
exchange of datagrams. This style of communication is analogous to an exchange
of letters (datagrams) using a postal service. The same datagram socket may
communicate with several peers. Any acknowledgement that a datagram is
received is the responsibility of the application, rather than the underlying
protocol: Datagram sockets do not automatically retransmit unacknowledged
datagrams. They also do not guarantee that they will deliver datagrams in order,
or that they will deliver a particular datagram only once. Internet domain
datagram sockets operate over UDP, a transport layer protocol of the IP stack.

The SOCK_STREAM type is a connection-oriented communication style
characterized by the exchange of a continuous stream of data. This style of

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

154

communication is analogous to a phone conversation. A SOCK_STREAM socket
establishes a connection with a single peer. Data are sent as a stream of bytes that
are delivered in order to the peer. If any segment of the stream fails to be
acknowledged by its destination, the protocol will retransmit that segment. If, in
spite of retransmission attempts, the recipient fails to acknowledge the data, the
connection terminates and notifies the sender. Internet domain stream sockets
operates over TCP, a transport layer protocol of the IP stack.

The SOCK_SEQPACKET type describes a communication style that is both
connection oriented and message oriented. Being message oriented means that
recipients of data over SOCK_SEQPACKET sockets receive data as discrete
messages instead of as a stream of data. The Wind River Network Stack allows this
socket type for sockets in the AF_LOCAL domain only.

The SOCK_RAW socket is a socket with an undefined communication style. Its
communication characteristics (reliable or not, sequenced or not, and so on) are
determined by the services provided by the domain and protocol that you specify
when you create the socket. For example, an application might create a raw
AF_INET or AF_INET6 socket and implement SCTP over it.

In the Wind River Network Stack, the primary use of SOCK_RAW sockets is within
the AF_ROUTE domain, where tasks can use sockets to monitor and make changes
in the contents of the local route table.

10.4 Working with Local Domain Sockets

Under VxWorks, local domain sockets (AF_LOCAL sockets) are based on a protocol
called COMP. This protocol enables the SOCK_SEQPACKET communication style,
which is bidirectional, reliable, and message-based.

The Wind River Network Stack implements the standard socket APIs such as
socket(), bind(), and listen(). It also implements the standard file system APIs:
read(), write(), close(), ioctl(), and select().

Because the AF_LOCAL/COMP sockets use a connection-oriented communication
style, you must complete a bind-listen-connect-accept sequence before you can
transmit data on the socket. To transmit and receive data over the socket, use the
send() and recv() routines. The Wind River Network Stack implements the
setsockopt(), getsockopt(), and ioctl() routines, but with a minimal set of
options.

10 Internet and Local Domain Sockets
10.4 Working with Local Domain Sockets

155

10

Including Local Domain Sockets

To create a VxWorks image that includes local domain sockets, you must include
the INCLUDE_UN_COMP component in your build. This component pulls in the
COMP implementation. Note that this component is not a network stack
component and that COMP is independent of the network stack. You can include
COMP in a VxWorks image and use AF_LOCAL sockets even if you do not include
a network stack.

Setting up a Local Domain Socket

Under VxWorks, COMP manages the name space for an AF_LOCAL domain
socket. Thus, when creating names for AF_LOCAL sockets, you must conform to
the expectations of the COMP system, which is a name in the format:

/comp/socket/0xNumber

The /comp/socket/ part is an invariable prefix; the 0xNumber is a string
representation of a 16-bit number in hexadecimal format. The Wind River
Network Stack does not allow any other format for the name.

Use this name when you bind() a name to a socket and when you connect() to a
listening socket. Supply this name by using a sockaddr_un structure:

struct sockaddr_un /* LOCAL (UNIX) family address */
{ /* --------------------------- */
uint8_t sun_len; /* 0x00: structure size */
uint8_t sun_family; /* 0x01: address family */
char sun_path [104]; /* 0x02: actual address */
}; /* 0x6A: TOTAL SIZE */

This structure is defined in un.h. You will need to include un.h as well as
sockLib.h, the include file for the standard socket API:

#include <sockLib.h> /* standard socket API */
#include <sys/un.h> /* struct sockaddr_un definition */

The following example sets up a sockaddr_un structure for an AF_LOCAL socket:

mySockaddr_un.sun_len = sizeof (struct sockaddr_un); /* 106 bytes */
mySockaddr_un.sun_family = AF_LOCAL;
bcopy ("/comp/socket/0x1234", mySockaddr_un.sun_path, 20);

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

156

10.5 Working with Internet Domain Sockets

This section outlines how to set up an Internet socket, how to connect it to a peer,
how to exchange data with that peer, and how to shut down the socket.

A socket is a communications endpoint to which you can bind a name. Under
VxWorks, a socket is implemented and managed using a socket descriptor, to
which you can bind a name from the desired domain. To create a socket descriptor,
call socket(). To configure this socket descriptor for your particular use of that
socket, call setsockopt(). To bind a name to a socket descriptor, call bind().

Creating a Socket Descriptor

To send and receive data over a socket, you need a socket descriptor. To create a
socket descriptor, call socket(). As input, a VxWorks socket() call expects you to
specify three things:

■ a communications domain for the socket
■ a socket type
■ a protocol type

For the communications domain, specify either AF_INET or AF_INET6, depending
on whether you want a socket in the IPv4 or IPv6 domain. For the socket type, use
SOCK_STREAM to indicate a stream type socket. To indicate a datagram type
socket, use SOCK_DGRAM.

In some cases you should also specify a protocol type, but this is not always
necessary. For instance, for a stream socket in an Internet domain, you could
specify the protocol type of IPPROTO_TCP (TCP provides the necessary services
for a streams-type socket in the Internet domains). And for datagram sockets, you
could specify a protocol type of IPPROTO_UDP (UDP is the IP protocol that
provides the necessary services for a datagram type socket in the Internet domain).
However, in these cases you do not need to specify either protocol type explicitly.
Instead, you can set the protocol type to 0 (zero), which tells socket() to choose
whatever transport layer protocol is best suited to the requested socket type and
communications domain.

For raw sockets in the Internet domains, a protocol of zero indicates the IP
protocol, IPPROTO_IP. Such a socket gives you direct access to IP. If you want an
Internet domain raw socket that uses a different protocol, use an appropriate
IPPROTO_name value as defined in in.h.

For example, to verify that an IP address is not already in use, a DHCP server
implementation might want to send out an ICMP echo request on the socket to test
the address. To do this, it would first create a raw socket in the IPv4 Internet

10 Internet and Local Domain Sockets
10.5 Working with Internet Domain Sockets

157

10

domain and specify a protocol of IPPROTO_ICMP (or, in the IPv6 Internet domain,
it would specify a protocol of IPPROTO_ICMPV6).

Setting Socket Options

After creating a socket descriptor, you may want to specify the socket options that
configure the socket for your particular needs. You can set most options with a call
to setsockopt(), although there is one “option” you set with an ioctl() call.

Using an ioctl() Call to Make the Socket Non-Blocking

To make a socket non-blocking, call ioctl() as follows:

on = 1;
if (ioctl (mySocketDescriptor, FIONBIO, (int) &on) == -1)

{
your response to the ioctl call failure

}

Calling setsockopt() to Set Socket Options

The synopsis for setsockopt() is defined as follows:

STATUS setsockopt
(
int s, /* target socket */
int level, /* protocol level of option */
int optname, /* option name */
char * optval, /* pointer to option value */
int optlen /* option length */
)

This routine sets the options associated with a socket and any underlying protocols
that enable the services accessible through the socket. Some setsockopt() calls you
make before calling connect() or bind(). This is because some socket options affect
the outcome of the bind() or the way the connect operation is formed. For
example, some socket options let you restrict the bind() to a particular range of
port numbers.

Some of the defaults for socket options in the Wind River Network Stack are as
follows:

Table 10-2 Default Values for Socket Options

Option Default Value

SO_LINGER off

SO_REUSEADDR disabled

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

158

The level parameter of a setsockopt() call lets you specify whether the option
applies to the socket layer or to an underlying protocol. The socket-level options
(level is SOL_SOCKET) are the most generic options and make sense in the context
of many sorts of sockets. Names (optname values) for these socket options are
defined in socket.h. In addition to these socket-level options, setsockopt() also lets

SO_KEEPALIVE disabled

SO_DONTROUTE disabled

SO_RCVLOWAT 1

SO_SNDLOWAT 1

SO_ACCEPTCONN no default, returns 1 if listen() has been called on the
socket, 0 otherwise

SO_BROADCAST enabled (Note: this is opposite to the default in Linux)

SO_USELOOPBACK enabled

SO_SNDBUF IPNET_SOCK_DEFAULT_SEND_BUFSIZE (see Table 10-1)

SO_RCVBUF IPNET_SOCK_DEFAULT_RECV_BUFSIZE (see Table 10-1)

SO_RCVTIMEO infinite

SO_ERROR no default, return and clear the last socket error

SO_TYPE no default, returns the second argument passed to
socket()

SO_BINDTODEVICE not bound to a device

SO_OOBINLINE off

Table 10-2 Default Values for Socket Options (cont’d)

Option Default Value

NOTE: You do not have to call setsockopt(). You can use sockets without setting
any socket options if the default options associated with a stream, datagram, or
routing socket are appropriate to your needs. However, it is a good idea to know
the default socket option values for options such as SO_LINGER and
SO_REUSEADDR, and their consequences for the behavior of the socket.

10 Internet and Local Domain Sockets
10.5 Working with Internet Domain Sockets

159

10

you pass options through to the underlying protocol or protocols that enable and
implement the services that you access through the socket.

For example, there are many options associated with IPv4. These options control
and configure access to IPv4-supplied functionality such as IPv4-based
multicasting. To set these, specify a level of IPPROTO_IP. Names (optname values)
for these socket options are defined in in.h.

The setsockopt() reference entry describes the most commonly used of the IP
socket options listed above. Paralleling the socket options for IPv4, the Wind River
Network Stack also has IPv6 socket options. For IPv6, you would assign level a
value of IPPROTO_IPV6 and use the optname values for these socket options as
defined in in6.h.

Another commonly socket-accessed protocol and option is the IPPROTO_TCP
protocol and TCP_NODELAY option, which is described in the setsockopt()
reference entry. Other socket option names for this protocol are defined in tcp.h.
Some protocols allow for socket access and some do not.

Binding a Socket to a Local Address

To bind a socket descriptor to a local address (sometimes called a name), call
bind(). As input, a VxWorks bind() call expects you to specify three things:

■ the socket to which you would bind a name
■ the name, in the form of a sockaddr-like structure
■ the length of the name

As input, bind() expects the socket name to be supplied using a pointer to a
sockaddr structure. The layout of the sockaddr structure is not convenient for
setting up all the information needed to specify a socket name in the Internet
communications domain. Instead, use either a sockaddr_in structure or a
sockaddr_in6 structure that you cast to a sockaddr structure when you make the
actual bind() call. Use the sockaddr_in structure for sockets in the IPv4 Internet
communications domain, and the sockaddr_in6 structure for sockets in the IPv6
Internet communications domain.

If you do not call bind() for the socket descriptor that you create, the first time you
call connect() or sendto() for the socket, the system automatically binds for you.
In such a case, the system chooses the port number for your socket from among the
unused private port numbers (also known as dynamic or ephemeral port numbers),
in the range of AnonPortMin to AnonPortMax (see Table 10-1). The stack chooses
the local IP address appropriately to reach the specified destination. This

NOTE: Sockets in the routing domain never require an explicit bind() call.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

160

association of a local IP address with the socket is temporary in the case of a
sendto() (and may change from packet to packet), but the system maintains its
port number assignment until you close the socket. This approach is acceptable if,
as is common in client applications, you do not need to know the number of the
port to which your socket binds.

Letting the System Select Your Port Number

A bind() call on an Internet-domain socket passes a socket address containing
both a local IP address and a local transport-layer port number. You may specify
either or both of these as zero. If you specify a port number of zero, the system
chooses an available (nonzero) local port number; you can obtain the port number
later if necessary by using the getsockname() call. If you specify an IP address of
zero, the socket endpoint will accept connections or datagrams destined to any of
the host’s local IP addresses (with the chosen destination port number).

Binding to Well-Known and Registered Ports

In the Internet communications domains, port numbers 0 through 1023 are
reserved for use by well-known services associated with TCP. These are services
such as echo and time. Ports 1024 through 49151 are reserved for services
registered with IANA. If you implement a server for a well-known or registered
service, bind your socket to the port assigned to that service, and then monitor that
socket for requests from clients.

For a list of the port assignments for well-known and registered services, see:

http://www.iana.org/assignments/port-numbers

This list is also useful if you are implementing a client of a well-known service. It
tells you the port on the remote site to which you send requests.

If you need to request a port number assignment for a new service, you can apply
to IANA. You need do that only if you are creating a service that you will to
publish to the entire Internet. For a service offered within a network throughout
which you can control how port numbers are used, you can choose a private port
number within the range 49152 through 65535.

http://www.iana.org/assignments/port-numbers

10 Internet and Local Domain Sockets
10.5 Working with Internet Domain Sockets

161

10

Setting Up a sockaddr_in Structure to Store an IPv4 Address

The in.h file defines the sockaddr_in structure as follows:

struct sockaddr_in
{
u_char sin_len; /* The length of the address. */
u_char sin_family; /* The address family, AF_INET. */
u_short sin_port; /* The port number. */
struct in_addr sin_addr; /* The IP Address. */
char sin_zero[8]; /* Optional mask for address. */
};

struct in_addr
{
in_addr_t s_addr;
};

The in_addr_t is an unsigned 32-bit integer; its value is the IPv4 address stored in
network byte order.

Example 10-1 Setting Up a sockaddr_in Structure to Store an IPv4 Address

The following code fragment shows one way to set up a sockaddr_in structure for
a server identified by a user-entered text string. This string can contain either a
dot-notation IPv4 address or its user-friendly equivalent name.

struct addrinfo hints;
struct addrinfo * res;
int r;
struct sockaddr_in serverAddr;

#define STRINGIFY(expr) #expr

hints.ai_family = AF_INET;
r = getaddrinfo (serverName, STRINGIFY(SERVER_PORT_NUM), &hints,

&result);
if (r != 0)

{
fprintf (stderr, "%s\n", gai_strerror (r));
return ERROR;
}

bcopy (result->ai_addr, &serverAddr, result->ai_addrlen);
freeaddrinfo (result);

The getaddrinfo() call creates a socket address structure from the serverName
and the SERVER_PORT_NUM. You can specify the serverName either as a
dot-notation IPv4 address or as a name. If you configured the stack to include
DNS, getaddrinfo() uses DNS to get the name if the host table search fails.

NOTE: You must assign a value to sin_len. If you do not do this before you call,
for example, sendmsg(), such a call will fail with an EINVAL (0x22) error.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

162

Setting Up a sockaddr_in6 Structure to Store an IPv6 Address

The in6.h file defines the sockaddr_in6 structure as follows:

struct sockaddr_in6
{
u_int8_t sin6_len; /* length of this struct(sa_family_t) */
u_int8_t sin6_family; /* AF_INET6 (sa_family_t) */
u_int16_t sin6_port; /* Transport layer port # (in_port_t) */
u_int32_t sin6_flowinfo; /* IP6 flow information */
struct in6_addr sin6_addr; /* IP6 address */
u_int32_t sin6_scope_id; /* scope zone index */
};

struct in6_addr
{
union

{
u_int8_t __u6_addr8[16];
u_int16_t __u6_addr16[8];
u_int32_t __u6_addr32[4];
} __u6_addr;

};

Example 10-2 Setting Up a sockaddr_in6 Structure to Store an IPv6 Address

Consider the following code fragment:

struct addrinfo hints;
struct addrinfo * res;
int r;

#define STRINGIFY(expr) #expr

bzero ((char*) &hints, sizeof (struct sockaddr_in6));
hints.ai_family = AF_INET6;
r = getaddrinfo (serverName, STRINGIFY(SERVER_PORT_NUM), &hints,

&result);
if (r != 0)

{
fprintf (stderr, "%s\n", gai_strerror (r));
return ERROR;
}

bcopy (result->ai_addr, &serverAddr, result->ai_addrlen);
freeaddrinfo (result);

The getaddrinfo() call creates a socket address structure from the serverName
and the SERVER_PORT_NUM. You can specify the serverName either as a string
representation of an IPv6 address or as a name. If you configured the stack to
include DNS, getaddrinfo() uses DNS to get the name if the host table search fails.

10 Internet and Local Domain Sockets
10.5 Working with Internet Domain Sockets

163

10

Example 10-3 Calling getaddrinfo() for IPv4 or IPv6

The following example code illustrates the use of getaddrinfo() in a TCP client to
establish a connection to a server:

#include <vxWorks.h>
#include <string.h>
#include <errnoLib.h>
#include <netdb.h>
#include <netinet/in.h>
#include <sockLib.h>
#include <ioLib.h>

int connectToServer
(
char * serverName, /* "fe80::1:0:34ea%fei0", "www.foo.com", etc. */
char * serviceName /* "ftp", "http", "41834", etc. */
)
{
struct addrinfo hints;
struct addrinfo * firstres;
struct addrinfo * res;
int rc;
int sock;
int size;

memset (&hints, 0, sizeof (hints));

hints.ai_family = AF_UNSPEC; /* allow either IPv4 or IPv6 */
hints.ai_protocol = IPPROTO_TCP; /* let's restrict to TCP */

rc = getaddrinfo (serverName, serviceName, &hints, &firstres);
if (rc != 0)

{
#ifdef DEBUG

int err = errno;
printf ("getaddrinfo() failed, returned: %d (%s), errno=0x%x\n",

rc, gai_strerror (rc), err);
#endif

return ERROR;
}

/*
* Simple strategy: Try the returned addresses until they run out,
* or find one which works. Warning: if there are several addresses
* returned, and none of them works, pause here a while...
*/

res = firstres; /* There's guaranteed to be at least one ... */

do
{
sock = socket (res->ai_family, res->ai_socktype,

res->ai_protocol);

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

164

if (sock < 0)
continue;

/*
* Set desired socket options. Set socket buffer sizes,
* and treat (unlikely) setsockopt() failures as non-fatal.
*/

size = 65536;
setsockopt (sock, SOL_SOCKET, SO_SNDBUF, (char *) &size,

sizeof (size));
setsockopt (sock, SOL_SOCKET, SO_RCVBUF, (char *) &size,

sizeof (size));

if (connect (sock, res->ai_addr, res->ai_addrlen) == 0)
break;

close (sock); /* failed to connect, try with next address */
sock = ERROR;

} while ((res = res->ai_next) != NULL);

freeaddrinfo (firstres); /* free all the addrinfo structures */

return sock;
}

The example above attempts to establish a client TCP connection to a service
specified as a server host name (which may be either a numerical IPv4 or IPv6
address, or a partially- or fully-qualified domain name), and a service name (which
may be a decimal numeric port number, or one of a few named services (such as
"ftp", "telnet", or "http").

The return value from this connectToServer() routine is ERROR on failure, or a
socket file descriptor if successful. You can use the returned socket descriptor to
communicate with the server according to the specified application-layer protocol
over TCP.

The routine uses getaddrinfo() to do the name/service look-up and to retrieve
parameters such as the socket address, socket address length, socket domain,
socket type, and socket protocol that it uses when it calls socket(), bind(), and
connect().

10.5.1 Creating the Connection for Internet Domain Stream Sockets

You send and receive data through a socket in more-or-less the same manner
whether the socket is a stream or datagram socket, but before you can exchange
data over a stream socket, you must establish a connection. The routines used to
create this connection assume a client server relationship.

10 Internet and Local Domain Sockets
10.5 Working with Internet Domain Sockets

165

10

A client wishing to establish a connection with a server calls connect() on a socket
it has created to communicate with its server. Whether the connect() call blocks if
a connection is not immediately available depends on how you have configured
the socket (see Setting Socket Options, p.157).

If the socket is non-blocking, connect() returns immediately. If connect() succeeds
in establishing a connection, it returns OK. Otherwise, it returns ERROR and sets
errno to EINPROGRESS or EALREADY which indicates that the system is still
attempting to complete the connection. You may then repeat the connect() call
until the system establishes a connection, at which time connect() will again
return ERROR, but the errno value will be EISCONN.

On the server side, the server must have called listen() on the listening socket it
has created to listen for incoming client connections. The server can then call
accept() on the socket to wait for a new client connection.

When the accept() call returns, the return value is either ERROR or a new socket
descriptor. The accept() call may return ERROR under normal operation if the
peer resets the connection after it has completed but before it is accepted. In such
a case, errno is set to ECONNABORTED. The server should treat this as a non-fatal
error, and call accept() again to await further client connections. The server should
treat EINTR and EWOULDBLOCK errno values the same way. Other errno values
set by accept() indicate an error that is likely unrecoverable.

If accept() returns a socket descriptor rather than ERROR, the server can use this
descriptor to exchange messages with the client that requested the connection. The
server may choose to pass this socket descriptor to a new task while the server
returns its attention to accepting connection requests on the original socket.

Servers typically call accept() from within a “forever” loop. If there is no
connection request pending, the accept() blocks until a connection request arrives
on the socket. If this does not meet your needs, you can configure the socket to be
non-blocking (see Setting Socket Options, p.157) or you can use select(). If no clients
are requesting a connection over the socket, and the socket is non-blocking, the
server’s accept() call returns ERROR with errno set to EWOULDBLOCK.

Using a connect() Call with a Datagram Socket

Calling connect() for a datagram socket does not cause any actual communication
with the specified destination. It does configure the socket to assume the specified
destination for all messages read from and written to the socket. This makes it
possible to call send() and recv() on the datagram socket instead of sendto() and
recvfrom(). Connected datagram sockets will only accept received datagrams
whose source matches the specified peer address in the connect call.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

166

10.5.2 Sending and Receiving Data Using Internet Domain Sockets

The mechanics of sending and receiving data on a socket are simple. Forming or
interpreting the message can be more complicated, and varies according to the
application protocol assumed by the sender and recipient. For the most part, the
mechanics of forming protocol-appropriate messages is beyond the scope of this
document. An exception is the discussion of routing-socket messages provided in
Wind River Network Stack for VxWorks 6 Programmer’s Guide, Volume 1: Transport and
Network Protocols.

Sending and Receiving Data without Regard to the Control Data

If you have called connect() on a socket descriptor, or have received the socket
descriptor from an accept() call, you can exchange messages over the socket using
send() and recv() or the generic write() and read() routines. All four of these
routines are typically used with stream sockets. If you called connect() on a
datagram socket, you can also use these routines to communicate over that socket.

For a datagram socket for which you have not called connect(), you need to
explicitly identify the communications partner on the other side of the socket. In
such a situation, you can use sendto() and recvfrom() to exchange messages over
the socket.

Accessing and Setting the Control Data for a Socket Message

The sendmsg() and recvmsg() routines let you work with the entirety of the
socket message—both its message header and its data payload. You can access the
message header by using a msghdr structure, which is defined in socket.h as:

/*
* Message header for recvmsg and sendmsg calls.
* Used value-result for recvmsg, value only for sendmsg.
*/
struct msghdr

{
void * msg_name; /* optional address */
socklen_t msg_namelen; /* size of address */
struct iovec * msg_iov; /* scatter/gather array */
int msg_iovlen; /* # elements in msg_iov */
void * msg_control; /* ancillary data, see below */
socklen_t msg_controllen; /* ancillary data buffer len */
int msg_flags; /* flags on received message */
};

When you use the sendmsg() and recvmsg() routines with a datagram socket for
which you have not called connect(), use the msg_name field to specify the
address of the communication partner on the other side of the socket.

10 Internet and Local Domain Sockets
10.5 Working with Internet Domain Sockets

167

10

The advantage of using sendmsg() and recvmsg() is that you can access the
control (ancillary) information associated with the message, and not merely the
message payload data. The msg_control field points to a buffer containing the
ancillary data. You can access the data objects in this control buffer using cmsghdr
structures, which socket.h defines as:

/*
* Header for ancillary data objects in msg_control buffer.
* Used for additional information with/about a datagram
* not expressible by flags. The format is a sequence
* of message elements headed by cmsghdr structures.
*/
struct cmsghdr

{
socklen_t cmsg_len; /* data byte count, including hdr */
int cmsg_level; * originating protocol */
int cmsg_type; /* protocol-specific type */

/* followed by u_char cmsg_data[]; */
};

To make it easier to work with these message headers, socket.h defines the macros
CMSG_FIRSTHDR(), CMSG_DATA(), and CMSG_NXTHDR() as follows:

/* given pointer to struct cmsghdr, return pointer to data */
#define CMSG_DATA(cmsg) ((u_char *)(cmsg) + \

_ALIGN(sizeof(struct cmsghdr)))

/* given pointer to struct cmsghdr, return pointer to next cmsghdr */
#define CMSG_NXTHDR(mhdr, cmsg) \
(((caddr_t)(cmsg) + _ALIGN((cmsg)->cmsg_len) + \
_ALIGN(sizeof(struct cmsghdr)) > \
(caddr_t)(mhdr)->msg_control + (mhdr)->msg_controllen) ? \
(struct cmsghdr *)NULL : \
(struct cmsghdr *)((caddr_t)(cmsg) + _ALIGN((cmsg)->cmsg_len)))

#define CMSG_FIRSTHDR(mhdr) ((struct cmsghdr *)(mhdr)->msg_control)

This level of access is convenient when implementing a service such as ping(). If
you are merely exchanging data and not interested in the control data, you are
probably better off using the send()/sendto()/write() and
recv()/recvfrom()/read() routines.

10.5.3 Closing or Shutting Down an Internet Domain Socket Connection

When a client or server has decided that it is time to end its conversation with the
communication partner, it can break the connection by calling shutdown() or its
generic near equivalent, close(). Of the two routines, shutdown() provides the
greater flexibility. Using shutdown(), you can break the send side of the socket
connection, the receive side of the socket connection, or both.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

168

If you enabled the SO_LINGER socket option and set the l_linger member of the
struct linger argument, there can be a degree of latency associated with closing a
socket connection. Calling close() initiates the tear-down of the session (in TCP
this adds a FIN segment to the transmission queue), but when close() returns, the
session is not yet closed and will not be in the CLOSED state until tear-down
negotiation is complete and the session is reset by one of the peers. The local pool
will perform this reset if it no peer does it in the time specified by the SO_LINGER
socket option.

By default, the SO_LINGER socket option is not enabled. To enable it, pass
setsockopt() a struct linger argument with its l_onoff member set to 1, and its
l_linger member set either to zero or to a timeout value specified in seconds. If
l_linger is zero, the close() operation forces an abrupt close on the connection and
sends a RST segment to the TCP peer. If l_linger specifies a nonzero timeout, the
close() call will block until either the peer acknowledges all outstanding sent data
and the local side’s FIN, or until the specified l_linger timeout, or until TCP itself
times out the connection (whichever occurs first). On the other hand, if you do not
enable the SO_LINGER option for the socket, the close() call will return
immediately, but TCP will initiate its graceful shutdown handshaking. If the local
side did the close first, the connection will normally enter TIME_WAIT state on the
local side and remain there for a timeout period of two times the maximum
segment lifetime (MSL).

10.5.4 Support Routines for Working with Internet Addresses

To convert host names to their corresponding numerical IP addresses and back,
the Wind River Network Stack provides hostLib, inetLib, and the following
routines:

■ getaddrinfo() – node name-to-address translation

■ getnameinfo() – translate a socket address to a node name and service name

■ gethostbyname() – name-to-address translation routine

■ gethostbyaddr() – address-to-name translation routine

! WARNING: Do not close a socket descriptor in one task that is still in use by another
task, as this is not safe in VxWorks (the same is true of all file descriptors). To wake
up a task that is blocked waiting for an event on a socket, you may use shutdown()
but not close(), as shutdown() leaves the socket descriptor valid. You must then
use some application-specific synchronization mechanism to ensure that all
application tasks are done with it before the socket is closed.

10 Internet and Local Domain Sockets
10.5 Working with Internet Domain Sockets

169

10

Unless you are concerned with image size, the best routines to use are
getaddrinfo() and getnameinfo(), since they apply to both IPv4 and IPv6. Among
the hostLib routines, hostGetByName() and hostGetByAddr() are IPv4-only.

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

170

Index
A
Abandoned state max time 54
accept() 142, 165

blocking 149
Address Notify 149
AF_INET 151, 156

specifying for communications domain 156
AF_INET6 151
AF_LOCAL 137, 143, 148, 151, 152, 155
AF_MOBILITY 151
AF_ROUTE 151, 152, 154
AF_TIPC 151, 153
all subnets local 75, 77
Allow bootp 56
Allow decline 56
Allow dynamic bootp 57
Allow Rapid Commit 109
allow-bootp 80
allow-dynamic-bootp 80
AnonPortMax 149, 159
AnonPortMin 149, 159
arp cache timeout 78
Authentication attempts before disconnect 26
Authentication callback routine 26
Authorized dhcp relay agent 57
auxp 138

B
Backup server IPv4 address 19
Backup server IPv6 address 19
bind() 142, 149, 155, 156

parameters and use 159
boot file size 73, 74, 76
boot-file 80
Bootfile name 50
BOOTP 45
Bootstrap Protocol, see BOOTP
broadcast address 75, 77

pinging 8
build configuration parameters, see configuration

parameters

C
Check address 57
close() 167
CMSG_DATA() 167
CMSG_FIRSTHDR() 167
CMSG_NXTHDR() 167
cmsghdr

defined 167
command interpreter 6
communications domains, sockets 151
COMP 148, 154, 155
171

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6
configuration parameters 46
connect() 142, 155, 159

datagram sockets 165
streams sockets 165

Connection-Oriented Message Passing, see COMP
connectWithTimeout() 142
cookie server(s) 73, 74, 76
Core 137

D
Data receive timeout 27
Data send timeout 27
DCHPV6 Authentication HMAC-MD5 Key 108
Debug logging facilities in ftpLib 25
Default lease time 53
default-lease-time 80
Default socket receive buffer size 150
Default socket send buffer size 150
default tcp time to live 78
DHCP

client
configuring and building 95
options 94, 96, 101
options, not pre-implemented 103
overview 93
shell commands 100

overview
relay agent

API routines 91
configuring and building 85
configuring statically 87
definition 46
overview 83

server 49
API routines 71
components 51
configuration database 51
configuring 52
configuring dynamically 62
configuring statically 59, 72
configuring with shell commands 72
DHCPS daemon 51
dumping lease database at shutdown 70

hook routines 66
initial state 59
lease database 52
overview 50
reading configuration values from a file

67
restoring lease database at startup 67
shell commands 62

DHCP Client 95
DHCP client port 96
DHCP offer time-out in milliseconds 97
DHCP Relay Agent 85
DHCP relay network pre-configuration 86
DHCP relay startup callback routine 86
DHCP Server 52
DHCP server network pre-configuration 57, 59
DHCP server port 96
DHCP server startup callback routine 58
DHCP server termination callback routine 58
DHCP Unique ID, see DUID
DHCP6 Client 120
DHCP6 Server 107
DHCPC Client Interface Rebind List 131
DHCPC_CLIENT_ID 96
DHCPC_CLIENT_PORT 96
DHCPC_DISCOVER_RETRIES 97
DHCPC_IF_CLIENT_ID_LIST 99
DHCPC_IF_REQ_OPTS_LIST 98
DHCPC_INSTALL_CALLBACK_HOOK 100
DHCPC_OFFER_TIMEOUT 97
DHCPC_OPTION_CALLBACK_HOOK 100
DHCPC_REQ_OPTS 96
DHCPC_RFC2131_EXP_BACKOFF 97
DHCPC_RFC2131_INIT_DELAY 96
DHCPC_SERVER_PORT 96
dhcpc6 132
DHCPC6_AUTHENTICATION_REALM 116, 121
DHCPC6_DUID_EN_NUM 122
DHCPC6_DUID_EN_VAL 122
DHCPC6_DUID_IF 122
DHCPC6_DUID_TYPE 122
DHCPC6_HMAC_MD5_SECRET 121
DHCPC6_IF_DNS_LIST 124
DHCPC6_IF_ENUM_LIST 123
DHCPC6_IF_HINTS_DEFAULT_ENUM_LIST
172

 Index

Index
128
DHCPC6_IF_HINTS_DEFAULT_PREFERRED_

LIST 130
DHCPC6_IF_HINTS_DEFAULT_PREFIX_LIST

129
DHCPC6_IF_HINTS_DEFAULT_REBIND_LIST

131
DHCPC6_IF_HINTS_DEFAULT_RENEW_LIST

131
DHCPC6_IF_HINTS_DEFAULT_VALID_LIST

129
DHCPC6_IF_IA_NA_DEFAULT_IAID_LIST 128
DHCPC6_IF_IA_NA_DEFAULT_LIST 127
DHCPC6_IF_INFO_REFRESH_DEFAULT_LIST

126
DHCPC6_IF_INFO_REFRESH_LIST 125
DHCPC6_IF_INFO_REFRESH_MAX_LIST 127
DHCPC6_IF_INFO_REFRESH_MIN_LIST 126
DHCPC6_IF_INFORMATION_ONLY_LIST 124
DHCPC6_IF_RAPID_COMMIT_LIST 123
DHCPC6_IF_SNTP_LIST 125
DHCPDISCOVER 93
dhcpr 88
DHCPR_CLIENT_PORT 85
DHCPR_HOPS_THRESHOLD 86
DHCPR_INSTALL_CALLBACK_HOOK 86
DHCPR_MAX_PKT_SIZE 85
DHCPR_NETCONF_SYSVAR 86
DHCPR_SERVER_PORT 85
DHCPR_START_CALLBACK_HOOK 86
DHCPREQUEST 97
dhcps 62

config 65
host 63
interface 65
lease 64
option 64
pool 63
subnet 63

DHCPS_ABANDONED_STATE_MAX_TIME 54
DHCPS_ALLOW_BOOTP 56
DHCPS_ALLOW_DECLINE 56
DHCPS_ALLOW_DYNAMIC_BOOTP 57
DHCPS_AUTHORIZED_AGENTS 57
DHCPS_CLIENT_PORT 53

DHCPS_DEFAULT_LEASE_TIME 53
DHCPS_DO_ICMP_ADDRESS_CHECK 57
DHCPS_EXPIRED_STATE_MAX_TIME 54
DHCPS_INSTALL_CALLBACK_HOOK 58, 66
DHCPS_LEASE_BOOTPC_MAX_TIME 55
DHCPS_MAX_LEASE_TIME 53
DHCPS_MIN_LEASE_TIME 53
DHCPS_NETCONF_SYSVAR 57, 59
DHCPS_OFFERED_STATE_MAX_TIME 55
DHCPS_PKT_SIZE 56
DHCPS_REBINDING_TIME 54
DHCPS_RELEASED_STATE_MAX_TIME 55
DHCPS_RENEWAL_TIME 54
DHCPS_SERVER_PORT 53
DHCPS_START_CALLBACK_HOOK 58, 66
DHCPS_STOP_CALLBACK_HOOK 58, 66
DHCPS6_ALLOW_RAPID_COMMIT 109
DHCPS6_AUTHENTICATION_REALM 108
DHCPS6_DUID_IFNAME 109
DHCPS6_HMAC_MD5_SECRET 108
DHCPS6_IF_RELAY_MAP_LIST 110
DHCPS6_MAXHOP_COUNT 110
DHCPS6_MODE 109
DHCPv6 45

client
authentication keys 114

example 115
automatic mode 114
configuring and building 120
configuring dynamically 116
configuring statically 114
hints 128
options 119
options, user- or vendor-defined 119
overview 113
rapid commit 123
reconfigure messages 119
replay detection 118
shell commands 132
temporary address assignment 119

overview 46
relay agent

configuring and building 108
overview 107

server
173

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6
authentication keys 110
example 111

configuring and building 108
overview 107

DHCPV6 Authentication Realm 108
DNS

clients 12
component overview 12
configuring and building 13
domain name space 11
iterative resolver lookups 13
name servers 12
recursive lookups 13
resolver cache, flushing 16
resolvers 12
zone, setting the 15

DNS Client 13
DNS domain name 14
DNS primary name server 14
DNS quaternary name server 14
DNS secondary name server 14
DNS server listening port 15
DNS tertiary name server 14
DNSC_DOMAIN_NAME 14
DNSC_IP4_ZONE 15
DNSC_IP6_ZONE 15
DNSC_PRIMARY_NAME_SERVER 14
DNSC_QUATERNARY_NAME_SERVER 14
DNSC_RETRIES 15
DNSC_SECONDARY_NAME_SERVER 14
DNSC_SERVER_PORT 15
DNSC_TERTIARY_NAME_SERVER 14
DNSC_TIMEOUT 15
documentation 3
domain name 73, 74, 76
Domain Name Server (DNS), see DNS
domain name server(s) 72
domains, communications

for sockets 151
don’t fragment flag 8
DUID

enterprise number 122
enterprise value 122

DUID EN Number 122
DUID EN Value 122

DUID Interface 122
DUID Type 122
Dynamic Host Configuration Protocol, see DHCP,

DHCPv6

E
EALREADY 165
ECONNABORTED 165
EINPROGRESS 165
EINTR 165
EINVAL 161
EISCONN 165
Enable proxy FTP support 27
ENETDOWN 149
envp 138
ethernet encapsulation 78
EWOULDBLOCK 165
Expired state max time 54
extensions path 73, 74, 76
External Data Representation, see XDR

F
File Transfer Protocol, see FTP
finger server(s) 79
flags

don’t fragment 8
FTP

see also TFTP
boot example 44
client 23, 24

mode 30
using 29
verbosity 30

configuring and building 24
file permissions 42
network devices, creating 43
security 23
server 23, 25
tranmission modes supported 24

FTP Client 24
174

 Index

Index
FTP Client Backend 24
FTP initial directory 27
ftp password 44
FTP root directory 27
FTP Server 24
FTP timeout 25
FTP transient fatal function 25
FTP Transient response maximum retry limit 25
FTP_DEBUG_OPTIONS 25
FTP_TIMEOUT 25
FTP_TRANSIENT_FATAL 25
FTP_TRANSIENT_MAX_RETRY_COUNT 25
FTP_TRANSIENT_RETRY_INTERVAL 25
FTP6 Client Backend 24
FTP6_REPLYTIMEOUT 25
FTPS_AUTH_ATTEMPTS 26
FTPS_AUTH_CALLBACK_HOOK 26
FTPS_ENABLE_PROXY 27
FTPS_INACTIVITY_TIMEOUT 29
FTPS_INITIAL_DIR 27
FTPS_INSTALL_CALLBACK_HOOK 26
FTPS_LOCAL_PORT_BASE 28
FTPS_MAX_SESSIONS 28
FTPS_MODE 28
FTPS_PEER_PORT_BASE 28
FTPS_PORT_NUM 29
FTPS_RECV_TIMEOUT 27
FTPS_ROOT_DIR 27
FTPS_SEND_TIMEOUT 27
FTPS_SLEEP_TIME 29
FTPS_SYS_TYPE 28

G
getaddrinfo() 161, 168

example 163
gethostbyaddr() 13, 168
gethostbyname() 13, 168
getnameinfo() 168
getOptServ() 67
getpeername() 143
getsockname() 143, 160
getsockopt() 143
Global client identifier 96

Global list of requested dhcp options 96

H
Hop Count Limit 110
host name 73, 74, 76
hostAdd() 43
hostGetByAddr() 169
hostGetByName() 169
hostLib 168
hosts.allow 36
hosts.equiv 36, 38

I
IAID
iam() 42
IANA

DHCPv6 clients and 127
IANA, port assignments 160
ICMP 6
ICMP6_ECHO_REPLY 10
ICMP6_ECHO_REQUEST 10
ICMPv6 10
Identity Association for Non-temporary Addresses,

see IANA
Identity Association ID, see IAID
IEEE Std. 1003.1 146
ifconfig 100
impress server(s) 73, 74, 76
in.h 147, 156, 159
in_addr_t 161
in6.h 147
INCLUDE_FTP 24
INCLUDE_FTP6 24
INCLUDE_IPCOM_USE_AUTH 41
INCLUDE_IPDHCPC 95
INCLUDE_IPDHCPC6 120
INCLUDE_IPDHCPR 85
INCLUDE_IPDHCPS 52
INCLUDE_IPDHCPS6 107
INCLUDE_IPDHCPS6_CMD 107
175

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6
INCLUDE_IPDNSC 13
INCLUDE_IPFTP_CMD 24
INCLUDE_IPFTPC 24
INCLUDE_IPFTPS 24
INCLUDE_IPNET_SOCKET 147, 148
INCLUDE_IPNET_USE_NETLINKSOCK 147, 148
INCLUDE_IPNET_USE_ROUTESOCK 147, 148
INCLUDE_IPNET_USE_SOCK_COMPAT 147,

148
INCLUDE_IPNSLOOKUP_CMD 13
INCLUDE_IPPING_CMD 7
INCLUDE_IPPING6_CMD 7, 9
INCLUDE_IPSNTP_CMD 18
INCLUDE_IPSNTP_COMMON 18
INCLUDE_IPSNTPC 18, 21
INCLUDE_IPSNTPS 18
INCLUDE_IPTELNETS 39
INCLUDE_IPTFTP_CLIENT_CMD 32
INCLUDE_IPTFTP_COMMON 32, 33
INCLUDE_IPTFTPC 32
INCLUDE_IPTFTPS 32, 33
INCLUDE_NET_DRV 43
INCLUDE_NET_HOST_SETUP 38
INCLUDE_PING 7
INCLUDE_PING6 7
INCLUDE_RCP 37
INCLUDE_REMLIB 35
INCLUDE_RLOGIN 37, 38
INCLUDE_RPC 37
INCLUDE_RTP 149
INCLUDE_SC_SOCKLIB 147, 148
INCLUDE_SECURITY 37, 38, 39
INCLUDE_SOCKLIB 147, 148
INCLUDE_TELNET_CLIENT 39
INCLUDE_TFTP_CLIENT 32, 33
INCLUDE_UN_COMP 148, 155
INCLUDE_XDR 37

RPC 37
INCLUDE_XDR_BOOL_T 37
inetLib 168
Install dhcp client callback routine 100
Install dhcp relay callback routine 86
Install dhcp server callback routines 58
Install ftp server callback routine 26
Interface Default Hints Status List 128, 129, 130,

131
Interface DNS Status List 124
Interface Hints Valid List 129, 130
Interface IA_NA Default List 127
Interface IAID List 128
Interface Information Only Status List 124
Interface Information Refresh Status List 125, 126
interface mtu 75, 77
Interface Name (DHCPv6 server configuration

parameter) 109
Interface Preferred List 129, 130
Interface Prefix Hints List 129
Interface Rapid Commit Status List 123
Interface Relay Map List 110
Interface Renew List 131
Interface SNTP Status List 125
Interface specific list of client identifier 99
Interface specific list of requested dhcp options 98
Interface Status List 123
ioctl()

setting socket options with 157
ip forwarding 73, 74, 76
ip time to live 75, 77
IP_IFF_UP 93
IP_IFF_X_DHCPRUNNING 93
IPCOM DHCP6 Server commands 107
IPCOM FTP client commands 24
IPCOM nslookup commands 13
IPCOM ping commands 7
IPCOM ping6 commands 7
IPCOM SNTP commands 18
IPCOM telnet port 41
IPCOM TFTP Commands 32
IPCOM_FILE_ROOT 27, 34
IPCOM_TELNET_AUTH_ENABLED 41
IPCOM_TELNET_PORT 41
ipd 100
ipdhcpc.client_identifier 96
ipdhcpc.client_port 96
ipdhcpc.discover_retries 97
ipdhcpc.interfaceName.client_identifier 99
ipdhcpc.interfaceName.requested_options 98
ipdhcpc.offer_timeout 97
ipdhcpc.requested_options 96
ipdhcpc.rfc2131_exponential_backoff 97
176

 Index

Index
ipdhcpc.rfc2131_init_delay 96
ipdhcpc.server_port 96
IPDHCPC_OPTCODE_ALL_SUBNETS_LOCAL

103
IPDHCPC_OPTCODE_ARP_CACHE_TIMEOUT

103
IPDHCPC_OPTCODE_BOOT_SIZE 103
IPDHCPC_OPTCODE_BROADCAST_ADDRESS

103
IPDHCPC_OPTCODE_CLIENT_IDENTIFIER 103
IPDHCPC_OPTCODE_COOKIE_SERVERS 103
IPDHCPC_OPTCODE_DEFAULT_IP_TTL 103
IPDHCPC_OPTCODE_DEFAULT_TCP_TTL 103
IPDHCPC_OPTCODE_DHCP_CLIENT_

IDENTIFIER 95
IPDHCPC_OPTCODE_DHCP_LEASE_TIME 94
IPDHCPC_OPTCODE_DHCP_MAX_MESSAGE_

SIZE 95
IPDHCPC_OPTCODE_DHCP_MESSAGE 95
IPDHCPC_OPTCODE_DHCP_MESSAGE_TYPE

95
IPDHCPC_OPTCODE_DHCP_OPTION_

OVERLOAD 103
IPDHCPC_OPTCODE_DHCP_PARAMETER_

REQUEST_LIST 95
IPDHCPC_OPTCODE_DHCP_REBINDING_

TIME 95
IPDHCPC_OPTCODE_DHCP_RENEWAL_TIME

95
IPDHCPC_OPTCODE_DHCP_REQUESTED_

ADDRESS 103
IPDHCPC_OPTCODE_DHCP_SERVER_

IDENTIFIER 95
IPDHCPC_OPTCODE_DOMAIN_NAME 94
IPDHCPC_OPTCODE_DOMAIN_NAME_

SERVERS 94
IPDHCPC_OPTCODE_EXTENSIONS_PATH 103
IPDHCPC_OPTCODE_FINGER_SERVERS 103
IPDHCPC_OPTCODE_FONT_SERVERS 103
IPDHCPC_OPTCODE_HOME_AGENTS 104
IPDHCPC_OPTCODE_HOST_NAME 102, 104
IPDHCPC_OPTCODE_IEEE802_3_

ENCAPSULATION 104
IPDHCPC_OPTCODE_IMPRESS_SERVERS 104
IPDHCPC_OPTCODE_INTERFACE_MTU 104

IPDHCPC_OPTCODE_IP_FORWARDING 104
IPDHCPC_OPTCODE_IRC_SERVERS 104
IPDHCPC_OPTCODE_LOG_SERVERS 104
IPDHCPC_OPTCODE_LPR_SERVERS 104
IPDHCPC_OPTCODE_MASK_SUPPLIER 104
IPDHCPC_OPTCODE_MAX_DGRAM_

REASSEMBLY 104
IPDHCPC_OPTCODE_MERIT_DUMP 104
IPDHCPC_OPTCODE_NAME_SERVERS 104
IPDHCPC_OPTCODE_NETBIOS_DD_SERVER

104
IPDHCPC_OPTCODE_NETBIOS_NAME_

SERVERS 104
IPDHCPC_OPTCODE_NETBIOS_NODE_TYPE

104
IPDHCPC_OPTCODE_NETBIOS_SCOPE 104
IPDHCPC_OPTCODE_NIS_DOMAIN 104
IPDHCPC_OPTCODE_NIS_SERVERS 104
IPDHCPC_OPTCODE_NON_LOCAL_SOURCE_

ROUTING 104
IPDHCPC_OPTCODE_NTP_SERVERS 94
IPDHCPC_OPTCODE_PAD 94
IPDHCPC_OPTCODE_PATH_MTU_AGING_

TIMEOUT 104
IPDHCPC_OPTCODE_PATH_MTU_PLATEAU_

TABLE 104
IPDHCPC_OPTCODE_PERFORM_MASK_

DISCOVERY 104
IPDHCPC_OPTCODE_POLICY_FILTER 105
IPDHCPC_OPTCODE_RESOURCE_LOCATION_

SERVERS 105
IPDHCPC_OPTCODE_ROOT_PATH 105
IPDHCPC_OPTCODE_ROUTER_DISCOVERY

105
IPDHCPC_OPTCODE_ROUTER_SOLICITATION_

ADDRESS 105
IPDHCPC_OPTCODE_ROUTERS 94
IPDHCPC_OPTCODE_STATIC_ROUTES 105
IPDHCPC_OPTCODE_SUBNET_MASK 94
IPDHCPC_OPTCODE_SWAP_SERVER 105
IPDHCPC_OPTCODE_TCP_KEEPALIVE_

GARBAGE 105
IPDHCPC_OPTCODE_TCP_KEEPALIVE_

INTERVAL 105
IPDHCPC_OPTCODE_TIME_OFFSET 105
177

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6
IPDHCPC_OPTCODE_TIME_SERVERS 105
IPDHCPC_OPTCODE_TRAILER_

ENCAPSULATION 105
IPDHCPC_OPTCODE_VENDOR_CLASS_

IDENTIFIER 105
IPDHCPC_OPTCODE_VENDOR_

ENCAPSULATED_OPTIONS 105
IPDHCPC_OPTCODE_X_DISPLAY_MANAGER

105
ipdhcpc_option_callback() 94, 100

example 102
implementing 101

ipdhcpc6.duid.en.number 122
ipdhcpc6.duid.if 122
ipdhcpc6.duid.type 122
ipdhcpc6.duid.value 122
ipdhcpc6.if.enum 123
ipdhcpc6.if.interfaceName.dns 124
ipdhcpc6.if.interfaceName.ia_

na.default.hints.default.preferred 130
ipdhcpc6.if.interfaceName.ia_

na.default.hints.default.prefix 129
ipdhcpc6.if.interfaceName.ia_

na.default.hints.default.valid 129
ipdhcpc6.if.interfaceName.ia_

na.default.hints.enum.default 128
ipdhcpc6.if.interfaceName.ia_

na.default.hints.rebind 131
ipdhcpc6.if.interfaceName.ia_

na.default.hints.renew 131
ipdhcpc6.if.interfaceName.ia_na.default.iaid 128
ipdhcpc6.if.interfaceName.ia_na.enum.default

127
ipdhcpc6.if.interfaceName.information_only 124
ipdhcpc6.if.interfaceName.information_refresh

125
ipdhcpc6.if.interfaceName.information_

refresh.default 126
ipdhcpc6.if.interfaceName.information_

refresh.maximum 127
ipdhcpc6.if.interfaceName.information_

refresh.minimum 126
ipdhcpc6.if.interfaceName.rapid_commit 123
ipdhcpc6.if.interfaceName.sntp 125
ipdhcpc6_authdb_create_ll_duid() 114, 117

ipdhcpc6_get_replay_counters() 118
ipdhcpc6_set_auth_realm() 117
ipdhcpc6_set_default_auth_key() 117
ipdhcpc6_set_replay_counters() 118
ipdhcpc6_user_authdb_config_finished() 116, 117
ipdhcpr.ClientPort 85
ipdhcpr.HopsThreshold 86
ipdhcpr.PacketSize 85
ipdhcpr.ServerPort 85
ipdhcpr_config.c 87
ipdhcpr_interface_status_set() 91
ipdhcpr_netconf_sysvar 86, 87

commands in 87
ipdhcpr_server_add() 91
ipdhcpr_server_delete() 91
ipdhcpr_start_hook() 86, 91

implementing 89
reading configuration values from a file with

89
ipdhcps.allow_bootp 56
ipdhcps.allow_decline 56
ipdhcps.allow_dynamic_bootp 57
ipdhcps.authorized_agents 57
ipdhcps.client_port 53
ipdhcps.default_lease_time 53
ipdhcps.do_icmp_address_check 57
ipdhcps.in_abandoned_state_max_time 54
ipdhcps.in_bootp_state_max_time 55
ipdhcps.in_expired_state_max_time 54
ipdhcps.in_offered_state_max_time 55
ipdhcps.in_release_state_max_time 55
ipdhcps.max_lease_time 53
ipdhcps.min_lease_time 53
ipdhcps.packet_size 56
ipdhcps.rebinding_time 54
ipdhcps.renewal_time 54
ipdhcps.server_port 53
ipdhcps_cmd_dhcps() 67, 69
IPDHCPS_CONFCODE_ALLOW_BOOTP 80
IPDHCPS_CONFCODE_ALLOW_DYNAMIC_

BOOTP 80
IPDHCPS_CONFCODE_BOOT_FILE 80
IPDHCPS_CONFCODE_LEASE_TIME_DFLT 80
IPDHCPS_CONFCODE_LEASE_TIME_MAX 81
IPDHCPS_CONFCODE_LEASE_TIME_MIN 81
178

 Index

Index
IPDHCPS_CONFCODE_NEXT_SERVER_IP 81
IPDHCPS_CONFCODE_NEXT_SERVER_NAME

81
IPDHCPS_CONFCODE_REBINDING_TIME 81
IPDHCPS_CONFCODE_RENEWAL_TIME 81
ipdhcps_config.c 57, 59, 72
ipdhcps_config_option_reset() 71
ipdhcps_config_option_set() 71
ipdhcps_dhcp_option_add() 71
ipdhcps_dhcp_option_delete() 71
ipdhcps_host_add() 71
ipdhcps_host_delete() 71
ipdhcps_interface_status_set() 71
ipdhcps_lease_db_dump() 52, 70, 71
ipdhcps_lease_db_restore() 52, 71
ipdhcps_netconf_sysvar 57, 59

commands available in 60
example 61

IPDHCPS_OPTCODE_ALL_SUBNETS_LOCAL
75, 77

IPDHCPS_OPTCODE_ARP_CACHE_TIMEOUT
78

IPDHCPS_OPTCODE_BOOT_SIZE 73, 74, 76
IPDHCPS_OPTCODE_BROADCAST_ADDRESS

75, 77
IPDHCPS_OPTCODE_CLIENT_IDENTIFIER 79
IPDHCPS_OPTCODE_COOKIE_SERVERS 73, 74,

76
IPDHCPS_OPTCODE_DEFAULT_IP_TTL 75, 77
IPDHCPS_OPTCODE_DEFAULT_TCP_TTL 78
IPDHCPS_OPTCODE_DOMAIN_NAME 73, 74,

76
IPDHCPS_OPTCODE_DOMAIN_NAME_

SERVERS 72
IPDHCPS_OPTCODE_EXTENSIONS_PATH 73,

74, 76
IPDHCPS_OPTCODE_FINGER_SERVERS 79
IPDHCPS_OPTCODE_FONT_SERVERS 78
IPDHCPS_OPTCODE_HOME_AGENTS 79
IPDHCPS_OPTCODE_HOST_NAME 73, 74, 76
IPDHCPS_OPTCODE_IEEE802_3_

ENCAPSULATION 78
IPDHCPS_OPTCODE_IMPRESS_SERVERS 73, 74,

76
IPDHCPS_OPTCODE_INTERFACE_MTU 75, 77

IPDHCPS_OPTCODE_IP_FORWARDING 73, 74,
76

IPDHCPS_OPTCODE_IRC_SERVERS 79
IPDHCPS_OPTCODE_LOG_SERVERS 73, 74, 76
IPDHCPS_OPTCODE_LPR_SERVERS 73, 74, 76
IPDHCPS_OPTCODE_MASK_SUPPLIER 75, 77
IPDHCPS_OPTCODE_MAX_DGRAM_

REASSEMBLY 75, 77
IPDHCPS_OPTCODE_MERIT_DUMP 73, 74, 76
IPDHCPS_OPTCODE_NAME_SERVERS 72
IPDHCPS_OPTCODE_NETBIOS_DD_SERVER 78
IPDHCPS_OPTCODE_NETBIOS_NAME_

SERVERS 78
IPDHCPS_OPTCODE_NETBIOS_NODE_TYPE

78
IPDHCPS_OPTCODE_NETBIOS_SCOPE 78
IPDHCPS_OPTCODE_NIS_DOMAIN 78
IPDHCPS_OPTCODE_NIS_SERVERS 78
IPDHCPS_OPTCODE_NISPLUS_DOMAIN 79
IPDHCPS_OPTCODE_NISPLUS_SERVERS 79
IPDHCPS_OPTCODE_NNTP_SERVERS 79
IPDHCPS_OPTCODE_NON_LOCAL_SOURCE_

ROUTING 73, 74, 76
IPDHCPS_OPTCODE_NTP_SERVERS 78
IPDHCPS_OPTCODE_NWIP_DOMAIN 79
IPDHCPS_OPTCODE_PATH_MTU_AGING_

TIMEOUT 75, 77
IPDHCPS_OPTCODE_PATH_MTU_PLATEAU_

TABLE 75, 77
IPDHCPS_OPTCODE_PERFORM_MASK_

DISCOVERY 75, 77
IPDHCPS_OPTCODE_POLICY_FILTER 75, 77
IPDHCPS_OPTCODE_POP3_SERVERS 79
IPDHCPS_OPTCODE_RESOURCE_LOCATION_

SERVERS 73, 74, 76
IPDHCPS_OPTCODE_ROOT_PATH 73, 74, 76
IPDHCPS_OPTCODE_ROUTER_DISCOVERY 75,

77
IPDHCPS_OPTCODE_ROUTER_SOLICITATION_

ADDRESS 75, 77
IPDHCPS_OPTCODE_ROUTERS 72
IPDHCPS_OPTCODE_SMTP_SERVERS 79
IPDHCPS_OPTCODE_STATIC_ROUTES 75, 77
IPDHCPS_OPTCODE_STDA_SERVERS 80
IPDHCPS_OPTCODE_STREETTALK_SERVERS
179

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6
80
IPDHCPS_OPTCODE_SUBNET_MASK 72
IPDHCPS_OPTCODE_SWAP_SERVER 73, 74, 76
IPDHCPS_OPTCODE_TCP_KEEPALIVE_

GARBAGE 78
IPDHCPS_OPTCODE_TCP_KEEPALIVE_

INTERVAL 78
IPDHCPS_OPTCODE_TIME_OFFSET 72
IPDHCPS_OPTCODE_TIME_SERVERS 72
IPDHCPS_OPTCODE_TRAILER_

ENCAPSULATION 75, 77
IPDHCPS_OPTCODE_VENDOR_

ENCAPSULATED_OPTIONS 78
IPDHCPS_OPTCODE_WWW_SERVERS 79
IPDHCPS_OPTCODE_X_DISPLAY_MANAGER

79
ipdhcps_pool_add() 71
ipdhcps_pool_delete() 71
ipdhcps_start_hook() 52, 58, 66

reading a configuration file with 62
ipdhcps_stop_hook() 52, 58, 66, 70
ipdhcps_subnet_add() 71
ipdhcps_subnet_delete() 71
ipdhcps6.authkey 108
ipdhcps6.authrealm 108
ipdhcps6.duid.ifname 109
ipdhcps6.mode 109
ipdhcps6.relay.hop_count_limit 110
ipdhcps6.relay.map 110
ipdhcps6.server.allow_rapid_commit 109
ipdhcps6_authdb_add_client_authkey() 112
ipdhcps6_authdb_add_server_authkey() 115, 117
ipdhcps6_authdb_create_ll_duid() 111
ipdhcps6_authdb_delete_client_authkey() 112
ipdhcps6_authdb_server_no_auth() 116
IPDNSC, see DNS
ipdnsc.domainname 14
ipdnsc.ip4.zone 15
ipdnsc.ip6.zone 15
ipdnsc.port 15
ipdnsc.primaryns 14
ipdnsc.quaternaryns 14
ipdnsc.retries 15
ipdnsc.secondaryns 14
ipdnsc.tertiaryns 14

ipdnsc.timeout 15
ipdnsc_getipnodebyaddr() 12
ipdnsc_getipnodebyname() 12
ipftps.authentications 26
ipftps.authsleep 29
ipftps.dir 27
ipftps.lportbase 28
ipftps.max_sessions 28
ipftps.port_number 29
ipftps.pportbase 28
ipftps.proxy 27
ipftps.readonly 28
ipftps.receive_timeout 27
ipftps.root 27
ipftps.send_timeout 27
ipftps.session_timeout 29
ipftps.system 28
IPNET_SOCK_ADDR_NOTIFY 149
IPNET_SOCK_ANON_PORT_MAX 149
IPNET_SOCK_ANON_PORT_MIN 149
IPNET_SOCK_DEFAULT_RECV_BUFSIZE 150,

158
IPNET_SOCK_DEFAULT_SEND_BUFSIZE 150,

158
IPNET_SOCK_MAX 150
IPPROTO_ICMP 157
IPPROTO_IP 156, 159
IPPROTO_TCP 156, 159
IPPROTO_UDP 156
IPSNTP, see SNTP
ipsntp.client.backup.addr 19
ipsntp.client.backup.addr6 19
ipsntp.client.multi.addr 20
ipsntp.client.multi.addr6 20
ipsntp.client.multi.if 20
ipsntp.client.multi.if6 20
ipsntp.client.poll.count 19
ipsntp.client.poll.interval 20
ipsntp.client.poll.timeout 21
ipsntp.client.primary.addr 20
ipsntp.client.primary.addr6 20
ipsntp.server.mcast.addr 22
ipsntp.server.mcast.addr6 22
ipsntp.server.mcast.interval 22
ipsntp.server.mcast.ttl 22
180

 Index

Index
ipsntp.server.precision 22
ipsntp.server.stratum 23
ipsntp.udp.port 21, 23
ipsntp_config.h 21
IPSNTP_USE_CLIENT 21
IPSNTP_USE_SERVER 21
iptftp.dir 34
iptftp.retries 34
iptftp.timeout 34
IPTFTPC, see TFTP
irc server(s) 79

L
l_linger 168
l_onoff 168
Lease for bootp client max time 55
Lease rebinding time 54
Lease renewal time 54
level 159
listen() 142, 158, 165
local domain sockets, working with 154

including in an image 155
setting up 155

Local port base number 28
log server(s) 73, 74, 76
LOGIN_PASSWORD 38, 40
LOGIN_USER_NAME 38, 40
lpr server(s) 73, 74, 76

M
Managed address configuration flag 114
max datagram reassembly 75, 77
Max dhcp relay packet size 85
Max number of simultaneous sessions 28
Maximum lease time 53
Maximum number of hops 86
Maximum number of sockets 150
max-lease-time 81
merit dump path 73, 74, 76
Minimum lease time 53

min-lease-time 81
mobile ip home agent 79
Mode (DHCP server configuration parameter) 109
msg_control 167
msg_name 166
msghdr

defined 166

N
name server(s) 72
name servers

addresses of 14
netbios dgram distr server(s) 78
netbios name server(s) 78
netbios node type 78
netbios scope 78
netDevCreate() 42, 43
netDrv 41

downloading run-time images 43
general usage information 43

Netlink socket 147, 148
NetWare/IP Domain Name 50
Netware/IP Information 50
network application protocols 5

adding to builds 6
configuring dynamically 6

Network Sockets 147
Network Time Protocol (NTP), see SNTP
Network Virtual Terminal, see NVT
next-server-ip 81
next-server-name 81
nis domain 78
nis server(s) 78
nis+ domain 79
nis+ server(s) 79
nntp server(s) 79
non local source routing 73, 74, 76
nslookup 13, 16

command-line options 16
ntp server(s) 78
NUM_FILES 150
Number of DHCP client retries 97
Number of retransmissions 19
181

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6
Number of retries for DNS queries 15
NVT

O
Offered state max time 55
open() 43
Option callback routine 100
OPTION_RECONF_ACCEPT 119
OPTION_RECONF_MSG 119
OPTION_USER_CLASS 119
OPTION_VENDOR_CLASS 119
OPTION_VENDOR_OPTS 119
optname 158
Other stateful configuration flag 114

P
Packet size 56
password protection for Telnet and FTP,

component 38, 39
path mtu aging timeout 75, 77
path mtu plateau table 75, 77
Peer port base number 28
perform mask discovery 75, 77
perform router discovery 75, 77
ping 6

RTP example 136
TTL field 9

PING client 7
ping.vxe 136
ping6 6, 9
PING6 client 7
policy filter 75, 77
pop3 server(s) 79
port numbers

ephemeral 160
registered 160
well-known 160

Primary server IPv4 address 20
Primary server IPv6 address 20

R
rcmd() 35
rcmd_af() 35
read() 166
Read/write mode 28
Real Time Process, see RTP
rebinding-time 81
recv() 143, 166
recvfrom() 143, 166
recvmsg() 143, 166
registered port numbers 160
Released state max time 55
remLib 35

associated configuration component 35
remLibInit() 35
Remote Command 35
remote file access

netDrv, using 41
permissions 42
remLib configuration component 35

Remote Procedure Call, see RPC
remote shell, see RSH
renewal-time 81
Reported system type 28
resource location server(s) 73, 74, 76
RFC 854 39
RFC 951 45, 84
RFC 959 24
RFC 1014 37
RFC 1034 12
RFC 1035 12
RFC 1123 24
RFC 1350 31
RFC 1542 45, 84
RFC 1831 36
RFC 2030 17
RFC 2131 45, 49, 94
RFC 2132 45, 49, 60, 94
RFC 2242 50
RFC 2428 24
RFC 2462 129, 130
RFC 2463 10
RFC 2577 24
RFC 3315 46, 108, 118
182

 Index

Index
RFC 3493 146
RFC 3542 146
RFC 3596 12
RFC 3646 119
RFC 3736 119
RFC 4075 119
RFC 4242 119
RFC2131 Exponential Back-off Delay 97
RFC2131 Initialization Delay identifier 96
.rhosts 36, 38, 41
RLOGIN 37
rlogin 37

security 37
rlogin() 38
rlogin/telnet encrypted password 38, 40
rlogin/telnet user name 38, 40
rlogLib 38
root path 73, 74, 76
route table

specifying 8, 10
router solicitation address 75, 77
router(s) 72
routing socket support 147, 148
RPC
rpcLib 36
rpcTaskInit() 36
RSH 41

configuring and building 35
file permissions 42
network devices, creating 43

RSH_STDERR_SETUP_TIMEOUT 35
rshd 34, 41
RTP

building 137
core network stack functionality and 136, 137
"Hello World" example 138
initialization functions 140
launching 139
network application as 136
overview 135
ping example 136
shutting down 141
socket calls in 136
socket connections 142
supported network applications 136

RTP_ID 141
rtpDelete() 141
rtpKill() 142
rtpShow() 142
rtpSp() 136, 139
rtpSpawn() 139

S
Seconds between retransmissions 21
send() 142, 166
sendmsg() 142, 166
sendto() 142, 159, 160, 166
Server port number 29
setsockopt() 143, 156, 157, 158
shell commands 6
shutdown() 143, 167
Simple Network Time Protocol, see SNTP
sin_len 161
smtp server(s) 79
SNTP 17

client 17
configuring 19

configuring and building 18
DHCPv6 clents and 125
server 17
server, configuring 22
server, enabling the 21
shell command 17

SNTP Client 18
SNTP common configurations 18
SNTP multicast client mode interface 20
SNTP multicast client mode IPv6 interface 20
SNTP multicast client mode IPv6 multicast group

20
SNTP multicast client mode multicast group 20
SNTP multicast mode IPv4 destination address 22
SNTP multicast mode IPv6 destination address 22
SNTP multicast mode send interval 22
SNTP multicast mode TTL 22
SNTP port 21, 23
SNTP Server 18
SNTP server precision 22
SNTP server stratum 23
183

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6
SNTP unicast client mode poll interval 20
SNTP_LISTENING_PORT 21, 23
SNTPC_BACKUP_IPV4_ADDR 19
SNTPC_BACKUP_IPV6_ADDR 19
SNTPC_MULTICAST_GROUP_ADDR 20
SNTPC_MULTICAST_GROUP_IPV6_ADDR 20
SNTPC_MULTICAST_MODE_IF 20
SNTPC_MULTICAST_MODE_IPV6_IF 20
SNTPC_POLL_COUNT 19
SNTPC_POLL_INTERVAL 20
SNTPC_POLL_TIMEOUT 21
SNTPC_PRIMARY_IPV4_ADDR 20
SNTPC_PRIMARY_IPV6_ADDR 20
SNTPS_IPV4_MULTICAST_ADDR 22
SNTPS_IPV6_MULTICAST_ADDR 22
SNTPS_MULTICAST_INTERVAL 22
SNTPS_MULTICAST_TTL 22
SNTPS_PRECISION 22
SNTPS_STRATUM 23
SO_ACCEPTCONN 158
SO_BINDTODEVICE 158
SO_BROADCAST 158
SO_DONTROUTE 158
SO_ERROR 158
SO_KEEPALIVE 158
SO_LINGER 157, 158, 168
SO_OOBINLINE 158
SO_RCVBUF 158
SO_RCVLOWAT 158
SO_RCVTIMEO 158
SO_REUSEADDR 157, 158
SO_SNDBUF 158
SO_SNDLOWAT 158
SO_TYPE 158
SO_USELOOPBACK 158
SOCK_DGRAM 153, 156
SOCK_RAW 153, 154
SOCK_RDM 153
SOCK_SEQPACKET 143, 148, 153, 154
SOCK_STREAM 153, 156
sockaddr 152, 159
sockaddr_in 159

defined 161
example 161
setup of 161

sockaddr_in6 152, 159
defined 162
example 162
setup of 162

sockaddr_un 155
Socket API 147, 148
Socket API System Call support 147, 148
Socket backend 147, 148
socket descriptor

creating 156
Socket support 147, 148
socket() 142, 152, 156, 158
socket.h 147, 158
sockets

accepting connections 165
background reading 146
binding a name to 159
BSD socket compatibility 146
closing 167
communications domains 151
configuration components for 147
configuring and building 147
control information, accessing 166
creating 156
datagram

defined 153
file descriptors and 146
generic definition of 150
implicit 160
internet domain 151
inter-task communication with 143
IPv4 addresses, and 161
IPv6 addresses, and 162
listening for connections 165
local 152
macros accessing control information 167
non-blocking 157
options, setting 157
port numbers, ephemeral 160
raw 153
routing 152
sending/receiving data 166
sockaddr_in, setup of 161
sockaddr_in6, setup of 162
stream
184

 Index

Index
defined 153
types 153
VxWorks-specific issues 146

sockLib 148, 152
sockLib.h 155
sockScLib 149
SOL_SOCKET 158
static routes 75, 77
stda server(s) 80
street talk server(s) 80
subnet mask 72
subnet mask supplier 75, 77
swap server(s) 73, 74, 76
sysctl() 137
sysvar 6
sysvars 46

T
taskCreate() 140
taskExit() 140, 141
taskSpawn() 140
taskSuspend() 141
tcp keep alive garbage 78
tcp keep alive interval 78
tcp.h 147
TCP_NODELAY 159
telnet 39

client 39
configuring and building 39
security 39
server 40

Telnet authentication 41
TELNET client 39
Telnet Server 39
TELNET/FTP password protection 37, 39
telnetcLib 39
TFTP

configuring and building 32
using 32

TFTP Client 32
TFTP Client APIs 32
TFTP Common Configurations 32
TFTP number of retries 34

TFTP retransmit timeout in seconds 34
TFTP Server 32
TFTP server (DHCP option) 50
TFTP server working directory 34
tftpLib

configuration component for 33
TFTPS_DIRS 34
TFTPS_RETRANSMIT_TIMEOUT 34
TFTPS_RETRIES 34
Time delay between retries after FTP_TRANSIENT

encountered 25
time offset 72
time server(s) 72
Time to sleep after authentication fail 29
Timeout in seconds when waiting for responses to

DNS queries 15
Timeout interval for second RSH connection if any

35
trailer encapsulation 75, 77
Trivial File Transfer Protocol, see TFTP
TTL field (ping) 9

U
UDP port used by the DHCP server 53
UDP port used by the dhcp server 85
UDP port used by the dhcp/bootp clients 53, 85
un.h 155
User inactivity timeout 29
usrAppInit() 116
usrNetInit() 43

V
Vendor class identifier 50
vendor encapsulated options 78

W
WAIT_FOREVER 35
well-known port numbers 160
185

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6
write() 166
_WRS_CONSTRUCTOR 140, 141
www server(s) 79

X
X display manager 79
X font server(s) 78
XDR 37

RPC and 37
XDR boolean support 37

Z
Zone for IPv4 address to name lookups 15
Zone for IPv6 address to name lookups 15
186

	Wind River Network Stack for VxWorks 6 Programmer's Guide, 6.6
	Contents
	1 Overview
	1.1 Introduction
	1.2 Technology Overview
	1.2.1 Product Overview

	1.3 Additional Documentation
	Wind River Documentation
	Online Resources
	Books

	2 Network Application Protocols
	2.1 Introduction
	2.2 Ping
	2.2.1 Ping Commands
	2.2.2 Ping6 commands

	2.3 DNS
	Technology Overview
	2.3.1 Component Overview
	2.3.2 Conformance to Standards
	2.3.3 Configuring and Building DNS
	2.3.4 Using nslookup from the Command Interpreter

	2.4 SNTP
	2.4.1 Configuring and Building SNTP

	2.5 FTP
	2.5.1 Configuring and Building FTP
	2.5.2 Using the FTP Client from the Command Interpreter

	2.6 TFTP
	2.6.1 Configuring and Building TFTP

	2.7 RSH
	2.7.1 Configuring and Building RSH
	2.7.2 Enabling Access to an RSH User

	2.8 RPC
	2.8.1 Configuring and Building RPC

	2.9 rlogin
	2.9.1 Configuring and Building rlogin

	2.10 Telnet
	2.10.1 Configuring and Building Telnet

	2.11 Creating a netDrv Device for RSH or FTP

	3 Wind River DHCP and DHCPv6: Overview
	3.1 Introduction
	3.1.1 Architectural Overview: Client, Server, and Relay Agent
	3.1.2 DHCPv6
	3.1.3 Build Configuration Parameters and sysvars

	4 Wind River DHCP: Server
	4.1 Introduction
	Conformance to Standards
	4.1.1 Server Overview
	4.1.2 Server Components

	4.2 Including the DHCP Server in a Build
	4.3 Setting Up Addresses, Options, Subnets and Hosts
	4.3.1 Configuring the Server with the ipdhcps_netconf_sysvar Array
	4.3.2 Configuring the Server with Shell Commands
	DHCP Server Shell Commands

	4.4 Implementing Hook Routines for Initialization and Shutdown
	4.4.1 The ipdhcps_start_hook() Routine
	4.4.2 The ipdhcps_stop_hook() Routine
	4.4.3 DHCP Server API Routines

	4.5 Setting Options in Shell Commands and API Routines
	4.5.1 Using Standard DHCP Options in Shell Commands and APIs
	4.5.2 Using Wind River-Specific Options in Shell Commands and APIs

	5 Wind River DHCP: Relay Agent
	5.1 Introduction
	Relay Agent Overview
	Conformance to Standards

	5.2 Including the DHCP Relay Agent in a Build
	5.3 Configuring the Relay Agent with the ipdhcpr_netconf_sysvar Array
	5.4 Using Shell Commands
	5.5 Implementing the ipdhcpr_start_hook() Routine
	5.5.1 DHCP Relay Agent API Routines

	6 Wind River DHCP: Client
	6.1 Introduction
	6.1.1 Conformance to Standards

	6.2 Including the DHCP Client in a Build
	6.3 Using Shell Commands
	6.4 Implementing the ipdhcpc_option_callback() Routine
	6.4.1 DHCP Options Not Initially Implemented in the Client

	7 Wind River DHCPv6: Server and Relay Agent
	7.1 Introduction
	7.2 Assigning Client-specific Authentication Keys

	8 Wind River DHCPv6: Client
	8.1 Introduction
	8.1.1 Configuring the DHCPv6 Client
	8.1.2 Conformance to Standards

	8.2 Including the DHCPv6 Client in a Build
	8.3 Using Shell Commands

	9 Creating Network Applications as RTPs
	9.1 Introduction
	9.2 Running Network Applications in RTPs
	9.2.1 General Network/RTP Incompatibilities

	9.3 Working with Application RTPs
	9.3.1 Building an RTP ELF Object File for a Network Application
	9.3.2 Launching an RTP
	9.3.3 Identifying the RTP Constructor Routine in a Library
	9.3.4 Shutting down an RTP Application

	9.4 Using Socket Connections with RTPs

	10 Internet and Local Domain Sockets
	10.1 Introduction
	10.2 Configuring VxWorks for Sockets
	10.3 Using Sockets in VxWorks
	Communications Domains
	Socket Types

	10.4 Working with Local Domain Sockets
	10.5 Working with Internet Domain Sockets
	10.5.1 Creating the Connection for Internet Domain Stream Sockets
	10.5.2 Sending and Receiving Data Using Internet Domain Sockets
	10.5.3 Closing or Shutting Down an Internet Domain Socket Connection
	10.5.4 Support Routines for Working with Internet Addresses

	Index

