WIND RIVER

Wind RiverWorkbench
Data Monitor

USER'S GUIDE

3.0

Copyright © 2007 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, the Wind River logo, Tornado, and VxWorks are registered trademarks of
Wind River Systems, Inc. Any third-party trademarks referenced are the property of their
respective owners. For further information regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDirlproduct_name/3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
US.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:
http://www.windriver.com
For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

Wind River Workbench Data Monitor User’s Guide, 3.0,

7 Nov 07
Part #: DOC-16005-ZD-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

Contents

3 o Yo 10 1 o) o

1.1 Introduction

Data MONItOr OVEIVIEWccviereeeeeeeeeeeeie v eereeeteeere et eeeeveeveereeneen

1.2 Architectural Summary

VXWOTKS Targetsccccccuiiiiiiiiniiiiiicicicccccccescccccnes
LinuxX Targets ...
The HOSt GUI ..ottt ettt e
Host-target Communicationccooviirieiiiiiiiiiccec

1.3 Features

Getting Started ... —————————

2.1 Introduction

2.2 Requirements

2.3 Starting Data Monitor

Initializing the Target Server (VxWorks Only)cccoooeviiiiiinnnnnnn.
Starting Automatically ..o
Starting Manuallycccoviiiiiiiiiiie
Usage NOEScocueiiiiiiiiicccc s

2.4 The Data Monitor GUI

fii

QLU= W N

Wind River Workbench Data Monitor
User's Guide, 3.0

PLOt WINAOW ettt ettt eaaeeea 20

PLOt XY WINAOW oottt eae e 22

Dump Plot WINdOWcccooiiiiiiiiiiiciiiccccccces 24

JAY o) A o) VA VA1 4 e Lo AP 25

Auxiliary Data-Display Windows ... 25

Common Window EIemMentsccccocveeeeeeiieeeiciieecceieceeeeeeee e 29

2.5 Testing Your Installation 30
On a VXWOrks Targetccooeeveiceiiinieiiccicececeec e 30

On a Linux Target ... 35

Viewing the Signals ... 35

Exploring the Demo Capabilities ..o, 35

Automatic Signal Management (VxWorks Only)cccccoeviviiniinnne. 36

Data Monitor FEaturescccccoeeiiiiimceiiiieeeesrree s sremees s ersmessssssnmssses 39
3.1 Introduction 39
3.2 Toolbars 40
AV N0 T e Yo) | 7= PR 40

PLOtS TOOIDAT ..ttt 41

Plot WINAOW TOOIDAT ...cviiviieiiciieceeeceeeeeeeeee ettt 41

3.3 File Menu Item 43
3.3.1 Connect to Target ..o 45

3.32 Load SNapshot ... 45

333 Save SNapShoOt ... 45

334 Load Config ..o 46

335 5ave Config ..o 46

3.3.6 PLOES ettt ettt ettt et ettt a et et e et eaeeteenanas 48

3.3.7 Signal Manager ... 49

3.3.8 TIIZEETING wovoiviiiiiiiic s 50

3.3.9 XY SINALS ..o 51

3.3.10 Derived Signals ..o 52

3.3.11 Trace Log WINAOWccoovriimriiiiiiiiiccc s 53

Contents

3312 PIEfEIEICES ...oioeeeiieeeiieieieiieieeteeieie st sttt se e saesenessenens 53

3.3.13 CloSe WINAOW ..eeiiiuiiiiiiieiiiiirieieitetesete ettt sttt 69

3.3.14 Exit Data MONItOTL ..cc.ovieiiiirierieiciesteeecese et 69

34 Menu Bar 69
Plot Menu Item (Windows Hosts Only)ccccccceiieeiininicccnnnes 69

View Menu Item ..c..cocooviiiiiiiiiinicietcccecee e 70

Window Menu Item (Windows Hosts Only)ccccevvviiiiininnen. 70

HELP e s 70

3.5 Pop-up Menus 71
ONEGII ittt 71

On-Trace (Windows Hosts Only) ... 73

SIgNAIS TTEE ..vviiiiciiiicici s 73

Legend ... 74

3.6 Screen Operations 76
ZOOIMNINE .vviiiiiiiitcet et aeneas 76

IMEATKETS ..euvniiitiieeei ettt sttt st 76

ANNOLATIONS ettt e 77

Panning ..o 77

On-grid Measurementsccccuoveuevecinicninccieceecs s 78

3.7 Status Bar 78
Using the Signhal Manager ... eeeeemmmmeeeeeeeeeereeessesssesesesssssssseeeee 81
41 Introduction 81
42 Using the Signal Manager Window 81
Working With Signal Trees ..o 82

Installing Signals ... 84

Disconnecting the Target ..o 84

JLIL = [L= 513 T 85

51 Introduction 85
5.2 Configuring a Trigger 85

Wind River Workbench Data Monitor
User's Guide, 3.0

Triggering Dialog Box - Windows Hostcccccceeuaee.
Triggering Dialog Box - UNIX HOStccoviviriiiiiininnnnnes

5.3 Setting a Trigger

The Chain of EVENtSccccveieirieieieeeceisieeeeeee e
Trying it Yourself ...

Derived Signalscccccvemermiimsrmnssse s

6.1 Introduction

6.2 Creating Derived Signals

Mathematical Operationsc.cccoevovueveeciniiceieceinnes
Troubleshooting Derived Signalsccccooviniiiniinnns

The PIot WIiNAOWcciieiieiieireireireseresrmsssesssesssmsssasssnsssnssres

7.1 Introduction

7.2 Plot Window Tour

Selecting Signals ..o
Popup Menu ...
Screen Operationscccceeveioiiiiiceieecce e
TOOIDAT ..o
Menu Bar ...
Signals Bar ..o
Legend Window (UNIX Hosts Only)cccccoevverninicinnes
Strip Chart ...

7.3 Signal Properties Dialog Box

7.4 Axis Properties Dialog Box (Windows Hosts Only)

7.5 Displaying Events

Events Collected as Signalsc.c.cccooooviiiniiiicin,
Events Collected as Markerscccocoovvvvcieeniniiccnnnes
Events Collected as Messagesccoouvveruiicuniicnnincncnnnnes

7.6 Setting New Plot Window Preferences

Vi

128

130

131
131
133

134

10

The Plot XY Window

8.1

8.2

8.3

8.4

8.5

The Dump Plot Window

9.1

9.2

9.3

The Monitor Window
10.1

10.2 Monitor Window Tour

Introduction

Contents

139

Creating XY Signal Pairs

140

Creating a Signal Pairccccccocvvvniniiinnne,
Deleting a Signal Paircccccocevvniinccinnne,
Modifying a Signal Paircccccceevncvcccennencnee

Plot XY Window Tour

................................. 140
................................. 141
................................. 141

141

Displaying Signal Parametersc.ccccccoueeununnee.
Popup Menu ...
Screen Operations ..o,
TOOIDAT ..o
Menu Bar ..o
Signals Bar ...

................................. 143
................................. 144
................................. 144
................................. 145
................................. 145
................................. 149

154

Signal Properties Dialog Box

160

Setting New Plot XY Window Preferences

Introduction

Dump Plot Window Tour

Displaying Signal Parametersc.ccccccouerunrnnee.
TOOIDAT ..o
Menu Bar ..o
Signals Barccocoreiieiic e

Setting New Dump Plot Window Preferences

Introduction

Displaying Signal Parametersccccccecvununnns
TOOIDAT v

vii

11

12

Wind River Workbench Data Monitor
User's Guide, 3.0

Menu Bar ... 176
SigNals Barcccciiiiiiiiiic s 178
10.3 Writing Data to the Target 181
Using Writeback ..o 182
10.4 Setting New Monitor Window Preferences 182
Working with SNapshots ... 185
11.1 Introduction 185
11.2 Utilizing Snapshots 185
Taking SNapshots ..o, 186
The Snapshot Process ... 186
Saving SNAPShOLSccccoviiiiiiiiii 187
Loading Snapshots ..., 193
Exporting Snapshots in MATLAB and MATRIXXcccccevvinnnne. 193
Deleting SNapshots ... 196
Displaying Remote Kernel Metricscccccciiiiiiiemmmmnninnniisnnneennnnnns 199
12.1 Introduction 199
12.2 Building an RKM Monitor Program 199
On a VXWOrks Targetcccocovevvicueviceieiicececece e 200
On a Linux Target ... 203
Running the RKM Monitor From the Command Line 204
12.3 Viewing RKMs with Data Monitor 205
On a VXWOrks Target ..o 206
On a Linux Target ..o 207
12.4 Troubleshooting 208
On a VXWorks Target ... 208
On AL TArGetsc.cviiiiiiiiiccciic s 209

viii

13

14

15

Contents

Using @ VXWOrKS Targetocooeeeeemmmmeemeeeceeeeeeeeeseessesssssssssssssssssssssssnes

13.1 Introduction

13.2 ScopeProbe Requirements

13.3 VxWorks Targets
BUILAINE .o
Automatic Loading and RUNNINGcccoovvviiciiiiicce
Manual Loading and RUNNING ..o
Starting the Data Monitor GUI Manuallyc.ccccccoovriinnicninnnnes

13.4 Troubleshooting

Using a Linux Target

14.1

14.2

Installing Signals

15.1

15.2

15.3

15.4

15.5

15.6

Introduction

Building Your Application

Adding Include Filescccccovrnrinnnnn
Instrumenting Target Code
Adding Librariesccoooviiiininnnnns
Compiling Target Codecccceueueunnnee.
Testing Your Applicationccccco.c......

Introduction

Using the Signal Installation Dialog Box

Data Monitor Signal Installation Dialog BoXcccccoeuviiiiiiciniinnnnnns

Installing With the Data Monitor API

Code Instrumentation Alternative

Removing Individual Signals

Process Notes

Variable Expressions vs. Signal Names

241

241

241

242

Wind River Workbench Data Monitor
User's Guide, 3.0

Hierarchical Signal Namesccccceeuiiiiiicininiiiccccccnes 243

Classes and Structures ... 244

16 APIINtroduction ... 247
16.1 Introduction 247

16.2 Using the Data Monitor API 248
Initializing the Target Server (VxWorks Only)cccccoovvrriiirininnnn. 248

Registering and Activating Signalsccccoooennniinnccce, 249

Setting Sample Rate ..o 255

Sampling Signals ..o 255

16.3 Understanding Overflows 258
Overflow Behavior ... 258

Avoiding OVerflowscccooeiiiiiiiiiiiiiice e 258

Notes and HINtsccccevieeinieenineinieerecreeene e seeseereeseeveeeeneas 258

16.4 Triggering and Sampling Functions 259

16.5 Data Monitor Events API 260
SettiNG UP e 260

USINE ettt 261

Signals vs. EVENtSccccooviiiiiiiiiiciccccc e 262

16.6 scope.ini File (VxWorks Only) 263

A APl Reference: VXWOIKScccoooirmninnsnrennessssesne s snsnnnas 267
B APl Reference: LiNUX ... 295
C Data Monitor Demo Programcccccceemmrmnnsmsmmsssmssssssssssssssssssssssnns 323
C1 Introduction 323

C.2 Source Code for VxWorks 324
VxWorks vxdemo.c Programc.cccoceeniininicnnnicniccccns 324

Makefile fOr VXAemO.Ccceuiiiiiiiiiiiiciicc e 332

Contents

C.3 Source Code for Linux 334
Linux scopedemo.c Programccccoevviviniiiiiiiinnniiicccccnes 334

Makefile fOr SCOPEAEMO.C ...o.oueuvieiiiciiciceer s 345

D MATLAB and MATRIXX EXxamples ... 347
D.1 Introduction 347

D.2 MATLAB Example 347

D.3 MATRIXX Example 351

E RKM Signal Definitionscccveeiieiiiicisssis s s sesesssssesssssssssssssssssss s s s 357
E.1 Introduction 357

E.2 Signal Descriptions 357
EXamMPIES ...cooviiiiiiiiiicii s 363

I € 1o X1 7 T o 365
Lo =) 373

Xi

Wind River Workbench Data Monitor
User's Guide, 3.0

Xii

Introduction

1.1 Introduction 1
1.2 Architectural Summary 2
1.3 Features 6

1.1 Introduction

This chapter introduces you to the Wind River Data Monitor, a real-time graphical
data monitoring tool for VxWorks or Linux targets.

Data Monitor Overview

Anyone who has developed real-time systems knows that getting the code written
and compiled is only the first step. You still have to make it work. Where is the
noise coming from? How full is the buffer? When did that valve open? What are
the best parameters? Why did it do that? Understanding the system is the real
challenge.

Data Monitor is a real-time graphical monitoring and data-collection tool that lets
you monitor and analyze the dynamically changing values of variables in your
real-time application while it is running. It is a powerful debugging aid for both
hardware and software. With its multi-window environment, you can track down

Wind River Workbench Data Monitor
User's Guide, 3.0

performance problems, glitches, and program errors. Data Monitor presents a live
analysis of the variables in your program while preserving real-time performance.
You can immediately see the effects of code changes, parameter changes, or
external events.

1.2 Architectural Summary

The Data Monitor architecture comprises two main components—a collection
agent that runs on a real-time VxWorks or Linux target, and a GUI that runs in a
Windows or UNIX host. Along with the GUI, two additional modules are used by
the Workbench Remote Systems Explorer on both VxWorks and Linux targets:

= The DFW server to process symbol information sent by the data collection
module, loaded on the target with your kernel (or RTPs for VxWorks).

= A Signal installation package for automatically or manually installing signals
to be collected from your target and analyzed.

These components communicate through the Workbench Remote Systems
Explorer, including the DFW server, over a TCP/IP link (or, for VxWorks only, the
optional WTX link).

There are some minor differences in the implementation of target architecture
between VxWorks and Linux targets. These differences are outlined in the
following sections.

1 Introduction
1.2 Architectural Summary

VxWorks Targets

The component architecture of Data Monitor running on a VxWorks target is as
shown in the following illustration.

Windows or UNIX Host Workstation VxWorks Target
Data Monitor GUI RTP1.2,.n
= A Code Buffer |«
— —
— ;\:/‘ RN
= - TCP/IP X <
o D 77;‘ Data Monitor Runtime ‘
A
Kernel
Signal | -
Install > tWdbTask
1
i >
Workbench TCP/P ;l Data Monitor Runtime ‘
Remote Systems <
Explorer

The components communicate through the VxWorks Remote Systems Explorer,
including the DFW server, over a TCP/IP or optional WTX link

The Data Monitor for VxWorks application consists of the following modules:

* A multi-window graphical user interface (GUI) that runs on the host PC,
providing dynamic views of your run-time data.

» Areal-time data collection module loaded onto the target processor with your
kernel or RTP(s). It collects and buffers time histories of variables in your
program before sending them to the host for display.

Linux Targets

Wind River Workbench Data Monitor
User's Guide, 3.0

The component architecture of Data Monitor running on a Linux target is as shown
in the following illustration.

Windows or UNIX Host Workstation Linux Target
: Process 1 - instrumented code
Data Monitor GUI
— _ TCP/IP g
= Al ~| Data Monitor Runtime
= A 1 i
— ’_’-
— ;\;/‘ ™~
- Process 2 - non-instrumented code
A processsampler
Signal | > Data Monitor Runtime
Install .
Workbench
Remote Systems - TCP/P > usermode-agent
Explorer

The components communicate through the Linux Remote Systems Explorer,
including the DFW server, over a TCP/IP link

The Data Monitor for Linux application consists of the following modules:

* A multi-window graphical user interface (GUI) that runs on the host (PC or
workstation), providing dynamic views of your run-time data.

» Areal-time data collection module that is loaded onto the target with your
processes. It collects and buffers time histories of variables in your program
before sending them to the host for display.

The Host GUI

1 Introduction
1.2 Architectural Summary

In a Windows or UNIX host, the Data Monitor GUI allows you to view the data
interactively as it is received. You can save the data on disk for later off-line
analysis. Data can also be exported in a variety of formats.

NOTE: There are a few differences between the Windows and UNIX versions of
the Data Monitor host GUI. Some are merely cosmetic, or only slightly different in
wording, in which case only the Windows screenshots and wording will be used
in this manual. However, where there are greater differences in the GUI layout, or
in the selection of parameters presented, the differing aspects will be illustrated
and described separately to help eliminate second-guessing and ambiguity.

Host-target Communication

The application task, running on the target module, is typically a user program,
but it also can be a system process, especially with a real-time operating system.
This task collects the data.

NOTE: Data Monitor is specifically designed to analyze only tasks written in C,
C++, and assembly code; other languages will not work.

For VxWorks targets, Data Monitor supports both the TCP/IP and WTX modes of
data transfer. For Linux targets, however, only the TCP/IP mode is supported.

In both of these modes, two additional low-priority tasks (threads), are in charge
of transferring data to the host:

ProbeDaemon
The ProbeDaemon receives and processes commands from the host user
interface. Through the ProbeDaemon interface, the target application can:

» Install variables to monitor.
» Change sample rates.

= Settriggers.

» Collect data.

LinkDaemon
This task transfers data to the host. During program execution, data is
collected and placed in a local buffer. This data collection is very fast and is the
only action that takes place at high priority (that is, at the priority of your
application or an asynchronous sampling task). The LinkDaemon task,

Wind River Workbench Data Monitor
User's Guide, 3.0

running at very low priority, then takes the data from the buffer and sends
them to the host.

The LinkDaemon stores the list of signals and the collected data samples on
the target. These are sent to the host to be displayed at a later time. For details,
see 16. API Introduction.

This mechanism is designed for minimal impact on real-time system performance.

1.3 Features

= Real-time Graphical Display

The Data Monitor full-color, real-time graphical displays let you watch your
program execute. Multiple windows can be open at the same time, displaying
a rich mixture of signals and functionality.

= Minimal Intrusion

Data Monitor does not impact the performance of your real-time system.
Collection is very fast; data transfer takes place in the background at low
priority.

= Modify Data

Data Monitor can also modify program variables. Experiment quickly, isolate
problems, and run test cases by changing the value of variables and
parameters while your program executes.

= Dynamic Signal Installation

Install variables by name as your program runs, including structs, classes, and
unions, by simply typing in the name of the variable you want to view.

= Data Storage

Data Monitor exports data in many formats. It is organized (each run is
timestamped and labeled with signal names and units), and accompanied by
your notes. You can choose which data to save, or have Data Monitor save
them automatically.

1 Introduction
1.3 Features

Support for Large Systems

With this program, you can register literally hundreds of variables for
monitoring. You can collect any subset of the registered variables, and
organize your variables with a powerful hierarchical tree browser.

Type Support

Data Monitor supports many data types without loss of precision. This
includes support for all common data types—from one-byte char to eight-byte
double, support for pointers and structures to make it easier to monitor
complex data structures, user-defined buffers, and support for hexadecimal
data-display.

Multiple Target Connections

You can connect to more than one target during a Data Monitor session. This
allows you to simultaneously view the results from multiple targets as needed
on a single screen for live comparison. A specific example is found in viewing
remote kernel metrics (see 12. Displaying Remote Kernel Metrics).

Wind River Workbench Data Monitor
User's Guide, 3.0

Getting Started

2.1 Introduction 9

2.2 Requirements 10

2.3 Starting Data Monitor 10
2.4 The Data Monitor GUI 19
2.5 Testing Your Installation 30

2.1 Introduction

This chapter describes the main features of the Wind River Data Monitor graphical
user interface (GUI). It presents a brief overview of the four distinctive data-
display windows (Plot, Plot XY, Dump Plot, and Monitor), describing their many
unique features and commands, as well as those they have in common. Each of
these data-display windows is described in later chapters. We suggest you skim
this section then run the demo program outlined in 2.5 Testing Your Installation,
p-30.

Wind River Workbench Data Monitor

User's Guide, 3.0

2.2 Requirements

You must connect to your target in the Workbench Remote Systems Explorer view
in order to use Data Monitor. For documentation on the Remote Systems Explorer
view, consult the Wind River Workbench User’s Guide: Connecting to Targets, as well
as your platform User’s Guide.

There are some dependencies Data Monitor places on your host operating system
for resources that are specific to the target platform, summarized in the following
section.

VxWorks Targets Only

Data Monitor requires the use of the WDB agent. The easiest way to ensure
that your VxWorks Image Project (VIP) has WDB support is to make sure one
of the following kernel configuration Profiles is used in your project:

— PROFILE_COMPATIBLE
— PROFILE_DEVELOPMENT
— PROFILE_ENHANCED_NET

Wind River Run-Time Analysis Tools do not support connecting to a target
using a WDB_TIPC connection. This means that if you are working in an AMP
environment, you can only connect the Run-Time Analysis Tools to core 0 in
AMP mode.

For more information on VIPs, see Wind River Workbench User’s Guide: VxWorks
Image Projects.

2.3 Starting Data Monitor

This section describes how to start Data Monitor running in a real environment.
(2.5 Testing Your Installation, p.30 shows you how to run the demonstration
program).

10

2 Getting Started
2.3 Starting Data Monitor

Initializing the Target Server (VxWorks Only)

To run Data Monitor on a VxWorks target, you must first initialize your target
server. You then need to load the daemon libraries and initialize the target by a call

to ScopelnitServer(). This is followed by installing the signals you want to watch.

A complete description of this process is given in 13. Using a VxWorks Target.

For both VxWorks and Linux targets, Data Monitor can be started in either of two
ways:

1. Automatically by clicking the Data Monitor button on the Workbench toolbar.

2. Manually on the host from a command line window.

Starting Automatically

To launch Data Monitor from the Workbench toolbar and connect to your
VxWorks target server (or Linux target), do the following:
1. In the Remote Systems view, connect to your target.

2. From your host GUI, select the Data Monitor toolbar icon (circled).

Windows Host

@ Application Development - Wind River Workbench

File Edit Refactor Mavigate Search Project Jargef SRpalyze Run Window Help
| & T - Jel.:i%J&mjﬂjaijéjﬂv
|2 esed & |1 o | A= e

[Project Explorer 53 |=F| File Navigatorw =0 |
SN

UNIX Host

hd Application Development - Wind River Workbench
Eile Edit Refactor Navigate Search gect Analyze Target Run Window Help

by |1 | W E PR W O Qv (BB D 5| T v
ile Navigator| Symbol Browser, — O

The Data Monitor Setup Options dialog box opens where you can specify
startup parameters for Data Monitor. This dialog box has significant
differences depending on whether your target is VxWorks or Linux.

11

Wind River Workbench Data Monitor

User's Guide, 3.0

VxWorks Data Monitor Setup Options Dialog Box

For a VxWorks target, this Data Monitor Setup Options dialog box opens.

ata Monitor Setup Options ﬂ

[~ Connection

Scope indesx: ID % Spawn sampler task

, lﬁ The sampler task repeatedly calls
VTR S wxsim0@svl-grood-dl 7 ScopeCollectSignalst). You can then install signals
G ey lh from the Data Monitor GUT or host shell,
‘Werbosity: ID - Silent 'l

[V Start Data Monitor GUI on the host:

i~ Execution Mode

—Sampler Task
¥ Use aux Clack,

Data buffer size: I 32768 " Load libraties anly
X . 'will simply load the required libraries, You could
Signal buffer size: I 2045 then load vour application madule instrumented with
. Data Monitor APT.
Sampling rate: I 50
Sampling kask priority: | 110
Link task priority: 252
Probe task priority: 250

[8]4 I Cancel

12

In this dialog box, select values for the following parameters:

a.

If Data Monitor is already running and you do not want to restart it (but
only load libraries), deselect Start Data Monitor GUI on the host button
and select Load libraries only. Otherwise, leave Spawn sampler task
selected.

Use the default value for the Scope index (or enter a value from 0-127 if
you know a different value is needed). For more information on how this
parameter is used, see Scope Index, p.249.

Selecta Target server from the drop-down list of discovered target servers.
If the list is empty, you do not have a target server running and you must
create one first. For details on how to configure and start a target server,
see the Wind River Workbench User’s Guide.

For Connection type, use the default TCP/IP.
Using the default TCP/IP whenever possible is desirable because it is
faster, but if you have special or unusual connection constraints, you can

2 Getting Started
2.3 Starting Data Monitor

choose the WTX connection type. Note that specifying WTX protocol
when running WTX over a serial line can severely limit data throughput.

NOTE: For VxWorks, if you instrument an RTP with the Data Monitor API,
you must choose the TCP/IP connection type when creating a connection to
any Scope Index published by that RTP.

e. Verbosity has the following options to choose from:
0 (silent) - Displays only warning and error messages (most restrictive)
1 - Displays warning, error, and workflow messages.
2 - Displays warning, error, and greater volume of workflow messages.

3 (verbose) - Displays all system messages (most verbose).

A CAUTION: Setting target verbosity to a value greater than 0 may cause the
Usermode-Agent in the target (see 1.2 Architectural Summary, p.2) to
needlessly generate a large number of messages.

Generally, use the default value of 0 for target verbosity, unless requested
by Wind River Technical Support to help you diagnose a problem.

f. Choose Spawn sampler task, to perform asynchronous signal sampling,
or Load libraries only to only load the target libraries.

g. Ifyouselected Load libraries only, make any desired modifications to the
default sampling parameters. For a detailed description of the remaining
parameter settings, see Automatic Loading and Running, p.213.

h. Click OK to accept your parameter selections and connect to your target.

For more details on launching Data Monitor for VxWorks, see 13. Using a VxWorks
Target.

Linux Data Monitor Setup Options Dialog Box

For a Linux target, this Data Monitor Setup Options dialog box opens.

13

Wind River Workbench Data Monitor
User's Guide, 3.0

ata Monitor Setup Op x|

Target name or TCPJIP address:
10.30.65. 144

Scope index (0 - 1273

Jo

Werbosity level For event logging {0 - 3):
Jo

[8]4 I Cancel

In this dialog box, select values for the following parameters:

a. Select the Target name or TCP/IP address of your target from the drop-
down list in the first text field, or enter it directly in the field.

b. Use the default value for the Data Monitor index (or enter a value from
0-127 if you know the value needed). For more information on how this
parameter is used, see Scope Index, p.249.

c. Usethe default value of 0 for Verbosity level for event logging (or see the

"_n

Verbosity options in Step "e" above).
d. Click OK to accept your parameter selections and connect to your target.

For more details on launching Data Monitor for Linux, see 14. Using a Linux Target.

Starting Manually

All the same processes that are run automatically for you when you start Data
Monitor from the Workbench toolbar can also be done manually from a host shell
window. In addition, when starting Data Monitor manually, you have the
capability to connect to multiple targets. This facilitates viewing RKMs from
multiple different running targets and displaying the results on a single Data
Monitor screen. For more information on RKMs, see 12. Displaying Remote Kernel
Metrics.

14

2 Getting Started
2.3 Starting Data Monitor

VxWorks Target

A CAUTION: On a VxWorks target, before entering any other commands in the
Host Shell, you must type:

wrenv -p workbench-uversion
For example, if you are running Workbench 3.0, you would type:
wrenv -p workbench-3.0

The wrenv utility provides a unified way to create a command shell with a well-
defined environment. It properly sets up the environment variables to allow you
to start Data Monitor using the scope command described below.

For Data Monitor to work with your target, you must load the VxWorks target
binary files to your target. Either before or after starting Data Monitor, be sure to
load the following binary files to your target:

» scopeutils.so

» libscope711tcp.so or libscope711wtx.so

» samplertask.so (only for performing asynchronous sampling; see 15.4 Code
Instrumentation Alternative, p.241)

» vxdemo.so (only for running the demonstration program; see 2.5 Testing Your
Installation, p.30)

These files are located on your host at:
WIND_SCOPETOOLS_BASE/target/arch/targetArch

where WIND_SCOPETOOLS_BASE (an environment variable of the same name)
is the root of the tree where you installed the Run-Time Analysis Tools.

All Targets

The scope executable is actually a wrapper script which sets up some environment
variables, then calls the actual Data Monitor executable scope-bin, residing in the
directory scope.app. The scope wrapper script has command line options that can
be used to debug or alter the startup of Data Monitor. This directory contains plug-
ins, resources, and executables used by Data Monitor, as well as the actual Data
Monitor binary.

With the binary now located, the script sets the LD_LIBRARY_PATH path to point
to the libraries needed by Data Monitor to run, and transfers control to the Data
Monitor binary, located at:

$HOME /stethoscope/version/stethoscoperc

15

Wind River Workbench Data Monitor
User's Guide, 3.0

where $HOME is your home directory, and version is the current Data Monitor
version.

It reads this file to determine any previously set preferences. If this file is not found,
it is created.

NOTE: The contents of the stethoscoperc file are determined by the parameters you
have set using the Data Monitor Preferences option (see the Preferences dialog
description in the File menu item in 3.3 File Menu Item, p.43). You are strongly
discouraged from trying to modify this initialization file directly.

The scope command has the following syntax:

scope[-target farget] [-index n] [-verbosity level]
[-multi targetsvrl@hostl:indexl:wtx targetsvr2@host2:index2
[-errorlog filename] [-save save.ssc] [-load save.sscl
[-Version] [-help]
[-tgtsvr targetServer] (VxWorks only)
[-wtxMode] (VxWorks only)
[-appname] (UNIX host only)
[-library-path] (UNIX host only)

where the options have the following meanings:

-target target
Connects to the Data MonitorAPI running on the machine named target, where
target can be an IP address or a target name that can be resolved to an IP
address. The -target string is optional. If no target is specified at all, the user
can choose to connect to a target at a later time.

If the target is a VxWorks target, make sure it is listed in the HOSTS file of your
host machine. Typically, in Windows NT/2000/XP, the file is:

c:\Windows\system32\drivers\etc\HOSTS

-index n
Connects to the target using a specific Data Monitor channel. The index may
be an integer ranging from 0 to 127. If this option is not specified, Data Monitor
uses 0. A target name of form target:n is equivalent to -ta target -i n.

For example, the following commands are equivalent:

C:\scope -ta joshua -i 1
C:\scope -ta joshua:1

-verbosity level
Specifies the amount of diagnostic messages printed to the standard-output
device. A value of 0 causes only errors to be reported. Increasing the value (in

16

2 Getting Started
2.3 Starting Data Monitor

the range of 0 - 3) increases the volume of messages. If this option is not
specified, Data Monitor uses 0.

2
-multi targetsvrl@hostl:indexl:wtx targetsvr2@host2:index2 -
Enables multiple target connections. Each target specification is separated by
a space, and each is formatted as:

targetsvr@host : index

where:
targetsvr is the unique name of the target server.

host is the name of the host the to which the target server is connected.

index is the Data Monitor channel number assigned to that target, in the
range of 0 to 127.

If you append :wtx to the end of any target specification, that connection is
made using WTX mode. In the absence of a :wtx appendix, a TCP/IP
connection is made. Any other appendix will interfere with making the
connection. Multiple target connections made with this argument ignore the -
index and -wtxMode command line arguments described elsewhere in this
list.

-errorlog filename
Writes verbosity messages into the file, filename, in addition to outputting to
the log window.

—-save 3ave.ssc
Automatically saves the workspace state in the file save.ssc.

-load save.ssc
Reads the state saved in the file save.ssc.

-Version
Prints out the current Data Monitor version.

-help
Prints out the information described above.

-tgtsvr targetServer (VXWorks only)
When connected to a VxWorks target, specifies the WTX target-server name
that manages the target. This enables the Signal Installation window of Data
Monitor to access the target via WTX as well as the Workbench debugger to
install signals automatically.

-wtxMode (VxWorks only)
Specifies that the data should be collected by the Data Monitor GUI using WTX
protocol rather than TCP/IP. This option is available only for a VxWorks
target, and it may not be abbreviated.

17

Usage Notes

Wind River Workbench Data Monitor
User's Guide, 3.0

-appname (UNIX host only)
In a UNIX host, this parameter allows you to change the executable name that
the script tries to run.

-library-path (UNIX host only)
In a UNIX host, this parameter allows you to change the location from which
the wrapper script tries to load the Qt library.

NOTE: For a VxWorks target, TCP/IP communication works only if you use
ScopeAPI in an RTP.

Most parameters may be abbreviated to a single letter or to as many letters as it
takes to make it unique. The exceptions are noted in the descriptions above. For
example, the following commands are equivalent:

C:\scope-> -target joshua -errorlog err.txt -verbosity 2
C:\scope-> -ta joshua -e err.txt -v 2

CAUTION: Your PATH environment variable must be set up correctly to run tools
before attempting to run Data Monitor.

After starting, the Data Monitor GUI should appear in a standalone window.

There are four basic steps to using the Data Monitor GUI on the host to monitor
and collect data from your target application.

1. Use the Data Monitor API interface on the target to specify which data you
want to be able to monitor and collect. These are known as installed signals, that
is, signals that are registered and activated (see Signals Definitions, p.19). Only
installed signals can be collected and monitored by Data Monitor on the host.
Signals can be installed manually, or automatically using the mechanism
described in Installing Signals, p.84.

2. Bring up the Data Monitor GUI on the host and connect to the target using the
File > Connect to Target menu command (see 3.3.1 Connect to Target, p.45).

NOTE: You can connect to more than one target at a time.

3. Use the Data Monitor Signal Manager (see 4. Using the Signal Manager) to
specify which installed signals you want to collect from the target.

18

2 Getting Started
2.4 The Data Monitor GUI

4. Use the Data Monitor Plot, Plot XY, Dump Plot, and Monitor windows (see
Chapters 7, 8, 9, and 10, respectively) to display signals in graphs and tables.
With the Monitor window, you can write modified signal values back out to
the target. The Plot and Plot XY windows also allow you to capture and
display snapshots.

Signals Definitions

Registered Signals
Initially you must let Data Monitor know a signal exists by registering it using
the ScopeRegisterSignal() API call. Data Monitor cannot collect data from
this signal until you Activate it. Registered signals appear in the
Signal Manager window in the GUI, where they can be selected for activation.

Activated (or Active) signals
These are registered signals that are set up on the host by the Signal Manager
(see 3.3.7 Signal Manager, p.49) using the API call ScopeActivateSignal().
Active signals then appear in the Signals Bar of each data-display window
(see Signals Bar, p.26). Once activated, they are considered to be Installed
signals and are automatically collected from the target, but they are not yet
displayed in the host GUI until Selected in one or more of the four data-
display windows, Plot, Plot XY, Dump Plot, or Monitor.

Installed signals
These are signals that are registered and activated. (They can be set up using
the Data Monitor API shortcut ScopelnstallSignal(); see 15Installing Signals,
p-231). A signal must be installed before the Data Monitor GUI can see it.

Selected signals
Installed signals are not displayed automatically in the GUL You must select,
from the GUI, the installed signals you want to display in the data-display
windows—Plot, Plot XY, Dump Plot, and Monitor. You can select a different
set of signals in each window (see Signals Bar, p.26).

2.4 The Data Monitor GUI

Data Monitor has four unique types of data-display windows you can use to
display signal values in graphical and tabular form. By default, Data Monitor starts
up with a Plot window displayed, but you can open any of the other window types

19

Plot Window

Wind River Workbench Data Monitor
User's Guide, 3.0

from the File menu or from the Plots toolbar (see 3.3 File Menu Item, p.43 and
3.2 Toolbars, p.40).

You can have multiple data-display windows of each type open at the same time.
Each data-display window is independent of the others, so you can display
different sets of signals in each window.

The mini-windows, panels, toolbars, and menu bar in these windows are all
dockable, meaning you can drag them to different locations, on or off the window.
You can also cause Data Monitor to save and restore these positions on future
sessions (see 3.2 Toolbars, p.40).

The Plot window is the heart of the Data Monitor application. You can use this
window to select which signals to plot, then see a color-coded plot of your selected
signals over time. You can also take snapshots of plots and display them along with
real-time plots for easy visual comparisons. The Plot window also includes mini-
versions of the Dump Plot and Monitor windows (described in Mini-Dump
Window, p.28 and Mini-Monitor Window, p.28 respectively).

A Plot window is displayed when you first launch Data Monitor.

20

2 Getting Started
2.4 The Data Monitor GUI

StethoScope - Plot 1 M [=]E3
File Plot Wiew Window Help |
S R W e e = SRR - N OF)

:I 25 127 .5 130 1325 138 137 .5 :I
A
- % 10,30.68.144:0
-] € Different...
-] 9 Offset a
-0 4 Pointer
----- O sine volts
----- O cosine volts o
----- O sinezt volts _I
----- MW Pos mete
1| . M FosDesired mete
10 O v mfs]
Mo O s misis| |7
----- O FosGain Mim
----- O velcain iy
w-O 4 sincroup i
. M ek T
127 .5 130 1325 138 137 .5 -
B Sign. rl
1' Timeskamy B ros | W PosDesired o 1' Signal Marne Walue
1| perys -1.048 -1 = W Fos 0,9945
134.8 -1.052 -1 M PosDesired 1
135.8 02179 1
| 136.8 1.138 1
=137 1.027 1
= 138,58 0,9945 1 hé
[iocaccanc u_naway
= ' Bar R
Signals -
Iil—El ElLive
] i E%I—El ¥ vxsimQ @ svl-st-linuxdev
Windows Host - A @ vxKernel:0x6016bf3(
" UNIXHost ——— Square
M Sine
In UNIX;, there are ——
only two tab views [Cosine |8
in the Signals Bar, Sine2T
with a separate window Sine3T
for the Legend - for a Pos
description, see T S — "
Signals Bar below . : -
Active Signals | Properties

The Plot window is the heart of the Data Monitor application. You can use this

window to select which signals to plot, then see a color-coded plot of your selected
signals over time. You can also take snapshots of plots and display them along with
real-time plots for easy visual comparisons. The Plot window also includes mini-

21

Wind River Workbench Data Monitor
User's Guide, 3.0

versions of the Dump Plot and Monitor windows (described in Mini-Dump
Window, p.28 and Mini-Monitor Window, p.28 respectively). If a Plot window is not
currently open, use the File > Plots > Plot menu command (or the Plot toolbar
button - see Plots Toolbar, p.41) to open it.

Signals Bar

The Signals Bar in the Plot (and Plot XY) window contains tab views where you
can select signals to plot, as well as set appearance and limitation properties (for
the current window only). In a Windows host there is also a Legend tab view (a
separate window in a UNIX host) where you can select signals to be displayed, as
well as the color for plot lines. For details, see Signals Bar, p.26.

Zooming
You can magnify a region to see details by zooming. The offset and scale of the plot
are adjusted so that the zoomed region fills the Plot window.
Zooming in to a Desired Region
1. Press and hold the Shift key.
2. Click and drag the left mouse button to select a region of the plot.

The on-grid pop-up menu includes a Previous Zoom command, which can be
used to return to the previous zoom. Note, however, that using the Zoom to Fit
menu command (or the Zoom to Fit toolbar button - see Plot Window Toolbar, p.41)
erases the history of all zoom actions.

For a detailed description of the Plot window, see 7. The Plot Window.

Plot XY Window
While the Plot window graphs each selected signal (on the Y axis) over time (the

X axis), the Plot XY window plots pairs of selected signals against each other—one
signal on the X axis and the other on the Y axis.

22

2 Getting Started
2.4 The Data Monitor GUI

g StethoScope - Plot X¥ 1 1] B3
File Plot Wiew Window Help |
A= I e Nl R s =Y = - R

Signals Bar x| 1 075 0.5 -0.25 a 0.25 0.5 075 1 .|
Signals Tree - -

E|--- Live
E-B¥ 10.30.68.144:0
-.[#] A isine, SinezT)
W W
o o
o o
W w _I
= =

o | -

z 075 -0.8 -0.25 o 025 0.5 075 i

BSignals Ei'Prop I ’I

|Ready [| x=0.4e5347, y=0.820166 4

Open the Plot XY window with the File > Plots > Plot XY menu command (or the
Plot XY toolbar button - see Plots Toolbar, p.41). More than one pair of signals may
be displayed at the same time. You can also take snapshots of XY plots and display
them along with real-time plots for easy visual comparisons.

Note that the Plot XY Signals Bar has the same configuration as the Plot window
Signals Bar (see Signals Bar, p.26).

For a detailed description of the Plot XY window, see 8. The Plot XY Window.

23

Wind River Workbench Data Monitor
User's Guide, 3.0

Dump Plot Window

The Dump Plot window is used to monitor the real-time values of selected signals
as they are collected from the target.

StethoScope - Dump 1 M [=]E3
Flot Wiew Window Help |
e I EHEEEECEEED
a _| Timestamp | Sine | Cosine | Sine2T | Pos | PosDesired AI
unil 1327
M | 2028
- 3929 0.4485
=M% 10.30.68.144:0 3930 -0.5061 -0.8625
- €p Different... 3931 -0,999 -0.044
EL1@ offet Bw oes om0t
D_D’Po'nter o | || 3934 0.9808 0.198 0.3345
vl B X 0.6978 -0.71E5 -0,9995
Cosine volts | ngae -0.2222 -0.975 0,4333
3inezT valts | | 3037 -0.9392 -0.3435 0.6452
Pos mete | | 3935 -0.7988 0.6016 -0.9511
PosDesired mete | | 3939 0.0707 0.9975 0.141 1.14
el mfs 3940 0.8757 0.4829 0.8457 0.9492 1
fcc misje| [3941 0.8813 -0.4725 -0.5329 0.9583 1
Poscain jm | | 2242 0.05246 0,996 -0, 1644 1.011 1
! 3943 -0.7917 -0.6109 0.9673 1.062 1
velaain N 2o44 -0,9431 0.3324 0,627 1.0 1
=14 sinGroup 3945 -0.2337 0.9723 -0.4544 0.9459 1
3946 0.6891 0.7247 0.9987 0.9994 1
3947 0.9328 -0.1845 -0.3626 0.9977 1
3945 0.3794 -0.9252 -0.7021 0.66 -1
3949 -0.5703 -0.8214 0.937 -1.075 -1
3950 -0,9995 0.03221 -0.06438 -1.046 -1
L N -0.5163 0.8564 -0.8543 09202 -1
3952 0.4382 0.5989 0.7878 -1.031 -1 |
3953 0.9927 0.1208 0.2398 -1.002 -1 hd
| 4

Open the Dump Plot window with the File > Plots > Dump Plot menu command
(or the Dump Plot toolbar button - see Plots Toolbar, p.41). It displays a simple read-
only table. The first column in the table is a Timestamp, followed by a column for
each selected signal.

Note that the Dump Plot window Signals Bar also has the same configuration as
the Plot window Signals Bar (see Signals Bar, p.26).

For a detailed description of the Dump Plot window, see 9. The Dump Plot Window.

24

2 Getting Started
2.4 The Data Monitor GUI

Monitor Window

Open the Monitor window using the File > Plots > Monitor menu command (or
the Monitor toolbar button - see Plots Toolbar, p.41).

S StethoScope - Monitor 3 =] S
File Plot Wiew Window Help |
¥ S H 2% w8 @ || om0 m]) e

1[Signal Marne alue | ‘Writeback |
= Pas -0.9717
ﬂ%s_—neei PosDesired -1
=-EELve vel -0,1963
2-M % 10.30.68,144:0 Sine -0,7305
-0 4 DifferentTypes Cosine 0653
=0 §p Offset SineZT 0.9977
-0 4 Pointer ColsGGa.ln ‘1‘0
Sine elGain
Cosine
SinezT
Pos
PosDesired
el
D Acc
PosGain
WelGain
w-O 4 sincroup
K 2
Brdsignals | EEProp
Ready | 4

While the Dump Plot window displays a running history of each selected signal,
the Monitor window only shows you the last sampled value of each selected
signal. You can also use this window to modify the values of signals on the target.

Note that the Monitor window Signals Bar also has the same configuration as the
Plot window Signals Bar (see Signals Bar, p.26).

For a detailed description of the Monitor window, see 10. The Monitor Window.

Auxiliary Data-Display Windows

Within each data-display window there are other sub-windows that display
information for signal selection, and for augmenting the characteristics of your
view of what is happening inside your target program. The descriptions of these
additional sub-windows follows.

25

Wind River Workbench Data Monitor
User's Guide, 3.0

Signals Bar

By default, each of the four data-display window types contains a Signals Bar. If a
Signals Bar is not currently displayed, you can open one using the

View > Signals Bar menu command (or the Signals Bar toolbar button - see Plot
Window Toolbar, p.41).

Signals Tab View

nals Tree | Units

Live
=M% 10.30.68.144:0
-] € DifferentTypes

- @ Offset
-0 4 Pointer
----- O sine volts
----- O cosine volts
----- O sinezt volts
W Pos meters
@ PosDesired meters Legend Tab View
----- ' Properties
_____ H S;Gain Signals Bar x|
""" 0O velaan I Signal | Scale | SNap... | Target
=04 sinGroup |l pos 1000000 Lve 10.30.68.144:0
=014 Event B FosDesived 1000000 lie 1030 &R 14dn
KI O velgasin 1.0000 1oggl Signal
il [PosGain 100001 Remove Signal
[sinezT 1.ooom Pemove All Unselected . .
] 5ine Loong Remove Al Signals Properties Tab View
Properties
B Co-ordinates =
¥ scale 20.000000
offset 800.000000
' scale 3.000000
' offset 1.500000
B Display
Dizplay accuracy 4
4| Resalution 1
Hiasignals @Legend Prop E::;l:naec:;ﬁres to sig... :Il'?une |
M aximum snap distance | 20
Background image
B Mini-dump window
Dump resolution 1.000000 LI

B rsignals | [£] Legend

26

2 Getting Started
2.4 The Data Monitor GUI

The Signals Bar has three tab views, Signals, Legend (Windows hosts only), and
Properties.

The Signals tab view is used to select which signals to monitor in the current
window. It displays a signals tree, which gives you a tree-like view of the
active signals for each connected target and any snapshots you have loaded.
Use the check box preceding each signal to select which signals you want to
display in the current window. Signals trees are described in 4. Using the Signal
Manager. For more information, see Signals Tab View, p.116.

In Windows hosts, the Legend tab view shows the colors assigned to each
signal. It also displays the source of each signal (live or snapshot), as well as
the target IP address and Scope index. In UNIX hosts, although the data is the
same, it is found in a separate Legend window instead of a tab view. For more
information, see Legend Window (UNIX Hosts Only), p.122.

The Properties tab view allows you to control how the signals are monitored
and displayed in the window. Each type of data-display window has different
properties, which are described in their respective chapters (Chapters 7, 8, 9,

and 10). For more information, see Properties Tab View, p.118.

Legend Window (UNIX Hosts Only)

In a UNIX host, the Legend window appears by default as a sub-window in the
Plot (7. The Plot Window) and Plot XY (8. The Plot XY Window) windows.

I

Color |Signal |Snapshot |Target |
] vxKernel:0x6016bf30/Sine Live vxsim0 @ svl-st-linuxdev:0
[} vxKernel:0x6016bf30/Cosine Live vxsim0 @ svl-st-linuxdev:0
[} vxKernel:0x6016bf30/Sine3T Live vxsim0 @ svl-st-linuxdev:0
] vxKernel:0x6016bf30/Pos Live vxsim0 @ svl-st-linuxdev:0
[| vxKernel:0x6016bf30/PosDesired Live vxsim0 @ svl-st-linuxdev:0

This window displays the color assigned to each signal on the plot, and can also be
used to select which signals to plot. If you close the window, you can open it again
using the View > Legend menu item (or the Legend toolbar button - see Plot
Window Toolbar, p.41).

The Legend window is described in detail in Legend Window (UNIX Hosts Only),
p-122.

27

Wind River Workbench Data Monitor
User's Guide, 3.0

Mini-Dump Window

Open the Mini-Dump window with the View > MiniDump menu command (or
the Mini-Dump toolbar button - see Plot Window Toolbar, p.41).

1' Timestarnp I B FosDesired I B Fos | W vel -
;I 995.5 1 1.015 -0.1373
996.5 1 0.9173 0.0154
997.5 1 00,9853 -0.02233
995.5 1 1.011 0.04535
1 1.077 0.00145
-1 -1.056 0.227

-1 -0.9195 0.01653
-1 - a7ER N nn347s | i
3

Within the Plot window only (see 7. The Plot Window), the Mini-Dump window
shows a scaled down version of the Dump Plot window described in 9. The Dump
Plot Window. Like the Dump Plot window, it lists the value of each signal at each
sampling, letting you see a running history of selected signal values scrolling
through the window with time. This mini- window initially appears at the bottom
of the Plot window, allowing you to see numeric signal values along side the
plotted signals graph. You can drag the window to any other location you wish,
and it remains there until you change its location again.

Mini-Monitor Window

Like the Mini-Dump window described above, the Mini-Monitor window is
opened using the View > MiniMonitor menu command (or the MiniMonitor
toolbar button - see Plot Window Toolbar, p.41).

| Signal Marne | Value | ‘Writeback
A W FosDesired -1

W Fos -0.9862

W e -0.02875

This window is a scaled down version of the Monitor window described in 10. The
Monitor Window. It lets you see the current value of, and modify, target data in a
static but dynamically updated list format.

The modify feature (called writeback) is available, and is described in detail in
10.3 Writing Data to the Target, p.181. The writeback capability is enabled from the

28

A\

2 Getting Started
2.4 The Data Monitor GUI

Properties tab view of the Signals Bar in the Plot window, as described in Signals
Bar, p.116.

NOTE: Writeback in the Mini-Monitor window behaves the same as in the
Monitor window, but enabling it here has no effect on enabling or disabling
writeback in the Monitor window (see 10.3 Writing Data to the Target, p.181).

CAUTION: Before using the writeback feature, be sure to read the Warning in
10.3 Writing Data to the Target, p.181.

Common Window Elements

Each data-display window has certain items that are common across all the data-
display window types. Some of these items are always displayed, while others can
have their display toggled on or off. Some items can even be further customized.

The common window elements are:
= Title Bar

The title bar, on all data-display windows, indicates the name of the tool (Data
Monitor), its version, and the data-display window name.

. Menu Bar

This bar, on all windows, contains several menu items, each with options for
pertinent data manipulation functions. Menu bars are described in detail in
3.3 File Menu Item, p.43.

= Toolbar

The following toolbars are found in each window. Each is described in detail
in 3.2 Toolbars, p.40.

— Main —hasbuttons for many of the File menu commands. It has the same
buttons on all four data-display windows.

— Plots — has a button to open each of the data-display windows. It has the
same buttons on all four data-display windows.

— Plot Windows — has different buttons for each unique data-display
window. Since the Plot Windows toolbar buttons are different for each
data-display window type, they are described in greater detail separately
in each data-display window chapter (Chapters 7, 8, 9, and 10).

29

Wind River Workbench Data Monitor
User's Guide, 3.0

The three toolbars described here initially appear lined up, left to right, just
below the menu bar, and separated by the docking handles at the left end of
each toolbar. You can move each toolbar around to any location in the data-
display window, including vertical placement, by clicking the docking handle
and dragging to a new location. It remains in that location until you change it
again.

= Status Bar

This bar, on all windows, contains several menu items, each with options for
pertinent data manipulation functions. It is therefore described in detail
separately in each data-display window chapter (Chapters 7, 8, 9, and 10).

2.5 Testing Your Installation

A sample demonstration target program that exercises many of the Data Monitor
features is included in the Data Monitor distribution. To test your installation, and
quickly and easily become familiar with Data Monitor, we strongly encourage you
to run the demo program. Additional basic concepts on which Data Monitor is
based are emphasized in the process of guiding you through the demo program
steps. The demo program also utilizes the Data Monitor API to log program
behavior.

On a VxWorks Target
For either a VxWorks or Linux platform, you can test your installation using the
demonstration program ScopeDemo, located in:
WIND_SCOPETOOLS_BASE /target/src/vxworks/scopedemo
or,
WIND_SCOPETOOLS_BASE /target/src/linux/scopedemo_linux

where WIND_SCOPETOOLS_BASE (an environment variable of the same name)
is the root of the tree where you installed the Run-Time Analysis Tools.

In Workbench, perform the following steps to build and execute the demonstration
program:

30

2 Getting Started
2.5 Testing Your Installation

Start Data Monitor running, and in the Data Monitor Setup Options dialog
box, select Load libraries only, which loads the required Data Monitor
libraries to your target automatically.

You can start the demonstration program from either of two places:
- the Workbench GUI

— a kernel shell

From Workbench

To start the demonstration program running from the Workbench GUI, follow
these instructions:

1.

In the Remote System view, create a target connection with an appropriate
name, if one does not already exist, then connect it to the target server.

Right-click the connection name and select Connect Data Monitor, then click
OK in the Connect to Target dialog box to accept the default connection
parameters.

Note that the Data Monitor GUI opens in a standalone window mode.
Verity that the status message in the Analysis Console view is:
Connected to farget

If this message does not appear, check the Analysis Console view for error
messages.

Build the Data Monitor example program vxdemo.c following these
instructions:

a. Right-click anywhere in the Project Explorer view and select New, then
Example to open the New Example dialog box.

b. Select VxWorks Downloadable Kernel Module Sample Project in the
New Example dialog box that opens, then click Next.

c. Select The Data Monitor Demonstration Program in the
New Project Sample dialog box that opens, then click Finish to complete
the project creation.

Notice that a new scopedemo node now appears in the Project Explorer view.
Next you need to build the scopedemo.c program.

d. IntheProject Explorer view, expand the top (scopedemo) node, then right-
click the scopedemo (scopedemo.out) node and select Rebuild Project to
build the binary files.

31

Wind River Workbench Data Monitor
User's Guide, 3.0

This program builds rather quickly, but you can follow the build progress in
the Build Console view, as well as the progress meter in the Build Projects
dialog box.

When the program has successfully built, execute it by following these steps.

a.

e.

In the Project Explorer view, right-click the scopedemo.out node and
select Download, then click OK in the Download dialog box that opens to
download the executable files.

In the Project Explorer view again, right-click the scopedemo.out node
and select Run Kernel Task.

In the Run dialog box that opens, in the Kernel Task to Run group, click
Browse in the Entry Point field, and select

Downloads > scopedemo.out > ScopeDemo as the binary files to be
loaded, then click Apply.

In the Arguments field, enter the appropriate desired parameters, if any
(see Step 2. in From a Kernel Shell below).

Click Run to start the ScopeDemo example program executing.

A Data Monitor Plot window similar to this one should appear on your screen.

32

StethoScope - Plot 1

File Plot Wiew Window Help

2 Getting Started

2.5 Testing Your Installation

i [=[F3

E|
Signals Tree Uni
= = Live

- % 10,30.68.144:0
-] € Different...
- @ Offset
-0 4 Pointer
----- O sine volts
----- O cosine volts
----- O sinezt volts
----- MW Pos mete
----- W PosDesired mete
..... D el ms
----- O ac myss
----- O FosGain Mim
----- O velcain iy

w-O 4 sincroup

. Ml puoark

K1

25

1278

SR R I e o =S = S =R ER RO)

1328 128

1375 a|

0.5

0.8

1278

1328 128

13?.5ﬁ|

1' Timestam) W Fos
4
—I 1338 -1.045

134.8
135.8
| 136.8
=137
= 138,58

-1.052
-0.2179
1.138
1.027
0.9945

B PosDesired

5|
|

Signal Marne Value

M Fos 0,9945

W FosDesired

1

|Ready [| x=125.856905, y=0.438202

In this example, the Pos and PosDesired signals have been selected for display.
The status bar at the bottom of the window shows the connection status. Under
normal conditions, it should display Ready.

NOTE: Again, the Signals Tree contains three tab views in Windows hosts, but only
two tabs in UNIX hosts. For details, see Legend Tab View (Windows Hosts Only),
p-117.

From a Kernel Shell

To start the demo program running from a kernel shell, use the following
instructions:

1. In the kernel shell (the Data Monitor simulator in this case), navigate to the
demo directory and load the demo file vxdemo.so with these instructions:

cd /WIND_SCOPETOOLS_BASE/target/arch/simntVvx6.6gcc4.1.2

33

Wind River Workbench Data Monitor
User's Guide, 3.0

1d 1 < vxdemo.so

where WIND_SCOPETOOLS_BASE (an environment variable of the same name) is

the root of the tree where you installed the Run-Time Analysis Tools.

ScopeDemo [[[useAuxClk], scopeIndex], verbosity]

The kernel shell should display results as shown here.

Vxlorks 6.5

111
111
111
111
111 KEEMEL: WIND wversion
111

111
111
111
111
111
111

[y

CPJ: Windows 5.1 Service Pack 2. Processor #0.
Memory Size: O0x1£00000. BEP wversion 2.0/3.
Created: Sep 9 2006, 17:37:52

ED&R FPolicy Mode: Deployed

WDE Comm Type: WDE_COMM_PIPE

WDE: Ready.

—= od "scopetools-3.0/target /arch/simntV=xse. Sgoc3.5.4"
wvalus = 0O = 0Ox0

= 1d 1 = wxdemo.so

us = 277616240 = 0x10821670

Scopaelamo

Devaelopmant System

1111 11111 1 111111 1 111 1111 11 1111
1111 11111 111 1111111 1 1111111 1111

2.10

Copyright Wind RHiwver Systems,

Install =signals for debugging wvaluse = Z7B002084 = O0x1091fd28

Start the demo program by typing the following (arguments are optional):

(ol x|
1111]]]];I

1111 111°

Inc.,

L<]

NOTE: If you run ScopeDemo without any parameters, then ScopeDemo uses

scopelndex=0. In this case, be sure to specify 0 for scopeIndex in the

Setup Options dialog box (see Starting Automatically, p.11) when you start the
Data Monitor GUI Or if you start the Data Monitor GUI first with a non-zero
scopelndex, be sure to start the ScopeDemo with that same scopeIndex value

(note the argument position in Step 2. above).

NOTE: On VxWorks, if you do not have a target server running, you must create
it first. For details on how to configure and start a target server, refer to Wind River

Workbench User’s Guide.

34

2 Getting Started
2.5 Testing Your Installation

On a Linux Target

A copy of the same demo program is also available to be compiled and run on a
Linux target. Copy the Linux program to your Linux target, then follow the Linux
counterpart directions outlined for VxWorks above. Output from the Linux demo

program appears in the Data Monitor GUI essentially the same as it does for the

VxWorks version.

Viewing the Signals

The demonstration program generates several sample signals that can be viewed
as follows:

1. If the Plot window does not include a Signals Bar, open one using the
View > Signals Bar command (or the Signals Bar toolbar button - see Plot
Window Toolbar, p.41).

2. Select the signals you want to plot by using the Signals Tree (see 4. Using the
Signal Manager).

A CAUTION: It is a known problem that if you select Events to be plotted
simultaneously with signals, the resulting traces displayed over a period of time
will begin to diverge, and the integrity of the plot becomes compromised. Do not
try to plot these two data types on the same graph.

Exploring the Demo Capabilities
Try each of the following Data Monitor features, consulting the referenced manual
section if you need help. The demo allows you to:

= Display other signals by clicking on signal entries in the Signals Tree (Signals
Bar, p.26).

» Take a Snapshot from the Plot window, and save it (Sections 11.2 Utilizing
Snapshots, p.185 and Saving Snapshots, p.187).

» Export Snapshot data (Exporting Snapshots in MATLAB and MATRIXX, p.193).
» Zoom in and out (Shift key + left mouse button in Plot screen) (Zooming, p.76).

* Pan the viewing region (click and drag the left mouse button to move)
(Panning, p.77).

35

Wind River Workbench Data Monitor
User's Guide, 3.0

» Take measurements (Ctrl key + left mouse button in Plot screen) (On-grid
Measurements, p.78).

» Calculate derived signals (File > Derived Signals) (6. Derived Signals).

= View and modify variables. (Select Pos and PosGain signals in a Monitor
window with Writeback turned on) (Sections 10.2 Monitor Window Tour, p.174
and 10.4 Setting New Monitor Window Preferences, p.182).

» Try Xvs. Y plotting (Plot XY from the File > Plots menu) (8. The Plot XY
Window).

» Display numeric data (Dump Plot from the File > Plots menu) (9. The Dump
Plot Window).

» Set some triggers (File > Triggering) (5. Triggering).

There are additional features you can try. Note that the signals produced are simple
sine waves, and in addition, the demo program also produces a simple simulation
of a control system.

Automatic Signal Management (VxWorks Only)

You can install additional signals automatically from the VxWorks command shell
(System Viewer or kernel shell). You can use the following procedure to watch
your own signals.

A simple command to load a signal is ScopelnstallSignal(). The calling syntax is:

ScopeInstallSignal
char *name, /* the string to be displayed by Data Monitor */
char *units, /* the units of the signal */
void *ptrToVar, /* a pointer to your variable */
void char *type, /* the type, e.g. "float", "int" */
int index) /* The scope index (defaults to 0) */

As an example, the demo program contains a static variable declared as:
float Kp = 10;

To install this signal from the VxWorks shell, type:
-> ScopeInstallSignal("Kp", "n/a", &Kp, "float", 6)

More sophisticated installations of variables referenced by pointers, offsets, and so
forth, can also be done easily.

36

2 Getting Started
2.5 Testing Your Installation

Some other fun things to play with in the VxWorks shell when running the demo
are:

2
-> ScopeRemoveMultipleSignals("sin", 6) -
-> Kp = (float) 100.0

Executing the first command should remove all signals that start with sin. Look at
Pos and PosDesired in the Plot window to see the effect of changing the value of
Kp.

37

Wind River Workbench Data Monitor
User's Guide, 3.0

38

Data Monitor Features

3.1 Introduction 39

3.2 Toolbars 40

3.3 File Menu Item 43
3.4 Menu Bar 69

3.5 Pop-up Menus 71
3.6 Screen Operations 76
3.7 Status Bar 78

3.1 Introduction

This chapter describes the major Wind River Data Monitor features. These features
are available through the File menu item, and are common to all four plot
windows (described in 2.4 The Data Monitor GUI, p.19) of the Data Monitor
graphical user interface (GUI). Each of the features is described in detail in the
sections that follow.

39

Wind River Workbench Data Monitor
User's Guide, 3.0

3.2 Toolbars

The toolbars appearing at the top of each data-display window actually consists of
three separate toolbars, each offering quick access to commonly used menu
commands. Place your mouse pointer over each toolbar button to see a ToolTip
that shows you the action of each button.

Each toolbar is dockable, which means you can move it to another location, on or
off the window, simply by dragging it. (The menu bar is also dockable.) Each
toolbar can be independently displayed or hidden using the View menu item.
Toolbars that you drag off the screen can be restored again at any time from the
View menu.

The following figure shows the first two toolbars: Main and Plots. These toolbars
are the same in all data-display windows.

Connect Save)) Derived
to Target Snapshot Triggering Signals Preferences Plot Plot XY

T

i rlsamveme s |oa0m
| |

Load Signal XY Log .
Snapshot Manager Signals Window Dump Plot Monitor

Main Toolbar Plots Toolbar

Main Toolbar

The buttons on this toolbar control the various Data Monitor functions. The
corresponding menu commands are in bold.

File > Connect to Target
Selects a target and connects it to your host GUI, described in 3. Data Monitor
Features.

E"' File > Load Snapshot
Loads a previously saved snapshot file, described in 11. Working with
Snapshots.

40

Plots Toolbar

Plot Window Toolbar

=
al-

L0

xy
F{x}

&l

3 Data Monitor Features
3.2 Toolbars

File > Save Snapshot
Saves a snapshot to a file, described in 11. Working with Snapshots.

File > Signal Manager

Opens the Signal Manager window, described in 4. Using the Signal Manager.

File > Triggering
Opens the Triggering window, described in 5. Triggering.

File > XY Signals
Opens the XY Signals dialog box, described in 8. The Plot XY Window.

File > Derived Signals
Opens the Derived Signals dialog box, described in 6. Derived Signals.

File > Log Window
Opens the Trace Log window, described in 3.3.11 Trace Log Window, p.53.

File > Preferences
Opens the Preferences dialog box, described in 3.3.12 Preferences, p.53.

The buttons on this toolbar are used to create new data-display window. The
corresponding menu commands are in bold.

=
=
M

File > Plots> Dump Plot
Creates a new Dump Plot window, described in 9. The Dump Plot Window.

File > Plots > Plot
Creates a new Plot window, described in 7. The Plot Window.

File > Plots > Monitor
Creates a new Monitor window, described in 10. The Monitor Window.

File > Plots > Plot XY
Creates a new Plot XY window, described in 8. The Plot XY Window.

The buttons on the third toolbar are shown below. The toolbar shown here is a
super-set of buttons appearing on the toolbar in each of the four data-display
windows (Plot, Plot XY, Dump Plot, and Monitor).

41

Wind River Workbench Data Monitor
User's Guide, 3.0

Show Take Mini Zoom Goto Live

Snapshots Snapshot

Legend nionitor to Fit Data Pause

T O I A
(B BEEEEEE R E
T

\ \
Strip Signals Mini Axis Autofi Always
Chart Bar Dump Properties utofit on Top

This section briefly describes each toolbar button. For more details on the
command descriptions, refer to 3.3 File Menu Item, p.43.

&

iy

bl [L

View > Show Snapshots

Available only in the Dump Plot window, this command controls what is
displayed in the SignalsTree list. When selected, only snapshots appear in
the Dump Plot window SignalsTree list, and when unselected, only the live
data buffer appears. For details, see Loading Snapshots, p.193.

Plot > Strip Chart

Changes the display so that it presents a continuous, scrolling plot (instead
of repainting the plot every 10 seconds). This button (and command) is only
available in the Plot window. For details, see Strip Chart, p.122.

Plot > Take Snapshot

Saves a copy of all the active signals. You can display the snapshot in the Plot
and Plot XY windows along with real-time data. For details, see Taking
Snapshots, p.186.

View > Signals Bar
Creates a Signals Bar panel in the window. For details, see 2.4 The Data
Monitor GUI, p.19.

View > Legend (UNIX hosts only)
Opens a Legend window in the GUI. For details, see Legend Window (UNIX
Hosts Only), p.122.

View > Mini-Dump

Creates a Mini-Dump window within the Plot window. This is simply a
smaller version of the separate Dump Plot window:. It is created as a sub-
window in a default location in the Plot window, but you can dock it
elsewhere on the screen. This button (and command) is only available in the
Plot window. For details, see Mini-Dump Window, p.28.

EH

3 Data Monitor Features
3.3 File Menu Item

View > Mini-Monitor

Creates a Mini-Monitor window within the Plot window. This is simply a
smaller version of the separate Monitor window. It is created as a sub-
window in a default location in the Plot window, but you can dock it
elsewhere on the screen. This button (and command) is only available in the
Plot window. For details, see Mini-Monitor Window, p.28.

View > Axis Properties (Windows hosts only)

Opens the Axis Properties dialog box, where you can add new axes, and edit
the properties for any existing axis. For details, see 7.4 Axis Properties Dialog
Box (Windows Hosts Only), p.128.

View > Zoom to Fit

Changes the scales and offsets so that all the signals fit and take up the entire
plot window. This button (and command) is only available in the Plot and
Plot XY windows. For details, see View Menu Item, p.113.

View > Auto Fit

The plot automatically zooms to fit when a signal goes off the screen. This
button (and command) is only available in the Plot and Plot XY windows. For
details, see View Menu Item, p.113.

View > Goto Live Data
Returns to plotting live data while viewing a snapshot in the Signals Bar. For
details, see View Menu Item, p.113

Window > Always on Top
Keeps the window as the topmost display on your desktop. For details, see
Window Menu Item (Windows Hosts Only), p.70.

View > Pause

Stops updates to the table only in the Dump Plot window. It does not stop
data collection, but merely stops new data from appearing in the Dump Plot
table. To resume normal display, unselect the button. For details, see View
Menu Item, p.166.

3.3 File Menu Item

Most of the Data Monitor common functionality is accessible directly through the
File menu item on the menu bar.

43

Wind River Workbench Data Monitor
User's Guide, 3.0

‘ File Plot Wiew ‘Window Help
W Connect ko Target
=

~u

Load Snapshat. ..
n Save Snapshot...

Load Config...

Save Config...

Flots 3
B2 Signal Manager
% Triggering...
XY ¥ySignals...
Hx} Derived Signals. ..
El Logwindow
Preferences. ..

Close Window

Exit StethoScope

The menu bar is dockable, which means you can move it to another location, on or
off the window, simply by clicking on the docking handle and dragging the menu
to the new location.File. Each command in this File menu is found in all four of the
Data Monitor data-display windows in both Windows and UNIX hosts.

These commands are listed and described in detail in the sub-sections that follow.

» Connect to Target, p.45
» Load Snapshot, p.45

» Save Snapshot, p.45

* Load Config, p.46

» Save Config, p.46

» Plots, p.48

» Signal Manager, p.49

» Triggering, p.50

» XY Signals, p.51

» Derived Signals, p.52

» Trace Log Window, p.53
» Preferences, p.53

» Close Window, p.69

» Exit Data Monitor, p.69

44

3 Data Monitor Features
3.3 File Menu Item

3.3.1 Connect to Target

After starting the Data Monitor GUI, you need to connect to your target. Select the

Connect to Target menu command from the File menu (or use the
Connect to Target toolbar button - see Main Toolbar, p.40) to open the Data

Monitor Setup Options dialog box where you can create a connection to a target.

This dialog box is the same in both Windows and Unix hosts.

The Data Monitor Setup Options dialog box opens with initial values as passed
in from the command line or the GUI (see the figures at VxWorks Data Monitor
Setup Options Dialog Box, p.12, or Linux Data Monitor Setup Options Dialog Box, p.13,
as appropriate). Use this dialog box to enter any desired connection parameters,
then click OK to connect to your VxWorks target server, or Linux target.

If you have difficulty connecting, check the Log window (see Trace Log Window,
p-53) for status or error messages.

NOTE: The Connect to Target dialog box can also be called repeatedly to establish
multiple target connections, if desired (or you can start Data Monitor manually
and use the -multi command; see Starting Manually, p.14).

3.3.2 Load Snapshot

Snapshots are described in detail in 11. Working with Snapshots. Snapshots that have
been saved to disk in the native Data Monitor format (.ss7 extension) can be
reloaded for viewing in any of the plot windows using the File > Load Snapshot
menu command (or the Load Snapshot toolbar button - see Main Toolbar, p.40).

3.3.3 Save Snapshot

Snapshots are created with the Plot > Take Snapshot menu command (or the
Take Snapshot toolbar button - see Plot Window Toolbar, p.41). They can be saved
to disk for future reference and reloading, using the File > Save Snapshot menu
command (or the Save Snapshot toolbar button - see Main Toolbar, p.40). For
information on this process, see Saving Snapshots, p.187.

45

Wind River Workbench Data Monitor
User's Guide, 3.0

3.3.4 Load Config

You can load the configuration parameters set up in a previous Data Monitor
session, and saved with the File > Save Config menu command (described in
3.3.5 Save Config, p.46), using the File > Load Config menu command.

To load configuration parameters, do the following:

1. Select the File > Load Config menu command to bring up the Open dialog
box.

2. Navigate to the pathname containing the file you want to load. The default
directory is the same directory where you installed Data Monitor.

3. Select or enter the name of the desired file in the Filename field of the dialog
box.

4. Click Open to open the file and load the configuration parameters.

If signals that were active when the configuration was saved are not present when
it is restored, (that is, they have not been activated or installed via
ScopelnstallSignal()), then they will not displayed in the window. However, the
window displays them as soon as they become available in the current Data
Monitor session.

3.3.5 Save Config

There are configuration variables you can modify to customize the appearance and
behavior of your Data Monitor GUIL. Whenever you exit Data Monitor, the current
settings of these configuration variables are saved in a default configuration file,
which is then reloaded the next time you start Data Monitor. You may find a
relatively constant set of configuration parameters that meet your needs, and
automatic saving and reloading is satisfactory.

In some cases, however, you may find yourself changing the configuration of the
Data Monitor GUI substantially for different projects or environments. In these
cases you can save the current configuration parameters to a file which can then be
reloaded when you work on that project.

To save current configuration parameters at any time, do the following;:

1. Select the File > Save Config menu command to open the Save Config dialog
box.

46

3 Data Monitor Features
3.3 File Menu Item

Save ir: Il'f) scopetools-5.4 j " 5 Ef-
| ")docs
&]extensions
") host
&]target
Desktop
My Documents
o8
My Computer
«
File name: I j Save I
Save as ype: IScope Config Files [* s3] j Cancel |

Items to Save:

Active Signals
XY Signalz
Trigger Settings
Derived Signals
Plat 1

2. Navigate to the pathname where you want to store the file to be saved. The

default directory is the same directory where you installed Data Monitor.

Select or enter a filename in the Filename field of the dialog box.

The check boxes at the bottom of the Save Configuration window allow you
to save selected portions of the state of the current Data Monitor session. Select
from the Items to save list by checking the corresponding check boxes for the

following items:

— Active Signals — Saves the list of currently activated signals. On reload,
if any of the signals in this list have not been registered, they appear
grayed-out in the Signal Manager window. For details on the Signal
Manager, see 4. Using the Signal Manager, and for registering signals, see

Registering and Activating Signals, p.249.

- XY Signals — Saves the list of currently defined XY Signals. These signals
may not appear immediately on reload if any of the component signals are
not yet active. They appear when all their components become available.

47

3.3.6 Plots

Wind River Workbench Data Monitor
User's Guide, 3.0

— Trigger Settings — Saves all the triggering and sampling parameters.

— Derived Signals — Saves the list of currently defined derived signals. The
derived signals may not appear immediately on reload if any of the
component signals are not yet active. They appear when all their
components become available.

— Plot n, Plot_XY n, Monitor n, Dump n — Saves the state of the named
data-display windows (where n is the unique number of that type window
in the title bar). When each of these files is loaded, a new window is
opened if none with the saved name is currently open. If a data-display
window with that name already exists, then its state is adjusted to match
the saved information. The state of a window includes the state of a
window includes the list of selected signals being displayed in the
window, as well as the size and shape of the window.

5. Click Save to save the configuration. By default, the filename has the extension
.SSC.

This feature allows you to develop a library of saved Data Monitor
configurations. For example, you might want to create the following
configuration files:

- position.ssc—containing only the state of one Plot window that has been
set up exactly the way you like it for displaying your position sensors.

— derived.ssc—containing a useful set of derived signals, such as a scaled
variable or the difference of two signals.

The drop-down menu opened with this command lists the four basic Data Monitor
data-display windows. Selecting one opens that window (or another occurrence of
that window if one is already open). You can have multiple data-display windows
open at the same time, and each can display different signals or snapshots.

Detailed information for each plot window is found in 7. The Plot Window, 8. The
Plot XY Window, 9. The Dump Plot Window, and 10. The Monitor Window
respectively.

Before using data-display windows, it may help to understand how and when data
is collected from the target; for this see 5. Triggering.

48

3 Data Monitor Features
3.3 File Menu Item

3.3.7 Signal Manager

Open the Data Monitor Signal Manager window using the
File > Signal Manager command (or the Signal Manager toolbar button - see
Main Toolbar, p.40).

-ioix
File Wiew ‘Window Help |
= iz s)

E|--- Live
=-Ey 1
=M

| v

30,65, 144:0

DifferentTypes
8ByteDouble
4ByteFloat
4Bykelnt
4BykellInt
2Bytelnt
2BykellInt
1ByteChar

Offset

First

Second

Painter

Float

FloatPtr

FloatPtrPLr

Sine

Cosine

SinezT

Paos

PosDesired

el

SinGroup LI
2

HEEEEEE

v

..

[« |

This window allows you to select which signals are collected from each target.
Only these active signals can be monitored in any of the four types of data-display
windows. The Signal Manager presents a tree-like view of each target.

The Signal Manager can see all the signals that were installed (that is, registered
and activated; see Registering and Activating Signals, p.249) on the target. If your
target has many installed signals, the Signals Trees in the data-display windows
can become very cluttered. You can use the Signal Manager to dynamically filter
out installed signals that you do not want to collect or have appear in Signals Trees.

If you do not use the Signal Manager, then by default, all installed signals on the
loaded targets are collected and available for monitoring.

Unlike the other types of Data Monitor windows, you only need (and can only
have) one Signal Manager window, so what you do in this window impacts what

49

Wind River Workbench Data Monitor
User's Guide, 3.0

you see in all the other types of Data Monitor data-display windows. Changes
made in the Signal Manager are immediately propagated to all data-display
windows. For example, if you are monitoring a signal in a Plot window and a
Plot XY window, and you make the signal inactive in the Signal Manager window,
it is removed from both your Plot and Plot XY windows immediately. Similarly, if
you activate new signals in the Signal Manager window, they are added to both the
Plot and Plot XY window Signals Trees (and for any other open data-display
windows), where you can choose to select the new signals or not. For more
information, see 4. Using the Signal Manager.

3.3.8 Triggering

The Data Monitor API module on the target is responsible for handling
periodically collected data (or samples) and sporadically collected data, or events.
The Triggering facility in Data Monitor provides control over when and how often
the samples are collected. The triggering facility supports a single trigger at any
given time.

Open the Triggering dialog box with the File > Triggering menu command (or the
Triggering toolbar button - see Main Toolbar, p.40).

Triggering ﬂ

Target Trigger Statu: Hide Dislag |
{Name [10.30.68 1440 =l (No trigger set ‘
Beszet Dialog |
— Start Condition — Stop Condition

Sl ITTiQQET an a signal j Source ITrigger oh a signal j
Signal ISine | Signal IEosine | Dizable Triggerl
Level ID Lewvel ID_5

Slope % Positive Slape % Posjlive
" Megative ' Megative
Ay Any

Delay [~ Start collection IU seconds Optianz [~ Take Snapshat

% before Start Condition V' Re-amm Trigger

{7 after Start Condition

Triggering is disabled when the Triggering dialog box is not open, or the dialog box
is open but the trigger has not yet been armed. In this state, calls to
ScopeCollectSignals() result in data being collected normally.

50

3 Data Monitor Features
3.3 File Menu Item

When the Triggering dialog box has been opened and the trigger is armed with
valid start and stop conditions, all calls to ScopeCollectSignals() from that point
on return without collecting any data. In this armed state (that is, the trigger is
valid, but has not fired), sampled signals are not plotted in any of the GUI
windows, although event data continues to be plotted as before. Collection and
plotting of samples begins when the Start Condition is met (that is, the trigger
fires). Data continues to be plotted on the GUI until the Stop Condition occurs. At
that point the trigger is then either disabled or rearmed depending on the Rearm
option specified in the Triggering dialog box.

To learn more about how triggers are set and used, see 5. Triggering.

3.3.9 XY Signals

The Plot XY window is used to graph pairs of signals against each other. Signal
selection for Plot XY windows differs from signal selection for the other types of
data-display windows in that each plotted data line is composed of two signals.
You must create these XY signal pairs using the XY Signals dialog box before you
see them in the Plot XY window Signals Tree. They appear in a separate branch of
that tree.

Open the XY Signals dialog box using this command (or the XY Signals toolbar
button - see Main Toolbar, p.40).

[Pos, PosDesired] 10.30.68.144:0

1 |

xysignals x|
Eristing > Signals Delete | Target oK I
Signal | Target |10.30.68.144:0 |
Cancel
[Sine, Sine2T) 10.30.68.144:0 —I

Az
ISine _I
¥ Az

Add

Apply |

For details on how to create signal pairs with the XY Signals dialog box, and
display those signal pairs using the Plot XY window, see 8. The Plot XY Window.

51

Wind River Workbench Data Monitor
User's Guide, 3.0

3.3.10 Derived Signals

A derived signal is a new signal you create whose value is computed by
mathematical operations on other, existing signals. Derived signals are calculated
by Data Monitor on the host in real-time, but not displayed directly from your real-
time system. The derived-signals facility provides a simple means of scaling and
offsetting signals, plotting differences and ratios of signals, and so forth.

You must create a derived signal using the Derived Signals dialog box before it
appears in a separate branch in the Signals Tree of the Plot, Dump Plot, and
Monitor windows. Open the Derived Signals dialog box using the

File > Derived Signals menu command (or the Derived Signals toolbar button -
see Main Toolbar, p.40).

x
Mame | Target | QK |
Cancel |
" - " Apply
x _ e |
Welcome to the Derived Signal
Wizard
Chooze a name and a type for the derived signal, Delete |
and chooze which target to attach it to.
Mame

Imy_signal |

Type ,“
I 4-byte integer j /

Target /

[10.3068144:0Live |

AN

< Back I Mest » I Cancel | ‘,,//

This dialog box utilizes a series of Derived Signal Wizard dialog boxes, also
shown in the figure above, to guide you through the process.

For details of how to create derived signals, see 6. Derived Signals.

52

3 Data Monitor Features
3.3 File Menu Item

3.3.11 Trace Log Window

Data Monitor records events in a log file, which you can display in the Trace Log
window, as well as save to disk. The types of events recorded in the log file depend
on the Verbosity setting selected when Data Monitor was started. With each
increase in verbosity, more events are included in the log file. Verbosity is a
command-line option (see Starting Automatically, p.11). Verbosity can also be set on
a per-target basis with the Connect to Target window (see 3.3.1 Connect to Target,
p-45).

Open the Trace Log window using the File > Log Window command (or the
Log Window toolbar button - see Main Toolbar, p.40), or by double-clicking
anywhere in the error message area of the status bar for any given data-display
window (described in Chapters 7, 8, 9, and 10).

i
File Edit

&< <] 2] e [8e | e | T sk

; Opering target: 10.30.68.744:0

Connected to 10.30.68.144:0
Sample Overflow:
Event Ovwerflow:

3.3.12 Preferences

Open the Data Monitor Preferences dialog box using the File > Preferences
command (or the Preferences toolbar button - see Main Toolbar, p.40). Note that
this dialog box has a few significant differences between the Windows and UNIX
host versions. Therefore both versions are illustrated here, and their descriptions
are noted. The order of menu descriptions varies, but all items from both dialog
boxes are included.

53

Wind River Workbench Data Monitor

User's Guide, 3.0

Windows Host

StethoScope Preferences x|

—Data Collection————————————

- Comm Pluglns
- Plat Pluglns

- Dump Plat

- Plot

- M onitor

- Plat =¥

Cancel |

StethoScope

™ Savefestore window position

[™ Savehestore toolbar positions

—Window Settings—————————————————

—Wwhiteback

[Dion't ask before writeback.

UNIX Host

[l .Global Prefel

Options

Comm Plugins

~Data Collection

Buffer Time (secs)

|40

~Window Settings

_| Savefrestore properties

_| Save/Restore window sizes and positions

—Application Settings

Change Application Font

Ok

Cancel |

54

3 Data Monitor Features
3.3 File Menu Item

This dialog box allows you to set preferences (defaults) for the Data Monitor GUI
when it starts and when new data-display windows are created.Preferences are
different than properties—preferences are the values used when new data-display
windows are created, whereas properties apply only to a specific data-display
window that is currently open. In other words, preferences are the default
properties used for new data-display windows. Then, once a data-display window
is open, you can change its properties using the Properties menu command as
described in the chapter for each specific data-display window.

The left-most panel displays the various types of preference selections available.
The following sub-sections describe the options available for each of these
preference views.

1. General View

The General view, shown above, allows you to control some aspects of data
collection and display, as well as whether window and toolbar positions are
maintained when you exit and restart Data Monitor.

The parameters in the Data Collection panel are:

— Buffer Time (secs) — The buffer time indicates how many seconds of data
to show in the plot before refreshing. This is only used when not in
Strip Chart mode, and only in the Plot and Plot XY windows. This value

is seen on the plot as the width of the grid (X-axis). The default is 1 second.

The parameters in the Window Settings panel are:

— Save/restore window (size and) position — When selected, the position
of each Data Monitor window is saved for use the next time you start Data
Monitor. When selected, the position of your Data Monitor toolbars and
window panels are saved for use the next time you start Data Monitor. If
you have docked your toolbars and rearranged window panels, and want
Data Monitor to use the new positions the next time you start up, select
this feature. This makes it easy for you to pick up where you left off when
you start a new session; all your windows are restored.

Save/restore toolbar positions (or properties) — When selected, the
default values entered in the Preference dialog box for the open Plot View
(6.Plot View, p.63) and Plot XY View (8.Plot XY View, p.67), are saved or
restored.

The parameters in the Writeback panel (in a Windows host) are:

Don't ask before writeback — When selected, a warning message,

usually displayed each time a value is written, is not displayed in the GUI.

55

Wind River Workbench Data Monitor
User's Guide, 3.0

56

The parameters in the Applications Settings panel (in a UNIX host) are:
Change Application Font — Select a new font style from the menu.

Click OK to apply changes. The settings take affect immediately for the
current session and all subsequent sessions, until changed again. Or click
Cancel to exit the dialog box without saving your changes.

Colors View

The Colors view allows you to control the signal (trace line) color settings for
the Plot and Plot XY windows, as described in Chapters 7. The Plot Window
and 8. The Plot XY Window respectively.

3 Data Monitor Features
3.3 File Menu Item

Windows Host

x
Stethoscope
¢ o Colors
- Comm Pluglns — Signal Colors
- Plot Pluglnz
- Dump Plat | e | |
- Plot
Elon;t:rr [— | [Coooo -

Lo Plat

[| [+
[e +| [z~
[o | [Coloria) +]

4

UNIX Host

[~ KSR x

~Colors ——————

Dump Plot

-
o -
Comm Plugins !l _l
— —
-
— —
— —
— —

Ok | Cancel

57

Wind River Workbench Data Monitor
User's Guide, 3.0

Color preferences take effect as soon as you click OK.
3. Comm Plug-ins View

The Comm Plug-ins view is used to specify the plug-ins you want to use for
communications between the host GUI and the target.

58

Windows Host

3 Data Monitor Features
3.3 File Menu Item

StethoScope Preferences x|

StethoScope

Configured Pluglns

Add

Bemove |
Eraperties |

paleale. spi

*r'ou will have to exit and restart StethoScope for these changes to take effect.

All zpecified Flug Ins must either be located in the zame directory as
StethoScope, or be on your path.

UNIX Host

_omm Plugins|

Comm Plugins

~Plugin Configuration
Loaded Plugins I Search Path |

Find Plugins
Loaded Libraries

[svl-st-linuxdevl/sthome/mxia/WindRiv Add Path
[svl-st-linuxdevl/sthome/mxia/WindRiv

Remove Path

il

Ok Cancel

59

Wind River Workbench Data Monitor
User's Guide, 3.0

60

The Configured Plugins (Plugin Configuration) panel displays all the plug-
ins currently configured. To delete a plug-in, first select it in this list, then click
Remove to delete it.

The Windows host buttons are:

- Add — Click this button to bring up the Open dialog box in which you can
navigate to, and select, plug-in files.

- Remove — Click this button to remove a plug-in selected in the
Configured Plug-ins panel.

— Properties — Opens the Properties window where you can configure the
selected plug-in.

The UNIX host controls are:

- Find Plugins — Opens the Find dialog box in which you can search for,
and select, plug-in files. Use the Search Path tab view to view directory
paths to search, and use Add Path or Remove Path buttons to this list.

- Configured plugins can be observed in the Loaded Plugins tab view.

NOTE: You must exit and restart Data Monitor to see the effects of modifying
this list in either a Windows or UNIX host.

Plot Plug-ins View (Windows hosts only)

The Plot Plug-ins view is used to specify the plug-ins that control which plots
are available for use in Data Monitor.

3 Data Monitor Features
3.3 File Menu Item

x

StethoScope
f i Colors

Comm Pluglng Configured Pluglns

Flot Pluglns _

Diump Plat plotzdll. ppi Add

Plot
- Manitar Remove |
L Pl 507

Eraperties |

*r'ou will have to exit and restart StethoScope for these changes to take effect.

All zpecified Flug Ins must either be located in the zame directory as

Cancel | StethoScope, or be on your path.

The Configured Plug-ins panel displays all the plug-ins currently configured.
To delete a plug-in, first select it on this list, then click Remove.

The buttons are:

- Add— Click this button to bring up the Open dialog box in which you can
navigate to and select plug-in files.

- Remove — Click this button to remove a plug-in selected in the
Configured Plug-ins panel.

— Properties — Opens the Properties window where you can configure the
selected plug-in.

Click Ok to apply the changes. The settings take effect immediately for the
current session and all subsequent sessions. Click Cancel to exit the dialog box
without saving your changes.

NOTE: You must exit and restart Data Monitor to see the effects of modifying
this list.

Dump Plot View

The Dump Plot view allows you to change the default values used when new
Dump Plot data-display windows are created.

61

Wind River Workbench Data Monitor

User's Guide, 3.0

Windows Host

StethoScope Preferences

General

- Colors
Comm Pluglng
Flot Pluglnz
Dump Plat
Plot

anitor

Cancel |

Dump Plot

x|
StethoScope

Default Properties—————————————————

Fiesolution [zecs] I
History Limit I
[Linesg] 1000
Dizplay Accuracy
[digitz] I4

UNIX Host

~Default Dump Properties

Resolution (secs)

History Limit (Lines)

Display Accuracy (digits) |4

Ok

62

3 Data Monitor Features
3.3 File Menu Item

These preferences are described in detail in 9.3 Setting New Dump Plot Window
Preferences, p.171.

Plot View

The Plot view allows you to change the default values used when new Plot
data-display windows are created.

63

Wind River Workbench Data Monitor
User's Guide, 3.0

Windows Host

x
StethoScope

— Default Plat Properties————— [~ Take Snapshat
* Offzet

V' Select currently selected signals
* Range ¥ Use same colors

V' Unselect live signals

' Offzet

wn

1T

r— Default Mini-Dump Properties

Fiesolution [zecs] |1
Histary Limit |1 []
[Linesg]
— Default kini-Monitor Properties

Fiesolution [zecs] |1

[Allow writeback

' Range

Resalution
[zamples)

Dizplay Accuracy
[digitz]

Minirmum Gridline
Spacing
b aximum Snap
Distance

Cancel |

=
=

:

V' Snap measures to sighals

UNIX Host

[~ S x|
~Default Plot Properties ——— ~Take SnapShot

Y Offset |1.5 _| Select currently
|3

selected signals
Y Range

Resolution (samples) I I Use same colors

. . 7 Unselect live signals
Display Accuracy (digits) |4
Minimum Gridline Spacing |0.25
Maximum Snap Distance I

_| Snap Measures to signals

[y

~Default Mini-Monitor Properties —— ~Default Mini-Dump Properties —
Resolution (secs) Il Resolution (secs) Il
7 Allow WriteBack History Limit (Lines) |500

¥ Enable Warnings

Ok Cancel

64

3 Data Monitor Features
3.3 File Menu Item

These preferences are described in detail in 7.6 Setting New Plot Window
Preferences, p.134.

Monitor View

The Monitor view allows you to change the default values used when new
Monitor data-display windows are created.

65

Wind River Workbench Data Monitor
User's Guide, 3.0

Windows Host

x
N Stethoscope

Colars
Comm Pluglns Default Manitar Properties

Plat Pluglnz: .
Dump Plot Resolution [secs] I
Plot .

e Display Accuracy
Moritor (digits] |4

Plat &

[Allow writeback

Cancel |

UNIX Host

[~ KEENEEm A %

~Default Monitor Properties

Dump Plot
P Resolution (secs) Il
Display Accuracy (digits) |4
PlotXY
° . 7 Allow WriteBack
Comm Plugins
¥ Enable Warnings
7 Display 'int' as Hex

= Display ‘char’ as Hex

Ok Cancel

66

3 Data Monitor Features
3.3 File Menu Item

These preferences are described in detail in 10.4 Setting New Monitor Window
Preferences, p.182.

Plot XY View

The Plot XY view allows you to change the default values used when new Plot
XY data-display windows are created.

67

Wind River Workbench Data Monitor
User's Guide, 3.0

Windows Host

Dizplay Accuracy
[digitz]

Mirimurn Gridline

Spacing

b aximum Snap

Distance

=

x
Plot XY StethoScope
— Default Plat Properties————— [~ Take Snapshat
¥ Offsst I V' Select currently selected signals
Y Scale |3 [¥ Use same colors
V' Unselect live signals
* Offzet |.1_5
Scale |3
Resalution
[samples) |1—
|4
100
|2

Cancel |

V' Snap measures to sighals

UNIX Host
[~ KT <
~Default Plot Properties ———— ~Take SnapShot
Y Offset |1.5 7 Select currently selected
signals
Y Range |3
¥ Use same colors
X Offset -1.5
7 Unselect live signals
X Range
Resolution (samples) 1

Display Accuracy (digits) |4
Minimum Gridline Spacing (0.25

Maximum Snap Distance

1T

_| Snap Measures to signals

Ok | Cancel |

68

3 Data Monitor Features
3.4 Menu Bar

These preferences are described in detail in 8.5 Setting New Plot XY Window
Preferences, p.160.

3.3.13 Close Window

Closes only the current window. Any remaining open Data Monitor windows
are unaffected, except that if this is the only remaining open window, Data
Monitor exits.

3.3.14 Exit Data Monitor
Quits the Data Monitor GUI, but does not stop target daemons. All Data
Monitor windows are closed.

The secondary features and remaining functionality in the Data Monitor GUI is
accessed through the remaining menu bar items. They are listed in the following
sub-sections, but are described in detail in the various data-display window
sections where they are applicable.

3.4 Menu Bar

The following items are available in the Data Monitor GUI menu bar.

Plot Menu Item (Windows Hosts Only)

In Windows hosts only, the Plot menu item contains commands for working with
the contents of the Plot (7. The Plot Window), Plot XY (8. The Plot XY Window),
Dump Plot (9. The Dump Plot Window), and Monitor (10. The Monitor Window)
windows. It is unique in each of these chapters, where it is described in detail.

Note that there is no Plot menu item in a UNIX host.

69

Wind River Workbench Data Monitor
User's Guide, 3.0

View Menu Iltem

The View menu contains commands for working with the contents of the Plot
(7. The Plot Window), Plot XY (8. The Plot XY Window), Dump Plot (9. The Dump
Plot Window), and Monitor (10. The Monitor Window) windows.

Note that commands in the View menu are not all available in all data-display
window types. These menu commands, as well as some that are available in the
various pop-up menus, are described in the chapters on each of the specific data-
display windows (see Chapters 7, 8, 9, and 10).

Window Menu Item (Windows Hosts Only)

In a Windows host only, the Window menu contains items that affect the
characteristics of currently open Data Monitor windows.

“ File Plot Eiew| Window Help
@ Always on Top

Minimize Al

The Window menu item contains the following commands:
= Always on Top

Keeps the currently selected window as the topmost display on the desktop.
* Minimize All

Minimizes all Data Monitor windows.

NOTE: This menu item is not available in UNIX hosts.

Help

The Help menu currently has only one topic:
* About Data Monitor

Opens the About box displaying version and copyright information.

70

3 Data Monitor Features
3.5 Pop-up Menus

3.5 Pop-up Menus

On-Grid

Pop-up menus, available in Plot and Plot XY windows only, contain options that
are unique to specific signals, and in some cases, to the cursor’s location within the
Data Monitor GUL

The following pop-up menus are described:

On-Grid
On-Trace (Windows hosts only)
Signals Tree

Legend

Several plot-related commands are available in the pop-up menu that appears
when you right-click while passing the cursor anywhere over the grid area of a Plot
window, except when directly over a plot line (see 7.2 Plot Window Tour, p.108).

Windows Host UNIX Host
Previous Zoom Add Marker
Add Marke q
e Add Annotation

Add Annotation

Remave Markers Previous Zoom

Set Selection Start Refresh Screen

Set Selection End

Clear Selection Remove Markers
Remove Measures
Remove Annotations

The following menu items are available in both Windows and UNIX hosts:

Previous Zoom

Reverses the effect of the previous zoom action (see Zooming, p.76). Note that
the Zoom to Fit command erases the history of all previous zooms.

Add Marker

Adds text to a specific point on the grid area, showing the coordinates of a
desired point (see Markers, p.76).

71

Wind River Workbench Data Monitor
User's Guide, 3.0

Add Annotation

Adds text to a specific point on the grid area, you can type any comment you
want (see Annotations, p.77).

Remove Markers

Deletes all markers and measures from the grid area (see Markers, p.76).

Windows hosts only selections:

Set Selection Start

Marks the beginning of an area of the graph to select for copying to the
clipboard. This mark, a vertical line, is placed at the location of the mouse
cursor at the time this option is selected. The selection is highlighted as soon
as you select Set Selection End from the pop-up menu.

Set Selection End

Marks the end of the graph area you want to copy to the clipboard. It also is
placed at the location of the mouse cursor at the time this option was selected.
The graph area between Set Selection Start and Set Selection End is
immediately highlighted and ready to be copied into the clipboard using
either the Plot > Copy menu command, or the standard Ctrl+C keyboard
shortcut. The clipboard can then be copied to most text or bitmap handling
applications. The results will vary between text lists or bitmap renderings
depending on the application.

NOTE: You can also select the entire graph area thus far using the Plot > Select
All menu command.

Clear Selection

Deselects the graph area selected using the Set Selection Start and Set Selection
End commands. Note that this does not delete the selected graph data itself.

UNIX host only selections

72

Refresh Screen

Refreshes the screen data with the most current data.

Remove Measures

Deletes all measures from the grid area (see On-grid Measurements, p.78).
Remove Annotations (UNIX only)

Deletes all annotations from the grid area (see Annotations, p.77).

3 Data Monitor Features
3.5 Pop-up Menus

On-Trace (Windows Hosts Only)

In the Plot window only, the pop-up menu that opens when you right-click exactly
on a trace line is the same as the pop-up menu in On-Grid, p.71, but there is one
additional menu item.

auin

Previous Zoom

Add Marker
Add Annatation
Remove Markers

Set Selection Start:
Set Selection End
Clear Selection

Properties (Pos)

1.091e+004 1.091e+004 1.092e+004 1.092

The additional menu item is:
= Properties (Pos)

Opens the Signal Properties dialog box for the Plot window, which is
described in detail in 7.3 Signal Properties Dialog Box, p.123, and for the Plot XY
window, in 8.4 Signal Properties Dialog Box, p.154. In this dialog box you can
configure parameters that affect the appearance and behavior of the specific
signal your cursor is on.

Signals Tree

A pop-up menu opens when you right-click a signal name in the Signals tab view
(Active Signals tab view in a UNIX host) in the Signals Tree.

73

Wind River Workbench Data Monitor
User's Guide, 3.0

Signals Bar

Signals Tree
EI' Live
- % 10,30.68.144:0
-0 4 DifferentTypes
- @ Offset
-0 4 Pointer
Sine
Cosine
SinezT

W vel Properties |

PosGain
VelGain
w-O 4 sincroup
-] € Event
I:I--- Snapshot 1

A 2l
BSignals I

This menu has only one option:
= Properties (Signal Properties in a UNIX Host)

Opens the Signal Properties dialog box, which, for the Plot window, is
described in detail in 7.3 Signal Properties Dialog Box, p.123, and for the Plot XY
window, in 8.4 Signal Properties Dialog Box, p.154. In this dialog box you can
configure parameters that affect the appearance and behavior of the specific
signal your cursor is on.

Legend
A pop-up menu opens when you right-click a signal name in the Legend tab view

of a Plot or Plot XY window (or in the Legend Window in a UNIX host, see Legend
Window (UNIX Hosts Only), p.27).

74

3 Data Monitor Features
3.5 Pop-up Menus

Windows Host UNIX Host
T r T
Signal Scale Snapsh Color |Signal Snapshot
M Fos 1000000 Live - -
[PosDesired 1.000000 | ive] vxKernel:0x6016bf30/Sine Live
Toggle Signal | [| vxKernel:0x6016bf30/Cosine Live
Remove Signal . . .
A] vxKernel:0x6016bf30/Sine3T Live
Remave All Signals] vxKernel:0x6016bf30/Pos Live
.) vxKernel:0x6016bf30/PosDesired Liv
roperties

4

= Toggle Signal

Remove Signal

Remove Selected

| 3

[—IE = Remove Enabled Signals

Remove Disabled Signals

Remove All Signals

The pop-up menu has the following options.

Toggle Signal

Turns the selected signal on or off. This is the equivalent of going to the
Signals Tree and alternately checking and deselecting the signal check box,

except that it leaves the signal name in the Legend list when you toggle it off.

Remove Signal

Removes only the selected signal from the graph (regardless of its toggled
status).

Remove All Unselected

Removes all signals that are toggled off.

Remove All Signals

Removes all signals (regardless of their toggled status).

Windows hosts only selections:

Properties

Opens the Signal Properties dialog box. For the Plot window, it is described in
detail in 7.3 Signal Properties Dialog Box, p.123, and for the Plot XY window, in
8.4 Signal Properties Dialog Box, p.154.

UNIX hosts only selections:

75

Wind River Workbench Data Monitor
User's Guide, 3.0

= Remove Disabled Signals
Removes all the signals that have been toggled off.
= Remove Enabled Signals

Removes all signals that are currently toggled on (displayed).

3.6 Screen Operations

Zooming

Markers

You can enhance the data graphing area with options, including zooming in and
out, placing markers at strategic points on the graph, adding text annotations at
any place on the graph, panning and moving the graph area, and taking and
displaying on-grid measurements. These operations are described in the following
sections. They are shown in the on-grid pop-up menu in the figure above.

You can magnify a region to see details by zooming. The offset and scale of the plot
are adjusted so that the zoomed region fills the Plot window.

To zoom in to a desired region, do the following:
1. Press and hold the Shift key.
2. Click and drag with the left mouse button to select a region of the plot.

The on-grid pop-up menu includes a Previous Zoom command, which can be
used to return to the previous zoom. Note, however, that using the Zoom to Fit
menu command (or the Zoom to Fit toolbar button - see Plot Window Toolbar, p.41)
erases the history of all zoom actions.

A marker shows the coordinates of a point on the grid.
To add a marker, do one of the following;:

» Right-click at the desired point in the grid area. Select Add Marker in the pop-
up menu,

76

Annotations

Panning

3 Data Monitor Features
3.6 Screen Operations

or,
= Press and hold Ctrl while clicking the mouse.
To delete a specific marker, do the following:
* Drag the marker off the grid area.
To delete all markers and measures, do one of the following:

» Right-click anywhere in the grid area, then select Remove Markers in the pop-
up menu,

or,

= Select the Plot > Delete Markers menu command.

An annotation is text that you type in to mark a point on the grid.
To add an annotation, do the following:

= Right-click at the desired place in the grid area, then select Add Annotation in
the pop-up menu.

To move an annotation, do the following:
» Drag the annotation to the desired spot on the grid area.

To delete a specific annotation, do one of the following;:
= Drag the annotation off the grid area,
or (UNIX only),

= Right-click the annotation, then select Delete Annotation from the On-Grid
pop-up menu.

Panning provides an easy way to change the offset of a plot by allowing you to
move the plot directly from within the display window. This is useful especially
when you have zoomed in and you want to see an adjacent region.

After zooming in, you can pan in the X and Y directions. When not zoomed in, you
can only pan in the Y direction since the entire X range is already in view.

77

Wind River Workbench Data Monitor

User's Guide, 3.0

To pan the view region, do one of the following:

Click and drag with the left mouse button to move the viewing region,
or,

Use the scroll bars.

On-grid Measurements

You can create a line on the grid that measures the distance between any two
points. As you move the mouse pointer over the plot area, the coordinates of the
mouse pointer are displayed in the rightmost panel of the status bar at the bottom
of the window.

To measure offsets between any two points on the plot, do the following;:

1.
2.
3.
4.

Press and hold the Ctrl key.
Place the mouse pointer at the first location on the grid.
Click and drag the mouse pointer to the second location.

Release the mouse button and the Ctrl key.

This creates a line between the two points and displays the difference between the
two points as an x, y pair.

To delete a measurement, do one of the following:

Click an end-point of a measurement and drag the end-point off the plot
window,

or,

Select Plot > Delete Markers to remove all markers and measurements.

3.7 Status Bar

The status bar is located at the bottom of the Data Monitor Plot window.

78

3 Data Monitor Features
3.7 Status Bar

|Ready | x=125.856905, y=0.438202 Al

It is hidden or displayed with the View > Status Bar menu command, and is
divided into three panels:

The left panel provides a description of the command when the mouse pointer
is passed over any Plot window toolbar button.

The middle panel displays status messages. Double-click this panel at any time
to display the Log window and see a history of status messages.

The right panel displays the XY coordinates of your mouse pointer when it is
passed over the plot grid.

79

Wind River Workbench Data Monitor
User's Guide, 3.0

80

Using the Signal Manager

4.1 Introduction 81
4.2 Using the Signal Manager Window 81

4.1 Introduction

A signal from your running target program can be displayed in the Data Monitor
GUI only if it has been installed either before or during the Data Monitor session.
The Signal Manager utility, available in the Data Monitor GUI, will do this for
you. This chapter gives you the information you need to install all the variables
you want to look at in the various Data Monitor windows.

4.2 Using the Signal Manager Window

Open the Signal Manager window with the File > Signal Manager menu
command (or the Signal Manager toolbar button - see Main Toolbar, p.40), or by
right-clicking on a target in the Signals Tree and selecting Install Signal in the
pop-up menu.

81

Wind River Workbench Data Monitor
User's Guide, 3.0

“i00d| Right-click
File Yiew ‘Window Help /r a target to
= | display the
ST / - pop-up menu
=-B% 10.30.68.144:
El"' Different] Discannect Ikems
SEvt

4ByteFloat

4Bykelnt |

4BykellInt

2Bytelnt

2BykellInt

: 1ByteChar
Offset

First

Second

I';'l--- Painter ﬂ
H . - | -
3

[« |

This window allows you to determine which signals are collected from each target.
Only these signals, when installed, can be monitored in any of the four types of
data-display windows.

Working With Signal Trees

Installed signals are displayed in a tree structure in the Signal Manager window,
as well as in the Signals Bar panel of the individual data-display windows
described in 2.4 The Data Monitor GUI, p.19. Use this Signal Manager window to
choose which signals are active (collected from the target). In the data-display
windows (Plot, Plot XY, Dump Plot, and Monitor), you use the Signals Tree in the
Signals Bar to select the signals to display in the graph or table in the window.

To activate a signal (so that it is collected from the target), simply click a signal
entry in the Signals Tree in the Signal Manager window. A check mark appears in
the check box to show that it is active. To stop collecting a signal, click it again to
clear the check mark.

Signals must be installed before they appear in the Signals Tree. (You can install
signals using the Signal Installation dialog box; see 15. Installing Signals). Signals
Trees in other windows are identical, except that they only show signals activated
in the Signal Manager window.

The Signals tree has the following characteristics:

82

4 Using the Signal Manager
4.2 Using the Signal Manager Window

= Signals may be organized hierarchically when they are installed. A directory

entry—indicated by a "+" or "-" node icon—contains sub-entries that are either
signals or other directories.

= Adirectory entry always begins a new branch on the signals tree. You can

expand or collapse these branches by clicking the "+" or "-" icon, respectively.

» Each entry (signal or directory) has a check box. A check box in a directory
indicates what is selected underneath it. A check box in a signal indicates
whether or not that signal is selected. Check boxes indicate the following:

O = No signal in this branch is selected, or, if a signal, this signal is not
selected.

1 = All signals in this branch are selected, or, if a signal, this signal is selected.

Fl = At a branch node, some, but not all, signals in this branch are selected.

= Selecting the check box at a directory node in a Signals Tree selects everything
underneath it. Similarly, clearing (deselecting) a directory check box clears
everything underneath it.

= Click a signal or branch check box to toggle its selection—click an unselected
signal to select it; click it again to deselect it.

* Right-clicking a target in a Signals Tree displays a pop-up menu with the
following commands:

Disconnect Items
Disconnects the Data Monitor GUI from the selected live target (see
Disconnecting the Target, p.84).

NOTE: If you see an empty Signals Tree, either you are not running an application
instrumented with the Data Monitor API on the target, your target program did
not install any signals, or you have only registered but not activated any signals
(You can observe this last case by opening the Signal Manager window and seeing
that signals are listed but none are checked).

The best way to become familiar with the signals tree is to experiment while
running the demo program. You will see how easy it is to make signals active in
the Signal Manager window, and to select or clear signals in the data-display
windows.

83

Wind River Workbench Data Monitor
User's Guide, 3.0

Installing Signals

A signal name is the name you assign to a data item that is collected from your
target application by Data Monitor. An installed signal is one that has been
registered and activated, as described in Installing Signals, p.250.

Signals can be installed in any of 3 ways:

= One at a time, automatically by variable name or manually by address, using
the Signal Installation dialog box, opened with the Install signal to Data
Monitor button on the Workbench toolbar, where you can configure all the
necessary parameters (see 15.2 Using the Signal Installation Dialog Box, p.232).

* Instrumenting your VxWorks target code using the Data Monitor API (see
A. API Reference: VxWorks), or Linux target code using the Data Monitor API
(see B. API Reference: Linux).

= Using an executable file that is itself fully instrumented with the Data Monitor
API (samplertask.so for VxWorks, or processsampler for Linux), and which
you can run on your target (see 15.4 Code Instrumentation Alternative, p.241).

Disconnecting the Target

Right-click a target name in the Signal Manager window to display a pop-up menu
and select Disconnect Items. This action severs the communication link between
the Data Monitor GUI and the target. This does not, however, stop the collection
thread or Data Monitor daemons on the target. You may reconnect the GUI to the
same, or connect to a different, scope index using the New Target Connection
dialog (see 3.3.1 Connect to Target, p.45).

84

Triggering

5.1 Introduction 85
5.2 Configuring a Trigger 85
5.3 Setting a Trigger 93

5.1 Introduction

As described earlier (see Triggering, p.50), the Data Monitor API module on the
target is responsible for handling periodically collected data (or samples) and
sporadically collected data (or events). The Triggering facility in Data Monitor
provides control over when and how often these samples are collected. This
chapter describes the Triggering facility and how it is used.

5.2 Configuring a Trigger

The Data Monitor triggering facility supports a single trigger at any given time.
Triggering is disabled when the Triggering dialog box is not open, or it is open but

85

Wind River Workbench Data Monitor
User's Guide, 3.0

the trigger has not yet been armed, or has been disabled. In this state, calls to
ScopeCollectSignals() result in data being collected normally.

When the Triggering dialog box is open and the trigger is armed with valid start
and stop conditions, all calls to ScopeCollectSignals() from that point on return
without collecting any data. In this armed state (that is the trigger is valid, but has
not yet fired), sampled signals are not plotted in any of the GUI windows, although
event data will continue to be plotted as before. Collection and plotting of samples
begins when the Start Condition is met (that is when the trigger fires). Data
continues to be plotted on the GUI until the Stop Condition occurs. At that point
the trigger is then either disabled or rearmed depending on the Re-arm option
specified in the Triggering dialog box.

Triggering Dialog Box - Windows Host

The Triggering option is set up and executed in similar ways in both a Windows
and UNIX host. However, there are sufficient discrepancies in the details to
warrant describing them separately.

In a Windows host, open the Triggering dialog box using the File > Triggering
menu command (or the Triggering toolbar button - see Main Toolbar, p.40).

Windows Host

Triggering ﬂ

Target Trigger Statu: Hide Dislag |
erame |1D.30.88.144:D | ’7 Trigger fred. Collecting data... ‘
Beszet Dialog |
— Start Condition — Stop Condition

See ITTiQQET on 4 signal j Source ITrigger aon a signal j
Signal IPosDesired | Signal IPosDesired | Disable Triggerl
Level I.D_5 Lewvel ID

Slope % Positive Slape Posilive
" Megative ' Megative
Ay Any

Delay [Start collection IU— seconds Options [V Take Snapshat
1% before Start Condition I Fe-aim Trigger

{7 after Start Condition

86

5 Triggering
5.2 Configuring a Trigger

The control settings in the Triggering dialog box in a Windows host are grouped in
the following descriptive panels:

Target

Target

Start Condition
Trigger Status
Stop Condition

In a Windows host, the Target field is a drop-down menu displaying a list of target
names or TCP/IP addresses attached to the Data Monitor GUI. Select the target on
which you want to configure triggering.

Start Condition

These are the settings that start the trigger. The trigger is fired and data collection
begins when the trigger conditions you specified in the Start Condition panel are
met.

The following triggering Start Condition parameters can be set:

Source

Specifies the specific kind of triggering source for the Start Condition. Select
one of the following from the drop-down list:

— Trigger on a signal—specifies the source to be a periodically sampled
signal.

— Trigger on an event—specifies the source to be an event.

— Trigger immediately—causes triggering to start immediately without
waiting on a condition. If this option is chosen, there is no need to fill out
the other parameters for Start Condition.

Signal

If you selected Trigger on a signal, any non-derived signal may be used as the
trigger source. This excludes deactivated signals (those not being collected and
displayed by Data Monitor). Choose a signal using the Browse "..." button.

If you selected Trigger on an event, type in the event ID.
Level

Enter the signal value which should set off the trigger. This is relevant only if
you selected Trigger on a signal.

87

Wind River Workbench Data Monitor

User's Guide, 3.0

Trigger Status

Slope

If you selected Trigger on a signal, specify the slope for the trigger:

Positive—the trigger fires only if the source signal value is increasing
when it crosses the trigger level.

Negative—the trigger fires only if the source signal value is decreasing
when it crosses the trigger level.

Any—the trigger fires when the source signal value crosses the trigger
level without respect to direction.

Delay—if checked, it allows you to delay the trigger firing for the time (in
seconds) you specified in the Start Collection field.

Before Start Condition—if checked, the delay begins immediately, before
the Start Condition begins to be evaluated.

After Start Condition—if checked, the delay begins immediately after the
Start Condition has been met.

This field displays the current status of the Data Monitor trigger.

Stop Condition

Triggering is disabled when the trigger conditions you specified in the Stop
Condition panel are met. Note that data collection continues even after triggering
is disabled, unless Re-arm is selected for the trigger.

The following trigger Stop Condition parameters can be set.

88

Source

Specifies the specific kind of triggering source for the Stop Condition. Select
one of the following from the drop-down list.

Trigger on a signal—specifies the source to be a periodically sampled
signal.

Trigger on an event—specifies the source to be an event.

Trigger after set time period—This causes triggering to terminate after
the number of seconds specified in the Secs text field has elapsed.

Signal

If you select:

5 Triggering
5.2 Configuring a Trigger

— Trigger on a signal—any non-derived signal may be used as the trigger
stop source. This excludes deactivated signals (those not being collected
and displayed by Data Monitor). Choose a signal using the Browse "..."
button.

— Trigger on an event—type in the eventID.

= Level or Secs

This field label changes to Secs if you selected Trigger after set time period in
Source above; otherwise the label is Level. If Level, enter the signal value
which should stop the trigger. If Secs, enter the number of seconds of
triggering after which you want triggering to stop.

= Slope
If you selected Trigger on a signal, specify the slope for the trigger:

— Positive—the trigger stops data collection only when the source signal
value is increasing when it crosses the trigger level.

— Negative—the trigger stops data collection only when the source signal
value is decreasing when it crosses the trigger level.

— Any—the trigger stops when the source signal value crosses the trigger
level without respect to direction.

= Options
Optional actions to take after the trigger stops:

— Take Snapshot—if this box is checked, a snapshot is taken of the signal
and events that were collected between the start and stop conditions.

- Re-arm Trigger—if this option is chosen, the trigger is automatically
rearmed after the Stop Condition is met. This is useful in cases where you
might want to observe an occurrence that happens over and over again.
Choosing the Take Snapshot option along with this option can help you
monitor occurrences during an unattended overnight run.

Buttons

The following buttons cause the trigger, with its options set, to take the indicated
actions:

= Hide Dialog

Hides the dialog box. The trigger is only active while the dialog box is open. If
you want to cancel the action of the trigger, click this button.

89

Wind River Workbench Data Monitor
User's Guide, 3.0

= Reset Dialog
Resets all options to their default values.
= Arm Trigger

Causes the calls to ScopeCollectSignals() from that point on to respond to the
conditions set for this trigger, until you either Disable Trigger or Hide Dialog
(that is, the trigger will now fire when the conditions are met).

= Disable Trigger

Causes the trigger to become disarmed without closing the dialog box
(configured values remain set). Data collection resumes as it was before the
trigger was armed.

Triggering Dialog Box - UNIX Host

In a UNIX host, open the Triggering dialog box using the File > Triggering menu
command (or the Triggering toolbar button - see Main Toolbar, p.40).

UNIX Host

I Triggering Dialog
Trigger on Target: vxsim0@ svl-st-linuxdev:0 |
~Start: Stop:

Source: vxKernel:0x6016bf30/Po J Source: vxKernel:0x6016bf30/Po: J
... Crosses 0.5 with ... Crosses 0.9 with
Conditio Positive slope =] || Conditio Negative slope =

Action: None .| || Action: Rearm |

~Options:
_| Take a snapshot from start to end trigger

_| Disable trigger on close

Apply | Revert |

—Active Trigger:

Start:
Crosses 0.500000 with Positive slope

]= Close | J

90

5 Triggering
5.2 Configuring a Trigger

The control settings in the Triggering dialog box in a UNIX host are grouped in the
following descriptive panels:

» Trigger on Target

= Start
= Stop
= Options

» Active Trigger

Trigger on Target

Start

Stop

The Trigger on Target field is a drop-down menu displaying a list of target names
and index numbers attached to the Data Monitor GUI. Select the target on which
you want to configure triggering.

These are the settings for starting the trigger. The trigger is fired and data collection
begins when the trigger conditions you specified in the Start condition panel are
met.

In the Start condition panel, the following triggering parameters are set using the
"..." button accompanying each parameter. The options are:

= Source

Select the signal to be the initial trigger source.
= Condition

Select the condition to trigger the action.
= Action

Select the action to be taken when the triggering condition specified above has
been met.

Triggering is disabled when the trigger conditions you specified in the Stop
condition panel are met. Note that data collection continues even after triggering
is disabled, unless trigger Rearm is selected.

The following trigger stop parameters can be set using the "..." button
accompanying each parameter:

91

Wind River Workbench Data Monitor

User's Guide, 3.0

Options

Source

Select the signal to be the terminating trigger source. It may be different from
the Source signal in the Start panel.

Condition
Select the condition to disable triggering.
Action

Select the action to be taken when the stop condition specified above has been
met.

These are optional actions you can specify to be taken after the trigger is stopped.

Take a snapshot from start to end trigger

Causes a snapshot to be taken of the signal and events that were collected
between the start and stop conditions.

Disable trigger on close

Causes the trigger to become disarmed when the dialog box is closed. Data
collection resumes as it was before the trigger was armed.

Active Trigger

This field displays the status of the Data Monitor trigger.

Buttons

The following buttons cause the trigger, with its options set, to take the indicated
actions:

92

Apply

Causes the currently selected parameters to take effect, but leaves the dialog
box open for any additional changes.

Revert

Reverts to the parameter settings in effect before the last Apply action was
taken.

Close

Closes the dialog box.

5.3 Setting a Trigger

5 Triggering

5.3 Setting a Trigger

This section walks you though the process of setting an example trigger. We will
use the Data Monitor demonstration program introduced in 2. Getting Started for
this example. The example output from this demonstration is shown and

annotated below. Refer to it in the text that follows.

File Plot Wiew Window Help

StethoScope - Plot 1 M [=]E3

B E =% v B

=] [JRE

E|

Signals Bar

Signals Tree
= %Live
+-[% 10.30.68.144:0
= g\Snapshot 1
+- [4 DifferertTypes
+- 14 OFfset
+- 0 € Pointer
Sirie:
Cosine.
SinezT
MW Pos
W PosDesired
el
Acc
PosGain
VelGain
+-0 4 sinGroup
+-] 4 Event

= DQ Snapshat 2

OOoOoOomEOoOoO

I

B dsignals

=k

0.5

0.8

42.5

BEE

475

HuswwmE
50

AN

52/ ;l

0.5

0.8

&0

W Fos
0,999
1.044
0,9949
0.9651

Tirnestam)
46.2
47.2
45.2

1
1
1
49.2 1

B PosDesired

-

Signal Marne

| alue

W Fos
W FosDesired

0.8823

[%=44.448161, y=-0.604972

The Chain of Events

e

®

In the GUI display above you can follow the numbered steps as Data Monitor
responds to the trigger parameters set up in the example dialog box shown in
Triggering Dialog Box - Windows Host, p.86.

93

Wind River Workbench Data Monitor
User's Guide, 3.0

1. The trigger fires when the value of PosDesired crosses 0.5 on a positive slope.
2. The trigger is disabled as soon as PosDesired starts on a negative slope.

3. Asnapshot of the collected data is created and listed in the Signals Tree, as well
as being displayed in the graphing area.

4. Data Monitor continues to rearm the trigger and create more snapshots.

Trying it Yourself

You can set up and run the same sample trigger shown in Triggering Dialog Box -
Windows Host, p.86 by following these steps:

Step 1: Start the demonstration program (see 2.5 Testing Your Installation, p.30).

Step 2: Connect the Data Monitor GUI to the scope index of the demo program.

Step 3: For viewing, select the Pos and PosDesired signals from the Signals Bar.

Step 4: Open the Triggering dialog box and follow the steps below for Windows or UNIX host:

Windows Host

a. In the Target panel, choose the target from the Name drop-down menu.
b. In the Start Condition panel, choose Trigger on a signal for Source.

c. Select PosDesired for the Signal.

d. SetLevel to -0.5.

e. Select Positive for Slope.

f. In the Stop Condition panel, choose Trigger on a signal for Source.

g. Set PosDesired for the Signal (same as for the Start Condition).

h. Set Level to 0.

-

Select Negative for Slope.

Finally, there are optional actions to take after the trigger is stopped:
j. Select Take Snapshot.
k. Select Re-arm Trigger.

For the trigger to take effect, click Arm Trigger.

94

Step 5:

Step 6:

5 Triggering
5.3 Setting a Trigger

UNIX Host
Choose the target from the Trigger on Target drop-down menu.

b. In the Start panel, select a Source signal using the "..." button; the Pos
signal is used in this example.

c. For Condition, select Crosses 0.5 with Positive slope (using the "..."
button, and entering the value 0.5).

d. For Action, select None.
e. In the Stop panel, select Pos again for Source.
f. For Condition, select Crosses 0.9 with Negative slope (using the "..."
button, and entering the value 0.9).
g. For Action, select Rearm.
Finally, there are optional actions to take after the trigger is stopped:
h. Select Take a snapshot from start to end trigger.
i. Select Disable trigger on close.

The trigger you set using these commands causes periodic collection to be
temporarily disabled until the Start Condition is met.

NOTE: No signals are plotted during this wait period in either host GUL

With dialog box open, wait for the Start Condition to be met and data to be displayed.

Signal plotting resumes when the value of the PosDesired signal crosses 0.5 with
a positive slope (Step 1 in the figure above). Data collection and plotting will
continue for about 8 seconds before the Stop Condition is satisfied (Step 2). At the
end of this period, a snapshot of the data collected during those eight seconds is
taken and added to the Signals Tree in the Signals Bar under the name of the
target (Step 3). Check the other signal names in the snapshot to view their data
during this time period.

If Re-arm Trigger was selected in a Windows host (or Rearm was selected for
Action in the Stop panel in a UNIX host), the trigger is automatically rearmed and
this causes the above scenario be repeated forever (Step 4).

Click Disable Trigger

This causes Data Monitor stop triggering at any time. You can do the same thing
by just closing the dialog box.

95

Wind River Workbench Data Monitor
User's Guide, 3.0

Step 7: Choose some signals from the live data view again

The selected signals have become the snapshot signals since they began appearing,
and you should observe data being plotted as usual.

96

Derived Signals

6.1 Introduction 97

6.2 Creating Derived Signals 98

6.1 Introduction

A Derived Signal is a signal whose value is computed by mathematical operations
on other signals. Derived signals are calculated by Wind River Data Monitor on
the host, from live signals. They are not sampled directly from your real-time
system. The derived signals facility provides a simple means of scaling and
offsetting signals, plotting differences and ratios of signals, and so forth.

The following are some examples of derived signals.

PosError = PosDesired - Pos
Posl10 = Pos * 10
Posl10Plus3 = Posl0 + 3

Tan = Sin / Cos
LogError = logl0 PosError

This chapter describes derived signals in detail, including how they are created
and how to troubleshoot them.

97

Wind River Workbench Data Monitor
User's Guide, 3.0

6.2 Creating Derived Signals

You must create a derived signal using the Derived Signals dialog box before it
will appear in any of the Data Monitor data-display windows. To create a derived
signal, follow these steps.

Step 1: Open the Derived Signals dialog box.

Do this using the File > Derived Signals menu command (or the Derived Signals
toolbar button - see Main Toolbar, p.40).

Derived Signals
Mame | Target |

Cancel

Apply

Lreate...

Jugdid,

Delete

Step 2: In the Derived Signals dialog box, click Create.

The first in a series of Derived Signal Wizard dialog boxes opens.

Derived Signal Wizard x|

Welcome to the Derived Signal
Wizard

Chooze a name and a type for the derived signal,
and chooze which target to attach it to.

Mame

Imy_signal

Type

I 4-byte integer

=l
Target
=l

[10.3068144:0Live

< Back I Mest » I Cancel

98

6 Derived Signals
6.2 Creating Derived Signals

Step 3: Enter a name for the new signal in the Name text box.

Make sure the name is unique and preferably descriptive.

Step 4: Use the Type drop-down menu to select a type for the derived signal.

For instance, a 4-byte integer, char, and so forth.

Step 5: Use the Target drop-down menu to select one of your connected targets.

NOTE: The dialog box fields and instructions for creating a derived signal diverge
between Windows and UNIX host requirements at this point. They converge again
at Step 6.

If you are running in a Windows host, do the following steps:

1. Click Next to open the next Derived Signal Wizard dialog box.

Derived Signal Wizard x|

Derived Signal Wizard
Select script

Fick a script from the list

=

Add bwo signals together. ;I

A+ B

I

< Back I Mest » I Cancel |

2. Use the drop-down menu in the Pick a script from the list field to select a
mathematical operation to use in creating your derived signal (you can see a
list of the script items in Table 6-1).

3. Click Next to open the next Derived Signal Wizard dialog box.

99

Wind River Workbench Data Monitor
User's Guide, 3.0

Derived Signal Wizard

Derived Signal Wizard
Select Signals

Signal 1 of 2 A\>

03 Select Signal I

Select a signal name, or type a constant

Derived Signal Wizard x|

Derived Signal Wizard
4+ B Select Signalz

Signal 2 of 2: ls

PosDesired Select Signal I

Select a signal name, or type a constant

Add bwo signals t

Add bwo signals together. ;I
A+ B
< Back Mest » | Cancel |

4. Use this dialog box to select signal(s) to apply to the script you previously
selected. If the script you selected requires two or more signals (as in this
example), this dialog box asks you to enter the first signal, and the dialog boxes
following ask for the second and subsequent signals until they have all been

selected. Note that it prompts you for which signal you are about to enter
(circled).

5. Click Next to open the final Derived Signal Wizard dialog box.

100

6 Derived Signals
6.2 Creating Derived Signals

Derived Signal Wizard

Drerived Signal Wizard iz now ready to create the signal.

my_signal

4-byte integer

" o

< Back I Finizh I Cancel |

6. In this dialog box you can inspect the completed derived signal.

If you are running in a UNIX host, then do these steps:

1. Click Next to open the next Derived Signal Wizard dialog box.

Create or use an existing Derived Signal

Choose a type of derived signal to create:

+* |Stock derived signal|

Choose from a list of pre-created scripts
for the derived signal.

~ Load a saved derived signal

Load a previously saved derived signal
script from a file.

<Back | Next > | Einish Cancel |
L)

101

Wind River Workbench Data Monitor
User's Guide, 3.0

In this dialog box, you can choose whether you want to use a pre-defined
(stock) script to create your derived signal, or load one of your own previously
derived (saved) signal scripts from a file.

2. Choose Stock derived signal for this exercise.

3. Click Next to open the next Derived Signal Wizard dialog box.

Created a Derived Signal

Create a derived signal from stock functions

Signal A: vxKernel:0x6016bf30/Sine o
Signal B: vxKernel:0x6016bf30/Sine2T _"'l

Constant:
Operation: * |
A*B

<Back | Next > | FEinish | Cancel |
=

L

4. Select one or more signals (as appropriate) to apply to the script you selected
in the previous step.

5. Click Next to open the next Derived Signal Wizard dialog box.

102

6 Derived Signals
6.2 Creating Derived Signals

Load Derived Signal from a file

Script file to load

ISine—SineZT.scrI

Browse...l
<Back | Next > | Einish | Cancel |
)

L

6. In this dialog box, specify the pathname and file containing the saved script
you want to use.

7. Click Next to open the final Derived Signal Wizard dialog box.

Derived Signal Output

Derived Signal Wizard is now ready to create the
signal

Mixer

4 byte integer

function CalcDerived(sig)
return Signal("vxKernel:0x6016bf30/Sine") *
Signal("vxKernel:0x6016bf30/Sine2T")

end

<Back | Next > | Einish | Cancel |
=

L

8. In this dialog box you can inspect the completed derived signal.

103

Step 6:

Wind River Workbench Data Monitor
User's Guide, 3.0

In either a Windows or UNIX host, click Finish to create and save the derived signal.

You can also click Back to make any desired changes before finishing, or click
Cancel to exit without saving the new signal

When you click Finish, you will arrive back at the Derived Signals dialog box,
which displays the newly created Derived Signal in its list. Click Apply to save
your new signal if you want the dialog box to remain open to create more
Derived Signals, or Click OK to save the new signal and exit the dialog box. Or
you can click Cancel to close the dialog box without saving the newly created
Derived Signal.

When computing derived-signal values, Data Monitor truncates any infinite
values to a value of +/-10,000,000.0. This prevents numeric problems with
recursively defined signals.

You can modify a derived signal in a UNIX host using the Edit button and change
it by hand; however, it is recommended that you delete the existing signal and re-
enter your changed values. In a Windows host, you cannot edit an existing derived
signal; you can only delete it and create another one with your changed values.

To delete a derived signal, select the signal from the list in the Derived Signals
dialog box, then click Delete (or use the Delete key on the keyboard).

Mathematical Operations

Table 6-1

Mathematical operations you can use to create derived signals are shown in
Table 6-1.

Derived Signal Operations

Operation Meaning

abs abs(A)

add Add two signals together (A + B)

arccos if abs(A)<=1 then arccos(A), else arccos(sign(A)), result in degrees
arcsin if abs(A)<=1 then arcsin(A), else arcsin(sign(A)), result in degrees
arctan atan(A), result in degrees

arctan2 if (B==0) then 10000000*sign(A), else atan2(A,B)

avg Average signal value

104

6 Derived Signals
6.2 Creating Derived Signals

Table 6-1 Derived Signal Operations (cont’d)

Operation Meaning

cos cos(A), where A is in degrees

divide if (B==0) then 10000000*sign(A), else A/B
exp exp(A)

exp10 exp10

filterl A * previous_filterl + (1-A)*B, where initial_filterl = B
hypot sqrt(A*A + B*B)

In In(A)

In10 In10(A)

mult Mulitply two signals together (A * B)
saturate if (A>B) then B, if (A<-B) then -B, else A
sin sin(A), where A is in degrees

sqrt sqrt(abs(A))

sub Subtract two signals (A - B)

tan tan(A), where A is in degrees

add abs(A)

Troubleshooting Derived Signals

When a Derived Signal is defined, it should appear in the Signals Tree of every
Plot, Dump Plot, and Monitor window.

There are two reasons derived signals may not appear:

» The derived signal has been toggled off in the Signal Manager.

» The signal will appear only when all of its operands are defined. If any of the
operand signals do not appear in the buffer being viewed (perhaps caused by
a typing mistake), then the derived signal will not be available in that buffer.

105

Wind River Workbench Data Monitor
User's Guide, 3.0

106

The Plot Window

7.1 Introduction 107

7.2 Plot Window Tour 108

7.3 Signal Properties Dialog Box 123

7.4 Axis Properties Dialog Box (Windows Hosts Only) 128
7.5 Displaying Events 130

7.6 Setting New Plot Window Preferences 134

7.1 Introduction

The Data Monitor Plot window graphically displays real-time signals plotted over
time. Each signal appears on the plot grid in a different color, with a legend
showing the color each signal is plotted with. This chapter describes the Plot
window in all its detail, and shows you how to use its features.

Before using a Plot window, it may help to understand how and when data is
collected from the target—please refer to Notes and Hints, p.258.

107

Wind River Workbench Data Monitor
User's Guide, 3.0

7.2 Plot Window Tour

The Plot window, an example of which is shown here in both a Windows and a
UNIX host, opens when you first start Data Monitor. Open additional Plot
windows using the File > Plots menu command (or the Plot toolbar button - see
Main Toolbar, p.40).

Windows Host Plot button
StethoScope - Plot 1
File Plot Wiew Window Help |
A I =G = R = S E R RO =]
i Sar il 25 127.5 120 132.5 135 137.5 :I
nals Tree Uni| |~
z Live
=M% 10.30.68.144:0
-] € Different...
-] 9 Offset a
-0 4 Pointer
Sine wviolks
Cosine wviolks o
Sine2T volts _I
MW Pos mete
W PosDesired mete
el mfs]
----- O s misis| |7
----- O Foscain Mm
----- O welcain Iy
w-O 4 sincroup -
. e Fuank I
K 2|
25 127.5 120 132.5 135 1375
4 rl
Timeskamj B rFos | M PosDesired o Signal Marne Value
4 4
—I 1338 -1.045 -1 _I W Fos 0,9945
1348 -1.052 1 W FosDesired 1
g 135.5 -0.2179 1 =
| 136.8 1,135 1
137.5 1.027 1
= [135.8 0.9945 1 i
|Ready [| x=125.856905, y=0.438202

108

7 The Plot Window
7.2 Plot Window Tour

UNIX Host Plot button
[l StethoScope 7.10: Plot: 1 ” =1
File View Signal Installation ﬂelp—[
E)lull R EHEEREE
[L9[4) 1.000 2000 3.000 4000 5.000
Signals =l=
Iil—El ElLive
E;%I-El ¥ vxsimQ @ svl-st-linuxdev =
= @ viKernel:0x6016bf3(;
Square
M Sine L
[Cosine |Sii
Sine2T =
Sine3T |
H Pos |
T |
Active Signals IErnperties I
© I §
Color |Signal |Snapshnl =
] vxKernel:0x6016bf: Live
| vxKernel:0x6016bf: Live =3
5 i
=] |] |
A Time | @ vxKernel:0x6016bf30/Sine FF = Signal Name |CurrentVa|ue |
482,08 .70 | B vxKemel:0x6016bf30/Si 0.90
483.58 -0.98 B vxKemel:0x6016bf30/Cc 0.44
484.58 -0.96
485.58 0.71 -
| -
lE [x=6.465,y=1.294 4

Selecting Signals

To select signals for display, follow these steps:

1.

If you do not already have a Signals Bar open in your Plot window, open one
using the View > Signals Bar menu command (or the Signals Bar button).
Make sure the Signals tab is selected so that a Signals Tree is displayed.

Use the Signals Tree to select which signals you want to display in the graph.
The signals in this tree were installed using the Signal Manager (see 4. Using

109

Popup Menu

Wind River Workbench Data Monitor
User's Guide, 3.0

the Signal Manager). Selecting a signal from the Signals Tree causes the
following actions:

— The signal data is plotted in the window using the next available plot
color. You can select a different color using the Signal Properties dialog
box (see 7.3 Signal Properties Dialog Box, p.123), or the Preferences dialog
box (see 2.Colors View, p.56).

— The Legend tab view is updated to include the selected signal. The Legend
shows you what color is being used for each selected signal. You can also
use the Legend to select and clear signals. The Legend tab view is
described in Legend Tab View (Windows Hosts Only), p.117.

Most of the remaining functionality in the Plot window is provided through the
toolbars and menus. These items are described in detail in the following sections:

» 3.3 File Menu Item, p.43
» 3.2 Toolbars, p.40
= 3.5 Pop-up Menus, p.71

When you right-click anywhere in the plot area, the On-grid pop-up menu opens
with several options pertaining specifically to the plot area. These additional
options are described in detail in 3.5 Pop-up Menus, p.71.

Screen Operations

Toolbar

The screen operations outlined for the Plot window also apply to the Plot XY
window. These operations are described in 3. Data Monitor Features, and include:

» Zooming, p.76

= Markers, p.76

» Annotations, p.77

» Panning, p.77

» On-grid Measurements, p.78

In a default Plot window, the first two toolbars are identical to the toolbars shown
in Main Toolbar, p.40 and Plots Toolbar, p.41, with the menu items described here

110

Menu Bar

7 The Plot Window
7.2 Plot Window Tour

also. But the right-most toolbar is specific to the Plot window. All the toolbars are
dockable (as ell as the menu bar), which means you can move them to other
locations, on or off the window, simply by dragging them. Each of the toolbars can
be independently displayed or hidden using the View menu item (see View Menu
Item, p.113).

This Plot window toolbar is a subset of the one described in detail in Plot Window
Toolbar, p.41.

Signals Mini Axis) Always
Autofit
Bar Dump Properties utolt on Top

T T R
| BaE] EE L e
T T T

Take Legend Mini Zoom Goto Live
Snapshot Window Monitor to Fit Data

Strip Chart

Some of the Menu Bar items are discussed in detail in 3.2 Toolbars, p.40, where it is
mentioned that the File, Plot (in Windows hosts only) and Help menu items (as
well as the Window menu item in a Windows host) are consistently the same
across all data-display windows. The Plot (in Windows hosts only) and View
menu items, however, contain some commands that are unique to the Plot and

View windows. These menu items are described in detail in the following section.

Plot Menu Item (Windows Hosts Only)

In a Windows host, the Plot menu item contains commands for working with the
data displayed in the Plot window.

“ File | plot Wiew ‘Window Help
Print

Prink Setup...

Print Preview

Take Snapshat
“t Strip Chart
Delete Markers

Copy,
Faste

Select Al

111

Wind River Workbench Data Monitor
User's Guide, 3.0

In a Windows host only, the Plot menu commands for the Plot window are:
= Print

Prints the signal traces in the data-display window. It opens a Print dialog box
where you can configure your printer options.

= Print Setup
Allows you to select printer parameters and characteristics before printing.

= Print Preview

Lets you see, on a print mock-up screen, what the printed page will look like
before actually printing it.

= Take Snapshot

Saves a copy of all the active signals (not just the selected signals) for all
connected targets. For more information, see 11.2 Utilizing Snapshots, p.185.

= Strip Chart

Changes the display so that it presents a continuous, scrolling plot (instead of
repainting the plot when it fills every 10 seconds). Any snapshots you may be
displaying on the grid when you select Strip Chart become unselected; that is,
snapshots do not appear on the grid while Strip Chart is selected. This
command is only available in the Plot window. For more information, see Strip
Chart, p.122.

. Delete Markers

Deletes all markers, annotations, and measures from the grid area. For more
information, see Markers, p.76, Annotations, p.77, and On-grid Measurements,
p-78 respectively.

= Copy

Copies the selected content to the clipboard, and deselects the selected data.
Note that this option is greyed out and unavailable unless you have some data
in the plot area selected.

= Paste

Copy the contents of the clipboard to the window you are in, at the insertion
point. Note that this options is greyed out and unavailable until you have
copied some data to the clipboard.

112

7 The Plot Window
7.2 Plot Window Tour

= Select All

Selects and highlights the entire plotted area up to the instant you selected the
option, enabling you to copy it to the clipboard.

View Menu Iltem

The View menu item, in both a Windows and a UNIX host, contains commands
for displaying toolbars and auxiliary views in the Plot window, as well as some
Plot window-specific commands.

Windows Host UNIX Host
“ e) e Wi 6 File View | Signal Installation
'T IMain Toolbar —
'T Flots Toolbar " TooIBar
[Plot window Toolbar * Status Bar
,’Z SERB Y |:j Signal Tree
v Tookar Capti
SRl il * Plot Window ToolBar
'E Signals Bar +b StrinChart
E Mini Durmp LRSS
|EQ) mini Maritor Take Snapshot...
L’: Axis Properties B Legend
A Auko Fit E MiniDump
O zoom ta Fir . .
Prewvious Zoom % MIHIMOHIIOT
PP Goto Live Data O Zoom to Fit
A, AutoFit

The following menu options are available in both Windows and UNIX hosts:

= Plot Window Toolbar

Controls whether the toolbar used within a specific data-display window is
visible. The buttons represent items from the Plot and View menus for the
specified data-display window. For more information, see Toolbar, p.110.

= Status Bar

Controls whether the status line along the bottom of the window is visible. For
more information, see 3.7 Status Bar, p.78.

113

Wind River Workbench Data Monitor
User's Guide, 3.0

Signals Bar

Controls whether a Signals Bar panel appears in the window. The Signals Bar
includes tabs for Signals, Legends, and Properties. For more information, see
Signals Bar, p.116.

Mini Dump

Creates a Mini Dump Plot window within the Plot window. This is simply a
smaller version of the Dump Plot window. It lets you see a running history of
signal values. This command is only available in the Plot window. For more
information, see Mini-Dump Window, p.28.

Mini Monitor

Creates a Mini Monitor window within the window. This is simply a smaller
version of the Monitor window. It lets you peek at, and poke, data on the
target. This command is only available in the Plot window. For more
information, see Mini-Monitor Window, p.28.

Auto Fit

Causes the plotting area to be scaled dynamically and automatically to the
extremes of the data in the Y direction being displayed in the window. It thus
allows all data points to appear on the plot. It toggles on or off, but when on,
it essentially has the effect of using the Zoom to Fit button continuously. This
command is only available in the Plot and Plot XY windows.

Zoom to Fit

Changes the scales and offsets so that all the signals fit and take up the entire
Plot window. This option is only available in the Plot and Plot XY windows.
See also Previous Zoom.

Additional options for Windows hosts only are:

114

Main Toolbar

Controls whether the toolbar representing a selection of items from the File
menu is displayed on Data Monitor’s toolbar. For more information, see
3.2 Toolbars, p.40.

Plots Toolbar

Controls whether the toolbar representing a selection of items from the
File > Plot menu command is displayed on Data Monitor’s toolbar. For more
information, see 3.2 Toolbars, p.40.

7 The Plot Window
7.2 Plot Window Tour

Toolbar Captions

Controls whether the names of the panels (Signals Bar, Mini-Dump, and
Mini-Monitor) are displayed in the Plot window above their respective
invocations.

Axis Properties

Allows you to set parameters that control the scaling and placement of both
grid lines and their plot values on the X and Y axis of a Plot or Plot XY plotting
area. For more information, see 7.4 Axis Properties Dialog Box (Windows Hosts
Only), p.128.

Previous Zoom

Reverses the action of the last zoom action. Note that when you use the
Zoom to Fit command, the history of all previous zoom actions is lost,
therefore this command has no effect immediately after a Zoom to Fit
command. Also, if no previous zoom has been set, this item is greyed out and

unavailable. This command is only available in the Plot and Plot XY windows.

Goto Live Data (Windows only)

Returns to plotting live data when a snapshot is selected in the Signals Bar.

Additional options for UNIX hosts only are:

ToolBar

Controls whether the toolbar representing a selection of items from the File
menu is displayed on Data Monitor’s toolbar. For more information, see
3.2 Toolbars, p.40.

Strip Chart

Controls whether the Strip Chart representing a selection of items from the
File > Plot menu command is displayed on Data Monitor’s toolbar. For more
information, see Strip Chart, p.122.

Take Snapshot

Saves a copy of all the active signals. For more information, see 11.2 Utilizing
Snapshots, p.185.

Legend

Controls whether the Legend window is displayed. For more information, see
Legend Window (UNIX Hosts Only), p.27.

115

Signals Bar

Wind River Workbench Data Monitor
User's Guide, 3.0

The Signals Bar is a sub-window in the Data Monitor GUI that allows you to view
and configure information that controls what is plotted in the graph area.

Signals Bar E|

Signals Tree | Units
E|' Live
2-B% 10.30.65.144:0
-0 4 DifferentTypes
- @ Offset
-0 4 Pointer

----- O sine volts : _cli H ;
_____ T e Right-click a signal in

_____ O srnezt " the Signals Tree to display
----- Fm PDSM:? the pop-up menu
----- [Postesired meters

----- O vel Properties
----- D Acc misls
----- O roscain Mim
----- O velcain Mjmis
w-O 4 sincroup

-0 4 Evert

Ll | o

®3signals | [£] Legend | E&'Prop

To open a Signals Bar if one is not already displayed, use the View > Signals Bar
menu command (or the Signals Bar toolbar button - see Plot Window Toolbar, p.41).

The Signals Bar contains the following tab views:

» Signals Tab View
* Legend Tab View (Windows Hosts Only)
» Properties Tab View

Signals Tab View

The Signal Tree in the Signals tab view (see the figure above) displays a tree
structure containing the names of all the signals available to be plotted.

The installed signals are shown in an expandable tree structure containing signals
that have been installed by the Signal Manager (see 4. Using the Signal Manager).
Traces on the graph are color-coded to the signals selected in the Signals Tree.

116

7 The Plot Window
7.2 Plot Window Tour

The Signals Tree is displayed by default when you open a Plot window, but it may
be re-displayed at any time by opening the Signals tab view with the tab at the
bottom of the sub-window.

The Signals Tree allows you to easily locate any signal that has been installed and
add it to the graph of signal traces. Each node of the tree, and each signal, is a check
box. Selecting the check box for an individual signal adds that signal to the graph,
or, conversely, clearing the check box removes that signal from the graph. If you
select a node check box, all the signal check boxes belonging to that node (but not
including nodes below it) are selected at once and their signals are added to the
graph. Conversely, clearing a node check box removes all signals below that node
from the graph with the single click.

If a node check box is selected, but has a grey fill, it indicates that some, but not all,
of the signals belonging to that node are selected and displayed on the graph. You
may have to scroll down to see which ones are selected.

The Signals Tree is expanded or collapsed using the icon to the left of each node
check box as follows:

no,n

" +" = collapsed; select to expand down to the next node(s).

"on
L] -

= expanded; select to collapse up to this node.

The Units column in the Signals tab view shows the physical measurement units
of each signal.

When you right-click a signal in the Signals tab view, a pop-up menu opens
containing a single menu item as shown in the figure above.

Legend Tab View (Windows Hosts Only)

In a Windows host, the Legend tab view shows you what color is assigned to each
signal on the plot. You can also use it to select which signals to plot.

117

Wind River Workbench Data Monitor
User's Guide, 3.0

E|
Right-click a
I Signal [scale | Snap... [Target L si gnal in the
M Fos 1.000000 L \30.68,144:0 9
B FosDesired —T0000NM s 10 AN AR 1dda0 Legend to
O velgasin 1.0000 1oggl Signal display the
[Poscain 1.00001 Remeve Signal | _—— pop-up menu
[sinezT 1.oooo Remove All Unselected]
O sine 1.00000 Pemove All Signals
Properties
J] [2]

®signals | (2] Legend | E&'Rrop

NOTE: Ina UNIX host, the Legend appears in a separate window, rather than a tab
view. For details, see Legend Window (UNIX Hosts Only), p.27.

The columns in the Legend tab view display current option settings for each
Signal, including;:

= Scale

The scale factor applied to second (Y) component signal values in relation to
the first (X) component signal values.

= Snapshot
Whether the data is live, or from a snapshot.
= Target
The name and scope index of the target you are connected to.

When you right-click a signal in the Legend tab view a pop-up menu opens with
options that are described in Legend, p.74.

Properties Tab View

You can view and change the physical appearance properties for the Plot window
you are in by clicking the Properties tab in the Signals Bar (but not the signals
themselves - for that see 7.3 Signal Properties Dialog Box, p.123).

118

7 The Plot Window
7.2 Plot Window Tour

Windows Host UNIX Host
Signals Bar = Bar K
B Co-ordinates -
¥ scale 20.000000 Prnperty Value
 offsst 1060.000000 2 Plot Properties
' scale 3.000000 Y Scale E]
' offset 1.500000
e Y Offset 15
Dizplay -
Dizplay accuracy 4 Dlspla‘f Accuracy 4
Resolution 1 Min Grid Spacing 0.25
Grid spacing 100 Resolution 1
Snap measures to sign... | True "
Maximum snap distance 20 B Dump Prupertles
Background image Resolution (secs) 1
Mini-dump window Histury Limit 500
Dump resolution 1.000000 Display A 4
Dump history limit 1000 1Sp’ay Accuracy
Mini-monitor window B Monitor Properties
Muonitor rezalution 1.000000 [Resolution (secs) 1
Allows writeback. False LI WriteBack True
| | Display Accuracy 4
™ Saignals | (=] Legend | &5Pron erteBack Warnings [True
Display Int as Hex |False
Display Char as Hex [True

‘Active Signals | Properties I

Physical appearance properties options in both Windows and UNIX hosts are:

Y Scale

Controls the height of the plot grid in units. For example, when first started, Y
Range defaults to 3 and the plot displays the Y-axis from 1.5 to -1.5.

Y Offset

Controls the unit value for the top coordinate on the plot. When first started,
it defaults to 1.5, and the default Y value of 1.5 is the top value. This value
changes automatically if you use the Zoom to Fit command.

Display Accuracy

Controls the number of significant digits displayed in the grid line markers.
Set this property to the number of places you want displayed to the right of the
decimal point. Enter a value between 0 (for integer numbers) and 6. The
default is 4.

119

Wind River Workbench Data Monitor
User's Guide, 3.0

= Resolution

Permits plotting of only a subset of the collected data points. This is useful for
increasing rendering speed. A divisor value of n causes only every nth point
to be plotted. Thus, if 1000 points are being collected and the Resolution is 5,
then 200 points are displayed. Of course, you may not want to reduce
resolution if your data can contain glitches or high-frequency phenomena. The
default is 1.

= Grid Spacing

Specifies the minimum distance (in pixels) allowed between the grid lines.
Increasing this number decreases the number of grid lines, decreasing this
number increases the number of grid lines. Enter a value between 5 and 500.
The default is 100.

= Dump resolution

Controls how often to refresh the values in the Mini Dump window, in
seconds. The default is 1.000000.

* Dump history limit

Controls how many lines of historical data to maintain in the Mini Dump
window (0 = display all). The default is 1000.

= Monitor resolution

Controls how often to refresh the values in the Mini Monitor window. The
default is 1.000000.

= Allow writeback

Select True to create a writeback column for writing modified signal values
back out to the target. The default is False.

The procedure for using writeback in the Mini-Monitor window is exactly the
same as for the Monitor window. For detailed instructions, see 10.3 Writing
Data to the Target, p.181.

Additional options for Windows hosts only are:
= XScale

Controls the width of the plot grid in units. For example, when first started, X
Range defaults to 3 and the plot displays the X-axis from 1.5 to -1.5.

120

7 The Plot Window
7.2 Plot Window Tour

X Offset

Controls the unit value for the left-most coordinate on the plot. When first
started, it defaults to 1.5, and the default X value of 1.5 is on the right side. This
value changes automatically if you use the Zoom to Fit command.

Snap measures to signals

Controls whether or not measures are snapped to the signal lines on the grid.
Measures are described in On-grid Measurements, p.78. The default is True.

Maximum snap distance

Controls how far away (in pixels) you can start a measure and still have it snap
to the plot line. Measures are described in On-grid Measurements, p.78. The
default is 20.

Background image

Allows you to specify special images to be displayed in the graphing area, with
the graph itself superimposed on top. The default is None.

Additional options for UNIX hosts only are:

Display Accuracy (Dump and Monitor)

Controls the number of significant digits displayed in the grid line markers.
Set this property to the number of places you want displayed to the right of the
decimal point. Enter a value between 0 and 6. The default is 4.

Resolution

Permits plotting of only a subset of the collected data points. This is useful for
increasing rendering speed. A divisor value of n causes only every nth point
to be plotted. Thus, if 1000 points are being collected and the Resolution is 5,
then 200 points are displayed. Of course, you may not want to reduce
resolution if your data can contain glitches or high-frequency phenomena. The
defaultis 1.

WriteBack

Select True to create a writeback column where you can write modified signal
values back out to the target. The default is True.

The procedure for using writeback in the Mini-Monitor window is exactly the
same as for the Monitor window. For detailed instructions, see 10.3 Writing
Data to the Target, p.181.

121

Legend Window

Strip Chart

Wind River Workbench Data Monitor
User's Guide, 3.0

= WriteBack Warnings

Controls whether or not a warning is displayed before each writeback attempt.
The default is True.

= Display Int as Hex

Controls whether or not to display integer values in hexadecimal. The default
is True.

= Display Char as Hex

Controls whether or not to display char variables in hexadecimal. The default
is False.

Any changes you make in this window have no effect on any other open Plot
windows.

To change the defaults used when new Plot windows are created, use the
File > Preferences menu command (or the Preferences button), described in
3.3.12 Preferences, p.53.

(UNIX Hosts Only)

In a UNIX host, the Legend window shows you what color is being used for each
selected signal. You can also use the Legend window to select and clear signals.
The Legend window performs the same function in a UNIX host GUI that the
Legend tab view in the Signals Bar performs in a Windows host GUI.

For detailed information, see Legend Window (UNIX Hosts Only), p.27.

This feature, turned on or off using the Plot > Strip Chart menu command (or the
Strip Chart toolbar button; see Plot Window Toolbar, p.41), changes the behavior of
the graph area to present a continuously scrolling plot (instead of repainting the
plot every 10 seconds). The overall appearance of the Plot window does not
change in any way. Any snapshots you may be displaying on the grid when you
select Strip Chart become unselected; snapshots remain unavailable while

Strip Chart is selected.

122

7 The Plot Window
7.3 Signal Properties Dialog Box

7.3 Signal Properties Dialog Box

The physical characteristics of the line currently being used to plot each signal in
this window can be configured using the Signal Properties dialog box.

Windows Host

x
= General
Signal Mame PosDesired
Signal Type Sampled Signal cancel |
[rata Type float
= Display
Color I riooao
Zero Level Hold False
Show &3 Bits False
Show az Event False
Marker Type Mo Markers
Has Ruler False
Scale 1.000000
= Event Display
Diizplay Mame | Falze
Dizplay Time Stamp | Falze
|

UNIX Host

Signal Name: vxKernel:0x6016bf30/Cosine e Cnlnrl

Type: Sampled Signal (float)
Marker Type: Clear All Datal
No Markers |

_| Zero Level Hold

_| Show as an Event

Ewvent Properties
—| Display Name
_| Display Time Stamp

Ok | Canl:ell

L J

The dialog box can be opened in any of the following ways:

= Right-click a signal in the Signals tab view.

123

Wind River Workbench Data Monitor
User's Guide, 3.0

= Right-click a signal in the Legend tab view.

= Right-click a signal trace in the data-display area.

In the pop-up menu select Properties. The Signal Properties dialog box opens.
Signal line properties options in both Windows and UNIX hosts are:

= Signal Name and Type

The first two lines are the name of the signal and its type (as shown in the
Signal Tree).

= Data Type

This is the C++ data type of this signal (program variable). For a list of
allowable types, see Table 16-1.

= Color

Clicking on the current value opens a small color palette with a basic color
selection from which to choose.

HEEO.

EECCO

ONEEN

OEmEC
Standardlcustoml Cther...

Colars:

Cancel |

dard Custom |

s —IDK

Current

Hue: I _I; Red: IU _I;
Sat: |255 _,::' Green: |D _I::'
Lum: |128 _|:;' Elue: |255 _|::'

Current

If you would like a color that is not on this small color palette, you can click
Other to open the Colors dialog box where you can select a new color from the

124

7 The Plot Window
7.3 Signal Properties Dialog Box

larger selection in the Standard tab view, or you can create an entirely new
color using the Custom tab view.

NOTE: An alternative method for changing colors of plotted lines on the Plot
window graph is given in the discussion of colors preferences in Colors View,
p-56.

Zero Level Hold

Select True from the drop-down menu to hold the value of the signal until the
next sample arrives. To demonstrate this feature, consider the sampling of a
sine wave at a rate of 100Hz.

0.625

0.6

Data plotted with
Zero Level Hold
turned off

0.55 0.575

25

11,86 11.88 119 1193 1

0.625

0.6

Same data plotted
T with Zero Level Hold
turned on

0.575

0.55

25

11,86 11.88 119 1193 1

In the upper view in this figure, with Zero Level Hold turned off (= False), the
data points are connected as usual with straight lines, even though there is no
information about the actual values between data points. In the lower view,

the same data, but with the Zero Level Hold feature turned on (= True), shows
how the line plotted between the same data points is now a straight horizontal

125

Wind River Workbench Data Monitor
User's Guide, 3.0

line of the same value as the previous data point, until the next data point
comes in, at which time the plot line goes vertical up to that value.

Show as Event

Select True from the drop-down menu to cause samples to be marked with
vertical lines instead of connecting the individual samples with lines. For more
information, see 7.5 Displaying Events, p.130.

Marker Type

This drop-down list allows you to select a different symbol (or marker) to be
plotted for each sample of this signal. The choices are:

- Square—"[O"

- Plus—"4"

- Diamond —"{"

Display Name

If True, then the name of the event is displayed in the plot. The default is False.
Display Time Stamp

If True, then the event time stamp is displayed in the plot. The default is False.

Additional options for Windows hosts only are:

126

Data Type

This is the C++ data type of this signal (program variable). For a list of
allowable types, see Table 16-1.

Show as Bits

Select True from the drop-down menu to cause a signal (program variable)
being plotted to be represented as a sequence of bits, each bit with its off and
on (0 and 1) values indicated. The bits are rendered individually by discrete
horizontal lines distributed up the Y axis from bit position 0 starting at the
bottom.

To show this feature, a Derived Signal, created using a single 8-bit integer, is
incremented through values from 0 to 15 and back to 0 again at the rate of two
increments per second, and then repeated continuously until stopped. The
modified plot is shown here.

7 The Plot Window
7.3 Signal Properties Dialog Box

2.5

Data plotted
with Show as bits
turned off

]

Same data plotted

’—‘ with Show as bits
turned on

The top graph shows the value of the variable with Show as bits turned off (=
False), and the lower graph shows the same data with Show as bits turned on
(= True). You can easily observe the pattern of the individual bits (horizontal
lines) making up the 16-bit integer, showing their 0 and 1 positions with
respect to time.

This feature works equally well with all signal types, but the resulting bit
patterns may be more difficult to decipher depending on the complexity of the
signal.

Has Ruler

This True/False option displays a separate ruler with colored numbers
matching the color of the signal on the left (Y) axis. If you have, say, three
signals with rulers on, there are three separate color-coded rulers on the left
plot boundary. The default is False (= no rulers on).

127

Wind River Workbench Data Monitor
User's Guide, 3.0

= Scale

Each plotted value is scaled (multiplied) by the value you enter. The default is
1.000000.

Additional options for UNIX hosts only are:
= Clear All Data (button)
Resets all the signal properties to Data Monitor default values.

When you have finished changing parameters, select OK to save your changes and
exit the dialog box. Select Cancel to exit the dialog box without saving any changes
you have made.

7.4 Axis Properties Dialog Box (Windows Hosts Only)

In a Windows host, the Axis Properties dialog box is opened with the
View > Axis Properties menu item (or the Axis Properties toolbar icon).

Axis Properties ﬂ
Mame | Scale | Position | Primary I Ok |
x 1.000000 Top+EBottom ‘fes
y 1.000000 Left+Right Mo Cancel |
Ruler 3 0.500000 Left Yes

Add

Editanis x|
Remave

Scale
o 1| e
| 0,500000
Lcell Move Up

Paosition Calar

ILeFt j I:j Mave Dawn

v Primary

it

Using this dialog box you can modify the appearance of the Plot window graphing
area, including X and Y axis text spacing, text colors, and certain other properties.
You can also add new axis markings on any edge, remove existing axis markings
from any edge, or reposition existing axis markings.

128

7 The Plot Window
7.4 Axis Properties Dialog Box (Windows Hosts Only)

In addition to the usual OK and Cancel, this dialog box facilitates the following
actions by means of the following buttons:

Add

This button opens the Edit Axis dialog box, where you can specify parameters
for a new axis label.

Remove

Select any axis label in the Axis Properties dialog box and delete it from the
graph area using this button. Only one axis label at a time can be selected for
removal.

Edit

With an existing axis label selected in the Axis Properties dialog box, selecting
this button opens the Edit Axis dialog box shown above. In this dialog box you
can modify the following characteristics of the axis label:

- Name
Accept the default name, or enter your choice of names by typing over.
— Scale

Scales the marker numbers up or down with respect to the actual plot
boundary values. The number printed is the actual value divided by the
Scale value.

— Position

Determines where the axis label is to be placed, with drop-down menu
values that are combinations of right and left, or top and bottom.

— Color

Selects the color for the text in your axis marker. Colors are selected as
described above in 7.3 Signal Properties Dialog Box, p.123

— Primary

This checkbox, when selected, causes gridlines to be drawn only for this
signal, as well as any other signals for which this check box has been
selected.

Move Up

Selecting a row in the dialog box and clicking this button moves this axis
marker in (closer) toward the graphing area than all the other rows below it in
the same (left/right or top/bottom) axis.

129

Wind River Workbench Data Monitor
User's Guide, 3.0

= Move Down

Selecting a row in the dialog box and clicking this button moves this axis
marker out (farther away) from the graphing area than all the other rows
above it in the same (left/right or top/bottom) axis.

The axis markers you set up with this dialog box will persist, even across Data
Monitor sessions, until you change them again.

7.5 Displaying Events

This section describes how events, collected using the Data Monitor API, are
displayed. Event collection routines include ScopeEventsCollect() (collects an
event identifier and the value of a variable) and ScopeEventsMessage() (collects
a string).

For a target, events appear under the Event tree branch in the Signals Bar. This
tree contains a list of all the events that were thrown. By default, events that collect
a value (from ScopeEventsMessage()) are displayed much like normal signals.
The values collected when a certain event is thrown are treated like a sample and
the samples are joined by lines to make signals. Alternatively, the

Zero Order Hold option can be used to join samples in a step-wise manner (the
last value is held until a new sample appears).

NOTE: Itis a known problem that if you select events and signals to be plotted
simultaneously, the resulting traces displayed over a period of time begin to
diverge, and the plot becomes compromised and lacking integrity. Do not try to
plot these two data types on the same graph.

Events are displayed according to their mode of collection, in three different
categories:

» Events Collected as Signals
» Events Collected as Markers
» Events Collected as Messages

130

7 The Plot Window
7.5 Displaying Events

Events Collected as Signals

This example shows the display of events collected as signals.

Il Bl Flot Wiew Window Help |
- I e = = R = S E 0=

als Tree
Live

% 10.30.68.144:0
=4 DifferentTypes
=[] Offset

H-O4 Pointer

..... O sine

----- O Cosine

..... O SinezT

..... O Fos

----- O FosDesired

..... 0o vel

..... O Acc

----- O PosGan

----- O Welsain

H-O 4 SinGroup

& Event

M Sine-0.1-0.2
M Cosine-0.5-...
~[Q PosChange...

B Signals | E5 Properties < |
ill Timestamp | ill Signal Mame |Value
[Ready Connected to locahost:o |x=29.473600, y=0,292323 4

Events Collected as Markers

Events that collect a value (from ScopeEventsCollect()) can also be displayed as
vertical lines, or markers. A marker appears at the temporal location on the plot
corresponding to the timestamp that was collected with the event. When events

131

Wind River Workbench Data Monitor
User's Guide, 3.0

are displayed as vertical lines, the name of the event (event ID), and the timestamp
can be displayed by choosing options Display Name and Display Timestamp
respectively.

This example shows the display of events collected as a value but displayed as
markers.

% StethoScope - Plot 1 !E[m
File Plot Wiew Window Help |
y BE =Yl @||EEOE | REEEHED AE

1' 2.00 4.00 6.00 £.00 10.00 12.00 14.00
o) —— - - - - - - =
Un|| i~ ;
=M% 10.30.68.144:0
-4 DifferentT...
-1 €y Offset
-4 Pointer
----- W Sine valts
----- O Cosine wolts
----- O Sine2T wolts
----- O Pos mete
----- O PosDesied mete
----- O vl mis oo -
----- I mds
----- O PosGain M/m
----- O welGain N ERREEE ERREEE
m-O 4 SinGroup
L R | e T I L
]
;I Timestarnp | B Gine Sighal Mame | WValue
34.31 0.24 M Sine 017
38.31 -0.68
36.31 -0.98
fercil -0.38
38.31 0.57
1.00
0.51
-0.45
-0.99
062
032 —

[Connected to localhc

| x=1.443600, y=0.970473

4

132

Events Collected as Messages

Event messages, collected using ScopeEventsMessage(), displayed as character
strings under the Event tree. Turning on event messages causes vertical lines to be
displayed, representing the temporal location of the occurrence of the event. The

message itself is also displayed.

7 The Plot Window
7.5 Displaying Events

This example shows the display of events collected as messages.

The marker is a vertical line showing
exactly when the event was collected

 StethoScope - Plot 1

File Plot

View Window

Help

The message string is printed close to the marker
line that indicates when the event was collected

TR T == R e LR

¥ &

_I 32 DD AN 45 DD

G DD

0. DD 96.00

nals Tree

b =] Live

BB 10.30.68.141:0
-4 DifferentTypes

-1 €y Offset
-4 Pointer
..... D Sine
----- O Cosine
----- O Sine2T
W Fos
B FosDesired
el
Acc
PosGain

WelGain

Sine-0.1-0.2

Cosine-0.5-0.6
PosChangeE vent

Ea 5 :
<= i :
' ' :
— i

| 23 S
o
: |
Irne:skan| 0% ‘0z esire ‘nzl5ain Ighal MNarme alue
Ed g B Fos [M PosDesied | Bl PosG 2| SignaiName [val
4 4
K| reovn 1.00 50.00 e, .94
134.48 1.00 50.00 . :
135,48 100 9000 W PosDesied 1.00
136.48 .00 50.00
137.48 .00 50.00
138.48 1.00 50.00
|| 133,48 1.00 50.00
3| 140,48 1.00 50.00
141.48 .00 50.00
142.48 .00 50.00 j

14040

100 o0 oo

|Fieady

[Connected to localhast 0

| x=28.206000, y=0.686719 4

— Clicking Event > Messages turns on
the display of event messages

133

Wind River Workbench Data Monitor
User's Guide, 3.0

7.6 Setting New Plot Window Preferences

The Data Monitor Preferences dialog box (also see 3.3.12 Preferences, p.53) is
opened with the File > Preferences menu command (or the Preferences toolbar
button - see Main Toolbar, p.40).

x
BtethoScope
— Default Plat Properties————— [~ Take Snapshat
- Plot Pluglnz # Offzet

- Dump Plot V' Select currently selected signals

- Plot * Range
- Manitar
- Flot <y ¥ Oifset

¥ Use same colors

V' Unselect live signals

wn

r— Default Mini-Dump Properties

Fiesolution [zecs] |1
Histary Limit |1 []
[Linesg]
— Default kini-Monitor Properties

Fiesolution [zecs] |1

[Allow writeback

' Range
Resalution
[zamples)

Dizplay Accuracy
[digitz]

Minirmum Gridline oo
Spacing

b aximum Snap
Distance
Cancel |

=

1T

V' Snap measures to sighals

It allows you to set default parameters used when any new data-display window
is opened (whereas the properties described in 7.3 Signal Properties Dialog Box,
p-123 above, apply only to the currently open window in which the properties are
set).

This dialog box also allows you to control some aspects of what happens when a
snapshot is taken. One additional preference in particular that affects the Plot
window is Colors (see Colors View, p.56).

To modify these preferences, open the Data Monitor Preferences dialog box,
using the File > Preferences menu command (or the Preferences button), then
click Plot in the left panel to display and set the following parameters.

NOTE: The Windows and UNIX host versions of this dialog box have exactly the
same parameters except as noted below.

134

7 The Plot Window
7.6 Setting New Plot Window Preferences

Default Plot Properties Panel

X Offset (Windows hosts only)

Controls the unit value for the left-most coordinate on X axis of the plot. When
first started, it is 0. This value changes automatically if you use the Zoom to Fit
command.

X Range (Windows hosts only)

Controls the width of the plot grid in units. For example, when first started, X
Range defaults to 20, and the plot displays the X-axis from 0 to 20.

Y Offset

Controls the unit value for the top coordinate on the plot. When first started,
itis 1.5, and the Y value of 1.5 is the top value. This value will change
automatically if you use the Zoom to Fit command.

Y Range

Controls the height of the plot grid in units. For example, when first started, Y
Range defaults to 3 and the plot displays the Y-axis from 1.5 to -1.5.

Resolution (samples)

Permits plotting of only a subset of the collected data points. This is useful for
increasing rendering speed. A divisor value of n causes only every nth point
to be plotted. Thus, if 1000 points are being collected and the Resolution is 5,
then 200 points are displayed. Of course, you may not want to reduce
resolution if your data can contain glitches or high-frequency phenomena. The
default is 1.

Display Accuracy (digits)

Controls the accuracy of the grid line markers. Set this property to the number
of places to the right of the decimal point to use in the grid markers. Enter a
value between 0 (for whole numbers) and 6. The default is 4.

Minimum Grid Line Spacing

Specifies the minimum distance (in pixels) allowed between the grid lines.
Increasing this number decreases the number of grid lines, decreasing this
number increases the number of grid lines. Enter a value between 5 and 500.
The default is 100.

135

Wind River Workbench Data Monitor
User's Guide, 3.0

Maximum Snap Distance

Controls how far away (in pixels) you can start a measure and still have it snap
to the plot line. Measures are described in On-grid Measurements, p.78. The
default is 20 pixels.

Snap Measure to Signals

Check box controls whether or not measures are snapped to the signal lines on
the grid. Measures are described in On-grid Measurements, p.78.

Take Snapshot Panel

Unlike all other preferences, which only impact data-display windows you may
create later, these preferences take effect immediately. For more information, see
11. Working with Snapshots.

Select currently selected signals

If selected, the same signals currently selected in the live buffer are also
selected in the snapshot.

Use same colors

If selected, the same colors are assigned to the signals in the snapshot. If you
want the snapshot to use different colors for each signal than are used for live
data, clear this check box.

Unselect live signals

If selected, the live signals will become unselected when the snapshot is taken.

Default Mini-Dump Properties Panel

These properties apply to the Mini-Dump window inside a new Plot window.
They have no effect on any full-size Dump Plot windows.

136

Resolutions (secs)

Controls how often (in seconds) to refresh the values in the Mini-Dump
window. The default is 1.

History Limit (Lines)

Controls how many lines of historical data to maintain in the Mini-Dump
window. The default is 1000.

7 The Plot Window
7.6 Setting New Plot Window Preferences

Default Mini-Monitor Properties Panel

These properties apply to the Mini-Monitor window inside a new Plot window.
They have no effect on any full-size Monitor windows.

= Resolution (secs)

Controls how often (in seconds) to refresh the values in the Mini-Monitor
window. The default is 1.

= Allow Writeback

Controls whether or not you can use the Mini-Monitor window to write
modified signal values back out to the target. The default is False.

= Enable Warnings (UNIX hosts only)

Controls whether or not warning messages are sent to the Console window
when writeback values you entered are about to be processed, allowing you a
chance to cancel the operation. The default is selected.

NOTE: Note that no currently open data-display windows will be modified by
configuring any of these parameters - only ones you open after configuring.

137

Wind River Workbench Data Monitor
User's Guide, 3.0

138

The Plot XY Window

8.1 Introduction 139

8.2 Creating XY Signal Pairs 140

8.3 Plot XY Window Tour 141

8.4 Signal Properties Dialog Box 154

8.5 Setting New Plot XY Window Preferences 160

8.1 Introduction

The Plot XY window is used to graph pairs of signals against each other. In most
respects, it is very similar to the Plot window. The primary difference is that only
XY signal pairs show up in the Signals Tree to be plotted. XY signal pairs must be
created in order to have anything to plot. This chapter describes the process of
creating XY signal pairs, as well as the Plot XY window itself.

139

Wind River Workbench Data Monitor
User's Guide, 3.0

8.2 Creating XY Signal Pairs

You must create XY signal pairs before you can use the Plot XY window.

Signal selection for Plot XY windows differs from signal selection for the other
types of data-display windows, in that each plotted line requires two signals (an
XY signal pair). These XY signal pairs are created using the XY Signals dialog box.

xvSignals =
Existing = Signals Delete I Target 0K I
Signal | Target | |10.3068.1440 4 Cancel |
(Sine. Sine2T) 1030EB1440
[Pos, PosDesired] 10.30.68.144:0 = Apnl
e | e

o Bz
ISine2T _|

Add

Creating a Signal Pair

Open the dialog box using the File > XY Signals menu command (or the
XY Signals toolbar button - see Main Toolbar, p.40). To create a signal pair in this
dialog box, follow these steps:

1. Choose a target from the Target drop-down list box.

2. Choose the signal to plot on the X Axis by using the X Axis drop-down list. The
list contains only active signals for the selected target. Double-click the desired
signal.

3. Choose another signal to plot on the Y Axis by using the Y Axis drop-down
list. This list also contains only active signals for the selected target. Double-
click the desired signal.

4. Click Add.

5. For each XY Signal pair you want to create and be able to see in the Plot XY
window, repeat steps 1 through 4 above.

140

8 The Plot XY Window
8.3 Plot XY Window Tour

6. When you are done, click OK, Cancel, or Apply.
Apply saves your selections, but leaves the dialog box open for more.

OK saves your selections and closes the dialog box.

Deleting a Signal Pair

To delete a signal pair, follow these steps:
1. Select the signal pair from the Existing XY Signals list.
2. Click Delete.

Modifying a Signal Pair

To modify a signal pair, the only option is to delete the pair, then add a new one.

NOTE: The XY Signals dialog box in a UNIX host has exactly the same elements,
but some are in slightly different locations in the dialog box. Therefore, the
Window host version description above also adequately describes the UNIX
version.

8.3 Plot XY Window Tour

Open the Plot XY window using the File > Plots > Plot XY menu command (or the
Plot XY toolbar button - see Plots Toolbar, p.41).

141

Wind River Workbench Data Monitor
User's Guide, 3.0

Plot XY button

Windows Host /

g StethoScope - Plot XY 1 =101]

Il File Plot Wiew Window Help |
¥ SHE "% omwe @ |05 (m) &S
x| 1 075 0.5 -0.25 a 0.25 0.5 075 1 ;I
Signals Tree T T
=] Live
0.30.65.144:0
W (Sine, SinezT)
W W
o o
o o
o o
4 »
_I—I _I 1 075 0.5 0.25 a 0.25 05 075 LI
Kl I
Ready %=0,465347, y=0,520166
d 4

142

8 The Plot XY Window
8.3 Plot XY Window Tour

UNIX Host __ Plot XY button

File View Signal Installation ﬂel;[

|r S w8 & [EH A=
I VU0 U./5U 0 U500 U250 UUUU U250

Signals

= Elive

W vxsim0 @ svl-st-linuxdev:0

(vxKernel:0x6016bf30/Sin

o =

00U 0,750 0500 0.250 0000 U.250 U500 U.750 100U

Active Signals |Eroperlies |
Window
Color |Signal H
=] (vxKernel:0x6016bf30/Sine, vxKe
4
B 1 =
ﬂ|= x=-1508,y=-1160 j

Displaying Signal Parameters

To display signal parameters, follow these steps:

1. If you do not already have a Signals Bar displayed in your Plot XY window,
open one using the File > Signals Bar menu command (or the Signals Bar
toolbar button - see Plot Window Toolbar, p.41).

2. Make sure the Signals tab is selected in the Signals Bar, so that a Signals Tree
is displayed.

3. Use the Signals Tree to select which signals you want to display in the graph.
For details on using Signals Trees, see 4. Using the Signal Manager. If you do
not see any signals in the Signals Tree, use the File > XY Signals menu
command (or the XY Signals toolbar button - see Main Toolbar, p.40) to open
the XY Signals dialog box and create signal pairs, as described in 8.2 Creating

143

Wind River Workbench Data Monitor
User's Guide, 3.0

XY Signal Pairs, p.140. Selecting a signal from the Plot XY window
Signals Tree causes the following actions:

— The signal data is plotted in the window, using the next available plot
color. You can select a different color using the Signal Properties dialog
box (see 8.4 Signal Properties Dialog Box, p.154), or the Preferences dialog
box (see 3.3.12 Preferences, p.53).

— The Legend tab view (or the Legend window in a UNIX host) is updated
to include the selected signal. The Legend shows you what color is being
used for each selected signal. You can also use the Legend to select and
clear signals.

The Legend tab view, and the Legend window, are the same as in the Plot window.
The Legend tab view is described in Legend Tab View (Windows Hosts Only), p.117,
and the Legend window is described in Legend Window (UNIX Hosts Only), p.122.

Most of the functionality in the Plot XY window is identical to that in the Plot
window, except there is no Strip Chart option, Mini Dump window, or
Mini Monitor window. For more information on common Plot XY window
features, refer to the following sections:

» 3.2 Toolbars, p.40

» Plot Menu Item (Windows Hosts Only), p.69
» View Menu Item, p.70

= 3.5 Pop-up Menus, p.71

Popup Menu

When you right-click anywhere in the plot area, the On-grid pop-up menu opens
with several options pertaining specifically to the plot area. These additional
options are described in detail in 3.5 Pop-up Menus, p.71.

Screen Operations

The screen operations outlined for the Plot window also apply to the Plot XY
window. These operations are described in 3. Data Monitor Features, and include:

» Zooming, p.76

= Markers, p.76

» Annotations, p.77

» Panning, p.77

» On-grid Measurements, p.78

144

Toolbar

Menu Bar

8 The Plot XY Window
8.3 Plot XY Window Tour

In a default Plot XY window, the first two toolbars are shown with the menu items
as described in Sections Main Toolbar, p.40 and Plots Toolbar, p.41. But the right-
most toolbar is specific to the Plot XY window. All the toolbars (as well as the
menu bar) are dockable, which means you can move them to other locations, on or
off the window, simply by dragging them. Each of the toolbars can be displayed or
hidden independently using the View menu item (see View Menu Item, p.146).

This Plot XY window toolbar is a subset of the one shown and described in detail
in Plot Window Toolbar, p.41.

Take Axis
Snapshot Properties

IR
EEEER:
\ \ \

Signal Zoom Always
Manager to Fit on Top

Autofill

Some of the menu bar items are discussed in detail in 3.3 File Menu Item, p.43,
where it is mentioned that the File, Window, and Help menu items are consistently
the same across all data-display windows. For the Plot XY window, however, the
Plot and View menu items contain some commands that are unique to the Plot XY
window. These menu items are described in detail in the following sections.

Plot Menu Item (Windows Hosts Only)

In a Windows host, the Plot menu item contains commands for working with the
data displayed in the Plot XY window.

145

Wind River Workbench Data Monitor

User's Guide, 3.0

” File ,ﬁ Wiews window Help

The

Prink
Print Setug, ..

Prink Presviess

Take Snapshaok
Delete Markers

Plot menu options for the Plot XY window are:
Print

Prints the signal traces in the data-display window. It opens a Print dialog box
where you can configure your printer options.

Print Setup
Allows you to select printer parameters and characteristics before printing.
Print Preview

Lets you see, on a print mock-up screen, what the printed page will look like
before actually printing it.

Take Snapshot

Saves a copy of all the active signals (not just the selected signals) for all
connected targets. For more information, see 11.2 Utilizing Snapshots, p.185.

Delete Markers

Deletes all markers, annotations, and measures from the grid area. For more
information, see Markers, p.76.

View Menu Iltem

The View menu item, in both a Windows and a UNIX host, contains commands for
displaying toolbars and auxiliary views in the Plot XY window, as well as some
Plot XY window-specific commands.

146

8 The Plot XY Window
8.3 Plot XY Window Tour

Windows Host UNIX Host
” File Plot | Wiew Window Help File View | Signal Installation
’T Main Toolbar * ToolBar
’T Plots Toolbar = Status Bar
’T ® Window Toolbar E Signal Tree
E atatus Bar * PlotXY Window ToolBar
v Toolbar Captions r
| Legend
Signals Bar
,Eg— Take Snapshot...
A Auka Fit O Zoom to Fit
O Zoom ko Fit
Previous Zoom
Aspeck Lock

The following menu options are available in both Windows and UNIX hosts:

PlotXY Window Toolbar

Controls whether the toolbar representing a selection of items from the File
menu is displayed on Data Monitor’s toolbar. For more information, see
3.2 Toolbars, p.40.

Status Bar

Controls whether the status line along the bottom of the window is visible. For
more information, see 3.7 Status Bar, p.78.

Zoom to Fit

Changes the scales and offsets so that all the signals fit and take up the entire
plot window. The scales and offsets remain at these values until Zoom to Fit is
selected again. This command is only available in the Plot XY windows. See
also Previous Zoom.

Additional options for Windows hosts only are:

Main Toolbar

Controls whether the toolbar representing a selection of items from the File
menu is displayed on Data Monitor’s toolbar. For more information, see
3.2 Toolbars, p.40.

147

Wind River Workbench Data Monitor
User's Guide, 3.0

Plots Toolbar

Controls whether the toolbar representing a selection of items from the
File > Plot menu command is displayed on Data Monitor’s toolbar. For more
information, see 3.2 Toolbars, p.40.

Toolbar Captions

Controls whether the names of the panels (Signals Bar, Mini-Dump, and
Mini-Monitor) are displayed in the Plot window above their respective
invocations.

Signals Bar

Controls whether a Signals Bar panel appears in the window. The Signals Bar
includes tabs for Signals and Properties.

Auto Fit

Causes the plotting area to be scaled dynamically and automatically to the
extremes of the data in the Y direction being displayed in the window. It thus
allows all data points to appear on the plot. It toggles on or off, but when on,
it essentially has the effect of using the Zoom to Fit button continuously. This
command is only available in the Plot XY window.

Previous Zoom

Reverses the action of the last zoom action in a Plot or Plot XY window. Note
that when you use the Zoom to Fit command, the history of all previous zoom
actions is lost, therefore this command has no effect immediately after a
Zoom to Fit command. Also, if no previous zoom has been set, this item is
greyed out and unavailable.

Aspect Lock

When selected, it causes the plot window aspect ratio to be maintained when
you zoom in or out on the plot.

Additional options for UNIX hosts only are:

148

Toolbar

Controls whether the toolbar representing a selection of items from the File
menu is displayed on Data Monitor’s toolbar. For more information, see
3.2 Toolbars, p.40.

Signal Tree

Controls whether the Signal Manager window is displayed. For more
information, see 4. Using the Signal Manager.

Signals Bar

8 The Plot XY Window
8.3 Plot XY Window Tour

= Legend

Controls whether the Legend window is displayed. For more information, see
Legend Window (UNIX Hosts Only), p.27.

= Take Snapshot

Saves a copy of all the active signals. You can display the snapshot in the Plot
window along with real-time data. For more information, see 11.2 Utilizing
Snapshots, p.185.

The Signals Bar is a sub-window in the Data Monitor GUI that allows you to view
and configure information that controls what is plotted in the graph area.

| Right-click a signal

Sianals T / in the Signals Tree
=unas Tee to display the

=M = Live
S BT 10.30.68, 144 pop-up menu

Properties

R i
Bdsignals I@ Legend IProp |

To open a Signals Bar if one is not already displayed, use the View > Signals Bar
menu command (or the Signals Bar toolbar button - see Plot Window Toolbar, p.41).
Note that only XY signal pairs are displayed in the Signals Bar for this window.

The Signals Bar contains the following tab views:

» Signals Tab View
* Legend Tab View (Windows Hosts Only)
» Properties Tab View

149

Wind River Workbench Data Monitor
User's Guide, 3.0

Signals Tab View

The Signals Tree in the Signals tab view (see the figure above) displays all the
signals available to be plotted. They are shown in an expandable tree structure
containing signals that have been installed by the Signal Manager (see 4. Using the
Signal Manager). Traces on the graph are color-coded to the signals selected in the
Signals Tree.

The Signals Tree is displayed by default when you open a Plot XY window, but it
may be re-displayed at any time by clicking the Signals tab at the bottom of the
sub-window.

The Signals Tree allows you to easily locate any signal that has been installed and
add it to the graph of signal traces. Each node of the tree (and hence each signal)
has a check box. Selecting the check box for an individual signal adds that signal
to the graph, or, conversely, clearing a check box removes that signal from the
graph. If you select a node check box, all the signals belonging to that node
(including their nodes below it) are selected at once and their signals are added to
the graph. Conversely, clearing a node check box removes all signals below that
node from the graph with a single click.

If anode check box is selected, but has a grey fill, it indicates that some, but not all,
of the signals belonging to that node are selected and displayed on the graph. You
may have to scroll down to see which ones are selected.

The Signals Tree is expanded or collapsed using the icon to the left of each node
check box as follows:

» “+” = collapsed; select to expand down to the next node(s).

- “_n

= expanded; select to collapse up to this node.

The Units column in the Signals tab view shows the physical measurement units
of each component of the XY Signal pair.

When you right-click a signal in the Signals tab view, a pop-up menu opens,
currently containing a single menu item, as shown in the figure above. The
Properties menu item opens the Signal Properties dialog box where you can
configure parameters that affect the appearance and behavior of the specific signal
your cursor is on. The Signal Properties dialog box is described in detail in

8.4 Signal Properties Dialog Box, p.154.

Legend Tab View (Windows Hosts Only)

In a Windows host, the Legend tab view shows you what color is assigned to each
signal on the plot. It can also be used to select which signals to plot. This figure is
an example of the Legend tab view in a Plot XY window.

150

8 The Plot XY Window
8.3 Plot XY Window Tour

Signals Bar x| Right-click anywhere
in the Legend tab

| signal | Seale | Snap... | Target l / view to display the
M (sine, Sine2T) 1.000000 Live 1@ 1dd.n pop-up menu
Toggle Signal

Renave Signal
Remave All Unselected
Remove all Signals

Properties

4]
Brcionals | [Z]Legend IF‘rop |

NOTE: In a UNIX host, the Legend appears in a separate window, rather thanin a
tab view. For details, see Legend Window (UNIX Hosts Only), p.27.

The columns in the Legend tab view display the current option settings for each
Signal, including:

= Scale

The scale factor applied to the values for each component signal to allow them
to be easily viewed on the same graph with other XY Signal pairs.

= Snapshot
Whether the data is live, or from a snapshot.
= Target
The name and scope index of the target to which you are connected.

When you right-click a signal in the Legend tab view a pop-up menu opens with
options that are described in Legend, p.74.

You can change the colors used for plot lines using the File > Preferences menu
command (see Colors View, p.56), or by using the Signal Properties dialog box (see
8.4 Signal Properties Dialog Box, p.154).

Properties Tab View

You can view and change the physical appearance properties for the Plot XY
window you are in by clicking the Properties tab in the Signals Bar (but not the
signals themselves; for that, see 8.4 Signal Properties Dialog Box, p.154).

151

Wind River Workbench Data Monitor
User's Guide, 3.0

Windows Host

Signals Bar =
E Co-ordinates
¥ zoale 3000000
offzet -1.500000
W zoale 3000000
't offzet 1.500000
E Display
Dizplay accuracy 4
Rezolution 1
Grid zpacing a0

Snhap measures to sighals True
tamimum znap distance 20
Background image

Bdsignals I@ Legend IProp |

UNIX Host
sBar K
Property Value
B PlotXY Properties
Y Scale 3
Y Offset 1.5
X Scale 3
X Offset -1.5

Display Accuracy |4
Min Grid Spacing (0.25
Resolution 1
Aspect Lock False

‘Active Signals | Properties I

This tab view accesses properties for the graphic display window environment (for
the signals themselves, use the Signal Properties dialog box, described in 8.4 Signal
Properties Dialog Box, p.154).

Physical appearance properties options in both Windows and UNIX hosts are:

152

8 The Plot XY Window
8.3 Plot XY Window Tour

= Xscale

Controls the width of the plot grid in units. For example, when first started, X
scale defaults to 3 and the plot displays the X-axis from 1.5 to -1.5.

= Xoffset

Controls the unit value for the left-most coordinate on the plot. When first
started, it is 1.5, and the X value of 1.5 is on the right side. This value changes
automatically if you use the Zoom to Fit command.

= Y scale

Controls the height of the plot grid in units. For example, when first started, Y
Scale defaults to 3 and the plot displays the Y-axis from 1.5 to -1.5.

= Y offset

Controls the unit value for the top coordinate on the plot. When first started, it
is 1.5, and the Y value of 1.5 is the top value. This value changes automatically
if you use the Zoom to Fit command.

= Display accuracy

Controls the number of significant digits displayed in the grid line markers.
Set this property to the number of places you want displayed to the right of the
decimal point. Enter a value between 0 (for integer numbers) and 6. The
default is 4.

= Resolution

Permits plotting of only a subset of the collected data points. This is useful for
increasing rendering speed. A divisor value of n causes only every nth point to
be plotted. Thus, if 1000 points are being collected and the Resolution is 5, then
200 points are displayed. Of course, you may not want to reduce resolution if
your data can contain glitches or other high-frequency phenomena. The
default is 1.

= Grid spacing

Specifies the minimum distance (in pixels) allowed between the grid lines.
Increasing this number decreases the number of grid lines, decreasing this
number increases the number of grid lines. Enter a value between 5 and 500.
The default is 100.

Additional options for Windows hosts only are:

153

Wind River Workbench Data Monitor
User's Guide, 3.0

= Snap measures to signals

Controls whether or not measures are snapped to the signal lines on the grid.
Measures are described in On-grid Measurements, p.78. The default is True.

= Maximum snap distance

Controls how far away (in pixels) you can start a measure and still have it snap
to the plot line. Measures are described in On-grid Measurements, p.78. The
default is 20.

= Background image

Allows you to specify special images to be displayed in the graphing area, with
the graph itself superimposed on top. The default is none.

Additional options for UNIX hosts only are:
= Aspect Lock

When selected, it causes the aspect ratio of the plot window to be maintained
when you zoom in or out on the plot.

To modify any value, just type directly into the text field. Any changes you make
in this window have no effect on any other open Plot XY windows.

Any changes you make in this window have no effect on any other open Plot XY
windows.

To change the defaults used when new Plot XY windows are created, use the
File > Preferences menu command (or the Preferences toolbar button - see Main
Toolbar, p.40), described in 3.3.12 Preferences, p.53.

8.4 Signal Properties Dialog Box

Characteristics of the line used to plot each signal in this window can be
configured using the Signal Properties dialog box.

154

Windows Host

8 The Plot XY Window
8.4 Signal Properties Dialog Box

x
= General
Signal Name [Sine, Sine2T]
Sighal Type Sampled Signal ancel |
Data Type multizig
=l Display
Color I oo
Zero Level Hold Falze
Show b Bits Falze
Show az Event Falze
Marker Type Mo Markers
Hasz Ruler Falze
Scale 1.000000
=l Event Display
Dizplay Mame Falze
Dizplay Time Stanp Falze
UNIX Host

Type:
Marker Type:
No Markers

Sampled Signal (multisig)

Signal Name: (vxKernel:0x6016bf30/Sine, vxKernel:0x6016bf30/Sine2T)

O

_| Zero Level Hold

_| Show as an Event

Ewvent Properties
—| Display Name
_| Display Time Stamp

Change Cnlnrl
Clear All Datal

L

Ok | Canl:ell

The dialog box can be opened in either of the following ways:

Right-click a signal in the Signals tab view (see Signals Bar, p.149).

Right-click a signal trace in the data-display area.

155

Wind River Workbench Data Monitor
User's Guide, 3.0

Signal line properties options in both Windows and UNIX hosts are:
= Signal Name and Type

These first two lines are the name of the signal (as shown in the signals tree),
and its type.

= Color

Clicking on the current value opens a small color palette with a basic color
selection from which to choose.

HEEO.

EECCO

ONEEN

OEmEC
Standardlcustoml Other...

Colars:

Cancel |

dard Custom |

s —IDK

Current

Hue: I _I; Bed: IU _I;
Sat: |255 _,::' Green: |D _I::'
Lum: |128 _|:;' Elue: |255 _|::'

Current

If you would like a color that is not on this color palette, you can click Other to
open the Colors dialog box where you can select a new color from the larger
selection in the Standard tab view, or you can create an entirely new color
using the Custom tab view.

NOTE: An alternative method for changing colors of plotted lines on the graph
is given in the discussion of colors preferences in Colors View, p.56.

156

8 The Plot XY Window
8.4 Signal Properties Dialog Box

Zero Level Hold

Select True from the drop-down menu to hold the value of the signal until the
next sample arrives. The default is False.

To demonstrate this feature, consider the following sampling of a sine wave at
a rate of 100Hz.

0.625

0.6

Data plotted with
Zero Level Hold
turned off

0.55 0.575

25

11,86 11.88 119 1193 1

0.625

0.6

~——___ Same data plotted

with Zero Level Hold
turned on

0.575

0.55

25

11,86 11.88 119 1193 1

In the upper view in this figure, with Zero Level Hold turned off (= False), the
data points are connected as usual with straight lines, even though there is no
information about the actual values between data points. In the lower view,
the same data, but with the Zero Level Hold feature turned on (= True), shows
how the line plotted between the same data points is now a straight horizontal
line of the same value as the previous data point, until the next data point
comes in, at which time the plot line goes vertical up to that value.

Show as Event

Select True from the drop-down menu to cause samples to be marked with
vertical lines instead of connecting the individual samples with lines. The

157

Wind River Workbench Data Monitor
User's Guide, 3.0

default is False. For more information, see 8.5 Setting New Plot XY Window
Preferences, p.160.

Marker Type

This drop-down list allows you to select a different symbol (or marker) to be
plotted for each sample of this signal. The choices are:

- No Markers — No markers showing
- Square—"["

_ Plus o + "

Diamond —" "

The default is No Markers.

Display Name

Causes the name of the event (event ID) to be displayed along side the vertical
marker.

Display Time Stamp

Causes the timestamp to be displayed along side the vertical marker.

Additional options for Windows hosts only are:

158

Data Type

This is the C++ data type of this signal (program variable) For a list of
allowable types, see Table 16-1.

Show As Bits

Select True from the drop-down menu to cause a signal (program variable)
being plotted to be represented as a sequence of bits, each bit with its off and
on (0 and 1) values indicated. The bits are rendered individually by discrete
horizontal lines distributed up the Y axis from bit position 0 starting at the
bottom. The default is False.

To show this feature, a Derived Signal, created using a single 8-bit integer, is
incremented through values from 0 to 15 and back to 0 again at the rate of two
increments per second, and then repeated continuously until stopped,
resulting in the plot shown here.

8 The Plot XY Window
8.4 Signal Properties Dialog Box

Data plotted with
~—
]_!_[_|—[_1]_|_|—F Show as bits
o turned off

’—‘ Same data plotted
with Show as bits
- turned on

2.5

2.5

The top graph shows the value of the variable with Show as bits turned off (=
False), and the bottom graph shows the same data with Show as bits turned
on (= True). You can easily observe the pattern of the individual bits
(horizontal lines) making up the 16-bit integer, showing their 0 and 1 positions
with respect to time.

This feature works equally well with all signal types, but the resulting bit
patterns may be more difficult to decipher depending on the complexity of the
signal.

Has Ruler

This true/false option displays a separate ruler with colored numbers
matching the color of the signal on the left (Y) axis. If you have, say, 3 signals
with rulers on, there are three separate color-coded rulers on the left plot
boundary. The default is False.

159

Wind River Workbench Data Monitor
User's Guide, 3.0

= Scale

Each plotted value is scaled (multiplied) by the value you enter. The default is
1.000000.

Additional options for UNIX hosts only are:
= Clear All Data (button)

Resets all the signal properties to Data Monitor default values.

8.5 Setting New Plot XY Window Preferences

The Preferences dialog box allows you to set default parameters for Data Monitor
when it starts, and for new data-display windows when they are created (whereas
the properties described in this chapter apply only to currently open windows).
The Plot XY Preferences view is where you change the default values used when
Plot XY windows are created. It also allows you to control what happens when a
snapshot is taken.

x
[Gered | IR StethoScope
- Colors
i Comm Pluglns — Default Plot Propeties——— - Take Snapshot————————————
- Plat Pluglng
- Durmp F'?ot ¥ Offsst V' Select currently selected signals
- Plat Y Scale ¥ Use same colors
Maritor V' Unselect live signals
- Plat =y * Offset

Scale

Resalution
[zamples)

Dizplay Accuracy
[diits)

Minirmum Gridline
Spacing

b aximum Snap
Distance
Cancel |

=
=

T

(5]
=

V' Snap measures to sighals

160

8 The Plot XY Window
8.5 Setting New Plot XY Window Preferences

To modify these preferences, open the Preferences dialog box using the

File > Preferences menu command (or the Preferences toolbar button - see Main
Toolbar, p.40), then click Plot XY in the left panel to make the following parameters
available for configuration.

Default Plot Properties Panel

Y Offset

Controls the unit value for the top coordinate on the plot. When first started, it
is 1.5, and the Y value of 1.5 is the top value. This value changes automatically
if you use the Zoom to Fit command.

Y Scale

Controls the height of the plot grid in units. For example, when first started, Y
Range defaults to 3 and the plot displays the Y-axis from 1.5 to -1.5.

X Offset

Controls the unit value for the left-most coordinate on X axis of the plot. When
first started, it defaults to 0. This value changes automatically if you use the
Zoom to Fit command.

X Scale

Controls the width of the plot grid in units. For example, when first started, X
Range defaults to 20, and the plot displays the X-axis from 0 to 20.

Resolution (samples)

Permits plotting of only a subset of the collected data points. This is useful for
increasing rendering speed. A divisor value of n causes only every nth point to
be plotted. Thus, if 1000 points are being collected and the Resolution is 5, then
200 points are displayed. Of course, you may not want to reduce resolution if
your data can contain glitches or high-frequency phenomena. The default is 1.

Display Accuracy (digits)

Controls the accuracy of the grid line markers. Set this property to the number
of places to the right of the decimal point to use in the grid markers. Enter a
value between 0 (for whole numbers) and 6. The default is 4.

Minimum Gridline Spacing

Specifies the minimum distance (in pixels) allowed between the grid lines.
Increasing this number decreases the number of grid lines, decreasing this
number increases the number of grid lines. Enter a value between 5 and 500.
The default is 100.

161

Wind River Workbench Data Monitor
User's Guide, 3.0

Minimum Snap Distance

Specifies the minimum distance (in pixels) from a grid line that will cause a
plot point to be snapped to the grid line. The default is 20.

Snap measures to signals

If this box is selected, the end point of a measurement line is snapped to the
signal plot line, provided it is within the Minimum Snap Distance from the
plotline when you release the mouse button. Otherwise the measurement only
made to the point where you release the mouse button. The default is selected.

Take Snapshot Panel

Unlike all other preferences, which only impact data-display windows you may
create later, these preferences take effect immediately. For more information, see
11. Working with Snapshots.

The

162

following functions can be selected by setting their check boxes:
Select currently selected signals

If selected, the same signals currently selected in the live buffer are also
selected in the snapshot.

Use same colors

If selected, the same colors are assigned to the signals in the snapshot. If you
want the snapshot to use different colors for each signal than are used for live
data, clear this check box.

Unselect live signals

If selected, the live signals will become unselected when the snapshot is taken.

The Dump Plot Window

9.1 Introduction 163
9.2 Dump Plot Window Tour 164
9.3 Setting New Dump Plot Window Preferences 171

9.1 Introduction

The Dump Plot window displays the value of each signal at each sampling, in a
tabular format, scrolling with time. Like the Plot window, a Dump Plot window
can display both live and snapshot data. You can have multiple Dump Plot
windows open at the same time, and each can display different signals or
snapshots.

This chapter describes the characteristics and use of the Dump Plot window in
detail.

Before using a Dump Plot window, it may help to understand how and when data
is collected from the target. For insights on this issue, see 5. Triggering.

163

Wind River Workbench Data Monitor
User's Guide, 3.0

9.2 Dump Plot Window Tour

To open a Dump Plot window, use the File > Plots > Dump Plot menu command
(or the Dump Plot toolbar button - see Plots Toolbar, p.41). The following is a
Dump Plot window with example data.

_ Dump Plot button

StethoScope - Dump 1

File Plot Wiew Window Help |
v SE "% 8 S (EH | 6 e
har _| Timestamp | Sine | Cosine | Sine2T | Pos | PosDesired AI
| 3927
Signals Tree Uni i
=M= Lve 3929 0.4488
E-M ¥ 10.30.68.144:0 3930 -0.5061 -0.8625
-] € Different... 3931 -0.999 -0.044
w14y offset 3932 -0.58 0.8146 -0.9449
. 3933 0.3685 0.9296 0.6851
% Painter
=Oe 3934 0.9806 0.196 0.3845
; 3935 0.6976 -0.7165 -0.9996
Cosine wolts | | 3936 02222 0,975 0.4333
3inezT valts | | 3037 -0.9392 -0.3435 0.6452
Pos mete | [3938 -0.7988 0.6016 -0.9611
PosDesired mete| [3939 0.0707 0.9975 0.141 1.14
vel mis |]3940 0.8757 0.4829 0.8457 0.9492 1
Acc mise| | 3941 0.8813 -0.4725 -0.8329 0.9589 1
Poscan Nim | |35 0.08246 -0.9966 -0.1644 1.011 1
! 3943 -0.7917 -0.6109 0.9673 1.062 1
velGain Nfm| 3544 -0.9431 0.3324 -0.627 1.08 1
-] 9 sinGroup 3945 -0.2337 0.9723 -0.4544 0.9459 1
3946 0.6891 0.7247 0.9987 0.9994 1
3947 0.9828 -0.1845 -0.3626 0.9977 1
3948 0.3794 -0.9252 -0.7021 0.66 1
3949 -0.5703 -0.8214 0,937 -1.075 1
3950 -0.9995 0.03221 -0.06438 -1.046 -1
L N -0.5163 0.8564 -0.8843 09202 -1
®cionas [EE 3952 0.4382 0.8989 0.7578 -1.031 1 |
ETEs 3953 0.9927 0.1208 0.2398 -1.002 1 =
|Ready | v

The left-most data column is always the TimeStamp, calculated by multiplying the
sample period by the position of each sample in the data buffer. TimeStamp is reset
to zero for each collected data set. The other columns in this table are the values, at
the time increments, for each signal selected in the Signals Tree to the left. This
table is dynamically updated as data collection progresses.

164

9 The Dump Plot Window
9.2 Dump Plot Window Tour

Displaying Signal Parameters

Toolbar

To display signal parameters, do the following:

1. If you do not already have a Signals Bar open in your Dump Plot window,
open one using the View > Signals Bar menu command (or the Signals Bar
toolbar button - see Plot Window Toolbar, p.41). Make sure the Active Signals
tab is selected in the Signals Bar so that a Signals Tree is displayed.

2. Use the Signals Tree to select which signals you want to display in the table.

Each selected signal appears as a column in the table. For details on using
Signals Trees, see 4. Using the Signal Manager.

Most of the remaining functionality in the Dump Plot window is provided
through the toolbars and menus. For common data-display window feature
descriptions, refer to the following sections:

» 3.2 Toolbars, p.40
» Plot Menu Item (Windows Hosts Only), p.69
» View Menu Item, p.70

In a default Dump Plot window, the first two toolbars are identical to the toolbars
shown and with the menu items as described in Sections Main Toolbar, p.40 and
Plots Toolbar, p.41. But the right-most toolbar is specific to the Dump Plot window.
All the toolbars are dockable (as well as the menu bar), which means you can move
them to other locations, on or off the window, simply by dragging them. Each of
the toolbars can be independently displayed or hidden using the View menu item
(see View Menu Item, p.166).

The Dump Plot window toolbar is a subset of the one shown and described in
detail in Plot Window Toolbar, p.41.

Show Signals

Snapshot Bar rause

“@E n

Take Always
Snapshot On Top

165

Wind River Workbench Data Monitor
User's Guide, 3.0

Menu Bar

Some of the menu bar items are discussed in detail in 3.3 File Menu Item, p.43,
where itis mentioned that the File, Window, and Help menu items are consistently
the same across all data-display windows. The Plot and View menu items,
however, contain some commands that are unique to the Dump Plot window.
Even though partially redundant, these menu items are described in detail in the

following sections.

Plot Menu Item (Windows Hosts Only)

In a Windows host, the Plot menu item contains commands for working with the
plots in the Dump Plot window.

” Eile | Plok Miew Window Help
Primt Sebup,..

Take Snapshot

The Plot menu options for the Dump Plot window are:

= Print Setup

Allows you to select printer parameters and characteristics before printing
(not enabled at this time).

= Take Snapshot

Saves a copy of all the active signals (not just the selected signals), for all
connected targets. For more information, see 11.2 Utilizing Snapshots, p.185.

View Menu Iltem

The View menu item contains options for working with the plots in the Plot
window.

166

9 The Dump Plot Window
9.2 Dump Plot Window Tour

Windows Host UNIX Host

“ File Plot | View Window Help

FEile View | Signal Installation

IT Main Toolbar * ToolBar

IT Plots Toolbar " Statu_s Bar

IT Dump Window Toolbar E Signal Tree

IT atatus Bar 8 View SnapShot

IE Szl Bai Take Snapshot...
Il Pause Il Pause Data

@ Show Snapshats

The following menu options are available for both Windows and UNIX hosts:

Main Toolbar (Toolbar in UNIX hosts)

Controls whether the toolbar representing a selection of items from the File
menu is displayed on the Dump Plot window toolbar. For more information,
see 3.2 Toolbars, p.40.

Status Bar

Controls whether the status line along the bottom of the window is visible. For
information, see 3.7 Status Bar, p.78.

Signals Bar (Signal Tree in UNIX hosts)

Controls whether a Signals Bar panel appears in the window. The Signals Bar
(see the figure in 9.2 Dump Plot Window Tour, p.164) includes tabs for Signals
and Properties. For more information, see Signals Bar, p.168.

Pause (Pause Data in UNIX hosts)

Stops updating the table in the Dump Plot window. It does not stop data
collection, but merely stops new data from appearing in the Dump Plot table.
To resume normal display, unselect the button.

Show Snapshots (View Snapshot in UNIX hosts)

Controls what is displayed in the Signals Tree. When selected, only snapshots
appear in the Dump Plot window Signals Tree. When unselected, only the
live data buffer appears. For more information, see 11.2 Utilizing Snapshots,
p-185.

Additional options for Windows hosts only are:

167

Wind River Workbench Data Monitor

User's Guide, 3.0

Signals Bar

The
and

Plots Toolbar

Controls whether the toolbar representing a selection of items from the
File > Plot menu command is displayed on Data Monitor’s toolbar. For more
information, see 3.2 Toolbars, p.40.

Dump Window Toolbar

Controls whether the toolbar used within the Dump Plot data-display
window is visible. The buttons represent items from the View menu for the
Dump Plot data-display window. For more information, see Toolbar, p.165.

Signals Bar is a sub-window in the Data Monitor GUI that allows you to view
configure information that affects how signals appear in the data-display

window. If a Signals Bar window is not displayed, you can open one using the
View > Signals Bar menu command (or the Signals Bar toolbar button - see Plot
Window Toolbar, p.41).

The

Signals Bar contains two tab views:

Signals Tab View
Properties Tab View

Signals Tab View

The

Signals Tree, in the Signals tab view of the Signals bar, displays all the signals

available to be plotted.

168

9 The Dump Plot Window
9.2 Dump Plot Window Tour

Signals Bar
_signals Tree
=B = Live
E-F% 10.30.68.144:0
- €p DifferentTypes
-0 € Offset
-0 € Pointer
----- O sine
----- O cosine
----- O sinesT
----- Faos
----- FosDesired
----- Yel
----- O acx
----- O Poscain
----- O velcain
- € sinGroup
] o)

They are shown in an expandable tree structure containing signals that have been
installed by the Signal Manager (see 4. Using the Signal Manager). Signals in the
table are color-coded to the signals selected in the Signals Tree.The signals are
shown in an expandable tree structure, containing signals that have been installed
by the Signal Manager (see 4. Using the Signal Manager). Signals in the table are
color-coded to the signals selected in the tree. The Signals Tree is displayed by
default when you open a Dump Plot window, but it may be re-displayed at any
time by selecting the Signals tab at the bottom of the window.

You can locate any signal that has been installed and add it to the graph of signal
traces using the Signals Tree. Each node of the tree (as well as each individual
signal) has an associated check box. Selecting the check box for an individual
signal adds that signal to the graph, or, conversely, clearing a check box removes
that signal from the graph. If you select a node check box, all the signals belonging
to that node (including any nodes below it) are selected at once and those signals
are added to the graph. Conversely, clearing a node check box removes all signals,
and nodes, below that node from the graph with a single click.

If a node check box is selected, but has a grey fill, it indicates that some, but not all,
of the signals belonging to that node are selected and displayed on the graph. You
may have to scroll down to see which ones are selected.

The signals tree is expanded or collapsed using the icon to the left of each node
check box as follows:

169

Wind River Workbench Data Monitor
User's Guide, 3.0

no,n

" +" = collapsed; select to expand down to the next node(s).

"non
L] -

= expanded; select to collapse up to this node.

The Units column in the Signals tab view shows the physical measurement units
of each signal. You may have to move column or window boundaries around in
order to see the Units column.

Properties Tab View

You can view and change the properties for the currently open Dump Plot
window using the Properties tab in the Signals Bar.

|

EH Dump Properties
Dizplay accuracy | 4
Fesolution 1.000000
Durnp histary limit | 1000

B Signals

The display window environment properties shown in this tab view are grouped
under the Dump Properties panel. They are:

= Display accuracy

Controls the number of significant digits displayed in the table. Set this

property to the number of places you want displayed to the right of the

decimal point. Enter a value between 0 (for integer numbers) and 6. The
default is 4.

= Resolution

Controls how often (in seconds) to refresh values in the Dump Plot table. The
default is 1.000000.

170

9 The Dump Plot Window
9.3 Setting New Dump Plot Window Preferences

= Dump history limit

Controls how many lines of historical data to maintain in the Dump Plot table,
0 = display all. The default is 1000 (500 in a UNIX host).

To modify any value, just type directly into the text field. Any changes you make
in this window have no effect on any other open Dump Plot windows.

9.3 Setting New Dump Plot Window Preferences

The Preferences dialog box allows you to set default parameters for new
Dump Plot windows when they are created, whereas the properties described in
Properties Tab View, p.170 apply only to currently open windows.

The Dump Plot view of the Data Monitor Preferences dialog box (see
3.3.12 Preferences, p.53) allows you to change these default values.

x
= General Dump Plot StethoScope

i e Colors
Comm Pluglng Default Properties
Flot Pluglnz

Ciurnp Plat Fesolution [secs] I

Plat
- Manitar Histary Limit I‘IDDD
L Pl 507 [Lines)

Dizplay Accuracy
[digitz]

4

Cancel |

These preference changes have no effect on Mini Dump Plot windows (within
Plot windows), or on already open Dump Plot windows. They will only affect
Dump Plot windows opened after the preferences are modified.

171

Wind River Workbench Data Monitor
User's Guide, 3.0

To modify these preferences, open the Preferences dialog box using the

File > Preferences menu command (or the Preferences toolbar button - see Main
Toolbar, p.40), then click Dump Plot in the left panel to set the following
parameters:

Default Properties Panel

= Resolution (secs)

Controls how often, in seconds, to refresh the values in the Dump Plot
window. The default is 1.

= History Limit (Lines)

Controls how many lines of historical data to maintain in the v window. The
default is 1000.

= Display Accuracy (digits)

Controls the accuracy of values displayed in the table. Set this property to the
number of places to the right of the decimal point to use. Enter a value between
0 (for whole numbers) and 6. The default is 4.

172

10

The Monitor Window

10.1 Introduction 173

10.2 Monitor Window Tour 174

10.3 Writing Data to the Target 181

10.4 Setting New Monitor Window Preferences 182

10.1 Introduction

The Monitor window differs from the Dump Plot window in that the Dump Plot
window displays a scrolling list of signal values as they change over time, whereas
the Monitor window only shows you the current value of each monitored signal.
The Monitor window can also be used to modify the value of a signal on the target.

This chapter describes the characteristics and use of the Monitor window in detail.

173

Wind River Workbench Data Monitor
User's Guide, 3.0

10.2 Monitor Window Tour

To open a Monitor window, use the File > Plots > Monitor menu command (or the
Monitor toolbar button - see Plots Toolbar, p.41). Shown here is an example
Monitor window with data from the demonstration program.

Click in the Writeback column to
Monitor button enter a new value, which is then
written to the target

S StethoScope - Monitor 3 =] S
File Plot Wiew Window Help |
LI L E I EEEEBEED

Signals Bar 1[Signal Marne alue | ‘Wiriteback. |

= Pas -0.9717
ﬂ%s_—neei PosDesired -1
=-EELve vel -0,1963

=B 10.30.65.144:0 Sine -0.7305

-0 4 DifferentTypes Casine 0,683
=0 §p Offset SineZT 0.9977
-0 4 Pointer ColsGGa.ln ‘1‘0
..... Sine elaain
----- Cosine
----- SinezT
..... Pos
----- PosDesired
..... el
..... O ac
----- PosGain
----- VelGain
w-O 4 sincroup

K 2

Bsignals | B2

|Ready [v

You can select the signals you want to monitor by using the Signals tab in the
Signals Bar. Each selected signal appears as a row in the Monitor window table
with the following column descriptions.

= Signal Name

The first column displays the

= Value

The most recent value for each signal.

174

10 The Monitor Window
10.2 Monitor Window Tour

= Writeback

Used to write new values back to the target. This column only appears when
the Writeback property in the Properties tab view is set to True (see Properties
Tab View, p.180, and 10.3 Writing Data to the Target, p.181).

Displaying Signal Parameters

Toolbar

To display signal parameters, follow these steps:

1. If you do not already have a Signals Bar in your Monitor window, use the
View > Signals Bar menu command (or the Signals Bar toolbar button - see
Plot Window Toolbar, p.41). Make sure the Signals tab is selected in the Signals
Bar, so that a Signals Tree is displayed.

2. Use the Signals Tree to select which signals you want to display in the table.
For details on using Signals Trees, see 4. Using the Signal Manager.

Most of the remaining functionality in the Monitor window is provided through
the toolbars and menus. For more information on common data-display window
features, refer to the following sections:

» 3.2 Toolbars, p.40
» 3.3 File Menu Item, p.43

In a default Monitor window, the first two toolbars are identical to the toolbars
shown and with the menu items as described in Sections Main Toolbar, p.40 and
Plots Toolbar, p.41. But the right-most toolbar is specific to the Monitor window. All
the toolbars are dockable (as well as the menu bar). Each of the toolbars can be
independently displayed or hidden using the View menu item (see View Menu
Item, p.177).

The Monitor window toolbar is a subset of the one shown in Plot Window Toolbar,
p-41, where the icons are described in detail.

175

Wind River Workbench Data Monitor
User's Guide, 3.0

Take Always
Snapshot on Top

“E 1

Signals

Bar Pause

Menu Bar

Some of the Menu Bar items are discussed in detail in 3.3 File Menu Item, p.43,
where it is mentioned that the File, Window, and Help menu items are consistently
the same across all data-display windows. For the Monitor window, however, the
View menu item contains some commands that are unique to the Monitor
window. Even though partially redundant, these menu items are described in

detail in the following sections.

Plot Menu Item (Windows Hosts Only)
In a Windows host, the Plot menu item contains commands for working with data
in the Monitor window.

” Eile | Plok iew ‘window Help
Primt Sebup, ..

Take Snapshaok

The Plot menu options in the Monitor window are:
= Print Setup

Allows you to select printer parameters and characteristics before printing.

= Take Snapshot

Saves a copy of all the active signals (not just the selected signals), for all
connected targets. For more information, see 11.2 Utilizing Snapshots, p.185.

176

10 The Monitor Window
10.2 Monitor Window Tour

View Menu Iltem

The View menu item contains commands primarily used for choosing which
elements of the Monitor window to display.

Windows Host UNIX Host
“ File Plat | View Window Help _ Eile View | Signal Installation
IT Main Toolbar - ToolBar

IT Plats Toolbar

= Status Bar
IT Monitor Window Toolbar

Y
IT Status Bar |_J Signal Tree
™ signals Bar Take Snapshot...

1l Pause Data
Il Fause

The following menu options are available in both Windows and UNIX hosts:

Main Toolbar (Toolbar in UNIX hosts)

Controls whether the toolbar representing a selection of items from the File
menu is displayed on the Data Monitor toolbar. For more information, see
3.2 Toolbars, p.40.

Status Bar

Controls whether the status line along the bottom of the window is visible. For
more information, see 3.7 Status Bar, p.78.

Signals Bar (Signal Tree in UNIX hosts)

Controls whether a Signals Bar panel appears in the window. The Signals Bar
(see Signals Tab View, p.178) includes tabs for Signals and Properties. For more
information, see Signals Bar, p.178.

Pause

Stops updates to the table in the Monitor window. It does not stop data
collection, but merely stops new data from appearing in the table. To resume
normal display, unselect the button.

Additional options for Windows hosts only are:

177

Wind River Workbench Data Monitor
User's Guide, 3.0

= Plots Toolbar

Controls whether the toolbar representing a selection of items from the
File > Plot menu command is displayed on the Data Monitor toolbar. For
more information, see 3.2 Toolbars, p.40.

= Monitor Window Toolbar

Controls whether the toolbar used within a specific data-display window is
visible. The buttons represent items from the Plot and View menus for the
specified data-display window. For more information, see Toolbar, p.175.

Additional options for UNIX hosts only are:
= Take Snapshot

Saves a copy of all the active signals. You can display the snapshot in the
Plot XY window along with real-time data. For more information, see
11.2 Utilizing Snapshots, p.185

Signals Bar

The Signals Bar is a sub-window in the Data Monitor GUI that allows you to view
and configure information that affects what signals appear in the data-display
table. If a Signals Bar panel is not displayed, you can open one using the

View > Signals Bar menu option (or the Signals Bar button).

The Signals Bar contains the following tab views:
» Signals Tab View
» Properties Tab View

Signals Tab View

The Signals Tree in the Signals tab view displays all the signals available to be
plotted.

178

10 The Monitor Window
10.2 Monitor Window Tour

Signals Tree
E|--- Live
B[% 10,3068, 144:0
-1 €p DifferentTypes
H-C1 g offset
-0 €p Pointer
----- Sine
----- Cosine
----- Sine2T
----- Pos
----- PosDesired
----- Wl
----- O ac
----- PosiGain
----- YelGain
H-C € sinGroup
| i

The Signals Tree is displayed by default when you open a Monitor window, but it
may be re-displayed at any time by clicking the Signals tab at the bottom of the
sub-window.

The Signals Tree allows you to select any signal that has been installed and add it
to the list of signal values. Each node of the tree (as well as each signal) has a check
box. Selecting the check box for an individual signal adds that signal to the graph,
or, conversely, clearing a check box removes that signal from the graph. If you
select a node check box, all the signals belonging to that node (including their
nodes below it) are selected at once and those signals are added to the graph.
Conversely, clearing a node check box removes all signals below that node from
the graph with the single click.

If a node check box is selected, but has a grey fill, it indicates that some, but not all,
of the signals belonging to that node are selected and displayed on the graph. You
may have to scroll down to see which ones are selected.

The Signals Tree is expanded or collapsed using the icon to the left of each node
check box as follows:

n,n

. +" = collapsed; select to expand down to the next node(s).

"on
n -

= expanded; select to collapse up to this node.

179

Wind River Workbench Data Monitor
User's Guide, 3.0

The Units column in the Signals tab view shows the physical measurement units
of each signal.

The Signals Tree is displayed by default when you open a Monitor window, but
it may be re-displayed at any time by clicking the Active Signals tab at the bottom
of the sub-window.

Properties Tab View

You can view and change the properties for the currently open Monitor window
by clicking the Prop(erties) tab in the Signals Bar.

Windows Host UNIX Host
Signals Bar x| Bl]
E Monitor Properties Property Value
Dizplay accuracy 4 El Monitor Properties
tanitor rezolution 1000000 Resolution (secs) 1
Allows writeback True - WriteBack True

Display Accuracy 4
WriteBack Warnings [True
Display Int as Hex True
Display Char as Hex [True

B Signals

Active Signals | Properties I

The following menu options are available in both Windows and UNIX hosts:
= Display accuracy

Controls the number of significant digits displayed in the table. Set this

property to the number of places you want displayed to the right of the

decimal point. Enter a value between 0 (for integer numbers) and 6. The
default is 4.

= Monitor resolution

Controls how often, in seconds, to refresh the values in the Monitor window.
The default is 1.000000.

= Allow writeback

Select True to create a Writeback column for writing modified signal values
back out to the target. The default is False.

180

10 The Monitor Window
10.3 Writing Data to the Target

Additional options for UNIX hosts only are:
= Writeback Warnings

Controls whether or not a warning is displayed before each WriteBack
attempt. The default is True.

= Display Int as Hex

Controls whether or not to display integer values in hexadecimal. The default
is True.

= Display Char as Hex

Controls whether or not to display char variables in hexadecimal. The default
is True.

To modify any value, just type directly into the text field. Any changes you make
in this window have no effect on any other open Monitor windows.

To change the defaults used when new Monitor windows are created, see
10.4 Setting New Monitor Window Preferences, p.182.

10.3 Writing Data to the Target

A

Data Monitor provides you with Writeback, a very powerful feature with which
you can change the values of variables on the target as your program runs.

WARNING: Modifying values in a running program is powerful, but can be
dangerous. Be very careful. You should realize that the wrong value may be
written by accident, either by you or by the Data Monitor program. This could be
caused by a mistyped entry, an error in determining the correct address or type for
a variable, or a bug in the Data Monitor program itself.

THIS FACILITY SHOULD NOT BE USED TO CONTROL SAFETY-CRITICAL
SYSTEMS. Use it at your own risk!

A message to this effect will be displayed when a value is written. You can disable
this message using the check box in the Warning dialog box that opens.

181

Wind River Workbench Data Monitor
User's Guide, 3.0

Using Writeback

To enable and use the writeback feature, follow these steps:

1. Make sure Writeback is set to True in the Properties tab view of the
Signals Bar (see Properties Tab View, p.180). This causes the Writeback column
to appear in the table.

2. Enter a value in the Writeback column for the desired signal at any time. It can
be a number or the name of another signal. In the latter case, the last available
value of the named signal is used.

3. With the mouse pointer inside the Writeback field, press the Enter key to write
the value to the target. (The warning message above is displayed first.)

Writing a value with the Monitor window changes the value of the variable in the
target memory. The change occurs asynchronously (when the data arrives).

10.4 Setting New Monitor Window Preferences

The Preferences dialog box allows you to set default parameters for new Monitor
windows when they are created (whereas the properties described in this chapter
apply only to currently open windows).

The Monitor Preferences panel allows you to change these default values.

182

10 The Monitor Window
10.4 Setting New Monitor Window Preferences

x
Gooea StethoScope

Colars
- Camm Pluglns Default Manitar Properties

- Plot Pluglnz .
.. Dump Plat Fiesolution [zecs] I
- Plot .
e Display Accuracy
I anitar (digits) I4

[Allow writeback

Cancel |

These preferences have no effect on Mini-Monitor windows within Plot windows,
or already open Monitor windows. (To change these values on Monitor windows
you have already created, see Properties Tab View, p.180.)

To modify these preferences, open the Data Monitor Preferences dialog box with
the File > Preferences menu command (or the Preferences toolbar button; see

Main Toolbar, p.40), then click Monitor in the left panel to set the following options:

= Resolution (secs)

Controls how often (in seconds) to refresh the values in the Monitor window.
The default is 1.

= Display Accuracy (digits)

Controls the accuracy of values displayed in the table. Set this property to the
number of places to the right of the decimal point to use. Enter a value between
0 (for whole numbers) and 6. The default is 4.

= Allow Writeback

Check box controls whether or not you can use the Monitor window to write
modified signal values back out to the target. Opens a Writeback column in
the table if selected. The default is unselected.

183

Wind River Workbench Data Monitor
User's Guide, 3.0

184

11

Working with Snapshots

11.1 Introduction 185
11.2 Utilizing Snapshots 185

11.1 Introduction

This chapter describes the taking and processing of snapshots in detail.

11.2 Utilizing Snapshots

For all connected targets, a snapshot saves all the data collected for all active
signals since the current Data Monitor session began. You can display snapshots
in the Plot and Plot XY windows, along with live data and other snapshots. This
makes it easy to compare test runs. You can save snapshots in four different
formats for use in other applications. You can take snapshots, save snapshots to
disk, and load snapshots from disk.

185

Wind River Workbench Data Monitor
User's Guide, 3.0

Taking Snapshots

A snapshot is not directly labeled as such, but rather it shows up selected at the
bottom of the Signals tree. An example of a snapshot is shown here.

When the snapshot is inserted at the bottom of the Signals
Tree, it is selected and the live buffer is unselected

StethoScope - Plot 1

File Plot Wew ‘Window Help |

¥ SH["% v e @ ||DE0m |- eEEEL E w5

_I 225 275

Signals Tree | U

325 a

----- PosGain
VelGain
& SinGroup
/1€y Event
EQ Snapshot 1

- % 10,30.68.144:0
-0 4 DifferentTy...
- @ Offset

-0 4 Pointer

Sine

Cosine
SinezT

W Pos I | B

- PosDesired
W vel
Acc ﬂ
20 225 25 275 30 jcieial -
b

Signal Marne | alue

0.5

o

0.8

Timestamp
;I 341
35.13
36.13
37.13

= [3513

=] 39.13 i

|Ready | x=19.600868, y=1.508427

The Snapshot Process

When you connect to a target, Data Monitor collects active signals and stores them
in the live data buffer. Taking a snapshot creates a copy of that live buffer. And
since the live buffer includes all active signals, the snapshot buffer also includes all
active signals, even though only selected signals actually appear in the plot.

186

11 Working with Snapshots
11.2 Utilizing Snapshots

There are multiple ways to take a snapshot, as follows:
= Using the Take Snapshot button (g) on the toolbar.
= Using the Plot > Take Snapshot menu command.

» Using the File > Save Snapshot menu command, with Snapshot type set to
Live and the Write field set to Immediately, in the middle of this cycle.

» Using the Triggering dialog box to configure and arm a trigger and set
automatic Snapshot.

When you take a snapshot, all of the live data received is copied into a temporary
snapshot buffer. No event data other than the collected event identifiers is stored.

What happens next depends on the Take Snapshot settings in the
Plot Preferences panel of the Preferences dialog box (see 7.6 Setting New Plot
Window Preferences, p.134), but the following describes the default behavior.

In the Signals Tree, the live buffer becomes deselected and the snapshot is added
at the bottom of the Signals Tree and becomes selected.

The plot grid area switches from displaying the live buffer to displaying the newly
saved snapshot. While the live buffer is no longer shown as selected in the Signals
Tree, real-time data is still being collected in the live buffer.

NOTE: When the snapshot is first displayed on the grid, it shows all active signals.
Nothing is wrong with the display even though it may look quite cluttered. You
likely want to select only the signals you want to view in the same manner used
for selecting live signals.

You can display the live buffer, plus multiple snapshots, all at the same time. This
makes it easy to compare previous runs with real-time runs.

Snapshots are automatically given temporary storage names such as snapshotl,
snapshot2, and so forth. You can change the names when you save the snapshots
to disk.

Snapshots are in temporary storage until, and unless, you save them to disk, as
described in the next paragraph. Any snapshots you do not save before exiting
Data Monitor will be lost.

Saving Snapshots

While the Take Snapshot command creates a copy of real-time data in a temporary
buffer, the Save Snapshot command stores that buffered data in your file system.

187

Wind River Workbench Data Monitor
User's Guide, 3.0

NOTE: The snapshot data in the temporary buffer will be lost when you exit Data
Monitor if you do not save it to a file first.

Save Snapshot Dialog Box

The File > Save Snapshot menu command (or the Save button) opens the
Save Snapshot dialog box.

Windows Host

x
Filename: oK I

|EI:\WindHiver\UntitIed.ss?.gz :
Wwirite |
— Snapshat
Cancel |
Snapshot
Wiite [Immediatel, in the middle ofthis cyole = [T0 secs
RunTile |Unnamed
~Data

& \iite signals and events

' Wfrite signals only

' Wfrite events only

™ Reset buffers after wiiting [live buffers anly]

— Output
Farmat IStethoScope 7.0 Compressed [.237.92) j
Directory IE:\W’indHiver\ |

Baze Mame IUntitIed

Extension I MHone ' l

Session Notes:

188

11 Working with Snapshots
11.2 Utilizing Snapshots

UNIX Host
[~ ST x|
Filename: oK
|,i’svl—st—linuxdevl,i’sthome,i’mxiaMindRiver,-‘Untitled.ss?
~SnapShot soll
SnapShot: Live _"'l Cancel |
. -
Write: After x seconds _"'l IO z’ Help |
Run Title: |[BTERIINe!
—Qutput
Format: StethoScope (*.557) _"'l
Directory: Ideevllsthome,’mxiajWindRiverl ’j
Base Name: IUntitIed
Extension: None _"'l

Session Notes:.

L J

The Save Snapshot dialog box contains the following panels:

Filename Panel

This read-only text box shows you the filename that will be used when you click
Write. As you make selections in the Output panel, the resulting filename is
changed.

Snapshot Panel

The fields in this panel are used to select which snapshot (or live buffer) to save,
when to save it, and what name (Run Title) to associate with it.

The Snapshot panel controls when snapshots are taken, with respect to the data
collection cycle. The Snapshot panel contains the following fields:

= Snapshot

Use this drop-down menu to select which snapshot to save. You can save a
snapshot you have already taken, or choose to save the live buffer. The list box

189

Wind River Workbench Data Monitor
User's Guide, 3.0

includes the live buffer, any snapshots already taken, and any snapshots you
have loaded from disk.

Write

Use this drop-down menu to choose when data will be written after the Write
button is clicked.

In both Windows and UNIX hosts, the following options are available:

— Immediately, in the middle of this cycle
This is the default setting. This setting causes the data to be written to the
output file immediately after the Write button is clicked, regardless of the
amount of data available. An error occurs if there is no data at all.

— Every X seconds, X specified to the right
This setting provides a way to store data periodically. Data is written every
X seconds, where X is specified in the field to the right. The write field
becomes available for entering the number of seconds between snapshots.
The Write button is labeled Stop Writing after Data Monitor starts writing
data to the files. Click the Stop Writing button to terminate storing data.

In UNIX hosts only, the following option is also available:

- After X seconds
This setting provides a way to store the snapshot upon a delay of X
seconds after the Write button is clicked, where X is specified in the field
to the right.

Run Title

Use this text box to label the snapshot. The run title is stored with the data. It
may be used by data-analysis programs to identify the data set.

Data Panel (Windows Hosts Only)

In a Windows host, this panel offers choices for saving displayed data, as well as
causing the live buffer to be reset after writing. The options are:

190

Write signals and events

Saves any signals and events displayed in the GUI to a specified file.
Write signals only

Saves signals only to a specified file.

Write events only

Saves events only to a specified file.

11 Working with Snapshots
11.2 Utilizing Snapshots

= Reset buffers after writing (live buffers only)
For live buffers only, you can check the check box to reset the buffers after
taking the snapshot.

Output Panel

The Save Snapshot dialog box provides automatic file-naming facilities that make
saving multiple data buffers convenient. The resulting pathname and filename
appear in the read-only Filename text box at the top. The fields in this panel
specify the format, path, and name of the saved snapshot file.

The options are:
* Format
You can save snapshot files in the following formats:

— Data Monitor 7.10 Compressed (.ss7.gz)

This native format, which is XML, is the default. Files written in this
format can be re-loaded into Data Monitor for later viewing, for
comparison to live data, or for export to other formats. Files in Data
Monitor format use the extension .ss7. The default format is a compressed
version of the Data Monitor native format, with the extension .ss7.gz.

- MATLAB

This is a commercial data-analysis program from The MathWorks, Inc.
When data is saved in MATLAB format, two files are created—a data file
with a .mat extension and a script file with a .m extension.

- ASCII

Human-readable ASCII format is also supported. Files written in this
format have a .txt extension. ASCII files may be used to import Data
Monitor data into many popular spreadsheet programs.

CAUTION: Files in ASCII format can become very large; be careful!

~ MATRIXy

This is a commercial data-analysis program from the National Instruments
Corporation. When data is saved in MATRIXy format, two files are
created—a script file with a .ms extension and a data file with a .xmd
extension.

191

Wind River Workbench Data Monitor
User's Guide, 3.0

Directory

Click the browse ("...") icon to select the path for the output file.

Base Name

You can enter a filename in this text box. This is called the base filename
because you can add automatic extensions, as described below.

Extension

Data Monitor can automatically alter the base filename to help you identify
your data later. The Extension drop-down menu determines how the new
base names are produced.

The possible settings are:

None

The Base Name string is not changed.

Time stamp

The date and time are appended to the Base Name.
Cycle 0-9

If the Base Name does not end in a digit already, Data Monitor appends a
0 to the name. After each store operation, the digit is incremented. Once
the digit reaches 9, it is reset to 0. Using this option, the most recent ten
buffers are saved with unique names.

Increment

If the Base Name does not end in a number, Data Monitor appends a 0 to
the name. After each store operation, the number is incremented, creating
a unique name for each save.

Session Notes Panel

The notes you enter in this text box can help you keep track of a series of snapshots.
Session notes are intended to describe the conditions over a series of collected runs
or buffers. Useful session notes, for example, might be:

192

Session notes:
These runs employ the non-linear friction model.

Both force sensor filters are active, at 20 Hz.

11 Working with Snapshots
11.2 Utilizing Snapshots

Other useful notes include code fragments and information that clearly identifies
the data. Any text on the screen may be pasted into the notes panel via standard
cut and paste operations.

Formatting Filenames

Output filenames for snapshots consist of the word Snapshot concatenated with
an integer number, starting at 1 and increasing by 1 with each new snapshot (see
the example snapshot in the first figure above).

Loading Snapshots

Snapshots that have been saved to disk in the native Data Monitor format (.ss7)
can be reloaded for viewing in the Plot or Plot XY windows. The

File > Load Snapshot menu command (or the Load button), described in

Load Snapshot, p.45, displays the Open dialog box, where you can navigate to the
snapshot file you want to load.

Exporting Snapshots in MATLAB and MATRIXy
When you save a snapshot in MATLAB or MATRIXy format (see Output Panel,
p-191), two files are created:
» A script file (.m extension for MATLAB, .ms extension for MATRIX)
» A data file (.mat extension for MATLAB, .xmd extension for MATRIXy)

Running the script file within MATLAB or MATRIXy loads the data and creates
named vectors that correspond to each signal name saved from the buffer. This
section describes the notes and variables created by the script.

MATLAB Script Example

The MATLAB script, varplot.m, provides an example of a simple m-file program
that utilizes stored Data Monitor data (see D. MATLAB and MATRIXX Examples).
This script creates a plot, as shown here.

193

Wind River Workbench Data Monitor

User's Guide, 3.0

Newtons

0.2 h \H/
-0.4
-0.6

-0.8 -

Uncontrolled Dynamic Payload - Sun May 13 17:18:47 1990

[ForceX (Newtons) |
0.8 P ForceY (Newtons) |

0.6

0.4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (seconds)

Creating Variables

Running the script file generated when you save a snapshot in MATLAB or
MATRIX format creates the following variables:

194

data

The raw data as a two-dimensional matrix.
signals

The script decomposes data into individual arrays that correspond to the
signal in the data buffer. The variable names are the same as the original signal
name, except illegal characters are replaced with underscore characters. For
example, a signal named, xdes[3] will be converted to the variable name,
xdes_3_in MATLAB or MATRIXj.

numberOfSamples

The length of each signal. This is the number of samples collected in a buffer
cycle.

11 Working with Snapshots
11.2 Utilizing Snapshots

* numberOfSignals
The number of signals saved in the data buffer.
= time
A vector of time values for each sample.
* names
A string array of the signal names.
= timestamp
A vector of time values for each sample.
* units
A string array of the units for each signal.

= timestamp

A string denoting the data-collection date and time.
= filename

A string representing the name of the data file, without the filename extension.
* runtitle

A he run title as displayed in the Run Title field.
* notes

A character array containing each line of the session notes.

NOTE: Limitations on the size of variable names in MATLAB or MATRIXy may
cause signal names to be truncated. If the truncation results in name clashes, then
some signals may not be accessible by name as an individual array. In such cases,
you still can extract the signal from the data matrix with a statement, such as:

ShoulderVel = data(:,2);

Creating Notes

The script file contains the following commands that create character-array
variables for the run title and session notes, which are both entered on the Save
Snapshot dialog box (see Saving Snapshots, p.187):

195

Wind River Workbench Data Monitor
User's Guide, 3.0

= runtitle
Contains the run title.
= notes
Contains the session notes.

This makes it very easy to view your notes from within these analysis programs.

Deleting Snapshots

If you want to delete a snapshot from the Plot window, do the following:

1. Right-click the snapshot node in the Signals Tree to open a pop-up menu.

Windows Host

Right-click the Signal

k]

Signals Tree | in the Signals Tree to
=-C] € SinGroup d open a pop-up menu,
-] € Event then select Disconnect
-7 ®) snapshet 1 to delete the snapshot

=My
-] €y DifferentT
w14 offset
w14 Pointer
Sine
Cosing
SineZT

Disconneck

0
o
P
[}
1)
u,
=
o
(=5

4K

LI

B Signals I@ Legend IProp |

196

11 Working with Snapshots
11.2 Utilizing Snapshots

UNIX Host

SignalsBar ___________F
g

Signals

=T sin

LE' e ¢ Event /

[=lSnapshot 1 /
L85l 7 vxsim2 @ svi-st-linysta

@ vxKernel:0x60] Disconnect

Square Rename Target
Sine v

Cosine
Sine2T
Sine3T

M Pos

M PosDesired
Vel
Acc

e ¥ sin

e 4 Event 2

=] |

Active Signals IEropenies I

DOoRROOOO0

3 3 3 3 < < o

Right-click the Signal
in the Signals Tree to
open a pop-up menu,
then select Disconnect
to delete the snapshot

2. Click Disconnect in the pop-up menu to delete the snapshot from the Signals

Tree.

3. Ina UNIX host only, click Rename Target to assign a new (perhaps more
descriptive) name to the target for this snapshot.

You will not be able to retrieve this snapshot unless you previously saved it, as

described in section Saving Snapshots, p.187.

197

Wind River Workbench Data Monitor
User's Guide, 3.0

198

12

Displaying Remote Kernel
Metrics

12.1 Introduction 199

12.2 Building an RKM Monitor Program 199
12.3 Viewing RKMs with Data Monitor 205
12.4 Troubleshooting 208

12.1 Introduction

Remote kernel metrics (RKMSs) are operating system signals (metrics) that are
dynamically collected by the RKM_monitor (or rkm_monitor_linux) target agent.
The metrics can be displayed in real-time utilizing the full-color features of the
Data Monitor GUI included with Workbench. For a description of signals available
for monitoring, see Appendix E. RKM Signal Definitions

12.2 Building an RKM Monitor Program

To create remote kernel metrics, you must first build one or more RKM monitor
programs using Workbench. The following sections describe how to do that.

199

Wind River Workbench Data Monitor
User's Guide, 3.0

On a VxWorks Target

For VxWorks, the RKM monitor supports two types of connections—TCP/IP and
WTX. Typically you would use the TCP/IP connection unless you are using the
VxSim simulator, in which case you should use the WIX connection. Actual
VxWorks target connections can use either connection but TCP/IP is faster and
does not require the debug server to be running.

Use VxWorks Downloadable Kernel Module (DKM) projects to manage and
build modules that will exist in the kernel space. You can separately build the
modules, then run and debug them on a target running VxWorks, loading,
unloading, and reloading on the fly. Once your development work is complete, the
modules can be statically linked into the kernel or use a file system if one is present.

Refer to the Wind River Workbench User’s Guide: VxWorks Version for information on
the available DKM sample projects, and using one of them to create an

RKM monitor program whose execution can then be analyzed using Data
Monitor.

Building the RKM Monitor for VxSim

The following procedure uses VxSim and the WTX connection type to demonstrate
RKM monitor usage under VxWorks.

1. Start Workbench.
2. Select File > New > Example from the Workbench menu bar.

3. Inthe New Example dialog box that opens, select
VxWorks Downloadable Kernel Module Sample Project and click Next.

4. Select RKM (Remote Kernel Metrics) Monitor Program (WTX) under
Available Examples for this procedure, since VxSim is to be used as our
target. Be sure to read the text in the Information panel to the right.

5. Click Finish.

A new rkm_monitor_wtx (Wind River VxWorks 6.6) project is created. Its
elements are shown in the Project Explorer view.

6. Select the project, set the active build spec (using the &# icon) to either
SIMNTdiab or SIMNTgnu depending on your compiler, and build the
project.

200

12 Displaying Remote Kernel Metrics
12.2 Building an RKM Monitor Program

Downloading the Data Monitor Libraries and the RKM Monitor

The VxWorks RKM Monitor requires two Data Monitor shared libraries,
scopeutils.so and libscope711wtx.so, in order to run. You must download both of
these files, in the indicated order, before downloading the RKM Monitor. This can
be done automatically, using the Data Monitor Connect to Target dialog box, or
manually using the Workbench Download menu command.

Automatically

To load the libraries automatically, follow these steps:

1. Start a VxSim connection.

2. In the Remote Systems view, right-click the target name and select
Connect Data Monitor from the menu that opens.

3. Inthe Data Monitor Setup Options dialog box, set the options as follows:
Set Scope index to the default 127 if it is not already.
12
b. Set Connection type to WTX, the type used for a Vx5Sim target. -

c. Deselect the Start Data Monitor GUI option at the top of the dialog box.
(If you wanted to start the Data Monitor GUI now, you would leave this
option selected, but in this case we are only downloading the libraries, so
be sure it is unchecked.)

d. Select the Load libraries only option.
e. Click OK.
This automatically downloads the libraries, but the Data Monitor GUI will
not be launched yet.
Manually
To load the libraries by hand, follow these steps:
1. Starta VxSim connection.

2. Inthe Remote Systems Explorer view, right-click the VxSim target and select
Download in the menu that opens.

3. Inthe Download dialog box, click Browse and navigate to the scopeutils.so
library, then click OK. Do the same for the libscope711wtx.so library. They are
typically located in the

install-dir / scopetools-6.0/target/arch/simntVx64gcc4.1.2 directory.

201

Wind River Workbench Data Monitor

User's Guide, 3.0

In the Remote Systems Explorer view, right-click the VxSim target and select
Download in the menu that opens.

In the Download dialog box, click Browse and navigate to the
rkm_monitor_wtx.out file and click OK. It is typically located in the install-
dir /workspace/rkm monitor_ wtx/SIMNTgnu DEBUG directory.

If you expand the SIMNT node, the two library files described above appear in the
Remote Systems Explorer view, and if you expand the Kernel Tasks node, the
RKM_monitor task appears.

Once you have downloaded these files, you can start the monitor.

Starting the RKM Monitor Using Workbench

Once you have built the RKM monitor project, and have VxSim running (by
creating a VxSim target connection), you can start the monitor as follows:

1.
2.
3.

In the Remote Systems Explorer view, select the VxSim connection.
Select Target > Run > Run Kernel Task from the Workbench menu bar.

In the Main tab view, select the VxSim target in the Connection to use drop-
down menu, and enter RKM_monitor in the Entry Point field.

Click Run.

Expand Kernel Tasks under SIMNT in the Remote Systems Explorer view
and you should see the RKM_monitor kernel task running. You can also enter
the command RKM_list in the VxSim window for additional verification.

Controlling the RKM Monitor Using VxSim

In the VxSim window, you can use the following commands to control the RKM
monitor:

202

RKM_monitor—Starts an RKM monitor with the default options.
RKM_1list—Lists all monitors which are currently running.
RKM_shutdown—Stops all RKM monitors.

RKM stop index—Stops the RKM monitor using index number index,
where index is a number from 0 to 127 (the default).

RKM_monitor options—Starts an RKM monitor with options, specified
within double-quotes.

RKM monitor -help—Displays the RKM monitor options.

12 Displaying Remote Kernel Metrics
12.2 Building an RKM Monitor Program

For example, the following sequence of commands starts an RKM monitor with
with a non-default port, shows that it is running, and then stops it.

-> RKM_list

value = 0 = 0x0

-> RKM_monitor “-index=125"
value = 0 = 0x0

-> RKM_list
Monitor[125] is running
value = 0 = 0x0

-> RKM_stop 125

value = 0 = 0x0

-> RKM_list

value = 0 = 0x0

->

NOTE: The RKM_monitor in the above example was started with a specific index
(port) number 125 (the default is 127). Using this feature, you can run multiple
monitors simultaneously on your target, which has several advantages. You might
want to configure one monitor, for example, to collect a few signals for all
processes at a low sampling frequency, and configure another to sample a
complete set of metrics for a few processes at a high frequency.

By specifically selecting the signals you want to monitor, you can reduce the
memory, CPU, and network resources required to monitor the large set of signals
selected by default. In addition, the source for the RKM monitor is included so you
can create versions that monitor specific signals that are not made available by the
default configuration, or even monitor specific portions of your application.

For example, to start an RKM monitor with index 125 to monitor only the system
metric tracking the number of tasks on the system, taking 10 samples every second:

->RKM monitor “-index=125 -sysmetrics tasks -samples=10”

When you attach Data Monitor to the RKM monitor invoked for specific metrics,
you will be able to view only those metrics in Data Monitor.

On a Linux Target

The RKM monitor acquires its data from the /proc filesystem on the target. If you
do not have a /proc filesystem on your target, you may simply need to mount it, or
you may need to rebuild your kernel to include it.

To mount the /proc filesystem, use the mount command as follows:

mount -t proc proc /proc

203

Wind River Workbench Data Monitor
User's Guide, 3.0

If your kernel does not have /proc support built-in, you must re-build the kernel
and enable it in the File system configuration section of your kernel configuration
tool.

The RKM monitor agent is supplied in a Workbench sample project. Use the
following procedure to build the RKM monitor and then run it on your Linux
target.

NOTE: This procedure assumes the results of your project build are available on
the target, for example by locating your workspace on a shared NFS mount. It also
assumes you have created a connection to the target in the Workbench

Remote Systems Explorer view and have specified the target-host root filesystem

mapping.

1. Start Workbench.
2. Select File > New > Example > Native Sample Project, and click Next.

3. Select The RKM (Remote Kernel Metrics) Monitor Program, and click
Finish.

NOTE: Be sure you select the C++-Linker if you are building the rkm_monitor
example project.

4. In the Project Explorer view, right-click rtkm_monitor_linux and select
Build Project.

5. Select Run > Run, and select Process on Target.

6. Inthe Main tab, name it something like rkm_monitor_linux and choose your
target connection from the Connection to use pull-down menu.

7. Click Run, and rkm_monitor starts on the target as shown in your Debug
view.

Running the RKM Monitor From the Command Line

You can also start the RKM monitor by specifying it on the command line. To see
the various options available, enter the following from the directory containing the
rkm_monitor_linux executable that you built:

$./rkm _monitor_linux -help

For example, to start the RKM monitor with a different index value, say 125 instead
of the default 127, enter:

204

12 Displaying Remote Kernel Metrics
12.3 Viewing RKMs with Data Monitor

$./rkm monitor linux -index=125 &

In this way you can run multiple monitors which has several advantages. You
might want to configure one monitor, for example, to collect a few signals for all
processes at a low sampling frequency, and configure another to sample a
complete set of metrics for a few processes at a high frequency.

By specifically selecting the signals you want to monitor, you can reduce the
memory, CPU, and network resources required to monitor the large set of signals
selected by default. In addition, the source for rkm_monitor_linux is included so
you can create versions that monitor specific signals that are not made available by
the default configuration, or even monitor specific portions of an application.

As another example, you might only want to monitor memory usage for the root
user, taking 10 samples every second:

S ./rkm monitor linux -samples=10 -processes user=root -sysmetrics memory &

When you attach Data Monitor to the RKM monitor invoked as shown, you will
only be able to view root memory usage.

12.3 Viewing RKMs with Data Monitor

Each RKM monitor program created using Workbench, as described in Section 12.2
above, can be used to generate any or all of the metrics signals described in
Appendix E. RKM Signal Definitions. RKM monitor programs are created to
display their output specifically using the Data Monitor real-time graphical
monitoring tool. In the case of multiple RKM monitor programs you may wish to
run concurrently, each must be connected to Data Monitor using a unique port
connection (in the range of 0-127).

For a list of the metrics available for viewing, use the RKM_monitor help by
typing:
->RKM Monitor "-help"

You can also refer to Appendix E. RKM Signal Definitions for a description of all the
RKM metrics.

205

Wind River Workbench Data Monitor
User's Guide, 3.0

On a VxWorks Target

Starting Data Monitor GUI with a WTX Connection

You can start the Data Monitor GUI using the Workbench main menu (see Starting
Automatically, p.11). Be sure to select Load libraries only in the Connect to Target
dialog box, and also remember to check that Start Data Monitor GUI is also now
selected.

Alternatively, you can create a desktop icon to start the Data Monitor GUI and
connect it to the target. Because the WTX version requires some VxWorks
environment variables to be configured, it is easier to create an icon which invokes
the Data Monitor program using a VxWorks Development shell.

For example:

C:\PATH\wrenv.exe -p vxworks-6.6 scope.exe -index 127 -verbosity 0

-tgtsvr vxsim0@HOST -wtxMode
Note that you have to enter the correct information for your path to wrenv.exe and
also your host information.

Using Data Monitor to View Remote Kernel Metrics

The primary navigation tool for Data Monitor is the Signals Tree in the upper-left
corner of the Data Monitor GUI. When RKM signals are installed and selected,
they appear in the Signals Tree (see Working With Signal Trees, p.82). As an
example for viewing these signals with Data Monitor, do the following:

1. In the Signals Tree, expand vxsim, vxKernel, System, and then Tasks.

2. Check the Tasks group to automatically check all of the metrics under Tasks
(that is, tasks, ready, suspended, stopped, pending, and delayed), or select
only the desired signals within the Tasks subgroup.

These signals show in the GUI as the total number of tasks running, followed
by the number of tasks currently in each of the remaining five states, all
displayed dynamically with respect to time in the real-time graph.

3. Select the Zoom to Fit icon to adjust the graph window boundaries to include
all the signals.

The signals selected in the Signals Tree should now appear in the same graph,
being updated in real-time.

The example RKM_monitor data described above, and displayed in Data Monitor,
is shown here.

206

12 Displaying Remote Kernel Metrics
12.3 Viewing RKMs with Data Monitor

StethoScope - Plot 1 ;Iglll

File Plot Wiew Window Help |

¥ @ =" xv o |“EI@EI|“++ RIS @|

20 1228 126 1278 120 1328 ;I

W wxsimD@svl-grood-di:127
& vakernel:0x10179ce0

S
&y Tasks

tasks
W ready
W suspended
O stopped o
B pending

W delayed
-0 4 objects (} (} (} (} (} (} (} (} (} (}
-0 € Memory
2Oy kernel o o
5[] 4y tlobTask:0x1036 ﬂ

LI_I L 20 1225 1258 127 .5 130 132.5 =
®signals | (2] Legend | E&'Rrop iI I 5 I_I

El

10
10

ﬂ Timestarnp | B vxkernel:... I B exkernel... | B~ ﬂ Signal Marne |Value
135.5 10 z a B vekernel:0x 101 79ce0)Syskem, ., | 10
136.8 1o 2 0 B vekernel:0x 101 79ce0)System, ., 2
ig;g ig 2 g W vekernel:0x10179ce0)System, ., O

| | _;lj W vKernel:0x10179ce0)System, ., 2
4 =

|Ready [|x=111.7e6968, y=-2.249438

Note that a color swatch next to each signal in the Signals Tree has a unique color
associated with that signal. This color is used for the corresponding line in the
graph. The MiniMonitor view lists the current values of monitored signals and the
MiniDump view lists the value of each signal at each sampling.

By default, when any new processes are started they are added to the monitor.
Note, however, that the buffer is reset when new signals are added, so you lose the
history of what you had been monitoring. You can avoid this by, for example,
monitoring only your own processes with appropriate command line options.

On a Linux Target

Attaching Data Monitor to the RKM Monitor

For a Linux target, use the following procedure to view the remote kernel metrics
in the Data Monitor GUL

207

Wind River Workbench Data Monitor
User's Guide, 3.0

1. With rkm_monitor running on the target, start Data Monitor (refer to the steps
outlined in 2.3 Starting Data Monitor, p.10 if needed).

2. Select the correct target connection from the pull-down menu in the Linux
Data Monitor Setup Options dialog box.

3. Enter 127 as the index value. This is the default to use for Data Monitor with
the RKM monitor. Use a different index number if you want to run another
monitor on the target; this allows you to run multiple monitors on the target,
selecting them by index number.

4. Click OK.
The Data Monitor GUI opens.

Using Data Monitor to View Remote Kernel Metrics

The Data Monitor GUI displays data nearly identically the same for a Linux target
as for a VxWorks target. Therefore, the display of RKM_monitor data described in
On a VxWorks Target, p.206 above accurately and adequately serves to describe the
results on a Linux target.

12.4 Troubleshooting

This section describes specific error conditions and their remedies, some for
VxWorks targets only, and some applicable to all targets.

On a VxWorks Target

Loading Libraries Only

If you have difficulties displaying RKM data from a VxWorks target, the first step
in debugging is to check if you started Data Monitor with the Spawn sampler task
option selected in the Data Monitor Setup Options dialog box (see Starting
Automatically, p.11). The RKM module starts up with its own self-contained
sampler task, so if you started Data Monitor with this option, failure of the RKM
module is certain. The error message:

Signal Buffer Signal New: Out of memory. Increase signal buffer size.

208

12 Displaying Remote Kernel Metrics
12.4 Troubleshooting

will help verify this as the problem. The Spawn sampler task option creates only
a small (2048-byte) signal buffer, enough for only a handful of signals. When Data
Monitor is started first, then handed off to the RKM monitor afterwards, this buffer
size cannot be increased during execution.

If this is the source of the trouble, restart Data Monitor with the
Load libraries only option selected. The RKM monitor can then specify the signal
buffer size that it needs.

A CAUTION: When viewing RKM signals, it is strongly recommended that the
Load libraries only option always be selected in the Data Monitor Setup Options
dialog box when you start the GUI in order to avoid encountering this error
condition.

On All Targets

Failed to install signal

The following error message may be observed in the Data Monitor GUI while
installing RKM signals on a VxWorks or Linux target:
Error: Failed to install signal "x".

There are currently Y installed signals (maximum of Z)

Approximate signal buffer usage: M out of N.
where x is the name of the signal it was unable to install, Y is the number of signals
successfully installed, and Z is the maximum number of signals the monitor can
handle without being restarted with a larger buffer size. RKM tells you how many
bytes (M) are being used out of a signal buffer size of N bytes.

If you receive the above mentioned error message, the solution is to call
RKM_stop, then restart RKM monitor using (-signalbuf=xxxx) where xxxxis
a buffer size (in bytes) sufficient to handle the number of signals you expect to
view.

Unpredictable Results with Multiple Targets

To help prevent multiple connected target data from outpacing each other on the
plot screen when they are sampling at the same rate, Data Monitor attempts to
automatically sync the sweep rates of all the targets. In many cases this will be a
straightforward operation, and the resulting plot will have lines reaching the right-
hand end of the screen at the same time, ready to erase the screen and start the next
20 seconds of plotting.

209

Wind River Workbench Data Monitor
User's Guide, 3.0

Sometimes, however, one or more targets will be sampling at a rate different from
what they say they are sampling at (52Hz when they said 50Hz, for example).
Using the samples from the first target to reach the end of the screen, Data Monitor
autosyncs by calculating the time difference between that and the last sample
received from each of the other targets. Each of the other targets is then shifted
forward in time to match, on a per-plot basis. This helps because, since samples are
sometimes not received at exactly the rate specified, they may be plotted ahead of,
or behind, where they would have if they were timestamped.

If you do not wish to see the data synchronized this way, plot the different targets
in different windows. That way, you will always be able to see the samples plotted
without any shifting.

NOTE: The above explanation holds true only for non-Strip Chart mode plotting.

In Strip Chart mode (see Strip Chart, p.122), Data Monitor does not autosync the
sampled data, as there is no end to the plotting screen (it is a continuous scrolling
area). Therefore, when targets are not providing samples at exactly the expected
rate, the samples from one or more targets will eventually become more than a
screen behind, and you will no longer see them. The location where a sample
appears at on the screen is a simple sample #/sample rate calculation, and thus
everything depends upon getting the right number of samples. In this mode the
buffers are initially cleared, so the sample at time 0 will be at the same time for all
targets.

For continuous saving of data, Data Monitor simply writes the samples in hand
when a cycle end event is declared. This is usually driven from one of the targets.

210

13

Using a VxWorks Target

13.1 Introduction 211

13.2 ScopeProbe Requirements 212
13.3 VxWorks Targets 213

13.4 Troubleshooting 220

13.1 Introduction

This chapter contains specific information applicable to the building and using of
target programs running on a VxWorks OS.

As an alternative to signal installation (see 15. Installing Signals), target programs
may instead be instrumented with commands from the Wind River Data Monitor
API, then recompiled. For details on the Data Monitor VxWorks API, see A. API
Reference: VxWorks.

211

Wind River Workbench Data Monitor
User's Guide, 3.0

13.2 ScopeProbe Requirements

In general, to build an application that is instrumented with the ScopeProbe API,
you need to:

Add the following include file to your code:
#include "scope/scope.h"
Add the following DEFINE to your makefile or project:
-D RTI_VXWORKS
Add include paths so the compiler can locate the scope.h include file:
-I SWIND_SCOPETOOLS_BASE/target/include/share/scope
Link or load the following libraries:

libutilsipz.a
libxmlparsez.a
libscope711tcpz.a

libutilsipz.lib
libxmlparsez.lib
libscope711tcpz.lib

For TCP/IP:

scopeutils.so (contains libutilsip.so and libxmlparse.so)
libscope711tcp.so

For WTX:

scopeutils.so (contains libutilsip.so and libxmlparse.so)
libscope711wtx.so

NOTE: A detailed implementation of some of these steps, as applied to the
VxWorks demonstration code vxdemo.c and its makefile, is shown in C. Data
Monitor Demo Program.

212

13 Using a VxWorks Target
13.3 VxWorks Targets

13.3 VxWorks Targets

The following sections discuss specific requirements for a VxWorks target
platform.

Building

The Wind River Run-Time Analysis Tools installation installs the required header
files into the Run-Time Analysis Tools installation tree. You do not need to link the
ScopeProbe libraries directly to your application. Instead, the ScopeProbe libraries
are loaded automatically when you click the Data Monitor button on the
Workbench toolbar.

The folder WIND_SCOPETOOLS_BASE\target\src\vxworks\scopedemo,
contains the source code for the demo program vxdemo.c that you can start from
Workbench, where WIND_SCOPETOOLS_BASE (an environment variable of the
same name) is the root of the tree where you installed the Run-Time Analysis
Tools. The directory also contains a makefile that you can use to compile the code.
We suggest you use this makefile as a template for compiling your code
instrumented with ScopeProbe API.

NOTE: For instructions on how to build vxdemo.c, see C. Data Monitor Demo
Program.

Automatic Loading and Running

Clicking the Data Monitor button on the Workbench toolbar starts the Data
Monitor GUI automatically, with no manual intervention. To start Data Monitor
automatically, follow these steps

1. In Workbench, click the Data Monitor button, then click OK.

This opens the Data Monitor Setup Options dialog box, allowing you to
configure the Data Monitor and ScopeProbe initialization parameters.

213

Wind River Workbench Data Monitor

User's Guide, 3.0

<Data Monitor Setup Dptions

[~ Connection

Scope indesx:

Target server:

G ey lh from the Data Monitor GUT or host shell,
‘Werbosity: ID - Silent 'l

[V Start Data Monitor GUI on the host:

I o
vasimD@va-grood-dl 'l

i~ Execution Mode
' Spawn sampler task

The sampler task repeatedly calls
ScopeCollectSignalst). You can then install signals

—Sampler Task
¥ Use aux Clack,

Data buffer size: I 32768 " Load libraies only
i ; I— Will simply load the required libraries, You could
el i €2 2045 then load your application module instrumented with
i I Data Monitor APT.
Sampling rate: =0

Sampling task priority:
Link task priority:

Probe task priority:

110
252
250

o]

Cancel

2.

214

In the Data Monitor Setup Options dialog box, specify whether you want to
run an asynchronous sampler task, or just load the libraries, by specifying the
following parameters:

or,

Spawn sampler task

Spawns a task on the target that collects data for any signals that you
install (either from the Data Monitor GUI on the host, or from the host
shell) using the specified Scope index value. This task repeatedly calls
ScopeCollectSignals(), based on its own timing (you can also use the
auxiliary clock), so it is asynchronous with the running of your
application. This option requires you to provide additional initialization
parameters, such as Sample Buffer Size, Signal Buffer Size, Sampling
Rate,

Load libraries only

Deselecting Start Data Monitor GUI on the host check box, and clicking
Load libraries only, loads the required applications libraries without
having to restart the Data Monitor GUI. You can then load your
application module instrumented with the ScopeProbe API.

13 Using a VxWorks Target
13.3 VxWorks Targets

For all modes, specify these settings in the Connection panel:

a.

Scope Index

Distinguishes the different instances of ScopeProbe daemons running on
the same target. Up to 128 different instances may be started on a target, so
the index can range from 0 to 127. The index specified here is used to
initialize the Data Monitor GUI and, if selected, the demo program or
sampler task.

Target server

Select a target server from the drop-down list of discovered target servers.
If the list is empty, you do not have a target server running and you must
create one first. For details on how to configure and start a target server,
see the Wind River Workbench User’s Guide.

NOTE: The Data Monitor setup script uses the currently selected target-server
name, target@tgtsvrHost, to determine the host name of the target.

C.

Connection type
Use the default (TCP/IP), or choose WTX protocol only if your target does
not have TCP/IP support.

Verbosity
Controls the volume of status and information messages written to the log
file. Verbosity has the following options to choose from:

0 (silent) - Displays only warning and error messages (most restrictive)
1 - Displays warning, error, and workflow messages.
2 - Displays warning, error, and greater volume of workflow messages.

3 (verbose) - Displays all system messages (most verbose)

3. If you select Spawn Sampler Task, accept the defaults or specify values for
these parameters in the Sampler Task panel:

a.

Use Aux Clock

This check box causes the sampler task to attach a semaphore to the
VxWorks auxiliary clock for periodic timing. You must clear this box if
you do not have an auxiliary clock, or if you have another application
using the auxiliary clock. If this option is not checked, the sampler task
calls taskDelay() to obtain pseudo-periodic timing.

215

Wind River Workbench Data Monitor

User's Guide, 3.0

-

Data buffer size

Specifies the size (in bytes) of the buffer to be allocated on the target for
collecting data samples. For a description of this buffer, see Target Buffers,
p-249. The default is 32768 bytes.

Signal buffer size

Specifies the size (in bytes) of the buffer to be allocated on the target to
store signal information. For a description of this buffer, see Target Buffers,
p-249. The default is 2048 bytes.

Sampling rate

Specifies the rate (number of times per second) at which the sampler task
calls ScopeCollectSignals() to collect data for the signals installed to the
specified Scope Index. The default is 50 Hz.

Sampling task priority
Sets the task priority for the sampler task. The highest priority is 0, 255 is
the lowest. The default is 110.

Link task priority
Sets the task priority for the link task. The default is 252.

Probe task priority
Sets the task priority for the probe task. The default is 250.

Click OK to load the appropriate libraries onto the target and initializes the
target. If the Start Data Monitor GUI on the host option is checked, the Data
Monitor GUI will appear shortly, with an open Plot window.

After selecting parameters and clicking OK in this dialog box, the following
actions are performed:

The required VxWorks libraries are loaded onto the target.

The libraries are loaded onto the target.

ScopeProbe is initialized on the target.

The Data Monitor GUI is started on the host.

Optionally, the demo program can be loaded and started on the target.

Verifying Target Initialization

To verify that the target has been initialized:

1.

216

From the Workbench toolbar, right-click your target, select
Target Tools > Host Shell to bring up a shell.

13 Using a VxWorks Target
13.3 VxWorks Targets

2. Type the command "i" in the shell to print a list of running tasks.

3. If you are not using WTX mode, the following tasks should be listed:
* tProbeDaemon
* tLinkDaemon
* tSamplerTask (if you chose to run the sampler task)

Verifying Target Connection
To verify that the Data Monitor GUI is connected to your target:
1. Verify that the target appears in the Signals Tree of the Plot window.

To open a Signals Bar panel if one is not already displayed, see Signals Bar,
p-116.

2. Select the signals you want to display in the Plot window (see 4. Using the
Signal Manager). If you are not running the demo program, make sure you have
installed signals already (see 4. Using the Signal Manager, and Registering and
Activating Signals, p.249).

3. Verify that the selected signals are plotted in the Plot window.

Manual Loading and Running

If you do not use Workbench, or if automatic loading fails, you will have to
determine which libraries to load yourself, load them, then initialize Data Monitor
manually. Manual loading of Data Monitor is more involved than automatic
loading. We strongly recommend you create a target-shell script that you source
from the VxWorks shell to accomplish Data Monitor loading and initialization.

To load a library, type in the host window or add to the script file a line using the
following syntax.

1d 1 < WIND_SCOPETOOLS_BASE/target/arch/targetArch/library

where WIND_SCOPETOOLS_BASE (an environment variable of the same name) is the
root of the tree where you installed the Run-Time Analysis Tools, targetArch reflects
the processor and VxWorks version you are using, and library is the library to load.
The targetArch string format is:

cpu os osversion compiler compilerversion
An example would be:

ppc85xxGPPl.2gcc4.1.2

217

Wind River Workbench Data Monitor
User's Guide, 3.0

Refer to the release notes included with your product suite for a list of supported
architectures.

The "1" (number one) in the "Id" command causes the local symbols to be loaded
along with the global symbols; we recommend you always use this flag when
debugging or using Wind River Run-Time Analysis Tools with your code.

Table 13-1 lists the libraries needed by the ScopeProbe daemons.

A CAUTION: The library files shown in this table must be loaded in the order shown.

Table 13-1 Target Libraries

Target Configuration Target Libraries

VxWorks 6.6 scopeutils.so (contains libutilsip.so, libxmlparse.so)
libscope711tcp.so or libscope711wtx.so

vxdemo.so (for demo only)

The following sections describe in detail how to determine which libraries to load.

Loading the Run-Time Analysis Tools Utilities Library
Data Monitor requires the ScopeUtils library.

Load scopeutils.so using:

1d 1 < WIND_SCOPETOOLS_BASE/target/arch/targetArch/scopeutils.so

Loading the TCP/IP Library
If your target supports TCP/IP, load libscope711tcp.so using;:
1d 1 < WIND_SCOPETOOLS_BASE/target/arch/targetArch/libscope71lltcp.so
If your target does not have TCP/IP enabled, load libscope711wtx.so using:

1d 1 < WIND_SCOPETOOLS_BASE/target/arch/targetArch/libscope71llwtx.so

Loading the Demo Library

If you wish to load and run the demo, load it using;:
1d 1 < WIND_SCOPETOOLS_BASE/target/arch/targetArch/vxdemo.so

To initialize the demo, type the following function call at the VxWorks shell or
place it into a target-shell script:

218

13 Using a VxWorks Target
13.3 VxWorks Targets

ScopeDemo (useAuxClk, scopelndex, verbosity)

where the parameters have the following meanings:

useAuxClk
Set to 0 to use taskDelay() for timing, or 1 to use the VxWorks auxiliary
clock.

scopelndex
Specifies the scope index value.

verbosity
Specifies the volume of debug messages printed by the ScopeProbe
daemons. These messages appear in the shell from which you run
ScopeDemo(). A value of 0 causes only error messages to be printed.
Increasing this to a value from 1-3 increases the amount of warning and
debug messages.

These parameters are described in detail in 4. Verbosity, p.215.

Starting the Sampler Task

If you wish to start the sampler task (rather than run the demo) for asynchronous
sampling of signals, type the following function call at the VxWorks shell or place
it into a target-shell script:

ScopeSamplerTaskCreate (dontUseAuxClk, scopelndex, sampleBufferSize, signalBufferSize,
samplingRate, verbosity)

where the parameters have the following meanings:

dontUseAuxClk
Set to 1 to use taskDelay() for timing, or 0 to use the VxWorks auxiliary
clock.

scopelndex
Specifies the scope index value.

sampleBufferSize
Specifies the size (in bytes) of the buffer to be allocated on the target for
collecting data samples. For a description of this buffer, see Target Buffers,
p-249.

signalBufferSize
Specifies the size (in bytes) of the buffer to be allocated on the target to
store signal information. For a description of this buffer, see Target Buffers,
p-249.

219

Wind River Workbench Data Monitor
User's Guide, 3.0

samplingRate
Specifies the rate (number of times per second) at which the sampler task
calls ScopeCollectSignals() to collect data for the signals installed to the
specified scopelndex.

verbosity
Specifies the amount of debug messages printed by the ScopeProbe
daemons. These messages appear in the shell from which you run
ScopeDemo(). A value of 0 specifies that only error messages are printed.
Increasing the value increases the amount of messages. See d.Verbosity,
p-215 for specific information on selecting verbosity values.

Example Target Script

The following is a complete example of a target-shell script to load and initialize
Data Monitor and the demo on a VxWorks target. The target in this example
supports TCP/IP.

The example script for Workbench 2.x / VxWorks 6.6:

1d 1 < WindRiver/scopetools-6.0/target/arch/ppcVvx6.3gccd.l.2/scopeutils.so
1d 1 < wWindRiver/scopetools-
6.0/target/arch/ppcVx6.3gcc4.1.2/1libscope7lltcp.so

14 1 < WindRiver/scopetools-6.0/target/arch/ppcvx6.3gccd.l.2/vxdemo.so
sp ScopeDemo

Starting the Data Monitor GUI Manually

To start the Data Monitor GUI manually, see the instructions in Starting Manually,
p-14, or consult the reference documentation (paper manual or online manual) for
the topic scope.

13.4 Troubleshooting

Load Errors

If you have trouble loading the object files onto your VxWorks target, such as the
error message:

API_FILE_NOT_FOUND,

220

13 Using a VxWorks Target
13.4 Troubleshooting

check the following:

* You are able to ping the target over the network.

» Ifyou are using NFS, check that the file system is mounted (use nfsDevShow).
* Your target has permission to read the object files from the file server.

If none of these suggestions resolve the problem, it may be that your target system
is slow, or has intermittent response. Try loading the Run-Time Analysis Tools
modules manually using a shell window and the "ld" command (see Manual
Loading and Running, p.217).

Connection Failure

If the Data Monitor Plot window status message is, Target target not responding;:

* Make sure your network is configured properly. You must be able to establish
a network connection to your target via ping or rlogin before Data Monitor
will work.

* On VxWorks targets, if these tests are successful, type i on the target processor
and make sure the tProbeDaemon and tLinkDaemon tasks are active.

» Make sure you are using the same scope index on the target and host.

No Response from Target

If the Data Monitor Plot window status message displays, Target target
not responding, or Data Monitor exits with the message:

scope: target is connecting but not responding.

then one of the following has occurred:

* Another Data Monitor GUI is already connected to your target using the same
index

» The tLinkDaemon task is being starved for processing time.

» The network is not configured correctly.

» The target is loading an incompatible version of ScopeProbe.

Multiple Connections

When you are connecting to multiple targets, you must ensure that each target is
connected by a unique index (from 0 to 127). If the target you to which you are
trying to connect has a host GUI already connected to that index (either yours or a
different user), this creates the error condition. You must use a different index
number.

221

Wind River Workbench Data Monitor
User's Guide, 3.0

The use of an index number in making a target connection is discussed in several
places in 2.3 Starting Data Monitor, p.10. The assignment of index values in your
target code is explained in Scope Index, p.249. The Legend tab view shows each
connected target name and index, as shown in Signals Bar, p.26.

Starvation

In VxWorks, the second condition can be tested by executing this command on the
target:

taskSpawn("test",255,0x1c,12000,printf, "Not starved.\n")

This tries to spawn a low-priority task that only prints a message. If the message,
Not starved, does not print, then starvation is the problem. Starvation can be cured
by incrementing the priorities of tLinkDaemon and tProbeDaemon tasks (via
taskPrioritySet()) or ensuring that higher-priority processes do not use all the
available CPU. This is rarely a problem for VxWorks targets with a Windows host.

Network Configuration

A ping or rlogin test suffices to test proper network connection.

Version Mismatch

The ScopeProbe version can be printed via ScopePrintVersion(). The version of
the Data Monitor graphical interface is displayed on the Help > About dialog box.

None of the Above

Finally, try increasing the verbosity value. Call ScopelnitServer() (or start the
demo or sampler task) with verbosity set to 1; start the Data Monitor GUI with the
-v 1 flag. The output messages may help you pinpoint the problem.

No Data

If the connection appears to be normal, and the Signals Tree in the Signals Bar on
the Plot and Dump windows show installed signals but no data appears, check the
following:

» ScopeCollectSignals() is being called to sample data.

» Triggering is set up correctly and that trigger conditions are occurring.
» The tLinkDaemon task is not being starved for processing time.

* You are viewing an active buffer.

222

13 Using a VxWorks Target
13.4 Troubleshooting

Sampling

Under VxWorks, test for this condition by placing a breakpoint at
ScopeCollectSignals() from the VxWorks shell.

Triggering
Disable triggering from the Triggering dialog box.

Starvation

Starvation can be tested as described in No Response from Target, p.221. Raising the
priorities of tLinkDaemon and tProbeDaemon tasks or insuring that higher-
priority processes do not use all the available CPU will alleviate the problem.
Again, this is rarely a problem for VxWorks targets with a Windows host.

None of the Above

Finally, make sure the window you are using is displaying the live buffer and not
a stored static buffer (snapshot). Also make sure the range is wide enough to plot
data on the screen (try the Zoom to Fit button, or from the View menu).

223

Wind River Workbench Data Monitor
User's Guide, 3.0

224

14

Using a Linux Target

14.1 Introduction 225
14.2 Building Your Application 225

14.1 Introduction

This chapter contains specific information applicable to the building and using of
target programs running on a Linux OS.

As an alternative to signal installation (see 15. Installing Signals), target programs
may instead be instrumented with commands from the Wind River Data Monitor
API, then recompiled. For details on the Data Monitor API, see B. API Reference:
Linux.

14.2 Building Your Application

In general, the steps to build an application that is instrumented with the Data
Monitor API requires you to do the following:

1. Add an include file to your target code.

225

Wind River Workbench Data Monitor
User's Guide, 3.0

2. Instrument your target code

3. Link libraries during compilation.
4. Compile your target code.

5. Test your finished application.

The following sub-sections examine each of these steps in greater detail.

Adding Include Files

Add include paths to your compilation lines so the compiler can locate the
scope/scope.h include file, as well as the necessary library files:

-I WIND_SCOPETOOLS_BASE/target/include/share/

where WIND_SCOPETOOLS_BASE (an environment variable of the same name) is the
root of the tree where you installed the Run-Time Analysis Tools.

This path is added at the build properties->build paths tab view of the project
Properties dialog box, in the Include directories table.

‘ ;‘m e [Grm P test =] i Propertles

H H i
Right-click ™ s Soechy ol bukdpropsrtes.
W Delets
Bubd Properties Buskd Suppnt | Bud Torgeds | Buad Specs | Buskd Tooks | Bud Macros Bl Paths |
Movea Presect Info
Rt Pt Refpeences Fofrection root dractory [
Adterknies 5] Shabe Analysh
Rederences Rt Chark £ o wth thy o emker
Eag Tt Bukd spec specfic settings
1 Eport.. Hckive buld pec: [PiC405dab |
** Budd Projact
Ere Redrection denctary: [PPCATE&sh
Gloan Profect # inchude pathe:
Lsfr | ieckudo cracioeioy
“IWIND_BASE |jLargett
0 P kel Tak, . TH{WIND_B&TE Lor ged T rmrfecr g
15 Doty Knerel Tk e
- Refresh
Chose Project
Toam
Compare with
Restore from Local Hat)
Sratic Anysis
Search

%/

|

226

14 Using a Linux Target
14.2 Building Your Application

Instrumenting Target Code

Instrument your target code by adding the following commands in the code:
#include <scope/scope.h>
Call ScopeInitServer once at startup
call ScopeInstallSignal once for each variable to monitor
Call ScopeCollectSignals tO gather data

Call ScopeChangeSampleRate t0 match the frequency of the calls to
ScopeCollectSignals()

Adding Libraries

Include the required Run-Time Analysis Tools libraries by adding the following
libraries to your link line (in the order shown):

» libscope7lltcpz.a
» libxmlparsez.a
» libutilsipz.a

These directories are added at the build properties->build macros tab view of the
project Properties dialog box, in the LIBS name field.

227

Wind River Workbench Data Monitor
User's Guide, 3.0

b

x|
Build Properties =T =y

roperties for covDemo

- Info

- Builders
- Build Properties Build Suppart | Buid Targets | Build Specs | Buid Tools Build Macros | Build Paths |
- Praoject Info

- Project References

Specify all build properties,

Build macro definitions:

- Static Analysis Mame | value | e
PROJECT_TYPE DkmM
DEFIMES Edit...
EXPAND_DEG o

Renare. ..

Copy...

BN El

Delete. ..

r~Build spec specific settings
Active build spec: [PPC405diab |

Narne (Common) | ‘alue (Build spec specific) | Mew, .. |

Wi_CPU_FAMILY ppc

CPU PPC405 Edit... |

TOOL_FAMILY diab

TOOL diab & |

TOOL_PATH

CC_ARCH_SPEC -tPPC405FS vrworksa3 Rename... |

LIEPATH

LIES libscope?otcpz. a, libxmlparsez. a, libutilsipz.a Copy... |
Delete. .. |

Restore Defaulks | Apply |

[8]4 I Cancel

There needs to be a space between each library name, and each name must be
entered with a complete pathname.

For example, in a Windows host, enter:

$INSTALLDIR/target/arch/ppc85xxGPP1l.2gccd.1.2/1libscope7lltcpz.a
In a UNIX host, enter:

$WindRiver/scopetools-
6.0/target/arch/ppc85xxGPPl.2gcc4.1.2/1libscope7lltcpz.a

228

14 Using a Linux Target
14.2 Building Your Application

Compiling Target Code

This step is normally required to instrument your code directly with the Data
Monitor API routines. You can, however, use the process sampler program
described in 15.4 Code Instrumentation Alternative, p.241 as an alternative to
instrumenting your own code.

Depending on the compiler you use to compile your code, you must be sure that
the following define is added as a switch to the compiler directive in order to
compile with Run-Time Analysis Tools headers:

-DRTI_LINUX

Enter this define switch in the build properties- > build tools tab view, in the
Tool Flags entry field (with the C/C++Compiler Build tool selected), as shown
(circled) here.

Propetrties for covDemo gl =|

[bvpefiter text =] Build Properties e G -

nfo

Builders
Build Properties Build Suppart | Build Targets | Buid Specs Buid Tools | Build Macros | Buid Paths |
Project Info

Project References Build koal: ILinker 'l Mew... | Rename...l Copy... | Delete...l

+]- Static Analysis

Specify all build properties,

Suffixes: |

i~ Build output generation
" Generated build output is an object

' Generated build output is a build target
I Build target can be passed

r~Build spec specific settings

Active build spec: |PPcansdiab |

Derived suffix: | *.out

Cormmand: # | echo "building $@";rm -F %0utFile%s;ddump -Mg %0bjects% ﬂ
“eLibraries%s | tclsh ${WIND_BASE) host fresource/hutils/telfmur

ppc = $00B]_DIR)fckdt.c;%ccompilerprefixzss $(TOOL_PATH)dctL|

Toal Flags... F(w =]
=l

Debug mode flags

Debug mode. .. 7 | -g
Mon Debug mode.., | & | %0 -¥size-opt

Restore Defaulks | Apply |
[8]4 I Cancel |

229

Wind River Workbench Data Monitor
User's Guide, 3.0

Testing Your Application

Run the resulting Data Monitor demonstration program on your target, testing the
instrumentation using the Data Monitor GUI Consult 2. Getting Started, if you are
not yet comfortable with starting Data Monitor and connecting to targets.

You can run the demo program to connect with a Data Monitor GUI to see how
Data Monitor works. You can find source code for the demo program,
scopedemo.c, in the host directory:

WIND_SCOPETOOLS_BASE/target/src/linux/scopedemo_linux.

This directory also contains a makefile template that you can use to build the
demo program. You can also use the makefile as a template for building your own
applications that link to the Data Monitor library.

230

15

Installing Signals

15.1 Introduction 231

15.2 Using the Signal Installation Dialog Box 232
15.3 Installing With the Data Monitor API 241
15.4 Code Instrumentation Alternative 241

15.5 Removing Individual Signals 241

15.6 Process Notes 242

15.1 Introduction

This chapter contains specific information relating to automatically or manually
installing signals from a VxWorks or Linux target (see 15.2 Using the Signal
Installation Dialog Box, p.232). It describes both the Save and Batch Install options
to save and reload, respectively, the collections of signals previously installed
using the automatic method. It also addresses using the Data Monitor API to
install signals (see 15.3 Installing With the Data Monitor API, p.241). Finally, this
chapter discusses the use of a pre-compiled external execution sampler program
(samplertask.so for VxWorks, or processsampler for Linux), to install all the
signals in your target code (see 15.4 Code Instrumentation Alternative, p.241).

231

Wind River Workbench Data Monitor
User's Guide, 3.0

15.2 Using the Signal Installation Dialog Box

Signals can be installed in a VxWorks or Linux target using the Workbench Data
Monitor Signal Installation dialog box, in any of the following ways:

* Automatically, using a variable name or a variable expression you enter and
letting Workbench find the variable and determine its address in the
executable.

NOTE: Automatic installation works only on C, C++, and assembly code. For
other languages, automatic installation will not work (but manual will).

* Manually, by entering the address of the signal.

= Batch Install, using the named tab view to reload previously installed signals
that have been saved using the Save tab view (see Save Tab View, p.239).

» Instrumenting code, using the Data Monitor API (see 16.2 Using the Data
Monitor API, p.248, and A. API Reference: VxWorks or B. API Reference: Linux as
appropriate).

Although this signal installation method is initiated within Workbench, it is an
integral step in using Data Monitor, and is therefore outlined here.

Outside Workbench, you can also install signals using a sampling process (see
15.4 Code Instrumentation Alternative, p.241).

Recall from the discussion in Usage Notes, p.18, that installed signals are the means
used by the Data Monitor graphical user interface (GUI) to specify which data you
want to be able to monitor, collect, and display in the GUIL You must first install
each signal before it can be collected for analysis and displayed. This chapter
provides basic guidance for that process for either a VxWorks or Linux target.

The hierarchal steps that must be executed to create installed signals are as follows:

1. Register a Signal—Initially you must let Data Monitor know a signal exists by
registering it using the API call ScopeRegisterSignal(). Data Monitor cannot
collect data from this signal until it is registered. Registered signals appear in
the Signal Manager window (see 3.3.7 Signal Manager, p.49) in the GUI, where
they can be selected for activation.

2. Activate the signal—This is done to a registered signal that has been set up on
the host by the Signal Manager using the API call ScopeActivateSignal().
Active signals then appear in the Signals Bar of each data-display window
(see Signals Bar, p.26).

232

15 Installing Signals
15.2 Using the Signal Installation Dialog Box

Once activated, the signal is considered to be Installed and is automatically
collected from the target, butis not yet displayed in the host GUI until Selected
in one or more of the four data-display windows: Plot, Plot XY, Dump Plot,
and Monitor.

3. Install the signal (optional)—This is an alternate operation that registers and
activates in a single step using the Data Monitor API shortcut
ScopelnstallSignal() (see Installing Signals, p.250). A signal installed in this
manner is also seen by the Data Monitor GUI as an installed signal.

4. Selected signals—Installed signals are not displayed automatically in the
GUL You must use the GUI to select the installed signals you want to display
in the data-display windows, Plot, Plot XY, Dump Plot, and Monitor. You can
select a different set of signals in each window (see Signals Bar, p.26).

The hierarchical steps listed above can be translated into a simple mechanism for
signal installation on a VxWorks or Linux target. These mechanisms use the Data
Monitor Signal Installation dialog box.

NOTE: A maximum limit of 256 signals can be installed for any given target.

Data Monitor Signal Installation Dialog Box
Open the Workbench Data Monitor Signal Installation dialog box with the

Analyze > Data Monitor Signal Installation command on the Workbench menu
bar, or by selecting the Install signal to Data Monitor icon on the toolbar.

233

Wind River Workbench Data Monitor
User's Guide, 3.0

"-'f-_-",StethuScupe Signal Installation x|

Installation Method
Target Server; Itgt_walnut@svl—grnnd—dl j

Process: vaKerneI "I

Scope Index {0-1275: | z

Cornmunication Type ITCP j

Install |Remove | Bateh Instal | save |

% aukomatic = Manual

Signal Marne: | Sine

Variable Expression: | a.b

fddress: |

TvpE:

Dffset: |
Lini; |

Install |

Status

The top panel, Installation Method, contains options you can select based on the
target you have connected to. The fields in this panel are:

= Target Server

The drop-down list shows the target servers you are currently connected to.
Select the target from this list that you wish to install signals to.

- Process

The drop down list shows all the processes (kernels or RTPs) running on that
target from which you can choose to install signals on.

234

15 Installing Signals
15.2 Using the Signal Installation Dialog Box

= Scope Index (0-127)

The scope index assigned to the process shown in the field above. You can
enter another value if you know what it should be.

= Communication Type

Choose the communication type (TCP or WTX), depending on the type of
target server you selected in the first field above. TCP, when available, is
generally preferable due to its faster speed.

In the center panel of the dialog box there are 4 tab views:

Install
Remove
Batch Install
— Save

These tab views are used to enter parameters for the specific signal installation

activity you want to invoke. They are covered in detail in the sections that follow.

Install Tab View

The Install tab view (shown in the Data Monitor Signal Installation dialog box
above) allows you to specify a signal name (and associated parameters) to be
installed, either automatically by variable name, or manually by address. The
dialog box for automatic installation is shown in the figure above.

The Install tab view contains the following controls.

Parameter Fields:
= Automatic

This button, when selected for automatic signal installation, displays the
appropriate fields in the tab view. They are:

— Signal Name

Specifies the name of the signal to be installed or removed. It does not have
to match the Variable Expression entry (below). Signal Name is optional
for signal installation, but it is required to remove a signal or a group of
signals.

235

Wind River Workbench Data Monitor
User's Guide, 3.0

236

NOTE: During signal installation, if a signal is of a class/struct/union type, the
top level directory entry in hierarchical signal names (see Hierarchical Signal
Names, p.243) corresponds to the Signal Name field if specified or

Variable Expression field if the Signal Name field is blank.

— Variable Expression
Specifies a variable name or variable expression that can be used to locate
a variable on the target to be installed. Some examples would be array[3],
arm.pos, and body->vel. A Variable expression is not required to remove
signals.

— Unit (Optional)
Specifies the units of the signal to be installed. Entering a value is optional.

Manual

This button, when selected for manual signal installation, displays different,
but appropriate, fields in the Install tab view.

Install |Remove | Batch nstall | save |

" Automatic % Manual

Signal Marne: |

Yariable Expression; |

Address: | D01 23546

Twpe: IFInat * j
Offsat: | oxoo000z4

Unit: |

Inskall |

Manual signal installation is done using this same tab view as automatic signal
installation. The difference is that for manual signal installation you must
know the virtual address of the signal in the program memory, and provide it
as a hexadecimal address to install the signal.

The Install tab view entry fields for Manual are:

— Signal Name
(As described for the Automatic mode above.)

15 Installing Signals
15.2 Using the Signal Installation Dialog Box

— Address
Enter the signal address (in hexadecimal) to be monitored. You must
know the address of the variable you want to monitor.

- Type
A drop-down menu of allowable data types is available; select one of the
types from the menu.

— Offset
Enter the offset (in hexadecimal) of a member within a structure, if the
variable expression contains a pointer to a structure (or class). You must
know the value of this offset.

— Unit (Optional)
(As described for the Automatic mode above.)

= Buttons:

— Install
Searches for the address and installs it to Data Monitor. The variable
expression is used as the signal name if the Signal Name field is left blank.

Remove Tab View

Use the Remove tab view to specify a signal to be removed (uninstalled).

Install Remove | Batch Install | Save |

Signal Nane: |vxkernel:0x1 10252d1,/Sine

Remove | Remove Al

This tab view contains the following controls:
* Parameter Fields:

— Signal Name

237

Wind River Workbench Data Monitor
User's Guide, 3.0

The name of the signal you want to remove, with the following caveat: it must
be preceded by the full target name, followed by a slash ('/"), for example,
tgt_Walnut/taskIDCurrent.

= Buttons:

- Remove
Searches for the signal name and prefix entered in the Signal Name field,
and, if found, uninstalls it in Data Monitor.

NOTE: During individual signal Remove, only the signal(s) matching the
Signal Name field entry are removed from the target. Other fields (as
described in Install Tab View, p.235 above) are not considered.

A CAUTION: For other important information on removing individual signals,
see 15.5 Removing Individual Signals, p.241.

— Remove All
Uninstalls all signals in Data Monitor without having to enter anything in
the Signal Name field.

Batch Install Tab View

Using the Batch Install tab view you can install the list of signals you previously
saved (automatically only) using the Save tab view (described below).

Install I Remove Bateh Install |Save I

Files | Browse |

Signals:

Mame | Expression | Units |

Install |

You can re-install the entire list of signals with one click, or install individual
signal(s) you select in the list.

238

15 Installing Signals
15.2 Using the Signal Installation Dialog Box

This tab view contains the following controls:
* Parameter Fields:
- File

The name of the file you want to batch install from. You can enter it
directly, or use the Browse button to navigate to a path and existing file
name.

— Signals
A list of signals contained in the selected file. You can select any or all the
signals in the list. All signals selected in the list are installed when you
select the Install button.

= Buttons:

- Install
Installs the signals selected in the Signals list.

A CAUTION: Remember, Batch Install can only access the list of signals installed
up until you reboot your target. If you reboot without first saving the signal
list, the list will be lost and you will have to enter them again by hand.

Save Tab View

Using the Save tab view you can save the list of signals you previously installed
(automatically only) to a file.

Install I Remnvel Eiatch Install Save |

Signals:

Marmne | Expression | Uniks |

Save

File: Browse |

239

Wind River Workbench Data Monitor
User's Guide, 3.0

You would want to consider saving your list of signals against the possibility of
having to reboot your target (in which case these current signals would otherwise
be lost and you would have to enter them again by hand). If you have saved a
signal list with this option, you can then load it and re-install the signals at any
time using the Batch Install tab view of this dialog box.

This tab view contains the following fields:

Status Area

Buttons

240

Parameter Fields:

- Signals
A list of all the signals contained in the file.

— File
The name of the file you want to save the list of signals in. You can enter it
directly, or use the Browse button to navigate to a path and existing file
name.

Buttons:

- Save
Saves the file in the selected directory.

NOTE: The Save feature only works for signals installed automatically (by
variable name) using the Signal Installation dialog box. Signals installed
manually (by address), or with the Data Monitor API, cannot be saved.

This text area displays the status of your connection to the target agent. When
connected, it displays the host name and port number of the target agent you
are connected to, as well as the results of requested actions, and including any
error messages.

Close

Closes the dialog box.

NOTE: During signal installation, if a signal is of a class/struct/union type, the
top level directory entry in the hierarchical signal name (see Hierarchical Signal
Names, p.243) corresponds to the Signal Name field if specified, or

Variable Expression field if the Signal Name field is blank.

15 Installing Signals
15.3 Installing With the Data Monitor API

15.3 Installing With the Data Monitor API

This method requires you to instrument your target source code with appropriate
calls to routines from the Data Monitor API library. You have options with this
method, but it requires you to recompile your code in any case. Using this method
installs all signals in your target code. The process, and the routines it uses to
install and activate signals, are described in detail in 16. API Introduction.

For detailed information on just the API routines, see A. API Reference: VxWorks or
B. API Reference: Linux as appropriate.

15.4 Code Instrumentation Alternative

You may want to take advantage of automatic signal installation, but not always
want to instrument your target code with the Data Monitor API library. Or
perhaps you may not have the source code available for instrumentation. In such
cases there are executable files (samplertask.so for VxWorks and processsampler
for Linux) you can run on your target, that are themselves fully instrumented with
the Data Monitor API (see A. API Reference: VxWorks or B. API Reference: Linux as
appropriate).

This file is found in the directory where you unpacked the target-side components.
Connecting to your target will find this sampler task, and you can then use it to
automatically install all the signals in your own target code.

15.5 Removing Individual Signals

As mentioned earlier in Data Monitor Signal Installation Dialog Box, p.233, all the
installed signals can be removed by simply clicking the Remove All button in the
Remove tab view. However, removing an individual signal from the set of all
installed signals is a little more complex. In the Signal Name field of this tab view
you must fully identify the signal you want to remove according to the origin of
the signal. The signal Sine (from the demo program output in 2.5 Testing Your

241

Wind River Workbench Data Monitor
User's Guide, 3.0

Installation, p.30) is used as an example in Table 15-1, giving the full signal
identification, including the prefix attached by the target, for each of 4 possible
origins. Use the appropriate entry on the right as a template for your signal name,
substituting the indicated prefix values as found in your Signals Tree for
everything to the left of the "/" in the template.

Table 15-1

If the signal "Sine" was added to: ...it is identified as:

A VxWorks kernel, where kernelid = 0x12345678 | vxkernel:0x12345678/Sine

An RTP named x.vxe with RTP_ID = 0x12345678 | x.vxe:0x12345678/Sine

A Linux process with pid =1234 1234 /Sine

Instrumented Linux code Sine

The example signal Sine, used in the table above, happens to be in the top level of
the Signals Tree. If your signal is lower down in the tree, be sure to include the
entire branch leading up to it, with nodes separated by slashes ("/").

15.6 Process Notes

The following sections clarify and elaborate on the concepts used in the process of
Data Monitor signal installation.

Variable Expressions vs. Signal Names
It is important to understand the distinction between variable expressions and
signal names.
= Variable Expression

This is the name of a variable that exists in your code and appears in your
programs as a data symbol. Valid variable expression entries include:

— Variables of any primitive type, such as int or float.

242

15 Installing Signals
15.6 Process Notes

— DPointers to any primitive type, such as int * or float *.

— Variables of type enum, bool, or boolean are converted to int or char,
depending on how the compiler implemented them.

— Member variables of structure or class, such as Body.vel, Body->vel, or
Body->Pos->x.

— Array elements, such as arm[3].

— Instances of class, structure, or union—all member variables (including
member variables of class/struct/union data types except pointers to the
class/struct/union types) are installed as separate signals.

— Array variables, all the array elements are installed.

= Signal Name

This is the name you assign to a data item for Data Monitor to display in its
signals trees and quick-select buttons. This name is also exported to the files
you save. It does not have to be the same as the variable expression. A signal
name can be any name you choose.

When using the Signal Installation dialog box, only global or static variables may
be installed. For example, if the variable expression is:

Body->Pos->x

then Body must be a global or static pointer. Also, Body must be pointing to a valid
Pos class/struct/union data pointer type (and if x is also a class/struct/union
data pointer type, then it in turn should also point to a valid class/struct/union) at
the time of installing the signal x with the above variable expression.

Hierarchical Signal Names

To help you organize your signals better, Data Monitor supports hierarchical
signal names that use the slash (/) character to separate the levels of hierarchy,
much like path names for files. Hierarchical organization is useful for:

» Grouping member variables of a class or structure. Just substitute "/" for "." or
"->" when entering signal names that refer to member variables.

= Creating logical groupings among variables that are not otherwise in a
common structure. Just use a common directory name in their signal names.

Whenever Data Monitor displays signal lists as a tree, the tree consists of signal
and directory entries such that:

243

Wind River Workbench Data Monitor
User's Guide, 3.0

= A signal entry corresponds to a single registered signal.

= Adirectory entry (indicated by a [+] or [-] nodeicon) contains sub-entries that
are signal entries or other directory entries.

= A directory entry may be expanded or collapsed to show or hide its sub-
entries.

Example 15-1 Examples of hierarchical signal names

Robot/LeftArm/PosX
Robot/LeftArm/PosY
Robot/RightArm/PosX
Robot/RightArm/PosY

Classes and Structures

If the named variable refers to an instance of a class, structure, or union, Data
Monitor installs all its member variables, grouping them under the same directory
(corresponding to the Signal Name field or Variable Expression field if

Signal Name field is left blank) using the hierarchical signal-naming capability
(see Hierarchical Signal Names, p.243). Data Monitor skips a member variable if it is
a pointer to another class, struct, or union to prevent a potentially dangerous
circular path of variable installations.

Example 15-2 Consider the following type definitions and the variable declaration

typedef struct {
float PosX;
float PosY;
} Position; /* Position type definition */

typedef struct {
Position RightArm;
Position LeftArm;
} RobotType; /* RobotType type definition */

RobotType Robot;

When you specify a variable expression as Robot and signal name as SCARA in
the Signal Installation dialog box, the Robot signal is installed with the following
hierarchy:

SCARA/LeftArm/PosX

SCARA/LeftArm/PosY

SCARA/RightArm/PosX
SCARA/RightArm/PosY

244

15 Installing Signals
15.6 Process Notes

If you specify a variable expression, such as Robot.RightArm with the
Signal Name field left blank, RightArm member variable is installed as:

Robot.RightArm/PosX
Robot .RightArm/PosY

Note that the member variables in a class/struct/union are installed in an
alphabetical order on the target.

245

Wind River Workbench Data Monitor
User's Guide, 3.0

246

16

APl Introduction

16.1 Introduction 247

16.2 Using the Data Monitor API 248

16.3 Understanding Overflows 258

16.4 Triggering and Sampling Functions 259
16.5 Data Monitor Events API 260

16.6 scope.ini File (VxWorks Only) 263

16.1 Introduction

The real-time data-collection and signal-management module of Wind River Data
Monitor that runs on the target platform is also known as Data Monitor API. Data
Monitor API collects the time history of variables in your real-time program. Its
architecture is summarized in 1.2 Architectural Summary, p.2.

NOTE: If you are running VxWorks on your target, the Data Monitor API libraries
need to be loaded onto the target.

247

Wind River Workbench Data Monitor
User's Guide, 3.0

NOTE: If you are running Windows or Solaris on your target, the Data Monitor
API library needs to be linked with your application code. For Linux, however,
you can use either the Data Monitor API libraries linked to your application code,
or you can be running a sampler process (samplertask.so for VxWorks and
processsampler for Linux) which contains an already linked Data Monitor API
library.

This chapter introduces the Data Monitor API. For details of the API, see A. API
Reference: VxWorks or B. API Reference: Linux, as appropriate. To compile and run a
target application that is instrumented with Data Monitor API already, see C. Data
Monitor Demo Program.

16.2 Using the Data Monitor API

The Data Monitor APl is a library of routines linked to your target application. It
implements a flexible data-collection utility. The Data Monitor API saves data
from your real-time system in a buffer on the target and transmits them to the Data
Monitor GUI on the host for display.

To use Data Monitor API with your target program, execute the following steps:

1. For VxWorks, initialize the target server (see Initializing the Target Server
(VxWorks Only), p.248).

2. Register and activate (install) the variables (signals) to monitor (see Registering
and Activating Signals, p.249).

3. Set the sample rate (see Sampling Signals, p.255).
4. Sample the data (see Sampling Signals, p.255).

5. Shut down the server when done.

Initializing the Target Server (VxWorks Only)
Initializing the VxWorks target server requires a single call, ScopelnitServer();

you only need to specify the scope index number and buffer sizes. For more
details, see A. API Reference: VxWorks.

248

16 API Introduction
16.2 Using the Data Monitor API

Scope Index

The scope index represents the communications channel between an instance of
Data Monitor API running on the VxWorks target and the Data Monitor GUI
running on the host. You can create up to 128 instances of Data Monitor APl on a
single target machine, each using a different scope index. The index can range from
0 to 127, and it must be specified when you call ScopelnitServer().

Target Buffers

The Data Monitor API allocates three buffers on a VxWorks target for each scope
index.

= Sample buffer

Stores the data samples for the active signals. Data samples for all data types
other than double are saved as 4-byte values. Data samples for doubles are
saved as 8-byte values.

= Signal buffer

Stores the information that describes each registered signal, such as name,
units and data type. The memory used by a signal is reclaimed when the signal
is removed, making it available for additional signals. The information stored
for a signal takes up 36 bytes plus the number of bytes it takes to store the
signal name and units (including the terminating null characters). Note that a
signal registered twice, under different scope indices, counts as two registered
signals.

= Event buffers

These are optional buffers that can be attached to an initialized scope index by
calling ScopeEventsAttach. The event collection APIs (ScopeEventsCollect
and ScopeEventMessage) use these buffers to throw events. There can be a
maximum of four event buffers per scope index. Since the event collection
APIs are not reentrant, we recommend that each task that throws events use a
separate buffer for event collection. The above would obviate the need for
mutual exclusion among tasks that employ events.

Registering and Activating Signals
A Data Monitor signal can be any variable in your code of any basic data type, such

as float, double, unsigned int, or a pointer to any basic type. Table 16-1 contains a
complete list of types and abbreviations.

249

Table 16-1

Wind River Workbench Data Monitor
User's Guide, 3.0

Acceptable Data Types

unsigned char uchar char
unsigned short ushort short
unsigned int uint int
unsigned long ulong long
float double

NOTE: Data Monitor supports both the short form and the long form for unsigned
types (for example, uint vs. unsigned int). It also supports user-defined classes,
structures, and unions.

For Data Monitor to collect samples of a particular signal, you must follow these
steps:

1. Register the signal
2. Activate the signal

Registering a signal provides Data Monitor support for both the short form and the
long form for unsigned types (for example, uint vs. unsigned int). It also supports
user-defined classes, structures, and unions with relevant information such as its
name, type, and memory location. Samples are collected, however, only when the
signal is activated. The number of registered signals is limited only by the amount
of target memory. The number of active signals for a given scope index is, however,
limited to 8192.

Installing Signals

A signal is installed when it is both registered and activated. To register and
activate a signal, follow these steps:

1. Call ScopeRegisterSignal() or ScopeRegisterSignalWithOffset() to register
the signal. The latter function is discussed in Offsets to Signals, p.252.

2. Call ScopeActivateSignal() to activate the signal.

You can also call ScopelnstallSignal() or ScopelnstallSignalWithOffset() to
accomplish both these steps in a single call (see Installing Signals, p.253).

250

16 API Introduction
16.2 Using the Data Monitor API

NOTE: Installed variables must be valid when ScopeCollectSignals() is called to
sample all active signals. This requirement is met for:

» Static variables (such as, global variables)
* Any variable in allocated memory (that is, created using malloc())

» Automatic (stack) variables, only if ScopeCollectSignals() is called only
within the scope of the variable.

Example 16-1 Signal Installation

The following code registers and activates signals for scope index of 0:

#include "scope/scope.h"
static float PosX;

static float PosY;

static unsigned char Type;
void initScope(void)

{

ScopeRegisterSignal ("PosX", "meters", &PosX,
"float", 0);
ScopeRegisterSignal ("PosY", "meters", &PosY,
"float", 0);
ScopeRegisterSignal ("Type", "meters", &Type,

"uchar", 0);
ScopeActivateSignal ("PosX", 0);
ScopeActivateSignal ("PosY", 0);
ScopeActivateSignal ("Type", 0);
}

Hierarchical Naming of Signals

Data Monitor supports hierarchical naming of signals just like a file browser. You
can register signals using a name that delimits each level with "/", such as
Robot/LeftArm/PosX. The Signal Manager and Signal Selection lists within the
Data Monitor GUI represent each level as a folder. In order to make it easier to
manage a large number of signals, you can expand, collapse, and activate entire
directories.

Pointers to Signals

You can register signals by pointers to variables. For these signals,
ScopeCollectSignals() de-references the pointers at the time of collection. You can
register a pointer to a signal by specifying a pointer type when calling
ScopeRegisterSignal(). For example, a pointer to a float would have a type of
float *. There is no limit to the number of de-references Data Monitor can handle,

251

Example 16-2

Wind River Workbench Data Monitor
User's Guide, 3.0

so you could even specify a type such as float ****** Data Monitor supports
pointers to all the basic data types listed in Table 16-1.

Pointer to Variable Registration

int *JointPosition = (int *)calloc(l, sizeof (int));

// Notice that you must pass the address of JointPosition.

ScopeRegisterSignal ("JointPosition", "millimeters", &JointPosition,
n int *n , O) ;

Offsets to Signals

You can register a signal using an offset from an address. ScopeCollectSignals()
de-references the pointers and applies the offsets at the time of collection. This
allows you to collect data that is a member variable of a class or structure.

Signal registration using offsets only makes sense when you do have pointers to
classes or structures, where the pointers can point to different instances as the
application executes. Otherwise you simply could install the member variables
directly. Consequently, Data Monitor assumes you are providing a reference to a
pointer when you register a signal with offsets.

Example Registration With Offset
To register and activate a signal using an offset, follow these steps:
1. Call ScopeRegisterSignalWithOffset(), passing it a reference to a pointer.

2. Call ScopeActivateSignal() to activate the signal.

You can combine offsets and pointers. This allows you to collect data from member
variables (of structures) that themselves are pointers. For an example, see the next
paragraph.

Calculating Offsets

When calling ScopeRegisterSignalWithOffset() or

ScopelnstallSignal WithOffset(), you can use the offsetof() macro to calculate
automatically the offset of a member variable. The following is an example on how
to use offsetof().

252

16 API Introduction
16.2 Using the Data Monitor API

Example 16-3 offsetof() use

typedef struct ArmData_s {

float PosX;
float PosY;
unsigned char Type;
double *Vel; // Just to demonstrate pointers and offsets.

} ArmData_t;

int main ()
{
ArmData_t *LeftArmData =
(ArmData_t *)calloc(l, sizeof (ArmData_t));

LeftArmData->Vel = (double *)calloc(l, sizeof (double));
/*
* Notice that you can pass just the address of LeftArmData,
* not the individual fields.
* Notice that we are using hierarchical names for the signals.
* This will be discussed below.
* The type "float" refers to the type of
* LeftArmData->PosX.
*/
ScopeRegisterSignalWithOffset ("LeftArm/PosX", "meters",

&LeftArmData, "float",

offsetof (ArmData_t, PosX), 0);
ScopeRegisterSignalWithOffset ("LeftArm/PosY", "meters",

&LeftArmData, "float",

offsetof (ArmData_t, PosY), 0);
ScopeRegisterSignalWithOffset ("LeftArm/Type", "none",

&LeftArmData, "uchar",

offsetof (ArmData_t, Type), 0);

/*
* The type "double *" refers to the type of the member Vel.
*/
ScopeRegisterSignalwWithOffset ("LeftArm/Vel", "meters/s",
&LeftArmData, "double *",
offsetof (ArmData_t, Vel), 0);
/*
* Add user code and ScopeCollectSignals(). */
*/

Installing Signals

Data Monitor provides convenience functions, ScopelnstallSignal() and
ScopelnstallSignal WithOffset(), that register and activate a signal in one step.

Example 16-4 Installing elements of an array

#include "scope/scope.h"
static float vhat[17];

253

Wind River Workbench Data Monitor
User's Guide, 3.0

ScopelInstallSignal ("EstimatorElbowAngle", "radians",
&yhat[2],"float",0);

ScopelInstallSignal ("EstimatorElbowRate", "rad/sec",
&yhat[3],"float",0);

Example 16-5 Member Variable Installation
#include "scope/scope.h"
typedef struct {
int packetsize;
double desiredSwitchvalue;
} *SwitchType;
SwitchType inputSw;
inputSw = (SwitchType) malloc (sizeof (*SwitchType)) ;
ScopeInstallSignal ("InputPacketSize", "points",
&inputSw->packetsize, "int",0) ;
ScopeInstallSignal ("InputDesiredSwitchvalue", "gleebs",
&inputSw->desiredSwitchvalue , "double",0) ;

Deactivating and Removing Signals
You can deactivate and remove signals using the functions:
= ScopeDeactivateSignal()

Deactivates a signal, preventing it from being sampled during
ScopeCollectSignals() calls.

= ScopeDeactivateMultipleSignals()

Deactivates signals that match the specified pattern, preventing them from
being sampled during ScopeCollectSignals() calls.

= ScopeRemoveSignal()

Deactivates and unregisters the signal, removing it from the Signal Manager
of the Data Monitor GUI

= ScopeRemoveMultipleSignals()

Deactivates and unregisters the signals that match the specified pattern,
removing them from the Signal Manager window of the Data Monitor GUI.

Online Documentation

Consult the reference pages in 16. API Introduction for signal installation and
removal functions:

* ScopeRegisterSignal()
» ScopeRegisterSignalWithOffset()

254

16 API Introduction
16.2 Using the Data Monitor API

» ScopelnstallSignal()

» ScopelnstallSignalWithOffset()
» ScopeActivateSignal()

» ScopeActivateMultipleSignals()
» ScopeDeactivateSignal()

» ScopeDeactivateMultipleSignals()
* ScopeRemoveSignal()

* ScopeRemoveMultipleSignals()
* ScopeRegisterArray()

* ScopelnstallArray()

» ScopeShowSignals()

» ScopeShowActiveSignals()

Setting Sample Rate

The sample rate is defined as the frequency of calls to ScopeCollectSignals(), for
example, the number of times per second your application calls
ScopeCollectSignals(). Your application determines the sample rate.
ScopeChangeSampleRate() simply reports that rate to Data Monitor. The sample
rate may be changed at any time during execution via another call to
ScopeChangeSampleRate().

NOTE: Down-sampling specified by the Data Monitor GUI causes every few calls
to ScopeCollectSignals() to actually store data.

Further details are available under the entries for ScopelnitServer() and
ScopeCollectSignals() in 16.5 Data Monitor Events API, p.260.

Sampling Signals

Signals are sampled by calls to the function, ScopeCollectSignals(). One sample
of each installed variable is taken each time ScopeCollectSignals() is called. Your
application can call ScopeCollectSignals() asynchronously or synchronously
with the generation of data.

Asynchronous Sampling

Asynchronous sampling simply takes a snapshot of the variable values at regular
intervals during program execution. The intervals are not coordinated with the
execution of your application. Because the sampling is independent of the

255

Wind River Workbench Data Monitor
User's Guide, 3.0

application task, the snapshots may be taken at unpredictable points in the
application code. For example, consider an application with the following loop:

void UserTask()

{

while (1) {
semTake (sem); /* Wait for something */
Xt++;
Yy = Xj

One method of asynchronous sampling is to spawn a task whose only job is to
sample:
void SampleTask()
{
while (1) {
ScopeCollectSignals (0) ;
taskDelay (delayTime) ;

}
This may produce the following data:

Sample X y
1 1 1
2 2 2
3 3 2
4 5 5
5 5 5

This result has the following problems:

» Sample 3 appears inconsistent, because the sample was taken between the
assignment statements for x and y.

= Sample 4 is inaccurate because the sampling task missed the fourth loop of the
user task altogether.

= Sample5is arepeat of Sample 4 because the sampling task ran again before the
user task started its next loop.

Thus, asynchronous sampling cannot guarantee:
= Data-set consistency

All samples in a set form a consistent view of the application-data set.

256

16 API Introduction
16.2 Using the Data Monitor API

= Sampling accuracy
Every loop of the application is sampled exactly once.

In spite of the consistency and accuracy issues, asynchronous sampling is often
desirable because it is easy to set up and requires no changes to your application
code. Asynchronous sampling also works with programs that are not periodic. In
many cases all you really need is a general idea of what all your variables are
doing; asynchronous sampling does that job well. In fact, you can load and run the
demonstration program along with your application and immediately begin
viewing your variables. They are sampled asynchronously by the demonstration
sample loop.

Synchronous Sampling

Because of the issues with asynchronous sampling, many applications require
synchronous sampling, where the sample times must be coordinated with the
execution of your application. If your application requires synchronous sampling,
call ScopeCollectSignals() directly from your application at the instant you wish
data to be sampled:

void UserTask()

{

while (1) {
semTake (sem); /* Wait for something */
Xt++;
Yy = Xi

ScopeCollectSignals(0) ;

}

This always produces the following consistent, accurate sampling;:

Sample X y
1 1 1
2 2 2
3 3 3

257

Wind River Workbench Data Monitor
User's Guide, 3.0

16.3 Understanding Overflows

On the target, calls to ScopeCollectSignals() add data samples to the data buffer
and the LinkDaemon task removes samples from the data buffer to send them to
the host.

If the LinkDaemon task and host cannot keep up with the rate at which the data
buffer is being filled, an overflow will occur when the data buffer is full. An
overflow is more likely to occur with a small target data buffer and a large number
of active signals.

Overflow Behavior

When the sample buffer on the target overflows, the host is notified immediately.
The host then throws away all the samples in its sample buffer (Buffer Reset) and
clears its plot windows. The string Buffer Reset is displayed in the Mini-Monitor
window whenever the sample buffer is cleared. If the Plot window clears
frequently accompanied by the appearance of Buffer Reset messages in the Mini-
Monitor window, it is a clear case of overflows on the target. Try the
recommendations in the following sections to alleviate frequent overflows of the
sample buffer.

Avoiding Overflows

Notes and Hints

You can help prevent buffer overflows by implementing one or both of the
following:

= For VxWorks targets, try raising the priority of the LinkDaemon task.

» Try increasing the sample buffer size (see the VxWorks ScopelnitServer()
entry, ScopelnitServer(), p.278, or the Linux ScopelnitServer() entry,
ScopelnitServer(), p.305).

= Data Collection vs. Buffering

Do not confuse saving snapshots with data collection. Both stopping data
collection (by calling ScopeCollectionModeDisable() on the target) and

258

16 API Introduction
16.4 Triggering and Sampling Functions

taking a snapshot freeze the data-displayed in the graphics window. They are,
however, quite different actions as explained here.

» If you call ScopeCollectionModeDisable(), it prevents further data
collection.

= If you take a snapshot, it saves all the data collected in the current cycle,
but does not stop data collection. Other data-display windows continue to
display the live data.

* Programmatic Access

All of the collection control functions can be accessed under program control
via calls in the Data Monitor API module on the target. For details, see
13. Using a VxWorks Target or 14. Using a Linux Target.

= If No Data Appears

No data is collected if data collection is not active. That is,
ScopeCollectSignals() must be called by the target during each sampling
period. Try setting a breakpoint at ScopeCollectSignals().

Alternatively, (on VxWorks only) type the following in the shell:
-> b ScopeCollectSignals

No data appears (nor would you see an overflow count indicator in the
Data Collection window) if the LinkDaemon task is starved for CPU time, for
example, if some higher-priority process is using all of the processor.

= Live Buffer

Be sure the Plot window is displaying the live buffer rather than a saved buffer
from a previous collection cycle.

16.4 Triggering and Sampling Functions

The triggering and sampling control functions allow run-time access to the data-
collection mode and settings from the real-time program. For instance, one of the
best uses of the trigger routines is to collect data when some condition is detected
by the code. With pre-triggering in effect, this makes it simple to analyze very
difficult-to-find error conditions.

259

Wind River Workbench Data Monitor
User's Guide, 3.0

The triggering and sampling control functions are:

* ScopeTriggerSet()

* ScopeTriggerGet()

» ScopeChangeSampleRate()

» ScopeCollectionModeEnable()
» ScopeCollectionModeDisable()
» ScopeCollectionModeGet()

For details on these functions, see ScopeProbe, p.268.

16.5 Data Monitor Events API

The Data Monitor Events APl is a set of low-overhead logging routines that were
made part of Data Monitor Events API version 7.0. These routines can be useful to
monitor real-time systems with minimal effect on the timing behavior.

An event is defined simply as a line of code represented by a user-specified string
(eventID). An event is said to be thrown when a line of user code instrumented
with Data Monitor Events APl is executed. Optionally, the value of a variable may
also be collected when an event is thrown.

The Data Monitor Events API includes the following routines:

» ScopeEventsAttach()
= ScopeEventsMaskSet()
* ScopeEventsCollect()
= ScopeEventsMessage()
* ScopeEventsDetach()

Setting Up

To implement the Data Monitor Events API for data collection at strategic locations
in your source code, you must first attach an event buffer to an already initialized
scopelndex with a call to ScopeEventsAttach(). This routine attaches a buffer of
the specified size to that scopeIndex. A maximum of 4 buffers can be attached to a
single scopelndex.

260

Using

Example 16-6

16 API Introduction
16.5 Data Monitor Events API

NOTE: Although it is possible to have multiple tasks share a single buffer, we
strongly suggest that you only use 1 task per event buffer. This is recommended
because the event collection routines, ScopeEventsCollect() and
ScopeEventsMessage(), are not reentrant.

With a collection buffer established, the key to using the Data Monitor Events API
is to insert a ScopeEventsCollect() statement after each code line you want a
message printed for, or that uses a variable you want to collect the value of.
ScopeEventsCollect() collects, and stores in the buffer, one message, or the value
of one global or local variable, per call, without the overhead of using a printf
statement. The values collected in the events buffer are periodically transmitted to
the host by the LinkDaemon task running on the target.

A verbosity level (in the range of 1 to 32) can be assigned to each event that is
thrown. This allows you to assign different verbosity levels to the messages (or
variable values) coming from different modules, and, by using events masks, have
control over which ones are collected. Event masks can be set using the
ScopeEventsMaskSet() routine.

When the task is finished, it should call ScopeEventsDetach() to detach the events
buffer from the scopeIndex. If the scopeIndex is shut down, all event buffers
associated with it will be freed.

Include Data Monitor Events API in Source Code
#include "scope/scope.h"

#define EventLevell (0x00000001)
#define EventLevel2 (0x00000002)
#define EventLevel3 (0x00000003)
#define EventLevel30 (0x20000000)
#define EventLevel3l (0x50000000)
#define EventLevel32 (0x80000000)

void ThrowEvents(int scopeIndex)
{

int eventsHandle = 0;

int eventsMask = 0;

double pi = 3.14159;

int level 0;

261

Wind River Workbench Data Monitor
User's Guide, 3.0

/* Initialize scopelIndex by calling ScopelInitServer here. */
/* No need to do above if scopeIndex is already initialized. */
/* Attach an event buffer. */

if ((eventsHandle = ScopeEventsAttach(-1, scopeIndex)) == 0) {
printf ("Error attaching event buffer to %d!\n",
scopelndex) ;

}

/* Set the verbosity mask. */

/* We want events with verbosity 1, 2, 3, 30, 31, and 32. */

eventsMask = (EventLevell | EventLevel2 | EventLevel3 | EventLevel30
| EventLevel3l | EventLevel32);

ScopeEventsMaskSet (eventsMask, scopelndex) ;

/* Throw events using ScopeEventsCollect and ScopeEventsMessage
calls. */

level = 2;

/* This call will succeed since event level 2 is on. */

ScopeEventsCollect (eventsHandle, level, "Value of pi:", &pi,
"double") ;

level = 5;

/* This call will not succeed since level 5 is off. *.

ScopeEventsCollect (eventsHandle, level, "Value of pi:", &pi,
"double") ;

level = 32;

/* This call will succeed since level 32 is on. */
ScopeEventsMessage (eventsHandle, level, "The quick brown fox jumps
over the lazy dog.");

level = 25;

/* This call will not succeed since level 25 is off. */

ScopeEventsMessage (eventsHandle, level, "The lazy dog sleeps on top
of the quick brown fox.");

/* Detach the event buffer. */
ScopeEventsDetach (eventsHandle, scopelndex) ;

}

This example includes all the Data Monitor Events API routines listed at the
beginning of this section. It demonstrates how to set up the Data Monitor Events
API, how to control the collection of both variable values and messages, and how
to properly terminate Data Monitor Events API prior to exiting the task.

Signals vs. Events

The following will help clarify the relationship between signals and events:

262

16 API Introduction
16.6 scope.ini File (VxWorks Only)

= Collection

Signals are collected when ScopeCollectSignals() is invoked. Events are
thrown when either ScopeCollectEvent() or ScopeCollectMessage() is
invoked.

* Frequency of Collection

Usually, signals are collected periodically. Variables that are persistent
(global/static) are good candidates for being collected at a certain period.

Variables with limited scope in a program (local variables) can be collected
using the Data Monitor Events API. Events are utilized for sporadic collection
of ephemeral variables.

= Timing

Data Monitor assumes that ScopeCollectSignals() was invoked at the
sampling rate you set during initialization. The GUI plots each sample with an
inter-sample distance proportional to the sampling rate.

Since there is no period associated with the Data Monitor Events API, an
absolute timestamp is acquired from the target during the time of collection.
The Data Monitor GUI then uses this timestamp to place the event at the right
temporal location on the Plot window.

7.5 Displaying Events, p.130 explains how events are plotted. Though signals and
events are different concepts altogether, events can be displayed like signals. Data
Monitor joins the samples (collected using ScopeEventsCollect()) with lines, to
make them appear like signals. It should be noted, however, that for this display
method to make sense, the same variable should be collected across multiple
collection points.

16.6 scope.ini File (VxXWorks Only)

For VxWorks, Data Monitor maintains some global settings in the scope.ini file.
Most of these settings are maintained by the Preferences dialog box (see

3.3.12 Preferences, p.53). All default preferences and settings can be restored by
deleting scope.ini from the same directory where you installed Data Monitor.

263

Wind River Workbench Data Monitor
User's Guide, 3.0

Example 16-7 Sample scope.ini File

; This section contains some global settings for scope
[defaults]

TotalBufferTime=10

SavelWndPos=0

SaveToolbarPos=0

DontAskWriteback=0

DontAskSave=0

; The following sections save the default window positions
; for the various windows

[SigMan]

wpLeft=1047

wpRight=1461

wpTop=546

wpBottom=938

wpFlags=0

wpShowCmd=1

[LogWnd]
wpLeft=962
wpRight=1518
wpTop=97
wpBottom=595
wpFlags=0
wpShowCmd=1

[PlotWindow]
wpLeft=110
wpRight=1310
wpTop=110
wpBottom=952
wpFlags=0
wpShowCmd=1

[DumpWindow]
wpLeft=303
wpRight=1503
wpTop=233
wpBottom=1094
wpFlags=0
wpShowCmd=1

[PlotXYWindow]
wpLeft=387
wpRight=1087
wpTop=227
wpBottom=927
wpFlags=0
wpShowCmd=1

264

16 API Introduction
16.6 scope.ini File (VxWorks Only)

[MonitorWindow]
wpLeft=263
wpRight=1463
wpTop=204
wpBottom=1065
wpFlags=0
wpShowCmd=1

; The current colors
; The values are in BGR order
[Colors]
Color0=0x0000ff
Colorl=0x££f0000
Color2=0xc800c8
Color3=0xc8c800
Color4=0x00c800
Color5=0x4040a0
Color6=0x10bbda4d
Color7=0x5a5aba
Color8=0xc0c0cO
Color9=0x92faf5
Colorl0=0xf££f£00
Colorll1=0x0099ff
Colorl12=0x33f£99
Colorl3=0x330066
Colorl14=0x990000
Colorl5=0x08aaa?2

; The settings saved for the Preferences Window
[defaults-plot]
YOffset=1.500000
YRange=3.000000
Resolution=1
DispAcc=2
MinGrid=50
MaxSnap=20
SnapToSigs=1
MonRes=1.000000
AllowWrite=1
SelectOnCopy=0
UseSameColors=1
UnselectLive=1
DumpRes=1.000000
DumpHist=1000

[defaults-plotxy]
YOffset=1.500000
YRange=3.000000
XO0ffset=-1.500000
XRange=3.000000
Resolution=1
DispAcc=2
MinGrid=50
MaxSnap=20
SnapToSigs=1
SelectOnCopy=1

265

Wind River Workbench Data Monitor
User's Guide, 3.0

UseSameColors=1
UnselectLive=1

[defaults-dump]
DispAcc=2
DumpRes=1.000000
DumpHist=500

[defaults-monitor]
DispAcc=4
MonRes=1.000000
AllowWrite=1

266

API| Reference: VxWorks

ScopeProbe — real-time library for Data Monitor 268
ScopeActivateMultipleSignals() — activate multiple signals 269
ScopeActivateSignal() — activate a signal 269

ScopeChangeSampleRate() — change the sampling rate 270
ScopeCollectSignals() — collect a sample from each active signal 271
ScopeCollectionModeDisable() — disable periodic collection 271
ScopeCollectionModeEnable() — enable periodic collection 272
ScopeCollectionModeGet() — return the collection mode 272
ScopeDeactivateMultipleSignals() — deactivate a group of signals 273
ScopeDeactivateSignal() — deactivate a signal 274

ScopeEventsAttach() — attach an event buffer to a scope index 274
ScopeEventsCollect() — collect the value of a variable on the spot 275
ScopeEventsDetach() — detach an event buffer from a scope index 276
ScopeEventsMaskSet() — set the events verbosity mask 276
ScopeEventsMessage() — throw an event with the specified message 277
ScopelnitServer() — initialize a scope index 278

ScopelnitServerEx() — initialize a scope index 278

ScopelnstallArray() - register and activate an array of signals 280
ScopelnstallSignal() — degister and activate a signal 281
ScopelnstallSignalWithOffset() —register and activate a signal with an offset 282
ScopePrintVersion() — print the version number of the Data Monitor target library 284
ScopeRegisterArray() —register an array of signals 285
ScopeRegisterSignal() - register a signal 286
ScopeRegisterSignalWithOffset() — register a signal with an offset 287
ScopeRemoveMultipleSignals() —remove several similarly named signals 289
ScopeRemoveSignal() —remove a signal 290

ScopeSampleDivisorSet() —set the sample divisor for sub-sampling 290
ScopeShowActiveSignals() — print all signals that are being collected 291
ScopeShowSignals() - print all registered signals 291

ScopeShutdown() — shuts down a scope index 291

ScopeTriggerSet() — set the triggering parameters 292

ScopeTriggerGet() — return the current trigger parameters 293

267

Wind River Workbench Data Monitor
User's Guide, 3.0

NOTE: The scopelndex parameter represents the communications channel between
an instance of Data Monitor API running on the target and a Data Monitor GUI
running on the host. You can create up to 128 instances of Data Monitor APl on a
single target machine, each using a different scope index. The index can range
from 0 to 127, and it must be specified when you call ScopelnitServer().

ScopeProbe

NAME ScopeProbe — real-time library for Data Monitor

ROUTINES ScopeShutdown() — shut down a scope index
ScopelnitServerEx() — initialize a scope index
ScopelnitServer() — initialize a scope index
ScopePrintVersion() — print the version number of the Data Monitor target
ScopeEventsCollect() — collect the value of a variable on the spot
ScopeEventsMessage() — throw events with the specified message
ScopeEventsMaskSet() — set the event verbosity mask
ScopeEventsAttach() — attach an event buffer to a scope index
ScopeEventsDetach() — detach an event buffer from a scope index
ScopeCollectSignals() — collect a sample from each active signal
ScopeCollectionModeEnable() — enable periodic collection
ScopeCollectionModeDisable() — disable periodic collection
ScopeCollectionModeGet() — return the collection mode
ScopeChangeSampleRate() — change the sampling rate
ScopeSampleDivisorSet() — set the sample divisor for sub—sampling
ScopeRegisterSignal WithOffset() — register a signal with an offset
ScopeRegisterSignal() — register a signal
ScopeRemoveSignal() — remove a signal
ScopeRemoveMultipleSignals() — remove several similarly-named signals
ScopeActivateSignal() — activate a signal
ScopeActivateMultipleSignals() — activate multiple signals
ScopeDeactivateSignal() — deactivate a signal
ScopeDeactivateMultipleSignals() — deactivate a group of signals
ScopelnstallSignal WithOffset() — register and activate a signal with an
ScopelnstallSignal() — register and activate a signal
ScopeShowSignals() — print all registered signals
ScopeShowActiveSignals() — print all signals that are being collected
ScopeRegisterArray() — register an array of signals
ScopelnstallArray() — register and activate an array of signals
ScopeTriggerSet() — set the triggering parameters
ScopeTriggerGet() —return the current trigger parameters

268

DESCRIPTION

NAME

SYNOPSIS

DESCRIPTION

RETURNS

SEE ALSO

NAME

SYNOPSIS

A API Reference: VxWorks
ScopeActivateMultipleSignals()

This library provides a programmatic interface to Data Monitor real-time data collection
and signal management, facilitating collection of time-histories of variables in your real-
time program.

ScopeActivateMultipleSignals()

ScopeActivateMultipleSignals() — activate multiple signals

int ScopeActivateMultipleSignals
(
const char *namePrefix,
int scopeIndex

)

This function activates signals that have namePrefix as prefix. Activated signals can be
selected for viewing from one of the many data-display windows (such as Plot, Monitor,
and so forth). ScopeCollectSignals() only collects samples of activated signals.

A prefix of "." activates all signals.

On success, the number of signals that have been activated.
On failure, it returns 0, indicating one of the following;:

= the index scopelndex is invalid or has not been initialized
= there is no signal with the namePrefix registered with index scopelndex
= namePrefix is NULL or invalid

ScopeProbe(), ScopelnstallSignal(), ScopelnstallSignal WithOffset(),
ScopeRegisterSignal(), ScopeRegisterSignalWithOffset(), ScopeActivateSignal(),
ScopeDeactivateSignal(), ScopeRemoveSignal(), ScopeRemoveMultipleSignals()

ScopeActivateSignal()

ScopeActivateSignal() — activate a signal

RTIBool ScopeActivateSignal
(
const char .name,
int scopeIndex
)

269

DESCRIPTION

RETURNS

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

RETURNS

SEE ALSO

Wind River Workbench Data Monitor
User's Guide, 3.0

This function activates a signal. Activated signals can be selected for viewing from one of
the many data-display windows (such as Plot, Monitor, and so forth).
ScopeCollectSignals() only collects samples of activated signals.

On success, this function returns RTI_TRUE, indicating that the signal was activated.
On failure, it returns RTI_FALSE, indicating one of the following:
= the index scopelndex is invalid or has not been initialized

= there is no signal named name registered with index scopelndex

ScopeProbe(), ScopelnstallSignal(), ScopelnstallSignal WithOffset(),
ScopeRegisterSignal(), ScopeRegisterSignalWithOffset(), ScopeActivateSignal(),
ScopeDeactivateSignal(), ScopeRemoveSignal(), ScopeRemoveMultipleSignals()

ScopeChangeSampleRate()

ScopeChangeSampleRate() — change the sampling rate

float ScopeChangeSampleRate
(
float newSampleRate,
int scopeIndex
)

This routine changes the amount of time that Data Monitor assumes passed between calls
to ScopeCollectSignals(). It does not change the actual sampling rate, thatis a
responsibility of user code. The rate is used to calculate times between samples. If the rate
is incorrect, these calculations will also be incorrect.

The parameter should be the frequency in samples per second of the calls to
ScopeCollectSignals().

On success, this function returns the old sampling rate.

On failure, this function returns 0.0 indicating one of the following;:

= scopelndex is invalid or is not initialized

= rateisinvalid (<= 0.0)

ScopeProbe(), ScopeCollectSignals(), ScopelnitServer()

270

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

RETURNS

A API Reference: VxWorks
ScopeCollectSignals()

ScopeCollectSignals()

ScopeCollectSignals() — collect a sample from each active signal

void ScopeCollectSignals
(
int scopelIndex
)

This routine should be called periodically to collect the values of signals. Data Monitor will
assume that this function is called at the frequency set using ScopeChangeSampleRate().
However, this only affects the timing calculations made by Data Monitor.

If a sample divisor is set and is greater than 1, then this routine will return without
collecting data when a sample is to be skipped. For instance, with a sample divisor of 3, this
routine will only actually collect the data every third time it is called. The other two times,
it will simply return immediately.

Furthermore, the behavior of this function depends on triggering. If the trigger is set and is
waiting for the start condition to occur (ARMED), this function will return without collecting
any data. Refer to ScopeTriggerSet() for more information.

VxWorks users: the task that calls this routine should have floating point enabled
(VX_FP_TASK set).

Example code exists under the src directory.

ScopeProbe(), ScopeChangeSampleRate(), ScopeCollectionModeEnable(),
ScopeCollectionModeDisable(), ScopeTriggerSet()

ScopeCollectionModeDisable()

ScopeCollectionModeDisable() — disable periodic collection

RTIBool ScopeCollectionModeDisable
(
int scopelIndex
)

Use this function to disable periodic collection of active signals. Calling this function sets a
flag that is examined by ScopeCollectSignals(). If the flag is set, the function returns
without sampling active signals. To turn collection on, use ScopeCollectionModeEnable().

On success, this function returns RTI_TRUE.

271

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

RETURNS

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

RETURNS

Wind River Workbench Data Monitor
User's Guide, 3.0

On failure, this function returns RTI_FALSE if:

= scopelndex is invalid or is not initialized

ScopeProbe(), ScopeCollectSignals(), ScopeCollectionModeEnable(),
ScopeCollectionModeGet()

ScopeCollectionModeEnable()

ScopeCollectionModeEnable() — enable periodic collection

RTIBool ScopeCollectionModeEnable
(
int scopelIndex

)

Use this function to re-enable periodic collection of active signals if it was turned off earlier
using ScopeCollectionModeDisable(). By default (after calling ScopelnitServer()), the
collection mode is enabled. Refer to ScopeCollectionModeDisable() for more information.
On success, this function returns RTI_TRUE.

On failure, this function returns RTI_FALSE if:

= scopelndex is invalid or is not initialized

ScopeProbe(), ScopeCollectSignals(), ScopeCollectionModeDisable(),
ScopeCollectionModeGet()

ScopeCollectionModeGet()

ScopeCollectionModeGet() — return the collection mode

int ScopeCollectionModeGet
(
int scopelndex

)

Use this function to determine the current collection mode.

On success, this function returns:

272

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

RETURNS

SEE ALSO

A API Reference: VxWorks
ScopeDeactivateMultipleSignals()

= SCOPE_MODE_ENABLED if collection mode is enabled
= SCOPE_MODE_DISABLED if collection mode is disabled

On failure, this function returns -1 if:
= scopelndex is invalid or is not initialized

ScopeProbe(), ScopeCollectSignals(), ScopeCollectionModeEnable(),
ScopeCollectionModeDisable()

ScopeDeactivateMultipleSignals()

ScopeDeactivateMultipleSignals() — deactivate a group of signals

int ScopeDeactivateMultipleSignals
(
const char #*namePrefix,
int scopelIndex

)

This function will remove all signals from the list of active signals for the selected scopelndex
which start with the specified namePrefix. Therefore, data will not be collected for these
signals during ScopeCollectSignals(). A prefix of "." deactivates all signals.

On success, the number of signals that have been deactivated.

On failure, this function returns 0, indicating one of the following:

= the index scopelndex is invalid or has not been initialized
= there are no active signals with the namePrefix registered with index scopelndex
» namePrefix is invalid

ScopeProbe(), ScopeActivateMultipleSignals()

273

NAME

SYNOPSIS

DESCRIPTION

RETURNS

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

RETURNS

Wind River Workbench Data Monitor
User's Guide, 3.0

ScopeDeactivateSignal()

ScopeDeactivateSignal() — deactivate a signal

RTIBool ScopeDeactivateSignal
(
const char *name,
int scopelndex

)

This function will remove a signal from the list of activate signals. Therefore, data will not
be collected for this signal during ScopeCollectSignals().

On success, this function returns RTI_TRUE, indicating that the signal was deactivated.
On failure, this function returns RTI_FALSE, indicating one of the following:

= the index scopelndex is invalid or has not been initialize.

= there is no active signal named name registered with index scopelndex

ScopeProbe(), ScopeActivateSignal()

ScopeEventsAttach()

ScopeEventsAttach() — attach an event buffer to a scope index

int ScopeEventsAttach
(
int eventBufferSize,
int scopelIndex
)

This function attaches an event buffer to a scope index. The eventsHandle returned by this
function should be used to throw events. There is a maximum limit of four event buffers that
can attach to an index. Throwing events into the same buffer from multiple threads is not
recommended.

On success, this function returns a non-zero eventsHandle.

On failure, it returns 0 if:

= scopelndex is invalid or is not initialized. The maximum number of event buffers are
already attached.

274

SEE ALSO

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

A API Reference: VxWorks
ScopeEventsCollect()

ScopeProbe(), ScopelnitServer(), ScopeEventsDetach()

ScopeEventsCollect()

ScopeEventsCollect() — collect the value of a variable on the spot

void ScopeEventsCollect

(

int eventsHandle,
int level,

const char. *eventId,
void ptrToVar,

RTIAtomicTypeId typeld
)

eventsHandle
The handle returned by ScopeEventsAttach().

level
The verbosity level of this event. Range: [1 - 32].

eventld
A string that describes this event.

ptrToVar
Pointer to the variable to collect.

typeld
Type identifier for the variable. Use:

— RTLINTSID for char, unsigned char,

— RTLINT16ID for short, unsigned short,

— RTLINT32ID for int, unsigned int, long, unsigned long,
— RTI_FLOATS32ID for float, and

— RTI_DOUBLE64ID for double.

This function collects the value of one variable on the spot. The variable does not have to be
static/global as required by ScopeCollectSignals() and there is no need to perform
registration/activation. This function is a low-overhead equivalent of printf() for use in

debugging realtime systems.

ScopeEventsCollect() is actually a macro that calls the collection function

ScopeEventsCollectInternal() only if the verbosity level of this event is turned on. Thus,
there is no overhead of a function call if the verbosity level of this event is turned off. The

verbosity mask can be set using ScopeEventsMaskSet().

275

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

RETURNS

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

Wind River Workbench Data Monitor
User's Guide, 3.0

NOTE: Calling this function from multiple threads with the same eventsHandle is not
recommended. Therefore, use a separate eventsHandle (returned by ScopeEventsAttach())
for each thread, which calls this function.

ScopeProbe(), ScopeEventsMessage(), ScopeEventsAttach(), ScopeEventsMaskSet()

ScopeEventsDetach()

ScopeEventsDetach() — detach an event buffer from a scope index

RTIBool ScopeEventsDetach
(

int eventsHandle

)

eventsHandle is the handle returned by ScopeEventsAttach().This function detaches an
event buffer from an index.

On success, this function returns RTI_TRUE.
On failure, it returns RTI_FALSE if:

= eventsHandle is invalid

ScopeProbe(), ScopelnitServer(), ScopeEventsAttach()

ScopeEventsMaskSet()

ScopeEventsMaskSet() — set the events verbosity mask

RTIBool ScopeEventsMaskSet
(
int eventsMask,
int scopelIndex
)

Data Monitor Events API allows for 32 levels of verbosity. This function sets the mask for

the specified scope index. Each bit in mask corresponds to one verbosity level. Setting the
mask to 0x00000001 turns off all levels except level 1 messages. The mask can be set anytime

276

RETURNS

SEE ALSO

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

SEE ALSO

A API Reference: VxWorks
ScopeEventsMessage()

during the executing of the program and take effect immediately. By default, all levels are
turned on for a scope index.

On success, this function returns RTI_TRUE.

On failure, this function returns RTI_FALSE if:

= scopelndex is invalid or is not initialized

ScopeProbe(), ScopeEventsCollect(), ScopeEventsMessage(), ScopeEventsAttach()

ScopeEventsMessage()

ScopeEventsMessage() — throw an event with the specified message

void ScopeEventsMessage
(
int eventsHandle,
int level,
const char *message

)

eventsHandle
The handle returned by ScopeEventsAttach().

level
The verbosity level of this event. Range: [1 - 32].

message
Message string.

This function throws an event with the specified message string. This function is a low-
overhead equivalent of printf() for use in debugging real-time systems.

ScopeEventsMessage() is actually a macro that calls the collection function
ScopeEventsMessagelnternal() only if the verbosity level of this event is turned on. Thus,
there is no overhead of a function call if the verbosity level of this event is turned off. The
verbosity mask can be set using ScopeEventsMaskSet().

NOTE: Calling this function from multiple threads with the same eventsHandle is not
recommended. Therefore, use a separate eventsHandle (returned by ScopeEventsAttach())
for each thread, which calls this function.

ScopeProbe(), ScopeEventsCollect(), ScopeEventsAttach(), ScopeEventsMaskSet()

277

Wind River Workbench Data Monitor
User's Guide, 3.0

ScopelnitServer()

NAME ScopelnitServer() — initialize a scope index

SYNOPSIS int ScopelnitServer
(
int sampleBufferSize,
int signalBufferSize,
int debugLevel,
int scopelndex

)

DESCRIPTION Calls ScopelnitServerEx() with default priorities for scopeprobe and scopelink daemon
threads. Refer to ScopelInitServerEx() for details.

RETURNS On success, this function returns the initialized scope index.
On failure, this function returns a negative number if:
= scopelndex is out of range
= allindices are occupied

= memory allocation failed: it failed to create daemon threads (which will happen if the
threads failed to bind to TCP ports, or if the priorities specified are not valid on the
target operating system)

SEE ALSO ScopeProbe(), ScopelnitServerEx()

ScopelnitServerEx()

NAME ScopelnitServerEx() — initialize a scope index

SYNOPSIS int ScopeInitServerEx
(
int sampleBufferSize,
int signalBufferSize,
int debugLevel,
int probeDaemonPriority,
int linkDaemonPriority,
int scopelIndex

)
DESCRIPTION Initializes the scope index scopelndex. If scopelndex is -1, then this function initializes the next

uninitialized scope index. This should be called once for each index (on VxWorks, normally
at boot time). Calling it multiple times for the same index is harmess though.

278

RETURNS

SEE ALSO

A API Reference: VxWorks
ScopelnitServerEx()

The sampleBufferSize parameter specifies the size of the target data buffer in bytes. This
buffer is used to store the data samples for the active signals. Data samples for all types other
than double are saved as 4-byte values. Data samples for doubles are saved as 8-byte values.
Thus, the maximum number of samples that can fit in the buffer will range between
((sampleBufferSize / 8) - 1) / numberOfSignals and ((sampleBufferSize / 4)-1) /
numberOfSignals, rounded down to the nearest integer.

If sampleBufferSize <= 0, it defaults to (32#1024). Otherwise, if it is less than 1024, a value of
1024 is used instead.

The signalBufSize parameter specifies the size of the target signal buffer in bytes. This buffer
is used to store the information specific to each signal (such as the name, units and type).
The space taken by a signal gets reclaimed (for registering other signals) when the signal is
removed. The information stored for a signal takes up 28 bytes plus the number of bytes
(including the terminating null character) it takes to store the signal name and units. Note
that a signal registered twice, under different scope indices, counts as two registered signals.

If signalBufferSize <= 0, it defaults to (32+1024). If signalBufferSize > 0 and < 1024 it defaults
to 1024.

The scopeprobeDaemonPriority and scopelinkDaemonPriority parameters specify the
scheduling priority levels for the scopeprobe and scopelink daemon threads that are
spawned by this function. Refer to the documentation on threads and scheduling for the
operating system that you are using, for valid priority levels. If you do not want to specify
a priority level, you can pass a nonpositive value for this parameter. In that case, suitable
priority levels will automatically be chosen.

Normally, for each scope index, a target spawns real-time daemons (scopeprobe and
scopelink) which communicate to the host over the network, using TCP/IP. If you are using
Tornado, and wish to use the Tornado WTX protocol instead, you must load the Data
Monitor WTX target library (libscopewtx.so). In that case, the daemons will use the WTX
protocol to communicate even if IP is available. Note that the protocol is called WTX, even
though the target is talking to the WDB daemon.

On success, this function returns the initialized scope index.

On failure, this function returns a negative number if:

= scopelndex is out of range

= all indices are occupied

= memory allocation failed: it failed to create daemon threads (which will happen if the
threads failed to bind to TCP ports, or if the priorities specified are not valid on the
target operating system)

ScopeProbe(), ScopeShutdown(), ScopeEventsAttach(), ScopeEventsDetach()

279

Wind River Workbench Data Monitor
User's Guide, 3.0

ScopelnstallArray()

NAME ScopelnstallArray() — register and activate an array of signals

SYNOPSIS int ScopelnstallArray
(
const char *name,
int elementsInArray,
const char *units,
void .ptrToStaticArray,
const char *type,
int scopelndex

)

PARAMETERS name
A unique name to identify the array.

elementsInArray
The number of elements to install.

units
User specified unit of measurement, for identification.

ptrToStaticArray
Must be a pointer to a static (or global) storage location.

type
Must be one of the accepted types such as:
- double
- float
- int
and so forth.

See ScopeProbe() for details on types.

DESCRIPTION This function calls ScopeRegisterArray() followed by ScopeActivateMultipleSignals(). It
exists purely for convenience. Users should refer to ScopeRegisterArray() and
ScopeActivateMultipleSignals() for details.

EXAMPLES float global_array[100];
int main()
{

static double static_array[50];
// Initialize ScopeIndex here. See ScopeInitServer().
ScopeInstallArray ("my global_arrayl", 100, "none", &global_array,

"float", Scopelndex) ;
ScopeInstallArray ("my_static_arrayl", 50, "none", &static_array,

280

A API Reference: VxWorks

ScopelnstallSignal()
"double", Scopelndex) ;
while () {
ScopeCollectSignals();

}

// Shutdown ScopeIndex. See ScopeShutdown().
}

RETURNS On success, this function returns the numbers of array elements successfully installed.

On failure, it returns zero, indicating one of the following:

» the index (scopelndex) is invalid or has not been initialized
= the type specified (type) is not recognized

= the parameters passed are invalid

= there is no more space in the signal buffer

SEE ALSO ScopeProbe(), ScopeRegisterArray(), ScopeActivateMultipleSignals(),
ScopeDeactivateMultipleSignals(), ScopelnstallSignal()

ScopelnstallSignal()

NAME ScopelnstallSignal() — degister and activate a signal

SYNOPSIS RTIBool ScopeInstallSignal
(
const char #*name,
const char *units,
void .ptrToStaticVar,
const char *type,
int scopelndex

)

DESCRIPTION This function calls ScopeRegisterSignal() followed by ScopeActivateSignal(). It exists
purely for backwards compatibility and convenience. Users should refer to
ScopeRegisterSignal() and ScopeActivateSignal() for details.

EXAMPLES float global_var;
float .global_ptr;

int main()

{
static double static_var;
static double .static_ptr;

281

Wind River Workbench Data Monitor
User's Guide, 3.0

// Initialize ScopeIndex here. See ScopeInitServer().

ScopeInstallSignal ("my_global_varl", "none", &global_var, "float",
ScopelIndex) ;

ScopeInstallSignal ("my_static_varl", "none", &static_var,
"double", ScopelIndex) ;

global_ptr = (float .) calloc(l, sizeof(.global_ptr));

static_ptr = (double .) calloc(l, sizeof (.static_ptr));

ScopeInstallSignal ("my_global_var2", "none", global_ptr, "double",
ScopelIndex) ;

ScopeInstallSignal ("my_static_var2", "none", static_ptr, "double",
ScopelIndex) ;

while () {

ScopeCollectSignals();

}
// Shutdown ScopeIndex. See ScopeShutdown().

}

RETURNS On success, this function returns RTI_TRUE, indicating that the signal was installed.
On failure, it returns RTI_FALSE, indicating one of the following:

» the index (scopelndex) is invalid or has not been initialized
= the type specified (type) is not recognized

= the parameters passed are invalid

= there is no more space in the signal buffer

SEE ALSO ScopeProbe(), ScopeRegisterSignal(), ScopeActivateSignal(), ScopeDeactivateSignal(),
ScopeRemoveSignal(), ScopeRemoveMultipleSignals()

ScopelnstallSignal WithOffset()

NAME ScopelnstallSignalWithOffset() — register and activate a signal with an offset

SYNOPSIS RTIBool ScopeInstallSignalWithOffset
(
const char #*name,
const char *units,
void .ptrToStaticVar,
const char *type, int offset,
int scopelndex

)

DESCRIPTION Register and activate a signal with an offset.

PARAMETERS name
A unique name to identify the signal.

282

A API Reference: VxWorks
ScopelnstallSignalWithOffset()

units
User specified unit of measurement, for identification.

ptrToStaticVar
Must point to a static (or global) storage location.

type
Refers to the type of the variable at the given offset.

offset

Number of bytes from ptrToStaticVar to collect data from.

DESCRIPTION This function calls ScopeRegisterSignalWithOffset() followed by ScopeActivateSignal().
It exists purely for convenience. Users should refer to ScopeRegisterSignalWithOffset()
and ScopeActivateSignal() for details.

EXAMPLES The following illustrates how to use ScopelnstallSignalWithOffset():

typedef struct ArmData_s {

float PosX;

float PosY;

unsigned char Type;

double .Vel; // Just to demonstrate pointers and offsets.
} ArmData_t;

int main ()

{
ArmData_t .LeftArmData = (ArmData_t .)calloc(l, sizeof());
LeftArmData->Vel = (double .)calloc(l, sizeof());

// Initialize ScopelIndex here. See ScopelInitServer().
// Notice that you can pass just the address of LeftArmData,
// not the individual fields.
// The type "float" refers to the type of LeftArmData->PosX.
ScopeInstallSignalWithOffset ("LeftArm/PosX", "meters",
&LeftArmData, "float",
offsetof (ArmData_t, PosX), 0);

ScopeInstallSignalWithOffset ("LeftArm/PosY", "meters",
&LeftArmData, "float",
offsetof (ArmData_t, PosY), 0);

ScopeInstallSignalWithOffset ("LeftArm/Type", "meters",
&LeftArmData, "uchar",
offsetof (ArmData_t, Type), 0);

// The type "double ." refers to the type of the member Vel.

ScopeInstallSignalWithOffset ("LeftArm/Vel", "meters", &LeftArmData,
"double .", offsetof (ArmData_t, Vel), 0);

283

Wind River Workbench Data Monitor
User's Guide, 3.0

while () {
// Set the data in the member LeftArmData.
ScopeCollectSignals();
}

// Shutdown ScopeIndex. See ScopeShutdown().
}

RETURNS On success, this function returns RTI_TRUE, indicating that the signal was installed.
On failure, it returns RTI_FALSE, indicating one of the following:

= the index (scopelndex) is invalid or has not been initialized
= the type specified (type) is not recognized

= the parameters passed are invalid

= there is no more space in the signal buffer

SEE ALSO ScopeProbe(), ScopeRegisterSignal(), ScopeActivateSignal(), ScopeDeactivateSignal(),
ScopeRemoveSignal(), ScopeRemoveMultipleSignals()

ScopePrintVersion()

NAME ScopePrintVersion() — print the version number of the Data Monitor target library
SYNOPSIS void ScopePrintVersion(void)

DESCRIPTION Print the version number of the Data Monitor target library.

SEE ALSO ScopeProbe(), ScopeProbe()

284

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

RETURNS

A API Reference: VxWorks
ScopeRegisterArray()

ScopeRegisterArray()

ScopeRegisterArray() — register an array of signals

int ScopeRegisterArray
(
const char *name,
int elementsInArray,
const char *units,
void .ptrToStaticArray,
const char *type,
int scopelndex

)

This function registers an array (one dimensional) of signals by calling
ScopeRegisterSignal() for each element in the array. An array modifier "[1" is appended to
the signal name followed by the index of the element.

A valid signal name should not contain asterisks or blank spaces. Invalid characters in
signal name (name) would be automatically replaced with underscores.

It is the responsibility of teh caller to ensure that the address passed as ptrToStaticArray
points to a valid memory location. In particular, a bad address may cause a Bus Error or
Segmentation Fault to occur within ScopeCollectSignals().

float global_array[100];

int main()
{

static double static_array[50];

// Initialize ScopeIndex here. See ScopeInitServer().

ScopeRegisterArray ("my_global_arrayl", 100, "none", &global_array,
"float", Scopelndex) ;

ScopeRegisterArray ("my_static_arrayl", 50, "none", &static_array,
"double", Scopelndex) ;

ScopeActivateMultipleSignals ("my_global_arrayl", ScopeIndex) ;
ScopeActivateMultipleSignals ("my_static_arrayl", Scopelndex) ;

while () {
ScopeCollectSignals();

}
// Shutdown ScopeIndex. See ScopeShutdown().

On success, this function returns the numbers of array elements successfully registered.
On failure, it returns zero, indicating one of the following:

= the index scopelndex is invalid or has not been initialized

285

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

Wind River Workbench Data Monitor
User's Guide, 3.0

= the type specified type is not recognized
= the parameters passed are invalid
= there is no more space in the signal buffer

ScopeProbe(), ScopeRegisterSignal(), ScopelnstallArray(),
ScopeActivateMultipleSignals(), ScopeDeactivateMultipleSignals()

ScopeRegisterSignal()

ScopeRegisterSignal() — register a signal

RTIBool ScopeRegisterSignal
(
const char #*name,
const char *units,
void .ptrToStaticVar,
const char *type,
int scopelIndex

)

This function registers a signal. A registered signal is one that is made known to the Data
Monitor signal manager, but not to any other window, for example, the Plot window. It has
the possibility of becoming activated through the signal manager or through the target
function ScopeActivateSignal(). Activated signals can be selected for display from one of
the many data-display windows (for example, Plot, Monitor, and so forth).

A signal is any variable in the program, with the caveat that it must have a valid value at the
instant that ScopeCollectSignals() is called. Thus, most anything can be installed as a
signal, with the exception of automatic stack variables whose scope does not include the
ScopeCollectSignals() call.

A valid signal name should not contain asterisks or blank spaces. Invalid characters in
signal name would be automatically replaced with underscores.

It is the responsibility of the caller to ensure that the address passed ptrToStaticVar points to
a valid memory location. In particular, a bad address may cause a Bus Error or
Segmentation Fault to occur within ScopeCollectSignals().

float global_var;
float .global_ptr;

int main()

{
static double static_var;
static double .static_ptr;

286

A API Reference: VxWorks
ScopeRegisterSignalWithOffset()

// Initialize ScopeIndex here. See ScopeInitServer().

ScopeRegisterSignal ("my_global_varl", "none", &global_var,
"float", Scopelndex) ;
ScopeRegisterSignal ("my_static_varl", "none", &static_var,

"double", Scopelndex) ;

global_ptr = (float .) calloc(l, sizeof(.global_ptr));

static_ptr = (double .) calloc(l, sizeof (.static_ptr));

ScopeRegisterSignal ("my_global_var2", "none", global_ptr,
"double", Scopelndex) ;

ScopeRegisterSignal ("my_static_var2", "none", static_ptr,

"double", Scopelndex) ;
// Activate the registered signals here. See ScopeActivateSignal().

while () {
ScopeCollectSignals();
}

// Shutdown ScopeIndex. See ScopeShutdown().

RETURNS On success, this function returns RTI_TRUE, indicating that the signal was registered.
On failure, it returns RTI_FALSE, indicating one of the following:

= the index scopelndex is invalid or has not been initialized

= the type specified type is not recognized

= the parameters passed are invalid

= there is no more space in the signal buffer n

SEE ALSO ScopeProbe(), ScopeActivateSignal(), ScopeDeactivateSignal(), ScopelnstallSignal(),
ScopeRegisterSignal WithOffset()

ScopeRegisterSignalWithOffset()

NAME ScopeRegisterSignal WithOffset() — register a signal with an offset

SYNOPSIS RTIBool ScopeRegisterSignalWithOffset
(
const char *name,
const char *units,
void .ptrToStaticVar,
const char *type,
int offset,
int scopelndex

)

287

DESCRIPTION

EXAMPLES

Wind River Workbench Data Monitor
User's Guide, 3.0

This function has the same functionality as ScopeRegisterSignal(), except callers can
specify an offset from ptrToStaticVar. This offset refers to a variable in a structure that a caller
wants to sample. However, the address of the variable may not be known at register time,
hence the offset.

A valid signal name should not contain asterisks or blank spaces. Invalid characters in
signal name would be automatically replaced with underscores.

It is the responsibility of the caller to ensure that the address and offset parameters point to
a valid memory location. In particular, a bad address may cause a Bus Error or
Segmentation Fault during ScopeCollectSignals().

Ideally, this function would be used to sample variables in an array of structures. The caller
would register a structure pointer with an offset to a variable they want sampled. Therefore,
by changing the pointer callers can sample the same variable at different locations in the
array, see below for examples.

// An example structure.
typedef struct TestData_s {
float fieldl;
double field2;
} TestData_t;

// Here is an array that is read in.
#define MAXLENGTH 100

TestData_t TestDataArray [MAXLENGTH] ;
TestData_t .TestDataPtr = &TestDataArray[0];

int main()
{

int 1 = 0;
// Initialize ScopelIndex here. See ScopelInitServer().

// Notice we are using the new hierarchical naming feature.
ScopeRegisterSignalWithOffset ("test/fieldl", "volts",
&TestDataPtr, "float",
offsetof (TestData_t, fieldl),
ScopelIndex) ;
ScopeRegisterSignalWithOffset ("test/field2", "volts",
&TestDataPtr, "double",
offsetof (TestData_t, field2),
ScopelIndex) ;

// Activate the registered signals here. See ScopeActivateSignal().

for (1 = 0; 1 < MAXLENGTH; i++) {
// Read in TestDataArrayl[i].
// Set TestDataPtr to the new data.
TestDataPtr = &TestDataArrayl[il;
ScopeCollectSignals();

288

RETURNS

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

RETURNS

SEE ALSO

A API Reference: VxWorks
ScopeRemoveMultipleSignals()

// Shutdown ScopeIndex. See ScopeShutdown().
}

On success, this function returns RTI_TRUE, indicating that the signal was registered.
On failure, it returns RTI_FALSE, indicating one of the following:

= the index scopelndex is invalid or has not been initialized
= the type specified type is not recognized

= the parameters passed are invalid

= there is no more space in the signal buffer

ScopeProbe(), ScopeRegisterSignal(), ScopeActivateSignal(), ScopelnstallSignal(),
ScopelnstallSignalWithOffset(), ScopeRemoveSignal(),
ScopeRemoveMultipleSignals(), ScopeDeactivateSignal()

ScopeRemoveMultipleSignals()

ScopeRemoveMultipleSignals() — remove several similarly named signals

int ScopeRemoveMultipleSignals
(
const char #*namePrefix,
int scopelIndex

)

This function removes a set of installed signals that have namePrefix as prefix. If namePrefix

is ".", all signals will be removed.

On success, returns the number of signals removed.
On failure, this function returns 0, indicating one of the following:

= namePrefix is NULL
= there is no signal named with prefix namePrefix registered with index scopelndex
= the index scopelndex is out of range or if index is not initialized

ScopeProbe(), ScopeRemoveSignal()

289

NAME

SYNOPSIS

DESCRIPTION

RETURNS

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

RETURNS

Wind River Workbench Data Monitor
User's Guide, 3.0

ScopeRemoveSignal()

ScopeRemoveSignal() — remove a signal

RTIBool ScopeRemoveSignal
(
const char *name,
int scopelndex

)

This function deactivates and unregisters a signal. This will invalidate any partially filled
collection buffer. After this call users can not activate this signal.

On success, this function returns RTI_TRUE, indicating that the installed signal was
removed.

On failure, it returns RTI_FALSE, indicating one of the following:

» the index scopelndex is invalid or has not been initialized

= there is no signal named name registered with index scopelndex

ScopeProbe(), ScopelnstallSignal(), ScopelnstallSignal WithOffset(),
ScopeRegisterSignal()

ScopeSampleDivisorSet()

ScopeSampleDivisorSet() — set the sample divisor for sub-sampling

int ScopeSampleDivisorSet
(
int newSampleDivisor,
int scopelndex

)

This function sets the sample divisor for this index. From then on, ScopeCollectSignals()
will succeed only once in newSampleDivisor number of times it is invoked.

On success, this function returns the old sample divisor.

On failure, this function returns 0 indicating one of the following;:

= scopelndex is invalid or is not initialized
= newSampleDivisor is invalid (Range: 1 - 10,000)

290

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

NAME

SYNOPSIS

A API Reference: VxWorks
ScopeShowActiveSignals()

ScopeProbe(), ScopeCollectSignals(), ScopelnitServer()

ScopeShowActiveSignals()

ScopeShowActiveSignals() — print all signals that are being collected

void ScopeShowActiveSignals(int scopelIndex)

This function prints a formatted list of all currently installed signals to the standard output.

The current signal value is also printed.

ScopeProbe(), ScopelnstallSignal(), ScopelnstallSignal WithOffset(),
ScopeRegisterSignal(), ScopeRegisterSignalWithOffset()

ScopeShowSignals()

ScopeShowSignals() — print all registered signals

void ScopeShowSignals(int scopeIndex)

This function prints a formatted list of all currently registered signals to the standard output.

The current signal value is also printed.

ScopeProbe(), ScopelnstallSignal(), ScopelnstallSignalWithOffset(),
ScopeRegisterSignal(), ScopeRegisterSignalWithOffset()

ScopeShutdown()

ScopeShutdown() — shuts down a scope index

RTIBool ScopeShutdown
(
int scopelndex

)

291

DESCRIPTION

RETURNS

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

Wind River Workbench Data Monitor
User's Guide, 3.0

This function shuts down the scope index scopelndex. Event buffers, if any, associated with
this index are also shutdown.

On success, this function returns RTI_TRUE.

On failure, this function returns RTI_FALSE if:

= scopelndex is invalid or not initialized

ScopeProbe(), ScopelnitServer(), ScopelnitServerEx(), ScopeEventsAttach(),
ScopeEventsDetach()

ScopeTriggerSet()

ScopeTriggerSet() — set the triggering parameters

RTIBool ScopeTriggerSet
(
ScopeTriggerInfoPtr pTriggerStart,
ScopeTriggerInfoPtr pTriggerStop,
RTIBool triggerRearm,
int scopelndex

)

This function sets up a trigger. Triggering is a way to control when and for how long
periodic data (collected using ScopeCollectSignals()) is collected. A trigger consists of a
start condition and a stop condition. After the trigger is armed using ScopeTriggerSet(), all
calls to ScopeCollectSignals() will return without collecting data. Data collection will
resume only after the specified start condition is met. The start condition can be based on a
signal or an event or a trigger can be set with no start condition (trigger immediately
option). The stop condition can be based on a signal or an event. Stop condition for a trigger
based on a set time period is available only from the Data Monitor GUI.

The trigger will expire as soon as the stop condition is met. Data collection will continue as
before after the trigger expires. If the triggerRearm flag is set, the trigger will again be set with
the values passed.

To set a trigger, fill out the following fields in the ScopeTriggerInfo() structure:

source
The source of the condition. Can be one of:

— SCOPE_TRIG_SRC_SIGNAL (triggers on a signal)
— SCOPE_TRIG_SRC_EVENT (triggers on an event)
— SCOPE_TRIG_SRC_NOW (triggers immediately)

slope

292

RETURNS

SEE ALSO

NAME

SYNOPSIS

A API Reference: VxWorks
ScopeTriggerGet()

The slope of the signal as it passes the level in order to trigger:

— SCOPE_TRIG_SLOPE_POS (positive slope)
- SCOPE_TRIG_SLOPE_NEG (negative slope)
- SCOPE_TRIG_SLOPE_ANY (any slope)

This parameter is relevant only if the source is a signal.

level
A value that the signal must reach in order to trigger. This parameter is relevant only if
the source is a signal.

signal
The name of the signal to trigger on.

eventld
The event to trigger on.

To set a trigger based on a signal, fill out source, slope, level, and signal. To set a trigger based
on an event, fill out the eventld. To set the trigger to start immediately, fill out source (set it to
SCOPE_TRIG_SRC_NOW).

For all the trigger modes listed above, pass in a non-NULL value to parameters that are not
used in that mode.

To disable the trigger, pass NULL for pTriggerStart and pTriggerStop.

On success, this function returns RTI_TRUE, indicating that the trigger was set.
On failure, this function returns RTI_FALSE if:

= scopelndex is invalid or is not initialized

ScopeProbe(), ScopeTriggerGet(), ScopeCollectSignals()

ScopeTriggerGet()

ScopeTriggerGet() — return the current trigger parameters

RTIBool ScopeTriggerGet
(
int .pTriggerMode,
int .pTriggerRearm,
ScopeTriggerInfoPtr pTriggerStart,
ScopeTriggerInfoPtr pTriggerStop,
int scopelndex

)

293

Wind River Workbench Data Monitor
User's Guide, 3.0

DESCRIPTION This function returns the current trigger parameters.
If pTriggerMode returns:
= SCOPE_TRIG_MODE_DISABLED, then there is no trigger set for that index.

* SCOPE_TRIG_MODE_ARMED, there is a trigger set for that index and is waiting for the
start condition to occur. This also means that no data is being collected by
ScopeCollectSignals().

= SCOPE_TRIG_MODE_TRIGGERING, there is a trigger set for that index and is waiting
for the stop condition to occur.
RETURNS On success, this function returns RTI_TRUE.
On failure, this function returns RTI_FALSE if:

= scopelndex is invalid or has not been initialized

SEE ALSO ScopeProbe(), ScopeTriggerSet(), ScopeCollectSignals()

ScopeCollectSignals() — collect a sample from each active signal 270

294

API| Reference: Linux

ScopeProbe() — real-time library for Data Monitor 296
ScopeActivateMultipleSignals() - activate multiple signals 297
ScopeActivateSignal() — activate a signal 297

ScopeChangeSampleRate() — change the sampling rate 298
ScopeCollectSignals() — collect a sample from each active signal 299
ScopeCollectionModeDisable() — disable periodic collection 299
ScopeCollectionModeEnable() — enables periodic collection. 300
ScopeCollectionModeGet() — return the collection mode 300
ScopeDeactivateMultipleSignals() — deactivate a group of signals 301
ScopeDeactivateSignal() — deactivate a signal 302

ScopeEventsAttach() — attach an event buffer to a scope index 302
ScopeEventsCollect() — collect the value of a variable on the spot 303
ScopeEventsDetach() — detach an event buffer from a scope index 303
ScopeEventsMaskSet() — set the events verbosity mask 304
ScopeEventsMessage() — throw an event with the specified message 304
ScopelnitServer() — initialize a scope index 305

ScopelnitServerEx() — initialize a scope index 306

ScopelnstallArray() —register and activate an array of signals 307
ScopelnstallSignal() - register and activate a signal 308
ScopelnstallSignalWithOffset() — register and activate a signal with an offset 310
ScopePrintVersion() — print the version number of the Data Monitor target library 311
ScopeRegisterArray() —register an array of signals 312
ScopeRegisterSignal() - register a signal 313

ScopeRegisterSignal WithOffset() — register a signal with an offset 315
ScopeRemoveMultipleSignals() — remove several similarly-named signals 316
ScopeRemoveSignal() —remove a signal 317

ScopeSampleDivisorSet() — set the sample divisor for sub-sampling 318
ScopeShowActiveSignals() — print all signals that are being collected 318
ScopeShowSignals() - print all registered signals. 319
ScopeShutdown() — shut down a scope index 319

ScopeTriggerGet() —return the current trigger parameters 320
ScopeTriggerSet() — set the triggering parameters 321

295

Wind River Workbench Data Monitor
User's Guide, 3.0

NOTE: The scopelndex parameter represents the communications channel between an
instance of Data Monitor API running on the target and a Data Monitor GUI running on
the host. You can create up to 128 instances of Data Monitor API on a single target
machine, each using a different scope index. The index can range from 0 to 127, and it
must be specified when you call ScopelnitServer().

ScopeProbe()

NAME ScopeProbe() — real-time library for Data Monitor

SYNOPSIS ScopeShutdown() - shut down a scope index
ScopelnitServerEx() - initialize a scope index
ScopelnitServer() - initialize a scope index
ScopePrintVersion() - print the version number of the Data Monitor target
ScopeEventsCollect() - collect the value of a variable on the spot
ScopeEventsMessage() - throw an event with the specified message
ScopeEventsMaskSet() - set the event verbosity mask
ScopeEventsAttach() - attach an event buffer to a scope index
ScopeEventsDetach() - detach an event buffer from a scope index
ScopeCollectSignals() - collect a sample from each active signal
ScopeCollectionModeEnable() - enable periodic collection
ScopeCollectionModeDisable() - disable periodic collection
ScopeCollectionModeGet() - return the collection mode
ScopeChangeSampleRate() - change the sampling rate
ScopeSampleDivisorSet() - set the sample divisor for sub-sampling
ScopeRegisterSignal WithOffset() - register a signal with an offset
ScopeRegisterSignal() - register a signal
ScopeRemoveSignal() - remove a signal
ScopeRemoveMultipleSignals() - remove several similarly-named signals
ScopeActivateSignal() - activate a signal
ScopeActivateMultipleSignals() - activate multiple signals
ScopeDeactivateSignal() - deactivate a signal
ScopeDeactivateMultipleSignals() - deactivate a group of signals
ScopelnstallSignal WithOffset() - register and activate a signal with an offset
ScopelnstallSignal() - register and activate a signal
ScopeShowSignals() - print all registered signals
ScopeShowActiveSignals() - print all signal that are being collected
ScopeRegisterArray() - register an array of signals
ScopelnstallArray() - register and activate an array of signals
ScopeTriggerSet() - set the triggering parameters
ScopeTriggerGet() - return the current trigger parameters

296

DESCRIPTION

NAME

SYNOPSIS

DESCRIPTION

RETURNS

SEE ALSO

NAME

SYNOPSIS

B API Reference: Linux
ScopeActivateMultipleSignals()

This library provides a programmatic interface to Data Monitor real-time data collection
and signal management, facilitating collection of time-histories of variables in your real-
time program.

ScopeActivateMultipleSignals()

ScopeActivateMultipleSignals() — activate multiple signals

int ScopeActivateMultipleSignals
(
const char *namePrefix,
int
scopeIndex

)

This function activates signals that have namePrefix as prefix. Activated signals can be
selected for viewing from one of the many data-display windows (for example, Plot,
Monitor, and so forth). ScopeCollectSignals() only collects samples of activated signals.

A prefix of "." activates all signals.

On success, the number of signals that have been activated.
On failure, it returns 0, indicating one of the following:

= the index scopelndex is invalid or has not been initialized
= there is no signal with the namePrefix registered with index scopelndex
= namePrefix is NULL or invalid

ScopeProbe(), ScopelnstallSignal(), ScopelnstallSignal WithOffset(),
ScopeRegisterSignal(), ScopeRegisterSignalWithOffset(), ScopeActivateSignal(),
ScopeDeactivateSignal(), ScopeRemoveSignal(), ScopeRemoveMultipleSignals()

ScopeActivateSignal()

ScopeActivateSignal() — activate a signal

RTIBool ScopeActivateSignal
(
const char *name,
int scopelndex

)

297

DESCRIPTION

RETURNS

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

RETURNS

SEE ALSO

Wind River Workbench Data Monitor
User's Guide, 3.0

This function activates a signal. Activated signals can be selected for viewing from one of
the many data-display windows (for example, Plot, Monitor, and so forth).
ScopeCollectSignals() only collects samples of activated signals.

On success, this function returns RTI_TRUE, indicating that the signal was activated.
On failure, it returns RTI_FALSE, indicating one of the following:
= the index scopelndex is invalid or has not been initialized

= there is no signal named name registered with index scopelndex

ScopeProbe(), ScopelnstallSignal(), ScopelnstallSignal WithOffset(),
ScopeRegisterSignal(), ScopeRegisterSignalWithOffset(), ScopeActivateSignal(),
ScopeDeactivateSignal(), ScopeRemoveSignal(), ScopeRemoveMultipleSignals()

ScopeChangeSampleRate()

ScopeChangeSampleRate() — change the sampling rate

float ScopeChangeSampleRate
(
float newSampleRate,
int scopelIndex
)

This routine changes the amount of time that Data Monitor assumes passed between calls
to ScopeCollectSignals(). It does not change the actual sampling rate, thatis a
responsibility of user code. Data Monitor uses the rate to calculate times between samples.
If the rate is incorrect, these calculations will be in error.

The parameter should be the frequency in samples per second of the calls to
ScopeCollectSignals().

On success, this function returns the old sampling rate.

On failure, this function returns 0.0 indicating one of the following;:

= scopelndex is invalid or is not initialized

= rateisinvalid (<= 0.0)

ScopeProbe(), ScopeCollectSignals(), ScopelnitServer()

298

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

RETURNS

B API Reference: Linux
ScopeCollectSignals()

ScopeCollectSignals()

ScopeCollectSignals() — collect a sample from each active signal

void ScopeCollectSignals(int scopelIndex)

This routine should be called periodically to collect the values of signals. Data Monitor will
assume that this function is called at the frequency set using ScopeChangeSampleRate().
However, this only affects the timing calculations made by Data Monitor.

If a sample divisor is set and is greater than 1, then this routine will return without collecting
data when a sample is to be skipped. For instance, with a sample divisor of 3, this routine
will only actually collect the data every third time it is called. The other two times, it will
simply return immediately.

Furthermore, the behavior of this function depends on triggering. If the trigger is set and is
waiting for the start condition to occur (ARMED), this function will return without collecting
any data. Refer to ScopeTriggerSet() for more information.

VxWorks users: the task that calls this routine should have floating point enabled
(VX_FP_TASK set).

Example code exists under the src directory.

ScopeProbe(), ScopeChangeSampleRate(), ScopeCollectionModeEnable(),
ScopeCollectionModeDisable(), ScopeTriggerSet()

ScopeCollectionModeDisable()

ScopeCollectionModeDisable() — disable periodic collection

RTIBool ScopeCollectionModeDisable
(

int scopelndex

)

Use this function to disable periodic collection of active signals. Calling this function sets a
flag that is examined by ScopeCollectSignals(). If the flag is set, ScopeCollectSignals()
returns without sampling active signals. To turn collection on, use
ScopeCollectionModeEnable().

On success, this function returns RTI_TRUE.

On failure, this function returns RTI_FALSE if:

299

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

RETURNS

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

RETURNS

Wind River Workbench Data Monitor
User's Guide, 3.0

= scopelndex is invalid or is not initialized

ScopeProbe(), ScopeCollectSignals(), ScopeCollectionModeEnable(),
ScopeCollectionModeGet()

ScopeCollectionModeEnable()

ScopeCollectionModeEnable() — enables periodic collection.

RTIBool ScopeCollectionModeEnable
(
int scopelIndex
)

Use this function to re-enable periodic collection of active signals if it was turned off earlier
using ScopeCollectionModeDisable(). By default (after calling ScopelnitServer()), the
collection mode is enabled. Refer to ScopeCollectionModeDisable() for more information.

On success, this function returns RTI_TRUE.
On failure, this function returns RTI_FALSE if:

= scopelndex is invalid or is not initialized

ScopeProbe(), ScopeCollectSignals(), ScopeCollectionModeDisable(),
ScopeCollectionModeGet()

ScopeCollectionModeGet()

ScopeCollectionModeGet() — return the collection mode

int ScopeCollectionModeGet
(
int scopelIndex

)

Use this function to determine the current collection mode.

On success, this function returns:

= SCOPE_MODE_ENABLED if collection mode is enabled

300

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

RETURNS

SEE ALSO

B API Reference: Linux
ScopeDeactivateMultipleSignals()

= SCOPE_MODE_DISABLED if collection mode is disabled
On failure, this function returns -1 if:
= scopelndex is invalid or is not initialized

ScopeProbe(), ScopeCollectSignals(), ScopeCollectionModeEnable(),
ScopeCollectionModeDisable()

ScopeDeactivateMultipleSignals()

ScopeDeactivateMultipleSignals() — deactivate a group of signals

int ScopeDeactivateMultipleSignals
(
const char *namePrefix,
int scopelIndex
)

This function will remove all signals from the list of active signals for the selected scopelndex
which start with the specified namePrefix. Therefore, data will not be collected for these
signals during ScopeCollectSignals().

A prefix of "." deactivates all signals.

On success, the number of signals that have been deactivated.
On failure, this function returns 0, indicating one of the following:

= the index scopelndex is invalid or has not been initialized
= there are no active signals with the namePrefix registered with index scopelndex
» namePrefix is invalid

ScopeProbe(), ScopeActivateMultipleSignals()

301

NAME

SYNOPSIS

DESCRIPTION

RETURNS

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

RETURNS

Wind River Workbench Data Monitor
User's Guide, 3.0

ScopeDeactivateSignal()

ScopeDeactivateSignal() — deactivate a signal

RTIBool ScopeDeactivateSignal
(
const char *name,
int scopelndex

)

This function will remove a signal from the list of activate signals. Therefore, data will not
be collected for this signal during ScopeCollectSignals().

On success, this function returns RTI_TRUE, indicating that the signal was deactivated.
On failure, this function returns RTI_FALSE, indicating one of the following:

= the index scopelndex is invalid or has not been initialized

= there is no active signal named name registered with index scopelndex

ScopeProbe(), ScopeActivateSignal()

ScopeEventsAttach()

ScopeEventsAttach() — attach an event buffer to a scope index

int ScopeEventsAttach
(
int eventBufferSize,
int scopelIndex
)

This function attaches an event buffer to a scope index. The eventsHandle returned by this
function should be used to throw events. There is a maximum limit of four event buffers that
can attach to an index. Throwing events into the same buffer from multiple threads is not
recommended.

On success, this function returns a non-zero eventsHandle.

On failure, it returns 0 if:

= scopelndex is invalid or is not initialized
* the maximum number of event buffers are already attached

302

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

B API Reference: Linux
ScopeEventsCollect()

ScopeProbe(), ScopelnitServer(), ScopeEventsDetach()

ScopeEventsCollect()

ScopeEventsCollect() — collect the value of a variable on the spot

void ScopeEventsCollect
(
int eventsHandle,
int level,
const char *eventId,
void. ptrToVar, RTIAtomicTypeId typeId
)

This function collects the value of one variable on the spot. The variable does not have to be
static/global as required by ScopeCollectSignals() and there is no need to perform
registration/activation. This function is a low-overhead equivalent of printf() for use in
debugging real-time systems.

ScopeEventsCollect() is actually a macro that calls the collection function
ScopeEventsCollectInternal() only if the verbosity level of this event is turned on. Thus,
there is no overhead of a function call if the verbosity level of this event is turned off. The
verbosity mask can be set using ScopeEventsMaskSet().

NOTE: Calling this function from multiple threads with the same eventsHandle is not
recommended. Therefore, use a separate eventsHandle (returned by ScopeEventsAttach())
for each thread, which calls this function.

ScopeProbe(), ScopeEventsMessage(), ScopeEventsAttach(), ScopeEventsMaskSet()

ScopeEventsDetach()

ScopeEventsDetach() — detach an event buffer from a scope index

RTIBool ScopeEventsDetach
(
int eventsHandle
)

This function detaches an event buffer from an index.

303

RETURNS

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

RETURNS

SEE ALSO

NAME

SYNOPSIS

Wind River Workbench Data Monitor
User's Guide, 3.0

On success, this function returns RTI_TRUE.
On failure, it returns RTI_FALSE if:

= eventsHandle is invalid

ScopeProbe(), ScopelnitServer(), ScopeEventsAttach()

ScopeEventsMaskSet()

ScopeEventsMaskSet() — set the events verbosity mask

RTIBool ScopeEventsMaskSet
(
int eventsMask,
int scopelndex

)

Data Monitor Events API allows for 32 levels of verbosity. This function sets the mask for
the specified scope index. Each bit in mask corresponds to one verbosity level. Setting the
mask to 0x00000001 turns off all levels except level 1 messages. The mask can be set anytime
during the executing of the program and take effect immediately. By default, all levels are
turned on for a scope index.

On success, this function returns RTI_TRUE.

On failure, this function returns RTI_FALSE if:

= scopelndex is invalid or is not initialized

ScopeProbe(), ScopeEventsCollect(), ScopeEventsMessage(), ScopeEventsAttach()

ScopeEventsMessage()

ScopeEventsMessage() — throw an event with the specified message

void ScopeEventsMessage
(
int eventsHandle,
int level,
const char *message

)

304

DESCRIPTION

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

RETURNS

SEE ALSO

B API Reference: Linux
ScopelnitServer()

This function throws an event with the specified message string. This function is a low-
overhead equivalent of printf() for use in debugging real-time systems.

ScopeEventsMessage() is actually a macro that calls the collection function
ScopeEventsMessagelnternal() only if the verbosity level of this event is turned on. Thus,
there is no overhead of a function call if the verbosity level of this event is turned off. The
verbosity mask can be set using ScopeEventsMaskSet().

NOTE: Calling this function from multiple threads with the same eventsHandle is not
recommended. Therefore, use a separate eventsHandle (returned by ScopeEventsAttach())
for each thread, which calls this function.

ScopeProbe(), ScopeEventsCollect(), ScopeEventsAttach(), ScopeEventsMaskSet()

ScopelnitServer()

ScopelnitServer() — initialize a scope index

int ScopelInitServer
(
int sampleBufferSize,
int signalBufferSize,
int debugLevel,
int scopelndex

)

Calls ScopelnitServerEx() with default priorities for scopeprobe and scopelink daemon
threads. Refer to ScopelnitServerEx() for details.

On success, this function returns the initialized scope index.

On failure, this function returns a negative number if:

= scopelndex is out of range

= allindices are occupied

* memory allocation failed: it failed to create daemon threads (which will happen if the
threads failed to bind to TCP ports, or if the priorities specified are not valid on the
target operating system)

ScopeProbe(), ScopelnitServerEx()

305

NAME

SYNOPSIS

DESCRIPTION

Wind River Workbench Data Monitor
User's Guide, 3.0

ScopelnitServerEx()

ScopelnitServerEx() — initialize a scope index

int ScopeInitServerEx
(
int sampleBufferSize,
int signalBufferSize,
int debugLevel,
int probeDaemonPriority,
int linkDaemonPriority,
int scopelndex

)

Initializes the scope index scopelndex. If scopelndex is -1, then this function initializes the next
uninitialized scope index. This should be called once for each index (on VxWorks, normally
at boot time). Calling it multiple times for the same index is harmless though.

The sampleBufferSize parameter specifies the size of the target data buffer in bytes. This
buffer is used to store the data samples for the active signals. Data samples for all types other
than double are saved as 4-byte values. Data samples for doubles are saved as 8-byte values.
Thus, the maximum number of samples that can fit in the buffer will range between
((sampleBufferSize / 8) - 1) / numberOfSignals and ((sampleBufferSize / 4) - 1) /
numberOfSignals, rounded down to the nearest integer.

If sampleBufferSize <= 0, it defaults to (32*1024). Otherwise, if it is less than 1024, a value of
1024 is used instead.

The signalBufSize parameter specifies the size of the target signal buffer in bytes. This buffer
is used to store the information specific to each signal (such as the name, units and type).
The space taken by a signal gets reclaimed (for registering other signals) when the signal is
removed. The information stored for a signal takes up 28 bytes plus the number of bytes
(including the terminating null character) it takes to store the signal name and units. Note
that a signal registered twice, under different scope indices, counts as two registered signals.

If signalBufferSize <=0, it defaults to (32*1024). If signal BufferSize > 0 and < 1024 it defaults to
1024.

The scopeprobeDaemonPriority and scopelinkDaemonPriority parameters specify the
scheduling priority levels for the scopeprobe and scopelink daemon threads that are
spawned by this function. Refer to the documentation on threads and scheduling for the
operating system that you are using, for valid priority levels. If you do not want to specify
a priority level, you can pass a nonpositive value for this parameter. In that case, suitable
priority levels will automatically be chosen.

The scopelndex parameter should be an integer within the range of 0 to 127. If the value "-1"
is passed, then an index will be assigned automatically and returned.

306

RETURNS

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

B API Reference: Linux
ScopelnstallArray()

Normally, for each scope index, a target spawns real-time daemons (scopeprobe and
scopelink) which communicate to the host over the network, using TCP/IP. If you are using
Tornado, and wish to use the Tornado WTX protocol instead, you must load the Data
Monitor WTX target library (libscopewtx.so). In that case, the daemons will use the WTX
protocol to communicate even if IP is available. Note that the protocol is called WTX, even
though the target is talking to the WDB daemon.

On success, this function returns the initialized scope index.
On failure, this function returns a negative number if:
= scopelndex is out of range

= all indices are occupied

= memory allocation failed: it failed to create daemon threads (which will happen if the
threads failed to bind to TCP ports, or if the priorities specified are not valid on the
target operating system).

ScopeProbe(), ScopeShutdown(), ScopeEventsAttach(), ScopeEventsDetach()

ScopelnstallArray()

ScopelnstallArray() — register and activate an array of signals

int ScopeInstallArray
(
const char *name,
int elementsInArray,
* .units,
void .ptrToStaticArray,
const char *type,
int scopelIndex

)

This function calls ScopeRegisterArray() followed by ScopeActivateMultipleSignals(). It
exists purely for convenience. Users should refer to ScopeRegisterArray() and
ScopeActivateMultipleSignals() for details.

float global_array[100];
int main()
{

static double static_array[50];

// Initialize ScopeIndex here. See ScopeInitServer().

307

Wind River Workbench Data Monitor
User's Guide, 3.0

ScopeInstallArray ("my_global_arrayl", 100, "none", &global_array,
"float", Scopelndex);

ScopelInstallArray ("my_static_arrayl", 50, "none", &static_array,
"double", Scopelndex) ;

while () {

ScopeCollectSignals();

}

// Shutdown ScopeIndex. See ScopeShutdown().
}

RETURNS On success, this function returns the numbers of array elements successfully installed.
On failure, it returns zero, indicating one of the following:

» the index (scopelndex) is invalid or has not been initialized
= the type specified (type) is not recognized

= the parameters passed are invalid

= there is no more space in the signal buffer

SEE ALSO ScopeProbe(), ScopeRegisterArray(), ScopeActivateMultipleSignals(),
ScopeDeactivateMultipleSignals(), ScopelnstallSignal()

ScopelnstallSignal()

NAME ScopelnstallSignal() — register and activate a signal

SYNOPSIS RTIBool ScopeInstallSignal
(
const char *name,
const char *units,
void .ptrToStaticVar
const char *type,
int scopelndex

)
PARAMETERS name
A unique name to identify the signal.

units
User specified unit of measurement, for identification.

ptrToStaticVar
Must point to a static (or global) storage location.

type
Must be one of the accepted types such as: double, float, int, and so forth. See
ScopeProbe() for details on types.

308

B API Reference: Linux
ScopelnstallSignal()

DESCRIPTION This function calls ScopeRegisterSignal() followed by ScopeActivateSignal(). It exists
purely for backwards compatibility and convenience. Users should refer to
ScopeRegisterSignal() and ScopeActivateSignal() for details.

EXAMPLES float global_var;
float .global_ptr;

int main()

{

static double static_var;
static double .static_ptr;

// Initialize ScopeIndex here. See ScopelnitServer().

ScopeInstallSignal ("my_global_varl", "none", &global_var,
"float", Scopelndex) ;
ScopeInstallSignal ("my_static_varl", "none", &static_var,

"double", Scopelndex);

global_ptr = (float .) calloc(l, sizeof(.global_ptr));

static_ptr = (double .) calloc(l, sizeof(.static_ptr));

ScopeInstallSignal ("my_global_var2", "none", global_ptr,
"double", Scopelndex) ;

ScopeInstallSignal ("my_static_var2", "none", static_ptr,
"double", Scopelndex) ;

while () {
ScopeCollectSignals();

}
// Shutdown ScopeIndex. See ScopeShutdown().

}

RETURNS On success, this function returns RTI_TRUE, indicating that the signal was installed.
On failure, it returns RTI_FALSE, indicating one of the following:

= the index (scopelndex) is invalid or has not been initialized
= the type specified (type) is not recognized

= the parameters passed are invalid

= there is no more space in the signal buffer

SEE ALSO ScopeProbe(), ScopeRegisterSignal(), ScopeActivateSignal(), ScopeDeactivateSignal(),
ScopeRemoveSignal(), ScopeRemoveMultipleSignals()

309

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

DESCRIPTION

EXAMPLES

Wind River Workbench Data Monitor
User's Guide, 3.0

ScopelnstallSignalWithOffset()

ScopelnstallSignalWithOffset() — register and activate a signal with an offset

RTIBool ScopeInstallSignalWithOffset
(
const char *name,
const char *units,
void .ptrToStaticVar,
const char *type,
int offset,
int scopelndex

)

Registers and activates a signal with an offset.

name
A unique name to identify the signal.

units
User specified unit of measurement, for identification.

ptrToStaticVar
Must point to a static (or global) storage location.

type
Refers to the type of the variable at the given offset.

offset

Number of bytes from ptrToStaticVar to collect data from.

This function calls ScopeRegisterSignal WithOffset() followed by ScopeActivateSignal().
It exists purely for convenience. Users should refer to ScopeRegisterSignalWithOffset()
and ScopeActivateSignal() for details.

The following illustrates how to use ScopelnstallSignalWithOffset()

typedef struct ArmData_s {

float PosX;

float PosY;

unsigned char Type;

double .Vel; // Just to demonstrate pointers and offsets.

} ArmData_t;

int main ()

{

310

B API Reference: Linux

ScopePrintVersion()
ArmData_t .LeftArmData = (ArmData_t .)calloc(1l,
sizeof());
LeftArmData->Vel = (double .)calloc(l, sizeof());

// Initialize ScopelIndex here. See ScopelInitServer().
// Notice that you can pass just the address of LeftArmData,
// not the individual fields.
// The type "float" refers to the type of LeftArmData->PosX.
ScopeInstallSignalWithOffset ("LeftArm/PosX", "meters",
&LeftArmData, "float",
offsetof (ArmData_t, PosX), 0);
ScopeInstallSignalWithOffset ("LeftArm/PosY", "meters",
&LeftArmData, "float",
offsetof (ArmData_t, PosY), 0);
ScopeInstallSignalWithOffset ("LeftArm/Type", "meters",
&LeftArmData, "uchar",
offsetof (ArmData_t, Type), 0);

// The type "double ." refers to the type of the member Vel.
ScopeInstallSignalWithOffset ("LeftArm/Vel", "meters",
&LeftArmData, "double .",
offsetof (ArmData_t, Vel), 0);

while () {
// Set the data in the member LeftArmData.
ScopeCollectSignals();

}

// Shutdown ScopeIndex. See ScopeShutdown().

RETURNS On success, this function returns RTI_TRUE, indicating that the signal was installed.
On failure, it returns RTI_FALSE, indicating one of the following:

» the index (scopelndex) is invalid or has not been initialized
= the type specified (type) is not recognized

= the parameters passed are invalid

= there is no more space in the signal buffer

SEE ALSO ScopeProbe(), ScopeRegisterSignal(), ScopeActivateSignal(), ScopeDeactivateSignal(),
ScopeRemoveSignal(), ScopeRemoveMultipleSignals()

ScopePrintVersion()

NAME ScopePrintVersion() — print the version number of the Data Monitor target library
SYNOPSIS void ScopePrintVersion(void
DESCRIPTION Prints the version number of the Data Monitor target library.

311

Wind River Workbench Data Monitor
User's Guide, 3.0

SEE ALSO ScopeProbe(), ScopeProbe()

ScopeRegisterArray()

NAME ScopeRegisterArray() — register an array of signals

SYNOPSIS int ScopeRegisterArray
(
const char *name,
int elementsInArray,
const char *units,
void .ptrToStaticArray,
const char *type,
int scopelIndex

)

DESCRIPTION This function registers an array (one dimensional) of signals by calling
ScopeRegisterSignal() for each element in the array. An array modifier "[1"is appended to
the signal name followed by the index of the element.

A valid signal name should not contain asterisks or blank spaces. Invalid characters in
signal name (name) would be automatically replaced with underscores.

It is the responsibility of the caller to ensure that the address passed as ptrToStaticArray
points to a valid memory location. In particular, a bad address may cause a Bus Error or
Segmentation Fault to occur within ScopeCollectSignals().

EXAMPLES float global_array[100];

int main()
{
static double static_array[50];

// Initialize ScopeIndex here. See ScopelnitServer().

ScopeRegisterArray ("my_global_arrayl", 100, "none",
&global_array,
"float", Scopelndex);

ScopeRegisterArray ("my_static_arrayl", 50, "none",
&static_array, "double", Scopelndex) ;

ScopeActivateMultipleSignals ("my_global_arrayl", Scopelndex) ;
ScopeActivateMultipleSignals ("my_static_arrayl", Scopelndex) ;

while () {
ScopeCollectSignals();
}

// Shutdown ScopeIndex. See ScopeShutdown().

312

RETURNS

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

B API Reference: Linux
ScopeRegisterSignal()

On success, this function returns the numbers of array elements successfully registered.
On failure, it returns zero, indicating one of the following:

= the index scopelndex is invalid or has not been initialized
= the type specified type is not recognized

= the parameters passed are invalid

= there is no more space in the signal buffer

ScopeProbe(), ScopeRegisterSignal(), ScopelnstallArray(),
ScopeActivateMultipleSignals(), ScopeDeactivateMultipleSignals()

ScopeRegisterSignal()

ScopeRegisterSignal() — register a signal

RTIBool ScopeRegisterSignal
(
const char *name,
const char *units,
void .ptrToStaticVar
const char *type,
int scopelndex

)

This function registers a signal. A registered signal is one that is made known to the Data
Monitor signal manager, but not to any other window such as the Plot window. It has the
possibility of becoming activated through the signal manager or through the target function
ScopeActivateSignal(). Activated signals can be selected for display from one of the many
data-display windows (for instance, Plot, Monitor, and so forth).

A signal is any variable in the program, with the caveat that it must have a valid value at the
instant that ScopeCollectSignals() is called. Thus, most anything can be installed as a
signal, with the exception of automatic stack variables whose scope does not include the
ScopeCollectSignals() call.

A valid signal name should not contain asterisks or blank spaces. Invalid characters in
signal name would be automatically replaced with underscores.

It is the responsibility of the caller to ensure that the address passed ptrToStaticVar points to
a valid memory location. In particular, a bad address may cause a Bus Error or
Segmentation Fault to occur within ScopeCollectSignals().

float global_var;
float .global_ptr;

313

Wind River Workbench Data Monitor
User's Guide, 3.0

int main()

{
static double static_var;
static double .static_ptr;

// Initialize ScopeIndex here. See ScopelInitServer().

ScopeRegisterSignal ("my_global_varl", "none", &global_var,
"float", Scopelndex) ;
ScopeRegisterSignal ("my_static_varl", "none", &static_var,

"double", Scopelndex) ;

global_ptr = (float .) calloc(l, sizeof(.global_ptr));
static_ptr = (double .) calloc(l, sizeof(.static_ptr));

ScopeRegisterSignal ("my_global_var2", "none", global_ptr,
"double", Scopelndex) ;

ScopeRegisterSignal ("my_static_var2", "none", static_ptr,
"double", Scopelndex) ;

// Activate the registered signals here. See ScopeActivateSignal().
while () {

ScopeCollectSignals();
}

// Shutdown ScopeIndex. See ScopeShutdown().

RETURNS On success, this function returns RTI_TRUE, indicating that the signal was registered.
On failure, it returns RTI_FALSE, indicating one of the following:

= the index scopelndex is invalid or has not been initialized
= the type specified type is not recognized

= the parameters passed are invalid

= there is no more space in the signal buffer

SEE ALSO ScopeProbe(), ScopeActivateSignal(), ScopeDeactivateSignal(), ScopelnstallSignal(),
ScopeRegisterSignal WithOffset()

314

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

B API Reference: Linux
ScopeRegisterSignalWithOffset()

ScopeRegisterSignalWithOffset()

ScopeRegisterSignal WithOffset() — register a signal with an offset

RTIBool ScopeRegisterSignalWithOffset
(
const char *name,
const char *units,
void .ptrToStaticVar,
const char *type,
int offset,
int scopelndex

)

This function has the same functionality as ScopeRegisterSignal(), except callers can
specify an offset from ptrToStaticVar. This offset refers to a variable in a structure that a caller
wants to sample. However, the address of the variable may not be known at register time,
hence the offset.

A valid signal name should not contain asterisks or blank spaces. Invalid characters in
signal name would be automatically replaced with underscores.

It is the responsibility of the caller to ensure that the address and offset parameters point to
a valid memory location. In particular, a bad address may cause a Bus Error or
Segmentation Fault during ScopeCollectSignals().

Ideally, this function would be used to sample variables in an array of structures. The caller
would register a structure pointer with an offset to a variable they want sampled. Therefore,
by changing the pointer callers can sample the same variable at different locations in the
array, see below for examples.

// An example structure.
typedef struct TestData_s {

float fieldl;
double field2;
} TestData_t;

// Here 1s an array that is read in.
#define MAXLENGTH 100

TestData_t TestDataArray[MAXLENGTH] ;
TestData_t .TestDataPtr = &TestDataArray[0];

int main()

{

int i = 0;

315

RETURNS

SEE ALSO

NAME

SYNOPSIS

Wind River Workbench Data Monitor
User's Guide, 3.0

// Initialize ScopeIndex here. See ScopelnitServer().
// Notice we are using the new hierarchical naming feature.
ScopeRegisterSignalWithOffset ("test/fieldl", "volts",
&TestDataPtr, "float",
offsetof (TestData_t, fieldl),
ScopelIndex) ;
ScopeRegisterSignalWithOffset ("test/field2", "volts",
&TestDataPtr, "double",
offsetof (TestData_t, field2),
ScopelIndex) ;

// Activate the registered signals here.
// See ScopeActivateSignal().

for (1 = 0; 1 < MAXLENGTH; i++) {
// Read in TestDataArrayl[i].
// Set TestDataPtr to the new data.
TestDataPtr = &TestDataArrayl[il];
ScopeCollectSignals();

}

// Shutdown ScopeIndex. See ScopeShutdown().

On success, this function returns RTI_TRUE, indicating that the signal was registered.

On failure, it returns RTI_FALSE, indicating one of the following:

the index scopelndex is invalid or has not been initialized
the type specified type is not recognized

the parameters passed are invalid

there is no more space in the signal buffer

ScopeProbe(), ScopeRegisterSignal(), ScopeActivateSignal(), ScopelnstallSignal(),
ScopelnstallSignalWithOffset(), ScopeRemoveSignal(),
ScopeRemoveMultipleSignals(), ScopeDeactivateSignal()

ScopeRemoveMultipleSignals()

ScopeRemoveMultipleSignals() — remove several similarly-named signals

int

316

ScopeRemoveMultipleSignals
(

const char *namePrefix,
int scopeIndex

)

DESCRIPTION

RETURNS

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

RETURNS

SEE ALSO

B API Reference: Linux
ScopeRemoveSignal()

This function removes a set of installed signals that have namePrefix as prefix. If namePrefix

is ".", all signals will be removed.

On success, returns the number of signals removed.
On failure, this function returns 0, indicating one of the following:

= namePrefix is NULL
= there is no signal named with prefix namePrefix registered with index scopelndex
= the index scopelndex is out of range or if index is not initialized

ScopeProbe(), ScopeRemoveSignal()

ScopeRemoveSignal()

ScopeRemoveSignal() — remove a signal

RTIBool ScopeRemoveSignal
(
const char *name,
int scopelndex

)

This function deactivates and unregisters a signal. This will invalidate any partially filled
collection buffer. After this call users can not activate this signal.

On success, this function returns RTI_TRUE, indicating that the installed signal was
removed.

On failure, it returns RTI_FALSE, indicating one of the following:

= the index scopelndex is invalid or has not been initialized

= there is no signal named name registered with index scopelndex

ScopeProbe(), ScopelnstallSignal(), ScopelnstallSignal WithOffset(),
ScopeRegisterSignal()

317

NAME

SYNOPSIS

DESCRIPTION

RETURNS

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

Wind River Workbench Data Monitor
User's Guide, 3.0

ScopeSampleDivisorSet()

ScopeSampleDivisorSet() — set the sample divisor for sub-sampling

int ScopeSampleDivisorSet
(
int newSampleDivisor,
int scopelndex

)

This function sets the sample divisor for this index. From then on, ScopeCollectSignals()
will succeed only once in newSampleDivisor number of times it is invoked.

On success, this function returns the old sample divisor.

On failure, this function returns 0 indicating one of the following;:

= scopelndex is invalid or is not initialized

» newSampleDivisor is invalid (Range: 1 - 10,000)

ScopeProbe(), ScopeCollectSignals(), ScopelnitServer()

ScopeShowActiveSignals()

ScopeShowActiveSignals() — print all signals that are being collected

void ScopeShowActiveSignals(int scopelIndex)

This function prints a formatted list of all currently installed signals to the standard output.
The current signal value is also printed.

ScopeProbe(), ScopelnstallSignal(), ScopelnstallSignal WithOffset(),
ScopeRegisterSignal(), ScopeRegisterSignalWithOffset()

318

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

NAME

SYNOPSIS

DESCRIPTION

RETURNS

SEE ALSO

B API Reference: Linux
ScopeShowSignals()

ScopeShowSignals()

ScopeShowSignals() — print all registered signals.

void ScopeShowSignals
(
int scopelIndex

)

This function prints a formatted list of all currently registered signals to the standard output.
The current signal value is also printed.

ScopeProbe(), ScopelnstallSignal(), ScopelnstallSignal WithOffset(),
ScopeRegisterSignal(), ScopeRegisterSignalWithOffset()

ScopeShutdown()

ScopeShutdown() — shut down a scope index

RTIBool ScopeShutdown

(
int scopelIndex

)

This function shuts down the scope index scopelndex. Event buffers, if any, associated with
this index are also shutdown.

On success, this function returns RTI_TRUE.
On failure, this function returns RTI_FALSE if:

= scopelndex is invalid or not initialized

ScopeProbe(), ScopelnitServer(), ScopelnitServerEx(), ScopeEventsAttach(),
ScopeEventsDetach()

319

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURNS

SEE ALSO

Wind River Workbench Data Monitor
User's Guide, 3.0

ScopeTriggerGet()

ScopeTriggerGet() — return the current trigger parameters

RTIBool ScopeTriggerGet
(
int .pTriggerMode,
int .pTriggerRearm,
ScopeTriggerInfoPtr pTriggerStart,
ScopeTriggerInfoPtr pTriggerStop,
int scopelIndex
)

pTriggerRearm
Gets the rearm flag: 0 (Rearm flag is not set), 1 (Rearm flag is set)

pTriggerStart
Gets the start condition structure.

pTriggerStop
Gets the stop condition structure.
This function returns the current trigger parameters.
If pTriggerMode returns:
= SCOPE_TRIG_MODE_DISABLED, then there is no trigger set for that index.

* SCOPE_TRIG_MODE_ARMED, there is a trigger set for that index and is waiting for the
start condition to occur. This also means that no data is being collected by
ScopeCollectSignals().

* SCOPE_TRIG_MODE_TRIGGERING, there is a trigger set for that index and is waiting
for the stop condition to occur.

On success, this function returns RTI_TRUE.
On failure, this function returns RTI_FALSE if:

= scopelndex is invalid or has not been initialized.

ScopeProbe(), ScopeTriggerSet(), ScopeCollectSignals()

320

NAME

SYNOPSIS

DESCRIPTION

B API Reference: Linux
ScopeTriggerSet()

ScopeTriggerSet()

ScopeTriggerSet() — set the triggering parameters

RTIBool ScopeTriggerSet
(
ScopeTriggerInfoPtr pTriggerStart,
ScopeTriggerInfoPtr pTriggerStop,
RTIBool triggerRearm,
int scopelndex

)

This function sets up a trigger. Triggering is a way to control when and for how long
periodic data (collected using ScopeCollectSignals()) is collected. A trigger consists of a
start condition and a stop condition. After the trigger is armed using ScopeTriggerSet(), all
calls to ScopeCollectSignals() will return without collecting data. Data collection will
resume only after the specified start condition is met. The start condition can be based on a
signal or an event or a trigger can be set with no start condition (trigger immediately
option). The stop condition can be based on a signal or an event. Stop condition for a trigger
based on a set time period is available only from the Data Monitor GUL

The trigger will expire as soon as the stop condition is met. Data collection will continue as
before after the trigger expires. If the triggerRearm flag is set, the trigger will again be set
with the values passed.

To set a trigger, fill out the following fields in the ScopeTriggerInfo structure:

source
The source of the condition. Can be one of:

— SCOPE_TRIG_SRC_SIGNAL (triggers on a signal)
— SCOPE_TRIG_SRC_EVENT (triggers on an event)
- SCOPE_TRIG_SRC_NOW (triggers immediately)

slope
The slope of the signal as it passes the level in order to trigger:

— SCOPE_TRIG_SLOPE_POS (positive slope)
— SCOPE_TRIG_SLOPE_NEG (negative slope)
- SCOPE_TRIG_SLOPE_ANY (any slope)

This parameter is relevant only if the source is a signal.

level
A value that the signal must reach in order to trigger. This parameter is relevant only if
the source is a signal.

signal
The name of the signal to trigger on.

321

RETURNS

SEE ALSO

Wind River Workbench Data Monitor
User's Guide, 3.0

eventld
The event to trigger on.

To set a trigger based on a signal, fill out source, slope, level and signal. To set a trigger based
on an event, fill out the eventld. To set the trigger to start immediately, fill out source (set it to
SCOPE_TRIG_SRC_NOW).

For all the trigger modes listed above, pass in a non-NULL value to parameters that are not
used in that mode.

To disable the trigger, pass NULL for pTriggerStart and pTriggerStop.

On success, this function returns RTI_TRUE, indicating that the trigger was set.
On failure, this function returns RTI_FALSE if:

= scopelndex is invalid or is not initialized.

ScopeProbe(), ScopeTriggerGet(), ScopeCollectSignals()

322

Data Monitor Demo Program

C.1 Introduction 323
C.2 Source Code for VxWorks 324
C.3 Source Code for Linux 334

C.1 Introduction

This appendix contains a listing of the demonstration source code file(s) provided
with the Wind River Data Monitor distribution. This includes example source code
for an application program that installs signals to Data Monitor.

The demo program is an example of a simple application that uses Data Monitor.
The example application plots a number of sinusoids and contains a simple control
system with a simulated physical system that is noisy. It is meant only to illustrate
some of the Data Monitor features.

323

Wind River Workbench Data Monitor
User's Guide, 3.0

C.2 Source Code for VxWorks

The file and its makefile are located at:
WIND_SCOPETOOLS_BASE\target\src\scopedemo

where WIND_BASEWIND_SCOPETOOLS_BASE (an environment variable of the
same name) is the root of the tree where you installed the Run-Time Analysis
Tools. The scopedir\src\target\src\scopedemo directory contains the vxdemo.c
demo code file (see below), and a makefile (see Makefile for vxdemo.c, p.332), to help
you recompile the demonstration program.

NOTE: You must edit the makefile to have it reflect the file structure of your
system.

VxWorks vxdemo.c Program

\- A demo for Data Monitor. */

/*
modification history
5.4a,25sep00,ss Modified 1ln. 165 to properly support random numbers
in VxWorks versions < 5.1
5.4a,18sep00,gah added support for protection domain testing
5.4a,17jun00,vwc Better cleanup of memory by doing semDelete().
Also use flag to cause main task to terminate rather
than taskDelete()
5.4a,12jun00,vwc Add hook routine to be run in sample loop. Install
Scope's debug signals by default.
5.3¢,30mar00, vwc Added param to ScopeDemo to set data-buf sz
5.3a,09jun99, laf Changed buffer sizes - we have 17 variables, not 16,
don't need quite as much memory for either buffer.
If ScopeInitServer fails (usually due to lack of
target memory), don't spawm the other tasks.
.1f,17may99, laf Double data buffer size
.le,15apr99, sda Changed ordering of statements in Shutdown to safer.
.1le,02apr99, laf Provide Shutdown functionality to clean up.
.la,260ct98,nm ScopelnitServer () now takes two buffer sizes.
.la,160ct98,nm Set WtxOverride to 1, not to true.
.la,12aug98,nm Updated for scope 5.1 release.
RTI,20dec92,sas Added Scopelndex. Removed support for VxWorks 4.x
RTI,25n0v92,sas Ported to VxWorks 5.1
RTI,O6may92,sas Added rebootHookAdd to insure reboot success.
Made VxWorks 5.0 the default.

(SO, NG, RN RN, IO |

324

*/

/*

C Data Monitor Demo Program
C.2 Source Code for VxWorks

RTI,03apr92,sas Converted to mangen format.
RTI,07nov91,sas Added plant simulation.
RTI,O0lsep89,sas written.

DESCRIPTION:
This file contains code to start a simple synchronous sampler, and
install and de-install a few demo signals. It also contains a simple
double-integrator plant simulator.
To run the demo (this assumes you have already loaded Data Monitor) :
rlogin target
cd "scopedir/1ib/m68kvVx5.1"
1d 1 < scopedemo.lo
ScopeDemo
To recompile:
cc68k -I/local/VxWorks/h -Iscopedir/include -c scopedemo.c
Useful things to play with:
Omega = (float) 80;
ScopeRemoveMultipleSignals ("sin") ;
InstallFakeSignals (40)
ScopeDemoSetRate (20.0)
A makefile is provided; it can be used to compile this code. You
should first edit it to reflect your system's file structure.
This is a complete VxWorks application. To utilize Data Monitor in
your system, all you need is a call to ScopelnitServer in your
startup script, a call to ScopeCollectSignals somewhere in your
regular processing cycle, and a few calls to ScopelInstallSignal.
WARNING:
With 64 signals installed, the calculation of the sin functions below
(FakeSignals()) can only be done at about 200 Hz (on a 16MHz 68020).
Thus, setting the sample rate higher than this will starve both tasks
tScopeProbeDaemon and tScopeLinkDaemon; Scope will not be able to
display any data.
This is intentional---Scope always strives for minimal impact on the
real-time system.
NOTES:

This code normally works using taskDelay. It can also work by
attaching a semaphore (sampleSemaphore) to the Aux clock interrupt,
the recommended means of executing periodic functions in VxWorks. If
your processor does have an aux-clock, set the "useAuxClock"
parameter to 1.

325

Wind River Workbench Data Monitor
User's Guide, 3.0

SEE ALSO:
ScopeProbe (2), scope(l), scopedemo?2 (3)

/* $Id: scopedemo.c,v 1.1 2003/03/27 17:52:12 Exp $ */
/* (c) Copyright Real-Time Innovations, Inc., 1999. All rights reserved. */

#include <stdio.h>/* Change to stdioLib.h for 5.0 */
#include <math.h>

#include "vxWorks.h"

#include "taskLib.h"

#include "sysLib.h"

#include "semLib.h"

#include "rtilib/vxVersions.h"
#include "rtilib/rti_types.h"
#include "rtilib/rti_endian.h"
#include "scope/scope.h"

#define MAXPHASES(128)
#define PHASESHIFT(0.1)
#define SQUARECOUNT (20)

float square= 1.0;
struct ExampleStruct ({
float sint;
float sin2t;
float sin3t;
float cost;
} *singroup;
float phases[MAXPHASES] ;
float Omega = 1.0;

int NumberOfPhases = 0;
float Pos =

float Vel
float Acc =

7

7

1}
o O O
o O O

7

float Posdes = 1.0;
float Veldes = 0.0;
float Kp = 10;
float Kv = 4;

float NoiseMag = 0.1;

float Time = 0.0;
float Dt = 0.005;
SEM_ID SampleSemaphore = NULL;
int ScopeIndex = -1;

int ScopeHandle = -1;

326

C Data Monitor Demo Program
C.2 Source Code for VxWorks

int tid = 0;
static int ScopeDemoShutdownRequest = 0;
static int ScopeNoServer = 0;

void (*SampleHookFunc) (void *) = NULL;
void *SampleHookParam = NULL;

void SampleHookSet (void (*func) (void *), void *param)

{
SampleHookFunc = func;
SampleHookParam = param;
}
static

/* Calculate a set of simple wave signals, paying absolutely no attention to
efficiency. */
void SineWaves (float t)

{

register int 1i;

static int squareCount = SQUARECOUNT;

register float wt = t * Omega;

float sint, cost;

if (--squareCount <= 0) {

squareCount = SQUARECOUNT;

square = 1.0 - square;

}

singroup->sint = sin(wt);

singroup->cost = cos(wt);

singroup->sin2t = sin(2 * wt);

singroup->sin3t = sin(3 * wt);

for(i=0; i<NumberOfPhases; i++) {

phases[i] = sin(wt + PHASESHIFT*1);

}

sint = singroup->sint;

cost = singroup->cost;

/* Throw an event for when Sin and Cos are calculated. */

if ((singroup->sint > 0.1) && (singroup->sint <= 0.2)) {

ScopeEventsCollect (ScopeHandle, 1, "Sine-0.1-0.2", (void *) &sint,
RTI_FLOAT32ID) ;

}

if ((singroup->cost > 0.5) && (singroup->cost <= 0.6)) {

ScopeEventsCollect (ScopeHandle, 1, "Cosine-0.5-0.6", (void *) &cost,
RTI_FLOAT32ID) ;

}

}

327

Wind River Workbench Data Monitor
User's Guide, 3.0

static
/* Return a uniform random variable between a and b. */
float Noise(float a, float b)

{
float result;
result = (((float) rand() / RAND_MAX) - 0.5);
return (result * (b - a) + (a + b) / 2.);

}

static

/* This "plant" is an Euler double integrator. */
void Plant (float t)

{
Vel += Acc * Dt;
Vel += Noise(-NoiseMag, NoiseMag) ;
Pos += Vel * Dt;
}
static
void Control (float t)
{
static int stepCount = 300;
if (stepCount-- <= 0) {
stepCount = 300;
Posdes = -Posdes;
/* Throw an event whenever position desired changes. */
ScopeEventsCollect (ScopeHandle, 2, "PosChangeEvent", (void *) &Posdes,
RTI_FLOAT32ID) ;
}
Acc = Kp*(Posdes - Pos) + Kv*(Veldes - Vel);
}
static
void Sample(float t, int noCollection)
{
SineWaves (t) ;
Plant (t);
Control (t) ;
if (noCollection == 0) { ScopeCollectSignals (ScopeIndex); 1}
if (SampleHookFunc != NULL) {
(*SampleHookFunc) (SampleHookParam) ;
}
}
static
void InstallFakeSignals (int num)
{

register int i;
char str[132];

if (num > MAXPHASES) {num = MAXPHASES;}
NumberOfPhases = num;

328

C Data Monitor Demo Program
C.2 Source Code for VxWorks

/* Install signals for debugging */

ScopelInstallSignal ("Square", "volts", &square, "float", Scopelndex) ;
singroup = (struct ExampleStruct *) calloc(l, sizeof (struct
ExampleStruct)) ;

singroup->sint = 0.0;
singroup->sin2t = 0.0;
singroup->sin3t = 0.0;
singroup->cost = 1.0;

ScopeInstallSignal ("Sine", "volts", &(singroup->sint), "float",
ScopelIndex) ;

ScopeInstallSignal ("Cosine", "volts", &(singroup->cost), "float",
ScopelIndex) ;

ScopeInstallSignal ("Sine2T", "volts", &(singroup->sin2t), "float",
ScopelIndex) ;

ScopeInstallSignal ("Sine3T", "volts", &(singroup->sin3t), "float",
ScopelIndex) ;

ScopeInstallSignal ("Pos", "meters", &Pos, "float", Scopelndex);

ScopeInstallSignal ("PosDesired", "meters", &Posdes, "float", ScopeIndex) ;

ScopelInstallSignal ("Vel", "m/s", &Vel, "float", ScopeIndex) ;

ScopeInstallSignal ("Acc", "m/s/s", &Acc, "float", Scopelndex) ;

for (1=0; i<num; i++) {

sprintf (str, "sin/sin(t+%.1f)", PHASESHIFT*i);
ScopeInstallSignal (str, "volts", &phases[i], "float", ScopelIndex) ;
}

}

static

/* This routine simply lets the sampler run. An alternative, asychronous
sampling strategy is to simply call ScopeCollectSignals() from this

routine
(at interrupt level). However, this scheme is probably more indicative of
the way most users will implement Scope. */

int ScopeDemoTimerInterrupt (void)

{
semGive (SampleSemaphore) ;
return(0) ;/* sysAuxClkConnect should take VOIDFUNCPTR */

}

static
/* Called by main loop to clean up mem usage */
void ScopeDemoShutdownInternal (void)
{
if (tid !'= 0) {
if (SampleSemaphore != NULL) {
/* Must be aux clk, so clean up. */
sysAuxClkDisable () ;
sysAuxClkConnect (NULL, O0);
semDelete (SampleSemaphore) ;
SampleSemaphore = NULL;

}

if (ScopeNoServer == 0) {
ScopeShutdown (ScopeIndex) ;

} else {

329

Wind River Workbench Data Monitor
User's Guide, 3.0

#1if VXWORKS_AE_VERSION_1_0_OR_BETTER
ScopeRemoveMultipleSignals("", ScopelIndex) ;
#else
ScopeRemoveMultipleSignals("*", Scopelndex) ;
#endif
ScopeNoServer = 0;

ScopeIndex = -1;
free (singroup) ;
tid = 0;
}
/* Reset flag */
ScopeDemoShutdownRequest = 0;
}

static
/* This routine generates the signals, and does the sampling.

* It attaches a semaphore to the Aux clock iff useAuxClock is non-zero.

*/

int ScopeDemoSampler (int requestedSR, int useAuxClock, int noCollection)

{
int nTicksBwSamples = 0;
float actualSR;

if (useAuxClock) {
SampleSemaphore = semBCreate (SEM_Q PRIORITY, SEM_EMPTY) ;
}

/* Connect the timer to the auxillary clock interrupt. */
if (useAuxClock &&
(sysAuxClkConnect (ScopeDemoTimerInterrupt, 0) == OK)) {
sysAuxClkEnable() ;
sysAuxClkRateSet (requestedSR) ;
/* hardware may not be exact */
actualSR = sysAuxClkRateGet () ;
} else {
actualSR = sysClkRateGet () ;
if (actualSR < requestedSR) {
/* Requested rate (requestedSR) is higher than
* maximum achievable rate.
*/
nTicksBwSamples
} else {
nTicksBwSamples = actualSR / requestedSR;
actualSR = requestedSR;

1;

}
}

/* Tell scope the actual sample rate (hardware may not be exact).

ScopeChangeSampleRateInt ((int) actualSR, Scopelndex) ;

330

*/

C Data Monitor Demo Program
C.2 Source Code for VxWorks

if ((actualSR/requestedsR > 1.1) || (actualSR/requestedSR < 0.9)) {
printf ("ScopeDemo: requested rate (%f Hz) not \n"
"achievable, actual sampling rate is %f Hz\n",
(float) requestedSR, actualSR) ;

Dt = 1./actualSR;
while (!ScopeDemoShutdownRequest) {
if (useAuxClock) {
semTake (SampleSemaphore, WAIT_FOREVER) ;
} else {
taskDelay (nTicksBwSamples) ;
}
Time += Dt;
Sample (Time, noCollection) ;

}
ScopeDemoShutdownInternal () ;
return(0) ;

}

/*

ARGUMENTS

If useAuxClock is TRUE, use the Aux clock. Otherwise (or if there is no
Aux clock, use taskDelay.
scopeIndex is the Data Monitor index to use. It must be coordinated with
the GUI.
verbosity controls the amount of warning and debug messages. 0 means
only errors will be printed. Higher values causes more output.
If regDataBufSize is non-zero, use that value rather then the default
(51k)
If noServer is true, then this demo will not start a Scope
server. Assumes
one is already started.
If noCollection is non-zero then this demo will not call
ScopeCollectSignals
since it is assumed that another process is collecting.
*/
void ScopeDemo(int useAuxClock, int scopeIndex, int verbosity,
int regDataBufSize, int noServer, int noCollection)
{
int samplingRate = 60; /* Hz */
int dataBufSize, signalBufSize, eventBufSize;

/* Initialize */
if (ScopeIndex > 0) {

return;

}

331

Wind River Workbench Data Monitor
User's Guide, 3.0

if (regDhataBufSize == 0) {

dataBufSize = 17*8%*384; /* 51k data buffer (ints/floats) */;
} else {

dataBufSize = regDataBufSize;

}

signalBufSize = 40960;

eventBufSize = -1;

if (noServer == 0) {

/* Initialize an index. */
ScopeIndex = ScopelnitServer (dataBufSize, signalBufSize, verbosity,
scopelndex) ;
if (ScopeIndex < 0) {
printf ("ScopeInitServer failed, return code = %d\n", ScopelIndex) ;
return;

}

/* Attach an event buffer to that index. */
ScopeHandle = ScopeEventsAttach (eventBufSize, Scopelndex) ;

if (ScopeHandle == 0) {
printf ("ScopeEventsAttach failed, exiting!\n");
return;

}

} else {

ScopeIndex = scopelndex;
ScopeNoServer = 1;

}

ScopeIndex = scopelndex;

InstallFakeSignals(8) ;

tid = taskSpawn ("ScopeDemo", 100, VX_FP_TASK|VX_STDIO, 0x4000,

(int (*)()) ScopeDemoSampler,
samplingRate, useAuxClock, noCollection,0,0,0,0,0,0,0);

}

void ScopeDemoShutdown (void)

{
if (tid !'= 0) {
ScopeDemoShutdownRequest = 1;
}

}

Makefile for vxdemo.c

Use this makefile as a template for compiling your code (or the vxdemo.c program)
instrumented with ScopeProbe API.

332

C Data Monitor Demo Program
C.2 Source Code for VxWorks

FHE RS R R R R
Data Monitor demostration makefile.

This makefile is provided as an example only! It compiles the
VxWorks version 6.3 objects using the "ccpentium" gnu cross-
compiler for solaris2. Users will of course have to modify
this for their installations.

#

#

#

#

#

#

#

#

We recommend you copy the current demo source directory before
compiling. For instance:
mkdir mydir

cp -r ./src/scopedemo mydir/src
cd mydir/src

make

#

#

#

#

#

The makefile will create a "mydir/lib" directory to hold your
objects.

FHE A R

This makefile should work even if you have not properly installed your
cross-compiler environment. However, the following variables must be set
to reflect your configuration:

WIND_BASE = /local/VxWorks/VDT.3.0
WIND_HOST TYPE = sund4-solaris2
ARCH = pentium

CPU = PENTIUM3

The following script should automatically be able to compile Data Monitor
demonstration files.

#

Note 1: This makefile generates ".so" object files.

Note 2: This makefile creates the USEROBJDIR directory, if it doesn't
exist.

GCCHOME = $(WIND_BASE)/gnu/3.3.2-vxworks60/$ (WIND_HOST_TYPE)
CC = $(GCCHOME) /bin/cc$ (ARCH)

USEROBJDIR = 1ib/$ (CPU)Vx6.3gcc3.3.2
SCOPE_INCLUDES = ../../include/share

makefile rules
all: S (USEROBJDIR) $ (USEROBJDIR) /scopedemo.so

$ (USEROBJDIR) :
mkdir -p se@

333

Wind River Workbench Data Monitor
User's Guide, 3.0

$ (USEROBJDIR) /%.0: %.C
$(CC) -Wall -O -c -DCPU=S (CPU) \
-IS$ (WIND_BASE) /vxworks-6.3/target/h -I$(GCCHOME) /include \
-I$(SCOPE_INCLUDES) =-DRTI_VXWORKS $< -0 s@

$ (USEROBJDIR) /%.so: $(USEROBJDIR)/%.0
$ (GCCHOME) /bin/1ds (ARCH) -r S$< -o $@

C.3 Source Code for Linux

The file, scopedemo.c, is an example of a simple application that uses Data
Monitor. The example application plots a number of sinusoids and contains a
simple control system with a simulated physical system that is noisy. It is meant
only to illustrate some of the Data Monitor features.

The file and its makefile are located at:

WIND_SCOPETOOLS_BASE\target\src\scopedemo

where WIND_BASEWIND_SCOPETOOLS_BASE (an environment variable of the
same name) is the root of the tree where you installed the Run-Time Analysis Tools.
The scopedir\src\target\src\scopedemo directory contains the scopedemo.c
demo code file (see below), and a makefile (see Makefile for vxdemo.c, p.332), to help
you recompile the demonstration program.

NOTE: You must edit the makefile to have it reflect the file structure of your
system.

Linux scopedemo.c Program

/* scopedemo \- UNIX and Windows NT scope demonstration program. */

/* Copyright Real-Time Innovations, Inc., 1989-91. All rights reserved.
Permission to modify and use internally is granted to Data Monitor
licensees,
provided this notice is not removed. */
/*
modification history
5.4a,08nov00,gah increased signalBufSize
5.3a,01dec99, laf Changed ThreadSleep to new API
5.1a,260ct98,nm ScopelInitServer () now takes two buffer sizes.

334

[O RO, IO, G RO O B O

.la,1l60ct98, nm
.la,1l60ct98,nm
.1la,163jul9s, laf
.la,12mar98, nm
.0b,10Jul97, mlh
.0b,24jun97, sas
.0b,19Jun97, mlh
.4a,17Mar97,mlh
.4a,29%aug96,mlh
.3g,30jul96,mlh

Added TriggerImmediate ,

RTI,09dec91, sas
RTI,06jul90, sas

C Data Monitor Demo Program
C.3 Source Code for Linux

Updated to use the new thread creation api in rtilib.

usleep() 1s not needed.
usleep is defined on LINUX

Updated for scope 5.1 release.

Commented big time and it now build on Windows.
Added position & velocity gains to signals.
Now, scopedemo is uses threads for windows.

Added Ptr signal Install.
Signal types changed.
Added Different types.

converted to mangen format.

and TriggerDisabled.

added simulator. Converted to ANSI-C
Original code written by Stan Schneider in 1989.

scopedemo samplerateinHz verbosity index

"scopedemo" provides a simple Host-to-Host demonstration of Data

control the simulated control system,

this program will present a simple menu of options to

add and remove signals, etc.

to run the UNIX-to-UNIX demo:

cd scopedir/bin/sparcSol2.5

scope[.x] targetHostname &

This demonstration is very simple; it
you an idea of {\em Data Monitor's} capabilities.

(say "targetHostname", running Solaris 2.5):

(including "targetHostname") :

should, however, give

This demonstration works on Windows 95/NT, and those flavors of UNIX

and the libraries it uses,

This code runs as four threads:

*/
/ *
USAGE:
DESCRIPTION:
Monitor.
When executed,
In summary,
on any workstation
scopedemo
on any workstation
COMPILING:
that support threads.
NOTE:
This code,
to Data Monitor licensees.
*/
/ *
1) The user's simulation
2) The menu parser
3) Probe daemon
4) Link daemon

are available free-of-charge

335

Wind River Workbench Data Monitor
User's Guide, 3.0

All user input (including the menu parser) is handled by the Query
Package in this program (see "man Query").
*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <sys/types.h>
#include <stddef.h>
#include <string.h>

#include "rtilib/rti_types.h"
#include "rtilib/query.h"
#include "rtilib/rti_osapi.h"
#include "scope/scope.h"

#define MAXPHASES (8)
#define PHASESHIFT(0.1)

#ifdef RTI_SUN4
#define RAND_MAX (32767)
#endif

/*
* ThreadInfo_t provides information when threads are possible.
*/
typedef struct ThreadInfo {
int index;
int handle;
}ThreadInfo;

/*

* Global variables. Using this many globals is not good coding style.
* However, this code is intended to serve as a simple example...

*/

/*
* As of Data Monitor 5.0, users can registers signals as offsets from a
* pointer. TestStruct_t will be used to show the ScopeRegisterWithOffset
call.
*/
typedef struct TestStruct_t {
float First;
int Second;
} TestStruct_t;

TestStruct_t OffsetData[l10] = {{0.0f£, 0}, {0.1£, 0}, {0.2f£, 0}, {0.3f£, 0},
{0.4£, 0},
{0.5¢£, 0}, {0.ef, 1}, {0.7£, 1}, {0.8f, 1},
{0.9f, 11}};

336

C Data Monitor Demo Program
C.3 Source Code for Linux

/*
* During this demo we will increment PtrTestStruct through the OffsetData
* array, inorder to demonstrate offets to signals.
*/

TestStruct_t *PtrTestStruct = &OffsetDatal0];

/*

* These test the new scopelink which handles specific types.

* Users can register signals with exact types without losing precision. If
you

* are building on an ALPHA make sure that RTI_ALPHA is set.

*/

double Byte64Double =4.0;
float Byte32Float = 3.5f;
#ifdef RTI_ALPHA
int Byte32Int = 101;
unsigned int Byte32UInt = Oxffffffff;
#else
long Byte32Int = 101;
unsigned long Byte32UInt = Oxffffffff;
#endif
short Bytel6é6Int = 2;
unsigned short Bytel6UInt = Oxffff;
char Byte8Int = 'a';
float FloatValue = 2.0f;
/*
* Support for pointers to signals was added in Data Monitor 5.0. We support
any
* number of derefences.
*/
float *PtrToFloatValue = &FloatValue;
float **ptrPtrToFloatValue = &PtrToFloatValue;

double phases [MAXPHASES] ;
int NumberOfPhases = 0;

/*

* A whole bunch to simulate a real system.

*/
double sint = 0.0;
double sin2t = 0.0;
double cost =1.0;
float Pos = 0.0f;
float Vel = 0.0f;
float Acc = 0.0f;
float Posdes = 1.0f;
float Veldes = 0.0f;
float Kp = 10.0f;
float Kv = 4.0f;
float NoiseMag = 0.1f;
float Time = 0.0f;
float Dt = 0.005¢f;

int StepPeriod = 300;

337

Wind River Workbench Data Monitor
User's Guide, 3.0

/*
* SineWaves /- Calculate the sine values.
*/
void SineWaves(float t, int handle)
{
register int j;
sint = sin(t);
cost = cos(t);
sin2t = sin(2 * t);
for(j=0; j<NumberOfPhases; j++) {
phases[j] = sin(t + PHASESHIFT*J) ;
}
if((sint > 0.1) && (sint < 0.2)) {
ScopeEventsCollect (handle, 1, "Sine-0.1-0.2", &sint, RTI_DOUBLE64ID);
}
if((cost > 0.5) && (cost < 0.6)) {
ScopeEventsCollect (handle, 1, "Cosine-0.5-0.6", &cost, RTI_DOUBLE641ID) ;
}
}
/*
* Noise /- Return a uniform random variable between a and b.
*/
float Noise(float a, float b)
{
float result;
result = (float) (((float) rand() / RAND_MAX) - 0.5);
return (float) (result * (b - a) + (a + b) / 2.);
}
/*
* Plant /- This "plant" is an Euler double integrator.
*/
void Plant (float t)
{
Vel += Acc * Dt;
Vel += Noise(-NoiseMag, NoiseMag) ;
Pos += Vel * Dt;
}
void Control(float t, int handle)
{
static int stepCount = 300;
if ((StepPeriod > 0) && (stepCount-- <= 0)) {
stepCount = StepPeriod;
Posdes = -Posdes;
ScopeEventsCollect (handle, 1, "PosChangeEvent", &Posdes, RTI_FLOAT32ID);
}
Acc = Kp* (Posdes - Pos) + Kv*(Veldes - Vel);
}

338

C Data Monitor Demo Program
C.3 Source Code for Linux

/*
* Offset /- Set the PtrTestStruct to the next array position.
*/

void Offset (float t)

{
PtrTestStruct = &OffsetDatal ((int) (£/0.5))%10];
}
void InstallFakeSignals(int num, int index)
{
register int 1i;
char str[132];
if (num > MAXPHASES) {
num = MAXPHASES;
}
NumberOfPhases = num;
/*
* ScopeRegisterSignal ()specifies to the GUI the existance and
* characteristics of a signal. ScopeActivateSignal () specifies that a
* gsample should be collected when ScopeCollectSignal() is called.
* ScopelInstallSignal() is simply a convenience function that calls
* ScopeRegisterSignal () then ScopeActivateSignal() signal. Take a look at
* the html pages for ScopeRegisterSignal() and ScopelnstallSignal for a
* complete list of types.
*
* Data Monitor supports hierarchial names. The signals with the prefix
* "DifferentTypes/" will all exist in a folder called "DifferentTypes".
*/
ScopeInstallSignal ("DifferentTypes/8ByteDouble", "volts", &Byte64Double,
"double", index) ;
ScopeInstallSignal ("DifferentTypes/4ByteFloat", "volts", &Byte32Float,
"float", index);
ScopeInstallSignal ("DifferentTypes/4ByteInt", "volts", &Byte32Int, "int",
index) ;
ScopeInstallSignal ("DifferentTypes/4ByteUInt", "volts", &Byte32UInt,
"unsigned int", index);
ScopeInstallSignal ("DifferentTv index) ;
ScopeInstallSignal ("DifferentTypes/2ByteUInt", "volts", &Bytel6UInt,
"unsigned short", index);
ScopeInstallSignal ("DifferentTypes/1ByteChar", "volts", &Byte8Int,
"char",
index) ;
/*

* You should use offsetof macro inorder to find the offset of a
* structure variable. If your OS does not support this macro then
* take a look at the html pages for ScopeRegisterSignalWithOffset.

I explain a pretty fool proof way of calculating offset automatically.

*/

339

Wind River Workbench Data Monitor
User's Guide, 3.0

ScopeRegisterSignalWithOffset ("Offset/First", "volts",
&PtrTestStruct, "float",
offsetof (TestStruct_t, First), index);
ScopeRegisterSignalWithOffset ("Offset/Second", "volts",
&PtrTestStruct, "int",
offsetof (TestStruct_t, Second), index);
/*
* We activate this signals immediately after the registeration only
* to show the new functionality. You can activate signals anytime
* after you register the signal. Also, take a look at
* ScopeDeactivateSignal () .
*/

ScopeActivateSignal ("Offset/First", index);
ScopeActivateSignal ("Offset/Second", index) ;

/*
* We also support pointers to any signal type. ScopeCollectSignals()
* will derefence the pointer before sampling the signal.

*/

ScopeInstallSignal ("Pointer/Float", "volts", &FloatValue, "float",
index) ;

ScopeInstallSignal ("Pointer/FloatPtr", "volts", &PtrToFloatValue,

"float*",

index) ;

ScopeInstallSignal ("Pointer/FloatPtrPtr", "volts", &PtrPtrToFloatValue,

"float**", index);

ScopeActivateSignal ("Pointer/Float", index) ;
ScopeActivateSignal ("Pointer/FloatPtr", index);
ScopeActivateSignal ("Pointer/FloatPtrPtr", index) ;

/*

* Here are all of the system variables.

*/

ScopeInstallSignal ("Sine", "volts", &sint, "double", index);
ScopeInstallSignal ("Cosine", "volts", &cost, "double", index);
ScopeInstallSignal ("Sine2T", "volts", &sin2t, "double", index);
ScopeInstallSignal ("Pos", "meters", &Pos, "float", index);
ScopelInstallSignal ("PosDesired", "meters", &Posdes, "float", index);
ScopeInstallSignal ("Vel", "m/s", &Vel, "float", index) ;
ScopelInstallSignal ("Acc", "m/s/s", &Acc, "float", index);
ScopeInstallSignal ("PosGain", "N/m", &Kp, "float", index);
ScopelInstallSignal ("VelGain", "N/m/s", &Kv, "float", index);
for(i = 0; i < num; ++i) {

sprintf (str, "SinGroup/sin(t+%.1f)", PHASESHIFT*i);
ScopelInstallSignal (str, "volts", &phases[i], "double", index) ;
}

340

C Data Monitor Demo Program
C.3 Source Code for Linux

void SetRate(float rate, ThreadInfo *threadInfo)

{

}

if (rate <= 0.£f) {
printf ("Sample rate must be positive.\n");
return;

}

ScopeChangeSampleRateInt ((int) rate, threadInfo->index) ;
Dt = (float) 1.0/rate;
printf ("Sample rate is %.2f Hz\n",rate);

void Reset (void)

{

}

Pos = Vel = Acc = 0.0f;

void Menu(int index)

{

}

printf
printf(" —-—---—---—m - \n") ;

"\n Scope index (%d)\n", index) ;

(

(
printf (" h - Print menu\n");
printf(" a - Add signals\n");
printf (" r - Remove signals\n");
printf (" v - Activate signals\n");
printf (" w - Deactivate signals\n");
printf (" d - Display registered signals\n");
printf (" i - Display activated signals\n");
printf (" p - Change position step size\n");
printf (" 1 - Change length of step\n");
printf (" n - Add noise\n");
printf (" R - Change sampling rate\n");
printf (" e - Throw event\n");
printf (" g - Quit\n");

void ProcessCommand (char cmd, QueryInfo gi, ThreadInfo *threadInfo)

{

static char removeStr[128] = "*";
static char eventStr[128] = "testEvent";
static float sampleRate = -1.0f;

if (sampleRate < 0) {

sampleRate = (float) 1.0/Dt;
}
switch (cmd) {
case 'h':
Menu (threadInfo->index) ;
break;
case 'a':

InstallFakeSignals (QueryInt ("Number to install", 0, MAXPHASES, 1, qgi),

threadInfo->index) ;
break;

341

Wind River Workbench Data Monitor
User's Guide, 3.0

removeStr, qgi);

case 'r':
QueryString ("Remove signals starting with",
threadInfo->index) ;

ScopeRemoveMultipleSignals (removeStr,

break;

case 'd':
ScopeShowSignals (threadInfo->index) ;

break;

case 'i':
ScopeShowActiveSignals (threadInfo->index) ;

break;
fabs (Posdes), qi);

case 'p':
= (float)QueryAnyReal ("Position Step Size",

Posdes =
break;
0, 1000000,

case 'l':
StepPeriod = QueryInt("Step Length (0 => off)",
StepPeriod, gi);

break;
case 'n':
NoiseMag = (float)QueryReal ("Noise magnitude", 0.0, 10000.0, NoiseMag,
qi);
break;
case 'R':
SetRate (sampleRate = (float)QueryReal ("Sample rate",3.0,100.,
sampleRate,gi), threadInfo);
break;
removeStr, gi);

case 'v':
QueryString ("Activate signals starting with",
threadInfo->index) ;

ScopeActivateMultipleSignals (removeStr,

removeStr, di);

case 'w':
QueryString ("Deactivate signals starting with",
threadInfo->index) ;

ScopeDeactivateMultipleSignals (removeStr,

break;

break;
case '\n':
break;

eventStr, qgi);
eventStr) ;

case 'e':
1,

QueryString ("Event string",
ScopeEventsMessage (threadInfo->handle,

break;

case 'z':
Reset () ;

break;

342

}

C Data Monitor Demo Program
C.3 Source Code for Linux

case 'qg':
ScopeShutdown (threadInfo->index) ;
break;
default:
printf ("Bad command %c. Try 'h'.\n", cmd);

}

void UsageError (void)

{

}

printf ("Usage: scopedemo samplerateinHz verbosity index\n") ;
exit(1);

void *ScopeDemoSampler (void *param)

{

}

ThreadInfo *threadInfo = (ThreadInfo *) param;
float time = 0.0f;
RTINtpTime rtiTime;

for(time = 0.0f;; time += Dt) {
SineWaves (time, threadInfo->handle) ;
Plant (time) ;
Control (time, threadInfo->handle);
Offset (time) ;
RtiNtpTimePackFromNanosec (rtiTime, (int) Dt,
(int) ((1000000000.0 * Dt) -
(1000000000.0 * (double) rtiTime.sec)));
RtiThreadSleep (&rtiTime) ;
ScopeCollectSignals (threadInfo->index) ;
}
return NULL;

void QueryMenu(ThreadInfo *threadInfo)

{

char cmd;
QueryInfo gi;

InstallFakeSignals (MAXPHASES, threadInfo->index) ;

printf ("\nData Monitor demonstration target simulator.\n");
pril’ltf(IR S S S S EEEEE IR EEEEEEEEE SRS I EEEE ST **********\nll);
printf ("\n Real-Time Innovations, Inc.\n");

Menu (threadInfo->index) ;

gl = QueryCreate();
QueryFlushChar (gi) ;

cmd = '\0"';
while (cmd != 'q') {
cmd = QueryAnyChar ("Scopedemo", 'h', qgi);
ProcessCommand (cmd, gi, threadInfo);
}

QueryDestroy (gi) ;

343

Wind River Workbench Data Monitor
User's Guide, 3.0

int main(int argc, char *argv(])

*/

assuming name &

{
int index = -1;
float rate = 30.f;
int sampleBufferSize, eventBufferSize, signalBufferSize;
int verbosity = 0;
RTISystemThreadInfo threadSysInfo;
RTIThreadOptions samplerThreadOptions = RTI_THREAD_PRIORITY_ENFORCE;
ThreadInfo *threadInfo;
RTIThreadId tid;
/* This is normalized priority (range 0-255). We want to run the
* sampling thread at a high priority.
*/
int samplerThreadPriNorm = 200;
int samplerThreadPriNative;
if (argc >= 2) {
if (sscanf (argv([l], "%$f", &rate) != 1) {UsageError();}
}
if (argc >= 3) {
if (sscanf (argv[2], "%d", &verbosity) != 1) {UsageError();}
}
if (argc >= 4) {
if (sscanf (argv([3], "%d", &index) != 1) {UsageError();}
}
sampleBufferSize = 256 * 1024; /* 256k sample buffer
(ints/floats/doubles)
eventBufferSize = -1; /* Pick the default value */
signalBufferSize = 64 * 1024; /* Approx. 200 signals,
units

for a signal is 23 characters (including

two '\0' characters). */

threadInfo = (ThreadInfo *) calloc(1l,

threadInfo->index = ScopelnitServer (sampleBufferSize,
verbosity, index) ;

if (threadInfo->index < 0) {

printf ("ScopeInitServer failed,

exit (1) ;

}

exiting!\n") ;

threadInfo->handle = ScopeEventsAttach (eventBufferSize,
>index) ;

if (threadInfo->handle == 0) {

printf ("ScopeEventsAttach failed, exiting!\n");
exit(1l);

}

printf ("\nScope index (%d)
>index) ;

SetRate(rate, threadInfo);

344

successfully initialized!\n",

sizeof (ThreadInfo)) ;

signalBufferSize,

threadInfo-

threadInfo-

C Data Monitor Demo Program
C.3 Source Code for Linux

RtiSystemThreadInfoGet (&threadSysInfo) ;
if (threadSysInfo.realtimeEnabled) {
samplerThreadOptions = (RTIThreadOptions)
(samplerThreadOptions | RTI_THREAD_REALTIME_PRIORITY) ;
}
samplerThreadPriNative = RtiThreadNativePriorityGet (samplerThreadOptions,
samplerThreadPriNorm) ;

tid = RtiThreadCreate ("SamplerThread", samplerThreadPriNative,
samplerThreadOptions, 16*1024, ScopeDemoSampler,
threadInfo) ;

QueryMenu (threadInfo) ;

RtiThreadIdDelete (tid) ;

free(threadInfo) ;

return(0)

Makefile for scopedemo.c

Use this makefile as a template for compiling your code (or the vxdemo.c program)
instrumented with ScopeProbe API.

Unix makefile.public

B oo

This makefile will compile the "scopedemo" demonstration program for UNIX.
#

You will need an ANSI-compliant compiler (such as gcc) to compile the

demonstration program.

You must set 'ARCH' to the platform that you are building for, which

includes

the 0S and compiler versions. For example, set it to sparcSol2.8gcc2.95 for

Solaris 2.8.x (gcc 2.95 compiler), i86Linux2.4gcc2.96 for RedHat 7.1-7.3

(gcc 2.96 compiler), i86Linux2.4gcc3.2 for RedHat 8.0 (gcc 3.2 compiler),
186Linux2.4gcc3.2.2 for RedHat 9.0 (gcc 3.2.2 compiler) and

pentium3MVCGE3.lgcc3.3 for MontaVista CGE3.1 (gcc 3.3 compiler).

ARCH = pentium3MVCGE3.lgcc3.3

CC = gcc

INCLUDELIST = \

-I../../include/share \

-I../../include/unix

LIBRARIES = ../../arch/$(ARCH) /libscope7lltcpz.a \
../../arch/$ (ARCH) /libxmlparsez.a \

../../arch/$ (ARCH) /libutilsipz.a

SYSTEMLIBS = -1lm -1lnsl -lpthread

345

Wind River Workbench Data Monitor
User's Guide, 3.0

For Solaris platform, you will need following system libraries
ifneq (,$(findstring sparcSol, $(ARCH)))

SYSTEMLIBS += -lsocket -lposix4

endif

scopedemo: scopedemo.c
$(CC) $(CFLAGS) -DRTI_UNIX $(INCLUDELIST) scopedemo.c -o scopedemo $(LIBRARIES)

$ (SYSTEMLIBS)

346

MATLAB and MATRIXy
Examples

D.1 Introduction 347
D.2 MATLAB Example 347
D.3 MATRIXX Example 351

D.1 Introduction

This appendix presents example script files that can be used in MATLAB and
MATRIX to plot signals saved by Data Monitor.

D.2 MATLAB Example

This section shows a MATLAB script file, varplot.m, that plots signals. It also
shows a sample MATLAB session that loads a script file saved by Data Monitor,
then uses the varplot script to produce a PostScript file.

347

Wind River Workbench Data Monitor
User's Guide, 3.0

Example D-1 Varplot m-File

Name:
varplot variable plot program for scoped matlab data

Usage:
<load your scope data>
[define a global variable varplot_Names]
varplot
Parameters:
varplot_Names: a matrix of signal names to plot.
All rows must have the same number of characters.
Example: ['ForceUp ';
'ForceDown']
varplot_Names should be in order curves are plotted

subplotactive: The active subplot number (if any)
if this variable exists, then handle subplot
windows correctly

Description:
If varplot_Names is defined, "varplot" will print the named
signals.
Otherwise, "varplot" will prompt you for signals to be
plotted, then plot
them, with labels, etc.

See Also:
smartplot, plotall, legend

Language: PRO-MATLAB Version 3.5
Written by: Stan Schneider, Real-Time Innovations July, 1988

Revision History:

00 A0 AP AP AP A° AP I° I° AP I° I I° O° I° AP AP AC AP AP I° I I I I° O° I° A° AP AP AP A° Of of o

plotindex = [];

plotdata= [1];

plotnames= [];

unitnames= [];

s =" '

if (exist('varplot_Names')),
% find the number of curves
Num_Curves=size (varplot_Names); Num_Curves=Num_Curves(1l,1);
this_Curve = 0;

end;

numsignals = length(data(l,:));

% If varplot_Names doesn't exist, prompt the user for signal names.
more = 1;
while (more == 1)
if (~exist('varplot_Names')),
s = input('Plot which signal? [end] ',6's');

348

D MATLAB and MATRIXX Examples
D.2 MATLAB Example

if((length(s) == 3))
if((s == 'end'"))
more = 0;
break;
end;
end;
else
this_Curve = this_Curve + 1;
if (Num_Curves == this_Curve),
more = 0;
end;
s = varplot_Names (this_Curve, :);
end;

index = nameindex (names,s) ;

if(index == 0)

disp(s);

disp(': Variable not found');
else

plotindex = [plotindex index];
end

end;

% Build the arrays to be plotted.
for i=plotindex
plotdata = [plotdata data(:,i

)1
plotnames = [plotnames ; names(i,:)];
unitnames = [unitnames ; units(i,:)];
end
plotnames % Display the plot names.

plot (time,plotdata) ;

xlabel ('Time (seconds)');
ylabel (units(index, :));

if(exist('runtitle'))

titlestring = [runtitle ' - ' timestamp];
else

disp('warning - no runtitle');

titlestring = [timestamp];

end
title(titlestring);

subnum = 0;

if (exist ('subplotactive')),
subnum = subplotactive;

end;

legend (plotnames, unitnames, 1, subnum, 1);
Example MATLAB Session

This MATLAB session loads the data saved as dynamicPayload.mat by running
the dynamicPayload.m script, both created by Data Monitor when saving data in
MATLAB format. The session then uses varplot to plot two variables. The

349

Wind River Workbench Data Monitor
User's Guide, 3.0

resulting plot is saved in encapsulated PostScript format. The figure produced by
this example appears in the manual as:

>> dynamicPayload
notes =

Notes:

This is a slew with the uncontrolled dynamic payload.

Both force sensor filters active, at 20Hz.
No friction compensation active.
controller =
ComputedTorque
PDGains0 =

4.0000 1.5000 0
PDGainsl =

1.0000 0.5000 0
>> who
Your variables are:
DesForceX ForceYUnfiltered ans
DesForceY PDGains0 controller
DesiredAccX PDGainsl data
DesiredAccY PosX filename
DesiredPosX PosY names
DesiredPosY RawForceProbeX notes
DesiredvelX RawForceProbeY numberOfSamples
DesiredvelY SampleDivisor numberOfSignals
ElbowPos SampleRate runtitle
ElbowTorque ShoulderPos time
ElbowVel ShoulderTorque timestamp
FILE_EXISTS Shouldervel units
ForceX TERM
ForceXUnfiltered VelX
ForceY Vely
>> varplot

Plot which signal?
Plot which signal?
Plot which signal?

plotnames =

350

[end] ForceX

[end] ForceY

[end] end

D MATLAB and MATRIXX Examples
D.3 MATRIXX Example

ForceX
ForceY

>> meta
>> lgpp metatmp -deps -fSaveMatlabFigure.ps

D.3 MATRIXy Example

This section shows a MATRIX script file, varplot.ms, that plots signals. It also
shows a sample MATRIX session that loads a script file saved by Data Monitor,
then uses the varplot script to produce a PostScript file.

Example D-2 Varplot ms-File

Name:
varplot.ms variable plot program for scoped MATRIXx data

Usage:
<load your scope data>
[define a global variable varplot_Names]
execute file="varplot"
Parameters:
varplot_Names: a matrix of signal names to plot.
All rows must have the same number of characters.
Example: ["ForceUp ";
"ForceDown"]
varplot_Names should be in order curves are plotted

Description:
If varplot_Names is defined, "varplot" will print the named
signals.
Otherwise, "varplot" will prompt you for signals to be
plotted, then plot
them, with labels, etc.

See Also:
plot

Language: MathScript Version 6.0

H o oS S e SE 3E 3F 3k 3F 3k 3F 3F 3 S S S S Sk SE 3F 3F 3k 3F 3k 3k 3k 3

351

Wind River Workbench Data Monitor
User's Guide, 3.0

plotindex = [];

plotdata = [];

plotnames = [];

unitnames [1;

s =" ";

If (exist(varplot_Names)),
find the number of curves
Num_Curves=size (varplot_Names); Num_Curves=Num_Curves(1l,1);
this_Curve = 0;

endIf;

numsignals = length(data(l,:));

If varplot_Names doesn’t exist, prompt the user for signal names.
more = 1;
While (more == 1)
If (!exist(varplot_Names)),
s = getLine("Plot which signal? [end]");
If(length(s) == 3)
If(s == "end")
more = 0;
exit 0;
endIf;
endIf;
else
this_Curve = this_Curve + 1;
If (Num_Curves == this_Curve),
more = 0;
endIf;
s = varplot_Names (this_Curve, :);
endIf;

find index of s within names

[rows, sz] = size(names);
sz = length(s); found = 0;
For 1 = l:rows
If (sz == 0), exit 1; endIf;
If (stringex(names(i,1l),1,sz) == s)
If (index(names(i,1)," ") == index(s," ")
| index(names(i,1)," ") == sz+l)
found = 1;
exit 1;
endIf;
endIf;
endFor

If (found == 0)

display(s + ": Variable not found");
else
plotindex = [plotindex, i];
endIf;
endWhile;

352

Example D-3

D MATLAB and MATRIXX Examples
D.3 MATRIXX Example

Build the arrays to be plotted.
For i=plotindex
plotdata = [plotdata, data(:,1i)];

plotnames = [plotnames ; names(i,:)];
unitnames = [unitnames ; units(i,:)];
endFor
display (plotnames) # Display plot names

If (plotindex == [])
return;
endIf;

If (exist(runtitle))
titlestring = runtitle + " - " + timestamp;
else
display("warning - no runtitle");
titlestring = timestamp;
endIf

plot(time, plotdata, {title=titlestring, xlab="Time (seconds)",
legend=plotnames + unitnames}) ;

MATRIXy Session

This MATRIX session loads the data saved as dynamicPayload.xmd by running
the dynamicPayload.ms script, both created by Data Monitor when saving data in
MATRIXy format. The session then uses varplot to plot two variables. The
resulting plot is saved in encapsulated PostScript format.

NOTE: In an actual MATRIXy session, the input and output appear in different text
areas. The listing below merges the two to give a sense of cause and effect, where
the output of a command is shown following the command itself.

>> execute file="dynamicPayload"

notes (a column vector of strings) =

Session notes:

This is a slew with the uncontrolled dynamic payload.
Both force sensor filters active, at 20Hz.

No friction compensation active.

controller =

ComputedTorque

PDGains0 =

4.0000 1.5000 0

353

Wind River Workbench Data Monitor
User's Guide, 3.0

PDGainsl =
1.0000 0.5000 0
>> who
main:
data -- 1000x38
numberOfSamples -- 1x1
numberOfSignals -- 1x1
filename -- 1x1
runtitle -- 1x1
notes -- 2x1
buffernotes -- 1x1
SampleRate -- 1x1
SampleDivisor -- 1x1
DifferentTypes_8ByteDouble -- 1000x1
DifferentTypes_4ByteFloat -- 1000x1
DifferentTypes_4ByteLong -- 1000x1
DifferentTypes_4ByteULong -- 1000x1
DifferentTypes_4ByteInt -- 1000x1
DifferentTypes_4ByteUInt -- 1000x1
DifferentTypes_2ByteInt -- 1000x1
DifferentTypes_2ByteUInt -- 1000x1
DifferentTypes_1ByteChar -- 1000x1
Pointer_Float -- 1000x1
Pointer_ Float_ -- 1000x1
Pointer_Float__ -- 1000x1
Pointer_Int -- 1000x1
Pointer_Int_ -- 1000x1
Pointer_Int__ -- 1000x1
Pointer_Double -- 1000x1
Pointer_Double_ -- 1000x1
Pointer_Double__ -- 1000x1
Offset_First -- 1000x1

Offset_Second -- 1000x1
Pos -- 1000x1
PosDesired -- 1000x1
Vel -- 1000x1

Acc -- 1000x1
PosGain -- 1000x1
VelGain -- 1000x1
Sine -- 1000x1
Cosine -- 1000x1
Sine2T -- 1000x1
Square -- 1000x1

SinGroup_sin_t_0_0_ -- 1000x1
SinGroup_sin_t_0_1_ -- 1000x1
SinGroup_sin_t_0_2_ -- 1000x1
SinGroup_sin_t_0_3_ -- 1000x1
SinGroup_sin_t_0_4_ -- 1000x1
SinGroup_sin_t_0_5_ -- 1000x1
SinGroup_sin_t_0_6_ -- 1000x1
SinGroup_sin_t_0_7_ -- 1000x1

time -- 1x1000

354

D MATLAB and MATRIXX Examples
D.3 MATRIXX Example

names -- 38x1

units -- 38x1
timestamp -- 1x1

gains -- 1x2

>> execute file="varplot"

Plot which signal? [end] ForceX
Plot which signal? [end] ForceY
Plot which signal? [end] end

ForceX
ForceY

>> hardcopy file="SaveMatlabFigure.ps", {ps}

355

Wind River Workbench Data Monitor
User's Guide, 3.0

356

RKM Signal Definitions

E.1 Introduction 357

E.2 Signal Descriptions 357

E.1 Introduction

Remote kernel metrics (RKMs) are operating system signals (metrics) that are
dynamically collected by the RKM_monitor (or rkm_monitor_linux) target agent.
This appendix lists each available signal, arranged by the various types, and gives
a complete description of the signal.

For information on the RKM feature, and using Data Monitor to display these
signals, see 12. Displaying Remote Kernel Metrics

E.2 Signal Descriptions

The nature of Data Monitor signals, as created and installed from your target code,
is explained in 15. Installing Signals. The nature of RKM signals is not unlike the
Data Monitor signals described there, except that RKM signals are values (metrics)

357

Table E-1

Wind River Workbench Data Monitor
User's Guide, 3.0

generated from the kernel environment in which the target program is running.
These metrics can give you additional insight beyond just program variables, into
the dynamics of interaction between your program and its environment.

The selection of metrics from the tables below, for inclusion on the command line,
determines the output generated by the RKM monitor. The basic metric categories
and the specific metrics you can choose in each category are listed in detail in
Table E-1 below. (Note: the "*" in the Metric column indicates these values are

available by default.)

Basic Categories of Metrics

Category Metric

Description

-sysmetrics [metrics] | * rtps

Number of RTPs in the system

* tasks

Number of tasks in each state

* memusage

Memory usage

* objects Number of WIND objects in
system
* cputime CPU usage (requires "spyLib")
network Network stack data pools
tcp TCP statistics
udp UDP statistics

-rtpmetrics [metrics] | * tasks

Number of tasks in the RTP

* memusage

Memory usage

-taskmetrics [metrics] | * stack Stack usage
* cputime CPU usage (requires "spyLib")
-rtps [rtps] <executable name> | Executable name, truncated to 63

characters

<rtpid>[-<rtpid>]

Data Monitor Process ID or range
of process IDs

-tasks [tasks] <task name>

Task name, truncated to 63
characters

358

Table E-1

Table E-2

E RKM Signal Definitions
E.2 Signal Descriptions

Basic Categories of Metrics (cont'd)

Category

Metric Description

<tid>[-<tid>] Task ID or range of task IDs

parent=<name> Task owned by RTP <name>

Table E-2 lists the metric options you can include in the command line to modify
the display characteristics of the RKM monitor as described.

Metrics Modifiers

Modifier Description

-byrtp Display metrics grouped by RTPs, and by tasks within
an RTP

-bytask Display metrics grouped by task

-bymetric Display metrics grouped by metric

-percent Display metrics as percents (instead of values)

-kbytes Display metrics as kbytes (instead of bytes)

-total Display metrics as cumulative totals

-spylib=[val]

Starts the "spylib" cpu utilization package (Spylib uses
the Aux clock to sample "val" times per second)

-auxclock

Use the aux clock for timing

-samples=[val]

Sample Frequency: number of samples per second

-seconds=[val]

Sample Frequency: seconds between each sample

-microseconds=[val]

Sample Frequency: microseconds between each sample

-index=[val]

Data Monitor index (port) value (0-127)

359

Wind River Workbench Data Monitor
User's Guide, 3.0

Table E-2 Metrics Modifiers (cont'd)

Modifier Description

-verbosity=[val] Data Monitor verbosity level (0-3)
-samplebuf=[val] Sample buffer size (in bytes)
-signalbuf=[val] Signal description buffer size (in bytes)
-probe=[val] Data Monitor scopeprobe daemon priority
-link=[val] Data Monitor scopelink daemon priority
-monitor=[val] RKM monitor task priority

Table E-3 shows the specific data items available for display in the Data Monitor
GUI corresponding to the metrics options entered on the command line. The items
for each metric appear as check boxes in the Signals Tree in the Data Monitor
Signals Bar. All the signals for each metric type can be displayed by checking the
node check box for that metric type, or each data item can be selected (or not
selected) individually (see Signals Bar, p.26).

Table E-3 Data Displayed for Selected Metrics

Metric Data Item Displayed
-sysmetrics [rtps] Total number of RTPs running
-sysmetrics [tasks] "tasks" = total number of tasks running

"ready" = total number of tasks in ready state

"suspended" = total number of tasks in suspended
state

"stopped"” = total number of tasks in stopped state

"pending" = total number of tasks in pending state

"delayed" = total number of tasks in delayed state

-sysmetrics [objects] "sem_binary" = total number of waits for binary
semaphores

"sem_mutex" = total number of waits for mutex
semaphores

360

E RKM Signal Definitions
E.2 Signal Descriptions

Table E-3 Data Displayed for Selected Metrics (cont'd)

Metric

Data Item Displayed

"sem_counting" = total number of waits for
counting semaphores

"sem_old" = total number of waits for old
semaphores

"sem_posix" = total number of waits for posix
semaphores

"queues” = number of accesses to system queues

"queues_posix" = number of accesses to posix
queues

"RTPs" = total number of RTPs running

"tasks" = total number of tasks running

"watchdogs" = number of watchdogs encountered

"file_handles" = number of file handles encountered

"page_pools" = number of page pools encountered

"page_managers" = number of page managers
encountered

"vmem_contexts" = number of vinem contexts
encountered

"timers_posix" = number of posix timers
encountered

"shared_data" = number of shared data accesses

-sysmetrics [cputime]
(&& spy enabled)

"tasks" = amount of CPU time used by tasks

"kernel" = amount of CPU time used by the kernel

"interrupts" = amount of time spent in interrupt state

"idle" = amount of time spent in idle state

361

Table E-3

Wind River Workbench Data Monitor

User's Guide, 3.0

Data Displayed for Selected Metrics (cont'd)

Metric

Data Item Displayed

-sysmetrics [memusage]

"RAM_alloced" = number of bytes of RAM allocated

"RAM_free" = number of bytes of RAM deallocated

"uVM_alloced" = number of bytes of micro-virtual
memory allocated

"uVM_free" = number of bytes of micro-virtual
memory deallocated

"kVM_reserved" = number of kbytes of virtual
memory reserved

-sysmetrics [network]

"data_buffers" = number of data buffer accesses
operationss

"data_free" = number of data buffer free operations

"data_drops" = number of times data has been
dropped

"data_waits" = number of times access to data has
had to wait

"data_drains" = number of times data has been
drained

"system_buffers" = number of system buffer
accesses

"system_free" = number of system buffer free
operations

"system_drops" =

"system_waits" = number of times operations have
had to wait for system resources

"system_drains" = number of times the system has
been drained

-sysmetrics [systcp]
(&& tcp_head)

"send_buffers" = number of bytes transmitted by
TCP send buffers

362

E RKM Signal Definitions
E.2 Signal Descriptions

Table E-3 Data Displayed for Selected Metrics (cont'd)

Examples

Metric Data Item Displayed

"recv_buffers" = number of bytes received by TCP
receive buffers

-sysmetrics [sysupd] "send_buffers" = number of bytes transmitted by
(&& upd_head) UPD send buffers

"recv_buffers" = number of bytes received by UPD
receive buffers

The following examples may be helpful in understanding how the elements of the
two tables above can be combined into command-line arguments input by the
RKM monitor utility.

* Monitor the default system, RTP, and task metrics, 1 sample every 10 seconds:
->RKM monitor -seconds-10

* Monitor just system, CPU usage, and task states, 1 sample per second:
->RKM_monitor -index-126 -samples-1 -system cputime tasks

* Monitor stack usage for every task created by the "testbed.vxe"RTP. 10 samples
per second:

->RKM monitor -index-125 -samples-10 -tasks parent-root -metrics
stack value=0=0x0

= Start an RKM monitor with index 113 to monitor only the system metric
tracking the number of tasks on the system, taking 10 samples every second:

->RKM monitor -index=113 -sysmetrics tasks -samples=10

* The following sequence of commands starts an RKM monitor with a non-
default port, shows that it is running, then stops it:

->RKM list

value = 0 = 0x0

->RKM monitor -index=120
value = 0 = 0x0

->RKM list

Monitor[120] is running
value = 0 = 0x0
->RKM_stop 125

value = 0 = 0x0

->RKM list

363

Wind River Workbench Data Monitor
User's Guide, 3.0

value = 0 = 0x0

364

Glossary

This Glossary contains definitions for some of the common terms used throughout
this manual.

active signals

These are registered signals that are set up on the host by the Signal Manager using
the API call ScopeActivateSignal(). They appear in the Signals Bar of each data-
display window. For further context, see Signals Definitions, p.19.

annotation

Text (any comment you want) entered at a specified point on a Plot or Plot XY
window grid area, using a popup menu. For detailed information, see Annotations,
p-77.

asynchronous sampling

Takes a snapshot of the variable values at regular intervals during program
execution. Asynchronous sampling is often desirable because it is easy to set up
and requires no changes to your application code. For detailed information, see
Sampling Signals, p.255.

Auto Fit

A toolbar button that, when selected, causes a Plot or Plot XY window to
automatically zoom to fit when a signal goes off the screen. See 3.2 Toolbars, p.40.

365

Wind River Workbench Data Monitor
User's Guide, 3.0

buffer time
The number of seconds of data to show in the plot of a Plot or Plot XY window
before refreshing. For detailed information, see 1.General View, p.55.

comm plugin
The plug-ins you use for communications between the host GUI and the target. For
further context, see 3.Comm Plug-ins View, p.58.

data-display window
The four primary Data Monitor windows that display collected data. They include
the Plot, Plot XY, Dump Plot, and Monitor windows (Chapters 7, 8, 9, and 10
respectively).

Data Monitor API

The real-time data-collection and signal-management module of Wind River Data
Monitor that runs on the target platform. It collects the time history of variables in
your real-time program, and is described in detail in 16. API Introduction.
derived signal
A new signal you create whose value is computed by mathematical operations on
other, existing signals. For detailed information, see 3.3.10 Derived Signals, p.52.
display accuracy

Controls the accuracy of the grid line markers by setting the number of places to
the right of the decimal point in the markers, in Plot and Plot XY windows. For
detailed information, see Properties Tab View, p.118 and Default Plot Properties Panel,
p-135, as well as the corresponding topics in each of the other data-display
windows.

downloadable kernel module (DKM)

Stored VxWorks projects used to manage and build modules that you want to exist
in the kernel space. For further context, see On a VxWorks Target, p.200.

ellipsis ("...")

On all menu items, an ellipsis indicates that the option opens another window that
requires further response or interaction before any action takes place.

366

event

F Glossary

An event is a specific type of signal. It appears under the Event tree branch in the
Signals Bar for a target; this branch contains a list of all the events that were
thrown by the target program. The values collected when a certain event is thrown
are treated like a sample and the samples are joined by lines to make signals. For
further context, see 7.5 Displaying Events, p.130.

Events API

A set of low-overhead logging routines that can be useful to monitor real-time
systems with minimal effect on the timing behavior. For detailed information, see
16.5 Data Monitor Events API, p.260.

graphical user interface (GUI)

The collection of computer programs and the media-oriented screens, windows,
dialog boxes, menus, and buttons they produce that provide for enhanced human-
computer interactions with no, or minimal, keyboard input.

Host
The computer on which Data Monitor is running, which receives and processes the
allocation record data collected from the target agent machine.

history limit
A parameter that sets how many lines of historical data to maintain and display in
a Dump or Mini-Dump window.

index

Distinguishes the different instances of ScopeProbe daemons running on the same
target. Up to 128 different instances may be started on a target, so the index can
range from 0 to 127. For more information, see Scope Index, p.249.

installed signal

Data Monitor signals that are registered and activated (see Signals Definitions,
p-19). For further context, see Usage Notes, p.18.

live signal

Live signals are those that are being displayed in a data-display window as they
are being collected and analyzed. This is in contrast to signals displayed from a

367

marker

Wind River Workbench Data Monitor
User's Guide, 3.0

snapshot, which are now static and can be saved in a file. For further context, see
The Snapshot Process, p.186.

Shows the coordinates of a point on a plotting grid using a preset, or otherwise
predetermined graphic symbol. For more information, see 3.6 Screen Operations,
p.76 and Events Collected as Markers, p.131.

measurement

A line on the plotting grid that measures the distance between any two points. For
more information, see On-grid Measurements, p.78.

Mini-Dump window

A scaled down version of the Dump Plot window (described in 9. The Dump Plot
Window), listing the value of each signal at each sampling, letting you see a running
history of selected signal values scrolling through the window with time. For more
information, see Mini-Dump Window, p.28.

Mini-Monitor window

A scaled down version of the Monitor window (described in 10. The Monitor
Window), letting you see the current value of, and modify, target data in a static but
dynamically updated list format. For more information, see Mini-Monitor Window,
p-28.

preference

process

Values you can select to change the physical window appearance properties for the
current data-display window being viewed, or to change properties for the
individual signal itself (as contrasted with preferences, described above). These
properties are described in each of the respective data-display windows where
they are configured. For example Plot window appearance properties, see
Properties Tab View, p.118, and for signal properties, see 7.3 Signal Properties Dialog
Box, p.123, or the corresponding topics in Plot XY window (for Dump Plot and
Monitor windows, only the Properties tab view is available, as there is no plotted
signal). Properties values apply only to the window in which they are set.

Beyond the common usage meaning a sequence of steps to accomplish something,
the term is also used to mean the same thing for a Linux program as task means

368

F Glossary

for a VxWorks program, that is, a running program, or a subdivision of a running
program.

properties

Values you can select in a dialog box or tab view that change the physical
appearance properties for a data-display window (as contrasted with preference,
described above). These properties are described in each of the respective data-
display windows where they are configured, for example, 7.6 Setting New Plot
Window Preferences, p.134 for a Plot window, or the corresponding topic in any of
the other three data-display windows.

registered signal

A signal on which you have used the API call ScopeRegisterSignal() to let Data
Monitor know it exists (the first step in creating an active signal - see Signals
Definitions, p.19). For further context, see Usage Notes, p.18.

remote kernel metrics (RKM)

Operating system signals (metrics) that are dynamically collected by the
RKM_monitor (or rkm_monitor_linux) target agent, and displayed in real-time in

the Data Monitor GUI. For further context, see 12. Displaying Remote Kernel Metrics.

RKM monitor

A program you must build in VxWorks, using the tools and procedures described
in 12. Displaying Remote Kernel Metrics, and containing directives to display some
specific operating system metrics of your choice when run from the Data Monitor
GUL

routine

A self-contained code module that can accept input, execute, and produce output;
used interchangeably with function.

RTP (VxWorks Only)

A VxWorks real-time process, running in a protected environment.

scope index

An integer value, ranging from 0 to 127, supplied by each target and used as an
internal connection identifier by Data Monitor, allowing simultaneous connection

369

Wind River Workbench Data Monitor
User's Guide, 3.0

with multiple (up to 128) targets. This parameter is described in 2.3 Starting Data
Monitor, p.10.

signal

A variable from your target program as installed and viewable in the Data Monitor
GUI (see Usage Notes, p.18). In Data Monitor, you give signals names by which you
want to track them in the GUIL

signal installation

The process of naming the variables in your program you want to view, and
preparing for viewing in the Data Monitor GUI. For more information, see
Installing Signals, p.84.

Signal Manager

The Data Monitor utility that manages the installation of signals from your target
program that you want to view in the Data Monitor GUI The process is described
in detail in 4. Using the Signal Manager.

signal pair

Signal selection for Plot XY windows differs from signal selection for the other
types of data-display windows, because each plotted line requires two signals.
These signal pairs are created using the XY Signals dialog box, as described in
8.2 Creating XY Signal Pairs, p.140.

Signals Bar

A sub-window in each of the four data-display windows, with tab views in which
you can select signals for viewing, and modify certain parameters. They are
described in detail in each data-display window chapter.

snap
The action in which your drawing line jumps precisely to the data line in a Plot
(only) window when you release the mouse button after dragging it, during a
measurement operation. The option, and the maximum snap distance can be
selected as described in 7.6 Setting New Plot Window Preferences, p.134.
snapshot

An selected operation that saves all the collected and analyzed data for all active
signals, and for all connected targets, since the start of data collection in this Data

370

F Glossary

Monitor session. You can display snapshots in the Plot and Plot XY windows,
along with live data and other snapshots. They are described in detail in
11. Working with Snapshots.

strip chart

This option changes the behavior of the graph area of a Plot window so that it
presents a continuous scrolling plot, instead of repainting the plot every 20
seconds. This feature is described in detail in Strip Chart, p.122.

synchronous sampling

A task run on the target, in response to selecting Spawn sampler task in the Data
Monitor Setup Options dialog box, that collects data for any signals that you
install. This task repeatedly calls ScopeCollectSignals(), based on its own timing,
so0 it is asynchronous with the running of your application. For further context, see
Automatic Loading and Running, p.213.

timestamp

trigger

The date/time recorded on the collection of a signal or event. Timestamps are
discussed in 7.5 Displaying Events, p.130, 8.4 Signal Properties Dialog Box, p.154,
9.2 Dump Plot Window Tour, p.164, 11.2 Utilizing Snapshots, p.185, and Signals vs.
Events, p.262

A facility in Data Monitor that provides control over when and how often samples
are collected. Collection and plotting of samples begins when the trigger’s Start
condition is met (that is when the trigger fires), and continues to be plotted on the
GUI until the Stop condition occurs. For further context, see 5. Triggering.

Trace Log

Events are recorded in a log file, which you can display in the Trace Log window,
as well as save to disk. This file is described in 3.3.11 Trace Log Window, p.53.

verbosity

Controls the type and number of messages generated by the target server
connection process. Using the default value of 0 generates only error messages.
Specifying a larger value (in the range of 1-3) generates an increasingly greater
variety and volume of messages. For specific information on setting verbosity
value, see VxWorks Data Monitor Setup Options Dialog Box, p.12.

371

Wind River Workbench Data Monitor
User's Guide, 3.0

372

A

accuracy
Dump Plot windows 172
Monitor Window 183

Plot Windows 119, 135, 153, 161, 170, 180

Plot windows 121
active signals
creating 82
defined 19, 232
examples of activating 251
installing 250
settingup 49, 81
adding markers 76

agent, collection, architectural description 2

annotations
adding in Plot Windows 77
API, how to use 267,295
architecture 2
ASCII snapshots 191
aspect lock, in Plot XY window 148, 154
asynchronous sampling
described 255
example 256
task 214
auxiliary clock 215
Axis Properties dialog box 43

Index

browse button 366
browse button, snapshot dialog 192
buffers, snapshots 258
building
header files 212, 226
include files 212, 226

C

calculating offsets 252
capabilities 1,9

changing base file name 192
collecting signals 255

collection agent, architectural description 2

colors

alt method to change trace lines 125, 156

dialog box 124

in Legend tab view 117,150

in Legend window 27

in plot windows 151

in Signal Properties dialog 124, 156
in Signals tab view 116, 150

on left axis (Has Ruler option) 127, 159

preferences 56
selecting trace line colors 110, 144
signal trace lines 107

373

communications plug-ins, preferences
configuration files

Wind River Workbench Data Monitor
User's Guide, 3.0

table coordinated with Signals Tree 169
used in snapshots 136, 162
58

loading from disk 46
saving to disk 46

configuring Data Monitor 214
connection

problems 221
status 33
to targets 45

context sensitive menu 71
creating

derived signals 98
XY signal pairs 140

cycle numbering 192

daemons

manually starting 218
roll of, in buffer overflow 258
task descriptions 5

collection, status of 87
display windows, introduction 19

Data Monitor

API reference section 267,295
architecture 2

exiting 69

features 1,9

host-side GUI 81, 85

icons on Workbench 11

main windows 19

reference information 267, 295
running 10

Setup Options dialog box 45
starting automatically 11
starting manually 14

target application 5

target communication 5
VxWorks API description 3

deactivating signals 254
deleting markers

76

374

demo program, starting with ScopeDemo 32
demonstration target program, running 30
derived signals
creating 98
dialog box 41, 52, 98
mathematical operators
troubleshooting 105
wizard 52,98-104
DFW
in Linux architecture 3,4
in VxWorks architecture 2

104

dialog box
Axis Properties 43
Colors 124

Data Monitor Setup Options 45
Derived Signals 52
derived Signals 41
New Target Connection 45
Open 46, 60, 61
Preferences 41,53,110, 134, 144
Print 112, 146
Save Config 46
Signal Properties
154
Triggering 50
XY Signals 41, 51, 143
disconnecting targets 83
display accuracy
Dump Plot windows
Monitor Window 183
Plot Windows 119, 135, 153, 161, 170, 180
Plot windows 121
displaying events 130
docking toolbars 40
downsampling 88, 92, 258
Dump Plot window
description 24, 164
display accuracy 172
history limit 172
preferences 61
resolution 172
table size 172

73,110, 123, 144, 150, 152,

172

Index

E file name extensions 192
functions

ellipsis button 366 see also routines

environment variables

PATH 18
error log 17 G
events
displayed as markers 132 graph coordinates 76
displayed as messages 133 graphical user interface (GUI)
displayed in the Signals Bar 130, 367 defined 367
displaying 130 host-side 81, 85
ScopeEventsCollect 130, 261 grid line spacing 120, 135, 153, 161, 171

ScopeEventsMessage 130, 261
vs. signals 262
Events API H
described 260
in the demonstration program 30
settingup 260
using 261
examples
activation 251
asynchronous signal sampling 256
events displaying 131
installing signals 253
MATLAB 347-351

header files 212, 226
hierarchical naming of signals 251
history limit 172
host
defined 367
host-side GUI 81, 85

MATRIXx 351355 |

registration 251

registration with offset 253 include files 212, 226

ScopeCollectSignals() 256, 257 initialization

scopedemo.c 334-346 Data Monitor 18

ScopelnstallSignal() 253 installed signals

signal installation 36 defined 19, 233

synchronous signal sampling 257 using all by default 49

vxdemo.c 324-334 installing signals

Workbench target script 220 Data Monitor API 249
exiting Data Monitor 69 examples 253

first 82

from command shell 36
F in one step 250
organizing signal names 243

features 1,6,9 Signal Manager window 84

overview 53 instrumenting
preferences 53 alternative to 241
code 241

triggering, overview 50

File menu item 44 introduction 1,9

375

Wind River Workbench Data Monitor
User's Guide, 3.0

K View 70
Window 70
Mini-Dump window
default properties 136
description 28
Mini-Monitor window

keep window on top 70

L default properties 137
description 28

Legend tab view 117, 150 minimum grid line spacing 120, 135, 153, 161, 171

libraries modifying signals 181
libscope.so 218 Monitor Window
libscopewtxonly.so 218 description 25,174
libutilsip.so 218 display accuracy 183
libutilsnoip.so 218 preferences 65, 182
vxdemo.so 218 resolution 183

Link Daemon writing data to target 181
buffer overflows 258 multiple target connections
task description 5 feature, described 7

live buffer 259 unpredictable results with 209

loading with RKMs 203, 205, 208, 209

automatic 213

configuration files 46

manual 217 N
snapshots 193

I
08 file 53 naming of signals 251

: New Target Connection dialog box 45
window

see Trace Log

o)

offsets, calculating 252
on-grid menu 71

M

markers 76

MATLAB online documentation reference signals 254
example 347-351 Open dialog box 46, 60, 61
snapshots 191 opening snapshots 193

MATRIXx options, triggering 92
example 351-355 overflow prevention 258

snapshots 191
maximum snap distance 121, 136, 154

measurements 121, 122, 136, 154, 181 P

menu
descriptions 43 panning in Plot Windows 77
File 44 PATH environment variable 18
Plot 69 Pause 167,177,178

376

Index

Plot menu 69 Plot window, Signal Properties dialog box 124
plot plug-ins, preferences 60 Plot window, Signals tab view 117
Plot Window Plot XY window, Signal Properties dialog 154

adding annotations 77 Plot XY window, Signals tab view 150

adding markers 76 to disconnect GUI from the target 84

description 20, 108 preferences

display accuracy 119, 135, 153, 161, 170, 180 colors 56

displaying signal values 109 comm plug-ins 58

Legend tab view 117,150 dump plot window 61

max snap distance 121, 136, 154 feature overview 53

min grid line spacing 120, 135, 153, 161, 171 Monitor Window 182

panning 77 monitor window 65

pop-up menu 71 plot plug-ins 60

preferences 63,134,171, 182 Plot Window 134,171, 182

previous zoom 71,115, 148 plot window 63

resolution 120, 121, 135, 153, 154, 161, 170 Plot XY Window 67, 160

selecting a signal 110 scope.ini file 263

snap measure to signals 121, 136, 154 Preferences dialog box 41, 53, 110, 134, 144

snapshots 136, 162 preventing overflows 258

status bar 78 previous zoom

taking on-grid measurements 78 in Plot Windows 71, 115, 148

toolbar 41 in Plot XY Windows 71, 115, 148

X offset 135, 161 Print dialog box 112, 146

Xrange 135,161 Probe Daemon, task description 5

Y offset 119,135, 153, 161 processsampler 241

Y range 135, 161 Properties tab 27

Y scale 119, 153
zooming 22,76
Plot window R
display accuracy 121
resolution 121

snap measure to signals 122,181 Real-time Process

strip chart 122 see .RTP.
Plot XY Window registering signals 250
colors 151 registration

description 22,141 examples 251

references 67, 160 examples with offset 253
previous Joom ’ 71,115, 148 remote kernel metrics
P T building a monitor program for Linux 203

pop-up menus o X
deleting snapshots 196 bmldmg a monitor program for VxWorks 200
introduction 199

description, Legend tab view 74 port number 203

3:22;?222’ gg:tgrzge 7713 running multiple RKM monitors 203
p ! troubleshooting 208

description, Signals Tree 73 ,
Plot window, Legend tab view 118, 151 un.predlctable results 209
using 206

377

User's Guide, 3.0

viewing on a Linux target 207
viewing on a VxWorks target 206
removing
markers 76
multiple signals 254
signals 254
resolution
Dump Plot window 172
Monitor Windows 183
Plot Windows 120, 121, 135, 153, 154, 161, 170
Plot windows 121
RKM
see remote kernel metrics
routines
Data Monitor API library overview 248
defined 369
triggering 259
RTP
architecture including RTPs 2,3
connection type, for instrumenting 13, 18
defined 369
installing an RTP signal 234
removing an installed RTP signal 242
running
Data Monitor 10
demonstration target program 30
with a Linux target 225
with a VxWorks target 211

S

sampling
asynchronous signals 255
downsampling 88, 92, 258
functions 259
rate 255
ScopeChangeSampleRate() 255
signals 255
synchronous signals 257
Save Config dialog box 46
save.ssc, workspace state file 17
saving
configuration files 46
snapshots 45

378

Wind River Workbench Data Monitor

scope index
and event buffers 249
described 249
example code 251
Legend tab view 118, 151
limits 250
Signal Manager window 84
triggering example 94
scope.ini file 263
ScopeActivateMultipleSignal() 255
ScopeActivateSignal() 250, 252, 255
ScopeChangeSampleRate() 88, 92, 255, 258
ScopeCollectSignals() 88,92,222,223,251,254, 255,
256, 257, 258, 259
ScopeDeactivateMultipleSignals() 255
ScopeDeactivateSignal() 254, 255
ScopeDemo function, starting with 32
scopedemo.c example 334-346
scopelndex 268, 296
ScopelnitServer() 222
ScopelnstallArray() 255
ScopelnstallSignal() 250, 255
ScopelnstallSignalWithOffset() 250, 253, 255
ScopePrintVersion() 222
ScopeRegisterArray() 255
ScopeRegisterSignal() 250, 251, 254
ScopeRegisterSignalWithOffset() 250, 252, 254
ScopeRemoveMultipleSignals() 254, 255
ScopeRemoveSignal() 254, 255
ScopeSamplerTaskCreate() 219
ScopeShowActiveSignals() 255
ScopeShowSignals() 255
screen operations 144
selected signals
defined 19,233
in Dump Plot window 24, 165
in Legend Bar 27,110, 144
in Monitor window 25, 174
in Plot window 20
in Plot XY window 22
in Signal Manager 83
in Snapshot window 112, 136, 146, 162, 166,
176, 186
in state info of data-display windows 48
verifying target connection 217

setting up
active signals 49, 81
APIs 260

setup options 214

show snapshot 167

signal installation
organizing signal names 243
Signal Manager window 84

Signal Manager 49, 81

Signal Properties dialog box 73, 110, 123, 144, 150,

152,154

signals
activating 82
activation 49, 81, 250, 252, 255
activation examples 251
collection 88, 92, 254, 255, 258
deactivate 255
deactivation 254
downsampling 88, 92, 258
install array 255
installation 82,249, 255
installation with offset 253, 255
installing 36, 249
multiple activation 255
multiple deactivation 255
naming 251
online documentation reference 254
pairs 140
register array 255
registration 250, 251, 254
registration with offset 250, 252, 254
removal 255
remove multiple signals 255
removing 254
removing multiple 254
sampling 255
show active 255
show signals 255
vs. events 262
writing to target 181

Signals Bar
description 26
events displayed in 367
menu item 114, 148, 167,177
using 82

Index

Signals tab 27
signals trees
described 27
using 82
slope trigger parameter 88, 89
snap distance 121, 136, 154
snapping measures to signals 121, 122, 136, 154,
181
snapshots
ASCII formatting 191
automating 189
behavior 136, 162
buffering 258
building file names 193
changing base file name 192
colors used 136, 162
cycle numbering 192
description of process 186
file name extensions 45, 192
format 191
loading 45, 193
MATLAB formatting 191
MATRIXx formatting 191
preferences 136, 162
saving to disk 45, 187, 191
taking 136, 162, 187
time stamping 192
triggering 93
starting
demo program, type "ScopeDemo" 32
trigger 91
starting the Data Monitor GUI
automatically 11
manually 14
starvation 221,223
status bar
control of viewing 113, 147, 167, 177
Plot Windows 78
used to open Log window 53
stop
trigger 91
strip chart mode, Plot window 112,122
synchronous sampling 257

379

User's Guide, 3.0

T

tabs
Properties 27
Signals 27
taking on-grid measurements
demonstration program 36
in Plot Windows 78
target
application 5
code, instrumenting 241
connecting to 45
disconnecting 83
Linux 225
names 16
processsampler 241
programming language note 5
shell script 220
writing data to 181
terminology 18
time stamps
feature of data storage 6
in definition of "Timing" 263
in Dump Plot window 24, 164
in MATLAB example 350
in MATRIXx example 355
in Snapshot window 192, 195
in Varplot-m File example 349
tLinkDaemon task
connection failure 221
connection, but no data 222

verifying target initialization 217

toolbar
button descriptions 40, 41
captions 115, 148
docking 40
Main 114, 147,167,177
Plot Window 41, 113, 168,178
Plots 114,148,168,178
toolbars
Main 115, 148
Strip Chart 115
ToolTips 40
tProbeDaemon task
connection failure 221

380

Wind River Workbench Data Monitor

verifying target initialization 217
tracelog 53
Trace Log window 53
trigger
configuring 85
feature, full description 85
functions 259
overview 50
parameters 87, 88
rearming 89, 94, 95
snapshot 89, 94
status 87
tips 258
triggering
options 92
Triggering dialog box 50
triggers
rearming 95
snapshot 92,95
start parameters 91
status 91
stop parameters 91
troubleshooting
connection failures 221
derived signals 105
empty signals tree 83
loading errors 220
multiple target connections 209
no data appears 222,259
no response from target 221
overflows 258

U

using
Events APIs 261
installed signals by default 49
log file 53
Signals Bar 82
signals trees 82

Index

\'/ Y

verbosity 16 Y
defined 371 offset 119, 135, 153, 161
Trace Log window, effecton 53 range 135,161
Warning 13 scale 119,153

View menu 70
vxdemo.c example 324-334

VxWorks targets 3 Z
zoom to fit
w in Plot Windows 114
in Plot XY Windows 147
WARNING zooming in Plot Windows 22, 76

target verbosity 13
Window menu 70
wizard, derived signals 52
Workbench icons 11
Workbench targets
automatic loading and running 213
example script 220
manual loading and running 217
setup options 214
writeback
feature described 181
to write data to target 181
writing to target 181
WTX
protocol 5,17
target server 17

X

X

offset 135,161

range 135,161

XY Signals
creating XY signal pairs 140
dialog box 41, 51, 143

381

	Wind River Workbench Data Monitor User's Guide, 3.0
	Contents
	1 Introduction
	1.1 Introduction
	Data Monitor Overview

	1.2 Architectural Summary
	VxWorks Targets
	Linux Targets
	The Host GUI
	Host-target Communication

	1.3 Features

	2 Getting Started
	2.1 Introduction
	2.2 Requirements
	2.3 Starting Data Monitor
	Initializing the Target Server (VxWorks Only)
	Starting Automatically
	Starting Manually
	Usage Notes

	2.4 The Data Monitor GUI
	Plot Window
	Plot XY Window
	Dump Plot Window
	Monitor Window
	Auxiliary Data-Display Windows
	Common Window Elements

	2.5 Testing Your Installation
	On a VxWorks Target
	On a Linux Target
	Viewing the Signals
	Exploring the Demo Capabilities
	Automatic Signal Management (VxWorks Only)

	3 Data Monitor Features
	3.1 Introduction
	3.2 Toolbars
	Main Toolbar
	Plots Toolbar
	Plot Window Toolbar

	3.3 File Menu Item
	3.3.1 Connect to Target
	3.3.2 Load Snapshot
	3.3.3 Save Snapshot
	3.3.4 Load Config
	3.3.5 Save Config
	3.3.6 Plots
	3.3.7 Signal Manager
	3.3.8 Triggering
	3.3.9 XY Signals
	3.3.10 Derived Signals
	3.3.11 Trace Log Window
	3.3.12 Preferences
	3.3.13 Close Window
	3.3.14 Exit Data Monitor

	3.4 Menu Bar
	Plot Menu Item (Windows Hosts Only)
	View Menu Item
	Window Menu Item (Windows Hosts Only)
	Help

	3.5 Pop-up Menus
	On-Grid
	On-Trace (Windows Hosts Only)
	Signals Tree
	Legend

	3.6 Screen Operations
	Zooming
	Markers
	Annotations
	Panning
	On-grid Measurements

	3.7 Status Bar

	4 Using the Signal Manager
	4.1 Introduction
	4.2 Using the Signal Manager Window
	Working With Signal Trees
	Installing Signals
	Disconnecting the Target

	5 Triggering
	5.1 Introduction
	5.2 Configuring a Trigger
	Triggering Dialog Box - Windows Host
	Triggering Dialog Box - UNIX Host

	5.3 Setting a Trigger
	The Chain of Events
	Trying it Yourself

	6 Derived Signals
	6.1 Introduction
	6.2 Creating Derived Signals
	Mathematical Operations
	Troubleshooting Derived Signals

	7 The Plot Window
	7.1 Introduction
	7.2 Plot Window Tour
	Selecting Signals
	Popup Menu
	Screen Operations
	Toolbar
	Menu Bar
	Signals Bar
	Legend Window (UNIX Hosts Only)
	Strip Chart

	7.3 Signal Properties Dialog Box
	7.4 Axis Properties Dialog Box (Windows Hosts Only)
	7.5 Displaying Events
	Events Collected as Signals
	Events Collected as Markers
	Events Collected as Messages

	7.6 Setting New Plot Window Preferences

	8 The Plot XY Window
	8.1 Introduction
	8.2 Creating XY Signal Pairs
	Creating a Signal Pair
	Deleting a Signal Pair
	Modifying a Signal Pair

	8.3 Plot XY Window Tour
	Displaying Signal Parameters
	Popup Menu
	Screen Operations
	Toolbar
	Menu Bar
	Signals Bar

	8.4 Signal Properties Dialog Box
	8.5 Setting New Plot XY Window Preferences

	9 The Dump Plot Window
	9.1 Introduction
	9.2 Dump Plot Window Tour
	Displaying Signal Parameters
	Toolbar
	Menu Bar
	Signals Bar

	9.3 Setting New Dump Plot Window Preferences

	10 The Monitor Window
	10.1 Introduction
	10.2 Monitor Window Tour
	Displaying Signal Parameters
	Toolbar
	Menu Bar
	Signals Bar

	10.3 Writing Data to the Target
	Using Writeback

	10.4 Setting New Monitor Window Preferences

	11 Working with Snapshots
	11.1 Introduction
	11.2 Utilizing Snapshots
	Taking Snapshots
	The Snapshot Process
	Saving Snapshots
	Loading Snapshots
	Exporting Snapshots in MATLAB and MATRIXX
	Deleting Snapshots

	12 Displaying Remote Kernel Metrics
	12.1 Introduction
	12.2 Building an RKM Monitor Program
	On a VxWorks Target
	On a Linux Target
	Running the RKM Monitor From the Command Line

	12.3 Viewing RKMs with Data Monitor
	On a VxWorks Target
	On a Linux Target

	12.4 Troubleshooting
	On a VxWorks Target
	On All Targets

	13 Using a VxWorks Target
	13.1 Introduction
	13.2 ScopeProbe Requirements
	13.3 VxWorks Targets
	Building
	Automatic Loading and Running
	Manual Loading and Running
	Starting the Data Monitor GUI Manually

	13.4 Troubleshooting

	14 Using a Linux Target
	14.1 Introduction
	14.2 Building Your Application
	Adding Include Files
	Instrumenting Target Code
	Adding Libraries
	Compiling Target Code
	Testing Your Application

	15 Installing Signals
	15.1 Introduction
	15.2 Using the Signal Installation Dialog Box
	Data Monitor Signal Installation Dialog Box

	15.3 Installing With the Data Monitor API
	15.4 Code Instrumentation Alternative
	15.5 Removing Individual Signals
	15.6 Process Notes
	Variable Expressions vs. Signal Names
	Hierarchical Signal Names
	Classes and Structures

	16 API Introduction
	16.1 Introduction
	16.2 Using the Data Monitor API
	Initializing the Target Server (VxWorks Only)
	Registering and Activating Signals
	Setting Sample Rate
	Sampling Signals

	16.3 Understanding Overflows
	Overflow Behavior
	Avoiding Overflows
	Notes and Hints

	16.4 Triggering and Sampling Functions
	16.5 Data Monitor Events API
	Setting Up
	Using
	Signals vs. Events

	16.6 scope.ini File (VxWorks Only)

	A API Reference: VxWorks
	B API Reference: Linux
	C Data Monitor Demo Program
	C.1 Introduction
	C.2 Source Code for VxWorks
	VxWorks vxdemo.c Program
	Makefile for vxdemo.c

	C.3 Source Code for Linux
	Linux scopedemo.c Program
	Makefile for scopedemo.c

	D MATLAB and MATRIXX Examples
	D.1 Introduction
	D.2 MATLAB Example
	D.3 MATRIXX Example

	E RKM Signal Definitions
	E.1 Introduction
	E.2 Signal Descriptions
	Examples

	F Glossary
	Index

