
Wind River
USB for

VxWorks 6

PROGRAMMER'S GUIDE

®

2.4

®

Wind River USB for VxWorks 6 Programmer's Guide, 2.4

Copyright © 2007 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, Tornado, and VxWorks are registered trademarks of Wind River Systems, Inc.
The Wind River logo is a trademark of Wind River Systems, Inc. Any third-party
trademarks referenced are the property of their respective owners. For further information
regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDir/product_name/3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:

http://www.windriver.com

For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

Wind River USB for VxWorks 6 Programmer's Guide, 2.4
15 Nov 07
Part #: DOC-16127-ZD-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

iii

Contents

1 Overview ... 1

1.1 Introduction ... 1

1.2 Technology Overview ... 2

1.3 USB Component Overview .. 2

1.3.1 USB Host Stack ... 3

Host Controller Drivers ... 3
USBD and Class Drivers ... 4

1.3.2 USB Peripheral Stack ... 4

1.3.3 Architecture and BSP Support ... 6

1.3.4 SMP Ready .. 6

1.4 Additional Documentation .. 7

1.4.1 USB Specification Information ... 7

1.4.2 Peripheral Stack Information .. 8

1.4.3 Configuration Information ... 8

1.4.4 Latest Release Information ... 9

2 Configuring and Building Wind River USB .. 11

2.1 Introduction .. 11

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

iv

2.2 Configuring and Building Wind River USB ... 11

2.3 Configuring VxWorks with Wind River USB .. 12

2.3.1 USB Host Stack Components and Parameters 12

Parameters and Default Values .. 14
Required Components ... 16
Optional Components ... 16
Component Dependencies .. 18
Managing Dependencies ... 18

2.3.2 USB Peripheral Stack Components and Parameters 20

Required Components .. 21
Optional Components ... 21
USBTool Components and Parameters ... 21

2.4 Building VxWorks with Wind River USB ... 22

2.5 Initializing USB Hardware ... 22

2.5.1 Initializing the USB Host Stack Hardware ... 22

Startup Routines ... 23
USBD Initialization .. 23
Attaching the EHCI, OHCI, and UHCI Host Controllers 23
Initialization Dependencies .. 24
Keyboard, Mouse, Printer, and Speaker Initialization 25
Mass Storage Class Device Initialization .. 25
SCSI-6 Commands .. 26
Communication Class Device Initialization ... 26
USB Audio Demo Initialization ... 26

2.5.2 Initializing the USB Peripheral Stack Hardware 27

3 USB Host Drivers ... 29

3.1 Introduction ... 29

3.2 Architecture Overview ... 29

3.2.1 Host Controller Drivers and USBD ... 31

3.2.2 Class Drivers ... 32

3.2.3 Host Module Roadmap ... 32

 Contents

v

3.3 The USB Host Driver ... 34

3.3.1 USBD 2.0 .. 34

Initializing the USBD ... 34
Order of Initialization .. 35
Bus Tasks ... 36
Registering Client Modules .. 36
Standard Request Interfaces ... 39
Data Transfer Interfaces .. 40

3.3.2 USBD 1.1 Compatibility .. 42

Registering Client Modules .. 43
Client Callback Tasks ... 43
Dynamic Attachment Registration .. 44
Device Configuration ... 48
Pipe Creation and Deletion ... 50
Data Flow .. 51

3.4 Host Controller Drivers ... 54

3.4.1 Registering the Host Controller Driver ... 54

3.4.2 USBHST_HC_DRIVER Structure .. 54

3.4.3 Host Controller Driver Interfaces .. 56

USBHST_HC_DRIVER Structure .. 56
USBHST_USBD_TO_HCD_FUNCTION_LIST Structure 57

3.4.4 Registering a Bus for the Host Controller ... 59

3.4.5 Deregistering the Bus for the Host Controller 59

3.4.6 Deregistering the Host Controller Driver ... 59

3.4.7 HCD Error Reporting Conventions ... 59

3.4.8 Root Hub Emulation .. 60

4 USB Class Drivers .. 61

4.1 Introduction ... 61

4.2 Hub Class Driver .. 62

4.2.1 Registering the Hub Class Driver .. 62

4.2.2 Connecting a Device to a Hub .. 64

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

vi

4.2.3 Removing a Device From a Hub .. 64

4.2.4 Deregistering the Hub Class Driver .. 65

4.3 Keyboard Driver ... 65

4.3.1 SIO Driver Model ... 66

4.3.2 Initializing the Keyboard Class Driver ... 66

4.3.3 Registering the Keyboard Class Driver ... 67

4.3.4 Dynamic Device Attachment .. 68

4.3.5 ioctl Routines ... 71

4.3.6 Data Flow .. 71

4.3.7 Typematic Repeat ... 72

4.3.8 Uninitializing the Keyboard Class Driver .. 72

4.4 Mouse Driver ... 73

4.4.1 SIO Driver Model ... 73

4.4.2 Initializing the Mouse Class Driver ... 73

4.4.3 Registering the Mouse Class Driver .. 74

4.4.4 Dynamic Device Attachment .. 75

4.4.5 ioctl Routines ... 76

4.4.6 Data Flow .. 76

4.4.7 Uninitializing the Mouse Class Driver .. 76

4.5 Printer Driver .. 77

4.5.1 SIO Driver Model ... 77

4.5.2 Initializing the Printer Driver ... 77

4.5.3 Registering the Printer Driver .. 78

4.5.4 Dynamic Device Attachment .. 79

4.5.5 ioctl Routines ... 80

4.5.6 Data Flow .. 80

4.6 Audio Driver ... 80

 Contents

vii

4.6.1 SEQ_DEV Driver Model ... 81

4.6.2 Initializing the Audio Driver .. 81

4.6.3 Registering the Audio Driver ... 82

4.6.4 Dynamic Device Attachment .. 83

4.6.5 Recognizing and Handling USB Speakers ... 84

Dynamic Attachment and Removal of Speakers 84
Data Flow .. 85

4.6.6 Recognizing and Handling USB Microphones 85

Data Flow .. 86

4.7 Mass Storage Class Driver .. 86

4.7.1 Extended Block Device Driver Model ... 88

4.7.2 API Routines ... 90

4.7.3 Dynamic Attachment ... 90

4.7.4 Initialization .. 91

4.7.5 Data Flow .. 91

4.8 Communication Class Drivers ... 92

4.8.1 Ethernet Networking Control Model Driver 92

4.8.2 Enhanced Network Driver Model ... 94

4.8.3 Dynamic Attachment ... 94

4.8.4 Initialization .. 95

4.8.5 Interrupt Behavior .. 95

4.8.6 ioctl Routines .. 96

4.8.7 Data Flow .. 96

5 USB Peripheral Stack Target Layer Overview 97

5.1 Introduction ... 97

5.2 Initializing the Target Layer .. 99

5.3 Attaching and Detaching a TCD ... 99

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

viii

5.3.1 TCD-Defined Parameters .. 100

5.3.2 Detaching a TCD .. 101

5.3.3 Target Application Callback Table .. 102

5.4 Enabling and Disabling the TCD .. 104

5.5 Implementing Target Application Callback Routines 106

5.5.1 Callback and Target Channel Parameters .. 106

5.5.2 Control Pipe Request Callbacks ... 106

5.5.3 mngmtFunc() Callback ... 107

Management Code Parameter .. 107
Context Value Parameter .. 108
Management Event Codes .. 108

5.5.4 Clear and Set Callbacks ... 110

Request Type Parameter ... 111
Feature Parameter .. 112
Index Parameter ... 113

5.5.5 configurationGet() Callback .. 113

5.5.6 configurationSet() Callback ... 114

5.5.7 descriptorGet() and descriptorSet() Callbacks 114

Request Type Parameter ... 115
Descriptor Type and Index Parameters .. 116
Language ID Parameter ... 116
Length and Buffer Parameters .. 116

5.5.8 interfaceGet() Callback ... 117

5.5.9 interfaceSet() Callback .. 117

5.5.10 statusGet() Callback .. 118

5.5.11 addressSet() Callback .. 119

5.5.12 synchFrameGet() Callback ... 119

5.5.13 vendorSpecific() Callback .. 120

5.6 Pipe-Specific Requests .. 121

5.6.1 Creating and Destroying the Pipes .. 121

 Contents

ix

Endpoint Descriptor .. 122
usbTargPipeDestroy() ... 124

5.6.2 Transferring and Aborting Data .. 124

USB_ERP Structure .. 126
usbTargTransfer() Routine ... 129
Aborting a Data Transfer .. 129

5.6.3 Stalling and Unstalling the Endpoint .. 130

5.6.4 Handling Default Pipe Requests .. 130

5.7 Device Control and Status Information ... 131

5.7.1 Getting the Frame Number ... 131

5.7.2 Resuming the Signal .. 131

5.7.3 Setting and Clearing a Device Feature .. 132

5.8 Shutdown Procedure ... 133

6 Target Controller Drivers ... 135

6.1 Introduction ... 135

6.2 Hardware Adaptation Layer Overview .. 136

6.3 Single Entry Point .. 136

6.4 Target Request Block ... 136

6.5 Function Codes ... 138

6.5.1 Attaching the TCD ... 138

6.5.2 Detaching the TCD ... 140

6.5.3 Enabling and Disabling the TCD ... 140

6.5.4 Setting the Address .. 141

6.5.5 Resuming the Signal .. 141

6.5.6 Setting and Clearing the Device Feature .. 141

6.5.7 Getting the Current Frame Number .. 142

6.5.8 Assigning the Endpoints ... 142

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

x

6.5.9 Releasing the Endpoints .. 143

6.5.10 Setting the Endpoint Status .. 143

6.5.11 Getting the Endpoint Status .. 144

6.5.12 Submitting and Cancelling ERPs ... 144

6.5.13 Determining Whether the Buffer is Empty ... 145

6.5.14 Getting and Clearing Interrupts ... 145

6.5.15 Retrieving an Endpoint-Specific Interrupt ... 146

6.5.16 Clearing All Endpoint Interrupts ... 148

6.5.17 Handling Disconnect, Reset, Resume, and Suspend Interrupts 148

7 BSP Porting .. 151

7.1 Configuring the USB Peripheral Stack .. 151

7.1.1 Initialization of the USB Peripheral Stack ... 151

Example Initializing Resources for a NET2280 controller 152

7.1.2 Creating a BSP-Specific Stub File for the USB Peripheral Stack 152

Eight-, 16- and 32-Bit Data I/O .. 152
Interrupt Routines .. 153

9 usbTool Code Exerciser Utility Tool .. 155

9.1 Introduction ... 155

9.2 Running usbTool from the Shell .. 156

9.3 Using the usbTool Execution Sequence ... 156

9.4 Testing Applications .. 157

9.4.1 Testing the Keyboard Application ... 157

9.4.2 Testing the Printer Application .. 159

9.4.3 Testing the Mass Storage Application ... 161

 Contents

xi

A Glossary ... 163

A.1 Glossary Terms ... 163

A.2 Abbreviations and Acronyms .. 176

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

xii

1

 1
Overview

1.1 Introduction 1

1.2 Technology Overview 2

1.3 USB Component Overview 2

1.4 Additional Documentation 7

1.1 Introduction

This manual, the Wind River USB Programmer’s Guide, covers the USB host and
peripheral stacks, and documents the following topics:

■ It describes the architecture and implementation of the Wind River USB host
stack.

■ It explains how to use the Wind River USB peripheral stack to create new
target applications and target controller drivers.

This manual assumes that you are already familiar with the USB specification,
Workbench, and the VxWorks operating system. Wind River USB has been
developed in compliance with the Universal Serial Bus Specification, Revision 2.0,
generally referred to in this document as the “USB specification.” Where possible,
this manual uses terminology similar to that used in the USB specification so that
the correspondence between USB concepts and actions is readily apparent in the
software interfaces described.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

2

1.2 Technology Overview

The Universal Serial Bus, Revision 2.0 (USB 2.0) provides hosts and devices with a
versatile channel for communication at low (1.5 Mbps), full (12 Mbps), and high
(480 Mbps) data transfer rates, and allows for the following types of transfers:

■ control
■ bulk
■ interrupt
■ isochronous

The USB also incorporates provisions for power management and for the dynamic
attachment and removal of devices.

This flexibility allows the USB to be used—often concurrently—by different kinds
of devices, each kind requiring its own device driver support. It is desirable that
these device drivers be written to be independent of each other and independent
of the implementation of the host computer’s underlying USB host controller
interface. Wind River USB meets these requirements, providing a complete set of
services to operate the USB and a number of prebuilt USB class drivers, each of
which handles one kind of USB device.

1.3 USB Component Overview

This section summarizes the Wind River USB host and peripheral stack
components.

NOTE: All file and directory paths in this manual are relative to the VxWorks
installation directory. For installations based on VxWorks 5.x, this corresponds to
installDir. For installations based on VxWorks 6.x, this corresponds to
installDir/vxworks-6.x.

1 Overview
1.3 USB Component Overview

3

11.3.1 USB Host Stack

Wind River USB is fully compliant with the Universal Serial Bus Revision 2.0.

Host Controller Drivers

USB host controllers are the hardware components responsible for controlling the
USB on the board. USB-enabled hardware systems include one or more USB host
controllers. Most manufacturers produce USB host controllers that conform to one
of three major device specifications. These specifications include the Enhanced
Host Controller Interface (EHCI), the Open Host Controller Interface (OHCI), and
the Universal Host Controller Interface (UHCI). Wind River provides prebuilt USB
host controller drivers (HCDs) for all three specifications as part of its USB host
stack product.

Figure 1-1 Host Stack Overview

USB Class Drivers

Software

Hardware

USBD 2.0

Host Controller

Host Controller Drivers

The translation unit is used
only when using the USB 1.1
API.

Translation Unit

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

4

USBD and Class Drivers

The USB host stack also provides a USB host driver (USBD). The
hardware-independent USBD provides a communication channel between the
high layers of the host stack, including the USB class drivers, and the USB. The
USBD is responsible for tasks including power management, USB bandwidth
management, and dynamic attachment and detachment of USB devices. The USBD
supports the USB 2.0 specification and is backward compatible with USB 1.0.

The Wind River USB host stack also includes a set of class drivers that are
responsible for managing particular types of USB devices. Wind River provides
drivers for the following USB device types:

■ hub
■ keyboard
■ mouse
■ printer
■ audio
■ mass storage
■ communication

For information on specific tested devices, see your product release notes. For
more information on the USB host stack architecture, see 3.2 Architecture Overview,
p.29.

1.3.2 USB Peripheral Stack

The Wind River USB peripheral stack is the software component on the USB
peripheral that interprets and responds to the commands sent by the USB host.
Figure 1-2 shows an overview of the USB peripheral stack.

At the bottom of the stack is the target controller (TC), the hardware part of the
peripheral that connects to the USB. Many manufacturers build target controllers,
which vary widely in implementation. For each type of target controller, there is a
corresponding target controller driver (TCD). The responsibilities of the TCD are:

■ to perform any hardware-specific functionality

■ to perform register access (the other layers of the USB peripheral stack are not
allowed to perform any register access)

■ to implement an entry point used for communication with the upper layers of
the USB peripheral stack (the various functions are carried out using different
function codes passed to this single entry point)

1 Overview
1.3 USB Component Overview

5

1

Above the TCD in the USB peripheral stack is the hardware adaptation layer
(HAL). The HAL provides a hardware-independent view of the target controller
to higher layers in the stack. It makes it easier to port the USB peripheral stack to
new target controller hardware. The HAL makes the implementation of higher
layers in the stack (the target layer and target application) completely independent
of any hardware-specific peculiarities of the TCD.

In the same way that the HAL is a consistent, abstract mediator for a variety of
TCDs, the target layer is a consistent, abstract mediator for a variety of target
applications. At run time, a target application asks the target layer to attach to a
TCD on its behalf. The target layer then takes responsibility for routing requests
and responses between the TCD and the target application. The target layer can
handle multiple TCDs and multiple corresponding target applications.

The functions of the target layer are as follows:

■ to initialize and attach the TCD to the target application

■ to route requests between the target application and the TCD

Figure 1-2 Peripheral Stack Overview

Target Application

Target Controller Driver
(TCD)

Target Controller
(TC)

Software

Hardware

Hardware Adaptation Layer

Target Layer

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

6

■ to maintain the default control pipe and manage transfers with the default
control pipe

■ to provide interfaces to the target application for creating and deleting pipes
to the endpoints

■ to provide interfaces with the control and the non-control pipes for data
transfers

At the top of the USB peripheral stack is the target application. A target application
responds to USB requests from the host that the TCD routes to the target
application through the target layer. For example, when a TCD receives a request
to get a USB descriptor, it is the responsibility of the target application to provide
the contents of that descriptor.

The interface with the target layer is explained in detail in 5. USB Peripheral Stack
Target Layer Overview and the interface with the hardware adaptation layer is
explained in detail in 6. Target Controller Drivers.

1.3.3 Architecture and BSP Support

The USB host and peripheral stacks support several target architectures. Wind
River also provides support for the USB host and peripheral stacks as standard
parts for many board support packages (BSPs).

For more information on available architectures and BSPs, see your product
release notes or the Wind River Online Support Web site.

1.3.4 SMP Ready

VxWorks 6.6 introduces SMP facilities as a separately purchased product that
support symmetric multiprocessing (SMP). Wind River USB for VxWorks 6 is
SMP-ready, meaning that it runs correctly on SMP hardware, although it may not
make use of more than one CPU.

For more technical information on SMP, see the VxWorks Kernel Programmer's
Guide: VxWorks SMP. For purchasing details, please contact your local Wind River
representative.

1 Overview
1.4 Additional Documentation

7

11.4 Additional Documentation

The following sections describe additional documentation about the technologies
described in this book.

Reference pages for USB host stack libraries and routines are available in HTML
format and can be accessed online from the IDE help menu. You may also want to
refer to the Wind River tools documentation and the VxWorks operating system
documentation included with your product installation.

Documentation of the USB 2.0 specification is beyond the scope of this manual.

1.4.1 USB Specification Information

For detailed specification information, refer to the following sources:

■ Universal Serial Bus Specification, Rev. 2.0, April 27, 2000. All USB specifications
are available at: http://www.usb.org/developers/docs

■ USB device class specifications. All USB specifications are available at:
http://www.usb.org/developers/devclass_docs#approved

– USB Mass Storage Class Specification Overview, Rev. 1.2, June 23, 2003
http://www.usb.org/developers/devclass_docs/usb_msc_overview_1.2.
pdf

– USB Mass Storage Class Bulk Only Transport, Rev. 1.0, September 31, 1999
http://www.usb.org/developers/devclass_docs/usbmassbulk_10.pdf

– USB Mass Storage Class Control/Bulk/Interrupt (CBI) Transport, Rev. 1.1,
June 23, 2003
http://www.usb.org/developers/devclass_docs/usb_msc_cbi_1.1.pdf

– USB Mass Storage Class UFI Command Specification, Rev. 1.0, December 14,
1998
http://www.usb.org/developers/devclass_docs/usbmass-ufi10.pdf

– USB Device Class Definition for Printing Devices, Rev. 1.1, January 2000
http://www.usb.org/developers/devclass_docs/usbprint11.pdf

– USB Device Class Definition for Human Interface Devices (HID), Rev. 1.11,
June 27, 2001
http://www.usb.org/developers/devclass_docs/HID1_11.pdf

■ Host controller specifications:

http://www.usb.org/developers/docs
http://www.usb.org/developers/devclass_docs#approved
http://www.usb.org/developers/devclass_docs/usb_msc_overview_1.2.pdf
http://www.usb.org/developers/devclass_docs/usbmassbulk_10.pdf
http://www.usb.org/developers/devclass_docs/usb_msc_cbi_1.1.pdf
http://www.usb.org/developers/devclass_docs/usbmass-ufi10.pdf
http://www.usb.org/developers/devclass_docs/usbprint11.pdf
http://www.usb.org/developers/devclass_docs/HID1_11.pdf

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

8

– for EHCI:
http://www.intel.com/technology/usb/ehcispec.htm

– for OHCI:
http://www.compaq.com/productinfo/development/openhci.html

– for UHCI (Search for UHCI from this page)
http://www.intel.com

– for UHCI errata on USB bandwidth reclamation, see page 24 in:
ftp://download.intel.com/design/chipsets/specupdt/29773817.pdf

1.4.2 Peripheral Stack Information

For additional information relevant to the USB peripheral stack, refer to the
following sources:

■ PDIUSBD12 Evaluation Board (PC Kit) User’s Manual, Rev. 2.1, which is
included on the floppy disk distributed with the Philips evaluation kit

■ Firmware Programming Guide for PDIUSBD12, Version 1.0, which is included on
the floppy disk distributed with the Philips evaluation kit

■ Universal Serial Bus Specification Rev. 2.0, and USB device class specifications,
both of which are available from http://www.usb.org/

■ Firmware Programming Guide for NET2280 PCI USB High Speed Peripheral
Controller, Rev. 1A available from www.plxtech.com/netchip

■ ISP1582/83 Firmware Programming Guide for Philips Hi-Speed Universal Serial
Bus Interface Device, Rev. 02 available from www.nxp.com.

1.4.3 Configuration Information

The sample configuration section of the getting started guide for your Platform
provides configuration instructions for this component using a default or basic
configuration. This book includes a more thorough discussion of each available
configuration for Wind River USB for VxWorks 6. For more detailed project
facility, link-time, and run-time configuration information, see 2. Configuring and
Building Wind River USB.

http://www.intel.com/technology/usb/ehcispec.htm
http://www.compaq.com/productinfo/development/openhci.html
http://www.intel.com
www.plxtech.com/netchip
www.nxp.com

1 Overview
1.4 Additional Documentation

9

11.4.4 Latest Release Information

The latest information on this release can be found in the release notes for your
Platform. Release notes are shipped with your Platform product and are also
available from the Wind River Online Support site:

http://www.windriver.com/support/

In addition, this site includes links to topics such as known problems, fixed
problems, documentation, and patches.

For information on accessing the Wind River Online Support site, see the Customer
Services section of your Platform getting started guide.

NOTE: Wind River strongly recommends that you visit the Online Support Web
site before installing or using this product. The Online Support Web site may
include important software patches or other critical information regarding this
release.

http://www.windriver.com/support/

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

10

11

 2
Configuring and Building

Wind River USB

2.1 Introduction 11

2.2 Configuring and Building Wind River USB 11

2.3 Configuring VxWorks with Wind River USB 12

2.4 Building VxWorks with Wind River USB 22

2.5 Initializing USB Hardware 22

2.1 Introduction

This chapter describes how to build a VxWorks bootable image to include USB.
The host stack enables VxWorks to use USB devices. The peripheral stack allows a
Windows machine to treat a VxWorks machine as a USB device.

2.2 Configuring and Building Wind River USB

General instructions for building a product into VxWorks appear in your Platform
getting started guide. USB is mostly precompiled, though some configlettes do

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

12

exist. For the most part, USB configures itself at run time rather than with
compile-time macros.

2.3 Configuring VxWorks with Wind River USB

This section describes the components, component parameters, and initialization
procedures for placing the USB host stack and USB peripheral stack on the
VxWorks image.

2.3.1 USB Host Stack Components and Parameters

The host components include the following:

INCLUDE_USB
This is the USB host driver component, required by all systems using USB.

INCLUDE_USB_INIT
This is the initialization component for the USB host driver (USBD).

INCLUDE_EHCI
This is the EHCI host controller driver.

INCLUDE_EHCI_INIT
This is the initialization component for the EHCI host controller driver.

INCLUDE_EHCI_BUS
Registers the EHCI controller driver with VxBus.

INCLUDE_OHCI
This is the OHCI host controller driver.

INCLUDE_OHCI_INIT
This is the initialization component for the OHCI host controller driver.

INCLUDE_OHCI_BUS
Registers the OHCI controller driver with VxBus.

INCLUDE_UHCI
This is the UHCI host controller driver.

2 Configuring and Building Wind River USB
2.3 Configuring VxWorks with Wind River USB

13

2

INCLUDE_UHCI_INIT
This is the initialization component for the UHCI host controller driver.

INCLUDE_UHCI_BUS
Registers the UHCI controller driver with VxBus.

INCLUDE_USB_KEYBOARD
This is the USB keyboard class driver.

INCLUDE_USB_KEYBOARD_INIT
This is the initialization component for the USB keyboard class driver.

INCLUDE_USB_MOUSE
This is the USB mouse class driver.

INCLUDE_USB_MOUSE_INIT
This is the initialization component for the USB mouse class driver.

INCLUDE_USB_PRINTER
This is the USB printer class driver.

INCLUDE_USB_PRINTER_INIT
This is the initialization component for the USB printer class driver.

INCLUDE_USB_SPEAKER
This is the USB speaker class driver.

INCLUDE_USB_SPEAKER_INIT
This is the initialization component for the USB speaker class driver.

INCLUDE_USB_MS_BULKONLY
This is the USB mass storage bulk-only class driver.

INCLUDE_USB_MS_BULKONLY_INIT
This is the initialization component for the USB mass storage bulk-only class
driver. See Parameters and Default Values, p.14, for information about
parameters and default values.

INCLUDE_USB_MS_CBI
This is the USB mass storage CBI class driver. See Parameters and Default Values,
p.14, for information about parameters and default values.

INCLUDE_USB_MS_CBI_INIT
This is the initialization component for the USB mass storage CBI class driver.

INCLUDE_USB_PEGASUS_END
This is the USB Pegasus communication class driver.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

14

INCLUDE_USB_PEGASUS_END_INIT
This is the initialization component for the USB Pegasus communication class
driver. See Parameters and Default Values, p.14, for information about
parameters and default values.

 INCLUDE_USB_AUDIO_DEMO
This enables the USB Speaker audio demonstration configlette found in
installDir/target/config/comps/src/usrUsbAudioDemo.c, which demonstrates
the playing of audio files through the speakers.

INCLUDE_USB_HEADSET_DEMO
This enables the USB headset audio demonstration configlette, found in
installDir/target/src/config/comps/src/usbBrcmAudioDemo.c, which
demonstrates a feedback from the audio headset microphone to the speakers.

Parameters and Default Values

The host component parameters and default values include the following:

USB Mass Storage Bulk Only Initialization Configuration

The configuration parameters for the INCLUDE_USB_MS_BULKONLY_INIT
component are the following:

BULK_MAX_DEVS
USB Bulk Maximum Drives specifies the maximum number of bulk device
drives supported. The default is 2.

BULK_DRIVE_NAME
USB Bulk Drive Name specifies the drive name assigned to a USB bulk-only
device. The default is “/bd”.

BULK_MAX_DRV_NAME_SZ
USB Bulk Device Name Size specifies the maximum size of each USB bulk
device name. The default is 20.

USB_BULK_NON_REMOVABLE_DISK
The new file system does a status check on the mass storage disk before every
read and write operation to determine whether the media are present. For USB
flash disks that report themselves as removable media, this may be fine.
However, for many USB mass storage disks that consist of nonremovable
media, the status check before every read/write operation can cause
unnecessary delays and may hamper the performance of the USB disk. To

2 Configuring and Building Wind River USB
2.3 Configuring VxWorks with Wind River USB

15

2

obtain high performance rates, set USB_BULK_NON_REMOVABLE_DISK to
TRUE. The default is FALSE.

USB Mass Storage Control-Bulk-Interrupt Configuration

The configuration parameters for the INCLUDE_USB_MS_CBI component are the
following:

CBI_DRIVE_NAME
USB CBI Drive Name specifies the name of the drive assigned to a USB CBI
device. The default is “/cbid”

UFI_MAX_DEVS
Maximum UFI Devices specifies the maximum number of CBI devices
supported. The default is 2.

UFI_MAX_DRV_NAME_SZ
USB UFI Device Name Size specifies the maximum size of each device name.
The default is 20.

USB Pegasus End Initialization Configuration

The configuration parameters for the INCLUDE_USB_PEGASUS_END_INIT
component are the following:

PEGASUS_MAX_DEVS
USB Pegasus Device Maximum Number specifies the maximum number of
supported Pegasus devices. The default is 1.

PEGASUS_IP_ADDRESS
Pegasus IP Address specifies the IP address of a USB Pegasus device. The
default is {“90.0.0.3”}.

PEGASUS_NET_MASK
Pegasus Net Mask specifies the USB Pegasus device net mask. The default is
{oxffffff00}.

PEGASUS_TARGET_NAME
Pegasus Target Name specifies the target name of a USB Pegasus device. The
default is {“usbTarg0”}.

This is an example of the code for the Pegasus default configuration
parameters:

#define PEGASUS_IP_ADDRESS {"90.0.1.3"}
#define PEGASUS_NET_MASK {0xffffff00}
#define PEGASUS_TARGET_NAME {"usbTarg0"}
#define PEGASUS_MAX_DEVS 1

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

16

Keyboard Parameters

The configuration parameters for the INCLUDE_USB_KEYBOARD_INIT
component are the following:

USB_KBD_QUEUE_SIZE
This is the maximum bytes of data that can be stored in the keyboard circular
buffer. The default value is 8.

USB_MAX_KEYBOARDS
This is the maximum number of USB keyboards that can be attached.

ATTACH_USB_KEYBOARD_TO_SHELL
Setting this constant in the Workbench project facility attaches the USB
keyboard to the target shell. This replaces the default console device.

Required Components

The components required for the USB host stack are the following:

■ INCLUDE_USB is required for all USB support. This includes support for
USBD.

■ The component for your particular driver:

■ INCLUDE_EHCI
■ INCLUDE_OHCI
■ INCLUDE_UHCI

Selecting the EHCI, OHCI, or UHCI component includes modules for that type of
host controller. All host controller components require that INCLUDE_USB also be
selected. More than one host controller can be present in the image at once.

Optional Components

To add initialization at startup, include the host controller driver initialization
components that match your host controller. If you are going to include such a
component, you need the following:

■ INCLUDE_USB_INIT

■ The initialization component for your particular driver:

■ INCLUDE_EHCI_INIT
■ INCLUDE_OHCI_INIT

2 Configuring and Building Wind River USB
2.3 Configuring VxWorks with Wind River USB

17

2

■ INCLUDE_UHCI_INIT

■ The registration of the driver with VxBus

■ INCLUDE_EHCI_BUS
■ INCLUDE_OHCI_BUS
■ INCLUDE_UHCI_BUS

You can optionally include any of the following USB device components:

■ INCLUDE_USB_KEYBOARD
■ INCLUDE_USB_MOUSE
■ INCLUDE_USB_PRINTER
■ INCLUDE_USB_SPEAKER
■ INCLUDE_USB_MS_BULKONLY
■ INCLUDE_USB_MS_CBI
■ INCLUDE_USB_PEGASUS_END

To add initialization at startup for peripheral devices, include the appropriate
components. These components require that the USB host stack be present on the
VxWorks image. To include device initialization at system startup, select any of the
USB peripheral device components, including the corresponding driver module as
follows:

■ INCLUDE_USB_KEYBOARD_INIT
■ INCLUDE_USB_MOUSE_INIT
■ INCLUDE_USB_PRINTER_INIT
■ INCLUDE_USB_SPEAKER_INIT
■ INCLUDE_USB_MS_BULKONLY_INIT
■ INCLUDE_USB_MS_CBI_INIT
■ INCLUDE_USB_PEGASUS_END_INIT

Selecting any of the device initialization components includes the corresponding
driver module. These components require that the USB host stack be present on
the VxWorks image.

To include support for the USB keyboard and mouse class driver, choose
INCLUDE_SELECT.

For more information, see Select Support on USB Keyboard and Mouse Class Drivers,
p.19.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

18

Component Dependencies

Certain devices do not handle mass storage reset properly. The
BULK_RESET_NOT_SUPPORTED macro is defined by default.

Some components include compiler macros and flags that are defined in the
makefile in the installDir/target/src/drv/usb/target directory. This process is
documented in the Platform getting started guide. The USB peripheral stack
includes the following configuration options for rebuilding source:

■ ADDED_CFLAGS+=NET2280_DMA_SUPPORTED – enables DMA transfer for
the NET 2280 driver (currently the ISP 1582 driver does not support DMA
transfer)

Managing Dependencies

This section discusses the general component dependencies for the USB host stack.

File System Components

If your system is configured with mass storage class or function drivers, you must
also include support for a file system. You can use DOSFS, HRFS (Highly Reliable
File System), and RawFS with the USB host stack. The DOSFS and HRFS file
systems can exist simultaneously.

To use a particular file system, the disk must be formatted under that system, and
you must include the appropriate components required for that file system and
with the event framework. Following is a list of examples, some or all of which
might be required, depending upon your particular configuration:

■ INCLUDE_DOSFS
■ INCLUDE_DOSFS_MAIN
■ INCLUDE_DOSFS_CHKDSK
■ INCLUDE_DOSFS_FMT
■ INCLUDE_FS_MONITOR
■ INCLUDE_ERF
■ INCLUDE_XBD
■ INCLUDE_DEVICE_MANAGER
■ INCLUDE_XBD_PART_LIB

In addition, there are other file system components that are not required, but
which may be useful. These components add support for the basic functionality
needed to use a file system, such as the commands ls, cd, copy, and so on.

2 Configuring and Building Wind River USB
2.3 Configuring VxWorks with Wind River USB

19

2

For details, see the file system chapters in the VxWorks Application Programmer’s
Guide and the VxWorks Kernel Programmer’s Guide for your platform.

Networking Components

In order to include USB Pegasus END driver initialization, you must also include
network initialization. In addition, you may need to increase the IP_MAX_UNITS
value, depending on your system requirements. For example, in a system that
initializes an FEI Ethernet interface and a USB Pegasus Ethernet interface, the
IP_MAX_UNITS must be at least 2 (in VxWorks 5.5, the default value is 1. For
VxWorks 6.0, the default value is 4). If you wish to test the Ethernet device, you
must also include the network show routines component.

The network component INCLUDE_IFCONFIG needs to be included for the
Pegasus interface support due to network stack changes.

Select Support on USB Keyboard and Mouse Class Drivers

The USB keyboard and mouse class drivers support the select feature, which
allows tasks to pend on the drivers while waiting for I/O requests from devices.
When the devices are ready to send data, the driver notifies the tasks. To support
the select feature, the keyboard and mouse drivers must be set to the interrupt
mode. Do this by issuing an ioctl request, with the request option as
SIO_MODE_INT.

Speaker Demo

If you are using the INCLUDE_USB_HEADSET_DEMO configuration, do not define
INCLUDE_USBTOOL or INCLUDE_USB_AUDIO_DEMO. You will need
INCLUDE_USB_SPEAKER and INCLUDE_USB_SPEAKER_INIT to complete the
configuration. See USB Audio Demo Initialization, p.26, and USB Headset Demo, p.20.

If you are using the INCLUDE_USB_AUDIO_DEMO configuration, do not define
INCLUDE_USB_SPEAKER_INIT. This is because the speaker audio demo will call
the speaker initialization routine. For more information, see Communication Class
Device Initialization, p.26.

The .wav file can be played from a mass storage device. If the .wav file is being
played through an ATA device, then define the INCLUDE_ATA macro.

NOTE: Keyboard and mouse class drivers are set to the interrupt mode by default.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

20

USB Headset Demo

The USB host stack contains a sample application that demonstrates the use of a
USB headset integrated with the host stack and the USB speaker class driver. Once
the headset demo is initialized one of the following two tests can be invoked:

■ The first test is invoked by issuing the command usbBrcmAudioSpkrTest and
supplying a .wav file. The file play repeatedly through the headset speakers.
For example ->usbBrcmAudioSpkrTest “logon.wav”

■ The second test is a microphone loopback test where the microphone inputs
echo to the headset speakers. This test is invoked from the command line by
the command ->usbBrcmAudioMicrophoneTest. There are no parameters.

Both tests continue endlessly until terminated with usbBrcmAudioTestStop().

2.3.2 USB Peripheral Stack Components and Parameters

INCLUDE_USB_TARG
This is the core component of the USB peripheral stack and must be included
for all systems.

INCLUDE_USB_TARG_INIT
This is the initialization component for the core component for the USB
peripheral stack.

INCLUDE_NET2280
This macro includes the Netchip NET2280 target controller driver.

 INCLUDE_PHILIPS1582
This macro includes the Philips ISP1582 target controller driver.

INCLUDE_PDIUSBD12
This macro includes the Philips PDIUSBD 12 target controller driver.

 INCLUDE_KBD_EMULATOR
This macro includes the keyboard emulator.

 INCLUDE_KBD_EMULATOR_INIT
This macro initializes the keyboard emulator.

INCLUDE_MS_EMULATOR
This macro includes the mass storage emulator.

 INCLUDE_MS_EMULATOR_INIT
This macro initializes the mass storage emulator.

2 Configuring and Building Wind River USB
2.3 Configuring VxWorks with Wind River USB

21

2

 INCLUDE_PRN_EMULATOR
This macro includes the printer emulator.

 INCLUDE_PRN_EMULATOR_INIT
This macro initializes the printer emulator.

Required Components

Include the USB peripheral stack components. At a minimum, you must include:

■ INCLUDE_USB_TARG

You must also include one of the following drivers:

■ INCLUDE_NET2280
■ INCLUDE_PDIUSBD12
■ INCLUDE_PHILIPS1582

Optional Components

You can include the following function drivers:

■ INCLUDE_KBD_EMULATOR

■ INCLUDE_PRN_EMULATOR

■ INCLUDE_MS_EMULATOR
(This also requires file system components as described in File System
Components, p.18.)

The Mass Storage Emulator requires file system components.

You can include the following initialization components for the emulators:

■ INCLUDE_KBD_EMULATOR_INIT

■ INCLUDE_PRN_EMULATOR_INIT

■ INCLUDE_MS_EMULATOR_INIT

USBTool Components and Parameters

INCLUDE_USBTOOL
This is the code exerciser, which performs all necessary USB driver
initialization and can be used for debugging. If INCLUDE_USBTOOL is

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

22

included, all the initialization components (INCLUDE_XXX_INIT) must be
undefined.

Optional Components

You can include the USB Testing Tool: INCLUDE_USBTOOL.

usbTool performs all necessary USB driver initialization and therefore cannot be
used if any of the initialization components (INCLUDE_XXX_INIT macros) are
included. See , p.24, for details.

2.4 Building VxWorks with Wind River USB

For information about building VxWorks with Wind River USB, including build
options, image types, and so on, see the Wind River Workbench User’s Guide and the
VxWorks Command-Line Tools User's Guide.

2.5 Initializing USB Hardware

This section covers hardware initialization.

2.5.1 Initializing the USB Host Stack Hardware

This section provides initialization instructions for all USB host stack
subcomponents including the host controller, device, and USB demo.

NOTE

NOTE: The hardware configuration routine calls BSP routines for USB. The BSP
interface for USB is defined in the file installDir/target/config/BSP/usbPciStub.c. .

2 Configuring and Building Wind River USB
2.5 Initializing USB Hardware

23

2

Startup Routines

This section provides a detailed description of the USB initialization process. The
USB host stack initialization process includes the following three parts:

1. initializing the USBD component and registering the USB hub bus type with
VxBus

2. initializing the EHCI, OHCI, and UHCI host controllers

3. registering the respective bus controller drivers with VxBus

There are no more configlettes for host controller drivers. The host controllers are
initialized by calling the init routines of the driver directly.

USBD Initialization

To initialize the USBD, call the routine usbInit() defined in the file
installDir/vxworks-6.x/target/config/comps/src/usrUsbInit.c.

Figure 2-1 shows the responsibilities of the usbInit() configlette routine and the
initialization process.

Attaching the EHCI, OHCI, and UHCI Host Controllers

Once the USBD is initialized, the host controllers can be initialized and registered
with VxBus. When the controllers are reigstered with VxBus, VxBus will in turn
announce them to the system and start them.

■ usbxhcdInit (for example, usbEhcdInit) -- Initializes the host controller.

■ vxbUsbxhciRegister (for example, vxbUsbEhciRegister) -- Registers the host
controller with VxWorks.

NOTE: If the initialization components are included, the configlette routines are
called to initialize the USBD and host controllers during the bootup sequence itself.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

24

Initialization Dependencies

The USB host stack includes initialization components for all of the USB modules.

Figure 2-1 usbInit() Initialization Routine

Initialization
Configlette

Hub Class Translation Unit
ComponentsComponent

Hardware
Configlette

usrUsbInit.c usrUsbPciInit.c usbHubInitialization.c usbTransUnitInit.cusbd.c

USBD 2.0
Host Stack

Calls usbHubInit() to initialize the hub class driver

Calls usbInitialize() to initialize the translation unit

USB driver successfully initialized

Calls usbdInit() to initialize the USBD host

! CAUTION: When you use the initialization components, you cannot use usbTool.
The components are derived from usbTool itself, and cause compile-time errors
when used with usbTool.

2 Configuring and Building Wind River USB
2.5 Initializing USB Hardware

25

2

Keyboard, Mouse, Printer, and Speaker Initialization

The keyboard, mouse, printer, and speaker drivers contain initialization routines
that install standard open, close, read, write, and ioctl routines into the I/O system
driver table. This allows an application to call these drivers using standard
VxWorks system calls.

For example, an application might want to monitor a keyboard’s input. First, the
application opens the keyboard with the system call to open():

fileDescr = open ("/usbkb/0", 2, 0);

The application can now call the system’s read() routine in a loop:

while (read (fileDescr, &inChar, 1) != 1);

These operations can be used for the mouse, printer, and speaker drivers as well.

Mass Storage Class Device Initialization

The bulk-only and CBI mass storage class driver configlettes install standard
routines into a file system. As with the mouse, keyboard, speaker, and printer
drivers, these routines allow an application to make standard VxWorks system
calls, such as copy, rm, and format (depending on which file system is attached),
to access the mass storage class device.

After a USB block device is created by means of usbMSCBlkDevCreate(), a file
system can be attached to the device if the appropriate file system component is
included, the device has been attached to the XBD and the insertion event has been
sent to the event reporting framework. The following code, which is implemented
in usrUsbBulkDevInit.c, can be used as an example:

If (xbdAttach (pBulkXbdDev, &usbBulkXbdLunFuncs,
pBulkDevice->usbBulkDrvName[lun], pBulkXbdDev->xbd_blocksize,
pBulkXbdDev->xbd_nblocks, &retVal) == OK)

{pBulkDevLun->usbBulkXbdFsRemoved = FALSE;
erfEventRaise (xbdEventCategory, xbdEventPrimaryInsert,
ERF_ASYNC_PROC, (void *)retVal, NULL);

}

NOTE: See 4.7 Mass Storage Class Driver, p.86, for the possible values of MSC in this
API name.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

26

SCSI-6 Commands

In internal testing, Wind River has found that one supported drive, the M-Systems
FlashOnKey device, does not support SCSI-6 commands. This may also be the case
for some non-supported drives. Therefore, the bulk-only driver supports both
SCSI-6 and SCSI-10 read/write commands. The user must configure the driver to
use the appropriate command for communicating with the device.

The fifth parameter of usbMSCBlkDevCreate() sets the SCSI transfer mode. It can
take either of the following values:

Now calls such as copy() can refer to the device as usbDr0. In the following code
fragment, the file readme.txt is copied from a host to the USB drive usbDr0.

copy ("host:/readme.txt", "/usbDr0/readme.txt");

Communication Class Device Initialization

The USB host stack includes a configlette, called usrUsbPegasusEndInit.c, to
initialize the Pegasus communication class driver. Upon device insertion, these
routines connect a Pegasus device to the network stack, attaching an IP address to
the device.

The IP address (PEGASUS_IP_ADDRESS), target name
(PEGASUS_TARGET_NAME), a net mask (PEGASUS_NET_MASK), and maximum
Pegasus devices (PEGASUS_MAX_DEVS) are all user-definable parameters of the
component and must be set before communication with the Pegasus device can
occur. Since the Pegasus driver supports multiple Pegasus devices, customers can
increase the PEGASUS_MAX_DEVS and expand the PEGASUS_IP_ADDRESS,
PEGASUS_NET_MASK, and PEGASUS_TARGET_NAME arrays for the multiple
Pegasus interface configuration.

USB Audio Demo Initialization

The USB host stack includes a sample application called usbAudio, which
demonstrates how to use the USB host stack and the audio class driver. This
application was designed to run on a pcPentium machine that contains both a host
controller (EHCI, OHCI, or UHCI) and an ATA hard drive containing .wav files.

USB_SCSI_FLAG_READ_WRITE10 Use SCSI read/write ten.
USB_SCSI_FLAG_READ_WRITE6 Use SCSI read/write six.

2 Configuring and Building Wind River USB
2.5 Initializing USB Hardware

27

2

The usbAudio program operates with any of the listed supported speakers and
microphones. For a complete list of supported speakers, see your Platform release
notes.

2.5.2 Initializing the USB Peripheral Stack Hardware

The USB peripheral stack contains configlette routines that are used to locate and
configure resources required for initializing the USB peripheral hardware. These
configlette routines are defined in
installDir/target/config/comp/src/usrUsbTargPciInit.c. For more information, see
5.4 Enabling and Disabling the TCD, p.104.

The responsibilities of this configlette layer are:

■ Making a call to locate the controller, depending on the type of controller. For
example, calling PCI class files to locate the hardware for a PCI-based target
controller.

■ Determining the base address and interrupt line for the hardware. This can be
hard-coded or obtained from the PCI configuration header.

■ Determining any other hardware-specific features.

Example 2-1 NET2280 Configlette Routine

The code fragment below illustrates the implementation of the configlette routine
for the NET2280 PCI-based peripheral controller:

void sys2NET2280PciInit (void)
{
int PCIBusNumber; /* PCI bus number */
int PCIDeviceNumber; /* PCI device number */
int PCIFunctionNumber; /* PCI function number */
UINT32 bStatus; /* status */
PCI_CFG_HEADER pciCfgHdr; /* configuration header */
UINT8 i = 0;

/* Find the device */
bStatus = USB_PCI_FIND_DEVICE (NET2280_VENDOR_ID,
 NET2280_DEVICE_ID, nDeviceIndex, &PCIBusNumber,

&PCIDeviceNumber, &PCIFunctionNumber);

NOTE: When including USB Audio Demo components
(INCLUDE_AUDIO_DEMO), the speaker initialization component
(INCLUDE_USB_SPEAKER_INIT) should not be included. The speaker is initialized
by the USB Audio Demo itself.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

28

/* Check whether the NET2280 Controller was found */
if (bStatus != OK)

{

/* No NET2280 Device found */
printf (" pciFindDevice returned error \n ");
return ;
}

.....
/* Get the configuration header */
usbPciConfigHeaderGet (PCIBusNumber, PCIDeviceNumber,

PCIFunctionNumber, &pciCfgHdr);

/* Obtain the base address */

BADDR_NET2280[i] = pciCfgHdr.baseReg[i];

/* Obtain the interrupt line */

IRQ_NET2280 = pciCfgHdr.intLine - INT_NUM_IRQ0;
return;

}

29

 3
USB Host Drivers

3.1 Introduction 29

3.2 Architecture Overview 29

3.3 The USB Host Driver 34

3.4 Host Controller Drivers 54

3.1 Introduction

This chapter provides a detailed overview of the USB host stack architecture as
well as detailed usage information regarding the USB host driver (USBD) and the
USB host controller drivers. Information on USB class drivers is available in 4. USB
Class Drivers.

3.2 Architecture Overview

Figure 3-1 presents a simplified overview of the USB host stack architecture.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

30

Figure 3-1 USB 2.0 Host Stack

usbMouseLib

usbKeyboardLib

. . .

Existing USB1.1

USB 2.0 Hub Class Driver

OSAL

EHCI HCDOHCI HCD

USB 2.0 Host Controller Drivers

cmdParser usbTool
USB Exerciser Utility

Non-PCI Host Controllers

USB 2.0 Translation Layer

Initialization Registrar Device
Interface Manager

USB Request
Interface

USBD 2.0

UHCI HCD

New Class Drivers

Class Drivers

PCI Host Controllers

VxBus

3 USB Host Drivers
3.2 Architecture Overview

31

3

At the bottom of the stack is the USB host controller (USB HC), the piece of
hardware in the host system that carries out the USB operations. Currently, there
are three major families of USB host controllers on the market, those supporting
the Enhanced Host Controller Interface (EHCI) which supports high-speed
transfers; those supporting the Open Host Controller Interface (OHCI) designed
by Microsoft, Compaq, and National Semiconductor; and those supporting the
Universal Host Controller Interface (UHCI) originally put forth by Intel. A number
of hardware manufacturers have built USB HCs around one or more of these
specifications.

3.2.1 Host Controller Drivers and USBD

For each type of host controller there is a single, hardware-dependent USB host
controller driver (HCD). Wind River provides the source for three prebuilt drivers
in the following directories:

■ installDir/target/src/hwif/busCtrl/usb/hcd/ehcd for EHCI HCs
■ installDir/target/src/hwif/busCtrl/usb/hcd/ohcd for OHCI HCs
■ installDir/target/src/hwif/busCtrl/usb/hcd/uhcd for UHCI HCs

The interface between the USBD and the HCD allows each HCD to control one or
more underlying HCs. Also, Wind River’s USBD can connect to multiple USB
HCDs simultaneously. These design features allow you to build a range of
complex USB systems.

The USBD is the hardware-independent module above the HCDs. The USBD
manages each USB peripheral device connected to the host and provides the path
through which higher layers communicate with the USB.

Among its responsibilities, the USBD implements the USB protocol as explained in
the USB 2.0 specification. It handles all the standard requests and routes other
types of request to the class drivers. Hub functionality is critical to the proper
operation of the USB, so Wind River USBD hub functionality is handled
transparently by the hub class driver. The responsibilities of this driver include
handling device connects, disconnects, and power management.

In the Wind River USB host stack, the USBD 2.0 and the hub class modules are
implemented in the following directory structures, respectively:

■ installDir/target/src/hwif/usb
■ installDir/target/src/hwif/busCtlr/usb/hub

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

32

3.2.2 Class Drivers

Figure 3-1 shows the USB class drivers at the top of the stack. USB class drivers are
typical examples of client modules. USB class drivers are responsible for managing
types of devices that can be connected to the USB; they rely on the USBD to provide
the communication path to each device. Applications, diagnostics, and test
programs are other examples of client modules that rely on the USBD to
communicate with USB devices. For example, Wind River provides the test
application/module usbTool, which gives you interactive control over the USB
bus and devices.

In the Wind River USB host stack, the class driver modules are implemented at the
following directory structure:

installDir/target/src/drv/usb

3.2.3 Host Module Roadmap

The diagram in Figure 3-1 illustrates the functional relationships between the
modules that comprise the USB host stack. Each module is further described in this
section. For additional information on USB-related libraries and routines, see the
associated API Reference entry.

usbTool
This module is a test application that gives you interactive control of the USB
host stack. The usbTool utility exports a single entry point, usbTool(), that
invokes a command line-driven interactive environment in which the operator
can initialize components of the USB host stack, interrogate each USB device
connected to the system, send USB commands to individual USB devices, and
test other elements of the USB stack. The usbTool test application is most
useful during development and testing and does not need to be included in
your final product.

The usbTool utility resides in installDir/target/config/comps/src and is called
usrUsbTool.c.

cmdParser
This module provides the generalized command-line parsing routines used by
usbTool. The cmdParser module needs to be present only when usbTool is
being used.

NOTE: The usbTool module relies internally on static data; do not run
multiple instances of usbTool simultaneously.

3 USB Host Drivers
3.2 Architecture Overview

33

3

usbKeyboardLib
This module is the class driver for keyboard devices. For more information, see
4.3 Keyboard Driver, p.65.

usbMouseLib
This module is the class driver for mouse devices. For more information, see
4.4 Mouse Driver, p.73.

usbPrinterLib
This module is the class driver for printer devices. For more information, see
4.5 Printer Driver, p.77.

usbSpeakerLib
This module is the class driver for audio devices. For more information, see
4.6 Audio Driver, p.80.

usbBulkDevLib and usbCbiUfiDevLib
These modules are the class drivers for the mass storage class devices. For
more information, see 4.7 Mass Storage Class Driver, p.86.

usbPegasusEndLib
These modules are the class drivers for the Ethernet networking control model
communication class devices. For more information, see 4.8.1 Ethernet
Networking Control Model Driver, p.92.

USB 2.0 Hub Class driver
The USB 2.0 hub class driver is responsible for managing device connection,
disconnection, and power management.

USB 2.0 Translation Layer
This module preserves the backward compatibility of the Wind
River-supplied class drivers (keyboard, mouse, mass storage drivers, and so
forth) from the USB host stack, 1.1 (USB 1.0) with the updated USB host stack,
(USB 2.0) interface. That is, existing USB class drivers interface with the USB
2.0-based host stack through the USB 2.0 translation layer.

USB 2.0 USBD Layer
This layer contains the USB host stack USBD and is composed of the following
modules:

■ The initialization module is responsible for initializing global data
structures.

■ The registrar provides an interface for class and host controller drivers to
register with the USBD.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

34

■ The device manager provides interfaces for the hub class driver to manage
device connection, disconnection, suspend, and resume.

■ The USB request interface allows class drivers to issue standard USB
requests or vendor-specific requests to the devices.

USB 2.0 Host Controller Drivers
These modules drive the USB host controllers (EHCI, OHCI, and UHCI)
attached to the system.

OSAL
This component provides an abstracted and simplified view of the VxWorks
operating system services to the host stack. OSAL includes routines that
manage tasks, mutexes, implied semaphores, memory allocation, and system
time.

3.3 The USB Host Driver

This section describes initialization, client registration, dynamic attachment
registration, device configuration, and data transfers. It also discusses key features
of the USBD internal design. This section is divided into two subsections. The first
describes the USB 2.0 USB host driver and the second describes compatibility with
the USB 1.0 USBD.

3.3.1 USBD 2.0

This section describes the USB host driver for USB 2.0.

Initializing the USBD

When using the USBD 2.0 interface, initializing the USBD is a four-step process
during the VxWorks boot-up process:

First, one or all the USB host controller drivers registers with VxBus, depending on
the components included. This registration causes VxBus to discover the controller
device and execute the appropriate VxBus initialization routines. This is done by
calling vxbUsbControllerRegister(), where the controller is EHCI, OHCI or UHCI.

3 USB Host Drivers
3.3 The USB Host Driver

35

3

The EHCI, OCHI and UHCI drivers register themselves with VxBus for both PCI
and local bus types.

Second, the USBD entry point usbdInit(), must be called at least once. This routine
initializes internal USBD data structures. In a given system, it is acceptable to call
usbdInit() once (for example, during the boot sequence) or many times (as during
the initialization of each USBD client).

The third step is to call usbHubInit() to initialize the hub class driver.

Fourth, the appropriate host controller driver is registered with USBD by calling
appropriate usbHcdInit() routine, where Hcd is Ehcd(EHCI HCD), Ohcd (OHCI
HCD) or Uhcd (UHCI HCD). These routines perform some internal host
controller-specific book-keeping, then registers the HCD with USBD.

Order of Initialization

The usbdInit() routine must be called before any other USBD routine, including
usbHubInit(). However, not all USBD clients must call usbdInit() before one or
more HCDs have been attached to the USBD. Either of the following initialization
sequence scenarios is acceptable:

Scenario #1: Traditional Boot Time Initialization

The order of initialization is as follows:

1. Each of the desired host controllers registers with VxBus.

2. Call usbdInit().

3. Call usbHubInit().

4. Initialize the desired host controller driver and register the same with VxBus.

5. VxBus detects the host controllers and calls the initialization routines for each
one. At the end of this phase, the host controller devices are up and ready for
device detection.

6. Call the USB class driver initialization entry point.

NOTE: During boot-up, the function hardwareInterfaceInit() causes the
registration of EHCI, OHCI and UHCI bus controller drivers.

NOTE: The second, third and fourth steps occur before the second level
initialization of Vxbus takes place.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

36

Scenario #2: Hot Swap-Driven Initialization

1. Create a VxWorks image that includes the following components:

■ USB host stack
■ One or more USB host controllers
■ usbTool

2. The hot swap code calls the function usbInit().

3. The hot swap code calls the function usbOhciInit(), usbEhciInit(), or
usbUhciInit() to register the host controller driver with USBD.

4. The hot swap code calls the vxbUsbEhciRegister(), vxbUsbOhciRegister() or
vxbUsbUhciRegister() function to register with VxBus.

5. If VxBus has detected the appropriate hardware, the appropriate host
controller driver is then started.

Bus Tasks

For each host controller attached to the USBD, the hub class driver spawns a bus
task responsible for monitoring bus events, such as the attachment and removal of
devices. These tasks are normally dormant —that is, consuming no CPU time—
and they typically wake up only when a USB hub reports a change on one of its
ports.

Each USBD bus task has the VxWorks task name BusM A, BusM B, and so forth.

Registering Client Modules

The client module and the USBD layer share the USBHST_DEVICE_DRIVER data
structure, defined in the file installDir/target/h/usb/usbHst.h as follows:

Example 3-1 USBHST_DEVICE_DRIVER Structure

/*
* This structure is used to store the pointers to entry points and class
* driver information
*/

NOTE: Refer to 2.3 Configuring VxWorks with Wind River USB, p.12 to learn how to
include these components.

3 USB Host Drivers
3.3 The USB Host Driver

37

3

typedef struct usbhst_device_driver
{
/* Vendor Specific or class specific flag */
BOOL bFlagVendorSpecific;

/* Vendor ID (if vendor) or Class Code */
UINT16 uVendorIDorClass;

/* Dev ID (if vendor) or SubClass Code */
UINT16 uProductIDorSubClass;

/* DevRel num (if vendor) or Protocol code */
UINT16 uBCDUSBorProtocol;

/*
* Function registered as to be called when
* a matching interface/device is connected
*/

USBHST_STATUS (*addDevice) (UINT32 hDevice,
UINT8 uInterfaceNumber,
UINT8 uSpeed,
void **pDriverData);

/*
* Function registered as to be called when
* a matching interface/device is disconnected
*/

void (*removeDevice)(UINT32 hDevice,
void * pDriverData);

/*
* Function registered as to be called when
* a matching interface/device is suspended
*/

void (*suspendDevice) (UINT32 hDevice,
void * pDriverData);

/*
* Function registered as to be called when
* a matching interface/device is resumed

 */

void (*resumeDevice) (UINT32 hDevice,
void * pDriverData);

} USBHST_DEVICE_DRIVER, *pUSBHST_DEVICE_DRIVER;

In order to communicate with USB devices, the client modules must register this
data structure with the USBD by calling usbHstDriverRegister().

When a client registers with the USBD, the USBD allocates per-client data
structures that are later used to track all requests made by that client.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

38

There are two types of USB device:

■ Class-specific devices - these devices adhere to the standard USB class
specification supported by www.usb.org. Class-specific devices are identified
by class, subclass, and protocol.

■ Vendor-specific devices - these devices do not adhere to the standard USB
class specification and their implementation are vendor-specific.
Vendor-specific devices are identified by vendor ID, device ID, and
binary-coded decimal (BCD) protocol.

The Wind River USB host stack 2.0 provides support to register both kinds of
device with the USB subsystem. The USBD client is notified whenever a device of
a particular type is attached or removed. The client can specify callback routines to
request this notification.

When a client no longer intends to use the USBD, it must call
usbHstDriverDeregister() in order to release its per-client data.

Example 3-2 Registration and Deregistration of a USBD Client

The following code fragment demonstrates the registration and deregistration of a
USBD client. The callbacks specified by the client are DeviceAdd_Callback,
DeviceRemove_CallBack, DeviceSuspend_Callback, and
DeviceResume_Callback. These callbacks notify the client of a device attachment,
detachment, suspend, and resume, respectively.

/**/
/*
* Example code for registration and de-registration
*/

pUSBHST_DEVICE_DRIVER pDriverData;
USBHST_STATUS status;

/* allocate structure for driver specific data */
if (!(pDriverData = OSS_CALLOC (sizeof (USBHST_DEVICE_DRIVER))))

return ERROR;

/* initialize structure with class, subclass,
* protocol and callback details
*/

pDriverData->bFlagVendorSpecific = 0;
pDriverData->uVendorIDorClass = deviceClass;
pDriverData->uProductIDorSubClass = deviceSubClass;
pDriverData->uBCDUSBorProtocol = deviceProtocol;
pDriverData->addDevice = DeviceAdd_Callback;
pDriverData->removeDevice = DeviceRemove_CallBack;
pDriverData->suspendDevice = DeviceSuspend_Callback;
pDriverData->resumeDevice = DeviceResume_Callback;

www.usb.org

3 USB Host Drivers
3.3 The USB Host Driver

39

3

/* register the client with USBD */

status = usbHstDriverRegister (pDriverData, NULL);

if (status != USBHST_SUCCESS)
{

/* release driver specific structure */

OSS_FREE (pDriverData);
return ERROR;
}

/* deregister the client */

status = usbHstDriverDeregister (pDriverData);

Standard Request Interfaces

The USB specification defines a set of standard requests, a subset of which must be
supported by all USB devices. Typically, a client uses these routines to interrogate
a device’s descriptors—thus determining the device’s capabilities—and to set a
particular device configuration.

Some of the standard request interfaces exposed by the USBD are as follows:

usbHstGetDescriptor()
This routine is used to issue the GET_DESCRIPTOR USB standard request.

usbHstSetDescriptor()
This routine is used to issue the SET_DESCRIPTOR USB standard request.

usbHstGetInterface()
This routine is used to issue the GET_INTERFACE USB standard request.

usbHstSetInterface()
This routine is used to issue the SET_INTERFACE USB standard request.

usbHstGetConfiguration()
This routine is used to issue the GET_CONFIGURATION USB standard
request.

usbHstSetConfiguration()
This routine is used to issue the SET_CONFIGURATION USB standard request.

usbHstClearFeature()
This routine is used to issue the CLEAR_FEATURE USB standard request.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

40

usbHstSetFeature()
This routine is used to issue the SET_FEATURE USB standard request.

usbHstGetStatus()
This routine is used to issue the GET_STATUS USB standard request.

usbHstSetSynchFrame()
This routine is used to issue the SYNCH_FRAME USB standard request.

Example 3-3 Standard Request Interface

The following example shows the standard request interface
usbHstSetDescriptor() provided by the USB host stack.

USBHST_STATUS IssueDeviceSetDescriptor
(
UINT32 hDevice,
UINT32 uSize,
PUCHAR pBuffer
)

{
/* To store the setup packet */
USBHST_SETUP_PACKET SetupPacket;

/* To store the USB request block */
USBHST_URB Urb;

/* To store the usb status returned on submission of request */
USBHST_STATUS nStatus = USBHST_FAILURE;

nStatus = usbHstSetDescriptor (hDevice, USBHST_DEVICE_DESC,
0, 0, pBuffer, uSize);

/* Check the status returned */
if (USBHST_SUCCESS == nStatus)

{
/* Reset the device after set descriptor of device */
}

return nStatus;

}

Data Transfer Interfaces

Once a client has configured a device, the client can begin to exchange data with
that device using the data transfer interfaces provided by the USBD. Control, bulk,
interrupt, and isochronous transfers are described using a single USBHST_URB
data structure (defined in usbHst.h).

3 USB Host Drivers
3.3 The USB Host Driver

41

3

The data transfer interfaces exposed by the USBD are usbHstURBSubmit() and
usbHstURBCancel().

Class drivers use these interfaces to:

■ Submit a data transfer request.

■ Cancel a data transfer request.

■ Issue class-specific or vendor-specific requests using data transfers on the
default control endpoint.

Example 3-4 Data Transfer Interface

The following example illustrates the data transfer interface usbHstURBSubmit()
provided by USB host stack.

/* Callback routine for blocking calls */

USBHST_STATUS Block_CompletionCallback(PUSBHST_URB pUrb)
{

/* Check if pContext is valid */
if ((NULL == pUrb) || (NULL == pUrb->pContext))

{
return USBHST_FAILURE;
}

/* Release the event(release a semaphore) */

OS_RELEASE_EVENT((OS_EVENT_ID)pUrb->pContext);
return USBHST_SUCCESS;

} /* End of routine Block_CompletionCallback */

/* Issue block routine */

USBHST_STATUS IssueBlockBulkSubmitUrb
(
UINT32 hDevice,
UINT8 uRequest,
UINT8 uRequestCode,
UINT16 uValue,
UINT16 uIndex,
UINT32 uSize,
PUCHAR pBuffer
)

{
/* To store the USB request block */
USBHST_URB Urb;

/* To store the usb status returned on submission of request */
USBHST_STATUS nStatus = USBHST_FAILURE;

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

42

/* To store the event id */
OS_EVENT_ID EventId;

/* Allocate memory for urb and reset its values */
.........................
.........................
.........................

/* Create transfer completion event for making a
* blocking call (create a semaphore)
*/

EventId = OS_CREATE_EVENT(OS_EVENT_NON_SIGNALED);

/* Populate the Urb structure */
USBHST_FILL_BULK_URB(&Urb, hDevice, 0, pBuffer, uSize,

USBHST_SHORT_TRANSFER_OK, Block_CompletionCallback,
NULL, USBHST_FAILURE);

/* Call the submitURB routine to submit the URB. */
nStatus = usbHstURBSubmit (&Urb);

/* Check the status */
if (USBHST_SUCCESS == nStatus)

{

/* Wait for the completion of the event(release of semaphore) */
OS_WAIT_FOR_EVENT(EventId, OS_WAIT_INFINITE);

/* Store the status returned by Urb */
nStatus = Urb.nStatus;
}

/* Update parameters and free the resources */
.........................
.........................

/* Destroy the event(destroy the semaphore) */
OS_DESTROY_EVENT(EventId);

/* Return the status of Urb */
return nStatus;

}

3.3.2 USBD 1.1 Compatibility

This is provided for the compatability of existing USB class drivers. Wind River
recommends using the USB 2.0 API for all new development.

3 USB Host Drivers
3.3 The USB Host Driver

43

3

Registering Client Modules

Client modules that intend to make use of the USBD to communicate with USB
devices must, in addition to calling usbdInitialize(), register with the USBD by
calling usbdClientRegister(). When a client registers with the USBD, the USBD
allocates per-client data structures that are later used to track all requests made by
that client. During client registration, the USBD also creates a callback task for each
registered client (see Client Callback Tasks, p.43). After successfully registering a
new client, the USBD returns a handle, USBD_CLIENT_HANDLE, that must be
used by that client when making subsequent calls to the USBD.

When a client no longer intends to use the USBD, it must call
usbdClientUnregister() in order to release its per-client data and callback task.
Any outstanding USB requests made by the client are canceled at that time.

Example 3-5 Registration and Deregistration of the USBD Client

The following code fragment demonstrates the registration and deregistration of a
USBD client:

USBD_CLIENT_HANDLE usbdClientHandle;

/* Register a client named "USBD_TEST" with the USBD. */
if (usbdClientRegister ("USBD_TEST", &usbdClientHandle) != OK)

{
/* Attempt to register a new client failed. */
return ERROR;
}

/* Client is registered...application code follows. */
...
...
/* Unregister the client. */
usbdClientUnregister (usbdClientHandle);

Client Callback Tasks

USB operations can be time-critical. For example, both USB interrupt and
isochronous transfers depend on timely servicing in order to work correctly. In a
host system in which several different USBD clients are present, one client may
interfere with the timely execution of other clients’ service of time-sensitive USB
traffic. The Wind River USBD introduces per-client callback tasks to manage this
problem.

Many USB events can result in callbacks to a USBD client. For example, whenever
the USBD completes the execution of a USB I/O request packet (IRP), the client’s

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

44

IRP callback routine is invoked. Similarly, whenever the USBD recognizes a
dynamic attachment event, one or more client’s dynamic attachment callback
routines are invoked. Instead of invoking these callback routines immediately, the
USBD schedules the callbacks to be performed by the callback task for the
appropriate USBD clients. Normally, the callback task for each client is “dormant”
(in a blocked state). When the USBD schedules a callback for a client, the
corresponding client callback task “wakes up” (unblocks) and performs the
callback. This approach allows the USBD to process all outstanding USB events
before the clients themselves obtain control of the CPU.

The callback task for each client inherits the VxWorks task priority of the task that
originally called usbdClientRegister(). This ensures that callbacks are processed
at the task priority level intended by each client and allows you to write clients to
take advantage of task priorities as a means of ensuring proper scheduling of
time-sensitive USB traffic.

Because each client has its own callback task, clients have greater flexibility in the
amount of work they can do during the callback. For example, during callback, it
is acceptable for executing code to block without hurting the performance of the
USBD or other USBD clients.

Client callback tasks have the VxWorks task name tUsbdCln.

Dynamic Attachment Registration

A typical USBD client wants to be notified whenever a device of a particular type
is attached or removed. By calling the usbdDynamicAttachRegister() routine, a
client can specify a callback routine to request such notification.

USB device types are identified by a class, subclass, and protocol (in case of class
specific devices) and by vendor ID, product ID, and BCD device (in case of vendor
specific devices). Standard USB classes are defined in usb.h as USB_CLASS_XXXX.
Subclass and protocol definitions depend on the class; therefore, these constants
are generally defined in the header files associated with a specific class.
Sometimes, a client is interested in a narrow range of devices. In this case, it
specifies values for the class, subclass, and protocol (for class-specific devices) and
specifies vendor ID, product ID, and BCD device (for vendor specific devices)
when registering through usbdDynamicAttachRegister().

For example, the USB keyboard class driver, usbKeyboardLib, registers for a
human interface device (HID) class of USB_CLASS_HID, a subclass of
USB_SUBCLASS_HID_BOOT, and a protocol of
USB_PROTOCOL_HID_BOOT_KEYBOARD (the subclass and protocol are defined

3 USB Host Drivers
3.3 The USB Host Driver

45

3

in usbHid.h). In response, by means of the callback mechanism, the USBD notifies
the keyboard class driver whenever a device matching exactly this criterion is
attached or removed.

In other cases, a client's interest is broader. In this case, the constant
USBD_NOTIFY_ALL (defined in usbdLib.h) can be substituted for any or all of the
class, subclass, and protocol match criteria. For example, the USB printer class
driver, usbPrinterLib, registers for a class of USB_CLASS_PRINTER, subclass of
USB_SUBCLASS_PRINTER (defined in usbPrinter.h), and a protocol of
USBD_NOTIFY_ALL.

While a typical client makes only a single call to usbdDynamicAttachRegister(),
there is no limit to the number of concurrent notification requests a client can
make.

A single client can register concurrently for attachment notification of as many
device types as desired.

Example 3-6 Dynamic Attachment Registration Routines

The following code fragments demonstrate the correct use of the dynamic
attachment registration routines:

/***
* attachCallback - called by USBD when a device is attached/removed
*
* The USBD invokes this callback when a USB device is attached to or
* removed from the system. <nodeId> is the USBD_NODE_ID of the node being
* attached or removed. <attachAction> is USBD_DYNA_ATTACH or
* USBD_DYNA_REMOVE.
*
* RETURNS: N/A
*/
LOCAL VOID attachCallback

(
USBD_NODE_ID nodeId,
UINT16 attachAction,
UINT16 configuration,
UINT16 interface,
UINT16 deviceClass,
UINT16 deviceSubClass,
UINT16 deviceProtocol
)
{
/* Depending on the attachment code, add or remove a device. */
switch (attachAction)

{
case USBD_DYNA_ATTACH:
/* A device is being attached. */

printf ("New device attached to system.\n");
break;

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

46

case USBD_DYNA_REMOVE:
/* A device is being detached. */

printf ("Device removed from system.\n");
break;

}
}

During the initialization of the application, the following code fragment also
appears:

/*
* Register for dynamic notification when a USB device is
* attached to or removed from the system.
* For the sake of demonstration, we'll request notification for
* USB printers, though this same code could be used for
* any other type of device.
*
* usbdClientHandle is the USBD_CLIENT_HANDLE for the client.
* USB_CLASS_PRINTER is defined in usb.h. USB_SUBCLASS_PRINTER
* is defined in usbPrinter.h. USBD_NOTIFY_ALL is a wild-card
* that matches anything. In this case we use it to match any
* USB programming interface.
*/
if (usbdDynamicAttachRegister (usbdClientHandle, USB_CLASS_PRINTER,

USB_SUBCLASS_PRINTER, USBD_NOTIFY_ALL,FALSE, attachCallback) != OK)
{
/* Attempt to register for dynamic attachment notification failed.*/
return ERROR;
}

/*
* attachCallback() - above - is now called whenever a USB printer
* is attached to or removed from the system.
*/
...

/*
* Cancel the dynamic attachment registration. Each parameter
* emust match xactly those found in an earlier call to
* usbdDynamicAttachRegister().
*/
usbdDynamicAttachUnRegister (usbdClientHandle, USB_CLASS_PRINTER,

USB_SUBCLASS_PRINTER, USBD_NOTIFY_ALL, attachCallback);

The following is the API definition for usbdDynamicAttachRegister():

STATUS usbdDynamicAttachRegister
(
USBD_CLIENT_HANDLE clientHandle, /* Client handle */
UINT16 deviceClass, /* USB class code */
UINT16 deviceSubClass, /* USB sub-class code */
UINT16 deviceProtocol, /* USB device protocol code */
BOOL vendorSpecific, /* for vendor specific devices */

* TRUE for vendor specific devices
* FALSE for class specific devices */

USBD_ATTACH_CALLBACK attachCallback /* User-supplied callback */
)

3 USB Host Drivers
3.3 The USB Host Driver

47

3

A client can specify if it wants to receive notification only for vendor-specific
devices. In such a case, the vendorSpecific flag during registration is set to TRUE.
The deviceClass, deviceSubClass and deviceProtocol are set to vendorID,
deviceID, and bcdDevice, respectively.

In case the client wants to receive notification for class-specific devices, the
vendorSpecific flag is set to FALSE during the call to
usbdDynamicAttachRegister(). The deviceClass, deviceSubClass, and
deviceProtocol are set to class, subclass, and protocol, respectively.

Example 3-7 Registering a Callback

The following code fragment demonstrates the registration of the callback using
usbdDynamicAttachRegister() for class-specific and vendor-specific devices.

/* for class specific devices */
usbdDynamicAttachRegister (usbdClientHandle,

class,
 subclass,
 protocol,
FALSE,
 callbackFunction
);

/* for vendor specific devices */
usbdDynamicAttachRegister (usbdClientHandle,

vendorID,
productID,
bcdDevice,
TRUE,
callbackFunction
);

Node IDs

USB devices are always identified using a USBD_NODE_ID. The USBD_NODE_ID
is, in effect, a handle created by the translation unit to track a device (the node ID
was created by the USBD in USB 1.1). It has no relationship to the device’s actual
USB address. This reflects the fact that clients are usually not interested in knowing
to which USB/host controller a device is physically attached. Because each device
is referred to using the abstract concept of a node ID, the client can remain
unconcerned with the details of physical device attachment and USB address
assignment, and the USBD can manage these details internally.

When a client is notified of the attachment or removal of a device, the USBD
always identifies the device in question using USBD_NODE_ID. Likewise, when
the client wishes to communicate through the USBD with a particular device, it
must pass USBD_NODE_ID for that device to the USBD.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

48

Bus Enumeration Routines

The routines usbdBusCountGet(), usbdRootNodeIdGet(),
usbdHubPortCountGet(), usbdNodeIdGet(), and usbdNodeInfoGet()—
formerly provided by the usbdLib module in USB 1.1—are provided in USB 2.0 for
backward compatibility with the USB 1.1 host stack. As a group, these are called
bus enumeration routines, and they allow USBD clients to enumerate the network
of devices attached to each host controller.

These routines are useful in the authoring of diagnostic tools and test programs
such as usbTool. However, when the caller uses these routines, it has no way of
knowing if the USB topology changes after enumeration or even in
mid-enumeration. Therefore, authors of traditional clients, such as USB class
drivers, are advised not to use these routines.

Device Configuration

The USB specification defines a set of standard requests, a subset of which must be
supported by all USB devices. Typically, a client uses the following routines to
interrogate a device’s descriptors—thus determining the device’s capabilities—
and to set a particular device configuration:

The USBD 1.1 standard routines are as follows:

■ usbdFeatureClear() - clears a USB feature

■ usbdFeatureSet() - sets a USB feature

■ usbdConfigurtionGet() - gets the current configuration from the device

■ usbdConfigurationSet() - sets the configuration of the device

■ usbdDescriptorGet() - gets the device, configuration, interface, endpoint, and
string descriptors from the device

■ usbdDescriptorSet() - sets the device, configuration, interface, endpoint, and
string descriptors on the device

■ usbdInterfaceGet() - gets the current alternate setting for the given device
interface

■ usbdInterfaceSet() - sets the alternate setting for the given device interface

■ usbdStatusGet() - retrieves the status from a USB device, interface or
endpoint

■ usbdSynchFrameGet() - retrieves the device frame numbers

3 USB Host Drivers
3.3 The USB Host Driver

49

3
The USBD itself takes care of certain USB configuration issues automatically. Most
critically, the USBD internally implements the code necessary to manage USB hubs
and to set device addresses when new devices are added to the USB topology.
Clients must not attempt to manage these routines themselves, for doing so is
likely to cause the USBD to malfunction.

The USBD also monitors configuration events. When a USBD client invokes a
USBD routine that causes a configuration event, the USBD automatically resets the
USB data toggles (DATA0 and DATA1) associated with the device pipes and
endpoints. For example, a call to the USB command usbdConfigurationSet()
issues the set configuration command to the device, and in the process resets the
data toggle to DATA0. Because the USBD handles USB data toggles automatically,
you do not typically need to concern yourself with resetting data toggles. For an
explanation of pipes and endpoints in the USB environment, see Data Flow, p.51.
For more information about USB data toggles, see the USB Specification 2.0.

Example 3-8 Reading and Parsing a Device Descriptor

Device configuration depends heavily on the type of device being configured. The
following code fragment demonstrates how to read and parse a typical device
descriptor:

/* USB_MAX_DESCR_LEN defined in usb.h */
UINT8 bfr [USB_MAX_DESCR_LEN];

UINT16 actLen;

/* USB_CONFIG_DESCR defined in usb.h */
pUSB_CONFIG_DESCR pCfgDescr;

/* USB_INTERFACE_DESCR is also in usb.h */
pUSB_INTERFACE_DESCR pIfDescr;

/* Read the configuration descriptor. In the following fragment
* it is assumed that nodeId was initialized, probably in response
* to an earlier call to the client’s dynamic attachment
* notification callback (see above).
*/

if (usbdDescriptorGet (usbdClientHandle, nodeId,
USB_RT_STANDARD | USB_RT_DEVICE, USB_DESCR_CONFIGURATION, 0, 0,
sizeof (bfr), bfr, &actLen) != OK)

{
/* We failed to read the device’s configuration descriptor. */
return FALSE;
}

NOTE: For more details on these APIs, refer to USB API Reference.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

50

/* Use the routine usbDescrParse() - exported by usbLib.h -
* to extract the configuration descriptor and the first
* interface descriptor from the buffer.
*/

if ((pCfgDescr = usbDescrParse (bfr, actLen, USB_DESCR_CONFIGURATION))
== NULL)
{
/* No configuration descriptor was found in the buffer. */
return FALSE;
}

if ((pIfDescr = usbDescrParse (bfr, actLen, USB_DESCR_INTERFACE))
== NULL)
{
/* No interface descriptor was found in the buffer. */
return FALSE;
}

Pipe Creation and Deletion

USB data transfers are addressed to specific endpoints within each device.1 The
channel between a USBD client and a specific device endpoint is called a pipe. Each
pipe has a number of characteristics, including:

■ the USBD_NODE_ID of the device
■ the endpoint number on the device
■ the direction of data transfer
■ the transfer type
■ the maximum packet size
■ bandwidth requirements
■ latency requirements

In order to exchange data with a device, a client must first create a pipe. In
response to a client request to create a new pipe, the USBD creates a
USBD_PIPE_HANDLE, which the client must use for all subsequent operations on
the pipe.

Example 3-9 Creating a Pipe for Sending Data on a Printer

The following code fragment demonstrates the creation of a pipe for sending data
to the bulk output endpoint on a printer:

1. Unlike IEEE-1394, the USB treats an isochronous transfer as an exchange between the USB
host and a specific USB device. In contrast, 1394 treats isochronous transfers as a broadcast
to which any number of 1394 devices can listen simultaneously.

3 USB Host Drivers
3.3 The USB Host Driver

51

3

USBD_PIPE_HANDLE outPipeHandle;

/* Create a pipe for output to the printer.
* It is assumed that endpoint,configValue, interface,
* and maxPacketSize were determined by reading
* the appropriate descriptors from the device.
*/

if (usbdPipeCreate (usbdClientHandle, nodeId, endpoint, configValue,
interface, USB_XFRTYPE_BULK, USB_DIR_OUT, maxPacketSize, 0, 0,
&outPipeHandle) != OK)
{
/* We failed to create the pipe. */
return ERROR;
}

If the pipe is no longer required, it must be destroyed. Destroying a pipe removes
all references for that pipe, and no further data transfer can occur on that pipe. In
order to destroy the pipe, one must specify the USBD_CLIENT_HANDLE (the
handle to the client module) and USBD_PIPE_HANDLE (the handle to the pipe).

Example 3-10 Deleting a Pipe

The following code fragment demonstrates the deletion of pipe for a bulk out
endpoint on a printer:

USBD_PIPE_HANDLE outPipeHandle;
USBD_CLIENT_HANDLE usbdClientHandle;

/* Destroys the pipe */

if (usbdPipeDestroy (usbdClientHandle, outPipeHandle) != OK)
{
/* We failed to destroy the pipe. */
return ERROR;
}

Data Flow

Once a client has completely configured a pipe, it can begin to exchange data with
the device using the pipe and transfer routines provided by the USBD.

Control, bulk, interrupt, and isochronous transfers are described using a single
USB_IRP data structure (defined in usb.h). Figure 3-2 illustrates the data flow.

NOTE: When the usbdPipeDestroy() routine is called, it looks for IRPs pending
on the endpoint. If it finds any, it aborts all the pending transfers on the endpoint,
then destroys the pipe.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

52

Figure 3-2 State-Level Diagram of Data Flow

HCDDevice Driver Translation Unit USBD HC Device

Creates URBs and registers
usbtuDataUrbCompleteCallback

as callback

usbTransfer (clientHandle,
pipeHandle, &irps)

Create
HC-specific

data structure

Creates IRPS

Copy data to buffer

OUT

DATA

ACK

Interrupt
generated

Sets URB:: result =
USBHST_SUCCESS

usbtuDataUrbCompleteCallback(pUbb)

Sets IRB:: result =
SUCCESS

USBHST_HC_DRIVER:
submitURB (pUrb)

Calls the client Callback

usbHstURBSubmit
(pUrb)

3 USB Host Drivers
3.3 The USB Host Driver

53

3

The usbdTransfer() interface is used to transfer the data between the host and the
device.

Example 3-11 Data Transfer on a Pipe

The following code fragment demonstrates the data transfer on a pipe for a bulk
out endpoint on a printer:

/***/

UINT8 bfr [4096]; /* a buffer of arbitrary size. */
UINT16 bfrCount; /* amount of data in the buffer. */
USB_IRP irp;

/* The code here would presumably put data into the buffer
* and initialize bfrCount with the amount of data in the buffer.
*/
...
...
/* Initialize IRP. */
memset (&irp, 0, sizeof (irp));
irp.userPtr = ourUserPtr; /* a value to use to our callback */
irp.irpLen = sizeof (Irp); /* the length of the IRP */
irp.userCallback = ourIrpCallback; /* our IRP completion callback */
irp.timeout = 30000; /* 30 second timeout */
irp.transferLen = bfrCount;
irp.bfrCount = 1;
irp.bfrList [0].pid = USB_PID_OUT;
irp.bfrList [0].pBfr = bfr;
irp.bfrList [0].bfrLen = count;

/* Submit IRP */
if (usbdTransfer (usbdClientHandle, outPipeHandle, &irp) != OK)

{
/* An error here means that our IRP was malformed. */
return ERROR;
}

The usbdTransfer() function returns as soon as the IRP has been successfully
queued. If there is a failure in delivering the IRP to the HCD, then usbdTransfer()
returns an error. The actual result of the IRP is checked after the userCallback
routine has been invoked.

The class driver may submit the next IRP, depending upon the result of the
callback routine. It may resubmit the IRP or call the usbdTransferAbort() routine
to cancel all submitted IRPs.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

54

3.4 Host Controller Drivers

This section describes the interface and requirements for HCDs. The
Wind River USB host stack comes with EHCI, OHCI, and UHCI drivers. This
section is essential if you are creating an HCD for a host controller that Wind River
does not already support. This section also explains USBD data structures and
USBD interfaces used by the host controller driver.

3.4.1 Registering the Host Controller Driver

All HCDs are required to register with the USBD by calling the routine
usbHstHCDRegister(). This routine takes the following form:

USBHST_STATUS usbHstHCDRegister
(
pUSBHST_HC_DRIVER pHCDriver,
UINT32 *phHCDriver,
void * pContext
);

3.4.2 USBHST_HC_DRIVER Structure

The USBHST_HC_DRIVER structure contains the HCD function pointers. During
HCD initialization, this structure is populated and registered with the USB host
stack. The USBD uses the function pointers in this structure to communicate with
the HCD

Example 3-12 USBHST_HC_DRIVER Structure

This structure takes the following form:

/* This structure contains the HC driver function pointers */
typedef struct usbhst_hc_driver

{
/* Number of bus for this host controller */
UINT8 uNumberOfBus;

/* Function pointer to get the frame number */

USBHST_STATUS (*getFrameNumber) (UINT8 uBusIndex,
UINT16 *puFrameNumber);

/* Function pointer to set the bit rate */
USBHST_STATUS (*setBitRate) (UINT8 uBusIndex,

BOOL bIncrement,
UINT32 *puCurrentFrameWidth);

3 USB Host Drivers
3.4 Host Controller Drivers

55

3

/* Function pointer to check if required bandwidth is avilable */

USBHST_STATUS (*isBandwidthAvailable) (UINT8 uBusIndex,
UINT8 uDeviceAddress,
UINT8 uDeviceSpeed,
UCHAR *pCurrentDescriptor,
UCHAR *pNewDescriptor);

/* Function pointer to create a pipe */

USBHST_STATUS (*createPipe) (UINT8 uBusIndex,
UINT8 uDeviceAddress,
UINT8 uDeviceSpeed,
UCHAR *pEndPointDescriptor,
UINT16 uHighSpeedHubInfo,
UINT32 *puPipeHandle);

/* Function pointer to modify the default pipe */

USBHST_STATUS (*modifyDefaultPipe) (UINT8 uBusIndex,
UINT32 uDefaultPipeHandle,
UINT8 uDeviceSpeed,
UINT8 uMaxPacketSize,
UINT16 uHighSpeedHubInfo);

/* Function pointer to delete a pipe */

USBHST_STATUS (*deletePipe) (UINT8 uBusIndex,
UINT32 uPipeHandle);

/* Function pointer to check if there are any
* requests pending on the pipe
*/
USBHST_STATUS (*isRequestPending) (UINT8 uBusIndex,

UINT32 uPipeHandle);

/* Function pointer to submit a USB request */

USBHST_STATUS (*submitURB) (UINT8 uBusIndex,
UINT32 uPipeHandle,
pUSBHST_URB pURB);

/* Function pointer to cancel USB request */

USBHST_STATUS (*cancelURB) (UINT8 uBusIndex,
UINT32 uPipeHandle,
pUSBHST_URB pURB);

/* Function pointer to submit the status of the clear TT request */

USBHST_STATUS (*clearTTRequestComplete)
(UINT8 uRelativeBusIndex,
void * pContext,
USBHST_STATUS nStatus);

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

56

/* Function pointer to submit the status of the reset TT request */

USBHST_STATUS (*resetTTRequestComplete) (UINT8 uRelativeBusIndex,
void * pContext,
USBHST_STATUS nStatus);

} USBHST_HC_DRIVER, *pUSBHST_HC_DRIVER;

3.4.3 Host Controller Driver Interfaces

All requests to the HCD are made by the USBD which calls function pointers
registered with the USBD. This subsection explains each of these routines.

USBHST_HC_DRIVER Structure

The following routine prototypes are in the structure USBHST_HC_DRIVER.

modifyDefaultPipe()
This routine modifies the properties of the default pipe (address 0, endpoint 0).

isBandwidthAvailable()
This routine determines if there is enough bandwidth to support the new
configuration or an alternate interface setting. The routine parses through the
configuration or interface descriptor. When the configuration descriptor is
passed as a parameter, it includes all the interface and endpoint descriptors.
Likewise, when the interface descriptor is passed as a parameter, it includes all
of the endpoint descriptors corresponding to that interface.

createPipe()
This routine parses and creates a pipe for the specified USB endpoint
descriptor. Upon creation, the pipe is added to a queue of pipes maintained for
transfers.

deletePipe()
This routine deletes a pipe corresponding to an endpoint. This routine
searches the list of pipes for the pipe corresponding to the given endpoint,
deletes it and updates the list. All pending transfers for the pipe are cancelled
and the callback routines for the transfers are called.

submitURB()
This routine submits a request to the endpoint. The routine populates any host
controller-specific data structures to submit a transfer. The new request is
added to the queue of requests pending for the endpoint. This routine is
implemented as a non-blocking routine. When a request completes, the
callback routine for the request is called.

3 USB Host Drivers
3.4 Host Controller Drivers

57

3

cancelURB()
This routine cancels a request submitted to an endpoint. The routine searches
the queue of requests pending for a given endpoint. If the desired request is
pending for the endpoint, the request is cancelled and the queue of requests
for the endpoint is updated

isRequestPending()
This routine checks for requests pending for an endpoint and returns a value
accordingly. If there are pending requests, it returns a Success status.

getFrameNumber()
This routine obtains the current frame number from the frame number
register.

setBitRate()
If the functionality is supported, this routine modifies the frame width. The
frame width can be incremented or decremented by one bit time once in every
six frames.

clearTTRequestComplete() and resetTTRequestComplete()
These routines are used to handle errors that occur during split transactions.
These routines are implemented only for an EHCI host controller. The EHCD
registers these routines with the USBD during initialization.

USBHST_USBD_TO_HCD_FUNCTION_LIST Structure

The EHCD maintains one more interface called
USBHST_USBD_TO_HCD_FUNCTION_LIST, defined in the file
installDir/target/h/usb/usbHst.h.

typedef struct usbHstUsbdToHcdFunctionList
{
/*
* Pointer to function, which will be called
* by the Host Controller Driver to submit clear TT request
*/
USBHST_STATUS (*clearTTRequest)(UINT32 hHCDriver,

UINT8 uRelBusIndex,
UINT8 uHighSpeedHubAddress,
UINT8 uHighSpeedPortNumber,
UINT16 wValue,
void * pContext);

/*
* Pointer to function, which will be called by
* Host Controller Driver to submit reset TT request
*/

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

58

USBHST_STATUS (*resetTTRequest)(UINT32 hHCDriver,
UINT8 uRelBusIndex,
UINT8 uHighSpeedHubAddress,
UINT8 uHighSpeedPortNumber,
void * pContext);

} USBHST_USBD_TO_HCD_FUNCTION_LIST,
*pUSBHST_USBD_TO_HCD_FUNCTION_LIST;

This data structure is registered with the HCD by the USBD.

/* Register the HCD with the USBD */

Status = usbHstHCDRegister(g_pEHCDriverInfo, &g_EHCDHandle,
&g_USBDRequestFunctions);

If an error occurs on the hub, the EHCD will not handle any request for that hub
unless the error is handled, that is, the transaction translator (TT) buffers are
cleared.

Figure 3-3 is a state diagram that explains how the split errors are handled using
above interface.

Figure 3-3 Handling Split Errors

Calls
USBHST_USBD_TO_HCD_FUNCTION_LIST
::clearTTRequest to notify the USBD
that an error has occurred on the hubAsks the hub class driver

to handle the error

Issues
Clear_TT_Buffer

Request

Notifies the USBD

Submits the next request

Calls USBHST_HC_DRIVER::
clearTTRequestComplete to notify
the HCD that the error is handled

EHCDUSBDHUB CLASS

3 USB Host Drivers
3.4 Host Controller Drivers

59

33.4.4 Registering a Bus for the Host Controller

All HCDs are required to register a bus for the host controller with the USB host
stack by calling the routine usbHstBusRegister(). For example, assuming that
there are three OHCI host controllers on the system, the following occurs:

1. The usbHstHCDRegister() routine is called once to register the OHCI HCD.

2. The usbHstBusRegister() routine is called three times to register the three
OHCI host controllers.

3.4.5 Deregistering the Bus for the Host Controller

All HCDs deregister the bus for the host controller with the USB host stack by
calling the usbHstBusDeregister() routine. This routine is called for the number
of the bus registered. If there are functional devices (active devices or configured
devices) on the bus, the bus is not deregistered.

3.4.6 Deregistering the Host Controller Driver

All HCDs deregister themselves from the USB host stack by calling the
usbHstHCDDeregister() routine. If there are buses registered for the HCD, the
HCD is not deregistered.

3.4.7 HCD Error Reporting Conventions

You are encouraged to use the existing HCD error codes when creating new HCDs.
According to Wind River convention, the HCD sets the system errno whenever it
returns an error. HCDs return the standard VxWorks constant USBHST_SUCCESS
when a routine completes successfully. HCD error codes are defined as follows:

■ USBHST_MEMORY_NOT_ALLOCATED
■ USBHST_INSUFFICIENT_BANDWIDTH
■ USBHST_INSUFFICIENT_RESOURCE
■ USBHST_INVALID_REQUEST
■ USBHST_INVALID_PARAMETER

NOTE: The Reset_TT request is handled similarly.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

60

■ USBHST_STALL_ERROR
■ USBHST_DEVICE_NOT_RESPONDING_ERROR
■ USBHST_DATA_OVERRUN_ERROR
■ USBHST_DATA_UNDERRUN_ERROR
■ USBHST_BUFFER_OVERRUN_ERROR
■ USBHST_BUFFER_UNDERRUN_ERROR
■ USBHST_TRANSFER_CANCELLED
■ USBHST_TIMEOUT
■ USBHST_BAD_START_OF_FRAME

3.4.8 Root Hub Emulation

HCDs are required to emulate the behavior of the root hub. That is, HCDs must
intercept transfer requests intended for the root hub and synthesize standard USB
responses to these requests. For example, when a host controller is first initialized,
the root hub must respond at the default USB address 0, and its downstream ports
must be disabled. The USBD interrogates the root hub, just as it would other hubs,
by issuing USB GET_DESCRIPTOR requests. If the hub class driver is registered,
the USBD calls the it to configure the root hub by issuing a series of SET_ADDRESS,
SET_CONFIGURATION, SET_FEATURE, and CLEAR_FEATURE requests. The HCD
recognizes which of these requests are intended for the root hub and responds to
them appropriately.

After configuration, the hub class driver begins polling the root hub’s interrupt
status pipe to monitor changes on the root hub’s downstream ports. The HCD
intercepts IRPs directed to the root hub’s interrupt endpoint and synthesizes the
appropriate replies. Typically, the HCD queues requests directed to the root hub
separately from those that actually result in bus operations.

61

 4
USB Class Drivers

4.1 Introduction 61

4.2 Hub Class Driver 62

4.3 Keyboard Driver 65

4.4 Mouse Driver 73

4.5 Printer Driver 77

4.6 Audio Driver 80

4.7 Mass Storage Class Driver 86

4.8 Communication Class Drivers 92

4.1 Introduction

This chapter provides information on the USB class drivers that are provided with
the Wind River USB host stack. prebuilt class drivers for several USB device types
are included in your installation.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

62

4.2 Hub Class Driver

Hubs are a class of USB device that provide extension ports for connecting more
USB devices to the USB host. The USB hub class driver controls the functionality
of a USB hub, including the root hub, which is emulated by the host controller
driver. The hub class driver provides two interfaces to the USB class drivers and
USB applications. The first, usbHubInit(), is used to initialize the hub class driver.
The second, usbHubExit(), is used to exit the hub class driver. The hub class
driver uses the USBD APIs to interact with the USB host stack.

4.2.1 Registering the Hub Class Driver

Like other class drivers, the hub class driver registers with the USBD by calling
usbHstDriverRegister(). By registering with the USBD, the hub class driver
provides an interface to the USBD for adding, removing, suspending, and
resuming a device. Figure 4-1 illustrates the registration process.

Figure 4-1 Registering the Hub Class Driver

Hub Class
Driver

USB Host
Stack

Host
Controller

Register class driver

Signal discovery of a root hub

Configure root hub

Submit status change interrupt
IN request on the interrupt

Root hub discovery returns

Register HCD driver

Signal presence of root hub

Signal root hub presence

4 USB Class Drivers
4.2 Hub Class Driver

63

4

Figure 4-2 Connecting a Device to a Hub

Interrupt request

Device connection

Status change interrupt
IN callback is called

Get the port status

Clear the port status

Reset the port

Submit the next interrupt IN request

Device reset

Interrupt request
Status change interrupt

IN callback is called

Signal a new device detected

Set the device address

Return the device handle

Configure device

Check for the power load of the device

Configure device returns

Submit the next interrupt IN request

Hub Class
Driver

USB Host
Stack Hub Device

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

64

After registering itself with the USBD, the hub class driver configures the root hub
for all of the host controller drivers registered with the USBD. Then the hub class
driver starts polling the interrupt pipe of the root hub to monitor changes on the
downstream ports.

4.2.2 Connecting a Device to a Hub

When a device is connected to a hub, the USB host stack informs the hub class
driver. The interaction shown in Figure 4-2 occurs between the hub class driver,
the USB host stack, the hub, and the device.

4.2.3 Removing a Device From a Hub

When a device is disconnected from a hub, the interaction shown in Figure 4-3
occurs between the hub class driver, the USB host stack, the hub, and the device.

Figure 4-3 Removing a Device from a Hub

DeviceHubUSB Host StackHub Class
Driver

Status change
interrupt IN callback

Interrupt request

Disconnected

Get port status

Clear port status

Signas device has been
disconnected

Issue the status change
interrupt IN request

4 USB Class Drivers
4.3 Keyboard Driver

65

4

4.2.4 Deregistering the Hub Class Driver

The hub class driver deregisters with the USB host stack by calling the
usbHstDriverDeregister() routine. After calling the routine, the hub class driver
stops polling the root hub’s interrupt pipe for changes on the downstream port.
Figure 4-4 illustrates the deregistration process.

4.3 Keyboard Driver

USB keyboards are described in human interface device (HID)-related
specifications. The Wind River implementation of the USB keyboard driver,
usbKeyboardLib, is concerned only with USB devices claiming to be keyboards as
set forth in the USB specification. The driver ignores other types of HIDs.

Figure 4-4 Deregistering the Hub Class Driver

Hub Class
Driver

USB Host
 Stack

Interrupt request is cancelled

Driver unregisters itself from the stack

NOTE: USB keyboards can operate according to either a boot protocol or a report
protocol. However, the usbKeyboardLib driver enables keyboards for operation
using the boot protocol only.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

66

4.3.1 SIO Driver Model

The USB keyboard class driver, usbKeyboardLib, follows the VxWorks serial I/O
(SIO) driver model, with certain exceptions and extensions. As the SIO driver
model presents a fairly limited, byte-stream oriented view of a serial device, the
keyboard driver maps USB keyboard scan codes to appropriate ASCII codes. Scan
codes and combinations of scan codes that do not map to the ASCII character set
are suppressed.

4.3.2 Initializing the Keyboard Class Driver

usbKeyboardLib must be initialized by calling usbKeyboardDevInit(), which in
turn initializes the internal resources of the keyboard class driver and registers the
keyboard class driver with the lower layers.

However, before a call to usbKeyboardDevInit(), the caller must ensure that the
USBD has been properly initialized. Please refer to 2.5.1 Initializing the USB Host
Stack Hardware, p.22, for information on how to initialize the USB host stack.

The different client applications can call usbKeyboardDevInit() multiple times,
but the driver internally maintains a usage counter. All the initialization of data
structures and registration with the lower layer happens on the very first call to the
usbKeyboardDevInit(). This call increments the usage counter from zero to one.
For all subsequent calls to the initialization routine, the usage counter is simply
incremented.

The following code example demonstrates how this is accomplished:

/* initializing the keyboard class driver */

STATUS usbKeyboardDevInit (void)
{
/* If not already initialized, then initialize
* internal structures and connection to USBD.
*/

if (initCount == 0)
{
/* initialize the data structures */
/* and register with the lower layer */
}

/* increment the usage count */

initCount++;
return OK;

}

4 USB Class Drivers
4.3 Keyboard Driver

67

4

4.3.3 Registering the Keyboard Class Driver

The keyboard class driver registers with the USBD by calling
usbdClientRegister(). In response to this call, the translation unit allocates
keyboard client data structures and a keyboard client callback task.

Once the keyboard class driver is successfully registered with the translation unit,
the translation unit returns a handle of type USBD_CLIENT_HANDLE which is
used for all subsequent communication with the lower layers.

After the keyboard class driver is successfully registered, the driver registers a
callback routine with the lower layers by calling the routine
usbdDynamicAttachRegister(). This routine is called whenever a device of a
particular class, subclass, and protocol is connected to or disconnected from the
USB subsystem. The callback routine takes the following form:

typedef VOID (*USBD_ATTACH_CALLBACK)
(
USBD_NODE_ID nodeId, /* USBD Handler */
UINT16 attachAction, /* notification for device

* attachment or removal
* USBD_DYNA_ATTACH or
* USBD_DYNA_REMOVE */

UINT16 configuration,/* configuration index */
UINT16 interface,/* interface number */
UINT16 deviceClass, /* Class ID */
UINT16 deviceSubClass, /* Sub-Class ID */
UINT16 deviceProtocol/* Protocol ID */
);

Refer to the Wind River USB for VxWorks API Reference for the API definition of
usbdDynamicAttachRegister().

Example 4-1 Registering the Keyboard Class Driver

The following code example explains how the keyboard class driver is registered
with the translation unit:

/* Registering the Keyboard Class Driver */

STATUS usbKeyboardDevInit (void)
{
…………………..
…………………..

if (usbdClientRegister (KBD_CLIENT_NAME, &usbdHandle) != OK
|| usbdDynamicAttachRegister (usbdHandle,

USB_CLASS_HID,
USB_SUBCLASS_HID_BOOT,
USB_PROTOCOL_HID_BOOT_KEYBOARD,FALSE,
usbKeyboardAttachCallback)

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

68

!= OK)

return ERROR;

…………………
}

The keyboard class driver unregisters itself with the lower layers by calling the
routine usbdClientUnregister().

/*
* un-registering the keyboard class driver
*/

usbdClientUnregister (usbdHandle);
usbdHandle = NULL;

4.3.4 Dynamic Device Attachment

Unlike most SIO drivers, the usbKeyboardLib driver does not support a fixed
number of channels. Rather, USB keyboards can be added to or removed from the
system at any time. Thus, the number of channels is dynamic, and clients of
usbKeyboardLib must be made aware of the appearance and disappearance of
channels. Therefore, this driver includes a set of routines that allows clients to
register for notification upon the attachment and removal of USB keyboards, and
the corresponding creation and deletion of channels.

In order to be notified of the attachment and removal of USB keyboards, clients
must register with usbKeyboardLib by calling
usbKeyboardDynamicAttachRegister(). Clients provide a callback routine of the
following form:

typedef VOID (*USB_KBD_ATTACH_CALLBACK)
(
pVOID arg, /* caller-defined argument */
SIO_CHAN *pChan, /* pointer to the affected SIO_CHAN */
UINT16 attachCode /* defined as USB_KBD_xxxx */
);

When usbKeyboardLib detects a new USB keyboard, each registered callback is
invoked with pChan pointing to a new SIO_CHAN structure and with attachCode set
to the value USB_KBD_ATTACH. When keyboards are removed from the system,
each registered callback is invoked with attachCode set to USB_KBD_REMOVE and
with pChan pointing to the SIO_CHAN structure of the keyboard that has been
removed.

The usbKeyboardLib driver maintains a usage count for each SIO_CHAN
structure. Callers can increase the usage count by calling

4 USB Class Drivers
4.3 Keyboard Driver

69

4

usbKeyboardSioChanLock(), or they can decrease it by calling
usbKeyboardSioChanUnlock(). Normally, if a keyboard is removed from the
system when the usage count is zero, usbKeyboardLib automatically releases the
SIO_CHAN structure formerly associated with the keyboard. However, clients that
rely on this structure can use the locking mechanism to force the driver to retain
the structure until it is no longer needed.

Consider an application that periodically polls a keyboard by calling the
pollInput() callback identified in a particular SIO_CHAN structure. This is an
example in which SIO_CHAN locking could be required.

The task responsible for polling runs in the background and operates
asynchronously with respect to the code that receives attachment or detachment
notification from usbKeyboardLib. If usbKeyboardLib frees the memory
associated with the SIO_CHAN structure as soon as the keyboard is unplugged, it
is possible that the pollInput() function pointer may be corrupted. If that occurs,
the application’s asynchronous polling task would fail upon calling the
now-corrupt pollInput() function pointer, probably taking down the system.

The application can use the SIO_CHAN locking mechanism to force
usbKeyboardLib to delay the release of the SIO_CHAN structure until after the
application has canceled the background polling operation.

Example 4-2 SIO_CHAN Locking

The following code fragments demonstrate the typical use of the dynamic
attachment and SIO_CHAN locking routines:

/* First, initialize the usbKeyboardLib. */
if (usbKeyboardDevInit () != OK)

{
/* We failed to initialize usbKeyboardLib. */
return ERROR;
}

/* Register for keyboard attachment/detachment notification. */
if (usbKeyboardDynamicAttachRegister (kbdAttachCallback, (pVOID) 1234)

!= OK)
{
/* We failed to register for attachment notification. */
return ERROR;
}

/* The kbdAttachCallback() routine will now be called asynchronously
* whenever a keyboard is attached to or detached from the system.
*/
...
/* Unregister for keyboard notification and shut down usbKeyboardLib. */
usbKeyboardDynamicAttachUnRegister (kbdAttachCallback, (pVOID) 1234);
usbKeyboardDevShutdown ();

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

70

Example 4-3 Keyboard Attachment

The keyboard attachment callback might resemble the following:

/***
* kbdAttachCallback - receives callbacks from USB keyboard SIO driver
*
* RETURNS: N/A
*/

LOCAL SIO_CHAN *pOurChan = NULL;

LOCAL VOID kbdAttachCallback
(
pVOID arg, /* caller-defined argument */
SIO_CHAN *pChan, /* pointer to the affected SIO_CHAN */
UINT16 attachCode /* defined as USB_KBD_xxxx */
)

{
UINT32 ourArg = (UINT32) arg;

/* The argument is any arbitrary value that may be of use to this
* callback. In this example, we just demonstrate that the value
* originally passed to usbKeyboardDynamicAttachRegister() shows up here
* as our argument.
*/

if (ourArg != 1234)
{
/* The argument never made it. */
...
}

switch (attachCode)
{
case USB_KBD_ATTACH:

/* Lock the SIO_CHAN structure so it doesn’t disappear on us. */
if (usbKeyboardSioChanLock (pChan) != OK)

{
/* This really shouldn’t be able to fail. */
...
}

/* Do other initialization stuff. */
pOurChan = pChan;
...
...
break;

case USB_KBD_DETACH:

/* Tear down any data structures we may have created. */
...
...

4 USB Class Drivers
4.3 Keyboard Driver

71

4

pOurChan = NULL;
/* Allow usbKeyboardLib to release the SIO_CHAN structure. */
usbKeyboardSioChanUnlock (pChan);
break;

}
}

4.3.5 ioctl Routines

The usbKeyboardLib driver supports the SIO ioctl interface. However, attempts
to set parameters, such as baud rates and start or stop bits, have no meaning in the
USB environment and return ENOSYS.

4.3.6 Data Flow

For each USB keyboard connected to the system, usbKeyboardLib sets up a USB
pipe to monitor keyboard input. Input, in the form of scan codes, is translated into
ASCII codes and placed in an input queue. If SIO callbacks have been installed and
usbKeyboardLib has been placed in the SIO interrupt mode of operation,
usbKeyboardLib invokes the character received callback for each character in the
queue. When usbKeyboardLib has been placed in polled mode, callbacks are not
invoked and the caller must fetch keyboard input using the driver's pollInput()
routine.

The usbKeyboardLib driver does not support output to the keyboard; therefore,
calls to the txStartup() and pollOutput() routines return errors. The only output
supported is the control of the keyboard LEDs, which usbKeyboardLib handles
internally.

The caller must be aware that usbKeyboardLib is not capable of operating in a true
polled mode, because the underlying USBD and USB HCD always operate in
interrupt mode.

Example 4-4 Keyboard to Display Keystrokes

The following code fragment demonstrates the use of usbKeyboardLib to display
keystrokes typed by the user:

int i;
char inChar;

/* Display the next ten keystrokes typed by the user. This code assumes that
* pOurChan was initialized as shown earlier and is currently not NULL.
*/

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

72

for (i = 0; i < 10; i++)
{
/* Wait for a keystroke */
while ((*pOurChan->pDrvFuncs->pollInput) (pOurChan, &inChar) != OK)

;

/* Display the keystroke. */
printf ("The user pressed ‘%c’.\n", inChar);
}

4.3.7 Typematic Repeat

USB keyboards do not implement typematic repeat, a feature that causes a key to
repeat if it is held down, typically for more than one-fourth or one-half second. If
you want this feature, implement it with the host software. For this purpose,
usbKeyboardLib creates a task, tUsbKbd, that monitors all open channels and
injects characters into input queues at an appropriate repeat rate.

For example, if a user presses and holds a key on a USB keyboard, a single report
is sent from the keyboard to the host indicating the key press. If no report is
received within a preset interval, indicating that the key has been released, the
tUsbKbd thread automatically injects additional copies of the same key into the
input queue at a preset rate. In the current implementation, the preset interval (the
delay) is 0.5 seconds, and the repeat rate is 15 characters per second.

4.3.8 Uninitializing the Keyboard Class Driver

The client application uninitializes the keyboard class driver by calling the routine
usbKeyboardDevShutdown(). This routine uninitializes the internal data
structures and removes the keyboard class driver from the USB subsystem.

NOTE: The keyboard class driver maintains a usage count which is incremented
every time a client application tries to initialize the keyboard class driver. The
uninitialization of a driver happens only when the usage count becomes zero.
Otherwise, for every call to usbKeyboardDevShutdown(), it is decremented by
one.

4 USB Class Drivers
4.4 Mouse Driver

73

4

4.4 Mouse Driver

USB mice are described in HID-related specifications. The Wind River
implementation of the USB mouse driver, usbMouseLib, concerns itself only with
USB devices claiming to be mice as set forth in the USB specification; the driver
ignores other types of HIDs, such as keyboards.

4.4.1 SIO Driver Model

The USB mouse class driver, usbMouseLib, follows the VxWorks serial I/O (SIO)
driver model, with certain exceptions and extensions.

4.4.2 Initializing the Mouse Class Driver

usbMouseLib must be initialized by calling usbMouseDevInit(), which in turn
initializes its connection to the USBD and other internal resources needed for
operation. All interaction with the USB host controllers and devices is handled
through the USBD.

Unlike some SIO drivers, usbMouseLib does not include data structures that
require initialization before calling usbMouseDevInit().

However, before a call to usbMouseDevInit(), the caller must ensure that the
USBD has been properly initialized by calling, at a minimum, usbdInitialize().
The caller must also confirm that at least one USB HCD is attached to the USBD,
using usbdHcdAttach(), before mouse operation can begin; however, it is not
necessary to call usbdHcdAttach() before initializing usbMouseLib. The
usbMouseLib driver uses the USBD dynamic attachment services and recognizes
USB mouse attachment and removal on the fly.

Unlike traditional SIO drivers, the usbMouseLib driver does not export entry
points for send, receive, and error interrupts. All interrupt-driven behavior is
managed by the underlying USBD and USB HCDs, so there is no need for a caller
or BSP to connect interrupts on behalf of usbMouseLib. For the same reason, there
is no post-interrupt-connect initialization code, and usbMouseLib therefore omits
the devInit2 entry point.

NOTE: USB mice operate according to either a boot protocol or a report protocol.
However, the usbMouseLib driver enables mice for operation using the boot
protocol only.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

74

4.4.3 Registering the Mouse Class Driver

The mouse class driver registers with the USBD by calling usbdClientRegister().
In response to this call, the translation unit allocates mouse client data structures
and a mouse client callback task.

Once the mouse class driver is successfully registered with the translation unit, the
translation unit returns a handle of type USBD_CLIENT_HANDLE which is used
for all subsequent communication with the lower layers.

After the mouse class driver is successfully registered, the driver registers a
callback routine with the lower layers by calling the routine
usbdDynamicAttachRegister(). This routine is called whenever a device of a
particular class, subclass, and protocol is connected to or disconnected from the
USB subsystem. The callback routine takes the following form:

typedef VOID (*USBD_ATTACH_CALLBACK)
(
USBD_NODE_ID nodeId, /* USBD Handler */
UINT16 attachAction, /* notification for device

* attachment or removal
* USBD_DYNA_ATTACH or
* USBD_DYNA_REMOVE */

UINT16 configuration,/* configuration index */
UINT16 interface,/* interface number */
UINT16 deviceClass, /* Class ID */
UINT16 deviceSubClass, /* Sub-Class ID */
UINT16 deviceProtocol/* Protocol ID */
);

Refer to the Wind River USB for VxWorks API Reference for the API definition of
usbdDynamicAttachRegister().

Example 4-5 Registering the Mouse Class Driver

The following code example explains how the mouse class driver is registered with
the translation unit:

/* Registering the Mouse Class Driver */

STATUS usbMouseDevInit (void)
{
…………………..
…………………..

if (usbdClientRegister (KBD_CLIENT_NAME, &usbdHandle) != OK
|| usbdDynamicAttachRegister (usbdHandle,

USB_CLASS_HID,
USB_SUBCLASS_HID_BOOT,
USB_PROTOCOL_HID_BOOT_KEYBOARD,FALSE,
usbMouseAttachCallback)

4 USB Class Drivers
4.4 Mouse Driver

75

4

!= OK)

return ERROR;

…………………
}

The mouse class driver unregisters itself with the lower layers by calling the
routine usbdClientUnregister().

/* un-registering the mouse class driver */

usbdClientUnregister (usbdHandle);
usbdHandle = NULL;

4.4.4 Dynamic Device Attachment

As with the USB keyboard class driver, the number of channels supported by this
driver is not fixed. Rather, USB mice can be added or removed from the system at
any time. Thus, the number of channels is dynamic, and clients of usbMouseLib
must be made aware of the appearance and disappearance of channels. Therefore,
this driver includes a set of routines that allows clients to register for notification
upon the attachment and removal of USB mice, and the corresponding creation
and deletion of channels.

In order to be notified of the attachment and removal of USB mice, clients must
register with usbMouseLib by calling usbMouseDynamicAttachRegister().
Clients provide a callback routine of the following form:

typedef VOID (*USB_MSE_ATTACH_CALLBACK)
(
pVOID arg, /* caller-defined argument */
SIO_CHAN *pChan, /* pointer to the affected SIO_CHAN */
UINT16 attachCode /* defined as USB_MSE_xxxx */
);

When usbMouseLib detects a new USB mouse, each registered callback is invoked
with pChan pointing to a new SIO_CHAN structure and with attachCode set to the
value USB_MSE_ATTACH. When a mouse is removed from the system, each
registered callback is invoked with attachCode set to USB_MSE_REMOVE and with
pChan pointing to the SIO_CHAN structure of the mouse that has been removed.

As with usbKeyboardLib, usbMouseLib maintains a usage count for each
SIO_CHAN structure. Callers can increment the usage count by calling
usbMouseSioChanLock() and can decrement it by calling
usbMouseSioChanUnlock(). For more information on using the SIO_CHAN
structure, see Example 4-2 in 4.3.4 Dynamic Device Attachment, p.68.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

76

4.4.5 ioctl Routines

The usbMouseLib driver supports the SIO ioctl interface. However, attempts to
set parameters, such as baud rates and start or stop bits, have no meaning in the
USB environment and return ENOSYS.

4.4.6 Data Flow

For each USB mouse connected to the system, usbMouseLib sets up a USB pipe to
monitor input from the mouse, in the form of HID boot reports. These mouse boot
reports are of the following form, as defined in usbHid.h:

typedef struct hid_mse_boot_report
{
UINT8 buttonState; /* buttons */
char xDisplacement; /* signed x-displacement */
char yDisplacement; /* signed y-displacement */
} HID_MSE_BOOT_REPORT, *pHID_MSE_BOOT_REPORT;

In order to receive these reports, a client of usbMouseLib must install a special
callback using the driver’s callbackInstall() routine. The callback type is
SIO_CALLBACK_PUT_MOUSE_REPORT, and the callback itself takes the following
form:

VOID (*MSE_REPORT_CALLBACK)
(
void *callbackArg, /* caller-defined argument */
pHID_MSE_BOOT_REPORT pReport /* pointer to mouse boot report */
);

The client callback interprets the report according to its needs, saving any data that
may be required from the HID_MSE_BOOT_REPORT structure.

The usbMouseLib driver does not support polled modes of operation; nor does it
support the traditional SIO_CALLBACK_PUT_RCV_CHAR callback. Given the
structured nature of the boot reports received from USB mice,
character-by-character input of boot reports would be inefficient and could lead to
report framing problems in the input stream.

4.4.7 Uninitializing the Mouse Class Driver

The client application uninitializes the mouse class driver by calling the routine
usbMouseDevShutdown(). This routine uninitializes the internal data structures
and removes the mouse class driver from the USB subsystem.

4 USB Class Drivers
4.5 Printer Driver

77

4

4.5 Printer Driver

USB printers are described in HID-related specifications. The printer class driver
specification presents two kinds of printers: unidirectional printers (output only)
and bidirectional printers (capable of both output and input). The usbPrinterLib
driver is capable of handling both types. If a printer is unidirectional, the driver
only allows characters to be written to the printer; if the printer is bidirectional, it
allows both output and input streams to be written and read.

4.5.1 SIO Driver Model

The USB printer class driver, usbPrinterLib, follows the VxWorks serial I/O (SIO)
driver model, with certain exceptions and extensions. This driver provides the
external APIs expected of a standard multi-mode serial (SIO) driver and adds
extensions that support the hot-plugging USB environment.

4.5.2 Initializing the Printer Driver

As with standard SIO drivers, usbPrinterLib must be initialized by calling
usbPrinterDevInit(), which in turn initializes its connection to the USBD and
other internal resources needed for operation. All interaction with the USB host
controllers and devices is handled through the USBD.

Unlike some SIO drivers, usbPrinterLib does not include data structures that
require initialization before calling usbPrinterDevInit().

However, before a call to usbPrinterDevInit(), the caller must ensure that the
USBD has been properly initialized. For details for how to initialize the USB host
stack, refer to 2.5.1 Initializing the USB Host Stack Hardware, p.22.

Unlike traditional SIO drivers, the usbPrinterLib driver does not export entry
points for send, receive, and error interrupts. All interrupt-driven behavior is
managed by the underlying USBD and USB HCDs, so there is no need for a caller
or BSP to connect interrupts on behalf of usbPrinterLib. For the same reason, there
is no post-interrupt-connect initialization code, and usbPrinterLib therefore omits
the devInit2 entry point.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

78

4.5.3 Registering the Printer Driver

The printer class driver registers with the USBD by calling usbdClientRegister().
In response to this call, the translation unit allocates printer client data structures
and a printer client callback task.

Once the printer class driver is successfully registered with the translation unit, the
translation unit returns a handle of type USBD_CLIENT_HANDLE which is used
for all subsequent communication with the lower layers.

After the printer class driver is successfully registered, it registers a callback
routine with the lower layers by calling the routine
usbdDynamicAttachRegister(). This routine is called whenever a device of a
particular class, subclass, and protocol is connected to or disconnected from the
USB subsystem. The callback routine takes the following form:

typedef VOID (*USBD_ATTACH_CALLBACK)
(
USBD_NODE_ID nodeId, /* USBD Handler */
UINT16 attachAction, /* notification for device
* attachment or removal
* USBD_DYNA_ATTACH or
* USBD_DYNA_REMOVE */
UINT16 configuration,/* configuration index */
UINT16 interface,/* interface number */
UINT16 deviceClass, /* Class ID */
UINT16 deviceSubClass, /* Sub-Class ID */
UINT16 deviceProtocol/* Protocol ID */
);

Refer to the Wind River USB for VxWorks API Reference for the API definition of
usbdDynamicAttachRegister().

Example 4-6 Registering the Printer Class Driver

The following code example explains how the printer class driver is registered
with the translation unit:

/* Registering the printer class driver */

STATUS usbPrinterDevInit (void)
{
…………………..
…………………..
if (usbdClientRegister (PRN_CLIENT_NAME, &usbdHandle) != OK

|| usbdDynamicAttachRegister (usbdHandle,
USB_CLASS_PRINTER,
USB_SUBCLASS_PRINTER,
USBD_NOTIFY_ALL, FALSE,
usbPrinterAttachCallback)

4 USB Class Drivers
4.5 Printer Driver

79

4

!= OK)
3

return ERROR;
…………………
}

The printer class driver unregisters itself with the lower layers by calling the
routine usbdClientUnregister().

/* un-registering the printer class driver */

usbdClientUnregister (usbdHandle);
usbdHandle = NULL;

4.5.4 Dynamic Device Attachment

As with the USB keyboard class driver, the number of channels supported by this
driver is not fixed. Rather, USB printers can be added or removed from the system
at any time. Thus, the number of channels is dynamic, and clients of usbPrinterLib
must be made aware of the appearance and disappearance of channels. Therefore,
this driver includes a set of routines that allows clients to register for notification
upon the attachment and removal of USB printers, and the corresponding creation
and deletion of channels.

In order to be notified of the attachment and removal of USB printers, clients must
register with usbPrinterLib through the routine
usbPrinterDynamicAttachRegister(). Clients provide a callback routine of the
following form:

typedef VOID (*USB_PRN_ATTACH_CALLBACK)
(
pVOID arg, /* caller-defined argument */
SIO_CHAN *pChan, /* pointer to the affected SIO_CHAN */
UINT16 attachCode /* defined as USB_PRN_xxxx */
);

When usbPrinterLib detects a new USB printer, each registered callback is
invoked with pChan pointing to a new SIO_CHAN structure and with attachCode set
to the value USB_PRN_ATTACH. When printers are removed from the system,
each registered callback is invoked with attachCode set to USB_PRN_REMOVE and
with pChan pointing to the SIO_CHAN structure of the printer that has been
removed.

As with usbKeyboardLib, usbPrinterLib maintains a usage count for each
SIO_CHAN structure. Callers can increment the usage count by calling
usbPrinterSioChanLock() and can decrement it by calling

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

80

usbPrinterSioChanUnlock(). Normally, if a printer is removed from the system
when the usage count is zero, usbPrinterLib automatically releases the SIO_CHAN
structure formerly associated with the printer. However, clients that rely on this
structure can use this locking mechanism to force the driver to retain the structure
until it is no longer needed. For more information about using the SIO_CHAN
structure, see Example 4-2 in 4.3.4 Dynamic Device Attachment, p.68.

4.5.5 ioctl Routines

The usbPrinterLib driver supports the SIO ioctl interface. However, attempts to
set parameters, such as baud rates and start or stop bits, have no meaning in the
USB environment and are treated as no-ops.

Additional ioctl routines allow the caller to retrieve the USB printer's device ID
string, its type (unidirectional or bidirectional) and status. The device ID string is
discussed in more detail in the USB specification and is based on the IEEE-1284
device ID string used by most 1284-compliant printers. The printer status routine
can be used to determine whether the printer has been selected, is out of paper, or
has an error condition.

4.5.6 Data Flow

usbPrinterLib sets up a pipe to output bulk data to each USB printer connected to
the system. This is the pipe through which printer control and page description
data are sent to the printer. If the printer is bidirectional, usbPrinterLib also sets
up a pipe to receive bulk input data from the printer. The meaning of the data
received from a bidirectional printer depends on the printer make and model.

The USB printer driver supports only SIO_MODE_INT, the SIO interrupt mode of
operation. Any attempt to place the driver in the polled mode returns an error.

4.6 Audio Driver

USB speakers and microphones are described in USB Device Class Definition for
Audio Devices. The Wind River implementation of the USB audio driver,
usbSpeakerLib, supports only USB audio devices as defined by this specification

4 USB Class Drivers
4.6 Audio Driver

81

4

and ignores other types of USB audio devices, such as MPEG and MIDI devices.
For USB 2.4, Wind River enhanced usbSpeakerLib to support the use of input
audio devices such as USB microphones.

4.6.1 SEQ_DEV Driver Model

The usbSpeakerLib driver provides a modified VxWorks SEQ_DEV interface to its
callers. Among existing VxWorks driver models, the SEQ_DEV interface best
supports the streaming data transfer model required by isochronous devices such
as USB audio devices. As with other VxWorks USB class drivers, the standard
driver interface has been expanded to support features unique to USB and to audio
devices in general. Routines have been added to allow callers to recognize the
dynamic attachment and removal of audio devices and ioctl routines have been
added to retrieve and control additional settings related to audio device operation.
The SEQ_DEV interface has been enhanced to support headset operation.
Microphone support has been added. Previously, SEQ_DEV supported only
speakers and the nomenclature reflects this by often using the word “speaker”
when, strictly speaking, it should now say “audio.” There are no plans to change
this, however.

4.6.2 Initializing the Audio Driver

As with standard SEQ_DEV drivers, this driver must be initialized by calling
usbSpeakerDevInit(). The usbSpeakerDevInit() routine, in turn, initializes its
connection to the USBD and other internal resources needed for operation.

However, before a call to usbSpeakerDevInit(), the caller must ensure that the
USBD has been properly initialized. Please refer to 2.5.1 Initializing the USB Host
Stack Hardware, p.22 for instructions on how to initialize USB host stack.

NOTE: Some models of USB audio devices are implemented as compound devices,
which often integrate a small number of physical audio controls, such as those for
volume, bass, treble, and balance. These physical controls are presented as
separate USB interfaces within the compound device and are implemented
according to the HID specification.

The usbSpeakerLib library ignores these non-audio interfaces. If the target
application requires these HID controls to be enabled, you must implement
additional logic to recognize the HID interface and map the HID routines to
appropriate usbSpeakerLib ioctl routines (see 4.3.5 ioctl Routines, p.71).

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

82

The USB speaker library uses the USBD dynamic attachment services to recognize
USB audio device attachment and detachment on the fly.

4.6.3 Registering the Audio Driver

The audio class driver registers with the USBD by calling usbdClientRegister().
In response to this call, the translation unit allocates audio device client data
structures and a audio device client callback task.

Once the audio class driver is successfully registered with the translation unit, the
translation unit returns a handle of type USBD_CLIENT_HANDLE which is used
for all subsequent communication with the lower layers.

After the audio class driver is successfully registered, the driver registers a callback
routine with the lower layers by calling the routine
usbdDynamicAttachRegister(). This routine is called whenever a device of a
particular class, subclass, and protocol is connected to or disconnected from the
USB subsystem. The callback routine takes the following form:

typedef VOID (*USBD_ATTACH_CALLBACK)
(
USBD_NODE_ID nodeId, /* USBD Handler */
UINT16 attachAction, /* notification for device
* attachment or removal
* USBD_DYNA_ATTACH or
* USBD_DYNA_REMOVE */
UINT16 configuration,/* configuration index */
UINT16 interface,/* interface number */
UINT16 deviceClass, /* Class ID */
UINT16 deviceSubClass, /* Sub-Class ID */
UINT16 deviceProtocol/* Protocol ID */
);

Please refer to the Wind River USB for VxWorks API Reference for the API definition
of usbdDynamicAttachRegister().

Example 4-7 Registering the Audio Class Driver

The following code example explains how the audio class driver is registered with
the translation unit:

/* Registering the speaker Class Driver */

STATUS usbSpeakerDevInit (void)
{
…………………..
…………………..
if (usbdClientRegister (SPKR_CLIENT_NAME, &usbdHandle) != OK

|| usbdDynamicAttachRegister (usbdHandle,

4 USB Class Drivers
4.6 Audio Driver

83

4

USB_CLASS_PRINTER,
USBD_NOTIFY_ALL,
USBD_NOTIFY_ALL, FALSE,
usbSpeakerAttachCallback)
!= OK)

return ERROR;
…………………

}

The audio class driver unregisters itself with the lower layers by calling the routine
usbdClientUnregister().

/* un-registering the speaker class driver */

usbdClientUnregister (usbdHandle);
usbdHandle = NULL;

4.6.4 Dynamic Device Attachment

Like other USB devices, USB audio devices can be attached or detached
dynamically. The usbSpeakerLib driver uses the dynamic attachment services of
the USBD to recognize these events, and callers to usbSpeakerLib can use the
usbSpeakerDynamicAttachRegister() routine to register with the driver to be
notified when USB audio devices are attached or removed. The caller must
provide usbSpeakerDynamicAttachRegister() with a pointer to a callback
routine of the following form:

typedef VOID (*USB_SPKR_ATTACH_CALLBACK)
(
pVOID arg, /* caller-defined argument */
SEQ_DEV *pSeqDev, /* pointer to the affected SEQ_DEV */
UINT16 attachCode /* defined as USB_SPKR_xxxx */
);

When a USB audio device is attached or removed, usbSpeakerLib invokes each
registered notification callback. The callback is passed a pointer to the affected
SEQ_DEV structure, pSeqDev, and an attachment code, attachCode, indicating
whether the audio device is being attached (USB_SPKR_ATTACH) or removed
(USB_SPKR_REMOVE).

The usbSpeakerLib driver maintains a usage count for each SEQ_DEV structure.
Callers can increment the usage count by calling usbSpeakerSeqDevLock() or
can decrement the count by calling usbSpeakerSeqDevUnlock(). If a USB audio
device is removed from the system when its usage count is zero, usbSpeakerLib
automatically removes all data structures, including the SEQ_DEV structure itself,
that have been allocated on behalf of the device. However, callers sometimes rely

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

84

on these data structures and must properly recognize the removal of the device
before it is safe to destroy the underlying data structures. The lock and unlock
routines provide a mechanism for callers to protect these data structures if
required.

4.6.5 Recognizing and Handling USB Speakers

As noted earlier, the operation of USB speakers is defined in the USB Audio Class
Specification. Speakers, loosely defined, are those USB audio devices which provide
an output terminal. For each USB audio device, usbSpeakerLib examines the
descriptors which enumerate the units and terminals contained within the device.
These descriptors define which kinds of units and terminals are present and how
they are connected.

If an output terminal is found, usbSpeakerLib traces the device's internal
connections to determine which input terminal ultimately provides the audio
stream for the output terminal and which, if any, feature unit is responsible for
controlling audio stream attributes such as volume. Having mapped the device,
usbSpeakerLib configures it and waits for a caller to provide a stream of audio
data. If it finds no output terminal, usbSpeakerLib ignores the audio device.

After determining that the audio device contains an output terminal,
usbSpeakerLib builds a list of the audio formats supported by the device.
usbSpeakerLib supports only audio streaming interfaces. No MIDI streaming is
supported.

usbSpeakerLib creates a SEQ_DEV structure to control each USB speaker attached
to the system and properly recognized by usbSpeakerLib. Each speaker is
uniquely identified by the pointer to its corresponding SEQ_DEV structure.

Dynamic Attachment and Removal of Speakers

As with other USB devices, USB speakers may be attached or detached
dynamically. usbSpeakerLib uses the dynamic attach services of the USBD in
order to recognize these events. Callers of usbSpeakerLib may, in turn, register
with usbSpeakerLib for notification when USB speakers are attached or removed
using the usbSpeakerDynamicAttachRegister() function. When a USB speaker is
attached or removed, usbSpeakerLib invokes the attach notification callbacks for
all registered callers. The callback is passed the pointer to the affected SEQ_DEV
structure and a code indicates whether the speaker is being attached or removed.

4 USB Class Drivers
4.6 Audio Driver

85

4

usbSpeakerLib maintains a usage count for each SEQ_DEV structure. Callers can
increment the usage count by calling usbSpeakerSeqDevLock() and can
decrement the usage count by calling usbSpeakerSeqDevUnlock(). When a USB
audio device is removed from the system and its usage count is zero,
usbSpeakerLib automatically removes all data structures, including the SEQ_DEV
structure itself, that were allocated on behalf of the device. Sometimes, however,
callers rely on these data structures and must properly recognize the removal of
the device before it is safe to destroy the underlying data structures. The lock and
unlock functions provide a mechanism for callers to protect these data structures
as needed.

Data Flow

Before sending audio data to a speaker device, the caller must specify the data
format, such as PCM or MPEG, using an ioctl() (see below). The USB speaker itself
must support the indicated data format or a similar one.

USB speakers rely on an uninterrupted, time-critical stream of audio data. The data
is sent to the speaker through an isochronous pipe. In order for the data to flow
continuously, usbSpeakerLib internally uses a double-buffering scheme. When
the caller presents data to the sd_seqWrt() routine of the usbSpeakerLib,
usbSpeakerLib copies the data into an internal buffer and releases the buffer of the
caller. The caller passes the next buffer to usbSpeakerLib. When usbSpeakerLib's
internal buffer is filled, it blocks the caller until it can accept the new data. In this
manner, the caller and usbSpeakerLib work together to ensure an adequate
supply of audio data for an uninterrupted isochronous transmission.

Audio play begins after usbSpeakerLib has accepted half a second of audio data
or when the caller closes the audio stream, whichever happens first. The caller
must use the ioctl()s to open and close each audio stream. usbSpeakerLib relies
on these ioctl()s to manage its internal buffers.

4.6.6 Recognizing and Handling USB Microphones

As with USB speakers, microphones may be attached or detached dynamically.
usbSpeakerLib uses the USBD's dynamic attach services in order to recognize
these events. When a USB microphone is attached or removed, usbSpeakerLib
invokes the attach notification callbacks for all registered callers. The callback is
passed the pointer to the affected SEQ_DEV structure and a code indicates whether
the microphone is being attached or removed.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

86

Data Flow

When connecting a microphone, the caller must select from the formats available
on the microphone the one appropriate for the desired application. Then, using
ioctl()s, the caller specifies the format and the interval in which the caller obtains
the data from usbSpeakerLib. usbSpeakerLib, then allocates an appropriate
buffer size and posts isochronous IN requests to the USB microphone, filling the
buffer as the IN requests complete.

The caller then posts an sd_seqRd to usbSpeakerLib, at appropriate intervals, to
obtain the audio for further processing. Note that the reader does not block waiting
for data, but returns all the data up to the requested buffer size. The caller always
checks the returned value of the read for the amount of data actually read.

As with the USB speakers, double buffering provides a continuous stream of data;
however, if the caller cannot service the data at a sustainable rate, the new data
may overwrite the old in the data buffers.

A demonstration program using a USB headset (with a speaker and microphone)
is provided in source form as a configlette. See
INCLUDE_USB_HEADSET_DEMO, p.14.

4.7 Mass Storage Class Driver

USB mass storage class devices are described in the Universal Serial Bus Mass
Storage Class Specification Overview and can behave according to several different
implementations. Wind River supplies drivers that adhere to the Bulk-Only and
Control/Bulk/Interrupt (CBI) implementation methods. Each of these drivers
uses a command set from an existing protocol. The Wind River Bulk-Only driver
wraps USB protocol around the commands documented in SCSI Primary
Commands: 2 (SPC-2), Revision 3 or later. The Wind River CBI driver wraps USB
protocol around the commands documented in the USB Floppy Interface (UFI)
Command Specification.

NOTE: SCSI Primary Commands: 2 (SPC-2) is available from Global Engineering,
(800-854-7179). The UFI Command Specification is available on the Web
(http://www.usb.org/developers/devclass_docs/usbmass-ufi10.pdf).

http://www.usb.org/developers/devclass_docs/usbmass-ufi10.pdf

4 USB Class Drivers
4.7 Mass Storage Class Driver

87

4

The subclass code of a device, presented in its interface descriptor, indicates which
of these command sets the device understands. Table 4-1, adapted from the
Universal Serial Bus Mass Storage Class Specification Overview, shows the command
set that corresponds to each subclass code.

Wind River’s CBI driver responds to devices with subclass code 04h. Wind River’s
Bulk-Only driver responds to devices with subclass code 06h.

All references to the mass storage class driver library take the form usbMSCxxx().
References to Wind River’s CBI driver take the form usbCbiUfixxx(); references
to Wind River’s Bulk-Only driver take the form usbBulkxxx().

Table 4-1 Device Subclass Codes and Corresponding Command Sets

Subclass
Code Command Block Specification Comments

01h Reduced Block Commands
(RBC) T10 Project 1240-D

Typically, a flash device uses RBCs.
However, any mass storage device can
use RBCs.

02h SFF-8020i
or
MMC-2 (ATAPI)

Typically, a CD/DVD device uses
SFF-8020i or MMC-2 command blocks
for its mass storage interface.

03h QIC-157 Typically, a tape device uses QIC-157
command blocks.

04h UFI Typically, a floppy disk drive (FDD)
device uses UFI command blocks.

05h SFF-8070i Typically, a floppy disk drive (FDD)
device uses SFF-8070i command blocks.
However, an FDD device can belong to
another subclass (for example, RBC);
likewise, other types of storage device
can belong to the SFF-8070i subclass.

06h SCSI transparent command
set

07h-FFh Reserved for future use

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

88

4.7.1 Extended Block Device Driver Model

A mass storage class driver is a type of block device driver that provides generic
direct access to a block device through VxWorks. Mass storage class drivers
interact with the file system. The file system, in turn, interacts with the I/O system.

The Extended Block Device (XBD) uses the Event Reporting Framework (ERF) and the
device infrastructure to interface with drivers and higher levels of functionality.
An XBD structure is allocated by the driver that needs to use that interface.

When a mass storage block device insertion takes place, usbMSCBlkDevCreate()
allocates an XBD for it. An insertion event is generated for the ERF which
propagates that insertion event to any higher level function that may be waiting
for a device insertion. The XBD consists of two main components:

■ XBD structure

The XBD structure defines the XBD, which keeps the device entry that makes
this an insertable/removable interface, function pointers for the methods of
this device, device block size and number of blocks information. The XBD
structure is defined in installDir/target/h/drv/xbd/xbd.h.

■ BIO structure

The Block_IO (BIO) structure contains the information necessary to read or
write to the block device or to another XBD. The BIO structure is defined in
installDir/target/h/drv/xbd/bio.h.

For each USB device, a UsbMSCXbdStrategy task is spawned to process the BIOs
passed down from the file system through usbMSCXbdStrategy. If a device has a
multiple logical unit, then a tUsbMSCXbdStrategy task is spawned for each
logical unit (LUN).

The shaded area of Figure 4-5 illustrates the following sequence of events:

1. File System 1 and File System 2 register with the ERF looking for the device
insertion event.

2. The device is inserted. The device driver notifies the ERF of the insertion and
creates an XBD interface for the mass storage device.

3. The ERF reports the insertion to the registered file systems. The file systems
can now read the device.

4. The file systems create a partitioning layer on top the device driver XBD to
make use of the disk partitions.

4 USB Class Drivers
4.7 Mass Storage Class Driver

89

4

Figure 4-5 USB Block Driver Hierarchy in a VxWorks System

Non-Block
Device Driver

Application

File System 2

USBD Host Driver

USB Devices

VxWorks

USB Host Stack

File System 1

Partitioning Layer

Part 1 Part 2 Part 3 Part 4

I/O System

USB Host Controller

USB Mass Storage
Class (XBD) Driver

Event
Reporting

Framework

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

90

4.7.2 API Routines

The mass storage class device driver provides the following API routines to the file
system:

usbMSCDevInit()
This is a general initialization routine. It performs all operations that are to be
done one time only. It initializes the required data structures and registers the
mass storage class driver with the USBD. It also registers for notification when
mass storage devices are dynamically attached. Traditionally, this routine is
called from the VxWorks boot code.

usbMSCDevCreate()
This routine creates a logical block device structure for a particular USB mass
storage device. At least one mass storage device must exist on the USB when
this routine is invoked.

usbMSCBlkWrt()
This routine writes to a specified physical block or blocks from a specified USB
device.

usbMSCBlkRd()
This routine reads a specified physical block or blocks from a specified USB
device.

usbMSCDevIoctl()
This routine performs any device-specific I/O control routines. For example,
it sends commands that are not explicitly used by a typical file system, and it
sets device configurations.

usbMSCStatusChk()
This routine checks for the status of the USB device. This is primarily for
removable media such as USB floppy drives. A change in status is reported to
the file system mounted, if any.

4.7.3 Dynamic Attachment

A USB device driver must support the most important feature of a USB device:
dynamic insertion and removal of the device. A USB mass storage class device can
be plugged into and out of the system at any time. This hot swap feature is
supported by a callback mechanism.

4 USB Class Drivers
4.7 Mass Storage Class Driver

91

4

The USB mass storage class driver provides the registration routine
usbMSCDynamicAttachRegister(), which registers the client with the driver.
When a USB mass storage class device is attached or removed, all clients are
notified through the USBD’s call to a user-provided callback routine. The callback
routine receives the USB_NODE_ID of the attached device and a flag that is set to
either USB_MSC_ATTACH or USB_MSC_DETACH, indicating the attachment or
removal of the device. The driver also provides the
usbMSCDynamicAttachUnregister() routine for deregistering a block device
driver.

The mass storage class driver maintains a usage count of XBD structures. When a
client uses an XBD structure, it informs the driver by calling usbMSCDevLock().
The driver increments the usage count for each usbMSCDevLock() call. When a
client is finished with the XBD structure, it notifies the driver by calling
usbMSCDevUnlock(). The driver then decrements the usage count. Normally, if
a mass storage class device is removed from the system when the usage count is
zero, the driver releases the corresponding XBD structure. However, clients that
rely on this structure can use this locking mechanism to force the driver to retain
the structure until it is no longer needed.

4.7.4 Initialization

The usbMSCDevInit() routine initializes the mass storage class driver. This API
call, in turn, initializes internal resources needed for its operation and registers a
callback routine with the USBD. The callback routine is then invoked whenever a
USB mass storage class device is attached or removed.

All interactions between the USB host controller and the mass storage class device
are handled through the USBD. Therefore, before calling usbMSCDevInit(), the
user must ensure that the USBD has been properly initialized with
usbdInitialize(). Also, before any operation with a block device driver, the caller
must ensure that at least one host controller is attached to the USBD.

4.7.5 Data Flow

The mass storage class driver’s data read and write mechanism behaves like that
of a standard block device driver. It uses the data read and write function pointers
that are installed through the usbMSCBlkDevCreate() routine. Because most USB
mass storage class devices can implement only 64-byte endpoints only, the driver
must manage the transfer of the larger chunks (that is, 512-byte blocks) of data that
are understood by the file system. To facilitate the multiple read/write

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

92

transactions that are necessary to complete the block access, the USBD uses its I/O
request packet (IRP) mechanism. This allows the user to specify a routine,
usbMSCIrpCallback(), that is called when the block transaction is complete.

4.8 Communication Class Drivers

USB communication class devices can behave according to several different
implementations. Wind River supplies drivers for Ethernet networking control
model devices.

4.8.1 Ethernet Networking Control Model Driver

This section describes Wind River’s USB networking control model driver. This
driver supports USB Ethernet networking control model devices (network
adapters) with subclass code 06h (see Table 4-1), with certain exceptions and
extensions.

The networking control model driver presents two interfaces for transferring
information to a device: a communication class interface and a data class interface.

The communication class interface is a management interface and is required of all
communication devices.

The data class interface can be used to transport data across the USB wire. Ethernet
data frames are encapsulated into USB packets and are then transferred using this
data class interface. These Ethernet packets include an Ethernet destination
address (DA), which is appended to the data field. Ethernet packets in either
direction over the USB do not include a cyclic redundancy check (CRC);
error-checking is instead performed on the surrounding USB packet.

The hierarchy diagram in Figure 4-6 illustrates where the USB communication
class driver fits into a VxWorks system.

4 USB Class Drivers
4.8 Communication Class Drivers

93

4

Figure 4-6 USB Communication Class Driver Hierarchy in a VxWorks System

Application

I/O System

USB Communication
Class Driver

USBD Host Driver

USB Host Controller

USB Devices

VxWorks

USB Host Stack

Socket Library

MUX Library

VxWorks
Network
Stack

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

94

4.8.2 Enhanced Network Driver Model

Wind River’s USB networking control model driver conforms to the MUX
Enhanced Network Driver (END) model, with certain variations. These
differences are designed to accommodate the following features:

■ Hot swap of USB devices.

■ Attachment of multiple identical devices to one host.

■ Support for USB network devices with vendor-specific initialization
requirements. For example, the KSLI adapter requires that new firmware be
downloaded before normal operation begins.

■ A dynamic insertion and removal callback mechanism.

In order to meet these requirements, Wind River drivers include additional APIs
beyond those defined in the standard END specification. For detailed information
on the END model, see the VxWorks BSP Developer’s Guide, 5.5 or the VxWorks
Device Driver Developer’s Guide, 6.0.

4.8.3 Dynamic Attachment

Because USB network adapters can be hot swapped to and from the system at any
time, the number of devices is dynamic. Clients of usbXXXEndLib (where XXX
specifies the supported device) can be made aware of the attachment and removal
of devices. The network control model driver includes a set of API calls that allows
clients to register for notification upon attachment or removal of a USB network
adapter device. The attachment and removal of USB network adapters correspond,
respectively, to the creation and deletion of USB_XXX_DEV structures.

In order to be notified of the attachment or removal of USB network adapters,
clients must register with usbXXXEndLib by calling
usbXXXDynamicAttachRegister(), providing a callback routine—for example,
pegasusAttachCallback().

When usbXXXEndLib detects a new USB network adapter, each registered client
callback routine is invoked with callbackType set to USB_XXX_ATTACH. Similarly,
when a USB network adapter is removed from the system, each registered client
callback routine is invoked with callbackType set to USB_XXX_DETACH.

The usbXXXEndLib driver maintains a usage count for each USB_XXX_DEV
structure. When a client uses the USB_XXX_DEV structure, it informs the driver by
calling usbXXXDevLock(). For each usbXXXDevLock() call, the driver
increments the usage count. When a client is finished with the USB_XXX_DEV

4 USB Class Drivers
4.8 Communication Class Drivers

95

4

structure, it notifies the driver by calling usbXXXDevUnlock(). The driver then
decrements the usage count.

Normally, if an adapter is removed from the system when the usage count is zero,
the driver releases the corresponding USB_XXX_DEV structure. However, clients
that rely on this structure can use this locking mechanism to force the driver to
retain the structure until it is no longer needed.

4.8.4 Initialization

The usbXXXEndLib driver must be initialized through the usbXXXEndInit()
routine, which in turn initializes its connection to the USBD and other internal
resources needed for its operation. This API call also registers a callback routine
with the USBD. The callback routine is then invoked whenever a USB networking
device is attached or removed.

All interactions between the USB host controller and the networking device are
handled through the USBD. Therefore, before calling usbXXXEndInit(), the user
must ensure that the USBD has been properly initialized with usbdInitialize().
Also, before any operation with a networking device driver, the caller must ensure
that at least one host controller has been attached to the USBD through
usbUhcdInit(), usbOhciInit(), or usbEhcdInit().

4.8.5 Interrupt Behavior

The usbXXXEndLib driver relies on the underlying USBD and HCD layers to
communicate with USB Ethernet networking control model devices (network
adapters). The USBD and HCD layers, in turn, use the host controller interrupt for
this communication. In this way, all interrupt-driven behavior is managed by the
underlying USBD and HCD layers. Therefore, there is no need for the caller or BSP
to connect interrupts on behalf of usbXXXEndLib. For the same reason, there is no
post-interrupt-connect initialization code and usbXXXEndLib omits the devInit2
entry point.

The usbXXXEndLib driver inherently depends on the host controller interrupt for
its communication with USB network adapters. Therefore, the driver supports
only the interrupt mode of operation. Any attempt to place the driver in the polled
mode returns an error.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

96

4.8.6 ioctl Routines

The usbXXXEndLib driver supports the END ioctl interface. However, any
attempt to place the driver in polled mode returns an error.

4.8.7 Data Flow

The data transmission mechanism of the usbXXXEndLib driver deviates slightly
from the END standard in that all data is routed through the USBD. The
XXXEndSend() routine fills in the pUSB_IRP structure and exports the structure
to the USBD to send or receive the data.

IRPs are a mechanism for scheduling data transfers across the USB. For example,
for the host to receive data from a network device, an IRP using the bulk input pipe
is formatted and submitted to the USBD by the driver. When data becomes
available, XXXEndRecv() is invoked by the IRP’s callback to process the incoming
packet.

Whenever data is transferred through the USBD using the pUSB_IRP structure,
callback routines are passed to the USBD. These callback routines acknowledge the
transmission of each packet of data. The execution of each callback routine
indicates that the corresponding data packet has been successfully transmitted.

97

 5
USB Peripheral Stack

Target Layer Overview

5.1 Introduction 97

5.2 Initializing the Target Layer 99

5.3 Attaching and Detaching a TCD 99

5.4 Enabling and Disabling the TCD 104

5.5 Implementing Target Application Callback Routines 106

5.6 Pipe-Specific Requests 121

5.7 Device Control and Status Information 131

5.8 Shutdown Procedure 133

5.1 Introduction

This chapter shows how to create a target application that interfaces with the target
layer in the Wind River USB peripheral stack. For instructions on how to create a
target controller driver that interfaces with the hardware adaptation layer in the
Wind River USB peripheral stack, see 6. Target Controller Drivers.

Figure 5-1 shows the target layer and the various interfaces exposed by this layer
to the target application and the HAL, and how these layers and subsystems
interact.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

98

To communicate through the target layer, the application in the configlette and
your target application must coordinate to do the following:

■ Initialize the target layer (see 5.2 Initializing the Target Layer, p.99).

■ Implement certain callback routines (see 5.5 Implementing Target Application
Callback Routines, p.106).

■ Attach to a TCD (see 5.3 Attaching and Detaching a TCD, p.99).

■ Enable the TCD (see 5.4 Enabling and Disabling the TCD, p.104).

■ Create pipes (see 5.6.1 Creating and Destroying the Pipes, p.121).

■ Transfer data (see 5.6.2 Transferring and Aborting Data, p.124).

Figure 5-1 The Target Layer

Target Application

Target Layer

Initialization and
Uninitialization

Default Pipe
Requests

Pipe-Specific
Requests

Device Control
and Status

Hardware Adaptation Layer

NOTE: The target application implements all control requests, as specified in
Section 9.4 Standard Device Requests in the USB 2.0 specification.

5 USB Peripheral Stack Target Layer Overview
5.2 Initializing the Target Layer

99

5

5.2 Initializing the Target Layer

An application in the configlette initializes the target layer in two stages as follows:

1. The configlette application calls usbTargInitialize() at least once. The
usbTargInitialize() routine, which requires no parameters, initializes internal
target layer data structures. You may call usbTargInitialize() once or many
times. The target layer increments a usage count for each successful call to
usbTargInitialize() and decrements it for each corresponding call to
usbTargShutdown(), a routine that also requires no parameters. The target
layer truly initializes itself only when the usage count goes from zero to one,
and it truly shuts down only when that usage count returns to zero.

2. The configlette application attaches the target application to at least one TCD
with the usbTargTcdAttach() routine.

Once the TCD is attached, the target application enables the TCD by calling
usbTargEnable().

5.3 Attaching and Detaching a TCD

Before the target application can receive and respond to requests from the host, the
application in the configlette must attach the target application to the TCD by
using usbTargTcdAttach(). The application in the configlette passes the following
arguments to usbTargTcdAttach():

■ the TCD single entry point (see 6.3 Single Entry Point, p.136)

■ a pointer to the TCD-defined parameters

■ a pointer to the target application callback table (see 5.3.3 Target Application
Callback Table, p.102)

■ a parameter (callbackParam), the nature of which is up to the target
application, that the target application wants to receive in these callback
routines

Once the target controller attaches itself to the TCD, the TCD returns a handle to
itself. The handle is stored in USB_TARG_CHANNEL. The target application uses
this handle for all subsequent communication with the TCD.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

100

After the TCD is attached, the target application enables the TCD by calling
usbTargEnable(). See 5.4 Enabling and Disabling the TCD, p.104, for the interface
definition for usbTargEnable().

5.3.1 TCD-Defined Parameters

The TCD-defined parameters are specific to the particular TCD. You can hard-code
these if you know beforehand the implementation details of the TCD your
application will be using, or you may be able to retrieve the values for these
parameters by calling the PCI interfaces for the device. There are configlette
routines available in the installDir/target/config/comps/src/usrUsbTargPciInit.c
file. The target application must call these configlette routines to populate the
TCD-defined parameters. For more information, see 2.5.2 Initializing the USB
Peripheral Stack Hardware, p.27.

Example 5-1 Example Retrieving Configuration Parameters

This example demonstrates how to find the ISP 1582 target controller with the
pciFindDevice() routine, and retrieve its configuration parameters with
usbPciConfigHeaderGet():

bStatus = pciFindDevice(ISP1582_VENDOR_ID,
ISP1582_DEVICE_ID,
nDeviceIndex,
&PCIBusNumber,
&PCIDeviceNumber,
&PCIFunctionNumber);

/* Check whether the isp1582 Controller was found */

{
if(bStatus != OK)
{
/* No ISP1592 Device found */
printf(" pciFindClass returned error \n ");
return;
}

/* Get the configuration header */

usbPciConfigHeaderGet(PCIBusNumber,
PCIDeviceNumber,
PCIFunctionNumber,
&pciCfgHdr);

NOTE: The target application must fill the TCD-defined parameters before
attaching the TCD with the target application.

5 USB Peripheral Stack Target Layer Overview
5.3 Attaching and Detaching a TCD

101

5

The structure of the parameters depends on the TCD in use, but can take a form
like those shown below. For the PDIUSB12, it can take the form:

typedef struct usbTcdPdiusbd12Params /* USB_TCD_PDIUSBD12_PARAMS */
 {
 UINT32 ioBase; /* Base I/O address range */
 UINT16 irq; /* IRQ channel (e.g., 5 = IRQ5) */
 UINT16 dma; /* DMA channel (e.g., 3 = DMA3) */
 } USB_TCD_PDIUSBD12_PARAMS, *pUSB_TCD_PDIUSBD12_PARAMS;

For the NET2280, it can take the form:

typedef struct usbTcdNET2280Params
 {
 UINT32 ioBase[NET2280_NO_OF_PCI_BADDR]; /* IO base array */
 UINT8 irq; /* IRQ value */
 } USB_TCD_NET2280_PARAMS, *pUSB_TCD_NET2280_PARAMS;

In this case, the ioBase element indicates the base I/O address range, the irq
element is the number of the IRQ channel, and the dma element is the number of
the DMA channel.

When the application in the configlette calls usbTargTcdAttach() to establish
communication between the target application and the TCD, the HAL calls the
single entry point of the TCD (see 6.3 Single Entry Point, p.136) with the function
code TCD_FNC_ATTACH and passes the pointer to this same set of TCD-defined
parameters (see 6.5.1 Attaching the TCD, p.138).

5.3.2 Detaching a TCD

The application in the configlette detaches the target application from a TCD by
using usbTargTcdDetach(). Pass this routine handle to the target channel
obtained during the call to usbTargTcdAttach().

The HAL responds to the usbTargTcdDetach() call by calling the single entry
point of the TCD with the function code TCD_FNC_DETACH and the target
channel handle (see 6.5.2 Detaching the TCD, p.140).

Figure 5-2 illustrates how the target application attaches to and detaches from a
TCD.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

102

5.3.3 Target Application Callback Table

The target layer maintains a callback table that lists the key entry points in the
target application. Once the TCD and its associated target application have been
attached to the target layer, the target layer can make asynchronous calls back into
the target application by way of these callback routines.

The callback Table 5-1 below shows how the callback routines are mapped.

Figure 5-2 Attaching and Detaching a TCD

Target Application TCD

usbTargInitialize()

usbTargTcdAttach()
TCD_FNC_ATTACH

TCD handle
target channel handle

usbTargShutdown()

usbTargTcdDetach()

TCD_FNC_DETACH

Target Layer HAL

TARG_MNGMT_ATTACH

TARG_MNGMT_DETACH

Configlette

Table 5-1 Target Application Callback Table

mngmtFunc() USB_TARG_MANAGEMENT_FUNC

featureClear() USB_TARG_FEATURE_CLEAR_FUNC

featureSet() USB_TARG_FEATURE_SET_FUNC

configurationGet() USB_TARG_CONFIGURATION_GET_FUNC

5 USB Peripheral Stack Target Layer Overview
5.3 Attaching and Detaching a TCD

103

5

Before the application in the configlette calls the usbTargTcdAttach() routine, the
target application sets the function pointers in this table to point to the
corresponding entry points that the target application implements. At any time
after the application in the configlette calls usbTargTcdAttach(), the target layer
may begin to make asynchronous calls to the entry points in the callback table.
(Some callbacks occur during the attach process itself; others happen in response
to activity on the USB.)

The target application provides pointers in this table for each routine that
corresponds to a request that it intends to process, and NULL pointers for the
others. The target layer provides default handling for any functions whose
corresponding entry in this callback table is NULL.

Example 5-2 Mass Storage Initializing and Attaching to a TCD

The following code fragment demonstrates how the mass storage target
application initializes and attaches with the TCD:

/***/

USB_TCD_NET2280_PARAMS paramsNET2280;
pUSB_TARG_CALLBACK_TABLE callbackTable;

/* Gets the Target Application Callback Table Information */

usbTargMsCallbackInfo (&callbackTable, &callbackParam);
/* Initialize usbTargLib */

configurationSet() USB_TARG_CONFIGURATION_SET_FUNC

descriptorGet() USB_TARG_DESCRIPTOR_GET_FUNC

descriptorSet() USB_TARG_DESCRIPTOR_SET_FUNC

interfaceGet() USB_TARG_INTERFACE_GET_FUNC

interfaceSet() USB_TARG_INTERFACE_SET_FUNC

statusGet() USB_TARG_STATUS_GET_FUNC

addressSet() USB_TARG_ADDRESS_SET_FUNC

synchFrameGet() USB_TARG_SYNCH_FRAME_GET_FUNC

vendorSpecific() USB_TARG_VENDOR_SPECIFIC_FUNC

Table 5-1 Target Application Callback Table (cont’d)

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

104

if (usbTargInitialize () != OK)
{
fprintf (fout,"usbTargInitialize() returned ERROR\n");
return (ERROR);
}

/* This routine is defined in
* /target/config/comps/src/usrUsbTargInit.c.
* This routine obtains the TCD-defined structure value.
*/

sys2NET2280PciInit ();
/* Populate the TCD – Defined Strucutue */

paramsNET2280.ioBase [0] = BADDR_NET2280 [0];
paramsNET2280.irq = (UINT16) IRQ_NET2280;

/* Attach the NetChip NET2280 TCD to usbTargLib */

if (usbTargTcdAttach (usbTcdNET2280Exec, (pVOID) ¶msNET2280,
callbackTable, callbackParam, &msTargChannel) != OK)

{
fprintf (fout, "usbTargTcdAttach() returned ERROR\n");
msTargChannel = NULL;
return ERROR;
}

5.4 Enabling and Disabling the TCD

The target application may not yet be ready to begin handling USB requests when
the application in the configlette calls usbTargTcdAttach(), so the target layer
provides two routines to enable and to disable the TCD. Figure 5-3 is a sequence
diagram that shows how a TCD is enabled and disabled.

The application in the configlette uses usbTargEnable() to enable the specified
TCD. The TCD, in turn, enables the underlying target controller. Until the
application in the configlette calls usbTargEnable(), the target controller (and
thus, the peripheral) are not visible to the USB host. In response to
usbTargEnable(), the HAL calls the single entry point of the TCD with the code
TCD_FNC_ENABLE.

The application in the configlette calls usbTargDisable() to disable the specified
TCD, typically just before detaching a TCD. In response to the usbTargDisable(),
the HAL calls the single entry point of the TCD with the code TCD_FNC_DISABLE.

5 USB Peripheral Stack Target Layer Overview
5.4 Enabling and Disabling the TCD

105

5

In both the usbTargEnable() and usbTargDisable() routines, the application in
the configlette passes the channel handle that the application in the configlette
received when it called usbTargTcdAttach() (see 5.3 Attaching and Detaching a
TCD, p.99).

Figure 5-3 Enabling and Disabling a TCD

TCD_FNC_DETACH
TARG_MNGMT_DETACH

usbTargTcdAttach()

usbTargEnable()

TCD_FNC_ENABLE

usbTargDisable()
TCD_FNC_DISABLE

usbTargTcdDetach()

Target Application TCD

usbTargInitialize()

TCD_FNC_ATTACH

TCD handle
Target channel handle

usbTargShutdown()

Target Layer HAL

TARG_MNGMT_ATTACH

Configlette

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

106

5.5 Implementing Target Application Callback Routines

The prototypes for each of the callbacks in the target application callback table are
defined in usbTargLib.h. The individual callback routines and their additional
parameters are explained in the following sections.

5.5.1 Callback and Target Channel Parameters

Two parameters are common to each of the callback routines:

param
This is a parameter that is defined by the target application and that the
application in the configlette passed to usbTargTcdAttach() as the
callbackParam.

targChannel
This is the handle that the target layer assigned to the channel during the
attach and returned from usbTargTcdAttach() in pTargChannel. This
parameter is of the type USB_TARG_CHANNEL.

5.5.2 Control Pipe Request Callbacks

After the host issues a bus reset, it issues control requests to the device through the
control endpoint. The target layer handles these requests and in turn calls the
routines defined in the target application callback table (see Table 5-1).

The callback routines that handle these requests are listed in Table 5-2.

Table 5-2 Control Requests and Associated Callback Routines

Control Request Callback Routine See Page . . .

CLEAR_FEATURE featureClear() 110

SET_FEATURE featureSet() 110

GET_CONFIGURATION configurationGet() 113

SET_CONFIGURATION configurationSet() 114

GET_DESCRIPTOR descriptorGet() 114

SET_DESCRIPTOR descriptorSet() 114

5 USB Peripheral Stack Target Layer Overview
5.5 Implementing Target Application Callback Routines

107

5

5.5.3 mngmtFunc() Callback

The target layer calls the mngmtFunc() callback in the target application callback
table to inform the target application of changes that broadly affect USB operation,
which it indicates by using certain management event codes. The target
application may process or ignore these management event codes as it sees fit. This
callback is defined as follows:

STATUS mngmtFunc
(
pVOID param, /* callback parameter*/
USB_TARG_CHANNEL targChannel, /* target channel */
UINT16 mngmtCode, /* management code */
pVOID pContext, /* TCD specific paramter */
);

Management Code Parameter

The mngmtCode parameter tells the target application what management event
has happened. The following valid management event codes are listed in
usbTargLib.h:

■ TARG_MNGMT_ATTACH – initial TCD attachment
■ TARG_MNGMT_DETACH – TCD detachment
■ TARG_MNGMT_BUS_RESET – bus reset
■ TARG_MNGMT_SUSPEND – suspend signal detected
■ TARG_MNGMT_RESUME – resume signal detected
■ TARG_MNGMT_DISCONNECT – disconnect signal detected

GET_INTERFACE interfaceGet() 117

SET_INTERFACE interfaceSet() 117

GET_STATUS statusGet() 118

SET_ADDRESS addressSet() 119

GET_SYNCH_FRAME synchFrameGet() 119

other endorSpecific() 120

Table 5-2 Control Requests and Associated Callback Routines (cont’d)

Control Request Callback Routine See Page . . .

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

108

Context Value Parameter

Along with the management code, the target layer passes TCD-specific
information to the target application in the pContext parameter. This information
comes in the form of a USB_APPLN_DEVICE_INFO structure, shown below, which
is populated by the TCD during the device attachment process.

typedef struct usb_appln_device_info
{
UINT32 uDeviceFeature;
UINT32 uEndpointNumberBitmap
}USB_APPLN_DEVICE_INFO, *pUSB_APPLN_DEVICE_INFO;

In this structure, the uDeviceFeature is a bitmap that explains whether the device
is USB 2.0 compliant, whether it supports remote wake up, and whether it
supports test mode. The TCD may set this bitmap to a combination of the bits
USB_FEATURE_DEVICE_REMOTE_WAKEUP, USB_FEATURE_TEST_MODE, and
USB_FEATURE_USB20.

These macros are defined in the file
installDir/target/h/usb/target/usbHalCommon.h and the application uses these
macros only to interpret the structure member uDeviceFeature of the structure
USB_APPLN_DEVICE_INFO. For example:

uDeviceFeature = (USB_FEATURE_DEVICE_REMOTE | USB_FEATURE_USB20)

The TCD sets uEndpointNumberBitmap to indicate the endpoints supported by
the hardware. The first 16 bits indicate the OUT endpoint and the next 16 bits
indicate the IN endpoint, with bits zero to 15 corresponding to OUT endpoints zero
to 15, and bits 15 to 31 corresponding to IN endpoints zero to 15.

Management Event Codes

These management event codes are defined as follows:

TARG_MNGMT_ATTACH
The target layer calls the mgmtFunc() routine in the target application with
the TARG_MNGMT_ATTACH code during the attachment process. The
pContext parameter is set according to the description in Context Value
Parameter, p.108.

NOTE: You can also use bits three and four to specify “bus powered” and “self
powered,” respectively.

5 USB Peripheral Stack Target Layer Overview
5.5 Implementing Target Application Callback Routines

109

5

TARG_MNGMT_DETACH
The target layer calls the management routine in the target application with
this code during the detachment process. The pContext parameter is NULL in
this case. During this detachment process the target application resets the
device descriptor values to their initial values.

TARG_MNGMT_BUS_RESET
The target layer calls the management routine in the target application with
this code when the host issues a bus reset event.

During a bus reset event, the TCD provides the target application with the
speed at which the target controller is operating by passing either
USB_TCD_FULL_SPEED, USB_TCD_LOW_SPEED, or USB_TCD_HIGH_SPEED
in the pContext parameter to mngmtFunc(). See Context Value Parameter,
p.108.

Depending on the operating speed of the device, the target application
changes the values of various descriptors as specified in the USB 2.0
specification.

Example 5-3 Bus Reset Example

The following code fragment illustrates a bus reset event:

LOCAL STATUS mngmtFunc(
pVOID param, /* callback paramter */
USB_TARG_CHANNEL targChannel, /* target channel */
UINT16 mngmtCode, /* management code */
pVOID pContext /* TCD specific context value */
)
{

/* USB_APPLN_DEVICE INFO */

pUSB_APPLN_DEVICE_INFO pDeviceInfo = NULL;

switch (mngmtCode)
{
case TARG_MNGMT_ATTACH:
...
break;

case TARG_MNGMT_DETACH:
...
break;

case TARG_MNGMT_BUS_RESET:
if (g_uSpeed == USB_TCD_HIGH_SPEED)

{
/* update the maxpacket size field in device descriptor *
* and device qualifier depending on the speed *

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

110

*/
...
/* update the max packet size for generic endpoints */
...
break;
}

}
}

TARG_MNGMT_DISCONNECT
When the target layer calls the management routine in the target application
with this code, the target application releases its endpoints. The pContext
parameter is NULL in this case.

TARG_MNGMT_SUSPEND and TARG_MNGMT_RESUME
The target layer calls the management routine in the target application with
these codes when the TCD notifies the target layer about suspend and resume
events. The pContext parameter is NULL in these cases.

5.5.4 Clear and Set Callbacks

The target layer calls the target application's featureClear() and featureSet()
callbacks in response to CLEAR_FEATURE and SET_FEATURE requests from the
host.

The featureClear() routine returns ERROR under the following conditions:

■ If the device is in the default state (in other words, if the device address is 0).

■ If the feature does not exist or cannot be cleared (for instance, because it is the
test mode feature or an unsupported feature).

■ If the endpoint does not exist.

The featureClear() callback is defined as follows:

STATUS featureClear
(
pVOID param,
USB_TARG_CHANNEL targChannel,
UINT8 requestType,
UINT16 feature,
UINT16 index
);

The featureSet() routine returns ERROR under the following circumstances:

■ If the device is in the default state and the feature to be set is anything other
than the test mode feature.

5 USB Peripheral Stack Target Layer Overview
5.5 Implementing Target Application Callback Routines

111

5

■ If the feature cannot be set for any other reason.

■ If the endpoint or interface does not exist.

The featureSet() callback is defined as follows:

STATUS featureSet
(
pVOID param,
USB_TARG_CHANNEL targChannel,
UINT8 requestType,
UINT16 feature,
UINT16 index
);

Request Type Parameter

The requestType parameter must be set to either USB_REQ_CLEAR_FEATURE or
USB_REQ_SET_FEATURE. See Table 5-3 for the list of standard requestType
values.

Table 5-3 Standard Request Types

Request Type Numerical Value

USB_REQ_GET_STATUS 0

USB_REQ_CLEAR_FEATURE 1

USB_REQ_GET_STATE 2

USB_REQ_SET_FEATURE 3

USB_REQ_SET_ADDRESS 5

USB_REQ_GET_DESCRIPTOR 6

USB_REQ_SET_DESCRIPTOR 7

USB_REQ_GET_CONFIGURATION 8

USB_REQ_SET_CONFIGURATION 9

USB_REQ_GET_INTERFACE 10

USB_REQ_SET_INTERFACE 11

USB_REQ_SYNCH_FRAME 12

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

112

The target application calls the appropriate interface exposed by the target layer,
depending upon whether the request is to set or clear.

USB_REQ_CLEAR_FEATURE Request

If the host requests to clear a halt condition on the endpoint, the target application
calls the usbTargPipeStatusSet() routine.

if (usbTargPipeStatusSet (handle, TCD_ENDPOINT_UNSTALL) == ERROR)
{
/* Unable to unstall the endpoint */
return ERROR
}

If the host requests to clear a device-specific feature, the target application calls
usbTargDeviceFeatureClear() routine.

if (usbTargDeviceFeatureClear (handle, feature) == ERROR)
{
/* Unable to clear the device feature*/
return ERROR
}

USB_REQ_SET_FEATURE Request

If the host requests to set the halt condition on the endpoint, the target application
calls usbTargPipeStatusSet()routine.

if (usbTargPipeStatusSet (handle, TCD_ENDPOINT_STALL) == ERROR)
{
/* Unable to unstall the endpoint */
return ERROR
}

If the host requests to set a device specific feature, the target application calls
usbTargDeviceFeatureSet() routine.

if (usbTargDeviceFeatureSet(handle, feature, testSelector) == ERROR)
{
/* Unable to clear the device feature*/
return ERROR
}

Feature Parameter

If the target application supports these functions, it clears or sets the feature
identified by the feature and index parameters. Table 5-4 lists the valid feature
values.

5 USB Peripheral Stack Target Layer Overview
5.5 Implementing Target Application Callback Routines

113

5

Index Parameter

If the recipient of the request, as shown in Table 5-4, is a device, the index
parameter is 0; if the recipient is an endpoint, then index is the address of that
endpoint.

5.5.5 configurationGet() Callback

The target layer calls the configurationGet() target application callback in
response to a GET_CONFIGURATION request from the host. The
configurationGet() callback is defined as follows:

STATUS configurationGet
(
pVOID param,
USB_TARG_CHANNEL targChannel,
pUINT8 pConfiguration
);

In the configurationGet() callback, the target application fills the pConfiguration
buffer with a UINT8 value that matches the configuration value in the current
configuration descriptor.

On return from configurationGet(), the target layer transmits this configuration
information back to the USB host. If the device is in the default state (that is, if the
device address is 0), the target application returns ERROR from
configurationGet().

Table 5-4 Feature Selectors

Feature Selector Recipient Feature Value

USB_FSEL_DEV_ENDPOINT_HALT Endpoint 0

USB_FSEL_DEV_REMOTE_WAKEUP Device 1

USB_FSEL_DEV_TEST_MODE Device 2

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

114

5.5.6 configurationSet() Callback

The target layer calls the configurationSet() target application callback in
response to a SET_CONFIGURATION request from the host. The
configurationSet() callback is defined as follows:

STATUS configurationSet
(
pVOID param,
USB_TARG_CHANNEL targChannel,
UINT8 configuration
);

In the configurationSet() callback, the target application sets the current
configuration to the one indicated by the configuration value, assuming the value
matches with a valid configuration descriptor. If the configuration value is invalid,
or if the device is in the default state, the target application returns ERROR from
configurationSet().

5.5.7 descriptorGet() and descriptorSet() Callbacks

The target layer calls the descriptorGet() and descriptorSet() target application
callbacks in response to GET_DESCRIPTOR and SET_DESCRIPTOR requests from
the host. The requestType, descriptorType, descriptorIndex, and languageId
parameters identify the descriptor. The descriptorGet() callback is defined as
follows:

STATUS descriptorGet
(
pVOID param,
USB_TARG_CHANNEL targChannel,
UINT8 requestType,
UINT8 descriptorType,
UINT8 descriptorIndex,
UINT16 languageId,
UINT16 length,
pUINT8 pBfr,
pUINT16 pActLen
);

The descriptorSet() callback is defined as follows:

STATUS descriptorSet
(
pVOID param,
USB_TARG_CHANNEL targChannel,
UINT8 requestType,
UINT8 descriptorType,
UINT8 descriptorIndex,
UINT16 languageId,

5 USB Peripheral Stack Target Layer Overview
5.5 Implementing Target Application Callback Routines

115

5

UINT16 length,
pUINT8 pBfr,
pUINT16 pActLen
);

Request Type Parameter

Table 5-5 lists the constants associated with requestType bits.

Bit seven of requestType specifies the direction, so requestType must be masked
with USB_RT_HOST_TO_DEV or USB_RT_DEV_TO_HOST to specify the direction.

Bits five and six of requestType specify the request type, so requestType must be
masked with USB_RT_STANDARD, USB_RT_CLASS, or USB_RT_VENDOR to
specify the request type.

Bits zero through four of requestType specify the recipient, so requestType must
be masked with USB_RT_DEVICE, USB_RT_INTERFACE, USB_RT_ENDPOINT, or
USB_RT_OTHER to indicate the recipient.

Table 5-5 USB Request Types

Request Type Numerical Value

USB_RT_HOST_TO_DEV 0x00

USB_RT_DEV_TO_HOST 0x80

USB_RT_STANDARD 0x00

USB_RT_CLASS 0x20

USB_RT_VENDOR 0x40

USB_RT_DEVICE 0x00

USB_RT_INTERFACE 0x01

USB_RT_ENDPOINT 0x02

USB_RT_OTHER 0x03

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

116

Descriptor Type and Index Parameters

Table 5-6 lists the valid descriptorType values (the descriptorIndex specifies a
descriptor when multiple descriptors of the same type are implemented on a
device).

Language ID Parameter

The languageId parameter is used for the string descriptor; the possible two-byte
languageId values can be found at
http://www.usb.org/developers/docs/USB_LANGIDs.pdf.

Length and Buffer Parameters

In the descriptorGet() callback, the target application fills pBfr with the requested
descriptor (truncated if it is larger than the buffer size, which is specified by

Table 5-6 Descriptor Types

Descriptor Type Numerical Value

USB_DESCR_DEVICE 0x01

USB_DESCR_CONFIGURATION 0x02

USB_DESCR_STRING 0x03

USB_DESCR_INTERFACE 0x04

USB_DESCR_ENDPOINT 0x05

USB_DESCR_DEVICE_QUALIFIER 0x06

USB_DESCR_OTHER_SPEED_CONFIGURATION 0x07

USB_DESCR_INTERFACE_POWER 0x08

USB_DESCR_HID 0x21

USB_DESCR_REPORT 0x22

USB_DESCR_PHYSICAL 0x23

USB_DESCR_HUB 0x29

5 USB Peripheral Stack Target Layer Overview
5.5 Implementing Target Application Callback Routines

117

5

length). The target application also sets pActLen to the actual length of the
descriptor placed in pBfr. The target layer transmits the descriptor back to the USB
host. If the target application does not support the requested descriptor, it returns
ERROR from this callback, which triggers a request error.

If the target application supports the SET_DESCRIPTOR request, it sets descriptors
with the specified values in the descriptorSet() callback routine. The length
parameter indicates the length of the descriptor that the host will send in the data
stage, as specified in the setup packet.

The descriptorSet() callback sets pActLen to the actual length of the descriptor
that it set. If the two values, length and pActLen, are not identical, descriptorSet()
returns ERROR, which causes the target layer to stall the control endpoints.

5.5.8 interfaceGet() Callback

The target layer calls the interfaceGet() target application callback in response to
a GET_INTERFACE request from the host. The interfaceGet() callback is defined
as follows:

STATUS interfaceGet
(
pVOID param,
USB_TARG_CHANNEL targChannel,
UINT16 interface,
pUINT8 pAlternateSetting
);

In the interfaceGet() callback, the target application stores the alternate interface
setting of the interface specified by interface in the variable pAlternateSetting.
The target application returns ERROR from interfaceGet() if the device is in the
default or the addressed state.

5.5.9 interfaceSet() Callback

The target layer calls the interfaceSet() target application callback in response to
a SET_INTERFACE request from the host. The interfaceSet() callback is defined as
follows:

STATUS interfaceSet
(
pVOID param,
USB_TARG_CHANNEL targChannel,
UINT16 interface,
UINT8 alternateSetting
);

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

118

In the interfaceSet() callback the target application sets the alternate setting of the
interface specified by interface to the setting specified in alternateSetting. The
target application returns ERROR from interfaceSet() if the device is in the default
or the addressed state or if the alternate setting is invalid.

5.5.10 statusGet() Callback

The target layer calls the statusGet() target application callback in response to a
GET_STATUS request from the host. The statusGet() callback is defined as
follows:

STATUS statusGet
(
pVOID param,
USB_TARG_CHANNEL targChannel,
UINT16 requestType,
UINT16 index,
UINT16 length,
pUINT8 pBfr
);

If the target application supports this callback, it stores the status of the recipient
identified by requestType in pBfr. If the recipient is an endpoint, index specifies
its address. The length parameter is set to two, the same value as the wLength
value of the setup packet. For appropriate status values and their meanings, see
Table 5-7.

Table 5-7 Recipient Status and Associated Status Values

Recipient Status Associated Value

The recipient is a device that is not
self-powered and is not enabled to
request remote wakeup.

0

The recipient is a device that is
self-powered, but is not enabled to
request remote wakeup.

USB_DEV_STS_LOCAL_POWER

The recipient is a device that is not
self-powered, but is enabled to request
remote wakeup.

USB_DEV_STS_REMOTE_WAKEUP

5 USB Peripheral Stack Target Layer Overview
5.5 Implementing Target Application Callback Routines

119

5

The target driver sends the status back to the USB host. The target application
returns ERROR from the statusGet() callback if the device is in the default state or
if the requestType is unsupported.

5.5.11 addressSet() Callback

The target layer calls the addressSet() callback in response to a SET_ADDRESS
request from the host. The addressSet() callback is defined as follows:

STATUS addressSet
(
pVOID param,
USB_TARG_CHANNEL targChannel,
UINT16 deviceAddress
);

The target layer passes a deviceAddress parameter between zero and 127,
inclusive. The target application can use this device address as an identifier for the
device in the bus. The target application returns ERROR from its addressSet()
callback if the device has passed the configuration stage.

5.5.12 synchFrameGet() Callback

It is sometimes necessary for clients to resynchronize with devices when the two
are exchanging data isochronously. This function allows a client to query a
reference frame number maintained by the device (indicated by pFrameNo).
Please refer to the USB 2.0 specification for more detail.

The recipient is a device that is
self-powered and enabled to request
remote wakeup.

USB_DEV_STS_LOCAL_POWER |
USB_DEV_STS_REMOTE_WAKEUP

The recipient is an interface. 0

The recipient is an endpoint that is not
currently halted.

0

The recipient is an endpoint that is
currently halted.

USB_ENDPOINT_STS_HALT

Table 5-7 Recipient Status and Associated Status Values (cont’d)

Recipient Status Associated Value

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

120

The target layer calls the synchFrameGet() callback in response to a
SYNCH_FRAME request from the host. The synchFrameGet() callback is defined
as follows:

STATUS synchFrameGet
(
pVOID param,
USB_TARG_CHANNEL targChannel,
UINT16 endpoint,
pUINT16 pFrameNo /* Frame Number */
);

If the specified endpoint does not support the SYNCH_FRAME request, this routine
returns ERROR, which triggers a request error.

5.5.13 vendorSpecific() Callback

The target layer routes all requests that it receives on a peripheral’s default control
pipe, which are not recognized as standard requests, to the target application’s
vendorSpecific() callback, if the target application provides such a callback. The
vendorSpecific() callback is defined as follows:

STATUS vendorSpecific
(
pVOID param,
USB_TARG_CHANNEL targChannel,
UINT8 requestType,
UINT8 request,
UINT16 value,
UINT16 index,
UINT16 length
s);

The value, index, length, requestType, and request parameters correspond to the
wValue, wIndex, wLength, bmRequestType, and bRequest fields in the USB device
request setup packet that the host expects to follow this vendor-specific call. Target
applications handle vendor-specific requests in various ways. Some
vendor-specific requests may require additional data transfers, perhaps using
target layer routines like usbTargControlPayloadRcv() or
usbTargControlResponseSend(). If there is no data transfer associated with a
vendor specific request, use usbTargControlStatusSend() instead. (See
5.6.4 Handling Default Pipe Requests, p.130).

5 USB Peripheral Stack Target Layer Overview
5.6 Pipe-Specific Requests

121

5

5.6 Pipe-Specific Requests

The TARG_PIPE data structure holds information about a pipe. This structure is
defined in usbTargLib.h as follows:

typedef struct targPipe /* TARG_PIPE */
{
USB_TARG_PIPE pipeHandle; /* pipe handle information */
pVOID pHalPipeHandle; /* HAL specific pipe handle */
pTARG_TCD pTargTcd; /* pointer to targ_tcd data structure*/
} TARG_PIPE, *pTARG_PIPE;

The members of this structure hold the following information:

pipeHandle
This is the pipe handle that the target application uses when carrying out USB
transfers on this endpoint. This is just an identifier for the pipe, not the
endpoint number.

pHalPipeHandle
This is a pointer to HAL information that is used for internal bookkeeping
within the target layer. Whenever the target application creates a pipe, a
pointer to the structure USB_HAL_PIPE_INFO is stored in this handle. This
abstracts all the endpoint-specific information from the TargLib layer and the
TargLib layer uses this handle to communicate with the particular endpoint.

Note that the TargLib layer need not know the integrate details of the
endpoint.

pTargTcd
This is a pointer to a structure that the target layer uses to maintain
information about target controller drivers. Your target application does not
need to refer to this data.

5.6.1 Creating and Destroying the Pipes

A target application uses the target layer routines usbTargPipeCreate() and
usbTargPipeDestroy() to create and destroy pipes.

The usbTargPipeCreate() routine creates a pipe for communication on a specific
target endpoint and returns a pipe handle in pPipeHandle. The target application
uses this pipe handle to communicate with the endpoint.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

122

The target application sets the following:

■ the endpoint descriptor (for details about this structure, see Endpoint
Descriptor, p.122)

■ the configuration value of the device

■ the number of the interface that supports the endpoint

■ the alternate setting of the interface

In response to the usbTargPipeCreate(), the HAL calls the single entry point of the
TCD and passes it a target request block (TRB). The TRB contains the code
TCD_FNC_ENDPOINT_ASSIGN and the endpoint descriptor, configuration value,
interface number, and alternate setting. For details about this TRB, see
6.5.8 Assigning the Endpoints, p.142.

The default control pipes (endpoint 0) are created and maintained by the target
layer when the host sends a bus reset event. The pipe handle to the control
endpoints is not exposed to the target application. If the target application needs
to carry out any communication with the host using the default control pipes, it
can do so with the usbTargControlResponseSend(),
usbTargControlStatusSend(), and usbTargControlPayloadRcv() routines (see
5.6.4 Handling Default Pipe Requests, p.130).

Endpoint Descriptor

The endpoint descriptor is a USB_ENDPOINT_DESCR structure containing the
elements the following elements:

length
This is a UINT8 containing the total length in bytes of the endpoint descriptor

descriptorType
This is a UINT8 containing the endpoint descriptor type:
USB_DESCR_ENDPOINT

endpointAddress
This is a UINT8 containing the address of the endpoint, encoded as follows:

■ bits three to zero are the endpoint number
■ bits six to four are reserved
■ bit seven is the direction (ignored for control endpoints); zero=out, one=in

5 USB Peripheral Stack Target Layer Overview
5.6 Pipe-Specific Requests

123

5

attributes
This is a UINT8 containing the endpoint attributes when it is configured using
the bConfigurationValue:

■ bits one to zero are transfer type

– 00 – control
– 01 – isochronous
– 10 – bulk
– 11 – interrupt

If this is not an isochronous endpoint, bits five to two are reserved and must
be set to zero; if isochronous, they are defined as follows:

■ bits three to two are synchronization type

– 00 – no synchronization
– 01 – asynchronous
– 10 – adaptive
– 11 – synchronous

■ bits five to four are usage type

– 00 – data endpoint
– 01 – feedback endpoint
– 10 – implicit feedback data endpoint
– 11 – reserved
– all other bits are reserved and must be reset to zero

maxPacketSize
This is a UINT16 containing the maximum packet size that this endpoint is
capable of sending or receiving in this configuration

For isochronous endpoints, this value reserves the bus time in the schedule,
which is required for the per-(micro) frame data payloads. The pipe may, on
an ongoing basis, actually use less bandwidth than that which is reserved. The
device reports, if necessary, the actual bandwidth used through its normal,
non-USB-defined mechanisms.

For all endpoints, bits ten through zero specify the maximum packet size in
bytes.

For highspeed isochronous and interrupt endpoints, bits twelve and eleven
indicate the number of additional transaction opportunities per microframe:

■ 00 – one additional (two per microframe)
■ 10 – two additional (three per microframe)

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

124

■ 11 – reserved
■ bits 15 through 13 are reserved and must be set to 0

interval
This is a UINT8 containing an interval for polling the endpoint for data
transfers (expressed in frames or microframes, depending on the device
operating speed—in other words, in one-millisecond or 125-microsecond
units)

– For full- and high-speed isochronous endpoints, this value must fall in the
range from one to 16.

– For full- and low-speed interrupt endpoints, the value must fall in the
range from one to 255.

– For high-speed interrupt endpoints, the value must fall in the range from
one to 16.

– For high-speed bulk/control OUT endpoints, the value must specify the
maximum NAK rate of the endpoint. A value of 0 indicates that the
endpoint never NAKs. Other values indicate at most one NAK per
interval number of microframes. This value may range from 0 to 255.

usbTargPipeDestroy()

The target application tears down a previously-created pipe by calling
usbTargPipeDestroy(). When the target application calls this routine, the HAL
releases the endpoint for the pipe indicated by pipeHandle, releases that pipe
handle, and calls the single entry point of the TCD with the function code
TCD_FNC_ENDPOINT_RELEASE.

5.6.2 Transferring and Aborting Data

Data transfer can be of two types: generic and control:

Generic data transfer
The target application uses the target layer routine usbTargTransfer() for
generic data transfer between the USB peripheral stack and the USB host. See
Figure 5-4.

Control data transfer
If the target application instead wants to communicate with the host using the
default control pipes, it does so by using the

5 USB Peripheral Stack Target Layer Overview
5.6 Pipe-Specific Requests

125

5

usbTargControlResponseSend(), usbTargControlStatusSend(), and
usbTargControlPayloadRcv() routines (see 5.6.4 Handling Default Pipe
Requests, p.130).

The usbTargTransfer() routine initiates a transfer on the pipe indicated by
pipeHandle. The data to be transferred is described by a structure, USB_ERP, that
the target application must allocate and initialize before it calls
usbdTargTransfer().

Figure 5-4 Transferring Data over a TCD

usbTargEnable()

usbTargPipeCreate()
TCD_FNC_ENDPOINT

Pipe handle
Pipe handle

usbTargTransfer()
TCD_FNC_COPY

usbTargPipeDestroy()
TCD_FNC_ENDPOINT

TCD_FNC_ENABLE

Target Application TCDTarget Layer HALConfiglette

_ASSIGN

_DATA...

_RELEASE

userCallback()

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

126

USB_ERP Structure

The structure USB_ERP is defined in usb.h and takes the following form:

typedef struct usb_erp
 {
 LINK targLink; /* link field used internally by usbTargLib */
 pVOID targPtr; /* ptr field for use by usbTargLib */
 LINK tcdLink; /* link field used internally by USB TCD */
 pVOID tcdPtr; /* ptr field for use by USB TCD */
 pVOID userPtr; /* ptr field for use by client */
 UINT16 erpLen; /* total length of ERP structure */
 int result; /* ERP completion result: S_usbTcdLib_xxxx */
 ERP_CALLBACK targCallback; /* completion callback routine */
 ERP_CALLBACK userCallback; /*client's completion callback routine */
 pVOID pPipeHandle; /* Pipe handle */
 UINT16 transferType; /* type of ERP: control, bulk, etc. */
 UINT16 dataToggle; /* ERP should start with DATA0/DATA1. */
 UINT16 bfrCount; /* indicates count of buffers in BfrList */
 USB_BFR_LIST bfrList [1];
 } USB_ERP, *pUSB_ERP;

The elements of the USB_ERP structure are listed below with their descriptions.

targLink
This is not used by either the target layer or the HAL, but may be used by the
target application. The target application can use this link structure to
maintain a list of ERPs by casting the USB_ERP structure as a LINK element of
a linked list.

targPtr
The target layer uses this pointer in the case of control transfers to point to a
TARG_TCD structure. This element is not used for generic endpoint transfers.

tcdLink
The HAL uses this element to maintain a linked list of the ERPs that have been
submitted to the TCD.

tcdPtr
The HAL uses this pointer to the TCD when it wants to send a zero-length
packet.

userPtr
The target application may use this pointer for its own purposes.

erpLen
The target application sets this element to the total size of the USB_ERP
structure including the bfrList array—that is, to:

sizeof(USB_ERP) + (sizeof(USB_BFR_DESCR) * (bfrCount - 1))

5 USB Peripheral Stack Target Layer Overview
5.6 Pipe-Specific Requests

127

5

result
The target layer sets this element to the ERP completion result, either OK or
one of the S_usbTcdLib_xxxx codes listed below.

OK

S_usbTcdLib_BAD_PARAM

S_usbTcdLib_BAD_HANDLE

S_usbTcdLib_OUT_OF_MEMORY

S_usbTcdLib_OUT_OF_RESOURCES

S_usbTcdLib_NOT_IMPLEMENTED

S_usbTcdLib_GENERAL_FAULT

S_usbTcdLib_NOT_INITIALIZED

S_usbTcdLib_INT_HOOK_FAILED

S_usbTcdLib_HW_NOT_READY

S_usbTcdLib_NOT_SUPPORTED

S_usbTcdLib_ERP_CANCELED

S_usbTcdLib_CANNOT_CANCEL

S_usbTcdLib_SHUTDOWN

S_usbTcdLib_DATA_TOGGLE_FAULT

S_usbTcdLib_PID_MISMATCH

S_usbTcdLib_COMM_FAULT

S_usbTcdLib_STALL_ERROR

S_usbTcdLib_NEW_SETUP_PACKET

S_usbTcdLib_DATA_OVERRUN

NOTE: Note that the target application does not consider this field to be accurately
set until the target layer invokes the userCallback() routine.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

128

targCallback()
The target layer sets this element, which it uses internally.

userCallback()
The target application sets this element to point to a routine that the target
layer calls when the ERP has either been successfully transmitted or there has
been an error. The target application checks the result field of the ERP in this
callback routine and responds appropriately. An ERP_CALLBACK has the
following form:

void myErpCallback(pVOID pErp);

pPipeHandle
The HAL and target layer use this pipe handle internally. The target
application does not need to set it or use it.

transferType
The target layer sets this element based on the ERP type:
USB_XFRTYPE_CONTROL, USB_XFRTYPE_ISOCH,
USB_XFRTYPE_INTERRUPT, or USB_XFRTYPE_BULK.

dataToggle
The target layer sets this element to USB_DATA0 or USB_DATA1.

bfrCount
The target application sets this to the number of buffers in bfrList.

bfrList
The target application sets this to a USB_BFR_LIST structure or to an array of
USB_BFR_LIST structures. This structure describes a block of data in the
transfer. See Table 5-8.

endpointId
The target layer sets this element based on the value recorded when the pipe
was created.

5 USB Peripheral Stack Target Layer Overview
5.6 Pipe-Specific Requests

129

5

usbTargTransfer() Routine

The first parameter of usbTargTransfer() is the handle of the pipe on which the
data is to be transferred, and the second parameter is the ERP to be transferred. The
HAL responds when this routine is called by calling the single entry point of the
TCD with the code TCD_FNC_COPY_DATA_FROM_EPBUF or
TCD_FNC_COPY_DATA_TO_EPBUF, depending on the direction for which that
pipe is supported.

The usbTargTransfer() routine simply puts the ERP in the queue of ERPs to be
transferred on that endpoint. The result of the ERP is obtained by querying the
result field of the ERP structure in the callback routine. The result field is set to OK
for a successful transfer. The target application callback routine is called by the
HAL.

Aborting a Data Transfer

The target application can call the usbTargTransferAbort() routine to abort a
transfer that it previously submitted with the usbTargTransfer() routine. When a
transfer is aborted, the userCallback() referenced in pErp is called. The result

Table 5-8 Elements of the USB_BFR_LIST Structure

Element Purpose

pid Specifies the packet type: USB_PID_SETUP, USB_PID_IN or
USB_PID_OUT. If the first USB_BFR_LIST structure in the bfrList array
has a pid of USB_PID_SETUP then it must be the only such structure in
the bfrList array. A bfrList array must not contain structures that have
both USB_PID_IN and USB_PID_OUT pid values, but must have only
one or the other. USB_PID_IN indicates that the packet is going from the
target to the host; USB_PID_OUT indicates that the packet is going from
the host to the target.

pBfr Contains the contents of the buffer.

bfrLen Contains the size of the buffer.

actLen The HAL sets this, on completion of the data transfer, to the actual
amount of this buffer that has been transmitted.

The target application checks this value in the userCallback() function.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

130

element of the ERP is set to S_usbTcdLib_ERP_CANCELLED and the actLen element
indicates whether any of the data in the ERP was transferred.

5.6.3 Stalling and Unstalling the Endpoint

The target application may stall or unstall the generic endpoints. It stalls the
endpoint in response to certain error conditions. The STALL state indicates to the
host that an error has occurred on the target. A target application uses the target
layer routine usbTargPipeStatusSet() to stall or unstall a particular endpoint.
This routine sets the state of a pipe to TCD_ENDPOINT_STALL or
TCD_ENDPOINT_UNSTALL.

The HAL responds to this routine by calling the single entry point in the TCD with
the code TCD_FNC_ENDPOINT_STATE_SET. The state is either
TCD_ENDPOINT_STALL or TCD_ENDPOINT_UNSTALL.

The target application can use the usbTargPipeStatusGet() target layer routine to
determine whether the endpoint to a pipe is stalled or not. The HAL responds to
this routine by calling the single entry point of the TCD with the code
TCD_FNC_ENDPOINT_STATUS_GET and by storing the status of the endpoint in
the pBuf parameter (either USB_ENDPOINT_STS_HALT, if the endpoint is stalled,
or 0 otherwise).

5.6.4 Handling Default Pipe Requests

The target application uses these routines to transfer data on the default control
pipe:

■ usbTargControlResponseSend()
■ usbTargControlStatusSend()
■ usbTargControlPayloadRcv()

NOTE: Halt and stall are used interchangeably and have essentially the same
meaning.

NOTE: The target application cannot set the TCD_ENDPOINT_STALL or
TCD_ENDPOINT_UNSTALL state directly for the default control pipe. The target
layer sets the default control pipe to the stall state when it detects an error in the
processing of a request on the default control pipe, for instance when the target
application returns ERROR from a callback designed to handle a standard request.

5 USB Peripheral Stack Target Layer Overview
5.7 Device Control and Status Information

131

5

The target application uses the usbTargControlResponseSend() routine to send
control pipe responses to the host using usbTargControlResponseSend(). The
target application uses this sent data on various Control-IN requests for the host.
For example, on a GET_DESCRIPTOR request, the target application calls this API
to send the data in response to the request from host.

The target application uses the usbTargControlStatusSend() routine to send the
status to the host when the control transfer does not have a data stage.

The target application calls usbTargControlPayloadRcv() to register a callback
routine to receive control pipe responses from the host. Then, when the target
application receives control data from the host, the callback routine is invoked and
the pBfr points to the control data.

5.7 Device Control and Status Information

5.7.1 Getting the Frame Number

Some target applications, particularly those that implement isochronous data
transfers, must determine the current USB frame number. Use the target layer
routine usbTargCurrentFrameGet() for this purpose.

The target layer stores the current frame number in the pFrameNo parameter. The
HAL responds to a call to usbTargCurrentFrameGet() by calling the single entry
point in the TCD with the code TCD_FNC_CURRENT_FRAME_GET.

5.7.2 Resuming the Signal

A target application can drive RESUME signaling, as defined in the USB 2.0
specification, by using the target layer routine usbTargSignalResume(). If the
USB device is in the SUSPEND state, a target application can use this routine to
resume the device.

The HAL responds to this routine by calling the single entry point of the TCD with
the code TCD_FNC_SIGNAL_RESUME.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

132

5.7.3 Setting and Clearing a Device Feature

Many devices support the remote wakeup and test mode features. A target
application can set these features and clear the remote wakeup feature with the
target layer routines usbTargDeviceFeatureSet() and
usbTargDeviceFeatureClear() in response to a SET_FEATURE or
CLEAR_FEATURE request from the host. (The test mode cannot be cleared.)

The second parameter of usbTargDeviceFeatureSet() is ufeatureSelector, which
specifies setting the remote wakeup or test mode feature (see Table 5-4 for a list of
feature selector values). The third parameter, uTestSelector, specifies the test
selector values (see Table 5-9 for a list of test selector values).

The HAL responds to this routine by calling the single entry point of the TCD with
the code TCD_FNC_DEVICE_FEATURE_SET.

The HAL responds to this routine by calling the single entry point of the TCD with
the code TCD_FNC_DEVICE_FEATURE_CLEAR.

Table 5-9 Test Selectors

Name Value

USB_TEST_MODE_J_STATE 1

USB_TEST_MODE_K_STATE 2

USB_TEST_MODE_SE0_ACK 3

USB_TEST_MODE_TEST_PACKET 4

USB_TEST_MODE_TEST_FORCE_ENABLE 5

NOTE: According to the USB 2.0 specification, the test mode feature cannot be
cleared.

5 USB Peripheral Stack Target Layer Overview
5.8 Shutdown Procedure

133

5

5.8 Shutdown Procedure

The target layer exposes the routine usbTargShutdown(). This routine can be
used by the target application or the configlette to shut down the USB peripheral
stack.

The target layer maintains a usage count initCount, which is incremented every
time usbTargInitialize() is called. Similarly, the usage count is decremented on
every corresponding call to usbTargShutdown(). Only when the usage count
reaches zero are all the attached TCDs detached, and all the resources allocated by
the target layer released. Figure 5-5 shows the target layer shutdown process.

Figure 5-5 Target Layer Shutdown

Configlette Target Layer HAL TCD

TCD_FNC_DETACH

usbTargShutdown()

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

134

135

 6
Target Controller Drivers

6.1 Introduction 135

6.2 Hardware Adaptation Layer Overview 136

6.3 Single Entry Point 136

6.4 Target Request Block 136

6.5 Function Codes 138

6.1 Introduction

This chapter shows how to create a target controller driver that interfaces with the
hardware adaptation layer in the Wind River USB peripheral stack. For
instructions on how to create a target application that interfaces with the target
layer in the Wind River USB peripheral stack, see 5. USB Peripheral Stack
Target Layer Overview.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

136

6.2 Hardware Adaptation Layer Overview

The hardware adaptation layer (HAL) sits between the target controller driver
(TCD) and the target layer in the USB peripheral stack. It carries out all of the
hardware-independent functions of the target controller and makes the
implementation of higher stack layers independent of the TCD.

This section explains how the HAL calls the single entry point exposed by the TCD
to carry out different operations on the target controller. The HAL calls the single
entry point exposed by the TCD with specific function codes in a target request
block (TRB). The code describes the services requested from the TCD. 6.4 Target
Request Block, p.136, explains the TRB and 6.5 Function Codes, p.138,explains the
function codes. All TCDs must implement the single entry point that provides
service for these function codes. It is not necessary for the TCD to implement every
function code, only those that it plans to respond to in a device-specific way.

6.3 Single Entry Point

The target controller driver exposes a single entry point to the HAL. The HAL
makes all requests to the TCD by passing an appropriate TRB with a proper
function code to this entry point, which has the form:

STATUS usbTcdXXXXExec(pVOID pTrb)

The pTrb parameter contains the TRB corresponding to the particular request.

6.4 Target Request Block

The HAL makes requests to the TCD by constructing a TRB and passing it to the
single entry point of the TCD. TRBs begin with a common header that may be
followed by parameters specific to the function being requested. This common
TRB header is shown below:

typedef struct trb_header
 {

6 Target Controller Drivers
6.4 Target Request Block

137

6

 TCD_HANDLE handle; /* caller's TCD client handle */
 UINT16 function; /* TCD function code */
 UINT16 trbLength; /* IN: Length of the total TRB */
 } TRB_HEADER, *pTRB_HEADER;

The handle element of the TRB header is the handle to the TCD. The TCD creates
this handle and fills in the handle element when the TCD is called with the
TCD_FNC_ATTACH code. The HAL then keeps track of this handle and uses it to
fill in the handle element of TRBs for subsequent requests.

The HAL sets the function element in the TRB header to one of the TCD function
requests shown in Table 6-1.

Table 6-1 TCD Function Requests

Function Code See Page . . .

TCD_FNC_ATTACH 138

TCD_FNC_DETACH 140

TCD_FNC_ENABLE 140

TCD_FNC_DISABLE 140

TCD_FNC_ADDRESS_SET 141

TCD_FNC_SIGNAL_RESUME 141

TCD_FNC_DEVICE_FEATURE_SET 141

TCD_FNC_DEVICE_FEATURE_CLEAR 141

TCD_FNC_CURRENT_FRAME_GET 142

TCD_FNC_ENDPOINT_ASSIGN 142

TCD_FNC_ENDPOINT_RELEASE 143

TCD_FNC_ENDPOINT_STATE_SET 143

TCD_FNC_ENDPOINT_STATUS_GET 144

TCD_FNC_IS_BUFFER_EMPTY 145

TCD_FNC_COPY_DATA_FROM_EPBUF 144

TCD_FNC_COPY_DATA_TO_EPBUF 144

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

138

The HAL sets the trbLength element of the TRB header to the total length of the
TRB, including the header and any additional parameters that follow the header.

6.5 Function Codes

This section describes the various function codes and the TRBs that are used to
convey them to the TCD.

6.5.1 Attaching the TCD

During the attachment process, the HAL calls the single entry point in the TCD
with the function code TCD_FNC_ATTACH. It calls the entry point by passing the
following TRB:

typedef struct trb_attach
 {
 TRB_HEADER header;
 pVOID tcdParam;
 USB_HAL_ISR_CALLBACK usbHalIsr;
 pVOID usbHalIsrParam;

pUSBHAL_DEVICE_INFO pHalDeviceInfo;

TCD_FNC_INTERRUPT_STATUS_GET 145

TCD_FNC_INTERRUPT_STATUS_CLEAR 145

TCD_FNC_ENDPOINT_INTERRUPT_STATUS_GET 146

TCD_FNC_ENDPOINT_INTERRUPT_STATUS_CLEAR 148

TCD_FNC_HANDLE_DISCONNECT_INTERRUPT 148

TCD_FNC_HANDLE_RESET_INTERRUPT 148

TCD_FNC_HANDLE_RESUME_INTERRUPT 148

TCD_FNC_HANDLE_SUSPEND_INTERRUPT 148

Table 6-1 TCD Function Requests (cont’d)

Function Code See Page . . .

6 Target Controller Drivers
6.5 Function Codes

139

6

pUSB_APPLN_DEVICE_INFO pDeviceInfo;
 } TRB_ATTACH, *pTRB_ATTACH;

The tcdParam element points to the TCD-defined parameters structure that the
application in the configlette passes to usbTargTcdAttach() (see
5.3.1 TCD-Defined Parameters, p.100). The usbHalIsr() is the interrupt service
routine defined in the HAL. The interrupt service routine of the TCD calls this
routine, passing it the usbHalIsrParam, whenever an interrupt event occurs.

This callback uses the following prototype:

typedef (*USB_HAL_ISR_CALLBACK)(pVOID pHALData);

The TCD sets the uNumberEndpoints element of the pHalDeviceInfo structure
(shown below) to the number of endpoints supported by the target controller.

typedef usbhal_device_info
{
UINT8 uNumberEndpoints;
} USBHAL_DEVICE_INFO, *pUSBHAL_DEVICE_INFO;

The target application learns details about the device by means of the
USB_APPLN_DEVICE_INFO structure, shown below:

typedef struct usb_appln_device_info
 {
 UINT32 uDeviceFeature; /* bitmap giving featues supported */

/* by device */
 UINT32 uEndpointNumberBitmap; /* bitmap giving endpoint numbers */

/* supported by device */
 }USB_APPLN_DEVICE_INFO, *pUSB_APPLN_DEVICE_INFO;

The TCD populates this structure when the single access point of the TCD is called
with the TCD_FNC_ATTACH code, and the HAL and target layer pass this
structure back to the target application.

In this structure, the uDeviceFeature is a bitmap that explains whether the device
is USB 2.0 compliant, whether it supports remote wakeup, and whether it supports
test mode. The TCD sets this bitmap to a combination of the bits
USB_FEATURE_DEVICE_REMOTE_WAKEUP, USB_FEATURE_TEST_MODE, and
USB_FEATURE_USB20. For instance:

uDeviceFeature = (USB_FEATURE_DEVICE_REMOTE | USB_FEATURE_USB20)

The TCD sets uEndpointNumberBitmap to indicate the endpoints supported by
the hardware. The first 16 bits indicate the OUT endpoint and the next 16 bits
indicate the IN endpoint, with bits zero to 15 corresponding to OUT endpoints zero
to 15, and bits 15 to 31 corresponding to IN endpoints zero to 15.

During the TCD attachment process, the TCD sets the registers of the target
controller with the appropriate values to initialize the target controller.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

140

When the TCD detects certain USB events, it notifies the HAL which in turn calls
the management event target application callback that the target layer registered
with the HAL (see 5.5.3 mngmtFunc() Callback, p.107). When TCD attachment is
complete, the TCD returns the following values:

■ a TCD-defined handle in the handle member of the TRB

■ the number of endpoints supported by the target controller in the
pHalDeviceInfo member of the TRB

■ some device-specific information required by the target application in the
pDeviceInfo member of the TRB

6.5.2 Detaching the TCD

While detaching the TCD, the HAL calls the single entry point of the TCD with the
code TCD_FNC_DETACH. The TRB, shown below, is used for this purpose.

typedef struct trb_detach
 {
 TRB_HEADER header; /* TRB header */
 } TRB_DETACH, *pTRB_DETACH;

The TCD responds to a TCD_FNC_DETACH request by disabling the target
controller hardware and releasing all resources that it has allocated on behalf of the
controller.

6.5.3 Enabling and Disabling the TCD

In order to enable or disable the target controller the HAL calls the single entry
point of the TCD with the code TCD_FNC_ENABLE or TCD_FNC_DISABLE. In
response to a TCD_FNC_ENABLE request, the TCD enables the target controller,
making the peripheral visible on the USB, if it is connected to a USB.

In response to a TCD_FNC_DISABLE request, the TCD disables the target
controller, in effect making the peripheral disappear from the USB to which it is
attached. This function is typically requested only if the target application is in the
process of shutting down.

Both of these function codes share the same TRB. This TRB is shown below:

typedef struct trb_enable_disable
 {
 TRB_HEADER header; /* TRB header */
 } TRB_ENABLE_DISABLE, *pTRB_ENABLE_DISABLE;

6 Target Controller Drivers
6.5 Function Codes

141

6

6.5.4 Setting the Address

The device must set its address to 0 on bus reset,or to the address specified by the
USB host during the SET_ADDRESS request.

To set the address, the HAL calls the single entry point of the TCD with the code
TCD_FNC_ADDRESS_SET. This function uses the TRB shown below:

typedef struct trb_address_set
 {
 TRB_HEADER header; /* TRB header */
 UINT16 deviceAddress; /* IN: new device address */
 } TRB_ADDRESS_SET, *pTRB_ADDRESS_SET;

Once the USB host enumerates the peripheral, the USB host assigns it a new
address. The TCD responds to the TCD_FNC_ADDRESS_SET code by setting the
target controller to begin responding to the new USB device address as specified
by deviceAddress.

6.5.5 Resuming the Signal

The USB device may go into a SUSPEND state and stop responding to requests
from the host. To make it respond to the host requests the HAL calls the single
entry point of the TCD with the function code TCD_FNC_RESUME. The HAL uses
the TRB shown below for this purpose.

typedef struct trb_signal_resume
 {
 TRB_HEADER header; /* TRB header */
 } TRB_SIGNAL_RESUME, *pTRB_SIGNAL_RESUME;

If the USB is not in the SUSPEND state, this request has no effect.

6.5.6 Setting and Clearing the Device Feature

The USB host makes the standard requests SET_FEATURE and CLEAR_FEATURE
in order to set or clear device-specific features.

In response to these calls, the HAL calls the single entry point of the TCD with the
function codes TCD_FNC_DEVICE_FEATURE_SET and
TCD_FNC_DEVICE_FEATURE_CLEAR. These share the TRB shown below:

typedef struct trb_device_feature_set_clear
 {
 TRB_HEADER header;
 UINT16 uFeatureSelector;

UINT8 uTestSelector;

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

142

 } TRB_DEVICE_FEATURE_SET_CLEAR, *pTRB_DEVICE_FEATURE_SET_CLEAR;

The uFeatureSelector element specifies the remote wakeup feature or the test
mode feature (see Table 5-4 for a list of feature selector values). The uTestSelector
element specifies the test selector values (see Table 5-9 for a list of test selector
values).

6.5.7 Getting the Current Frame Number

It is sometimes necessary for clients to resynchronize with devices when the two
are exchanging data isochronously. This function allows a client to query a
reference frame number maintained by the device (indicated by frameNo). Refer
to the USB 2.0 specification for more detail.

The TRB that the HAL uses when calling the single entry point of the TCD with the
TCD_FNC_CURRENT_FRAME_GET code is shown below:

typedef struct trb_current_frame_get
 {
 TRB_HEADER header;
 UINT16 frameNo;
 } TRB_CURRENT_FRAME_GET, *pTRB_CURRENT_FRAME_GET;

In response to the TCD_FNC_CURRENT_FRAME_GET request, the TCD returns the
current USB frame number in the frameNo element of the TRB.

6.5.8 Assigning the Endpoints

Before any data is transferred to or from the endpoints, the endpoints must be
created. The target layer creates the control endpoints during the bus reset process.
The target application creates the generic endpoints during the enumeration
process from the host.

The target application always creates the endpoints corresponding to the endpoint
numbers that the HAL receives from the target layer in the endpoint descriptor
(see Endpoint Descriptor, p.122). The HAL maintains all the endpoint-specific
information in the USBHAL_PIPE_INFO structure, shown below:

typedef struct usbhal_pipe_info
{
UINT8 uEndpointAddress;
UINT8 uTransferType;
UINT32 pipeHandle;
LIST_HEAD listHead;
MUTEX_HANDLE mutexHandle;
} USBHAL_PIPE_INFO, *pUSBHAL_PIPE_INFO;

6 Target Controller Drivers
6.5 Function Codes

143

6

The HAL calls the single entry point of the TCD with the TRB shown below:

typedef struct trb_endpoint_assign
 {

TRB_HEADER header;
pUSB_ENDPOINT_DESCR pEndpointDesc;
UINT32 uConfigurationValue;
UINT32 uInterface;
UINT32 uAltSetting;
UINT32 pipeHandle;

 }TRB_ENDPOINT_ASSIGN, *pTRB_ENDPOINT_ASSIGN;

The HAL also calls it with the function code TCD_FNC_ENDPOINT_ASSIGN (see
5.6.1 Creating and Destroying the Pipes, p.121). The TCD responds to this request by
returning to the HAL, using the pipeHandle element of the TRB, a handle to the
pipe created. The HAL uses this handle for any subsequent request through that
pipe.

The target application sets the endpoint descriptor, pEndpointDesc; see Endpoint
Descriptor, p.122.

6.5.9 Releasing the Endpoints

In order to release the endpoint, the HAL calls the single entry point of the TCD
with the code TCD_FNC_ENDPOINT_RELEASE and a pipe handle that represents
the pipe to release and the endpoint to free. The TRB that the HAL passes to the
single entry point of the TCD for this purpose takes the form shown below:

typedef struct trb_endpoint_release
 {
 TRB_HEADER header;
 UINT32 pipeHandle;
 } TRB_ENDPOINT_RELEASE, *pTRB_ENDPOINT_RELEASE;

In response to this function call, the TCD releases the endpoint and removes the
pipe referenced by pipeHandle.

6.5.10 Setting the Endpoint Status

In order to set the status of the endpoint, the HAL calls the single entry point of the
TCD with the code TCD_FNC_ENDPOINT_STATE_SET in the TRB shown below:

NOTE: The creation of generic pipes depends entirely on the target application.
Generally, the target application creates the generic endpoints on receiving the
SET_CONFIGURATION request from the host.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

144

typedef struct trb_endpoint_state_set
 {
 TRB_HEADER header;
 UINT32 pipeHandle;
 UINT16 state;
 } TRB_ENDPOINT_STATE_SET, *pTRB_ENDPOINT_STATE_SET;

The state element is either TCD_ENDPOINT_STALL or
TCD_ENDPOINT_UNSTALL.

6.5.11 Getting the Endpoint Status

The host may issue a GET_STATUS request to get the status of an endpoint.

In order to get the status of the endpoint, the HAL calls the single entry point of
the TCD with the function code TCD_FNC_ENDPOINT_STATUS_GET in the TRB
shown below:

typedef struct trb_endpoint_status_get
 {
 TRB_HEADER header;
 UINT32 pipeHandle;
 pUINT16 pStatus;
 } TRB_ENDPOINT_STATUS_GET, *pTRB_ENDPOINT_STATUS_GET;

The TCD returns the status of the endpoint (see Table 5-7 for a list of valid status
values and their meanings).

6.5.12 Submitting and Cancelling ERPs

Once the pipes are created, they may be used to transfer data (see 5.6.2 Transferring
and Aborting Data, p.124). The HAL calls the single entry point of the TCD with the
code TCD_FNC_COPY_DATA_FROM_EPBUF or
TCD_FNC_COPY_DATA_TO_EPBUF depending on the direction of the pipe for
which the request is issued by the target layer.

These function codes use the TRBs shown below:

typedef struct trb_copy_data_from_epbuf
 {
 TRB_HEADER header;
 UINT32 pipeHandle;
 pUCHAR pBuffer;
 UINT32 uActLength;
 } TRB_COPY_DATA_FROM_EPBUF, *pTRB_COPY_DATA_FROM_EPBUF;

typedef struct trb_copy_data_to_epbuf
 {

6 Target Controller Drivers
6.5 Function Codes

145

6

 TRB_HEADER header;
 UINT32 pipeHandle;
 pUCHAR pBuffer;
 UINT32 uActLength;
 } TRB_COPY_DATA_TO_EPBUF, *pTRB_COPY_DATA_TO_EPBUF;

The pipeHandle element refers to the endpoint to whose or from whose FIFO
buffer the data is to be copied. The data is copied to or from the pBuffer.

The uActLength element is set by the HAL before it submits the TRB, indicating
the size of the buffer to be transmitted. However, the actual amount of data
transmitted through the TCD may be different, depending on the maximum
packet size for the endpoint. If the TCD transmits a different amount of data from
that indicated by uActLength, the TCD overwrites uActLength with the actual
amount of data that was transferred before returning from its single entry point.

6.5.13 Determining Whether the Buffer is Empty

The HAL calls the single entry point of the TCD with the function code
TCD_FNC_IS_BUFFER_EMPTY to see whether the FIFO buffer associated with the
pipe designated by pipeHandle is empty. This function code uses the TRB shown
below:

typedef struct trb_is_buffer_empty
 {
 TRB_HEADER header;
 UINT32 pipeHandle;
 BOOL bufferEmpty;
 } TRB_IS_BUFFER_EMPTY, *pTRB_IS_BUFFER_EMPTY;

6.5.14 Getting and Clearing Interrupts

The HAL calls the single entry point of the TCD with the code
TCD_FNC_INTERRUPT_STATUS_GET or TCD_FNC_INTERRUPT_STATUS_CLEAR
in order to get or clear the interrupt status. These codes share the TRB shown
below:

typedef struct trb_interrupt_status_get_clear
 {
 TRB_HEADER header;
 UINT32 uInterruptStatus;
 } TRB_INTERRUPT_STATUS_GET_CLEAR, *pTRB_INTERRUPT_STATUS_GET_CLEAR;

In response to the TCD_FNC_INTERRUPT_STATUS_GET, the TCD indicates the
types of interrupts that are pending by setting the uInterruptStatus element of the
TRB. This element is a bitmap with the following form:

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

146

■ bit 0 – disconnect interrupt
■ bit 1 – reset interrupt
■ bit 2 – suspend interrupt
■ bit 3 – resume interrupt
■ bit 4 – endpoint interrupt

In response to the TCD_FNC_INTERRUPT_STATUS_CLEAR, the TCD clears the
indicated interrupts. It uses the same bitmap format to indicate which interrupts
to clear.

Figure 6-1 illustrates how interrupts are handled:

6.5.15 Retrieving an Endpoint-Specific Interrupt

If the TCD indicates to the HAL that an endpoint interrupt has occurred, the HAL
calls the single entry point of the TCD with the function code

Figure 6-1 Handling Interrupts

Target
Application Target Layer HAL TCD

Calls HAL ISR

Interrupt generated.
TCD ISR called.

TCD_FNC_INTERRUPT_GET

unInterruptStatus

Calls the appropriate entry point in
the target application, if required

6 Target Controller Drivers
6.5 Function Codes

147

6

TCD_FNC_ENDPOINT_INTERRUPT_STATUS_GET to determine the what type of
interrupt occurred. The TRB for this process is shown below:

typedef struct trb_endpoint_interrupt_status_get
 {
 TRB_HEADER header;
 UINT32 pipeHandle;
 UINT32 uEndptInterruptStatus;
 } TRB_ENDPOINT_INTERRUPT_STATUS_GET, *pTRB_ENDPOINT_INTERRUPT_STATUS_GET;

uEndpointInterruptStatus is a bitmap that indicates the types of interrupt that
have occurred on that endpoint. It takes the following form:

■ bit zero – endpoint Interrupt
■ bit one – setup Interrupt
■ bit two – OUT interrupt
■ bit three – IN interrupt

The TCD uses bits four to eleven to report errors. These errors are defined in
usbTcd.h and are shown in Table 6-2:

Table 6-2 Endpoint Interrupt Status Errors

Error Value

USBTCD_ENDPOINT_TRANSFER_SUCCESS 0x0000

USBTCD_ENDPOINT_DATA_TOGGLE_ERROR 0x00E0

USBTCD_ENDPOINT_PID_MISMATCH 0x00F0

USBTCD_ENDPOINT_COMMUN_FAULT 0x0100

USBTCD_ENDPOINT_STALL_ERROR 0x0110

USBTCD_ENDPOINT_DATA_OVERRUN 0x0120

USBTCD_ENDPOINT_DATA_UNDERRUN 0x0130

USBTCD_ENDPOINT_CRC_ERROR 0x0140

USBTCD_ENDPOINT_TIMEOUT_ERROR 0x0150

USBTCD_ENDPOINT_BIT_STUFF_ERROR 0x0160

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

148

6.5.16 Clearing All Endpoint Interrupts

The HAL calls the single entry point of the TCD with the code
TCD_FNC_ENDPOINT_INTERRUPT_STATUS_CLEAR to clear all of the
endpoint-specific interrupts. The TRB for this process is shown below:

typedef struct trb_endpoint_interrupt_status_clear
 {
 TRB_HEADER header;
 UINT32 pipeHandle;
 } TRB_ENDPOINT_INTERRUPT_STATUS_CLEAR,

*pTRB_ENDPOINT_INTERRUPT_STATUS_CLEAR

6.5.17 Handling Disconnect, Reset, Resume, and Suspend Interrupts

When disconnect, suspend, resume, and reset events happen, some hardware may
have to handle the events by doing something specific to its register set. The HAL
calls the single entry point of the TCD with the following codes in order to handle
these events:

■ TCD_FNC_HANDLE_DISCONNECT_INTERRUPT

■ TCD_FNC_HANDLE_RESET_INTERRUPT

■ TCD_FNC_HANDLE_RESUME_INTERRUPT

■ TCD_FNC_HANDLE_SUSPEND_INTERRUPT

The TCD uses these notices only if it must do something specific in response to
these interrupts (otherwise the TCD just returns from its single entry point without
doing anything). On a disconnect, for example, some target controllers expect
some registers to be reset—this can be done in the disconnect interrupt handler.

The TRB that the HAL constructs for the
TCD_FNC_HANDLE_DISCONNECT_INTERRUPT event is shown below:

typedef struct trb_handle_disconnect_interrupt
 {
 TRB_HEADER header;
 } TRB_HANDLE_DISCONNECT_INTERRUPT, *pTRB_HANDLE_DISCONNECT_INTERRUPT;

The TRB that the HAL constructs for the TCD_FNC_HANDLE_RESET_INTERRUPT
event is shown below:

typedef struct trb_handle_reset_interrupt
 {
 TRB_HEADER header;
 } TRB_HANDLE_RESET_INTERRUPT, *pTRB_HANDLE_RESET_INTERRUPT;

6 Target Controller Drivers
6.5 Function Codes

149

6

The TRB that the HAL constructs for the
TCD_FNC_HANDLE_RESUME_INTERRUPT event is shown below:

typedef struct trb_handle_resume_interrupt
 {
 TRB_HEADER header;
 } TRB_HANDLE_RESUME_INTERRUPT, *pTRB_HANDLE_RESUME_INTERRUPT;

The TRB that the HAL constructs for the
TCD_FNC_HANDLE_SUSPEND_INTERRUPT event is shown below:

typedef struct trb_handle_suspend_interrupt
 {
 TRB_HEADER header;
 } TRB_HANDLE_SUSPEND_INTERRUPT,*pTRB_HANDLE_SUSPEND_INTERRUPT;

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

150

151

 7
BSP Porting

7.1 Configuring the USB Peripheral Stack

The USB peripheral stack takes advantage of the non-VxBus PCI configuration
capabilities in VxBus. To access these functions the macro
INCLUDE_PCI_OLD_CONFIG_ROUTINES must be defined, typically in config.h in
the BSP.

7.1.1 Initialization of the USB Peripheral Stack

USB peripheral stack initialization starts with the initialization of the target
controllers. The routine usrUsbTargXXXInit(), defined in
installDir/vxWorks-6.x/target/config/comps/src, calls the USB target hardware
configlette routine of the corresponding target controller, which is defined in
installDir/vxworks6.x/target/config/comps/src/usrUsbTargPciInit.c.

The following are the hardware initialization routines:

■ sysIsp1582PciInit() – This configures the PCI-based Philips ISP1582 target
controller

■ sys2NET2280PciInit() – This configures the PCI-based Netchip NET2280
target controller

Configuring the peripheral hardware involves the following:

■ Determining the base address map of the controller.

■ Determining the interrupt request number of the controller.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

152

Example Initializing Resources for a NET2280 controller

The following sample code demonstrates how to initialize the resources for the
PCI- based NET2280 target controller:

/**
*
* sys2NET2280PciInit - to configure the PCI interface for NET2280
*
* This function is used to configure the PCI interface for NET2280. It
* obtains the PCI Configuration Header for the NET2280 and provides
* with the base addresses and the irq number.
*/
void sys2NET2280PciInit (void)
{
/* locate the NET2280 controller by passing the vendor id and
* device id
*/
USB_PCI_FIND_DEVICE(NET2280_VENDOR_ID, NET2280_DEVICE_ID, nDeviceIndex,
&PCIBusNumber, &PCIDeviceNumber, &PCIFunctionNumber);

/* If any NET2280 target controller is found,
 * read the PCI Configuration header to obtain
 * the base address and the interrupt line.
 */

/* Get the configuration header */
usbPciConfigHeaderGet (PCIBusNumber, PCIDeviceNumber, PCIFunctionNumber,
&pciCfgHdr);
base_address = pciCfgHdr.baseReg[0];
interrupt_line = pciCfgHdr.intline;
}

7.1.2 Creating a BSP-Specific Stub File for the USB Peripheral Stack

The BSP-specific stub files provide the interfaces that must be implemented in the
installDir/vxworks-6.x/target/config/BSP/usbPciStub.c file to give PCI and
non-PCI support to USB peripherals.

Eight-, 16- and 32-Bit Data I/O

The target controller driver (TCD) uses the routines listed below for read and write
operations with the I/O-mapped PCI-based target controller.

The following routines provide data lengths such eight-, 16- and 32-bit, for
accessing the target controller registers of varying data widths.

■ usbPciByteIn() – Reads a byte from PCI I/O space.

7 BSP Porting
7.1 Configuring the USB Peripheral Stack

153

7

■ usbPciWordIn() – Reads a word from PCI I/O space.

■ usbPciDwordIn() – Reads a dword from PCI I/O space.

■ usbPciByteOut() – Writes a byte to PCI I/O space.

■ usbPciWordOut() – Writes a word to PCI I/O space.

■ usbPciDwordOut() – Writes a dword to PCI I/O space.

Interrupt Routines

The following routines are used to connect and disconnect the ISR with the
corresponding interrupts.

■ usbPciIntConnect() – Connects to the interrupt line.

■ usbPciIntRestore() – Disconnects from the interrupt line.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

154

155

 9
usbTool Code Exerciser

Utility Tool

9.1 Introduction 155

9.2 Running usbTool from the Shell 156

9.3 Using the usbTool Execution Sequence 156

9.4 Testing Applications 157

9.1 Introduction

Wind River USB includes a utility called usbTool that you can use to exercise the
modules that compose Wind River USB. For example, if you are implementing a
new device driver, you can use usbTool to exercise and debug your code. The
usbTool utility also provides a basic code skeleton that you can customize to suit
your test needs.

This chapter describes the USB utility tool.

NOTE: The usbTool utility relies internally on static data. Do not run multiple
instances of usbTool simultaneously.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

156

9.2 Running usbTool from the Shell

1. To use usbTool from the shell, type the entry point of the tool at the shell
prompt, as follows:

->usbTool

This produces a new prompt where commands can be entered:

usb>

2. To get a list of all usbTool commands and their definitions, type the following:

usb>?

9.3 Using the usbTool Execution Sequence

The usbTool utility allows the user to see the typical execution sequence needed
to get the USB up and running.

When an image that includes USB components boots, it automatically executes a
sequence of events similar to that produced by using the usbTool utility:

1. To initialize the USB host stack, enter the usbInit command at the usbTool
prompt.

2. To initialize an EHCI, OHCI, or UHCI host controller, enter the attach ehci,
attach ohci, or attach uhci commands at the usbTool prompt.

3. If you plan to use a device driver, after initializing the host stack and host
controller, enter the initialization command for that driver at the usbTool
prompt.

To test any included devices, enter the appropriate test command, for
example:

usb>mouseTest

! CAUTION: When running usbTool on a host shell, you may encounter a redirection
problem that prevents entered commands from being echoed back to the shell. You
can avoid this issue by running usbTool on a target shell.

9 usbTool Code Exerciser Utility Tool
9.4 Testing Applications

157

9

The following commands are available when their associated device components
are included in your VxWorks image:

mouse
mouseTest

keyboard

kbdInit, kbdDown, and kbdPoll

printer
prnInit, prnDown, print4k, and print filename

speaker
spkrInit, spkrDown, spkrFmt, volume, and play filename

For descriptions of these commands, invoke the help list from usbTool.

9.4 Testing Applications

This section describes how to test applications by using the usbTool utility.

9.4.1 Testing the Keyboard Application

To test the keyboard application, proceed as follows:

Step 1: Start the keyboard test application.

Invoke the usbTool on the target.

Enter the targInit TCD kbd command at the prompt, where TCD can be d21,
isp1582, or net22280. The following example shows this command and the
resulting output for a PDIUSBD12 controller:

NOTE: Selecting any of the device driver components (keyboard, mouse, printer,
or speaker) includes the device test commands into usbTool. If the components are
not included, the commands are not available.

NOTE: Command names do not have to be fully entered to be executed. For
example, usbInit can be entered as usbi.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

158

usb> targInit d12 kbd
usbTargInitialize() returned OK.
Philips PDIUSB12: ioBase = 0x365, irq = 7, dma = 3
usbTargTcdAttach() returned OK
targChannel 0x2342
usbTargEnable() returned OK.

Step 2: Connect the target with the host and invoke usbTool.

Connect the target containing the USB peripheral stack that has the keyboard
functionality to the USB host stack with a USB cable.

Invoke the usbTool application on the host by using the usbTool command.

Step 3: Initialize the host and attach the controller.

Initialize the USB host stack with the usbInit command.

Attach the host controller with the command attach xhci (where x is “o”, “u”, or
“e”).

Step 4: Issue the usbEnum command.

Enter the usbEnum command at the usbTool prompt on the host. The output
should resemble the following:

usb> usbEnum
bus count = 1
enumerating bus 0
hub 0x1
port count = 5
port 0 not connected
port 1 not connected
port 2 is hub 0x2
hub 0x2 = NEC Corporation/USB2.0 Hub Controller
port count = 4
port 0 not connected
port 1 not connected
port 2 not connected
port 3 is device 0x3 = Wind River Systems/USB keyboard emulator
port 3 not connected
port 4 not connected

Step 5: Initialize the keyboard driver.

Initialize the keyboard driver on the host by entering the kdbInit command at the
usbTool prompt.

Step 6: Poll the driver.

Enter the kbdPoll command from the usbTool prompt at the host to poll the
keyboard SIO driver for input.

9 usbTool Code Exerciser Utility Tool
9.4 Testing Applications

159

9

Give the kbdReport command from the target shell. If no parameters are given to
kbdReport, it will by default send the characters “a” through “z” from the device
to the host. The host console should display the following output:

usb> kbdPoll
ASCII 97 'a'
ASCII 98 'b'
ASCII 99 'c'
ASCII 100 'd'
ASCII 101 'e'
ASCII 102 'f'
ASCII 103 'g'
ASCII 104 'h'
ASCII 105 'i'
ASCII 106 'j'
ASCII 107 'k'
ASCII 108 'l'
ASCII 109 'm'
ASCII 110 'n'
ASCII 111 'o'
ASCII 112 'p'
ASCII 113 'q'
ASCII 114 'r'
ASCII 115 's'
ASCII 116 't'
ASCII 117 'u'
ASCII 118 'v'
ASCII 119 'w'
ASCII 120 'x'
ASCII 121 'y'
ASCII 122 'z'
ASCII 26
Stopped by CTRL-Z

9.4.2 Testing the Printer Application

Test the printer application as follows:

Step 1: Start the printer test application.

Invoke the usbTool on the target.

Enter the targInit TCD prn command from its prompt, where TCD can be d21,
isp1582, or net22280. The following example shows this command and the
resulting output for a PDIUSBD12 controller:

usb> targInit d12 prn
usbTargInitialize() returned OK
Philips PDIUSBD12: ioBase = 0x368, irq = 7, dma = 3
usbTargTcdAttach() returned OK
targChannel = 0x1

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

160

usbTargEnable() returned OK

Step 2: Connect the target with the host.

Connect the target containing the USB peripheral stack that has the printer
functionality to the USB host stack with a USB cable.

Step 3: Initialize the host and attach the controller.

Initialize the USB host stack with the usbi command.

Attach the host controller with the command attach xhci (where x is “o”, “u”, or
“e”).

Step 4: Issue the usbEnum command.

Enter the usbEnum command at the usbTool prompt on the host. The output
should resemble the following:

usb> usbEnum
bus count = 1
enumerating bus 0
hub 0x1
port count = 5
port 0 not connected
port 1 not connected
port 2 is hub 0x2
hub 0x2 = NEC Corporation/USB2.0 Hub Controller
port count = 4
port 0 not connected
port 1 is device 0x3 = Wind River Systems/USB printer emulator
port 2 not connected
port 3not connected
port 3 not connected
port 4 not connected

Step 5: Initialize the printer driver.

Initialize the printer driver on the host by entering the prnInit command at the
usbTool prompt.

Print 4,096-byte blocks of data by giving the following command from the host
(where n can be 1, 2, 3, and so on):

usb> print4k n

Step 6: Issue the prnDump command.

Give the prnDump command from the target peripheral. This results in output on
the target like the following:

usb> prnDump

9 usbTool Code Exerciser Utility Tool
9.4 Testing Applications

161

9

Printer received 4096 bytes.
00 01 00 03 00 05 00 07 00 09 00 0b 00 0d 00 0f
00 11 00 13 00 15 00 17 00 19 00 1b 00 1d 00 1f
00 21 00 23 00 25 00 27 00 29 00 2b 00 2d 00 2f .!.#.%.'.).+.-./
00 31 00 33 00 35 00 37 00 39 00 3b 00 3d 00 3f .1.3.5.7.9.;.=.?
00 41 00 43 00 45 00 47 00 49 00 4b 00 4d 00 4f .A.C.E.G.I.K.M.O
00 51 00 53 00 55 00 57 00 59 00 5b 00 5d 00 5f .Q.S.U.W.Y.[.]._
00 61 00 63 00 65 00 67 00 69 00 6b 00 6d 00 6f .a.c.e.g.i.k.m.o
00 71 00 73 00 75 00 77 00 79 00 7b 00 7d 00 7f .q.s.u.w.y.{.}..

and in output on the host like that shown below:

usb> print4k 1
Device ID length = 25
Device ID = mfg:WRS;model=emulator;protocol=0xff (unknown)
sending 1 4k blocks to printer...
usb>

You could also issue the command print “filename” from the host, and prnDump
from the target. This prints the contents of the file rather than the 4K test data
blocks. If there is nothing to print, the message “Printer has no data” appears
instead.

9.4.3 Testing the Mass Storage Application

After initializing the peripheral mass storage function, the host should recognize
that a mass storage device is attached, if the host has mass storage class driver
initialization built in. You can then do normal file system operations on the USB
disk, as in the following:

cd(“/bd0”)
creat(“temp.txt”,2)
rm(“temp.txt”)

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

162

163

 A
 Glossary

A.1 Glossary Terms 163

A.2 Abbreviations and Acronyms 176

A.1 Glossary Terms

active device

An active device is a device that is powered and that is not in the suspend state.

attach

To attach the target application and the TCD so that the target application can
receive and respond to requests from the host through that TCD, the application
in the configlette uses a target layer routine.

audio device

An audio device is a device that sources or sinks sampled analog data.

bandwidth

The bandwidth is the amount of data transmitted per unit of time, typically bits per
second (b/s) or bytes per second (B/s).

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

164

big endian

A big endian is a method of storing data that places the most significant byte of
multiple-byte values at a lower storage address. For example, a 16-bit integer
stored in big endian format places the least significant byte at the higher address
and the most significant byte at the lower address. See also little endian.

board support package

A board support package (BSP) consists of C and assembly source files which
configure the VxWorks kernel for the specific hardware on your target board. The
BSP-specific file for USB is installDir/target/config/BSP/usbPciStub.c.

build flag

A build flag variable is defined in the makefile and used to set various compiler
options.

build macro

A build macro is a build flag.

bulk transfer

Bulk transfer is one of the four USB transfers. These are nonperiodic, large bursty
communications typically used for a transfer that can use any available bandwidth
but can also be delayed until bandwidth is available.

bus reset

A bus reset is a first signal sent by the host to the device once the host has detected
a connect to the device on the bus. The control pipes should be created on a bus
reset. See also control pipe.

callback routine

A callback routine is registered with the lower layers by the client module. Callback
routines are mapped to events, so that when a specific event occurs, the lower
layers call the corresponding routine to signal the client module that the event has
occurred.

channel

A channel is a communication path between the target application and target layer.

A Glossary
A.1 Glossary Terms

165

A

client

The client is software resident on the host that interacts with the USB system
software to arrange data transfer between a function and the host. The client is
often the provider and consumer of the transferred data.

compile-time macro

A compile-time macro is a build flag.

configlette

A configlette is a VxWorks configuration routine that initializes the USB
components. All configlette routines are located in the directory
installDir/target/config/comps/src.

control endpoint

A control endpoint is an IN/OUT device endpoint pair used by a control pipe.
Control endpoints have the same endpoint number and transfer data in both
directions; therefore, they use both endpoint directions of a device address and
endpoint number combination. Thus, each control endpoint consumes two
endpoint addresses.

control pipe

A control pipe is a bidirectional pipe that transfers data to the control endpoint. The
data has an imposed structure that allows requests to be reliably identified and
communicated.

control transfer

A control transfer is one of the four USB transfers. It supports
configuration/command/status type communication between the client and
function.

default address

A default address is an address defined by the USB specification and used by a USB
device when it is first powered or reset. The default address is 00H.

default control pipe

A default control pipe provides a message pipe through which a USB device can be
configured once it is attached and powered. It is used for control transfers. All
other pipes come into existence when the device is configured.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

166

descriptor

A descriptor is a data structure with a defined format. A USB device reports its
attributes to the host using descriptors. Each descriptor begins with a byte-wide
field that contains the total number of bytes in the descriptor, followed by a
byte-wide field that identifies the descriptor type.

detach

To detach is to remove the attach of the target application with the target controller
driver.

device

A device is a logical or physical entity that performs a function. The actual entity
described depends on the context of the reference. At the lowest level, a device
may refer to a single hardware component, as in a memory device. At a higher
level, it may refer to a collection of hardware components that perform a particular
function, such as a USB interface device. At an even higher level, device may refer
to the function performed by an entity attached to the USB, such as a data/fax
modem device. The term “device” is sometimes interchanged with “peripheral”.

device address

A device address is a value between zero and 127, inclusive, that the target
application uses to identify the device in the bus.

device qualifier

A device qualifier descriptor describes information about a device capable of high
speed that would change if the device were operating at the other speed.

disable

To disable the USB peripheral stack is to make it invisible to the USB host. Once
disabled, the USB peripheral stack does not respond to any request from the host.

disconnect

To disconnect is to unplug the USB device connection from the host.

downstream

Downstream indicates the direction of data flow from the host. A downstream port
is the port on a hub electrically farthest from the host that generates downstream
data traffic from the hub. Downstream ports receive upstream data traffic.

A Glossary
A.1 Glossary Terms

167

A

driver

When referring to hardware, a driver is an I/O pad that drives an external load.
When referring to software, a driver is a program responsible for interfacing with
a hardware device, that is, a device driver.

Enhanced Host Controller Interface

The Enhanced Host Controller Interface (EHCI) is the host controller compliant with
the USB 2.0 specification.

enable

To enable a USB device is to bring it up in such a way that it becomes visible to and
able to respond to a USB host.

endpoint

An endpoint is one of a number of enumerable sources or destinations for data on
a USB-capable peripheral or host.

endpoint descriptor

An endpoint descriptor is a data structure that describes an endpoint (see Endpoint
Descriptor, p.122).

endpoint number

An endpoint number is a four-bit value between 0H and FH, inclusive, associated
with an endpoint on a USB device.

endpoint request packet

An endpoint request packet (ERP) is a structure that is defined in
installDir/target/h/usb/usb.h. It consists of data that the peripheral wishes to
communicate to the host.

enumerate

To enumerate a device is to get it detected and configured as a USB device on the
host. Once the device is detected, the host sends a bus reset, followed by a sequence
of standard requests that the device should respond to, in order to get it
enumerated (configured).

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

168

feature

A feature is the element to be set or cleared for a GET_FEATURE or
CLEAR_FEATURE request from host. See Feature Parameter, p.112.

first in, first out

A first in, first out (FIFO) protocol is an approach to handling program work
requests from a queue or stack. The request that enters the queue first is addressed
first.

frame

A frame is a one-millisecond time base, established on full- and low-speed buses.

frame number

A frame number is an identifier for the active frame.

full-speed

Full-speed refers to USB operation at 12 Mb/s. See also low-speed and high-speed.

function code

A function code describes the services requested from the TCD

function driver

A function driver implements the functionality of a device, such as a mass storage
device.

generic endpoints

The generic endpoints are all the endpoints used to support bulk, isochronous, and
interrupt transfers. Generic endpoints do not include control endpoints (see control
endpoint).

halt

See stall.

handle

A handle is a unique identifier used for communication with the object to which it
is assigned. For example, the target controller driver (TCD) provides the target

A Glossary
A.1 Glossary Terms

169

A

application with a handle during the attachment process. The target application
uses this handle to communicate with the attached TCD.

There is also a handle for every pipe created by the target application. The target
application uses this handle to communicate with the pipe.

hardware adaptation layer

The hardware adaptation layer (HAL) provides a hardware-independent view of the
target controller to higher layers in the stack.

high-speed

High-speed refers to USB operation at 480 Mb/s. See also low-speed and full-speed.

host

The host computer system is where the USB host controller is installed. This
includes the host hardware platform (such as the CPU, bus, and so on) and the
operating system.

host controller

The host controller is the host's USB interface

host controller driver

The host controller driver is the USB software layer that abstracts the host controller
hardware. The HCD provides a service provider interface (SPI) for interaction with
the host controller. The host controller driver hides the specifics of the host
controller hardware implementation from the higher layers of the stack.

host stack

The USB host stack is software that enables a function driver to communicate with
the USB device.

hub

A hub is a USB device that provides additional connections to the USB.

I/O request packet

An I/O request packet (IRP) is an identifiable request by a software client to move
data in an appropriate direction between itself (on the host) and an endpoint of a
device.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

170

IN endpoint

The IN endpoint is the endpoint that corresponds to IN requests from the host.

interrupt endpoint

An interrupt endpoint is the endpoint associated with interrupt-type transfers.

interrupt request

An interrupt request (IRQ) is a hardware signal that allows a device to request
attention from a host. The host typically invokes an Interrupt service routine to
handle the condition that caused the request.

interrupt request line

An interrupt request line is a hardware line over which devices can send interrupt
signals to the microprocessor.

Interrupt service routine

An interrupt service routine is a software routine that is executed in response to an
interrupt.

interrupt transfer

An interrupt transfer is one of the four USB transfer types. It is characterized by
small data, non-periodic, low frequency, and bounded latency. It is typically used
to handle service needs.

isochronous transfer

An isochronous transfer is one of the four USB transfer types. Isochronous transfers
are used when working with isochronous data. Isochronous transfers provide
periodic continuous communication between host and device.

little endian

Little endian is a method of storing data that places the least significant byte of
multiple-byte values at lower storage addresses. For example, a 16-bit integer
stored in little endian format places the least significant byte at the lower address
and the most significant byte at the next address. See also big endian.

low-speed

Low-speed is USB operation at 1.5 Mb/s. See also full-speed and high-speed.

A Glossary
A.1 Glossary Terms

171

A

message pipe

A message pipe is a bidirectional pipe that transfers data using a
request/data/status paradigm. The data has an imposed structure that allows
requests to be reliably identified and communicated.

microframe

A microframe is a 125-microsecond time base established on high-speed buses.

Open Host Controller Interface

The Open Host Controller Interface (OHCI) is the host controller compliant with the
USB 1.1 specification.

OUT endpoint

The OUT endpoint is the endpoint that corresponds to OUT requests from the host.

peripheral

See device.

peripheral stack

The peripheral stack is the software on the USB peripheral that interprets and
responds to the commands sent by the USB host.

pipe

A pipe is a logical abstraction representing the association between an endpoint on
a device and the software on the host. A pipe has several attributes. For example,
a pipe may transfer data as streams (stream pipe) or as messages (message pipe).

pipe handle

A pipe handle is used by the target application when it carries out USB transfer on
an endpoint.

In order to abstract the pipe information which is maintained internally by the USB
peripheral stack from the target application, only a handle (which is a number
which identifies the pipe) is given to the target application. This is just an identifier
for the pipe, and does not represent the endpoint number.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

172

polling

Polling is the method used to ask multiple devices, one at a time, if they have any
data to transmit.

protocol

A protocol is a set of rules, procedures, or conventions relating to the format and
timing of data transmission between two devices.

release

The release is the USB (release) number obtained from the device descriptor.

remote wakeup

A remote wakeup is an event generated by a device to bring the host system out of a
suspended state. See also, resume.

reset

See bus reset.

resume

A resume is a signal sent by the host to make a device in a suspended state come
out of that state and restart. See also, remote wakeup.

root hub

A root hub is the USB hub directly attached to the host controller. This hub (tier 1) is
attached to the host.

root port

The root port is the downstream port on a root hub.

setup

The setup is the first transaction sent by the host to a device during a control
transfer.

setup packet

The setup packet contains a USB-defined structure that accommodates the
minimum set of commands required to enable communication between the host
and a device.

A Glossary
A.1 Glossary Terms

173

A

stall

The target application may stall a generic endpoint in response to certain error
conditions, which indicates to the host that an error has occurred on the target.

standard request

A standard request is a certain USB request, such as GET_STATUS or
SET_CONFIGURATION, which all USB devices support. Devices respond to this
request even if it is not assigned an address or configured.

start-of-frame

The start-of-frame (SOF) is the first transaction in each microframe. An SOF allows
endpoints to identify the start of the microframe and synchronize internal
endpoint clocks with the host.

state

A state is the last known status or condition of a process, application, object, or
device. The state of an endpoint indicates whether or not it is stalled.

status

See state.

suspend

To suspend a device is to put it into an inactive state to conserve power. For
example, the host may suspend a device for a specific period when it observes that
there is no traffic on the bus. While suspended, the USB device maintains its
internal status, including its address and configuration.

target application

A target application responds to USB requests from the host that the TCD routes to
the target application through the target layer.

target channel

See handle.

target controller

A target controller (TC) is the hardware part of the peripheral that connects to the
USB.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

174

target controller driver

The target controller driver (TCD) is the driver that sits just above the target
controller and carries out all of the hardware-specific implementation of the target
controller commands.

target layer

The target layer is a consistent, abstract mediator between a variety of target
applications and the HAL.

target request block

The target request block (TRB) is a request block created by the HAL. It consists of
the handle of the TCD, a function code, the length of the TRB, and the parameter
associated with the function code. Every function code has an associated TRB. The
HAL passes this request block to the TCD through the single entry point.

test mode

A test mode is a state used for debugging purposes. To facilitate compliance testing,
host controllers, hubs, and high-speed capable functions must support various test
modes as defined in the USB 2.0 specification.

token packet

A token packet is a type of packet that identifies what transaction is to be performed
on the bus.

toolchain

The toolchain is the name of the compiler used to build the source files. The
toolchain is specified in the make command with the argument TOOL.

transaction

The transaction is the delivery of service to an endpoint. It consists of a token
packet, an optional data packet, and an optional handshake packet. Specific
packets are allowed or required based on the transaction type.

transfer type

The transfer type determines the characteristics of the data flow between a software
client and its function. Four standard transfer types are defined: control transfer,
interrupt transfer, bulk transfer, and isochronous transfer.

A Glossary
A.1 Glossary Terms

175

A

translation unit

A translation unit is a thin layer of the software that provides backward
compatibility between the USB 2.0 host stack and the USB 1.1 class drivers. For
details, refer to 3.2 Architecture Overview, p.29.

Universal Host Controller Interface

The Universal Host Controller Interface (UHCI) is the host controller compliant with
the USB 1.1 specification.

Universal Serial Bus Driver

The Universal Serial Bus Driver (USBD) is the host resident software entity
responsible for providing common services to clients that are manipulating one or
more functions on one or more host controllers. It is a hardware-independent
software layer that implements USB Protocol 2.0. It acts as a channel between the
class drivers and host controller driver. For details, refer to 3.2 Architecture Overview,
p.29.

USB Request Block

The USB Request Block (URB) is used to send or receive data to or from a specific
USB endpoint on a specific USB device in an asynchronous manner.

USB Device

A USB device is a hardware device that performs a useful end-user function.
Interactions with USB devices flow from the applications through the software and
hardware layers to the USB devices.

wakeup

A wakeup is an event causing the device to come out of a suspended state.

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

176

A.2 Abbreviations and Acronyms

The Wind River USB documentation uses the following abbreviations and
acronyms:

Table A-1 Abbreviations and Acronyms

Acronym Description

BSP Board Support Package

CBI Command-Bulk-Interrupt

DMA Direct Memory Access

EHCI Enhanced Host Controller Interface

END Enhanced Network Driver

ERF Event Reporting Framework

ERP Endpoint Request Packet

FIFO First In, First Out

HAL Hardware Adaptation Layer

HC Host Controller

HCD Host Controller Driver

HID Human Interface Device

HRFS Highly Reliable File System

IDE Integrated Development Environment

IRP I/O Request Packet

IRQ Interrupt Request

MPEG Moving Pictures Experts Group

OHCI Open Host Controller Interface

PCI Peripheral Control Interface

SIO Serial I/O

A Glossary
A.2 Abbreviations and Acronyms

177

A

SOF Start-of-Frame

SPC-2 SCSI Primary Commands-2

TC Target Controller

TCD Target Controller Driver

TRB Target Request Block

UHCI Universal Host Controller Interface

UML Unified Modeling Language

USB Universal Serial Bus

USBD Universal Serial Bus Driver

XBD Extended Block Device

Table A-1 Abbreviations and Acronyms (cont’d)

Acronym Description

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

178

179

Index

Symbols
.wav file 19

A
abbreviations, listed 176
acronyms, listed 176
active device

glossary definition 163
actLen

USB_BFR_LIST 129
USB_ERP 130

ADDED_CFLAGS+=NET2280_DMA_
SUPPORTED 18

addressed state
interfaceGet() 117
interfaceSet() 118

addressSet() 103
callback response to SET_ADDRESS 119
table of associated control requests 107

alternateSetting
interfaceSet() 118

API routines 90
attach

glossary definition 163
attach ehci 156
attach ohci 156

attach uhci 156
attach xhci

keyboard testing 158
printer testing 160

ATTACH_USB_KEYBOARD_TO_SHELL 16
attaching a TCD

usbTargetEnable() 100
attachment

TCD to mass storage TA 103
attributes

USB_ENDPOINT_DESCR 123
audio device

glossary definition 163
audio devices 80
audio driver 26, 80

B
bandwidth

glossary definition 163
bConfigurationValue 123
bfrCount

USB_ERP 128
bfrLen

USB_BFR_LIST 129
bfrList 126, 129

bfrCount 128
erpLen 126

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

180

pid element 129
USB_ERP 128

big-endian
glossary definition 164

BIO structure 88
Block_IO structure 88
bmRequestType 120
board support package, see BSP
board support packages 6
bRequest 120
BSP

glossary definition 164
BSPs 6
build flag

glossary definition 164
build macro

glossary definition 164
bulk only

configuration parameters 14
bulk transfer 2

glossary definition 164
BULK_DRIVE_NAME 14
BULK_MAX_DEVS 14
BULK_MAX_DRV_NAME_SZ 14
BULK_RESET_NOT_SUPPORTED 18
bulk-only class driver 13
Bulk-Only driver 86
bus deregistration 59
bus enumeration routines 48
bus registration 59
bus reset

glossary definition 164
TARG_MNGMT_BUS_RESET management

event code 107
bus tasks, overview 36

C
callback routine

glossary definition 164
callback table, target application 102
callbackInstall() 76
callbackParam

usbTargTcdAttach() 99, 106

callbacks 38, 43
cancelURB() 57
CBI

configuration parameters 15
CBI driver 86
CBI_DRIVE_NAME 15
channel

glossary definition 164
class drivers

list 4
Class-specific devices 38
CLEAR_FEATURE 110

clearing a device feature
hardware layer 141
target layer 132

featureClear() callback 110
request 60
setting and clearing device-specific features

141
table of control requests 106
usbHstClearFeature() 39
usbTargDeviceFeatureClear() in response to

132
client

glossary definition 165
client callback tasks 43
client modules 36

registration 43
cmdParser 32
code exerciser

usbTool 155
communication class device initialization 26
communication class drivers 92

data flow 96
dynamic attachment 94
Ethernet networking control model driver 92
initialization 95
interrupt behavior 95
ioctl routines 96

compile-time macro
glossary definition 165

component dependencies 18
configlette

glossary definition 165
configuration parameters

 Index

181

Index

bulk only 14
CBI 15
keyboard 16
pegasus 15

configuration stage
addressSet() 119

configurationGet() 102, 113
defined 113
table of associated control requests 106

configurationSet() 103
defined 114
table of associated control requests 106

connecting a device to a hub 64
control data transfer 124
control endpoint

glossary definition 165
control pipe

glossary definition 165
control transfer 2

glossary definition 165
copy() 26
createPipe() 56

D
data flow 51

mass storage devices 91
microphones 86
mouse driver 76
printers 80
speakers 85

data structures
USBHST_URB 40

data transfer
pipe 53

Data Transfer Interfaces 40, 41
data transfer rates 2
dataToggle

USB_ERP 128
default address

glossary definition 165
default control pipes 6, 122

glossary definition 165
default state

interfaceGet() 117
interfaceSet() 118
statusGet() 119

definitions of terms 163
deletePipe() 56
demo applications

usbAudio 26
descriptor

glossary definition 166
descriptor type

table of macros 116
descriptorGet() 103, 116

defined 114
table of associated control requests 106

descriptorIndex
descriptorGet() 114
descriptorSet() 114

descriptorSet() 103, 114, 117
defined 114
table of associated control requests 106

descriptorType 116
descriptorGet() 114
descriptorSet() 114
parameter described 116
USB_ENDPOINT_DESCR 122

detach
glossary definition 166

detaching
TCD 101

device
glossary definition 166

device address
glossary definition 166

device configuration 48
device initialization 24
device qualifier

glossary definition 166
DeviceAdd_Callback 38
deviceAddress

addressSet() 119
TCD_FNC_ADDRESS_SET 141
TRB_ADDRESS_SET 141

DeviceRemove_CallBack 38
DeviceResume_Callback 38
DeviceSuspend_Callback 38

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

182

disable
glossary definition 166

disabling
TCED 104

disconnect
glossary definition 166

disconnect event 148
disconnect signal 107
dma 101
dma element 101
DMA transfer 18
documentation

tools 7
VxWorks 7

downstream
glossary definition 166

driver
glossary definition 167

dynamic attachment registration 44
dynamic device attachment 68

mass storage devices 90
speakers 84

E
EHCI

host controller initialization 16
overview of host controllers 31
specification 3, 7

EHCI host controller driver 12
enable

glossary definition 167
enabling

TCD 104
enabling and disabling the TCD 104
END driver

USB Pegasus 19
endpoint attributes 123
endpoint descriptor

described 122
glossary definition 167
setting the 122
USB_ENDPOINT_DESCR structure 122

endpoint interrupt

clearing all 148
endpoint interrupt status errors 147
endpoint number

glossary definition 167
endpoint request packet, see ERP
endpointAddress

USB_ENDPOINT_DESCR 122
endpointId

USB_ERP 128
endpoints

creation 142
glossary definition 167
number supported 140

Enhanced Host Controller Interface, see EHCI
ENOSYS 71, 76
enumerate

glossary definition 167
ERF

device driver model
ERP

completion result 127
type 128

ERP_CALLBACK 128
userCallback() 128

erpLen
USB_ERP 126

error reporting 59
error reporting conventions for HCD 59
errors

split errors, handling 58, 59
Ethernet networking control model driver 92
Event Reporting Framework, see ERF
Extended Block Device, see XBD

F
feature

featureClear() 112
featureSet() 112
glossary definition 168

feature selectors 113
featureClear() 102, 110

table of associated control requests 106
featureSet() 102, 110, 111

 Index

183

Index

table of associated control requests 106
FEI Ethernet interface 19
FIFO
file system components 18
file system support 18
Firmware Programming Guide for NET2280 PCI

USB High Speed Peripheral Controller 8
Firmware Programming Guide for PDIUSBD12 8
first in, first out, see FIFO
for 3
frame

glossary definition 168
frame number

glossary definition 168
retrieving 131

frameNo
TRB_CURRENT_FRAME_GET 142

frameNo (TRB element) 142
full data transfer rate 2
full-speed

glossary definition 168
function

TRB header 137
function codes

glossary definition 168
TRBs and TCDs 138

function driver
glossary definition 168

G
generic data transfer 124
generic endpoints

glossary definition 168
GET_CONFIGURATION 39

request, response to 113
table of control requests 106

GET_DESCRIPTOR 39, 60
descriptorGet() 114
response to a request 131
table of control requests 106

GET_INTERFACE
control request for interfaceGet() 107
interfaceGet() callback 117

usbHstGetInterface() 39
GET_STATUS

getting the endpoint status 144
statusGet() callback 118
table of control requests 107
usbHstGetStatus() 40

GET_SYNCH_FRAME
table of control requests 107

getFrameNumber() 57

H
HAL 5, 136

glossary definition 169
halt

glossary definition 168
handle

glossary definition 168
TRB header 137, 140

hardware adaptation layer, see HAL
hardwareInterfaceInit() 35
HCD Error Reporting Conventions 59
headset audio demonstration configlette 14
HID_MSE_BOOT_REPORT 76
high data transfer rate 2
high-speed

glossary definition 169
host

glossary definition 169
host component parameters 12
host controller

glossary definition 169
initialization 16, 23
overview of specifications 3
specification documentation 7

host controller driver 34
deregistration 59
EHCI 31
error reporting conventions 59
glossary definition 169
interface and requirements 54
interfaces 56
OHCI 31
overview 54

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

184

registering 54
registering a bus for the host controller 59
UHCI 31

host controllers
bus deregistration 59
bus registration 59

host driver 12
host driver component 12
host stack

glossary definition 169
initialization 23

hub
glossary definition 169

hub class drivers 33, 62
registering 62

hub functionality 31

I
I/O request packet, see IRP
IEEE-1284 80
IN endpoint

glossary definition 170
INCLUDE_ATA 19
INCLUDE_AUDIO_DEMO 27
INCLUDE_DEVICE_MANAGER 18
INCLUDE_DOSFS 18
INCLUDE_DOSFS_CHKDSK 18
INCLUDE_DOSFS_FMT 18
INCLUDE_DOSFS_MAIN 18
INCLUDE_EHCI 12, 16
INCLUDE_EHCI_BUS 12, 17
INCLUDE_EHCI_INIT 12, 16
INCLUDE_ERF 18
INCLUDE_FS_MONITOR 18
INCLUDE_IFCONFIG 19
INCLUDE_KBD_EMULATOR 20, 21
INCLUDE_KBD_EMULATOR_INIT 20, 21
INCLUDE_MS_EMULATOR 20, 21
INCLUDE_MS_EMULATOR_INIT 20, 21
INCLUDE_NET2280 20, 21
INCLUDE_OHCI 12, 16, 21
INCLUDE_OHCI_BUS 12, 17
INCLUDE_OHCI_INIT 12, 16

INCLUDE_PDIUSBD12 20, 21
INCLUDE_PHILIPS1582 20, 21
INCLUDE_PRN_EMULATOR 21
INCLUDE_PRN_EMULATOR_INIT 21
INCLUDE_SELECT 17
INCLUDE_UHCI 12, 16
INCLUDE_UHCI_BUS 13, 17
INCLUDE_UHCI_INIT 13, 17
INCLUDE_USB 12

defined 12
required 16

INCLUDE_USB_AUDIO_DEMO 14, 19
INCLUDE_USB_HEADSET_DEMO 19
INCLUDE_USB_INIT 12, 16
INCLUDE_USB_KEYBOARD 13, 17
INCLUDE_USB_KEYBOARD_INIT 13, 17

configuration parameters 16
INCLUDE_USB_MOUSE 13, 17
INCLUDE_USB_MOUSE_INIT 13, 17
INCLUDE_USB_MS_BULKONLY 13, 17
INCLUDE_USB_MS_BULKONLY_INIT 13, 14, 17
INCLUDE_USB_MS_CBI 13, 17

configuration parameters 15
INCLUDE_USB_MS_CBI_INIT 13, 17
INCLUDE_USB_PEGASUS_END 13, 17
INCLUDE_USB_PEGASUS_END_INIT 14, 17

configuration parameters 15
INCLUDE_USB_PRINTER 13, 17
INCLUDE_USB_PRINTER_INIT 13, 17
INCLUDE_USB_SPEAKER 13, 17, 19
INCLUDE_USB_SPEAKER_INIT 13, 17, 19, 27
INCLUDE_USB_TARG 20, 21
INCLUDE_USBTOOL 19, 21, 22
INCLUDE_XBD 18
INCLUDE_XBD_PART_LIB 18
INCLUDE_XXX_INIT 22
including the host stack component 16
index 118

featureClear() 113
featureSet() 113
statusGet() 118
vendorSpecific() 120

initCount 133
initialization

 Index

185

Index

host controller 16, 23
host stack 23
mass storage devices 91
USB devices 17
USB host stack 16

initializing USB devices 17
installDir 2
interface

interfaceGet() 117
interfaceSet() 118

interfaceGet() 103, 117
described 117
table of associated control requests 107

interfaceSet() 103, 118
described 117
table of associated control requests 107

interrupt behavior 95
interrupt endpoint

glossary definition 170
interrupt handling

diagram 146
endpoint-specific 146

interrupt mode 19
interrupt request

glossary definition 170
interrupt request line

glossary definition 170
interrupt request, see IRQ
interrupt service routine

glossary definition 170
interrupt status 145
interrupt transfer 2

glossary definition 170
interval

USB_ENDPOINT_DESCR 124
ioBase 101
ioctl routines

mouse driver 76
printer driver 80

ioctl() 85, 86
IP_MAX_UNITS 19
IRP

glossary definition 169
IRQ 101

glossary definition 170

irq element 101
isBandwidthAvailable() 56
isochronous transfer 2

glossary definition 170
ISP 1582 driver 18
isRequestPending() 57

K
kbdDown 157
kbdInit 157
kbdPoll 157

command to pool the keyboard 158
example 159

kbdReport 159
keyboard

application testing 157
configuration parameters 16
drivers 65
initialization 25

keyboard class drivers 13, 66
initializing 66
registration 67

keyboard drivers 65
data flow 71
initialization 66
ioctl routines 71
typematic repeat 72

keyboard emulator 20

L
languageId

descriptorGet() 114, 116
descriptorSet() 114, 116

length 118
descriptorGet() 117
descriptorSet() 117
statusGet() 118
USB_ENDPOINT_DESCR 122
vendorSpecific() 120

length parameter 117

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

186

LINK 126
little endian

glossary definition 170
low data transfer rate 2
low-speed

glossary definition 170

M
management event codes

mngmtFunc(), parameter to 107
TARG_MNGMT_ATTACH 108
TARG_MNGMT_BUS_RESET 108
TARG_MNGMT_DISCONNECT 107
TARG_MNGMT_RESUME 107
TARG_MNGMT_SUSPEND 108

mass storage application
testing 161

mass storage bulk-only class driver 13
mass storage CBI class driver 13
mass storage class drivers 86

data flow 91
dynamic attachment 90
initialization 91
XBD driver model 88

mass storage devices
data flow 91
dynamic attachment 90
initialization 25, 91

mass storage emulator 20, 21
mass storage function driver 18
maximum packet size 123
Maximum UFI Devices 15
maxPacketSize

USB_ENDPOINT_DESCR 123
message pipe

glossary definition 171
microframe

glossary definition 171
microphones 80

data flow 86
recognizing and handling 85

MIDI 81
mngmtCode parameter

mngmtFunc(), to 107
mngmtFunc() 102
mngmtFunc() callback function 107
modifyDefaultPipe() 56
mouse

driver 73
initialization 25

mouse class driver 13
uninitialization 76

mouse driver
data flow 76
dynamic attachment 75
initialization 73
ioctl routines 76

mouseTest 157
MPEG 81
M-Systems FlashOnKey 26

N
NET 2280 driver 18
NET2280

configlette routine 27
Netchip NET2280 target controller driver 20
networking components 19
node IDs 47

O
OHCI 3, 31

host controller initialization 16
specification 7

OHCI host controller driver 12
Once 40
Online support site 9
Open Host Controller Interface, see OHCI
OSAL

definition 34
OUT endpoint

glossary definition 171

 Index

187

Index

P
pActLen

descriptorGet() 117
descriptorSet() 117

pAlternateSetting
interfaceGet() 117

param
callback routine parameter 106

pBfr 118
descriptorGet() 116
statusGet() 118
USB_BFR_LIST 129

pBuf
usbTargPipeStatusGet() 130

pBuffer
copying data to and from 145
TRB_COPY_DATA_TO/FROM_EPBUF 145

pciFindDevice()
code example 100

pConfiguration 113
pContext

mngmtFunc() for TARG_MNGMT_
ATTACH 108

mngmtFunc() for TARG_MNGMT_BUS_
RESET 109

mngmtFunc() for TARG_MNGMT_
DETACH 109

mngmtFunc() for TARG_MNGMT_
DISCONNECT 110

mngmtFunc() for TARG_MNGMT_SUSPEND
and TARG_MNGMT_RESUME 110

mngmtFunc() parameter 108
pContext parameter

mngmtFunc() parameter described 108
pcPentium 26
pDeviceInfo

TRB_ATTACH 140
PDIUSBD12 Evaluation Board (PC Kit) User’s

Manual 8
pegasus

configuration parameters 15
Pegasus communication class driver 13, 14
Pegasus END driver initialization 19
Pegasus Ethernet interface 19

Pegasus IP Address 15
Pegasus Net Mask 15
Pegasus network device

initialization 26
Pegasus Target Name 15
PEGASUS_IP_ADDRESS 15, 26
PEGASUS_MAX_DEVS 15, 26
PEGASUS_NET_MASK 15, 26
PEGASUS_TARGET_NAME 15, 26
pEndpointDesc

TRB_ENDPOINT_ASSIGN 143
per-client data, releasing 38
peripheral

glossary definition 171
peripheral device components 17
peripheral stack, see USB peripheral stack
pErp

usbTargTransferAbort() 129
pFrameNo

synchFrameGet() 119
usbTargCurrentFrameGet() 131

pHalDeviceInfo 139
TRB_ATTACH 140

pHalPipeHandle 121
Philips ISP1582 target controller driver 20
Philips PDIUSBD 12 target controller driver 20
Philips USB programming guide 8
pid

USB_BFR_LIST 129
pipe

data transfer 53
glossary definition 171

pipe handle
glossary definition 171

pipeHandle 121, 125, 143, 145
TRB_COPY_DATA_TO/FROM_EPBUF 145
TRB_ENDPOINT_ASSIGN 143
TRB_ENDPOINT_RELEASE 143
TRB_IS_BUFFER_EMPTY 145
usbTargPipeDestroy() 124

Platform getting started guide 8, 9, 11, 18
Platform release notes 27
play 157
polling

glossary definition 172

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

188

polling interval 124
pollInput() 69
power management 2
pPipeHandle

USB_ERP 128
usbTargPipeCreate() 121

print 157
print command

printer application 161
print4k 157

example 160, 161
printer

application testing 159
initialization 25

printer class driver 13
printer driver 77

dynamic attachment 79
IEEE-1284 80
initialization 77
ioctl routines 80

printer emulator 21
printers

data flow 80
prnDown 157
prnDump 161

command from target peripheral 160
example 160

prnInit 157
protocol

glossary definition 172
pTargChannel

usbTargTcdAttach() 106
pTargTcd 121
pTrb

single entry point 136
pUSB_IRP 96

R
rebuilding source

configuration options 18
reference pages 7
registering client modules 36, 43

USBHST_DEVICE_DRIVER data structure 36

registering the host controller driver 54
registering the hub class driver 62
release

glossary definition 172
Remote Wakeup

glossary definition 172
setting and clearing a device 132
supporting 139
uFeatureSelector element 142

removing a device from a hub 64
request

vendorSpecific() 120
request types

table of standard 111
requestType 115

descriptorGet() 114, 115
descriptorSet() 114, 115
featureClear() 111
featureSet() 111
statusGet() 118, 119
vendorSpecific() 120

reset
glossary definition 172

reset event 148
result

USB_ERP 127, 128, 129
resume

glossary definition 172
resume event 148
resume signal 107
RESUME signaling 131
root hub

glossary definition 172
root hub emulation 60
root port

glossary definition 172

S
S_usbTcdLib_BAD_HANDLE 127
S_usbTcdLib_BAD_PARAM 127
S_usbTcdLib_CANNOT_CANCEL 127
S_usbTcdLib_COMM_FAULT 127
S_usbTcdLib_DATA_OVERRUN 127

 Index

189

Index

S_usbTcdLib_DATA_TOGGLE_FAULT 127
S_usbTcdLib_ERP_CANCELLED 127

aborting a transfer 130
S_usbTcdLib_GENERAL_FAULT 127
S_usbTcdLib_HW_NOT_READY 127
S_usbTcdLib_INT_HOOK_FAILED 127
S_usbTcdLib_NEW_SETUP_PACKET 127
S_usbTcdLib_NOT_IMPLEMENTED 127
S_usbTcdLib_NOT_INITIALIZED 127
S_usbTcdLib_NOT_SUPPORTED 127
S_usbTcdLib_OUT_OF_MEMORY 127
S_usbTcdLib_OUT_OF_RESOURCES 127
S_usbTcdLib_PID_MISMATCH 127
S_usbTcdLib_SHUTDOWN 127
S_usbTcdLib_STALL_ERROR 127
sample code

usbPciConfigHeaderGet() 100
SCSI Primary Commands

2 (SPC-2), Revision 3 86
SCSI-10 commands 26
SCSI-6 commands 26
sd_seqRd 86
sd_seqWrt() 85
select feature 19
SEQ_DEV 81, 83, 84, 85
SEQ_DEV driver model 81
SET_ADDRESS 119, 141

request 60
table of control requests 107

SET_CONFIGURATION 39
request 60
request, response to 114
table of control requests 106

SET_DESCRIPTOR 39, 114, 117
table of control requests 106

SET_FEATURE 40, 110, 132, 141
featureSet() callback 110
request 60
table of control requests 106

SET_INTERFACE 39, 107, 117
setBitRate() 57
setting and clearing a device

Remote Wakeup 132
setup

glossary definition 172

setup packet

glossary definition 172
single entry point 136
SIO driver model 66
SIO_CALLBACK_PUT_MOUSE_REPORT 76
SIO_CALLBACK_PUT_RCV_CHAR 76
SIO_CHAN 68, 69, 75, 79, 80
SIO_MODE_INT 19, 80
SOF

glossary definition 173
speaker

initialization 25
Speaker audio demonstration configlette 14
speaker driver 13

dynamic attachment 83
initialization 81
overview 80
SEQ_DEV driver model 81

speakers 80
data flow 85
recognizing and handling 84

specifications
EHCI 7
host controller 3
OHCI 3, 7
UHCI 7

spkrDown 157
spkrFmt 157
spkrInit 157
split errors

handling 58, 59
stall

generic endpoints 130
glossary definition 173

STALL state 130
standard request

glossary definition 173
interfaces 39

standard request interfaces 39
start-of-frame, see SOF
state

glossary definition 173
status

glossary definition 173

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

190

statusGet() 103, 119
described 118
table of associated control requests 107

submitURB() 56
suspend

glossary definition 173
suspend event 148
suspend signal 107
SUSPEND state 131, 141
symmetric multiprocessing 6
SYNCH_FRAME 40, 120
synchFrameGet 107
synchFrameGet() 103, 120

table of associated control requests 107
synchronization type 123

T
TARG_MNGMT_ATTACH

management code parameters 107
usage described 108

TARG_MNGMT_BUS_RESET
management code parameters 107
management event code 109

TARG_MNGMT_DETACH 108
management code parameters 107
usage described 109

TARG_MNGMT_DISCONNECT
management code parameters 107
usage described 110

TARG_MNGMT_RESUME 110
management code parameters 107
usage described 110

TARG_MNGMT_SUB_RESET
USB_TCD_FULL_SPEED, parameter to 109
USB_TCD_HIGH_SPEED, parameter to 109
USB_TCD_LOW_SPEED, parameter to 109

TARG_MNGMT_SUSPEND
management code parameters 107
usage described 110

TARG_PIPE 121
TARG_TCD 126
targCallback() 128

USB_ERP 128

targChannel, callback routine parameter 106
target 173
target application 6

attaching to TCD 5
callback table 102
glossary definition 173

target architectures 6
target channel

glossary definition 173
target controller 4

glossary definition 173
target controller driver, see TCD
target layer

diagram 98
functions of 5
glossary definition 174
initializing 99
overview 5
uninitializing 99
usage count 99

target request block, see TRB
targInit kbd

example 158
usage 157

targInit prn
example 159
usage 159

TargLib 121
targLink

USB_ERP 126
targPtr

USB_ERP 126
TC

glossary definition 173
TCD 4

attaching to target application 5
detaching 101
disabling 104
enabling 104
enabling and disabling 104
initialization 5
mass storage TA attachment 103
overview of responsibilities 4
single entry point 136
Target Controller Driver, abbreviation for 4

 Index

191

Index

TCD handle
USB_TARG_CHANNEL, stored in 99

TCD_ENDPOINT_STALL 130, 144
TCD_ENDPOINT_UNSTALL 130, 144
TCD_FNC_ADDRESS_SET 137, 141
TCD_FNC_ATTACH 101, 137, 138, 139
TCD_FNC_COPY_DATA_FROM_EPBUF 129,

137, 144
TCD_FNC_COPY_DATA_TO_EPBUF 129, 137,

144
TCD_FNC_CURRENT_FRAME_GET 131, 137, 142
TCD_FNC_DETACH 101, 137, 140
TCD_FNC_DEVICE_FEATURE_CLEAR 137, 141

calling the TCD entry point with 132
TCD_FNC_DEVICE_FEATURE_SET 137, 141

calling entry point of TCD with 132
TCD_FNC_DISABLE 104, 137, 140
TCD_FNC_ENABLE 104, 137, 140
TCD_FNC_ENDPOINT_ASSIGN 122, 137, 143
TCD_FNC_ENDPOINT_INTERRUPT_STATUS_

CLEAR 138, 148
TCD_FNC_ENDPOINT_INTERRUPT_STATUS_

GET 138, 147
TCD_FNC_ENDPOINT_RELEASE 124, 137, 143
TCD_FNC_ENDPOINT_STATE_SET 130, 137, 143
TCD_FNC_ENDPOINT_STATUS_GET 130, 137,

144
TCD_FNC_HANDLE_DISCONNECT_

INTERRUPT 138, 148
TCD_FNC_HANDLE_RESET_INTERRUPT 138,

148
TCD_FNC_HANDLE_RESUME_INTERRUPT

138, 148, 149
TCD_FNC_HANDLE_SUSPEND_INTERRUPT

138, 148, 149
TCD_FNC_INTERRUPT_STATUS_CLEAR 138,

145, 146
TCD_FNC_INTERRUPT_STATUS_GET 138, 145,

147
TCD_FNC_IS_BUFFER_EMPTY 137, 145
TCD_FNC_RESUME 141
TCD_FNC_SIGNAL_RESUME 131, 137
TCD-defined parameters 100
tcdLink

USB_ERP 126

tcdParam
TRB_ATTACH 139

tcdPtr
USB_ERP 126

Test Mode
feature cannot be cleared 132
glossary definition 174
setting and clearing a device feature 132
uFeatureSelector element specifies the 142
whether a device supports 139

test selectors 132, 142
Testing Tool 22
token packet

glossary definition 174
toolchain

glossary definition 174
transaction

glossary definition 174
transfer type 123

glossary definition 174
transferType

USB_ERP 128
translation layer 33
translation unit

glossary definition 175
TRB

description of 136
glossary definition 174
header 136
specific codes in a 136

trbLength
TRB header 138

tUsbdCln 44
tUsbKbd 72
tUsbMSCXbdStrategy 88
tUsbMSCXbdStrategy task 88
typematic repeat 72

U
uActLength

TRB_COPY_DATA_TO/FROM_EPBUF 145
uDeviceFeature

USB_APPLN_DEVICE_INFO 139

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

192

USB_APPLN_DEVICE_INFO structure
member 108

uEndpointInterruptStatus
TRB_ENDPOINT_INTERRUPT_STATUS_

GET 147
uEndpointNumberBitmap

USB_APPLN_DEVICE_INFO 108, 139
uFeatureSelector

TRB_DEVICE_FEATURE_SET_CLEAR 142
usbTargDeviceFeatureSet() 132

UFI_MAX_DEVS 15
UFI_MAX_DRV_NAME_SZ 15
UHCI 3, 31

glossary definition 175
host controller initialization 16
specification 7

UHCI host controller driver 12, 13
uInterruptStatus 145

TRB_INTERRUPT_STATUS_GET_CLEAR
145

Universal Host Controller Interface, see UHCI
Universal Serial Bus Driver, see USBD
Universal Serial Bus Specification 7, 8
un-stall 130
uNumberEndpoints

USBHAL_DEVICE_INFO 139
URB

glossary definition 175
usage type 123
USB 1.0 compatibility 4
USB 2.0

technology overview 2
USB 2.0 compatibility 4
USB 2.0 host controller driver 34
USB 2.0 hub class driver 33
USB 2.0 translation layer 33
USB 2.0 USBD layer 33
USB Audio Demo components 27
USB Bulk Device Name Size 14
USB Bulk Drive Name 14
USB Bulk Maximum Drives 14
USB CBI Drive Name 15
USB class drivers 32
USB classes 44
USB data toggles 49

USB Device Class Definition for Human Interface
Devices 7

USB Device Class Definition for Printing Devices 7
USB device class specifications 7
USB devices

glossary definition 175
initialization 17

USB Floppy Interface (UFI) Command
Specification 86

USB host controller
drivers 31
overview 31

USB host driver 31, 33
see also USB host stack
USB 1.0 compatibility 43
USBD 4

USB host modules 32
USB host stack 20

architecture 29
component dependencies 18
configuration 8
configuring and building VxWorks 11
general component dependencies 18
initialization 16, 22
overview 3

USB host stack architecture, overview 29
USB initialization process 23
USB Mass Storage Class Bulk Only Transport

Specification 7
USB Mass Storage Class Control/Bulk/Interrupt

(CBI) Transport Specification 7
USB Mass Storage Class Specification 7
USB Mass Storage Class UFI Command

Specification 7
USB Pegasus Device Maximum Number 15
USB Pegasus END driver 19
USB peripheral stack

glossary definition 171
including the component 21

USB peripheral stack components 21
USB protocols 44
USB Request Block, see URB
USB speakers

compound devices 81
USB subclasses 44

 Index

193

Index

USB UFI Device Name Size 15
usb.h 44, 51
USB_APPLN_DEVICE_INFO

structure
elements 108
mngmtFunc(), parameter to 108

TCD populating 139
USB_BFR_LIST 128, 129
USB_BULK_NON_REMOVABLE_DISK 14, 15
USB_DATA0 128
USB_DATA1 128
USB_DESCR_CONFIGURATION 116
USB_DESCR_DEVICE 116
USB_DESCR_DEVICE_QUALIFIER 116
USB_DESCR_ENDPOINT 116

descriptorType 122
USB_DESCR_INTERFACE 116
USB_DESCR_INTERFACE_POWER 116
USB_DESCR_OTHER_SPEED_

CONFIGURATION 116
USB_DESCR_STRING 116
USB_DEV_STS_LOCAL_POWER 118, 119
USB_DEV_STS_REMOTE_WAKEUP 118, 119
USB_ENDPOINT_DESCR 122
USB_ENDPOINT_STS_HALT 119, 130
USB_ERP 126

size 126
structure 125

USB_FEATURE_DEVICE_REMOTE_WAKEUP
108, 139

USB_FEATURE_TEST_MODE 108, 139
USB_FEATURE_USB20 108, 139
USB_FSEL_DEV_ENDPOINT_HALT 113
USB_FSEL_DEV_REMOTE_WAKEUP 113
USB_FSEL_DEV_TEST_MODE 113
USB_HAL_PIPE_INFO 121
USB_IRP 51
USB_KBD_ATTACH 68
USB_KBD_QUEUE_SIZE 16
USB_KBD_REMOVE 68
USB_MAX_KEYBOARDS 16
USB_MSC_ATTACH 91
USB_MSC_DETACH 91
USB_MSE_ATTACH 75
USB_MSE_REMOVE 75

USB_NODE_ID 47, 91
USB_PID_IN 129
USB_PID_OUT 129
USB_PID_SETUP 129
USB_PRN_ATTACH 79
USB_PRN_REMOVE 79
USB_REQ_CLEAR_FEATURE 111, 112
USB_REQ_GET_CONFIGURATION 111
USB_REQ_GET_DESCRIPTOR 111
USB_REQ_GET_INTERFACE 111
USB_REQ_GET_STATE 111
USB_REQ_GET_STATUS 111
USB_REQ_SET_ADDRESS 111
USB_REQ_SET_CONFIGURATION 111
USB_REQ_SET_DESCRIPTOR 111
USB_REQ_SET_FEATURE 111
USB_REQ_SET_FEATURE Request, described 112
USB_REQ_SET_INTERFACE 111
USB_REQ_SYNCH_FRAME 111
USB_RT_CLASS 115
USB_RT_DEV_TO_HOST 115
USB_RT_DEVICE 115
USB_RT_ENDPOINT 115
USB_RT_HOST_TO_DEV 115
USB_RT_INTERFACE 115
USB_RT_OTHER 115
USB_RT_STANDARD 115
USB_RT_VENDOR 115
USB_SCSI_FLAG_READ_WRITE10 26
USB_SCSI_FLAG_READ_WRITE6 26
USB_SPKR_ATTACH 83
USB_SPKR_REMOVE 83
USB_TARG_ADDRESS_SET_FUNC 103
USB_TARG_CHANNEL

parameter to callback routines 106
storing the TCD handle 99

USB_TARG_CONFIGURATION_GET_FUNC 102
USB_TARG_CONFIGURATION_SET_FUNC 103
USB_TARG_DESCRIPTOR_GET_FUNC 103
USB_TARG_DESCRIPTOR_SET_FUNC 103
USB_TARG_FEATURE_CLEAR_FUNC 102
USB_TARG_FEATURE_SET_FUNC 102
USB_TARG_INTERFACE_GET_FUNC 103
USB_TARG_INTERFACE_SET_FUNC 103
USB_TARG_MANAGEMENT_FUNC 102

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

194

USB_TARG_STATUS_GET_FUNC 103
USB_TARG_SYNCH_FRAME_GET_FUNC 103
USB_TARG_VENDOR_SPECIFIC_FUNC 103
USB_TCD_FULL_SPEED

TARG_MNGMT_BUS_RESET 109
USB_TCD_HIGH_SPEED

TARG_MNGMT_BUS_RESET 109
USB_TCD_LOW_SPEED

TARG_MNGMT_BUS_RESET 109
USB_TEST_MODE_J_STATE 132
USB_TEST_MODE_K_STATE 132
USB_TEST_MODE_SE0_ACK 132
USB_TEST_MODE_TEST_FORCE_ENABLE 132
USB_TEST_MODE_TEST_PACKET 132
USB_XFRTYPE_BULK 128
USB_XFRTYPE_CONTROL 128
USB_XFRTYPE_INTERRUPT 128
USB_XFRTYPE_ISOCH 128
USB_XXX_ATTACH 94
USB_XXX_DETACH 94
USB_XXX_DEV 94
usbAcmLib 33
usbAudio 26, 27
usbAudio demo

initialization 26
usbBrcmAudioMicrophoneTest 20
usbBrcmAudioSpkrTest 20
usbBrcmAudioTestStop() 20
usbBulkDevLib 33
usbCbiUfiDevLib 33
USBD 12

glossary definition 175
initialization 23, 34

USBD 1.1 43
compatibility 42

USBD 2.0 34
USBD Client registration

USBD Client deregistration 43
USBD, see USB host driver
USBD_CLIENT_HANDLE 43, 67
USBD_PIPE_HANDLE 50
usbdBusCountGet() 48
usbdClientRegister() 43, 44, 67
usbdClientUnregister() 43, 68
usbdConfigurationSet() 49

usbdDynamicAttachRegister() 44, 67
usbdHubPortCountGet() 48
usbdInit() 35
usbdInit() 35
usbdInitialize() 43, 91
usbdLib 48
usbdLib.h 45
usbdNodeIdGet() 48
usbdNodeInfoGet() 48
usbdRootNodeIdGet() 48
usbdTargTransfer() 125
usbdTransfer() 53
usbdTransferAbort() 53
usbEnum

command at usbTool prompt 158
example 158, 160

USBHAL_DEVICE_INFO 139
USBHAL_PIPE_INFO 142
usbHalIsr() 139
usbHalIsrParam 139

TRB_ATTACH 139
usbHcdInit() 35
usbHid.h 76
usbHst.h 40
USBHST_BAD_START_OF_FRAME 60
USBHST_BUFFER_OVERRUN_ERROR 60
USBHST_BUFFER_UNDERRUN_ERROR 60
USBHST_DATA_OVERRUN_ERROR 60
USBHST_DATA_UNDERRUN_ERROR 60
USBHST_DEVICE_DRIVER

data structure defined 36
USBHST_DEVICE_NOT_RESPONDING_ERROR

60
USBHST_HC_DRIVER 54
USBHST_HC_DRIVER Structure 56
USBHST_INSUFFICIENT_BANDWIDTH 59
USBHST_INSUFFICIENT_RESOURCE 59
USBHST_INVALID_PARAMETER 59
USBHST_MEMORY_NOT_ALLOCATED 59
USBHST_STALL_ERROR 60
USBHST_TIMEOUT 60
USBHST_TRANSFER_CANCELLED 60
USBHST_URB 40
USBHST_USBD_TO_HCD_FUNCTION_LIST 57

Structure 57

 Index

195

Index

usbHstBusDeregister() 59
usbHstBusRegister() 59
usbHstClearFeature() 39
usbHstDriverDeregister() 38, 65
usbHstDriverRegister() 37, 62
usbHstGetConfiguration() 39
usbHstGetDescriptor() 39
usbHstGetInterface() 39
usbHstGetStatus() 40
usbHstHCDDeregister() 59
usbHstHCDRegister() 54, 59
usbHstSetConfiguration() 39
usbHstSetDescriptor()

description 39
example 40

usbHstSetFeature() 40
usbHstSetInterface() 39
usbHstSetSynchFrame() 40
usbHstURBCancel() 41
usbHstURBSubmit()

data transfer interface 41
example 41

usbHubExit() 62
usbHubInit() 35
usbHubInit() 62
usbi 160
usbInit

command for usbTool 156
usbInit() 23
usbInit() configlette 23
usbKeyboardDevInit() 66
usbKeyboardDynamicAttachRegister() 68
usbKeyboardLib 33, 65, 66, 68, 69, 75
usbKeyboardSioChanLock() 69
usbKeyboardSioChanUnlock() 69
usbMouseDevInit() 73
usbMouseDevShutdown() 76
usbMouseDynamicAttachRegister() 75
usbMouseLib 33, 73, 75, 76
usbMouseSioChanLock() 75
usbMouseSioChanUnlock() 75
usbMSCBlkDevCreate() 25, 26, 91

allocating an XBD 88
usbMSCBlkRd() 90
usbMSCBlkWrt() 90

usbMSCDevCreate() 90
usbMSCDevInit() 90, 91
usbMSCDevIoctl() 90
usbMSCDevLock() 91
usbMSCDevUnlock() 91
usbMSCDynamicAttachRegister() 91
usbMSCDynamicAttachUnregister() 91
usbMSCIrpCallback() 92
usbMSCStatusChk() 90
usbMSCXbdStrategy 88
usbPciConfigHeaderGet() 100

sample code 100
usbPegasusEndLib 33
usbPrinterDevInit() 77
usbPrinterDynamicAttachRegister() 79
usbPrinterLib 33, 77, 79, 80
usbPrinterSioChanLock() 79
usbPrinterSioChanUnlock() 80
usbSpeakerDevInit() 81
usbSpeakerDynamicAttachRegister() 83, 84
usbSpeakerLib 33, 80, 81, 83, 84, 85, 86
usbSpeakerSeqDevLock() 83, 85
usbSpeakerSeqDevUnlock() 83, 85
usbTargControlPayloadRcv() 120, 122, 125, 130,

131
usbTargControlResponseSend() 120, 122, 125, 130,

131
usbTargControlStatusSend() 120, 122, 125, 130,

131
usbTargCurrentFrameGet() 131
usbTargDeviceFeatureClear() 112, 132
usbTargDeviceFeatureSet() 112, 132
usbTargDisable() 105

enabling and disabling the TCD 104
usbTargEnable() 99, 104, 105

attaching a TCD 100
enabling and disabling the TCD 104

usbTargInitialize() 99, 133
usbTargLib.h 107

callback table defined in 106
usbTargPipeCreate() 121, 122, 124
usbTargPipeDestroy() 121, 124
usbTargPipeStatusGet() 130
usbTargPipeStatusSet() 112, 130
usbTargShutdown() 99, 133

Wind River USB for VxWorks 6
Programmer's Guide, 2.4

196

usbTargSignalResume() 131
usbTargStatusGet() 130
usbTargTcdAttach() 99, 101, 103, 104, 105, 139

enabling and disabling the TCD 104
establishing communication 101
prototype 99

usbTargTcdDetach() 101
prototype 101

usbTargTransfer() 124
aborting a transfer submitted by 129
transferring data 124

usbTargTransferAbort() 129
prototype 129

usbTcd.h 147
USBTCD_ENDPOINT_BIT_STUFF_ERROR 147
USBTCD_ENDPOINT_COMMUN_FAULT 147
USBTCD_ENDPOINT_CRC_ERROR 147
USBTCD_ENDPOINT_DATA_OVERRUN 147
USBTCD_ENDPOINT_DATA_TOGGLE_ERROR

147
USBTCD_ENDPOINT_DATA_UNDERRUN 147
USBTCD_ENDPOINT_PID_MISMATCH 147
USBTCD_ENDPOINT_STALL_ERROR 147
USBTCD_ENDPOINT_TIMEOUT_ERROR 147
USBTCD_ENDPOINT_TRANSFER_SUCCESS 147
usbTool 22, 32, 155

attach ehci 156
attach ohci 156
attach uhci 156
caution with initialization components 24
code exerciser utility 155
commands 156
execution sequence 156
keyboard test commands 157
mouse test commands 157
printer test commands 157
relationship to other modules 32
running from the shell 156
speaker test commands 157
testing devices 156
testing the keyboard application with 157
testing the printer application with 159
usbInit 156

usbTool Test Application
using 155

usbTool() 32
usbXXXDevLock() 94
usbXXXDevUnlock() 95
usbXXXDynamicAttachRegister() 94
usbXXXEndInit() 95
usbXXXEndLib 92
userCallback() 127, 128

aborting a transfer 129
required for result field 127
USB_BRF_LIST structure, actLen 129
USB_ERP 128

userPtr, USB_ERP 126
usrUsbBulkDevInit.c 25
usrUsbPegasusEndInit.c

initializing Pegasus class driver 26
usrUsbTool.c 32
uTestSelector 142

TRB_DEVICE_FEATURE_SET_CLEAR 142
usbTargDeviceFeatureSet() 132

utilities, usbTool 155

V
value, vendorSpecific() 120
Vendor-specific devices 38
vendorSpecific() 103, 107, 120

table of associated control requests 107
volume 157
vxbUsbControllerRegister() 34
VxWorks

component dependencies 18
configuring components 11
task name, example 36

W
wakeup

glossary definition 175
wav file 19
Wind River Online Support 9
wIndex, vendorSpecific() 120
wLength 118

 Index

197

Index

statusGet() 118
vendorSpecific() 120

wValue 120

X
XBD 25

device driver model
driver model 88
structures 88, 91

XXXEndRecv() 96
XXXEndSend() 96

Z
zero-length packet 126

	Wind River USB for VxWorks 6 Programmer's Guide, 2.4
	Contents
	1 Overview
	1.1 Introduction
	1.2 Technology Overview
	1.3 USB Component Overview
	1.3.1 USB Host Stack
	Host Controller Drivers
	USBD and Class Drivers

	1.3.2 USB Peripheral Stack
	1.3.3 Architecture and BSP Support
	1.3.4 SMP Ready

	1.4 Additional Documentation
	1.4.1 USB Specification Information
	1.4.2 Peripheral Stack Information
	1.4.3 Configuration Information
	1.4.4 Latest Release Information

	2 Configuring and Building Wind River USB
	2.1 Introduction
	2.2 Configuring and Building Wind River USB
	2.3 Configuring VxWorks with Wind River USB
	2.3.1 USB Host Stack Components and Parameters
	Parameters and Default Values
	Required Components
	Optional Components
	Component Dependencies
	Managing Dependencies

	2.3.2 USB Peripheral Stack Components and Parameters
	Required Components
	Optional Components
	USBTool Components and Parameters

	2.4 Building VxWorks with Wind River USB
	2.5 Initializing USB Hardware
	2.5.1 Initializing the USB Host Stack Hardware
	Startup Routines
	USBD Initialization
	Attaching the EHCI, OHCI, and UHCI Host Controllers
	Initialization Dependencies
	Keyboard, Mouse, Printer, and Speaker Initialization
	Mass Storage Class Device Initialization
	SCSI-6 Commands
	Communication Class Device Initialization
	USB Audio Demo Initialization

	2.5.2 Initializing the USB Peripheral Stack Hardware

	3 USB Host Drivers
	3.1 Introduction
	3.2 Architecture Overview
	3.2.1 Host Controller Drivers and USBD
	3.2.2 Class Drivers
	3.2.3 Host Module Roadmap

	3.3 The USB Host Driver
	3.3.1 USBD 2.0
	Initializing the USBD
	Order of Initialization
	Bus Tasks
	Registering Client Modules
	Standard Request Interfaces
	Data Transfer Interfaces

	3.3.2 USBD 1.1 Compatibility
	Registering Client Modules
	Client Callback Tasks
	Dynamic Attachment Registration
	Device Configuration
	Pipe Creation and Deletion
	Data Flow

	3.4 Host Controller Drivers
	3.4.1 Registering the Host Controller Driver
	3.4.2 USBHST_HC_DRIVER Structure
	3.4.3 Host Controller Driver Interfaces
	USBHST_HC_DRIVER Structure
	USBHST_USBD_TO_HCD_FUNCTION_LIST Structure

	3.4.4 Registering a Bus for the Host Controller
	3.4.5 Deregistering the Bus for the Host Controller
	3.4.6 Deregistering the Host Controller Driver
	3.4.7 HCD Error Reporting Conventions
	3.4.8 Root Hub Emulation

	4 USB Class Drivers
	4.1 Introduction
	4.2 Hub Class Driver
	4.2.1 Registering the Hub Class Driver
	4.2.2 Connecting a Device to a Hub
	4.2.3 Removing a Device From a Hub
	4.2.4 Deregistering the Hub Class Driver

	4.3 Keyboard Driver
	4.3.1 SIO Driver Model
	4.3.2 Initializing the Keyboard Class Driver
	4.3.3 Registering the Keyboard Class Driver
	4.3.4 Dynamic Device Attachment
	4.3.5 ioctl Routines
	4.3.6 Data Flow
	4.3.7 Typematic Repeat
	4.3.8 Uninitializing the Keyboard Class Driver

	4.4 Mouse Driver
	4.4.1 SIO Driver Model
	4.4.2 Initializing the Mouse Class Driver
	4.4.3 Registering the Mouse Class Driver
	4.4.4 Dynamic Device Attachment
	4.4.5 ioctl Routines
	4.4.6 Data Flow
	4.4.7 Uninitializing the Mouse Class Driver

	4.5 Printer Driver
	4.5.1 SIO Driver Model
	4.5.2 Initializing the Printer Driver
	4.5.3 Registering the Printer Driver
	4.5.4 Dynamic Device Attachment
	4.5.5 ioctl Routines
	4.5.6 Data Flow

	4.6 Audio Driver
	4.6.1 SEQ_DEV Driver Model
	4.6.2 Initializing the Audio Driver
	4.6.3 Registering the Audio Driver
	4.6.4 Dynamic Device Attachment
	4.6.5 Recognizing and Handling USB Speakers
	Dynamic Attachment and Removal of Speakers
	Data Flow

	4.6.6 Recognizing and Handling USB Microphones
	Data Flow

	4.7 Mass Storage Class Driver
	4.7.1 Extended Block Device Driver Model
	4.7.2 API Routines
	4.7.3 Dynamic Attachment
	4.7.4 Initialization
	4.7.5 Data Flow

	4.8 Communication Class Drivers
	4.8.1 Ethernet Networking Control Model Driver
	4.8.2 Enhanced Network Driver Model
	4.8.3 Dynamic Attachment
	4.8.4 Initialization
	4.8.5 Interrupt Behavior
	4.8.6 ioctl Routines
	4.8.7 Data Flow

	5 USB Peripheral Stack Target Layer Overview
	5.1 Introduction
	5.2 Initializing the Target Layer
	5.3 Attaching and Detaching a TCD
	5.3.1 TCD-Defined Parameters
	5.3.2 Detaching a TCD
	5.3.3 Target Application Callback Table

	5.4 Enabling and Disabling the TCD
	5.5 Implementing Target Application Callback Routines
	5.5.1 Callback and Target Channel Parameters
	5.5.2 Control Pipe Request Callbacks
	5.5.3 mngmtFunc() Callback
	Management Code Parameter
	Context Value Parameter
	Management Event Codes

	5.5.4 Clear and Set Callbacks
	Request Type Parameter
	Feature Parameter
	Index Parameter

	5.5.5 configurationGet() Callback
	5.5.6 configurationSet() Callback
	5.5.7 descriptorGet() and descriptorSet() Callbacks
	Request Type Parameter
	Descriptor Type and Index Parameters
	Language ID Parameter
	Length and Buffer Parameters

	5.5.8 interfaceGet() Callback
	5.5.9 interfaceSet() Callback
	5.5.10 statusGet() Callback
	5.5.11 addressSet() Callback
	5.5.12 synchFrameGet() Callback
	5.5.13 vendorSpecific() Callback

	5.6 Pipe-Specific Requests
	5.6.1 Creating and Destroying the Pipes
	Endpoint Descriptor
	usbTargPipeDestroy()

	5.6.2 Transferring and Aborting Data
	USB_ERP Structure
	usbTargTransfer() Routine
	Aborting a Data Transfer

	5.6.3 Stalling and Unstalling the Endpoint
	5.6.4 Handling Default Pipe Requests

	5.7 Device Control and Status Information
	5.7.1 Getting the Frame Number
	5.7.2 Resuming the Signal
	5.7.3 Setting and Clearing a Device Feature

	5.8 Shutdown Procedure

	6 Target Controller Drivers
	6.1 Introduction
	6.2 Hardware Adaptation Layer Overview
	6.3 Single Entry Point
	6.4 Target Request Block
	6.5 Function Codes
	6.5.1 Attaching the TCD
	6.5.2 Detaching the TCD
	6.5.3 Enabling and Disabling the TCD
	6.5.4 Setting the Address
	6.5.5 Resuming the Signal
	6.5.6 Setting and Clearing the Device Feature
	6.5.7 Getting the Current Frame Number
	6.5.8 Assigning the Endpoints
	6.5.9 Releasing the Endpoints
	6.5.10 Setting the Endpoint Status
	6.5.11 Getting the Endpoint Status
	6.5.12 Submitting and Cancelling ERPs
	6.5.13 Determining Whether the Buffer is Empty
	6.5.14 Getting and Clearing Interrupts
	6.5.15 Retrieving an Endpoint-Specific Interrupt
	6.5.16 Clearing All Endpoint Interrupts
	6.5.17 Handling Disconnect, Reset, Resume, and Suspend Interrupts

	7 BSP Porting
	7.1 Configuring the USB Peripheral Stack
	7.1.1 Initialization of the USB Peripheral Stack
	Example Initializing Resources for a NET2280 controller

	7.1.2 Creating a BSP-Specific Stub File for the USB Peripheral Stack
	Eight-, 16- and 32-Bit Data I/O
	Interrupt Routines

	9 usbTool Code Exerciser Utility Tool
	9.1 Introduction
	9.2 Running usbTool from the Shell
	9.3 Using the usbTool Execution Sequence
	9.4 Testing Applications
	9.4.1 Testing the Keyboard Application
	9.4.2 Testing the Printer Application
	9.4.3 Testing the Mass Storage Application

	A Glossary
	A.1 Glossary Terms
	A.2 Abbreviations and Acronyms

	Index

