
Wind River
Network Stack
for VxWorks 6

PROGRAMMER'S GUIDE
Volume 3: Interfaces and Drivers

®

6.6

®

Wind River Network Stack for VxWorks 6 Programmer's Guide, 6.6

Copyright © 2007 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, Tornado, and VxWorks are registered trademarks of Wind River Systems, Inc.
The Wind River logo is a trademark of Wind River Systems, Inc. Any third-party
trademarks referenced are the property of their respective owners. For further information
regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDir/productName/3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:

http://www.windriver.com

For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

Wind River Network Stack for VxWorks 6 Programmer's Guide, 6.6

12 Nov 07
Part #: DOC-16137-ND-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

iii

Contents

1 Overview ... 1

1.1 Introduction ... 1

1.2 About This Manual .. 2

1.2.1 About the IP Addresses Used in This Manual 4

1.3 Additional Documentation .. 4

Wind River Documentation .. 4
Online Resources .. 5
Books .. 5

2 Configuring and Managing Memory ... 7

2.1 Introduction ... 7

2.2 Configuring Packet Buffer Pools .. 8

2.2.1 Socket Priority ... 10

2.3 netBufLib Buffer Pools ... 12

2.3.1 Tuples ... 13

2.3.2 Creating netBufLib Pools .. 16

netPoolCreate() .. 17
netPoolInit() ... 21

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

iv

Memory Requirements Routines ... 24

2.4 Legacy Network Stack Pools .. 25

3 Working with Drivers and Interfaces ... 29

3.1 Introduction ... 29

3.2 Overview of the MUX .. 30

3.3 Working with Network Driver Instances .. 32

3.3.1 Attaching a Service to a Network Interface .. 33

3.3.2 Configuring a Network Interface with an Address 34

Using ifconfig() .. 35
Retrieving Interface Information with ifconfig() 38
Configuring an Interface with ifconfig() .. 38
Creating a Pseudo-Interface with ifconfig() .. 40

3.3.3 Editing the Route Table ... 40

3.3.4 Using routec() to Add or Delete Route Table Entries 41

3.3.5 Fixing Interfaces That Have Erroneous Addresses 42

3.3.6 Assigning a Host Name to an Address ... 43

3.3.7 Bringing the Device Up for Protocol Communication 43

3.3.8 Configuring Router Advertisement and Solicitation for an Interface 44

Router Advertisement ... 44
Router Solicitation .. 46

3.4 Adding Automatic IPv4 Interface Configuration .. 47

Configuring VxWorks for Auto IP .. 47
Configuring Auto IP .. 48
Using Auto IP ... 50

3.5 Using the Reverse ARP Client ... 51

3.6 Working with IPv4 and IPv6 Tunneling .. 51

3.6.1 Configuring VxWorks for Tunneling .. 52

GIF Tunnel Interface Driver ... 52

 Contents

v

GRE Tunnel Interface Driver .. 53
6over4 Tunnel Interface Driver .. 53
6to4 Tunnel Interface Driver .. 54
SIT Tunnel Interface Driver .. 54

3.6.2 Creating 6to4 Tunnels for IPv6 Packets .. 55

3.6.3 Creating RFC 2893-Style Configured Tunnels 56

3.6.4 An Example Tunnel ... 58

3.7 Using the Shared-Memory Network .. 63

3.7.1 The Backplane Shared-Memory Region ... 64

Backplane Processor Numbers ... 64
The Shared-Memory Network Master .. 65
The Shared-Memory Anchor .. 66
The Shared-Memory Heartbeat ... 67
Shared-Memory Location ... 67
Shared Memory Size .. 68
Test-and-Set to Shared Memory .. 68

3.7.2 Interprocessor Interrupts .. 69

3.7.3 Sequential Addressing ... 71

3.7.4 Shared-Memory Network Configuration ... 73

Example Configuration ... 73
Troubleshooting ... 79

4 Integrating a New Network Interface Driver 81

4.1 Introduction ... 82

4.1.1 How ENDs and NPT Drivers Differ .. 82

4.2 Configuring VxWorks for Network Interface Drivers 86

4.3 How VxWorks Launches and Uses Your Driver .. 87

4.3.1 The Service-to-MUX Interface .. 87

4.3.2 The Data-Link-to-MUX Interface ... 89

4.3.3 Polled Mode – For Debugging Only ... 92

4.4 Driver Components .. 93

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

vi

4.5 Transmitting Data .. 95

4.5.1 Transmit-complete Handler Interlocking Flag 95

4.5.2 Supporting Scatter-Gather Transmission ... 96

4.5.3 Transmit Descriptor Clean-up .. 98

4.5.4 Transmit Descriptor Indexing .. 100

4.5.5 Transmit Packet Association List ... 101

4.5.6 Transmit-complete Handler ... 102

4.5.7 Transmit Descriptor Clean .. 102

4.6 Implementing Checksum Offloading .. 102

4.6.1 Checksum Offloading and Receiving .. 104

4.6.2 Checksum Offloading and Transmission ... 106

4.7 Implementing a Network Driver ... 108

4.7.1 Adding a Network Driver ... 109

4.7.2 Launching the Driver ... 117

4.7.3 Responding to Network Service Bind Calls ... 117

4.7.4 Responding to Interrupts .. 118

4.8 The Driver Interface with the MUX .. 128

4.9 Porting a BSD Driver to the MUX ... 159

Remove Unit Number References ... 159
Create an END Object to Represent the Device 160
Implement the Standard END or NPT Entry Points 160

4.10 Managing Memory for Network Drivers and Services 162

4.10.1 Receive and Transmit Descriptor Issues ... 163

Network Buffer Pools .. 165

4.11 Collecting and Reporting Packet Statistics ... 175

4.11.1 Calling the Driver Routines .. 176

 Contents

vii

5 Integrating a New Network Service .. 179

5.1 Introduction ... 179

5.2 Implementing the MUX/Network Service Interface 180

5.2.1 Initializing the Interface .. 180

5.2.2 Using MUX/Service Interface Routines ... 184

Sending Packets .. 184
Device Control .. 185
Shutting Down an Interface .. 185

5.3 Interfacing with the MUX ... 186

5.3.1 Service Routines Registered Using mux[Tk]Bind() 186

5.4 Adding a Socket Interface to Your Service .. 191

5.4.1 Process Overview ... 192

5.4.2 Registering a Socket Back End ... 193

The Socket Functional Interface ... 195

5.4.3 Memory Validation and Socket Ioctls ... 199

6 Working with the 802.1Q VLAN Tag .. 201

6.1 Introduction .. 201

6.2 Adding VLAN Support ... 202

6.3 About the 802.1Q VLAN Tag Header ... 203

6.4 MUX Extensions for Layer 2 VLAN Support .. 204

6.4.1 Enabling VLAN Support for a Port ... 205

6.4.2 Disabling VLAN Support for a Port .. 207

6.4.3 MUX-L2 Ingress Rules ... 207

6.4.4 MUX-L2 Egress Rules .. 209

6.4.5 Accessing the MUX L2 Control Routines ... 210

6.5 Current MUX-L2 Limitations ... 211

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

viii

6.6 VLAN Management ... 211

6.6.1 MUX-L2 VLAN Management .. 212

6.6.2 Subnet-Based VLAN Management .. 213

Consequences of Changing the VID .. 214
Example of Subnet-Based VLAN Management 214

6.6.3 Socket-Based VLAN Management .. 216

6.7 Using the MUX-L2 Show Routines ... 219

7 Quality of Service ... 223

7.1 Introduction ... 223

7.2 Differentiated Services .. 224

7.2.1 Including DiffServ in a Build .. 224

7.2.2 Using DiffServ .. 225

Adding a Filter Rule for a Meter/Marker Entity 225
Deleting a Filter Rule from a Meter/Marker Entity 226
Creating a Meter/Marker Entity .. 227
Deleting a Meter/Marker Entity .. 227
Mapping a Filter to a Meter/Marker Entity ... 227
Removing a Filter-to-Meter/Marker Entity Mapping 228

7.2.3 Classes .. 228

7.2.4 Creating New Meter/Marker Entity Varieties 232

7.2.5 Using Existing Meter/Marker Entity Varieties 234

SimpleMarker ... 234
Single-Rate Three-Color Marker .. 235

7.3 Network Interface Output Queues ... 237

7.3.1 Operations ... 240

Adding an Interface Output Queue .. 240
Getting an Object that Describes an Interface Output Queue 241
Adding a Filter Rule to a Container Queue .. 241
Deleting a Filter Rule from a Container Queue 242

7.3.2 Leaf Queues ... 242

 Contents

ix

7.3.3 Container Queues ... 247

Available Container Queues ... 249

7.3.4 Adding a New Queue Type .. 252

8 Ingress Traffic Prioritization ... 257

8.1 Introduction ... 257

8.2 Factors to Consider Before Using Ingress Filtering ... 258

Systems with Multiple Interfaces for Incoming Traffic 259
Traffic Congestion and Fairness .. 259
Driver Variety ... 259

8.3 Building VxWorks to Include Ingress Traffic Prioritization 260

8.4 Implementing an Ingress Filter Routine ... 261

8.4.1 Registering an Ingress Filter Routine .. 262

A MUX Routines and Data Structures .. 263

A.1 Introduction ... 263

A.2 MUX Routines ... 263

A.2.1 endFindByName() ... 265

A.2.2 muxAddressForm() ... 266

A.2.3 muxLinkHeaderCreate() .. 267

A.2.4 muxDevExists() ... 267

A.2.5 muxDevLoad() ... 268

A.2.6 muxDevStart() ... 268

A.2.7 muxDevStop() .. 269

A.2.8 muxDevUnload() .. 269

A.2.9 muxError() .. 270

A.2.10 muxIfFuncAdd() .. 270

A.2.11 muxIfFuncDel() ... 271

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

x

A.2.12 muxIfFuncGet() ... 271

A.2.13 muxIoctl() ... 272

A.2.14 muxMCastAddrAdd() .. 272

A.2.15 muxMCastAddrDel() .. 273

A.2.16 muxMCastAddrGet() .. 273

A.2.17 muxPacketAddrGet() .. 274

A.2.18 muxPacketDataGet() ... 274

A.2.19 muxShow() ... 275

A.2.20 muxTkBind() .. 275

A.2.21 muxBind() ... 277

A.2.22 muxTkCookieGet() .. 279

A.2.23 muxTkDrvCheck() .. 279

A.2.24 muxTkPollReceive() .. 280

A.2.25 muxTkPollSend() ... 281

A.2.26 muxReceive() ... 281

A.2.27 muxTkReceive() ... 282

A.2.28 muxSend() .. 283

A.2.29 muxTkSend() .. 284

A.2.30 muxTxRestart() .. 285

A.2.31 muxUnbind() .. 285

A.2.32 muxAddrResFuncAdd() ... 286

A.2.33 muxAddrResFuncDel() .. 286

A.2.34 muxAddrResFuncGet() .. 287

A.3 Data Structures .. 287

A.3.1 CL_BLK .. 288

A.3.2 DEV_OBJ ... 289

A.3.3 DRV_CTRL .. 290

A.3.4 END_CAPABILITIES ... 290

 Contents

xi

A.3.5 END_ERR .. 293

A.3.6 END_MEDIA .. 296

A.3.7 END_MEDIALIST .. 297

A.3.8 END_OBJ ... 297

A.3.9 END_RCVJOBQ_INFO ... 301

A.3.10 END_QUERY .. 301

A.3.11 LL_HDR_INFO ... 302

A.3.12 M_BLK ... 302

A.3.13 M_BLK_HDR .. 304

A.3.14 M_LINK ... 305

A.3.15 M_PKT_HDR .. 306

A.3.16 MULTI_TABLE ... 307

A.3.17 NET_FUNCS ... 308

Index .. 309

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6

xii

1

 1
Overview

1.1 Introduction 1

1.2 About This Manual 2

1.3 Additional Documentation 4

1.1 Introduction

The Wind River Network Stack is a dual IPv4/IPv6 TCP/IP stack that is designed
for use in modern, embedded real-time systems. It includes many services and
protocols that you can use to build networking applications.

This is the third volume of the Wind River Network Stack Programmer's Guide. For
information on the following topics, see the Overview chapter of the Wind River
Network Stack Programmer's Guide, Volume 1:

■ an overview of the Wind River Network Stack
■ a list of features unique to Wind River platforms
■ a guide to relevant additional documentation
■ where to get the latest release information

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

2

1.2 About This Manual

The following is an overview of the information you will find in this manual. See
1.3 Additional Documentation, p.4 to learn about the other two volumes that
describe the Wind River Network Stack, and additional documentation that you
may find helpful.

1. Overview

This chapter.

2. Configuring and Managing Memory

This chapter describes the following:

■ Configuring packet buffer pools used by the network stack (2.2 Configuring
Packet Buffer Pools, p.8).

■ Creating and using netBufLib pools (2.3 netBufLib Buffer Pools, p.12).

■ The legacy network stack data pool and network stack system pool, used by
previous versions of the network stack and sometimes still required by
particular applications (2.4 Legacy Network Stack Pools, p.25).

3. Working with Drivers and Interfaces

In addition to drivers supplied for physical network interfaces, the Wind River
Network Stack also includes drivers for the creation of GIF, GRE, SIT, 6to4, and
6over4 devices—over IPv4, IPv6, or both. This chapter provides instructions and
some background information on how to create and configure device instances
associated with the network stack. This includes the following:

■ network interface instances for communication with the local network
■ router advertisement and solicitation
■ using RARP (reverse ARP)
■ tunneling over IPv4 or IPv6

4. Integrating a New Network Interface Driver

This chapter describes how to integrate a new network interface driver with
Wind River Network Stack. For this, use the MUX, which is an interface that

NOTE: The tunneling feature is available only in the Wind River Platforms builds
of the network stack. The Wind River General Purpose Platform, VxWorks
Edition, does not support tunneling.

1 Overview
1.2 About This Manual

3

1insulates network services from the particulars of network interface drivers, and
vice versa.

If you want to use a driver based on the BSD 4.3 or 4.4 models, you must port it to
the MUX interface model, as described in this chapter.

5. Integrating a New Network Service

A network service is an implementation of the network and transport layers of the
OSI network model. Under the Wind River Network Stack, network services
communicate with the data link layer through the MUX interface.This chapter
describes how to integrate a new network service with the MUX and, thus, with
the network stack.

6. Working with the 802.1Q VLAN Tag

This chapter describes the implementation of 802.1Q VLAN tagging for VxWorks
and tells you how to configure VxWorks to include this feature.

7. Quality of Service and 8. Ingress Traffic Prioritization

These chapters describe the network stack’s Quality of Service (QoS) capability, in
which the stack treats some network traffic to better service than others. The
Wind River Network Stack implements the Differentiated Services (DiffServ)
model of QoS, which classifies traffic entering a network and conditionalizes it
before treating it in an appropriate manner. Similarly, the ingress traffic
prioritization feature allows you to assign priorities to the packets arriving at an
interface and have the stack process higher-priority packets before lower-priority
packets.

NOTE: The 802.1Q VLAN tagging feature is available only in the Wind River
Platforms builds of the network stack. The Wind River General Purpose Platform,
VxWorks Edition, does not support 802.1Q VLAN tagging.

NOTE: The QoS feature is available only in the Wind River Platforms builds of the
network stack. The Wind River General Purpose Platform, VxWorks Edition, does
not support QoS.

The Wind River Network Stack does not support ingress filtering in symmetric
multiprocessing (SMP) builds.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

4

A. MUX Routines and Data Structures

This appendix describes the routines and data structures that comprise the MUX
interface.

1.2.1 About the IP Addresses Used in This Manual

When working with the examples in this manual, you may find it convenient to cut
and paste example text into source code or to a command line. To avoid disrupting
the use of IPv4 or IPv6 addresses that are, or might be, put into service, the
examples in this manual restrict themselves to the following address spaces:

■ 10/24 – one part of the private address space
■ 127.0/8 – loopback addresses
■ 169.254/16 – link local addresses
■ 172.16/12 – another part of the private address space
■ 192.0.2/24 – test and documentation addresses
■ 192.168/16 – another part of the private address space
■ 2001:DB8::/32 – test and documentation addresses (RFC 2849)
■ FE80::/10 – link local addresses

1.3 Additional Documentation

The following sections describe additional documentation about the technologies
described in this book.

Wind River Documentation

The Wind River Network Stack is described in the three volumes of the Wind River
Network Stack Programmer’s Guide:

■ Volume 1 has an overview with general information about the network stack,
and describes the Network and Transport layers.

■ Volume 2 describes application-layer protocols and socket programming.

■ Volume 3 (this volume) describes network services, drivers, and the MUX,
which is an abstraction layer between drivers and services.

1 Overview
1.3 Additional Documentation

5

1The Getting Started guide for your Platform includes instructions on how to build
a component or product into VxWorks, either through the Workbench Kernel
Editor or the vxprj utility.

For information on using Workbench to create a VxWorks Image Project and to
include build components, see the Wind River Workbench User’s Guide for VxWorks.
For information on using the vxprj command-line utility, see the VxWorks
Command-Line Tools User’s Guide.

The Wind River Platforms for VxWorks Migration Guide details how to migrate from
an earlier release of the network stack.

For information on boot devices and host-side network diagnostic tools, see the
Tornado User’s Guide: Getting Started.

Online Resources

Online resources are as follows:

■ The Internet Engineering Task Force, http://www.ietf.org

Books

Additional documentation is as follows:

■ Internetworking with TCP/IP, Volume I: Principles, Protocols, and Architecture,
Douglas E. Comer.

■ UNIX Network Programming, Volume 2, Second Edition by W. Richard Stevens

http://www.ietf.org

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

6

7

 2
Configuring and

Managing Memory

2.1 Introduction 7

2.2 Configuring Packet Buffer Pools 8

2.3 netBufLib Buffer Pools 12

2.4 Legacy Network Stack Pools 25

2.1 Introduction

The Wind River Network Stack and the network drivers that work with it use
several varieties of memory pool for their memory allocation needs:

■ The stack allocates control structures, such as sockets, route entries, and the like,
directly out of the system heap.

■ The stack allocates buffers to hold packet data (particularly for transmission)
out of one or more buffer pools. The stack also allocates, initializes, and
maintains per-packet packet header control structures. It joins one of these
structures with a buffer pool when a packet is allocated, and divorces the
structure from the buffer (making each available for a new packet) when a
packet is freed.

■ VxWorks network device drivers use netBufLib pools to allocate buffers into
which they receive packets. Drivers create these pools when the MUX loads a

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

8

network interface (usually at initialization time). Other protocols, such as
TIPC, also make use of netBufLib pools.

This chapter describes the following:

■ How to configure packet buffer pools used by the network stack
(2.2 Configuring Packet Buffer Pools, p.8).

■ How to create and use netBufLib pools (2.3 netBufLib Buffer Pools, p.12).

■ How to configure the legacy network stack data pool and network stack
system pool, used by previous versions of the network stack and still required
by some applications (2.4 Legacy Network Stack Pools, p.25).

2.2 Configuring Packet Buffer Pools

The network stack gets its packet-related memory from several buffer pools of
varying buffer sizes and allocation priorities. The stack allows an arbitrary number
of pools, but in practice you will need a small number. With the kernel
configuration mechanism you can specify up to 11 different pools.

In Workbench’s VxWorks kernel configuration editor, the component
IPNet packet pool support (INCLUDE_IPNET_USE_PACKET_POOL) enables
general packet pool support, and you can use the IPNet packet pool
configurations (SELECT_IPNET_PACKET_POOL) parameter to choose which
packet pools are included. To configure these pools, select one or more of the
INCLUDE_IPNET_PACKET_POOL_n pools (where n ranges from 1 to 11) for
inclusion in the image, and configure the parameters of each desired pool. Each
pool has three parameters that you can adjust:

MIN_PRIO_POOL_n (Minimum priority level for SIZE_POOL_n packet pool)
This specifies the allocation priority for the pool, which is the minimum
allocation priority that a caller can have in order for it to allocate packet buffers
from this pool. The priority ranges from a minimum of 0
(IPCOM_PKT_MPRIO_MIN) to a maximum of 10 (IPCOM_PKT_MPRIO_MAX).

When choosing a pool’s minimum allocation priority, be aware that most
protocol packet buffer allocation occurs at priority
IPCOM_PKT_MPRIO_STACK (==IPCOM_PKT_MPRIO_MAX), while buffer
allocation on behalf of socket applications normally occurs at priority
IPCOM_PKT_MPRIO_DEFAULT (==IPCOM_PKT_MPRIO_MIN+1). The values

2 Configuring and Managing Memory
2.2 Configuring Packet Buffer Pools

9

2

of the IPCOM_PKT_MPRIO_* macros are defined in the header file
ipcom/include/ipcom_pkt.h; if you change these values you must rebuild the
network stack as well as the VxWorks image.

Wind River recommends that you create at least one pool at the maximum
priority level (IPCOM_PKT_MPRIO_MAX). This ensures that TCP can always
allocate pure ACK packets (which it allocates while at a priority equal to
IPCOM_PKT_PRIO_STACK). Such a pool can be small: it can contain few
packets (around 10 or so) at a size of between 200 and 500 bytes per packet.

If you omit such a pool, this can lead to a scenario like the following: The stack
sends data through many TCP sockets—so many that the stack allocates all
available packets and places them in the TCP retransmission queue, at which
point it is no longer able to send an ACK if it receives a new TCP packet
(carrying data). If you were to include a high-priority pool, the stack would be
able to send an ACK in such a circumstance.

TCP sessions that simultaneously send bulk data in both directions may need
to allocate a packet of full MTU size, and may include data together with an
ACK rather than sending a pure ACK. For this reason, you need to be able to
allocate MTU-sized packets for at least the largest MTU in the system, and
there should be at least a small number of packets of this size available at the
IPCOM_PKT_MPRIO_STACK priority level.

NUM_POOL_n (Number of SIZE_POOL_n packet pool)
The number of packet buffers in this pool. An equal number of packet headers
(see below) is added for general use.

SIZE_POOL_n (Size of packet pool (in bytes))
The size, in bytes, of each packet buffer in the pool.

This is the MTU (maximum transmission unit) of the largest packet that fits in
this buffer. This packet size includes the network and transport layer
envelopes, but does not include space reserved for the link-level header.

The network stack always uses contiguous buffers to store datagrams that it
sends; it does not chain together segments for a single packet. This means that
if your application needs to send datagrams of size 30,000 (including the IP
header but not the link header), you must configure a packet pool with
SIZE_POOL_n of at least 30,000 bytes, even though the protocol layer of the
stack will fragment such datagrams for most link types.

The stack will align the start of a datagram (the IP header) to a 32-bit boundary
when it copies data into the buffer. When you allocate a packet with
ipcom_pkt_malloc() that routine ensures that the buffer address and real
length are rounded up to the next cache line size (so you do not need to

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

10

increase SIZE_POOL_n to accommodate such rounding). The stack uses the
value of the configuration parameter IPNET_CACHE_BUFSIZE (of the
component INCLUDE_IPNET) as the cache line size. If the value of this
parameter is zero, the stack instead uses the value of _CACHE_ALIGN_SIZE as
the cache line size value.

You can allocate additional packet header structures by specifying a packet
pool with SIZE_POOL_n equal to zero, and NUM_POOL_n equal to the number
of packet headers you want to add.

The stack allocates the memory for these packet buffers from the system heap at
initialization time. The default pools and their parameters are sufficient only for
systems with very modest networking requirements; you must increase the
numbers and perhaps add pools of larger sizes if your application uses the
network more intensively.

2.2.1 Socket Priority

The socket priority determines from which part of the packet pool the socket user
can allocate packets. A socket can allocate a packet from a pool only if the socket
priority is equal to or higher than the priority of packet pool.

Control socket priority with the socket option IP_SO_X_PKT_MPRIO, which is
relevant to the IP_SOL_SOCKET socket option level. Set this priority between
IPCOM_PKT_MPRIO_MIN and IPCOM_PKT_MPRIO_MAX, inclusive.

By default, when you create a socket it has priority IPCOM_PKT_MPRIO_DEFAULT
that, by default, is equal to IPCOM_PKT_MPRIO_MIN.

Drivers allocate packets with priority IPCOM_PKT_MPRIO_DRV, which defaults
to IPCOM_PKT_MPRIO_MAX. A driver that receives TCP or other reliable
protocols should allocate packets with a high priority so that it will not be
prevented from receiving ACK segments when low priority buffers are
unavailable. When the stack receives an ACK segment it can usually remove
packets from its resend queue and return them to the pool.

IPCOM_PKT_MPRIO_STACK defaults to IPNET_PKT_MPRIO_MAX. The network
stack uses this constant as the priority when it allocates ARP, ICMP, and ICMPv6
packets in response to incoming traffic.

2 Configuring and Managing Memory
2.2 Configuring Packet Buffer Pools

11

2

An example configuration of the ipnet packet pool is found in
installDir/components/ip_net2-6.n/osconfig/vxworks/src/ipnet//ipnet_config.c.
The following example is similar to what you would find there:

IP_CONST Ipnet_conf_pkt_pool ipnet_conf_pkt_pool[] =
{
{ 65, 1500, IPCOM_PKT_MPRIO_MIN },
{ 10, 1500, IPCOM_PKT_MPRIO_MAX },
{ 8, 10000, IPCOM_PKT_MPRIO_MIN },
{ 2, 10000, IPCOM_PKT_MPRIO_MAX },
{ 0, 0 } /* End marker */
};

In this example, this pool has two varieties of packet that any application can
allocate: 65 packets with MTU 1500 and 8 with MTU 10000. There are also two
varieties of packet that only applications with the highest priority can allocate: 10
packets with MTU 1500 and 2 with MTU 10000.

A socket-using application that calls a socket routine like sendmsg() or connect()
allocates a packet from the first group in this list for which the socket has a
sufficient priority. The stack orders the packet pool so that applications allocate
low-priority packets before high-priority packets.

Applications that use sockets with the maximum priority can continue sending
and receiving data even when all low-priority packets are allocated, but all other
applications will be unable to allocate packets until low-priority packets are
returned to the pool.

When an application attempts to allocate a packet, but no free packet of sufficient
size exists, the attempt will block unless the application explicitly passes a
non-blocking flag to ipcom_pkt_malloc().

You must determine the number of packets at each priority level based on your
system requirements. A good rule of thumb is to have more packets at low priority,
since both low- and high-priority sockets can use those.

! WARNING: The version of ipnet_config.c that is actually effective for VxWorks is
installDir/components/ip_net2-6.n/osconfig/vxworks/src/ipnet/ipnet_config.c
(changing the file with the same name in
installDir/components/ip_net2-6.n/ipnet2/config/ will not affect the configuration
of standard VxWorks image builds).

The ipnet_conf_pkt_pool[] array defined in this file contains entries defined in
terms of the configuration parameters NUM_POOL_n, SIZE_POOL_n, and
MIN_PRIO_POOL_n of the INCLUDE_IPNET_PACKET_POOL_n components.
However, the meaning of the pool entries is the same as in the above simpler
example, which we will refer to here for illustrative purposes.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

12

2.3 netBufLib Buffer Pools

The upper layers of the VxWorks IP network stack do not use netBufLib buffer
pools, but VxWorks network device drivers do, as does the TIPC protocol. If you
modify or exchange data directly with VxWorks network device drivers, you may
need to be familiar with the netBufLib library and its interfaces. You may also find
this library useful if your application needs a flexible, standalone buffer
management implementation.

The netBufLib library facilitates creation and management of pools of buffers
(called clusters—see also 2.3.1 Tuples, p.13), along with the control structures—
M_BLKs and CL_BLKs—that link clusters into chains and (in some cases) share
clusters between different code paths. The netBufLib library presents a high-level
interface that depends upon particular back-end implementations that allocate
and free pool resources. There are three different netBufLib back ends presently
implemented in the Wind River Network Stack:

netBufPool
The default, and most full-featured pool implementation. It supports multiple
cluster pools of different sizes, and allows you to allocate separate M_BLKs,
CL_BLKs, and clusters, or to allocate all three together in coordinated tuples.
To use this pool back end, include the INCLUDE_NETBUFPOOL component in
your build.

linkBufPool
A pool implementation specialized to provide optimized allocation of tuples
of a single cluster size. Wind River recommends that you use this back-end for
a network device driver’s packet receive pools. This back end fuses together
the M_BLK and CL_BLK control structures into a single contiguous M_LINK
structure. You cannot allocate unattached clusters, M_BLKs, or CL_BLKs when
you use linkBufPool (you may, however, create a linkBufPool without
attached clusters and allocate M_LINK structures from it that are not attached
to clusters.) To use this pool back end, include the INCLUDE_LINKBUFPOOL
component in your build.

nullBufPool
This pool back end is not for application use. It is only for internal use by the
stack.

It is a single-purpose back end implementation that the stack uses when it
passes packets to device drivers for them to transmit. Since the network device
drivers expect packets to be described by M_BLK/CL_BLK/cluster tuples (see
2.3.1 Tuples, p.13, for more on tuples), but the stack does not use this format,
the stack must “repackage” packets that it passes to the driver transmit routine

2 Configuring and Managing Memory
2.3 netBufLib Buffer Pools

13

2

so that they appear as tuples. The stack does this efficiently by using the
nullBufPool back end. (Some future network device drivers may expect the
stack-native packet format, to avoid even the minimal overhead of the
nullBufPool wrapping.)

To enable the netBufLib library, include the INCLUDE_NETBUFLIB component in
your image. You can call display routines for netBufLib pools if you include the
INCLUDE_NETPOOLSHOW component in your image. Some less-frequently-used
routines in the netBufLib API are in a separate library, netBufAdvLib, to which
you can gain access if you include the INCLUDE_NETBUFADVLIB component. The
capabilities of this library are described briefly in the section on creating netBufLib
pools, see 2.3.2 Creating netBufLib Pools, p.16 and the reference entry for
netBufAdvLib for more information.

2.3.1 Tuples

The netBufLib API describes a packet by a tuple or by a chain of tuples. The tuple
is a construct that consists of an M_BLK structure, a CL_BLK structure, and a cluster
buffer.

■ The M_BLK is similar in nature to the mbuf used in the BSD network stack.
Among other members, the M_BLK has a pClBlk field, which is a pointer to
the CL_BLK. See A.3.12 M_BLK, p.302.

■ The CL_BLK in turn holds a pointer to the cluster buffer. The cluster buffer is
the DMA buffer. The M_BLK also has a pointer into the cluster buffer but this
pointer can be modified by software to add or subtract offsets. The cluster
buffer pointer in the CL_BLK always points to the base of the cluster buffer. See
A.3.1 CL_BLK, p.288.

■ The access path to the start address of a cluster buffer in a tuple is
pMblk->pClBlk->clNode.pClBuf.

These structures are defined in the header file target/h/wrn/coreip/netBufLib.h
and shown in Figure 2-1.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

14

Figure 2-1 The Structures in a Tuple

struct mBlk

pClBuf

aux

(M_BLK)

struct clBlk
(CL_BLK)

union clBlkList
(CL_BLK_LIST)

struct mHdr
(M_BLK_HDR)

struct pktHdr
(M_PKT_HDR)

mNext

mNextPkt

char *
pClBlkNext

clNode

pClBlk

struct netPool

pNetPool

mBlkPktHdr

mBlkHdr

struct clBlk
(CL_BLK)

2 Configuring and Managing Memory
2.3 netBufLib Buffer Pools

15

2

.

Allocating a Tuple

Use the netTupleGet() routine to allocate a tuple.

Freeing a Tuple Chain

To free a tuple chain linked through the mBlkHdr.mNext field, call
netMblkClChainFree(). To free only the first tuple of such a chain and return a
pointer to the next, call netMblkClFree().

Copying a Tuple Chain

To construct a copy of a tuple chain (or part of a chain) which shares references to
the clusters in the original chain, and hence does not copy bulk data, call
netMblkChainDup(). To copy a tuple chain’s data into a (sufficiently large)
buffer, call netMblkToBufCopy().

! CAUTION: The IP stack does not permit you to describe a packet as a chain of more
than one M_BLK/CL_BLK/cluster tuple. Packets that the IP stack passes to the
network driver for transmission always consist of a single tuple. Similarly, the IP
stack expects that the MUX delivers received packets to it as single tuples.
Therefore, when a network driver passes a received packet to the MUX, it must
describe this packet in a single tuple; all the packet data must be contiguous in a
single cluster. Apart from the IP stack, other protocols or applications may attach
to a network interface through the MUX, and these other protocols may pass
packets for transmission that they describe with more than one tuple. For this
reason, network drivers’ send routines must be able to deal with packets consisting
of more than one tuple.

Certain fields within an M_BLK that previous versions of the Wind River
Network Stack used might not be used by the current stack version, or might
possibly be used for different purposes. Such fields include the rcvif, header, aux,
and altq_hdr members of the M_PKT_HDR substructure in each M_BLK.
Applications should not assume, however, that these members are available for
their own use.

NOTE: If you are using the netBufPool back end you can allocate a bare cluster
using netClusterGet(), a bare CL_BLK using netClBlkGet(), and a bare M_BLK
using netMblkGet(), then join the cluster and cluster block with netClBlkJoin()
and join the M_BLK to the cluster block/cluster pair combination using
netMblkClJoin(). But it is simpler and more efficient for you to call
netTupleGet() for this purpose.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

16

There are various other routines available for manipulating, allocating, and freeing
tuples or bare clusters, and control structures; see the netBufLib reference manual
entry, or the source code at target/src/wrn/coreip/common/mem/netBufLib.c.

2.3.2 Creating netBufLib Pools

To create netBufLib pools, call either the older netPoolInit() routine or the newer
netPoolCreate() routine. Wind River recommends that you call the
netPoolCreate() routine, since it frees you from having to allocate memory for the
clusters, CL_BLKs, and M_BLKs making up a netBufLib pool. Also, pools that you
create by calling netPoolCreate() have the following additional capabilities that
are not available in pools that you create by calling netPoolInit():

■ By calling netPoolRelease() you can safely free those pools that you created
with netPoolCreate(). This routine puts a pool into a release state; when all the
holders of buffers belonging to the pool have returned them to the pool, the
pool is freed. A driver can use this routine to free a network device’s receive
pool when the device is unloaded.

■ By calling the netPoolIdGet() routine you can look up by name a pool that
you created with netPoolCreate(). You can obtain the name of such a pool by
calling netPoolNameGet().

■ Several agents (network interfaces, protocols, and so forth) may share a pool
that you create with netPoolCreate(). An agent that wants to use such a pool
may call netPoolAttach() to look up a pool by name and attach to it; this
increments a count that prevents the pool from being released until all agents
that have attached to it detach from it by calling netPoolDetach().

■ You can associate a set of attributes with pools that you create with
netPoolCreate()—including shareability, buffer alignment, and the memory
partitions out of which the buffers and control structures that netPoolCreate()
allocates at pool creation time (see The pNetBufCfg Parameter to netPoolCreate(),
p.18).

■ You can bind a pool that you create with netPoolCreate() to another pool,
called its parent pool, by calling the netPoolBind() routine. When an agent
attempts to allocate a packet from a pool, but that pool does not have sufficient
resources, the attempt will repeat in the pool’s parent pool. When the agent
later frees the packet, the packet is returned to whichever pool it was originally
allocated from. A parent pool may be the parent of several child pools, and
provides a shared back-up supply for the child pools, which are usually
private to one agent. You cannot successfully release a parent pool while there

2 Configuring and Managing Memory
2.3 netBufLib Buffer Pools

17

2

are still children bound to it; you must first unbind its child pools by calling
netPoolUnbind(). You must configure a parent pool to have the same pool
attributes as any child pools that you attach to it, and each of these pools must
be sharable (see attributes, p.19).

To enable the pool attachment, pool binding, and pool attributes capabilities,
include the component INCLUDE_NETBUFADVLIB in your image. The
netPoolRelease() capability, and pool look-up by name, are available for pools
that you create with netPoolCreate() even if you do not include the
INCLUDE_NETBUFADVLIB component.

Pools that you create with netPoolInit() lack the above capabilities. However,
netPoolInit() allows (and requires) that you create a pool using pre-allocated
memory for the clusters and control structures. If your code needs to create a pool
in this manner, it should call the netPoolInit() routine rather than
netPoolCreate().

netPoolCreate()

To create a memory pool, call netPoolCreate():

NET_POOL_ID netPoolCreate
(
NETBUF_CFG * pNetBufCfg, /* Configuration Structure */
POOL_FUNC * pFuncTbl /* Optional plug in function table */
)

This routine takes two parameters:

■ pNetBufCfg, see The pNetBufCfg Parameter to netPoolCreate(), p.18
■ pFuncTbl, see The pFuncTbl Parameter to netPoolCreate(), p.17

The pFuncTbl Parameter to netPoolCreate()

The pFuncTbl parameter is a pointer to a table of function pointers that specifies
which netBufLib back end implementation governs the new pool (see
2.3 netBufLib Buffer Pools, p.12). Set this parameter to one of the following values:

_pNetPoolFuncTbl
to use the netBufPool back end with a backward-compatible memory
requirements routine that guarantees only four-byte alignment for both
clusters and control structures

NULL
to use the netBufPool back end with a memory requirements routine
(_netMemReqDefault() in netBufLib.c) that yields more stringent alignment,

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

18

which may yield marginally better performance than the
backwards-compatible memory requirements routine chosen when
_pNetPoolFuncTbl is explicitly passed

_pLinkPoolFuncTbl
to use the linkBufPool back end

The pNetBufCfg Parameter to netPoolCreate()

Pass netPoolCreate() a NETBUF_CFG structure that you have filled in to indicate
what sort of pool you want to create (see Figure 2-2).

The members of this structure are as follows:

pName
A string of length less than NET_POOL_NAME_SZ (this is 16 bytes for most
architectures). netPoolCreate() copies this name into the NET_POOL structure
that it returns.

pDomain and bMemExtraSize
These members are ignored at present. Set them to NULL and 0 (zero)
respectively.

Figure 2-2 The NETBUF_CFG Class

struct netBufCfg
(NETBUF_CFG)

pName : char *

pClDescTbl

struct netBufClDesc
(NETBUF_CL_DESC)

attributes : UINT32
pDomain : void *
ctrlNumber : int
ctrlPartId : PART_ID
bMemExtraSize : int
bMemPartId : PART_ID
clDescTblNumber : int

clSize : int
clNum : int

*

— pool name
— pool attributes
— RTP ID (or NULL for kernel)
— # of control structures to allocate
— memory partition for control structures (NULL == kernel)
— extra memory for run-time buffers
— memory partition for buffers (NULL == default for kernel or RTP)
— number of entries in pClDescTbl

— cluster size
— number of clusters in the pool

2 Configuring and Managing Memory
2.3 netBufLib Buffer Pools

19

2

ctrlPartId and bMemPartId
Set these to the memory partitions from which the pool is to allocate memory
for control structures (M_BLKs and CL_BLKs) and for cluster buffers,
respectively. Set these to NULL if you want to allocate this memory from the
kernel system heap.

ctrlNumber
Set this to the number of M_BLKs the pool allocates; the pool will allocate the
same number of CL_BLKs as well.

attributes
The pool’s nominal cluster alignment and whether the pool can be shared (see
2.3.2 Creating netBufLib Pools, p.16 for a discussion of pool sharing). Set this to
one of the following values:

■ ATTR_AI_SH_ISR – integer-aligned; shareable
■ ATTR_AC_SH_ISR – cache-line-aligned; shareable
■ ATTR_AI_ISR – integer-aligned; private
■ ATTR_AC_ISR – cache-line-aligned; private

The actual alignment of clusters is not actually controlled by the value of this
member, but by the memory requirements routine provided either by the back
end implementation, or (when _pFuncTbl is NULL) by netBufLib itself. See
Memory Requirements Routines, p.24.

pClDescTbl
Points to an array of clDescTblNumEnt NETBUF_CL_DESC structures with
which you specify the number and (un-rounded) size of clusters in one of the
cluster pools belonging to the NET_POOL that you are creating with
netPoolCreate().

Note that the linkBufPool back end allows you to choose only a single cluster
size (that is, clDescTblNumEnt is either 1 or 0; when 0, the pool provides only
bare M_LINKs, and you have to attach your own clusters).

There are also cluster size limitations when you use the netBufPool back end:

■ The minimum cluster size is 16 bytes.

■ The maximum cluster size is 65536 bytes.

■ In a given pool, only one cluster size is allowed in each interval [2n, 2n+1)
between successive powers of two.

Figure 2-3 shows two examples of sets of cluster sizes. The first, {48, 92,
244}, is valid because there is at least one power of two between the

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

20

different sizes. The second, {48, 88, 128, 192}, is invalid because the cluster
sizes of 128 and 192 both fall within the range bound by [128, 256).

In addition, although the {48, 92, 244} set of cluster sizes does not skip a
size band, netBufPool does allow this. Thus, {48, 244} would be a valid set
of cluster sizes for a single memory pool. When you set up your
pClDescTbl array of CL_DESC structures, you must order the sizes from
smaller to larger.

clDescTblNumEnt
The number of NETBUF_CL_DESC structures in the array pointed to by
pClDescTbl, and so the number of different cluster pools belonging to the
NET_POOL.

Example 2-1 Establishing a Network Driver Pool with netPoolCreate() and _pLinkPoolFuncTbl

A network driver could create a network tuple pool using the linkBufPool back
end by calling a routine like the following:

NET_POOL_ID myPoolCreate
(
int tupleCnt, /* how many tuples? */
int clSize, /* how big is each cluster? */
char * poolName /* name for network pool; commonly NULL */
)
{
NETBUF_CFG netBufCfg;
NETBUF_CL_DESC clDescTbl;
NET_POOL_ID pPool;

if (tupleCnt <= 0 || clSize < 0)
return (NULL);

bzero ((char *)&netBufCfg, sizeof(netBufCfg));
bzero ((char *)&clDescTbl, sizeof(clDescTbl));

netBufCfg.pName = poolName;

Figure 2-3 Choosing Correct netBufPool Cluster Sizes

5122561286432

48 92 244 }{

128 19288 }{ 48

This set is correctly chosen so that
only one size lies between two
adjacent powers of two.

This set is invalid. The cluster sizes
of 128 and 192 lie within a range
bound by two adjacent powers of two.

2 Configuring and Managing Memory
2.3 netBufLib Buffer Pools

21

2

netBufCfg.attributes = ATTR_AC_SH_ISR;
netBufCfg.ctrlNumber = tupleCnt;

if (size > 0)
{
netBufCfg.clDescTblNumEnt = 1;
netBufCfg.pClDescTbl = &clDescTbl;
clDescTbl.clNum = tupleCnt;
clDescTbl.clSize = clSize;
}

pPool = netPoolCreate (&netBufCfg, _pLinkPoolFuncTbl);

return (pPool);
}

The driver must specify a cluster size big enough for the maximum receivable
frame. The netPoolCreate() call will round up the specified cluster size to a
multiple of NETBUF_ALIGN (64), and return NETBUF_ALIGNED clusters.

In the current release, if size is at least 1500, netPoolCreate() will also add the
default cluster offset specified by the NETBUF_LEADING_CLSPACE_DRV
parameter of component INCLUDE_NETBUFLIB to the requested cluster size, and
arrange that tuples allocated from the pool have their mBlkHdr.mData pointers
adjusted to point that same offset after the start of the cluster.

This function also supports the much less common case of creating a pool with
only bare M_LINKs and no clusters, by passing zero for clSize.

netPoolInit()

Call the netPoolInit() routine to initialize a netBufLib network pool. You must
first allocate memory for the NET_POOL structure as well as the clusters, M_BLKs,
and CL_BLKs.

Pools that you create with netPoolInit() do not support some administrative
capabilities of pools that you create using netPoolCreate() (see the discussion of
these capabilities in 2.3.2 Creating netBufLib Pools, p.16). However, pools created
with netPoolInit() and netPoolCreate() are equivalent in regard to pool back end
support and basic allocation/freeing of M_BLKs, CL_BLKs, and clusters.

STATUS netPoolInit
(
NET_POOL_ID pNetPool, /* pointer to a net pool */
M_CL_CONFIG * pMclBlkConfig, /* pointer to a mBlk configuration */
CL_DESC * pClDescTbl, /* pointer to cluster desc table */
int clDescTblNumEnt, /* number of cluster desc entries */
POOL_FUNC * pFuncTbl /* pointer to pool function table */
)

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

22

The parameters that you pass to netPoolInit() are as follows:

pNetPool
A pointer to a NET_POOL structure that describes the pool to initialize.

pMclBlkConfig
A structure that specifies the number of M_BLKs and CL_BLKs and which
memory buffer for netPoolInit() to carve them from (see Figure 2-4).

When you use the linkBufPool back end, netPoolInit() ignores the clBlkNum
member; in such a pool, the number of CL_BLKs is always equal to the number
of M_BLKs, since linkBufPool joins the two control structures into a
contiguous M_LINK structure (see A.3.14 M_LINK, p.305).

When you use the netBufPool back end, you usually will choose the number
of cluster blocks to be equal to the total number of clusters in all cluster pools,
and choose the number of M_BLKs to be at least this large, or larger if you
anticipate cluster sharing. One exception to this general guideline is that if you
primarily intend to allocate bare clusters (rather than tuples), you need not
have as many control structures as clusters in the pool.

You must specify a memory region (memArea, memSize) sufficiently large for
the number of control structures, considering also the alignment of the
structures that the back end in use requires. Each M_BLK structure has,
preceding it, a hidden pointer to the NET_POOL it comes from, and you must
account for the space for these hidden pointers in memSize. For the
netBufPool back end, the alignment requirement for both M_BLKs and
CL_BLKs is just the size of a pointer (4 bytes); but for the linkBufPool back end,
M_LINKs must have an alignment of NETBUF_ALIGN.

An easy way to find the memory required for these structures is to call the
memory requirements routine pFuncTbl->pMemReqRtn (see Memory
Requirements Routines, p.24 for more information).

Figure 2-4 The M_CL_CONFIG Class

M_CL_CONFIG
mBlkNum : int
clBlkNum : int
memArea : char *
memSize : int

— number of M_BLKs
— number of CL_BLKs
— pre-allocated memory area
— size of pre-allocated memory area

2 Configuring and Managing Memory
2.3 netBufLib Buffer Pools

23

2

pClDescTbl
An array of clDescTblNumEnt CL_DESC structures, each of which describes
a single cluster pool within the network buffer pool (see Figure 2-5).

Such a cluster pool is characterized by the number of clusters within it, and the
(usable) size of each cluster within the pool. Note that when using the
linkBufPool back end, only one cluster size is allowed. When using the
netBufPool back end, the same restrictions on cluster sizes mentioned for
netPoolCreate() apply (see pClDescTbl, p.19).

Specify a region of available memory (memArea, memSize) from which
netPoolInit() carves the clusters. If you specify a memSize value that is too
small for the number of clusters in the pool, netPoolInit() fails, returning
ERROR.

If you instruct netPoolInit() to use the netBufPool back end, when calculating
memSize, account for the presence of a hidden CL_POOL pointer preceding
each cluster. For the linkBufPool back end, while there is no hidden cluster
pool pointer, the alignment requirements of each cluster are more stringent:
you must round up each cluster size to a multiple of NETBUF_ALIGN, and add
an additional NETBUF_ALIGN to allow for the whole block to align correctly.
An easy way to calculate the memory needs in either case is to call the memory
requirements routine described in Memory Requirements Routines, p.24.

When using the linkBufPool back end, if you specify any clusters at all, you
must specify the same number of clusters as M_BLKs, since linkBufPool
permanently joins M_BLKs, CL_BLKs, and clusters into tuples. You cannot
allocate bare M_BLKs, CL_BLKs, or clusters from such a pool.

clDescTblNumEnt
The number of structures in pClDescTbl.

Figure 2-5 The CL_DESC Class

struct clDesc

clSize : int
clNum : int
memArea : char *
memSize : int

— cluster type
— number of clusters
— pre-allocated memory area
— size of pre-allocated memory area

(CL_DESC)

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

24

pFuncTbl
The back end’s table of function pointers; set this to _pNetPoolFuncTbl for the
netBufPool back end, or _pLinkPoolFuncTbl for the linkBufPool back end.

Memory Requirements Routines

Call the memory requirements routines to determine the amount of memory you
need for a particular number of M_BLKs, CL_BLKs, or clusters of a particular size.
You can also call memory requirements routines to determine the required
alignment of each single M_BLK, CL_BLK, or cluster.

Each of the two back ends netBufPool and linkBufPool provides its own memory
requirements routine, and netBufLib also provides a default memory
requirements routine, _netMemReqDefault(), that it uses when the second
argument to netPoolCreate() is NULL. Alternatively, if you provide a custom
POOL_FUNC back end function table, netBufLib obtains its memory requirements
routine from the pMemReqRtn member of the POOL_FUNC, or uses
_netMemReqDefault() if that member is NULL.

The prototype of a netBufLib memory requirements routine is as follows:

int memoryRequirementsRoutine
(
int type, /* NB_BUFTYPE_[CLUSTER|M_BLK|CL_BLK] */
int num, /* number of clusters or control structures */
int size /* Cluster size (ignored for control structures) */
)

The arguments to this call are as follows:

type
What type of memory the caller wants to size, one of the following:

■ NB_BUFTYPE_CLUSTER – cluster memory
■ NB_BUFTYPE_M_BLK – M_BLK memory
■ NB_BUFTYPE_CL_BLK – CL_BLK memory

num
The number of items; when this is zero, the routine returns the required
alignment for a single M_BLK, CL_BLK, or cluster of the specified size.

size
For clusters only, this indicates the cluster size.

For instance, netPoolCreate() would make the following call to find out how
much memory is needed for 200 clusters of size 1518 (pMemReq points to the
appropriate memory requirements routine):

2 Configuring and Managing Memory
2.4 Legacy Network Stack Pools

25

2

size = pMemReq (NB_BUFTYPE_CLUSTER, 200, 1518);

To find the alignment required for each M_BLK, it makes the following call:

align = pMemReq (NB_BUFTYPE_M_BLK, 0, 0);

pMemReq() returns a size such that a block of that size is sufficient to hold the
specified number of properly aligned items, no matter the alignment of the block.
This means that the memory requirements routine adds some extra size to
guarantee correct alignment of the first block. To disregard this extra size and find
the memory space used by each aligned item, use an expression such as the
following:

oneItem = (pMemReq (NB_BUFTYPE_CL_BLK, 2, 0) -
pMemReq (NB_BUFTYPE_CL_BLK, 1, 0));

If for some reason you need to modify the alignments that clusters or control
structures use, one way to do this is to copy the POOL_FUNC table from the
appropriate back end, and replace the pMemReqRtn member in this copy of the
table with a pointer to your own memory requirements routine, and then pass the
pointer to the copied POOL_FUNC table as the pFuncTbl argument to either
netPoolCreate() or netPoolInit().

For more information, see the reference entry for netPoolInit().

2.4 Legacy Network Stack Pools

Previous versions of the Wind River Network Stack made use of two special
netBufLib pools: the network stack data pool and the network stack system pool.
The stack used the data pool for packets sent to the network and for data in socket
send buffers; it used the system pool for control structures such as sockets, route
entries, protocol control blocks, socket addresses, and the like.

The network stack no longer uses netBufLib pools internally, except when it
communicates with network device drivers. It does not require the legacy network
stack data and system pools, and so the component INCLUDE_NET_POOL that
includes and configures these pools is not present in the default VxWorks build.
However, there may be certain cases in which you need these legacy pools.

For example, you may need the network stack data pool if you must prefix a
link-layer header to a packet that a non-network-stack protocol sends, but there is
insufficient leading space in the packet’s head cluster to prefix the header. This

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

26

may occur, for instance, in code that calls muxAddressForm() to prefix a link
header to a datagram before sending it using muxSend(). The
muxAddressForm() routine (or the device-specific formAddress() routine that it
calls) uses the macro M_PREPEND() to prefix space for the link header to the
packet. This macro, defined in target/h/wrn/coreip/net/mbuf.h, adjusts pointers
and lengths if there is sufficient leading space in the head cluster (and if the head
cluster is not shared); otherwise, it calls the routine m_prepend(), which attempts
to allocate a 128-byte tuple from the network stack data pool, to prefix to the
existing chain and hold the link header. If the network stack data pool does not
exist, this allocation fails (gracefully), and the attempt to send the packet fails.

Another example is an application or protocol that uses the muxTkSend() routine
to send a packet to an END (not NPT) device, specifying a non-NULL destination
MAC address. This routine calls the END’s formAddress() routine in this case
also.

If your application or protocol calls muxAddressForm() or muxTkSend() in this
way and relies upon M_PREPEND() to successfully allocate a tuple, you may need
to include the component INCLUDE_NET_POOL in your VxWorks image, and
configure the data pool with at least one pool of clusters of size 128-bytes or larger,
along with M_BLKs and CL_BLKs. (An alternative is to create a pool of your own
for this purpose, and set the NET_POOL pointer _pNetDpool to point to this pool.)

For reference, here is a brief description of the parameters of the
INCLUDE_NET_POOL component, used to configure the network stack system
pool and network stack data pool. Note that both of these pools use the netBufPool
back end.

NUM_SYS_MBLKS
The number of M_BLK structures in the system pool.

NUM_SYS_CLBLKS
The number of CL_BLK structures in the system pool.

PMA_SYSPOOL
The address of a pre-allocated memory buffer that the system pool carves its
M_BLKs and CL_BLKs from. To allow the initialization code to allocate this
memory buffer, set this parameter and PMS_SYSPOOL to zero.

PMS_SYSPOOL
The size in bytes of the pre-allocated buffer at PMA_SYSPOOL.

2 Configuring and Managing Memory
2.4 Legacy Network Stack Pools

27

2

NUM_SYS_n
SIZ_SYS_n
PMA_SYS_n
PMS_SYS_n

These parameters, with n being one of 16, 32, 64, 128, 256, 512, 1024, or 2048,
configure a cluster pool within the system pool. The value of SIZ_SYS_n
specifies the usable size in bytes of each cluster in the pool, and must be at least
n but less than 2 times x. NUM_SYS_n is the number of clusters in the cluster
pool. PMA_SYS_n is the address of a pre-allocated buffer of length PMS_SYS_n
bytes, which netPoolInit() carves into the clusters for the pool. To allow the
initialization code to allocate memory itself for the cluster pool, set both
PMA_SYS_n and PMS_SYS_n to zero.

NUM_DAT_MBLKS
The number of M_BLK structures in the data pool.

NUM_DAT_CLBLKS
The number of CL_BLK structures in the data pool.

PMA_DATPOOL
Address of a pre-allocated memory buffer to carve for the data pool’s M_BLKs
and CL_BLKs. To allow the initialization code to allocate the memory, set this
parameter and PMS_DATPOOL to zero.

PMS_DATPOOL
The size in bytes of the pre-allocated buffer at PMA_DATPOOL.

NUM_DAT_n
PMA_DAT_n
PMS_DAT_n

These parameters, with n being one of 64, 128, 256, 512, 1024, 2048, 4096, 8192,
16384, 32768, or 65536, configure a cluster pool within the data pool. The value
of n is the usable size in bytes of each cluster in the pool; unlike the system
pool, the data pool’s cluster sizes are hard-coded as powers of two.
NUM_DAT_n is the number of clusters in the cluster pool. PMA_DAT_n is the
address of a pre-allocated buffer of length PMS_DAT_n bytes, which
netPoolInit() carves into the clusters for the pool. To allow the initialization
code to allocate memory itself for the cluster pool, set both PMA_DAT_n and
PMS_DAT_n to zero.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

28

29

 3
Working with Drivers and

Interfaces

3.1 Introduction 29

3.2 Overview of the MUX 30

3.3 Working with Network Driver Instances 32

3.4 Adding Automatic IPv4 Interface Configuration 47

3.5 Using the Reverse ARP Client 51

3.6 Working with IPv4 and IPv6 Tunneling 51

3.7 Using the Shared-Memory Network 63

3.1 Introduction

This chapter shows how to do the following:

■ understand the MUX model
■ create and configure network interface devices
■ add and delete route table entries
■ bring up devices
■ configure router advertisement and solicitation
■ add automatic IPv4 interface configuration
■ use a reverse ARP (RARP) client
■ work with IPv4 and IPv6 tunneling

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

30

3.2 Overview of the MUX

In the Wind River Network Stack, network interface drivers pass information up
in the network stack through the mediation of an interface layer known as the
MUX. The MUX insulates network services from the specifics of network interface
drivers and vice versa.

The MUX interface also decouples the network driver and network protocol
layers. This decoupling lets you add new network drivers (not necessarily
Ethernet-based) without needing to alter the network service. Likewise, the
decoupling lets you add a new network service without needing to modify the
existing MUX-based network interface drivers.

The MUX and the OSI Network Model

The OSI Network Model describes seven layers through which data passes when
it is transmitted from an application on one machine to a peer on a remote
machine.

Starting in the application layer, data passes down through each layer of the stack
to the physical layer, which handles the physical transmission to the remote
machine. After arriving on the remote machine, data passes up through each layer
from the physical to the application.

In the abstract, each layer in the stack is independent of the other layers. A protocol
in one layer exchanges messages with a peer protocol in the same layer on remote
machines by passing its message to the layer immediately below it. How the
message passes down through other layers is not its concern. Ideally, the protocol
is insulated from such details.

In practice, network stacks that implement each layer with perfect independence
are rare. Within TCP/IP, the protocols that manage the Transport and Network
layer routines are sufficiently coupled that they are sometimes referred to as the
protocol layer. The MUX is an interface between the data link layer and this
protocol layer.

NOTE: The tunneling feature is available only in the Wind River Platforms builds
of the network stack. The Wind River General Purpose Platform, VxWorks
Edition, does not support tunneling.

3 Working with Drivers and Interfaces
3.2 Overview of the MUX

31

3

The MUX is not a new layer. There are no MUX-level protocols that communicate
with peers in the MUX of a remote machine. The MUX concerns itself solely with
standardizing communication between the protocol and data link layers of a single
stack. Because of the MUX, a protocol layer service and network driver do not need
direct knowledge of the other’s internal implementation details.

For example, when a network driver needs to pass along a packet it receives, the
driver does not directly access any structure or routine within a protocol layer
service implementation. Instead, the driver calls a MUX routine that handles the
details. The MUX does this by calling the receive routine that the network service
registered with the MUX. This design lets any MUX-compatible network service
use any MUX-compatible network driver.

Figure 3-1 The OSI Network Model and the MUX

Application
The network applications that use
the data being transferred, for
example HTTP or FTP.

The layer in which data is encrypted,
translated, or compressed before it
is transmitted.

The layer responsible for establishing
and maintaining the connection
between communicating machines.

The layer in which data is packaged
and tracked to assure that the packets
have been received correctly. TCP, the
Transmission Control Protocol, is a
transport layer protocol.

The layer that adds routing information
to each data packet. IP, the Internet
Protocol, is an example network protocol.

The layer that prepares the packets
for transmission through the physical
layer and handles problems such as
packet collision. Ethernet is a data
link protocol.

The actual wiring and hardware that
support the network connection.

Protocol
Layer

Presentation

Session

Transport

Network

Data Link

Physical

MUX
Interface

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

32

3.3 Working with Network Driver Instances

Although you can configure the Wind River Network Stack at build time to
automatically load, start, and configure multiple network interfaces, you can also
configure the stack at run time.

To manually start additional network interfaces at run time, complete the
following steps:

1. Use ifconfig -a to display information on each currently-loaded interface.
When you add a new interface, you do not want to conflict with any interface
that is already loaded. (See Using ifconfig(), p.35.)

2. Call muxDevLoad() to load the driver for the network interface.

3. Call muxIfFuncAdd() to install any routines particular to the relationship
between a particular interface and a particular service. You can use this routine
to assign an address resolution routine, a multicast address resolution routine,
or an output routine.

4. Use muxDevStart() to initialize the network interface.

5. Call the ipAttach() routine to attach (bind) the driver to the service.

6. Assign an IP address and a netmask (IPv4) or prefix (IPv6) to the interface by
calling ifconfig(). If you call ifconfig() to bring up inet6, it triggers IPv6
link-local address generation for the interface.

7. Use hostAdd() to add a host name to the host table.

8. Check that the interface is loaded and configured correctly by calling the
following routines:

NOTE: If your target system includes more than one network interface, you may
need to increase the value of the configuration parameter IP_MAX_UNITS. For
information on configuring the Wind River Network Stack to automatically start
multiple network interfaces, see 4.7.1 Adding a Network Driver, p.109.

NOTE: When you load the network interface drivers and tunnel devices that
Wind River supplies, this step is usually handled for you. For example, if you
load the pseudo-devices that Wind River supplies, you can skip this step. The
tunnel library handles it automatically when it initializes.

3 Working with Drivers and Interfaces
3.3 Working with Network Driver Instances

33

3

ifconfig()
List configuration information for network devices (use ifconfig -a). (See
Using ifconfig(), p.35.)

netstat()
Check that the route table has an entry for the device.

hostShow()
Check that the address/hostname is in the host table.

3.3.1 Attaching a Service to a Network Interface

A protocol or service, such as IPv4, must attach itself to one or more network
interfaces to communicate with remote peers. When a service attaches to an
interface, packets addressed to that interface can flow up to the service. This also
lets the service transmit packets out through the interface.

If you want network interfaces to automatically attach to and be configured for a
given IP protocol (i.e., IPv4 or IPv6), include the build configuration component
INCLUDE_IPNET_IFCONFIG_n and set the value of the configuration parameter
IFCONFIG_n (where n is 1, 2, 3, or 4).

Set the IFCONFIG_n parameter to a series of strings, each of which begins with one
of the following keywords:

ifname
The name of the ethernet interface, for example: "ifname eth0". If you simply
specify "ifname" without an interface name, the interface name is the END
device name.

devname
Which driver this interface should attach itself to, for example:
"devname fei0". The default is "devname driver" which indicates that the
interface gets the name of the device to attach itself to from the device boot
parameters.

inet
The interface IPv4 address and subnet, for example: "inet 10.1.2.100/24".

You may use one of the following keywords in place of the IPv4 address:

NOTE: For information on the inputs expected by the routines listed above, see the
reference entries for each routine.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

34

"inet driver"
The interface should read its address and mask from the BSP. This is the
default setting for the inet keyword.

"inet dhcp"
The interface should retrieve its address and mask from a DHCP server.
Depending on the DHCP server configuration, the interface might also
retrieve its gateway from the server.

"inet rarp"
The interface should retrieve its address and mask from a RARP server.

gateway
The default IPv4 gateway, for example: "gateway 10.1.2.1". You may specify
only one default gateway.

If you specify "gateway driver" the interface will take the gateway from the
boot parameters.

inet6
The interface IPv6 address and subnet, for example: "inet6 3ffe:1:2:3::4/64". You
can insert the tentative keyword before the address to instruct the stack to
check for address duplication before it assigns the address to the interface, for
example: "inet6 tentative 3ffe:1:2:3::4/64".

gateway6
The default IPv6 gateway. You may specify only one default gateway.

You may configure only one interface to automatically attach to IPv4 or IPv6, even
if your target supports more than one interface. If you want to attach IPv4 or IPv6
to additional interfaces, call ipAttach() for each one. Include the
INCLUDE_IPATTACH configuration component in your build if you need to use
the ipAttach() and ipDetach() routines.

3.3.2 Configuring a Network Interface with an Address

When a network service attaches to an interface, this allows packets addressed to
that interface to flow up to the service. You must assign an address to the interface
in order for the interface to know which packets are addressed to it. When you
assign an address to an interface, you also need to assign a netmask (IPv4) or prefix
(IPv6) that determines whether the interface can access a particular network.

Use ifconfig() to set the address and mask associated with a network interface.

3 Working with Drivers and Interfaces
3.3 Working with Network Driver Instances

35

3

Using ifconfig()

This section provides a brief overview of ifconfig(). For a detailed description of
all possible flags and parameter values, see the ifconfig() reference entry.

Call the ifconfig() routine to do either of the following tasks:

■ Retrieve configuration information on an interface.
■ Assign an address and a netmask or prefix to a network interface.

You must include the INCLUDE_IFCONFIG configuration component in your
build if you want to call the ifconfig() routine.

You can call the ifconfig() routine in the C-interpreter and in the
command-interpreter. Examples of calls in the C-interpreter are prefaced with
“->”. Examples in the command-interpreter are prefaced with “#”.

Use the following syntax when calling ifconfig() from the C-interpreter:

-> ifconfig "[flags] [interfaceName] [protocol] [command]"

Use the following syntax when calling ifconfig() from the command-interpreter:

ifconfig [flags] [interfaceName] [protocol] [command]

ifconfig() Parameters

Pass the following parameters to ifconfig():

flags

-a
Run the command on all interfaces.

-V virtualRouter
Run the command in virtual router instance virtualRouter.

The valid flag combinations are as follows:

-> ifconfig "-V virtualRouter -a"
-> ifconfig "-V virtualRouter [interfaceName] [protocol] [command [command [...]]]"
-> ifconfig "[interfaceName] [protocol] [command [command [...]]]"

interfaceName
The name of the network interface for ifconfig() to report on.

protocol
Which network protocol the command applies to. This can be either inet (IPv4
domain) or inet6 (IPv6 domain).

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

36

command
The valid commands for ifconfig() are as follows:

add address [preferred duration] [valid duration]
Add the IPv4 or IPv6 address address to the network interface.

If the address is an IPv6 address, you can set the number of seconds that
the specified address will be preferred (the address will be deprecated
when this time has elapsed), or the number of seconds the address will be
valid (the address will be removed when this time has elapsed).

anycast address
Specify that the IPv6 address is an anycast address.

attach
Register the interface in the stack so that applications can see it and refer
to it. When an interface registers with the stack, the stack gives it a unique
number called an “interface ID” or “ifindex”. You can use the
if_nametoindex() and if_indextoname() routines to translate between
this number and the interface name.

create
Create a network pseudo-device (one that does not map to a physical
device, such as a tunnel, loopback, or MPLS device).

delete address
Delete the IPv4 or IPv6 address address from the network interface.

destroy
Detach the interface (see detach below) and also free all resources that it
allocated.

detach
Logically remove the interface from the stack, at which point applications
can no longer see or refer to the interface (you must bring the interface
down before you detach it).

dhcp
Enable DHCP auto-configuration (inet only).

-dhcp
Disable DHCP auto-configuration (inet only).

down
Bring the interface down.

dstaddr address
Set the remote address to address (inet and PPP only).

3 Working with Drivers and Interfaces
3.3 Working with Network Driver Instances

37

3

inet address
Change the primary IPv4 address to address.

lladdr address
Set the link layer address to address.

link[0-2]
Enable special processing, of a sort that is particular to the network
interface type, at the link level.

-link[0-2]
Disable special processing at the link level.

link0
For GRE tunnels, enable minimal encapsulation (RFC 2002).

-link0
For GRE tunnels, use normal GRE tunnel operation.

lladdr address
Set the interface link address to address.

mtu unit
Set the maximum transmission unit (MTU) of the interface to unit.

netmask mask
Set the IPv4 netmask; mask is in dotted quad notation. The netmask will
default to 255.0.0.0 for class A, 255.255.0.0 for class B and 255.255.255.0 for
class C addresses.

prefixlen length
Set the number of address bits used for dividing networks into subnets
(inet6 only). This must be an integer value between 0 and 128; the default
is 64.

promisc
Enable promiscuous mode at the interface.

-promisc
Disable promiscuous mode at the interface.

tentative address
Set the tentative bit in the specified IPv6 address.

-tentative address
Clear the tentative bit in the specified IPv6 address.

tunnel localAddress remoteAddress [ttl]
If the interface is a GRE or GIF pseudo-interface, set the tunnel endpoint.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

38

up
Bring the interface up. An application can see an interface as soon as the
application attaches to it, but cannot receive or transmit data through the
interface until that interface is up. Also, automatic address configuration
of the interface does not take place until the interface is up.

vlan tag vlanif interfaceName
The virtual LAN tag (1-4095) and the name of the interface to use for a
virtual LAN.

vr virtualRouter
Set the virtual router to virtualRouter, an ID value between 0 and 65535 that
specifies a particular virtual router (the default is 0).

Retrieving Interface Information with ifconfig()

Use the following ifconfig() syntax to retrieve information about a network
interface:

-> ifconfig "[flags] [interfaceName] [command]"
ifconfig [flags] [interfaceName] [command]

For the interfaceName parameter, the generic format of a network interface name is
nameNumber—for example: fei0. The format of a logical interface name is
typeUserDefinedName. For example, a PPPoE interface name would be
pppoeUserDefinedName; a VLAN interface name would be vlanUserDefinedName.
UserDefinedName can be any string that does not exceed IFNAMSIZ (16 characters).

For example, to retrieve information on the fei0 interface, use the following
command:

-> ifconfig "fei0"

To retrieve information on all IPv6 interfaces, use the following command:

-> ifconfig "-a"

Configuring an Interface with ifconfig()

Use the following ifconfig() syntax to assign information to a network interface:

-> ifconfig "interfaceName [protocol] command"
ifconfig interfaceName [protocol] command

For the protocol parameter, specify either inet or inet6.

3 Working with Drivers and Interfaces
3.3 Working with Network Driver Instances

39

3

inet

The inet protocol value has special syntax because you use it both as a protocol
selector and as a command to change the primary IPv4 address.

For example, to change the primary IPv4 address to 192.0.2.64, issue the following
command:

-> ifconfig "fei0 inet 192.0.2.64"

To configure the fei0 network interface to add another IPv4 address, of
172.16.0.100, use the following command:

-> ifconfig "fei0 inet add 172.16.0.100"

Because the call specifies no mask for what would have been a class B address
pre-CIDR, the command assumes a default class B netmask value of 0xffff0000. To
override the default netmask associated with an IPv4 address, use the CIDR slash
notation as follows:

-> ifconfig "fei0 inet add 172.16.0.100/24"

Alternatively, you can specify the mask using the dot-notation as follows:

-> ifconfig "fei0 inet add 172.16.0.100 netmask 255.255.255.0"

These last two commands each specify a netmask of 24 bits, or 0xffffff00. The
netmask value is used when the stack creates a interface entry in the system route
table.

inet6

To use ifconfig() to configure IPv6 addresses, use the inet6 protocol value. For
example:

-> ifconfig "fei0 inet6 add 2002:C000:0240::66/16"

The ifconfig() call above configures the fei0 network interface to have an IPv6
address of 2002:C000:240::66.

In the command above, the string /16 indicates a prefix length of 16. If you do not
specify a prefix length, ifconfig() assumes a default prefix of 64 bits. Alternatively,
you can use the prefixlen option as follows:

-> ifconfig "fei0 inet6 add 2002:C000:0240::66 prefixlen 16"

NOTE: As there is no concept of a primary IPv6 address, you only use inet6 as a
protocol selector.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

40

This example address is a 6to4 IPv6 address with a local IPv4 tunnel address of
192.0.2.64. The IPv4 notation uses base 10; the IPv6 notation uses base 16. Thus,
192.0.2.64 is 0xC0000240, which is written as C000:0240 in IPv6 notation.

Creating a Pseudo-Interface with ifconfig()

You can call the ifconfig() routine to create pseudo-interfaces (also called logical
interfaces) such as VLAN interfaces and tunnels.

For example, to create a VLAN interface that puts the VLAN tag 1234 on all traffic
sent to the 10.0.0.0/8 network, that is assigned the address 10.1.2.3, and that uses
fei0 as the underlying physical interface, issue the following series of commands:

-> ifconfig "vlan10 create"
-> ifconfig "vlan10 vlan 1234 vlanif fei0"
-> ifconfig "vlan10 inet 10.1.2.3"
-> ifconfig "vlan10 up"

You can also chain these commands together:

-> ifconfig "vlan10 create vlan 1234 vlanif fei0 inet 10.1.2.3 up"

3.3.3 Editing the Route Table

If you have accidentally misconfigured a network interface, you must delete the
problematic entry from the route table. You may also want to edit the route table
manually when you first test the routing stack software or a new application that
you have written or ported for that stack. At such times, you may find it
convenient to enter a default network route. In addition, in order to establish
useful tunnels through the IPv4 Internet you must add route table entries that
specify which networks’ traffic should be sent through the tunnel interface. For
more information, see 3.6 Working with IPv4 and IPv6 Tunneling, p.51.

To edit the route table from the command line, call routec, a port of the UNIX route
utility. With this routine, you can view the route table contents as well as add and
delete route entries.

Use the routec command interactively, from the command-line. To manipulate the
routing table from within compiled code, use a standard routing socket instead.
For more information on routing socket messages, see the Wind River
Network Stack Programmer’s Guide, Volume 1.

3 Working with Drivers and Interfaces
3.3 Working with Network Driver Instances

41

3

3.3.4 Using routec() to Add or Delete Route Table Entries

Call routec() to add or delete route table entries for local hosts and gateways. To
use routec(), you must include the INCLUDE_ROUTECMD component in your
build.

The following examples cover most uses of the command. To verify the proper
operation of a routec() command, issue the following command:

-> netstat "-r"

Adding or Deleting an IPv4 Network Route

To add an IPv4 network route, issue the following command:

-> routec "add -net -netmask netmaskValue destinationNetwork gatewayAddress"

For example:

-> routec "add -net -netmask 255.255.255.0 192.168.10.0 192.168.1.1"

To delete this route, replace add with delete.

Adding or Deleting an IPv6 Network Route

To add an IPv6 network route, issue the following command:

-> routec "add -net -inet6 -prefixlen number
destinationNetwork gatewayAddress%scope"

You can specify the scope value in gatewayAddress%scope with a network interface
name. This specifies that the scope is the local link available through that network
interface.

For example:

-> routec "add -net -inet6 -prefixlen 64
2001:DB8:84b1:7600::fe80::20f:ff:fe00:101%fei0"

To delete this route, replace add with delete.

Adding or Deleting an IPv4 Host Route

To add an IPv4 host route, issue the following command:

-> routec "add -host hostAddress gatewayAddress"

For example:

-> routec "add -host 192.168.13.76 192.168.1.1"

To delete this route, replace add with delete.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

42

Adding or Deleting an IPv6 Host Route

To add an IPv6 host route, issue the following command:

-> routec "add -host -inet6 hostAddress gatewayAddress%scope"

For example:

-> routec "add -host -inet6 2001:DB8:84b1:7600:0205:00ff:fe00:0101
fe80::20f:ff:fe00:101%fei0"

To delete this route, replace add with delete.

Adding or Deleting a Default IPv4 Route

To add a default IPv4 route, issue the following command:

-> routec "add default IPv4gatewayAddress"

For example:

-> routec "add default 192.168.1.1"

To delete this route, replace add with delete.

Adding or Deleting a Default IPv6 Route

To add a default IPv6 route, issue the following command:

-> routec "add -inet6 default IPv6gatewayAddress%scope"

For example:

-> routec "add -inet6 default fe80::20f:ff:fe00:101%fei0"

To delete this route, replace add with delete.

3.3.5 Fixing Interfaces That Have Erroneous Addresses

When you call ifconfig() you create a local entry in the route table. Local entries
in the route table identify network interfaces on the local host.

To reconfigure a network interface using ifconfig(), issue one of the following
commands:

-> ifconfig "interfaceName inet delete oldIPv4address add newIPv4address"
-> ifconfig "interfaceName inet6 delete oldIPv6address add newIPv6address"

If you are changing the primary IPv4 address, issue the following command:

-> ifconfig "interfaceName inet newIPv4address"

3 Working with Drivers and Interfaces
3.3 Working with Network Driver Instances

43

3

To restore all the local network route entries to the route table, issue the following
command:

-> ifconfig "interfaceName down up"

For more information, see 3.3.2 Configuring a Network Interface with an Address, p.34.

3.3.6 Assigning a Host Name to an Address

It is often easier to refer to hosts and interfaces by names instead of by IP addresses.
To add host names to the local host table, call hostAdd(). For example:

-> hostAdd "myIPv4Interface", "192.0.2.64"
-> hostAdd "myIPv6Interface", "2002:C0000:240::66"

The host table stores one entry per Internet address, but you can associate multiple
names with an address, as aliases.

When specifying IPv6 link or site local addresses, you must supply a scope
delimiter, %, and corresponding interface ID. For more information, see the
hostAdd() reference entry.

3.3.7 Bringing the Device Up for Protocol Communication

To start and enable a network interface, call ifconfig() to bring up the protocol
state of the device. You can start or stop transmission by bringing this state up or
down.

To bring up IPv4 and IPv6 functionality, use the up modifier. For example:

-> ifconfig "fei0 up"

Similarly, to bring down IPv4 and IPv6 functionality, use the down modifier. For
example:

-> ifconfig "fei0 down"

Determining the Device Link Status

The stack’s IFF_RUNNING and IFF_UP flags indicate the current status of a link. For
example, an Ethernet network interface sets the IFF_RUNNING flag as long as one
end of a network cable is plugged into the device and the other end is plugged into
another device (using a cross-cable) or into a hub or switch. Use the
SIOCGIFFLAGS ioctl() call to determine the state of this flag, as follows:

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

44

struct ifreq ifp;
int fd = socket descriptor for the link ;
ioctl (fd, SIOCGIFFLAGS, &ifp);
if (ifp.ifr_flags & IFF_RUNNING)

{
// interface is running
}

if (ifp.ifr_flags & IFF_UP)
{
// interface is UP
}

3.3.8 Configuring Router Advertisement and Solicitation for an Interface

Router Advertisement

The Wind River Network Stack supports both the host and router side of router
advertisement, for both IPv4 and IPv6.

Including Router Advertisement

For IPv6, to include router advertisement in your project, include the
INCLUDE_IPRADVD component.

For IPv4, router advertisement is included by default. To remove it, undefine
IPNET_USE_RFC1256 in installDir/components/ip_net2-6.n/ipnet2/
config/ipnet_config.h and rebuild the stack.

Configuring Router Advertisement with sysvar()

The ipnet_radvd daemon handles router advertisement messages, and sends out
router advertisements and answers to router solicitations.

You must specify the following information for each link that the daemon serves:

■ which links to listen to and send to
■ which prefixes to announce to each link

The sysvar() command controls the ipnet_radvd daemon. For details on using the
sysvar command, see the Wind River Network Stack for VxWorks 6 Programmer’s
Guide, Volume 1. In order to call sysvar(), you must include
INCLUDE_IPCOM_SYSVAR_CMD in your build.

If you set the parameter ipnet.inet6.AcceptRtAdv to 1, as in the following
example, this determines that a received router advertisement is accepted and
processed:

3 Working with Drivers and Interfaces
3.3 Working with Network Driver Instances

45

3

-> sysvar set "ipnet.inet6.AcceptRtAdv", 1

To use router advertisement, first declare a list of interfaces for which the
advertisement should be done:

-> sysvar set "ipnet.inet6.radvd.interfaces"

interfaces is one or more interface names, delimited by spaces or commas; for
example: fei0 fei1 fei2

Set the following parameters for every interface that you declare in the above
sysvar() command; the values are valid only for the interface specified by
interfaceName in each parameter (such as fei0 or fei1).

ipnet.inet6.radvd.interfaceName.AdvManagedFlag
Controls whether the managed flag should be set or not in send messages. If
you set this to 1, hosts find their addresses through some managed mechanism
like DHCPv6. If you set this to 0, hosts generate addresses through stateless
addresses configuration. The default value is 0.

ipnet.inet6.radvd.interfaceName.AdvOtherConfigFlag
If you set this to 1, hosts configure non-addresses related options, like DNS
servers, through DHCPv6. The default value is 0.

ipnet.inet6.radvd.interfaceName.AdvHomeAgentFlag
If you set this to 1, this router acts as a home agent (RFC 3775). The default
value is 0.

ipnet.inet6.radvd.interfaceName.AdvIntervalOpt
Advertisement interval option (RFC 3775). The default value is 0.

ipnet.inet6.radvd.interfaceName.AdvHomeAgentOpt
Home Agent Information option (RFC 3775). The default value is 0.

ipnet.inet6.radvd.interfaceName.AdvHomeAgentOptLifetime
Home agent lifetime. The default value is AdvDefaultLifetime.

ipnet.inet6.radvd.interfaceName.AdvHomeAgentOptPreference
Home agent preference. The default value is 0.

ipnet.inet6.radvd.interfaceName.MinRtrAdvInterval
The shortest interval, in milliseconds, between two unsolicited router
advertisements. The default value is 200000.

ipnet.inet6.radvd.interfaceName.MaxRtrAdvInterval
The longest interval, in milliseconds, between two unsolicited router
advertisements. The default value is 600000.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

46

ipnet.inet6.radvd.interfaceName.MinDelayBetweenRAs
The shortest interval between solicited router advertisements, in milliseconds.
The default value is 3000.

ipnet.inet6.radvd.interfaceName.AdvPrefixList
A list of user-defined prefix names. The default value is an empty list.

Prefix Configuration

The following parameters are per interface (for example, fei0) and per
user-defined prefix name (for example, ex_prefix).

ipnet.inet6.radvd.interfaceName.prefix.prefixName
Prefix definition. This is a required field with no default. For example:
“2002:0a01:0201::/64”.

ipnet.inet6.radvd.interfaceName.prefix.prefixName.AdvOnLinkFlag
Set this to 1 (one) if this prefix is local to this link. The default value is 1.

ipnet.inet6.radvd.interfaceName.prefix.prefixName.AdvAutonomousFlag
Set this to 1 (one) if this prefix can be used for automatic address generation.
The default value is 1.

ipnet.inet6.radvd.interfaceName.prefix.prefixName.AdvRouterAddressFlag
Router address flag. The prefix is the router’s complete address (RFC 3775).
The default value is 0.

ipnet.inet6.radvd.interfaceName.prefix.prefixName.AdvValidLifetime
The duration, in seconds, that this prefix is valid. The default value is -1, which
means an infinite lifetime.

ipnet.inet6.radvd.interfaceName.prefix.prefixName.AdvPreferredLifetime
The duration, in seconds, that this prefix is preferred. The default value is
604800. A value of 0xffffffff (-1) indicates an infinite duration.

Router Solicitation

The Wind River Network Stack supports both the host and router side of router
solicitation for both IPv4 and IPv6.

Use sysvar() to set the following parameters for router solicitation:

ipnet.inet.rtdisc.PerformRouterDiscovery
Set this to 1 (one) or yes to enable the entire router solicitation portion of RFC
1256; set this to 0 (zero) or no to disable this feature. The default value is 1.

3 Working with Drivers and Interfaces
3.4 Adding Automatic IPv4 Interface Configuration

47

3

interfaceName.inet.rtdisc.PerformRouterDiscovery
Set this to 1 (one) or yes to enable the router solicitation portion of RFC 1256
on the specified interface; set this to 0 (zero) or no to disable this feature. The
default value is 1.

interfaceName.inet.rtdisc.SolicitationAddress
Specifies the address to send the solicitations to for this interface. Valid values
are: 224.0.0.2 or 255.255.255.255. The default value is 224.0.0.2.

3.4 Adding Automatic IPv4 Interface Configuration

A target can use IPv4 auto-configuration (Auto IP) to join a local network
automatically without being either manually configured or built with hard-coded
IPv4 addresses. In addition, if a DHCP agent later assigns a routable IPv4 address
to the target’s interface, the target uses that address instead of the auto-configured
address. In such a case, the target retains the auto-configured address, defends it
in case another interface on the network attempts to assume it, and uses it if the
routable IPv4 address is removed.

Configuring VxWorks for Auto IP

To configure VxWorks to use Auto IP, take the following steps:

1. Add the interface that you want Auto IP to configure to the configuration
parameter IFCONFIG_1. For instance, to add eth0, add the following string to
the IFCONFIG_1 parameter:

"ifname eth0", "devname driver"

2. Include the IPv4 AutoIP Components (FOLDER_AUTOIP) and IPCOM
ifconfig commands (INCLUDE_IPIFCONFIG_CMD) components.

3. Include the INCLUDE_IPAIP component and set the autoIP interface list
(INET_IPAIP_IFNAME_LIST) configuration parameter to the name of the
interface, for instance: "eth0".

4. Build the project. If the interface you selected has an assigned IPv4 address,
you must delete this address before Auto IP can configure the interface. To do
this, follow these steps:

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

48

a. Run ifconfig to determine assigned IP address, for instance with the
following command:
-> ifconfig "eth0"
eth0 Link type:Ethernet HWaddr 00:1e:a0:a0:1e:01
Queue:none inet 192.168.195.7 mask 255.255.0.0

b. Delete that IP address, for instance with the following command:
-> ifconfig "eth0 inet delete 192.168.195.7"

c. AutoIP will start automatically. You can see the new address assignment
with ifconfig, for instance as follows:
-> ifconfig "eth0"
eth0 Link type:Ethernet HWaddr 00:1e:a0:a0:1e:01
Queue:none inet 169.254.134.89 mask 255.255.0.0

Configuring Auto IP

The run-time sysvar parameters and corresponding build configuration
parameters shown in Table 3-1 are available when you include INCLUDE_IPAIP.
For details on using the sysvar command, see the Wind River Network Stack for
VxWorks 6 Programmer’s Guide, Volume 1. In order to call sysvar(), you must
include INCLUDE_IPCOM_SYSVAR_CMD in your build.

Table 3-1 Auto IP Server Build Parameters

Workbench Description, Parameter Name, and sysvar
Default Value
& Data Type

autoIP interface list
INET_IPAIP_IFNAME_LIST
ipnet.inet.linklocal.interfaces

A list of the interfaces for which Auto IP will configure
link-local addresses unless another IPv4 address is added by
some other mechanism. The list delimiter is a comma and/or a
space.

""

char *

autoIP probe wait time
INET_IPAIP_PROBE_WAIT
ipnet.inet.linklocal.PROBE_WAIT

The target will wait [0..PROBE_WAIT] seconds before creating a
link-local IPv4 address and checking it for uniqueness.

"1"

char *

3 Working with Drivers and Interfaces
3.4 Adding Automatic IPv4 Interface Configuration

49

3
autoIP probe count
INET_IPAIP_PROBE_NUM
ipnet.inet.linklocal.PROBE_NUM

The number of ARP requests the target will send to check a
link-local address for uniqueness before it accepts the address.

"3"

char *

autoIP min problem time
INET_IPAIP_PROBE_MIN
ipnet.inet.linklocal.PROBE_MIN

Auto IP sends the next probe between PROBE_MIN and
PROBE_MAX seconds after the previous one.

"1"

char *

autoIP max problem time
INET_IPAIP_PROBE_MAX
ipnet.inet.linklocal.PROBE_MAX

Auto IP sends the next probe between PROBE_MIN and
PROBE_MAX seconds after the previous one.

"3"

char *

autoIP announce wait time
INET_IPAIP_ANNOUNCE_WAIT
ipnet.inet.linklocal.ANNOUNCE_WAIT

Time (in seconds) that Auto IP waits before it starts to announce
the address it selects. It will not defend the address if it hears
another announcement during this period.

"2"

char *

autoIP number of announcements
INET_IPAIP_ANNOUNCE_NUM
ipnet.inet.linklocal.ANNOUNCE_NUM

Number of announcements.

"2"

char *

autoIP announcements interval
INET_IPAIP_ANNOUNCE_INTERVAL
ipnet.inet.linklocal.ANNOUNCE_INTERVAL

Seconds between announcements.

"2"

char *

Table 3-1 Auto IP Server Build Parameters (cont’d)

Workbench Description, Parameter Name, and sysvar
Default Value
& Data Type

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

50

Using Auto IP

A target using Auto IP chooses an address at random from the 169.254/16 IPv4
address space. The target then uses ARP requests to verify that the address is not
already in use on the local link. If the address is in use, the target chooses another
address from the 169.254/16 IPv4 address space. The target repeats this process
until it finds an unused address.

Using this address, the target can communicate with other IPv4 targets on the local
link, although the address is not suitable for communication beyond the local link.
Superficially, IPv4 auto-configuration is similar to IPv6 auto-configuration, and
you can use it in much the same way. For example, one environment well suited
to IPv4 auto-configuration is an isolated IPv4 network of devices without access to
a DHCP server.

autoIP max conflicts
INET_IPAIP_MAX_CONFLICTS
ipnet.inet.linklocal.MAX_CONFLICTS

Maximum number of address collisions that Auto IP allows
before it applies rate-limiting when it creates the next address.

"10"

char *

autoIP rate limit interval
INET_IPAIP_RATE_LIMIT_INTERVAL
ipnet.inet.linklocal.RATE_LIMIT_INTERVAL

Delay between successive address regeneration attempts when
the regeneration is rate-limited.

"60"

char *

autoIP defensive interval
INET_IPAIP_DEFEND_INTERVAL
ipnet.inet.linklocal.DEFEND_INTERVAL

Minimum interval between defensive ARPs.

"10"

char *

Table 3-1 Auto IP Server Build Parameters (cont’d)

Workbench Description, Parameter Name, and sysvar
Default Value
& Data Type

NOTE: Auto IP can configure only one interface on a target, even if multiple
interfaces exist.

3 Working with Drivers and Interfaces
3.5 Using the Reverse ARP Client

51

3

3.5 Using the Reverse ARP Client

The Wind River Network Stack includes a reverse ARP (RARP) client.

Configuring RARP

Use the IFCONFIG_n parameter to configure RARP for a given interface. See
3.3.1 Attaching a Service to a Network Interface, p.33, for information on IFCONFIG_n.

Using the RARP Client

A VxWorks target can use the RARP client to broadcast a RARP request packet
containing its hardware address. If there is a RARP server on the local network, the
server responds with a RARP response packet. This packet contains the IP address
that the RARP host associates with the hardware address in the RARP request
packet.

Diskless workstations sometimes use RARP at boot time to request an IP address.
If you are writing boot code for a device that requires an external source to supply
more than just an IP address, consider using BOOTP or DHCP.

3.6 Working with IPv4 and IPv6 Tunneling

In this document, tunneling through an IPv4 Internet refers to the encapsulation of
data (such as an IPv4 or an IPv6 packet for a VPN connection) in an IPv4 packet
that is then transmitted to an IPv4-addressed destination. At the destination, the
data is retrieved from the IPv4 packet and processed. If the data retrieved is an
IPv6 packet, and the receiving stack is a dual IPv4/IPv6 stack, the stack can
forward the IPv6 packet out onto the IPv6 Internet.

A tunnel attaches to the stack as a network interface. Create tunneling interfaces
with the ifconfig command.

NOTE: RARP is an older protocol that, for most purposes, is now superseded by
BOOTP, which is itself largely superseded by DHCP.

NOTE: IPsec does its own IP tunneling for associations running in tunneling mode;
therefore, an IPsec tunnel will not show up as a regular network interface.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

52

Tunnels can be either configured or automatic. A configured tunnel determines the
endpoint addresses by configuration information on the encapsulating node. An
automatic tunnel determines the IPv4 endpoints from the addresses of the
embedded IPv6 datagram.

IPv4 multicast tunneling determines the endpoints through Neighbor Discovery.
See the Wind River Network Stack for VxWorks 6 Programmer’s Guide, Volume 1 for
more on Neighbor Discovery.

3.6.1 Configuring VxWorks for Tunneling

The Wind River Network Stack includes the following tunneling components:

■ 6over4 Tunnel Interface Driver (RFC 2529)
■ 6to4 Tunnel Interface Driver (RFC 3056)
■ GIF Tunnel Interface Driver (RFC 1853, RFC 2473)
■ GRE Tunnel Interface Driver (RFC 2002, RFC 2784)
■ SIT Tunnel Interface Driver

The INCLUDE_IPNET_USE_TUNNEL (Tunnel Interface support) component
enables these.

GIF Tunnel Interface Driver

The INCLUDE_IPNET_USE_TUNNEL (Tunnel Interface support) component pulls
in modules that implement the gif tunneling pseudo-device for IPv4 and IPv6. GIF
can tunnel IPv4 and IPv6 over IPv4 or IPv6. GIF tunneling is configured as opposed
to automatic (which is to say that you must specify the endpoints when the tunnel
is created, rather than relying on the endpoints being extracted from the addresses
of the protocol being tunneled); you can configure endpoints per route entry.

The GIF component has no configuration parameters and is always included when
you enable tunneling support.

Use ifconfig to create GIF tunnel interfaces. Interfaces for GIF tunnels must begin
with “gif”. For example:

_-> ifconfig "gif0 create"

To set tunnel endpoints on a GIF tunnel, use ifconfig:

NOTE: Although this chapter focuses on host-to-host tunnels, you can also set up
host-to-router tunnels, router-to-router tunnels, and other permutations.

3 Working with Drivers and Interfaces
3.6 Working with IPv4 and IPv6 Tunneling

53

3

ifconfig "interfaceName [inet | inet6] tunnel localAddress remoteAddress"

For example, to set the endpoints on a GIF tunnel over IPv4:

-> ifconfig "gif0 inet tunnel 192.168.0.10 10.1.2.3"

To set the endpoints on a GIF tunnel over IPv6:

-> ifconfig "gif0 inet6 tunnel 2001:10::10 2001:20::1"

GRE Tunnel Interface Driver

The INCLUDE_IPNET_USE_TUNNEL (Tunnel Interface support) component pulls
in support for the gre tunneling pseudo-devices for IPv4 and IPv6. GRE can tunnel
IPv4 and IPv6 over IPv4 or IPv6. Like GIF tunneling, GRE tunnels are configured as
opposed to automatic (which is to say that you must specify the endpoints when the
tunnel is created, rather than relying on the endpoints being extracted from the
addresses of the protocol being tunneled); you can configure endpoints per route
entry. GRE has a version field set to 0 and provides an optional payload checksum.

GRE can be run in “minimal encapsulation” when tunneling IPv4 over IPv4
(described in RFC 2002).

Use ifconfig to create tunnel interfaces. Interfaces for GRE tunnels must begin
with “gre”. For example:

-> ifconfig "greTunnel create"

To set tunnel endpoints on a GRE tunnel, use ifconfig:

ifconfig "interfaceName [inet | inet6] tunnel localAddress remoteAddress"

For example:

-> ifconfig "greTunnel inet6 tunnel 2001:10::10 2001:20::1"

6over4 Tunnel Interface Driver

The INCLUDE_IPNET_USE_TUNNEL (Tunnel Interface support) component pulls
in support for the 6over4 tunneling pseudo-device for IPv6.

A 6over4 tunnel is an IPv4 multicast tunnel that requires a fully functional IPv4
multicast infrastructure.

6over4 requires the INCLUDE_IPCOM_USE_INET6 component and has no
configuration parameters.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

54

Use ifconfig to create tunnel interfaces. Interfaces for 6over4 tunnels must begin
with “6over4”. For example:

-> ifconfig "6over4Lan create"

To set a local IPv4 address for a 6over4 tunnel, use ifconfig:

-> ifconfig "interfaceName inet tunnel localAddress remoteAddress"

As shown above, ifconfig requires a peer address, even though it does not use it
in this case; provide a dummy peer address, such as the following:

-> ifconfig "6over4Lan inet tunnel 192.168.0.10 0.0.0.0"

6to4 Tunnel Interface Driver

The INCLUDE_IPNET_USE_TUNNEL (Tunnel Interface support) component pulls
in support for the 6to4 tunneling pseudo-device for IPv6. Unlike GIF and GRE,
6to4 is an automatic tunnel: tunnel endpoints are extracted from the encapsulated
IPv6 datagram, and so you do not need to configure them manually.

6to4 tunnels use a prefix of the form “2002:tunnelIPv4address::/48” (for instance,
“2002:a01:203::1”) to tunnel IPv6 traffic over IPv4 (see RFC 3056). Routers advertise
a prefix of the form “2002:[IPv4]:xxxx/64” to IPv6 clients.

This component requires the INCLUDE_IPCOM_USE_INET6 component and has
no configuration parameters.

Use ifconfig to create tunnel interfaces. Interfaces for 6to4 tunnels must begin with
“6to4”. For example:

-> ifconfig "6to4tun create"

SIT Tunnel Interface Driver

Like 6to4, the SIT (Simple Inter-site Tunnel) tunneling device for IPv6 is an
automatic tunnel; tunnel endpoints are extracted from the encapsulated IPv6
datagram.

SIT uses IPv4-compatible IPv6 addresses (for instance, “::10.1.2.3”) to tunnel IPv6
traffic over IPv4. The IPv4 address is in the 32 least-significant bits in the IPv6
address. Such an address uses the prefix “::/96”.

Use ifconfig to create tunnel interfaces. Interfaces for SIT tunnels must begin with
“sit”. For example:

-> ifconfig "sit0 create"

3 Working with Drivers and Interfaces
3.6 Working with IPv4 and IPv6 Tunneling

55

33.6.2 Creating 6to4 Tunnels for IPv6 Packets

In the Wind River Network Stack, a 6to4 pseudo-device is an automatic tunnel and
one of the many IPv6 transition mechanisms.

Consider the following set-up code for automatic tunneling on a Wind River
Network Stack dual stack.

/* code for 6to4 tunnel setup */
#include "vxWorks.h"
#include "net/utils/ifconfig.h"
#include "net/utils/routeCmd.h"

void tunnel6to4Test ()
{
/* Create and attach the tunnel */
ifconfig ("6to4tun create");
/* Add IPv6 address to the tunnel */
ifconfig ("6to4tun inet6 add 6to4AddressForLocalInterface prefixlen 128");
/* Bring up the tunnel */
ifconfig ("6to4tun up");
/* Route all packets to the 2002::/16 network through
* the "6to4tun" tunnel */
routec ("add -inet6 -net -dev 6to4tun -prefixlen 16 2002::");
}

The second ifconfig() call creates a route table entry that catches packets with IPv6
destinations that match the first 128 bits of the 6to4AddressForLocalInterface. This is
the IPv4 address of the local network interface prefixed with an IPv6 6to4 prefix.
This 6to4 IPv6 address implies a local IPv6 address space of 80 bits.

By convention, the 16 bits just after the IPv4 segment of the address are interpreted
as a Site-Level Aggregation (SLA) ID, which you can set to any value. You may use
this to organize the local space into several (up to 65,536) subnets. Because the site
as a whole is identified to other sites by the first 48 bits of the address, you can use
the remaining bits at your convenience without affecting the ability of remote
machines to communicate with the site.

NOTE: The IETF has deprecated the use of this tunnel type.

Figure 3-2 6to4 Addresses

2002

16 bits 32 bits 16 bits

IPv4 Address SLA ID

64 bits

Interface ID

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

56

If you intend the systems at the tunnel ends to function as routers, make sure that
the network stacks at those tunnel ends are configured to forward IPv6 packets. In
the Wind River Network Stack, call Sysctl() for this purpose:

-> Sysctl "net.inet6.ip6.forwarding=1"

3.6.3 Creating RFC 2893-Style Configured Tunnels

The RFC 2893-style configured tunnels based on gif devices are point-to-point
links. They are similar to point-to-point links over a serial cable except that the
transmission medium is the Internet. Through the mediation of a gif device
instance, you can use a configured tunnel as a direct connection to an endpoint in
the IPv6 address space. Unlike with stf-based tunnels, you do not need to define
the tunnel endpoints in terms of 6to4 IP addresses. Both endpoints need to support
dual IPv4/IPv6 stacks, and both tunnel endpoints need an IPv4 address in
addition to whatever IPv6 addresses you associate with the tunnel endpoints.

You set a gif-based configured tunnel in much the same way as you set up an
stf-based automatic tunnel. To create a gif device instance and bind it to the IPv6
stack, use code modelled after the following:

/* code for gif tunnel-over-IPv4 setup. The tunnel will be
* configured with an IPv6 address, but it is possible to add an IPv4
* address as well */
#include "vxWorks.h"
#include "net/utils/ifconfig.h"

void tunnelGifTest ()
{
/* Create and attach the tunnel */
ifconfig ("gif0 create");
/* Configure the tunnel to tunnel over IPv4 */
ifconfig ("gif0 inet tunnel localIPv4Address remoteIPv4Address");
/* Add IPv6 address to the tunnel */
ifconfig ("gif0 inet6 add IPv6AddressForTunnel");
/* Bring up the tunnel */
ifconfig ("gif0 up");
}

Packets sent to this gif device are always transmitted from the specified local
interface to the specified remote interface.

Note that the IPv6 addresses you supply in the code, like the example above, need
not be 6to4 addresses. They can be any valid IPv6 addresses (of proper scope)
validly associated with the tunnel endpoints.

3 Working with Drivers and Interfaces
3.6 Working with IPv4 and IPv6 Tunneling

57

3

To direct IPv6 packets to this device by default, add an IPv6 default entry to the
route table. For example:

-> routec "add -inet6 default tunnelEndpointIPv6Address"

Alternatively, you can direct only some IPv6 packets to the interface. For example,
the following entry captures traffic destined for 2001:DB8:1::/64:

-> routec "add -inet6 2001:DB8:1:: tunnelEndpointIPv6Address -prefixlen 64"

Example 3-1 An Example Configuration

In this example, assume the following:

■ you own the IPv4 address 10.1.0.1 and the IPv6 address 2001:DB8:1234::1

■ the owner of IPv4 address 10.2.0.1 has agreed to route your IPv6 traffic for
2001:DB8:3333::/32

■ the IPv4 node at 10.2.0.1 is a dual IPv4/IPv6 stack with an IPv6 address of
2001:DB8:5678::1

Create a GIF tunnel between 10.1.0.1 and 10.2.0.1 as follows:

-> ifconfig "gif0 create up"
-> ifconfig "gif0 inet tunnel 10.1.0.1 10.2.0.1"

Then configure the interfaces and route table as follows:

-> ifconfig "fei0 inet6 2001:DB8:1234::1"
-> ifconfig "gif0 inet6 2001:DB8:1234::1 2001:DB8:5678::1 prefixlen 128"
-> routec "add -inet6 2001:DB8:3333:: 2001:DB8:5678::1 -prefixlen 48"

Your local node now supports the following devices and route table entries:

Addresses Configured

fei0 10.1.0.1

fei0 2001:DB8:1234::1

gif0 2001:DB8:1234::1 -> 2001:DB8:5678::1 10.1.0.1 ->10.2.0.1

Routes

10.1.0.1/8 fei0

2001:DB8:1234::/64 fei0

2001:DB8:3333::/32 gif0

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

58

If you negotiate for routing services from more than one remote IPv6 router that
supports a dual IPv4/IPv6 stack, you can create additional gif devices to manage
configured tunnels through those routers. You would also want to set up your
route table to control which IPv6 packets go to which router.

For example, if the second remote dual IPv4/IPv6 stack is at 10.3.0.1 IPv4 and
2001:DB8:9999::1 IPv6, use the following set-up code:

-> ifconfig "gif0 create up"
-> ifconfig "gif1 create up"
-> ifconfig "gif0 inet tunnel 10.1.0.1 10.2.0.1"
-> ifconfig "gif1 inet tunnel 10.1.0.1 10.3.0.1"
-> ifconfig "fei0 inet6 add 2001:DB8:1234::1"
-> ifconfig "gif0 inet6 add 2001:DB8:1234::1 prefixlen 128"
-> ifconfig "gif1 inet6 add 2001:DB8:1234::1 prefixlen 128"

This sets up the following devices:

To add a route over gif0 use 5678::1 in a routec() call. For example:

-> routec "add -inet6 2001:DB8:1:: 2001:DB8:5678::1 -prefixlen 64"

To add a route over gif1 use 2001:DB8:9999::1 in a routec() call. For example:

-> routec "add -inet6 2001:DB8:4444 2001:DB8:9999::1 -prefixlen 48"

Thus, the route table would include the following entries:

3.6.4 An Example Tunnel

This example shows how to establish a GIF tunnel to tunnel IPv6 traffic over an
IPv4 connection. In this example, there are two targets, connected as shown in
Figure 3-3.

Addresses Configured

gif0 2001:DB8:1234::1 -> 2001:DB8:5678::1 10.1.0.1 -> 10.2.0.1

gif1 2001:DB8:1234::1 -> 2001:DB8:9999::1 10.1.0.1 -> 10.3.0.1

Routes

2001:DB8:9999:1::/64 gif0

2001:DB8:4444::/48 gif1

3 Working with Drivers and Interfaces
3.6 Working with IPv4 and IPv6 Tunneling

59

3

Establish the Network

To create this topology, do the following:

1. On target1, issue the following command:

ifconfig gif0 create inet tunnel 192.168.200.1 192.168.200.2 inet6 add
1::1 up

2. On target2, issue the following command:

ifconfig gif0 create inet tunnel 192.168.200.2 192.168.200.1 inet6 add
1::2 up

This creates a new interface called gif0: a virtual interface that connects endpoint
192.168.200.1 to 192.168.200.2 on target1 and 192.168.200.2 to 192.168.200.1 on
target2.

You can verify that the tunnel’s end-points are IPv4 by looking at the interface type
in the output from the ifconfig gif0 command:

ifconfig gif0
gif0 Link type:Tunnel Queue:none IPv[4|6]-over-IPv4 192.168.200.2
--> 192.168.200.1 ttl:64
 inet 224.0.0.1 mask 240.0.0.0
 inet6 unicast FE80::C0A8:C802%gif0 prefixlen 64 automatic
 inet6 unicast 1::2 prefixlen 64
 inet6 unicast FE80::%gif0 prefixlen 64 anycast
 inet6 unicast 1:: prefixlen 64 anycast
 inet6 multicast FF02::1:FF00:2%gif0 prefixlen 16
 inet6 multicast FF02::1:FF00:0%gif0 prefixlen 16
 inet6 multicast FF02::1%gif0 prefixlen 16 automatic
 inet6 multicast FF02::1:FFA8:C802%gif0 prefixlen 16
 UP RUNNING SIMPLEX POINTOPOINT MULTICAST NOARP
 MTU:1480 metric:1 VR:0
 RX packets:0 mcast:0 errors:0 dropped:0

Figure 3-3 Two Targets Establish a GIF Tunnel

target1

192.168.200.1/24

Loopback1
2::1/64

1::1

target2

192.168.200.2/24

Loopback1
3::1/64

1::2
gif0 interface

v6 over v4 tunnel

net0

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

60

 TX packets:10 mcast:10 errors:0
 collisions:0 unsupported proto:0
 RX bytes:0 TX bytes:688

Notice that the inet6 address of gif0 is 1::2 (inet6 unicast), which means that the
tunnel will forward all packets destined to network 1::/64.

From target2, ping the ipv6 address of the target1 interface (1::1):

ping6 ::1

Pinging ::1 (::1) with 64 bytes of data:
Reply from ::1 bytes=64 time=0ms hlim=64
Reply from ::1 bytes=64 time=0ms hlim=64
Reply from ::1 bytes=64 time=0ms hlim=64
Reply from ::1 bytes=64 time=0ms hlim=64

--- ::1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 4080 ms rtt
min/avg/max = 0/0/0 ms

Add Loopback Interfaces and Default Routes.

Since the default loopback interface (lo0) is used by many system calls and socket
applications you will add a new loopback interface (lo1). This interface represents
a different network.

In most cases a tunnel is used to connect networks that cannot be directly
connected. This example shows how to add a loopback interface on each target and
apply an IPv6 address to each interface. Then, it shows how to use the route
command to tell the network device about remote networks and how to reach
those networks using a default gateway.

On target1, issue the following command to add a loopback interface:

ifconfig lo1 create inet6 add 2::1 up

Verify the new interface:

ifconfig lo1
lo1 Link type:Local loopback Queue:none
 inet 224.0.0.1 mask 240.0.0.0
 inet6 unicast FE80::1%lo1 prefixlen 64 automatic
 inet6 unicast 2::1 prefixlen 64
 inet6 multicast FF02::1:FF00:1%lo1 prefixlen 16
 inet6 multicast FF02::1%lo1 prefixlen 16 automatic
 UP RUNNING LOOPBACK MULTICAST
 MTU:1500 metric:1 VR:0
 RX packets:3 mcast:0 errors:0 dropped:3
 TX packets:3 mcast:3 errors:0
 collisions:0 unsupported proto:0
 RX bytes:168 TX bytes:168

On target2, issue the following command to add a loopback interface:

3 Working with Drivers and Interfaces
3.6 Working with IPv4 and IPv6 Tunneling

61

3

ifconfig lo1 create inet6 add 3::1 up

Verify the new interface:

ifconfig lo1
lo1 Link type:Local loopback Queue:none
 inet 224.0.0.1 mask 240.0.0.0
 inet6 unicast FE80::1%lo1 prefixlen 64 automatic
 inet6 unicast 3::1 prefixlen 64
 inet6 multicast FF02::1:FF00:1%lo1 prefixlen 16
 inet6 multicast FF02::1%lo1 prefixlen 16 automatic
 UP RUNNING LOOPBACK MULTICAST
 MTU:1500 metric:1 VR:0
 RX packets:3 mcast:0 errors:0 dropped:3
 TX packets:3 mcast:3 errors:0
 collisions:0 unsupported proto:0
 RX bytes:168 TX bytes:168

From target2, ping the loopback interface of target1 (2::1/64):

ping6 2::1
Pinging 2::1 (2::1) with 64 bytes of data:
Echo request operation failed: Network is unreachable (51)

You cannot ping interfaces on the network 2::/64 since you do not have a route to
that network. Look at the routing table of target2 by issuing the route show
command:

route show

INET route table - vr: 0, table: 254
Destination Gateway Flags Use If Metric
0.0.0.0/0 192.168.200.254 UGS 0 net0 0
127.0.0.0/8 localhost UR 0 lo0 0
localhost localhost UH 12 lo0 0
192.168.200.0/24 link#2 UC 1 net0 0
192.168.200.1 7a:7a:c0:a8:c8:01 UHL 10 net0 1
target2 link#1 UH 10 lo0 0

INET6 route table - vr: 0, table: 254
Destination Gateway Flags Use If Metric
:: link#1 UHRS 0 lo0 0
::1 ::1 UH 48 lo0 0
1::/64 link#4 U 0 gif0 0
1::2 link#1 UH 0 lo0 0
3FFE:1:2:3::/64 link#2 UC 0 net0 0
3FFE:1:2:3::4 link#1 UH 0 lo0 0
FE80::%lo0/64 link#1 UC 0 lo0 0
FE80::%net0/64 link#2 UC 0 net0 0
FE80::%gif0/64 link#4 U 0 gif0 0
FE80::1%lo0 link#1 UH 0 lo0 0

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

62

Or you can use the –inet6 flag to view only IPv6 route configuration:

route show -inet6

INET6 route table - vr: 0, table: 254
Destination Gateway Flags Use If Metric
:: link#1 UHRS 0 lo0 0
::1 ::1 UH 48 lo0 0
1::/64 link#4 U 0 gif0 0
1::2 link#1 UH 0 lo0 0
3FFE:1:2:3::/64 link#2 UC 0 net0 0
3FFE:1:2:3::4 link#1 UH 0 lo0 0
FE80::%lo0/64 link#1 UC 0 lo0 0
FE80::%net0/64 link#2 UC 0 net0 0
FE80::%gif0/64 link#4 U 0 gif0 0
FE80::1%lo0 link#1 UH 0 lo0 0

Add a Default Gateway

Notice that IPv6 does not have a default gateway (a default gateway is notated by
the letter “G” in the flags field). Since we have only one exit point from the device,
we can configure the tunnel as a default gateway for any unknown IPv6
destination.

Issue the following command to add a default gateway to target2:

route add -inet6 default 1::1
 add net ::: netmask ::: gateway 1::1

Now, look at the route table again:

route show -inet6

INET6 route table - vr: 0, table: 254
Destination Gateway Flags Use If Metric
:: link#1 UHRS 0 lo0 0
::/0 1::1 UGS 0 gif0 0
::1 ::1 UH 48 lo0 0
1::/64 link#4 U 0 gif0 0
1::2 link#1 UH 0 lo0 0
3FFE:1:2:3::/64 link#2 UC 0 net0 0
3FFE:1:2:3::4 link#1 UH 0 lo0 0
FE80::%lo0/64 link#1 UC 0 lo0 0
FE80::%net0/64 link#2 UC 0 net0 0

Add a default gateway to target1:

route add -inet6 default 1::2
 add net ::: netmask ::: gateway 1::2

3 Working with Drivers and Interfaces
3.7 Using the Shared-Memory Network

63

3

Test the Tunnel

With a default gateway and a v6-over-v4 tunnel you can ping the loopback
interfaces. From target1:

ping6 3::1
Pinging 3::1 (3::1) with 64 bytes of data:
Reply from 3::1 bytes=64 time=0ms hlim=64
Reply from 3::1 bytes=64 time=0ms hlim=64
Reply from 3::1 bytes=64 time=0ms hlim=64
Reply from 3::1 bytes=64 time=0ms hlim=64

--- 3::1 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 4080 ms rtt
min/avg/max = 0/0/0 ms

This shows ping-v6 packets encapsulated in IPv4 packets and carried from target1
to target2 over an IPv4 link.

3.7 Using the Shared-Memory Network

The smEnd shared-memory network driver allows multiple processors to
communicate over their common backplane as if they were communicating over a
network, through a MUX-capable network driver.

A multiprocessor backplane bus is an Internet network with its own network /
subnet number. Each processor that is a host on this network has its own unique
IP address. In the example shown in Figure 3-4, two processors are on a backplane.
The Internet address for the shared-memory network is 161.27.0.0. Each processor
on the shared-memory network has a unique Internet address, 161.27.0.1 for vx1
and 161.27.0.2 for vx2.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

64

Processors can communicate with other processors on the same backplane by
means of an instance of the smEnd driver. This driver behaves as any other
network driver, and so a variety of network services may communicate through it.

3.7.1 The Backplane Shared-Memory Region

This simulation of driver communication takes place in a contiguous memory
region that all processors on the backplane can access through instantiations of the
smEnd driver.1

Backplane Processor Numbers

Assign each processor on the backplane a unique backplane processor number
starting with 0. With the exception of processor #0, which by convention and by
default is the shared-memory network master (described below), these numbers
are arbitrary and you may set them to whatever you find convenient.

Set the processor numbers in the boot-line parameters that you pass to the boot
image. You can burn these parameters into ROM, set them in the processor’s
NVRAM (if available), or enter them manually.

Figure 3-4 Shared-Memory Network

Backplane

161.27.0.1 161.27.0.2

161.27.0.0

vx1 vx2

1. The backplane is a type of bus. In this document, the terms “backplane” and “bus” are used
interchangeably.

3 Working with Drivers and Interfaces
3.7 Using the Shared-Memory Network

65

3

The Shared-Memory Network Master

One processor on the backplane is the shared-memory network master. The
shared-memory network master has the following responsibilities:

■ Initialize the shared-memory region and the shared-memory anchor.

■ Maintain the shared-memory heartbeat.

■ Function (usually) as the gateway to the external network.

■ Allocate the shared-memory region (on some boards the master statically
reserves the shared-memory region; on others it allocates this region from the
kernel heap).

No processor can use the shared-memory network until the shared-memory
network master initializes it. However, the master processor is not involved in the
actual transmission of packets on the backplane between other processors. After
the shared-memory network master initializes the shared-memory region, all of
the processors, including the master, are peers.

Set the processor number of the master with the shared memory master CPU
number (SM_MASTER) build configuration parameter. A node that knows the
master node’s processor number can determine at run time whether it is the master
node by comparing this processor number with the one that you assigned to the
node in the boot parameters.

Typically, the master boots from the external network directly. The master has two
Internet addresses in the system: its Internet address on the external network, and
its address on the shared-memory network. (See the reference entry for
usrConfig.)

NOTE: You can set up two shared memory networks on a single backplane with
the smEnd driver, with a single processor acting as a node on each of the two
networks. However, if you use VxMP, you can set up only one shared memory
network over the backplane. In this case, the processor number of the master node
is zero.

NOTE: You configure the maximum number of processors at build time with the
max # of cpus for shared network (SM_CPUS_MAX) configuration parameter. The
largest processor number that you can use is one less than this total maximum
processor count.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

66

The other processors on the backplane can boot indirectly over the shared-memory
network, using the master as the gateway. They need only have an Internet
address on the shared-memory network. These processors specify the
shared-memory network interface, sm, as the boot device in the boot parameters.

For more information and an example, see 3.7.4 Shared-Memory Network
Configuration, p.73.

The Shared-Memory Anchor

The location of the shared-memory region depends on the system configuration.
All processors on the shared-memory network must be able to access the
shared-memory region within the same bus address space as the anchor.

The shared-memory anchor serves as a common point of reference for all
processors. You may place the anchor structure and the shared-memory region in
the dual-ported memory of one of the participating boards (the master by default)
or in the memory of a separate memory board.

The anchor contains an offset to the actual shared-memory region. The master sets
this value during initialization. The offset is relative to the anchor itself. Thus, the
anchor and pool must be in the same address space so that the offset is valid for all
processors.

Set the anchor bus address by setting configuration parameters or by setting boot
parameters. For the shared-memory network master, you assign the anchor bus
address in the master’s configuration at the time you build the system image.

Set the shared-memory anchor bus address, as seen by the master, during
configuration with the configuration parameter SM_ANCHOR_ADRS.

For the other processors on the shared-memory network, you can assign a default
anchor bus address during configuration in the same way. However, this requires
that you burn boot ROMs with that configuration, because the other processors
must, at first, boot from the shared-memory network. For this reason, you can
specify the anchor bus address in the boot parameters if the shared-memory
backplane network interface is the boot device.

NOTE: Some BSPs allow you to put the anchor and shared-memory regions on a
participating non-master board. For examples of how to do this, see the compact
PCI bus BSPs mcp750 and mcpn750.

3 Working with Drivers and Interfaces
3.7 Using the Shared-Memory Network

67

3

The format of the boot line is bootDeviceName=localAddress. For example:

sm=0x10010000

This is the address of the anchor as seen by the processor you are booting.

The Shared-Memory Heartbeat

The processors on the shared-memory network cannot communicate over that
network until the shared-memory network master finishes initializing the
shared-memory region. To let the other processors know when the backplane is
“alive,” the master maintains a shared-memory heartbeat. This heartbeat is a counter
that the master increments once per second. Processors on the shared-memory
network determine that the shared-memory network is alive by watching the
heartbeat for a few seconds.

The shared-memory heartbeat is located in the first 4-byte word of the
shared-memory packet header. The offset of the shared-memory packet header is
the fifth 4-byte word in the anchor, as shown in Figure 3-5.

Shared-Memory Location

The compiler puts the shared-memory region in a fixed location with a fixed size.
You set this location with the SM_MEM_ADRS parameter in the
INCLDUE_SM_COMMON component for that board. Because all processors on the
backplane access the shared-memory region, you must configure that memory as
non-cacheable or use a cache coherency mechanism.

Figure 3-5 Shared-Memory Heartbeat

~~ ~~

1. ready value
2. .
3. .
4. .
5. Offset for smPktHeader

heartbeat

Shared-Memory
Anchor

smPktHeader
(anchor + offset)

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

68

The shared-memory region (not including the anchor) can also be allocated at run
time if you set SM_MEM_ADRS to NONE. In this case, a region of size
SM_MEM_SIZE is allocated and made non-cacheable. If used this way, be wary
that shared memory is allocated from the kernel heap. The whole heap must thus
be mapped on the backplane.

Shared Memory Size

Set the size of the shared-memory network area by setting the build configuration
parameter SM_MEM_SIZE. A related area, the shared-memory object area, used by
VxMP, is governed by the configuration parameter SM_OBJ_MEM_SIZE.

The size you will need for the shared-memory network area depends on the
number of processors and on how much traffic you expect. There is less than 2KB
of overhead for data structures. After that, the shared-memory network area is
divided into 2KB packets. Thus, the maximum number of packets available on the
backplane network is (areaSize – 2KB) / 2KB. A reasonable minimum is 64KB. A
configuration with a large number of processors on one backplane and many
simultaneous connections can require as much as 512KB. If you reserve a
backplane network memory area that is too small, you will slow network
communication.

Test-and-Set to Shared Memory

To prevent more than one processor from simultaneously accessing certain critical
data structures of the shared-memory region, the smEnd driver uses an indivisible
test-and-set (TAS) instruction to obtain exclusive use of a shared-memory data
structure. This translates into a read-modify-write (RMW) cycle on the backplane
bus.2

The selected shared memory must support the RMW cycle on the bus and must
guarantee the indivisibility of such cycles. This can be problematic if the memory
is dual-ported (that is it resides on the master and can be accessed there as local
RAM, while existing also as shared memory on the bus accessible by the slave

2. Or a close approximation to it. Some hardware cannot generate RMW cycles on the VME
bus and the PCI bus does not support them at all.

NOTE: The shared-memory network driver does not support the specification of
TAS operation size. This size is architecture dependent.

3 Working with Drivers and Interfaces
3.7 Using the Shared-Memory Network

69

3

boards), as the memory must then lock out one port during a RMW cycle on the
other.

Some processors do not support RMW indivisibly in hardware, but do have
software hooks to provide the capability. For example, some processor boards
have a flag that you can set to prevent the board from releasing the backplane bus,
after you acquire the flag, until you clear that flag. You can implement this
test-and-set technique for a processor in the sysBusTas() routine of the
system-dependent library sysLib. The smEnd driver calls this routine to set up
mutual exclusion on shared-memory data structures.

3.7.2 Interprocessor Interrupts

Each processor on the backplane has a single input queue for packets that it receives
from other processors. To attend to its input queue, a processor can either poll or
rely on interrupts (either bus interrupts or mailbox interrupts). When polling, the
processor examines its input queue at fixed intervals. When using interrupts, the
sending processor notifies the receiving processor that the receiving processor’s
input queue contains packets.

Processors that communicate by means of either bus interrupts or mailbox
interrupts are more efficient than those that use polling because they invest fewer
cycles in communication (although at a cost of greater latency). Unfortunately, the
bus interrupt mechanism can handle only as many processors as there are
interrupt lines available on the backplane (for example, VMEbus has seven). In
addition, not all processor boards are capable of generating bus interrupts.

As an alternative to bus interrupts, you can use mailbox interrupts, also called
location monitors because they monitor the access to specific memory locations. A
mailbox interrupt specifies a bus address that, when a processor writes to it or
reads from it, causes a specific interrupt on the processor board. You can set
hardware jumpers or software registers to set each board to use a different address
for its mailbox interrupt.

To generate a mailbox interrupt, a processor accesses the specified mailbox
address and performs a configurable read or write of a configurable size. Because
each interrupt requires only a single address on the bus, there is effectively no limit

! CAUTION: Configure the shared-memory test-and-set type (configuration
parameter: SM_TAS_TYPE) to either SM_TAS_SOFT or SM_TAS_HARD. If even one
processor on the backplane lacks hardware test-and-set, you must configure all
processors in the backplane to use software test-and-set (SM_TAS_SOFT).

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

70

on the number of processors that can use mailbox interrupts. Most modern
processor boards include some kind of mailbox interrupt.

Each processor must tell the other processors which notification method it uses.
Each processor enters its interrupt type and up to three related parameters in the
shared-memory data structures. The shared-memory network drivers of the other
processors use this information when sending packets.

Specify the interrupt type and parameters for each processor by setting the build
configuration parameters SM_INT_TYPE and SM_INT_ARGn. The possible values
are defined in the header file smLib.h. Table 3-2 summarizes the available
interrupt types and parameters.

Table 3-2 Backplane Interrupt Types

Type Arg 1 Arg 2 Arg 3 Description

SM_INT_NONE - - - Polling

SM_INT_BUS level vector - Bus interrupt

SM_INT_MAILBOX_1 address
space

address value 1-byte write
mailbox

SM_INT_MAILBOX_2 address
space

address value 2-byte write
mailbox

SM_INT_MAILBOX_4 address
space

address value 4-byte write
mailbox

SM_INT_MAILBOX_R1 address
space

address - 1-byte read mailbox

SM_INT_MAILBOX_R2 address
space

address - 2-byte read mailbox

SM_INT_MAILBOX_R4 address
space

address - 4-byte read mailbox

SM_INT_USER_1 user
defined

user
defined

user
defined

first user-defined
method

SM_INT_USER_2 user
defined

user
defined

user
defined

second user-defined
method

3 Working with Drivers and Interfaces
3.7 Using the Shared-Memory Network

71

3

3.7.3 Sequential Addressing

Sequential addressing is a method for a target to assign its own IP address based
on its processor number. Target processors assign their IP addresses in ascending
order, with the master having the lowest address, as shown in Figure 3-6.

Using sequential addressing, a target on the shared-memory network can
determine its own IP address. You need specify only the master’s IP address. All
other processors on the backplane determine their IP address by adding their
processor number to the master’s IP address.

Sequential addressing makes it easier for you to configure your network. When
you explicitly assign an IP address to the master processor, you implicitly assign
IP addresses to other processors. This makes it easier for you to set up the boot
parameters. Thus, when you set up a shared-memory network with sequential
addressing, choose a block of IP addresses and assign the lowest address in this
block to the master.

When the master initializes the shared-memory network driver, the master passes
in its IP address as a parameter. The shared-memory backplane network stores this
information in the shared-memory region. If you specify any other address in the
inet on backplane (b) boot parameter, the specified address overrides the
sequential address.

To determine the starting IP address for an active shared-memory network, use
smNetShow().

Figure 3-6 Sequential Addressing

150.12.17.1 150.12.17.2 150.12.17.3

(Shared-Memory Backplane Network)
sm0

CPU 0 CPU 1 CPU 2

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

72

In the following example, the master’s IP address is 150.12.17.1.

[vxKernel] -> smNetShow

The following output displays on the standard output device:

Anchor Local Addr: 0x4100, Hard TAS
Sequential addressing enabled.
Master IP address: 150.12.17.1 Local IP address: 150.12.17.2

heartbeat = 56, header at 0xe0025c, free pkts = 57.

cpu int type arg1 arg2 arg3 queued pkts
--- -------- ---------- ---------- ---------- -----------
0 mbox-1 0xd 0xfb000000 0x80 0
1 mbox-1 0xd 0xfb001000 0x80 2

PACKETS ERRORS
Unicast Brdcast

Input Output Input Output Input Output
======= ======= ======= ======= + ======= =======

26 27 2 2 | 0 1
value = 0 = 0x0
[vxKernel] ->

With sequential addressing, when booting a slave, the backplane IP address and
gateway IP boot parameters are not necessary. The default gateway address is the
address of the master. You may specify another address if this is not the desired
configuration.

[vxWorks Boot] : p
boot device : sm=0x800000
processor number : 1
file name : /folk/fred/wind/target/config/bspName/vxWorks
host inet (h) : 150.12.1.159
user (u) : moose
flags (f) : 0x0
[vxWorks Boot] : @

boot device : sm
unit number : 0
processor number : 1
host name : host
file name :/folk/fred/wind/target/config/bspName/vxWorks
inet on backplane (b): 150.12.17.2:ffffff00
host inet (h) : 150.12.1.159
user (u) : moose
flags (f) : 0x0
target name (tn) : t207-2

Attaching to SM net with memory anchor at 0x10004100...
SM address: 150.12.17.2
Attached TCP/IP interface to esm0.
Gateway inet address: 150.12.17.1

3 Working with Drivers and Interfaces
3.7 Using the Shared-Memory Network

73

3

Attaching interface lo0...done
Loading /folk/fred/wind/target/config/bspName/vxWorks/boot.txt

sdm0=/folk/fred/wind/target/config/bspName/vxWorks/vxKernel.sdm
0x000d8ae0 + 0x00018cf0 + 0x00011f70 + (0x0000ccec) + 0x00000078 + 0x0000015c

You enable sequential addressing during configuration. The relevant component
is INCLUDE_SM_SEQ_ADDR.

3.7.4 Shared-Memory Network Configuration

For UNIX, configure the host to support a shared-memory network with the same
process outlined elsewhere for other types of networks. In particular, a
shared-memory backplane network requires the following:

■ That you have put all shared-memory network host names and addresses in
/etc/hosts.

■ That you have put all shared-memory network host names in .rhosts in your
home directory or in /etc/hosts.equiv if you are using RSH.

■ That you have put an entry in the host’s routing table that specifies the
master’s Internet address on the external network as the gateway to the
shared-memory backplane network.

■ That you have turned on the IP forwarding parameter on the node functioning
as gateway.

For Windows hosts, the steps required to configure the host are determined by
your version of Windows and the networking software you are using. See that
documentation for details.

Example Configuration

This section presents an example of a simple shared-memory network. The
network contains a single host and two target processors on a single backplane. In
addition to the target processors, the backplane includes a separate memory board
for the shared-memory region, and an Ethernet controller board. The additional
memory board is not essential, but provides a configuration that is easier to
describe.

Figure 3-7 illustrates the overall configuration. The Ethernet network is assigned
network number 150, subnet 12.0, and the shared-memory backplane network is

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

74

assigned network number 161, subnet 27.0. The host h1 is assigned the Internet
address 150.12.0.1.

The shared-memory master is vx1, and functions as the gateway between the
Ethernet and shared-memory networks. It therefore has two Internet addresses:
150.12.0.2 on the Ethernet network and 161.27.0.1 on the shared-memory network.

The other backplane processor is vx2; it has the shared-memory network address
161.27.0.2. It has no address on the Ethernet because it is not directly connected to
that network. However, it can communicate with h1 over the shared-memory
network, using vx1 as a gateway. All gateway use is handled by the IP layer and is
completely transparent to the user. Table 3-3 shows the example address
assignments.

Figure 3-7 Example Shared-Memory Network

Ethernet

h1

vx1vx2

host

sm master
& gateway

150.12.0.0

150.12.0.1

150.12.0.2

161.27.0.1161.27.0.2

161.27.0.0Shared-Memory
Network

Table 3-3 Network Address Assignments

Name inet on Ethernet inet on Backplane

h1 150.12.0.1 —

vx1 150.12.0.2 161.27.0.1

vx2 — 161.27.0.2

3 Working with Drivers and Interfaces
3.7 Using the Shared-Memory Network

75

3

To configure the UNIX system for our example, you must add the Internet address
and name of each system to the /etc/hosts file. Note that the backplane master has
two entries. The second entry, vx1.sm, is not actually necessary because the host
system never accesses that system with that address, but you should include it in
the file to ensure that some other device does not use the address.

The entries in /etc/hosts are as follows:

150.12.0.1 h1
150.12.0.2 vx1
161.27.0.1 vx1.sm
161.27.0.2 vx2

To allow remote access from the target systems to the UNIX host, add the names
of the target systems to the .rhosts file in your home directory (or to the file
/etc/hosts.equiv):

vx1
vx2

To inform the UNIX system of the existence of the Ethernet-to-shared-memory
network gateway, add the following line to the file /etc/gateways before you start
the route daemon routed.

net 161.27.0.0 gateway 150.12.0.2 metric 1 passive

Alternatively, you can add the route manually (effective until the next reboot) with
the following UNIX command:

% route add net 161.27.0.0 150.12.0.2 1

To prepare a run-time image for vx1, the backplane master shown in Figure 3-7,
include the following configuration components:

■ INCLUDE_SM_NET – includes the shared memory network

■ INCLUDE_SM_COMMON – includes configuration parameters common to
memory sharing utilities

■ INCLUDE_SM_NET_SHOW – includes the smNetShow() routine

Within these components, you can set the parameters as shown in Table 3-4.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

76

Table 3-4 Shared-Memory Build Parameters

Workbench Description and Parameter Name
Default Value
& Data Type

is the shared memory off board?
SM_OFF_BOARD

Shared memory is on a separate board.

FALSE

BOOL

shared memory anchor offset from start of phys
memory
SM_ANCHOR_OFFSET

You may define the shared-memory anchor
address may relative to this value.

0x600

uint

shared memory anchor address
SM_ANCHOR_ADRS

Address of anchor as seen by local CPU.

((int)sysSmAnchorAdrs)

uint

shared memory address, NONE = allocate local
memory
SM_MEM_ADRS

SM_ANCHOR_ADRS +
SM_ANCHOR_SIZE

shared memory size
SM_MEM_SIZE

Size of the shared-memory network area, in
bytes.

0x00020000 -
SM_ANCHOR_SIZE

uint

shared memory object pool size
SM_OBJ_MEM_SIZE

Size of the shared-memory object area, in bytes.

0x00010000

uint

shared memory interrupt type
SM_INT_TYPE

Interrupt targets with 1-byte write mailbox, see
Table 3-2.

SM_INT_BUS

uint

3 Working with Drivers and Interfaces
3.7 Using the Shared-Memory Network

77

3
shared memory interrupt type – argument 1
SM_INT_ARG1

Mailbox in short I/O space, see Table 3-2.

sysSmLevel

uint

shared memory interrupt type – argument 2
SM_INT_ARG2

Mailbox at: 0xc000 for vx1, 0xc002 for vx2 (see
Table 3-2).

(int) BUS_INT

uint

shared memory interrupt type – argument 3
SM_INT_ARG3

Write 0 value to mailbox, see Table 3-2.

0

uint

Shared memory packet size
SM_PKTS_SIZE

Shared-memory packet size.

0

uint

max period in ticks to wait for master to boot
SM_MAX_WAIT

Slave nodes wait this long for the master to boot
and establish shared memory before trying to
use this memory.

3000

uint

shared memory master CPU number
SM_MASTER

The address of the master board on the
backplane (this will always be 0 unless you are
using two smEnd devices).

0

uint

Table 3-4 Shared-Memory Build Parameters (cont’d)

Workbench Description and Parameter Name
Default Value
& Data Type

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

78

When booting the backplane master, vx1, specify boot line parameters such as the
following:

boot device : gn
processor number : 0
host name : h1
file name : /usr/wind/target/config/bspName/vxWorks
inet on ethernet (e) : 150.12.0.2
inet on backplane (b) : 161.27.0.1:ffffff00
host inet (h) : 150.12.0.1
gateway inet (g) :
user (u) : thoreau
ftp password (pw) (blank=use rsh) :
flags (f) : 0

The other target, vx2, would use the following boot parameters:3

boot device : sm
processor number : 1
host name : h1
file name : /usr/wind/target/config/bspName/vxWorks
inet on ethernet (e) :

max # of cpus for shared network
SM_CPUS_MAX

Maximum number of CPUs for the shared
network.

DEFAULT_CPUS_MAX

uint

shared memory test-and-set type
SM_TAS_TYPE

Either SM_TAS_SOFT or SM_TAS_HARD. If
even one processor on the backplane lacks
hardware test-and-set, all processors in the
backplane must use the software test-and-set
(SM_TAS_SOFT).

SM_TAS_HARD

Table 3-4 Shared-Memory Build Parameters (cont’d)

Workbench Description and Parameter Name
Default Value
& Data Type

NOTE: To determine which boot device to use, see the BSP documentation.

3. You do not need to set the parameters inet on backplane (b) and gateway inet (g) if you
have configured your target to use sequential addressing (because the values for these
parameters will be established automatically), but you can use these parameters to override
the values established automatically through sequential addressing.

3 Working with Drivers and Interfaces
3.7 Using the Shared-Memory Network

79

3

inet on backplane (b) : 161.27.0.2
host inet (h) : 150.12.0.1
gateway inet (g) : 161.27.0.1
user (u) : thoreau
ftp password (pw) (blank=use rsh)†:
flags (f) : 0

Troubleshooting

Getting a shared-memory network configured for the first time can be tricky. If
you have trouble, use the following troubleshooting procedures—taking one step
at a time:

1. Boot a single processor in the backplane without any additional memory or
processor cards.

2. Power off and add the memory board, if you are using one. Power on and boot
the system again. Using the boot ROM commands for display memory (d) and
modify memory (m), verify that you can access the shared memory at the
address you expect, with the size you expect.

3. Rebuild the system and manually fill in the inet on backplane boot parameter
(do not rely on sequential addressing). This initializes the shared-memory
network. The following message appears during the reboot:

Backplane anchor at anchorAddress...Attaching network interface sm...done.

4. After the system boots, display the state of the shared-memory network with
the smNetShow() routine, as follows:

-> smNetShow ["interfaceName"] [, 1]
value = 0 = 0x0

The interface parameter is sm by default. Normally, smNetShow() displays
cumulative activity statistics to the standard output device; specifying 1 (one)
as the second argument resets the totals to zero.

5. Test the host connection to the shared-memory master by pinging both of its
IP addresses from the host. On the host console, type:

ping 150.12.0.2

This should succeed and produce a message something like:

150.12.0.2 is alive

Then type:

ping 161.27.0.1

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

80

This should also succeed. If either ping fails, the host is not configured
properly, or the shared-memory master has incorrect boot parameters.

6. Power off and add the second processor board. Do not configure the second
processor as the system controller board. Power on and stop the second
processor from booting by typing any key to the boot ROM program. Boot the
first processor as you did before.

7. If you have trouble booting the first processor with the second processor
plugged in, you have some hardware conflict. Check that only the first
processor board is the system controller. Check that there are no conflicts
between the memory addresses of the various boards.

8. On the second processor’s console, use the d and m boot ROM commands to
verify that you can see the shared memory from the second processor. This is
either the memory of the separate memory board (if you are using the
off-board configuration) or the dual-ported memory of the first processor (if
you are using the on-board configuration).

9. Use the d command on the second processor to look for the two-part
shared-memory anchor (bus address space and anchor location within that
space). You can also look for the shared-memory heartbeat; see The
Shared-Memory Heartbeat, p.67.

10. After you have found the anchor from the second processor, enter the boot
parameter for the boot device with that two-part anchor bus address:

boot device: sm=0x10010000

Enter the other boot parameters and try booting the second processor.

11. If the second processor does not boot, you can use smNetShow() on the first
processor to see if the second processor is correctly attaching to the
shared-memory network. If not, then you have probably specified the anchor
bus address incorrectly on the second processor or have a mapping error
between the local and backplane buses. If the second processor is attached,
then the problem is more likely to be with the gateway or with the host system
configuration.

12. You can use host system utilities, such as arp, netstat, and ping, to study the
state of the network from the host side.

13. If all else fails, call your technical support organization.

81

 4
Integrating a New Network

Interface Driver

4.1 Introduction 82

4.2 Configuring VxWorks for Network Interface Drivers 86

4.3 How VxWorks Launches and Uses Your Driver 87

4.4 Driver Components 93

4.5 Transmitting Data 95

4.6 Implementing Checksum Offloading 102

4.7 Implementing a Network Driver 108

4.8 The Driver Interface with the MUX 128

4.9 Porting a BSD Driver to the MUX 159

4.10 Managing Memory for Network Drivers and Services 162

4.11 Collecting and Reporting Packet Statistics 175

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

82

4.1 Introduction

This chapter describes how to write a new network interface driver and integrate
it into the Wind River Network Stack.

For this, you write your driver to use the MUX. This includes using an set of
routines that the MUX provides, and implementing a set of routines that the MUX
uses.

The MUX interface insulates network services from the particulars of network
interface drivers, and vice versa. The MUX supports two network driver styles, the
Enhanced Network Driver (END) and the Network Protocol Toolkit (NPT) driver:

■ ENDs

ENDs are frame-oriented drivers that exchange link-layer frames with the
MUX. Currently, all network drivers supplied by Wind River are ENDs, as is
the generic network driver template defined in templateVxbEnd.c.

■ NPT Drivers

NPT drivers are packet-oriented drivers that exchange network-layer packets
with the MUX, stripping these packets of data link layer headers first. There is
no generic template for an NPT driver.

4.1.1 How ENDs and NPT Drivers Differ

An NPT driver is a packet-oriented, an END is frame-oriented. Both are organized
around the END_OBJ and the NET_FUNCS structures, and both driver styles
require many of the same entry points (see Figure 4-1):

4 Integrating a New Network Interface Driver
4.1 Introduction

83

4

Figure 4-1 ENDs and NPT Drivers Implement Similar NET_FUNCS Interfaces

NET_FUNCS
start (END_OBJ *) : STATUS
stop (END_OBJ *) : STATUS
unload (END_OBJ *) : STATUS
ioctl (END_OBJ *, int, caddr_t) : int
send (END_OBJ *, M_BLK_ID) : STATUS
mCastAddrAdd (END_OBJ *, char *) : STATUS
mCastAddrDel (END_OBJ *, char *) : STATUS
mCastAddrGet (END_OBJ *, MULTI_TABLE *) : STATUS
pollSend (END_OBJ *, M_BLK_ID) : STATUS
pollRcv (END_OBJ *, M_BLK_ID) : STATUS
formAddress (M_BLK_ID, M_BLK_ID, M_BLK_ID, BOOL) : M_BLK_ID
packetDataGet (M_BLK_ID, LL_HDR_INFO *) : STATUS
addrGet (M_BLK_ID, M_BLK_ID, M_BLK_ID, M_BLK_ID, M_BLK_ID) : STATUS

NET_FUNCS
start (END_OBJ *) : STATUS
stop (END_OBJ *) : STATUS
unload (END_OBJ *) : STATUS
ioctl (END_OBJ *, int, caddr_t) : int
send (END_OBJ *, M_BLK_ID, char *, int, void *) : STATUS
mCastAddrAdd (END_OBJ *, char *) : STATUS
mCastAddrDel (END_OBJ *, char *) : STATUS
mCastAddrGet (END_OBJ *, MULTI_TABLE *) : STATUS
pollSend (END_OBJ *, M_BLK_ID, char *, long, void *) : STATUS
pollRcv (END_OBJ *, M_BLK_ID, long *, long *, void *) : STATUS

END_OBJ

pFuncTable

END_OBJ

pFuncTable
The NET_FUNCS interface of an END:

The NET_FUNCS interface of an NPT driver:

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

84

■ start() – enable device interrupts and activate the interface
■ stop() – stop or deactivate a network device or interface
■ unload() – release a device, or a port on a device, from the MUX
■ ioctl() – support various ioctl commands1

■ send() – accept data from the MUX and send it on towards the physical layer
■ mCastAddrAdd() – add a multicast address to those registered for a device
■ mCastAddrDel() – delete a multicast address registered for a device
■ mCastAddrGet() – get a list of multicast addresses registered for a device
■ pollSend() – send packets in polled mode rather than interrupt-driven mode
■ pollRcv() – receive frames in polled rather than interrupt-driven mode

The three NET_FUNCS interface routines that are required in an END but not in an
NPT driver are:

■ formAddress() – add addressing information to a packet
■ packetDataGet() – separate the addressing information and data in a packet
■ addrGet() – extract the addressing information from a packet

These routines are optional for NPT drivers because these drivers construct their
own link headers on send and parse their link headers on receive. If you write an
END that does not run over Ethernet, you need to implement these entry points
explicitly. ENDs running over Ethernet (using either 802.3 or DIX header formats)
can set these interface members to the endLib implementations of these routines:
endEtherAddressForm() (end8023AddressForm() to construct 802.3-style
headers), endEtherPacketDataGet(), and endEtherPacketAddrGet().

Differences in the send() Implementations

An NPT driver’s implementation of the send() routine differs from that of an
END. It has three arguments in addition to the END_OBJ pointer representing the
device and the M_BLK pointer representing the packet to be transmitted:

– a pointer to a character buffer containing the destination MAC address
– the network service type value (also known as the ethertype value)
– an additional void* pointer

This additional pointer is provided for services that need to pass
additional information to the NPT driver’s implementation of the send()
routine; the service and the driver must share the same interpretation of
this parameter, if it is used. Normally it is NULL.

1. Although the API for the END and NPT xIoctl() routines are identical, the NPT xIoctl()
differs in that it must support EIOCGNPT.

4 Integrating a New Network Interface Driver
4.1 Introduction

85

4

An NPT driver’s implementation of the send() routine must create a MAC header
by using the destination MAC address and network service type that the MUX
passes in to the routine, and its own source MAC address, and prepend this MAC
header to the frame. However, if the destination MAC address pointer that the
MUX passes into this routine is NULL, a complete MAC header is already
prepended to the frame and the NPT driver must not add another one.

Differences in MUX Receive Routines

During the muxDevLoad() call, the MUX sets the receiveRtn member of the
device’s END_OBJ-derived DRV_CTRL structure to point to the routine that the
device should call to pass received data up the stack. ENDs and NPT drivers call
this routine differently:

The receiveRtn Called by an END

An END calls this routine with two parameters, as follows:

device->receiveRtn (device, packet);

device
the END_OBJ pointer that describes the device that is calling the routine

packet
an M_BLK pointer that describes the packet being received.

The header file endLib.h has a macro, END_RCV_RTN_CALL(), that the driver
may use (if it wishes) to call the MUX receive routine.

The receiveRtn Called by an NPT Driver

The NPT driver parses the link header and passes enough information to the MUX
(and thereby to network service receive routines) to let them strip the link header
from the frame. The NPT driver itself does not remove the link header.

An NPT driver calls this routine with six parameters, as follows:

device->receiveRtn (device, frame, offset, type, cast, extra);

device
the END_OBJ pointer that describes the device that is calling the routine

frame
an M_BLK pointer that describes the frame being received.

offset
the offset from the start of the frame to the network-layer header—this is called
the network service offset, and is the same as the link header size

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

86

type
the network service type value (ethertype value)

cast
a boolean value that the driver should set to TRUE if it is in promiscuous mode
when it makes this call, and it has received a unicast or multicast packet that is
not intended for this device—so that the MUX only passes this frame to SNARF
or PROMISCUOUS services

Setting this value to TRUE is merely an optimization; network services must
check that they are the intended recipient of the packet in any case. So it is
recommended that you only set this value to TRUE if the driver has a quick
way (such as a bit in the receive descriptor) to identify packets that would not
be received were the device not in promiscuous mode.

extra
an extra void * pointer to a buffer that contains any additional information that
should be passed to the receiving service—the service and the driver must
agree on the interpretation of this value (most services ignore it, and most
drivers pass NULL)

The header file endLib.h has a macro, TK_RCV_RTN_CALL(), that the driver may
use (if it wishes) to call the MUX receive routine.

4.2 Configuring VxWorks for Network Interface Drivers

The Wind River Network Stack requires the following configuration components
in order to use the MUX to implement network interface drivers:

■ END interface support (INCLUDE_END)
■ MUX support (INCLUDE_MUX)

END interface support

The INCLUDE_END component pulls in endLib, which provides support for ENDs
and NPT drivers running under the MUX. For this reason, this component also
requires INCLUDE_MUX.

The endLib library also includes functionality that provides common support
routines used by all ENDs and NPT drivers. It also contains some functionality
specifically designed for use in drivers running over Ethernet.

4 Integrating a New Network Interface Driver
4.3 How VxWorks Launches and Uses Your Driver

87

4

MUX support

The INCLUDE_MUX component pulls in support for the MUX interface,
implemented in the muxLib and muxTkLib libraries. For more information on
these libraries, see the muxLib and muxTkLib reference entries.

4.3 How VxWorks Launches and Uses Your Driver

The task tUsrRoot is the first task started during system boot. It initializes all
portions of the operating system, including the network stack. Part of network
stack initialization consists of initializing at least one network job queue, and
spawning a task (such as tNet0) to process items on each network job queue.

To load your network device into the MUX, tUsrRoot calls muxDevLoad(). As
input to the call, tUsrRoot specifies your driver’s xLoad() entry point, and the
muxDevLoad() routine calls this entry point.

The xLoad() routine handles any device-specific initialization and returns an
object that derives from the END_OBJ class (see Driver Implementations of the
xLoad() Routine, p.128). The xLoad() routine does not enable the device to transmit
and receive data (the xStart() routine does this when it is called by
muxDevStart()).

After control returns from xLoad() to muxDevLoad(), the MUX completes the
END_OBJ object by adding to it a pointer to a routine your driver can call to pass
packets up to the MUX. The MUX then adds this returned END_OBJ to a list of
END_OBJ structures. This list maintains the state of all currently active network
devices on the system. After control returns from muxDevLoad(), your driver is
loaded and ready to use.

4.3.1 The Service-to-MUX Interface

To attach to a previously-loaded network device, a service calls mux[Tk]Bind()
(muxBind() works only with ENDs whereas muxTkBind() works with either
NPT devices or ENDs). The network service supplies pointers to routines that the
MUX can call to:

■ shut down the service
■ pass an error message to the service

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

88

■ pass a packet to the service
■ restart transmission by the service

The mux[Tk]Bind() routine returns a “cookie” that identifies the binding of the
service to the specified device. The service uses this cookie in several other MUX
calls to refer to this binding instance.

NOTE: The prototypes of these callback routines differ depending on whether you
used muxTkBind() or muxBind(). If you call muxTkBind() to bind to an END
device, this imposes an additional layer of translation. A service might prefer to
provide muxBind()-style callbacks and use muxBind() to bind to END devices
and avoid the performance impact of this additional translation work.

Figure 4-2 The Process of Binding and Unbinding a Stack and an Interface

A driver may
optionally
support the
EIOCQUERY
ioctl.

EIOCQUERY

Driver

xEndBind()

END_QUERY

MUXVxWorks

xAttach()

mux[Tk]Bind()

OK

OK

OK
OK

cookie

muxUnbind(cookie)
xDetach()

4 Integrating a New Network Interface Driver
4.3 How VxWorks Launches and Uses Your Driver

89

4

After the service binds itself to a driver through the MUX, it can then call
MUX-supplied routines, such as mux[Tk]Send(), to transmit a packet or request
other MUX services.

(You may find that you need to call a device-specific MUX routine such as
muxTkSend() or muxIoctl() without first binding to the device. To do this, you
must obtain a “cookie” that describes the device. Call muxTkCookieGet() to
obtain such a cookie for a specified device name and unit number. This routine
allocates no memory, and the value it returns does not describe a real binding, so
do not call muxUnbind() with this cookie. Also note that the cookie is valid only
while the network device remains loaded in the MUX.)

The Wind River Network Stack attaches its protocols to the network boot interface
and to network interfaces corresponding to any INCLUDE_IPNET_IFCONFIG_n
components you have enabled. If there are additional network interfaces to which
the stack should be attached (perhaps interfaces that your application discovers
dynamically), your application code must do this attachment itself by calling
either ipcom_drv_eth_init() or the legacy function ipAttach(). The ipAttach()
routine calls mux[Tk]Bind() (see Figure 4-2)

A protocol that binds itself to a loaded device using mux[Tk]Bind() may unbind
itself using muxUnbind(). To cause the Wind River Network Stack to unbind all
of its protocols from an interface to which it is attached, use the command-line tool
ifconfig to first bring the interface down, then detach it. For example:

-> ifconfig motetsec1 down
-> ifconfig motetsec1 detach

ifconfig can be accessed programmatically as the function ipnet_cmd_ifconfig().

4.3.2 The Data-Link-to-MUX Interface

VxBus network drivers typically initialize and load to the MUX all of the devices
they manage that are discovered dynamically by the VxBus system, or that are
listed explicitly in the BSP’s hwconf.c file. For legacy network drivers on the other
hand, a device must have an entry in the endDevTbl[] array in the BSP’s
configNet.h file (see 4.7.1 Adding a Network Driver, p.109). (Particular BSPs may be
able to add dynamically discovered devices to available empty slots in this array.)
Stack initialization code causes the muxDevConnect method of all VxBus network
drivers to run, then iterates through the endDevTbl[] array, loading and starting
any legacy devices with entries there. For both sorts of devices, muxDevLoad() is
called first, then muxDevStart() (see Figure 4-3).

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

90

The value returned by muxDevLoad() identifies the device. You can use this
identifier in a subsequent call to muxDevStart(), muxDevStop(), or
muxDevUnload(). In some previous versions of the stack, this value could also be
passed as an argument to muxIoctl() or muxTkSend(), but that no longer
works—these routines expect an interface binding cookie of the sort that is
returned from mux[Tk]Bind(), or a pseudo-bind cookie of the sort returned by
muxTkCookieGet() (see the discussion of muxTkCookieGet() in 4.3.1 The
Service-to-MUX Interface, p.87).

Your driver’s load routine creates a DRV_CTRL structure, derived from an
END_OBJ structure, and its NET_FUNCS interface. The END_OBJ structure
provides the MUX with a description of the device, and the NET_FUNCS interface
provides the MUX with pointers to the driver’s implementations of the standard
MUX routines: start(), stop(), receive(), ioctl(), and so on.

The muxDevStart() call enables transmission and reception over an END or NPT
device. After a device starts, it can pass packets up to the MUX by calling the
receiveRtn function pointer that the MUX set in the driver’s END_OBJ structure.
The MUX delivers these packets to the appropriate bound services. If no bound
services match the packet type, the MUX discards the packet.

Figure 4-3 The Process of Loading and Starting a VxBus Network Device

muxDevConnect

Driver MUX

muxDevLoad()

muxDevStart(cookie)

xLoad()

xStart()

END_OBJ

cookie

OK

OK

4 Integrating a New Network Interface Driver
4.3 How VxWorks Launches and Uses Your Driver

91

4

When the driver passes the MUX receive routine a packet with a network service
type that matches a service bound to the device, the MUX calls the service’s receive
routine that the service registered when it called mux[Tk]Bind(). If the service
receive routine returns TRUE (or any non-zero value), the service consumed the
packet. Otherwise, the MUX checks if any other bound service can accept the
packet, and if not, discards it, freeing the associated M_BLK tuple. When a service
consumes a packet, the service is responsible for freeing the packet.

To disable transmission and reception on a device, call muxDevStop(). Call
muxDevUnload() to remove the network interface from the MUX. Note that
muxDevUnload() forcibly shuts down any services that are bound to the device;
the service’s shutdown routine must in turn call muxUnbind() to unbind the
service from the device.

NOTE: The Wind River Network Stack expects to borrow the buffers it receives
and thus avoid data copying. If a device cannot transfer incoming data directly
into clusters, the driver must explicitly copy the data from private memory into a
cluster in sharable memory before passing it in an M_BLK up to the MUX. The
driver must describe a packet destined for the stack as a single
M_BLK/CL_BLK/cluster tuple (See Tuples, p.13).

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

92

4.3.3 Polled Mode – For Debugging Only

Drivers ordinarily operate in an interrupt-driven mode. During debugging, it can
be convenient to have a driver operate in polled mode.

This chapter discusses routines that drivers implement to support polled-mode,
and MUX routines that applications or services can call to transfer packets in
polled mode.

The network stack itself does not use polled mode. Currently, only the WDB agent
COMM_END back end in system mode uses polled mode. During system mode
debugging, the WDB agent calls muxPollSend() directly in order to pass packets
to the driver in polled mode.

While it is possible for an application to use a driver that has implemented the
necessary APIs, and call muxPollSend()—just as the WDB agent does—the

Figure 4-4 The Process of Stopping and Unloading a Device

for each service
bound to the device

OK

OK

OK
OK

OK
OK

muxDevStop()
xStop()

muxDevUnload()

xShutdownRtn()

muxUnbind()

xUnload()

MUX Driver Services

4 Integrating a New Network Interface Driver
4.4 Driver Components

93

4

network stack itself does not support sending data, such as IP traffic, in polled
mode. The stack will not detect that a driver is in polled mode and, consequently,
will not call muxPollSend().

Also, the polled mode interface copies whole packets for both transmission and
reception.

Thus, you cannot use polled mode routines as a high-performance polling
mechanism for increasing forwarding network performance. Wind River
recommends that you use polled mode only for system mode debugging over
WDB.

4.4 Driver Components

A driver’s basic components include a receiver, a transmitter, and a
command-and-control module.

The receiver accepts incoming frames from a DMA engine, passes these frames to
the MUX, and provides the DMA engine with a continuous supply of DMA
buffers. A driver receiver is stimulated by a device-generated interrupt. The driver
does not directly service incoming frames in the interrupt’s context but defers this
work to a routine that runs in a task context. Each instance of a driver has a private
buffer pool into which incoming DMAs are directed. A driver loans individual
buffers from its pool to the network stack. There is no guarantee that the stack
returns the loaned buffers to the driver in order, or in any bounded time.

The transmitter accepts packets from the MUX and transfers them to the device’s
transmit DMA engine, and reclaims the resources associated with each
transmitted packet.

The command-and-control module configures, initializes, and provides control
interfaces for the device. It is the part of the driver that parses the driver
configuration parameters, quiesces the device, and configures the device in the

NOTE: The prevalent model of network interface devices available today is the
direct memory access (DMA) engine. This document assumes the use of devices
that are DMA engines. If you are developing a driver for a device that uses
programmed I/O or some other proprietary shared memory technique, the
DMA-specific portions of this text may not be directly applicable to your driver.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

94

prescribed mode. It incorporates the driver’s load, unload, start, stop, and ioctl
routines, as well as routines for querying and modifying the multicast filter. In
essence, the driver’s command-and-control provides the driver’s external
interface, with the exception of send and receive. This includes the driver interrupt
service routine. Interrupts alert the driver to packets received, packet transmit
DMA completion, and stall, error, or link state change conditions.

Resource Requirements

The larger the driver’s operating bandwidth, the greater its memory requirements.
Occasionally, a driver does not have sufficient memory resources to accommodate
the data inflow. This can be due to system constraints, buffer loaning, or CPU
starvation. When a driver gets into an insufficient resource condition, it continues
to provide the DMA engine with buffers into which inflowing data is transferred
but the driver does not pass these buffers up to the stack.

A network service calls mux[Tk]Send() to request that a driver transmit a frame.
This in turn calls the driver’s registered xSend() routine. Sends can occur at any
time, and may occur before previous sends have completed transmission to the
wire.

Resource reclamation of DMA buffers and control structures is generally
stimulated by a device-generated transmit-complete interrupt. This interrupt
announces that the device has sent a complete frame and that the driver can now
return the memory resources back to the pool. In many cases, this interrupt occurs
excessively. Therefore, in order to improve performance, you must reduce the
frequency of transmit-complete interrupts. However, take care to ensure that you
reliably return memory resources to the pool. If a device does not provide a
transmit-complete interrupt, then the driver must use its own means to ensure
resource reclamation.

A stall condition occurs when the device determines that it has exhausted its
resources. The stall can occur in either the receiver or the transmitter. When a stall
occurs, the device halts operations in the module in which it detected the stall. To
resume operation, the driver must reclaim and make available sufficient resources.
Often it must also clear a device register.

4 Integrating a New Network Interface Driver
4.5 Transmitting Data

95

4

4.5 Transmitting Data

Unlike the receive handler, the driver’s xSend() routine is called from multiple
contexts—network applications or tNet0 or other network tasks—which may
preempt each other. The send routine also manipulates data structures and device
registers which must be protected from corruption. Care must be taken to
safeguard the send routine from concurrent access. Therefore, the xSend() routine
must always take the transmit semaphore txSem referenced in the END_OBJ by
calling END_TX_SEM_TAKE(), and release it when done by calling
END_TX_SEM_GIVE().

4.5.1 Transmit-complete Handler Interlocking Flag

Transmit-complete interrupts are typically used to allow the driver to return
resources to the pool after a packet is transmitted. The frequency of these
interrupts can be very high. Because of the high frequency at which these
interrupts are generated, transmit-complete interrupts can potentially degrade
system performance or overflow the network job pool. Handling Transmit-complete
Interrupts: Freeing Resources, p.126, includes a discussion of how to reduce the
frequency of this interrupt. This section deals with how to prevent the
transmit-complete interrupt from exhausting the network job pool. The method
used is essentially the same as that used for the receive handler interlocking flag
(see Handling Receive Interrupts: Receiving Frames, p.121).

A transmit-complete handler interlocking flag is a device instance-specific flag that
a driver keeps in its DRV_CTRL structure (see A.3.3 DRV_CTRL, p.290). The
network driver’s ISR checks this flag before it schedules the associated service
routine as a network queue job. If the ISR has not already set the flag, the ISR
schedules the service routine and sets the flag. If the ISR has already set the flag,
the ISR does not schedule the routine. The service routine clears the flag when it
completes. In SMP environments, the ISR and the transmit complete handler
routine usually need to maintain this flag as an atomic variable (see VxWorks Kernel
Programmer’s Guide: Atomic Memory Operations). But even in the single processor
case, you should consider the possibility of races in maintenance of the flag,
particularly in cases where multiple devices may share the interrupt line and the
driver’s ISR may be called even though it has disabled device interrupts.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

96

4.5.2 Supporting Scatter-Gather Transmission

The MUX passes packets to the driver’s xSend() routine as M_BLK chains. An
M_BLK chain may describe a packet consisting of more than a single block of
contiguous data, in order to support scatter-gather transmission.

Scatter-gather is a DMA technique that allows for an application or network
service to distribute (or “scatter”) the data it wants to send among multiple buffers
rather than first collecting it into a single, contiguous buffer. The network device
can then gather the data together and transfer it in a single DMA transaction, as if
it were in a contiguous buffer. This capability is desirable because some network
protocols distribute data across multiple moderately-sized buffers, and may also
need to prefix protocol headers onto particular segments of application data. All of
the network protocols in the Wind River Network Stack’s IP stack pass packets to
be sent in single contiguous buffers, and also expect received packets to be
delivered to them as single contiguous buffers. However, services other than those
in the core Wind River IP stack may attach to an MUX-capable device, and so the
network driver send routines must be able to handle M_BLK chains that describe
packets with discontiguous data.

If a device does not support scatter-gather and the MUX sends the driver a
fragmented packet, or if there are insufficient descriptors in the device’s transmit
DMA ring to cover the multiple segments of the fragmented packet, the driver
must obtain a single buffer from its pool and must then copy the packet fragments
into a single buffer. This is possible because the driver pool, unlike the network
stack pool, typically has only a single buffer size that is sufficient to hold the largest
packet the maximum transfer unit (MTU) allows. This means that in most cases,
the driver can find a buffer that is large enough to accommodate any packet.
However, the overhead of requiring the driver to obtain a buffer and copy the
packet fragments into the buffer is a substantial drag on overall system
performance.

When a device supports scatter-gather, it can continue DMA across multiple
fragments by following a list of fragment buffer pointer and size pairs. A driver
written for such a device walks the M_BLK chain, extracts the cluster buffer
pointers and the fragment sizes, and then forms a gather list according to the
device’s specification.

Devices typically use one of two common mechanisms for creating gather lists. The
first method requires the device to read the buffer pointer and size pairs out of a
list contained in a single transmit descriptor. The second mechanism requires the
device to follow a list of descriptors that are tied together, reading in turn the
successive buffer pointer and size pairs from each descriptor in the list. (There is
also a hybrid method that uses multiple pairs across multiple descriptors, but this

4 Integrating a New Network Interface Driver
4.5 Transmitting Data

97

4

type is rarely used and it is usually the case that if a descriptor holds multiple
pointer and size pairs, the entire packet must be held by a single descriptor’s pair
list.)

The driver’s xSend() routine is responsible for determining if the driver has
sufficient resources to handle an outgoing packet. Once this routine has made this
determination, it is responsible for taking the appropriate action.

To determine whether or not there are sufficient resources available to hold the
packet data, the driver’s xSend() routine must count the number of fragments in
the M_BLK chain, and compare that number with the amount of resources the
driver currently has available. Determining the amount of resources available
depends on the device’s gather mechanism. As described previously, devices
typically employ one of two common gather mechanisms. In each of these
methods, the problem for the driver is to determine the number of fragment pairs
that the currently-free descriptors can hold.

If the number of available descriptors is insufficient to hold the packet data, the
driver’s xSend() routine may chose to do the following:

■ It may try to do some transmit clean-up work first, to free up some transmit
descriptors, after which there may be sufficient descriptors to send the packet
without coalescing it. (However, some driver writers prefer to do all transmit
clean-up work in response to transmit-complete interrupts, not in the send
routine.)

■ If there are absolutely no transmit descriptors remaining, or if the packet
consists of a reasonably small number of segments and sufficient descriptors
will become available shortly (after outstanding transmit-complete and
transmit cleanup work is done), the xSend() routine may “stall” by returning
END_ERR_BLOCK. The driver then must call muxTxRestart() in the future
when more transmit resources are available.

■ If at least a single transmit descriptor remains, the driver may chose to
immediately coalesce the packet into a single contiguous buffer that it allocates
(usually from the same pool it uses for received packets). The driver must also
do this if the packet consists of so many segments that the driver could not
otherwise send it.

■ If for some reason the xSend() routine knows that it cannot ever send a packet,
even with coalescing, it must free the packet and return ERROR. This usually
indicates an error in an attached network service.

If the xSend() routine determines that it has sufficient resources to handle the
outgoing packet, the driver must then walk the M_BLK chain. For each tuple in the
chain, the driver must write the M_BLK’s data pointer and segment length into a

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

98

free descriptor. While it transfers the fragment pointers and lengths to the
descriptor(s), it updates the descriptor fields to reflect that they hold buffer
pointers that are ready for transmit. If the device specifies that the driver must
distribute fragments over a list of descriptors, the device also specifies that the
driver must mark the first and last descriptors in the list accordingly. After the
driver transfers fragment pointers and sizes for the packet’s entire M_BLK chain to
the descriptor list and sets up the descriptor fields in the manner expected by the
device, the driver passes ownership of those descriptors to the device for
transmission, in a device-specific manner.

4.5.3 Transmit Descriptor Clean-up

The driver’s xSend() routine is also responsible for storing the M_BLK pointer to
the M_BLK chain holding the packet in such a way that it can be later correlated to
the associated descriptor or descriptors on the transmit queue.

After the device successfully transmits a packet, most devices generate a
transmit-complete interrupt. The ISR for this interrupt causes the driver’s
transmit-complete handler to be scheduled, which in turn calls the driver’s
transmit descriptor clean routine to free the packet descriptor or descriptors and
the associated M_BLK chain. As described in Handling Transmit-complete Interrupts:
Freeing Resources, p.126, numerous transmit-complete interrupts are a detriment to
performance.

The driver’s xSend() routine may also directly call the transmit descriptor clean
routine. This can be an effective method for initiating transmit descriptor clean-up.
However there are two issues that you should consider:

■ When the xSend() routine calls the transmit descriptor clean routine, the
device may not have actually transmitted the packet and there may be little or
nothing to clean. Therefore, the descriptor clean-up often depends on
subsequent calls to the xSend() routine to clean up previously-used
descriptors.

■ Calling the transmit descriptor clean routine for every packet sent imposes
substantial overhead.

If transmit clean-up is done only in the xSend() routine, significant transmit
resources may be left unreturned until the MUX next calls xSend(). One solution
is to continue to allow the transmit-complete interrupt to occur but to control the
frequency at which it is generated. This gives a backup to the xSend() routine’s
clean-up attempts.

4 Integrating a New Network Interface Driver
4.5 Transmitting Data

99

4

Some devices have transmit interrupt moderation settings that cause transmit
interrupts to occur only after a configurable delay has passed after a transmit
completes. By the time the interrupt occurs, several packets may have completed
transmission and be ready for clean-up. Wind River recommends that you use
such hardware facilities when they are available, since they reduce transmit
interrupt load but guarantee that resources for completed transmits are
(reasonably promptly) released. Modest delays in freeing particular transmitted
packets rarely cause any problem; so long as packet memory pools are not
exhausted, nobody is waiting for those particular packets to be freed. In contrast,
hardware-imposed delays in processing received packets directly increases
latency, which may be undesirable in some applications. Network drivers that
might be used together with such latency-sensitive applications should be
cautious about enabling hardware interrupt moderation features on the receive
side.

If a device does not support transmit interrupt moderation in hardware, it may
support this in software (though this is not as nice). For some devices, the transmit
descriptor has a bit flag that indicates whether an interrupt should be generated
when the transmit completes. This flag should, of course, only ever be set on the
final descriptor describing a packet. Some drivers may choose to set it only on
every nth packet, where n is small enough that it doesn’t matter much if up to n
packets languish unreleased in the transmit ring until further sends occur.

One last option: To control the frequency of the transmit-complete interrupt, keep
it masked, and only unmask it when a call to the transmit descriptor clean routine
fails to free sufficient descriptors.

To determine if sufficient descriptors have been freed:

■ Establish a threshold of some percentage of the transmit descriptors.

■ If the xSend() routine’s call to the transmit descriptor clean routine does not
increase the free count to greater than the threshold amount, unmask the
packet-complete interrupt.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

100

The solution to the transmit descriptor clean overhead is to once again track the
free transmit descriptor count and to only call the transmit descriptor clean routine
when the free count falls below a certain threshold.

Now put these two mitigators together:

■ Only call the transmit descriptor clean routine when the free transmit
descriptor count falls below a certain threshold.

■ If the xSend() routine’s call to the transmit descriptor clean routine does not
increase the free count to a value greater than the given threshold, unmask the
transmit-complete interrupt.

4.5.4 Transmit Descriptor Indexing

The driver should allocate memory for the its transmit descriptors contiguously.
This allows the driver’s xSend() routine to access the descriptors with an index
from the base pointer returned by the allocation. This is similar to the indexing
scheme used by the receive handler routine. Like the receive handler routine, the
driver’s xSend() routine should treat the transmit descriptors as a circular array,
or ring.

One of the issues that the driver’s xSend() routine must address is that it must
track the transmit descriptors on two different queues, the free queue and the used
queue. These queues are as follows:

■ free queue – lists descriptors currently available for use
■ used queue – lists descriptors currently on the transmit queue

NOTE: Some driver writers prefer to do send clean-up only in the transmit
clean-up routine, which the transmit-complete interrupt handler posts as a
jobQueueLib job. When the ISR posts such a job, it also disables further
transmit interrupts from the device; transmit interrupts stay disabled until the
transmit-cleanup job completes and reenables them. Under heavy load this
suffices to moderate the number of transmit interrupts. This method is simple
and always assures prompt clean-up of transmit resources. However, under
conditions of moderate load insufficient to keep a transmit clean-up job
delayed long enough to accomplish batching, it may have more overhead than
doing clean-up in the xSend() routine. A further concern is that in SMP
environments, the transmit clean-up job may run on a different CPU than the
sending thread(s), and so may contend with the sending thread(s) for the
driver’s transmit semaphore.

4 Integrating a New Network Interface Driver
4.5 Transmitting Data

101

4

These queues are actually different dynamic parts of the same ring of descriptors.
Setting up and efficiently managing these queues is a critical part of the xSend()
routine. To manage these queues the driver establishes two indices, one for each
queue.

The index for the free queue—the free index—references the next descriptor
available for use by xSend(). The xSend() routine should follow the free index
around the transmit descriptor ring. When xSend() places a descriptor on the
device’s transmit queue, it increments the free index. In order to track how many
descriptors are currently free, xSend() also decrements a free counter. The initial
state for the free counter is the total number of transmit-descriptors that the driver
allocated.

The index for the used queue references the descriptor that has been on the
device’s transmit queue for the longest period of time. The used queue is also the
next-to-clean queue. The index for the next-to-clean queue is the clean index, this
references the next transmit descriptor that the transmit descriptor clean routine is
to clean (see 4.5.7 Transmit Descriptor Clean, p.102).

4.5.5 Transmit Packet Association List

It is the responsibility of the driver’s xSend() routine to store a transmitted
packet’s M_BLK chain pointer in such a way that the driver transmit cleanup
handler can later correlate it with the associated descriptor or descriptors on the
transmit queue. The mechanism to do this is a transmit packet association list.

This list is an array of M_BLK pointers that is of equal length to the total number of
transmit descriptors allocated by the driver. This list is accessed using the same
indices that the driver uses to reference the descriptors. When xSend() places a
descriptor on the device transmit queue, it uses the free index to correlate the
transmit packet association list to the transmit descriptor ring. As xSend() moves
around the transmit descriptor ring, for each fragment buffer pointer it puts into a
descriptor, it determines if that fragment is the last fragment for the packet it is
transmitting. If it is the last fragment for the packet, xSend() puts the pointer to
the packet’s M_BLK chain into the transmit packet association list at the same index
as the descriptor that holds the packet’s last fragment. If the fragment is not the last
fragment of packet, xSend() sets the corresponding transmit packet association
list entry to NULL. This prevents freeing the packet until all segments of the packet
have been transmitted.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

102

4.5.6 Transmit-complete Handler

The transmit-complete handler is a task-level routine that is scheduled by the
transmit-complete interrupt’s ISR. See Handling Transmit-complete Interrupts:
Freeing Resources, p.126.

4.5.7 Transmit Descriptor Clean

The transmit descriptor clean routine returns transmit descriptors back to a usable
state and frees the associated M_BLK chains. This routine uses the clean index to
rotate through the driver’s transmit descriptors (see 4.5.4 Transmit Descriptor
Indexing, p.100). As this routine moves around the ring, it determines if the device
has completed transmission of the descriptor currently referenced by the clean
index, and released it from the device transmit queue. If so, this routine does
whatever is necessary to put the descriptor back into a free state, and increments
the free counter. This routine continues to traverse the ring until it encounters a
descriptor that the device has not released from the device transmit queue or until
the free counter equals the number of transmit descriptors created by the device.

When this routine determines that the device has released a descriptor from the
device transmit queue, it uses the clean index to reference the transmit packet
association list. If this routine finds that this list entry holds an M_BLK pointer, it
frees the M_BLK chain by calling netMblkClChainFree().

4.6 Implementing Checksum Offloading

TCP/IP checksum offloading eliminates host-side checksum calculation overhead
by performing checksum computation with hardware assist. Many devices
support this feature.

The device and driver must act in concert to implement checksum offloading. The
device supports checksum offloading in the DMA engine. The DMA engine
computes the raw, 16-bit, ones-complement checksum of each DMA transfer as it
moves the data to and from host memory. To use this checksum instead of the
software-generated checksum requires that you set CSUM flags in the packet’s
M_BLK to either bypass the software checksum computation for received packets,

4 Integrating a New Network Interface Driver
4.6 Implementing Checksum Offloading

103

4

or to alert the device that it needs to compute and insert checksums before it
transmits a frame.

The Wind River Network Stack checksum offloading API supports offload of the
TCP or UDP transport layer checksum and the IPv4 header checksum on both
transmission and reception. The API consists of the END_CAPABILITIES class
defined in end.h (see A.3.4 END_CAPABILITIES, p.290), the csum_flags and
csum_data fields in the mBlkPktHdr structure in the lead M_BLK of a packet, and
the EIOCGIFCAP and EIOCSIFCAP ioctls in the driver.

The argument to both the EIOCGIFCAP and EIOCSIFCAP MUX ioctl commands is
a pointer to an END_CAPABILITIES structure that can describe the supported and
currently enabled hardware offload capabilities of the device. The stack uses the
EIOCGIFCAP ioctl to read the device’s capabilities. The stack need not initialize any
members of the input END_CAPABILITIES structure. The driver’s handler for
EIOCGIFCAP returns all fields of the structure according to its current settings, as
shown in Example 4-1.

Example 4-1 EIOCGIFCAP Example:

int xIoctl
(
END_OBJ * pEnd,
int cmd,
caddr_t data
)
{
MY_DRV_CTRL * pDrvCtrl;
int error = OK;
END_CAPABILITIES * hwCaps;

pDrvCtrl = (MY_DRV_CTRL *)pEnd;

switch (cmd)
{
...
case EIOCGIFCAP:

hwCaps = (END_CAPABILITIES *) data;

if (hwCaps == NULL)
{
error = EINVAL;
break;
}

hwCaps->csum_flags_tx = pDrvCtrl->hwCaps.csum_flags_tx;
hwCaps->csum_flags_rx = pDrvCtrl->hwCaps.csum_flags_rx;
hwCaps->cap_available = pDrvCtrl->hwCaps.cap_available;
hwCaps->cap_enabled = pDrvCtrl->hwCaps.cap_enabled;
break;

...
}

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

104

}

For EIOCSIFCAP, the stack sets the capabilities that it wants enabled into
cap_enabled. This allows the stack to turn capabilities on or off as required. The
stack can request any capability for which it is itself capable. If the stack requests
capabilities that are not supported by the device, this is not an error. However, the
driver only actually supports those capabilities that it sets in the cap_available
field; all other capabilities are ignored.

Example 4-2 EIOCSIFCAP Example:

int xIoctl
(
END_OBJ * pEnd,
int cmd,
caddr_t data
)
{
MY_DRV_CTRL * pDrvCtrl;
int error = OK;
END_CAPABILITIES * hwCaps;

pDrvCtrl = (MY_DRV_CTRL *)pEnd;

switch (cmd)
{
...
case EIOCSIFCAP:

hwCaps = (END_CAPABILITIES *) data;

if (hwCaps == NULL)
{
error = EINVAL;
break;
}

pDrvCtrl->hwCaps.cap_enabled = hwCaps->cap_enabled;
break;

...
}

}

4.6.1 Checksum Offloading and Receiving

The driver’s receive routine does the following:

1. It checks if the network stack has requested that the device-calculated
checksum be passed to the stack. This is accomplished by testing to see if
IFCAP_RXCSUM is set in the cap_enabled field in the driver’s copy of the
END_CAPABILITIES object.

4 Integrating a New Network Interface Driver
4.6 Implementing Checksum Offloading

105

4

2. If the stack enabled receive checksumming, the driver reads the device’s
checksum status, usually a field in the receive DMA descriptor for the packet.

a. The driver determines if the device checked the IP checksum

If the device checked the IP header checksum, the driver sets
CSUM_IP_CHECKED in the packet’s pMblk->mBlkPktHdr.csum_flags to
indicate that the IP header checksum was checked.

b. The driver tests to see if the device determined that the IP header is valid.

If the IP header is valid, the driver sets CSUM_IP_VALID in the packet’s
pMblk->mBlkPktHdr.csum_flags to indicate that the IP header is valid.
This bit is only meaningful when the driver has also set
CSUM_IP_CHECKED.

c. The driver tests if the device calculated the TCP or UDP checksum.

i. If the device calculated the TCP or UDP checksum, the driver sets
CSUM_DATA_VALID in the packet’s
pMblk->mBlkPktHdr.csum_flags, and stores the calculated
checksum value (the uncomplemented, 16-bit, ones-complement sum
over the transport header, transport layer data, and possibly the IP
pseudo-header) in pMblk->mBlkPktHdr.csum_data. The driver
writes this sum in host byte order into the low-order 16 bits of
csum_data to indicate that the device calculated the TCP or UDP
checksum and that the packet is valid.

ii. If the transport checksum calculated by the device includes the IP
pseudo-header sum, the driver also sets CSUM_PSEUDO_HDR in the
packet’s pMblk->mBlkPktHdr.csum_flags. Otherwise, the stack
expects that the value in pMblk->mBlkPktHdr.csum_data covers
only the transport header and transport data, and it will adjust for the
pseudo-header checksum itself.

iii. If the device directly indicates whether the transport layer checksum
is valid, the driver may set both CSUM_DATA_VALID and
CSUM_PSEUDO_HDR in pMblk->mBlkPktHdr.csum_flags, and
write 0xffff to pMblk->mBlkPktHdr.csum_data if the checksum was
valid, or write any other value (0 is suggested) to that field if the
checksum was found invalid. It is permissible to only set csum_flags
and csum_data in case the device finds the checksum valid. This is a
workaround for devices that in certain circumstances misidentify a
correct checksum as invalid, but are trusted if they indicate a
checksum is valid. The stack verifies the transport checksum in
software if CSUM_DATA_VALID is not set.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

106

Example 4-3 Handling Packets with Bad or Unchecked Transport Checksums

This example receive checksum offload code handles packets that the device
indicates have bad transport checksums, or for which the device did not check the
transport checksum, by letting the stack verify the transport checksum in software:

/* Do RX checksum offload, if enabled. */

if (pDrvCtrl->hwCaps.cap_enabled & IFCAP_RXCSUM)
{
/* Read the device checksum status field */
RFD_BYTE_RD (pRbdTag->pRFD, RFD_CSUMSTS_OFFSET, csumStatus);

/* Determine if IP checksum calculated */

if (csumStatus & RFD_CS_IP_CHECKSUM_BIT_VALID)
{
/* Set M_BLK check sum flags to indicate checksum calculated */
pRbdTag->pMblk->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
}

/* Determine if IP checksum valid

if (csumStatus & RFD_CS_IP_CHECKSUM_VALID)
{
/* Set M_BLK check sum flags to indicate a valid IP header */
pRbdTag->pMblk->m_pkthdr.csum_flags |= CSUM_IP_VALID;
}

if (csumStatus & RFD_CS_TCPUDP_CHECKSUM_BIT_VALID &&
csumStatus & RFD_CS_TCPUDP_CHECKSUM_VALID)
{
pRbdTag->pMblk->m_pkthdr.csum_flags |=

CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
pRbdTag->pMblk->m_pkthdr.csum_data = 0xFFFF;
}

}

4.6.2 Checksum Offloading and Transmission

The network stack tells the driver whether or not to instruct the device to calculate
checksums for a given packet being transmitted, through CSUM flags in
pMblk->m_pkthdr.csum_flags. The stack sets the CSUM_IP bit if it wants the
device to calculate the IPv4 header checksum, and sets CSUM_TCP or CSUM_UDP
or CSUM_TCPv6 or CSUM_UDPv6 to ask the device to calculate the TCP or UDP
checksum in an IPv4 or IPv6 datagram. The stack also provides some additional
information that may be needed by some devices:

■ The stack stores in the lead M_BLK of the packet the IP header length
(including any IP options). You may access this field by using the
CSUM_IP_HDRLEN() macro (see Table 4-1). Note that if the device has

4 Integrating a New Network Interface Driver
4.6 Implementing Checksum Offloading

107

4

limitations that prevent it from calculating and inserting checksums correctly
on certain legal packets, such as IP packets with options, the driver must either
calculate the checksums on those exceptional packets in software, or must not
claim to support transmit checksum offload for the affected protocol at all.

■ The stack stores in the lead M_BLK the byte offset of the transport-level
checksum field within the transport header, relative to the start of the
transport header. You can access this field by using the
CSUM_XPORT_CSUM_OFF() macro (see Table 4-1). You may also infer this
value from the particular transport-level CSUM flag used: it is 6 for UDP and
16 for TCP.

When requesting TCP or UDP checksum offload, the stack always calculates the
uncomplemented pseudo-header checksum and stores it in network byte order in
the transport header checksum field. The device can overwrite it but the stack
always calculates it. This cannot be turned off.

The stack stores the checksums in the headers at the front of each IP packet, and
the device must complete the checksum before it can transmit the packet headers.
Because the device’s DMA engine computes the checksums, the last byte of the
packet must arrive in the device before it can determine the complete checksum.
That is, in order for the device to calculate a checksum on a packet, it must delay
transmission of any part of the packet until after it processes the entire packet.

The driver’s xSend() routine must do the following:

1. Determine whether or not the network stack needs the device to calculate
checksums for the packet it is processing. To do this, the routine reads
pMblk->m_pkthdr.csum_flags.

a. If the network stack requests that the device calculate the IP checksum, the
driver prepares to set the device accordingly.

b. If the network stack requests that the device calculate the TCP or UDP
checksum, the driver prepares to set the device accordingly.

Table 4-1 Checksum Support Macros

Flag Description

CSUM_IP_HDRLEN(M_BLK) The actual IP header length of M_BLK

CSUM_XPORT_CSUM_OFF(M_BLK) The offset within the transport header
of the transport checksum field in
M_BLK

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

108

2. After the driver interprets the CSUM flags and prepares to set the device
accordingly, it writes the appropriate settings into the device’s registers or
DMA descriptors.

For example:

/* Do transmit checksum offload. */

if (pDrvCtrl->csumOffload)
{
txCsum = 0;

if (pMblkHead->m_pkthdr.csum_flags)
{
txCsum = (IPCB_HARDWAREPARSING_ENABLE << 8);
if (pMblkHead->m_pkthdr.csum_flags & CSUM_IP)

txCsum |= IPCB_IP_CHECKSUM_ENABLE;
if (pMblkHead->m_pkthdr.csum_flags & CSUM_DELAY_DATA)

txCsum |= IPCB_TCPUDP_CHECKSUM_ENABLE;
if (pMblkHead->m_pkthdr.csum_flags & CSUM_TCP)

txCsum |= IPCB_TCP_PACKET;
}

CFD_WORD_WR (pCFD, CFD_IPSCHED_OFFSET, txCsum);
}

4.7 Implementing a Network Driver

This section presents an overview of the following driver operations:

■ adding a driver to the Wind River Network Stack
■ launching a driver
■ responding to a service bind event
■ responding to interrupts

As a starting point for your driver, you can use the generic VxBus END template
in the following location:

installDir/vxworks-6.n/target/src/hwif/end/templateVxbEnd.c

VxBus END drivers are the preferred network driver model, and those provided
by Wind River have been implemented with considerable uniformity. Wind River

NOTE: For instructions on how to start additional drivers at run time, see
3.3 Working with Network Driver Instances, p.32.

4 Integrating a New Network Interface Driver
4.7 Implementing a Network Driver

109

4

still ships various drivers of the old non-VxBus END model, and you can find a
template for these legacy drivers at the following location:

installDir/vxWorks-6.n/target/src/drv/end/templateEnd.c

Apart from the issues of how VxBus END drivers fit into the VxBus subsystem,
and the fact that the legacy drivers are more various in their implementations, the
recommendations for how both VxBus and legacy END drivers are constructed are
essentially the same.

For the most part, NPT drivers and ENDs handle these operations identically. The
major exceptions are in receiving and sending frames. Both NPT drivers and ENDs
pass received frames whole (with link header present) to the MUX, however NPT
drivers pass up additional information that makes it easy to strip the link header.
On the send side, the MUX always passes to an END’s xSend() routine a whole
frame with the link header present, but may pass a packet without a link header to
an NPT driver’s xSend() routine. In that case, the NPT xSend() routine has to
form the link header itself based upon the destination address and network service
type that the MUX also passes it. These differences are highlighted in the sections
that follow. See 4.1.1 How ENDs and NPT Drivers Differ, p.82 for an overview of
these differences.

Currently, the Wind River Network Stack does not include any NPT driver
implementations, only END implementations.

4.7.1 Adding a Network Driver

You add your network driver to the Wind River Network Stack in much the same
way as you add any other application to a target image. The first step is to compile
and include the driver code in the image.

About VxBus Network Drivers

Like other VxBus drivers, a VxBus network driver must provide a driver
registration routine as an external API. For example, the vxbEtsecEnd.c driver
provides etsecRegister(), and the gei825xxVxbEnd.c driver provides

NOTE: The design situations that require an NPT driver instead of an END are rare.
If you are writing a new driver, think first of implementing it as an END, for which
there exists templates as well as working driver implementations that you can
study. If porting a packet-oriented driver, feel free to port it as an NPT driver. The
Wind River Network Stack allows you to use drivers of both styles (controlling
different devices) in the same image.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

110

geiRegister(). The tUsrRoot task calls the driver registration routine during phase
0 of VxBus initialization, as the initialization routine for the VxWorks component
that includes the driver in the VxWorks image (see VxWorks Device Driver
Developer’s Guide: Volume 2).

This registration routine calls vxbDevRegister(), passing in a pointer to an
vxbDevRegInfo object. Processor Local Bus (PLB) device drivers like
vxbEtsecEnd.c pass a pointer to a vxbPlbRegister object, while PCI drivers pass a
pointer to a vxbPciRegister object. Each of these objects derives from the
vxbDevRegInfo class (see Figure 4-5). Other bus types have their own
vxbDevRegInfo variants, but PLB and PCI bus devices are most common.

The PLB subclass (vxbPlbRegister) is an unadorned version of vxbDevRegInfo;
the PCI subclass (vxbPciRegister) contains also a list of the PCI device ID/vendor
ID pairs supported by the driver.

Figure 4-5 The vxbDevRegInfo Class

vxbDevRegInfo
devID : UINT32

devProbe(struct vxbDev *) : BOOL

pNext

drvBusFuncs

b

vxbPlbRegister

vxbPciRegister

b

vxbParams

idListLen : int
idList: struct vxbPciID *

busID : UINT32
vxbVersion: UINT32
drvname : char[]

pDrvBusFuncs

vxbDeviceMethod
pMethods

* pParamDefaults

devInstanceInit()
devInstanceInit2()
devInstanceConnect()

miiRead()
miiWrite()
miiMediaUpdate()
muxDevConnect()
vxbDrvUnlink()

paramName : char *
paramType : UINT32
value : vxbInstParamValue

4 Integrating a New Network Interface Driver
4.7 Implementing a Network Driver

111

4

The driver defines its registration information as a static object, for example, the
following from gei825xxVxbEnd.c:

LOCAL struct vxbPciRegister geiDevPciRegistration =
{

{
NULL, /* pNext */
VXB_DEVID_DEVICE, /* devID */
VXB_BUSID_PCI, /* busID = PCI */
VXBUS_VERSION_3, /* vxbVersion */
GEI_NAME, /* drvName */
&geiFuncs, /* pDrvBusFuncs */
geiMethods, /* pMethods */
NULL, /* devProbe */
geiParamDefaults /* pParamDefaults */
},

NELEMENTS (geiPciDevIDList),
geiPciDevIDList
};

The members of this object are as follows:

pNext
links the driver registration into a list; the driver sets this to NULL

devID
always VXB_DEVID_DEVICE for a network driver, which indicates that it is a
device driver rather than a bus controller driver

busID
the type of bus; for a PLB driver this would be VXB_BUS_PLB

vxbVersion
the VxBus version; at this time this should be VXBUS_VERSION_3

drvName
the string prefix name of the interfaces that the driver manages, such as “gei”
or “etsec”

pDrvBusFuncs
the three standard instance initialization routines for a VxBus driver: the
devInstanceInit() routine, the devInstanceInit2() routine, and the
devInstanceConnect() routine, which are called or scheduled by sysHwInit()
and sysHwInit2() during the phases 1-3 of VxBus initialization for each
device instance, whether the VxBus PCI subsystem dynamically discovers the
device or the BSP author statically configured it for the driver (for instance, in
the BSP’s hwconf.c file). The roles these routines typically play in network
drivers is discussed below (see VxBus Network Driver Entry Point Routines,
p.112).

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

112

pMethods
a table of VxBus “methods” that the driver implements. Methods are in
principle optional, but most drivers implement miiRead(), miiWrite(),
miiMediaUpdate(), muxDevConnect(), and vxbDrvUnlink() methods. The
roles of these methods are described in VxBus Network Driver Methods, p.114.

devProbe
if the driver provides this routine, the VxBus system calls it during device
discovery (from vxbNewDriver() and vxbDeviceAnnounce()) to check
whether the driver should control this candidate device. The VxBus system
passes this routine a pointer to the candidate instance (struct vxbDev), and
returns TRUE if the driver should control the device, and FALSE if the driver
should not control the device. The probe routine may attempt to access device
registers if necessary. The VxBus system calls this routine early in start-up
before the system memory pool is initialized and before the task spawned by
sysHwInit2() calls the driver’s devInstanceConnect() routine. Most drivers
will not need a probe routine; in particular, even without a probe routine, PCI
drivers would not be associated with PCI devices that do not match the device
ID / vendor ID pairs listed in the vxbPciRegister object’s idList, while BSP
authors usually configure PLB devices statically through the BSP’s hwconf.c
file.

pParamDefaults
a table of VXB_PARAMETERS that the driver initializes to their default values.
The VxBus parameter system allows you to override the defaults on a
per-instance basis. These parameters can be any configurable information that
the driver requires for its instances, but commonly specify items such as what
network job queue the driver is to post work to, whether the driver should
enable jumbo frames, whether the driver should enable interrupt coalescing,
and so on.

VxBus Network Driver Entry Point Routines

The pDrvBusFuncs interface of the driver registration information object has three
routines that the driver implements. The routines sysHwInit() and sysHwInit2()
(or tasks spawned by these routines) call the routines in this interface in sequence
during system boot for each device instance that the driver will manage. Each
routine takes a pointer to a vxbDev structure (a VXB_DEVICE_ID) and returns
void:

■ devInstanceInit()

sysHwInit() usually calls this routine, indirectly, during phase 1 of VxBus
initialization, before the system memory pool has been initialized.

4 Integrating a New Network Interface Driver
4.7 Implementing a Network Driver

113

4

For a network driver, this routine typically only sets the device unit number.
Network drivers managing devices that are statically configured (typically
PLB devices) call vxbInstUnitSet() to set the unit number that the BSP author
configured for the device in hwconf.c. Drivers managing devices that the
VxBus system dynamically discovers, typically PCI drivers, call
vxbNextUnitGet() to allocate and assign the next available free unit number
to the device.

■ devInstanceInit2()

sysHwInit() usually calls this routine, indirectly, during phase 2 of VxBus
initialization, after the system memory pool has been initialized.

The driver’s devInstanceInit2() routine does the following tasks:

– allocates and initializes the driver-specific control structure for the
instance and associates it with the instance’s vxbDev structure

– allocates memory for the instance’s transmit and receive DMA rings, but
not for the driver’s receive packet pool

– resets the device, ensuring that it is in a quiescent state
– determines the device’s MAC address, and stores a copy in the driver

control structure
– optionally reads various VxBus instance parameters to help configure the

device
– creates and initializes (in most devices) an MII bus, and sets the initial MII

bus mode

Also, generic PCI drivers that may run on different boards or architectures
create and initialize vxbDmaBufLib tags and maps, which support driver
DMA, dealing with complexities such as address translation, access windows,
bounce buffers, cache coherence, scatter-gather, buffer alignment restrictions,
and the like in a transparent and consistent way. (Drivers that will operate
only on a single board or architecture environment may choose to omit the use
of vxbDmaBufLib to avoid the small overhead that it imposes.)

■ devInstanceConnect()

This routine is called during phase 3 of VxBus initialization, usually from a
task spawned late in sysHwInit2(). This call-out in the VxBus model allows
the driver to connect the instance to a “higher level entity.” One might expect
that this is where the network driver connects the device instance to the MUX,
but that is not the case: at the time the task calls this routine, the MUX may still
not have been initialized yet. In most network drivers, this routine does
nothing.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

114

VxBus Network Driver Methods

VxBus provides a way for a driver to advertise that it provides a routine that
implements an optional, well-known “method.” Methods are typically used for
common functionality that might be implemented in a diverse class of drivers, but
that for one reason or another a particular driver might choose not to implement.

VxBus network drivers typically implement the following methods:

■ muxDevConnect()

This method does the following:

■ calls muxDevLoad() to load the network device into the MUX

■ calls muxDevStart() to start the network device

■ vxbDrvUnlink()

This method shuts down a device instance in response to an unlink event from
VxBus. This may occur if you have terminated the VxBus instance or unloaded
the driver. When an unlink event occurs, the driver must shut down and
unload the network interface associated with this device instance from the
MUX, and then release all the resources that the driver allocated in its
devInstanceInit2() and xLoad() routines during instance creation, such as
vxbDma memory and maps, and interrupt handles. It also must destroy its
child miiBus and PHY devices.

Adding VxBus Drivers and Devices

To add a VxBus network driver, describe the driver as a component in a .cdf file,
list its driver registration function as its INIT_RTN, specify the appropriate
initialization order, and list any required dependencies that cannot be determined
by the linker. For example:

/* 40vxbEtsecEnd.cdf - Component configuration file */
Component INCLUDE_ETSEC_VXB_END

{
NAME Enhanced TSEC VxBus Enhanced Network Driver
SYNOPSIS Enhanced TSEC VxBus Enhanced Network Driver
HDR_FILES ../src/hwif/h/end/vxbEtsecEnd.h
CHILDREN FOLDER_DRIVERS
INIT_ORDER hardWareInterFaceBusInit
INIT_RTN etsecRegister();
REQUIRES INCLUDE_PLB_BUS \
INCLUDE_PARAM_SYS \
INCLUDE_BCM54XXPHY \
INCLUDE_MV88E1X11PHY \
INCLUDE_DMA_SYS
INIT_AFTER INCLUDE_PLB_BUS
}

4 Integrating a New Network Interface Driver
4.7 Implementing a Network Driver

115

4

For the traditional BSP command line build (that is, as opposed to the vxprj
command line build), you must create forward declaration (.dc) and driver
registration (.dc) stub files in installDir/target/config/comps/src/hwif/ that the
build system uses to generate the file vxbUsrCmdLine.c that it uses to initialize the
VxBus. See the README file in the above directory for more information.

In addition, for PLB bus drivers, the device units must be statically configured in
each supporting BSPs hwconf.c file, listed in the hcfDeviceList[] array.

For legacy ENDs and NPT drivers, those that are not VxBus drivers, the
mechanism to include the driver in the VxWorks image and get it connected to the
MUX is somewhat different, as follows:

Adding Legacy Network Drivers and Devices

This section applies to BSPs that do not support VxBus, and to ENDs and NPT
drivers that do not conform to the VxBus driver model.

The BSP defines a table that lists entries for network device units controlled by
various drivers that the BSP supports. This table, endDevTbl[],is defined in the
configNet.h file in this directory:

installDir/vxworks-6.n/target/config/bspName

(bspName is the name of your board support package, such as mv162 or pc486.)

For example, to add an ln7990 END, you would edit configNet.h to contain lines
such as:

/* Parameters for loading ln7990 END supporting buffer loaning. */
#define LN7990_LOAD_FUNC_0 ln7990EndLoad
#define LN7990_LOAD_STRING_0 "0xfffffe0:0xffffffe2:0:1:1"
#define LN7990_LOAD_BSP_0 NULL

Define three constants, like those shown above, for each of the devices you want
to add. To set appropriate values for these constants, consider the following:

MY_LOAD_FUNC
The name of your driver’s xLoad() entry point (see Driver Implementations of
the xLoad() Routine, p.128). For example, if your driver’s xLoad() entry point
is ln7990EndLoad(), edit configNet.h to include the line:

#define LN7990_LOAD_FUNC ln7990EndLoad

MY_LOAD_STRING_UNIT
The initialization string passed into muxDevLoad() as the pInitString
parameter. This string contains information that muxDevLoad() prefixes with
“unitNumber:” and passes to your driver’s xLoad() routine. Its contents
depend on what the driver expects.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

116

Some BSPs define MY_LOAD_FUNC as a wrapper routine which is responsible
for calling the real driver load routine with appropriate arguments. In this
case, MY_LOAD_STRING_UNIT is often NULL.

MY_LOAD_BSP_UNIT
BSP-specific additional information to be passed as the last argument to
muxDevLoad() for use by the driver. This is most frequently NULL, and if so,
there is no need to actually define the MY_LOAD_BSP_UNIT macros.

You must also edit the definition of the endDevTbl[] to include entries for each of
the devices to be loaded:

END_TBL_ENTRY endDevTbl [] =
{
{ 0, MY_LOAD_FUNC, MY_LOAD_STRING_0, MY_LOAD_BSP_0, NULL, FALSE },
{ 1, MY_LOAD_FUNC, MY_LOAD_STRING_1, MY_LOAD_BSP_1, NULL, FALSE },
...
{ 0, END_TBL_END, NULL, 0, NULL, FALSE },
};

The first number in each table entry specifies the unit number for the device. The
first entry in the example above specifies a unit number of 0. Thus, the device it
loads is deviceName0. The FALSE at the end of each entry indicates that the entry
has not been processed. After the system successfully loads a driver, it changes this
value to TRUE in the run-time version of this table. To prevent the system from
automatically loading your driver, set this value to TRUE in the table.

Some BSPs, typically those supporting PCI END devices, construct entries in the
endDevTbl[] array at run time. Such BSPs pre-populate the table with several
empty entries. The BSP must provide code that scans the PCI bus for the devices
that are managed by PCI END drivers that the BSP supports (and that are to be
included in the image). For each such located device, the BSP consumes an entry
in endDevTbl[] corresponding to the located device, identifying it as a unit device
for a particular driver. The BSP must save any PCI configuration space information
that the driver may need for these devices, including such things as register
addresses (BARs), device IDs, interrupt lines, and possibly revision numbers.
Typically this information is stored in auxiliary arrays that are used by a wrapper
driver load routine to construct the driver load string for the real END driver load
routine, which the wrapper calls. Different BSPs accomplish all this in various
different ways; this non-uniformity and code duplication is one of the things the
VxBus system is intended to eliminate.

After you add these entries to the table, rebuild the VxWorks image to include
your new drivers. When you boot this rebuilt image, the system calls
muxDevLoad() for each device specified in the table in the order listed.

4 Integrating a New Network Interface Driver
4.7 Implementing a Network Driver

117

4

In addition, VxWorks drivers are often written to be independent of the bus and
processor configuration. This means that the methods used to access device
registers are provided by the BSP and not by the driver. For each such driver, each
BSP that supports it must provide the required register access routines. Legacy
network drivers often require other support routines from the BSPs that support
them, such as routines for enabling or disabling interrupts for the device at a
board/interrupt controller level, busy-waiting for short amounts of time, and so
on. The driver documentation lists the routines that the BSP must provide.

4.7.2 Launching the Driver

At system startup, VxWorks spawns the user root task to initialize the system. This
task eventually calls muxDevLoad(), which calls the xLoad() routine in your
driver. The xLoad() routine creates and partially populates its own DRV_CTRL
structure (which is its own custom derivation of the END_OBJ class, see
A.3.8 END_OBJ, p.297) and a NET_FUNCS structure. These structures describe the
driver to the MUX. The NET_FUNCS structure provides the MUX with references
to the MUX-callable driver routines. It is typically static and is shared between all
network devices that the driver manages.

After muxDevLoad() loads your driver, a muxDevStart() call executes your
driver’s implementation of the start() routine referenced in the NET_FUNCS
interface. This xStart() routine activates the driver and registers an interrupt
service routine for the driver with the appropriate interrupt connect routine for
your architecture and BSP.

4.7.3 Responding to Network Service Bind Calls

A driver typically does not react when a service binds to a device. But if you want
your driver to respond to a bind event, your driver can implement an xEndBind()
routine. To get a pointer to a driver’s xEndBind() implementation, the MUX does
not look in the NET_FUNCS interface, as it does for other calls, but instead issues
an EIOCQUERY command to the driver’s xIoctl() routine. As input, the call
supplies an END_QUERY structure (see A.3.10 END_QUERY, p.301) whose
members are used as follows:

query
The MUX sets this to END_BIND_QUERY.

NOTE: The endDevTbl[] table can contain a mix of NPT drivers and ENDs.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

118

queryLen
The MUX sets this to the expected size of the function pointer in queryData.

queryData
Your driver’s implementation of the ioctl() routine overwrites this field with
a pointer to your driver’s xEndBind() routine. The MUX then calls this routine
with the following arguments:

xEndBind (pEnd, pNetSvcInfo, pNetDrvInfo, type);

where pEnd is a pointer to the END_OBJ, pNetSvcInfo and pNetDrvInfo are
the last two arguments passed to muxTkBind(), or are NULL in a muxBind()
call, and type is the protocol type of the service being bound, either an
ethertype value or MUX_PROTO_SNARF or MUX_PROTO_PROMISC or
MUX_PROTO_OUTPUT. If the queryData() call returns ERROR, the bind fails.
Note that there is no established convention for use of the pNetSvcInfo and
pNetDrvInfo pointers; they are only useful if the driver and the service are
jointly written to have knowledge of each other and how these parameters
should be interpreted. Due to this level-breaking, a bind function is rarely
implemented.

4.7.4 Responding to Interrupts

A driver’s interrupt handler typically handles three varieties of interrupt:

■ a receive interrupt that indicates a packet has been received on the device

■ a transmit-complete interrupt that indicates that a packet has been sent over
the device and its resources can be released

■ an error condition interrupt

When a device interrupt occurs, the Wind River Network Stack invokes the
interrupt service routine (ISR) that your driver registered during its xStart()
routine. Your ISR in turn schedules task-level handlers to respond to the particular
varieties of interrupts that it receives.

Example 4-4 The ISR from the gei825xxVxbEnd.c Driver

For some devices, a single ISR may be used to handle all device interrupts. Here is
the driver ISR from the gei825xxVxbEnd.c driver:

LOCAL void geiEndInt
(
GEI_DRV_CTRL * pDrvCtrl
)
{

4 Integrating a New Network Interface Driver
4.7 Implementing a Network Driver

119

4

VXB_DEVICE_ID pDev;
UINT32 status;

pDev = pDrvCtrl->geiDev;

/* Read interrupt cause register. Note that this acknowledges
* any pending interrupts.
*/

status = CSR_READ_4(pDev, GEI_ICR);

/*
* Make sure there's really an interrupt event pending for us.
* Since we're a PCI device, we may be sharing an interrupt line
* with another device. If we are, our ISR might be invoked
* as a result of the other device asserting the interrupt, in
* which case we really don't have any work to do.
*/

status &= GEI_INTRS;
if (status == 0)

return;

/*
* Make sure we don't lose any events that we acknowledge when running
* spuriously due to a shared interrupt.
* Record those events we found.
*/

status = vxAtomicOr(&pDrvCtrl->geiIntStatus, (status | GEI_INT_PENDING));

/* If the handler was already posted, don't do anything else */
if (status & GEI_INT_PENDING)

return;

/* mask interrupts here */
CSR_WRITE_4 (pDev, GEI_IMC, GEI_INTRS);
jobQueuePost (pDrvCtrl->geiJobQueue, &pDrvCtrl->geiIntJob);

return;
}

This is a PCI device driver, and so it must handle the case in which it shares an
interrupt line with other devices. This is complicated for the Intel chips that this
driver manages because of how the interrupt cause register (ICR) works. This
register’s bits correspond to different sorts of events that can (if unmasked) cause
interrupts; the device sets a bit when the corresponding event occurs. When the
driver reads the ICR, this read operation automatically acknowledges the
interrupts corresponding to the bits that the device set, clearing those bits in the
register. In order to avoid losing this event information in the case that the ISR
executed due to the interrupt from another device sharing the same line, the
relevant bits that the device had set in the ICR are atomically ORed into the

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

120

geiIntStatus member of the driver control structure for the device, along with
another bit: GEI_INT_PENDING. vxAtomicOr() returns the value in this atomic
variable immediately before the OR operation. If the device already set
GEI_INT_PENDING that means that an earlier execution of the ISR had set it and
had posted a job to execute the task level handler, and the handler hasn’t
completed yet, so the ISR simply returns. Otherwise, the ISR masks further
interrupts from the device and calls jobQueuePost() to post the job to execute the
task-level handler, which would do the actual work to deal with whatever events
have occurred. The task-level handler, which might in fact execute on another CPU
in an SMP system, will (carefully) reenable device interrupts and atomically clear
the GEI_INT_PENDING bit when it finds no more work to do.

Example 4-5 The Receive ISR from the vxbEtsecEnd.c Driver

Drivers that do not have to deal with shared interrupts, and can therefore depend
on the fact that locking device interrupts will prevent the ISR from running, may
be somewhat simpler. Here is the receive ISR for vxbEtsecEnd.c:

LOCAL void etsecEndRxInt
(
ETSEC_DRV_CTRL * pDrvCtrl
)
{
VXB_DEVICE_ID pDev;
pDev = pDrvCtrl->etsecDev;

SPIN_LOCK_ISR_TAKE (&pDrvCtrl->etsecLock);
CSR_CLRBIT_4 (pDev, ETSEC_IMASK, ETSEC_RXINTRS);
SPIN_LOCK_ISR_GIVE (&pDrvCtrl->etsecLock);

vxAtomicSet (&pDrvCtrl->etsecRxPending, TRUE);
jobQueuePost (pDrvCtrl->etsecJobQueue, &pDrvCtrl->etsecRxJob);

return;
}

For this device, disabling receive interrupts requires a read-modify-write access to
the device IMASK register, which other contexts may also access, possibly on other
CPUs; so a spin lock protects the register access. The atomic variable
etsecRxPending is being used in a trivial way here—it is not actually
synchronizing with the task-level receive handler, but only with other code paths
that want to shut down the device and must wait until a job is not scheduled. The
etsecRxJob is protected from multiple posting in the ISR by the fact that further
receive interrupts are disabled until the task-level receive handler finds no more
work to do and reenables receive interrupts just before it exits.

4 Integrating a New Network Interface Driver
4.7 Implementing a Network Driver

121

4

Handling Receive Interrupts: Receiving Frames

For best performance, you should write your task-level interrupt handler in such
a way as to continue to handle its work until there is no more work outstanding.
The task level handler conventionally executes as a network job queue job. While
limiting the amount of work done in one network job queue execution, the
task-level interrupt handler job should repost itself if it finds additional work to
do, keeping device interrupts locked. Apart from the case of spurious executions
due to a shared interrupt line, the ISR should only execute if the task-level handler
is not active. Continuing to execute the ISR while the task-level handler is running
hinders performance by interrupting the system for work that the ISR has already
scheduled.

Write your ISR so that when it gets a receive interrupt, it does the minimum
amount of work necessary to disable further receive interrupts, and, for
non-DMA-capable devices, to transfer the frame from the local hardware into a
cluster (see 4.3.2 The Data-Link-to-MUX Interface, p.89).

To minimize interrupt lockout time, write your ISR to handle directly (at interrupt
level) only those actions that require minimum execution time such as error
checking or device status change, and to queue all time-consuming work for
processing at task level.

Write your ISR so that it disables further receive interrupts and sets a flag
indicating that it has posted work to task level.2 If this flag is already set when the
ISR is entered, the ISR does not need to schedule another job (for the same type of
event, that is, frame reception). This could occur when more than one device
shares the same interrupt line.

Queueing Work to the Network Job Queues

The network stack spawns one or more network job queues to handle
network-related work, primarily for network interface drivers. Each job queue is
serviced by a single VxWorks task—these are the tasks tNet0, tNet1, tNet2, and so
on, created at startup. By default, only one network daemon task is created, tNet0,
but more may be useful for SMP systems. A network driver may post work related
to a particular network device to only a single job queue. A job queue is identified
by its JOB_QUEUE_ID, which drivers should treat as an opaque value.

The best way to post work to a network job queue is to call the jobQueuePost()
routine:

2. This is usually a software flag that the driver maintains as a member of the DRV_CTRL
structure for the device. For devices where shared interrupt lines are not an issue, it might
be an implicit flag which is effectively the interrupt mask state for the interrupt in question.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

122

STATUS jobQueuePost
(
JOB_QUEUE_ID jobQueueId,
QJOB * pJob
)

The job to be done is represented by a QJOB object, the structure of which is
declared in target/h/wrn/coreip/jobQueueLib.h as shown in Figure 4-6.

The members of this class are as follows:

pNext
jobQueueLib uses the pNext member internally for queueing jobs. The driver
may ignore this field.

priInfo
The priInfo member records the job priority (0 through 31), as well as some
other flags used internally by jobQueueLib. The network daemon that is
running the job queue services queued jobs in strict priority order, treating 31
as the highest priority. You should set the priInfo member to a priority value
between 0 and 31; this will ensure that the bits used internally by
jobQueueLib start out cleared. Unless the driver has a specific reason for
doing otherwise, it should choose the default priority NET_TASK_QJOB_PRI
(16) as defined in target/h/wrn/coreip/netLib.h.

func
The func member is the routine that is executed by the task that services the
job queue when this job runs. That task passes this routine a single argument,
which is a pointer to the QJOB.

A driver is responsible for allocating its own QJOBs. A driver needs one QJOB for
each type of work it would like to post from an ISR. A driver that uses a single ISR
to handle all device interrupts might use only a single QJOB, while another driver
might use three separate QJOBs for receive work, transmit cleanup, and error
handling, respectively. But your driver needs only a small, finite number of QJOBs,
and typically embeds them in its driver control structure for the device.

Figure 4-6 The QJOB Class

QJOB
priInfo : UINT32

func(void *) : void

pNext The structure that represents the QJOB class is typically a
member of a larger structure that contains information useful
to the handler function func().

func() is passed a pointer to the QJOB as its only
argument.

4 Integrating a New Network Interface Driver
4.7 Implementing a Network Driver

123

4

A driver initializes its QJOB members at initialization time, typically in its load or
start routine, and usually leaves them unchanged after that. The following code
snippet shows how a hypothetical “quik” driver might initialize three QJOB
members embedded in its driver control structure:

pDrvCtrl->quikTxJob.func = quikTxHandle;
pDrvCtrl->quikTxJob.priInfo = NET_TASK_QJOB_PRI;
pDrvCtrl->quikRxJob.func = quikRxHandle;
pDrvCtrl->quikRxJob.priInfo = NET_TASK_QJOB_PRI;
pDrvCtrl->quikErrJob.func = quikErrHandle;
pDrvCtrl->quikErrJob.priInfo = NET_TASK_QJOB_PRI;

Here is how the receive interrupt might post the quikRxJob to execute
quikRxHandle():

jobQueuePost (pDrvCtrl->jobQueueId, &pDrvCtrl->quikRxJob);

Here is how the quikRxHandle() job handler routine might recover the driver
control structure from its argument, which is a pointer to pDrvCtrl->quickRxJob:

LOCAL void quikRxHandle
(
QJOB * pJob
)
{
QUIK_DRV_CTRL * pDrvCtrl = member_to_object (pJob, QUIK_DRV_CTRL,

quikRxJob);
...
/*
* Do a bounded amount of RX work, then requeue the job if there is
* still more work to do; otherwise, reenable RX interrupts, and
* return.
*/

...
}

The member_to_object() macro shown above, declared in jobQueueLib.h,
converts the address of a member of a structure to the address of the structure
itself.

The jobQueuePost() routine enqueues the specified job onto the specified job
queue, and if necessary unpends the task that services the job queue. That task
services any queued jobs in strict priority order. As it services each queued job, it
dequeues the job object just before calling the routine specified by the job object’s
func member. While the job is enqueued, attempts to requeue it by calling
jobQueuePost() again will have no effect, but you should avoid such calls.
Certainly the driver should not modify a QJOB object while it is enqueued; during
this time it is considered to be owned by the job queue itself. To avoid the ISR’s
reposting the job when it is enqueued, it may be sufficient for the device to lock
device interrupts, when shared interrupts are not a factor. But if other devices can
share the interrupt line that the device uses, then it may be necessary for the device

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

124

to maintain a separate atomic flag to indicate whether the device has already
posted the job. For some devices, the device interrupt mask register can play the
role of this flag. The job handler routine must take care when it clears the flag and
reenables interrupts, so as to avoid races that could either prevent the driver from
receiving any further packets, or that could occasionally cause those packets that
it receives to languish without the driver servicing them until the arrival of a
subsequent packet.

It is possible (and convenient) for a QJOB to repost itself from the QJOB’s handler
routine. You cannot cancel a job you have already queued. This may become
relevant when an interface shuts down; the driver must use some other mechanism
(such as an atomic flag) to wait until the jobs in the queue execute, and then
prevent further queuing of the jobs.

Network job queues are usually shared by multiple network interfaces, and by
network protocol code also. It is possible to design a driver that starves the
network stack and other drivers. When a driver uses taskDelay(), or any other
delay mechanism, in code that executes in the context of a network job queue
daemon, the delay prevents the task from processing packets from other interfaces.
For this reason, you must carefully consider using delays in the driver. Consider
rescheduling the job with another jobQueuePost() call instead of delaying. This
allows other interfaces, as well as the network stack, to perform other work while
the driver is waiting.

Because interrupts are relatively costly in terms of overall system performance,
one recommended goal of network drivers is to process many packets before
reenabling interrupts. However, to avoid starvation of other interfaces, the driver
should enforce a cap on the number of packets that it processes at any one time. If
additional packets are available when the cap is reached, the driver can reschedule
the receive routine with another call to jobQueuePost().

Using Multiple Tasks in SMP Systems with Multiple Interfaces

In SMP systems with more than one network interface, you can increase
performance for some network applications that communicate over more than one
interface concurrently, by assigning different network devices to post work to
different network daemons.

By default, there is only one network daemon created, the task named tNet0. In an
SMP system, Wind River suggests increasing the number of network daemons to
be equal to the minimum of the number of configured CPUs and the number of
network devices, and configuring the network devices so as to distribute work
across the available daemons. For example, consider a system with two CPUs, and
four network interfaces gei0, gei1, gei2, and gei3. If you configure two network

4 Integrating a New Network Interface Driver
4.7 Implementing a Network Driver

125

4

daemons (tNet0 and tNet1), you could assign the even numbered interfaces gei0
and gei2 to tNet0, and the odd numbered interfaces gei1 and gei3 to tNet1. To do
this:

■ When configuring the VxWorks image, set the NUM_NET_DAEMONS
configuration parameter of the component INCLUDE_NET_DAEMON to 2.
This will cause the network start-up code to create two network job queues
serviced by two network daemon tasks, tNet0 and tNet1.

■ Optionally, you may also set the parameter NET_DAEMONS_CPU_AFFINITY
to TRUE, if you want tNet0 to execute only on CPU 0, and tNet1 to execute only
on CPU 1. This is not generally beneficial, although it might help for some
workloads. If restricting the CPU affinities of the network daemons in this way,
consider also directing each network device’s interrupts to run on the same
CPU on which the network daemon that the device uses runs. This is possible
to configure for some BSPs and some devices, generally by editing an
intrCtlrCpu structure in the hwconf.c file in the BSP directory. See the BSP and
VxBus documentation for more information on this topic.

■ At run time, call vxbEndQnumSet() to set the network job queue number that
each network device will use. In our example case, we leave gei0 and gei2
posting to the default network job queue number 0, and only call
vxbEndQnumSet() for gei1 and gei3, as follows:

vxbEndQnumSet ("gei", 1, 1); /* make gei1 use tNet1 */
vxbEndQnumSet ("gei", 3, 1); /* make gei3 use tNet1 */

vxbEndQnumSet() is only supported for VxBus network drivers. It uses the
VxBus parameter system to set a parameter containing the job queue that the
driver should use. This parameter is only read when a VxBus network device’s
start routine is called. If the network device is already started when
vxbEndQnumSet() is called, vxbEndQnumSet() will stop the device for a
second and then restart it, so that the change takes effect. If the network device
exists but has not started yet (or is presently stopped), vxbEndQnumSet()
does not stop and restart the device; the change will take effect when the
device is started.

This release does not provide a standard mechanism to configure at image build
time which network job queue a network device will use. You can modify the
usrAppInit() routine, or other application-specific start-up code, to call
vxbEndQnumSet() to configure the network devices that exist in your system to
post work to the desired network job queues.

Note that not all network applications will benefit from using multiple network
daemons; some applications may actually see decreased performance. Wind River

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

126

recommends testing with your expected workload when deciding whether and
how to configure the use of multiple network daemons.

Passing Frames to the MUX

Write your task-level frame reception routine to construct an M_BLK tuple
containing the frame and pass this tuple to the MUX by calling the routine
referenced in the receiveRtn field of the END_OBJ structure that represents your
device (see A.3.8 END_OBJ, p.297). In the case of ENDs, this routine will have the
same prototype as muxReceive(); in the case of NPT drivers, this routine will have
the same prototype as muxTkReceive().

Write your reception routine so that if there are no more frames to process, it clears
the flag that was set by the ISR to indicate that the receive QJOB is posted.
Particularly in cases where a shared interrupt line is possible, this must be done
carefully to avoid races.

Handling Transmit-complete Interrupts: Freeing Resources

The transmit-complete interrupt occurs when the device finishes transmitting a
packet (at least to the degree that it has DMAed all of the packet data into its
internal FIFOs). This interrupt indicates to the driver that it can now recycle the
transmit descriptors that it used for the transmission of that packet, and can release
the associated packet memory resources.

Your transmit-complete ISR should handle transmit-complete interrupts similarly
to how the receive ISR handles packet-reception events: disable further
transmit-complete interrupts, and post a net job to do transmit resource clean-up
work, such as freeing M_BLK chains, at task level.

The transmit clean-up routine cleans up as many packets as are ready, then
reenables device interrupts. The driver may need to maintain an atomic flag that

NOTE: Instead of calling the receiveRtn function pointer directly, you may use the
END_RCV_RTN_CALL() (END) or TK_RCV_RTN_CALL() (NPT) macros, which
are defined in endLib.h and which accomplish the same thing. These macros take
the same arguments in the same order as muxReceive() and muxTkReceive()
respectively—that is, the same arguments as pDrvCtrl->receiveRtn, but without
the need for the initial pDrvCtrl->. (They also presently handle the exceedingly
unusual case that pDrvCtrl->receiveRtn is NULL.)

Drivers should generally define the preprocessor macro END_MACROS before
including endLib.h, so as to get the inlined version of the APIs that endLib.h
provides.

4 Integrating a New Network Interface Driver
4.7 Implementing a Network Driver

127

4

indicates whether it has posted the transmit cleanup job, so it can avoid reposting
it due to shared interrupts, and to allow graceful shutdown code to wait for the
posted job to complete.

The transmit clean-up routine must hold the network device transmit mutex while
it is processing the transmit ring and the associated packet M_BLK chain array, to
avoid accessing these resources simultaneously with the driver’s xSend() routine.
At the end of this processing, if the routine has cleaned any transmit descriptors
(some drivers also check if the number of available descriptors has reached at least
some minimum threshold), and if the “stall flag” is set, the clean-up routine clears
the stall flag, and remembers that it should call muxTxRestart() after releasing the
transmit mutex. The stall flag is a software flag in the driver control structure for
the device, that the driver send routine sets if it ever runs out of transmit
descriptors (that is, if it stalls) and has to return END_ERR_BLOCK.

After releasing the mutex, if the clean up routine had decided that it should call
muxTxRestart(), it does so. The reason this must be done after releasing the
transmit mutex is to avoid semaphore misordering problems. The call to
muxTxRestart() calls the transmit restart routine of each service that attached to
the network device. The transmit restart routine checks whether the service has
any packets that were queued for transmission to the network device, that
accumulated after the transmit stall; if so, it may call through the MUX to send
packets on the device once more. The service transmit restart code takes protocol-
specific mutual exclusion, and frequently holds this mutual exclusion around the
call that it makes to muxTkSend(), which establishes a mutex ordering: the service
takes the protocol mutual exclusion nested around the driver transmit mutex
taken by the driver’s xSend() routine. If the driver calls muxTxRestart() while
holding the device transmit semaphore, the opposite ordering would also happen,
and deadlocks would be likely.

The transmit clean-up routine then clears the flag indicating that the transmit
clean-up handler is posted and reenables transmit complete interrupts by
accessing the appropriate device registers, then returns. There are the same sorts
of possible race conditions when this routine clears the transmit clean-up job
posted flag and reenables the transmit-complete interrupt as were discussed in the
context of packet reception (see Queueing Work to the Network Job Queues, p.121).
However, consequences of a transmitted packet languishing for a while before it is
freed are generally not as unpleasant as similar languishing of a received but
unhandled packet. Some drivers may choose to use a combined job handler
routine for both transmit cleanup and receive work.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

128

4.8 The Driver Interface with the MUX

This subsection describes the driver entry points and the shared data structures
that comprise an driver’s interface with the MUX.

Data Structures Shared by the Driver and the MUX

The core data class for an END or NPT driver is the END object, or END_OBJ. This
structure is defined in target/h/end.h (see also A.3.8 END_OBJ, p.297). The driver’s
xLoad() routine returns a pointer to an object derived from the END_OBJ that it
allocates and partially populates. This object supplies the MUX with information
that describes the driver as well as a pointer to a NET_FUNCS interface that the
driver implements.

Although the driver’s xLoad() routine populates much of the END_OBJ object, the
MUX sets some of this object’s members when a service binds to the device.
Specifically, the MUX maintains the array of services bound to the END_OBJ.
When the driver calls the receive routine that the MUX registered by setting the
receiveRtn member of the driver’s END_OBJ object, this routine in turn calls the
bound service receive routines appropriate for the received packet.

Driver Implementations of the xLoad() Routine

A driver must implement an xLoad() routine. In a VxBus network driver, since the
driver itself passes the address of this routine to muxDevLoad(), the xLoad()
routine need not be public; however, for a legacy END driver, the MUX accesses
the xLoad() routine directly, outside of the driver, and it must be globally visible.
It is usually the only globally visible routine for such a driver (see 4.7.1 Adding a
Network Driver, p.109).

Before the stack can use a network interface to send and receive frames, it must
load the appropriate network device into the MUX, attach services to the network
driver, and configure the interface at the service level (for example, by assigning
IP addresses). The tUsrRoot task loads network devices into the MUX by calling
the muxDevConnect() method for any VxBus network drivers or muxDevLoad()
for all the (non-VxBus) network drivers that are in endDevTbl[]. The entries in
this table provide all the information needed to call muxDevLoad(). This includes
a reference to the driver’s xLoad() routine (or in some cases, a wrapper that the
BSP provides that in turn calls the driver’s xLoad() routine).

As input, the xLoad() routine takes an initialization string, as well as an optional
argument provided by the BSP or VxBus driver.

4 Integrating a New Network Interface Driver
4.8 The Driver Interface with the MUX

129

4

Write your driver’s xLoad() routine as a two-pass algorithm. The MUX calls it
twice during the load procedure. In the first pass, the initialization string argument
points to a buffer starting with a zero byte. The xLoad() routine is expected to
check for this empty string and overwrite it with a string containing the prefix
name of the device (such as “fei” or “emac”). This informs muxDevLoad() about
the driver-specific interface name prefix.

The MUX then calls your xLoad() routine a second time. This time the
initialization string starts with a decimal unit number string, followed by a colon,
followed by the contents of the initialization string from the endDevTbl[] that
tUsrRoot passed to muxDevLoad(). Your xLoad() routine must then return a
pointer to the END_OBJ-derived DRV_CTRL object that it creates, or a NULL if the
load fails.

VxBus network drivers typically pass NULL to muxDevLoad() as the initialization
string, and pass the instance’s VXB_DEVICE_ID as the optional argument; the
xLoad() routine gets all the information it needs from the device ID and the VxBus
parameter system. Older network drivers pass an initialization string that is
typically a driver-specific colon-separated sequence of driver configuration
parameters, and the xLoad() routine must tokenize and parse this string, which
generally contains such things as the address of memory mapped registers for the
device, the number of receive and transmit descriptors to use, the PHY address,
and special device flags or options.

A VxBus network driver divides its instance initialization work between its
devInstanceInit2() routine and its xLoad() routine. The division is somewhat
arbitrary, but basically anything that depends upon endLib or the MUX may be
held off to the xLoad() routine. A non-VxBus driver has no devInstanceInit2()
routine, and so all the work needs to be done in its xLoad() routine. The following
work is done in either the devInstanceInit2() routine, or in the xLoad() routine’s
second pass:

■ Allocate, zero out, and then populate the DRV_CTRL structure (see
A.3.3 DRV_CTRL, p.290).

■ Call END_OBJ_INIT() to initialize the END_OBJ core. Among other things, this
sets the driver description, and the pointer to the driver’s NET_FUNCS table.

■ Parse and process the initialization string (non-VxBus drivers only).
■ Identify and reset the device, putting it into a quiescent state.
■ Initialize any necessary private structures.
■ Determine the device’s MAC address. This is done in a driver-specific way,

and sometimes in a BSP-specific way.
■ Allocate memory for transmit and receive descriptors. Parallel to the transmit

and receive descriptor rings are rings of M_BLK pointers, also for transmit and
receive. If these are not part of the driver control structure, the driver must also

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

130

allocate them. Generic VxBus drivers may call vxbDmaBufLib support
routines to create the necessary tags and maps.

■ Allocate a network buffer tuple pool. The pool has tuples large enough to hold
the maximum size frame the driver supports, and the driver uses it primarily
for receiving frames, but may also use it to coalesce fragmented transmits. The
best way to create such a pool is to call the endLib utilities endPoolCreate()
or endPoolJumboCreate() (for jumbo frames). These in turn call
netPoolCreate() using the linkBufPool back end.

■ Call endM2Init() to initialize MIB interface statistics structures.
■ Initialize the driver’s hardware offload capabilities structure (if the driver and

hardware support such capabilities).
■ Initialize polled statistics structures (if the driver supports this)

Base your xLoad() routine on the following template:

END_OBJ * xLoad
(
char * initString, /* defined in endTbl */
void * pBsp /* BSP-specific information (optional) */
)
{
MY_DRV_CTRL * newEndObj; /* DRV_CTRL is a subclass of END_OBJ */
if (!initString) /* initString is NULL, error condition */

{
/* set errno perhaps */
return ((END_OBJ *) ERROR);
}

if (initString[0] == 0) /* initString[0] is NULL, pass one */
{
strcpy (initString, "deviceName");
return ((END_OBJ *) NULL);
}

else /* initString is not NULL, pass two */
{
/* Allocate & initialize device (already done if VxBus) */
newEndObj = (MY_DRV_CTRL *) calloc (1, sizeof (MY_DRV_CTRL));
if (newEndObj == NULL)

return NULL;
/*
* parse and process initString, and pBsp if necessary;
* initialize any needed private structures;
* identify and reset the device;
* call END_OBJ_INIT() to initialize some MUX-owned fields;
* call endM2Init() to initialize MIB statistics data;
* allocate DMA descriptors (& vxbDmaBufLib tags/maps);
* initialize statistics polling structures;
* initialize hardware offload capabilities structure;
* create network buffer pools using endPool[Jumbo]Create();
*/
return ((END_OBJ *) newEndObj);
}

}

4 Integrating a New Network Interface Driver
4.8 The Driver Interface with the MUX

131

4

Driver Implementations of the NET_FUNCS Interface

Table 4-2 lists the entry points of the NET_FUNCS interface that drivers implement
and expose to the MUX. In this book, these routines have a generic “x” prefix, but
in practice this prefix is usually replaced with a driver-specific identifier, such as
“ln7990” for the Lance Ethernet driver.

Table 4-2 NET_FUNCS Interface Routines

Routine Description

xStart() Enable reception and transmission for the device.

xStop() Deactivate the network device.

xUnload() Release a device, or a port on a device, from the MUX.

xIoctl() Support various ioctl commands.

xSend() Accept data from the MUX and send it on to the physical
layer.

xMCastAddrAdd() Add a multicast address to the list of those registered for
the device.

xMCastAddrDel() Remove a multicast address from those registered for the
device.

xMCastAddrGet() Retrieve a list of multicast addresses registered for a
device.

xPollSend() Send frames in polled mode rather than interrupt-driven
mode. (Poll mode should only be used for debugging.)

xPollRcv() Receive frames in polled mode rather than
interrupt-driven mode. Poll mode should only be used
for debugging. For details, see 4.3.3 Polled Mode – For
Debugging Only, p.92.

xFormAddress() Add addressing information to a packet.

xPacketDataGet() Separate the addressing information and data in a packet.

xAddrGet() Extract the addressing information from a packet.

xEndBind() Exchange data with the network service at bind time.
(Optional)

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

132

xStart()

The driver’s xStart() routine does whatever is necessary to make the driver active
and available. For instance, it should do the following:

■ Register your device driver’s interrupt service routine by calling
sysIntConnect(), if this has not been done earlier in the load routine or in
devInstanceInit2().

■ VxBus network drivers should reread parameters that might be expected to
change between device stops and starts, for instance the parameter specifying
the network job queue to which the driver posts work for the device.

■ Configure the device for packet reception and transmission.

■ Populate the receive ring and parallel receive M_BLK pointer ring with tuples
from the device’s network buffer pool.

■ Initialize the transmit ring.

■ Enable device interrupts at the board/interrupt controller level as well as at
the device-specific level.

■ Appropriately set the device registers that finally enable reception and
transmission.

■ Set the PHY to the desired mode.

For VxBus network drivers, the driver’s muxDevConnect() method calls
muxDevStart() after calling muxDevLoad(); for other network drivers, the
start-up code calls muxDevStart() after muxDevLoad(). In either case,
muxDevStart() passes xStart() the unique interface identifier that the driver’s
xLoad() routine returned.

As with xLoad(), the MUX makes this call for each port that it activates within the
driver.

An example template for the xStart() routine follows:

STATUS xStart
(
END_OBJ * pEND, /* END object */
)
{
x_DRV_CTRL * pDrvCtrl = (x_DRV_CTRL *) pEnd;
/*
 * Some drivers may require additional mutual exclusion beyond the
 * transmit semaphore. If so, be sure to observe proper mutex ordering.
*/

END_TX_SEM_TAKE (&pDrvCtrl->end, WAIT_FOREVER);

4 Integrating a New Network Interface Driver
4.8 The Driver Interface with the MUX

133

4

if ((pDrvCtrl->end.flags & IFF_UP) == 0)
{
/*
 * - Reread selected device parameters, such as the job queue ID.
 * - Connect the driver's ISRs, if not already done.
 * - Initialize RX descriptor ring; set each descriptor to point to
 * a buffer from a tuple from the device network buffer pool.
 * - Initialize TX ring as needed.
 * - Configure the device according to current settings.
 * - Endable device interrupts.
 * - Enable transmission and reception.
 * - Set desired PHY mode.
*/
pDrvCtrl->end.flags |= (IP_IFF_UP | IP_IFF_RUNNING);
}

END_TX_SEM_GIVE (&pDrvCtrl->end);
return (OK);
}

Write this routine to return OK, or ERROR in which case it should set errno
appropriately.

xStop()

The driver’s xStop() routine halts a network device, putting it into a quiescent
state in which it does not generate interrupts. It also does the following:

■ Waits for any network jobs which may be outstanding for the device to
complete, and arranges that more network jobs will not be posted nor will
device interrupts be reenabled.

■ Disconnects any driver ISRs that the xStart() routine connected.

■ Frees outstanding transmitted packets that have not been returned to the
stack, and returns tuples associated with the device’s receive ring to the device
network buffer pool. (This is done so that if the buffer pool is shared between
multiple devices, the other devices have access to the buffers while the current
device is stopped.) Otherwise, the xStop() routine does not release data
structures that were allocated in the xLoad() routine or in devInstanceInit2().

The MUX passes xStop() the END_OBJ pointer returned by the driver’s xLoad()
routine. xStop() is considered a synchronous routine, that is, it should not return
until the device has been fully quiesced.

An xStop() template follows:

STATUS xStop
(
END_OBJ * pEND, /* END object */
)
{

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

134

x_DRV_CTRL * pDrvCtrl = (x_DRV_CTRL *) pEnd;

END_TX_SEM_TAKE (&pDrvCtrl->end, WAIT_FOREVER);
if (pDrvCtrl->end.flags & IFF_UP)

{
pEND->flags &= ~(IFF_UP | IFF_RUNNING);
/*
 * - Prevent any jobs in progress from reenabling interrupts
 * - Disable device interrupts
 * - Wait for any outstanding jobs to complete; ensure no others are
 * posted.
 * - Disable packet reception and transmission.
 * - Clean the transmit M_BLK ring, freeing any packets to the stack.
 * - Clean RX tuple ring, returning tuples to network buffer pool.
 * - If using the recycle cache, call endMCacheFlush().
 * - If the driver ISRs were connected in xStart(), disconnect them
*/
}

END_TX_SEM_GIVE (&pDrvCtrl->end);
return (OK);
}

Write this routine to return OK.

xUnload()

The MUX calls your driver’s xUnload() when a system application calls
muxDevUnload(). A VxBus network driver may itself call muxDevUnload() in
response to a call to its vxbDrvUnlink() method, asking it to unlink an instance.

When muxDevUnload() is called, it checks if the specified device is still up. If so,
muxDevUnload() calls the driver’s xStop() routine for the device. Next, it calls
the shutdown routines for each service that bound to the device; the service
shutdown routine must in turn call muxUnbind() to unbind itself from the device.
Finally, muxDevUnload() calls the xUnload() routine for the device. (See
Figure 4-4.)

In its xUnload() routine, your driver is responsible for doing whatever it takes to
release all resources associated with the device that were created or allocated
during the driver’s xLoad() routine. (For non-VxBus network drivers, this would
include all resources associated with the device. For VxBus network drivers,
resources allocated in the devInstanceInit2() routine, before the xLoad() routine
is called, do not need to be freed.) These resources may include memory, the device
network pool and all its buffers, kernel objects such as semaphores associated with
the device, and so forth.

The DRV_CTRL structure for the device, which starts with an embedded END_OBJ,
is a special case:

4 Integrating a New Network Interface Driver
4.8 The Driver Interface with the MUX

135

4

– If the driver’s xUnload() routine returns OK, muxDevUnload() will itself
free the END_OBJ, which frees the driver control structure.

– If the driver’s xUnload() routine returns any other value,
muxDevUnload() will not attempt to free the END_OBJ; that becomes the
driver’s responsibility.

– If there is no error condition, but the driver wishes to free the END_OBJ
itself, the xUnload() routine should return EALREADY.

– Any return value other than OK or EALREADY indicates an error
condition, and an error message will be logged.

– Generally, VxBus network driver xUnload() routines should return
EALREADY, since the driver control structure is typically needed in the
driver’s vxbDrvUnlink() method after the call to muxDevUnload().
Also, muxDevUnload() might be called for a VxBus network device
outside of the context of the vxbDrvUnlink() method; in that case also,
the instance still exists from the point of view of VxBus, and so the driver’s
control structure for the instance must not be freed yet.

The xUnload() routine must free the device network buffer pool:

– For pools created with endPoolCreate() or endPoolJumboCreate(), this
is done by calling endPoolDestroy().

– Pools created using netPoolCreate() may be freed by calling
netPoolRelease(). Calling netPoolRelease() causes the system to free a
pool after the stack releases all network pool resources that it is holding
from that pool.

– For any pools that the driver created using netPoolInit(), there is no such
safe pool release routine, and the driver must ensure that all tuples have
been returned to the driver pool before it returns successfully from
xUnload(). If it cannot do so, the driver does not properly support
unloading the device.

– Wind River recommends that drivers use endPoolCreate(),
endPoolJumboCreate(), or netPoolCreate(), instead of netPoolInit(), to
create driver memory pools.

xUnload() is a device-specific call. If the driver has any resources that it shares
among all of its device instances, it must not free these shared resources until the
MUX calls the driver’s xUnload() routine for each of these devices.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

136

The xUnload() prototype is:

STATUS xUnload
(
END_OBJ * pEND /* END object */
)

xIoctl()

Network drivers are not installed into the VxWorks I/O system using
iosDrvInstall(), and so they do not directly support the ioctl() function, which
passes an integer “file descriptor” as its first argument. However, the MUX
supports an ioctl-like interface, muxIoctl(), that a caller can use to request
miscellaneous device-specific services from network drivers (see
A.2.13 muxIoctl(), p.272). The ioctl command codes in this interface begin with
“EIOC” and are listed in the file target/h/endCommon.h.

Some protocol stacks may translate certain socket ioctl commands into other
“EIOC” ioctl codes that they then pass to the MUX. However, the translation need
not be one-to-one, and there is not any protocol stack-independent way to call
MUX ioctl commands using a socket file descriptor. Applications that need to call
MUX ioctls should bind as a service to a network driver, and pass the binding
cookie as the first argument to muxIoctl(); or failing that, obtain a pseudo-binding
cookie by calling muxTkCookieGet() and use that when calling muxIoctl(). Some
MUX ioctl calls are handled by the MUX itself, but most are passed down by
muxIoctl() to the network driver’s xIoctl() routine.

Any variety of network driver may need to support MUX ioctl commands,
particularly if it is to interface with the existing IP network service sublayer. See
Table 4-3 for a list of commonly-used ioctl commands.

An NPT driver must support the command EIOCGNPT. The MUX (and sometimes
a network service) uses this command to determine if a driver is of the NPT
variety. All the driver needs to do upon receiving this command is to return OK,
indicating success. Non-NPT drivers must return EINVAL when they receive the
EIOCGNPT ioctl command (as any driver should do when it receives a MUX ioctl
that it does not understand).

NOTE: Wind River assigns MUX ioctl command codes according to the scheme
defined in target/h/sys/ioctl.h, using the macros _IOR(), _IOW(), _IORW(). The n
argument to these macros becomes the low-order byte of the command code.
Low-order byte values in the range 0-127 are reserved for Wind River use. Choose
n values in the range 128-255 to avoid possible conflict with new Wind River codes.

4 Integrating a New Network Interface Driver
4.8 The Driver Interface with the MUX

137

4

The MUX passes the xIoctl() routine three arguments:

■ the END_OBJ pointer that the driver returned from xLoad()

■ the ioctl command being issued (for instance, one from Table 4-3)

■ an additional argument, often a pointer to a data buffer for additional data
given in the command or for data to be returned on completion of the
command

While this argument is prototyped as a caddr_t (the equivalent of a char *), the
actual type passed depends upon the particular MUX ioctl command. For the
commands EIOCSADDR, EIOCGADDR, EIOCMULTIADD, and
EIOCMULTIDEL that pass link-layer addresses, the lengths of these addresses
must be implicitly known to the driver and to the attached services that call
muxIoctl(). For Ethernet drivers, the addresses are 6 bytes long.

The following xIoctl() template example is modelled after the geiEndIoctl()
routine of the gei825xxVxbEnd.c driver:

LOCAL int xIoctl
(
END_OBJ * pEND, /* END Object */
int command, /* ioctl command */
caddr_t data /* holds response from command */
)
{
MY_DRV_CTRL * pDrvCtrl;
END_MEDIALIST * mediaList;
END_CAPABILITIES * hwCaps;
END_MEDIA * pMedia;
INT32 value;
int error = OK

pDrvCtrl = (MY_DRV_CTRL *) pEnd;
if (command != EIOCPOLLSTART && command != EIOCPOLLSTOP)

semTake (pDrvCtrl->xDevSem, WAIT_FOREVER);

switch (command)
{

/*****
* if this is an NPT driver, add the following section:

case EIOCGNPT:

! WARNING: The muxIoctl() routine handles the multicast address add, delete, and
list-get ioctl commands (EIOCMULTIADD, EIOCMULTIDEL, EIOCMULTIGET) by
calling the corresponding mCastAddrAdd(), mCastAddrDel(), or
mCastAddrGet() functions from the driver NET_FUNCS structure. Do not be
tempted to support only the multicast table management ioctls and not the
corresponding NET_FUNCS functions.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

138

error = OK;
break;

*
*****/

case EIOCSADDR:
if (data == NULL)

error = EINVAL;
else

bcopy ((char *)data, (char *)pDrvCtrl->ethAddr,
ETHER_ADDR_LEN);

/* Set the receive configuration so that device receives
packets destined for the new station address, rather than
the old one. */

xEndRxConfig (pDrvCtrl);
break;

case EIOCGADDR:
if (data == NULL)

error = EINVAL;
else

bcopy ((char *)pDrvCtrl->ethAddr, (char *)data,
ETHER_ADDR_LEN);

break;

case EIOCSFLAGS:
value = (INT32) data;
if (value < 0)

{
value = ~value;
END_FLAGS_CLR (pEnd, value);
}

else
END_FLAGS_SET (pEnd, value);

/* Set receive configuration according to new flags */
xEndRxConfig (pDrvCtrl);
break;

case EIOCGFLAGS:
if (data == NULL)

error = EINVAL;
else

*(long *)data = END_FLAGS_GET(pEnd);
break;

case EIOCMULTIADD:
error = xMCastAddrAdd (pEnd, (char *) data);
break;

case EIOCMULTIDEL:
error = xMCastAddrDel (pEnd, (char *) data);
break;

case EIOCMULTIGET:
error = xMCastAddrGet (pEnd, (MULTI_TABLE *) data);
break;

4 Integrating a New Network Interface Driver
4.8 The Driver Interface with the MUX

139

4

case EIOCPOLLSTART:
pDrvCtrl->polling = TRUE;
/*
* Note that this command is called with interrupts locked.
*
* - Save the current interrupt mask to be restored when exiting
* polled mode.
* - Disable device interrupts
* - Empty and clean the transmit ring buffer; either return all
* TX packet resources, or save them to be returned when polled
* mode is exited. The latter avoids the possibility that
* cluster free routines will call functions that shouldn't be
* called with interrupts locked.
*/
break;

case EIOCPOLLSTOP:
pDrvCtrl->polling = FALSE;

/*
* - Reenable device interrupts as they were when polled mode was
 * entered.
*/

break;

case EIOCGMIB2233:
case EIOCGMIB2:

error = endM2Ioctl (&pDrvCtrl->xEndObj, cmd, data);
break;

case EIOCGPOLLCONF:
if (data == NULL)

error = EINVAL;
else

*((END_IFDRVCONF **)data) = &pDrvCtrl->xEndStatsConf;
break;

case EIOCGPOLLSTATS:
if (data == NULL)

error = EINVAL;
else

{
/* Retrieve current statistics from the hardware: */
error = xEndStatsDump(pDrvCtrl);
if (error == OK)
*((END_IFCOUNTERS **)data) = &pDrvCtrl->xEndStatsCounters;
}

break;

case EIOCGMEDIALIST:
if (data == NULL)

{
error = EINVAL;
break;
}

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

140

if (pDrvCtrl->xMediaList->endMediaListLen == 0)
{
error = ENOTSUP;
break;
}

mediaList = (END_MEDIALIST *)data;
if (mediaList->endMediaListLen

< pDrvCtrl->xMediaList->endMediaListLen)
{
mediaList->endMediaListLen =

pDrvCtrl->xMediaList->endMediaListLen;
error = ENOSPC;
break;
}

bcopy((char *)pDrvCtrl->xMediaList, (char *)mediaList,
sizeof(END_MEDIALIST) + (sizeof(UINT32) *
pDrvCtrl->xMediaList->endMediaListLen));

break;

case EIOCGIFMEDIA:
if (data == NULL)

error = EINVAL;
else

{
pMedia = (END_MEDIA *)data;
pMedia->endMediaActive = pDrvCtrl->xCurMedia;
pMedia->endMediaStatus = pDrvCtrl->xCurStatus;
}

break;

case EIOCSIFMEDIA:
if (data == NULL)

error = EINVAL;
else

{
pMedia = (END_MEDIA *)data;
/* Assumes a VxBus driver using miiBus : */
miiBusModeSet (pDrvCtrl->xMiiBus, pMedia->endMediaActive);
/* Read new link state, update MAC and MIB state accordingly,
 * send END_ERR_LINKUP or END_ERR_LINKDOWN muxError() events
 * if needed; if link comes up, call muxTxRestart() : */
xLinkUpdate (pDrvCtrl->xDev);
error = OK;
}

break;

case EIOCGIFCAP:
hwCaps = (END_CAPABILITIES *)data;
if (hwCaps == NULL)

{
error = EINVAL;
break;
}

hwCaps->csum_flags_tx = pDrvCtrl->xCaps.csum_flags_tx;

4 Integrating a New Network Interface Driver
4.8 The Driver Interface with the MUX

141

4

hwCaps->csum_flags_rx = pDrvCtrl->xCaps.csum_flags_rx;
hwCaps->cap_available = pDrvCtrl->xCaps.cap_available;
hwCaps->cap_enabled = pDrvCtrl->xCaps.cap_enabled;
break;

case EIOCSIFCAP:
hwCaps = (END_CAPABILITIES *)data;
if (hwCaps == NULL)

{
error = EINVAL;
break;
}
pDrvCtrl->xCaps.cap_enabled = hwCaps->cap_enabled;
break;

case EIOCGIFMTU:
if (data == NULL)

error = EINVAL;
else

*(INT32 *)data = pEnd->mib2Tbl.ifMtu;
break;

case EIOCSIFMTU:
value = (INT32)data;
if (value <= 0 || value > pDrvCtrl->xMaxMtu)

{
error = EINVAL;
break;
}

pEnd->mib2Tbl.ifMtu = value;
if (pEnd->pMib2Tbl != NULL)

pEnd->pMib2Tbl->m2Data.mibIfTbl.ifMtu = value;
break;

case EIOCGRCVJOBQ:
if (data == NULL)

{
error = EINVAL;
break;

}

qinfo = (END_RCVJOBQ_INFO *)data;
nQs = qinfo->numRcvJobQs;
qinfo->numRcvJobQs = 1;
if (nQs < 1)

error = ENOSPC;
else

qinfo->qIds[0] = pDrvCtrl->xJobQueue;
break;

default:
error = EINVAL;
break;

}

if (cmd != EIOCPOLLSTART && cmd != EIOCPOLLSTOP)

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

142

semGive (pDrvCtrl->xDevSem);

return (error);
}

xIoctl() should return OK if successful, and an errno.h-style error code in case of
failure. The routine generally returns EINVAL both for unsupported ioctl codes as
well as for invalid arguments to a supported ioctl. The routine may occasionally
return other particular codes such as EIO, ENOSPC, ENOTSUP, or ENOBUFS.

Table 4-3 MUX ioctl Commands and Data Types

Command Purpose data Type

EIOCGNPT Indicates NPT-compliance. Do not
implement this ioctl unless your
driver is of the NPT model.

NULL

EIOCGFLAGS Get device flags. See flags, p.299. int *

EIOCSFLAGS Set device flags. See flags, p.299 and
EIOCSFLAGS, p.144.

int

EIOCGIFCAP /
EIOCSIFCAP

Get/set device capabilities. See:
4.6 Implementing Checksum
Offloading, p.102.

END_CAPABILITIES *

EIOCGIFMEDIA Get current PHY “media.” Return
the active media mode and link
status into the data structure.

END_MEDIA *

EIOCGMEDIALIST Get supported media list. Return the
device’s supported PHY media list
into the data structure.

END_MEDIALIST *

EIOCGADDR /
EIOCSADDR

Get/set device address. data points
to a buffer for the link-layer station
address.

char *

EIOCMULTIADD Add multicast address. data points
to a multicast address to add to the
multicast list (and enable reception
for).

char *

4 Integrating a New Network Interface Driver
4.8 The Driver Interface with the MUX

143

4

EIOCMULTIDEL Delete multicast address. data points
to a multicast address to remove
from the multicast list (and no longer
receive).

char *

EIOCMULTIGET Get multicast list. data is a pointer to
a table that the driver fills with the
multicast addresses in its multicast
reception list.

MULTI_TABLE *

EIOCPOLLSTART Put device in polled mode. NULL

EIOCPOLLSTOP Put device in interrupt mode (exit
polled mode).

NULL

EIOCGMTU Get the link MTU. INT32 *

EIOCSIFMTU Set the link MTU. INT32

EIOCGRCVJOBQ Get the queue ID of the job queue the
device uses to post work.

END_RCVJOBQ_INFO *

EIOCQUERY Retrieve the bind routine (see
4.7.3 Responding to Network Service
Bind Calls, p.117 and EIOCQUERY,
p.144).

END_QUERY *

EIOCGHDRLEN Get the size of the datalink header (if
this is not supported, you can
assume a 14-byte header).

int *

EIOCGMIB2 Get RFC 1213 MIB information from
the driver. Call endM2Ioctl() to
handle this.

M2_INTERFACETBL *

EIOCGMIB2233 Get RFC 2233 MIB information from
the driver. Call endM2Ioctl() to
handle this.

M2_ID **

EIOCGPOLLCONF Get statistics polling configuration. END_IFDRVCONF **

EIOCGPOLLSTATS Get the current poll statistics counts.END_IFCOUNTERS **

Table 4-3 MUX ioctl Commands and Data Types (cont’d)

Command Purpose data Type

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

144

EIOCSFLAGS

The EIOCSFLAGS MUX ioctl is called by upper layers of the stack to set a small
number of device flags (values defined in target/h/wrn/coreip/net/if.h), such as
IFF_PROMISC or IFF_ALLMULTI, that may be administratively controllable.
(IFF_UP is not directly administratively controllable; a network device should be
brought up or down by calling muxDevStart() or muxDevStop(). Other flags like
IFF_BROADCAST, IFF_SIMPLEX, IFF_MULTICAST that refer to general
characteristics of the device are likewise not administratively controllable.)

The caller may use the EIOCSFLAGS ioctl either to clear or to set bit flags. If the
most significant bit of the integer argument to the ioctl is clear, so that the
argument appears non-negative as a signed integer, the intent is to set any of the
other bits that are on. On the other hand, if the most significant bit in the argument
is set, so that the argument appears negative, the intent is to clear bits: specifically,
to clear the bits that are set in the ones-complement of the argument. For example,
to clear IFF_PROMISC, the argument would be ~IFF_PROMISC, while to set
IFF_PROMISC and IFF_ALLMULTI, the argument would just be (IFF_PROMISC |
IFF_ALLMULTI). The use of the most significant bit to determine whether to set or
clear means that you cannot define this bit as a flag with a different purpose.

EIOCQUERY

In the case where command is EIOCQUERY, data points to an END_QUERY
structure (see A.3.10 END_QUERY, p.301). The caller sets the query field of this
structure to the type of query (for instance, END_BIND_QUERY), and the queryLen
field to the size of the queryData buffer. Upon receipt of an EIOCQUERY
command, your xIoctl() routine should either copy data into this queryData
buffer, or return an error value such as EINVAL.

Your driver is not required to support EIOCQUERY queries.

xSend()

The MUX calls this routine when the network service issues a send request. The
MUX passes in a reference to an M_BLK chain representing the data the routine is
to send. This routine is responsible for sending this data over the device (see
4.5 Transmitting Data, p.95 for a more-thorough discussion of how a driver
transmits data).

4 Integrating a New Network Interface Driver
4.8 The Driver Interface with the MUX

145

4

This routine should return one of the following:

OK
if the send succeeds

END_ERR_BLOCK
if the send cannot complete because of a transient condition such as all
transmit descriptors being in use

This is normal transmit flow control, and is not considered an error. If the send
routine returns END_ERR_BLOCK, this means that the driver’s transmit side is
stalled, and the driver must arrange to call muxTxRestart() when it has
sufficient resources to complete the send (see Figure 4-7). The muxTxRestart()
call must be done in the context of the driver’s network job queue task, with
no mutexes held.

The driver may require that a certain high-water-mark of transmit resources
be available before it calls muxTxRestart(). However, it must call
muxTxRestart() at some point on its own initiative; it cannot rely upon
network services making further send calls after a transmit stall otherwise.

When the send routine returns END_ERR_BLOCK, the stack still owns the
M_BLK chain describing the packet, and the driver should not free it. If the
send routine returns any other value, the driver takes ownership of the M_BLK
chain and must arrange to free it soon after transmission completes.

ERROR
in which case the driver should set errno appropriately

This case is exceedingly unusual, and indicates a problem with the packet, the
driver, or the device that would prevent the packet from ever being
successfully sent. The driver must free the packet.

NOTE: The current release of the Wind River Network Stack’s IP stack passes only
packets consisting of a single M_BLK tuple, that is, a single contiguous segment, to
the MUX for transmission. However, because this is not guaranteed for other
protocols and services, network drivers should continue to support transmission
of packets described by a chain of more than one M_BLK tuple.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

146

ENDs and NPT drivers implement this routine differently:

END Implementation

In the case of an END, the data in pPkt is a link-level frame; the needed link header
is already present.

The prototype of the xSend() routine in an END is:

STATUS xSend
(
END_OBJ * pEND, /* END object */
M_BLK_ID pPkt /* M_BLK chain containing the frame */
)

NPT Implementation

In the case of an NPT driver, the data in pPkt is a packet, usually without a link
header attached. In this routine, an NPT driver must prepend the link-level header
to this packet before sending it.

Figure 4-7 Implementing Flow Control

Service MUX Driver

mux[Tk]Send()
xSend()

END_ERR_BLOCK

END_ERR_BLOCK

muxTxRestart()
xStackRestartRtn()

mux[Tk]Send()
xSend()

OK
OK

4 Integrating a New Network Interface Driver
4.8 The Driver Interface with the MUX

147

4

The prototype of the xSend() routine in an NPT driver is:

STATUS xSend
(
END_OBJ * pEND, /* END object */
M_BLK_ID pPkt, /* network packet to transmit */
char * dstAddr, /* destination MAC address */
int netSvcType, /* network service type, in network byte order */
void * pSpare /* optional network service data */
)

When dstAddr is non-NULL, it points to a buffer containing the destination
link-level address for the packet. The NPT driver xSend() routine must use this,
together with the netSvcType parameter and its knowledge of the interface’s own
station address (the source address) to construct a link header for the packet.

There may or may not be space available at the start of the cluster containing the
start of the packet to prefix the full MAC header. The M_PREPEND() macro,
defined in target/h/wrn/coreip/net/mbuf.h, will attempt to prefix sufficient space.
If there is enough existing leading space in the cluster and the cluster is not shared
by more than one code path, M_PREPEND() will simply adjust the M_BLK
pointers, otherwise it will try to allocate a new tuple out of the legacy “network
stack data pool” (which must be configured into the image, as part of the
component INCLUDE_NET_POOL).

Some NPT drivers may prefer to use their own mechanisms to allocate space for a
link header. If the driver cannot successfully prepend a link header, it must either
free the packet using netMblkClChainFree() and return ERROR, or, if the driver
can guarantee that it will call muxTxRestart() later when more resources are
available, it may return END_ERR_BLOCK. If the driver returns END_ERR_BLOCK,
it must return the packet to its original state (for instance, if it prepended a link
header it must remove this link header). Some previous stack versions allowed a
driver to set the M_HEADER/M_PROMISC flag in the lead M_BLK rather than
removing the prepended link header, but the current protocol stacks do not
support this usage.

When dstAddr is NULL, the packet already has a link header, and the NPT driver
xSend() routine should not prefix another.

The pSpare argument is usually NULL. This argument is passed through the MUX
from the pSpareData argument passed by the service calling muxTkSend(). To
use this parameter at all, the NPT driver must have knowledge of, and be able to
identify, the sending protocol (perhaps by using the netSvcType parameter); and
must agree with the sending protocol on the interpretation of the parameter. Wind
River protocols and drivers have to date established no conventions for use of this
parameter.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

148

xMCastAddrAdd()

muxMCastAddrAdd() calls this routine to tell the driver to configure the device
so that it will receive packets destined for a particular link-layer multicast address.
The driver must also maintain a full list of the multicast addresses so added;
Ethernet devices may use the etherMultiLib library APIs to do so.

A typical Ethernet xMCastAddrAdd() routine looks like this:

STATUS xMCastAddrAdd
(
END_OBJ * pEND, /* driver's control structure */
char * pAddress /* buffer containing multicast address */
)
int retVal;
x_DRV_CTRL * pDrvCtrl;

pDrvCtrl = (x_DRV_CTRL *) pEnd;

semTake (pDrvCtrl->devSem, WAIT_FOREVER);

retVal = etherMultiAdd (&pEnd->multiList, pAddr);

if (retVal == ENETRESET)
{
pEnd->nMulti++;
if (pEnd->flags & IFF_UP)

xEndHashTblPopulate (pDrvCtrl);
retVal = OK;
}

if (retVal != OK)
{
errnoSet (retVal);
retVal = ERROR;
}

semGive (pDrvCtrl->devSem);
return (retVal);
}

The etherMultiAdd() routine does the following:

1. checks that the specified address in the buffer at pAddr is in fact a valid
Ethernet multicast address

– if not, returns EINVAL

2. checks whether the address already belongs to the specified list
pEnd->multiList

– if so, increments a reference count associated with the address, and returns
0 (zero)

4 Integrating a New Network Interface Driver
4.8 The Driver Interface with the MUX

149

4

3. attempts to allocate a buffer for the new address

– if unsuccessful, returns ENOBUFS

– if successful, adds the new address is added to the list with reference count
1 and returns ENETRESET, which lets the driver know that it should
increment the multicast address count and reconfigure the hardware to
receive packets destined to the new multicast address

In this example code, the driver does this by calling its routine
xEndHashTblPopulate(). Different devices have different multicast filtering
capabilities, but generally you should program your device to receive packets for
every multicast address in pEnd->multiList, and for as few others as possible. (An
exception is that if the IFF_ALLMULTI flag has been set, the device should receive
packets destined to any multicast address.)

A driver for a device that is not multicast capable should clear IFF_MULTICAST in
its flags (see flags, p.299), and should also provide dummy mCastAddrAdd(),
mCastAddrDel(), and mCastAddrGet() routines in its NET_FUNCS interface that
simply set errno to ENOTSUP and return ERROR.

Drivers for multicast-capable devices using non-Ethernet MAC addresses cannot
use etherMultiLib, and will have to implement their own methods to manage
multicast address lists.

xMCastAddrDel()

This routine removes a previously registered multicast address from the list that
the driver maintains. It does the reverse of xMCastAddrAdd().

A typical Ethernet xMCastAddrDel() implementation looks like this:

STATUS xMCastAddrDel
(
END_OBJ * pEND, /* END object */
char * pAddress /* buffer with the multicast address to be removed */
)
{
int retVal;
x_DRV_CTRL * pDrvCtrl;

pDrvCtrl = (x_DRV_CTRL *) pEnd;

semTake (pDrvCtrl->devSem, WAIT_FOREVER);

retVal = etherMultiDel (&pEnd->multiList, pAddr);

if (retVal == ENETRESET)
{
pEnd->nMulti--;

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

150

if (pEnd->flags & IFF_UP)
xEndHashTblPopulate (pDrvCtrl);

retVal = OK;
}

if (retVal != OK)
{
errnoSet (retVal);
retVal = ERROR;
}

semGive (pDrvCtrl->devSem);
return (retVal);
}

The routine is very similar to xMCastAddrAdd(), except that it calls
etherMultiDel() instead of etherMultiAdd(), and decrements pEnd->nMulti
rather than incrementing it, if etherMultiDel() returns ENETRESET.

etherMultiDel() checks the specified list pEnd->multiList for the specified
link-layer address at pAddr. If the address is not present in the list,
etherMultiDel() returns ENXIO. Otherwise, etherMultiDel() decrements the
reference count associated with the address.

If the reference count is still nonzero, etherMultiDel() simply returns OK.
Otherwise, it removes the address from the list and frees the buffer that
etherMultiAdd() allocated to hold it, and returns ENETRESET. An ENETRESET
return value indicates to the driver that the address list has changed, and the
device must be reconfigured to receive the new, smaller set of multicast addresses.
The driver typically does this using the same routine xEndHashTblPopulate()
that it provides and calls from xMCastAddrAdd().

xMCastAddrGet()

This routine retrieves a list of all multicast addresses that are currently active for
reception on the device. It does not need to touch the device hardware at all.

It takes as arguments a pointer to the END_OBJ returned by xLoad(), and a pointer
to a MULTI_TABLE structure into which the list will be put.

An Ethernet xMCastAddrGet() routine can use etherMultiLib and looks like this
template:

STATUS xMCastAddrGet
(
END_OBJ * pEND, /* END object */
MULTI_TABLE * pMultiTable /* container for address list */
)
{
int retVal;
x_DRV_CTRL * pDrvCtrl;

4 Integrating a New Network Interface Driver
4.8 The Driver Interface with the MUX

151

4

pDrvCtrl = (x_DRV_CTRL *) pEnd;

semTake (pDrvCtrl->devSem, WAIT_FOREVER);

retVal = etherMultiGet (&pEnd->multiList, pMultiTable);

semGive (pDrvCtrl->devSem);
return (retVal);
}

The MULTI_TABLE structure (see A.3.16 MULTI_TABLE, p.307) specifies the
address and length of a buffer, into which the driver should write (in any
convenient order) as many of the addresses in its multicast reception list as will fit.
Although conventions for non-Ethernet addresses have not been well established,
for Ethernet the addresses are written with no padding or separators, so addresses
are effectively assumed to be of fixed length known to the driver and the caller.
After the addresses have been written to the buffer, the driver should rewrite the
len member of the MULTI_TABLE with the actual number of bytes taken up by the
addresses written.

Write this routine to return OK. It should always be successful, unless the driver
does not support multicast, in which case the routine should return ERROR and set
errno to ENOTSUP.

xPollSend()

When using the WDB_COMM_END communications type, the external WDB
debug agent calls muxTkPollSend() with interrupts locked when it wants to send
a packet during system mode debugging. muxTkPollSend() in turn calls the
network device’s xPollSend() routine.

This routine may be called only after the device has been put in to polled mode
using the EIOCPOLLSTART ioctl. The xPollSend() routine should immediately
return ERROR if the device is not in polled mode when it is called. Otherwise, it

NOTE: Polled mode transmission is a low-performance interface intended to
support debugging. For details, see 4.3.3 Polled Mode – For Debugging Only, p.92.

! WARNING: When the MUX calls your driver’s xPollSend() routine, the system is
probably in a mode that cannot service kernel calls. Therefore, this routine must
not perform any kernel operations, such as taking a semaphore or allocating
memory. Likewise, this routine must not block or delay because the entire system
might halt.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

152

must either transfer a packet to the device for transmission, or return EAGAIN if
not ready to do so.

Since the device is in polled mode, it may not rely upon the transmit interrupt
(which is disabled) to schedule clean-up of the transmit ring. Further, the caller
maintains ownership of the M_BLK packet chain, which implies that either the
routine itself must wait until the transmit completes before returning, or that it
must make a copy of the data to be transmitted.

Typically, the driver maintains a single tuple used for polled-mode sends on the
device, and copies data from the provided M_BLK chain to the tuple’s cluster
buffer using netMblkToBufCopy(). This avoids the complications of dealing with
multi-segment M_BLKs, and avoids also requiring much additional memory to
support the low-performance polled mode. The xPollSend() routine may use the
driver’s ordinary transmit encapsulation routine to queue the single copy tuple to
its transmit ring and enable transmission, but then should busy-wait for
transmission to complete and must re-clean the transmit ring before returning, to
avoid reusing the copy tuple too soon. When transmit is complete, the routine
returns OK.

The xPollSend() routine and the xSend() routine share the same transmit
descriptors and the same transmit queue. Therefore, xPollSend() should treat the
transmit queue and descriptors in the same manner as the xSend() routine.

Wind River recommends that your EIOCPOLLSTART ioctl-handling code clean the
transmit ring before returning, so that polled-mode sends start with an empty
transmit ring. In principle, it is possible that the xPollSend() routine interrupts the
normal xSend() routine, for instance if the naive user sets a system-level
breakpoint within the driver xSend() code. This can potentially corrupt the
transmit ring. There is not much that can be done about this, other than using
non-END WDB communication type when debugging network drivers.

Write xPollSend() to return OK, EAGAIN, or ERROR (it should not set errno under
any circumstances):

OK
Indicates that the packet is successfully sent.

EAGAIN
Indicates that the driver or device is not ready to transmit a frame, and the
caller should try again in a little while. The xPollSend() routine may wait for
short periods of time for the hardware to reach a state where another
transmission is possible, although it is preferable to return EAGAIN and let the
caller drive the polling.

4 Integrating a New Network Interface Driver
4.8 The Driver Interface with the MUX

153

4

ERROR
Indicates an argument error by the caller or a fatal condition which prevents
the provided packet from ever being sent. (Note that the WDB agent, typically
the only user of the polled-mode routines, may treat any non-zero return,
including ERROR, as equivalent to EAGAIN, causing the error to repeat.)

The xPollSend() routine has the same prototype as the xSend() routine. This
prototype differs between ENDs and NPT-style drivers. See xSend(), p.144 for
additional discussion of the parameters.

END Implementation

The MUX passes your END’s xPollSend() a pointer to your device’s END_OBJ
structure and a pointer to an M_BLK or M_BLK chain that describes the packet to
be transmitted.

The xPollSend() prototype for an END is:

STATUS xPollSend
(
END_OBJ * pEND, /* END object*/
M_BLK_ID pMblk /* M_BLK chain: data to be sent */
)

NPT Implementation

Like the xSend() routine, the xPollSend() routine in an NPT driver must add the
link header to the packet. However, it should not modify the M_BLK chain, which
is owned by the caller. Because the poll send routine is a low-performance interface
used primarily for the WDB connection, the driver typically copies the data
contents of the passed M_BLK chain into a separate contiguous buffer following
the constructed MAC header.

The xPollSend() prototype for an NPT driver is:

STATUS xPollSend
(
END_OBJ * pEND, /* END object */
M_BLK_ID pPkt, /* network packet to transmit */
char * dstAddr, /* destination MAC address */
long netType, /* network service type */
void * pSpareData /* optional network service data */
)

xPollRcv()

The external WDB agent, when using the WDB_COMM_END communications
type, calls muxTkPollReceive() with interrupts locked during system mode

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

154

debugging, to poll for availability of a received packet, retrieving the packet if one
is available. muxTkPollReceive() in turn calls the driver’s xPollRcv() routine.

This routine receives frames using polling instead of an interrupt-driven model.
The MUX passes this routine a pointer to the device’s END_OBJ, and a pointer to
an M_BLK (pPkt) tuple in which to place the frame. The routine checks the next
descriptor in its receive ring, and if a frame has been received, retrieves the frame
and copies it into the tuple’s cluster, adjusting the M_BLK to specify the packet
length. If no frame is immediately available, it returns EAGAIN.

It is an error to call muxTkPollReceive() when the network device is not in polled
mode. It is also an error to call those routines specifying an M_BLK which is not
attached to a cluster. The xPollRcv() routine is encouraged to check for these error
conditions, although they are not expected to occur.

It is not necessarily an error if the cluster attached to the tuple is not large enough
to hold the frame received from the wire, as the caller may be only interested in
frames that it knows will be short. If a frame is received that is too large to fit in the
provided cluster, the driver simply drops it and returns EAGAIN, as though the
frame had not been received at all. (During system mode debugging, when the
system is suspended and the WDB agent is in control running with interrupts
locked out in polled mode, any packets that are received that are not for the WDB
agent itself, apart from certain ARP requests, are dropped.)

The prototype of the xPollRcv() routine differs between ENDs and NPT drivers:

END Implementation:

STATUS xPollRcv
(
END_OBJ * pEND, /* returned from xLoad() */
M_BLK_ID pMblk /* pointer to M_BLK to fill with received frame */
)

NOTE: Polled mode reception is a low-performance interface intended to support
debugging. For details, see 4.3.3 Polled Mode – For Debugging Only, p.92.

! WARNING: When the system calls your xPollRcv() routine, it is probably in a
mode that cannot service kernel calls. Therefore, this routine must not perform any
kernel operations, such as taking a semaphore or allocating memory. Likewise, this
routine must not block or delay because the entire system might halt.

4 Integrating a New Network Interface Driver
4.8 The Driver Interface with the MUX

155

4

NPT Implementation:

STATUS xPollRcv
(
END_OBJ * pEND, /* END object */
M_BLK_ID pMblk, /* where to store received frame */
long * pNetSvcType, /* where to store network service type */
long * pNetOffset, /* where to store offset to network header */
void * pSpareData /* optional network service data */
)

For both styles of drivers, if no received frame is ready, the routine returns
EAGAIN. Likewise, if a frame is ready, but has errors reported by the device, the
frame is discarded and the routine returns EAGAIN. If a good frame is available,
the routine checks its length. The frame will be copied (if possible) into the buffer
of length pPkt->mBlkHdr.mLen at address pPkt->mBlkHdr.mData. If the buffer
is too small, the frame is dropped and the routine returns EAGAIN.

(Before copying the frame to the destination buffer, a driver that may operate on
architectures that do not handle non-aligned accesses well should increase
pPkt->mBlkHdr.mData by a small offset if necessary to properly align the
network layer header on a 4-byte boundary. The buffer length check should
account for this offset, which decreases the available space in the buffer.)

If the frame, including its link header and network payload (but not the ethernet
CRC) fits in the possibly offset buffer, the xPollRcv() routine copies the frame data
and adjusts pPkt->mBlkHdr.mLen and pPkt->mBlkBlkHdr.len to indicate the
actual length of the frame. The routine also sets M_PKTHDR in
pMblk->mBlkHdr.mFlags, and, if the device supports checksum offloading (see
4.6 Implementing Checksum Offloading, p.102), initializes
pMblk->mBlkPktHdr.csum_flags and pMblk->mBlkPktHdr.csum_data as
would be done in the normal receive routine. xPollRcv() then immediately cleans
the receive descriptors that were used by the frame, making them available for
subsequent receives.

At this point, an END returns OK. An NPT driver is responsible for also passing
information to the MUX about the link header, via the pNetSvcType and
pNetOffset arguments. An NPT-style xPollRcv() routine stores the size of the link
header (equal to the byte offset from the start of the frame to the network layer
header) in the integer at address pNetOffset, and extracts the network service type
(“ethertype”) from the link header and stores it (in host byte order) in the integer
pointed to by pNetSvcType.

The pSpareData argument is a seldom-used NPT extension allowing the driver to
exchange additional information with the service that called
muxTkPollReceive(). The driver must know which service that is, and the driver

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

156

and service must agree on the interpretation of pSpareData. Wind River has
established no conventions regarding its use.

xFormAddress()

The xFormAddress() routine generates a frame-specific header, prepends it to the
M_BLK chain containing outgoing data, and adjusts the mBlk.mBlkHdr.mLen and
mBlk.mBlkHdr.mData members accordingly.

If the incoming M_BLK’s cluster does not have enough available leading space to
contain the added header information, the routine creates an additional
M_BLK/CL_BLK/cluster tuple for this purpose and inserts it at the beginning of
the M_BLK chain.

The xFormAddress() routine provides support for the muxFormAddress() and
muxLinkHeaderCreate() functions. The current version of the IP network stack
does not call either function to create link headers; instead, it creates them
internally for supported link types. Other protocols and services may still rely
upon the xFormAddress() routine, however, so ENDs still need to provide it. NPT
drivers may optionally implement the routine, as an aid to protocols that might in
some cases want to pass NPT drivers full frames with link header already attached.
Ethernet or similar IEEE 802.3 drivers (END or NPT) may use one of the
implementations in endLib, endEtherAddressForm() or
end8023AddressForm().

The xFormAddress() prototype is:

M_BLK_ID xFormAddress
(
M_BLK_ID pData /* M_BLK chain containing outgoing data */
M_BLK_ID pSrc, /* source address, in an M_BLK */
M_BLK_ID pDst, /* destination address, in an M_BLK */
BOOL bcastFlag /* use link-level broadcast ? */
)

The source and destination link-level addresses are present in memory at the
locations specified by pSrc->mBlkHdr.mData and pDst->mBlkHdr.mData,
respectively. The caller also provides the network service type (in network byte
order) in the pDst->mBlkHdr.reserved field.

If bcastFlag is TRUE, the driver should construct a link-level broadcast header.
That is, it should ignore the destination address at pDst->mBlkHdr.mData,
substituting the link-level broadcast address.

All the M_BLK_ID arguments correspond to M_BLKs owned by the caller; the
routine should not attempt to free them.

4 Integrating a New Network Interface Driver
4.8 The Driver Interface with the MUX

157

4

The xFormAddress() routine returns a pointer to the first M_BLK of the resulting
chain; this would be the original M_BLK if it was not necessary to prefix a new one.

xPacketDataGet()

Various MUX routines call xPacketDataGet() to parse the link-level header in a
frame represented by an M_BLK chain. This routine is normally called only for
ENDs, not for NPT drivers.

Besides the M_BLK_ID specifying the frame, the MUX passes this routine a pointer
to an LL_HDR_INFO structure that the routine must fill out (see
A.3.11 LL_HDR_INFO, p.302).

The xPacketDataGet() routine sets the members of the structure specifying the
byte offset and byte size of both the destination and source addresses within the
link header; as well as the network service type of the packet, and the byte offset
to the network-level header (the same as the link header size). The ctrlAddrOffset
and ctrlSize members are currently unused. The link header is not guaranteed to
be contained all in the first M_BLK tuple of the chain, although in practice it almost
always is. The M_BLK chain should not be modified.

The routine should return OK unless there is an error in the packet which prevents
parsing the link header (for instance, if the packet is too short to contain a full link
header), in which case it should return ERROR. It should not free the packet.

Drivers for devices using ethernet or IEEE 802.3 MAC headers may use the
endEtherPacketDataGet() implementation in endLib rather than implementing
their own version of this routine.

The xPacketDataGet() prototype is:

STATUS xPacketDataGet
(
M_BLK_ID pPkt, /* M_BLK chain containing packet */
LL_HDR_INFO * pLHInfo /* structure to hold header info */
)

xAddrGet()

This routine is called only by the rarely-used (and somewhat ill-defined) function
muxPacketAddrGet(). The routine is expected to extract up to four link-level
addresses from the link header of a frame specified as an M_BLK chain. The four
addresses are identified as “local” or “immediate” source and destination
addresses, and “ultimate” or “end” or “remote” source and destination addresses.
endLib implements a version for ethernet, called endEtherPacketAddrGet(); this
version treats the local/immediate and remote/end/ultimate addresses
identically.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

158

The xAddrGet() prototype is:

STATUS xAddrGet
(
M_BLK_ID pPkt, /* M_BLK chain containing frame */
M_BLK_ID pSrc, /* local source address, in an M_BLK */
M_BLK_ID pDest, /* local destination address, in an M_BLK */
M_BLK_ID pESrc, /* end source address, in an M_BLK */
M_BLK_ID pEDest /* end destination address, in an M_BLK */
)

This routine retrieves the address values for an incoming frame that the MUX
provides in the M_BLK chain pPkt. The link header may be assumed to be present
entirely in the first tuple of the chain.

For each of the additional M_BLK parameters that are not NULL, this routine calls
netMblkDup() to duplicate the pPkt M_BLK to this other M_BLK parameter; it
then adjusts the other M_BLK’s mBlkHdr.mData and mBlkHdr.mLen fields to
indicate the location and size of the desired address within the header. In the case
of endEtherPacketAddrGet(), the mBlkHdr.mLen fields would all be set to 6, and
the mBlkHdr.mData members for pSrc and pESrc would be adjusted 6 bytes into
the header, while those of pDest and pEDest would be left equal to
pPkt->mBlkHdr.mData.

This routine should return a status of OK, or ERROR in which case errno should be
set appropriately.

xEndBind()

The xEndBind() routine is an optional driver routine that gives your driver the
ability to respond to service bind events. In xEndBind(), your driver can support
the exchange of information between a service and a driver whenever the service
binds to a device managed by that driver (provided the binding service also
supports this exchange, and the service and the driver agree on the format of the
information exchanged).

The MUX calls your driver’s xEndBind() routine (if any), when a service binds to
your driver. To get a reference to a driver’s xEndBind() routine, the MUX first
sends an EIOCQUERY ioctl message with the END_BIND_QUERY type to the
driver’s xIoctl() routine, and that routine must respond appropriately with a
pointer to its xEndBind() routine in the structure it returns or the MUX will not
invoke that routine (see 4.7.3 Responding to Network Service Bind Calls, p.117). The
MUX does not use the endBind function pointer in the NET_FUNCS interface for
this purpose.

4 Integrating a New Network Interface Driver
4.9 Porting a BSD Driver to the MUX

159

4

The xEndBind() prototype is:

STATUS xEndBind
(
END_OBJ * pEND, /* END object */
void * pNetSvcInfo, /* info provided by the network service */
void * pNetDrvInfo, /* template for network driver info */
long type /* network service type of binding service */
)

The pNetSvcInfo and pNetDrvInfo arguments are the same as the last two
arguments provided in the call to muxTkBind(); if muxBind() was used to bind
the protocol, NULL is passed for both arguments. Wind River has established no
convention for the use of these arguments; its protocols (when they call
muxTkBind()) pass NULL for both. The xEndBind() routine is therefore likely
useful only when a custom driver and a custom network service are developed
together with knowledge of each other.

Write the xEndBind() routine to return OK, or else return ERROR and set errno. If
it returns ERROR, the MUX denies the attempt to bind the network service.

4.9 Porting a BSD Driver to the MUX

To convert a BSD driver that communicates directly with the protocol layer into
one that communicates with the protocol layer through the MUX, you need to
make the following changes:

■ Remove unit number references.
■ Create an END Object to represent the device.
■ Implement the standard END or NPT entry points.

When deciding whether to implement an END or NPT driver, choose the interface
style that is most convenient for the driver you are porting. If you port a
frame-oriented driver, the END is likely to be the more convenient driver style.

Remove Unit Number References

Under the MUX each device is independent. Your BSD model may consider each
device to be part of an array of devices, each with a unit number. BSD driver
routines are sometimes written to take unit numbers as parameters, and to

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

160

distinguish between devices based on these unit numbers. In the MUX model, the
END Object is the distinguishing feature of devices, and MUX routines distinguish
between devices based on the END Object pointer that they receive as a parameter.

Create an END Object to Represent the Device

The first member of your driver control object should be an END_OBJ structure
(see A.3.3 DRV_CTRL, p.290 and A.3.8 END_OBJ, p.297). The remaining members
of the driver control object are driver-specific, although most drivers contain many
similar members, for example register base addresses, pointers to the receive and
transmit descriptor rings, corresponding rings of M_BLK pointers, the network job
queue ID and QJOB structures, various flags, and so forth.

Implement the Standard END or NPT Entry Points

The END and NPT models for network interface drivers contain standard entry
points that are not present in the BSD model. Table 4-4 shows some of the
analogies between the models. You should be able to reuse much of the code from
the BSD driver.

! CAUTION: When porting a BSD network driver to the MUX, you must replace all
calls into the service with appropriate calls into the MUX. In addition, you must
remove all code that implements or uses the etherInputHook() or
etherOutputHook() routines.

Table 4-4 Required Driver Entry Points and Their Derivations

NPT or END Entry Points BSD 4.3-Style Entry Points

xLoad() bsdattach()

xUnload() None – see xUnload(), p.134 and templateEnd.c.

N/A bsdReceive()

xSend() bsdOutput()

xIoctl() bsdIoctl()

xMCastAddrAdd() None – see xMCastAddrAdd(), p.148 and templateEnd.c.

xMCastAddrDel() None – see xMCastAddrDel(), p.149 and templateEnd.c.

4 Integrating a New Network Interface Driver
4.9 Porting a BSD Driver to the MUX

161

4

Rewrite bsdattach() to Use an xLoad() Interface

Rewrite your bsdattach() to match the xLoad() routine described in Driver
Implementations of the xLoad() Routine, p.128.

You will not need to change much of the code that handles the specifics of
hardware initialization. When you allocate memory for packet reception buffers
that are passed up to the service, use MUX buffer management utilities. See
4.10 Managing Memory for Network Drivers and Services, p.162, 2. Configuring and
Managing Memory, and the reference entry for muxBufInit().

Remove any code in your bsdattach() routine that supports the etherInputHook()
and etherOutputHook() routines. Etherhooks are not supported.

The bsdReceive() Routine Still Handles Task-Level Packets

Because the MUX does not directly call the driver’s packet reception code, there is
no xReceive() entry point. Your driver still needs to handle packet reception at the
task level. You must revise most of the code in this routine. Instead of calling the
service directly, your driver’s receive routine calls a MUX-supplied routine to pass
a packet up to the service. Write your driver’s receive routine to use a
MUX-managed memory pool as its receive buffer area.

xMCastAddrGet() None – see xMCastAddrGet(), p.150 and templateEnd.c.

xPollSend() N/A – see xPollSend(), p.151 and templateEnd.c.

xPollRcv() N/A – see xPollRcv(), p.153.

xStart() N/A – see xStart(), p.132.

xStop() N/A – see xStop(), p.133.

xFormAddress()a N/A – see also xFormAddress(), p.156.

xAddrGet()a N/A – see also xAddrGet(), p.157.

xPacketDataGet()a N/A – see also xPacketDataGet(), p.157.

a. These routines are implemented for Ethernet in endLib. If you port a BSD driver to run
over Ethernet, you probably do not need to reimplement these routines.

Table 4-4 Required Driver Entry Points and Their Derivations (cont’d)

NPT or END Entry Points BSD 4.3-Style Entry Points

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

162

Rewrite bsdOutput() to Use an xSend() Interface

Rewrite your output routine to match the xSend() entry point described in
xSend(), p.144.

You should not need to rewrite much of the code that deals directly with putting
the packet on the hardware. Change your code to use M_BLK chains allocated out
of a netBufLib-managed memory pool. See the reference entry for netBufLib for
details.

The bsdIoctl() Routine Is the Basis of xIoctl()

Rewrite your bsdIoctl() to match the xIoctl() routine described in xIoctl(), p.136.
If your driver used bsdIoctl() to implement multicasting, break that functionality
out into the separate xMCastAddrAdd(), xMCastAddrDel(), and
xMCastAddrGet() entry points.

Implement All Remaining Required END or NPT Entry Points

Table 4-4 lists a handful of driver points unique to ENDs and NPT drivers. Both an
END and an NPT require you to implement the xSend(), xStart(), and xStop()
entry points. There are no BSD equivalents for these entry points. In addition, if
you are implementing an END, you must implement entry points for
xFormAddress(), xAddrGet(), and xPacketDataGet(). These routines are already
implemented for Ethernet in endLib. If your driver will run over Ethernet, you
may use the routines supplied in endLib.

4.10 Managing Memory for Network Drivers and Services

A network driver will need to allocate memory for several different purposes;
some purposes have particular requirements for alignment and cache coherency.

■ All drivers must allocate, for each device instance, a driver control object that
embeds an END_OBJ as its first member (see A.3.3 DRV_CTRL, p.290). This
memory should be cacheable and you may allocate it out of the system heap.
There are no stringent alignment requirements, although performance may be
marginally better if the structure is cache-line aligned and performance-critical
members are kept close together in cache lines with other such members used
at the same time.

4 Integrating a New Network Interface Driver
4.10 Managing Memory for Network Drivers and Services

163

4

■ Most drivers will need to allocate memory for rings of transmit and receive
DMA descriptors, shared with the device hardware. These descriptors
communicate buffer sizes and locations and DMA commands or status
between the driver and the device. These descriptors typically have an
alignment requirement, and on platforms where cache snooping is not always
available, usually need to be non-cached or write-through cached. Descriptors
are typically small, and there usually are not many of them; a typical gigabit
driver might have 128 receive descriptors and 128 transmit descriptors. Wind
River recommends that you allocate transmit and receive descriptors together
in a single block, in the smallest number of MMU pages feasible.

■ Parallel to the DMA descriptor rings are M_BLK_ID arrays (sometimes called
“association lists”) that hold pointers to M_BLK tuples or tuple chains
corresponding to each DMA descriptor. These are not accessed by the device,
and so should be cached. It is reasonable for many drivers that the number
descriptors in the DMA rings (equal to the number of M_BLKs in the parallel
arrays) be configurable only at compile time; in this case, the M_BLK_ID arrays
may be embedded in the driver control object as fixed-size members. If the
numbers of descriptors need to be configurable at run-time, it is typically
necessary to allocate the arrays outside the driver control object proper, but the
arrays can come from the system heap also.

■ All network drivers will need netBufLib-type tuple pools for passing received
packets to the stack. While not a strict requirement of the driver model,
conventionally a network driver creates a separate pool for each network
device when the driver’s load routine is called for that device. The M_BLK and
CL_BLK control structures used in such pools should always be cached and
allocated out of the system heap. The data buffers themselves (known as
clusters) may also usually be cached and may come from the system heap. A
few hardware devices may have cacheability or visibility requirements for
clusters that prevent their being allocated from the system heap. A driver for
such a device must allocate special memory for clusters itself, and must use
netPoolInit() to create its device tuple pools. A driver without such cluster
requirements should use one of the newer APIs to create device tuple pools,
namely endPoolCreate(), endPoolJumboCreate(), or netPoolCreate() (using
the linkBufPool back end).

4.10.1 Receive and Transmit Descriptor Issues

A network driver knows the virtual addresses of the buffers it exchanges with the
device, but the device DMA hardware requires that the buffer addresses passed to
it be equivalent bus addresses for the bus on which the device DMA engine

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

164

resides. The driver must translate the virtual address it knows first to a physical
address, and then may also need to translate the physical (system bus) address to
an equivalent external bus address for use by the device.

While VxWorks virtual-to-physical memory maps tend to be quite simple, often
with only a constant offset between the two addresses, the driver must still
perform this mapping. System bus to external bus address translations are also
(usually) simple, but again need to be performed by drivers managing devices on
external busses that don’t share non-offset address space with the system bus.

A driver restricted to run in a particular environment may use an ad-hoc method
to do the address conversion, however generic drivers should use one of two
methods.

■ Generic non-VxBus drivers should use the cacheLib.h macro
CACHE_DRV_VIRT_TO_PHYS() to convert from physical to virtual addresses.
(Usually cacheUserFuncs is the appropriate set of cache functions to use.)
Further translation from the system bus physical address to the equivalent
external bus address that the device uses the given physical address is done by
a BSP function named sysLocalToBusAdrs(), or something similar. The BSP
support code for the driver typically sets a function pointer to indicate if such
further translation is necessary.

■ Generic VxBus drivers will use vxbDmaBufLib() facilities to perform address
mapping, and other services.

In addition to address translation, DMA descriptors as well as device registers may
require byte swapping when the device’s bus’s native endianness differs from that
of the CPU and its memory system. As this is typically a compile-time decision, the
driver uses macros that byte swap or do nothing, depending upon the value of
_BYTE_ORDER when the driver is compiled. For example, VxBus PCI drivers
typically use htole32() or htole16() to convert 4-byte or 2-byte words from host
byte order to PCI’s little-endian byte order. These macros, defined in
target/src/hwif/h/vxbus/vxbAccess.h, become no-ops on a little-endian system.
(While this header should not be included by non VxBus drivers, similar macros
are easy to construct, based upon the WORDSWAP() and LONGSWAP() macros
defined in vxWorks.h)

While virtual-to-physical address translation is fairly cheap, physical-to-virtual
address translation may in general be prohibitively expensive, and drivers should
not engage in it. If a driver will need the virtual address of a buffer after converting
it to a bus address and storing it in a DMA descriptor, it should remember the
virtual address separately rather than converting back from the bus address in the
descriptor; this also avoids the potential need to byte swap again, and to access
potentially uncached descriptor memory. An M_BLK array parallel to the receive

4 Integrating a New Network Interface Driver
4.10 Managing Memory for Network Drivers and Services

165

4

descriptor ring allows virtual buffer addresses to be retrieved from the M_BLK
corresponding to the descriptor for a newly received packet, rather than having to
read and possibly translate from the descriptor.

Network Buffer Pools

Almost all network drivers use netBufLib to manage memory pools for their
receive buffers. For best performance, Wind River encourages drivers to use the
linkBufPool back end plug-in to netBufLib, which provides pools of
pre-constructed M_BLK tuples of a single size, ideal for network driver receive
pools. VxBus network drivers, and some others, use the convenient, high
performance endLib “endPool” facilities, which are built on top of netBufLib,
using the linkBufPool back end. See 2. Configuring and Managing Memory for more
information about memory management.

Receive Handler

A network device is initialized with the base pointer to a ring of descriptors. The
device uses these descriptors to locate a buffer into which it can write incoming
data and to communicate status to the device driver.

The device cycles through the descriptor ring. When the device receives an
incoming Ethernet frame, it receives it into its FIFO. The device then writes the
frame into the buffer which it locates through the currently accessed descriptor.
The prevalent method used for a device to write data into both the descriptors and
the buffers, is direct memory access (DMA).

As the network device indexes around the descriptor ring, it tests each entry for
availability. When the device receives a frame and finds an available descriptor, its
DMA engine fills the associated buffer and sets a status flag in the descriptor
indicating that the buffer is full.

If a device encounters a used descriptor or an end-of-ring marker, the device halts
and enters a stalled state. The stalled state means that the device has lapped the
device driver’s ring servicing. Minimally, the device driver must then clear the

NOTE: The Wind River Network Stack expects to borrow the buffers it receives
and thus avoid data copying. If a device cannot transfer incoming data directly
into clusters, the driver must explicitly copy the data from private memory into a
cluster in sharable memory before passing it in an M_BLK up to the MUX. A packet
destined for the stack must be described in a single M_BLK/CL_BLK/cluster tuple
(See Tuples, p.13).

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

166

next descriptor the device has on its list. Some devices may require the driver
software to move the end-of-ring marker and possibly restart the receiver.

A driver’s receive handler runs as a job (or as part of a job) on the particular
network job queue that the driver uses to post work for a particular network
device. The receive handler is responsible for navigating the device’s descriptor
ring, determining which descriptors are filled with good packets, and then passing
the good received packets up to the network stack. Before the receive handler gives
a descriptor’s filled buffer to the stack, it clears the descriptor and replenishes it
with a new buffer. (If a new buffer cannot be allocated to replace the filled one,
most drivers do not deliver the filled buffer to the stack, but instead allow the
device to reuse the filled buffer, dropping the corresponding packet.)

To be efficient, the receive handler must continue to handle descriptors as long as
it detects that completed DMA transfers have occurred. However, there is no
guarantee that the handler will ever become idle. When writing a device driver,
you must assume that the rest of the operating system requires time for its own
tasks, and that other devices using the same job queue have jobs that must be
executed to function. So, a single execution of the receive handler should restrict
itself to handling a limited number of packets (typically 16), and the job reposts
itself to the job queue if there is more work to do.

Example 4-6 An Example Receive Handler

Here is example pseudo-code for an END-style receive handler that runs as its own
job. The fictional “QUIK” device here is assumed to be natively little-endian,
perhaps a PCI device. The first code version is a non-VxBus END driver; the
second version is the corresponding VxBus driver. The QUIK_CSR_READ_4,
QUIK_CSR_WRITE_4, and QUIK_CSR_SETBIT_4 register access macros are
assumed to take care of byte swapping as needed, and any pipe flushing or access
ordering enforcement.

LOCAL void quikRxHandle
(
void * pArg
)
{
QJOB * pJob = pArg;
QUIK_DRV_CTRL * pDrvCtrl = member_to_object (pJob, QUIK_DRV_CTRL, rxJob);
QUIK_RDESC * pDesc; /* Pointer to current RX descriptor */
M_BLK * pMblk;
M_BLK * pNewMblk;
UINT32 ix;
int loopCounter;
UINT32 addr;
UINT16 status;
int len;

4 Integrating a New Network Interface Driver
4.10 Managing Memory for Network Drivers and Services

167

4

/*
 * Write to the write/clear QUIK_IEVENT register to acknowledge any
 * pending RX events.
 */

QUIK_CSR_WRITE_4(pDrvCtrl, QUIK_IEVENT, QUIK_RXINTRS);

ix = pDrvCtrl->rxIdx; /* current descriptor index */

/* process no more than QUIK_MAX_RX descriptors in one job. */

for (loopCounter = QUIK_MAX_RX; loopCounter > 0; --loopCounter)
{
/* Pointer to the current RX descriptor */
pDesc = &pDrvCtrl->rxDescMem[ix];

/*
 * Get descriptor status in a local variable. This avoids accessing
 * the descriptor more than necessary, which helps performance,
 * especially when the descriptors are not cacheable.
 */
status = pDesc->status;

/*
 * If the device still owns this descriptor (no packet yet),
 * quit the loop
 */
if ((status & htole16(QUIK_DESC_DONE)) == 0)

break;

/*
 * If the descriptor indicates an error, restart reception
 * if the device requires it, then continue with the next
 * descriptor.
 */

if ((status & htole16(QUIK_DESC_ERRORS)) != 0)
{
Restart reception if necessary.
goto skip;
}

/* Allocate a tuple to replace the current one. */

pNewMblk = endPoolTupleGet(pDrvCtrl->endObj.pNetPool);
if (pNewMblk == NULL)

{
pDrvCtrl->stats.inDiscards++; /* maintain software discards */
/*
 * Notify stack that we're out of tuples; perhaps
 * it can free some. (Might rate-limit this.)
 */
pDrvCtrl->lastError.errCode = END_ERR_NO_BUF;
muxError (&pDrvCtrl->endObj, &pDrvCtrl->lastError);

skip:
/*

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

168

 * Clean the RX descriptor *pDesc, make it available to the
 * device again. The address field hasn't changed, and doesn't
 * need to be rewritten.
 */

pDesc->status = 0;

Might have to poke a register on some devices to transfer ownership of the descriptor back to the
device. Other devices might poll the descriptor status.

/* advance the current index */
if (++ix == QUIK_RXDESC_COUNT)

ix = 0;
pDrvCtrl->rxIdx = ix;
continue;
}

#if defined (QUIK_CACHE_PRE_INVALIDATE)
/*
 * Invalidate cache for pNewMblk's whole cluster before giving it to
 * the device, in case write-back cache is dirty for the replacement
 * cluster. Otherwise, a write-back might overwrite data from the
 * wire, if snooping isn't enabled. Some systems don't need this
 * "pre-invalidation".
 *
 * Note, endPoolTupleGet() sets mBlkHdr.mLen to cover from
 * mBlkHdr.mData to the end of the cluster. CACHE_DMA_INVALIDATE
 *takes care of rounding to cache-line boundaries.
 */
CACHE_DRV_INVALIDATE (&pDrvCtrl->cacheFuncs, pNewMblk->mBlkHdr.mData,

 pNewMblk->mBlkHdr.mLen);
#endif

/*
 * ethernet/optional: Offset in cluster so IP header is 4-byte
 * aligned. (This is no longer required by the current release of the
 * Wind River Network Stack, which can handle protocol headers that
 * are only 2-byte aligned. However, if your device supports DMAing
 * into buffers that are only two byte aligned, this may help other
 * software.)
 */

pNewMblk->mBlkHdr.mData += 2;

addr = (UINT32)(pNewMblk->mBlkHdr.mData)

/*
 * Convert the virtual replacement buffer address to a physical
 * address. If the BSP provides a sysLocalToBus routine, convert the
 * physical address to an external BUS address appropriate to the
 * device. Assuming 32-bit bus addresses here for simplicity.
 */
addr = CACHE_DRV_VIRT_TO_PHYS (&pDrvCtrl->cacheFuncs, addr);
if (pDrvCtrl->sysLocalToBus)

addr = pDrvCtrl->sysLocalToBus (addr);

pDesc->addr = htole32 (addr);

4 Integrating a New Network Interface Driver
4.10 Managing Memory for Network Drivers and Services

169

4

/*
 * Swap replacement tuple for tuple with packet. The rxMblk M_BLK
 * array is managed in parallel with the RX ring; it contains the
 * same number of elements.
 */

pMblk = pDrvCtrl->rxMblk[ix];

pDrvCtrl->rxMblk[ix] = pNewMblk;

len = pDesc->length; /* Length of received packet. */
len = le16toh (len); /* Convert to host byte order */

Might have to adjust length for CRC on some devices.

#if ! defined (QUIK_CACHE_PRE_INVALIDATE)
/*
 * If not doing pre-invalidation, and snooping isn't enabled,
 * invalidate cache for cluster, up to received packet length, i.e.
 * from pMblk->mBlkHdr.mData to pMblk->mBlkHdr.mData + len.
 */
CACHE_DRV_INVALIDATE (&pDrvCtrl->cacheFuncs, pMblk->mBlkHdr.mData,

 pMblk->mBlkHdr.mLen);
#endif

/* Set up required lengths and flags for the stack */

pMblk->mBlkHdr.mLen = pMblk->mBlkPktHdr.len = len;
pMblk->mBlkHdr.mFlags = M_PKTHDR | M_EXT;

/* receive checksum offload, for a device that supports it */
if (pDrvCtrl->caps.cap_enabled & IFCAP_RXCSUM)

{
UINT32 csum_flags = 0;
/* Note that pMblk->mBlkPktHdr.csum_flags starts off as zero */
if (status indicates device checked IPv4 header checksum)

{
csum_flags = CSUM_IP_CHECKED;
if (status indicates IPv4 header checksum is good)

csum_flags |= CSUM_IP_VALID;
}

if (status indicates transport layer checksum is good)
{
csum_flags |= CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
pMblk->mBlkPktHdr.csum_data = 0xffff;
}

pMblk->mBlkPktHdr.csum_flags = csum_flags;
}

/*
 * Return cleaned current descriptor to device. For some devices,
 * care might need to be taken to avoid overwriting a "wrap" bit
 * marking the last descriptor.
 */

pDesc->status = 0;

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

170

Might have to poke a register on some devices to transfer ownership of the descriptor back to the
device. Other devices might poll the descriptor status.

/*
 * Advance the current index. Could optimize this slightly if
 * QUIK_RXDESC_COUNT is guaranteed to be a power of two.
 */
if (++ix == QUIK_RXDESC_COUNT)

ix = 0;
pDrvCtrl->rxIdx = ix;

/* Deliver the packet to the MUX & higher layers */
END_RCV_RTN_CALL (&pDrvCtrl->endObj, pMblk);
}

/*
 * We processed the maximum number of descriptors and didn't see
 * an empty descriptor, so there's a good chance that more packets
 * are available, or will be received shortly. Repost this job
 * without reenabling RX interrupts. Repost also if the QUIK_IEVENT
 * recorded a receive event since we started, otherwise we are sure to
 * take another interrupt.
 */

if (loopCounter == 0
 || (QUIK_CSR_READ_4(pDrvCtrl, QUIK_IEVENT) & QUIK_RXINTRS) != 0)

{
jobQueuePost (pDrvCtrl->jobQueue, &pDrvCtrl->rxJob);
return;
}

/*
 * In this example, we assume that interrupt lines are not shared, so
 * that disabling RX interrupts for the device guarantees that its RX ISR
 * does not run. Also, if the TX interrupt runs, we assume it does not
 * inadvertently acknowledge any RX events.
 *
 * Unmask RX interrupts. When the device's stop routine is called,
 * it clears quikRxIntrs to prevent this code from reenabling interrupts.
 * The read-modify-write bit setting is done inside of a spin lock since
 * other contexts/CPUs may be trying to modify the 'QUIK_IMASK' register
 * concurrently.
 *
* The pDrvCtrl->rxHandlerPosted flag here is used only for
* synchronization with another task trying to stop the device, delaying
 * waiting for all handlers to complete. Piggyback on the spin lock
 * mutual exclusion for this, since it's available.
*/
SPIN_LOCK_ISR_TAKE(&pDrvCtrl->quikLock);
pDrvCtrl->rxHandlerPosted = FALSE;
QUIK_CSR_SETBIT_4 (pDrvCtrl, QUIK_IMASK, pDrvCtrl->quikRxIntrs);
SPIN_LOCK_ISR_GIVE(&pDrvCtrl->quikLock);

return;
}

4 Integrating a New Network Interface Driver
4.10 Managing Memory for Network Drivers and Services

171

4

Here’s the same receive routine, as it might be rewritten for a VxBus END driver.
The CSR_WRITE_4 / CSR_READ_4 / CSR_SETBIT_4 register access macros would
in most cases be implemented using the vxbRead32() and vxbWrite32() VxBus
access routines, provided by the architecture, using the handle provided by
vxbRegMap() for the appropriate base address register. The function also uses
vxbDmaBufLib to manage cache coherency, virtual-to-physical address mapping,
and bounce buffering as needed. For more information on the VxBus driver model,
see the VxWorks Device Driver Developer’s Guide.

LOCAL void quikEndRxHandle
(
void * pArg
)
{
QJOB * pJob = pArg;
QUIK_DRV_CTRL * pDrvCtrl = member_to_object (pJob, QUIK_DRV_CTRL, rxJob);
VXB_DEVICE_ID pDev = pDrvCtrl->quikDev;
QUIK_RDESC * pDesc; /* Pointer to current RX descriptor */
VXB_DMA_MAP_ID pMap;
M_BLK * pMblk;
M_BLK * pNewMblk;
UINT32 ix;
int loopCounter;
UINT32 addr;
UINT16 status;
int len;

/*
 * Write to the write/clear QUIK_IEVENT register to acknowledge
 * any pending RX events.
 */

CSR_WRITE_4(pDev, QUIK_IEVENT, QUIK_RXINTRS);

ix = pDrvCtrl->rxIdx; /* current descriptor index */

/* process no more than QUIK_MAX_RX descriptors in one job. */

for (loopCounter = QUIK_MAX_RX; loopCounter > 0; --loopCounter)
{
/* Pointer to the current RX descriptor */
pDesc = &pDrvCtrl->rxDescMem[ix];

/*
 * Get descriptor status in a local variable. This avoids accessing
 * the descriptor more than necessary, which helps performance,
 * especially when the descriptors are not cacheable.
 */
status = pDesc->status;

/*
 * If the device still owns this descriptor (no packet yet), quit the
 * loop.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

172

 */
if ((status & htole16(QUIK_DESC_DONE)) == 0)

break;

/*
 * If the descriptor indicates an error, restart reception if the
 * device requires it, then continue with the next descriptor.
 */

if ((status & htole16(QUIK_DESC_ERRORS)) != 0)
{
Restart reception if necessary.
goto skip;
}

/* Allocate a tuple to replace the current one. */

pNewMblk = endPoolTupleGet(pDrvCtrl->endObj.pNetPool);
if (pNewMblk == NULL)

{
/*
 * This statistic would be added in when statistics are polled.
 */
pDrvCtrl->stats.inDiscards++; /* maintain software discards */
/*
 * Notify stack that we're out of tuples; perhaps it can free
 * some. (Might rate-limit this.)
 */
pDrvCtrl->lastError.errCode = END_ERR_NO_BUF;
muxError (&pDrvCtrl->endObj, &pDrvCtrl->lastError);

skip:
/*
 * Clean the RX descriptor *pDesc, make it available to the
 * device again. The address field hasn't changed, and doesn't
 * need to be rewritten. For some devices, one might have to take
 * care not to clear a 'wrap' bit marking the last descriptor.
 */
pDesc->status = 0;

Might have to poke a register on some devices to transfer ownership of the descriptor back to the
device. Other devices might poll the descriptor status.

/* advance the current index */
if (++ix == QUIK_RXDESC_COUNT)

ix = 0;
pDrvCtrl->rxIdx = ix;
continue;
}

/* current vxbDmaBufLib map for descriptors current cluster */
pMap = pDrvCtrl->rxMblkMap[ix];

/*
 * Sync the packet buffer and unload the map.
 * - The first invalidates cache as necessary for the received
 * packet's buffer. If bounce buffering were required, this

4 Integrating a New Network Interface Driver
4.10 Managing Memory for Network Drivers and Services

173

4

 * would also do the copy.
 * - The second releases any bounce buffers or other system
 * resources needed to map the cluster holding the packet.
 */

vxbDmaBufSync (pDev, pDrvCtrl->quikMblkTag, pMap,
 VXB_DMABUFSYNC_PREREAD);

vxbDmaBufMapUnload (pDrvCtrl->quikMblkTag, pMap);

/*
 * ethernet/optional: Offset in cluster so IP header is 4-byte
 * aligned. (This is no longer required by the current release of the
 * Wind River Network Stack, which can handle protocol headers that
 * are only 2-byte aligned. However, if your device supports DMAing
 * into buffers that are only two byte aligned, this may help other
 * software.)
 */

pNewMblk->mBlkHdr.mData += 2;

/*
 * Load a DMA map for the replacement cluster. This takes care of
 * virtual to bus translations, and bounce buffering if required. The
 * data space lengths in pNewMblk were set by endPoolTupleGet()
 */

vxbDmaBufMapMblkLoad (pDev, pDrvCtrl->quikMblkTag, pMap,
 pNewMblk, 0);

/*
 * Buffer's physical bus address from first entry of fragment array.
 * Receive buffers are always just a single segment.
 */
pDesc->addr = htole32((UINT32)pMap->fragList[0].frag);

/*
 * Swap replacement tuple for tuple with packet. The rxMblk M_BLK
 * array is managed in parallel with the RX ring; it contains the
 * same number of elements.
*/

pMblk = pDrvCtrl->rxMblk[ix];

pDrvCtrl->rxMblk[ix] = pNewMblk;

len = pDesc->length; /* Length of received packet data */
len = le16toh (len); /* Convert to host byte order */

Might have to adjust length for CRC on some devices.

/* Set up required lengths and flags for the stack */

pMblk->mBlkHdr.mLen = pMblk->mBlkPktHdr.len = len;
pMblk->mBlkHdr.mFlags = M_PKTHDR | M_EXT;

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

174

/* receive checksum offload, for a device that supports it */
if (pDrvCtrl->caps.cap_enabled & IFCAP_RXCSUM)

{
UINT32 csum_flags = 0;
/* Note that pMblk->mBlkPktHdr.csum_flags starts off as zero */
if (status indicates device checked IPv4 header checksum)

{
csum_flags = CSUM_IP_CHECKED;
if (status indicates IPv4 header checksum is good)

csum_flags |= CSUM_IP_VALID;
}

if (status indicates transport layer checksum is good)
{
csum_flags |= CSUM_DATA_VALID|CSUM_PSEUDO_HDR;
pMblk->mBlkPktHdr.csum_data = 0xffff;
}

pMblk->mBlkPktHdr.csum_flags = csum_flags;
}

/*
 * Return cleaned current descriptor to device. For some devices,
 * care might have to be taken to avoid overwriting a 'wrap' bit
 * marking the last descriptor.
 */

pDesc->status = 0;

Might have to poke a register on some devices to transfer ownership of the descriptor back to the device.
Other devices might poll the descriptor status.

/*
 * Advance the current index. Could optimize this slightly if
 * QUIK_RXDESC_COUNT is guaranteed to be a power of two.
 */
if (++ix == QUIK_RXDESC_COUNT)

ix = 0;
pDrvCtrl->rxIdx = ix;

/* Deliver the packet to the MUX & higher layers */
END_RCV_RTN_CALL (&pDrvCtrl->endObj, pMblk);
}

/*
 * We processed the maximum number of descriptors and didn't see an empty
 * descriptor, so there's a good chance that more packets are available,
 * or will be received shortly. Repost this job without reenabling RX
 * interrupts. Repost also if the QUIK_IEVENT recorded a receive event
 * since we started, otherwise we are sure to take another interrupt.
 */
if (loopCounter == 0

 || (CSR_READ_4(pDev, QUIK_IEVENT) & QUIK_RXINTRS) != 0)
{
jobQueuePost (pDrvCtrl->jobQueue, &pDrvCtrl->rxJob);
return;
}

4 Integrating a New Network Interface Driver
4.11 Collecting and Reporting Packet Statistics

175

4

/*
 * In this example, we assume that interrupt lines are not shared, so
 * that disabling RX interrupts for the device guarantees that its RX ISR
 * does not run. Also, if the TX interrupt runs, we assume it does not
 * inadvertently acknowledge any RX events.
 *
 * Unmask RX interrupts. When the device's stop routine is called, it
 * clears quikRxIntrs to prevent this code from reenabling interrupts.
 * The read-modify-write bit setting is done inside of a spin lock since
 * other contexts/CPUs may be trying to modify the 'QUIK_IMASK' register
 * concurrently.
 *
 * The pDrvCtrl->rxHandlerPosted flag is used here only for
 * synchronization with another task trying to stop the device, delaying
 * waiting for all handlers to complete. Piggyback on the spin lock
 * mutual exclusion for this, since it's available.
 */
SPIN_LOCK_ISR_TAKE(&pDrvCtrl->quikLock);
pDrvCtrl->rxHandlerPosted = FALSE;
CSR_SETBIT_4 (pDev, QUIK_IMASK, pDrvCtrl->quikRxIntrs);
SPIN_LOCK_ISR_GIVE(&pDrvCtrl->quikLock);

return;
}

An NPT style driver would call TK_RCV_RTN_CALL() rather than
END_RCV_RTN_CALL(). TK_RCV_RTN_CALL() also requires that the driver pass
it the length of the link header and the network service type extracted from the link
header, as well as the “Promiscuous Unicast” flag, which is set only when the
device is in promiscuous mode, and receives a unicast (or multicast) packet that
the driver can easily determine would not have been received had the device not
been in promiscuous mode.

4.11 Collecting and Reporting Packet Statistics

This section describes the interfaces by which drivers collect and report packet
statistics to attached network services. Note that services have the option to
maintain interface statistics on their own, ignoring the statistics that are collected
by the driver and device. However, making use of the statistics collected by the
driver, in particular when polled-mode statistics is used with hardware support,
may be more efficient.

There are two interfaces which a driver can use to report packet statistics to the
higher levels. The endM2Packet() API allows software collection of interface

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

176

statistics on a per-packet basis. Alternatively, a driver can collect supported
statistics which may be polled (at fairly low frequency) by the upper levels.

In the present release, the stack does not actually poll statistics, however support
for this feature is likely to be reinstated in the future. When the hardware keeps
statistics, supporting polled mode statistics imposes no run-time performance
penalty if the statistics are not used.

4.11.1 Calling the Driver Routines

A driver’s load routine should call endM2Init() to provide needed interface
information to the stack. The information includes the interface type, the MAC
address and its length, the MTU, the interface’s data rate (that is, wire speed), and
interface flags.

The endM2Init() routine will initialize the MIB interface data structures and store
this information as appropriate to either RFC 1213 or RFC 2233, whichever is
configured into the VxWorks image. For example:

endM2Init(&pDrvCtrl->endObj, M2_ifType_ethernet_csmacd,
(u_char *) &pDrvCtrl->enetAddr, 6, ETHERMTU, MOT_TSEC_PHY_SPEED_1000,
IFF_NOTRAILERS | IFF_MULTICAST | IFF_BROADCAST | IFF_SIMPLEX);

The driver’s unload routine calls endM2Free() to release any MIB-related data
structures for which memory was allocated by endM2Init().

endM2Free (&pDrvCtrl->endObj);

If a driver wishes to support the polled statistics mode, it adds two members to its
device control structure:

END_IFDRVCONF endStatsConf;
END_IFCOUNTERS endStatsCounters;

The driver load routine should initialize these members after calling endM2Init():

bzero ((char *)&pDrvCtrl->endStatsCounters, sizeof(END_IFCOUNTERS));
pDrvCtrl->endStatsConf.ifPollInterval = sysClkRateGet();
pDrvCtrl->endStatsConf.ifEndObj = &pDrvCtrl->endObj;
pDrvCtrl->endStatsConf.ifValidCounters = (END_IFINUCASTPKTS_VALID
| END_IFINMULTICASTPKTS_VALID | END_IFINBROADCASTPKTS_VALID
| END_IFINOCTETS_VALID | END_IFOUTOCTETS_VALID
| END_IFOUTUCASTPKTS_VALID | END_IFOUTMULTICASTPKTS_VALID
| END_IFOUTBROADCASTPKTS_VALID);

The ifValidCounters member is a set of bit flags indicating which statistics the
driver supports, that is: which of the END_IFCOUNTERS members the driver will
fill in. The ifPollInterval member sets the period (in system clock ticks) at which
the stack polls statistics.

4 Integrating a New Network Interface Driver
4.11 Collecting and Reporting Packet Statistics

177

4

The ifEndObj merely points to the END_OBJ structure for the interface.

The remaining members of the END_IFDRVCONF structure are initialized by code
outside the driver.

The driver’s xIoctl() routine should implement a few MIB-related commands. The
following code comes from the motTsecEnd.c driver (and some additional
comments have been added):

/*
* All drivers should support EIOCGMIB2233 and EIOCGMIB2
* by calling endM2Ioctl().
*/
case EIOCGMIB2233:
case EIOCGMIB2:

/* These commands retrieve the interface statistical
* data structures used for RFC 2233 or RFC 1213, respectively.
* Note that the driver doesn't access these directly.
*/
error = endM2Ioctl (&pDrvCtrl->endObj, cmd, data);
break;

/*
* The EIOCGPOLLCONF and EIOCGPOLLSTATS commands are implemented
* only if the driver wishes to support polled statistics retrieval.
* EIOCGPOLLCONF retrieves a pointer to the polling configuration
* structure (as initialized by the driver load routine).
* EIOCGPOLLSTATS first collects the statistics into the
* END_IFCOUNTERS structure, retrieving them from the hardware if
* necessary, and the stores a pointer to that structure at the
* indicated address.
*/
case EIOCGPOLLCONF:

if ((data == NULL))
error = EINVAL;

else
*((END_IFDRVCONF **)data) = &pDrvCtrl->endStatsConf;

break;

case EIOCGPOLLSTATS:
if ((data == NULL))

error = EINVAL;
else

{
/* retrieve the statistics from the hardware */
error = motTsecEndStatsDump(pDrvCtrl);
if (error == OK)

*((END_IFCOUNTERS **)data) = &pDrvCtrl->endStatsCounters;
}

break;

endLib provides the routine endPollStatsInit() to start polling of statistics for an
network device that supports polled-mode statistics. However, the current release
of the network stack does not provide a statistics polling routine for use with
endPollStatsInit().

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

178

Polling takes place by calling muxIoctl() with the EIOCGPOLLSTATS command
for the desired network device. The handler for that command should retrieve
from the hardware the supported statistics and store them in the appropriate
members of the driver’s END_IFCOUNTERS structure (endStatsCounters in the
example above). The counts stored should be the counts accumulated since the last
polling call, or (on the first call only) those accumulated since the interface was
started.

A driver which does not support the polled mode statistics collection should not
implement the EIOCGPOLLCONF and EIOCGPOLLSTATS MUX ioctl commands.
Instead, it accumulates statistics per packet by calling the endM2Packet() routine,
as follows.

For successfully transmitted packets, the driver calls:

endM2Packet(&pDrvCtrl->endObj, pMblk, M2_PACKET_OUT);

For packets which could not be transmitted due to a resource limitation (not for
normal TX stalls), the driver should call:

endM2Packet (&pDrvCtrl->endObj, NULL, M2_PACKET_OUT_DISCARD);

For packets which the driver detected a transmission error (not a resource
limitation or a normal TX stall), the driver calls:

endM2Packet(&pDrvCtrl->endObj, NULL, M2_PACKET_OUT_ERROR);

For successfully received packets, the driver calls:

endM2Packet(&pDrvCtrl->endObj, pMblk, M2_PACKET_IN);

For packets received with errors, the driver calls:

endM2Packet (&pDrvCtrl->endObj, NULL, M2_PACKET_IN_ERROR);

(In such a case, the driver does not ordinarily deliver the packets to the stack). For
packets which could not be received due to resource limits, the driver should call:

endM2Packet (&pDrvCtrl->endObj, NULL, M2_PACKET_IN_DISCARD);

Note that collection of such failure statistics could be a best-effort activity.

179

 5
Integrating a New

Network Service

5.1 Introduction 179

5.2 Implementing the MUX/Network Service Interface 180

5.3 Interfacing with the MUX 186

5.4 Adding a Socket Interface to Your Service 191

5.1 Introduction

This chapter describes how to integrate a new network service with the
Wind River Network Stack. A network service, such as a network protocol, is an
implementation of the network and transport layers of the OSI network model.

As shown in Figure 3-1, network services communicate with the data link layer
through the MUX interface. Part of porting a new network service to the
Wind River Network Stack is porting its data link layer access code to use the MUX
interface. Everything specific to the network interface is handled in the drivers of
the data link layer, which are described in 4. Integrating a New Network Interface
Driver.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

180

5.2 Implementing the MUX/Network Service Interface

A network service sends and receives packets through the MUX interface. At
minimum, to work with the MUX your service must implement an initialization
routine and routines that support packet transfer and error reporting.

5.2.1 Initializing the Interface

Besides loading a network device into the MUX and starting it, you usually want
to attach a network stack (that is, a collection of network protocols) to the device.
A stack must provide a means to attach itself to a network device. For instance, you
can attach the current version of the Wind River IP stack to a network device by
calling either of the following functions:

■ ipcom_drv_eth_init (const char * drvname, Ip_u32 drvunit,
const char * ifname)

■ ipAttach (int drvunit, char * drvname)

The arguments are in slightly different formats in these functions.
ipcom_drv_eth_init() is the lowest-level function, and ipAttach() is provided for
compatibility with previous versions of the Wind River network stack. The
drvname and drvunit arguments are the device name and unit number as seen by
the MUX and the network driver. If you call ipcom_drv_eth_init(), you may
optionally specify an interface name to be used by the IP stack that differs from the
driver-level name. For instance, the following call attaches to the fei2 network
interface, but calls it “eth0” at the stack level:

ipcom_drv_eth_init ("fei", 2, "eth0");

NOTE: Well-known service port numbers and other such information are hard
coded in ip_net2-6.6/ipcom/port/src/ipcom_getservby.c. There is no API that you
can use to add information to this file for the new services that you create, so you
must edit this file manually and rebuild your system if you want to add such
information.

5 Integrating a New Network Service
5.2 Implementing the MUX/Network Service Interface

181

5

On the other hand, the following call attaches the IP stack to the interface, and uses
the same interface name “fei2” in the stack as is used at the driver level, which may
be less confusing:

ipcom_drv_eth_init ("fei", 2, IP_NULL);

An ipAttach() equivalent to this second call would be the following:

ipAttach (2, "fei")

When you call ipcom_drv_eth_init() or ipAttach() this makes the stack aware of
the interface, and causes the stack to bind its protocols to the device. For instance,
for an IPv4-capable stack, at least the IPv4 and ARP protocols would be bound to
the device, and possibly others.

Whether you write a stack of several protocols or simply a single network service,
you need to provide a similar routine that informs your service (or stack) of the
network device, and causes it to bind to that device. We will call this routine
xAttach(), imagining that “x” is replaced with your service’s name. You may also
wish to modify the startup code to insert calls to xAttach() for particular devices.
There is no standard interface to accomplish this; however Wind River
recommends that you create a component descriptor file (.cdf file) and a
configlette so that your service can be handled by the Workbench kernel
configurator. (See the VxWorks Kernel Programmer’s Guide for more information.)

Although it is not required, it is a good idea to provide also an xDetach() to unbind
your service from a network device, and release internal service resources that
refer to that device.

The Bind Phase

A network service must bind to a network device before it can send and receive
packets through it. A service binds to a network device by calling the
mux[Tk]Bind() routine (see A.2.20 muxTkBind(), p.275 and A.2.21 muxBind(),
p.277).

To determine the driver style (END or NPT) of a device that your service wants to
bind to, call the muxTkDrvCheck() routine (see A.2.23 muxTkDrvCheck(), p.279).
This routine returns 1 (one) for an NPT-style device, 0 (zero) for an END-style
device, or -1 (negative one) if no device is found with the specified root name. You
need to know the driver style for the following reasons:

■ A network service must bind to an NPT-style device by calling the routine
muxTkBind() (not muxBind()).

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

182

■ A network service may bind to an END-style device using either muxBind()
or muxTkBind(); however, using muxTkBind() introduces an additional
translation layer that may decrease performance a bit.

■ The callback functions that the service provides have different prototypes and
somewhat different behavior with muxBind() than with muxTkBind() (see
Figure 4-1).

Almost all Wind River-provided network drivers are END-style drivers rather
than NPT-style drivers. A service may choose either to use muxTkBind() for all
devices (accepting the small performance penalty when binding to an END-style
device); or may check the driver style and use muxBind() to bind to END-style
devices and muxTkBind() to bind to NPT-style devices; or may choose to support
only one style of driver (END only or NPT only).

The type argument to mux[Tk]Bind() is the network service type. The MUX uses
the network service type to prioritize the services, and to determine which services
see which packets. In addition to the normal network-layer protocol type values
from RFC 1700 (corresponding to the Ethernet header type field), there are three
special network service type values:

■ A MUX_PROTO_SNARF type service (or “snarf” service) sees all the received
packets that are processed by any device to which it is bound, and that are not
consumed by an earlier-bound snarf service.

■ A MUX_PROTO_PROMISC type (“promiscuous”) service sees all received
packets that are processed by any device to which it is bound, that are not
consumed by any snarf, normal, or earlier-bound promiscuous protocol.

■ A MUX_PROTO_OUTPUT type service sees outgoing rather than incoming
packets. At most one MUX_PROTO_OUTPUT service may be bound to a
network device.

A normal service (or “typed” protocol) sees only packets received by the devices
that it is bound to, that match its type, and that were not consumed by any snarf
service. At most one typed protocol of a given network service type may be bound
to a network device. For any packet received on a device, any snarf services bound
to the device see the packet first, then the bound normal service that matches the
packet’s service type (if any), then any promiscuous protocol bound to the device;
always with the proviso that if an earlier service consumes the packet, it won’t be
seen by any later service.

5 Integrating a New Network Service
5.2 Implementing the MUX/Network Service Interface

183

5

A service consumes a packet by returning TRUE (or any non-zero value) from its
receive routine; it is then responsible for freeing the packet. A service receive
routine that does not consume a packet passed to its receive routine returns FALSE
and should not modify or free the packet.

A service may bind to more than one network interface; we call the pairing of an
network interface with the service bound to it, a “binding instance.” The return
value from mux[Tk]Bind() is an opaque “cookie” that identifies the binding
instance to the MUX. The service subsequently passes this value into various MUX
routines that affect a particular network device to which the service is bound, such
as muxIoctl(), and muxTkSend().

MUX Interface Routine Database

The MUX maintains a database of three types of “interface routines” that depend
upon both the (layer 2) MIB2 interface type and the (layer 3) network service type.
The three types of routines are as follows:

■ ADDR_RES_FUNC – a routine for performing address resolution lookups for
the network protocol running over the link type (that is, for converting
protocol addresses to link addresses)

■ IF_OUTPUT_FUNC – a network-protocol specific routine for outputting
packets on interfaces of a specified type

■ MULTI_ADDR_RES_FUNC – a routine for performing multicast address
resolution for a network protocol running over specified type of interface.

The database provides routines to dynamically look up (muxIfFuncGet()), add
(muxIfFuncAdd()), and delete (muxIfFuncDel()) entries in the database. The
function muxIfTypeGet() returns the MIB2 interface type code for an network
device.

NOTE: Since snarf services process all packets before any typed protocol sees
them, the presence of snarf services can decrease the receive performance of all
typed protocols bound to the same interface. The WDB agent, when running using
the WDB_COMM_END communication type, attaches itself to a network device as
a snarf service. When measuring network performance, either do not include the
WDB agent, or run performance benchmarks over different interfaces than the one
to which the WDB agent is attached (unless you really intend to measure the
performance impact of the WDB agent). Some snarf protocols may not need to be
permanently attached to an interface. It will help performance to detach any such
snarf protocol from an interface when it is not needed, only reattaching it later if it
is needed again.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

184

The signatures of the function pointers stored in the database is up to the protocol
implementation.

Use of the interface routine database is optional. The Wind River IP stack no longer
makes use of this facility. However, it is available to service writers as a flexible
method to register such service/interface-dependent routines at startup time, and
look them up at service bind time.

5.2.2 Using MUX/Service Interface Routines

The subsections that follow provide an overview of how a network service handles
the following tasks:

■ sending packets
■ device control
■ shutting down an interface

Sending Packets

A service sends packets in the form of M_BLK tuple chains over a network interface
by calling mux[Tk]Send() (see A.2.29 muxTkSend(), p.284).

Calling mux[Tk]Send() normally transfers ownership of the packet M_BLK tuple
chain to the network driver; however, if either of these routines returns the value
END_ERR_BLOCK, this indicates that the device temporarily lacks transmit queue
space to send the packet. In this case the caller keeps ownership of the original
packet, and the service may choose to simply drop the packet, or to hold on to it,
retransmitting it later in response to a callback by the MUX to its transmit restart
routine (see Figure 4-7).

Sending Packets through an END

When sending over an END, it is more efficient for a service to construct the link
header itself rather than to allow muxTkSend() to construct the link header. This
is primarily because if muxTkSend() constructs the link header itself and the
driver send returns END_ERR_BLOCK, muxTkSend() would have to restore a
packet to its original state without a link header. Since the packet will either be
dropped or queued for resending by the service, this is probably wasted work.

If a service will add the link header to a network-layer datagram, it must first
perform any necessary conversion from service addresses to the link-layer
addresses appropriate to the END being used. (A service may choose to use the

5 Integrating a New Network Service
5.2 Implementing the MUX/Network Service Interface

185

5

MUX interface function database to obtain and cache the function appropriate to
do this address resolution.) Knowing the destination and source link-layer
addresses and the service’s network service type, the service may call
muxAddressForm() or muxLinkHeaderCreate() to prefix a link header to a
packet, making use of the END’s xFormAddress() routine (see xFormAddress(),
p.156). Alternatively, if the service knows the type of the END interface being
used, and knows the format of the link header for that specific interface type, the
service may use its own means to construct a link header; however, the service
may not then automatically work with other sorts of devices that provide their
own special xFormAddress() routines.

Device Control

A driver may respond to specific MUX ioctl commands. Your network service can
issue these commands by calling muxIoctl() (see A.2.13 muxIoctl(), p.272 and
xIoctl(), p.136).

Shutting Down an Interface

Relatively few applications need to unload a network device from the MUX, but
for those that do, the MUX provides the function muxDevUnload(). If your
application calls muxDevUnload(), the MUX calls the xStackShutdownRtn()
routine registered at bind time for each network service still bound to the device
(see xStackShutdownRtn(), p.186).

Within this shutdown routine, the network service must take the necessary steps
to close the interface, which include calling muxUnbind() to unbind the network
service from the device (see A.2.31 muxUnbind(), p.285). If any of the
xStackShutdownRtn() calls returns a value other than OK, muxDevUnload()
immediately returns ERROR. If all of the bound service xStackShutdownRtn()
calls return OK, muxDevUnload() goes on to remove the device from the MUX,
and to call the device’s unload routine.

As it may be difficult for some services to accomplish all the work necessary to
close and detach from a network interface entirely in the context of the
synchronous xStackShutdownRtn() call-back, some applications may find it
more convenient to start the process of detaching services from a network interface
first (using service-specific detach routines), calling muxDevUnload() only after
all such problematic services have completed unbinding from the interface.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

186

5.3 Interfacing with the MUX

When a network service binds to a network driver through the MUX, it must
provide references to routines that the MUX can call to handle the following:

■ passing a packet into the service
■ passing exceptional event notifications to the service
■ restarting transmission by the service through the network device
■ shutting down the network service

The prototypes of the routines you specify to handle these routines differ
depending on whether you call muxTkBind() or muxBind() to bind the service to
a network interface in the MUX. This chapter describes both interfaces.

5.3.1 Service Routines Registered Using mux[Tk]Bind()

This section describes the four MUX interface routines that a service implements
and references in a mux[Tk]Bind() call.

xStackShutdownRtn()

If your application calls muxDevUnload() for a loaded network device,
muxDevUnload() in turn calls the xStackShutdownRtn() of each service that is
bound to that device.

Within this routine, the network service must do whatever is necessary to detach
the service from the device, which includes releasing any internal references the
service has to the device and calling muxUnbind() to unbind the service from the
device.

muxTkBind() Version

For a service bound with muxTkBind(), the xStackShutdownRtn() prototype is:

STATUS xStackShutdownRtn
(
void * netCallbackId /* the handle/ID installed at bind time */
)

! WARNING: In the present implementation, muxDevUnload() holds the mutex
semaphore guarding the MUX’s list of END-objects when it calls
xStartShutdownRtn(). Protocol shutdown code should take care to avoid
misorderings between this mutex and any others used by the service
implementation.

5 Integrating a New Network Service
5.3 Interfacing with the MUX

187

5

The MUX passes this routine a single argument: the identifier that the service
passed into the MUX during the muxTkBind() call. This value is opaque to the
MUX, but the network service understands it and uses it to identify the particular
network interface. It is typically a pointer to the service’s data structure that
represents that interface.

muxBind() Version

For a service bound with muxBind(), the xStackShutdownRtn() prototype is:

STATUS xStackShutdownRtn
(
void * pBindCookie, /* binding cookie returned from muxBind() */
void * netCallbackId /* the handle/ID installed at bind time */
)

The MUX passes this routine two arguments:

1. The binding instance cookie that was returned from muxBind().

2. The identifier that the service passed into the MUX during the muxBind() call.
This value is opaque to the MUX, but the network service understands it and
uses it to identify the particular END interface. It is typically a pointer to the
service’s data structure that represents that interface.

xStackRcvRtn()

The MUX delivers packets it receives from the network device to a service by
calling the xStackRcvRtn() callback that the service registered when it called
mux[Tk]Bind(). The xStackRcvRtn() is called only in the context of the network
job queue used by the network interface.

The netCallbackId parameter that the MUX passes into xStackRcvRtn() is the one
the service specified at bind-time. The type parameter specifies the network
service type of the packet. The pPkt parameter points to the lead M_BLK in the
tuple chain that describes the packet.

If a network service accepts the packet by returning TRUE, it takes ownership of
the packet and is responsible for freeing the given M_BLK chain when the service
is finished with it. If it returns FALSE it should neither free nor modify the packet.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

188

muxTkBind() Version

For a service bound with muxTkBind() the xStackRcvRtn() prototype is:

BOOL xStackRcvRtn
(
void * netCallbackId, /* the handle/ID installed at bind time */
long type, /* network service type of the packet */
M_BLK_ID pPkt, /* the packet as an M_BLK tuple chain*/
void * pSpareData /* pointer to optional data from driver */
)

In this version of xStackRcvRtn(), pSpareData is either NULL (if the binding was
to an END) or is the pSpareData value that was passed as the last argument to
muxTkReceive() by the NPT driver’s receive handler (if the binding was to an
NPT device). Note that even for an NPT-style device, there are no conventions
established for the use of pSpareData; the network service and the network driver
have to know about each other and share a common interpretation of this value,
for it to be of any use.

For services bound with muxTkBind(), with the exception of
MUX_PROTO_OUTPUT services bound to NPT-style devices, the link header is
always present in the cluster in the first tuple of the chain describing the packet,
but the lead M_BLK may be adjusted to skip over the link header:

■ For normal typed protocols, pPkt->mBlkHdr.mData is advanced by the size
of the link header, while pPkt->mBlkHdr.mLen and pPkt->mBlkPktHdr.len
are decreased by the size of the link header.

■ For MUX_PROTO_SNARF and MUX_PROTO_PROMISC services, the lead
M_BLK is not adjusted, that is pPkt->mBlkHdr.mData still points to the start
of the link header, and pPkt->mBlkHdr.mLen and pPkt->mBlkPktHdr.len
still include the length of the link header.

■ For MUX_PROTO_OUTPUT services bound to ENDs, pPkt->mBlkHdr.mData
is advanced by the size of the link header, while pPkt->mBlkHdr.mLen and
pPkt->mBlkPktHdr.len are decreased by the size of the link header. A pointer
to the destination MAC address in the header is placed in
pPkt->mBlkPktHdr.rcvif.

– For MUX_PROTO_OUTPUT services bound to NPT devices, there may be
no link header in the packet (passed to muxTkSend()). The destination
MAC address pointer passed to muxTkSend() is placed in
pPkt->mBlkPktHdr.rcvif before the output service’s xStackRcvRtn()
function is called. The pPkt M_BLK is not adjusted from that passed to
muxTkSend().

5 Integrating a New Network Service
5.3 Interfacing with the MUX

189

5

■ The size of the link header (the network service offset) is stored in
pPkt->mBlkHdr.offset1.

muxBind() Version

For a service bound with muxBind() the xStackRcvRtn() prototype is:

BOOL xStackRcvRtn
(
void * pBindCookie, /* returned by muxBind() */
long type, /* the network service type of the packet*/
M_BLK_ID pPkt, /* the packet as an M_BLK tuple chain */
LL_HDR_INFO * pLLHInfo, /* link-level header info structure */
void * pCallbackId /* the handle/ID installed at bind time */
)

In this version of xStackRcvRtn(), pBindCookie is the binding cookie that is
returned by muxBind(). As this value is opaque to the service, it is probably less
useful than the netCallbackId value passed into the other version of
xStackRcvRtn().

For all services bound with muxBind(), the link-level header is present at the start
of the packet, and is described in the LL_HDR_INFO structure pointed to by the
pLLHInfo argument (see A.3.11 LL_HDR_INFO, p.302). The MUX calls the END
device’s xPacketDataGet() routine to parse the link header and fill out this
structure. The most important information in this structure is the size of the link
header, but it also holds the offsets and sizes of the source and destination
link-level addresses, as well as (redundantly) the network service type of the
packet.

xStackErrorRtn()

A device notifies the MUX of various exceptional events it encounters by calling
muxError(), and the MUX forwards these to the network services that are bound
to the device by calling xStackErrorRtn(). It is up to the network service to take
any necessary action when it receives the event notification.

The MUX passes this routine a pointer to an END_ERR structure and the
netCallbackId value that was passed at bind time. See A.3.5 END_ERR, p.293, for
more information on the various events that may be reported in this way.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

190

muxTkBind() Version

For a service bound with muxTkBind() the xStackErrorRtn() prototype is:

void xStackErrorRtn
(
void * netCallbackId, /* the handle/ID installed at bind time */
END_ERR * pError /* pointer to structure containing error */
)

muxBind() Version

For a service bound with muxBind() the xStackErrorRtn() prototype is:

void xStackErrorRtn
(
void * pEND, /* END_OBJ passed to the MUX by the driver */
END_ERR * pError, /* pointer to structure containing error */
void * netCallbackId /* the handle/ID installed at bind time */
)

This version of the xStackErrorRtn() routine takes an additional argument, pEnd,
which describes the END device.

xStackRestartRtn()

The MUX calls this routine to restart transmission over a network device by any
network services bound to the device that care to do so.

When an device’s xSend() routine returns END_ERR_BLOCK, it is indicating that
it cannot schedule the packet for transmission immediately (usually due to a
temporary lack of space in the transmit ring). The sending service may choose to
drop the packet, or to hold on to it for later retransmission. Having returned
END_ERR_BLOCK, the driver guarantees that it will call muxTxRestart() when the
device is again ready to accept packets for transmission. muxTxRestart() calls the
xStackRestartRtn() routine for each service that is bound to the device and that
provided such a routine. The xStackRestartRtn() routine may respond by sending
any packets that it has queued for the device, until it sends them all or the send
routine returns END_ERR_BLOCK once more.

The MUX passes this routine the netCallbackId value that the service passed to
mux[Tk]Bind().

5 Integrating a New Network Service
5.4 Adding a Socket Interface to Your Service

191

5

muxTkBind() Version

For a service bound with muxTkBind() the xStackRestartRtn() prototype is:

STATUS xStackRestartRtn
(
void * netCallbackId /* the handle/ID installed at bind time */
)

muxBind() Version

For a service bound with muxBind() the xStackRestartRtn() prototype is:

STATUS xStackRestartRtn
(
void * pEND, /* END_OBJ passed to the MUX by the driver */
void * netCallbackId /* the handle/ID installed at bind time */
)

This version of the xStackRestartRtn() routine takes an additional argument,
pEnd, which describes the END device.

5.4 Adding a Socket Interface to Your Service

One way to allow applications to access your network service is to add sockets
support to the service. In order to make it easier for you to write a network service
that includes sockets support, the Wind River Network Stack includes a standard
sockets interface.

With the standard socket interface, you can add new socket back ends to access
your network service, and through it, the network. This allows developers who are
already familiar with the standard sockets API to more easily use your service.

With the standard sockets interface, an application can create and use sockets of
different address families, which may be managed by different back end service
implementations. A layered architecture makes this possible. The Wind River
standard sockets interface, implemented by sockLib, is a layer above your back
end socket layer, as shown in Figure 5-1.

This section shows you how to implement a sockets back end.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

192

5.4.1 Process Overview

To create a socket, an application calls the standard function socket(), and receives
a socket descriptor in return. The socket() routine looks up the correct back end
implementation to use based upon the specified domain (address family)
argument. If it finds a registered back end that handles that address family,
socket() calls the back end’s socket creation function, obtaining back a data
structure that represents the socket. The socket() routine then completes the data
structure by allocating a descriptor from the I/O system and associating it with the
socket data structure, and returns the descriptor to the caller.

The socket data structure contains a pointer to a table of pointers to functions that
the back end provides to implement all the various socket operations (see The
Socket Functional Interface, p.195). You implicitly specify this table when you

Figure 5-1 The Standard Socket Interface

Your Socket Back End

Wind River Standard Socket Interface

Application

MUX

TCP

IP

ApplicationApplication

UDP ...
Your Network Service

Wind River IP
Socket Back End

The interface knows
which back end to use.

You must
register your
socket back end.

An application makes
standard socket calls.

5 Integrating a New Network Service
5.4 Adding a Socket Interface to Your Service

193

5

register the socket back end by calling sockLibAdd(), as discussed in
5.4.2 Registering a Socket Back End, p.193. When an application makes sockets API
calls other than socket(), the socket descriptor returned by socket() is one of the
arguments. The sockLib implementation for each such sockets API call converts
the socket descriptor to the underlying socket data structure using I/O system
descriptor look-up facilities, fetches the pointer to the back end’s function table,
and calls the appropriate back-end function to complete the call.

The I/O system functions read(), write(), ioctl(), and close() may also be used on
socket descriptors. In this case, the I/O system converts the descriptor to the
underlying socket data structure, calls the registered sockLib read, write, ioctl, or
close function, which in turn calls the back end’s read, write, ioctl, or close handler
via the back end function table. sockLib registers a single I/O system driver to
handle all socket descriptors.

5.4.2 Registering a Socket Back End

You can register a socket back end implementation by calling sockLibAdd() some
time during system start-up after sockLib is itself initialized by a call to
sockLibInit().

! WARNING: In the present release, the socket data structure used by sockLib is in
fact a struct socket, declared in target/h/wrn/coreip/net/socketvar.h. This is
primarily for historical reasons. The struct socket structure contains many
members, only a few of which are needed by sockLib itself; and some socket back
ends will prefer not to use the other members of struct socket. It is very likely that
a future release will replace (or modify) struct socket with a much smaller
structure (which would be embeddable in a back end’s private data structure
representing a socket). The following members from struct socket are likely to
remain in the new, smaller structure:

struct sockFunc * pSockFuncTbl; /* socket back-end function table */
int so_fd; /* the socket file descriptor */
void * so_bkendaux; /* socket back-end auxiliary data */

If your back end uses other members of struct socket, then after the change to the
smaller structure, you may have to move these members to your back end’s own
private socket data structure.

Generally, the interface between sockLib and socket back ends, as well as the
interface for registering socket back ends, although described here as it presently
exists, should be considered somewhat fluid. Wind River may modify these
interfaces as it sees fit in future releases.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

194

The sockLibAdd() routine has the following prototype:

STATUS sockLibAdd
(
FUNCPTR sockLibInitRtn, /* back end's initialization routine */
int domainMap, /* unused */
int domainReal, /* address family */
)

The routine returns OK, or ERROR if the routine could not add the socket back end.
The routine takes three parameters:

sockLibInitRtn
A pointer to your xSockLibInit() routine that sockLibAdd() invokes.
sockLibAdd() calls this routine as if it had the following prototype:

SOCK_FUNC * xSockLibInit (void);

That is, it is passed no arguments, and it is expected to return a pointer to an
initialized SOCK_FUNC structure, which is the table of function pointers for
the back end (see The Socket Functional Interface, p.195).

domainMap
sockLibAdd() ignores this parameter.

domainReal
This parameter specifies the address family that this back end implements. A
back end may support more than one address family, but in such a case you
must call sockLibAdd() multiple times, once per address family. Allowed
address families are in the range from 1 to AF_MAX-1, and the AF_ constants
that identify these address families (AF_INET, and so forth) are declared in
target/h/wrn/coreip/sys/socket.h.

At most one back end will handle sockets of any given address family. For
example, the native Wind River Network Stack normally handles sockets of
the AF_INET, AF_INET6, AF_ROUTE, and AF_PACKET families. A socket back
end of your own implementation may not handle one of these address families
without disabling handling of that family by the native stack.

5 Integrating a New Network Service
5.4 Adding a Socket Interface to Your Service

195

5

The Socket Functional Interface

The socket functional interface is the set of implementations of standard socket
routines that a particular socket back end supports. SOCK_FUNC is declared in
target/h/wrn/coreip/sockFunc.h as follows:

typedef struct sockFunc /* SOCK_FUNC */
{
FUNCPTR libInitRtn; /* unused */
FUNCPTR acceptRtn; /* accept() */
FUNCPTR bindRtn; /* bind() */
FUNCPTR connectRtn; /* connect() */
FUNCPTR connectWithTimeoutRtn; /* connectWithTimeout() */
FUNCPTR getpeernameRtn; /* getpeername() */
FUNCPTR getsocknameRtn; /* getsockname() */
FUNCPTR listenRtn; /* listen() */
FUNCPTR recvRtn; /* recv() */
FUNCPTR recvfromRtn; /* recvfrom() */
FUNCPTR recvmsgRtn; /* recvmsg() */
FUNCPTR sendRtn; /* send() */
FUNCPTR sendtoRtn; /* sendto() */
FUNCPTR sendmsgRtn; /* sendmsg() */
FUNCPTR shutdownRtn; /* shutdown() */
FUNCPTR socketRtn; /* socket() */
FUNCPTR getsockoptRtn; /* getsockopt() */
FUNCPTR setsockoptRtn; /* setsockopt() */
FUNCPTR zbufRtn; /* not supported */

/* The following IO-system handlers are called via wrappers */
/* in sockLib.c. */

FUNCPTR closeRtn; /* close() */
FUNCPTR readRtn; /* read() */
FUNCPTR writeRtn; /* write() */
FUNCPTR ioctlRtn; /* ioctl() */
} SOCK_FUNC;

The use of the FUNCPTR type is unfortunate, as it provides neither type checking,
nor any guide to those who implement back-ends of the arguments passed to the
functions, nor the return values expected of them. With few exceptions, you can get
the pseudo-prototype for one of these routines, which indicates how it is actually
called, by considering the corresponding standard sockets API function prototype
in sockLib.h, or the corresponding I/O system function prototype in ioLib.h
(replacing the integer socket descriptor argument with a struct socket * argument).
For instance, the connect API is prototyped in sockLib.h as the following:

extern STATUS connect (int s, struct sockaddr * name, int namelen);

So, the back end function called through the connectRtn function pointer is called
as if it had the following prototype:

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

196

STATUS xConnectRtn (struct socket * so, struct sockaddr * name,
int namelen);

sockLib’s connect() implementation converts the integer socket descriptor passed
as its first argument s, to the struct socket pointer so, and calls the back end’s
xConnectRtn() routine, replacing s with so and passing the name and namelen
arguments unchanged. From the so argument, the socket back end can find its own
private data for the socket; the so_bkendaux member of struct socket is intended
as a pointer to such private data. (Alternatively, since the back end’s socketRtn()
is responsible for allocating the struct socket, the back end may choose to embed
the struct socket in a larger structure containing also the private data.)

The return value from the back end xConnectRtn() is same as the return value
from connect().

Consult the sockLib reference pages for additional information on the intended
behavior of the sockets API functions. External sockets API information is also
very useful; for instance IEEE Std 1003.1 contains the official Posix descriptions of
sockets API functions and data structures. (For various historical reasons, the
VxWorks sockets API prototypes do not always match exactly those defined by
IEEE 1003.1.) For general background on sockets programming, see W. Richard
Stevens, Unix Network Programming - Networking APIs: Sockets and XTI, Volume 1.

There are exceptions to the above rule-of-thumb. These are socketRtn, acceptRtn,
and ioctlRtn:

xSocketRtn()

The xSocketRtn() routine has the following prototype:

int xSocketRtn
(
int domain, /* socket domain or address family number */
int type, /* socket's nature, e.g. SOCK_DGRAM */
int protocol, /* the protocol variety of the socket */
struct socket ** ppSo /* the socket structure */
)

The back end’s xSocketRtn() is responsible for allocating and initializing a struct
socket and any other structures that the back end needs to represent a socket of the
specified domain, type, and protocol (these are passed directly from the
corresponding arguments to the socket() routine). The allocation may be done
using the kernel heap, a netBufLib pool, or a back-end specific method. If the
xSocketRtn() cannot allocate and initialize a socket of the specified kind,
xSocketRtn() must free any partial allocations, set errno to the appropriate value
(such as ENOMEM, ENOBUFS, EAFNOSUPPORT, EPROTONOSUPPORT,
EPROTOTYPE), and return ERROR.

5 Integrating a New Network Service
5.4 Adding a Socket Interface to Your Service

197

5

Otherwise, xSocketRtn() stores a pointer to the allocated struct socket at the
address specified by ppSo, and returns OK. The socket() code will then itself store
a pointer to the back end’s SOCK_FUNC table in the returned struct socket’s
pSockFuncTbl member, then attempt to allocate a file descriptor from the I/O
system, associating it with the socket. The socket() call may still fail if the calling
RTP (possibly the kernel) is out of file descriptors. In this case, the socket() code
will immediately call the back end’s xCloseRtn() function, to destroy the socket,
and return ERROR. On the other hand, if a file descriptor is successfully allocated,
the socket() code stores that file descriptor in the so_fd member, and return the file
descriptor as its result.

sockLib() itself has no requirements as to how the back end initializes the struct
socket structure that it allocates; however, the back end will probably want to
initialize any members (other than pSockFuncTbl and so_fd) that it needs, in
particular setting so_bkendaux to point to any auxiliary private data the back end
wishes to maintain for the socket.

xAcceptRtn()

The xAcceptRtn() routine has the following prototype:

STATUS xAcceptRtn
(
struct socket ** ppSo, /* IN: parent socket. OUT: child socket. */
struct sockaddr * addr, /* Address of child's peer. */
int * addrlen /* Length of child's peer's address. */
);

The back end’s xAcceptRtn() is called by the accept() code in sockLib. This
accept() code does some checking, however, before it calls xAcceptRtn(). If addr
is non-NULL but addrlen is NULL, accept() returns an error. Otherwise, accept()
attempts to convert the descriptor passed as its first argument to a struct socket. If
the descriptor is not a valid socket descriptor, accept() again returns an error. If the
back end does not provide any accept handler, that is, if the acceptRtn member of
the back end’s SOCK_FUNC structure is NULL, accept() again returns ERROR.

Otherwise, the accept() code calls the back end’s xAcceptRtn() function, passing
as the first argument the address of a pointer to the struct socket, converted from
the socket descriptor passed to accept(). The other two arguments to
xAcceptRtn() are passed directly from the corresponding arguments of accept().

The back end’s xAcceptRtn() must check that the socket passed in by the first
argument is in fact a listening parent socket, capable of providing child socket
connections to accept(). If not, xAcceptRtn() must return ERROR and set errno
appropriately (see IEEE Std 1003.1). If the parent can provide child connections,

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

198

but no completed child socket connection is presently queued for the parent, then
xAcceptRtn() must do one of the following:

■ set errno to EAGAIN or EWOULDBLOCK and return ERROR, if the parent
socket is non-blocking; or

■ if the parent socket is blocking, pend until either a completed child socket
connection becomes available (or optionally: until a timeout, signal, or other
implementation defined event occurs, in which case errno should be set
appropriately, and ERROR returned).

If a completed child socket connection becomes available, xAcceptRtn() allocates
a struct socket for it (and any other needed private data structures), and stores a
pointer to the child struct socket at the address passed in the ppSo argument,
overwriting the previous pointer to the parent’s struct socket. If the addr argument
is non-NULL, xAcceptRtn() obtains the child’s peer’s socket address, and copies it
(truncating to the length specified in the int pointed to by addrlen, if necessary) to
the specified address addr; and finally storing the actual address length in the
integer pointed to by addrlen. xAcceptRtn() then returns OK.

If xAcceptRtn() does not return ERROR, the accept() code stores a pointer to the
back end’s SOCK_FUNC table in the child socket’s pSockFuncTbl member, then
goes on to attempt to allocate a socket descriptor from the I/O system for the child
socket. If this fails, accept() immediately calls the back end’s xCloseRtn() routine
and returns ERROR.

Otherwise, accept() stores the allocated socket descriptor in the child struct
socket’s so_fd member, and returns that socket descriptor as its result.

xIoctlRtn()

The xIoctlRtn() routine has the following prototype:

int xIoctlRtn
(
struct socket * so, /* the socket */
u_long cmd, /* ioctl command code */
void * data /* ioctl argument */
void * mode /* indicates if the call is from user space */
)

The back end’s xIoctlRtn() routine is called when the I/O system processes an
ioctl() call made on a socket descriptor. The routine is called as the rule of thumb
would suggest, passing the struct socket pointer so instead of a socket file
descriptor and passing the ioctl command and data arguments unchanged, except
that xIoctlRtn() is also passed another argument mode. This argument is NULL if
ioctl() was called from the kernel; it is an arbitrary non-NULL value if ioctl() was

5 Integrating a New Network Service
5.4 Adding a Socket Interface to Your Service

199

5

called from a user-space RTP. This indication is intended to help support validation
of user-space ioctl arguments.

5.4.3 Memory Validation and Socket Ioctls

Socket APIs are expected to validate their arguments for proper memory access
when called from a user-space RTP application. This is accomplished for most
socket calls in the socketScLib shim library. This contains the system call handlers
for sockets API system calls; these handlers execute in the kernel and perform
argument memory access validation before calling the appropriate kernel socket
APIs in sockLib. (Memory validation is done using the scMemValidate() routine;
see its reference entry for more information.)

Memory validation for the read() and write() buffer and length arguments is done
by the I/O system’s system call handler code. However, ioctl() calls made on
socket descriptors are a special case. The I/O system level does not have
knowledge about the form and use of the ioctl arguments passed to ioctl
operations implemented by the lower-level “driver” code, such as the socket back
ends, and so cannot do the memory validation. In VxWorks, the lower-level
drivers (including socket back ends) are expected to do memory validation for the
ioctls they implement which may be called by RTP applications.

sockScLib provides a pair of functions that can aid a socket back end in doing ioctl
argument memory validation. These functions should only be called through the
following function pointers:

int (*pSockIoctlMemVal)
 (
 unsigned int cmd,
 void * data
);

STATUS (*pUnixIoctlMemVal)
 (
 unsigned int cmd,
 const void * pData
);

The function pointers are only non-NULL when RTP support is included in the
VxWorks image. They should only be called when the mode argument passed to
xIoctlRtn() is non-NULL, indicating an ioctl() call from user space.

Most (although unfortunately not all) ioctl commands on sockets encode the
length and usage of the command argument in the ioctl command code itself. Ioctl
codes following the conventions in target/h/sys/ioctl.h or
target/h/wrn/coreip/ipnet/ipioctl.h encode whether the ioctl argument is a pointer

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

200

to a buffer that is read into the kernel, written to by the kernel, or both; and if so,
how large the buffer is. The top-level memory validation for such ioctl codes may
be performed by calling pUnixIoctlMemVal(), passing it the command code and
the ioctl data argument. This routine returns OK if memory validation succeeds,
otherwise it sets errno appropriately and returns ERROR.

There are some limitations of the function referenced by pUnixIoctlMemVal:

■ It does not check that the ioctl code is supported by the back end.

■ It assumes without any check that the code follows the conventions encoding
the parameter length and usage, as described in target/h/sys/ioctl.h.

■ It only does top-level checking: if the ioctl parameter is a pointer to a buffer
holding a data structure that contains additional pointers, these other pointers
are not validated. Validating them is the responsibility of the back end.

The pSockIoctlMemVal() function pointer behaves similarly to
pUnixIoctlMemVal(), except that it additionally validates memory for a small
number of ioctl() codes that do not follow the conventions upon which
pUnixIoctlMemVal() depends. In the present release, these additional ioctl codes
are FIONBIO, FIONREAD, FIOSELECT, and FIOUNSELECT. It also supports
SIOCMUXPASSTHRU and SIOCMUXL2PASSTHRU, doing second-level validation
of the embedded MUX ioctl commands in these two ioctls’ arguments. For any
other ioctl code passed to pSockIoctlMemVal(), it simply calls
pUnixIoctlMemVal().

201

 6
Working with the

802.1Q VLAN Tag

6.1 Introduction 201

6.2 Adding VLAN Support 202

6.3 About the 802.1Q VLAN Tag Header 203

6.4 MUX Extensions for Layer 2 VLAN Support 204

6.5 Current MUX-L2 Limitations 211

6.6 VLAN Management 211

6.7 Using the MUX-L2 Show Routines 219

6.1 Introduction

This chapter shows you how to work with 802.1Q VLAN tagging in the
Wind River Network Stack. It assumes that you are familiar with the principles
and operations of IEEE 802.1Q VLAN.

VLAN tagging is part of the network stack. You can access it by any of the
following methods:

NOTE: 802.1Q VLAN tagging is available in the Wind River Platforms builds of the
network stack. The Wind River General Purpose Platform, VxWorks Edition, does
not include 802.1Q VLAN tagging.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

202

■ muxL2...() routines (if you have built the stack with MUX-L2 support)
■ extensions to the socket interface
■ a pseudo-interface with which you can manage the VLAN as a subnet

6.2 Adding VLAN Support

Include the INCLUDE_IPNET_USE_VLAN (VLAN Pseudo Interface support)
component in your build if you want it to include Layer 2 subnet-based VLANs. If
you include this component, this initializes the FreeBSD-style VLAN
pseudo-interface for subnet-based VLAN support.

MUX Layer 2 Support

The INCLUDE_MUX_L2 (MUX Layer 2 support) component pulls in the MUX
network interface library for layer 2. Including this component initializes the
MUX-L2 infrastructure for VLAN support.

To allow the network stack to interoperate with MUX-L2, you must rebuild it with
the IPCOM_VXWORKS_USE_MUX_L2 flag by using one of the following methods:

■ Enable the IPCOM_VXWORKS_USE_MUX_L2 #define found in
ipcom/port/vxworks/config/ipcom_pconfig.h

■ Build with the flag ADDED_CFLAGS+=-DIPCOM_VXWORKS_USE_MUX_L2

The INCLUDE_MUX_L2 component requires the following components:

■ INCLUDE_END (END interface support)
■ INCLUDE_ETHERNET (Ethernet multicast library support)

The INCLUDE_MUX_L2 component contains the following configuration
parameters:

MUX_L2_MAX_VLANS_CFG (Maximum number of 802.1Q VLANs supports)
the maximum number of 802.1Q VLANs supported on the target (default = 16)

MUX_L2_NUM_PORTS_CFG (Number of ports that the device has)
the maximum number of physical ports available to the target (default = 16)

6 Working with the 802.1Q VLAN Tag
6.3 About the 802.1Q VLAN Tag Header

203

6

L2Config

The INCLUDE_L2CONFIG (l2config) component provides support for the layer 2
configuration utility. If you include this component, this initializes the L2
command-line configuration utility. This component requires the
INCLUDE_MUX_L2 component.

6.3 About the 802.1Q VLAN Tag Header

The Wind River VLAN implementation supports the following three frame types:

■ Untagged frames – frames that do not carry any identification of the VLAN to
which they belong

■ Priority-tagged frames – frames that include a tag header carrying explicit user
priority information but not identifying the frames as belonging to a specific
VLAN

■ VLAN-tagged frames – frames that include an explicit identification of the
VLAN to which they belong

The VLAN tag header is as shown in Figure 6-1.

The 802.1Q tag is a four-byte field after the six-byte Source Address field and
before the two-byte length/type field in the Ethernet header. An 802.1Q VLAN
tagging implementation indicates that a frame is tagged by setting its Type field to
the VLAN Identifier Protocol (0x8100). This means the next two bytes contain Tag
Control Information.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

204

The two-byte Tag Control Information consists of a 3-bit priority (0-7) value, a
Canonical Format Indicator (CFI) field (0 for Ethernet), and a 12-bit VLAN
Identifier (VID). The 12-bit VID field can take any value from 0 to 4095, but two of
these values have special meanings according to the 802.1Q specification: The
value of all ones (0xFFF) is reserved but currently unused; the value of all zeros
(0x000) indicates a that the frame is priority-tagged and that no VID is present in
the frame.

6.4 MUX Extensions for Layer 2 VLAN Support

This section describes how to programmatically control MUX-L2 VLAN support if
you have built your stack with MUX-L2 interoperability.

Overview of MUX-L2 VLAN Management

The MUX-L2 extensions allow you to manage the VLAN membership for a
VxWorks target. These extensions support the following 802.1Q characteristics:

Figure 6-1 VLAN Tag Header Format on Ethernet

Destination
Address

Source
Address

VLAN
Tag

Length/
Type Data CRC

TPID
Tag Protocol

TCI
(Tag Control

ID Information)

6 bytes6 bytes 4 bytes 2 bytes 42 to 1500 bytes 4 bytes

CFI
(1 bit)

VLAN ID
(12 bits)

User Priority
(3 bits)

4 bytes
VLAN Tag

2 bytes
TCI

6 Working with the 802.1Q VLAN Tag
6.4 MUX Extensions for Layer 2 VLAN Support

205

6

■ VLAN classification of untagged, priority-tagged, or VLAN-tagged ingress
frames.

■ Port-based VLAN classification as the default ingress rule (that is, all untagged
and priority-tagged frames that a port receives are classified as belonging to
the VLAN whose VID is associated with that port).

■ Tagging of egress frames as VLAN-tagged, priority tagged, or untagged
frames on a per-port basis.

■ Enabling a port to be a member of multiple VLANs.

■ Ingress Filter and Ingress Acceptable Frame Type configuration on a per-port
basis.

■ Ingress Filter configuration on a per-port basis.

■ Ingress Acceptable Frame Type configuration on a per-port basis.

■ The ability to send untagged frames for some VLANs and VLAN-tagged
frames for others on a per-port basis.

■ The assignment of all VLAN-enabled ports to the default PVID of 1. The PVID
value of a port is configurable.

You can access and control this functionality through the muxL2...() routines,
through a socket interface, or with a VLAN pseudo-interface.

6.4.1 Enabling VLAN Support for a Port

For an END device loaded to MUX, call the muxL2PortAttach() routine to enable
VLAN support for the port.

The muxL2PortAttach() routine prepares the port for VLAN support as follows:

■ It joins the port to the default VLAN with a VID of 1, according to the 802.1Q
requirement. It also configures the port to transmit untagged frames on the
default VLAN. You can change the egress tagging state for the default Port
VLAN ID (PVID) by calling muxL2Ioctl() with the MUXL2IOCSPORTVLAN
control command.

■ It initializes the port-specific attributes with the following defaults:

– Default Port User priority: 0

NOTE: The muxL2PortAttach() routine assumes an Ethernet device. If you are
using a non-Ethernet device, call muxL2PortAltAttach() instead.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

206

– Ingress Acceptable Frame Filter Type: admits all frame types
– Ingress Filter: False

■ It queries the hardware for its VLAN capabilities.

A driver that supports hardware VLAN tagging must indicate this by setting
flags in the cap_available member of the END_CAPABILITIES structure the
driver returns in response to a EIOCGIFCAP message to its xIoctl() routine
(see xIoctl(), p.136). Those flags are as follows:

– IPCOM_IF_DRV_CAP_VLAN_MTU – indicates that the driver can handle
slightly-larger-than-normal frames (that is, frames with a VLAN tag). This
notifies the MUX-L2 that it can leave the MTU for the port at the normal
setting. If the IPCOM_IF_DRV_CAP_VLAN_MTU flag is not set and
software VLAN-tagging is required, the MUX-L2 decreases the hardware
MTU by 4-bytes.

– IPCOM_IF_DRV_CAP_VLAN_HWTAGGING_TX – indicates that the driver
can insert the VLAN tag into a frame on egress, by using the information
that it reads from the pkt->link_cookie field in host-byte order.

– IPCOM_IF_DRV_CAP_VLAN_HWTAGGING_RX – indicates that the driver
can strip the VLAN tag from a received frame and store that tag
information in the pkt->link_cookie field in host-byte order.

■ It determines which type of Ethernet address format the device can support
(Ethernet Type 2 encapsulation or 802.3 style length encapsulation). This
information is required when the MUX-L2 assembles an Ethernet header for
the egress frame.

■ It saves the address of the original END driver’s pFuncTable function table.
The MUX-L2 will restore the original driver’s function table during
muxL2PortDetach().

■ It replaces the driver’s registered xPacketDataGet() with
muxL2IngressClassify(), and the xFormAddress() function pointer with
muxL2EgressClassify(). For more information about MUX-L2 ingress and
egress frame processing, see 6.4.3 MUX-L2 Ingress Rules, p.207, and
6.4.4 MUX-L2 Egress Rules, p.209.

NOTE: As an alternative to muxL2PortAttach(), you can call muxL2Ioctl() using
the MUXL2IOCSPORTATTACH control command.

6 Working with the 802.1Q VLAN Tag
6.4 MUX Extensions for Layer 2 VLAN Support

207

6

6.4.2 Disabling VLAN Support for a Port

To disable VLAN support for a port, call muxL2PortDetach(). This routine
detaches the port from the MUX-L2, removes the port from all the VLAN
memberships it has joined, and restores the original driver’s function table. If the
port is removed from the MUX, muxDevUnload() calls muxL2PortDetach() as
well.

6.4.3 MUX-L2 Ingress Rules

When a frame arrives on a port, the driver’s interrupt service routine schedules the
frame processing work to tNet0. The MUX receive routine would normally
schedule a call to the driver’s xPacketDataGet() to separate the address
information and data in the frame. However, for a VLAN-enabled port, the MUX
receive routine schedules a call to muxL2IngressClassify() to filter the received
frame according to its VLAN header tag. Figure 6-2 shows how the ingress filter
handles an incoming frame.

NOTE: As an alternative to muxL2PortDetach(), you can call muxL2Ioctl() using
the MUXL2IOCSPORTDETACH control command.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

208

Figure 6-2 MUX-L2 Ingress Rules

LLC DSAP
= 0x42

EtherType
> 1500

Ethertype
= 0x8100

Admit All
Frames

VID = 0

Extract VLAN
ID & User

Priority.

Port-Based
VLAN

VID = PVID

VID = 4095
Ingress
Filter

Enabled

Fill in the link
header info.

Discard
Frame.

From MUX
Receive Routine

Yes

Yes

No

Yes

Yes

Yes

No

No

No

No

Yes

No

VLAN
Independent

BPDU

802.2
Address
FormatEthernet Type 2

Address Format

Untagged

Priority-tagged

Found Tag

No

Port is
member of

VLAN
?

?

No

Yes

?

Yes

6 Working with the 802.1Q VLAN Tag
6.4 MUX Extensions for Layer 2 VLAN Support

209

6

6.4.4 MUX-L2 Egress Rules

When the MUX needs to transmit a frame, it normally calls the driver’s
xFormAddress() routine to create and prepend a link-layer-appropriate frame
header to the M_BLK chain containing outgoing data. However, for packets
transmitted over a VLAN-enabled port, 802.1Q requires some additional
pre-processing.

In addition, 802.1Q requires that a port transmits only VLAN-tagged frames or
untagged frames but never transmits using both formats for the same VLAN. To
support the egress tagging decision on a per-port per-VLAN basis, the MUX-L2
keeps track of the per-port egress tagging configuration for each VLAN.

To evaluate an outgoing frame in accordance with this information, the MUX calls
muxL2EgressClassify() to determine whether the outgoing frame should be
tagged or untagged, and then to build the link-layer header based on the tagging
decision. Figure 6-3 shows how the egress filter handles an outgoing frame.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

210

6.4.5 Accessing the MUX L2 Control Routines

Call muxL2Ioctl() to access the MUX-L2 control functionality. These control
functions let you do such things as retrieve port information and set the ingress
frame filter type. For more information, see the muxL2Ioctl() reference entry.

Figure 6-3 MUX-L2 Egress Rules

Extract VID and
user priority.

Discard

VID = 0
Port-Based

VLAN
VID = PVID

HW Tagging
Offload VLAN
Tag Header
to hardware.

Build a normal
Ethernet header.

Port is
member of

VID

Frame.

From Output Routine

Send

NoNo

Send
Untagged
Frame?

Build Ethernet
header with VLAN

Priority Tagged
Frame

?

?
?

Tag Header.

NoNo

Yes

Yes

Yes

No

VLAN
Tagged
Frame

YesYes

6 Working with the 802.1Q VLAN Tag
6.5 Current MUX-L2 Limitations

211

6

6.5 Current MUX-L2 Limitations

The current MUX-L2 implementation has the following known limitations:

■ There is no support for the automatic distribution of VLAN configuration
using the GARP VLAN Registration Protocol (GVRP). The MUX-L2 support
for VLAN is limited to those VLANs that are created statically.

■ The MUX-L2 does not configure and operate the address learning process
described in the 802.1Q specification. Therefore, it is not capable of
broadcasting or multicasting frames to multiple ports belonging to a VLAN.

■ Although the MUX-L2 allows the 802.1P User Priority to be specified with an
egress VLAN-tagged frame, it does not support user priority to traffic class
mapping described in the 802.1Q specification. It also does not provide any
mechanism to perform the ingress user priority regeneration as described in
the 802.1Q specification.

■ Although the MUX-L2 implements selected RFC 2674 static VLAN objects, the
VLAN configuration methodology is not compatible with the RFC 2674 MIB.
RFC 2674 VLAN management is VLAN-centric and requires a port list bitmap
specifying the ports belonging to a VLAN. The VLAN management for the
MUX-L2 is port-centric and achieves VLAN configuration on a per-port basis.

■ The support for 802.1Q VLAN tagging is currently implemented for END
drivers only. NPT driver support is not available at this time.

■ The MUX-L2 implementation is provided in the context of Ethernet as the
underlying data link technology. Because the fundamental VLAN operation
and behavior are independent of the underlying data link, the implementation
can be easily modified to adapt to a non-Ethernet environment.

■ Wind River Learning Bridge is not compatible with the MUX-L2.

6.6 VLAN Management

The following subsections describe two mechanisms with which you can manage
a VLAN:

■ 6.6.3 Socket-Based VLAN Management, p.216
■ 6.6.2 Subnet-Based VLAN Management, p.213

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

212

6.6.1 MUX-L2 VLAN Management

If you enable MUX-L2 functionality when you build the network stack, you can
use the l2config utility to access the Layer 2 set routines supported by
muxL2Ioctl(). The l2config utility does not give you access to the muxL2Ioctl()
“get” functionality, which, because of its use of structures, is more suited to
programmatic use. However, you can access much of the same information from
the command line using muxL2Show() or muxL2VlanShow(), which are
described in their respective reference entries and in 6.7 Using the MUX-L2 Show
Routines, p.219.

For port-oriented configuration needs, l2config allows you to do the following:

■ Attach/detach a port to/from MUX-L2.
■ Set the default port VID (PVID).
■ Set the default user priority.
■ Set the acceptable ingress frame type.
■ Set the ingress frame filter.

For configuration needs involving both the port and a VLAN, l2config allows you
to do the following:

■ Join a port to a VLAN.
■ Set the egress frame type for the VLAN.
■ Leave a VLAN that a port joined previously.

For more information, see the examples below and the reference entry for l2config.

Sample MUX-L2 Configuration

The following example attaches the fei1 port to MUX-L2:

-> l2config "vlandev fei1 attach"
value = 0 = 0x0

The following example enables the ingress frame filter for port fei1. It also sets the
fei1 ingress acceptable frame filter type to ADMIT_TAGGED_ONLY_FRAMES:

-> l2config "vlandev fei1 infilter on ingress admittag"
value = 0 = 0x0

The following example joins the fei1 port to the VLAN with VID 20 and configures
the egress frame type for the VLAN to transmit VLAN-tagged frames only:

-> l2config "vlandev fei1 join vid 20 egress tagged"
value = 0 = 0x0

The following example removes the fei1 port from VLAN 20, the VLAN to which
it was joined previously:

6 Working with the 802.1Q VLAN Tag
6.6 VLAN Management

213

6

-> l2config "vlandev fei1 leave vid 20"
value = 0 = 0x0

The following example shows how you can issue multiple command options at the
same time, using l2config. The attach and join commands above can be combined
into a single command:

-> l2config "vlandev fei1 attach join vid 20 egress tagged"
value = 0 = 0x0

6.6.2 Subnet-Based VLAN Management

To support VLAN routing, FreeBSD uses the VLAN pseudo-interface to
demultiplex VLAN-tagged frames into logical VLAN network interfaces. The
Wind River Network Stack adapts this technique to support subnet-based VLAN
configuration.

Each VLAN pseudo-interface can be created at run time by using the ifconfig()
create command. For each pseudo-interface, call ifconfig to assign a VLAN, a
parent interface, and a numeric VID. The parent interface must be a physical
interface that is attached to the IP layer at the time you create the VLAN
pseudo-interface.

A single parent interface can support multiple VLAN pseudo-interfaces provided
that the pseudo-interfaces have different VIDs. The parent interface must be a
member of the VLAN for the VID assigned to the VLAN pseudo-interface.

To configure the VLAN pseudo-interface, use the following three ifconfig options:

vlanInterfaceName create
Create the specified VLAN pseudo-interface named by vlanInterfaceName.
vlanInterfaceName must start with the letters “vlan”; for example: vlan, vlan10,
or vlanPrivate.

vlanInterfaceName destroy
Delete the specified VLAN pseudo-interface from the network stack.

vlanInterfaceName vlan vlanID vlanif interfaceName vlanpri priority
Set the VLAN ID to vlanID, associate the physical interface interfaceName with
vlanInterfaceName, and assign the Class Of Service value priority to the VLAN
tag for this VLAN pseudo-interface. vlanID is a 16-bit number between 1-4094
that is used to create an 802.1Q VLAN header for packets the stack sends from
the VLAN pseudo-interface. priority is a three-bit value.

Packets transmitted through the VLAN interface will be diverted to the
physical interface interfaceName with 802.1Q VLAN encapsulation. Packets

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

214

with 802.1Q encapsulation received by the physical interface with the correct
VLAN ID will be diverted to the associated VLAN pseudo-interface. The
VLAN interface is assigned a copy of the physical interface’s flags and
Ethernet address. If the VLAN interface already has a physical interface
associated with it, this command fails. To change the association to another
physical interface, you must first clear the existing association.

Note that you must set vlan and vlanif at the same time.

Consequences of Changing the VID

The Wind River Network Stack allows you to change the parent interface and the
VID only when the VLAN interface is down. For example, to change the parent
interface to fei1 and the VID for the VLAN pseudo-interface to 1234 on a created,
configured, and up VLAN interface, type the following:

-> ifconfig vlanLab down vlanif fei1 vlan 1234 up

Be aware that changing the VID for the VLAN pseudo-interface does not
automatically remove the parent interface from the VLAN membership associated
with the old VID. It also does not automatically add the parent interface to the
member set specified by the new VID. Therefore, the parent interface must be a
member of the VLAN specified by the new VID before the new VID can be
assigned. The parent interface remains a member of the VLAN specified by the old
VID unless the membership is explicitly removed.

Example of Subnet-Based VLAN Management

The following examples show how to create VLAN pseudo-interfaces. The first
examples rely on the compact interface naming style. The examples after that rely
on the restrictive interface naming style.

If you have built the network stack to support MUX-L2, when you create the
VLAN pseudo-interface the network stack will implicitly attach the physical
parent interface to MUX-L2 and will join the parent interface to the VLAN that you
have configured for the VLAN pseudo-interface. Once the stack joins the port to
MUX-L2, MUX-L2 enforces strict ingress and egress VLAN rules (as described in
sections 6.4.4 MUX-L2 Egress Rules, p.209 and 6.4.5 Accessing the MUX L2 Control
Routines, p.210). When you attach the parent physical interface (port) to MUX-L2,
you can manage the port by calling l2config() (for instance, to set the port ingress
or egress properties).

6 Working with the 802.1Q VLAN Tag
6.6 VLAN Management

215

6

Examples Using the Compact Creation API

The following example uses the compact interface naming style to create a VLAN
pseudo interface fei1.50 with IP Address 190.0.2.234/24. It also specifies the parent
interface fei1 and VID 50 for the VLAN pseudo interface. You must have already
attached fei1 to the network stack.

-> ifconfig "fei1.50 create inet 190.0.2.234/24"
value = 0 = 0x0
-> ifconfig "fei1.50"
fei1.50: flags=48043<UP,BROADCAST,RUNNING,MULTICAST,INET_UP> mtu 1496

inet 190.0.2.234 netmask 0xffffff00 broadcast 190.0.2.255
ether 00:08:c7:c9:24:76
vlan: 50 user priority: 0 parent interface: fei1

value = 0 = 0x0

The following example destroys the fei1.50 VLAN pseudo interface previously
created.

-> ifconfig "fei1.50 destroy"
value = 0 = 0x0

The following example uses the compact interface naming style to create a VLAN
pseudo interface, fei0.20, with IP Address 190.0.4.234/24. It also specifies the
parent interface fei0, VID 20, and user priority 5 for the VLAN pseudo interface.
You must have already attached fei0 to the network stack.

-> ifconfig "fei0.20 create"
value = 0 = 0x0

-> ifconfig "fei0.20 190.0.4.234/24"
value = 0 = 0x0

-> ifconfig "fei0.20 vlanpri 5"
value = 0 = 0x0

-> ifconfig "fei0.20"
fei0.20: flags=48043<UP,BROADCAST,RUNNING,MULTICAST,INET_UP> mtu 1496
 inet 190.0.4.234 netmask 0xffffff00 broadcast 190.0.4.255
 ether 00:03:47:b0:d7:17
 vlan: 20 user priority: 5 parent interface: fei0
value = 0 = 0x0

Examples Using the Name-Restrictive Creation API

The following example creates a VLAN pseudo-interface, vlan0, with IP Address
190.0.2.123/24, assigns the pseudo-interface with VID 20, and associates it with the
parent interface fei1. You must have already attached fei1 to the network stack.

-> ifconfig "vlan0 create"
value = 0 = 0x0

-> ifconfig "vlan0"

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

216

vlan0 Link type:Layer 2 virtual LAN HWaddr
00:01:02:03:04:10 Queue:none

vlan: 20 parent: fei0
inet 190.0.2.123 mask 255.255.255.0 broadcast 190.0.2.255
inet 224.0.0.1 mask 240.0.0.0
inet6 unicast FE80::201:2FF:FE03:410%vlan10

prefixlen 64 automatic
inet6 unicast FE80::%vlan10 prefixlen 64 anycast
inet6 multicast FF02::1%vlan10 prefixlen 16 automatic
inet6 multicast FF02::1:FF03:410%vlan10 prefixlen 16
inet6 multicast FF02::1:FF00:0%vlan10 prefixlen 16
UP RUNNING SIMPLEX BROADCAST MULTICAST
MTU:1496 metric:0 VR:0
RX packets:0 mcast:0 errors:0 dropped:0
TX packets:13 mcast:15 errors:0
collisions:0 unsupported proto:0
RX bytes:0 TX bytes:1138

-> ifconfig "vlan0 vlan 20 vlanif fei1"
value = 0 = 0x0

-> ifconfig "vlan0 190.0.2.123/24"
value = 0 = 0x0

-> ifconfig "vlan0"
vlan0: flags=48043<UP,BROADCAST,RUNNING,MULTICAST,INET_UP> mtu 1496

inet 190.0.2.123 netmask 0xffffff00 broadcast 190.0.2.255
ether 00:08:c7:c9:24:76
vlan: 20 user priority: 0 parent interface: fei1

value = 0 = 0x0

The following example destroys the vlan1 VLAN pseudo-interface previously
created.

-> ifconfig "vlan0 destroy"
value = 0 = 0x0

6.6.3 Socket-Based VLAN Management

Wind River extends the socket API to include a new socket option, SO_VLAN, and
a new structure, sovlan. These provide a mechanism that can carry all the
information relevant to VLAN configuration. If you treat the VID and the user
priority as socket-level configuration options, you can use these extensions by
calling getsockopt() and setsockopt() and thus get or set VLAN membership
information.

The sovlan structure is defined as follows:

struct sovlan
{
/*
* If so_onff is set, the vlan id and/or user priority will be copied
* to the socket structure and SO_VLAN so_option will be set. If so_onff

6 Working with the 802.1Q VLAN Tag
6.6 VLAN Management

217

6

* is not set, the SO_VLAN so_option for the socket will be cleared.
*/
int vlan_onoff; /* on/off option */

/*
* The priority_tagged boolean must be set to true if application using
* socket-based vlan requires to egress 802.1P priority-tagged frame
* (i.e. the value of vid is zero). Defaults to false. If set to true,
* the value specified by the vid will be ignored.
*/

BOOL priority_tagged;

unsigned short vid; /* VLAN ID, valid vid: 1..4094 */
unsigned short upriority; /* User Priority, valid priority: 0..7 */
};

After an application creates a socket, it can call setsockopt() to configure the VID
and/or user priority for the socket. In order to transmit a VLAN-tagged or
priority-tagged frame, the port/interface that the socket bound to must have
already attached to the MUX-L2 as described previously. If a port transmits a
VLAN-tagged frame, the port must also be a member of the VLAN that the
socket-based VLAN is configured for.

Setting User Priority for Transmitted Priority-Tagged Frames

The following code fragment is an example of how to call setsockopt() in order to
configure the user priority for a socket and configure that socket to transmit
priority-tagged frames.

struct sovlan vl;

/* set up the vlan_onoff to indicate that the VID and or User Priority
* are valid */

vl.vlan_onoff = 1;
/*
* Informs lower-layers (such as subnet-based VLAN) that the
* information provided is for Priority-tagged frame and that lower-layers
* must not alter the VLAN control information for VID configuration
*/

vl.priority_tagged = TRUE;

/* VID is not applicable for Priority-tagged frame */

vl.vid = 0;

/* Configure the Priority-tagged frame for User Priority with value 7 */

vl.upriority = 7;

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

218

if (setsockopt (s, SOL_SOCKET, SO_VLAN, (char *) &vl, sizeof (struct sovlan))
< 0)
printf("setsockopt SO_VLAN for socket %d failed\n", s);

Setting User Priority for Transmitted VLAN-tagged Frames

The following code fragment is an example of how to call setsockopt() in order to
configure the user priority for the specified socket and to configure that socket to
transmit VLAN-tagged frames.

struct sovlan vl;

/* setup vlan_onoff to indicate that VID and/or User Priority * are valid */

vl.vlan_onoff = 1;

/*
* Informs lower-layers (such as Subnet-based VLAN) that the
* information provided is for VLAN-tagged frame and that lower-layers should
* alter the VLAN control information for VID if the VID is not specified
*/

vl.priority_tagged = FALSE;

/*
* Specifies VID with value of 0 to allow lower-layers (such as Subnet-
* based VLAN) to insert the appropriate VID to the VLAN
* control information for the outgoing VLAN-tagged frame.
*/

vl.vid = 0;

/* Configure the VLAN-tagged frame for User Priority with value 3 */
vl.upriority = 3;

if (setsockopt (s, SOL_SOCKET, SO_VLAN, (char *)&vl, sizeof (struct sovlan))
< 0)
printf ("setsockopt SO_VLAN for socket %d failed\n", s);

Clearing the VLAN Configuration for the Socket

Consider the following code fragment calls setsockopt() to clear the VLAN
configuration for a socket:

struct sovlan vl;

bzero ((char *) &vl, sizeof (struct sovlan));

/* reset all the VLAN control information for the socket */

vl.vlan_onoff = 0;

if (setsockopt (s, SOL_SOCKET, SO_VLAN, (char *) &vl, sizeof (struct sovlan))
< 0)

6 Working with the 802.1Q VLAN Tag
6.7 Using the MUX-L2 Show Routines

219

6

printf ("setsockopt SO_VLAN for socket %d failed\n", s);

Getting Configuration Information

The following code fragment is an example of how to call getsockopt() to retrieve
the VLAN configuration for a socket.

struct sovlan vl;
int vsize = sizeof (struct sovlan);

bzero ((char *) &vl, sizeof (struct sovlan));
if (getsockopt (s, SOL_SOCKET, SO_VLAN, (char *) &vl, &vsize) < 0)

printf ("getsockopt SO_VLAN for socket %d failed\n", s);
if (0 == vl.vlan_onoff)

printf ("No VLAN control info for socket %d\n", s);
else

{
if (vl.priority_tagged)

printf ("Socket %d Priority-Tagged User Priority %d\n", s,
vl.upriority);

else
printf ("Socket %d VLAN-Tagged VID %d User Priority %d\n", s, vl.vid,

vl.upriority);
}

6.7 Using the MUX-L2 Show Routines

For debugging and diagnostic purposes, the MUX-L2 provides muxL2Show(),
muxL2StatShow(), muxL2VlanShow(), and muxL2VlanStatShow().

Example 6-1 muxL2Show()

Call muxL2Show() to display the configuration of ports registered with the
MUX-L2.

-> muxL2Show
max number of physical ports: 16
max number of vlans device supports: 16

NOTE: For the VLAN-tagged frame, if getsockopt() returns a VID value of 0, this
implies that the application uses the socket-based VLAN, chooses not to configure
the VID, and relies on the lower-layers (such as subnet-based VLAN) to insert the
appropriate VID to the VLAN control information for the outgoing VLAN-tagged
frame.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

220

number of vlans configured in device: 3
number of ports attached to MUX-L2: 2

Device: <fei> Unit: <1> L2 Port Object: 0x10cc040 endObjId: 1
Port VID (PVID): 1 Port User Priority: 0
Port ingress filter: TRUE
Port ingress acceptable frame filter type: Admit vlan-tagged frames only
Hardware supports vlan tagging: FALSE
Hardware supports vlan mtu: FALSE
Number of vid configured for the port: 2
Port VLAN membership:

VID 1 Egress: untagged-tagged
VID 20 Egress: vlan-tagged

Device: <fei> Unit: <0> L2 Port Object: 0x10e40a0 endObjId: 2
Port VID (PVID): 1 Port User Priority: 0
Port ingress filter: TRUE
Port ingress acceptable frame filter type: Admit All Frames
Hardware supports vlan tagging: FALSE
Hardware supports vlan mtu: FALSE
Number of vid configured for the port: 2
Port VLAN membership:

VID 1 Egress: untagged-tagged
VID 100 Egress: vlan-tagged

value = 1 = 0x1

Example 6-2 muxL2VlanShow()

Calls muxL2VlanShow() to display the VLAN configurations maintained by the
MUX-L2 on a per-VLAN basis.

-> muxL2VlanShow

VLAN 1: Number of Members: 2 Egress Untagged: 2
VLAN 20: Number of Members: 1 Egress Untagged: 0
VLAN 100: Number of Members: 1 Egress Untagged: 0

Port to device name mapping:
Port 1 -> fei1
Port 2 -> fei0

VLAN Membership information:
(Legend: 'M' = Member '-' = Unspecified)

VLAN 1 : MM--------------
VLAN 20 : M---------------
VLAN 100 : -M--------------

VLAN Egress Frame Type:
(Legend: 'T' = Vlan-Tagged 'U' = Untagged '-' = Unspecified)

VLAN 1 : UU--------------
VLAN 20 : T---------------
VLAN 100 : -T--------------

value = 1 = 0x1

6 Working with the 802.1Q VLAN Tag
6.7 Using the MUX-L2 Show Routines

221

6

Example 6-3 muxL2StatShow() and muxL2VlanStatShow()

The MUX-L2 also maintains various VLAN statistics on a per-port per-VLAN
basis. These statistics are disabled by default for performance reasons. To include
these statistics, build MUX-L2 with MUX_L2_VLAN_STATS defined. If VLAN
statistics are included, muxL2VlanStatShow() and muxL2StatShow() can be
used to monitor the traffic on a per-port per-VLAN basis.

-> muxL2StatShow
fei1 Port Statistics:

Number of received frames discarded due to non-vlan
reasons (i.e. Discard Ingress Filtering): 9
Number of egress frames discarded due to Egress
Rules violation: 0

VLAN 1 staticstics:
Number of frames received: 0
Number of frames transmitted: 0
Number of received frames discarded: 0

VLAN 20 staticstics:
Number of frames received: 166
Number of frames transmitted: 226
Number of received frames discarded: 0

fei0 Port Statistics:
Number of received frames discarded due to non-vlan
reasons (i.e. Discard Ingress Filtering): 0
Number of egress frames discarded due to Egress
Rules violation: 0

VLAN 1 staticstics:
Number of frames received: 0
Number of frames transmitted: 0
Number of received frames discarded: 0

VLAN 100 staticstics:
Number of frames received: 393
Number of frames transmitted: 486
Number of received frames discarded: 0

value = 0 = 0x0

-> muxL2VlanStatShow
fei1 VLAN 1 staticstics

Number of frames received: 0
Number of frames transmitted: 0
Number of received frames discarded: 0

fei0 VLAN 1 staticstics
Number of frames received:
Number of frames transmitted: 0
Number of received frames discarded: 0

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

222

fei1 VLAN 20 staticstics
Number of frames received: 166
Number of frames transmitted: 226
Number of received frames discarded: 0

fei0 VLAN 100 staticstics
Number of frames received: 393
Number of frames transmitted: 486
Number of received frames discarded: 0

value = 0 = 0x0

223

 7
Quality of Service

7.1 Introduction 223

7.2 Differentiated Services 224

7.3 Network Interface Output Queues 237

7.1 Introduction

Quality of Service (QoS) refers to the capability of a network to treat some traffic
flows differently than others. The most common usage is to give a specific traffic
flow a better service than the normal best-effort service.

Different types of flow have different requirements; for example, some flows have
restrictions in latency, while others have restrictions in minimum bandwidth, and
so on. For example:

■ Interactive traffic, like telnet and SSH, performs better with low latency so that
the user does not experience delay when typing.

■ FTP traffic performs better when it can use as much bandwidth as possible; it
does not matter if the latency is high or if the data arrives in bursts.

NOTE: The QoS feature is available only in the Wind River Platforms builds of the
network stack. The Wind River General Purpose Platform, VxWorks Edition, does
not support QoS.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

224

Telnet will have a high latency if routers treat all traffic equally, which is the default
“best effort” behavior used by most routers. But routers could improve latency if
each router identifies the two varieties of flow and lets the telnet packets move
ahead of FTP packets that the router has already queued to send on the outgoing
interface. Doing so will ordinarily have little effect on the FTP application, since
telnet normally uses little bandwidth.

7.2 Differentiated Services

The Differentiated Services (DiffServ) architecture is based on a model in which an
edge router classifies traffic entering a network, possibly conditions it (for instance
to reduce jitter or latency), and assigns it to different behavior aggregates. It assigns
packets to behavior aggregates by setting a single differentiated-services (DS)
codepoint in the value of the DS field of the IP datagram (the TOS field for IPv4 or
the traffic-class field for IPv6). The core routers of the network then may forward
these packets according to the per-hop behavior they associate with each DS
codepoint.

To control, create, and delete interface output queues, use the API that is defined
in the following file:

installDir/components/ip_net2-6.n/ipnet2/include/ipnet_qos.h

7.2.1 Including DiffServ in a Build

To include DiffServ in a VxWorks build, include the DiffServ build components
listed below. You can do this through either Workbench or the vxprj
command-line utility.

The following six build components enable DiffServ (there are no build parameters
for any of the components):

Differentiated Services (INCLUDE_IPNET_DIFFSERV)
the main component for differentiated services

Classifier (INCLUDE_IPNET_CLASSIFIER)
classifier component

7 Quality of Service
7.2 Differentiated Services

225

7

Simple Marker (INCLUDE_IPNET_DS_SM)
component for the simple marker (see SimpleMarker, p.234)

Single Rate Three Color Marker (INCLUDE_IPNET_DS_SRTCM)
component for the single-rate, three-color marker (see Single-Rate Three-Color
Marker, p.235)

IPCOM QoS commands (INCLUDE_IPQOS_CMD)
enables the use of shell commands for configuring DiffServ

IPCOM output queue commands (INCLUDE_IPQUEUE_CONFIG_CMD)
enables the use of shell commands for configuring output queues

7.2.2 Using DiffServ

You can configure a DiffServ traffic classifier to run either in behavior aggregate
mode or in multi-field mode:

■ In behavior aggregate mode, the classifier looks only at the DS field (the TOS
field in IPv4, or the traffic class for IPv6).

■ In multi-field mode, the classifier may look at any field supported by the
IPNET classifier—this is slower, but more flexible.

To run in behavior aggregate mode, define the macro
IPNET_DIFFSERV_CLASSIFIER_MODE_BA in the file
installDir/components/ip_net2-6.n/ipnet2/config/ipnet_config.h; undefine this
macro to run in multi-field mode.

Adding a Filter Rule for a Meter/Marker Entity

To add a filter rule for a meter/marker entity when running DiffServ in multi-field
mode, you can either call a routine from within a program or use a QC command
interactively.

To invoke this operation from within a program, use the following call:

ioctl (sock_fd, SIOCXADSFILTER, &filter);

Where filter is a ds_filter object that describes the filter you are adding (see The
ds_filter Class, p.228). The network stack chooses an ID for the filter and stores it in
the id member of this object. Use this ID number if you need to refer to this specific
filter, for instance if you attach it to a DiffServ meter/marker entity.

You can also use a QC command, which has the following format:

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

226

qc filter add dev device parent queueID handle filterID [filterArgs] flowid queueID

The arguments to this command are as follows:

dev device
The device to which you are attaching the filter, for instance eth0.

parent queueID
The identifying number of the container queue to which you are adding the
filter.

handle filterID [filterArgs]
The filterID is the identifying number of the filter. You may use the following
arguments in the filterArgs argument to describe the filter:

proto number

tclass number

srcport range

dstport range

srcaddr address[/prefix]

dstaddr address[/prefix]

flowid queueID
The identifying number of the destination queue for packets that match the
filter.

For example:

To add a filter identified by the number five to the container queue identified by
the number one, so that all TCP packets (protocol number six) are filtered into the
queue identified by the number 31, use the following QC command:

> qc filter dev eth0 parent 1 handle 5 proto 6 flowid 31

To add a second filter (identified by the number three) to the same container queue
that filters all UDP packets (protocol number 17) that are sent to 2001::/16 into the
same queue, use the following QC command:

> qc filter dev eth0 parent 1 handle 3 proto 17 srcaddr 2001::/16 flowid 31

Deleting a Filter Rule from a Meter/Marker Entity

To delete a filter rule from a meter/marker entity when running DiffServ in
multi-field mode, you can either call a routine from within a program or use a QC
command interactively.

To invoke this operation from within a program, use the following call:

7 Quality of Service
7.2 Differentiated Services

227

7

ioctl (sock_fd, SIOCXDDSFILTER, &filter);

In this call, filter is a ds_filter object that describes the filter you are deleting (see
The ds_filter Class, p.228). You only need to set the id member of this object in order
to specify which filter you want to delete.

You can also use a QC command, which has the following format:

qc filter del filterID

Creating a Meter/Marker Entity

To create a meter/marker entity, you can either call a routine from within a
program or use a QC command interactively.

To invoke this operation from within a program, use the following call:

ioctl (sock_fd, SIOCXDSCREATE, &entity);

In this call, entity is an object of the ds superclass (see The ds Class, p.231). The
network stack will fill in the id field of this object. Use this identifying number to
identify this entity in future calls.

See 7.2.4 Creating New Meter/Marker Entity Varieties, p.232, for descriptions of the
meter/marker entities that are part of the Wind River Network Stack and for
instructions on how to add new entities.

Deleting a Meter/Marker Entity

To delete a meter/marker entity, you can either call a routine from within a
program or use a QC command interactively.

To invoke this operation from within a program, use the following call:

ioctl (sock_fd, SIOCXDSDESTROY, &entity);

In this call, entity is an object of the ds superclass (see The ds Class, p.231), but you
need only fill in the id member of this object in order to sufficiently identify the
entity you want to delete.

Mapping a Filter to a Meter/Marker Entity

To map a filter (or DS codepoint if you are operating in multi-field mode) to a
meter/marker entity, you can either call a routine from within a program or use a
QC command interactively.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

228

To invoke this operation from within a program, use the following call:

ioctl (sock_fd, SIOCXADSMAP, &mapping);

In this call, mapping is an object of the ds_map class that describes the mapping
you are establishing (see Mapping from a Filter Rule to a Meter Marker Entity, p.231).

Removing a Filter-to-Meter/Marker Entity Mapping

To remove a mapping between a filter (or DS codepoint if you are operating in
multi-field mode) and a meter/marker entity, you can either call a routine from
within a program or use a QC command interactively.

To invoke this operation from within a program, use the following call:

ioctl (sock_fd, SIOXDDSMAP, &mapping);

In this call, mapping is an object of the ds_map class that describes the mapping
that you are removing (see Mapping from a Filter Rule to a Meter Marker Entity,
p.231).

7.2.3 Classes

The following sections describe classes of objects associated with DiffServ:

■ ds_filter – see The ds_filter Class, p.228
■ ds – see The ds Class, p.231
■ ds_map – see Mapping from a Filter Rule to a Meter Marker Entity, p.231

The ds_filter Class

A DiffServ filter rule is instantiated as an object of the ds_filter class (see
Figure 7-1).

7 Quality of Service
7.2 Differentiated Services

229

7

The members of the classifier_rule class are defined as follows:

mask
A mask that indicates which fields must match in order to trigger the filter
rule. Construct this mask by ANDing together one or more of the CLS_RULE_x
constants:

■ CLS_RULE_DS – DS field
■ CLS_RULE_PROTO – protocol field
■ CLS_RULE_SADDR – source address
■ CLS_RULE_DADDR – destination address
■ CLS_RULE_SPORT – source port
■ CLS_RULE_DPORT – destination port

ds
The value that a packet must have in its DS field in order to trigger the filter
rule (assuming the CLS_RULE_DS flag is set in mask). The DS field is the traffic
class field for IPv6 and the TOS field for IPv4.

proto
The value that a packet must have in its IP header’s protocol field in order to
trigger the filter rule (assuming the CLS_RULE_PROTO flag is set in mask).

sport_low
The lowest source port a UDP or TCP packet can come from and still trigger
the filter rule (assuming the CLS_RULE_SPORT flag is set in mask).

Figure 7-1 The ds_filter and classifier_rule Class

classifier_rule
mask : u_short
ds : u_char
proto : u_char
sport_low : u_short
sport_high : u_short
dport_low : u_short
dport_high : u_short
af : u_char
saddr_prefixlen : u_char
daddr_prefixlen : u_char

ds_filter
id : int

rule

in_addr_union

in_addr in6_addr

saddr

daddr

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

230

sport_high
The highest source port a UDP or TCP packet can come from and still trigger
the filter rule (assuming the CLS_RULE_SPORT flag is set in mask).

dport_low
The lowest destination port a UDP or TCP packet can be destined for and still
trigger the filter rule (assuming the CLS_RULE_DPORT flag is set in mask).

dport_high
The highest destination port a UDP or TCP packet can be destined for and still
trigger the filter rule (assuming the CLS_RULE_DPORT flag is set in mask).

af
The address family the packet must belong to in order to trigger the filter rule,
either AF_INET or AF_INET6.

saddr_prefixlen
The prefix length (mask) that the filter rule uses when it checks whether the
source address matches (assuming the CLS_RULE_SADDR flag is set in mask).

daddr_prefixlen
The prefix length (mask) that the filter rule uses when it checks whether the
destination address matches (assuming the CLS_RULE_DADDR flag is set in
mask).

saddr
The source address (or network) that packets must match in order to trigger
the filter rule (assuming the CLS_RULE_SADDR flag is set in mask).

daddr
The destination address (or network) that packets must match in order to
trigger the filter rule (assuming the CLS_RULE_DADDR flag is set in mask).

7 Quality of Service
7.2 Differentiated Services

231

7

The ds Class

Meter/marker entities are objects of a variety of the ds class (see Figure 7-2).

The members of this class are defined as follows:

id
The ID of this meter/marker entity. The network stack sets this during the
create operation.

name
The name of the meter/marker entity. The names of the two entity varieties
that come with the Wind River Network Stack are:

"srTCM" – single-rate, three-color marker

"SimpleMarker" – simple marker

d
An object of the specific entity class. All meter/marker entities created by
Wind River have an data type that starts with “ds_”, for instance ds_sm (see
SimpleMarker, p.234) or ds_srtcm (see Single-Rate Three-Color Marker, p.235).
The ds_data pseudoclass is a union of all of these classes.

Mapping from a Filter Rule to a Meter Marker Entity

When an edge router in multi-field mode creates a new classifier rule it gets an ID
number in return. When it creates a meter/marker entity, it also gets an ID number
in return. The router can search a database that maps between these two varieties
of ID value, so that when a packet matches a rule with a particular rule ID value
the router can determine the corresponding entity ID value. The database of
mappings is a set of ds_map objects (see Figure 7-3).

Figure 7-2 The ds Class

ds

id : int
name : char[]

d ds_data

ds_sm ds_srtcm

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

232

The members of this class are as follows:

filter_id
The ID of the filter rule.

ds_id
The ID of the meter/marker entity that applies to packets that match the filter
rule.

For instructions on how to establish a mapping of this sort, see Mapping a Filter to
a Meter/Marker Entity, p.227.

7.2.4 Creating New Meter/Marker Entity Varieties

To create a new meter/marker entity variety (other than the simple marker and
single-rate three-color marker, which already exist), do the following:

1. Implement all of the routines pointed to by function pointers in the
Ipnet_diffserv_handlers structure (see Implement the Function Pointers in the
Ipnet_diffserv_handlers Structure, p.232).

2. Define and register a factory function for meter/marker entities (see Define and
Register a Factory Function for Meter/Marker Entities, p.233).

Step 1: Implement the Function Pointers in the Ipnet_diffserv_handlers Structure

A meter/marker entity must implement all of the routines pointed to by function
pointers in the Ipnet_diffserv_handlers structure, which is defined in
installDir/components/ip_net2-6.n/ipnet2/src/ipnet_diffserv.h (see Figure 7-4):

Figure 7-3 The ds_map Class

ds_map
filter_id : int
ds_id : int

Figure 7-4 The Ipnet_diffserv_handlers Interface

Ipnet_diffserv_handlers

meter_input()
marker_input()
destroy()

7 Quality of Service
7.2 Differentiated Services

233

7

meter_input
You can set this pointer to IP_NULL if this entity will do no metering on the
flow passing through it. You should otherwise set it to point to a routine that
measures some property of the flow and keeps track of the result in some
private data area. The prototype of this routine is as follows:

void myMeterInput (Ipnet_diffserv_handlers * handlers,
Ipcom_pkt * packet)

marker_input
You can set this pointer to IP_NULL if this entity will do no (re)marking of
packets. Otherwise set this to point to a routine that marks the packet based on
the configuration of the meter/marker or the property measured by the meter
function. Your routine may write directly into the DS field of the Ipcom_pkt
that it receives as the pkt argument. pkt->ipstart is the offset into the
pkt->data area at which the IP header is stored. The prototype of this routine
is as follows:

void myMarkerInput (Ipnet_diffserv_handlers * handlers,
Ipcom_pkt * packet)

destroy
Set this pointer to point to a routine that frees all resources held by the
meter/marker. Do not set this pointer to IP_NULL. The prototype of this
routine is as follows:

void myDestroy (Ipnet_diffserv_handlers * handlers);

Step 2: Define and Register a Factory Function for Meter/Marker Entities

Define a factory function for the new meter/marker entity and register it with the
network stack. You must register the factory function as an
Ipnet_diffserv_handlers_template.

typedef struct Ipnet_diffserv_handlers_template_struct
{
const char * name;
Ipnet_diffserv_ctor create;
} Ipnet_diffserv_handlers_template;

The fields in this structure are defined as follows:

name
The name of the meter/marker entity. The network stack associates this name
with the create routine below, so that the stack calls this function when
meter/marker entity structures (ds objects) with this name are passed to the
SIOCXDSCREATE I/O control operation (see Creating a Meter/Marker Entity,
p.227).

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

234

create
The create routine the network stack calls for meter/marker entities whose
name members match name, above. The stack passes data (the d member of
the entity’s ds object) as the first argument to this routine. This routine has the
following prototype:

int myCreate (void * arg, Ipnet_diffserv_handlers ** phandler);

For the network stack to be able to use the new meter/marker entity type, you
must register the factory function by passing it in to
ipnet_diffserv_register_ctor() from the ipnet_diffserv_init() routine, which is
defined in:

installDir/components/ip_net2-6.n/ipnet2/src/ipnet_diffserv.c

For example, the single-rate three-color marker declares a routine called
ipnet_diffserv_srtcm_template(), which returns a static variable of type
Ipnet_diffserv_handlers_template that it initializes with a name and a pointer to
a constructor function, so its factory registration call looks like this:

ipnet_diffserv_register_ctor (ipnet_diffserv_srtcm_template ())

7.2.5 Using Existing Meter/Marker Entity Varieties

The following two meter/markers are already implemented and part of the stack:

■ a simple marker (SimpleMarker, see SimpleMarker, p.234)

■ a single-rate, three-color marker (srTCM, see Single-Rate Three-Color Marker,
p.235)

SimpleMarker

The simple marker, SimpleMarker, is defined in:

installDir/components/ip_net2-6.n/ipnet2/src/ipnet_ds_sm.c.

The simple marker copies a specific DS value into each IP header DS field on all
packets that match a filter and can also set the drop precedence on every packet
that matches.

The definition of the ds_sm class is shown in Figure 7-5.

7 Quality of Service
7.2 Differentiated Services

235

7

The members of the ds_sm class are defined as follows:

mask
This member determines if the marker should set the DS field and/or set the
drop precedence. Construct the value of the mask by ANDing the following
two DS_SM_x constants:

■ DS_SM_DS_VAL – the DS value
■ DS_SM_DROP_P – the drop precedence

ds_value
The DS value that the marker sets on each packet that matches (if mask has the
DS_SM_DS_VAL bit set).

drop_precedence
The drop precedence (one of the IPCOM_PKT_DROP_PRECEDENCE_x
constants) that the marker sets on each packet that matches (if mask has the
DS_SM_DROP_P bit set).

Single-Rate Three-Color Marker

The single-rate, three-color marker, srTCM, is defined in:

installDir/components/ip_net2-6.n/ipnet2/src/ipnet_ds_srtcm.c

Figure 7-5 The ds_sm Class

ds
id : int
name : char[]d

ds_sm

mask : u_char
ds_value : u_char
drop_precedence : u_char

Ipnet_simple_marker
conf

Ipnet_diffserv_handlers

meter_input()
marker_input()
destroy()

dsh

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

236

The single-rate, three-color marker meters the byte rate of a flow and marks
packets as green, yellow, or red. The shaper prioritizes green packets over yellow
packets and yellow packet over red packets. See RFC 2697 for a complete
description of the srTCM meter/marker.

The definition of the ds_srtcm class is shown in Figure 7-6.

The members of the ds_srtcm class are as follows:

mode
The mode in which the srTCM marker is operating. This can be either
DS_SRTCM_MODE_COLOR_BLIND or DS_SRTCM_MODE_COLOR_AWARE.

CIR
The Committed Information Rate (bytes/second): the maximum, long term,
data rate the flow can have and still have the marker mark it as green.

CBS
The Committed Burst Rate (bytes): the maximum size of the token bucket for
green packets.

Figure 7-6 The ds_srtcm Class

ds

id : int
name : char[]d

ds_srtcm
mode : u_char
CIR : u_long
CBS : u_long

Ipnet_srtcmconf

Ipnet_diffserv_handlers

meter_input()
marker_input()
destroy()

dsh

color : int
Tc : Ip_u32
Te : Ip_u32
msec : Ip_u32

EBS : u_long
ds_green : u_char
ds_yellow : u_char
ds_red : u_char

7 Quality of Service
7.3 Network Interface Output Queues

237

7

EBS
The Excess Burst Rate (bytes): the maximum size of the token bucket for
yellow packets.

ds_green
The DS value that the marker gives to green packets.

ds_yellow
The DS value that the marker gives to yellow packets.

ds_red
The DS value that the marker gives to red packets.

7.3 Network Interface Output Queues

You can attach an interface output queue to every network interface in the network
stack. All packets that the network stack sends through such an interface pass
through a queue, and the queue can meter and enforce a maximum throughput on
the packet flow.

There are two varieties of interface output queues in the network stack:

■ Leaf queues, in which the packets are stored. These cannot have child queues.
(See 7.3.2 Leaf Queues, p.242.)

■ Container queues, which have one or more child queues (which can be either
leaf queues or container queues) and a set of rules that determine which child
queue to queue each packet in (see 7.3.3 Container Queues, p.247).

The API that you use to create, control, and delete interface output queues is
defined in installDir/components/ip_net2-6.n/ipnet2/include/ipnet_qos.h.

The ifqueue_qos class

To establish a queue, set the members of an object of the ifqueue_qos class and
then attach this queue object to an interface using one of the techniques described
in Adding an Interface Output Queue, p.240. The ifqueue_qos class is shown in
Figure 7-7.

NOTE: Set at least one of CBS or EBS to be greater than zero and at least as big as
the largest possible packet in the flow.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

238

The members of the ifqueue_qos class are as follows:

ifq_name
The name of the network interface that this queue attaches to, for instance:
"eth0".

ifq_type
The type of queue, for instance:

"fifo" – see: FIFO, p.243
a first-in/first-out queue with a queue limit

"dpaf" – see: Drop Precedence-Aware FIFO, p.244
a first-in/first-out queue with three drop precedence levels (low, medium,
and high) and with a queue limit; packets marked “high” are dropped
before those marked “medium” or “low”

"null"
a queue in which all packets are dropped; some DiffServ shapers need
queues of this sort

"none"
indicates that the interface does not have an interface output queue

If your system automatically attaches queues to all interfaces, you can
effectively remove a queue from a particular interface (for instance, a

Figure 7-7 The ifqueue_qos Class

ifqueue_qos

ifq_name : char[]
ifq_type : char[] ifq_data ifqueue_data

ifq_id : int
ifq_parent_id : int
ifq_count : int

ifqueue_netemu ifqueue_fifo ifqueue_dpaf ifqueue_htbc ifqueue_mbc

7 Quality of Service
7.3 Network Interface Output Queues

239

7

pseudo-interface that you do not want to filter) by setting its queue type
to none.

"netemu" – see: Network Emulator, p.245
can add latency, and can reorder, drop, and corrupt packets; you can use
this to test various network conditions

"mbc" – see: Multi-Band Container (MBC), p.249
holds an array of queues, arranged in order of priority (the lower the index
in the array, the higher the priority); packets dequeue from the container
in order of priority

"htbc" – see: Hierarchy Token Bucket Container (HTBC), p.250
holds a set of queues that are not prioritized relative to each other; packets
dequeue from these queues in a round-robin fashion

ifq_id
The identifying number of the queue. In GET operations, if you set this to
IFQ_ID_NONE, the operation returns the root queue, otherwise it returns the
queue with this ID.

In SET operations, you can set this to a specific ID if you want to operate on a
specific queue, or you can set this to IFQ_ID_NONE if you want the stack to
select a unique ID. If the specified queue ID already exists, a SET operation
replaces the queue. If you replace a container queue, this removes all of its
children.

All queues attached to a particular interface have unique identifying numbers,
but the same number may be used to refer to different queues that are attached
to different interfaces.

ifq_parent_id
The ID of the parent of this queue if this is a child queue, or IFQ_ID_NONE, if
this is the root queue.

ifq_count
(Read-only.) The number of packets in this queue, if it is a leaf queue, or the
sum of packets in all of its child queues, if it is a container queue.

ifq_data
An object that defines the characteristics of the particular type of queue. This
may be an object of a queue class of your own invention, or one of the
following:

■ ifqueue_fifo – see: FIFO, p.243
■ ifqueue_dpaf – see: Drop Precedence-Aware FIFO, p.244
■ ifqueue_netemu – see: Network Emulator, p.245

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

240

■ ifqueue_mbc – see: Multi-Band Container (MBC), p.249
■ ifqueue_htbc – see: Hierarchy Token Bucket Container (HTBC), p.250

7.3.1 Operations

This section describes the various things you can do with output queues:

■ Adding an Interface Output Queue, p.240
■ Getting an Object that Describes an Interface Output Queue, p.241
■ Adding a Filter Rule to a Container Queue, p.241
■ Deleting a Filter Rule from a Container Queue, p.242

Adding an Interface Output Queue

To add an interface output queue to a network interface, or to replace one that was
previously added, you can either call a routine from within a program or use a QC
command interactively.

To invoke this operation from within a program, use the following call:

ioctl (sock_fd, SIOCSIFQUEUE, &queue);

Where queue is a ifqueue_qos object that describes the leaf or container queue you
are adding (see The ifqueue_qos class, p.237).

If the ifq_id member of the ifqueue_qos object matches that of a queue that is
already attached to the interface, this operation will replace that queue with the
one described by queue.

You can also use the following QC command:

qc [-V virtualRouter] queue add [parameters]

For instance, if you want to test how your system would work under conditions
when there was 100 millisecond latency on interface lo0, you could create a
network emulator queue on that device that simulates such latency, with the
following QC command:

qc queue add dev lo0 netemu limit 10 min_latency 100 max_latency 100

If you want to rate-limit all traffic on interface eth0 to two Mbits per second, you
could do this by establishing a rate-limited HTBC queue with the following
command:

qc queue add dev eth0 htbc rate 2000kbps

7 Quality of Service
7.3 Network Interface Output Queues

241

7

Getting an Object that Describes an Interface Output Queue

To get an object that describes an interface output queue on a network interface,
you can either call a routine from within a program or use a QC command
interactively.

To invoke this operation from within a program, use the following call:

ioctl (sock_fd, SIOCGIFQUEUE, &queue);

Where queue is a ifqueue_qos object (see The ifqueue_qos class, p.237).

If you call this with the ifq_id field of queue set to IFQ_ID_NONE, this routine will
fill queue so that it describes the root queue on this interface, otherwise it will fill
queue so that it describes the queue matching ifq_id.

You can also use a QC command, which has the following format:

qc [-V virtualRouter] queue show [parameters]

Adding a Filter Rule to a Container Queue

To add a filter rule to a container queue on a network interface, you can either call
a routine from within a program or use a QC command interactively.

To invoke this operation from within a program, use the following call:

ioctl (sock_fd, SIOCXAIFQFILTER, &filter);

In this call filter is an ifqueue_filter object that describes the filter you are adding
(see Filter Rules, p.247).

You can also use a QC command, which has the following format:

qc filter add dev device parent queueID handle filterID [filterArgs] flowid queueID

The arguments to this command are as follows:

dev device
The device to which you are attaching the filter, for instance eth0.

parent queueID
The identifying number of the container queue to which you are adding the
filter.

handle filterID [filterArgs]
The filterID is the identifying number of the filter. You may use the following
arguments in the filterArgs argument to describe the filter:

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

242

proto number

tclass number

srcport range

dstport range

srcaddr address[/prefix]

dstaddr address[/prefix]

flowid queueID
The identifying number of the destination queue for packets that match the
filter.

For example:

To add a filter identified by the number five to the container queue identified by
the number one, so that all TCP packets (protocol number six) are filtered into the
queue identified by the number 31, use the following QC command:

qc filter dev eth0 parent 1 handle 5 proto 6 flowid 31

To add a second filter (identified by the number three) to the same container queue
that filters all UDP packets (protocol number 17) that are sent to 2001::/16 into the
same queue, use the following QC command:

qc filter dev eth0 parent 1 handle 3 proto 17 srcaddr 2001::/16 flowid 31

Deleting a Filter Rule from a Container Queue

To delete a filter rule from a container queue on a network interface, you can either
call a routine from within a program or use a QC command interactively.

To invoke this operation from within a program, use the following call:

ioctl (sock_fd, SIOCXDIFQFILTER, filter);

In this call filter is an ifqueue_filter object that describes the filter you are
removing (see Filter Rules, p.247).

You can also use a QC command, which has the following format:

qc [-V virtualRouter] filter del [parameters]

7.3.2 Leaf Queues

Leaf queues cannot have children and you cannot assign filter rules to them.

7 Quality of Service
7.3 Network Interface Output Queues

243

7

The Wind River Network Stack includes the following kinds of leaf queues:

■ None, p.243
■ FIFO, p.243
■ Drop Precedence-Aware FIFO, p.244
■ Network Emulator, p.245

None

■ Queue name: none

If you specify none as the queue type, the interface does not have an interface
output queue. If your system automatically attaches queues to all interfaces, you
can effectively remove a queue from a particular interface by setting its queue type
to none.

FIFO

■ Queue name: fifo
■ File: installDir/components/ip_net2-6.n/ipnet2/src/ipnet_pkt_queue_fifo.c
■ QC command:

qc queue add dev device fifo limit number

This is the default queue for all interfaces in the network stack.

You can use FIFOs as buffers to handle temporary peaks in traffic. You can also use
them as leaf queues in more complex queue hierarchies.

Packets dequeue from a FIFO queue, in the same order as they arrived on the
queue, without regard to the packets’ individual properties.

The cost of queuing or dequeuing a packet on a FIFO queue is always O(1).

Create a FIFO queue object in this way:

1. Create an object of class ifqueue_qos and fill its members appropriately (see
The ifqueue_qos class, p.237).

Figure 7-8 The ifqueue_fifo Class

ifqueue_qos

ifq_name : char[]
ifq_type : char[] ifq_data ifqueue_fifo

ifq_id : int
ifq_parent_id : int
ifq_count : int

fifo_limit : u_long

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

244

2. Set the ifq_type member of that object to "fifo".

3. Create an object of class ifqueue_fifo (see Figure 7-8) and set its fifo_limit
member to the maximum number of packets that can be stored in the queue.

4. Set the ifq_data member of the ifqueue_qos object to the ifqueue_fifo object.

Drop Precedence-Aware FIFO

■ Queue name: dpaf
■ File: installDir/components/ip_net2-6.n/ipnet2/src/ipnet_pkt_queue_dpaf.c
■ QC command:

qc queue add dev device dpaf limit number

Drop Precedence-Aware FIFO queues (DPAFs) work as normal FIFOs until the
maximum number of packets in the queue is exceeded. If the limit is exceeded, a
DPAF checks the drop precedence of the new packet. The following outcomes are
possible:

■ reject this packet if is has high drop precedence

■ drop a high-drop-precedence packet from the queue and replace it with the
new packet if this packet has medium or low drop precedence

■ drop a medium-drop-precedence packet from the queue and replace it with
the new packet if this packet has low drop precedence

■ reject this packet if there are no packets in the queue with higher drop
precedence that the DPAF can drop

The extra overhead compared to FIFO makes this queue slower. The cost of
queuing/dequeuing a packet is O(log(n)), where n is the number of packets in the
queue.

Create a FIFO queue object in this way:

1. Create an object of class ifqueue_qos and fill its members appropriately (see
The ifqueue_qos class, p.237).

Figure 7-9 The ifqueue_dpaf Class

ifqueue_qos

ifq_name : char[]
ifq_type : char[] ifq_data ifqueue_dpaf

ifq_id : int
ifq_parent_id : int
ifq_count : int

dpaf_limit : u_long

7 Quality of Service
7.3 Network Interface Output Queues

245

7

2. Set the ifq_type member of that object to "dpaf".

3. Create an object of class ifqueue_dpaf (see Figure 7-9) and set its dpaf_limit
member to the maximum number of packets that can be stored in the queue.

4. Set the ifq_data member of the ifqueue_qos object to the ifqueue_dpaf object.

Network Emulator

■ Queue name: netemu
■ File:

installDir/components/ip_net2-6.n/ipnet2/src/ipnet_pkt_queue_netemu.c
■ QC command:

qc queue add dev device netemu limit number [min_latency msec] \
[max_latency milliseconds] \
[drop probability [random | pattern {0|1},{0|1}[,...,{0|1}]]] \
[corrupt probability [random]]

The network emulator is a testing and debugging tool. You can use it to introduce
jitter and latency into a stream, which may result in packet reordering, or to drop
and corrupt packets.

A netemu queue with zero latency, zero drops, and zero corruption is equivalent
to a FIFO queue.

Create a network emulator queue object in this way:

1. Create an object of class ifqueue_qos and fill its members appropriately (see
The ifqueue_qos class, p.237).

2. Set the ifq_type member of that object to "netemu".

3. Create an object of class ifqueue_netemu (see Figure 7-10) and set its members
appropriately (see below).

Figure 7-10 The ifqueue_netemu Class

ifqueue_qos

ifq_name : char[]
ifq_type : char[] ifq_data

ifqueue_netemu

ifq_id : int
ifq_parent_id : int
ifq_count : int

netemu_limit : u_long
netemu_min_latency : u_long
netemu_max_latency : u_long
netemu_random_drop : BOOL
netemu_drop_probability : u_long

netemu_random_corrupt : BOOL
netemu_corrupt_probability : u_long

netemu_drop_pattern : u_long
netemu_drop_pattern_len : u_char

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

246

4. Set the ifq_data member of the ifqueue_qos object to the ifqueue_netemu
object.

The members of the ifqueue_netemu class are as follows:

netemu_limit
The maximum number of packets that can be stored in this queue.

netemu_min_latency
netemu_max_latency

The minimum and maximum latency that the emulator adds to each packet, in
milliseconds. The emulator will evenly distribute the latency on individual
packets between [netemu_min_latency..netemu_max_latency].

netemu_random_drop
netemu_drop_probability
netemu_drop_pattern
netemu_drop_pattern_len

Set netemu_random_drop to TRUE to drop individual packets with the
probability of 1/netemu_drop_probability. Set netemu_random_drop to
FALSE to drop a packet every netemu_drop_probability packets. For
example, if you set netemu_drop_probability to 4, setting
netemu_random_drop to FALSE means the emulator drops every fourth
packet, while setting it to TRUE means that for each packet there is a
one-in-four probability that the emulator will drop it.

You can also set netemu_drop_pattern to a bitmask that represents a regular
pattern of netemu_drop_pattern_len bits, with bits marked “1” representing
dropped packets, so that, for instance, the pattern 00000011
(netemu_drop_pattern = 0x00000003, netemu_drop_pattern_len = 8)will
drop the last two of every eight packets.

netemu_random_corrupt
netemu_corrupt_probability

Set netemu_random_corrupt to TRUE to corrupt individual packets with the
probability of 1/netemu_corrupt_probability. Set netemu_random_corrupt
to FALSE to corrupt a packet every netemu_corrupt_probability packets. For
example, if you set netemu_corrupt_probability to 4, setting
netemu_random_corrupt to FALSE means the emulator corrupts every fourth
packet, while setting it to TRUE means that for each packet there is a
one-in-four probability that the emulator will corrupt it.

7 Quality of Service
7.3 Network Interface Output Queues

247

7

7.3.3 Container Queues

A container queue contains one or more child queues (child queues may be
container queues or leaf queues or a combination of both). Filter rules determine
which child queue the container queue stores a particular packet in.

The Container Superclass

All container classes are subclasses of the ifqueue_container class (which is to say
that the first member of the structure that defines a container class is an
ifqueue_container structure), see Figure 7-11.

The members of this class are as follows:

child_count
the number of child queues this container has (a child queue that is a container
queue only counts as a single child even if it in turn has multiple children)

child_ids
an array that contains the queue IDs of each of the child queues

Filter Rules

You may attach filter rules to container queues (see Adding a Filter Rule to a
Container Queue, p.241). These rules control in which child queue a container
queue should place packets. If a packet does not match any rule, the container
queue queues the packet on its default child queue.

Figure 7-12 shows the ifqueue_filter class, which describes a filter rule.

Figure 7-11 The ifqueue_container Superclass

ifqueue_container

child_count : int
child_ids : int[]

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

248

The members of this class are defined as follows:

filter_ifname
The name of the network interface this filter operates on.

filter_id
The ID of this rule. The stack sets this field when the filter is added; if you are
deleting a filter, set this field to indicate which filter you want to delete. While
all of the leaf queues under a particular container queue have unique ID
values, these values are not unique between container queues. In other words
two different container queues may each have a leaf queues with the identical
ID value.

filter_queue_id
The ID of the (container) queue this filter applies to.

filter_child_queue_id
The ID of the child queue into which packets matching this rule will be queued
by the container queue.

filter_rule
The actual rule, in the form of an classifier_rule object (see 7.2 Differentiated
Services, p.224).

Figure 7-12 The ifqueue_filter Class

ifqueue_filter

filter_ifname : char[]

filter_queue_id : int
filter_id : int filter_rule

classifier_rule

filter_child_queue_id : int

mask : u_short
ds : u_char
proto : u_char
sport_low : u_short
sport_high : u_short
dport_low : u_short
dport_high : u_short
af : u_char
saddr_prefixlen : u_char
daddr_prefixlen : u_char

in_addr_union

in_addr in6_addr

saddr

daddr

7 Quality of Service
7.3 Network Interface Output Queues

249

7

Available Container Queues

The Wind River Network Stack includes the following container queues:

■ Multi-Band Container (MBC), p.249
■ Hierarchy Token Bucket Container (HTBC), p.250

Multi-Band Container (MBC)

■ Queue name: MBC
■ File: installDir/components/ip_net2-6.n/ipnet2/src/ipnet_pkt_queue_mbc.c
■ QC command:

qc queue add dev device mbc bands number [default_band number]

An MBC container queue keeps an array of child queues (bands) in decreasing
priority. An MBC queue always dequeues packets from the first non-empty queue
in its array of queues.

You can use this variety of container queue when certain kinds of traffic, such as
signalling, must transmit as quickly as possible, while other traffic, like e-mail, can
wait for low-traffic conditions.

When you create an MBC queue, it initially has an array of FIFO child queues. You
may replace these with queues of another variety by issuing an SIOCSIFQUEUE
I/O control call (see Adding an Interface Output Queue, p.240).

Define an MBC queue by setting the ifq_type member of the ifqueue_qos
structure to "mbc" and the ifq_data member of the ifqueue_qos structure to an
object of the ifqueue_mbc class. See Figure 7-13.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

250

The members of this class are defined as follows:

mbc_container
The base class for container queues.

mbc_bands
The number of bands (child queues) that this container queue manages. You
may only set this member prior to the time you create the MBC queue.

mbc_default_band
Which of the bands (child queues) the MBC container queue puts a packet into
if that packet does not match any of the filter rules. This is an index value in
the range [0..mbc_bands).

Hierarchy Token Bucket Container (HTBC)

■ Queue name: HTBC
■ File: installDir/components/ip_net2-6.n/ipnet2/src/ipnet_pkt_queue_htbc.c
■ QC command:

qc queue add dev device htbc rate rate [burst number]

Use the HTBC queue when you want to control the bandwidth usage on an
interface. The queue calculates the data rate by taking the sum of bandwidth used
by all children; it calculates this when it dequeues packets. It considers all children

Figure 7-13 The ifqueue_mbc Class

ifqueue_mbc

mbc_bands : u_long
mbc_default_band : u_long

mbc_container
ifqueue_container

child_count : int
child_ids : int[]

ifqueue_qos

ifq_name : char[]
ifq_type : char[] = "mbc"

ifq_data

ifq_id : int
ifq_parent_id : int
ifq_count : int

7 Quality of Service
7.3 Network Interface Output Queues

251

7

to have the same priority, so it dequeues packets from the child queues in a
round-robin fashion.

You can add or delete child queues from an HTBC container queue throughout the
lifetime of the HTBC. When you create an HTBC, it comes with a single child FIFO
queue, the default queue, attached to it. You can add more queues, or replace this
default queue with one of another variety, by using the SIOCSIFQUEUE I/O
control call (see Adding an Interface Output Queue, p.240).

Define an HTBC queue by setting the ifq_type member of the ifqueue_qos
structure to "htbc" and the ifq_data member of the ifqueue_qos structure
ifqueue_htbc class (see Figure 7-14).

The members of this class are defined as follows:

htbc_container
The base class for containers.

htbc_byterate
The maximum bandwidth, in bytes per second, at which this queue may send.

Figure 7-14 The ifqueue_htbc Class

ifqueue_htbc

htbc_byterate : u_long

htbc_default_id : int
htbc_token_limit : u_long

htbc_container ifqueue_container

child_count : int
child_ids : int[]

ifqueue_qos

ifq_name : char[]
ifq_type : char[] = "htbc"

ifq_data

ifq_id : int
ifq_parent_id : int
ifq_count : int

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

252

htbc_token_limit
The maximum number of tokens this queue can have. Each byte that an HTBC
container queue dequeues from one of its children and sends consumes one
token. You must set this value to be greater than the MTU (maximum
transmission unit) of the interface you attach the queue to. A reasonable value
might be in the range htbc_byterate/100 to htbc_byterate. A larger value
results in HTBC dropping fewer packets during temporary bursts in the flow,
so the actual value depends on the acceptable level of “burstiness.”

htbc_default_id
The ID number of the default queue, into which HTBC places all packets that
do not match any filter rule.

7.3.4 Adding a New Queue Type

Create a new leaf queue variety by adding its structure to the ifqueue_data union
(see The ifqueue_qos class, p.237), implementing all routines in the
Ipnet_pkt_queue structure (see Figure 7-15), registering an instance of that type
with the ipnet_pkt_queue_register() routine.

NOTE: The Wind River Network Stack registers its queues, like the FIFO and
HTBC queues, in the ipnet_pkt_queue_init() routine, which is located in
installDir/components/ip_net2-6.n/ipnet2/src/ipnet_pkt_queue.c. You may want
to register any new queues you add at the same time, which you can do by
changing this routine to make additional registration calls.

7 Quality of Service
7.3 Network Interface Output Queues

253

7

The members of this structure are defined as follows:

type
The name of the queue type.

impl_size
The size of the structure used by this queue, which may be an
Ipnet_pkt_queue structure, or a subclass structure that derives from it.

c_ops
If this queue is a container queue, it must implement this interface. Write these
routines to return 0 (zero) on success, or an IPNET_ERRNO_x error code on
failure (except for q_get, which returns a queue structure, or IP_NULL if it finds
no queue that matches the ID).

q_get – retrieves a queue by ID number
Ipnet_pkt_queue_struct * my_q_get

(Ipnet_pkt_queue_struct * containerQueue, int queueID)

q_insert – adds a queue to the container
int my_q_insert (Ipnet_pkt_queue_struct * containerQueue,

Ipnet_pkt_queue_struct * addThisQueue);

Figure 7-15 The Ipnet_pkt_queue Class

Ipnet_pkt_queue

type : const char *

id : int
parent_id : int

enqueue[_locked]()
dequeue[_locked]()

impl_size : Ip_size_t

c_ops
Ipnet_pkt_queue_container

next
Ipnet_pkt_queue

Ipnet_netif_structnetif

count[_locked]()
reset()
dump()

requeue[_locked]()

configure()
init()
destroy()

q_get()
q_insert()
q_remove()
f_insert()
f_remove()

prev
Ipnet_pkt_queue

Implemented by
container queues only

lock: Ipcom_spinlock

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

254

q_remove – removes a queue from the container
int my_q_remove (Ipnet_pkt_queue_struct * containerQueue,

Ipnet_pkt_queue_struct * removeThisQueue);

f_insert – adds a filter to a queue
int my_f_insert (Ipnet_pkt_queue_struct * containerQueue,

int filterID, classifier_rule * rule, int childQueueID);

f_remove – removes a filter from a queue
int my_f_remove (Ipnet_pkt_queue_struct * containerQueue,

int filterID)

enqueue or enqueue_locked
Enqueues a packet on this queue. This routine has the following prototype:

int myEnqueue (struct Ipnet_pkt_queue_struct * queue, Ipcom_pkt * packet)

Write this routines to return 0 (zero) on success, or an IPNET_ERRNO_x error
code on failure.

dequeue or dequeue_locked
Dequeues a packet from this queue. This routine has the following prototype:

Ipcom_pkt * myDequeue (Ipnet_pkt_queue_struct * queue)

Write this routine to return the next packet (according to the rules of the
queue), or IP_NULL if the queue is empty.

requeue or requeue_locked
Puts a packet back on the queue that was removed from the queue with the
dequeue function. This routine has the following prototype:

void myRequeue (Ipnet_pkt_queue_struct * queue, Ipcom_pkt * packet);

count or count_locked
Returns the number of packets in this queue, or the sum of packets in all child
queues if this is a container queue. This routine has the following prototype:

int myCount (Ipnet_pkt_queue_struct * queue);

reset
Removes all packets from the queue and resets the internal state of the queue.
This routine has the following prototype:

void myReset (Ipnet_pkt_queue_struct * queue);

dump
Fills an ifqueue_x structure with the current configuration of this queue. This
routine has the following prototype:

void myDump (Ipnet_pkt_queue_struct * queue,
union ifqueue_data * data);

7 Quality of Service
7.3 Network Interface Output Queues

255

7

Write this routine so that it fills the data structure with the configuration
information specific to this queue.

configure
Configures the queue based on the ifqueue_x structure for this queue, found
in the data parameter. This routine has the following prototype:

int myConfigure (Ipnet_pkt_queue_struct * queue,
union ifqueue_data * data);

Write this routine so that it returns the number of elements that may be placed
in the queue.

init
The routine that initializes the queue after memory has been allocated for it.
This routine has the following prototype:

int myInit (Ipnet_pkt_queue_struct * queue);

Write this routines to return 0 (zero) on success, or an IPNET_ERRNO_x error
code on failure.

destroy
The routine that frees all resources allocated by this queue. This routine has the
following prototype:

void myDestroy (Ipnet_pkt_queue_struct * queue);

NOTE: Do not set the remaining fields of this structure, such as id, parent_id, netif,
prev, and next.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

256

257

 8
Ingress Traffic Prioritization

8.1 Introduction 257

8.2 Factors to Consider Before Using Ingress Filtering 258

8.3 Building VxWorks to Include Ingress Traffic Prioritization 260

8.4 Implementing an Ingress Filter Routine 261

8.1 Introduction

By default, the network stack treats all packets that arrive at an interface equally
and processes them in the order of their arrival. Ingress traffic prioritization is a
quality of service (QoS) feature that allows you to assign priorities to the packets
that arrive at an individual interface and have the stack process higher-priority
packets before lower-priority packets.

To use Wind River ingress traffic prioritization, you must do the following:

NOTE: The QoS feature is available only in the Wind River Platforms builds of the
network stack. The Wind River General Purpose Platform, VxWorks Edition, does
not support QoS.

The Wind River Network Stack does not support ingress filtering in SMP builds.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

258

1. Statically configure a job queue to hold packets that a filter routine prioritizes
(see 8.3 Building VxWorks to Include Ingress Traffic Prioritization, p.260).

2. Implement one or more ingress filter routines that classify packets and assign
priorities.

Wind River provides a function prototype for this routine and a set of sample
implementations (see 8.4 Implementing an Ingress Filter Routine, p.261).

3. Register your filter routine to filter incoming traffic on a specific interface (see
8.4.1 Registering an Ingress Filter Routine, p.262).

The filter routine you implement must assign each incoming packet to one of
the following categories:

– Packets for the stack to process immediately (QOS_DELIVER_PKT)

– Packets to queue for the stack to process later (QOS_DEFER_PKT)

– Packets for the stack to drop (QOS_IGNORE_PKT). Typically, these are
packets in which the filter routine detects an error.

If the filter routine assigns a packet for the stack to process later (deferred
processing), the filter routine must also assign the packet a priority.

8.2 Factors to Consider Before Using Ingress Filtering

This section applies to ingress traffic prioritization that uses the standard
network-stack queue for incoming traffic; circumstances are different if you create
custom job queues using jobQueueLib (see the table entry for
Ingress QoS Job Queue in Table 8-1 under 8.3 Building VxWorks to Include Ingress
Traffic Prioritization, p.260).

There are two things you should consider before you decide to use ingress traffic
prioritization and develop an ingress filter routine:

■ On a system with multiple interfaces for incoming messages, you may need to
associate a filter routine with each interface. You can associate a single routine
with multiple interfaces.

■ The current implementation of ingress traffic prioritization does not provide
for congestion handling or “fairness.”

8 Ingress Traffic Prioritization
8.2 Factors to Consider Before Using Ingress Filtering

259

8

Systems with Multiple Interfaces for Incoming Traffic

When you register an ingress filter routine, you associate the routine with a specific
interface. Typically, the filter routine designates some packets for immediate
delivery and other packets for the stack to process later (deferred processing). The
routine assigns those packets that it designates for deferred processing a priority
that determines the order in which the stack will process them—the stack queues
higher priority packets ahead of lower priority packets.

If you do not associate an ingress filter routine with an interface, the stack treats all
packets that the interface receives equally and processes them as if a filter routine
had prioritized all of them for immediate delivery. As a result, the stack processes
packets that arrive at an interface without ingress filtering before those packets
that an ingress filter designated for deferred processing, even if those deferred
packets have a high priority.

To ensure that the stack does not wait to process deferred packets until after it has
processed all other packets, you must assign an ingress filter routine to each
interface that receives incoming traffic. You may assign a single filter routine to
multiple interfaces.

Traffic Congestion and Fairness

The stack queues, by priority, those packets that the ingress filter designates for
deferred processing. The stack processes all higher-priority packets before any
lower-priority packets. This means that during heavy incoming traffic,
lower-priority packets can take up an increasing amount of buffer space without
the stack processing them. The current implementation does not limit the number
of packets that the stack can queue for deferred delivery. As a result, it is possible
for deferred packets to exhaust the pool of available network-interface receive
buffers.

Driver Variety

Currently, ingress filtering in the Wind River Network Stack will only work with
ENDs, not with NPT drivers.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

260

8.3 Building VxWorks to Include Ingress Traffic Prioritization

To include ingress traffic prioritization in an image, include the Ingress Traffic
Prioritization (INCLUDE_QOS_INGRESS) build component in your VxWorks
build. In addition, you may need to change the default values of the
ingress-traffic-prioritization build parameters. Table 8-1 describes the parameters.

Table 8-1 Ingress Traffic Prioritization Configuration Parameters

Workbench Description and Parameter Name Default Value and Type

Ingress QoS Job Queue
QOS_JOBQ

The JOB_QUEUE_ID of the queue into which the
ingress filter places prioritized and deferred
packets (QOS_DEFER_PKT).

If you do not change the default value, the ingress
filter places deferred packets into the network
stack’s standard queue for incoming packets (see
4.10 Managing Memory for Network Drivers and
Services, p.162).

You can create a job queue specifically to handle
deferred packets. For information, see the
reference page for jobQLib.

netJobQueueId

long

Ingress Traffic Prioritization Job Queue Priority
QOS_JOBQ_PRI

The jobQLib task priority for the job that handles
deferred packets.

Do not change the default priority unless you
create one or more separate job queues based on
jobQLib.

NET_TASK_QJOB_PRI - 1

long

Ingress default deferred Job Queue Priority
QOS_DEFAULT_PRI

The default priority that the ingress filter assigns
to incoming packets. This can be a value from 0 to
31, with higher values having a higher priority.

0

long

8 Ingress Traffic Prioritization
8.4 Implementing an Ingress Filter Routine

261

8

8.4 Implementing an Ingress Filter Routine

To use ingress filtering, first implement a filter routine based on the following
function prototype:

int ingressFilterRoutine
(
END_OBJ * pEnd,
M_BLK_ID * ppMblk,
int * pPri
)

The parameters to this routine are as follows:

pEnd
a pointer to an object that describes the END device over which the packet
arrived

ppMblk
a pointer to an M_BLK_ID that points to an incoming packet

pPri
a pointer to an integer that can hold the incoming packet’s priority value—this
priority can be a value from 0 to 31, with higher values having a higher priority

Return values from the routine apply to the packet referenced by ppMblk. Valid
return values are:

QOS_DELIVER_PKT
Deliver the packet without delay to the upper layer protocol for
processing.

QOS_DEFER_PKT
Queue the packet for delivery according to its priority, as given in pPri. If
your routine returns this value, it must also set *pPri accordingly.

QOS_IGNORE_PKT
Ignore (drop) the packet. Typically, this value indicates that the filter
routine detected an error in the packet. When the routine returns this
value, it assumes responsibility for calling m_freem() to free the packet’s
memory space at *ppMblk.

You can find sample implementations of the ingressFilterRoutine() prototype in
the following file:

installDir/vxworks-6.n/target/src/wrn/coreip/dlink/qosIngressHooks.c

You can find the following sample routines in this file:

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

262

etherQosHook()
Assigns priorities to Ethernet packets based on the protocol specified in
the Ethernet header’s type field.

vlanQosHook()
Assigns priorities based on the priority field in the VLAN header.

ipProtoQosHook()
Assigns priorities based on the transport protocol and port-number fields
in the packet’s header.

dscpQosHook()
Assigns priorities based on the packet’s differentiated-services code-point
(DSCP) field.

8.4.1 Registering an Ingress Filter Routine

To register an ingress filter routine for an interface, call the qosIngressHookSet()
routine.

The syntax for qosIngressHookSet() is:

STATUS qosIngressHookSet
(
int unit,
char * ifname,
QOS_ING_HOOK hookRtn
)

The parameters to this routine are as follows:

unit
the unit number of the interface, for example, 0

ifname
the name of the interface, for example, "fei"

hookRtn
a pointer to the ingress-filter routine that you are registering

Deactivating Ingress Traffic Prioritization on an Interface

To deregister an ingress filter routine from an interface, which deactivates ingress
traffic prioritization on an interface, call qosIngressHookSet() with hookRtn set
to NULL.

263

 A
MUX Routines and

Data Structures

A.1 Introduction 263

A.2 MUX Routines 263

A.3 Data Structures 287

A.1 Introduction

This appendix describes the routines and data structures that comprise the MUX
API.

A.2 MUX Routines

This section provides descriptions of the following routines, as illustrated in
Figure A-1:

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

264

Figure A-1 MUX API Calls, Illustrated

END/NPT MUX

service/
protocol

driver

muxAddressForm

muxDevLoadxLoad

application

xFormAddress

muxDevExists

muxDevStartxStart

muxDevStopxStop

muxDevUnloadxUnload

xShutdownRtn

muxError xStackErrorRtn

muxIfFuncAdd

END driver

muxMCastAddrAdd

muxIoctlxIoctl

muxTkDrvCheck

xMCastAddrAdd

mux[Tk]BindxEndBind

muxPollReceivexPollRcv

muxPollSendxPollSend

mux[Tk]Receive xStackRcvRtn

mux[Tk]SendxSend

muxUnbind

muxTxRestart xStackRestartRtn

muxIfFuncDel

muxIfFuncGet

xMCastAddrDel

xMCastAddrGet

muxMCastAddrDel

muxMCastAddrGet

receiveRtn

xAttach

muxPacketDataGet

xPacketDataGet muxPacketAddrGet

xAddrGet

muxTkCookieGet

muxLinkHeaderCreate

A MUX Routines and Data Structures
A.2 MUX Routines

265

A

■ endFindByName(), p.265
■ muxAddressForm(), p.266 and muxLinkHeaderCreate(), p.267
■ muxDevExists(), p.267
■ muxDevLoad(), p.268
■ muxDevStart(), p.268
■ muxDevStop(), p.269
■ muxDevUnload(), p.269
■ muxError(), p.270
■ muxIfFuncAdd(), p.270
■ muxIfFuncDel(), p.271
■ muxIfFuncGet(), p.271
■ muxIoctl(), p.272
■ muxMCastAddrAdd(), p.272
■ muxMCastAddrDel(), p.273
■ muxMCastAddrGet(), p.273
■ muxPacketAddrGet(), p.274
■ muxPacketDataGet(), p.274
■ muxShow(), p.275
■ muxTkBind(), p.275 and muxBind(), p.277
■ muxTkCookieGet(), p.279
■ muxTkDrvCheck(), p.279
■ muxTkPollReceive(), p.280
■ muxTkPollSend(), p.281
■ muxTkReceive(), p.282 and muxReceive(), p.281
■ muxTkSend(), p.284 and muxSend(), p.283
■ muxTxRestart(), p.285
■ muxUnbind(), p.285
■ muxAddrResFuncAdd(), p.286 – deprecated; use muxIfFuncAdd()
■ muxAddrResFuncDel(), p.286 – deprecated; use muxIfFuncDel()
■ muxAddrResFuncGet(), p.287 – deprecated; use muxIfFuncGet()

A.2.1 endFindByName()

Call endFindByName() to retrieve the DRV_CTRL object that represents a device
(cast in the form of its END_OBJ superclass) based on the device’s unit number and
root name.

END_OBJ * endFindByName (char * pName, int unit);

For instance, the following call will retrieve the DRV_CTRL object for motfec0:

DRV_CTRL * pDrvCtrl = (DRV_CTRL *) endFindByName("motfec", 0);

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

266

If the routine is unable to find any device that matches this unit number and root
name, it returns NULL. If it understands the root name, but there is no unit under
that root name that matches the unit number, the routine also sets errno to
S_muxLib_NO_DEVICE.

A.2.2 muxAddressForm()

Call muxAddressForm() to add a link header to a packet. A network service needs
this routine when it works with ENDs, which are frame-oriented, but not with
NPT drivers, which are packet oriented.

Before calling muxAddressForm(), set the mBlkHdr.mData members of the
pSrcAddr and pDstAddr M_BLKs to point to buffers containing the source and
destination link-level addresses (respectively). Also, set
pDstAddr->mBlkHdr.reserved to the network service type, stored in network
byte order.

With this input, muxAddressForm() will attempt to prefix a link header to the
packet pMblk. If sufficient leading space is available in the first tuple’s cluster, and
that cluster is unshared, muxAddressForm() will write the link header in the
available leading space; otherwise, it will attempt to allocate, from the network
pool pointed to by the global _pNetDpool, a new tuple to hold the link header, and
prefix this tuple to the existing chain. muxAddressForm() returns a pointer to the
first M_BLK of the resulting chain; this would just be pMblk in case the existing
first cluster had enough available unshared leading space to hold the link header.
In the case that a new tuple is required but cannot be allocated,
muxAddressForm() frees the original packet and returns NULL.

M_BLK_ID muxAddressForm
(
void * pCookie, /* the cookie returned by muxBind() */
M_BLK_ID pMblk, /* pointer to the packet being reformed */

NOTE: The current Wind River IP stack does not use muxAddressForm(). By
default, _pNetDpool is NULL and any attempt by muxAddressForm() to allocate
a new tuple will fail. If you add the component INCLUDE_NET_POOL to the
VxWorks image, the legacy stack network data pool and system pool will be
available, and _pNetDpool will point to the stack data pool. muxAddressForm()
uses M_PREPEND() to allocate 128-byte tuples when it cannot prepend the link
header in the existing leading cluster space. It may be necessary for some
applications to configure the legacy stack data pool to include additional 128-byte
clusters, by increasing the parameter NUM_DAT_128 above its default of 128
clusters.

A MUX Routines and Data Structures
A.2 MUX Routines

267

A

M_BLK_ID pSrcAddr, /* pointer to the M_BLK with the source address */
M_BLK_ID pDstAddr /* pointer to the M_BLK with the dest address */
)

A.2.3 muxLinkHeaderCreate()

The muxLinkHeaderCreate() routine, like muxAddressForm(), adds a link layer
header to a packet.

This routine constructs a link-level header using the source address of the device
indicated by the pCookie argument as returned from the muxBind() routine.

The pDstAddr argument points to an M_BLK buffer containing the link-level
destination address. Alternatively, the bcastFlag argument, if TRUE, indicates that
the routine should use the link-level broadcast address, if available for the device.
Although other information contained in the pDstAddr argument must be
accurate, the address data itself is ignored in that case.

The pPacket argument contains the contents of the resulting link-level frame. This
routine prepends the new link-level header to the initial M_BLK in that network
packet if space is available or allocates a new tuple and prepends it to the M_BLK
chain.

When construction of the header is complete, this routine returns an M_BLK_ID
that points to the initial M_BLK in the assembled link-level frame.

If this routine returns NULL, it frees the input M_BLK pPacket.

M_BLK_ID muxLinkHeaderCreate
(
void * pCookie, /* the cookie returned by muxBind() */
M_BLK_ID pPacket, /* pointer to the packet being reformed */
M_BLK_ID pSrcAddr, /* pointer to the M_BLK with the source address */
M_BLK_ID pDstAddr, /* pointer to the M_BLK with the dest address */
BOOL bcastFlag /* use broadcast destination (if available)? */
)

A.2.4 muxDevExists()

Call muxDevExists() to test whether a given device has already been loaded into
the network stack. As input, it expects the name and unit number of the device to
be tested.

BOOL muxDevExists
(
char * pName, /* string containing a device name (ln, ei, ...)*/
int unit /* unit number */

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

268

)

This routine returns TRUE if the device has already been loaded into the network
stack, or FALSE otherwise. Note that a TRUE return from this routine does not
guarantee that the device will still be loaded at a later time.

A.2.5 muxDevLoad()

Call muxDevLoad() to load a network driver into the MUX. muxDevLoad() calls
the driver’s xLoad() routine. After the device loads, you can call muxDevStart()
to start the device.

muxDevLoad() passes the contents of the pInitString string into the driver’s
xLoad() routine, prepended with “unitNumber:”

Some drivers require that the BSP provide additional information to the driver’s
load routine via the pBSP argument to muxDevLoad() (or the device’s xLoad()
routine). Check the driver’s reference manual entry to see if this is the case. If so,
the endDevTbl[] entry for the device unit in the BSP’s configNet.c file may
provide this value, or if the BSP provides a wrapper load routine, that routine may
pass a pBSP argument directly to the driver’s xLoad() routine. VxBus drivers
always pass the device instance’s VXB_DEVICE_ID in the pBSP parameter.

void * muxDevLoad
(
int unit, /* unit number of device */
END_OBJ * (* endLoad)(char *, void *), /* driver's load routine */
char * pInitString, /* init string for driver */
BOOL loaning, /* unused */
void * pBSP /* BSP-specific */
)

This routine returns a cookie that identifies the device and that you can pass to
muxDevStart(), or returns NULL if the routine could not load the device, in which
case it sets errno to S_muxLib_LOAD_FAILED.

A.2.6 muxDevStart()

Use muxDevStart() to start a device after you successfully load the device by
calling muxDevLoad(). muxDevStart() activates a device by calling the driver’s
xStart() routine, enabling reception and transmission on the device.

STATUS muxDevStart
(
void * pDevCookie /* the cookie returned from muxDevLoad() */
)

A MUX Routines and Data Structures
A.2 MUX Routines

269

A

The muxDevStart() routine returns OK on success, ERROR if the driver’s xStart()
routine fails, or ENETDOWN if pDevCookie does not represent a valid device (in
which case it will set errno to S_muxLib_NO_DEVICE).

A.2.7 muxDevStop()

Call muxDevStop() to stop a device. muxDevStop() calls the driver’s xStop()
routine.

STATUS muxDevStop
(
void * pCookie /* the cookie returned from muxDevLoad() */
)

The muxDevStop() routine returns OK on success, ERROR if the driver’s xStop()
routine fails, or ENETDOWN if pCookie does not represent a valid device (in which
case it will set errno to S_muxLib_NO_DEVICE).

A.2.8 muxDevUnload()

Call muxDevUnload() to unload a device from the MUX.

To notify services that it is unloading a device, muxDevUnload() calls the
stackShutdownRtn() routine implemented by each service bound to the device
(these stackShutdownRtn() routines in turn call muxUnbind() to detach from the
device).

To free device-internal resources, muxDevUnload() calls the driver’s xUnload()
routine.

STATUS muxDevUnload
(
char * pName, /* the name of the device, for example, ln or ei */
int unit /* the unit number */
)

This routine returns OK on success, ERROR if the device could not be found (in
which case it sets errno to S_muxLib_NO_DEVICE), or the error returned from the
device’s xUnload() routine if that routine fails (in which case it sets errno to
S_muxLib_UNLOAD_FAILED).

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

270

A.2.9 muxError()

Drivers call muxError() to report an error (or sometimes a condition other than an
error) to a network service that is bound to it through the MUX. You can find
predefined errors in end.h. A driver passes this routine two arguments: a pointer
to the END object that identifies the device that is issuing the error and a pointer
to an END_ERR structure that the driver has allocated and filled, and that the
driver maintains ownership of across the call to muxError(). See A.3.5 END_ERR,
p.293, for a description of this structure.

void muxError
(
void * pCookie, /* END_OBJ pinter cast to a void pointer */
END_ERR * pError /* error structure */
}

If pCookie is NULL this routine sets errno to S_muxLib_NO_DEVICE.

A.2.10 muxIfFuncAdd()

Call muxIfFuncAdd() to provide the MUX with pointers to certain routines that
depend both upon a protocol’s network service type and upon a MIB2 interface
type code. You can use muxIfFuncAdd() to specify up to three different such
routines:

■ an address resolution routine
■ a multicasting address resolution routine
■ an output routine

STATUS muxIfFuncAdd
(
long ifType, /* Media interface type, from m2Lib.h */
long protocol, /* Service type, for instance from RFC 1700 */
int funcType, /* type of function being added */
FUNCPTR ifFunc /* Function to call. */
)

ifType
A media interface or network driver type, such as can be found in m2Lib.h.
The implementation restricts interface types to the range {0 < ifType <=
MUX_MAX_IFTYPE}, where MUX_MAX_IFTYPE is defined in muxLib.h.

protocol
A network service or protocol type, such as can be found in RFC 1700 (look for
the values in the table under “ETHER TYPES”). For example, use 2048 (0x800

A MUX Routines and Data Structures
A.2 MUX Routines

271

A

hexadecimal) to identify IPv4. Not all relevant network service types are listed
in RFC 1700. For instance, IPv6’s network service type is 0x86DD, defined in
RFC 2464. The most comprehensive official list seems to be
http://standards.ieee.org/regauth/ethertype/eth.txt although it lacks some
protocol identifications.

funcType
Set this to one of the following three values to indicate the variety of routine
you are registering:

– ADDR_RES_FUNC – an address resolution routine
– IF_OUTPUT_FUNC – an output routine
– MULTI_ADDR_RES_FUNC – a multicasting address resolution routine

ifFunc
A pointer to a routine for this combination of driver type and service type.

If ifType is outside of the supported range, if there is insufficient memory to
complete the operation, or if this variety of service routine has already been
registered for this ifType/service variety, muxIfFuncAdd() returns ERROR.
Otherwise it returns OK.

A.2.11 muxIfFuncDel()

Call muxIfFuncDel() to undo the assignment of a service routine to an
interface-type/protocol combination.

STATUS muxIfFuncDel
(
long ifType, /* media interface type from m2Lib.h */
long protocol, /* protocol type, for instance from RFC 1700 */
int funcType /* type of function to delete. */
)

Valid values for funcType are ADDR_RES_FUNC, IF_OUTPUT_FUNC, and
MULTI_ADDR_RES_FUNC. For more information on these routine types, see
A.2.10 muxIfFuncAdd(), p.270.

The muxIfFuncDel() routine returns OK on success, or ERROR if the request fails.

A.2.12 muxIfFuncGet()

Call muxIfFuncGet() to retrieve a pointer to a service routine associated with an
interface type/network service type combination by an earlier call to
muxIfFuncAdd().

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

272

FUNCPTR muxIfFuncGet
(
long ifType, /* media interface type from m2Lib.h */
long protocol, /* protocol type, for instance from RFC 1700 */
int funcType /* type of function to get */
)

Valid values for funcType are ADDR_RES_FUNC, IF_OUTPUT_FUNC, and
MULTI_ADDR_RES_FUNC. For more information on these routine types, see
A.2.10 muxIfFuncAdd(), p.270.

This routine returns a pointer to the requested routine, or NULL if no routine was
registered by a previous call to muxIfFuncAdd() for the service or if ifType is
invalid.

A.2.13 muxIoctl()

Call muxIoctl() to access the ioctl services of a network interface loaded into the
MUX. Typical uses of muxIoctl() include commands to fetch or modify device
flags, read or modify hardware offload capability settings, poll device statistics,
add or remove multicast addresses, fetch or modify the unicast station address, or
fetch the current link state or force the current link mode. In most cases, muxIoctl()
calls the network driver’s xIoctl() routine.

STATUS muxIoctl
(
void * pCookie, /* returned by muxTkBind() */
int cmd, /* ioctl command */
caddr_t data /* data needed to carry out the command */
)

This routine returns OK if successful, ERROR (or some other error value returned
by the device’s xIoctl() routine) if the device was unable to successfully complete
the command, or ENETDOWN if pCookie does not represent a valid device (in
which case it sets errno to S_muxLib_NO_DEVICE).

A.2.14 muxMCastAddrAdd()

Call muxMCastAddrAdd() to add an address to the table of link layer multicast
addresses that a device maintains. It expects two arguments: the cookie that
muxTkBind() returned that identifies the device, and a pointer to a buffer
containing the address to be added. The length of the link-layer multicast address
is presumed known to both the driver and the protocol; for example, it is 6 bytes
for ethernet devices.

A MUX Routines and Data Structures
A.2 MUX Routines

273

A

STATUS muxMCastAddrAdd
(
void * pCookie, /* returned by muxTkBind() */
char * pAddress /* address to add to the table */
)

This routine returns OK if successful, ERROR (or some other error value returned
by the device’s xMCastAddrAdd() routine) if the device was unable to
successfully add the address, or ENETDOWN if pCookie does not represent a valid
device (in which case it sets errno to S_muxLib_NO_DEVICE).

A.2.15 muxMCastAddrDel()

Call muxMCastAddrDel() to remove an address from the table of multicast
addresses that the device maintains. It expects two arguments: the cookie that
muxTkBind() returned that identifies the device, and a pointer to a buffer
containing the link layer address to be removed. Note that the driver (often with
the help of etherMultiLib) maintains a reference count for each multicast address
added, and the driver only reconfigures the device to stop receiving frames
destined for a multicast address in the table when the reference count for that
address decreases to zero.

STATUS muxMCastAddrDel
(
void * pCookie, /* returned by muxTkBind() */
char * pAddress /* address to delete from the table */
)

This routine returns OK if successful. It returns ERROR (or some other error value
returned by the device’s xMCastAddrDel() routine) if the device was unable to
successfully remove the address. The routine returns ENETDOWN if pCookie does
not represent a valid device (in which case it sets errno to S_muxLib_NO_DEVICE).

A.2.16 muxMCastAddrGet()

Call muxMCastAddrGet() to retrieve the list of multicast addresses that the
device maintains. It expects two arguments: the cookie that muxTkBind()
returned that identifies the device, and a pointer to a MULTI_TABLE structure (see
A.3.16 MULTI_TABLE, p.307). This MULTI_TABLE structure contains the address
and length of a buffer which the driver’s xMCastAddrGet() routine will fill with
the addresses currently in its multicast table. The driver decreases the buffer length
field in the MULTI_TABLE to the actual number of bytes of multicast address
information that the driver wrote into the buffer.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

274

int muxMCastAddrGet
(
void * pCookie, /* returned by muxTkBind() */
MULTI_TABLE * pTable /* structure that will hold retrieved table */
)

This routine returns OK if successful, ERROR (or some other error value returned
by the device’s xMCastAddrGet() routine) if the device was unable to successfully
supply the list, or ENETDOWN if pCookie does not represent a valid device (in
which case it sets errno to S_muxLib_NO_DEVICE).

A.2.17 muxPacketAddrGet()

The muxPacketAddrGet() routine retrieves the addressing information from a
packet. As input it takes pCookie (the binding instance cookie that muxBind()
returned), pMblk (referencing the M_BLK that describes a packet), and four
additional M_BLK_IDs into which the routine can write addressing information, as
follows:

■ pSrcAddr – the immediate source address of the packet
■ pDstAddr – the immediate destination address of the packet
■ pESrcAddr – the ultimate source address of the packet
■ pEDstAddr – the ultimate destination address of the packet

You may pass in NULL for any of these four parameters for which you do not need
the associated information.

STATUS muxPacketAddrGet
(
void * pCookie, /* service/device binding from muxBind() */
M_BLK_ID pMblk, /* structure to contain packet */
M_BLK_ID pSrcAddr, /* structure containing source address */
M_BLK_ID pDstAddr, /* structure containing destination address */
M_BLK_ID pESrcAddr, /* structure containing the end source */
M_BLK_ID pEDstAddr /* structure containing the end destination */
)

This routine relies on the driver’s xAddrGet() routine, which only END-style
drivers implement (see xAddrGet(), p.157). muxPacketAddrGet() will return
ERROR if pCookie refers to a driver that does not implement the xAddrGet()
routine. Otherwise, it will return the return value from xAddrGet().

A.2.18 muxPacketDataGet()

Call muxPacketDataGet() to parse the link level header at the start of a packet.
The routine does not modify the packet, but fills out the specified LL_HDR_INFO

A MUX Routines and Data Structures
A.2 MUX Routines

275

A

structure with information about the link level header (see A.3.11 LL_HDR_INFO,
p.302). Among other items, this provides the length of the link header and the
network service type of the packet. This routine copies this link-level header
information from the packet referenced in pMblk into the LL_HDR_INFO structure
referenced in pLinkHdrInfo.

STATUS muxPacketDataGet
(
void * pCookie, /* service/device binding from muxBind() */
M_BLK_ID pMblk, /* returns the packet data */
LL_HDR_INFO * pLinkHdrInfo /* returns the packet header information */
)

If the device that is bound in the interface represented by pCookie does not
implement an xPacketDataGet() routine, this routine returns ERROR. If pCookie
does not represent a valid device at all, this routine returns ERROR and sets errno
to S_muxLib_NO_DEVICE. Otherwise, this routine returns the return value from
the driver’s xPacketDataGet() routine.

A.2.19 muxShow()

Call the muxShow() routine to display configuration information about the
devices that are registered with the MUX.

If you pass a NULL pDevName argument to muxShow(), the routine will report
on the entire list of existing devices and the services that are bound to them. You
can set pDevName to the root name of the device, and unit to the unit number if
you want a report about only a specific device.

void muxShow
(
char * pDevName, /* pointer to device name, or NULL for all */
int unit /* unit number for a single device */
)

A.2.20 muxTkBind()

Call muxTkBind() to bind a network service to a network interface. Before the
network service can send and receive packets from the network, it must bind to
one or more network drivers through which it will send and receive packets. To
specify these network drivers and bind to them, call muxTkBind().

In the call to muxTkBind() provide the following information:

■ the network driver to bind to (name and unit number)

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

276

■ a network service type, for instance based on RFC 1700

■ optional data structures used to exchange information with the driver
(typically used when a network service is designed to work with a
particular network driver)

■ a set of callback routines used by the MUX (see Table A-1)

■ a key or private data structure that the MUX will pass back when it
invokes these callbacks, and that identifies the bound interface

These callback routines are listed in Table A-1 and are described at greater length
in 5.3.1 Service Routines Registered Using mux[Tk]Bind(), p.186.

Two additional arguments (pNetSvcInfo and pNetDrvInfo) are rarely used. They
allow the sublayer to exchange additional information with a network driver at
bind time, depending on requirements specific to the particular service and driver,
by means of a call to the device’s xEndBind() routine (see xEndBind(), p.158).
These additional arguments may be helpful to those network services and network
driver types that are tightly coupled. Wind River has established no conventions
regarding the use of these arguments. Pass NULL for both if you do not use them.

The muxTkBind() routine is declared as follows:

void * muxTkBind
(
char * pName, /* interface name, for example: ln, ei */
int unit, /* unit number */
FUNCPTR stackRcvRtn, /* data receive callback */
FUNCPTR stackShutdownRtn, /* shutdown callback */
FUNCPTR stackTxRestartRtn, /* restart after suspend callback */
VOIDFUNCPTR stackErrorRtn, /* message/error callback */
long type, /* from RFC 1700 or otherwise-defined */
char * pProtoName, /* string name of service */
void * pNetCallbackId, /* returned to svc sublayer during recv *
void * pNetSvcInfo, /* ref to netSrvInfo structure */
void * pNetDrvInfo /* ref to netDrvInfo structure */

Table A-1 Network Service Callback Routines

Callback Routine Description

stackRcvRtn() Receive data from the MUX.

stackErrorRtn() Receive an error notification from the MUX.

stackShutdownRtn() Shut down the network service.

stackRestartRtn() Restart a suspended network service.

A MUX Routines and Data Structures
A.2 MUX Routines

277

A

)

The pNetCallbackId argument is an opaque “cookie” value that the MUX passes
when it calls the callback routines, to identify the involved END device to the
service.

The pProtoName argument is a NUL-terminated string describing the service, and
type is the network service type. The MUX uses the network service type to
prioritize the services, and to determine which services see which packets (see The
Bind Phase, p.181).

The muxTkBind() routine returns a cookie that uniquely represents the binding
instance and identifies that binding instance in subsequent calls that the service
makes to the MUX. A return value of NULL indicates that the bind failed. In such
a case the following errno values may help diagnose the problem:

EINVAL
You attempted to use muxBind() rather than muxTkBind() to bind a service
to an NPT device.

S_muxLib_ALLOC_FAILED
muxTkBind() could not allocate enough memory to complete the binding.

S_muxLib_ALREADY_BOUND
You are trying to bind an output protocol to a device that already has an output
protocol attached to it, or are trying to bind a normal-typed network service to
a device that already has a service of the same type bound.

S_muxLib_NO_DEVICE
There is no device matching pName and unit.

A.2.21 muxBind()

Call muxBind() to bind a network service to a network interface that is governed
by an END. You can also use muxTkBind() to bind to either an END or an NPT
driver, but you cannot use muxBind() to bind to an NPT driver. Calling
muxBind() instead of muxTkBind() for END interfaces may be more efficient.

Before the network service can send and receive packets from the network, it must
bind to one or more drivers through which it will send and receive packets. In the
call to muxBind() provide the following information:

■ the END device to bind to (name and unit number)

■ a network service type, for instance based on RFC 1700

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

278

■ a set of callback routines used by the MUX (see Table A-1)

■ a key or private data structure that the MUX will pass back when it
invokes these callbacks, and that identifies the bound interface

These callback routines are listed in Table A-1 and are described at greater length
in 5.3.1 Service Routines Registered Using mux[Tk]Bind(), p.186.

As part of the bind phase, the network service typically retrieves the address
resolution and mapping routines for each network interface that it is binding to,
and stores them in a private data structure that the service allocates.

The muxBind() routine is defined as follows:

void * muxBind
 (
 char * pName, /* interface name, for example, ln, ei,... */
 int unit, /* unit number */
 BOOL (*stackRcvRtn) (void*, long, M_BLK_ID, LL_HDR_INFO *, void*),

/* receive function to be called. */
 STATUS (*stackShutdownRtn) (void*, void*),

/* routine to call to shutdown the stack */
 STATUS (*stackTxRestartRtn) (void*, void*),

/* routine to tell the stack it can transmit */
 void (*stackErrorRtn) (END_OBJ*, END_ERR*, void*),

/* routine to call on an error. */
 long type, /* protocol type from RFC1700 and many */

/* other sources (for example, 0x800 is IP) */
 char * pProtoName, /* string name for protocol */
 void * pSpare /* per protocol spare pointer */
)

The pSpare argument is an opaque “cookie” value that the MUX passes when it
calls the callback routines, to identify the involved END device to the service.

The pProtoName argument is a NULL-terminated string describing the service,
and type is the network service type. The MUX uses the network service type to
prioritize the services, and to determine which services see which packets (see The

Table A-2 Network Service Callback Routines

Callback Routine Description

stackRcvRtn() Receive data from the MUX.

stackErrorRtn() Receive an error notification from the MUX.

stackShutdownRtn() Shut down the network service.

stackRestartRtn() Restart a suspended network service.

A MUX Routines and Data Structures
A.2 MUX Routines

279

A

Bind Phase, p.181). The muxBind() routine returns a cookie that uniquely
represents the binding instance and identifies that binding instance in subsequent
calls that the service makes to the MUX. A return value of NULL indicates that the
bind failed. In such a case the following errno values may help diagnose the
problem:

EINVAL
You attempted to use muxBind() to bind a service to an NPT device.

S_muxLib_ALLOC_FAILED
muxBind() could not allocate enough memory to complete the binding.

S_muxLib_ALREADY_BOUND
You are trying to bind an output protocol to a device that already has an output
protocol attached to it, or attempted to bind a normal-typed protocol when a
protocol of the same network service type is already bound.

S_muxLib_NO_DEVICE
There is no device matching pName and unit.

A.2.22 muxTkCookieGet()

Call this routine to retrieve a pseudo-“cookie” corresponding to a particular
device. You can use this routine to get a cookie for a device without binding to that
device, and you can then use this cookie to refer to the device in various MUX calls
(except, of course, muxUnbind()).

If there is no such device, this routine returns NULL, otherwise it returns a device
“cookie.”

void * muxTkCookieGet
(
char * pName, /* Device root name, for instance "motfec" */
int unit /* Device unit number, for instance 0 */
)

A.2.23 muxTkDrvCheck()

A network service sublayer calls muxTkDrvCheck() to determine whether a
particular driver is an NPT driver. Note that the pDevName argument is the root
device name, without the unit number, for example "gei" rather than "gei0".

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

280

int muxTkDrvCheck
(
char * pDevName /* the root name of the driver being checked */
)

This routine returns 1 (one) if that device is an NPT driver, 0 (zero) otherwise, and
ERROR (-1) if the routine could not find the specified device.

A.2.24 muxTkPollReceive()

A network service sublayer calls muxTkPollReceive() to poll a device for
incoming data. If no data is available at the time of the call, muxTkPollReceive()
returns EAGAIN. If not NULL, the pSpare argument points to a buffer where an
NPT driver may return additional driver-specific data (however, conventions for
the use of this parameter are not established, and Wind River recommends that the
caller pass NULL for pSpare). In the case of an END, pSpare will always point to
NULL when the muxTkPollReceive() call returns successfully.

STATUS muxTkPollReceive
(
void * pCookie, /* returned by muxTkBind() */
M_BLK_ID pNBuff, /* a vector of buffers passed to us */
void * pSpare /* a reference to spare data is returned here */
)

This routine returns OK on success, EAGAIN if the device does not have a packet
available, ENETDOWN if pCookie does not represent a valid device (in which case
it sets errno to S_muxLib_NO_DEVICE), or ERROR or an error value specific to the
driver’s xPollRcv() routine if the driver encounters an error.

NOTE: muxTkDrvCheck() uses an EIOCGNPT ioctl to ask the driver whether it is
an NPT. An NPT driver returns a 1 (one) in response to an EIOCGNPT ioctl.

NOTE: This routine replaces muxPollReceive(), which is deprecated.

NOTE: Only use polled mode for debugging. For details, see 4.3.3 Polled Mode – For
Debugging Only, p.92.

A MUX Routines and Data Structures
A.2 MUX Routines

281

A

A.2.25 muxTkPollSend()

Call muxTkPollSend() to transmit packets when a driver is in polled-mode. This
is the polled-mode equivalent to the interrupt-mode muxTkSend(). When calling
muxTkPollSend() with a non-NULL pDstAddr argument, the driver does not
need to call muxAddressForm() to complete the packet. Like muxTkSend(), this
routine expects as arguments a cookie identifying the device and a pointer to the
M_BLK chain containing the data.

STATUS muxTkPollSend
(
void * pCookie, /* returned by muxTkBind()*/
M_BLK_ID pNBuff, /* data to be sent */
char * dstMacAddr, /* destination MAC address */
USHORT netType, /* network service that is calling us */
void * pSpareData /* spare data passed to driver on each send */
)

This routine returns OK on success, ENETDOWN if the cookie passed in does not
represent a valid device (in which case it sets errno to S_muxLib_NO_DEVICE), or
an error value specific to the driver’s xPollSend() routine.

A.2.26 muxReceive()

A driver calls the receiveRtn function pointer in its END_OBJ structure to pass
validated packets up to the MUX. For ENDs, this function pointer is usually a
reference to muxReceive().

The muxReceive() routine calls the END’s xPacketDataGet() routine to extract
the packet data from the frame in the pMblk buffer. Then it forwards the packets
to network services that are bound to the device by calling the xStackRcvRtn()
that the service registered with the MUX.

The routine is defined as:

STATUS muxReceive
 (
 void * pCookie, /* device identifier from driver's load routine */
 M_BLK_ID pMblk /* buffer containing received frame */
)

NOTE: This routine replaces muxPollSend(), which is deprecated.

NOTE: Only use polled mode for debugging. For details, see 4.3.3 Polled Mode – For
Debugging Only, p.92.

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

282

This routine returns OK typically, but during debugging may (if your build was
compiled with extra debugging checks) return ERROR if either pMblk or pCookie
is NULL.

A.2.27 muxTkReceive()

A driver calls the receiveRtn function pointer in its END_OBJ structure to pass
validated packets up to the MUX. For NPT drivers, this function pointer is usually
a reference to muxTkReceive().

The muxTkReceive() routine forwards the packets to a network service by calling
the xStackRcvRtn() that the service registered with the MUX.

Arguments to muxTkReceive() include:

■ a reference to the END object that describes the interface

■ an M_BLK tuple that contains the frame that the driver received

■ the offset into the frame where the data field (the network service layer header)
begins

■ the network service type of the service for which the packet is destined
(typically, you find this in the link header of the received frame)

■ a flag (uniPromiscuous) that the driver should set to TRUE if it is in
promiscuous mode when it makes this call and it receives a unicast or
multicast packet that is not intended for this device (when TRUE the MUX does
not hand over the packet to network services other than those that registered
with the MUX as of types SNARF or PROMISCUOUS)

Setting uniPromiscuous to TRUE is only an optimization, and the driver
should do it only if it has a fast way (such as a bit set by the device in the
receive descriptor) to determine that the received packet would not have been
received if the device were not in promiscuous mode.

■ a reference to any optional data or information that a network service may
expect to accompany the packet (or NULL if no such data is expected)

No Wind River protocols expect such data, and no conventions have been
established for this argument’s use.

The MUX strips off the frame header before forwarding the packet to the network
service, unless the network service is registered as MUX_PROTO_SNARF or
MUX_PROTO_PROMISC, in which case it will receive the complete frame.

The routine is defined as:

A MUX Routines and Data Structures
A.2 MUX Routines

283

A

STATUS muxTkReceive
(
void * pEndCookie, /* (END_OBJ *) cast to (void *) */
M_BLK_ID pMblk, /* the buffer being received */
long netSvcOffset, /* offset to network datagram in the packet */
long netSvcType, /* network service type */
BOOL uniPromiscuous, /* TRUE when driver is in promiscuous mode */
void * pSpareData /* out-of-band data */
)

This routine returns OK typically, but during debugging may (if your build was
compiled with extra debugging checks) return ERROR if either pMblk or
pEndCookie is NULL.

A.2.28 muxSend()

A network service calls muxSend() to transmit packets through an END.

STATUS muxSend
(
void * pCookie, /* returned by muxBind()*/
M_BLK_ID pNBuff /* data to be sent */
)

To send a packet, the caller must supply:

■ the cookie that it obtained from muxBind() that identifies the interface to
which it is bound

■ a pointer to the buffer chain (M_BLK chain) containing the packet

The caller must insert the link layer addressing information at the head of this
buffer before calling muxSend(). To do this, call muxAddressForm().

The muxSend() routine may return END_ERR_BLOCK to indicate that the driver
is out of resources for transmitting the packet. In this case only, the caller maintains
ownership of the packet. The service sublayer may use this error to establish a flow
control mechanism, by waiting to send any more packets until the MUX calls the
stackRestartRtn() callback routine. At that time, the service can resend the
original packet that elicited the END_ERR_BLOCK error, as well as any other
packets that may have accumulated in the interim, until all are sent or another
END_ERR_BLOCK error occurs. The service is allowed to call muxSend() again
after an END_ERR_BLOCK return and before its stackRestartRtn() has been called,
but such sends are likely to return END_ERR_BLOCK again, and so waste cycles
polling the device for transmit readiness.

This routine returns OK if successful, or END_ERR_BLOCK if the xSend() routine
of the driver is temporarily unable to complete the send due to insufficient

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

284

resources or some other problem. Other return values are unusual: ERROR (or the
return value of the driver’s xSend() routine) if the driver fails to manipulate or
send the packet properly, ERROR if pNBuff is NULL, or ENETDOWN if pCookie
does not represent a valid device (in which case it sets errno to
S_muxLib_NO_DEVICE). muxSend() will always take ownership of the packet
unless it returns END_ERR_BLOCK.

A.2.29 muxTkSend()

A network service calls muxTkSend() to transmit packets.

STATUS muxTkSend
(
void * pCookie, /* returned by muxTkBind()*/
M_BLK_ID pNBuff, /* data to be sent */
char * dstMacAddr, /* destination MAC address */
USHORT netType, /* network service that is calling us */
void * pSpareData /* optional spare data passed on each send */
)

To send a packet, the caller must supply:

■ the cookie that it obtained from muxTkBind() that identifies the interface to
which it is bound

■ a pointer to the buffer chain (M_BLK chain) containing the packet

Unless the caller has already added a link header to the packet, it must supply also:

■ the link layer destination address to which the packet should be sent

■ the network service type for the packet

If the packet to be sent already contains a link-level header, the caller passes NULL
as the dstMacAddr argument. The service sublayer must form the data that it
sends into an M_BLK chain (if it is not already in this form). The caller may need to
convert a desired network layer protocol destination address to a link-level
destination address, using its own routing and address resolution methods.

The muxTkSend() routine may return END_ERR_BLOCK to indicate that the
driver is out of resources for transmitting the packet. In this case only, the caller
maintains ownership of the packet. The service sublayer may use this error to
establish a flow control mechanism, by waiting to send any more packets until the
MUX calls the stackRestartRtn() callback routine. At that time, the service can
resend the original packet that elicited the END_ERR_BLOCK error, as well as any
other packets that may have accumulated in the interim, until all are sent or
another END_ERR_BLOCK error occurs. The service is allowed to call

A MUX Routines and Data Structures
A.2 MUX Routines

285

A

muxTkSend() again after an END_ERR_BLOCK return and before its
stackRestartRtn() has been called, but such sends are likely to return
END_ERR_BLOCK again, and so waste cycles polling the device for transmit
readiness.

This routine returns OK if successful, END_ERR_BLOCK if the xSend() routine of
the driver is temporarily unable to complete the send due to insufficient resources
or some other problem. Other return values are unusual: ERROR (or the return
value of the driver’s xSend() routine) if the driver fails to manipulate or send the
packet properly, ERROR if pNBuff is NULL, or ENETDOWN if pCookie does not
represent a valid device (in which case it sets errno to S_muxLib_NO_DEVICE).
muxTkSend() will always take ownership of the packet unless it returns
END_ERR_BLOCK.

A.2.30 muxTxRestart()

When a network driver’s xSend() routine returns END_ERR_BLOCK, indicating
that it cannot complete a send immediately due to a temporary condition (usually
lack of space in its transmit descriptor ring), the driver must guarantee to later call
muxTxRestart() when the device is again able to send more packets. The
muxTxRestart() routine notifies all services bound to the device (that provided a
stackRestartRtn() callback) that they may resume sending to the device (see
Figure 4-7). A service may implement transmit flow control by pausing
transmission to a device upon receiving an END_ERR_BLOCK return from a
mux[Tk]Send() call, resuming only when muxTxRestart() calls its
stackRestartRtn() callback. Such a service might never resume transmission if the
driver send routine did not call muxTxRestart().

void muxTxRestart
(
void * pCookie /* the device’s (END_OBJ *) cast to a (void *) */
)

A.2.31 muxUnbind()

A network service calls muxUnbind() to disconnect from a device. As input,
muxUnbind() expects the cookie identifying the binding instance that was
returned by the service’s earlier call to mux[Tk]Bind(), as well as the network
service type and the stackRcvRtn callback pointer used in the earlier call to
mux[Tk]Bind().

STATUS muxUnbind
(

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

286

void * pCookie, /* value returned from mux[Tk]Bind() */
long type, /* the service type passed in at bind-time */
FUNCPTR stackRcvRtn /* pointer to the service receive routine */
)

This routine returns OK if the service is successfully unbound; or ERROR
otherwise. An ERROR return occurs only if the muxUnbind() arguments are
invalid, or if more general corruption has occurred in the system.

A.2.32 muxAddrResFuncAdd()

STATUS muxAddrResFuncAdd
(
long ifType, /* interface type from m2Lib.h, or driver type */
long protocol, /* protocol from RFC 1700, or service type */
FUNCPTR addrResFunc /* the routine being added. */
)
{
return (muxIfFuncAdd (ifType, protocol, ADDR_RES_FUNC, addrResFunc));
}

A.2.33 muxAddrResFuncDel()

STATUS muxAddrResFuncDel
(
long ifType, /* ifType of function you want to delete */
long protocol, /* protocol from which to delete the function */
)
{
return (muxIfFuncDel (ifType, protocol, ADDR_RES_FUNC));
}

NOTE: This routine is deprecated. It calls muxIfFuncAdd(), which you should call
directly to add an address resolution routine (see A.2.10 muxIfFuncAdd(), p.270).

NOTE: This routine is deprecated. It calls muxIfFuncDel(), which you should call
directly to delete an address resolution routine (see A.2.11 muxIfFuncDel(), p.271).

A MUX Routines and Data Structures
A.3 Data Structures

287

A

A.2.34 muxAddrResFuncGet()

STATUS muxAddrResFuncGet
(
long ifType, /* ifType of function you want to delete */
long protocol, /* protocol from which to delete the function */
)
{
return (muxIfFuncGet (ifType, protocol, ADDR_RES_FUNC));
}

A.3 Data Structures

This section describes the following classes and structures:

■ CL_BLK, p.288
■ DEV_OBJ, p.289
■ DRV_CTRL, p.290
■ END_CAPABILITIES, p.290
■ END_ERR, p.293
■ END_MEDIA, p.296
■ END_MEDIALIST, p.297
■ END_OBJ, p.297
■ END_RCVJOBQ_INFO, p.301
■ END_QUERY, p.301
■ LL_HDR_INFO, p.302
■ M_BLK, p.302
■ M_BLK_HDR, p.304
■ M_LINK, p.305
■ M_PKT_HDR, p.306
■ MULTI_TABLE, p.307
■ NET_FUNCS, p.308

NOTE: This routine is deprecated. It calls muxIfFuncGet(), which you should call
directly to get an address resolution routine (see A.2.12 muxIfFuncGet(), p.271).

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

288

A.3.1 CL_BLK

A CL_BLK (also known as a cluster block) structure is shown in Figure A-2.

See 2.3.1 Tuples, p.13 for an in-depth exploration of the M_BLK / CL_BLK / cluster
construct.

Multiple M_BLKs may attach to the same CL_BLK/cluster pair. Each time an
M_BLK attaches to a CL_BLK/cluster pair, the CL_BLK’s reference count (clRefCnt)
is incremented. The M_BLKs may reference overlapping or non-overlapping
regions within the cluster, but each code path that uses an M_BLK should treat the
associated shared cluster as read-only. When an application that uses an M_BLK
frees the tuple (for instance, by calling netMblkClFree() or
netMblkClChainFree()), this both frees the M_BLK and decrements the cluster
block reference count, and, if the reference count reaches zero, frees the CL_BLK
and the cluster.

If a CL_BLK’s pClFreeRtn member is non-NULL when the cluster reference count
reaches zero during a tuple or cluster-block free operation, the netBufLib

Figure A-2 A CL_BLK Object

struct clBlk

clSize : UINT
clRefCnt : int
clFreeArg1 : int
clFreeArg2 : int
clFreeArg3 : int

the total cluster length
reference count that determines when the cluster can be freed

arguments to pClFreeRtn()

(CL_BLK)

pClFreeRtn(...) : int an optional free routine that frees the cluster

pClBuf

union clBlkList
(CL_BLK_LIST)

char *
pClBlkNext

clNode

struct netPool

pNetPool the network pool from which the CL_BLK was allocated

struct clBlk
(CL_BLK)

A MUX Routines and Data Structures
A.3 Data Structures

289

A

back-end code calls the pClFreeRtn function as follows, with the NET_POOL spin
lock released:

(*pClBlk->pClFreeRtn) (pClBlk->clFreeArg1, pClBlk->clFreeArg2,
pClBlk->clFreeArg3);

The pClFreeRtn routine should do what is necessary to free the cluster; the
netBufLib back end code goes on to free the CL_BLK.

On the other hand, if pClFreeRtn is NULL when a cluster reference count reaches
zero during a free operation, the cluster is automatically freed to the pool, as
appropriate to the particular netBufLib back end in use. (For linkBufPool pools,
the whole tuple is returned to the pool at that time.)

Generally, you only need to provide a cluster free routine if the clusters you use do
not come from the netBufLib pool that your CL_BLKs come from.

A.3.2 DEV_OBJ

The MUX uses the DEV_OBJ structure to store the name and control structure of a
device. The private control structure, held in the pDevice field of this structure,
stores information such as memory pool addresses and other essential data. The
DEV_OBJ structure is defined in end.h as shown in Figure A-3.

The members of this class are as follows:

name
A string that contains the name of the network device.

unit
The unit number of the device. Unit numbers start at zero and increase for each
device controlled by the same driver.

Figure A-3 The DEV_OBJ Class

DEV_OBJ

name : char[END_NAME_MAX]
unit : int
description : char[END_DESC_MAX]
pDevice : void *

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

290

description
A text description of the device driver. For example, the Lance Ethernet driver
has a description string of “AMD 7990 Lance Ethernet Enhanced Network
Driver.” The muxShow() command displays this string.

pDevice
Driver load routines call the END_OBJ_INIT() macro, implemented by the
endObjInit() routine in endLib.

endObjInit() sets the pDevice member of the DEV_OBJ embedded in the
END_OBJ referenced by its first argument to the value of its second argument.
When the device is unloaded from the MUX, if the device’s xUnload() routine
returns OK, muxDevUnload() frees the memory pointed to by this member (if
non-NULL) to the kernel heap. Usually a network driver passes either a pointer
to the END_OBJ or driver control structure itself, or NULL, as the second
argument to endObjInit(), so either a pointer to the END_OBJ or NULL gets
stored in this member, and either the END_OBJ, or nothing, gets freed when the
driver’s xUnload() routine returns OK.

A.3.3 DRV_CTRL

A driver defines its own DRV_CTRL structure, which derives from the END_OBJ
structure and contains any additional information that the driver wants to keep
track of on a per-device basis. See A.3.8 END_OBJ, p.297. Because the first member
of a DRV_CTRL structure conventionally is an END_OBJ structure, the driver can
locate its DRV_CTRL structure simply by casting the END_OBJ pointer passed to its
NET_FUNCS routines as a DRV_CTRL pointer.

A.3.4 END_CAPABILITIES

A network driver initializes an END_CAPABILITIES object to indicate which of
several capabilities the device supports and has enabled. The members of the
END_CAPABILITIES object hold the capabilities available, those currently enabled,
and the supported CSUM (hardware checksum enabling) flags for receive and
transmit.

A MUX Routines and Data Structures
A.3 Data Structures

291

A

The cap_available member reflects the capabilities supported by the driver. The
cap_enabled member reflects the capabilities actually enabled. The driver loads
the cap_available member with the capabilities supported by the device and
initializes the cap_enabled member with the same values. Later, the MUX calls the
driver’s xIoctl() routine to determine which capabilities the driver supports. The
network stack may then change the cap_enabled member to request capabilities
that it supports and desires. It is not an error if the stack requests cap_enabled
capabilities that the driver does not have available. However, such capabilities are
not provided.

The csum_flags_tx and csum_flags_rx members contain translations of
cap_available and cap_enabled into CSUM flags. The CSUM flags provide more
detailed information about the particular operations supported. CSUM flags are
also used on a per-packet basis to pass checksum offload related requests and
information between the stack and the network driver. The flags reported by the
driver in the csum_flags_tx member of the END_CAPABILITIES object are the only
flags that the stack may set in the first M_BLK of a packet to request transmit
offload operations from the driver. The flags that the driver sets in csum_flags_rx
are currently only of informational use; they are not used by the stack.

A network driver initializes the END_CAPABILITIES object in its xLoad() routine.
The driver uses the capability flags defined in end.h to initialize the cap_available
and cap_enabled fields and the CSUM flags defined in mbuf.h to initialize the
csum_flags_tx and csum_flags_rx fields.

For example, if the network stack requests transmit checksum support by setting
IFCAP_TXCSUM in cap_enabled and the cap_available field reflects that the driver
supports transmit checksumming by also having the IFCAP_TXCSUM bit set, the
driver might set the csum_flags_tx field as follows:

(CSUM_IP | CSUM_TCP | CSUM_UDP)

Interface capabilities flags for the cap_available and cap_enabled fields are listed
in Table A-3.

Figure A-4 The END_CAPABILITIES Class

END_CAPABILITIES

cap_available : uint32 supported capabilities
those supported capabilities that are enabled
capabilities, mapped to CSUM flags, for transmit

cap_enabled : uint32
csum_flags_tx : uint32
csum_flags_rx : uint32 capabilities, mapped to CSUM flags, for receive

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

292

Flags indicating hardware checksum support and software checksum
requirements are listed in Table A-4.

Table A-3 Interface Capability Flags for cap_available and cap_enabled

Flag Description

IFCAP_RXCSUM Supports IPv4 receive checksum offload

IFCAP_TXCSUM Supports IPv4 transmit checksum offload

IFCAP_VLAN_MTU Supports VLAN-compatible MTU

IFCAP_VLAN_HWTAGGING Supports hardware VLAN tags

IFCAP_JUMBO_MTU Supports 9000 byte MTU

IFCAP_TCPSEG Supports IPv4/TCP segmentation
(this capability is not yet available)

IFCAP_IPSEC Supports IPsec
(this capability is not yet available)

IFCAP_IPCOMP Supports IPcomp
(this capability is not yet available)

IFCAP_CAP0 Vendor specific capability #0

IFCAP_CAP1 Vendor specific capability #1

IFCAP_CAP2 Vendor specific capability #2

Table A-4 Hardware and Software Checksum Support Flags

Flag Description

CSUM_IP Device supports IPv4 header checksum offload

CSUM_TCP Device supports TCP/IPv4 checksum offload

CSUM_UDP Device supports UDP/IPv4 checksum offload

CSUM_IP_FRAGS Device can checksum IP fragments
(this capability is not yet available)

CSUM_FRAGMENT Device can fragment IP packets
(this capability is not yet available)

A MUX Routines and Data Structures
A.3 Data Structures

293

AThe END_CAPABILITIES class is used by the driver’s interface capabilities set and
get ioctls:

■ EIOCSIFCAP – Interface capabilities set ioctl
■ EIOCGIFCAP – Interface capabilities get ioctl

A.3.5 END_ERR

Sometimes a driver encounters errors or other events that are of interest to the
protocols using that driver. For example, the device’s connection to its link could
go down or come back up, or the device might run out of packet buffers during
heavy receive load. When such situations arise, the driver should call muxError().
This routine passes error information up to the MUX, which in turn passes the
information on to all services that have registered a routine to receive the
information.

Among its input, this routine expects a pointer to an END_ERR structure that the
caller has allocated and initialized, and which is declared in end.h as shown in
Figure A-5.

CSUM_TCP_SEG Device can segment TCP/IPv4
(this capability is not yet available)

CSUM_TCPv6 Device supports TCP/IPv6 checksum offload

CSUM_UDPv6 Device supports UDP/IPv6 checksum offload

CSUM_TCPv6_SEG Device can segment TCP/IPv6
(this capability is not yet available)

Table A-4 Hardware and Software Checksum Support Flags (cont’d)

Flag Description

Figure A-5 The END_ERR Class

END_ERR

errCode : INT32 error code (see table)
NULL-terminated descriptive error message
pointer to optional user-defined data

pMesg : char *
pSpare : void *

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

294

Values of the errCode member in the range 0..65535 are reserved for system use;
you may allocate custom error codes outside of this range. Table A-5 lists currently
defined error codes:

Table A-5 END_ERR Error Codes

Error Code Description

END_ERR_INFO This error is informational only.

END_ERR_WARN A non-fatal error has occurred.

END_ERR_RESET An error occurred that forced the device to reset
itself, but the device has recovered.

END_ERR_FLAGS The driver has changed the flags field of the
END_OBJ. The pSpare member of the END_ERR
object is the new value of the driver’s END_OBJ’s
flags member (cast to a void *).

END_ERR_DOWN This indicates an administrative change of the device
state, for instance that the device was stopped with
muxDevStop().

END_ERR_UP This indicates an administrative change of the device
state, for instance that the interface was started with
muxDevStart().

END_ERR_NO_BUF The device’s receive handler has run out of
replacement tuples in its network buffer pool. A
network service may choose to respond to this event
by freeing up some non-critical buffers which it
holds, that were loaned to it by the network driver
receive handler routine. For instance, an IP stack
might release fragments from its IP reassembly
queues, or unacknowledged, out-of-order segments
in the TCP reassembly queues. (A driver for a device
under very heavy receive load might potentially
generate this event very frequently. Driver and
service designers should consider whether to limit
the rate at which this event is emitted or responded
to.)

A MUX Routines and Data Structures
A.3 Data Structures

295

A

END_ERR_LINKDOWN The device’s link is down. A change occurred, such
as cable disconnection, signal loss, or remote end
changes, that caused the device to lose connection to
its link. The device can no longer send or receive
packets.

END_ERR_LINKUP The device’s link is up. The device was down but has
now come up and may again send and receive
packets.

END_ERR_L2NOTIFY MUX-L2 will send an END_ERR_L2NOTIFY event
whose pSpare member is a pointer to an
L2NOTIFY_PARAMS structure (defined in
target/h/end.h), when a port attaches or detaches
from MUX-L2. On attaching, the l2Attached
member of the L2NOTIFY_PARAMS structure is
TRUE, and the newMtu member is the device MTU
that should be used for the device (which might be
reduced by 4 bytes if the device does not support
VLAN compatible MTU); when detaching,
l2Attached is FALSE and the newMtu member holds
the original device MTU.

Table A-5 END_ERR Error Codes (cont’d)

Error Code Description

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

296

A.3.6 END_MEDIA

This structure is used by the EIOCGIFMEDIA and EIOCSIFMEDIA ioctls.

In the case of the EIOCGIFMEDIA ioctl, the driver sets the endMediaActive
member of the specified END_MEDIA structure to indicate the current link mode,
according to the conventions defined in target/h/endMedia.h for the if_media
options word. The driver also sets the endMediaStatus member to a combination
of the bits IFM_AVALID and IFM_ACTIVE; if IFM_AVALID is set, then the
IFM_ACTIVE bit indicates whether the interface has a working link connection (bit
set, link up) or not (bit not set, link down). If IFM_AVALID is not set, the
IFM_ACTIVE bit is meaningless and the driver is indicating that it does not know
whether the device has a good connection to the link.

In the case of the EIOCSIFMEDIA ioctl, the driver attempts to set its current link
mode to that specified in the endMediaActive member of the provided
END_MEDIA structure.

END_ERR_L2PVID_NOTIFY If a port is attached to MUX-L2, MUX-L2 will send
END_ERR_L2PVID_NOTIFY to notify the upper layer
of the default PVID used for port-based VLAN
tagging. Whenever the tagging decision for a VLAN
changes, MUX-L2 sends END_ERR_L2PVID_NOTIFY
(if the VID is port-based VLAN) to the upper layer.

END_ERR_L2VID_NOTIFY When MUX-L2 joins the attached port to a VLAN, it
sends END_ERR_L2VID_NOTIFY to inform the upper
layer if a tagged or untagged frame should be sent
for the given VLAN. (802.1Q specifies that a port
may transmit untagged frames for some VLANs and
VLAN-tagged frames for other VLANs for a given
port, but cannot transmit using both formats for the
same VLAN.) Whenever the tagging decision for a
VLAN changes, MUX-L2 sends
END_ERR_L2VID_NOTIFY (if the VID is
subnet-based VLAN) to the upper layer.

Table A-5 END_ERR Error Codes (cont’d)

Error Code Description

A MUX Routines and Data Structures
A.3 Data Structures

297

A

A.3.7 END_MEDIALIST

This structure is used by the EIOCGMEDIALIST ioctl. It returns the default media
setting and a variable list of media types that the driver supports.

The endMediaList member is an array of variable length specified by
endMediaListLen. If the endMediaListLen is smaller than the number of media
types supported by the device, the driver’s EIOCGMEDIALIST handler writes the
number of media types it supports into the endMediaListLen member of the
provided END_MEDIALIST, and returns ENOSPC. Otherwise it copies all of the
media types it supports into the endMediaList array, and returns OK.

A.3.8 END_OBJ

An END_OBJ describes a network interface driver to the MUX. The driver allocates
this structure and initializes some of its elements within its xLoad() routine. The
structure is defined in target/h/end.h and is diagramed in Figure A-8.

Figure A-6 The END_MEDIA Class

END_MEDIA

endMediaActive : UINT32
endMediaStatus : UINT32

Figure A-7 The END_MEDIALIST Class

END_MEDIALIST

endMediaListDefault : UINT32
endMediaListLen : UINT32
endMediaList : UINT32[1]

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

298

The MUX manages some of the elements in this structure, but the driver is
responsible for setting and managing others:

node
The root of the device hierarchy. The MUX sets the value of this field. The
driver should not modify the value of this item.

devObject
A pointer to the DEV_OBJ structure for this device (see A.3.2 DEV_OBJ, p.289).
The driver must set this value when the MUX calls its xLoad() routine.

receiveRtn
A function pointer that, by default, references the mux[Tk]Receive() routine.
The MUX supplies this pointer when the driver is loaded. After the device is
both loaded and started, the driver can call this receiveRtn() to pass data up
to the service layer.

pSnarf, pTyped, pPromisc, pStop
These fields point to entries in a table of protocols that bound themselves to
this network driver. The MUX manages this list.

Figure A-8 The END_OBJ Structure and Related Structures

END_OBJ
node : NODE

attached : BOOL
txSem : SEM_ID
flags : long
multiList : LIST
nMulti : int

receiveRtn() : STATUS

outputFilter : protocol_binding

endStyle : int

pNetPool : NET_POOL_ID

pFuncTable

NET_FUNCS

devObject

DEV_OBJ

name : char[]
unit : int
description : char[]
pDevice : void *

proto_entry
pSnarf

pTyped

pPromisc

pStop

DRV_CTRL

nProtoSlots : UINT32

END_OBJ

dummyBinding

endObjID : unsigned short

A MUX Routines and Data Structures
A.3 Data Structures

299

A

nProtoSlots
The current size of the protocol table for this device, which may be larger than
the current number of bound protocols; this member supports increasing the
number of bound protocols beyond the current size of the table, by
reallocating a larger table when necessary. This is used internally by the
implementation.

endStyle
Indicates whether this is an END or NPT driver.

attached
This member is presently unused, except that it is set to TRUE during the call
to endM2Init() from the driver’s load routine.

txSem
A semaphore that controls access to the device’s transmission facilities. The
MUX initializes txSem, but the driver gives and takes the semaphore as
needed.

flags
A value constructed by ORing combinations of the following flags:

– IFF_ALLMULTI – This device receives all multicast packets.
– IFF_BROADCAST – The broadcast address is valid.
– IFF_DEBUG – Debugging is on.
– IFF_LINK0 – A per link layer defined bit.
– IFF_LINK1 – A per link layer defined bit.
– IFF_LINK2 – A per link layer defined bit.
– IFF_LOOPBACK – This is a loopback net.
– IFF_MULTICAST – The device supports multicast.
– IFF_NOARP – There is no address resolution protocol.
– IFF_NOTRAILERS – The device must avoid using trailers.
– IFF_OACTIVE – Transmission in progress.
– IFF_POINTOPOINT – The interface is a point-to-point link.
– IFF_PROMISC – This device receives all packets.
– IFF_RUNNING – The device has successfully allocated needed resources.
– IFF_SIMPLEX – The device cannot hear its own transmissions.
– IFF_UP – The interface driver is up.

Flags that indicate general capabilities or properties of the device
(IFF_SIMPLEX, IFF_MULTICAST, IFF_BROADCAST, and IFF_NOTRAILERS) are
set by the endM2Init() call made from the driver’s xLoad() routine, and do
not change thereafter. The driver controls the IFF_UP and IFF_RUNNING flags,
setting these flags in its start routine, and clearing them in its stop routine. The
IFF_OACTIVE flag is not used in the current stack. Applications or protocols

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

300

may change only some flags through the muxIoctl() command, those
specified in the IFF_END_MODIFIABLE mask in target/h/wrn/coreip/net/if.h.
The flags most commonly changed in this way are IFF_PROMISC and
IFF_ALLMULTI. In particular, the IFF_UP flag is not controlled in this way, but
by means of calls to muxDevStart() or muxDevStop().

pFuncTable
A pointer to a NET_FUNCS structure (see A.3.17 NET_FUNCS, p.308). This
structure contains pointers to driver routines that handle standard requests to
the device. The driver allocates and initializes this structure when the MUX
calls its xLoad() routine.

multiList
A list of multicast addresses for which the device is configured to receive
frames. Network services or applications use MUX functions to add addresses
to or remove addresses from this list, ultimately relying on the driver’s
xMCastAddrAdd(), xMCastAddrDel(), and xMCastAddrGet() to manage
the list.

nMulti
The number of addresses on the list referenced by the multiList field described
above. This is adjusted by the driver’s xMCastAddrAdd() and
xMCastAddrDel() routines. It records the total number of addresses in the
table, not the total references to those addresses, which may be larger.

outputFilter
If not NULL, a pointer to the structure representing a binding instance of a
single MUX_PROTO_OUTPUT service bound to the network device. The
service’s xStackRcvRtn() is called for each packet sent to the device.

pNetPool
A pointer to a netBufLib-managed memory pool. The driver initializes this
pool in the driver’s xLoad() routine.

dummyBinding
This is used internally by muxTkCookieGet() to implement a fake protocol
binding cookie for a network device.

endObjId
An interface index assigned by muxL2VlanPortAttach() and used by the
MUX L2 code to identify the network device. This is not used when MUX L2
is not supported.

A MUX Routines and Data Structures
A.3 Data Structures

301

A

A.3.9 END_RCVJOBQ_INFO

This structure, shown in Figure A-9, is used by the EIOCGRCVJOBQ ioctl to
retrieve the job queue IDs of the queues that a network device uses to deliver
packets to the stack. Currently only a single job queue is allowed per interface, but
in a future release there may be more than one, so this mechanism is designed to
report multiple queues.

The MUX initializes numRcvJobQs with the number of available slots in the array
qIds before the MUX calls the driver’s xIoctl() routine. The driver then checks this
value:

■ If it is less than the actual number of job queues that the interface uses to
deliver received packets to the stack, the driver sets numRcvJobQs to the
actual number of queues it uses, does not modify the qIds array, and returns
ENOSPC.

■ If it is equal to or greater than the actual number of job queues that the
interface uses to deliver received packets to the stack, the driver sets
numRcvJobQs to the actual number of queues it uses, writes the job queue IDs
of these queues into the qIds array (in any convenient order), and returns OK.

A.3.10 END_QUERY

When the MUX sends an EIOCQUERY command to a driver’s xIoctl() routine, it
sets the data parameter to an END_QUERY object, as shown in Figure A-10. The
MUX sets the query field of this structure to the type of query (for instance,
END_BIND_QUERY), and the queryLen field to the size of the queryData buffer.
Upon receipt of an EIOCQUERY command, the driver’s xIoctl() routine should
either copy data into this queryData buffer, or return an error value such as
EINVAL.

Figure A-9 The END_RCVJOBQ_INFO Class

END_RCVJOBQ_INFO

numRcvJobQs : UINT32
qIds : JOB_QUEUE_ID[]

number of job queues on which the interface delivers packets
array of job queue IDs

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

302

A.3.11 LL_HDR_INFO

The MUX uses the LL_HDR_INFO structure to keep track of link-level header
information associated with packets that a driver passes to the MUX and the MUX
then passes to a network service. An END driver sets the members of an
LL_HDR_INFO structure in its xPacketDataGet() routine. The LL_HDR_INFO
structure is illustrated in Figure A-11.

A.3.12 M_BLK

An M_BLK chains together segments of packets. Use these structures as a vehicle
for passing packets between the driver and protocol layers. It keeps track of the
size of packets and packet segments and points to other links in the segment chain.
It provides the control structure for data in clusters. Figure A-12 shows the M_BLK
object.

Figure A-10 The END_QUERY Class

END_QUERY
query : int
queryLen : int

the query variety
length of the expected or actual data

queryData : char[] four-byte minimum, 120-byte maximum

Figure A-11 The LL_HDR_INFO Class

LL_HDR_INFO

destAddrOffset : int

srcAddrOffset : int
srcSize : int
ctrlAddrOffset : int
ctrlSize : int
pktType : int

destSize : int

dataOffset : int

offset into the packet where the destination address starts

size of the destination address, in bytes

offset into the packet where the source address starts

size of the source address, in bytes

(reserved for future use)

(reserved for future use)

type of packet (see RFC 1700 ETHER TYPES and other sources)

offset into the M_BLK where the network layer header starts;
size of the link header

A MUX Routines and Data Structures
A.3 Data Structures

303

A

The members of an M_BLK structure are:

pClBlk
Points to a CL_BLK structure with information about the cluster to which this
M_BLK is attached (see A.3.1 CL_BLK, p.288). Code frequently accesses this
member when it needs to locate the start address or size of the cluster. If you
allocate cluster buffers from a non-netBufLib source, you will likely need to
set the cluster free routine and its arguments in the CL_BLK appropriately to
free your cluster buffers.

mBlkHdr
If you chain this M_BLK to another, set the value of mBlkHdr.mNext or
mBlkHdr.mNextPkt or both. The mNext element points to the next M_BLK in
a chain describing a single packet, while the mNextPkt element points to an
M_BLK that contains the head of the next packet (see A.3.13 M_BLK_HDR,
p.304).

mBlkPktHdr
A pointer to an M_PKT_HDR object (see A.3.15 M_PKT_HDR, p.306). Used
only in the first M_BLK of the chain describing a packet, it contains the length
of the whole packet, checksum offload information for the packet, and other
fields that may be useful to certain software components.

See 2.3.1 Tuples, p.13 for an in-depth exploration of this structure and its members.

It is easiest to set appropriate values for the members of an M_BLK structure and
the structures referenced by an M_BLK structure by calling the netBufLib routines
that create an M_BLK/CL_BLK/cluster construct.

Figure A-12 An M_BLK Object

struct mBlk
(M_BLK)

struct clBlk
(CL_BLK)

struct mHdr
(M_BLK_HDR)

struct pktHdr
(M_PKT_HDR)

pClBlk mBlkPktHdrmBlkHdr

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

304

A.3.13 M_BLK_HDR

The M_BLK_HDR class is illustrated in Figure A-13.

The members of this class are as follows:

mNext
Pointer to the next M_BLK in a chain describing a stream of data, or further
data in the same packet.

mNexPkt
Used in the first M_BLK of a chain describing a datagram, this member points
to the first M_BLK of another chain describing a subsequent packet.

mData
Points to the start of the segment of data that this M_BLK describes

mLen
The length of the data in the segment that this M_BLK describes

mType
One of the MT_* constants, in the range from MT_FREE==0 to MT_TAG==20,
that describes the use of the M_BLK. Most of the types are relevant only for
some older versions of the Wind River Network Stack. The most common
types that still have relevance are MT_FREE, which is the type of an
unallocated M_BLK, and MT_DATA (or occasionally MT_HEADER), used for
most packet data.

mFlags
M_BLK flags, mostly relevant for older versions of the Wind River
Network Stack. All M_BLKs should have the M_EXT flag set, indicating the use
of an external data buffer (the stack does not support packet data storage
directly in the M_BLK). The first M_BLK in the chain or tuple describing a

Figure A-13 The M_BLK_HDR Class

M_BLK_HDR

mData : char *
mLen : int
mType : UINT16
mFlags : UINT16
reserved : UINT16

struct mBlk
(M_BLK)mNext

offset1 : UINT16

struct mBlk
(M_BLK)

mNextPkt

A MUX Routines and Data Structures
A.3 Data Structures

305

A

packet should have the M_PKTHDR flag set, indicating that the mBlkPktHdr
member is valid.

reserved1
The stack uses this member in certain instances to record the network service
type of a packet; for example, in muxAddressForm() and
muxLinkHeaderCreate(), the pDstAddr M_BLK argument has the
mBlkHdr.reserved member set to the desired network service type value, in
network byte order.

offset1
This value is set in muxTkReceive() and muxTkPollReceive() to the size of
the link layer header, that is: the offset from the start of the link header to the
start of the network layer header.

A.3.14 M_LINK

The linkBufPool back end joins the two control objects CL_BLK and M_BLK into a
contiguous M_LINK object (see Figure A-14). The linkBufPool back end sets the
pClBlk member of the mBlk member of an M_LINK to point at the clBlk member
of the same M_LINK, and requires that other software does not change this.
Keeping the M_BLK and CL_BLK contiguous in the M_LINK allows some
optimization in the linkBufPool allocation and freeing routines.

Figure A-14 An M_LINK Object

struct _M_LINK
(M_LINK)

struct clBlk
(CL_BLK)

struct mBlk
(M_BLK)

clBlk mBlk

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

306

A.3.15 M_PKT_HDR

This structure is embedded in every M_BLK structure, but is only valid and used
in those M_BLKs that have the M_PKTHDR flag set in the mBlkHdr.mFlags
member. Typically, such an M_BLK is the first M_BLK of the chain describing a
packet.

The M_PKT_HDR class is illustrated in Figure A-15.

The members of this structure are as follows:

rcvif
In some previous versions of the Wind River Network Stack, the IP stack set
this member to point to a structure representing the network interface the
packet was received on. However currently this member is unused.

len
The total length of the packet described by the M_BLK chain of which this
M_BLK is the first.

header
Currently unused.

csum_flags
Used to communicate checksum offload flags between network services and
the MUX on a packet-by-packet basis. See 4.6 Implementing Checksum
Offloading, p.102.

csum_data
Used to communicate checksum offload information between network
services and the MUX on a packet-by-packet basis. See 4.6 Implementing
Checksum Offloading, p.102.

Figure A-15 The M_PKT_HDR Class

M_PKT_HDR

rcvif : void *
len : int
header : VOID *
csum_flags : UINT32
csum_data : UINT32

struct mBlk
(M_BLK)aux

qnum : UINT16
vlan : UINT16
altq_hdr : void *

A MUX Routines and Data Structures
A.3 Data Structures

307

A

aux
Currently unused

qnum
For devices that support multiple output or input queues in hardware,
intended to specify which output queue to send a packet on, or which input
queue a packet was received on. Currently unsupported.

vlan
Used to exchange VLAN tag control information between drivers for devices
that support VLAN insertion or stripping in hardware, and network services.
When the device strips the VLAN tag from a received frame in hardware, the
driver must set the CSUM_VLAN flag in the csum_flags member, and must put
the VLAN tag control information in host byte order in the vlan member. For
a device that supports the IFCAP_VLAN_HWTAGGING capability and sets the
CSUM_VLAN flag in the csum_flags_tx member of its reported
END_CAPABILITIES structure, a network service may request VLAN tag
insertion on transmit by setting the CSUM_VLAN flag in the
mBlkPktHdr.csum_flags member for the packet being transmitted, and set
the mBlkPktHdr.vlan member to the VLAN tag control information in host
byte order.

altq_hdr
Currently unused.

A.3.16 MULTI_TABLE

The MULTI_TABLE class is illustrated in Figure A-16.

This class specifies the address and length of a buffer that holds addresses from a
network driver’s multicast reception list. Although conventions for non-Ethernet
addresses have not been well established, for Ethernet the addresses in this buffer
have no padding or separators, so addresses are effectively assumed to be of fixed
length.

Figure A-16 The MULTI_TABLE Class

MULTI_TABLE

len : long length of the table, in bytes
pTable : char * pointer to entries

Wind River Network Stack for VxWorks 6
Programmer's Guide, Volume 3: Interfaces and Drivers, 6.6

308

A.3.17 NET_FUNCS

A driver uses this structure to expose an interface to the MUX. See Figure 4-1 for a
schematic of this interface that shows how it differs in ENDs and NPT drivers. The
driver routines referred to in this structure are described in greater detail
elsewhere (see Driver Implementations of the NET_FUNCS Interface, p.131).

Index
Numerics
802.1Q VLAN, see VLAN

A
acceptRtn, see xAcceptRtn()
ADDR_RES_FUNC 183, 271
address learning (802.1Q) 211
addresses

virtual, translating 163
addresses, see also Internet addresses
addrGet(), see xAddrGet()
AF_INET 194
AF_INET6 194
AF_PACKET 194
AF_ROUTE 194
altq_hdr 15
anchor, shared-memory 66
anycast, specifying 36
ARP, Auto IP and 50
association lists 163
attaching a stack to a network interface

overview of 33
explicitly, manually started interfaces 32

ATTR_AC_ISR 19
ATTR_AC_SH_ISR 19
ATTR_AI_ISR 19

ATTR_AI_SH_ISR 19
Auto IP 47

configuring 48
multiple interfaces and 50
using 50

autoIP announce wait time 49
autoIP announcements interval 49
autoIP defensive interval 50
autoIP interface list 47, 48
autoIP max conflicts 50
autoIP max probe time 49
autoIP min probe time 49
autoIP number of announcements 49
autoIP probe count 49
autoIP probe wait time 48
autoIP rate limit interval 50
aux, M_BLK field 15

B
backplane processor numbers 64
backplane, shared memory 63
backplanes

processor numbers 64
shared-memory networks, using with 64

bcastFlag 156
bindRtn 195
boot line parameters
309

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6
shared-memory network example 78
BOOTP

compare with RARP 51
BSD drivers

entry points, implementing 160
porting to MUX 159

buffer addresses, translating 163
BUS_INT 77
_BYTE_ORDER 164

C
_CACHE_ALIGN_SIZE 10
CACHE_DRV_VIRT_TO_PHYS() 164
cacheUserFuncs 164
cap_available 291

checksum offloading 104
VLAN tagging 206

cap_enabled 291
checksum offloading 104

.cdf files
adding VxBus network drivers 114
network services and 181

checksum offloading
example code 106, 108
implementing 102
receiving data 104
sending data 106
xPollRcv() 155

CL_BLK 12, 13, 16, 288
CL_BLK_LIST 288
CL_DESC 23
CL_POOL 23
Classifier 224
classifier_rule 229, 248
clBlk, see CL_BLK
clBlkList 288
clBlkNum 22
clDesc see CL_DESC 23
clDescTblNumEnt 19, 23
close()

socket descriptors 193
closeRtn 195
CLS_RULE_x 229

cluster block, see CL_BLK
clusters 12

definition of 12
determining address of 13

COMM_END 92
command-and-control module (network driver

component) 93
configNet.h 89

adding network drivers 115
network driverss, adding 115

configure() 255
connectRtn 195
connectWithTimeoutRtn 195
container queues 237, 247

filter rule addition 241
filter rule deletion 242
Hierarchy Token Bucket Container (HTBC)

250
multi-band container (MBC) 250

cookie 183
count() and count_locked() 254
CSUM flags 291
csum_data 103, 105, 306
CSUM_DATA_VALID

where set 105
csum_flags 103, 105, 107, 306
csum_flags_rx 291
csum_flags_tx 291
CSUM_FRAGMENT 292
CSUM_IP 106, 292
CSUM_IP_CHECKED 105

where set 105
CSUM_IP_FRAGS 292
CSUM_IP_HDRLEN() 106
CSUM_IP_VALID

where set 105
CSUM_PSEUDO_HDR

where set 105
CSUM_TCP 106, 292
CSUM_TCP_SEG 293
CSUM_TCPv6 106, 293
CSUM_TCPv6_SEG 293
CSUM_UDP 106, 292
CSUM_UDPv6 106, 293
CSUM_VLAN 307
310

 Index

Index
CSUM_XPORT_CSUM_OFF() 107

D
default route, adding to route table 42
DEFAULT_CPUS_MAX 78
dequeue() and dequeue_locked() 254
destroy() 233, 255
DEV_OBJ 289
device link status 43
devInstanceConnect() 111, 112, 113
devInstanceInit() 111, 112
devInstanceInit2() 111, 113, 132, 133

xLoad() and 129
devname 33
devProbe 112
DHCP

auto-configuration 36
Differentiated Services (build component) 224
differentiated services, see DiffServ
DiffServ 224

behavior aggregate mode 225
configuration components 224
configuring 224
meter/marker entities 232
multi-field mode 225

direct memory access, see DMA
DMA 165

scatter-gather 96
DMA buffers

reclaiming 94
DMA descriptors

allocating 163
DMA engine 93

checksum offloading 102
domainMap 194
domainReal 194
driver registration files 115
drop presence-aware FIFO (DPAF) queues 244
DRV_CTRL 290

allocating 162
created by xLoad() 90
releasing 134
retrieving for a device 265

drvBusFuncs 110
ds class 231, 235, 236
DS codepoint 224
DS field 224
ds_data 231
ds_filter 228, 229
ds_map 231, 232
ds_sm 231, 235
ds_srtcm 231, 236
dscpQosHook() 262
dump() 254

E
EAGAIN 280
EALREADY

xUnload() 135
EIOCGADDR 137, 138, 142
EIOCGFLAGS 138, 142
EIOCGHDRLEN 143
EIOCGIFCAP 140, 142, 293

checksum offloading 103
handling 103
VLAN tagging 206

EIOCGIFMEDIA 140, 142, 296
EIOCGIFMTU 141
EIOCGMEDIALIST 139, 142, 297
EIOCGMIB2 139, 143, 177
EIOCGMIB2233 139, 143, 177
EIOCGMTU 143
EIOCGNPT 136, 137, 142
EIOCGPOLLCONF 139, 143, 177
EIOCGPOLLSTATS 139, 143, 177
EIOCGRCVJOBQ 141, 143, 301
EIOCMULTIADD 137, 138, 142
EIOCMULTIDEL 137, 138, 143
EIOCMULTIGET 138, 143
EIOCPOLLSTART 139, 143, 151
EIOCPOLLSTOP 139, 143
EIOCQUERY 88, 143, 144, 158, 301

xEndBind() and 117
EIOCSADDR 137, 138, 142
EIOCSFLAGS 138, 142, 144
EIOCSIFCAP 141, 142, 293
311

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6
checksum offloading 103
handling 104

EIOCSIFMEDIA 140, 296
EIOCSIFMTU 141, 143
END (Enhanced Network Driver)

see also network drivers
adding to an image 109
compared to NPT drivers 82
entry points

compared with NPT driver 82
list exported to MUX 131

generic VxBus driver template 108
implementing 108
ioctl support 136
receiving frames 118
service bind event, response to 117
template for 82

END interface support 86, 202
END_BIND_QUERY 117, 144, 158
END_CAPABILITIES 142, 290, 307

checksum offloading 103
VLAN tagging 206

END_ERR 189, 270, 293
END_ERR_BLOCK 97, 145, 146, 184, 190, 283, 284,

285
END_ERR_DOWN 294
END_ERR_FLAGS 294
END_ERR_INFO 294
END_ERR_L2NOTIFY 295
END_ERR_L2PVID_NOTIFY 296
END_ERR_L2VID_NOTIFY 296
END_ERR_LINKDOWN 295
END_ERR_LINKUP 295
END_ERR_NO_BUF 294
END_ERR_RESET 294
END_ERR_UP 294
END_ERR_WARN 294
END_IFCOUNTERS 143, 176
END_IFDRVCONF 143, 176
END_MACROS 126
END_MEDIA 142, 296
END_MEDIALIST 142, 297
END_OBJ 128, 297

ENDs, and 126
establishing 129

populated how 128
releasing 134
retrieving for a device 265

END_OBJ_INIT() 129, 290
END_QUERY 88, 143, 301
END_QUERY structure

bind calls, responding to 117
xIoctl() and 144

END_RCV_RTN_CALL() 85, 126, 175
END_RCVJOBQ_INFO 143, 301
END_TX_SEM_GIVE() 95, 133
END_TX_SEM_TAKE() 95, 132
end8023AddressForm() 84, 156
endBind (NET_FUNCS member) 158
endDevTbl[] 89, 268

dynamic changes to 116
editing 116
ENDs and NPT drivers mixed 117
network drivers, and 115

endEtherAddressForm() 84, 156
endEtherPacketAddrGet() 84, 157
endEtherPacketDataGet() 84, 157
endFindByName() 265
endLib 84, 86, 130, 165
endLib.h 126
endM2Free() 176
endM2Init() 130

example 176
endM2Packet() 175

examples 178
endMediaList 297
endMediaListLen 297
endMediaStatus 296
endObjInit() 290
endPollStatsInit() 177
endPool 165
endPoolCreate() 130
endPoolDestroy() 135
endPoolJumboCreate() 130
enqueue() and enqueue_locked() 254
esm (boot device) 66
etherhooks 161
etherInputHook() 160, 161
etherMultiAdd() 148
etherMultiDel() 149
312

 Index

Index
etherMultiGet() 151
Ethernet multicast library support 202
etherOutputHook() 160, 161
etherQosHook() 262
etsecRegister() 109

F
f_insert() 254
f_remove() 254
FIFO queues 243
filter rules 247
FIONBIO 200
FIONREAD 200
FIOSELECT 200
FIOUNSELECT 200
flow control 146
FOLDER_AUTOIP 47
formAddress(), see xFormAddress()
forward declaration files 115
free queue 100

G
GARP VLAN Registration Protocol 211
gateway 34
gateway inet boot parameter 78
gateway6 34
gateways

example 75
GEI_INT_PENDING 120
gei825xxVxbEnd.c 109, 111, 118
geiDevPciRegistration 111
geiIntStatus 120
geiRegister() 110
General Purpose Platform

QoS and 257
getpeernameRtn 195
getsocknameRtn 195
getsockopt() 216
getsockoptRtn 195
gif devices 51

GRE tunnels 37
GVRP 211

H
hcfDeviceList[] 115
header (M_PKT_HDR field) 15
heartbeat, shared-memory 67
host name

adding to host table 32
assigning to an address 43

host route, adding to route table 41
host table, viewing 33
hostAdd() 32

assigning a host name to an address 43
hosts 73

example 75
hosts.equiv 73

example 75
hostShow() 33
htole16() 164
htole32() 164
hwconf.c 89

configuring PLB bus drivers 115
device configuration 111
PLB device configuration 112

I
if_media 296
IF_OUTPUT_FUNC 183, 271
IFCAP_CAP0, IFCAP_CAP1, IFCAP_CAP2 292
IFCAP_IPCOMP 292
IFCAP_IPSEC 292
IFCAP_JUMBO_MTU 292
IFCAP_RXCSUM 104, 292
IFCAP_TCPSEG 292
IFCAP_TXCSUM 292
IFCAP_VLAN_HWTAGGING 292, 307
IFCAP_VLAN_MTU 292
ifconfig() 32, 33

accessing with ipnet_cmd_ifconfig() 89
313

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6
commands 36
configuring a network interface with 38
network interface starting and enabling 43
reconfiguring a network interface 42
retrieving interface information with 38
using 35
VLAN 213

examples 215
IFCONFIG_n 33, 51
ifEndObj 177
IFF_ALLMULTI 149, 299
IFF_BROADCAST 144, 299
IFF_DEBUG 299
IFF_END_MODIFIABLE 300
IFF_LINK0, IFF_LINK1, IFF_LINK2 299
IFF_LOOPBACK 299
IFF_MULTICAST 144, 149, 299
IFF_NOARP 299
IFF_NOTRAILERS 299
IFF_OACTIVE 299
IFF_POINTOPOINT 299
IFF_PROMISC 299
IFF_RUNNING 43, 299
IFF_SIMPLEX 144, 299
IFF_UP 43, 144, 299
IFM_ACTIVE 296
IFM_AVALID 296
ifname 33
ifPollInterval 176
IFQ_ID_NONE 239
ifq_type 238
ifqueue_container 247, 250, 251
ifqueue_dpaf 238
ifqueue_fifo 238, 243
ifqueue_filter 241, 247, 248
ifqueue_htbc 238, 251
ifqueue_mbc 238, 250
ifqueue_netemu 238, 245
ifqueue_qos 237, 238, 240, 241, 243, 245, 250, 251
ifquque_data 238
ifValidCounters 176
in_addr_union 229, 248
INCLDUE_SM_COMMON 67
INCLUDE_END 86, 202
INCLUDE_ETHERNET 202

INCLUDE_IFCONFIG 35
INCLUDE_IPAIP 47, 48
INCLUDE_IPATTACH 34
INCLUDE_IPCOM_SYSVAR_CMD 44, 48
INCLUDE_IPIFCONFIG_CMD 47
INCLUDE_IPNET 10
INCLUDE_IPNET_CLASSIFIER 224
INCLUDE_IPNET_DIFFSERV 224
INCLUDE_IPNET_DS_SM 225
INCLUDE_IPNET_DS_SRTCM 225
INCLUDE_IPNET_IFCONFIG_n 33, 89
INCLUDE_IPNET_PACKET_POOL_n 8
INCLUDE_IPNET_USE_PACKET_POOL 8
INCLUDE_IPNET_USE_TUNNEL 52
INCLUDE_IPNET_USE_VLAN 202
INCLUDE_IPQOS_CMD 225
INCLUDE_IPQUEUE_CONFIG_CMD 225
INCLUDE_IPRADVD 44
INCLUDE_L2CONFIG 203
INCLUDE_LINKBUFPOOL 12
INCLUDE_MUX 86, 87
INCLUDE_MUX_L2 202
INCLUDE_NET_DAEMON 125
INCLUDE_NET_POOL 25, 26, 147, 266
INCLUDE_NETBUFADVLIB 13, 17
INCLUDE_NETBUFLIB 13, 21
INCLUDE_NETBUFPOOL 12
INCLUDE_NETPOOLSHOW 13
INCLUDE_QOS_INGRESS 260
INCLUDE_ROUTECMD 41
INCLUDE_SM_COMMON 75
INCLUDE_SM_NET 75
INCLUDE_SM_NET_SHOW 75
INCLUDE_SM_SEQ_ADDR 73
inet 33
inet on backplane boot parameter 71, 78
INET_IPAIP_ANNOUNCE_INTERVAL 49
INET_IPAIP_ANNOUNCE_NUM 49
INET_IPAIP_ANNOUNCE_WAIT 49
INET_IPAIP_DEFEND_INTERVAL 50
INET_IPAIP_IFNAME_LIST 47, 48
INET_IPAIP_MAX_CONFLICTS 50
INET_IPAIP_PROBE_MAX 49
INET_IPAIP_PROBE_MIN 49
INET_IPAIP_PROBE_NUM 49
314

 Index

Index
INET_IPAIP_PROBE_WAIT 48
INET_IPAIP_RATE_LIMIT_INTERVAL 50
inet6 34
Ingress default deferred Job Queue Priority 260
ingress filter routine 261
ingress filtering 257

configuration components 260
jobQueueLib 258
multiple interfaces 259

Ingress QoS Job Queue 258, 260
Ingress Traffic Prioritization 260
Ingress Traffic Prioritization Job Queue Priority

260
init() 255
INIT_RTN

VxBus network drivers 114
input queue

processors, shared memory 69
interface output queues 237

adding 240
retrieving 241

interfaces, see network interfaces
Internet addresses

adding to the route table 40
assigning to an interface 32
correcting interface assignment errors 42

interrupt cause register 119
interrupt handlers

receiving frames 121
interrupt service routines

driver
registering 118

registering 132
interrupts

driver handler 118
receive see receive interrupts
transmit-complete see transmit-complete

interrupts
intrCtlrCpu 125
ioctl commands 272
ioctl()

see also xIoctl()
socket descriptors 193

ioctlRtn see xIoctlRtn()
ioctls

socket
memory validation 199

IP addresses, example 4
IP_MAX_UNITS 32
IP_SO_X_PKT_MPRIO 10
IP_SOL_SOCKET 10
ipAttach() 32, 34, 89, 180

example 181
IPCOM 10
IPCOM ifconfig commands 47
IPCOM output queue commands 225
IPCOM QoS commands 225
ipcom_drv_eth_init() 89, 180

example 180
IPCOM_IF_DRV_CAP_VLAN_HWTAGGING_

RX 206
IPCOM_IF_DRV_CAP_VLAN_HWTAGGING_

TX 206
IPCOM_IF_DRV_CAP_VLAN_MTU 206
ipcom_pkt.h 9
ipcom_pkt_malloc() 11
IPCOM_PKT_MPRIO_* 9
IPCOM_PKT_MPRIO_DEFAULT 8, 10
IPCOM_PKT_MPRIO_DRV 10
IPCOM_PKT_MPRIO_MAX 8, 9, 10
IPCOM_PKT_MPRIO_MIN 8, 10
IPCOM_PKT_MPRIO_STACK 8, 10
IPCOM_PKT_PRIO_STACK 9
IPCOM_VXWORKS_USE_MUX_L2 202
ipDetach() 34
IPNet packet pool configurations 8
IPNet packet pool support 8
ipnet.inet.linklocal.ANNOUNCE_INTERVAL 49
ipnet.inet.linklocal.ANNOUNCE_NUM 49
ipnet.inet.linklocal.ANNOUNCE_WAIT 49
ipnet.inet.linklocal.DEFEND_INTERVAL 50
ipnet.inet.linklocal.interfaces 48
ipnet.inet.linklocal.MAX_CONFLICTS 50
ipnet.inet.linklocal.PROBE_MAX 49
ipnet.inet.linklocal.PROBE_MIN 49
ipnet.inet.linklocal.PROBE_NUM 49
ipnet.inet.linklocal.PROBE_WAIT 48
ipnet.inet.linklocal.RATE_LIMIT_INTERVAL 50
ipnet.inet.rtdisc.PerformRouterDiscovery 46
ipnet.inet6.AcceptRtAdv 44
315

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6
ipnet.inet6.radvd sysvars
AdvAutonomousFlag 46
AdvHomeAgentFlag 45
AdvHomeAgentOpt 45
AdvHomeAgentOptLifetime 45
AdvHomeAgentOptPreference 45
AdvIntervalOpt 45
AdvManagedFlag 45
AdvOnLinkFlag 46
AdvOtherConfigFlag 45
AdvPreferredLifetime 46
AdvPrefixList 46
AdvRouterAddressFlag 46
AdvValidLifetime 46
MaxRtrAdvInterval 45
MinDelayBetweenRAs 46
MinRtrAdvInterval 45
prefix 46

IPNET_CACHE_BUFSIZE 10
ipnet_cmd_ifconfig() 89
ipnet_conf_pkt_pool[] 11
ipnet_config.c 11
IPNET_DIFFSERV_CLASSIFIER_MODE_BA 225
Ipnet_diffserv_handlers 232, 235, 236
Ipnet_diffserv_handlers_template 233
ipnet_diffserv_init() 234
ipnet_diffserv_register_ctor() 234
ipnet_diffserv_srtcm_template() 234
Ipnet_ifqueue structure 237
Ipnet_ifqueue_container structure 247
Ipnet_netif_struct 253
Ipnet_pkt_queue 252, 253

defined 252
Ipnet_pkt_queue_container 253
ipnet_pkt_queue_init() 252
ipnet_pkt_queue_register() 252
ipnet_radvd daemon 44
Ipnet_simple_marker 235
Ipnet_srtcm 236
IPNET_USE_RFC1256 44
ipProtoQosHook() 262
IPv4 auto-configuration, see Auto IP
IPv4 AutoIP Components 47
IPv6

hostname, assigning an address to 43

J
job queues, network 121

multiple 125
JOB_QUEUE_ID 121
jobQLib 260
jobQueueLib 122, 258

transmit-complete interrupt handler 100
jobQueueLib.h 122
jobQueuePost()

network job queues 121

L
l2Attached 295
l2config 203, 212

examples 212
L2NOTIFY_PARAMS 295
leaf queues 237, 242

drop presence-aware FIFO (DPAF) 244
FIFO 243
Ipnet_pkt_queue 252
network emulator (netemu) 245

Learning Bridge
MUX-L2 and 211

libInitRtn see xSockLibInit()
link status 43
link_cookie 206
linkBufPool 12, 18, 130, 165

alignment requirements of 22
cluster size limitations 19
cluster size restrictions of 23
M_LINK 305
netPoolInit() and 22

link-level header
adding to a packet 266, 267
muxTkReceive(), and 282
xSend() and 146

listenRtn 195
LL_HDR_INFO 157, 189, 275, 302
LOAD_FUNC

network drivers, adding 115
LOAD_STRING

network drivers, adding 115
316

 Index

Index
location monitors 69
LONGSWAP() 164

M
M_BLK 12, 13, 302

hidden NET_POOL pointer in 22
members of 15

M_BLK_HDR 304
M_BLK_ID

arrays of, allocating 163
M_CL_CONFIG 22
m_freem() 261
M_HEADER 147
M_LINK 12, 19, 21, 305
M_PKT_HDR 15, 306
M_PKTHDR 155, 305, 306
M_PREPEND() 26, 147
m_prepend() 26
M_PROMISC 147
M2_ID 143
M2_INTERFACETBL 143
mailbox interrupts 69
marker_input() 233
max # of cpus for shared network 65
Maximum number of 802.1Q VLANs supports 202
maximum transmission unit, see MTU
mBlk, see M_BLK
mBlkHdr.mData 266
mBlkHdr.reserved 266
mbuf 13
mbuf.h 26, 147
mCastAddrAdd(), see xMCastAddrAdd()
mCastAddrDel(), see xMCastAddrDel()
mCastAddrGet(), see xMCastAddrGet()
memArea 22, 23
member_to_object() 123
memory pools 7

buffers 7
configuring packet buffer pools 8
control structures 7
netBufLib 7
packet buffers, number of 9
packet buffers, size of 9

memory requirements routines 24
netBufLib 24

memSize 22, 23
meter/marker entities

creating 227, 232
deleting 227
filter mapping 227
filter rule addition 225
filter rule deletion 226
using 234

meter_input() 233
miiBus

destroying 114
miiMediaUpdate() 112
miiRead() 112
miiWrite() 112
MIN_PRIO_POOL_n 8
minimal encapsulation 37
Minimum priority level for SIZE_POOL_n packet

pool 8
MT_DATA 304
MT_FREE 304
MT_HEADER 304
MT_TAG 304
MTU 9, 11, 252
MULTI_ADDR_RES_FUNC 183, 271
MULTI_TABLE 150, 307
multi-band container (MBC) 250
multiList 149
multiple network drivers

IP_MAX_UNITS 32
MUX

API 263
driver interface 128
OSI model, and 30
overview 30
service/MUX interface 87

MUX Layer 2 support 202
MUX support 86
MUX_L2_MAX_VLANS_CFG 202
MUX_L2_NUM_PORTS_CFG 202
MUX_L2_VLAN_STATS 221
MUX_MAX_IFTYPE 270
MUX_PROTO_OUTPUT 182, 188
MUX_PROTO_PROMISC 182, 188
317

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6
in muxTkReceive() discussion 282
MUX_PROTO_SNARF 182, 188

in muxTkReceive() discussion 282
muxAddressForm() 26, 185, 266, 305
muxAddrResFuncAdd() 286
muxAddrResFuncDel() 286
muxAddrResFuncGet() 287
muxBind() 88, 181

service functions of 186
muxBufInit() 161
muxDevConnect() 89, 90, 112, 114, 132

when called 128
muxDevExists() 267
muxDevLoad() 32, 90, 132, 268

called by muxDevConnect() 114
called by tUsrRoot 87
pInitString 115
when called 128

muxDevStart() 32, 90, 132, 268
called by muxDevConnect() 114

muxDevStop() 92, 269
muxDevUnload() 92, 134, 185, 269, 290

mutex semaphor 186
VLAN 207

muxError() 167, 189, 270
muxFormAddress() 156
muxIfFuncAdd() 32, 183, 270
muxIfFuncDel() 183, 271
muxIfFuncGet() 183, 271
muxIfTypeGet() 183
muxIoctl() 272, 300

network services and 185
MUX-L2

egress rules 209
ingress rules 208

muxL2EgressClassify() 206, 209
muxL2IngressClassify() 206, 207
MUXL2IOCSPORTATTACH 206
MUXL2IOCSPORTDETACH 207
MUXL2IOCSPORTVLAN 205
muxL2Ioctl() 205, 206, 207, 210

get functionality 212
muxL2PortAttach() 205

alternative to 206
muxL2PortDetach() 206, 207

alternative to 207
muxL2Show() 212, 219

example 219
muxL2StatShow() 219

example 221
muxL2VlanPortAttach() 300
muxL2VlanShow() 212, 219

example 220
muxL2VlanStatShow() 219

example 221
muxLib 87
muxLinkHeaderCreate() 156, 185, 267, 305
muxMCastAddrAdd() 148, 272
muxMCastAddrDel() 273
muxMCastAddrGet() 273
muxPacketAddrGet() 157
muxPollSend()

when called 92
muxReceive() 281
muxSend() 26, 94, 146, 184, 283
muxShow() 275, 290
muxTkBind() 88, 181, 275

service functions of 186
muxTkCookieGet() 89, 279, 300
muxTkDrvCheck() 181, 279
muxTkLib 87
muxTkPollReceive() 153, 280
muxTkPollSend() 151, 281
muxTkReceive() 282
muxTkSend() 26, 94, 146, 184, 284
muxTxRestart() 97, 145, 146, 285

transmit mutex and 127
muxUnbind() 92, 185, 186, 285

N
NB_BUFTYPE_CL_BLK 24
NB_BUFTYPE_CLUSTER 24
NB_BUFTYPE_M_BLK 24
neighbor discovery 52
NET_DAEMONS_CPU_AFFINITY 125
NET_FUNCS 83, 131, 300
NET_POOL 18, 22

hidden pointer in M_BLK 22
318

 Index

Index
NET_POOL_NAME_SZ 18
NET_TASK_QJOB_PRI 122, 260
NETBUF_ALIGN 21, 22, 23
NETBUF_ALIGNED 21
NETBUF_CFG 18

attributes 19
bMemExtraSize 18
bMemPartId 19
clDescTblNumEnt 20
ctrlNumber 19
ctrlPartId 19
pClDescTbl 19
pDomain 18
pName 18

NETBUF_CL_DESC 18, 19, 20
NETBUF_LEADING_CLSPACE_DRV 21
netBufAdvLib 13
netBufCfg see NETBUF_CFG
netBufClDesc see NETBUF_CL_DESC
netBufLib 7, 8, 16, 21, 165

back ends 12
linkBufPool 12
netBufPool 12
nullBufPool 12

buffer pool 12
display routines 13

netBufLib pools
attributes of 16
creating 16
finding 16
freeing 16
parents and children 16

netBufLib.h 13
netBufPool 12, 17

alignment requirements of 22
cluster size limitations 19
cluster size restrictions of 23
netPoolInit() and 22

netClBlkGet() 15
netClBlkJoin() 15
netClusterGet() 15
netLib.h 122
netmask

assigning to an interface 32
setting 37

netMblkChainDup() 15
netMblkClChainFree() 15, 102, 147, 288
netMblkClFree() 15, 288
netMblkClJoin() 15
netMblkDup() 158
netMblkGet() 15
netMblkToBufCopy() 15, 152
_netMemReqDefault() 24
netPoolAttach() 16
netPoolBind() 16
netPoolCreate() 16, 17, 130

example 20
netPoolDetach() 16
netPoolIdGet() 16
netPoolInit() 16, 21

clDescTblNumEnt 23
limitations of 17
pClDescTbl 23
pFuncTbl 24
pMclBlkConfig 22
pNetPool 22
releasing pools created with 135

netPoolNameGet() 16
netPoolRelease() 16, 17, 135
netPoolUnbind() 17
netstat() 33, 41
netTupleGet() 15
network buffer pools 165

freeing 135
network daemons 124
network devices

flags 144
loading and starting 90
receive handler

example 166, 171
stopping and unloading 92

network drivers
data structures shared with MUX 128
delay mechanisms in 124
globally visible routines of 128
implementing 108
interrupt handlers

example 118, 120
launching 117
memory, managing 165
319

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6
polled mode 92
resource requirements 94
VxBus

adding to a .cdf file 114
methods 114
registration routines 109

network emulator (netEmu) queues 245
network heartbeat 67
network interface drivers

see network drivers
network interfaces

adding an address to 36
assigning an address, netmask, or prefix 35
attaching to stack 33
bringing up 38
configuration

ifconfig() 35
configuring 38
deleting an address from 36
detaching and destroying 36
displaying information about 32
fixing IP address assignment errors 42
link address, setting 37
MTU, setting 37
multiple, optimizing in SMP 124
pausing 43
reconfiguring 42
registering 36
retrieving configuration information 35
retrieving information about 38
starting and enabling 43
starting at run time 32

Network Protocol Toolkit drivers, see NPT drivers
network route, adding to route table 41
network services

binding 181
binding to an interface 88
device control 185
ioctl commands for, defining 272
issuing driver ioctls 185
sending packets 184
socket interface, adding a 191
subroutines for 186
unbinding from an interface 88
writing a sublayer 180

NPT drivers
BSD drivers to, porting 159
compared to END drivers 82
entry points 82
implementing 108
ingress filtering and 259
ioctl support 136
launching 117
VLAN 211

nullBufPool 12
NUM_DAT_128 266
NUM_DAT_CLBLKS 27
NUM_DAT_MBLKS 27
NUM_DAT_n 27
NUM_NET_DAEMONS 125
NUM_POOL_n 9, 10
NUM_SYS_CLBLKS 26
NUM_SYS_MBLKS 26
NUM_SYS_n 27, 27
Number of ports that the device has 202
numRcvJobQs 301

O
output services 182

P
packet buffer pools

configuring 8
packet buffers

number of 9
size of 9

packet statistics 175
packetDataGet(), see xPacketDataGet()
packets

consuming 183
pausing, network interfaces 43
pClDescTbl 20
pClFreeRtn 289
pDrvBusFuncs 112
pDst.mBlkHdr.reserved field 156
320

 Index

Index
pFuncTable
muxL2PortAttach() and 206

pFuncTbl 17
PHY

destroying 114
_pLinkPoolFuncTbl 18, 24
PMA_DAT_n 27
PMA_DATPOOL 27
PMA_SYS_n 27
PMA_SYSPOOL 26
pMemReq 24
pMemReqRtn 22
PMS_DAT_n 27
PMS_DATPOOL 27
PMS_SYS_n 27
PMS_SYSPOOL 26
pNetBufCfg 18
_pNetPoolFuncTbl 17, 24
polled mode 92
pollRcv(), see xPollRcv()
pollSend(), see xPollSend()
pool, see memory pools
POOL_FUNC 24, 25
pools

attributes of (netBufLib) 16
creating (netBufLib) 16
finding (netBufLib) 16
freeing (netBufLib) 16
parent and child (netBufLib) 16

port numbers
well-known 180

prefix, assigning to an interface 32
Processor Local Bus device drivers 110
programmed I/O 93
promiscuous mode

enabling and disabling 37
promiscuous services 182
protocol state functionality, enabling for an

interface 43
pseudo-device

creating 36
pSockFuncTbl 197
pSockIoctlMemVal 199
pSockIoctlMemVal() 200
pUnixIoctlMemVal 199

pUnixIoctlMemVal() 200

Q
q_get() 253
q_insert() 253
q_remove() 254
QJOB 122

allocation 122
example 123
reposting 124

QoS 223
availibility in Wind River Platforms 3
General Purpose Platform and 223
ingress filtering 257
ingress traffic prioritization 257

QOS_DEFAULT_PRI 260
QOS_DEFER_PKT 258, 260, 261
QOS_DELIVER_PKT 258, 261
QOS_IGNORE_PKT 258, 261
QOS_JOBQ 260
QOS_JOBQ_PRI 260
qosIngressHookSet() 262
Quality of Service, see QoS
queues

container queues 237, 247
Drop Precedence-Aware FIFO (dpaf) queues

244
fifo queues 243
Hierarchy Token Bucket Container (HTBC)

queues 250
interface output queues 237, 240
leaf queues 237, 242
Multi-Band Container (MBC) queues 249
network emulator (netemu) queues 245
registering 252

R
RARP 34

configuring and using 51
server 34
321

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6
rcvif 15
read()

socket descriptors 193
read-modify-write cycle

shared memory and 68
readRtn 195
receive descriptors 165

allocating 129, 163
receive handler

example 166, 171
receive interrupts 121
receiver (network driver component) 93
receiveRtn 126, 281, 282, 298

END and NPT driver differences 85
when it is valid 90

recvfromRtn 195
recvmsgRtn 195
recvRtn 195
requeue() and requeue_locked() 254
reset() 254
restarting, network interfaces 43
RFCs

RFC 1213
MIB structure, getting for network driver

143
packet statistics 176

RFC 1256
router solicitation 46

RFC 1700
ETHER TYPES 270

RFC 1853
GIF tunnels 52

RFC 2002
GRE tunnels 37, 52
minimal encapsulation 53

RFC 2233
MIB structure, getting for network driver

143
packet statistics 176

RFC 2473
GIF tunnels 52

RFC 2529
6over4 tunnels 52

RFC 2674
VLAN, static objects 211

RFC 2697
single-rate, three-color marker 236

RFC 2784
GRE tunnels 52

RFC 2849
test and documentation addresses 4

RFC 2893
gif devices, style of configured tunnels 56

RFC 3056
6to4 tunnels 52

RFC 3775
router as home agent 45

.rhosts 73
example 75

ring, or circular array
transmit descriptors 100

route table
editing, using routec() 40

route table, viewing 33
route() 40
routec() 40

usage examples 41
routed 75
router

advertisement 44
solicitation 44

router advertisement 44

S
scatter-gather transmission

supporting 96
scMemValidate() 199
SELECT_IPNET_PACKET_POOL 8
send(), see xSend()
sendmsgRtn 195
sendRtn 195
sendtoRtn 195
setsockopt() 216

VLAN examples 217
setsockoptRtn 195
shared memory

location of 67
size of 68
322

 Index

Index
shared memory master CPU number 65
shared-memory anchor 66

initializing 65
shared-memory heartbeat 67

maintaining 65
shared-memory network 63

anchor 66
specifying in the boot line 66

configuring 73, 75
example configuration 73
heartbeat 67
interrupts, interprocessor 69

types 70
multiple on one backplane 65
object area 68
sequential addressing 71
size 68
TAS operation size 68
test-and-set instruction 68
test-and-set type 69
troubleshooting 79
VxMP and 65

shared-memory network master 65
shutdownRtn 195
Simple Marker 225
simple marker 234
SimpleMarker 231, 234
Single Rate Three Color Marker 225
single-rate, three-color marker 235
SIOCGIFFLAGS

example 43
SIOCGIFQUEUE 241
SIOCMUXL2PASSTHRU 200
SIOCMUXPASSTHRU 200
SIOCSIFQUEUE 240, 249
SIOCXADSFILTER 225
SIOCXADSMAP 228
SIOCXAIFQFILTER 241
SIOCXDDSFILTER 227
SIOCXDSCREATE 227
SIOCXDSDESTROY 227
SIOXDDSMAP 228
SIZ_SYS_n 27
SIZE_POOL_n 9, 10
SM 67

SM_ANCHOR_ADRS 76
SM_ANCHOR_OFFSET 76
SM_ANCHORS_ADRS 66
SM_CPUS_MAX 65, 78
SM_INT_* interrupt types 70
SM_INT_ARGn 70, 77
SM_INT_BUS 76
SM_INT_TYPE 70, 76
SM_MASTER 65, 77
SM_MAX_WAIT 77
SM_MEM_ADRS 67, 76
SM_MEM_SIZE 68, 76
SM_OBJ_MEM_SIZE 68, 76
SM_OFF_BOARD 76
SM_PKTS_SIZE 77
SM_TAS_HARD 69, 78
SM_TAS_SOFT 69, 78
SM_TAS_TYPE 69, 78
smEnd 63
smNetShow() 79

example 71
sample output 72
shared-memory network starting addresses,

finding 71
SMP

ingress filtering and 257
optimizing multiple interfaces 124

snarf services 182, 183
so_bkendaux 196, 197
SO_VLAN 216
SOCK_FUNC 195, 197
socket ioctls

memory validation 199
socket priority 10

IP_SOL_SOCKET 10
socket structure 193
socket() 192
socketRtn, see xSocketRtn()
sockets interface for a new network service

adding 191
functions 195

sockLib 191
sockLibAdd() 193
sockLibInit() 193
sockLibInitRtn 194
323

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6
sovlan structure 216
srTCM 231, 235
srTCM (single-rate, three-color marker) 235
stackErrorRtn() 276
stackRcvRtn() 276
stackRestartRtn() 276, 283
stackShutdownRtn() 269, 276
stall conditions 94
start(), see xStart()
statistics, packet 175
stop(), see xStop()
subnet prefix

setting 37
sysBusTas() 69
sysHwInit() 112

VxBus driver initialization 111
sysHwInit2() 112

VxBus driver initialization 111
sysIntConnect() 132
sysLib 69
sysLocalToBusAdrs() 164
sysSmAnchorAdrs 76
sysSmLevel 77
sysvar 44

Auto IP configuration, parameters for 48
router advertisement, parameters for 45
router solicitation, parameters for 46

T
TAS operation size 68
templateEnd.c 109
templateEnd.c (END drivers) 108
templateVxbEnd.c 82, 108
tentative 34
tentative bit

setting and clearing 37
test-and-set

shared memory use 68
test-and-set type 69
TK_RCV_RTN_CALL() 86, 126, 175
tNet0 124
tNet1 125
transmit 163

transmit descriptors
allocating 129, 163
clean-up 98, 102

SMP issues 100
indexing 100
queues of free and used 100

transmit-complete interrupts
absent 94
excessive 94
freeing resources 126
frequency control 99
handler interlocking flag 95
network job pool exhaustion 95
resource reclamation 94
transmit descriptor clean-up 98

transmitter (network driver component) 93
troubleshooting

shared-memory networks 79
tunnel endpoint

setting 37
tunneling 51

availablity in Wind River Platforms 2
configured 52
IPv6 packets using a gif 56
IPv6 packets using an stf 55
multicast 52
setting endpoints 52, 53

tunnels
automatic 52
configured 52
creating 51
gif

example 57, 58
varieties of 52

tuple pools
allocating 163

tuples 13
chained 15
copying chains 15
creating manually 15
diagram of 14
freeing chains 15
required by the stack 91

tUsrRoot
role in network stack initialization 87
324

 Index

Index
txSem
xSend() takes 95

U
unload(), see xUnload()
used queue 100
user priority (802.1P) 211
usrAppInit() 125

V
VID

changing 214
virtual addresses, translating 163
virtual router

setting 38
VLAN 201

adding support for 202
disabling support for 207
interface name, setting 38
management of 211
MUX-L2 extensions for 204
pseudo-interfaces, creating 214
setsockopt() examples 217
show routines for 219
subnet-based 213
tag header 203
tagging, availablity in Wind River Platforms 3
VID, changing 214

VLAN frames
priority-tagged 203
untagged 203
VLAN-tagged 203

VLAN Pseudo Interface support 202
VLAN tag

setting 38
VLAN tag header 203
vlanQosHook() 262
VXB_BUS_PLB 111
VXB_DEVICE_ID 112, 129, 268
VXB_DEVID_DEVICE 111

VXB_PARAMETERS 112
vxbDev 112
vxbDeviceAnnounce() 112
vxbDeviceMethod 110
vxbDevRegInfo 110
vxbDevRegister() 110
vxbDma memory

releasing 114
vxbDmaBufLib 113, 130, 171
vxbDrvUnlink() 112, 114, 134
vxbEndQnumSet() 125
vxbEtsecEnd.c 109, 110, 120
vxbInstUnitSet() 113
vxbNewDriver() 112
vxbNextUnitGet() 113
vxbParams 110
vxbPciRegister 110
vxbPlbRegister 110
vxbRead32() 171
vxbRegMap() 171
VXBUS_VERSION_3 111
vxbUsrCmdLine.c

generation 115
vxbWrite32() 171

W
WDB agent 92

snarf service 183
WDB_COMM_END

snarf service 183
xPollRcv() 153
xPollSend() 151

Wind River documentation 4
Wind River Platforms, features unique to

802.1Q VLAN tagging 3, 201
QoS 3, 223, 257
tunneling 2, 30

WORDSWAP() 164
write()

socket descriptors 193
writeRtn 195
325

Wind River Network Stack for VxWorks 6
Programmer's Guide, 6.6
X
the x routine name prefix 131
xAcceptRtn() 197
xAddrGet() 157
xAttach() 88, 181
xDetach() 88, 181
xEndBind() 88, 117, 158, 276
xFormAddress() 26, 156, 185, 206

VLAN 209
xIoctl() 136, 272

END and NPT driver differences 84
template 137
xEndBind() and 117, 158

xIoctlRtn() 198
xLoad() 90, 128, 268, 297

called by muxDevLoad() 87
devInstanceInit2() and 129
implementing 128
initialization string 115
listing in configNet.h 115
template 130
two-pass algorithm of 129

xMCastAddrAdd() 148
template 148

xMCastAddrDel() 149
template 149

xMCastAddrGet() 150
template 150

xPacketDataGet() 157, 189, 206, 281, 302
VLAN 207

xPollRcv() 153, 154, 280
END implementation 154
NPT implementation 155

xPollSend() 151, 281
END implementation 153
NPT implementation 153

xSend() 94, 144, 146
checksum offloading 107
context of 95
data passed to 96
END and NPT driver differences 84, 109
END implementation 146
ERROR return value 97
NPT implementation 146

queues 100
scatter-gather 97
transmit clean-up 101
transmit descriptor access 100
transmit descriptor clean-up 98
transmit semaphor and 95

xShutdownRtn() 92
xSocketRtn() 196
xSockLibInit() 194
xStackErrorRtn() 189
xStackRcvRtn() 187, 281, 282
xStackRestartRtn() 146, 190
xStackShutdownRtn() 185, 186
xStart() 90, 132

registering interrupt handlers 118
template 132

xStop() 92, 133, 269
template 133

xUnload() 92, 134, 290

Z
zbufRtn 195
326

	Wind River Network Stack for VxWorks 6 Programmer's Guide, 6.6
	Contents
	1 Overview
	1.1 Introduction
	1.2 About This Manual
	1.2.1 About the IP Addresses Used in This Manual

	1.3 Additional Documentation
	Wind River Documentation
	Online Resources
	Books

	2 Configuring and Managing Memory
	2.1 Introduction
	2.2 Configuring Packet Buffer Pools
	2.2.1 Socket Priority

	2.3 netBufLib Buffer Pools
	2.3.1 Tuples
	2.3.2 Creating netBufLib Pools
	netPoolCreate()
	netPoolInit()
	Memory Requirements Routines

	2.4 Legacy Network Stack Pools

	3 Working with Drivers and Interfaces
	3.1 Introduction
	3.2 Overview of the MUX
	3.3 Working with Network Driver Instances
	3.3.1 Attaching a Service to a Network Interface
	3.3.2 Configuring a Network Interface with an Address
	Using ifconfig()
	Retrieving Interface Information with ifconfig()
	Configuring an Interface with ifconfig()
	Creating a Pseudo-Interface with ifconfig()

	3.3.3 Editing the Route Table
	3.3.4 Using routec() to Add or Delete Route Table Entries
	3.3.5 Fixing Interfaces That Have Erroneous Addresses
	3.3.6 Assigning a Host Name to an Address
	3.3.7 Bringing the Device Up for Protocol Communication
	3.3.8 Configuring Router Advertisement and Solicitation for an Interface
	Router Advertisement
	Router Solicitation

	3.4 Adding Automatic IPv4 Interface Configuration
	Configuring VxWorks for Auto IP
	Configuring Auto IP
	Using Auto IP

	3.5 Using the Reverse ARP Client
	3.6 Working with IPv4 and IPv6 Tunneling
	3.6.1 Configuring VxWorks for Tunneling
	GIF Tunnel Interface Driver
	GRE Tunnel Interface Driver
	6over4 Tunnel Interface Driver
	6to4 Tunnel Interface Driver
	SIT Tunnel Interface Driver

	3.6.2 Creating 6to4 Tunnels for IPv6 Packets
	3.6.3 Creating RFC 2893-Style Configured Tunnels
	3.6.4 An Example Tunnel

	3.7 Using the Shared-Memory Network
	3.7.1 The Backplane Shared-Memory Region
	Backplane Processor Numbers
	The Shared-Memory Network Master
	The Shared-Memory Anchor
	The Shared-Memory Heartbeat
	Shared-Memory Location
	Shared Memory Size
	Test-and-Set to Shared Memory

	3.7.2 Interprocessor Interrupts
	3.7.3 Sequential Addressing
	3.7.4 Shared-Memory Network Configuration
	Example Configuration
	Troubleshooting

	4 Integrating a New Network Interface Driver
	4.1 Introduction
	4.1.1 How ENDs and NPT Drivers Differ

	4.2 Configuring VxWorks for Network Interface Drivers
	4.3 How VxWorks Launches and Uses Your Driver
	4.3.1 The Service-to-MUX Interface
	4.3.2 The Data-Link-to-MUX Interface
	4.3.3 Polled Mode - For Debugging Only

	4.4 Driver Components
	4.5 Transmitting Data
	4.5.1 Transmit-complete Handler Interlocking Flag
	4.5.2 Supporting Scatter-Gather Transmission
	4.5.3 Transmit Descriptor Clean-up
	4.5.4 Transmit Descriptor Indexing
	4.5.5 Transmit Packet Association List
	4.5.6 Transmit-complete Handler
	4.5.7 Transmit Descriptor Clean

	4.6 Implementing Checksum Offloading
	4.6.1 Checksum Offloading and Receiving
	4.6.2 Checksum Offloading and Transmission

	4.7 Implementing a Network Driver
	4.7.1 Adding a Network Driver
	4.7.2 Launching the Driver
	4.7.3 Responding to Network Service Bind Calls
	4.7.4 Responding to Interrupts

	4.8 The Driver Interface with the MUX
	4.9 Porting a BSD Driver to the MUX
	Remove Unit Number References
	Create an END Object to Represent the Device
	Implement the Standard END or NPT Entry Points

	4.10 Managing Memory for Network Drivers and Services
	4.10.1 Receive and Transmit Descriptor Issues
	Network Buffer Pools

	4.11 Collecting and Reporting Packet Statistics
	4.11.1 Calling the Driver Routines

	5 Integrating a New Network Service
	5.1 Introduction
	5.2 Implementing the MUX/Network Service Interface
	5.2.1 Initializing the Interface
	5.2.2 Using MUX/Service Interface Routines
	Sending Packets
	Device Control
	Shutting Down an Interface

	5.3 Interfacing with the MUX
	5.3.1 Service Routines Registered Using mux[Tk]Bind()

	5.4 Adding a Socket Interface to Your Service
	5.4.1 Process Overview
	5.4.2 Registering a Socket Back End
	The Socket Functional Interface

	5.4.3 Memory Validation and Socket Ioctls

	6 Working with the 802.1Q VLAN Tag
	6.1 Introduction
	6.2 Adding VLAN Support
	6.3 About the 802.1Q VLAN Tag Header
	6.4 MUX Extensions for Layer 2 VLAN Support
	6.4.1 Enabling VLAN Support for a Port
	6.4.2 Disabling VLAN Support for a Port
	6.4.3 MUX-L2 Ingress Rules
	6.4.4 MUX-L2 Egress Rules
	6.4.5 Accessing the MUX L2 Control Routines

	6.5 Current MUX-L2 Limitations
	6.6 VLAN Management
	6.6.1 MUX-L2 VLAN Management
	6.6.2 Subnet-Based VLAN Management
	Consequences of Changing the VID
	Example of Subnet-Based VLAN Management

	6.6.3 Socket-Based VLAN Management

	6.7 Using the MUX-L2 Show Routines

	7 Quality of Service
	7.1 Introduction
	7.2 Differentiated Services
	7.2.1 Including DiffServ in a Build
	7.2.2 Using DiffServ
	Adding a Filter Rule for a Meter/Marker Entity
	Deleting a Filter Rule from a Meter/Marker Entity
	Creating a Meter/Marker Entity
	Deleting a Meter/Marker Entity
	Mapping a Filter to a Meter/Marker Entity
	Removing a Filter-to-Meter/Marker Entity Mapping

	7.2.3 Classes
	7.2.4 Creating New Meter/Marker Entity Varieties
	7.2.5 Using Existing Meter/Marker Entity Varieties
	SimpleMarker
	Single-Rate Three-Color Marker

	7.3 Network Interface Output Queues
	7.3.1 Operations
	Adding an Interface Output Queue
	Getting an Object that Describes an Interface Output Queue
	Adding a Filter Rule to a Container Queue
	Deleting a Filter Rule from a Container Queue

	7.3.2 Leaf Queues
	7.3.3 Container Queues
	Available Container Queues

	7.3.4 Adding a New Queue Type

	8 Ingress Traffic Prioritization
	8.1 Introduction
	8.2 Factors to Consider Before Using Ingress Filtering
	Systems with Multiple Interfaces for Incoming Traffic
	Traffic Congestion and Fairness
	Driver Variety

	8.3 Building VxWorks to Include Ingress Traffic Prioritization
	8.4 Implementing an Ingress Filter Routine
	8.4.1 Registering an Ingress Filter Routine

	A MUX Routines and Data Structures
	A.1 Introduction
	A.2 MUX Routines
	A.2.1 endFindByName()
	A.2.2 muxAddressForm()
	A.2.3 muxLinkHeaderCreate()
	A.2.4 muxDevExists()
	A.2.5 muxDevLoad()
	A.2.6 muxDevStart()
	A.2.7 muxDevStop()
	A.2.8 muxDevUnload()
	A.2.9 muxError()
	A.2.10 muxIfFuncAdd()
	A.2.11 muxIfFuncDel()
	A.2.12 muxIfFuncGet()
	A.2.13 muxIoctl()
	A.2.14 muxMCastAddrAdd()
	A.2.15 muxMCastAddrDel()
	A.2.16 muxMCastAddrGet()
	A.2.17 muxPacketAddrGet()
	A.2.18 muxPacketDataGet()
	A.2.19 muxShow()
	A.2.20 muxTkBind()
	A.2.21 muxBind()
	A.2.22 muxTkCookieGet()
	A.2.23 muxTkDrvCheck()
	A.2.24 muxTkPollReceive()
	A.2.25 muxTkPollSend()
	A.2.26 muxReceive()
	A.2.27 muxTkReceive()
	A.2.28 muxSend()
	A.2.29 muxTkSend()
	A.2.30 muxTxRestart()
	A.2.31 muxUnbind()
	A.2.32 muxAddrResFuncAdd()
	A.2.33 muxAddrResFuncDel()
	A.2.34 muxAddrResFuncGet()

	A.3 Data Structures
	A.3.1 CL_BLK
	A.3.2 DEV_OBJ
	A.3.3 DRV_CTRL
	A.3.4 END_CAPABILITIES
	A.3.5 END_ERR
	A.3.6 END_MEDIA
	A.3.7 END_MEDIALIST
	A.3.8 END_OBJ
	A.3.9 END_RCVJOBQ_INFO
	A.3.10 END_QUERY
	A.3.11 LL_HDR_INFO
	A.3.12 M_BLK
	A.3.13 M_BLK_HDR
	A.3.14 M_LINK
	A.3.15 M_PKT_HDR
	A.3.16 MULTI_TABLE
	A.3.17 NET_FUNCS

	Index

