
Wind River
USB for

VxWorks 6

API REFERENCE

®

2.4

®

Wind River USB for VxWorks 6 API Reference, 2.4

Copyright © 2007 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, the Wind River logo, Tornado, and VxWorks are registered trademarks of
Wind River Systems, Inc. Any third-party trademarks referenced are the property of their
respective owners. For further information regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDir/product_name/3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
U.S.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:

http://www.windriver.com

For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

Wind River USB for VxWorks 6 API Reference, 2.4

15 Nov 07
Part #: DOC-16128-ZD-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

iii

Contents

1. Libraries

This section provides reference entries for each of the Wind River USB libraries,
arranged alphabetically. Each entry lists the routines found in the library,
including a one-line synopsis of each and a general description of their use.

Individual reference entries for each of the available functions in these libraries is
provided in section 2.

2. Routines

This section provides reference entries for each of the routines found in the
Wind River USB libraries documented in section 1.

Wind River USB for VxWorks 6 API Reference, 2.4

iv

1

 1
Libraries

cmdParser – Command line parser routines. 3
ossLib – O/S-independent services for vxWorks 4
usbBulkDevLib – USB Bulk Only Mass Storage class driver 5
usbCbiUfiDevLib – USB CBI Mass Storage class driver for UFI sub-class 7
usbDescrCopyLib – USB descriptor copy utility functions 8
usbEhcdBandwidth – contains the bandwidth functions of EHCD 9
usbEhcdEventHandler – USB EHCI HCD interrupt handler 9
usbEhcdInitExit – USB EHCI HCD initialization routine 9
usbEhcdRhEmulation – USB EHCI HCD Roothub Emulation 10
usbEhcdTransferManagement – transfer management functions of the EHCD 10
usbEhcdUtil – contains the utility functions of EHCD 11
usbHalDeviceControlStatus – HAL Device Control and Status handler module 11
usbHalEndpoint – HAL Endpoint specific functionalities 11
usbHalInitExit – HAL initialization and uninitialization functionalities 12
usbHalInterruptHandler – USB HAL interrupt handler module 12
usbHalUtil – Utility functions of HAL 13
usbHandleLib – handle utility functions 13
usbHubInitialization – Initialization and cleanup of HUB class driver 13
usbKeyboardLib – USB keyboard class drive with vxWorks SIO interface 14
usbLib – USB utility functions 16
usbListLib – Linked list utility functions 16
usbMouseLib – USB mouse class drive with vxWorks SIO interface 17
usbOhci – USB OHCI Driver Entry and Exit points 19
usbOhciDebug – USB OHCI Debug Routines 19
usbPegasusEnd – USB Ethernet driver for the Pegasus USB-Ethernet adapter 19
usbPrinterLib – USB printer class drive with vxWorks SIO interface 22
usbQueueLib – O/S-independent queue functions 23
usbSpeakerLib – USB speaker class drive with vxWorks SEQ_DEV interface 24
usbTargDefaultPipe – Handles the requests to the default control pipe 27
usbTargDeviceControl – modules for handling pipe specific requests 27

Wind River USB for VxWorks 6 API Reference, 2.4

2

usbTargInitExit – USB Initialization/Uninitialization modules 28
usbTargKbdLib – USB keyboard target exerciser/demonstration 28
usbTargMsLib – Mass Storage routine library 29
usbTargPipeFunc – modules for handling pipe specific requests 30
usbTargPrnLib – USB printer target exerciser/demonstration 30
usbTargRbcCmd – Reduced Block Command set routine library 31
usbTargRbcLib – USB Reduced Block Command set routine library 32
usbTargUtil – Utility Functions 32
usbTcdIsp1582InitExit – Initialization/uninitialization for ISP 1582 TCD 33
usbTcdNET2280InitExit – initialization/uninitialization for NET2280 TCD 33
usbTcdPdiusbd12InitExit – Initialization/uninitialization for PDIUSBD12 TCD 34
usbTransUnitData – Translation Unit Data Transfer Interfaces 34
usbTransUnitInit – Translation Unit Initialization interfaces 35
usbTransUnitMisc – translation unit miscellaneous functions 36
usbTransUnitStd – translation unit standard requests interfaces 36
usbUhcdInitialization – USB UHCI HCD initialization routine 37
usbUhcdIsr – USB UHCI HCD interrupt handler 37
usbUhcdManagePort – USB UHCI HCD port status handler 38
usbUhcdRhEmulate – USB UHCI HCD Roothub Emulation 38
usbUhcdScheduleQSupport – USB UHCD HCD schedule queue support 38
usbUhcdScheduleQWaitForSignal – USB UHCD HCD ISR support routines 39
usbUhcdScheduleQueue – USB UHCD HCD schdule queue routines 39
usbUhcdSupport – USB UHCD HCD register access routines 39
usbVxbRegAccess – library for read/write routines 40
usbd – USBD Routines 40

1 Libraries
cmdParser

3

cmdParser

NAME cmdParser – Command line parser routines.

ROUTINES PromptAndExecCmd() – Prompt for a command and execute it.
KeywordMatch() – Compare keywords
ExecCmd() – Execute the command line
SkipSpace() – Skips leading white space in a string
TruncSpace() – Truncates string to eliminate trailing whitespace
GetNextToken() – Retrieves the next token from an input string
GetHexToken() – Retrieves value of hex token
CmdParserHelpFunc() – Displays list of supported commands
CmdParserExitFunc() – Terminates parser execution

DESCRIPTION This file includes a collection of command-line parsing functions which are useful in the
creation of command line utilities, such as bus exercisers.

There are three groups of functions defined by this library. The first is a collection of general
string parser functions, such as functions to eliminate white space, functions to strip tokens
out of a string, and so forth.

The second set of functions drive the actual parsing process. In order to use this second set
of functions, clients must construct a table of CMD_DESCR structures which define the
commands to be recognized by the parser. A brief example of such a table is shown below.

CMD_DESCR Commands [] =
 {
 {"Help", 4, "Help/?", "Displays list of commands.", CmdParserHelpFunc},
 {"?", 1, NULL, NULL, CmdParserHelpFunc},
 {"Exit", 4, "Exit", "Exits program.", CmdParserExitFunc},
 {NULL, 0, NULL, NULL, NULL}
 };

The first field is the keyword for the command. The second field specifies the number of
characters of the command which must match - allowing the user to enter only a portion of
the keyword as a shortcut. The third and fourth fields are strings giving the command
usage and a brief help string. A NULL in the Help field indicates that the corresponding
keyword is a synonym for another command its usage/help should not be shown. The final
field is a pointer to a function of type CMD_EXEC_FUNC which will be invoked if the parser
encounters the corresponding command.

The third group of functions provide standard CMD_EXEC_FUNCs for certain commonly
used commands, such as CmdParserHelpFunc and CmdParserExitFunc as shown in the
preceding example.

The caller may pass a generic (pVOID) parameter to the command line parsing functions in
the second group. This function is in turn passed to the CMD_EXEC_FUNCs. In this way,
the caller can specify context information for the command execution functions.

Wind River USB for VxWorks 6 API Reference, 2.4
ossLib

4

Commands are executed after the user presses [enter]. Multiple commands may be entered
on the same command line separated by semicolons (;). Each command as if it had been
entered on a separate line (unless a command terminates with an error, in which case all
remaining commands entered on the same line will be ignored).

INCLUDE FILES cmdParser.h

ossLib

NAME ossLib – O/S-independent services for vxWorks

ROUTINES ossStatus() – Returns OK or ERROR and sets errno based on status.
ossShutdown() – Shuts down ossLib.
ossThreadCreate() – Spawns a new thread.
ossThreadDestroy() – Attempts to destroy a thread.
ossThreadSleep() – Voluntarily relinquishes the CPU.
ossSemCreate() – Creates a new semaphore.
ossSemDestroy() – Destroys a semaphore.
ossSemGive() – Signals a semaphore.
ossSemTake() – Attempts to take a semaphore.
ossMutexCreate() – Creates a new mutex.
ossMutexDestroy() – Destroys a mutex.
ossMutexTake() – Attempts to take a mutex.
ossMutexRelease() – Releases (gives) a mutex.
ossPartSizeGet() – Retrieves the size of the USB memory partition.
ossPartSizeSet() – Sets the the initial size of the USB memory partition.
ossPartIdGet() – Retrieves the partition ID of USB memory partition.
ossMemUsedGet() – Retrieves the amount of memory currently in use by USB.
ossMalloc() – Master USB memory allocation routine.
ossPartMalloc() – USB memory allocation
ossOldMalloc() – Global memory allocation
ossCalloc() – Allocates memory initialized to zeros.
ossFree() – Master USB memory free routine.
ossPartFree() – Frees globally allocated memory.
ossOldFree() – Frees globally allocated memory.
ossOldInstall() – Installs the old method of USB malloc and free.
ossTime() – Returns the relative system time in msec.
ossInitialize() – Initializes ossLib.

DESCRIPTION Implements functions defined by ossLib.h. See ossLib.h for a complete description of these
functions.

1 Libraries
usbBulkDevLib

5

INCLUDE FILES ossLib.h

usbBulkDevLib

NAME usbBulkDevLib – USB Bulk Only Mass Storage class driver

ROUTINES usbBulkDevShutDown() – shuts down the USB bulk-only class driver
usbBulkDevInit() – registers USB Bulk only mass storage class driver
usbBulkDevIoctl() – perform a device-specific control
usbBulkBlkDevCreate() – create a block device
usbBulkDynamicAttachRegister() – Register SCSI/BULK-ONLY device attach callback.
usbBulkDynamicAttachUnregister() – Unregisters SCSI/BULK-ONLY attach callback.
usbBulkDevLock() – Marks USB_BULK_DEV structure as in use
usbBulkDevUnlock() – Marks USB_BULK_DEV structure as unused.
usbBulkDriveShow() – shows routine for displaying one LUN of a device.
usbBulkDevShow() – shows routine for displaying all LUNs of a device.
usbBulkShow() – shows routine for displaying all bulk devices.
usbBulkDriveEmpty() – routine to check if drive has media inserted.
usbBulkGetMaxLun() – Return the max LUN number for a device

DESCRIPTION This module implements the USB Mass Storage class driver for the vxWorks operating
system. This module presents an interface which is a superset of the vxWorks Block Device
driver model. This driver implements external APIs which would be expected of a
standard block device driver.

This class driver restricts to Mass Storage class devices that follow bulk-only transport. For
bulk-only devices transport of command, data and status occurs solely via bulk endpoints.
The default control pipe is only used to set configuration, clear STALL condition on
endpoints and to issue class-specific requests.

The class driver is a client of the Universal Serial Bus Driver (USBD). All interaction with
the USB buses and devices is handled through the USBD.

INITIALIZATION The class driver must be initialized with usbBulkDevInit(). It is assumed that USBD is
already initialized and attached to atleast one USB Host Controller. usbBulkDevInit()
registers the class driver as a client module with USBD. It also registers a callback routine
to get notified whenever a USB MSC/SCSI/ BULK-ONLY device is attached or removed
from the system. The callback routine creates a USB_BULK_DEV structure to represent the
USB device attached. It also sets device configuration, interface settings and creates pipes
for BULK_IN and BULK_OUT transfers.

Wind River USB for VxWorks 6 API Reference, 2.4
usbCbiUfiDevLib

6

OTHER FUNCTIONS

usbBulkBlkDevCreate() is the entry point to define a logical block device. This routine
initializes the fields with in the vxWorks block device structure XBD. This XBD structure
is part of the USB_BULK_DEV_XBD_LUN structure. The USB_BULK_DEV_XBD_LUN is part
of the USB_BULK_DEV structure for each of the logical unit in one USB mass storage device.
Memory is allocated for USB_BULK_DEV by the dynamic attach notification callback
routine. So, this create routine just initializes the XBD structure and returns a pointer to it,
which is used during the file system initialization call.

usbBulkDevIoctl() implements functions which are beyond basic file handling.
Class-specific requests, Descriptor show, are some of the functions. Function code
parameter identifies the IO operation requested.

DATA FLOW For each USB MSC/SCSI/BULK-ONLY device detected, usbBulkPhysDevCreate() will
create pipes to BULK_IN and a BULK_OUT endpoints of the device. A pipe is a channel
between USBD client i,e usbBulkDevLib and a specific endpoint. All SCSI commands are
encapsulated with in a Command Block Wrapper (CBW) and transferred across the
BULK_OUT endpoint through the out pipe created. This is followed by a data transfer
phase. Depending on the SCSI command sent to the device, the direction bit in the CBW
will indicate whether data is transferred to or from the device. This bit has no significance
if no data transfer is expected. Data is transferred to the device through BULK_OUT
endpoint and if the device is required to transfer data, it does through the BULK_IN
endpoint. The device shall send Command Status Wrapper (CSW) via BULK_IN endpoint.
This will indicate the success or failure of the CBW. The data to be transferred to device will
be pointed by the file system launched on the device.

INCLUDE FILES usbBulkDevLib.h

SEE ALSO "USB Mass Storage Class - Bulk Only Transport Specification Version 1.0, ", "SCSI-2 Standard
specification 10L - Direct Access device commands"

usbCbiUfiDevLib

NAME usbCbiUfiDevLib – USB CBI Mass Storage class driver for UFI sub-class

ROUTINES usbCbiUfiDevShutDown() – shuts down the USB CBI mass storage class driver
usbCbiUfiDevInit() – registers USB CBI mass storage class driver for UFI devices
usbCbiUfiDevIoctl() – perform a device-specific control.
usbCbiUfiBlkDevCreate() – create a block device
usbCbiUfiDynamicAttachRegister() – Register UFI device attach callback.
usbCbiUfiDynamicAttachUnregister() – Unregisters CBI_UFI attach callback.
usbCbiUfiDevLock() – Marks CBI_UFI_DEV structure as in use
usbCbiUfiDevUnlock() – Marks CBI_UFI_DEV structure as unused.

1 Libraries
usbCbiUfiDevLib

7

DESCRIPTION This module implements the USB Mass Storage class driver for the vxWorks operating
system. This module presents an interface which is a superset of the vxWorks Block Device
driver model. The driver implements external APIs which would be expected of a standard
block device driver.

This class driver restricts to Mass Storage class devices with UFI subclass, that follow CBI
(Control/Bulk/Interrupt) transport. For CBI devices transport of command, data and
status occurs via control, bulk and interrupt endpoints respectively. Interrupt endpoint is
used to signal command completion.

The class driver is a client of the Universal Serial Bus Driver (USBD). All interaction with
the USB buses and devices is handled through the USBD.

INITIALISATION The driver initialisation routine usbCbiUfiDevInit() must be invoked first prior to any
other driver routines. It is assumed that USBD is already initialised and attached to atleast
one USB Host Controller. usbCbiUfiDevInit() registers the class driver as a client module
with USBD. It also registers a callback routine to get notified whenever a USB
MSC/UFI/CBI device is attached or removed from the system. The callback routine creates
a USB_CBI_UFI_DEV structure to represent the USB device attached. It also sets device
configuration, interface settings and creates pipes for BULK_IN, BULK_OUT and
INTERRUPT transfers.

DATA FLOW For every USB/CBI/UFI device detected, the device configuration is set to the configuration
that follows the CBI/UFI command set. Pipes are created for bulk in, bulk out and interrupt
endpoints. To initiate transactions, ADSC class specific request is used to send a command
block on the control endpoint. Command blocks are formed as per the UFI command
specifications. If the command requires transport of data to/from the device, it is done via
bulk-out/bulk-in pipes using IRPs. This is followed by status transport via interrupt
endpoint.

OTHER FUNCTIONS

Number of USB CBI_UFI devices supported by this driver is not fixed. UFI devices may be
added or removed from the USB system at any point of time. The user of this client driver
must be aware of the device attachment and removal. To facilitate this, an user-specific
callback routine may be registered, using usbCbiUfiDynamicAttachRegister() routine.
The USBD_NODE_ID assigned to the device being attached or removed, is passed on to the
user callback routine. This unique ID may be used to create a block device using
usbCbiUfiBlkDevCreate() and further launch file system.

NOTE The user callback routine is invoked from the USBD client task created for this class driver.
The callback routine should not invoke any class driver function, which will further submit
IRPs. For example, usbCbiUfiBlkDevCreate() should not be invoked from the user's
callback.

Typically, the user may create a task, as a client of UFI driver, and invoke the driver routines
from the task's context. The user callback routine may be used to notify device attachment
and removal to the task.

Wind River USB for VxWorks 6 API Reference, 2.4
usbDescrCopyLib

8

INCLUDE FILES usbCbiUfiDevLib.h, blkIo.h

SEE ALSO USB Mass Storage Class - Control/Bulk/Interrupt Transport Specification Revision 1.0, USB Mass
Storage Class - UFI Command specification Revision 1.0

usbDescrCopyLib

NAME usbDescrCopyLib – USB descriptor copy utility functions

ROUTINES usbDescrCopy32() – copies descriptor to a buffer
usbDescrCopy() – copies descriptor to a buffer
usbDescrStrCopy32() – copies an ASCII string to a string descriptor
usbDescrStrCopy() – copies an ASCII string to a string descriptor.

DESCRIPTION This module contains miscellaneous functions which may be used by the USB driver
(USBD), USB HCD (USB Host Controller Driver), USB HCD (USB Target Controller Driver)
or by USBD clients.

INCLUDE FILES usbDescrCopyLib.h

usbEhcdBandwidth

NAME usbEhcdBandwidth – contains the bandwidth functions of EHCD

ROUTINES

DESCRIPTION This module defines the bandwidth related functions for the EHCI Host Controller Driver.

INCLUDE FILES usbOsal.h, usbOsalDebug.h, usbHst.h, usbEhcdDataStructures.h, usbEhcdUtil.h,
usbEhcdDebug.h

SEE ALSO USB specification, revision 2.0, EHCI specification, revision 1.0

1 Libraries
usbEhcdRhEmulation

9

usbEhcdEventHandler

NAME usbEhcdEventHandler – USB EHCI HCD interrupt handler

ROUTINES

DESCRIPTION This contains interrupt routines which handle the EHCI interrupts.

INCLUDE FILES usb2/usbOsal.h, usb2/usbHst.h, usb2/usbEhcdDataStructures.h, usb2/usbEhcdUtil.h,
usb2/BusAbstractionLayer.h, usb2/usbEhcdEventHandler.h, usb2/usbEhcdHal.h,
usb2/usbEhcdRhEmulation.h, intLib.h

usbEhcdInitExit

NAME usbEhcdInitExit – USB EHCI HCD initialization routine

ROUTINES usbEhcdInstantiate() – instantiate the USB EHCI Host Controller Driver.
usbEhcdInit() – initializes the EHCI Host Controller Driver
usbEhcdExit() – uninitializes the EHCI Host Controller
vxbUsbEhciRegister() – registers the EHCI Controller with vxBus

DESCRIPTION This contains the initialization and uninitialization functions provided by the EHCI Host
Controller Driver.

INCLUDE FILES usb2/usbOsal.h, usb2/BusAbstractionLayer.h, usb2/usbEhcdConfig.h, usb2/usbHst.h,
usb2/usbEhcdDataStructures.h, usb2/usbEhcdInterfaces.h, usb2/usbEhcdHal.h,
usb2/usbEhcdUtil.h, usb2/usbEhcdEventHandler.h, usb2/usbHcdInstr.h, spinLockLib.h

usbEhcdRhEmulation

NAME usbEhcdRhEmulation – USB EHCI HCD Roothub Emulation

ROUTINES usbEhcdRhCreatePipe() – creates a pipe specific to an endpoint.
usbEhcdRHDeletePipe() – deletes a pipe specific to an endpoint.
usbEhcdRHSubmitURB() – submits a request to an endpoint.
usbEhcdRhProcessControlRequest() – processes a control transfer request
usbEhcdRhProcessInterruptRequest() – processes a interrupt transfer request
usbEhcdRhProcessStandardRequest() – processes a standard transfer request

Wind River USB for VxWorks 6 API Reference, 2.4
usbEhcdTransferManagement

10

usbEhcdRhClearPortFeature() – clears a feature of the port
usbEhcdRhGetHubDescriptor() – get the hub descriptor
usbEhcdRhGetPortStatus() – get the status of the port
usbEhcdRhSetPortFeature() – set the features of the port
usbEhcdRhProcessClassSpecificRequest() – processes a class specific request
usbEhcdRHCancelURB() – cancels a request submitted for an endpoint

DESCRIPTION This contains functions which handle the requests to the Root hub

INCLUDE FILES usb2/usbOsal.h usb2/usbHst.h usb2/usbEhcdDataStructures.h,
usb2/usbEhcdRhEmulation.h usb2/usbEhcdHal.h usb2/usbEhcdUtil.h,
usb2/usbHcdInstr.h

usbEhcdTransferManagement

NAME usbEhcdTransferManagement – transfer management functions of the EHCD

ROUTINES

DESCRIPTION This module defines the interfaces which are registered with the USBD during EHCI Host
Controller Driver initialization.

INCLUDE FILES usbhst.h, usbEhcdDataStructures.h, usbEhcdInterfaces.h, usbEhcdUtil.h,
usbEhcdConfig.h, usbEhcdHal.h, usbEhcdRHEmulation.h, usbEhcdDebug.h

SEE ALSO None

usbEhcdUtil

NAME usbEhcdUtil – contains the utility functions of EHCD

ROUTINES

DESCRIPTION This module defines the functions which serve as utility functions for the EHCI Host
Controller Driver.

INCLUDE FILES usbhst.h, usbEhcdDataStructures.h, usbEhcdUtil.h, usbEhcdDebug.h

SEE ALSO USB specification, revision 2.0, EHCI specification, revision 1.0

1 Libraries
usbHalInitExit

11

usbHalDeviceControlStatus

NAME usbHalDeviceControlStatus – HAL Device Control and Status handler module

ROUTINES usbHalTcdAddressSet() – hal interface to set address.
usbHalTcdSignalResume() – hal interface to initiate resume signal.
usbHalTcdDeviceFeatureSet() – hal interface to set feature on the device.
usbHalTcdDeviceFeatureClear() – hal interface to clear feature on device.
usbHalTcdCurrentFrameGet() – hal interface to get Currrent Frame Number.

DESCRIPTION This file contains device control and status handler routines of the Hardware Adaption
Layer.

INCLUDE FILES usb/target/usbHalLib.h usb/target/usbHal.h, usb/target/usbHalDebug.h,
usb/target/usbPeriphInstr.h

usbHalEndpoint

NAME usbHalEndpoint – HAL Endpoint specific functionalities

ROUTINES usbHalTcdEndpointAssign() – configure an endpoint on the target controller
usbHalTcdEndpointRelease() – unconfigure endpoint on the target controller
usbHalTcdEndpointStateSet() – set the state of an endpoint
usbHalTcdEndpointStatusGet() – get the status of an endpoint
usbHalTcdErpSubmit() – submit an ERP for an endpoint
usbHalTcdErpCancel() – cancel an ERP

DESCRIPTION This file defines the hardware independent endpoint specific functionalities of the
Hardware Adaption Layer.

INCLUDE FILES drv/usb/target/usbTcd.h, usb/target/usbHal.h, usb/target/usbHalDebug.h, usb/ossLib.h,
string.h, usb/target/usbPeriphInstr.h

usbHalInitExit

NAME usbHalInitExit – HAL initialization and uninitialization functionalities

Wind River USB for VxWorks 6 API Reference, 2.4
usbHalInterruptHandler

12

ROUTINES usbHalTcdAttach() – attaches a TCD
usbHalTcdDetach() – detaches a TCD
usbHalTcdEnable() – enables the target controller.
usbHalTcdDisable() – disables the target controller

DESCRIPTION This file defines the hardware independent initialization and uninitialization functions of
the Hardware Adaption Layer.

INCLUDE FILES drv/usb/target/usbTcd.h, usb/target/usbHal.h, usb/target/usbHalLib.h,
usb/target/usbHalDebug.h, usb/ossLib.h, usb/target/usbPeriphInstr.h

usbHalInterruptHandler

NAME usbHalInterruptHandler – USB HAL interrupt handler module

ROUTINES

DESCRIPTION This file contains interrupt handler routines of the Hardware Adaption Layer.

INCLUDE FILES usb/target/usbHal.h, usb/target/usbHalDebug.h, usb/ossLib.h,
usb/target/usbPeriphInstr.h

usbHalUtil

NAME usbHalUtil – Utility functions of HAL

ROUTINES

DESCRIPTION This file defines the utility functions which are used by the sub-modules of the Hardware
Adaption Layer.

INCLUDE FILES usb/target/usbTcd.h, string.h

usbHandleLib

NAME usbHandleLib – handle utility functions

1 Libraries
usbKeyboardLib

13

ROUTINES usbHandleInitialize() – Initializies the handle utility library.
usbHandleShutdown() – Shuts down the handle utility library.
usbHandleCreate() – Creates a new handle.
usbHandleDestroy() – Destroys a handle.
usbHandleValidate() – Validates a handle.

DESCRIPTION Implements a set of general-purpose handle creation and validation functions.

Using these services, libraries can return handles to callers which can subsequently be
validated for authenticity. This provides libraries with an additional measure of
bullet-proofing.

INCLUDE FILES usbHandleLib.h

usbHubInitialization

NAME usbHubInitialization – Initialization and cleanup of HUB class driver

ROUTINES usbHubInit() – registers USB Hub Class Driver function pointers.
usbHubExit() – de-registers and cleans up the USB Hub Class Driver.

DESCRIPTION This module provides the initialization and the clean up functions for the USB Hub Class
Driver.

INCLUDE FILES usb2/usbOsal.h, usb2/usbHubCommon.h, usb2/usbHubGlobalVariables.h,
usb2/usbHubInitialization.h, usb2/usbHubClassInterface.h, usb2/usbHst.h,
usb2/usbHcdInstr.h

usbKeyboardLib

NAME usbKeyboardLib – USB keyboard class drive with vxWorks SIO interface

ROUTINES usbKeyboardDevInit() – initialize USB keyboard SIO driver
usbKeyboardDevShutdown() – shuts down keyboard SIO driver
usbKeyboardDynamicAttachRegister() – Register keyboard attach callback
usbKeyboardDynamicAttachUnregister() – Unregisters keyboard attach callback
usbKeyboardSioChanLock() – Marks SIO_CHAN structure as in use
usbKeyboardSioChanUnlock() – Marks SIO_CHAN structure as unused

Wind River USB for VxWorks 6 API Reference, 2.4
usbKeyboardLib

14

DESCRIPTION This module implements the USB keyboard class driver for the vxWorks operating system.
This module presents an interface which is a superset of the vxWorks SIO (serial IO) driver
model. That is, this driver presents the external APIs which would be expected of a
standard "multi-mode serial (SIO) driver" and adds certain extensions which are needed to
address adequately the requirements of the hot-plugging USB environment.

USB keyboards are described as part of the USB "human interface device" class specification
and related documents. This driver concerns itself only with USB devices which claim to be
keyboards as set forth in the USB HID specification and ignores other types of human
interface devices (i.e., mouse). USB keyboards can operate according to either a "boot
protocol" or to a "report protocol". This driver enables keyboards for operation using the
boot protocol.

As the SIO driver model presents a fairly limited, byte-stream oriented view of a serial
device, this driver maps USB keyboard scan codes into appropriate ASCII codes. Scan codes
and combinations of scan codes which do not map to the ASCII character set are suppressed.

Unlike most SIO drivers, the number of channels supported by this driver is not fixed.
Rather, USB keyboards may be added or removed from the system at any time. This creates
a situation in which the number of channels is dynamic, and clients of usbKeyboardLib.c
need to be made aware of the appearance and disappearance of channels. Therefore, this
driver adds an additional set of functions which allows clients to register for notification
upon the insertion and removal of USB keyboards, and hence the creation and deletion of
channels.

This module itself is a client of the Universal Serial Bus Driver (USBD). All interaction with
the USB buses and devices is handled through the USBD.

INITIALIZATION As with standard SIO drivers, this driver must be initialized by calling
usbKeyboardDevInit(). usbKeyboardDevInit() in turn initializes its connection to the
USBD and other internal resources needed for operation. Unlike some SIO drivers, there
are no usbKeyboardLib.c data structures which need to be initialized prior to calling
usbKeyboardDevInit().

Prior to calling usbKeyboardDevInit(), the caller must ensure that the USBD has been
properly initialized by calling - at a minimum - usbdInitialize(). It is also the caller's
responsibility to ensure that at least one USB HCD (USB Host Controller Driver) is attached
to the USBD - using the USBD function usbdHcdAttach() - before keyboard operation can
begin. However, it is not necessary for usbdHcdAttach() to be called prior to
initializating usbKeyboardLib.c. usbKeyboardLib.c uses the USBD dynamic attach
services and is capable of recognizing USB keyboard attachment and removal on the fly.
Therefore, it is possible for USB HCDs to be attached to or detached from the USBD at run
time - as may be required, for example, in systems supporting hot swapping of hardware.

usbKeyboardLib.c does not export entry points for transmit, receive, and error interrupt
entry points like traditional SIO drivers. All "interrupt" driven behavior is managed by the
underlying USBD and USB HCD(s), so there is no need for a caller (or BSP) to connect
interrupts on behalf of usbKeyboardLib.c. For the same reason, there is no

1 Libraries
usbLib

15

post-interrupt-connect initialization code and usbKeboardLib.c therefore also omits the
"devInit2" entry point.

OTHER FUNCTIONS

usbKeyboardLib.c also supports the SIO ioctl interface. However, attempts to set
parameters like baud rates and start/stop bits have no meaning in the USB environment
and will be treated as no-ops.

DATA FLOW For each USB keyboard connected to the system, usbKeyboardLib.c sets up a USB pipe to
monitor input from the keyboard. Input, in the form of scan codes, is translated to ASCII
codes and placed in an input queue. If SIO callbacks have been installed and
usbKeyboardLib.c has been placed in the SIO "interrupt" mode of operation, then
usbKeyboardLib.c will invoke the "character received" callback for each character in the
queue. When usbKeyboardLib.c has been placed in the "polled" mode of operation,
callbacks will not be invoked and the caller will be responsible for fetching keyboard input
using the driver's pollInput() function.

usbKeyboardLib.c does not support output to the keyboard. Therefore, calls to the
txStartup() and pollOutput() functions will fail. The only "output" supported is the
control of the keyboard LEDs, and this is handled internally by usbKeyboardLib.c.

The caller needs to be aware that usbKeyboardLib.c is not capable of operating in a true
"polled mode" as the underlying USBD and USB HCD always operate in an interrupt mode.

TYPEMATIC REPEAT

USB keyboards do not implement typematic repeat, and it is the responsibility of the host
software to implement this feature. For this purpose, this module creates a task called
typematicThread() which monitors all open channels and injects repeated characters into
input queues as appropriate.

INCLUDE FILES sioLib.h, usbKeyboardLib.h

usbLib

NAME usbLib – USB utility functions

ROUTINES usbTransferTime() – Calculates the bus time required for a USB transfer.
usbRecurringTime() – calculates recurring time for interrupt/isoch transfers.
usbDescrParseSkip() – search for a descriptor and increment buffer.
usbDescrParse() – search a buffer for the a particular USB descriptor
usbConfigCountGet() – Retrieves the number of device configurations.
usbConfigDescrGet() – Reads the full configuration descriptor from device.
usbHidReportSet() – Issues a SET_REPORT request to a USB HID.

Wind River USB for VxWorks 6 API Reference, 2.4
usbListLib

16

usbHidIdleSet() – Issues a SET_IDLE request to a USB HID.
usbHidProtocolSet() – Issues a SET_PROTOCOL request to a USB HID.

DESCRIPTION This module contains miscellaneous functions which may be used by the USB driver
(USBD), USB HCD (USB Host Controller Driver), or by USBD clients.

INCLUDE FILES usbLib.h

usbListLib

NAME usbListLib – Linked list utility functions

ROUTINES usbListLink() – Adds an element to a linked list.
usbListLinkProt() – Adds an element to a list guarded by a mutex.
usbListUnlink() – Removes an entry from a linked list.
usbListUnlinkProt() – Removes an element from a list guarged by a mutex.
usbListFirst() – Returns first entry on a linked list.
usbListNext() – Retrieves the next pStruct in a linked list.

DESCRIPTION This file inmplements a set of general-purpose linked-list functions which are portable
across operating systems. Linked lists are collections of link structures. Each link structure
contains forward and backward list pointers and a pStruct field which typically points to
the caller's structure that contains the link structure.

usbListLink() and usbListUnlink() are used to add and remove link structures in a linked
list. The link field may be placed anywhere in the client's structure. The client's structure
may even contain more than one link field, allowing the structure to be linked to multiple
lists simultaneously.

usbListFirst() retrieves the first structure on a linked list and usbListNext() retrieves
subsequent structures.

INCLUDE FILES usbListLib.h

usbMouseLib

NAME usbMouseLib – USB mouse class drive with vxWorks SIO interface

ROUTINES usbMouseDevInit() – initialize USB mouse SIO driver
usbMouseDevShutdown() – shuts down mouse SIO driver

1 Libraries
usbMouseLib

17

usbMouseDynamicAttachRegister() – Register mouse attach callback
usbMouseDynamicAttachUnregister() – Unregisters mouse attach callback
usbMouseSioChanLock() – Marks SIO_CHAN structure as in use
usbMouseSioChanUnlock() – Marks SIO_CHAN structure as unused

DESCRIPTION This module implements the USB mouse class driver for the vxWorks operating system.
This module presents an interface which is a superset of the vxWorks SIO (serial IO) driver
model. That is, this driver presents the external APIs which would be expected of a
standard "multi-mode serial (SIO) driver" and adds certain extensions which are needed to
address adequately the requirements of the hot-plugging USB environment.

USB mice are described as part of the USB "human interface device" class specification and
related documents. This driver concerns itself only with USB devices which claim to be
mouses as set forth in the USB HID specification and ignores other types of human interface
devices (i.e., keyboard). USB mice can operate according to either a "boot protocol" or to a
"report protocol". This driver enables mouses for operation using the boot protocol.

Unlike most SIO drivers, the number of channels supported by this driver is not fixed.
Rather, USB mice may be added or removed from the system at any time. This creates a
situation in which the number of channels is dynamic, and clients of usbMouseLib.c need
to be made aware of the appearance and disappearance of channels. Therefore, this driver
adds an additional set of functions which allows clients to register for notification upon the
insertion and removal of USB mice, and hence the creation and deletion of channels.

This module itself is a client of the Universal Serial Bus Driver (USBD). All interaction with
the USB buses and devices is handled through the USBD.

INITIALIZATION As with standard SIO drivers, this driver must be initialized by calling
usbMouseDevInit(). usbMouseDevInit() in turn initializes its connection to the USBD
and other internal resources needed for operation. Unlike some SIO drivers, there are no
usbMouseLib.c data structures which need to be initialized prior to calling
usbMouseDevInit().

Prior to calling usbMouseDevInit(), the caller must ensure that the USBD has been
properly initialized by calling - at a minimum - usbdInitialize(). It is also the caller's
responsibility to ensure that at least one USB HCD (USB Host Controller Driver) is attached
to the USBD - using the USBD function usbdHcdAttach() - before mouse operation can
begin. However, it is not necessary for usbdHcdAttach() to be alled prior to initializating
usbMouseLib.c. usbMouseLib.c uses the USBD dynamic attach services and is capable of
recognizing USB keboard attachment and removal on the fly. Therefore, it is possible for
USB HCDs to be attached to or detached from the USBD at run time - as may be required,
for example, in systems supporting hot swapping of hardware.

usbMouseLib.c does not export entry points for transmit, receive, and error interrupt entry
points like traditional SIO drivers. All "interrupt" driven behavior is managed by the
underlying USBD and USB HCD(s), so there is no need for a caller (or BSP) to connect
interrupts on behalf of usbMouseLib.c. For the same reason, there is no

Wind River USB for VxWorks 6 API Reference, 2.4
usbOhci

18

post-interrupt-connect initialization code and usbKeboardLib.c therefore also omits the
"devInit2" entry point.

OTHER FUNCTIONS

usbMouseLib.c also supports the SIO ioctl interface. However, attempts to set parameters
like baud rates and start/stop bits have no meaning in the USB environment and will be
treated as no-ops.

DATA FLOW For each USB mouse connected to the system, usbMouseLib.c sets up a USB pipe to monitor
input from the mouse. usbMouseLib.c supports only the SIO "interrupt" mode of
operation. In this mode, the application must install a "report callback" through the driver's
callbackInstall() function. This callback is of the form:

typedef STATUS (*REPORT_CALLBACK)
 (
 void *arg,
 pHID_MSE_BOOT_REPORT pReport
);

usbMouseLib.c will invoke this callback for each report received. The STATUS returned by
the callback is ignored by usbMouseLib.c. If the application is unable to accept a report, the
report is discarded. The report structure is defined in usbHid.h, which is included
automatically by usbMouseLib.h.

usbMouseLib.c does not support output to the mouse. Therefore, calls to the txStartup()
and pollOutput() functions will fail.

INCLUDE FILES sioLib.h, usbMouseLib.h

usbOhci

NAME usbOhci – USB OHCI Driver Entry and Exit points

ROUTINES usbOhciInstantiate() – instantiate the USB OHCI Host Controller Driver.
usbOhcdInit() – initialize the USB OHCI Host Controller Driver.
usbOhciExit() – uninitialize the USB OHCI Host Controller Driver.
vxbUsbOhciRegister() – registers OHCI driver with vxBus

DESCRIPTION This provides the entry and exit points for the USB OHCI driver.

INCLUDE FILES usbOhci.h, usbOhciRegisterInfo.h, usbOhciTransferManagement.h,
usbOhciRootHubEmulation.c, usbOhciTransferManagement.c, usbOhciIsr.c,
rebootLib.h

1 Libraries
usbPegasusEnd

19

usbOhciDebug

NAME usbOhciDebug – USB OHCI Debug Routines

ROUTINES usbOhciDumpRegisters() – dump registers contents.
usbOhciDumpMemory() – dump memory contents
usbOhciDumpEndpointDescriptor() – dump endpoint descriptor contents
usbOhciDumpPeriodicEndpointList() – dump periodic endpoint descriptor list
usbOhciDumpGeneralTransferDescriptor() – dump general transfer descriptor
usbOhciDumpPendingTransfers() – dump pending transfers
usbOhciInitializeModuleTestingFunctions() – obtaines entry points

DESCRIPTION This file contains functions for display the USB OHCI registers, memory, endpoint
desriptor, transfer descriptor etc. This interfaces exposed from this file can used to debug
the OHCI driver.

INCLUDE FILES usbOhci.h, usbOhciRegisterInfo.h, usbOhciTransferManagement.h

usbPegasusEnd

NAME usbPegasusEnd – USB Ethernet driver for the Pegasus USB-Ethernet adapter

ROUTINES usbPegasusEndInit() – initializes the pegasus library
pegasusMuxTxRestart() – place muxTxRestart on netJobRing
pegasusOutIrpInUse() – determines if any of the output IRP's are in use
usbPegasusEndLoad() – initialize the driver and device
usbPegasusDynamicAttachRegister() – register PEGASUS device attach callback
usbPegasusDynamicAttachUnregister() – unregisters PEGASUS attach callbackx
usbPegasusDevLock() – marks USB_PEGASUS_DEV structure as in use
usbPegasusDevUnlock() – marks USB_PEGASUS_DEV structure as unused
usbPegasusReadReg() – read contents of specified and print
usbPegasusEndUninit() – un-initializes the pegasus class driver

DESCRIPTION This module is the USB communication class, Ethernet Sub class driver for the vxWorks
operating system. This module presents an interface which becomes an underlying layer of
the vxWorks END (Enhanced Network Driver) model. It also adds certain APIs that are
necessary for some additional
features supported by an usb - Ethernet adapter.

Wind River USB for VxWorks 6 API Reference, 2.4
usbPegasusEnd

20

USB - Ethernet adapter devices are described in the USB Communication Devices class
definitions. The USB - Ethernet adapter falls under the Ethernet Control model under the
communications device class specification. This driver is meant for the usb-ethernet
adapters built around the Pegasus-ADM Tek AN986 chip.

DEVICE FUNCTIONALITY

The Pegasus USB to ethernet adapter chip ASIC provides bridge from USB to 10/100 MII
and USB to 1M HomePNA network.The Pegasus Chip, is compliant with supports USB 1.0
and 1.1 specifications. This device supports 4 End Points. The first,is the default end point
which is of control type (with max 8 byte packet). The Second and the Third are BULK IN
(Max 64 Byte packet) and BULK OUT (Max 64 Byte Packet) end points for transfering the
data into the Host and from the Host respectively. The Fourth End Point, is an Interrupt end
point (Max 8 bytes) that is not currently used.

This device supports One configuration which contains One Interface. This interface
contains the 3 end points i.e. the Bulk IN/Out and interrupt end points.

Apart from the traditional commands, the device supports 3 Vendor specific commands.
These commands are described in the Pegasus specification manual. The device supports
interface to EEPROM for storing the Ethernet MAC address and other configuration details.
It also supports interface to SRAM for storing the packets received and to be transmitted.

Packets are passed between the chip and host via bulk transfers. There is an interrupt
endpoint mentioned in the specification manual. However it was not used. This device can
work in 10Mbps half and Full duplex and 100 Mbps half and Full Duplex modes. The MAC
supports a 64 entry multicast filter. This device is IEEE 802.3 MII compliant and supports
IEEE 802.3x flow control. It also supports for configurable threshold for transmitting
PAUSE frame. Supports Wakeup frame, Link status change and magic packet frame.

The device supports the following (vendor specific)commands :

USB_REQ_REG_GET
Retrieves the Contents of the specified register from the device.

USB_REQ_REG_SET_SINGLE
Sets the contents of the specified register (Single) in the device

USB_REQ_REG_SET_MULTIPLE
Sets the contents of the specified register (Multiple) in the device

DRIVER FUNCTIONALITY

The function usbPegasusEndInit() is called at the time of usb system initialization. It
registers as a client with the USBD. This function also registers for the dynamic attachment
and removal of the usb devices. Ideally we should be registering for a specific Class ID and
a Subclass Id..but since the device doesn't support these parameters in the Device
descriptor, we register for ALL kinds of devices. We maintain a linked list of the ethernet
devices on USB in a linked list "pegasusDevList". This list is created and maintained using
the linked list library provided as a part of the USBD. Useful API calls are provided to find
if the device exists in the list, by taking either the device "nodeId" or the vendorId and

1 Libraries
usbPrinterLib

21

productId as the parameters. The Callback function registered for the dynamic
attachment/removal, pegasusAttachCallback() will be called if any device is found
on/removed from the USB. This function first checks whether the device already exists in
the List. If not, it will parse through the device descriptor, findout the Vendor Id and
Product Id. If they match with Pegasus Ids, the device will be added to the list of ethernet
devices found on the USB.

pegasusDevInit() does most of the device structure initialization afterwards. This routine
checks if the device corresponding to the nodeId matches to any of the devices in the
pegasusDevList. If yes a pointer structure on the list will be assigned to one of the device
structure parameters. After this the driver will parse through the configuration descriptor,
interface descriptor to findout the InPut and OutPut end point details. Once we find these
end point descriptors we create input and output Pipes and assign them to the
corresponding structure. It then resets the device.

This driver, is a Polled mode driver as such. It keeps listening on the input pipe by calling
"pegasusListenToInput" all the time, from the first time it is called by pegasusStart(). This
acquires a buffer from the endLayer and uses it in the IRP. Unless the IRP is cancelled (by
pegasusStop()), it will be submitted again and again. If cancelled, it will again start
listening only if pegasusStart() is called. If there is data (IRP successfull), then it will be
passed on to END by calling pegasusEndRecv().

Rest of the functionality of the driver is straight forward and most of the places achieved
by sending a vendor specific command from the list described above, to the device.

INCLUDE FILES end.h, endLib.h, lstLib.h, etherMultiLib.h, usb/usbPlatform.h, usb/usb.h,
usb/usbListLib.h, usb/usbdLib.h, usb/usbLib.h, drv/usb/usbPegasusEnd.h

SEE ALSO muxLib, endLib, usbLib, usbdLib, ossLib, "Writing and Enhanced Network Driver" and,
"USB Developer's Kit User's Guide"

usbPrinterLib

NAME usbPrinterLib – USB printer class drive with vxWorks SIO interface

ROUTINES usbPrinterDevInit() – initialize USB printer SIO driver
usbPrinterDevShutdown() – shuts down printer SIO driver
usbPrinterDynamicAttachRegister() – Register printer attach callback
usbPrinterDynamicAttachUnregister() – Unregisters printer attach callback
usbPrinterSioChanLock() – Marks SIO_CHAN structure as in use
usbPrinterSioChanUnlock() – Marks SIO_CHAN structure as unused

DESCRIPTION This module implements the USB printer class driver for the vxWorks operating system.
This module presents an interface which is a superset of the vxWorks SIO (serial IO) driver

Wind River USB for VxWorks 6 API Reference, 2.4
usbPrinterLib

22

model. That is, this driver presents the external APIs which would be expected of a
standard "multi-mode serial (SIO) driver" and adds certain extensions which are needed to
address adequately the requirements of the hot-plugging USB environment.

USB printers are described in the USB Printer Class definition. This class driver
specification presents two kinds of printer: uni-directional printers (output only) and
bi-directional printers (capable of both output and input). This class driver is capable of
handling both kinds of printers. If a printer is uni-directional, then the SIO driver interface
only allows characters to be written to the printer. If the printer is bi-directional, then the
SIO interface allows both output and input streams to be written/read.

Unlike most SIO drivers, the number of channels supported by this driver is not fixed.
Rather, USB printers may be added or removed from the system at any time. This creates a
situation in which the number of channels is dynamic, and clients of usbPrinterLib.c need
to be made aware of the appearance and disappearance of channels. Therefore, this driver
adds an additional set of functions which allows clients to register for notification upon the
insertion and removal of USB printers, and hence the creation and deletion of channels.

This module itself is a client of the Universal Serial Bus Driver (USBD). All interaction with
the USB buses and devices is handled through the USBD.

INITIALIZATION As with standard SIO drivers, this driver must be initialized by calling
usbPrinterDevInit(). usbPrinterDevInit() in turn initializes its connection to the USBD
and other internal resources needed for operation. Unlike some SIO drivers, there are no
usbPrinterLib.c data structures which need to be initialized prior to calling
usbPrinterDevInit().

Prior to calling usbPrinterDevInit(), the caller must ensure that the USBD has been
properly initialized by calling - at a minimum - usbdInitialize(). It is also the caller's
responsibility to ensure that at least one USB HCD (USB Host Controller Driver) is attached
to the USBD - using the USBD function usbdHcdAttach() - before printer operation can
begin. However, it is not necessary for usbdHcdAttach() to be alled prior to initializating
usbPrinterLib.c. usbPrinterLib.c uses the USBD dynamic attach services and is capable of
recognizing USB printer attachment and removal on the fly. Therefore, it is possible for
USB HCDs to be attached to or detached from the USBD at run time - as may be required,
for example, in systems supporting hot swapping of hardware.

usbPrinterLib.c does not export entry points for transmit, receive, and error interrupt entry
points like traditional SIO drivers. All "interrupt" driven behavior is managed by the
underlying USBD and USB HCD(s), so there is no need for a caller (or BSP) to connect
interrupts on behalf of usbPrinterLib.c. For the same reason, there is no
post-interrupt-connect initialization code and usbPrinterLib.c therefore also omits the
"devInit2" entry point.

OTHER FUNCTIONS

usbPrinterLib.c also supports the SIO ioctl interface. However, attempts to set
parameters like baud rates and start/stop bits have no meaning in the USB environment
and will be treated as no-ops.

1 Libraries
usbQueueLib

23

Additional ioctl functions have been added to allow the caller to retrieve the USB printer's
"device ID" string, the type of printer (uni- or bi-directional), and the current printer status.
The "device ID" string is discussed in more detail in the USB printer class specification and
is based on the IEEE-1284 "device ID" string used by most 1284-compliant printers. The
printer status function can be used to determine if the printer is selected, out of paper, or has
an error condition.

DATA FLOW For each USB printer connected to the system, usbPrinterLib.c sets up a USB pipe to output
bulk data to the printer. This is the pipe through which printer control and page description
data will be sent to the printer. Additionally, if the printer is bi-directional,
usbPrinterLib.c also sets up a USB pipe to receive bulk input data from the printer. The
meaining of data received from a bi-directional printer depends on the specific
make/model of printer.

The USB printer SIO driver supports only the SIO "interrupt" mode of operation -
SIO_MODE_INT. Any attempt to place the driver in the polled mode will return an error.

INCLUDE FILES sioLib.h, usbPrinterLib.h

usbQueueLib

NAME usbQueueLib – O/S-independent queue functions

ROUTINES usbQueueCreate() – Creates an OS-independent queue structure.
usbQueueDestroy() – Destroys a queue.
usbQueuePut() – Puts a message into a queue.
usbQueueGet() – Retrieves a message from a queue.

DESCRIPTION This file contains a generic implementation of operating system-independent queue
routines which are built on top of the the ossLib library's mutex and semaphore routines.

The caller creates a queue of depth "n" by calling usbQueueCreate() and receives a
QUEUE_HANDLE in response. The QUEUE_HANDLE must be used in all subsequent calls to
usbQueuePut(), usbQueueGet(), and usbQueueDestroy().

Each entry in a queue is described by a USB_QUEUE structure which contains msg, wParam,
and lParam fields. The values of these fields are arbitrary and may be used in any way by
the calling application.

INCLUDE FILES usbQueueLib.h

Wind River USB for VxWorks 6 API Reference, 2.4
usbSpeakerLib

24

usbSpeakerLib

NAME usbSpeakerLib – USB speaker class drive with vxWorks SEQ_DEV interface

ROUTINES usbSpeakerDevInit() – initialize USB speaker SIO driver
usbSpeakerDevShutdown() – shuts down speaker SIO driver
usbSpeakerDynamicAttachRegister() – Register speaker attach callback
usbSpeakerDynamicAttachUnregister() – Unregisters speaker attach callback
usbSpeakerSeqDevLock() – Marks SEQ_DEV structure as in use
usbSpeakerSeqDevUnlock() – Marks SEQ_DEV structure as unused

DESCRIPTION This module implements the class driver for USB audio devices. USB audio devices are a
subset of the USB audio class, and this module handles only those parts of the USB audio
class definition which are relevant to the operation of USB speakers and microphones.

This module presents a modified VxWorks SEQ_DEV interface to its callers. The SEQ_DEV
interface was chosen because, of the existing VxWorks driver models, it best supports the
streaming data transfer model required by isochronous devices such as USB audio devices.
As with other VxWorks USB class drivers, the standard driver interface has been expanded
to support features unique to the USB and to audio devices in general. Functions have been
added to allow callers to recognize the dynamic attachment and removal of speaker
devices. IOCTL functions have been added to retrieve and control additional settings
related to speaker operation.

This usbSpeakerLib has been enhanced from previously releases to support USB
microphones usually in the form of USB headsets.

INITIALIZATION As with standard SEQ_DEV drivers, this driver must be initialized by calling
usbSpeakerDevInit(). usbSpeakerDevInit() in turn initializes its connection to the USBD
and other internal resources needed for operation. Unlike some SEQ_DEV drivers, there
are no usbSpeakerLib.c data structures which need to be initialized prior to calling
usbSpeakerDevInit().

Prior to calling usbSpeakerDevInit(), the caller must ensure that the USBD has been
properly initialized by calling - at a minimum - usbdInitialize(). It is also the caller's
responsibility to ensure that at least one USB HCD (USB Host Controller Driver) is attached
to the USBD.

usbSpeakerLib.c uses the USBD dynamic attach services and is capable of recognizing USB
audio devices attachment and removal on the fly. Therefore, it is possible for USB HCDs
to be attached to or detached from the USBD at run time - as may be required, for example,
in systems supporting hot swapping of hardware.

RECOGNIZING & HANDLING USB SPEAKERS

As noted earlier, the operation of USB speakers is defined in the USB Audio Class
Specification. Speakers, loosely defined, are those USB audio devices which provide an

1 Libraries
usbSpeakerLib

25

"Output Terminal". For each USB audio device, usbSpeakerLib examines the descriptors
which enumerate the "units" and "terminals" contained within the device. These descriptors
define both which kinds of units/terminals are present and how they are connected.

If an "Output Terminal" is found, usbSpeakerLib traces the device's internal connections to
determine which "Input Terminal" ultiminately provides the audio stream for the "Output
Terminal" and which, if any, Feature Unit is responsible for controlling audio stream
attributes like volume. Once having built such an internal "map" of the device,
usbSpeakerLib configures the device and waits for a caller to provide a stream of audio
data. If no "Output Terminal" is found, usbSpeakerLib ignores the audio device.

After determining that the audio device contains an Output Terminal, usbSpeakerLib
builds a list of the audio formats supported by the device. usbSpeakerLib supports only
AudioStreaming interfaces (no MidiStreaming is supported).

For each USB speaker attached to the system and properly recognized by usbSpeakerLib,
usbSpeakerLib creates a SEQ_DEV structure to control the speaker. Each speaker is
uniquely identified by the pointer to its corresponding SEQ_DEV structure.

DYNAMIC ATTACHMENT & REMOVAL OF SPEAKERS

As with other USB devices, USB speakers may be attached to or detached from the system
dynamically. usbSpeakerLib uses the USBD's dynamic attach services in order to
recognize these events. Callers of usbSpeakerLib may, in turn, register with
usbSpeakerLib for notification when USB speakers are attached or removed using the
usbSpeakerDynamicAttachRegister() function. When a USB speaker is attached or
removed, usbSpeakerLib invokes the attach notification callbacks for all registered callers.
The callback is passed the pointer to the affected SEQ_DEV structure and a code indicated
whether the speaker is being attached or removed.

usbSpeakerLib maintains a usage count for each SEQ_DEV structure. Callers can
increment the usage count by calling usbSpeakSeqDevLock() and can decrement the
usage count by calling usbSpeakerSeqDevUnlock(). When a USB audio device is
removed from the system and its usage count is 0, usbSpeakerLib automatically removes
all data structures, including the SEQ_DEV structure itself, allocated on behalf of the device.
Sometimes, however, callers rely on these data structures and must properly recognize the
removal of the device before it is safe to destroy the underlying data structures. The
lock/unlock functions provide a mechanism for callers to protect these data structures as
needed.

RECOGNIZING & HANDLING USB MICROPHONES

As with other USB speakers, microphones may be attached to or detached from the system
dynamically. usbSpeakerLib uses the USBD's dynamic attach services in order to
recognize these events. When a USB microphone is attached or removed, usbSpeakerLib
invokes the attach notification callbacks for all registered callers. The callback is passed the
pointer to the affected SEQ_DEV structure and a code indicated whether the microphone is
being attached or removed.

DATA FLOW - Speakers

Wind River USB for VxWorks 6 API Reference, 2.4
usbTargDefaultPipe

26

Before sending audio data to a speaker device, the caller must specify the data format (e.g.,
PCM, MPEG) using an IOCTL (see below). The USB speaker itself must support the
indicated (or a similar) data format.

USB speakers rely on an uninterrupted, time-critical stream of audio data. The data is sent
to the speaker through an isochronous pipe. In order for the data flow to continue
uninterrupted, usbSpeakerLib internally uses a double-buffering scheme. When data is
presented to usbSpeakerLib's sd_seqWrt() function by the caller, usbSpeakerLib copies
the data into an internal buffer and immediately releases the caller's buffer. The caller
should immediately try to pass the next buffer to usbSpeakerLib. When usbSpeakerLib's
internal buffer is filled, it will block the caller until such time as it can accept the new data.
In this manner, the caller and usbSpeakerLib work together to ensure that an adequate
supply of audio data will always be available to continue isochronous transmission
uninterrupted.

Audio play begins after usbSpeakerLib has accepted half a second of audio data or when
the caller closes the audio stream, whichever happens first. The caller must use the IOCTLs
to "open" and "close" each audio stream. usbSpeakerLib relies on these IOCTLs to manage
its internal buffers correctly.

DATA FLOW - Microphone

When connecting a microphone, the caller must select from the formats available on the
microphone, a format appropriate for the desired application. Then using IOCTLs, the
caller specifies the format and the interval in which the caller will obtain the data from the
usbSpeakerLib. The usbSpeakerLib will then allocate an appropriate buffer size and post
isochronous IN requests to the USB microphone, filling the buffer as the IN requests
complete.

The caller then posts a sd_seqRd to the usbSpeakerLib, at appropriate intervals, to obtain
the audio for furthur processing. Note that the reader will not block waiting for data, but
will return all available data up to the requested buffer size. The caller should always check
the return value of the read.

As with the USB speakers, double buffering is used to attempt to provde a continuous
stream of data, however if caller cannot service the data at a sustainable rate, overwriting of
the data buffers may occur.

A demonstration program using a USB headset (both speaker and microphone) is provided
in source form as a configlette. See the Headset Denonstration section in the documentation

INCLUDE FILES seqIo.h, usbAudio.h, usbSpeakerLib.h

usbTargDefaultPipe

NAME usbTargDefaultPipe – Handles the requests to the default control pipe

1 Libraries
usbTargInitExit

27

ROUTINES usbTargControlResponseSend() – sends data to host on the control pipe
usbTargControlStatusSend() – sends control transfer status to the host
usbTargControlPayloadRcv() – receives data on the default control pipe
usbTargSetupErpCallback() – handles the setup packet

DESCRIPTION This module handles the standard requests to the default pipe by calling the callback
functions present in the callback table. It also provides the interfaces for non-standard
control data transfers on the default control pipe to the USB Target Application.

INCLUDE FILES usb/usbPlatform.h, string.h, usb/ossLib.h, usb/usb.h, usb/usbHandleLib.h,
usb/target/HalLib.h, usb/target/usbHalCommon.h, usb/target/usbTargLib.h,
usb/target/usbTargUtil.h, usb/target/usbPeriphInstr.h

usbTargDeviceControl

NAME usbTargDeviceControl – modules for handling pipe specific requests

ROUTINES usbTargCurrentFrameGet() – retrieves the current USB frame number
usbTargSignalResume() – drives RESUME signalling on USB
usbTargDeviceFeatureSet() – sets or enable a specific feature
usbTargDeviceFeatureClear() – clears a specific feature
usbTargMgmtCallback() – invoked when HAL detects a management event

DESCRIPTION This module provides interfaces for handling device control and status requests.

INCLUDE FILES usb/usbPlatform.h, string.h, usb/ossLib.h, usb/usb.h, usb/usbHandleLib.h,
usb/target/HalLib.h, usb/target/usbHalCommon.h, usb/target/usbTargLib.h,
usb/target/usbTargUtil.h, usb/target/usbPeriphInstr.h

usbTargInitExit

NAME usbTargInitExit – USB Initialization/Uninitialization modules

ROUTINES usbTargInitialize() – initializes the USB Target Library
usbTargShutdown() – shutdown the USB target library
usbTargTcdAttach() – to attach the TCD to the target library
usbTargTcdDetach() – detaches a USB target controller driver
usbTargEnable() – enables target channel onto USB
usbTargDisable() – disables a target channel

Wind River USB for VxWorks 6 API Reference, 2.4
usbTargKbdLib

28

DESCRIPTION This module implements the hardware-independent USB target API. It provides the
required interfaces for initializing and un-initializing the USB Target Library and the TCD.

USB Target Library must be initialized by calling usbTargInitialize(). Before operation
can begin, at least one TCD must be attached to usb Target Library by calling
usbTargTcdAttach(). In response to a successful TCD attachment. A handle is
returned.This handle must be used in all subsequent calls to usbTargLib to identify a given
target channel.

USB devices (targets) almost never initiate activity on the USB (the exception being
RESUME signalling). So, as part of the call to usbTargTcdAttach(), the caller must provide
a pointer to a USB_TARG_CALLBACK_TABLE structure. This table contains a collection of
callback function pointers initialized by the caller prior to invoking the
usbTargTcdAttach() function. Through these callbacks, usbTargLib notifies the calling
application of various USB events and requests from the host.

INCLUDE FILES usb/usbPlatform.h, usb/ossLib.h, usb/usb.h, usb/usbListLib.h, usb/usbHandleLib.h,
usb/target/HalLib.h, usb/target/usbHalCommon.h, usb/target/usbTargLib.h,
usb/target/usbTargUtil.h, usb/target/usbPeriphInstr.h

usbTargKbdLib

NAME usbTargKbdLib – USB keyboard target exerciser/demonstration

ROUTINES usbTargKbdCallbackInfo() – returns usbTargKbdLib callback table
usbTargKbdInjectReport() – injects a "boot report"

DESCRIPTION This module contains code to exercise the usbTargLib by emulating a rudimentary USB
keyboard. This module will generally be invoked by usbTool or a similar USB
test/exerciser application.

It is the caller's responsibility to initialize usbTargLib and attach a USB TCD to it. When
attaching a TCD to usbTargLib, the caller must pass a pointer to a table of callbacks
required by usbTargLib. The address of this table and the "callback parameter" required by
these callbacks may be obtained by calling usbTargKbdCallbackInfo(). It is not necessary
to initialize the usbTartKbdLib or to shut it down. It performs all of its operations in
response to callbacks from usbTargLib.

This module also exports a function called usbTargKbdInjectReport(). This function
allows the caller to inject a "boot report" into the interrupt pipe. This allows for rudimentary
emulation of keystrokes.

INCLUDE FILES usb/usbPlatform.h, string.h, usb/usb.h, usb/usbHid.h, usb/usbDescrCopyLib.h,
usb/target/usbTargLib.h, drv/usb/target/usbTargKbdLib.h

1 Libraries
usbTargPipeFunc

29

usbTargMsLib

NAME usbTargMsLib – Mass Storage routine library

ROUTINES usbMsCBWGet() – get the last mass storage CBW received
usbMsCBWInit() – initialize the mass storage CBW
usbMsCSWGet() – get the current CSW
usbMsCSWInit() – initialize the CSW
usbMsBulkInStall() – stall the bulk-in pipe
usbMsBulkInUnStall() – unstall the bulk-in pipe
usbMsBulkOutStall() – stall the bulk-out pipe
usbMsBulkOutUnStall() – unstall the bulk-out pipe
usbTargMsCallbackInfo() – returns usbTargPrnLib callback table
usbMsBulkInErpInit() – initialize the bulk-in ERP
usbMsBulkOutErpInit() – initialize the bulk-Out ERP
usbMsIsConfigured() – test if the device is configured
usbMsBulkInErpInUseFlagGet() – get the Bulk-in ERP inuse flag
usbMsBulkOutErpInUseFlagGet() – get the Bulk-Out ERP inuse flag
usbMsBulkInErpInUseFlagSet() – set the Bulk-In ERP inuse flag
usbMsBulkOutErpInUseFlagSet() – set the Bulk-Out ERP inuse flag
usbMsTestTxCallback() – invoked after test data transmitted
usbMsTestRxCallback() – invoked after test data is received

DESCRIPTION This module defines those routines directly referenced by the USB peripheral stack; namely,
the routines that intialize the USB_TARG_CALLBACK_TABLE data structure. Additional
routines are also provided which are specific to the mass storage driver.

INCLUDES vxWorks.h, stdio.h, errnoLib.h, logLib.h, string.h, blkIo.h, usb/usbPlatform.h, usb/usb.h,
usb/usbDescrCopyLib.h, usb/usbLib.h, usb/target/usbTargLib.h,
drv/usb/usbBulkDevLib.h, drv/usb/target/usbTargMsLib.h,
drv/usb/target/usbTargRbcLib.h

usbTargPipeFunc

NAME usbTargPipeFunc – modules for handling pipe specific requests

ROUTINES usbTargPipeCreate() – creates a pipe for communication on an endpoint
usbTargPipeDestroy() – destroys an endpoint pipe
usbTargTransfer() – to transfer data through a pipe
usbTargTransferAbort() – cancels a previously submitted USB_ERP
usbTargPipeStatusSet() – sets pipe stalled/unstalled status

Wind River USB for VxWorks 6 API Reference, 2.4
usbTargPrnLib

30

usbTargPipeStatusGet() – returns the endpoint status

DESCRIPTION This module provides interfaces for handling the various pipe specific requests.

It provides interfaces for creating and destroying pipes, submit and cancel ERPs and to get
and set the pipe status information.

INCLUDE FILES usb/usbPlatform.h, string.h, usb/ossLib.h, usb/usb.h, usb/usbHandleLib.h,
usb/target/HalLib.h, usb/target/usbHalCommon.h, usb/target/usbTargLib.h,
usb/target/usbTargUtil.h, usb/target/usbPeriphInstr.h

usbTargPrnLib

NAME usbTargPrnLib – USB printer target exerciser/demonstration

ROUTINES usbTargPrnCallbackInfo() – returns usbTargPrnLib callback table
usbTargPrnDataInfo() – returns buffer status/info
usbTargPrnDataRestart() – restarts listening ERP

DESCRIPTION This module contains code to exercise the usbTargLib by emulating a rudimentary USB
printer. This module will generally be invoked by usbTool or a similar USB test/exerciser
application.

It is the caller's responsibility to initialize usbTargLib and attach a USB TCD to it. When
attaching a TCD to usbTargLib, the caller must pass a pointer to a table of callbacks
required by usbTargLib. The address of this table and the "callback parameter" required by
these callbacks may be obtained by calling usbTargPrnCallbackInfo(). It is not necessary
to initialize the usbTartPrnLib or to shut it down. It performs all of its operations in
response to callbacks from usbTargLib.

This module also exports a function, usbTargPrnBfrInfo(), which allows a test application
to retrieve the current status of the bulk output buffer.

INCLUDE FILES usb/usbPlatform.h, string.h, usb/usb.h, usb/usbPrinter.h, usb/usbDescrCopyLib.h,
usb/target/usbTargLib.h, drv/usb/target/usbTargPrnLib.h, usb/target/usbHalCommon.h

usbTargRbcCmd

NAME usbTargRbcCmd – Reduced Block Command set routine library

1 Libraries
usbTargRbcLib

31

ROUTINES usbTargRbcRead() – read data from the RBC device
usbTargRbcCapacityRead() – read the capacity of the RBC device
usbTargRbcStartStop() – start or stop the RBC device
usbTargRbcPreventAllowRemoval() – prevent or allow the removal of the RBC device
usbTargRbcVerify() – verify the last data written to the RBC device
usbTargRbcWrite() – write to the RBC device
usbTargRbcInquiry() – retrieve inquiry data from the RBC device
usbTargRbcModeSelect() – select the mode parameter page of the RBC device
usbTargRbcModeSense() – retrieve sense data from the RBC device
usbTargRbcModeSelect10() – select the mode parameter page of the RBC device
usbTargRbcModeSense10() – request for mode sense 10 command
usbTargRbcTestUnitReady() – test if the RBC device is ready
usbTargRbcBufferWrite() – write micro-code to the RBC device
usbTargRbcFormat() – format the RBC device
usbTargRbcPersistentReserveIn() – send reserve data to the host
usbTargRbcPersistentReserveOut() – reserve resources on the RBC device
usbTargRbcRelease() – release a resource on the RBC device
usbTargRbcRequestSense() – request sense data from the RBC device
usbTargRbcReserve() – reserve a resource on the RBC device
usbTargRbcCacheSync() – synchronize the cache of the RBC device
usbTargRbcBlockDevGet() – return opaque pointer to the RBC BLK I/O DEV device
usbTargRbcBlockDevSet() – set the pointer to the RBC BLK I/O DEV device structure.
usbTargRbcBlockDevCreate() – create an RBC BLK_DEV device.
usbTargRbcVendorSpecific() – vendor specific call

DESCRIPTION This module implements a framework based on the RBC (Reduced Block Command) set.
These routines are invoked by the USB 2.0 mass storage driver based on the contents of the
USB CBW (command block wrapper).

INCLUDES vxWorks.h, disFsLib.h, dcacheCbio.h, ramDrv.h, usrFdiskPartLib.h, usb/usbPlatform.h,
usb/usb.h, usb/target/usbTargLib.h, drv/usb/target/usbTargMsLib.h,
drv/usb/target/usbTargRbcCmd.h, drv/xbd/xbd.h, xbdRamDisk.h

usbTargRbcLib

NAME usbTargRbcLib – USB Reduced Block Command set routine library

ROUTINES bulkOutErpCallbackCBW() – process the CBW on bulk-out pipe
bulkInErpCallbackCSW() – send the CSW on bulk-in pipe
bulkInErpCallbackData() – process end of data phase on bulk-in pipe
bulkOutErpCallbackData() – process end of data phase on bulk-out pipe

Wind River USB for VxWorks 6 API Reference, 2.4
usbTargUtil

32

DESCRIPTION This module defines the USB_ERP callback routines directly used by the USB 2.0 mass
storage driver. These callback routines invoke the routines defined in the file
usbTargRbcCmd.c.

INCLUDES vxWorks.h, ramDrv.h, cbioLib.h, logLib.h, usb/usbPlatform.h, usb/usb.h,
usb/usbdLib.h, usb/target/usbTargLib.h, drv/usb/usbBulkDevLib.h,
drv/usb/target/usbTargMsLib.h, drv/usb/target/usbTargRbcCmd.h, drv/xbd/xbd.h

usbTargUtil

NAME usbTargUtil – Utility Functions

ROUTINES

DESCRIPTION This file consists of utility functions which are used by the usbTarget Library files.

INCLUDE FILES usb/usbPlatform.h, string.h, usb/ossLib.h, usb/usb.h, usb/usbHandleLib.h,
usb/target/HalLib.h, usb/target/usbTargLib.h, usb/target/usbTargUtil.h

usbTcdIsp1582InitExit

NAME usbTcdIsp1582InitExit – Initialization/uninitialization for ISP 1582 TCD

ROUTINES usbTcdIsp1582EvalExec() – single Entry Point for ISP 1582 TCD

DESCRIPTION This file implements the initialization and uninitialization modules of TCD (Target
Controller Driver) for the Philips ISP 1582.

This module exports a single entry point, usbTcdIsp1582EvalExec(). This is the
USB_TCD_EXEC_FUNC for this TCD. The caller passes requests to the TCD by constructing
TRBs, or Target Request Blocks, and passing them to this entry point.

TCDs are initialized by invoking the TCD_FNC_ATTACH function. In response to this
function, the TCD returns information about the target controller, including its USB speed,
the number of endpoints it supports etc.

INCLUDE FILES usb/usbPlatform.h, usb/ossLib.h, usb/usbPciLib.h, usb/target/usbHalCommon.h,
usb/target/usbTcd.h, drv/usb/target/usbIsp1582Eval.h,
drv/usb/target/usbTcdIsp1582EvalLib.h, drv/usb/target/usbIsp1582Tcd.h,
drv/usb/target/usbIsp1582Debug.h, rebootLib.h, usb/target/usbPeriphInstr.h

1 Libraries
usbTcdPdiusbd12InitExit

33

usbTcdNET2280InitExit

NAME usbTcdNET2280InitExit – initialization/uninitialization for NET2280 TCD

ROUTINES usbTcdNET2280Exec() – single Entry Point for NETCHIP 2280 TCD

DESCRIPTION This file implements the initialization and uninitialization modules of TCD (Target
Controller Driver) for the Netchip NET2280.

This module exports a single entry point, usbTcdNET2280Exec(). This is the
USB_TCD_EXEC_FUNC for this TCD. The caller passes requests to the TCD by constructing
TRBs, or Target Request Blocks, and passing them to this entry point.

TCDs are initialized by invoking the TCD_FNC_ATTACH function. In response to this
function, the TCD returns information about the target controller, including its USB speed,
the number of endpoints it supports etc.

INCLUDE FILES usb/usbPlatform.h, usb/ossLib.h, usb/usbPciLib.h, usb/target/usbHalCommon.h,
usb/target/usbTcd.h, drv/usb/target/usbNET2280.h, drv/usb/target/usbNET2280Tcd.h,
drv/usb/target/usbTcdNET2280Lib.h, drv/usb/target/usbTcdNET2280Debug.h,
rebootLib.h, usb/target/usbPeriphInstr.h

usbTcdPdiusbd12InitExit

NAME usbTcdPdiusbd12InitExit – Initialization/uninitialization for PDIUSBD12 TCD

ROUTINES usbTcdPdiusbd12EvalExec() – single entry point for PDIUSBD12 TCD

DESCRIPTION This file implements the initialization and uninitialization modules of TCD (Target
Controller Driver) for the Philips PDIUSBD12.

This module exports a single entry point, usbTcdPdiusbd12EvalExec(). This is the
USB_TCD_EXEC_FUNC for this TCD. The caller passes requests to the TCD by constructing
TRBs, or Target Request Blocks, and passing them to this entry point.

TCDs are initialized by invoking the TCD_FNC_ATTACH function. In response to this
function, the TCD returns information about the target controller, including its USB speed,
the number of endpoints it supports etc.

INCLUDE FILES usb/usbPlatform.h, usb/ossLib.h, usb/target/usbIsaLib.h,
drv/usb/target/usbPdiusbd12Eval.h, drv/usb/target/usbTcdPdiusbd12EvalLib.h,
drv/usb/target/usbPdiusbd12Tcd.h, drv/usb/target/usbPdiusbd12Debug.h,
usb/target/usbPeriphInstr.h

Wind River USB for VxWorks 6 API Reference, 2.4
usbTransUnitData

34

usbTransUnitData

NAME usbTransUnitData – Translation Unit Data Transfer Interfaces

ROUTINES usbdPipeCreate() – Creates a USB pipe for subsequent transfers.
usbdPipeDestroy() – Destroys a USB data transfer pipe.
usbdTransfer() – Initiates a transfer on a USB pipe.
usbdTransferAbort() – Aborts a transfer.
usbdVendorSpecific() – Allows clients to issue vendor-specific USB requests.
usbtuDataUrbCompleteCallback() – Callback called on URB completion.
usbtuDataVendorSpecificCallback() – Callback called on Vendor Specific Request

DESCRIPTION Implements the Translation Unit Data Transfer Interfaces.

INCLUDE FILES usbTransUnit.h, usbHcdInstr.h

usbTransUnitInit

NAME usbTransUnitInit – Translation Unit Initialization interfaces

ROUTINES usbdInitialize() – Initializes the USBD.
usbdShutdown() – Shuts down the USBD.
usbdClientRegister() – Registers a new client with the USBD.
usbdClientUnregister() – Unregisters a USBD client.
usbdMngmtCallbackSet() – sets a management callback for a client.
usbdBusStateSet() – Sets bus state, such as SUSPEND or RESUME.
usbdDynamicAttachRegister() – Registers client for dynamic attach notification.
usbdDynamicAttachUnRegister() – Unregisters a client for attach notification.
usbtuInitThreadFn() – Translation unit thread routine
usbtuInitClientThreadFn() – Client thread routine
usbtuInitClientIrpCompleteThreadFn() – Client thread routine
usbtuInitDeviceAdd() – Device attach callback
usbtuInitDeviceRemove() – Device detach callback
usbtuInitDeviceSuspend() – Device suspend callback
usbtuInitDeviceResume() – Device resume callback

DESCRIPTION Implements the translation unit initialization interfaces.

In order to use the USBD, it is first necessary to invoke usbdInitialize(). Multiple calls to
usbdInitialize() may be nested so long as a corresponding number of calls to
usbdShutdown() are also made. This allows multiple USBD clients to be written

1 Libraries
usbTransUnitMisc

35

independently and without concern for coordinating the initialization of the independent
clients.

Normal USBD clients register with the USBD by calling usbdClientRegister(). In response
to this call, the translation unit allocates per-client data structures and a client callback task.
Callbacks for each client are invoked from this client-unique task. This improves the
USBD's ability to shield clients from one another and to help ensure a real time response for
all clients.

After a client has registered, it will usually register for dynamic attachment notification
using usbdDynamicAttachRegister(). This function allows a special client callback routine
to be invoked each time a USB device is attached to or removed from the system. In this
way, clients may discover the real time attachment and removal of devices.

INCLUDE FILES usbTransUnit.h

usbTransUnitMisc

NAME usbTransUnitMisc – translation unit miscellaneous functions

ROUTINES usbdHcdAttach() – Attaches an HCD to the USBD.
usbdHcdDetach() – Detaches an HCD from the USBD.
usbdBusCountGet() – Gets the number of USBs attached to the host.
usbdRootNodeIdGet() – Returns the root node for a specific USB.
usbdHubPortCountGet() – Returns the number of ports connected to a hub.
usbdNodeIdGet() – Gets the ID of a node connected to a hub port.
usbdAddressGet() – Gets the USB address for a given device.
usbdAddressSet() – Sets the USB address for a given device.
usbdVersionGet() – Returns USBD version information.
usbdStatisticsGet() – Retrieves USBD operating statistics.
usbdCurrentFrameGet() – Returns the current frame number for a USB.
usbdNodeInfoGet() – Returns information about a USB node.

DESCRIPTION This implements translation unit miscellaneous interfaces. These interfaces are used only by
UsbTool and not by the class drivers. The interfaces are provided to integrate the translation
unit with UsbTool.

INCLUDE FILES drv/usb/usbTransUnit.h, usb/pciConstants.h, usb2/usbHubMisc.h, usb2/usbdMisc.h

Wind River USB for VxWorks 6 API Reference, 2.4
usbTransUnitStd

36

usbTransUnitStd

NAME usbTransUnitStd – translation unit standard requests interfaces

ROUTINES usbdFeatureClear() – Clears a USB feature.
usbdFeatureSet() – Sets a USB feature.
usbdConfigurationGet() – Gets the USB configuration for a device.
usbdConfigurationSet() – Sets the USB configuration for a device.
usbdDescriptorGet() – Retrieves a USB descriptor.
usbdDescriptorSet() – Sets a USB descriptor.
usbdInterfaceGet() – Retrieves the current interface of a device.
usbdInterfaceSet() – Sets the current interface of a device.
usbdStatusGet() – Retrieves the USB status from a source such as a device or interface and
so on.
usbdSynchFrameGet() – Returns the isochronous synchronization frame of a device.

DESCRIPTION Implements the translation unit standard requests interfaces.

INCLUDE FILES drv/usb/usbTransUnit.h, usb2/usbHcdInstr.h

usbUhcdInitialization

NAME usbUhcdInitialization – USB UHCI HCD initialization routine

ROUTINES usbUhcdInstantiate() – instantiate the USB UHCI Host Controller Driver.
usbUhcdInit() – initialise the USB UHCI Host Controller Driver.
usbUhcdExit() – uninitialize the USB UHCI Host Controller Driver.
vxbUsbUhciRegister() – register the USB UHCI Host Controller Driver with vxBus.

DESCRIPTION This library defines the entry and exit points for UHCI USB Host Controller Driver. The file
initializes the USB host controller Driver. It also exposed routines to initializes the UHCI
Controllers.

usbHcdUhciDeviceInit () routine implements the legacy support. It handles the hand-off of
USB UHCI Controllers from BIOS to system software.

usbHcdUhciDeviceConnect () routine initializes the USB UHCI Host Controller and makes
it operational to handle USB operations.

The implementation of this library follows the UHCI Specification Rev 1.1

1 Libraries
usbUhcdRhEmulate

37

INCLUDE FILES usb2/usbOsal.h, usb2/usbHst.h, usb2/usbUhci.h, usb2/usbUhcdSupport.h,
usb2/usbUhcdCommon.h, usb2/usbUhcdScheduleQueue.h,
usb2/usbUhcdScheduleQSupport.h, rebootLib.h

usbUhcdIsr

NAME usbUhcdIsr – USB UHCI HCD interrupt handler

ROUTINES

DESCRIPTION This file contains the Interrupt Service Routine for the UHCI driver.

INCLUDE FILES usb2/usbOsal.h, usb2/usbHst.h, usb2/usbUhci.h, usb2/usbUhcdSupport.h,
usb2/usbUhcdCommon.h, usb2/usbUhcdScheduleQueue.h,
usb2/BusAbstractionLayer.h

usbUhcdManagePort

NAME usbUhcdManagePort – USB UHCI HCD port status handler

ROUTINES

DESCRIPTION This file contains the handlers which regularly scan the UHCI's port for status change

INCLUDE FILES usb2/usbOsal.h, usb2/usbHst.h, usb2/usbUhci.h, usb2/usbUhcdCommon.h,
usb2/usbUhcdScheduleQueue.h, usb2/usbUhcdSupport.h, usb2/BusAbstractionLayer.h

usbUhcdRhEmulate

NAME usbUhcdRhEmulate – USB UHCI HCD Roothub Emulation

ROUTINES

DESCRIPTION This file contains functions which essentialy form a wrapper around UHCI's root hub so as
to make it appear as an ordinary hub.

Wind River USB for VxWorks 6 API Reference, 2.4
usbUhcdScheduleQSupport

38

INCLUDE FILES usb2/usbOsal.h, usb2/usbUhcdCommon.h, usb2/usbHst.h,
usb2/usbUhcdScheduleQueue.h, usb2/usbUhcdSupport.h, usb2/BusAbstractionLayer.h,
usb2/usbUhcdScheduleQSupport.h, usb2/usbUhci.h

usbUhcdScheduleQSupport

NAME usbUhcdScheduleQSupport – USB UHCD HCD schedule queue support

ROUTINES

DESCRIPTION This file contains functions which provide support to the Schedule and Queue management
module.

INCLUDE FILES usb2/usbOsal.h, usb2/usbHst.h, usb2/usbUhci.h, usb2/usbUhcdScheduleQueue.h,
usb2/usbUhcdScheduleQSupport.h, usb2/usbUhcdCommon.h, usb2/usbUhcdSupport.h

usbUhcdScheduleQWaitForSignal

NAME usbUhcdScheduleQWaitForSignal – USB UHCD HCD ISR support routines

ROUTINES

DESCRIPTION This file contains the handlers that would be invoked by the ISR when relevent interrupts
occur.

INCLUDE FILES usb2/usbOsal.h, usb2/usbHst.h, usb2/usbUhcdCommon.h,
usb2/usbUhcdScheduleQueue.h, usb2/usbUhcdSupport.h,
usb2/usbUhcdScheduleQSupport.h, usb2/usbUhci.h

usbUhcdScheduleQueue

NAME usbUhcdScheduleQueue – USB UHCD HCD schdule queue routines

ROUTINES

DESCRIPTION This file contains functions which are used for transfer scheduling and management.

1 Libraries
usbd

39

INCLUDE FILES usb2/usbOsal.h, usb2/usbHst.h, usb2/usbUhci.h, usb2/usbUhcdCommon.h,
usb2/usbUhcdScheduleQueue.h, usb2/usbUhcdSupport.h,
usb2/usbUhcdScheduleQSupport.h, usb2/usbUhcdRhEmulate.h, usb/usbPciLib.h

usbUhcdSupport

NAME usbUhcdSupport – USB UHCD HCD register access routines

ROUTINES

DESCRIPTION This file contains the fucntions which would be used to access various register/sub-fields
of the UHCD.

INCLUDE FILES usb/usbOsal.h, usb/usbHst.h, usbUhci.h, usbUhcdScheduleQueue.h,
usbUhcdSupport.h, usbUhcdCommon.h, usbUhcdScheduleQueue.h

usbVxbRegAccess

NAME usbVxbRegAccess – library for read/write routines

ROUTINES usbRegRead8() – reads 8-bit USB Register Space
usbRegRead16() – reads 16-bit USB Register Space
usbRegRead32() – reads 32-bit USB Register Space
usbRegWrite16() – writes into 16-bit USB Register Space
usbRegWrite32() – writes into 32-bit USB Register Space

DESCRIPTION This file contains of routines which should be used for register reads and writes. The
functions uses vxBus provided interfaces for register read and write operations. All USB
register reads and writes should happen through this library.

INCLUDE FILES hwif/vxbus/vxBus.h, src/hwif/h/vxbus/vxbAccess.h

usbd

NAME usbd – USBD Routines

Wind River USB for VxWorks 6 API Reference, 2.4
usbd

40

ROUTINES usbdInit() – initializes USBD2.0
usbdExit() – exits USBD2.0
usbHstDriverRegister() – register class driver
usbHstDriverDeregister() – deregisters USB class driver
usbHstHCDRegister() – register Host Controller Driver with USBD
usbHstHCDDeregister() – deregister a Host Controller Driver
usbHstBusRegister() – registers an USB Bus
usbHstBusDeregister() – deregister a USB Bus
usbVxbRootHubAdd() – configures the root hub
usbVxbRootHubRemove() – removes the root hub

DESCRIPTION This file initializes the global variables for USB2.0 USBD module and registers itself with the
class drivers and host controller driver modules.

Host Controller Driver Registration with USBD - The host controller driver module register
themselves with USBD by calling the routine usbHstHCDRegister (). The host controller
driver is also registered with the vxBus as a bus type specifying appropiate busID.
Subsequent to this routine, the host controller driver calls the routine usbHstBusRegister
() for every host controller device of the particular HCD. This routine, registers a bus for
every host controller device.

Class Driver Registration with USBD - The Class Drivers register with the USBD by calling
the routine usbHstDriverRegister (). In this routine, the structure DRIVER_REGISTRATION
is populated and the class driver is in turn registered with vxBus.

Device Connection - On a new device notifcation, the USBD module will call
vxbDeviceAnnounce () to announce the new device. Subsquently vxBus will call
usbdDriverFind () routine to look for a matching driver for the device. If the matching
driver is found, its corresponding routine is called to configure the device.

This file includes the urb.c and device.c source files

INCLUDE FILES usb2/usbd.h

41

 2
Routines

CmdParserExitFunc() – Terminates parser execution 51
CmdParserHelpFunc() – Displays list of supported commands 51
ExecCmd() – Execute the command line 52
GetHexToken() – Retrieves value of hex token 53
GetNextToken() – Retrieves the next token from an input string 53
KeywordMatch() – Compare keywords 54
PromptAndExecCmd() – Prompt for a command and execute it. 54
SkipSpace() – Skips leading white space in a string 55
TruncSpace() – Truncates string to eliminate trailing whitespace 56
bulkInErpCallbackCSW() – send the CSW on bulk-in pipe 56
bulkInErpCallbackData() – process end of data phase on bulk-in pipe 57
bulkOutErpCallbackCBW() – process the CBW on bulk-out pipe 57
bulkOutErpCallbackData() – process end of data phase on bulk-out pipe 58
ossCalloc() – Allocates memory initialized to zeros. 58
ossFree() – Master USB memory free routine. 59
ossInitialize() – Initializes ossLib. 59
ossMalloc() – Master USB memory allocation routine. 60
ossMemUsedGet() – Retrieves the amount of memory currently in use by USB. 60
ossMutexCreate() – Creates a new mutex. 60
ossMutexDestroy() – Destroys a mutex. 61
ossMutexRelease() – Releases (gives) a mutex. 61
ossMutexTake() – Attempts to take a mutex. 62
ossOldFree() – Frees globally allocated memory. 62
ossOldInstall() – Installs the old method of USB malloc and free. 63
ossOldMalloc() – Global memory allocation 63
ossPartFree() – Frees globally allocated memory. 64
ossPartIdGet() – Retrieves the partition ID of USB memory partition. 64
ossPartMalloc() – USB memory allocation 65
ossPartSizeGet() – Retrieves the size of the USB memory partition. 65
ossPartSizeSet() – Sets the the initial size of the USB memory partition. 66

Wind River USB for VxWorks 6 API Reference, 2.4

42

ossSemCreate() – Creates a new semaphore. 66
ossSemDestroy() – Destroys a semaphore. 67
ossSemGive() – Signals a semaphore. 67
ossSemTake() – Attempts to take a semaphore. 68
ossShutdown() – Shuts down ossLib. 68
ossStatus() – Returns OK or ERROR and sets errno based on status. 69
ossThreadCreate() – Spawns a new thread. 69
ossThreadDestroy() – Attempts to destroy a thread. 70
ossThreadSleep() – Voluntarily relinquishes the CPU. 70
ossTime() – Returns the relative system time in msec. 71
pegasusMuxTxRestart() – place muxTxRestart on netJobRing 71
pegasusOutIrpInUse() – determines if any of the output IRP's are in use 72
usbBulkBlkDevCreate() – create a block device 72
usbBulkDevInit() – registers USB Bulk only mass storage class driver 73
usbBulkDevIoctl() – perform a device-specific control 73
usbBulkDevLock() – Marks USB_BULK_DEV structure as in use 74
usbBulkDevShow() – shows routine for displaying all LUNs of a device. 74
usbBulkDevShutDown() – shuts down the USB bulk-only class driver 75
usbBulkDevUnlock() – Marks USB_BULK_DEV structure as unused. 75
usbBulkDriveEmpty() – routine to check if drive has media inserted. 76
usbBulkDriveShow() – shows routine for displaying one LUN of a device. 76
usbBulkDynamicAttachRegister() – Register SCSI/BULK-ONLY device attach callback. 77
usbBulkDynamicAttachUnregister() – Unregisters SCSI/BULK-ONLY attach callback. 78
usbBulkGetMaxLun() – Return the max LUN number for a device 78
usbBulkShow() – shows routine for displaying all bulk devices. 79
usbCbiUfiBlkDevCreate() – create a block device 79
usbCbiUfiDevInit() – registers USB CBI mass storage class driver for UFI devices 80
usbCbiUfiDevIoctl() – perform a device-specific control. 80
usbCbiUfiDevLock() – Marks CBI_UFI_DEV structure as in use 81
usbCbiUfiDevShutDown() – shuts down the USB CBI mass storage class driver 81
usbCbiUfiDevUnlock() – Marks CBI_UFI_DEV structure as unused. 82
usbCbiUfiDynamicAttachRegister() – Register UFI device attach callback. 82
usbCbiUfiDynamicAttachUnregister() – Unregisters CBI_UFI attach callback. 83
usbConfigCountGet() – Retrieves the number of device configurations. 84
usbConfigDescrGet() – Reads the full configuration descriptor from device. 84
usbDescrCopy() – copies descriptor to a buffer 85
usbDescrCopy32() – copies descriptor to a buffer 86
usbDescrParse() – search a buffer for the a particular USB descriptor 86
usbDescrParseSkip() – search for a descriptor and increment buffer. 87
usbDescrStrCopy() – copies an ASCII string to a string descriptor. 87
usbDescrStrCopy32() – copies an ASCII string to a string descriptor 88
usbEhcdExit() – uninitializes the EHCI Host Controller 88
usbEhcdInit() – initializes the EHCI Host Controller Driver 89
usbEhcdInstantiate() – instantiate the USB EHCI Host Controller Driver. 89
usbEhcdRHCancelURB() – cancels a request submitted for an endpoint 90

2 Routines

43

2
usbEhcdRHDeletePipe() – deletes a pipe specific to an endpoint. 90
usbEhcdRHSubmitURB() – submits a request to an endpoint. 91
usbEhcdRhClearPortFeature() – clears a feature of the port 91
usbEhcdRhCreatePipe() – creates a pipe specific to an endpoint. 92
usbEhcdRhGetHubDescriptor() – get the hub descriptor 93
usbEhcdRhGetPortStatus() – get the status of the port 93
usbEhcdRhProcessClassSpecificRequest() – processes a class specific request 94
usbEhcdRhProcessControlRequest() – processes a control transfer request 94
usbEhcdRhProcessInterruptRequest() – processes a interrupt transfer request 95
usbEhcdRhProcessStandardRequest() – processes a standard transfer request 95
usbEhcdRhSetPortFeature() – set the features of the port 96
usbHalTcdAddressSet() – hal interface to set address. 96
usbHalTcdAttach() – attaches a TCD 97
usbHalTcdCurrentFrameGet() – hal interface to get Currrent Frame Number. 97
usbHalTcdDetach() – detaches a TCD 98
usbHalTcdDeviceFeatureClear() – hal interface to clear feature on device. 98
usbHalTcdDeviceFeatureSet() – hal interface to set feature on the device. 99
usbHalTcdDisable() – disables the target controller 99
usbHalTcdEnable() – enables the target controller. 100
usbHalTcdEndpointAssign() – configure an endpoint on the target controller 100
usbHalTcdEndpointRelease() – unconfigure endpoint on the target controller 101
usbHalTcdEndpointStateSet() – set the state of an endpoint 101
usbHalTcdEndpointStatusGet() – get the status of an endpoint 102
usbHalTcdErpCancel() – cancel an ERP 102
usbHalTcdErpSubmit() – submit an ERP for an endpoint 103
usbHalTcdSignalResume() – hal interface to initiate resume signal. 103
usbHandleCreate() – Creates a new handle. 104
usbHandleDestroy() – Destroys a handle. 104
usbHandleInitialize() – Initializies the handle utility library. 105
usbHandleShutdown() – Shuts down the handle utility library. 105
usbHandleValidate() – Validates a handle. 106
usbHidIdleSet() – Issues a SET_IDLE request to a USB HID. 106
usbHidProtocolSet() – Issues a SET_PROTOCOL request to a USB HID. 107
usbHidReportSet() – Issues a SET_REPORT request to a USB HID. 107
usbHstBusDeregister() – deregister a USB Bus 108
usbHstBusRegister() – registers an USB Bus 109
usbHstDriverDeregister() – deregisters USB class driver 109
usbHstDriverRegister() – register class driver 110
usbHstHCDDeregister() – deregister a Host Controller Driver 110
usbHstHCDRegister() – register Host Controller Driver with USBD 111
usbHubExit() – de-registers and cleans up the USB Hub Class Driver. 111
usbHubInit() – registers USB Hub Class Driver function pointers. 112
usbKeyboardDevInit() – initialize USB keyboard SIO driver 112
usbKeyboardDevShutdown() – shuts down keyboard SIO driver 112
usbKeyboardDynamicAttachRegister() – Register keyboard attach callback 113

Wind River USB for VxWorks 6 API Reference, 2.4

44

usbKeyboardDynamicAttachUnregister() – Unregisters keyboard attach callback 114
usbKeyboardSioChanLock() – Marks SIO_CHAN structure as in use 114
usbKeyboardSioChanUnlock() – Marks SIO_CHAN structure as unused 115
usbListFirst() – Returns first entry on a linked list. 115
usbListLink() – Adds an element to a linked list. 116
usbListLinkProt() – Adds an element to a list guarded by a mutex. 116
usbListNext() – Retrieves the next pStruct in a linked list. 117
usbListUnlink() – Removes an entry from a linked list. 117
usbListUnlinkProt() – Removes an element from a list guarged by a mutex. 118
usbMouseDevInit() – initialize USB mouse SIO driver 118
usbMouseDevShutdown() – shuts down mouse SIO driver 119
usbMouseDynamicAttachRegister() – Register mouse attach callback 119
usbMouseDynamicAttachUnregister() – Unregisters mouse attach callback 120
usbMouseSioChanLock() – Marks SIO_CHAN structure as in use 120
usbMouseSioChanUnlock() – Marks SIO_CHAN structure as unused 121
usbMsBulkInErpInUseFlagGet() – get the Bulk-in ERP inuse flag 122
usbMsBulkInErpInUseFlagSet() – set the Bulk-In ERP inuse flag 122
usbMsBulkInErpInit() – initialize the bulk-in ERP 122
usbMsBulkInStall() – stall the bulk-in pipe 123
usbMsBulkInUnStall() – unstall the bulk-in pipe 123
usbMsBulkOutErpInUseFlagGet() – get the Bulk-Out ERP inuse flag 124
usbMsBulkOutErpInUseFlagSet() – set the Bulk-Out ERP inuse flag 124
usbMsBulkOutErpInit() – initialize the bulk-Out ERP 125
usbMsBulkOutStall() – stall the bulk-out pipe 125
usbMsBulkOutUnStall() – unstall the bulk-out pipe 125
usbMsCBWGet() – get the last mass storage CBW received 126
usbMsCBWInit() – initialize the mass storage CBW 126
usbMsCSWGet() – get the current CSW 127
usbMsCSWInit() – initialize the CSW 127
usbMsIsConfigured() – test if the device is configured 127
usbMsTestRxCallback() – invoked after test data is received 128
usbMsTestTxCallback() – invoked after test data transmitted 128
usbOhcdInit() – initialize the USB OHCI Host Controller Driver. 129
usbOhciDumpEndpointDescriptor() – dump endpoint descriptor contents 129
usbOhciDumpGeneralTransferDescriptor() – dump general transfer descriptor 130
usbOhciDumpMemory() – dump memory contents 130
usbOhciDumpPendingTransfers() – dump pending transfers 131
usbOhciDumpPeriodicEndpointList() – dump periodic endpoint descriptor list 131
usbOhciDumpRegisters() – dump registers contents. 132
usbOhciExit() – uninitialize the USB OHCI Host Controller Driver. 132
usbOhciInitializeModuleTestingFunctions() – obtaines entry points 133
usbOhciInstantiate() – instantiate the USB OHCI Host Controller Driver. 133
usbPegasusDevLock() – marks USB_PEGASUS_DEV structure as in use 134
usbPegasusDevUnlock() – marks USB_PEGASUS_DEV structure as unused 134
usbPegasusDynamicAttachRegister() – register PEGASUS device attach callback 135

2 Routines

45

2
usbPegasusDynamicAttachUnregister() – unregisters PEGASUS attach callbackx 136
usbPegasusEndInit() – initializes the pegasus library 136
usbPegasusEndLoad() – initialize the driver and device 137
usbPegasusEndUninit() – un-initializes the pegasus class driver 138
usbPegasusReadReg() – read contents of specified and print 138
usbPrinterDevInit() – initialize USB printer SIO driver 139
usbPrinterDevShutdown() – shuts down printer SIO driver 139
usbPrinterDynamicAttachRegister() – Register printer attach callback 140
usbPrinterDynamicAttachUnregister() – Unregisters printer attach callback 140
usbPrinterSioChanLock() – Marks SIO_CHAN structure as in use 141
usbPrinterSioChanUnlock() – Marks SIO_CHAN structure as unused 141
usbQueueCreate() – Creates an OS-independent queue structure. 142
usbQueueDestroy() – Destroys a queue. 143
usbQueueGet() – Retrieves a message from a queue. 143
usbQueuePut() – Puts a message into a queue. 144
usbRecurringTime() – calculates recurring time for interrupt/isoch transfers. 144
usbRegRead16() – reads 16-bit USB Register Space 145
usbRegRead32() – reads 32-bit USB Register Space 145
usbRegRead8() – reads 8-bit USB Register Space 146
usbRegWrite16() – writes into 16-bit USB Register Space 146
usbRegWrite32() – writes into 32-bit USB Register Space 147
usbSpeakerDevInit() – initialize USB speaker SIO driver 148
usbSpeakerDevShutdown() – shuts down speaker SIO driver 148
usbSpeakerDynamicAttachRegister() – Register speaker attach callback 148
usbSpeakerDynamicAttachUnregister() – Unregisters speaker attach callback 149
usbSpeakerSeqDevLock() – Marks SEQ_DEV structure as in use 150
usbSpeakerSeqDevUnlock() – Marks SEQ_DEV structure as unused 150
usbTargControlPayloadRcv() – receives data on the default control pipe 151
usbTargControlResponseSend() – sends data to host on the control pipe 152
usbTargControlStatusSend() – sends control transfer status to the host 152
usbTargCurrentFrameGet() – retrieves the current USB frame number 153
usbTargDeviceFeatureClear() – clears a specific feature 153
usbTargDeviceFeatureSet() – sets or enable a specific feature 154
usbTargDisable() – disables a target channel 154
usbTargEnable() – enables target channel onto USB 155
usbTargInitialize() – initializes the USB Target Library 155
usbTargKbdCallbackInfo() – returns usbTargKbdLib callback table 156
usbTargKbdInjectReport() – injects a "boot report" 156
usbTargMgmtCallback() – invoked when HAL detects a management event 157
usbTargMsCallbackInfo() – returns usbTargPrnLib callback table 157
usbTargPipeCreate() – creates a pipe for communication on an endpoint 158
usbTargPipeDestroy() – destroys an endpoint pipe 159
usbTargPipeStatusGet() – returns the endpoint status 159
usbTargPipeStatusSet() – sets pipe stalled/unstalled status 160
usbTargPrnCallbackInfo() – returns usbTargPrnLib callback table 160

Wind River USB for VxWorks 6 API Reference, 2.4

46

usbTargPrnDataInfo() – returns buffer status/info 161
usbTargPrnDataRestart() – restarts listening ERP 161
usbTargRbcBlockDevCreate() – create an RBC BLK_DEV device. 161
usbTargRbcBlockDevGet() – return opaque pointer to the RBC BLK I/O DEV device 162
usbTargRbcBlockDevSet() – set the pointer to the RBC BLK I/O DEV device structure. 162
usbTargRbcBufferWrite() – write micro-code to the RBC device 163
usbTargRbcCacheSync() – synchronize the cache of the RBC device 163
usbTargRbcCapacityRead() – read the capacity of the RBC device 164
usbTargRbcFormat() – format the RBC device 164
usbTargRbcInquiry() – retrieve inquiry data from the RBC device 165
usbTargRbcModeSelect() – select the mode parameter page of the RBC device 165
usbTargRbcModeSelect10() – select the mode parameter page of the RBC device 166
usbTargRbcModeSense() – retrieve sense data from the RBC device 166
usbTargRbcModeSense10() – request for mode sense 10 command 167
usbTargRbcPersistentReserveIn() – send reserve data to the host 167
usbTargRbcPersistentReserveOut() – reserve resources on the RBC device 168
usbTargRbcPreventAllowRemoval() – prevent or allow the removal of the RBC device 168
usbTargRbcRead() – read data from the RBC device 169
usbTargRbcRelease() – release a resource on the RBC device 169
usbTargRbcRequestSense() – request sense data from the RBC device 170
usbTargRbcReserve() – reserve a resource on the RBC device 170
usbTargRbcStartStop() – start or stop the RBC device 171
usbTargRbcTestUnitReady() – test if the RBC device is ready 171
usbTargRbcVendorSpecific() – vendor specific call 172
usbTargRbcVerify() – verify the last data written to the RBC device 172
usbTargRbcWrite() – write to the RBC device 173
usbTargSetupErpCallback() – handles the setup packet 173
usbTargShutdown() – shutdown the USB target library 174
usbTargSignalResume() – drives RESUME signalling on USB 174
usbTargTcdAttach() – to attach the TCD to the target library 175
usbTargTcdDetach() – detaches a USB target controller driver 175
usbTargTransfer() – to transfer data through a pipe 176
usbTargTransferAbort() – cancels a previously submitted USB_ERP 177
usbTcdIsp1582EvalExec() – single Entry Point for ISP 1582 TCD 177
usbTcdNET2280Exec() – single Entry Point for NETCHIP 2280 TCD 178
usbTcdPdiusbd12EvalExec() – single entry point for PDIUSBD12 TCD 178
usbTransferTime() – Calculates the bus time required for a USB transfer. 179
usbUhcdExit() – uninitialize the USB UHCI Host Controller Driver. 179
usbUhcdInit() – initialise the USB UHCI Host Controller Driver. 180
usbUhcdInstantiate() – instantiate the USB UHCI Host Controller Driver. 180
usbVxbRootHubAdd() – configures the root hub 181
usbVxbRootHubRemove() – removes the root hub 181
usbdAddressGet() – Gets the USB address for a given device. 182
usbdAddressSet() – Sets the USB address for a given device. 182
usbdBusCountGet() – Gets the number of USBs attached to the host. 183

2 Routines

47

2
usbdBusStateSet() – Sets bus state, such as SUSPEND or RESUME. 183
usbdClientRegister() – Registers a new client with the USBD. 184
usbdClientUnregister() – Unregisters a USBD client. 185
usbdConfigurationGet() – Gets the USB configuration for a device. 185
usbdConfigurationSet() – Sets the USB configuration for a device. 186
usbdCurrentFrameGet() – Returns the current frame number for a USB. 186
usbdDescriptorGet() – Retrieves a USB descriptor. 187
usbdDescriptorSet() – Sets a USB descriptor. 188
usbdDynamicAttachRegister() – Registers client for dynamic attach notification. 189
usbdDynamicAttachUnRegister() – Unregisters a client for attach notification. 191
usbdExit() – exits USBD2.0 191
usbdFeatureClear() – Clears a USB feature. 192
usbdFeatureSet() – Sets a USB feature. 193
usbdHcdAttach() – Attaches an HCD to the USBD. 194
usbdHcdDetach() – Detaches an HCD from the USBD. 194
usbdHubPortCountGet() – Returns the number of ports connected to a hub. 195
usbdInit() – initializes USBD2.0 195
usbdInitialize() – Initializes the USBD. 196
usbdInterfaceGet() – Retrieves the current interface of a device. 196
usbdInterfaceSet() – Sets the current interface of a device. 197
usbdMngmtCallbackSet() – sets a management callback for a client. 197
usbdNodeIdGet() – Gets the ID of a node connected to a hub port. 198
usbdNodeInfoGet() – Returns information about a USB node. 199
usbdPipeCreate() – Creates a USB pipe for subsequent transfers. 200
usbdPipeDestroy() – Destroys a USB data transfer pipe. 201
usbdRootNodeIdGet() – Returns the root node for a specific USB. 202
usbdShutdown() – Shuts down the USBD. 202
usbdStatisticsGet() – Retrieves USBD operating statistics. 203
usbdStatusGet() – Retrieves the USB status from a source such as a device or interface and so on. 204
usbdSynchFrameGet() – Returns the isochronous synchronization frame of a device. 204
usbdTransfer() – Initiates a transfer on a USB pipe. 205
usbdTransferAbort() – Aborts a transfer. 207
usbdVendorSpecific() – Allows clients to issue vendor-specific USB requests. 208
usbdVersionGet() – Returns USBD version information. 208
usbtuDataUrbCompleteCallback() – Callback called on URB completion. 209
usbtuDataVendorSpecificCallback() – Callback called on Vendor Specific Request 209
usbtuInitClientIrpCompleteThreadFn() – Client thread routine 210
usbtuInitClientThreadFn() – Client thread routine 210
usbtuInitDeviceAdd() – Device attach callback 211
usbtuInitDeviceRemove() – Device detach callback 211
usbtuInitDeviceResume() – Device resume callback 212
usbtuInitDeviceSuspend() – Device suspend callback 212
usbtuInitThreadFn() – Translation unit thread routine 213
vxbUsbEhciRegister() – registers the EHCI Controller with vxBus 213
vxbUsbOhciRegister() – registers OHCI driver with vxBus 214

Wind River USB for VxWorks 6 API Reference, 2.4

48

vxbUsbUhciRegister() – register the USB UHCI Host Controller Driver with vxBus. 214

2 Routines
CmdParserHelpFunc()

49

CmdParserExitFunc()

NAME CmdParserExitFunc() – Terminates parser execution

SYNOPSIS UINT16 CmdParserExitFunc
 (
 pVOID param, /* Generic parameter passed down */
 char **ppCmd, /* Ptr to remainder of cmd line */
 FILE *fin, /* stream for input (if any) */
 FILE *fout /* stream for output (if any) */
)

DESCRIPTION Returns RET_OK, causing the parser to return RET_OK to the caller signally normal
termination of the parser.

RETURNS RET_OK

ERRNO None.

SEE ALSO cmdParser

CmdParserHelpFunc()

NAME CmdParserHelpFunc() – Displays list of supported commands

SYNOPSIS UINT16 CmdParserHelpFunc
 (
 pVOID param, /* Generic parameter passed down */
 char **ppCmd, /* Ptr to remainder of cmd line */
 FILE *fin, /* stream for input (if any) */
 FILE *fout /* stream for output (if any) */
)

DESCRIPTION Displays the list of commands in the parser command table to fout. When the parser
recognizes that this function is about to be executed, it substitutes a pointer to the current
CMD_DESCR table in param. If this function is called directly, param should point to a table
of CMD_DESCR structures.

RETURNS RET_CONTINUE

ERRNO None.

Wind River USB for VxWorks 6 API Reference, 2.4
ExecCmd()

50

SEE ALSO cmdParser

ExecCmd()

NAME ExecCmd() – Execute the command line

SYNOPSIS UINT16 ExecCmd
 (
 pVOID param, /* Generic parameter for exec funcs */
 char *pCmd, /* Cmd buffer to be parsed/executed */
 FILE *fin, /* Stream for input */
 FILE *fout, /* Stream for output */
 CMD_DESCR *pCmdTable /* CMD_DESCR table */
)

DESCRIPTION Parses and executes the commands in the pCmd buffer. I/O - if any - will go to fin/fout. The
pCmd may contain any number of commands separated by CMD_SEPARATOR. pCmdTable
points to an array of CMD_DESCR structures defining the command to be recognized by the
parser, and param is a generic parameter passed down to individual command execution
functions.

RETURNS RET_OK for normal termination.
RET_ERROR for program failure.
RET_CONTINUE if execution should continue.

ERRNO None.

SEE ALSO cmdParser

GetHexToken()

NAME GetHexToken() – Retrieves value of hex token

SYNOPSIS char *GetHexToken
 (
 char *pStr, /* input string */
 long *pToken, /* buffer to receive token value */
 long defVal /* default value */
)

2 Routines
KeywordMatch()

51

DESCRIPTION Retrieves the next token from pCmd line, interprets it as a hex value, and stores the result in
pToken. If there are no remaining tokens, stores defVal in pToken instead.

RETURNS Pointer into pStr following end of copied pToken

ERRNO None.

SEE ALSO cmdParser

GetNextToken()

NAME GetNextToken() – Retrieves the next token from an input string

SYNOPSIS char *GetNextToken
 (
 char *pStr, /* Input string */
 char *pToken, /* Bfr to receive token */
 UINT16 tokenLen /* Max length of Token bfr */
)

DESCRIPTION Copies the next token from pStr to pToken. White space before the next token is discarded.
Tokens are delimited by white space and by the command separator, CMD_SEPARATOR.
No more than tokenLen - 1 characters from pStr will be copied into pToken. tokenLen must be
at least one and pToken will be NULL terminated upon return.

RETURNS Pointer into pStr following end of copied pToken.

ERRNO None.

SEE ALSO cmdParser

KeywordMatch()

NAME KeywordMatch() – Compare keywords

SYNOPSIS int KeywordMatch
 (
 char *s1, /* string 1 */

Wind River USB for VxWorks 6 API Reference, 2.4
PromptAndExecCmd()

52

 char *s2, /* string 2 */
 int len /* max length to compare */
)

DESCRIPTION Compares s1 and s2 up to len characters, case insensitive. Returns 0 if strings are equal.

NOTE This function is equivalent to strnicmp(), but that function is not available in all libraries.

RETURNS 0 if s1 and s2 are the same
-n if s1 < s2
+n if s1 > s2

ERRNO None.

SEE ALSO cmdParser

PromptAndExecCmd()

NAME PromptAndExecCmd() – Prompt for a command and execute it.

SYNOPSIS UINT16 PromptAndExecCmd
 (
 pVOID param, /* Generic parameter for exec funcs */
 char *pPrompt, /* Prompt to display */
 FILE *fin, /* Input stream */
 FILE *fout, /* Output stream */
 CMD_DESCR *pCmdTable /* CMD_DESCR table */
)

DESCRIPTION Displays pPrompt to fout and prompts for input from fin. Then, parses/executes the
command. pCmdTable points to an array of CMD_DESCR structures defining the command
to be recognized by the parser, and Param is a generic parameter passed down to individual
command execution functions.

RETURNS RET_OK for normal termination
RET_ERROR for program failure.
RET_CONTINUE if execution should continue.

ERRNO None.

2 Routines
TruncSpace()

53

SEE ALSO cmdParser

SkipSpace()

NAME SkipSpace() – Skips leading white space in a string

SYNOPSIS char *SkipSpace
 (
 char *pStr /* Input string */
)

DESCRIPTION Returns a pointer to the first non-white-space character in pStr.

RETURNS Ptr to first non-white-space character in pStr

ERRNO None.

SEE ALSO cmdParser

TruncSpace()

NAME TruncSpace() – Truncates string to eliminate trailing whitespace

SYNOPSIS UINT16 TruncSpace
 (
 char *pStr /* Input string */
)

DESCRIPTION Trucates pStr to eliminate trailing white space. Returns count of characters left in pStr upon
return.

RETURNS Number of characters in pStr after truncation.

ERRNO None.

SEE ALSO cmdParser

Wind River USB for VxWorks 6 API Reference, 2.4
bulkInErpCallbackCSW()

54

bulkInErpCallbackCSW()

NAME bulkInErpCallbackCSW() – send the CSW on bulk-in pipe

SYNOPSIS void bulkInErpCallbackCSW
 (
 pVOID erp /* USB_ERP endpoint request packet */
)

DESCRIPTION This routine sends the CSW (Command Status Wrapper) back to the host following
execution of the CBW.

RETURNS N/A

ERRNO none

SEE ALSO usbTargRbcLib

bulkInErpCallbackData()

NAME bulkInErpCallbackData() – process end of data phase on bulk-in pipe

SYNOPSIS void bulkInErpCallbackData
 (
 pVOID erp /* USB_ERP endpoint request packet */
)

DESCRIPTION This routine is invoked following a data IN phase to the host.

RETURNS N/A

ERRNO none

SEE ALSO usbTargRbcLib

2 Routines
bulkOutErpCallbackData()

55

bulkOutErpCallbackCBW()

NAME bulkOutErpCallbackCBW() – process the CBW on bulk-out pipe

SYNOPSIS void bulkOutErpCallbackCBW
 (
 pVOID erp /* USB_ERP endpoint request packet */
)

DESCRIPTION This routine processes the the CBW (Command Block Wrapper) which is received on the
bulk out pipe.

RETURNS N/A

ERRNO none

SEE ALSO usbTargRbcLib

bulkOutErpCallbackData()

NAME bulkOutErpCallbackData() – process end of data phase on bulk-out pipe

SYNOPSIS void bulkOutErpCallbackData
 (
 pVOID erp /* USB_ERP endpoint request packet */
)

DESCRIPTION This routine is invoked following a data OUT phase from the host.

RETURNS N/A

ERRNO none

SEE ALSO usbTargRbcLib

Wind River USB for VxWorks 6 API Reference, 2.4
ossCalloc()

56

ossCalloc()

NAME ossCalloc() – Allocates memory initialized to zeros.

SYNOPSIS pVOID ossCalloc
 (
 UINT32 numBytes /* size of buffer to allocate */
)

DESCRIPTION ossCalloc() uses ossMalloc() to allocate a block of memory and then initializes it to zeros.
Memory allocated using this function should be freed using ossFree().

RETURNS Pointer to allocated buffer, or NULL

ERRNO None

SEE ALSO ossLib

ossFree()

NAME ossFree() – Master USB memory free routine.

SYNOPSIS void ossFree
 (
 pVOID bfr
)

DESCRIPTION ossFree() calls the free routine installed in the global variable ossFreeFuncPtr. This defaults
to ossPartFree(), but can be changed by the users to their own defined free routine or to a
non-partition method of malloc/free by calling ossOldInstall().

RETURNS N/A

ERRNO None

SEE ALSO ossLib

2 Routines
ossMalloc()

57

ossInitialize()

NAME ossInitialize() – Initializes ossLib.

SYNOPSIS STATUS ossInitialize (void)

DESCRIPTION This routine should be called once at initialization to initialize the ossLib. Calls to this
routine may be nested. This permits multiple, indpendent libraries to use this library
without coordinating the use of ossInitialize() and ossShutdown() across the libraries.

RETURNS OK or ERROR

ERRNO None

SEE ALSO ossLib

ossMalloc()

NAME ossMalloc() – Master USB memory allocation routine.

SYNOPSIS void * ossMalloc
 (
 UINT32 numBytes
)

DESCRIPTION ossMalloc() calls the malloc routine installed in the global variable ossMallocFuncPtr. These
default to ossPartMalloc(), but can be changed by the users to their own defined malloc
routine or to a non-partition method of malloc/free by calling ossOldInstall().

RETURNS Pointer to allocated buffer or NULL

ERRNO None

SEE ALSO ossLib

Wind River USB for VxWorks 6 API Reference, 2.4
ossMemUsedGet()

58

ossMemUsedGet()

NAME ossMemUsedGet() – Retrieves the amount of memory currently in use by USB.

SYNOPSIS UINT32 ossMemUsedGet (void)

DESCRIPTION Returns the amount, in bytes, currently being used by USB.

RETURNS the number of bytes of memory in use.

ERRNO None

SEE ALSO ossLib

ossMutexCreate()

NAME ossMutexCreate() – Creates a new mutex.

SYNOPSIS STATUS ossMutexCreate
 (
 pMUTEX_HANDLE pMutexHandle /* Handle of newly created mutex */
)

DESCRIPTION This function creates a new mutex and returns the handle of that mutex in pMutexHandle.
The mutex is created in the untaken state.

RETURNS OK or STATUS

ERRNO S_ossLib_BAD_PARAMETER
S_ossLib_GENERAL_FAULT

SEE ALSO ossLib

ossMutexDestroy()

NAME ossMutexDestroy() – Destroys a mutex.

2 Routines
ossMutexTake()

59

SYNOPSIS STATUS ossMutexDestroy
 (
 MUTEX_HANDLE mutexHandle /* Handle of mutex to destroy */
)

DESCRIPTION Destroys the mutex mutexHandle created by ossMutexCreate().

RETURNS OK or ERROR

ERRNO S_ossLib_GENERAL_FAULT

SEE ALSO ossLib

ossMutexRelease()

NAME ossMutexRelease() – Releases (gives) a mutex.

SYNOPSIS STATUS ossMutexRelease
 (
 MUTEX_HANDLE mutexHandle /* Mutex to be released */
)

DESCRIPTION Releases the mutex specified by mutexHandle. This function will fail if the calling thread is
not the owner of the mutex.

RETURNS OK or ERROR

ERRNO S_ossLib_BAD_HANDLE

SEE ALSO ossLib

ossMutexTake()

NAME ossMutexTake() – Attempts to take a mutex.

SYNOPSIS STATUS ossMutexTake
 (
 MUTEX_HANDLE mutexHandle, /* Mutex to take */
 UINT32 blockFlag /* specifies blocking action */
)

Wind River USB for VxWorks 6 API Reference, 2.4
ossOldFree()

60

DESCRIPTION ossMutexTake() attempts to take the specified mutex. The attempt will succeed if the
mutex is not owned by any other threads. If a thread attempts to take a mutex which it
already owns, the attempt will succeed. blockFlag specifies the blocking behavior.
OSS_BLOCK blocks indefinitely waiting for the mutex to be released. OSS_DONT_BLOCK
does not block and returns an error if the mutex is not in the released state. Other values of
blockFlag are interpreted as a count of milliseconds to wait for the mutex to be released
before declaring an error.

RETURNS OK or ERROR

ERRNO S_ossLib_BAD_HANDLE
S_ossLib_TIMEOUT
S_ossLib_GENERAL_FAULT

SEE ALSO ossLib

ossOldFree()

NAME ossOldFree() – Frees globally allocated memory.

SYNOPSIS void ossOldFree
 (
 void * bfr
)

DESCRIPTION ossOldFree() frees memory allocated by ossMalloc().

RETURNS N/A

ERRNO None

SEE ALSO ossLib

ossOldInstall()

NAME ossOldInstall() – Installs the old method of USB malloc and free.

SYNOPSIS void ossOldInstall (void)

2 Routines
ossPartFree()

61

DESCRIPTION Installs the old method of USB malloc and free. This must be called before the call to
usbdInitialize().

RETURNS N/A

ERRNO None

SEE ALSO ossLib

ossOldMalloc()

NAME ossOldMalloc() – Global memory allocation

SYNOPSIS void * ossOldMalloc
 (
 UINT32 numBytes /* Size of buffer to allocate */
)

DESCRIPTION ossOldMalloc() allocates a buffer of numBytes in length and returns a pointer to the
allocated buffer. The buffer is allocated from a global pool which can be made visible to all
processes and drivers in the system. Memory allocated by this function must be freed by
calling ossFree().

RETURNS Pointer to allocated buffer, or NULL

ERRNO None

SEE ALSO ossLib

ossPartFree()

NAME ossPartFree() – Frees globally allocated memory.

SYNOPSIS void ossPartFree
 (
 pVOID bfr
)

Wind River USB for VxWorks 6 API Reference, 2.4
ossPartIdGet()

62

DESCRIPTION ossPartFree() frees memory allocated by ossMalloc().

RETURNS N/A

ERRNO None

SEE ALSO ossLib

ossPartIdGet()

NAME ossPartIdGet() – Retrieves the partition ID of USB memory partition.

SYNOPSIS PART_ID ossPartIdGet (void)

DESCRIPTION Returns the partition ID of the USB memory partition.

RETURNS The partition ID

ERRNO None

SEE ALSO ossLib

ossPartMalloc()

NAME ossPartMalloc() – USB memory allocation

SYNOPSIS void * ossPartMalloc
 (
 UINT32 numBytes /* Size of buffer to allocate */
)

DESCRIPTION ossPartMalloc() allocates a cache-safe buffer of size numBytes out of the USB partition and
returns a pointer to this buffer. The buffer is allocated from a local USB partition. The size
of this partition defaults to 64k but can be modified to suit the user's needs. This partition
will dynamically grow based on additional need. Memory allocated by this function must
be freed by calling ossFree().

2 Routines
ossPartSizeSet()

63

RETURNS Pointer to the allocated buffer, or NULL

ERRNO None.

SEE ALSO ossLib

ossPartSizeGet()

NAME ossPartSizeGet() – Retrieves the size of the USB memory partition.

SYNOPSIS UINT32 ossPartSizeGet (void)

DESCRIPTION Returns the size of the USB memory partition.

RETURNS Size of partition

ERRNO None

SEE ALSO ossLib

ossPartSizeSet()

NAME ossPartSizeSet() – Sets the the initial size of the USB memory partition.

SYNOPSIS STATUS ossPartSizeSet
 (
 UINT32 numBytes
)

DESCRIPTION Sets the size of the USB memory partition. This must be called before the first call to
ossMalloc. This will set the size that ossMalloc will use for its allocation. Once ossMalloc
has been called, the partition size has been already allocated. To add more memory to the
USB partition, you must retrieve the USB partition ID and add more memory using the
memPartLib routines.

RETURNS OK or ERROR

Wind River USB for VxWorks 6 API Reference, 2.4
ossSemCreate()

64

ERRNO None

SEE ALSO ossLib, memPartLib

ossSemCreate()

NAME ossSemCreate() – Creates a new semaphore.

SYNOPSIS STATUS ossSemCreate
 (
 UINT32 maxCount, /* Max count allowed for semaphore */
 UINT32 curCount, /* initial count for semaphore */
 pSEM_HANDLE pSemHandle /* newly created semaphore handle */
)

DESCRIPTION This function creates a new semaphore and returns the handle of that semaphore in
pSemHandle. The semaphore's initial count is set to curCount and has a maximum count as
specified by maxCount.

RETURNS OK or ERROR

ERRNO S_ossLib_BAD_PARAMETER
S_ossLib_GENERAL_FAULT

SEE ALSO ossLib

ossSemDestroy()

NAME ossSemDestroy() – Destroys a semaphore.

SYNOPSIS STATUS ossSemDestroy
 (
 SEM_HANDLE semHandle /* Handle of semaphore to destroy */
)

DESCRIPTION Destroys the semaphore semHandle created by ossSemCreate().

RETURNS OK or ERROR

2 Routines
ossSemTake()

65

ERRNO S_ossLib_GENERAL_FAULT

SEE ALSO ossLib

ossSemGive()

NAME ossSemGive() – Signals a semaphore.

SYNOPSIS STATUS ossSemGive
 (
 SEM_HANDLE semHandle /* semaphore to signal */
)

DESCRIPTION This function signals the sepcified semaphore. A semaphore may have more than one
outstanding signal, as specified by the maxCount parameter when the semaphore was
created by ossSemCreate(). While the semaphore is at its maximum count, additional
calls to ossSemSignal for that semaphore have no effect.

RETURNS OK or ERROR

ERRNO S_ossLib_BAD_HANDLE

SEE ALSO ossLib

ossSemTake()

NAME ossSemTake() – Attempts to take a semaphore.

SYNOPSIS STATUS ossSemTake
 (
 SEM_HANDLE semHandle, /* semaphore to take */
 UINT32 blockFlag /* specifies blocking action */
)

DESCRIPTION ossSemTake() attempts to take the semaphore specified by semHandle. blockFlag specifies
the blocking behavior. OSS_BLOCK blocks indefinitely waiting for the semaphore to be
signalled. OSS_DONT_BLOCK does not block and returns an error if the semaphore is not
in the signalled state. Other values of blockFlag are interpreted as a count of milliseconds
to wait for the semaphore to enter the signalled state before declaring an error.

Wind River USB for VxWorks 6 API Reference, 2.4
ossShutdown()

66

RETURNS OK or ERROR

ERRNO S_ossLib_BAD_HANDLE
S_ossLib_TIMEOUT
S_ossLib_GENERAL_FAULT

SEE ALSO ossLib

ossShutdown()

NAME ossShutdown() – Shuts down ossLib.

SYNOPSIS STATUS ossShutdown (void)

DESCRIPTION This routine should be called once at system shutdown if and only if the corresponding call
to ossInitialize() was successful.

RETURNS OK or ERROR

ERRNO None

SEE ALSO ossLib

ossStatus()

NAME ossStatus() – Returns OK or ERROR and sets errno based on status.

SYNOPSIS STATUS ossStatus
 (
 int status
)

DESCRIPTION If status & 0xffff are not equal to zero, this sets errno to the indicated status and returns
ERROR. Otherwise, this does not set errno and returns OK.

RETURNS OK or ERROR

2 Routines
ossThreadDestroy()

67

ERRNO Set ERRNO based on status passed in.

SEE ALSO ossLib

ossThreadCreate()

NAME ossThreadCreate() – Spawns a new thread.

SYNOPSIS STATUS ossThreadCreate
 (
 THREAD_PROTOTYPE func, /* function to spawn as new thread */
 pVOID param, /* Parameter to be passed to new thread
*/
 UINT16 priority, /* OSS_PRIORITY_xxxx */
 pCHAR name, /* thread name or NULL */
 pTHREAD_HANDLE pThreadHandle /* Handle of newly spawned thread */
)

DESCRIPTION The ossThreadCreate() routine creates a new thread which begins execution with the
specified func. The param argument will be passed to func. The ossThreadCreate() function
creates the new thread with a stack of a default size and with no security restrictions--that
is, there are no restrictions on the use of the returned pThreadHandle by other threads. The
newly created thread will execute in the same address space as the calling thread. priority
specifies the thread's desired priority; in systems which implement thread priorities, as
OSS_PRIORITY_xxxx.

RETURNS OK or ERROR

ERRNO S_ossLib_BAD_PARAMETER
S_ossLib_GENERAL_FAULT

SEE ALSO ossLib

ossThreadDestroy()

NAME ossThreadDestroy() – Attempts to destroy a thread.

SYNOPSIS STATUS ossThreadDestroy

Wind River USB for VxWorks 6 API Reference, 2.4
ossThreadSleep()

68

 (
 THREAD_HANDLE threadHandle /* handle of thread to be destroyed */
)

DESCRIPTION This function attempts to destroy the thread specified by threadHandle.

NOTE Generally, this function should be called only after the given thread has terminated
normally. Destroying a running thread may result in a failure to release resources allocated
by the thread.

RETURNS OK or ERROR

ERRNO S_ossLib_GENERAL_FAULT

SEE ALSO ossLib

ossThreadSleep()

NAME ossThreadSleep() – Voluntarily relinquishes the CPU.

SYNOPSIS STATUS ossThreadSleep
 (
 UINT32 msec /* Number of msec to sleep */
)

DESCRIPTION Threads may call ossThreadSleep() to voluntarily release the CPU to another thread or
process. If the msec argument is 0, then the thread will be rescheduled for execution as soon
as possible. If the msec argument is greater than 0, then the current thread will sleep for at
least the number of milliseconds specified.

RETURNS OK or ERROR

ERRNO None

SEE ALSO ossLib

ossTime()

NAME ossTime() – Returns the relative system time in msec.

2 Routines
pegasusOutIrpInUse()

69

SYNOPSIS UINT32 ossTime (void)

DESCRIPTION Returns a count of milliseconds relative to the time the system was started.

NOTE The time will wrap about every 49 days, so time calucations should always be based on the
difference between two time values.

RETURNS relative system time in msec

ERRNO None

SEE ALSO ossLib

pegasusMuxTxRestart()

NAME pegasusMuxTxRestart() – place muxTxRestart on netJobRing

SYNOPSIS void pegasusMuxTxRestart
 (
 END_OBJ * pEndObj /* pointer to DRV_CTRL structure */
)

DESCRIPTION This function places the muxTxRestart on netJobRing

RETURNS N/A

ERRNO none

SEE ALSO usbPegasusEnd

pegasusOutIrpInUse()

NAME pegasusOutIrpInUse() – determines if any of the output IRP's are in use

SYNOPSIS BOOL pegasusOutIrpInUse
 (
 PEGASUS_DEVICE * pDevCtrl
)

Wind River USB for VxWorks 6 API Reference, 2.4
usbBulkBlkDevCreate()

70

DESCRIPTION This function determines if any of the output IRP's are in use and returns the status
information

RETURNS TRUE if any of the IRP's are in use, FALSE otherwise.

ERRNO none

SEE ALSO usbPegasusEnd

usbBulkBlkDevCreate()

NAME usbBulkBlkDevCreate() – create a block device

SYNOPSIS XBD * usbBulkBlkDevCreate
 (
 USBD_NODE_ID nodeId, /* nodeId of the bulk-only device */
 UINT8 lun, /* Logical Unit Number */
 UINT32 numBlks, /* number of logical blocks on device */
 UINT32 blkOffset, /* offset of the starting block */
 UINT32 flags /* optional flags */
)

DESCRIPTION This routine initializes a XBD structure, which describes a logical partition on a
USB_BULK_DEV device. A logical partition is an array of contiguously addressed blocks; it
can be completely described by the number of blocks and the address of the first block in
the partition.

NOTE If numBlocks is 0, the rest of device is used.

This routine supplies an additional parameter called flags. This bitfield currently only uses
bit 1. This bit determines whether the driver will use a SCSI READ6 or SCSI READ10 for
read access.

RETURNS A pointer to the XBD, or NULL if parameters exceed physical device boundaries, or if no
bulk device exists.

ERRNO none

SEE ALSO usbBulkDevLib

2 Routines
usbBulkDevIoctl()

71

usbBulkDevInit()

NAME usbBulkDevInit() – registers USB Bulk only mass storage class driver

SYNOPSIS STATUS usbBulkDevInit (void)

DESCRIPTION This routine registers the mass storage class driver with USB driver. It also registers attach
callback routine to get notified of the USB/MSC/BULK ONLY devices.

RETURNS OK, or ERROR if unable to register with USBD.

ERRNO S_usbbulkDevLib_OUT_OF_RESOURCES
Resources not available

S_usbbulkDevLib_USBD_FAULT
Error in USBD layer

SEE ALSO usbBulkDevLib

usbBulkDevIoctl()

NAME usbBulkDevIoctl() – perform a device-specific control

SYNOPSIS int usbBulkDevIoctl
 (
 XBD * pUsbBulkXbdDev, /* pointer to bulk device */
 int request, /* request type */
 void * someArg /* arguments related to request */
)

DESCRIPTION Typically called to invoke device-specific functions which are not needed by a file system.

RETURNS The status of the request, or ERROR if the request is unsupported.

ERRNO none

SEE ALSO usbBulkDevLib

Wind River USB for VxWorks 6 API Reference, 2.4
usbBulkDevLock()

72

usbBulkDevLock()

NAME usbBulkDevLock() – Marks USB_BULK_DEV structure as in use

SYNOPSIS STATUS usbBulkDevLock
 (
 USBD_NODE_ID nodeId /* NodeId of the XBD to be marked as in use */
)

DESCRIPTION A caller uses usbBulkDevLock() to notify usbBulkDevLib that it is using the indicated
USB_BULK_DEV structure. usbBulkDevLib maintains a count of callers using a particular
USB_BULK_DEV structure so that it knows when it is safe to dispose of a structure when the
underlying USB_BULK_DEV is removed from the system. So long as the "lock count" is
greater than zero, usbBulkDevLib will not dispose of an USB_BULK_DEV structure.

RETURNS OK, or ERROR if unable to mark USB_BULK_DEV structure in use

ERRNO none

SEE ALSO usbBulkDevLib

usbBulkDevShow()

NAME usbBulkDevShow() – shows routine for displaying all LUNs of a device.

SYNOPSIS void usbBulkDevShow
 (
 USBD_NODE_ID nodeId /* nodeId of the bulk-only device */
)

DESCRIPTION This function displays all the logical unit number of the device specifed by nodeId

RETURNS N/A

ERRNO none

SEE ALSO usbBulkDevLib

2 Routines
usbBulkDevUnlock()

73

usbBulkDevShutDown()

NAME usbBulkDevShutDown() – shuts down the USB bulk-only class driver

SYNOPSIS STATUS usbBulkDevShutDown
 (
 int errCode /* Error code - reason for shutdown */
)

DESCRIPTION This routine unregisters the driver from USBD and releases any resources allocated for the
devices.

RETURNS OK or ERROR depending on errCode

ERRNO S_usbBulkDevLib_NOT_INITIALIZED
Not initialized

SEE ALSO usbBulkDevLib

usbBulkDevUnlock()

NAME usbBulkDevUnlock() – Marks USB_BULK_DEV structure as unused.

SYNOPSIS STATUS usbBulkDevUnlock
 (
 USBD_NODE_ID nodeId /* NodeId of the XBD to be marked as unused */
)

DESCRIPTION This function releases a lock placed on an USB_BULK_DEV structure. When a caller no
longer needs an USB_BULK_DEV structure for which it has previously called
usbBulkDevLock(), then it should call this function to release the lock.

NOTE If the underlying SCSI/BULK-ONLY device has already been removed from the system,
then this function will automatically dispose of the USB_BULK_DEV structure if this call
removes the last lock on the structure. Therefore, a caller must not reference the
USB_BULK_DEV structure after making this call.

RETURNS OK, or ERROR if unable to mark USB_BULK_DEV structure unused

ERRNO S_usbBulkDevLib_NOT_LOCKED
No Lock to Unlock

Wind River USB for VxWorks 6 API Reference, 2.4
usbBulkDriveEmpty()

74

SEE ALSO usbBulkDevLib

usbBulkDriveEmpty()

NAME usbBulkDriveEmpty() – routine to check if drive has media inserted.

SYNOPSIS BOOL usbBulkDriveEmpty
 (
 USBD_NODE_ID nodeId, /* nodeId of the bulk-only device */
 UINT8 lun
)

DESCRIPTION This routine simpley returns the Empty flag for the drive from the usbBulk structure.

RETURNS TRUE if drive is Empty, FALSE if there is media in the drive

ERRNO none

SEE ALSO usbBulkDevLib

usbBulkDriveShow()

NAME usbBulkDriveShow() – shows routine for displaying one LUN of a device.

SYNOPSIS void usbBulkDriveShow
 (
 USBD_NODE_ID nodeId, /* nodeId of the bulk-only device */
 UINT8 lun
)

DESCRIPTION This function displays the device with logical unit number specified as lun

RETURNS N/A

ERRNO none

SEE ALSO usbBulkDevLib

2 Routines
usbBulkDynamicAttachUnregister()

75

usbBulkDynamicAttachRegister()

NAME usbBulkDynamicAttachRegister() – Register SCSI/BULK-ONLY device attach callback.

SYNOPSIS STATUS usbBulkDynamicAttachRegister
 (
 USB_BULK_ATTACH_CALLBACK callback, /* new callback to be registered */
 pVOID arg /* user-defined arg to callback */
)

DESCRIPTION callback is a caller-supplied function of the form:

typedef (*USB_BULK_ATTACH_CALLBACK)
 (
 pVOID arg,
 USBD_NODE_ID bulkDevId,
 UINT16 attachCode
);

usbBulkDevLib will invoke callback each time a MSC/SCSI/BULK-ONLY device is
attached to or removed from the system. arg is a caller-defined parameter which will be
passed to the callback each time it is invoked. The callback will also be passed the nodeID of
the device being created/destroyed and an attach code of USB_BULK_ATTACH or
USB_BULK_REMOVE.

NOTE The user callback routine should not invoke any driver function that submits IRPs. Further
processing must be done from a different task context. As the driver routines wait for IRP
completion, they cannot be invoked from USBD client task's context created for this driver.

RETURNS OK, or ERROR if unable to register callback

ERRNO S_usbBulkDevLib_BAD_PARAM
Bad Paramters passed

S_usbBulkDevLib_OUT_OF_MEMORY
System Out of Memory

SEE ALSO usbBulkDevLib

usbBulkDynamicAttachUnregister()

NAME usbBulkDynamicAttachUnregister() – Unregisters SCSI/BULK-ONLY attach callback.

SYNOPSIS STATUS usbBulkDynamicAttachUnregister

Wind River USB for VxWorks 6 API Reference, 2.4
usbBulkGetMaxLun()

76

 (
 USB_BULK_ATTACH_CALLBACK callback, /* callback to be unregistered */
 pVOID arg /* user-defined arg to callback */
)

DESCRIPTION This function cancels a previous request to be dynamically notified for SCSI/BULK-ONLY
device attachment and removal. The callback and arg paramters must exactly match those
passed in a previous call to usbBulkDynamicAttachRegister().

RETURNS OK, or ERROR if unable to unregister callback

ERRNO S_usbBulkDevLib_NOT_REGISTERED
Could not register the callback

SEE ALSO usbBulkDevLib

usbBulkGetMaxLun()

NAME usbBulkGetMaxLun() – Return the max LUN number for a device

SYNOPSIS UINT8 usbBulkGetMaxLun
 (
 USBD_NODE_ID nodeId /* nodeId of the bulk-only device */
)

DESCRIPTION This function returns the maximum LUN number of the device

RETURNS UINT8 value specifying the maximum LUN or 0, if nodeId not found

ERRNO none

SEE ALSO usbBulkDevLib

usbBulkShow()

NAME usbBulkShow() – shows routine for displaying all bulk devices.

SYNOPSIS void usbBulkShow
 (
)

2 Routines
usbCbiUfiDevInit()

77

DESCRIPTION This routine displays all the bulk devices connected

RETURNS N/A

ERRNO none

SEE ALSO usbBulkDevLib

usbCbiUfiBlkDevCreate()

NAME usbCbiUfiBlkDevCreate() – create a block device

SYNOPSIS XBD * usbCbiUfiBlkDevCreate
 (
 USBD_NODE_ID nodeId /* Node Id of the CBI_UFI device */
)

DESCRIPTION This routine initializes a XBD structure, which describes a logical partition on a
USB_CBI_UFI_DEV device. A logical partition is an array of contiguously addressed blocks;
it can be completely described by the number of blocks and the address of the first block in
the partition.

RETURNS A pointer to the XBD, or NULL if no CBI/UFI device exists.

ERRNO none

SEE ALSO usbCbiUfiDevLib

usbCbiUfiDevInit()

NAME usbCbiUfiDevInit() – registers USB CBI mass storage class driver for UFI devices

SYNOPSIS STATUS usbCbiUfiDevInit (void)

DESCRIPTION This routine registers the CBI mass storage class driver for UFI devices. It also registers a
callback routine to request notification whenever USB/MSC/CBI/UFI devices are attached
or removed.

RETURNS OK, or ERROR if unable to register with USBD.

Wind River USB for VxWorks 6 API Reference, 2.4
usbCbiUfiDevIoctl()

78

ERRNO S_usbCbiUfiDevLib_OUT_OF_RESOURCES
Resouces are not available

S_usbCbiUfiDevLib_USBD_FAULT
USBD Fault has occured

SEE ALSO usbCbiUfiDevLib

usbCbiUfiDevIoctl()

NAME usbCbiUfiDevIoctl() – perform a device-specific control.

SYNOPSIS int usbCbiUfiDevIoctl
 (
 XBD * pCbiUfiXbdDev, /* pointer to MSC/CBI/UFI device */
 int request, /* request type */
 void * someArg /* arguments related to request */
)

DESCRIPTION Typically called by file system to invoke device-specific functions beyond file handling.
The following control requests are supported

FIODISKFORMAT (0x05)
Formats the entire disk with appropriate hardware track and sector marks. No file
system is initialized on the disk by this request. This control function is defined by the
file system, but provided by the driver.

USB UFI ALL DESCRIPTOR GET (0xF0)
Invokes show routine for displaying configuration, device and interface descriptors.

USB UFI DEV RESET (0xF1)
Issues a command block reset and clears stall condition on bulk-in and bulk-out
endpoints.

RETURNS The status of the request, or ERROR if the request is unsupported.

ERRNO none

SEE ALSO usbCbiUfiDevLib

2 Routines
usbCbiUfiDevShutDown()

79

usbCbiUfiDevLock()

NAME usbCbiUfiDevLock() – Marks CBI_UFI_DEV structure as in use

SYNOPSIS STATUS usbCbiUfiDevLock
 (
 USBD_NODE_ID nodeId /* NodeId of the XBD to be marked as in use */
)

DESCRIPTION A caller uses usbCbiUfiDevLock() to notify usbCBiUfiDevLib that it is using the
indicated CBI_UFI_DEV structure. usbCBiUfiDevLib maintains a count of callers using a
particular CBI_UFI_DEV structure so that it knows when it is safe to dispose of a structure
when the underlying CBI_UFI_DEV is removed from the system. So long as the "lock count"
is greater than zero, usbCbiUfiDevLib will not dispose of an CBI_UFI_DEV structure.

RETURNS OK, or ERROR if unable to mark CBI_UFI_DEV structure in use

ERRNO none

SEE ALSO usbCbiUfiDevLib

usbCbiUfiDevShutDown()

NAME usbCbiUfiDevShutDown() – shuts down the USB CBI mass storage class driver

SYNOPSIS STATUS usbCbiUfiDevShutDown
 (
 int errCode /* Error code - reason for shutdown */
)

DESCRIPTION This routine unregisters UFI driver from USBD and releases any resources allocated for the
devices.

RETURNS OK or ERROR.

ERRNO S_usbCbiUfiDevLib_NOT_INITIALIZED
CBI Device is not initialized

SEE ALSO usbCbiUfiDevLib

Wind River USB for VxWorks 6 API Reference, 2.4
usbCbiUfiDevUnlock()

80

usbCbiUfiDevUnlock()

NAME usbCbiUfiDevUnlock() – Marks CBI_UFI_DEV structure as unused.

SYNOPSIS STATUS usbCbiUfiDevUnlock
 (
 USBD_NODE_ID nodeId /* NodeId of the XBD to be marked as unused */
)

DESCRIPTION This function releases a lock placed on an CBI_UFI_DEV structure. When a caller no longer
needs an CBI_UFI_DEV structure for which it has previously called usbCbiUfiDevLock(),
then it should call this function to release the lock.

NOTE If the underlying CBI_UFI device has already been removed from the system, then this
function will automatically dispose of the CBI_UFI_DEV structure if this call removes the last
lock on the structure. Therefore, a caller must not reference the CBI_UFI_DEV structure after
making this call.

RETURNS OK, or ERROR if unable to mark CBI_UFI_DEV structure unused

ERRNO S_usbCBiUfiDevLib_NOT_LOCKED
No lock to Unlock

SEE ALSO usbCbiUfiDevLib

usbCbiUfiDynamicAttachRegister()

NAME usbCbiUfiDynamicAttachRegister() – Register UFI device attach callback.

SYNOPSIS STATUS usbCbiUfiDynamicAttachRegister
 (
 USB_UFI_ATTACH_CALLBACK callback, /* new callback to be registered */
 pVOID arg /* user-defined arg to callback */
)

DESCRIPTION callback is a caller-supplied function of the form:

typedef (*USB_UFI_ATTACH_CALLBACK)
 (
 pVOID arg,
 USBD_NODE_ID cbiUfiDevId,
 UINT16 attachCode
);

2 Routines
usbCbiUfiDynamicAttachUnregister()

81

usbCBiUfiDevLib will invoke callback each time a CBI_UFI device is attached to or removed
from the system. arg is a caller-defined parameter which will be passed to the callback each
time it is invoked. The callback will also be passed the nodeID of the device being
created/destroyed and an attach code of USB_UFI_ATTACH or USB_UFI_REMOVE.

NOTE The user callback routine should not invoke any driver function that submits IRPs. Further
processing must be done from a different task context. As the driver routines wait for IRP
completion, they cannot be invoked from USBD client task's context created for this driver.

RETURNS OK, or ERROR if unable to register callback

ERRNO S_usbCbiUfiDevLib_BAD_PARAM
Bad Paramter passed

S_usbCbiUfiDevLib_OUT_OF_MEMORY
Sufficient memory not available

SEE ALSO usbCbiUfiDevLib

usbCbiUfiDynamicAttachUnregister()

NAME usbCbiUfiDynamicAttachUnregister() – Unregisters CBI_UFI attach callback.

SYNOPSIS STATUS usbCbiUfiDynamicAttachUnregister
 (
 USB_UFI_ATTACH_CALLBACK callback, /* callback to be unregistered */
 pVOID arg /* user-defined arg to callback */
)

DESCRIPTION This function cancels a previous request to be dynamically notified for CBI_UFI device
attachment and removal. The callback and arg paramters must exactly match those passed
in a previous call to usbCbiUfiDynamicAttachRegister().

RETURNS OK, or ERROR if unable to unregister callback

ERRNO S_usbCbiUfiDevLib_NOT_REGISTERED
Could not register the callback

SEE ALSO usbCbiUfiDevLib

Wind River USB for VxWorks 6 API Reference, 2.4
usbConfigCountGet()

82

usbConfigCountGet()

NAME usbConfigCountGet() – Retrieves the number of device configurations.

SYNOPSIS STATUS usbConfigCountGet
 (
 USBD_CLIENT_HANDLE usbdClientHandle, /* caller's USBD client handle */
 USBD_NODE_ID nodeId, /* device node ID */
 pUINT16 pNumConfig /* bfr to receive nbr of config */
)

DESCRIPTION Using the usbdClientHandle provided by the caller, this function reads the nodeId's device
descriptor and returns the number of configurations supported by the device in
pNumConfig.

RETURNS OK, or ERROR if unable to read device descriptor

ERRNO None

SEE ALSO usbLib

usbConfigDescrGet()

NAME usbConfigDescrGet() – Reads the full configuration descriptor from device.

SYNOPSIS STATUS usbConfigDescrGet
 (
 USBD_CLIENT_HANDLE usbdClientHandle, /* caller's USBD client handle */
 USBD_NODE_ID nodeId, /* device node ID */
 UINT16 cfgNo, /* specifies configuration nbr */
 pUINT16 pBfrLen, /* receives length of buffer */
 pUINT8 *ppBfr /* receives pointer to buffer */
)

DESCRIPTION This function reads the configuration descriptor cfgNo and all associated descriptors
(interface, endpoint, and so on) for the device specified by nodeId. The total amount of data
returned by a device is variable, so this function pre-reads just the configuration descriptor
and uses the "totalLength" field from that descriptor to determine the total length of the
configuration descriptor and its associated descriptors.

This function uses the macro OSS_MALLOC() to allocate a buffer for the complete
descriptor. The size and location of the buffer are returned in ppBfr and pBfrLen. It is the
caller's responsibility to free the buffer using the OSS_FREE() macro.

2 Routines
usbDescrCopy32()

83

RETURNS OK, or ERROR if unable to read descriptor

ERRNO None

SEE ALSO usbLib

usbDescrCopy()

NAME usbDescrCopy() – copies descriptor to a buffer

SYNOPSIS VOID usbDescrCopy
 (
 pUINT8 pBfr, /* destination buffer */
 pVOID pDescr, /* source buffer */
 UINT16 bfrLen, /* dest len */
 pUINT16 pActLen /* actual length copied */
)

DESCRIPTION Copies the USB descriptor at pDescr to the pBfr of length bfrLen. Returns the actual number
of bytes copied - which is the shorter of the pDescr or bfrLen - in pActLen if pActLen is
non-NULL.

RETURNS N/A

ERRNO None

SEE ALSO usbDescrCopyLib

usbDescrCopy32()

NAME usbDescrCopy32() – copies descriptor to a buffer

SYNOPSIS VOID usbDescrCopy32
 (
 pUINT8 pBfr, /* destination buffer */
 pVOID pDescr, /* source buffer */
 UINT32 bfrLen, /* dest len */
 pUINT32 pActLen /* actual length copied */
)

Wind River USB for VxWorks 6 API Reference, 2.4
usbDescrParse()

84

DESCRIPTION This function is the same as usbDescrCopy() except that bfrLen and pActLen refer to
UINT32 quantities.

RETURNS N/A

ERRNO None

SEE ALSO usbDescrCopyLib

usbDescrParse()

NAME usbDescrParse() – search a buffer for the a particular USB descriptor

SYNOPSIS pVOID usbDescrParse
 (
 pUINT8 pBfr, /* buffer to parse */
 UINT16 bfrLen, /* length of buffer to parse */
 UINT8 descriptorType /* type of descriptor being sought */
)

DESCRIPTION Searches pBfr up to bfrLen bytes for a descriptor of a type matching descriptorType and
returns a pointer to the descriptor if found.

RETURNS pointer to indicated descriptor, or NULL if descr not found

ERRNO None

SEE ALSO usbLib

usbDescrParseSkip()

NAME usbDescrParseSkip() – search for a descriptor and increment buffer.

SYNOPSIS pVOID usbDescrParseSkip
 (
 pUINT8 *ppBfr, /* buffer to parse */
 pUINT16 pBfrLen, /* length of buffer to parse */
 UINT8 descriptorType /* type of descriptor being sought */
)

2 Routines
usbDescrStrCopy32()

85

DESCRIPTION This searches ppBfr up to pBfrLen bytes for a descriptor of a type matching descriptorType and
returns a pointer to the descriptor if found. ppBfr and pBfrLen are updated to reflect the next
location in the buffer and the remaining size of the buffer, respectively.

RETURNS pointer to indicated descriptor, or NULL if descr not found.

ERRNO None

SEE ALSO usbLib

usbDescrStrCopy()

NAME usbDescrStrCopy() – copies an ASCII string to a string descriptor.

SYNOPSIS VOID usbDescrStrCopy
 (
 pUINT8 pBfr, /* destination buffer */
 char *pStr, /* source buffer */
 UINT16 bfrLen, /* dest len */
 pUINT16 pActLen /* actual length copied */
)

DESCRIPTION This routine constructs a properly formatted USB string descriptor in pBfr. The ASCII string
pStr is copied to pBfr as a Unicode string as required by the USB spec. The actual length of
the resulting descriptor is returned in pActLen if pActLen is non-NULL.

NOTE The complete length of the string descriptor can be calculated as 2 * strlen (pStr) + 2. The
pActLen will be the shorter of bfrLen or this value.

RETURNS N/A

ERRNO None

SEE ALSO usbDescrCopyLib

usbDescrStrCopy32()

NAME usbDescrStrCopy32() – copies an ASCII string to a string descriptor

Wind River USB for VxWorks 6 API Reference, 2.4
usbEhcdExit()

86

SYNOPSIS VOID usbDescrStrCopy32
 (
 pUINT8 pBfr, /* destination buffer */
 char *pStr, /* source buffer */
 UINT32 bfrLen, /* dest len */
 pUINT32 pActLen /* actual length copied */
)

DESCRIPTION This function is the same as usbDescrStrCopy() except that bfrLen and pActLen refer to
UINT32 quantities.

RETURNS N/A

ERRNO None.

SEE ALSO usbDescrCopyLib

usbEhcdExit()

NAME usbEhcdExit() – uninitializes the EHCI Host Controller

SYNOPSIS BOOLEAN usbEhcdExit(void)

DESCRIPTION This routine uninitializes the EHCI Host Controller Driver and detaches it from the usbd
interface layer.

RETURNS TRUE, or FALSE if there is an error during HCD uninitialization.

ERRNO None.

SEE ALSO usbEhcdInitExit

usbEhcdInit()

NAME usbEhcdInit() – initializes the EHCI Host Controller Driver

SYNOPSIS STATUS usbEhcdInit (void)

2 Routines
usbEhcdRHCancelURB()

87

DESCRIPTION This routine intializes the EHCI Host Controller Driver data structures. This routine is
executed prior to vxBus device connect to initialize data structures expected by the device
initialization.

The USBD must be initialized prior to calling this routine. In this routine the book-keeping
variables for the EHCI Driver are initialized.

The function also registers the EHCI Host controller Drive with USBD

RETURNS OK or ERROR, if the initialization fails

ERRNO None.

SEE ALSO usbEhcdInitExit

usbEhcdInstantiate()

NAME usbEhcdInstantiate() – instantiate the USB EHCI Host Controller Driver.

SYNOPSIS VOID usbEhcdInstantiate (void)

DESCRIPTION This routine instantiates the EHCI Host Controller Driver and allows the EHCI Controller
driver to be included with the vxWorks image and not be registered with vxBus. EHCI
devices will remain orphan devices until the usbEhciInit() routine is called. This supports
the INCLUDE_EHCI behaviour of previous vxWorks releases.

The routine itself does nothing.

RETURNS N/A

ERRNO None.

SEE ALSO usbEhcdInitExit

usbEhcdRHCancelURB()

NAME usbEhcdRHCancelURB() – cancels a request submitted for an endpoint

Wind River USB for VxWorks 6 API Reference, 2.4
usbEhcdRHDeletePipe()

88

SYNOPSIS USBHST_STATUS usbEhcdRHCancelURB
 (
 pUSB_EHCD_DATA pHCDData, /* Ptr to HCD block */
 UINT32 uPipeHandle, /* Pipe Handle Identifier */
 pUSBHST_URB pURB /* Ptr to User Request Block */
)

DESCRIPTION This routine cancels a request submitted for an endpoint.

RETURNS USBHST_SUCCESS if the URB is submitted successfully.
USBHST_INVALID_PARAMETER if the parameters are not valid.
USBHST_INSUFFICIENT_BANDWIDTH if memory is insufficient for the request.

ERRNO None.

SEE ALSO usbEhcdRhEmulation

usbEhcdRHDeletePipe()

NAME usbEhcdRHDeletePipe() – deletes a pipe specific to an endpoint.

SYNOPSIS USBHST_STATUS usbEhcdRHDeletePipe
 (
 pUSB_EHCD_DATA pHCDData, /* Ptr to HCD block */
 UINT32 uPipeHandle /* Pipe Handle Identifier */
)

DESCRIPTION This routine deletes a pipe specific to an endpoint.

RETURNS USBHST_SUCCESS if the pipe was deleted successfully.
USBHST_INVALID_PARAMETER if the parameters are not valid.

ERRNO None.

SEE ALSO usbEhcdRhEmulation

2 Routines
usbEhcdRhClearPortFeature()

89

usbEhcdRHSubmitURB()

NAME usbEhcdRHSubmitURB() – submits a request to an endpoint.

SYNOPSIS USBHST_STATUS usbEhcdRHSubmitURB
 (
 pUSB_EHCD_DATA pHCDData, /* Ptr to HCD block */
 UINT32 uPipeHandle, /* Pipe Handle Identifier */
 pUSBHST_URB pURB /* Ptr to User Request Block */
)

DESCRIPTION This routine submits a request to an endpoint.

RETURNS USBHST_SUCCESS if the URB is submitted successfully.
USBHST_INVALID_PARAMETER if the parameters are not valid.
USBHST_INSUFFICIENT_BANDWIDTH if memory is insufficient for the request.

ERRNO None.

SEE ALSO usbEhcdRhEmulation

usbEhcdRhClearPortFeature()

NAME usbEhcdRhClearPortFeature() – clears a feature of the port

SYNOPSIS USBHST_STATUS usbEhcdRhClearPortFeature
 (
 pUSB_EHCD_DATA pHCDData, /* Ptr to HCD block */
 pUSBHST_URB pURB /* Ptr to User Request Block */
)

DESCRIPTION This routine clears a feature of the port.

RETURNS USBHST_SUCCESS - if the URB is submitted successfully.
USBHST_INVALID_PARAMETER- if the parameters are not valid.

ERRNO None.

SEE ALSO usbEhcdRhEmulation

Wind River USB for VxWorks 6 API Reference, 2.4
usbEhcdRhCreatePipe()

90

usbEhcdRhCreatePipe()

NAME usbEhcdRhCreatePipe() – creates a pipe specific to an endpoint.

SYNOPSIS USBHST_STATUS usbEhcdRhCreatePipe
 (
 pUSB_EHCD_DATA pHCDData, /* Ptr to HCD block */
 UINT8 uDeviceAddress, /* Device Address */
 UINT8 uDeviceSpeed, /* Device Speed */
 UCHAR *pEndpointDescriptor, /* Ptr to EndPoint Descriptor */
 UINT32 *puPipeHandle /* Ptr to pipe handle */
)

DESCRIPTION This routine creates a pipe specific to an endpoint.

RETURNS USBHST_SUCCESS - if the pipe was created successfully.
USBHST_INVALID_PARAMETER if the parameters are not valid.
USBHST_INSUFFICIENT_MEMORY if the memory allocation for the pipe failed.

ERRNO None.

SEE ALSO usbEhcdRhEmulation

usbEhcdRhGetHubDescriptor()

NAME usbEhcdRhGetHubDescriptor() – get the hub descriptor

SYNOPSIS USBHST_STATUS usbEhcdRhGetHubDescriptor
 (
 pUSB_EHCD_DATA pHCDData, /* Ptr to HCD block */
 pUSBHST_URB pURB /* Ptr to User Request Block */
)

DESCRIPTION This routine gets the hub descriptor.

RETURNS USBHST_SUCCESS - if the URB is submitted successfully.
USBHST_INVALID_PARAMETER - if the parameters are not valid.

ERRNO None.

2 Routines
usbEhcdRhProcessClassSpecificRequest()

91

SEE ALSO usbEhcdRhEmulation

usbEhcdRhGetPortStatus()

NAME usbEhcdRhGetPortStatus() – get the status of the port

SYNOPSIS USBHST_STATUS usbEhcdRhGetPortStatus
 (
 pUSB_EHCD_DATA pHCDData, /* Ptr to HCD block */
 pUSBHST_URB pURB /* Ptr to User Request Block */
)

DESCRIPTION This routine gets the status of the port.

RETURNS USBHST_SUCCESS - if the URB is submitted successfully.
USBHST_INVALID_PARAMETER - if the parameters are not valid.

ERRNO None.

SEE ALSO usbEhcdRhEmulation

usbEhcdRhProcessClassSpecificRequest()

NAME usbEhcdRhProcessClassSpecificRequest() – processes a class specific request

SYNOPSIS USBHST_STATUS usbEhcdRhProcessClassSpecificRequest
 (
 pUSB_EHCD_DATA pHCDData, /* Ptr to HCD block */
 pUSBHST_URB pURB /* Ptr to User Request Block */
)

DESCRIPTION This routine processes a class specific request.

RETURNS USBHST_SUCCESS if the URB is submitted successfully.
USBHST_INVALID_PARAMETER if the parameters are not valid.
USBHST_INSUFFICIENT_BANDWIDTH if memory is insufficient for the request.

Wind River USB for VxWorks 6 API Reference, 2.4
usbEhcdRhProcessControlRequest()

92

ERRNO None.

SEE ALSO usbEhcdRhEmulation

usbEhcdRhProcessControlRequest()

NAME usbEhcdRhProcessControlRequest() – processes a control transfer request

SYNOPSIS USBHST_STATUS usbEhcdRhProcessControlRequest
 (
 pUSB_EHCD_DATA pHCDData, /* Ptr to HCD block */
 pUSBHST_URB pURB /* Ptr to User Request Block */
)

DESCRIPTION This routine processes a control transfer request.

RETURNS USBHST_SUCCESS if the URB is submitted successfully.
USBHST_INVALID_PARAMETER if the parameters are not valid.
USBHST_INSUFFICIENT_BANDWIDTH if memory is insufficient for the request.

ERRNO None.

SEE ALSO usbEhcdRhEmulation

usbEhcdRhProcessInterruptRequest()

NAME usbEhcdRhProcessInterruptRequest() – processes a interrupt transfer request

SYNOPSIS USBHST_STATUS usbEhcdRhProcessInterruptRequest
 (
 pUSB_EHCD_DATA pHCDData, /* Ptr to HCD block */
 pUSBHST_URB pURB /* Ptr to User Request Block */
)

DESCRIPTION This routine processes a interrupt transfer request.

2 Routines
usbEhcdRhSetPortFeature()

93

RETURNS USBHST_SUCCESS if the URB is submitted successfully. USBHST_INVALID_PARAMETER if
the parameters are not valid. USBHST_INSUFFICIENT_BANDWIDTH if memory is
insufficient for the request.

ERRNO None.

SEE ALSO usbEhcdRhEmulation

usbEhcdRhProcessStandardRequest()

NAME usbEhcdRhProcessStandardRequest() – processes a standard transfer request

SYNOPSIS USBHST_STATUS usbEhcdRhProcessStandardRequest
 (
 pUSB_EHCD_DATA pHCDData, /* Ptr to HCD block */
 pUSBHST_URB pURB /* Ptr to User Request Block */
)

DESCRIPTION This routine processes a standard transfer request.

RETURNS USBHST_SUCCESS if the URB is submitted successfully.
USBHST_INVALID_PARAMETER if the parameters are not valid.
USBHST_INSUFFICIENT_BANDWIDTH if memory is insufficient for the request.

ERRNO None.

SEE ALSO usbEhcdRhEmulation

usbEhcdRhSetPortFeature()

NAME usbEhcdRhSetPortFeature() – set the features of the port

SYNOPSIS USBHST_STATUS usbEhcdRhSetPortFeature
 (
 pUSB_EHCD_DATA pHCDData, /* Ptr to HCD block */
 pUSBHST_URB pURB /* Ptr to User Request Block */
)

Wind River USB for VxWorks 6 API Reference, 2.4
usbHalTcdAddressSet()

94

DESCRIPTION This routine sets the features of the port.

RETURNS USBHST_SUCCESS if the URB is submitted successfully.
USBHST_INVALID_PARAMETER if the parameters are not valid.

ERRNO None.

SEE ALSO usbEhcdRhEmulation

usbHalTcdAddressSet()

NAME usbHalTcdAddressSet() – hal interface to set address.

SYNOPSIS STATUS usbHalTcdAddressSet
 (
 pUSBHAL_TCD_NEXUS pNexus, /* TCD_NEXUS structure member */
 UINT8 deviceAddress /* Address of the device to set */
)

DESCRIPTION This function sets an address on the target controller.

RETURNS OK, if address set successfully; ERROR otherwise.

ERRNO None.

SEE ALSO usbHalDeviceControlStatus

usbHalTcdAttach()

NAME usbHalTcdAttach() – attaches a TCD

SYNOPSIS STATUS usbHalTcdAttach
 (
 USB_TCD_EXEC_FUNC tcdExecFunc, /* single entry point of TCD
*/
 pVOID tcdParam, /* TCD specific paramter */
 pUSBHAL_TCD_NEXUS pNexus, /* USBHAL_TCD */
 pUSB_APPLN_DEVICE_INFO pDeviceInfo, /* USB_APPLN_DEVICE_INFO */

2 Routines
usbHalTcdDetach()

95

 USB_TCD_MNGMT_CALLBACK mngmtCallback, /* management callback
function */
 pVOID mngmtCallbackParam /* management callback
parameter */
)

DESCRIPTION This sub-module attaches the Target Controller Driver.

RETURNS OK if TCD is attached successfully, ERROR otherwise.

ERRNO None.

SEE ALSO usbHalInitExit

usbHalTcdCurrentFrameGet()

NAME usbHalTcdCurrentFrameGet() – hal interface to get Currrent Frame Number.

SYNOPSIS STATUS usbHalTcdCurrentFrameGet
 (
 pUSBHAL_TCD_NEXUS pNexus, /* USBHAL_TCD_NEXUS */
 pUINT16 pFrameNo /* Frame number */
)

DESCRIPTION This function gets the current frame number.

RETURNS OK if frame number is retrieved successfully, ERROR otherwise.

ERRNO None.

SEE ALSO usbHalDeviceControlStatus

usbHalTcdDetach()

NAME usbHalTcdDetach() – detaches a TCD

SYNOPSIS STATUS usbHalTcdDetach

Wind River USB for VxWorks 6 API Reference, 2.4
usbHalTcdDeviceFeatureClear()

96

 (
 pUSBHAL_TCD_NEXUS pNexus /* USBHAL_TCD_NEXUS */
)

DESCRIPTION This usb-routine is used to detach the TCD. All active endpoints are deleted before the TCD
is detached.

RETURNS OK if TCD is detached successfully, ERROR otherwise.

ERRNO None.

SEE ALSO usbHalInitExit

usbHalTcdDeviceFeatureClear()

NAME usbHalTcdDeviceFeatureClear() – hal interface to clear feature on device.

SYNOPSIS STATUS usbHalTcdDeviceFeatureClear
 (
 pUSBHAL_TCD_NEXUS pNexus, /* USBHAL_TCD_NEXUS */
 UINT16 uFeatureSelector /* Feature to be cleared */
)

DESCRIPTION This function clears a feature on the target controller.

RETURNS OK if feature cleared successfully, ERROR otherwise.

ERRNO none.

SEE ALSO usbHalDeviceControlStatus

usbHalTcdDeviceFeatureSet()

NAME usbHalTcdDeviceFeatureSet() – hal interface to set feature on the device.

SYNOPSIS STATUS usbHalTcdDeviceFeatureSet
 (
 pUSBHAL_TCD_NEXUS pNexus, /* USBHAL_TCD_NEXUS */

2 Routines
usbHalTcdEnable()

97

 UINT16 uFeatureSelector, /* Feature to set */
 UINT8 uTestSelector /* Test Mode arguments */
)

DESCRIPTION This function sets a feature on the target controller

RETURNS OK if feature set successfully, ERROR otherwise.

ERRNO None.

SEE ALSO usbHalDeviceControlStatus

usbHalTcdDisable()

NAME usbHalTcdDisable() – disables the target controller

SYNOPSIS STATUS usbHalTcdDisable
 (
 pUSBHAL_TCD_NEXUS pNexus /* USBHAL_TCD_NEXUS */
)

DESCRIPTION This sub-routine is used to disable the target controller.

RETURNS OK if target controller is successfully disabled, ERROR otherwise.

ERRNO None.

SEE ALSO usbHalInitExit

usbHalTcdEnable()

NAME usbHalTcdEnable() – enables the target controller.

SYNOPSIS STATUS usbHalTcdEnable
 (
 pUSBHAL_TCD_NEXUS pNexus /* USBHAL_TCD_NEXUS */
)

Wind River USB for VxWorks 6 API Reference, 2.4
usbHalTcdEndpointAssign()

98

DESCRIPTION This sub-routine is used to enable the Target Controller.

RETURNS OK if target controller is successfully enabled, ERROR otherwise.

ERRNO None.

SEE ALSO usbHalInitExit

usbHalTcdEndpointAssign()

NAME usbHalTcdEndpointAssign() – configure an endpoint on the target controller

SYNOPSIS STATUS usbHalTcdEndpointAssign
 (
 pUSBHAL_TCD_NEXUS pNexus, /* USBHAL_TCD_NEXUS */
 pUSB_ENDPOINT_DESCR pEndpointDesc, /* USB_ENDPOINT_DESCR */
 UINT16 uConfigurationValue, /* configuration value */
 UINT16 uInterface, /* interface number */
 UINT16 uAltSetting, /* alternate setting */
 pVOID * ppPipeHandle /* pointer to the Pipe handle
*/
)

DESCRIPTION This function is used to configure an endpoint for USB operations. pEndpointDesc is the
endpoint descriptor obtained from the above layer. On successfull configuration, we get a
pipe handle ppPipeHandle which is used to carry out any further operations on that
endpoint.

RETURNS OK if endpoint is configured successfully, ERROR otherwise.

ERRNO None.

SEE ALSO usbHalEndpoint

usbHalTcdEndpointRelease()

NAME usbHalTcdEndpointRelease() – unconfigure endpoint on the target controller

2 Routines
usbHalTcdEndpointStatusGet()

99

SYNOPSIS STATUS usbHalTcdEndpointRelease
 (
 pUSBHAL_TCD_NEXUS pNexus, /* USBHAL_TCD_NEXUS */
 pVOID pPipeHandle /* pipe handle */
)

DESCRIPTION This function is used to release an endpoint configured earlier. pPipeHandle is the handle to
the pipe for the endpoint to be relesed.

RETURNS OK if endpoint is unconfigured successfully, ERROR otherwise.

ERRNO none.

SEE ALSO usbHalEndpoint

usbHalTcdEndpointStateSet()

NAME usbHalTcdEndpointStateSet() – set the state of an endpoint

SYNOPSIS STATUS usbHalTcdEndpointStateSet
 (
 pUSBHAL_TCD_NEXUS pNexus, /* USBHAL_TCD_NEXUS */
 pVOID pPipeHandle, /* pipe handle */
 UINT16 state /* state of the pipe */
)

DESCRIPTION This function is used to stall or un-stall an endpoint. pPipeHandle is the handle to the
corresponding endpoint and state is the state to be set.

RETURNS OK if endpoint state is set successfully, ERROR otherwise.

ERRNO none.

SEE ALSO usbHalEndpoint

usbHalTcdEndpointStatusGet()

NAME usbHalTcdEndpointStatusGet() – get the status of an endpoint

Wind River USB for VxWorks 6 API Reference, 2.4
usbHalTcdErpCancel()

100

SYNOPSIS STATUS usbHalTcdEndpointStatusGet
 (
 pUSBHAL_TCD_NEXUS pNexus, /* USBHAL_TCD_NEXUS */
 pVOID pPipeHandle, /* pipe handle */
 pUINT8 pStatus /* pointer to hold the endpoint status */
)

DESCRIPTION This function is used to get the status of an endpoint. pPipeHandle is the handle to the
corresponding endpoint and pStatus is the pointer to the status information obtained.

RETURNS OK if endpoint status is retrieved successfully, ERROR otherwise.

ERRNO None.

SEE ALSO usbHalEndpoint

usbHalTcdErpCancel()

NAME usbHalTcdErpCancel() – cancel an ERP

SYNOPSIS STATUS usbHalTcdErpCancel
 (
 pUSBHAL_TCD_NEXUS pNexus, /* USBHAL_TCD_NEXUS */
 pUSB_ERP pErp /* pointer to the ERP */
)

DESCRIPTION This sub-module is used to cancel the ERP submitted on an endpoint.

RETURNS OK if ERP is cancelled successfully, ERROR otherwise.

ERRNO none.

SEE ALSO usbHalEndpoint

usbHalTcdErpSubmit()

NAME usbHalTcdErpSubmit() – submit an ERP for an endpoint

SYNOPSIS STATUS usbHalTcdErpSubmit

2 Routines
usbHandleCreate()

101

 (
 pUSBHAL_TCD_NEXUS pNexus, /* USBHAL_TCD_NEXUS */
 pUSB_ERP pErp /* pointer to the ERP */
)

DESCRIPTION This sub-module submits an ERP for transfer on an endpoint. The ERP structure consists o
the pointer of the pipe-handle on which the ERP is submitted.

RETURNS OK if ERP is submitted successfully, ERROR otherwise.

ERRNO None.

SEE ALSO usbHalEndpoint

usbHalTcdSignalResume()

NAME usbHalTcdSignalResume() – hal interface to initiate resume signal.

SYNOPSIS STATUS usbHalTcdSignalResume
 (
 pUSBHAL_TCD_NEXUS pNexus /* USBHAL_TCD_NEXUS */
)

DESCRIPTION This function initiates resume signalling on the bus.

RETURNS OK if resume signalling is initiated successfully, ERROR otherwise.

ERRNO None.

SEE ALSO usbHalDeviceControlStatus

usbHandleCreate()

NAME usbHandleCreate() – Creates a new handle.

SYNOPSIS STATUS usbHandleCreate
 (
 UINT32 handleSignature, /* Arbitrary handle signature */

Wind River USB for VxWorks 6 API Reference, 2.4
usbHandleDestroy()

102

 pVOID handleParam, /* Arbitrary handle parameter */
 pGENERIC_HANDLE pHandle /* Newly allocated handle */
)

DESCRIPTION This routine creates a new handle. The caller passes an arbitrary handleSignature and a
handleParam. The handleSignature will be used in subsequent calls to
usbHandleValidate().

RETURNS OK or ERROR

ERRNO S_usbHandleLib_NOT_INITIALIZED
S_usbHandleLib_BAD_PARAM
S_usbHandleLib_GENERAL_FAULT
S_usbHandleLib_OUT_OF_HANDLES

SEE ALSO usbHandleLib

usbHandleDestroy()

NAME usbHandleDestroy() – Destroys a handle.

SYNOPSIS STATUS usbHandleDestroy
 (
 GENERIC_HANDLE handle /* handle to be destroyed */
)

DESCRIPTION This routine destroys the handle created by calling usbHandleCreate().

RETURNS OK or ERROR

ERRNO S_usbHandleLib_GENERAL_FAULT
S_usbHandleLib_BAD_HANDLE

SEE ALSO usbHandleLib

usbHandleInitialize()

NAME usbHandleInitialize() – Initializies the handle utility library.

SYNOPSIS STATUS usbHandleInitialize

2 Routines
usbHandleValidate()

103

 (
 UINT32 maxHandles /* max handles allocated by library */
)

DESCRIPTION This routine initializes the handle utility library. It must be called at least once before any
other calls into the handle utility library. Calls to usbHandleInitialize() may be nested,
allowing multiple clients to use the library without requiring that they be coordinated.

maxHandles defines the maximum number of handles which should be allocated by the
library. Passing a zero in maxHandles causes the library to allocate a default number of
handles. maxHandles is ignored on nested calls to usbHandleInitialize().

RETURNS OK or ERROR

ERRNO S_usbHandleLib_OUT_OF_MEMORY
S_usbHandleLib_OUT_OF_RESOURCES

SEE ALSO usbHandleLib

usbHandleShutdown()

NAME usbHandleShutdown() – Shuts down the handle utility library.

SYNOPSIS STATUS usbHandleShutdown (void)

DESCRIPTION This routine shuts down the handle utility library. When calls to usbHandleInitialize()
have been nested, usbHandleShutdown() must be called a corresponding number of
times.

RETURNS OK or ERROR

ERRNO None

SEE ALSO usbHandleLib

usbHandleValidate()

NAME usbHandleValidate() – Validates a handle.

Wind River USB for VxWorks 6 API Reference, 2.4
usbHidIdleSet()

104

SYNOPSIS STATUS usbHandleValidate
 (
 GENERIC_HANDLE handle, /* handle to be validated */
 UINT32 handleSignature, /* signature used to validate handle */
 pVOID *pHandleParam /* Handle parameter on return */
)

DESCRIPTION This function validates handle. The handle must match the handleSignature used when the
handle was originally created. If the handle is valid, the pHandleParam will be returned.

RETURNS OK or ERROR

ERRNO S_usbHandleLib_NOT_INITIALIZED
S_usbHandleLib_BAD_HANDLE

SEE ALSO usbHandleLib

usbHidIdleSet()

NAME usbHidIdleSet() – Issues a SET_IDLE request to a USB HID.

SYNOPSIS STATUS usbHidIdleSet
 (
 USBD_CLIENT_HANDLE usbdClientHandle, /* caller's USBD client handle */
 USBD_NODE_ID nodeId, /* desired node */
 UINT16 interface, /* desired interface */
 UINT16 reportId, /* desired report */
 UINT16 duration /* idle duration */
)

DESCRIPTION Using the usbdClientHandle provided by the caller, this function issues a SET_IDLE request
to the indicated nodeId. The caller must also specify the interface, reportId, and duration. If
the duration is zero, the idle period is infinite. If duration is non-zero, then it expresses time
in four-msec units (for example, a duration of one = four msecs, two = eight msecs, and so
forth). Refer to Section 7.2.4 of the USB HID specification for further details.

RETURNS OK, or ERROR if unable to issue SET_IDLE request

ERRNO None

SEE ALSO usbLib

2 Routines
usbHidReportSet()

105

usbHidProtocolSet()

NAME usbHidProtocolSet() – Issues a SET_PROTOCOL request to a USB HID.

SYNOPSIS STATUS usbHidProtocolSet
 (
 USBD_CLIENT_HANDLE usbdClientHandle, /* caller's USBD client handle */
 USBD_NODE_ID nodeId, /* desired node */
 UINT16 interface, /* desired interface */
 UINT16 protocol /* USB_HID_PROTOCOL_xxxx */
)

DESCRIPTION Using the usbdClientHandle provided by the caller, this routine issues a SET_PROTOCOL
request to the indicated nodeId. The caller must specify the interface and the desired protocol.
The protocol is expressed as USB_HID_PROTOCOL_xxxx. Refer to Section 7.2.6 of the USB
HID specification for further details.

RETURNS OK, or ERROR if unable to issue SET_PROTOCOL request

ERRNO None

SEE ALSO usbLib

usbHidReportSet()

NAME usbHidReportSet() – Issues a SET_REPORT request to a USB HID.

SYNOPSIS STATUS usbHidReportSet
 (
 USBD_CLIENT_HANDLE usbdClientHandle, /* caller's USBD client handle */
 USBD_NODE_ID nodeId, /* desired node */
 UINT16 interface, /* desired interface */
 UINT16 reportType, /* report type */
 UINT16 reportId, /* report Id */
 pUINT8 reportBfr, /* report value */
 UINT16 reportLen /* length of report */
)

DESCRIPTION Using the usbdClientHandle provided by the caller, this function issues a SET_REPORT
request to the indicated nodeId. The caller must also specify the interface, reportType, reportId,
reportBfr, and reportLen. Refer to Section 7.2.2 of the USB HID specification for further detail.

RETURNS OK, or ERROR if unable to issue SET_REPORT request

Wind River USB for VxWorks 6 API Reference, 2.4
usbHstBusDeregister()

106

ERRNO None

SEE ALSO usbLib

usbHstBusDeregister()

NAME usbHstBusDeregister() – deregister a USB Bus

SYNOPSIS USBHST_STATUS usbHstBusDeregister
 (
 UINT32 hHCDriver, /* Host Controller Driver handle */
 UINT32 uRelativeBusIndex, /* Bus index being deregistered */
 UINT32 hDefaultPipe /* Default pipe for USB bus */
)

DESCRIPTION This routine deregisters an USB Bus corresponding to the controller.

RETURNS USBHST_SUCCESS, USBHST_INVALID_PARAMETER,
USBHST_INSUFFICIENT_RESOURCES, USBHST_FAILURE when Attempt to deregister the
USB Bus while there are functional devices on it

ERRNO None

SEE ALSO usbd

usbHstBusRegister()

NAME usbHstBusRegister() – registers an USB Bus

SYNOPSIS USBHST_STATUS usbHstBusRegister
 (
 UINT32 hHCDriver, /* Host Controller Driver handle */
 UINT8 uSpeed, /* USB Bus speed */
 UINT32 hDefaultPipe, /* Default pipe handle */
 VXB_DEVICE_ID pDev /* struct vxbDev */
)

DESCRIPTION This routine registers an USB Bus corresponding to the host controller. This routine also
announces the host controller device to vxBus

2 Routines
usbHstDriverRegister()

107

RETURNS USBHST_SUCCESS, USBHST_INVALID_PARAMETER,
USBHST_INSUFFICIENT_RESOURCES, USBHST_FAILURE if USB Bus is already registered

ERRNO None

SEE ALSO usbd

usbHstDriverDeregister()

NAME usbHstDriverDeregister() – deregisters USB class driver

SYNOPSIS USBHST_STATUS usbHstDriverDeregister
 (
 pUSBHST_DEVICE_DRIVER pDeviceDriverInfo /* Ptr to Device Driver info */
)

DESCRIPTION This routine deregisters the class driver with the USB Stack.

RETURNS USBHST_INVALID_PARAMETER, USBHST_SUCCESS, USBHST_FAILURE if Driver is not
found or if it is a hub class driver and there are some functional devices present

ERRNO None

SEE ALSO usbd

usbHstDriverRegister()

NAME usbHstDriverRegister() – register class driver

SYNOPSIS USBHST_STATUS usbHstDriverRegister
 (
 pUSBHST_DEVICE_DRIVER pDeviceDriverInfo, /* Ptr to Device Driver info
*/
 VOID ** pContext, /* Ptr to context information
*/
 char * pDrvName /* name of the driver */
)

DESCRIPTION This routine registers the class driver with the USB Host Stack. The function also register the
class driver with vxBus.

Wind River USB for VxWorks 6 API Reference, 2.4
usbHstHCDDeregister()

108

RETURNS USBHST_INVALID_PARAMETER, USBHST_SUCCESS, USBHST_FAILURE if Driver is
already registered

ERRNO None

SEE ALSO usbd

usbHstHCDDeregister()

NAME usbHstHCDDeregister() – deregister a Host Controller Driver

SYNOPSIS USBHST_STATUS usbHstHCDDeregister
 (
 UINT32 hHCDriver /* Host Controller Driver handle */
)

DESCRIPTION This routine deregisters a Host Controller Driver with the USB Stack. This function also
deregisters the host controller driver as bus controller from vxBus

RETURNS USBHST_SUCCESS, USBHST_INVALID_PARAMETER, USBHST_FAILURE if bus count is not
zero

ERRNO None

SEE ALSO usbd

usbHstHCDRegister()

NAME usbHstHCDRegister() – register Host Controller Driver with USBD

SYNOPSIS USBHST_STATUS usbHstHCDRegister
 (
 pUSBHST_HC_DRIVER pHCDriver, /* Ptr to Host Controller driver */
 UINT32 *phHCDriver, /* Ptr to Host Controller handle */
 void * pContext, /* pContext information */
 UINT32 busID /* bus Id */
)

DESCRIPTION This routine registers a Host Controller Driver with the USB Stack. The routine also
registers the host controller driver as bus type with vxBus. This is done by calling the routine
vxbBusTypeRegister (). This routine allocates memory for the structure

2 Routines
usbHubInit()

109

USBHST_HC_DRIVER :: vxbBusTypeInfo and populates the busId with host controller bus
id "busID" which is passed as argument to the function.

RETURNS USBHST_INVALID_PARAMETER, USBHST_INSUFFICIENT_RESOURCE, USBHST_SUCCESS
if Host Controller Driver is registered successfully

ERRNO None

SEE ALSO usbd

usbHubExit()

NAME usbHubExit() – de-registers and cleans up the USB Hub Class Driver.

SYNOPSIS INT8 usbHubExit (void)

DESCRIPTION de-registers and cleans up the USB Hub Class Driver from the USB Host Software Stack.

RETURNS None

ERRNO None

SEE ALSO usbHubInitialization

usbHubInit()

NAME usbHubInit() – registers USB Hub Class Driver function pointers.

SYNOPSIS INT8 usbHubInit(void)

DESCRIPTION This function initializes the global variables and registers USB Hub Class Driver function
pointers with the USB Host Software Stack. This also retrieves the USB Host Software Stack
functions for future access.

RETURNS 0 , -1 on fail.

ERRNO None

SEE ALSO usbHubInitialization

Wind River USB for VxWorks 6 API Reference, 2.4
usbKeyboardDevInit()

110

usbKeyboardDevInit()

NAME usbKeyboardDevInit() – initialize USB keyboard SIO driver

SYNOPSIS STATUS usbKeyboardDevInit (void)

DESCRIPTION Initializes the USB keyboard SIO driver. The USB keyboard SIO driver maintains an
initialization count, so calls to this function may be nested.

RETURNS OK, or ERROR if unable to initialize.

ERRNO S_usbKeyboardLib_OUT_OF_RESOURCES
Sufficient resources are not available to create mutex

S_usbKeyboardLib_USBD_FAULT
Fault in the USBD Layer

SEE ALSO usbKeyboardLib

usbKeyboardDevShutdown()

NAME usbKeyboardDevShutdown() – shuts down keyboard SIO driver

SYNOPSIS STATUS usbKeyboardDevShutdown (void)

DESCRIPTION This function shuts down the keyboard driver. The driver is shutdown only if initCount
after decrementing. If it is more the 0, it is decremented.

RETURNS OK, or ERROR if unable to shutdown.

ERRNO S_usbKeyboardLib_NOT_INITIALIZED
Keyboard Driver not initialized

SEE ALSO usbKeyboardLib

usbKeyboardDynamicAttachRegister()

NAME usbKeyboardDynamicAttachRegister() – Register keyboard attach callback

2 Routines
usbKeyboardDynamicAttachUnregister()

111

SYNOPSIS STATUS usbKeyboardDynamicAttachRegister
 (
 USB_KBD_ATTACH_CALLBACK callback, /* new callback to be registered */
 pVOID arg /* user-defined arg to callback */
)

DESCRIPTION callback is a caller-supplied function of the form:

typedef (*USB_KBD_ATTACH_CALLBACK)
 (
 pVOID arg,
 SIO_CHAN *pSioChan,
 UINT16 attachCode
);

usbKeyboardLib will invoke callback each time a USB keyboard is attached to or removed
from the system. arg is a caller-defined parameter which will be passed to the callback each
time it is invoked. The callback will also be passed a pointer to the SIO_CHAN structure for
the channel being created/destroyed and an attach code of USB_KBD_ATTACH or
USB_KBD_REMOVE.

RETURNS OK, or ERROR if unable to register callback

ERRNO S_usbKeyboardLib_BAD_PARAM
Bad Parameter are passed

S_usbKeyboardLib_OUT_OF_MEMORY
Not sufficient memory is available

SEE ALSO usbKeyboardLib

usbKeyboardDynamicAttachUnregister()

NAME usbKeyboardDynamicAttachUnregister() – Unregisters keyboard attach callback

SYNOPSIS STATUS usbKeyboardDynamicAttachUnRegister
 (
 USB_KBD_ATTACH_CALLBACK callback, /* callback to be unregistered */
 pVOID arg /* user-defined arg to callback */
)

DESCRIPTION This function cancels a previous request to be dynamically notified for keyboard attachment
and removal. The callback and arg parameters must exactly match those passed in a previous
call to usbKeyboardDynamicAttachRegister().

RETURNS OK, or ERROR if unable to unregister callback

Wind River USB for VxWorks 6 API Reference, 2.4
usbKeyboardSioChanLock()

112

ERRNO S_usbKeyboardLib_NOT_REGISTERED
Could not register the callback

SEE ALSO usbKeyboardLib

usbKeyboardSioChanLock()

NAME usbKeyboardSioChanLock() – Marks SIO_CHAN structure as in use

SYNOPSIS STATUS usbKeyboardSioChanLock
 (
 SIO_CHAN *pChan /* SIO_CHAN to be marked as in use */
)

DESCRIPTION A caller uses usbKeyboardSioChanLock() to notify usbKeyboardLib that it is using the
indicated SIO_CHAN structure. usbKeyboardLib maintains a count of callers using a
particular SIO_CHAN structure so that it knows when it is safe to dispose of a structure
when the underlying USB keyboard is removed from the system. So long as the "lock count"
is greater than zero, usbKeyboardLib will not dispose of an SIO_CHAN structure.

RETURNS OK

ERRNO none.

SEE ALSO usbKeyboardLib

usbKeyboardSioChanUnlock()

NAME usbKeyboardSioChanUnlock() – Marks SIO_CHAN structure as unused

SYNOPSIS STATUS usbKeyboardSioChanUnlock
 (
 SIO_CHAN *pChan /* SIO_CHAN to be marked as unused */
)

DESCRIPTION This function releases a lock placed on an SIO_CHAN structure. When a caller no longer
needs an SIO_CHAN structure for which it has previously called
usbKeyboardSioChanLock(), then it should call this function to release the lock.

2 Routines
usbListLink()

113

NOTE If the underlying USB keyboard device has already been removed from the system, then this
function will automatically dispose of the SIO_CHAN structure if this call removes the last
lock on the structure. Therefore, a caller must not reference the SIO_CHAN again structure
after making this call.

RETURNS OK, or ERROR if unable to mark SIO_CHAN structure unused

ERRNO S_usbKeyboardLib_NOT_LOCKED
No lock to unlock

SEE ALSO usbKeyboardLib

usbListFirst()

NAME usbListFirst() – Returns first entry on a linked list.

SYNOPSIS pVOID usbListFirst
 (
 pLIST_HEAD pListHead /* head of linked list */
)

DESCRIPTION This routine returns the pointer to the first structure in a linked list given a pointer to
LIST_HEAD.

RETURNS pStruct of first structure on list or NULL if list empty

ERRNO None

SEE ALSO usbListLib

usbListLink()

NAME usbListLink() – Adds an element to a linked list.

SYNOPSIS VOID usbListLink
 (
 pLIST_HEAD pHead, /* list head */
 pVOID pStruct, /* ptr to base of structure to be linked */
 pLINK pLink, /* ptr to LINK structure to be linked */

Wind River USB for VxWorks 6 API Reference, 2.4
usbListLinkProt()

114

 UINT16 flag /* indicates LINK_HEAD or LINK_TAIL */
)

DESCRIPTION Using the link structure pLink, add pStruct to a list of which the list head is pHead. flag must
be LINK_HEAD or LINK_TAIL.

RETURNS N/A

ERRNO None

SEE ALSO usbListLib

usbListLinkProt()

NAME usbListLinkProt() – Adds an element to a list guarded by a mutex.

SYNOPSIS VOID usbListLinkProt
 (
 pLIST_HEAD pHead, /* list head */
 pVOID pStruct, /* ptr to base of structure to be linked */
 pLINK pLink, /* ptr to LINK structure to be linked */
 UINT16 flag, /* indicates LINK_HEAD or LINK_TAIL */
 MUTEX_HANDLE mutex /* list guard mutex */
)

DESCRIPTION This routine is similar to linkList() except that it will take the mutex before manipulating
the list.

NOTE The routine will block forever if the mutex does not become available.

RETURNS N/A

ERRNO None

SEE ALSO usbListLib

2 Routines
usbListUnlink()

115

usbListNext()

NAME usbListNext() – Retrieves the next pStruct in a linked list.

SYNOPSIS pVOID usbListNext
 (
 pLINK pLink /* LINK structure */
)

DESCRIPTION This routine returns the pointer to the next structure in a linked list given a pLink pointer.
The value returned is the pStruct of the element in the linked list which follows the current
pLink, not a pointer to the following pLink. (Typically, a client is more interested in walking
its own list of structures than in the link structures used to maintain the linked list.

RETURNS pStruct of next structure in list or NULL if end of list.

ERRNO None

SEE ALSO usbListLib

usbListUnlink()

NAME usbListUnlink() – Removes an entry from a linked list.

SYNOPSIS VOID usbListUnlink
 (
 pLINK pLink /* LINK structure to be unlinked */
)

DESCRIPTION Removes pLink from a linked list.

RETURNS N/A

ERRNO None

SEE ALSO usbListLib

Wind River USB for VxWorks 6 API Reference, 2.4
usbListUnlinkProt()

116

usbListUnlinkProt()

NAME usbListUnlinkProt() – Removes an element from a list guarged by a mutex.

SYNOPSIS VOID usbListUnlinkProt
 (
 pLINK pLink, /* LINK structure to be unlinked */
 MUTEX_HANDLE mutex /* list guard mutex */
)

DESCRIPTION This routine is the same as usbListUnlink() except that it will take the mutex before
manipulating the list.

NOTE The function will block forever if the mutex does not become available.

RETURNS N/A

ERRNO None

SEE ALSO usbListLib

usbMouseDevInit()

NAME usbMouseDevInit() – initialize USB mouse SIO driver

SYNOPSIS STATUS usbMouseDevInit (void)

DESCRIPTION Initializes the USB mouse SIO driver. The USB mouse SIO driver maintains an initialization
count, so calls to this function may be nested.

RETURNS OK, or ERROR if unable to initialize.

ERRNO S_usbMouseLib_OUT_OF_RESOURCES
Sufficient Resources are not available

S_usbMouseLib_USBD_FAULT
Error in USBD Layer

SEE ALSO usbMouseLib

2 Routines
usbMouseDynamicAttachRegister()

117

usbMouseDevShutdown()

NAME usbMouseDevShutdown() – shuts down mouse SIO driver

SYNOPSIS STATUS usbMouseDevShutdown (void)

DESCRIPTION This function shutdowns the mouse SIO driver. If after decrementing initCount is 0, SIO
driver is uninitialized.

RETURNS OK, or ERROR if unable to shutdown.

ERRNO S_usbMouseLib_NOT_INITIALIZED
SIO Driver is not initialized

SEE ALSO usbMouseLib

usbMouseDynamicAttachRegister()

NAME usbMouseDynamicAttachRegister() – Register mouse attach callback

SYNOPSIS STATUS usbMouseDynamicAttachRegister
 (
 USB_MSE_ATTACH_CALLBACK callback, /* new callback to be registered */
 pVOID arg /* user-defined arg to callback */
)

DESCRIPTION callback is a caller-supplied function of the form:

typedef (*USB_MSE_ATTACH_CALLBACK)
 (
 pVOID arg,
 SIO_CHAN *pSioChan,
 UINT16 attachCode
);

usbMouseLib will invoke callback each time a USB mouse is attached to or removed from
the system. arg is a caller-defined parameter which will be passed to the callback each time
it is invoked. The callback will also be passed a pointer to the SIO_CHAN structure for the
channel being created/destroyed and an attach code of USB_MSE_ATTACH or
USB_MSE_REMOVE.

RETURNS OK, or ERROR if unable to register callback

Wind River USB for VxWorks 6 API Reference, 2.4
usbMouseDynamicAttachUnregister()

118

ERRNO S_usbMouseLib_BAD_PARAM
Bad Parameter is passed

S_usbMouseLib_OUT_OF_MEMORY
Not sufficient memory available

SEE ALSO usbMouseLib

usbMouseDynamicAttachUnregister()

NAME usbMouseDynamicAttachUnregister() – Unregisters mouse attach callback

SYNOPSIS STATUS usbMouseDynamicAttachUnRegister
 (
 USB_MSE_ATTACH_CALLBACK callback, /* callback to be unregistered */
 pVOID arg /* user-defined arg to callback */
)

DESCRIPTION This function cancels a previous request to be dynamically notified for mouse attachment
and removal. The callback and arg paramters must exactly match those passed in a previous
call to usbMouseDynamicAttachRegister().

RETURNS OK, or ERROR if unable to unregister callback

ERRNO S_usbMouseLib_NOT_REGISTERED
Could not register the callback

SEE ALSO usbMouseLib

usbMouseSioChanLock()

NAME usbMouseSioChanLock() – Marks SIO_CHAN structure as in use

SYNOPSIS STATUS usbMouseSioChanLock
 (
 SIO_CHAN *pChan /* SIO_CHAN to be marked as in use */
)

DESCRIPTION A caller uses usbMouseSioChanLock() to notify usbMouseLib that it is using the
indicated SIO_CHAN structure. usbMouseLib maintains a count of callers using a
particular SIO_CHAN structure so that it knows when it is safe to dispose of a structure

2 Routines
usbMsBulkInErpInUseFlagGet()

119

when the underlying USB mouse is removed from the system. So long as the "lock count"
is greater than zero, usbMouseLib will not dispose of an SIO_CHAN structure.

RETURNS OK

ERRNO none

SEE ALSO usbMouseLib

usbMouseSioChanUnlock()

NAME usbMouseSioChanUnlock() – Marks SIO_CHAN structure as unused

SYNOPSIS STATUS usbMouseSioChanUnlock
 (
 SIO_CHAN *pChan /* SIO_CHAN to be marked as unused */
)

DESCRIPTION This function releases a lock placed on an SIO_CHAN structure. When a caller no longer
needs an SIO_CHAN structure for which it has previously called usbMouseSioChanLock(),
then it should call this function to release the lock.

NOTE If the underlying USB mouse device has already been removed from the system, then this
function will automatically dispose of the SIO_CHAN structure if this call removes the last
lock on the structure. Therefore, a caller must not reference the SIO_CHAN again structure
after making this call.

RETURNS OK, or ERROR if unable to mark SIO_CHAN structure unused

ERRNO S_usbMouseLib_NOT_LOCKED
No lock to unlock

SEE ALSO usbMouseLib

usbMsBulkInErpInUseFlagGet()

NAME usbMsBulkInErpInUseFlagGet() – get the Bulk-in ERP inuse flag

SYNOPSIS BOOL usbMsBulkInErpInUseFlagGet (void)

Wind River USB for VxWorks 6 API Reference, 2.4
usbMsBulkInErpInUseFlagSet()

120

DESCRIPTION This function is used to get the state of the Bulk-In ERP.

RETURNS TRUE or FALSE

ERRNO none

SEE ALSO usbTargMsLib

usbMsBulkInErpInUseFlagSet()

NAME usbMsBulkInErpInUseFlagSet() – set the Bulk-In ERP inuse flag

SYNOPSIS void usbMsBulkInErpInUseFlagSet
 (
 BOOL state
)

DESCRIPTION This function is used to set the state of Bulk - IN ERP flag. state is the state to set.

RETURNS N/A

ERRNO none

SEE ALSO usbTargMsLib

usbMsBulkInErpInit()

NAME usbMsBulkInErpInit() – initialize the bulk-in ERP

SYNOPSIS STATUS usbMsBulkInErpInit
 (
 UINT8 * pData, /* pointer to data */
 UINT32 size, /* size of data */
 ERP_CALLBACK erpCallback, /* erp callback */
 pVOID usrPtr /* user pointer */
)

DESCRIPTION This function initializes the Bulk In ERP.

2 Routines
usbMsBulkInUnStall()

121

RETURNS OK, or ERROR if unable to submit ERP.

ERRNO none

SEE ALSO usbTargMsLib

usbMsBulkInStall()

NAME usbMsBulkInStall() – stall the bulk-in pipe

SYNOPSIS STATUS usbMsBulkInStall (void)

DESCRIPTION This routine stalls the bulk-in pipe.

RETURNS OK or ERROR if not able to stall the bulk IN endpoint.

ERRNO none

SEE ALSO usbTargMsLib

usbMsBulkInUnStall()

NAME usbMsBulkInUnStall() – unstall the bulk-in pipe

SYNOPSIS STATUS usbMsBulkInUnStall (void)

DESCRIPTION This routine unstalls the bulk-in pipe.

RETURNS OK or ERROR if not able to un-stall the bulk IN endpoint.

ERRNO none

SEE ALSO usbTargMsLib

Wind River USB for VxWorks 6 API Reference, 2.4
usbMsBulkOutErpInUseFlagGet()

122

usbMsBulkOutErpInUseFlagGet()

NAME usbMsBulkOutErpInUseFlagGet() – get the Bulk-Out ERP inuse flag

SYNOPSIS BOOL usbMsBulkOutErpInUseFlagGet (void)

DESCRIPTION This function is used to get the state of the Bulk-OUT ERP.

RETURNS OK, or ERROR if unable to submit ERP.

ERRNO none

SEE ALSO usbTargMsLib

usbMsBulkOutErpInUseFlagSet()

NAME usbMsBulkOutErpInUseFlagSet() – set the Bulk-Out ERP inuse flag

SYNOPSIS void usbMsBulkOutErpInUseFlagSet
 (
 BOOL state /* State to set */
)

DESCRIPTION This function is used to set the state of Bulk - OUT ERP flag. state is the state to set.

RETURNS N/A

ERRNO none

SEE ALSO usbTargMsLib

usbMsBulkOutErpInit()

NAME usbMsBulkOutErpInit() – initialize the bulk-Out ERP

SYNOPSIS STATUS usbMsBulkOutErpInit

2 Routines
usbMsBulkOutUnStall()

123

 (
 UINT8 * pData, /* pointer to buffer */
 UINT32 size, /* size of data */
 ERP_CALLBACK erpCallback, /* IRP_CALLBACK */
 pVOID usrPtr /* user pointer */
)

DESCRIPTION This function initializes the bulk Out ERP.

RETURNS OK, or ERROR if unable to submit ERP.

ERRNO N/A

SEE ALSO usbTargMsLib

usbMsBulkOutStall()

NAME usbMsBulkOutStall() – stall the bulk-out pipe

SYNOPSIS STATUS usbMsBulkOutStall (void)

DESCRIPTION This routine stalls the bulk-out pipe.

RETURNS OK or ERROR in unable to stall the bulk OUT endpoints.

ERRNO none.

SEE ALSO usbTargMsLib

usbMsBulkOutUnStall()

NAME usbMsBulkOutUnStall() – unstall the bulk-out pipe

SYNOPSIS STATUS usbMsBulkOutUnStall (void)

DESCRIPTION This routine unstalls the bulk-out pipe.

RETURNS OK or ERROR if not able to unstall the bulk out endpoints

Wind River USB for VxWorks 6 API Reference, 2.4
usbMsCBWGet()

124

ERRNO none

SEE ALSO usbTargMsLib

usbMsCBWGet()

NAME usbMsCBWGet() – get the last mass storage CBW received

SYNOPSIS USB_BULK_CBW *usbMsCBWGet (void)

DESCRIPTION This routine retrieves the last CBW received on the bulk-out pipe.

RETURNS USB_BULK_CBW

ERRNO none.

SEE ALSO usbTargMsLib

usbMsCBWInit()

NAME usbMsCBWInit() – initialize the mass storage CBW

SYNOPSIS USB_BULK_CBW *usbMsCBWInit (void)

DESCRIPTION This routine initializes the CBW by resetting all fields to their default value.

RETURNS USB_BULK_CBW

ERRNO none.

SEE ALSO usbTargMsLib

2 Routines
usbMsIsConfigured()

125

usbMsCSWGet()

NAME usbMsCSWGet() – get the current CSW

SYNOPSIS USB_BULK_CSW *usbMsCSWGet (void)

DESCRIPTION This routine retrieves the current CSW.

RETURNS USB_BULK_CSW

ERRNO none.

SEE ALSO usbTargMsLib

usbMsCSWInit()

NAME usbMsCSWInit() – initialize the CSW

SYNOPSIS USB_BULK_CSW *usbMsCSWInit (void)

DESCRIPTION This routine initializes the CSW.

RETURNS USB_BULK_CSW

ERRNO none

SEE ALSO usbTargMsLib

usbMsIsConfigured()

NAME usbMsIsConfigured() – test if the device is configured

SYNOPSIS BOOL usbMsIsConfigured (void)

DESCRIPTION This function checks whether the device is configured or not.

Wind River USB for VxWorks 6 API Reference, 2.4
usbMsTestRxCallback()

126

RETURNS TRUE or FALSE

ERRNO none

SEE ALSO usbTargMsLib

usbMsTestRxCallback()

NAME usbMsTestRxCallback() – invoked after test data is received

SYNOPSIS void usbMsTestRxCallback
 (
 pVOID p
)

DESCRIPTION This function is invoked after the Bulk OUT test data is transmitted. It sets the bulk OUT
flag to false.

RETURNS N/A

ERRNO N/A

SEE ALSO usbTargMsLib

usbMsTestTxCallback()

NAME usbMsTestTxCallback() – invoked after test data transmitted

SYNOPSIS void usbMsTestTxCallback
 (
 pVOID p
)

DESCRIPTION This function is invoked after the Bulk IN test data is transmitted. It sets the bulk IN flag to
false.

RETURNS N/A

2 Routines
usbOhciDumpEndpointDescriptor()

127

ERRNO none

SEE ALSO usbTargMsLib

usbOhcdInit()

NAME usbOhcdInit() – initialize the USB OHCI Host Controller Driver.

SYNOPSIS VOID usbOhcdInit (void)

DESCRIPTION This function initializes internal data structues in the OHCI Host Controller Driver. This
routine is typically called prior the the vxBus invocation of the device connect.

This routine requires that the USBD has been initialized.

This function registers the OHCI HCD with the USBD Layer.

PARAMETERS None

RETURNS TRUE if the OHCI Host Controllers are initialized, otherwise FALSE

ERRNO None.

SEE ALSO usbOhci

usbOhciDumpEndpointDescriptor()

NAME usbOhciDumpEndpointDescriptor() – dump endpoint descriptor contents

SYNOPSIS VOID usbOhciDumpEndpointDescriptor
 (
 PVOID pEndpointDescriptor
)

DESCRIPTION This function is used to dump the contents of the endpoint descriptor.

PARAMETERS pEndpointDescriptor (IN) - Pointer to the endpoint descriptor to be dumped.

Wind River USB for VxWorks 6 API Reference, 2.4
usbOhciDumpGeneralTransferDescriptor()

128

RETURNS N/A

ERRNO None.

SEE ALSO usbOhciDebug

usbOhciDumpGeneralTransferDescriptor()

NAME usbOhciDumpGeneralTransferDescriptor() – dump general transfer descriptor

SYNOPSIS VOID usbOhciDumpGeneralTransferDescriptor
 (
 PVOID pGeneralTransferDescriptor
)

DESCRIPTION This function is used to dump the contents of the general transfer descriptor.

PARAMETERS pGeneralTransferDescriptor (IN) - Pointer to the general descriptor

RETURNS N/A

ERRNO None.

SEE ALSO usbOhciDebug

usbOhciDumpMemory()

NAME usbOhciDumpMemory() – dump memory contents

SYNOPSIS VOID usbOhciDumpMemory
 (
 UINT32 uAddress,
 UINT32 uLength,
 UINT32 uWidth
)

DESCRIPTION This function is used to dump the contents of the specified memory location.

2 Routines
usbOhciDumpPeriodicEndpointList()

129

PARAMETERS uAddress (IN) - Specifies the address of memory location.

uLength (IN) - Specifies the length of memory to be dumped.

uWidth (IN) - Specifies the width of each entry in bytes. For example, if this value is 1, the
data will be displayed in bytes. If the value is 4, the data will be displayed in DWORDS (4
bytes).

RETURNS N/A

ERRNO None.

SEE ALSO usbOhciDebug

usbOhciDumpPendingTransfers()

NAME usbOhciDumpPendingTransfers() – dump pending transfers

SYNOPSIS VOID usbOhciDumpPendingTransfers
 (
 PVOID pEndpointDescriptor
)

DESCRIPTION This function is used to dump the pending transfers for the endpoint

PARAMETERS pEndpointDescriptor (IN) - Pointer to the endpoint descriptor to be dumped

RETURNS N/A

ERRNO None.

SEE ALSO usbOhciDebug

usbOhciDumpPeriodicEndpointList()

NAME usbOhciDumpPeriodicEndpointList() – dump periodic endpoint descriptor list

SYNOPSIS VOID usbOhciDumpPeriodicEndpointList

Wind River USB for VxWorks 6 API Reference, 2.4
usbOhciDumpRegisters()

130

 (
 UINT8 uHostControllerIndex
)

DESCRIPTION This function is used to dump the contents of the periodic endpoint descriptor list.

PARAMETERS uHostControllerIndex (IN) - Specifies the host controller index

RETURNS N/A

ERRNO None.

SEE ALSO usbOhciDebug

usbOhciDumpRegisters()

NAME usbOhciDumpRegisters() – dump registers contents.

SYNOPSIS BOOLEAN usbOhciDumpRegisters
 (
 UINT32 uHostControllerIndex
)

DESCRIPTION This function is used to dump the contents of the USB OHCI Host Controller Registers.

PARAMETERS uHostControllerIndex (IN) - Specifies the OHCI Host Controller index.

RETURNS TRUE if the host controller index specified is valid for the USB OHCI controllers detected on
the system, otherwise FALSE.

ERRNO None.

SEE ALSO usbOhciDebug

usbOhciExit()

NAME usbOhciExit() – uninitialize the USB OHCI Host Controller Driver.

2 Routines
usbOhciInstantiate()

131

SYNOPSIS BOOLEAN usbOhciExit (void)

DESCRIPTION This function uninitializes the OHCI Host Controller Driver.

RETURNS FALSE, TRUE if all the OHCI Host Controllers are reset and the cleanup is successful.

ERRNO None.

SEE ALSO usbOhci

usbOhciInitializeModuleTestingFunctions()

NAME usbOhciInitializeModuleTestingFunctions() – obtaines entry points

SYNOPSIS VOID usbOhciInitializeModuleTestingFunctions
 (
 PUSBHST_HC_DRIVER_TEST pHCDriverTestEntryPoints /* Ptr to HCD module
entry points */
)

DESCRIPTION Function to obtain the entry points used for HCD module testing.

RETURNS N/A

ERRNO none

SEE ALSO usbOhciDebug

usbOhciInstantiate()

NAME usbOhciInstantiate() – instantiate the USB OHCI Host Controller Driver.

SYNOPSIS VOID usbOhciInstantiate (void)

DESCRIPTION This routine instantiates the OHCI Host Controller Driver and allows the OHCI Controller
driver to be included with the vxWorks image and not be registered with vxBus. OHCI
devices will remain orphan devices until the usbOhciInit() routine is called. This supports
the INCLUDE_OHCI behaviour of previous vxWorks releases.

Wind River USB for VxWorks 6 API Reference, 2.4
usbPegasusDevLock()

132

The routine itself does nothing.

RETURNS N/A

ERRNO None.

SEE ALSO usbOhci

usbPegasusDevLock()

NAME usbPegasusDevLock() – marks USB_PEGASUS_DEV structure as in use

SYNOPSIS STATUS usbPegasusDevLock
 (
 USBD_NODE_ID nodeId /* NodeId of the USB_PEGASUS_DEV */
 /* to be marked as in use */
)

DESCRIPTION A caller uses usbPegasusDevLock() to notify usbPegasusDevLib that it is using the
indicated PEGASUS device structure. usbPegasusDevLib maintains a count of callers
using a particular Pegasus Device structure so that it knows when it is safe to dispose of a
structure when the underlying Pegasus Device is removed from the system. So long as the
"lock count" is greater than zero, usbPegasusDevLib will not dispose of an Pegasus
structure.

RETURNS OK, or ERROR if unable to mark Pegasus structure in use.

ERRNO none

SEE ALSO usbPegasusEnd

usbPegasusDevUnlock()

NAME usbPegasusDevUnlock() – marks USB_PEGASUS_DEV structure as unused

SYNOPSIS STATUS usbPegasusDevUnlock
 (
 USBD_NODE_ID nodeId /* NodeId of the BLK_DEV to be marked as unused */
)

2 Routines
usbPegasusDynamicAttachRegister()

133

DESCRIPTION This function releases a lock placed on an Pegasus Device structure. When a caller no longer
needs an Pegasus Device structure for which it has previously called
usbPegasusDevLock(), then it should call this function to release the lock.

NOTE If the underlying Pegasus device has already been removed from the system, then this
function will automatically dispose of the Pegasus Device structure if this call removes the
last lock on the structure. Therefore, a caller must not reference the Pegasus Device structure
after making this call.

RETURNS OK, or ERROR if unable to mark Pegasus Device structure unused.

ERRNO S_usbPegasusLib_NOT_LOCKED
No lock to Unlock

SEE ALSO usbPegasusEnd

usbPegasusDynamicAttachRegister()

NAME usbPegasusDynamicAttachRegister() – register PEGASUS device attach callback

SYNOPSIS STATUS usbPegasusDynamicAttachRegister
 (
 USB_PEGASUS_ATTACH_CALLBACK callback, /* new callback to be registered
*/
 pVOID arg /* user-defined arg to callback */
)

DESCRIPTION callback is a caller-supplied function of the form:

typedef (*USB_PEGASUS_ATTACH_CALLBACK)
 (
 pVOID arg,
 USB_PEGASUS_DEV * pDev,
 UINT16 attachCode
);

usbPegasusDevLib will invoke callback each time a PEGASUS device is attached to or
removed from the system. arg is a caller-defined parameter which will be passed to the
callback each time it is invoked. The callback will also pass the structure of the device being
created/destroyed and an attach code of USB_PEGASUS_ATTACH or
USB_PEGASUS_REMOVE.

NOTE The user callback routine should not invoke any driver function that submits IRPs. Further
processing must be done from a different task context. As the driver routines wait for IRP
completion, they cannot be invoked from USBD client task's context created for this driver.

Wind River USB for VxWorks 6 API Reference, 2.4
usbPegasusDynamicAttachUnregister()

134

RETURNS OK, or ERROR if unable to register callback

ERRNO S_usbPegasusLib_BAD_PARAM
Bad Parameter received

S_usbPegasusLib_OUT_OF_MEMORY
Sufficient memory no available

SEE ALSO usbPegasusEnd

usbPegasusDynamicAttachUnregister()

NAME usbPegasusDynamicAttachUnregister() – unregisters PEGASUS attach callbackx

SYNOPSIS STATUS usbPegasusDynamicAttachUnregister
 (
 USB_PEGASUS_ATTACH_CALLBACK callback, /* callback to be unregistered */
 pVOID arg /* user-defined arg to callback */
)

DESCRIPTION This function cancels a previous request to be dynamically notified for attachment and
removal. The callback and arg paramters must exactly match those passed in a previous call
to usbPegasusDynamicAttachRegister().

RETURNS OK, or ERROR if unable to unregister the callback.

ERRNO S_usbPegasusLib_NOT_REGISTERED
Could not regsiter the attachment callback

SEE ALSO usbPegasusEnd

usbPegasusEndInit()

NAME usbPegasusEndInit() – initializes the pegasus library

SYNOPSIS STATUS usbPegasusEndInit(void)

DESCRIPTION Initizes the pegasus library. The library maintains an initialization count so that the calls to
this function might be nested.

2 Routines
usbPegasusEndLoad()

135

This function initializes the system resources required for the library initializes the linked
list for the ethernet devices found. This function reegisters the library as a client for the usbd
calls and registers for dynamic attachment notification of usb communication device class
and Ethernet sub class of devices.

RETURNS OK if successful, ERROR if failure

ERRNO S_usbPegasusLib_OUT_OF_RESOURCES
Sufficient Resources not Available

S_usbPegasusLib_USBD_FAULT
Fault in the USBD Layer

SEE ALSO usbPegasusEnd

usbPegasusEndLoad()

NAME usbPegasusEndLoad() – initialize the driver and device

SYNOPSIS END_OBJ * usbPegasusEndLoad
 (
 char * initString /* initialization string */
)

DESCRIPTION This routine initializes the driver and the device to the operational state. All of the device
specific parameters are passed in the initString.

This function first extracts the currently attached pegasus device nodeId from the
initialization string using the pegasusEndParse() function. It then passes these parametsrs
and its control strcuture to the pegasusDevInit() function. pegasusDevInit() does most of
the device specific initialization and brings the device to the operational state. Please refer
to pegasusLib.c for more details about usbenetDevInit(). This driver will be attached to
MUX and then the memory initialization of the device is carriedout using
pegasusEndMemInit().

This function doesn't do any thing device specific. Instead, it delegates such initialization to
pegasusDevInit(). This routine handles the other part of the driver initialization as
required by MUX.

muxDevLoad calls this function twice. First time this function is called, initialization string
will be NULL . We are required to fill in the device name ("usb") in the string and return.
The next time this function is called the intilization string will be proper.

initString will be in the following format : "unit:nodeId:noOfInBfrs:noOfIrps"

Wind River USB for VxWorks 6 API Reference, 2.4
usbPegasusEndUninit()

136

PARAMETERS initString
The device initialization string.

RETURNS An END object pointer or NULL on error.

ERRNO none

SEE ALSO usbPegasusEnd

usbPegasusEndUninit()

NAME usbPegasusEndUninit() – un-initializes the pegasus class driver

SYNOPSIS STATUS usbPegasusEndUninit (void)

DESCRIPTION This function un-initializes the Pegasus Class Driver. It releases all the occupied resources.
Evertime the function is called the global initCount will be decremented. The driver will be
truely un-initialized only when initCount is 0.

RETURNS OK if successful, ERROR if failure

ERRNO none

SEE ALSO usbPegasusEnd

usbPegasusReadReg()

NAME usbPegasusReadReg() – read contents of specified and print

SYNOPSIS STATUS usbPegasusReadReg
 (
 USBD_NODE_ID devId, /* pointer to device */
 UINT8 offSet, /* Offset of the registers */
 UINT8 noOfRegs /* No of registers to be read */
)

DESCRIPTION This function reads the register contents of Pegasus and prints them for debugging
purposes.

RETURNS OK if successful or ERROR on failure

2 Routines
usbPrinterDevShutdown()

137

ERRNO none

SEE ALSO usbPegasusEnd

usbPrinterDevInit()

NAME usbPrinterDevInit() – initialize USB printer SIO driver

SYNOPSIS STATUS usbPrinterDevInit (void)

DESCRIPTION Initializes the USB printer SIO driver. The USB printer SIO driver maintains an initialization
count, so calls to this function may be nested.

RETURNS OK, or ERROR if unable to initialize.

ERRNO S_usbPrinterLib_OUT_OF_RESOURCES
Sufficient resources not available

S_usbPrinterLib_USBD_FAULT
Error in USBD layer

SEE ALSO usbPrinterLib

usbPrinterDevShutdown()

NAME usbPrinterDevShutdown() – shuts down printer SIO driver

SYNOPSIS STATUS usbPrinterDevShutdown (void)

DESCRIPTION This function shutdowns the printer SIO driver when initCount becomes 0

RETURNS OK, or ERROR if unable to shutdown.

ERRNO S_usbPrinterLib_NOT_INITIALIZED
Printer not initialized

SEE ALSO usbPrinterLib

Wind River USB for VxWorks 6 API Reference, 2.4
usbPrinterDynamicAttachRegister()

138

usbPrinterDynamicAttachRegister()

NAME usbPrinterDynamicAttachRegister() – Register printer attach callback

SYNOPSIS STATUS usbPrinterDynamicAttachRegister
 (
 USB_PRN_ATTACH_CALLBACK callback, /* new callback to be registered */
 pVOID arg /* user-defined arg to callback */
)

DESCRIPTION callback is a caller-supplied function of the form:

typedef (*USB_PRN_ATTACH_CALLBACK)
 (
 pVOID arg,
 SIO_CHAN *pSioChan,
 UINT16 attachCode
);

usbPrinterLib will invoke callback each time a USB printer is attached to or removed from
the system. arg is a caller-defined parameter which will be passed to the callback each time
it is invoked. The callback will also be passed a pointer to the SIO_CHAN structure for the
channel being created/destroyed and an attach code of USB_PRN_ATTACH or
USB_PRN_REMOVE.

RETURNS OK, or ERROR if unable to register callback

ERRNO S_usbPrinterLib_BAD_PARAM
Bad Parameters received

S_usbPrinterLib_OUT_OF_MEMORY
System out of memory

SEE ALSO usbPrinterLib

usbPrinterDynamicAttachUnregister()

NAME usbPrinterDynamicAttachUnregister() – Unregisters printer attach callback

SYNOPSIS STATUS usbPrinterDynamicAttachUnRegister
 (
 USB_PRN_ATTACH_CALLBACK callback, /* callback to be unregistered */
 pVOID arg /* user-defined arg to callback */
)

2 Routines
usbPrinterSioChanUnlock()

139

DESCRIPTION This function cancels a previous request to be dynamically notified for printer attachment
and removal. The callback and arg paramters must exactly match those passed in a previous
call to usbPrinterDynamicAttachRegister().

RETURNS OK, or ERROR if unable to unregister callback

ERRNO S_usbPrinterLib_NOT_REGISTERED
Could not register the attachment callback

SEE ALSO usbPrinterLib

usbPrinterSioChanLock()

NAME usbPrinterSioChanLock() – Marks SIO_CHAN structure as in use

SYNOPSIS STATUS usbPrinterSioChanLock
 (
 SIO_CHAN *pChan /* SIO_CHAN to be marked as in use */
)

DESCRIPTION A caller uses usbPrinterSioChanLock() to notify usbPrinterLib that it is using the
indicated SIO_CHAN structure. usbPrinterLib maintains a count of callers using a
particular SIO_CHAN structure so that it knows when it is safe to dispose of a structure
when the underlying USB printer is removed from the system. So long as the "lock count"
is greater than zero, usbPrinterLib will not dispose of an SIO_CHAN structure.

RETURNS OK, or ERROR if unable to mark SIO_CHAN structure in use.

ERRNO none

SEE ALSO usbPrinterLib

usbPrinterSioChanUnlock()

NAME usbPrinterSioChanUnlock() – Marks SIO_CHAN structure as unused

SYNOPSIS STATUS usbPrinterSioChanUnlock
 (
 SIO_CHAN *pChan /* SIO_CHAN to be marked as unused */
)

Wind River USB for VxWorks 6 API Reference, 2.4
usbQueueCreate()

140

DESCRIPTION This function releases a lock placed on an SIO_CHAN structure. When a caller no longer
needs an SIO_CHAN structure for which it has previously called
usbPrinterSioChanLock(), then it should call this function to release the lock.

NOTE If the underlying USB printer device has already been removed from the system, then this
function will automatically dispose of the SIO_CHAN structure if this call removes the last
lock on the structure. Therefore, a caller must not reference the SIO_CHAN again structure
after making this call.

RETURNS OK, or ERROR if unable to mark SIO_CHAN structure unused

ERRNO S_usbPrinterLib_NOT_LOCKED
No lock to unclock

SEE ALSO usbPrinterLib

usbQueueCreate()

NAME usbQueueCreate() – Creates an OS-independent queue structure.

SYNOPSIS STATUS usbQueueCreate
 (
 UINT16 depth, /* Max entries queue can handle */
 pQUEUE_HANDLE pQueueHandle /* Handle of newly created queue */
)

DESCRIPTION This routine creates a queue which can accomodate a number of USB_MESSAGE entries
according to the depth parameter. It returns the <pQueueHandle) of the newly created
queue if successful.

RETURNS OK or ERROR

ERRNO S_usbQueueLib_BAD_PARAMETER
S_usbQueueLib_OUT_OF_MEMORY
S_usbQueueLib_OUT_OF_RESOURCES

SEE ALSO usbQueueLib

2 Routines
usbQueueGet()

141

usbQueueDestroy()

NAME usbQueueDestroy() – Destroys a queue.

SYNOPSIS STATUS usbQueueDestroy
 (
 QUEUE_HANDLE queueHandle /* Handle of queue to destroy */
)

DESCRIPTION This function destroys a queue created by calling usbQueueCreate().

RETURNS OK or ERROR

ERRNO S_usbQueueLib_BAD_HANDLE

SEE ALSO usbQueueLib

usbQueueGet()

NAME usbQueueGet() – Retrieves a message from a queue.

SYNOPSIS STATUS usbQueueGet
 (
 QUEUE_HANDLE queueHandle, /* queue handle */
 pUSB_MESSAGE pMsg, /* USB_MESSAGE to receive msg */
 UINT32 blockFlag /* specifies blocking action */
)

DESCRIPTION This routine retrieves a message from the specified queueHandle and stores it in pOssMsg. If
the queue is empty, blockFlag specifies the blocking behavior. OSS_BLOCK blocks
indefinitely. OSS_DONT_BLOCK does not block and returns an error immediately if the
queue is empty. Other values of blockFlag are interpreted as a count of milliseconds to block
before declaring a failure.

RETURNS OK or ERROR

ERRNO S_usbQueueLib_BAD_HANDLE
S_usbQueueLib_Q_NOT_AVAILABLE

SEE ALSO usbQueueLib

Wind River USB for VxWorks 6 API Reference, 2.4
usbQueuePut()

142

usbQueuePut()

NAME usbQueuePut() – Puts a message into a queue.

SYNOPSIS STATUS usbQueuePut
 (
 QUEUE_HANDLE queueHandle, /* queue handle */
 UINT16 msg, /* app-specific message */
 UINT16 wParam, /* app-specific parameter */
 UINT32 lParam, /* app-specific parameter */
 UINT32 blockFlag /* specifies blocking action */
)

DESCRIPTION Places the specified msg, wParam, and lParam into queueHandle. This function will block only
if the specified queue is full. If the queue is full, blockFlag specifies the blocking behavior.
OSS_BLOCK blocks indefinitely. OSS_DONT_BLOCK does not block and returns an error
if the queue is full. Other values of blockFlag are interpreted as a count of milliseconds to
block before declaring a failure.

RETURNS OK or ERROR

ERRNO S_usbQueueLib_BAD_HANDLE
S_usbQueueLib_Q_NOT_AVAILABLE

SEE ALSO usbQueueLib

usbRecurringTime()

NAME usbRecurringTime() – calculates recurring time for interrupt/isoch transfers.

SYNOPSIS UINT32 usbRecurringTime
 (
 UINT16 transferType, /* transfer type */
 UINT16 direction, /* transfer direction */
 UINT16 speed, /* speed of pipe */
 UINT16 packetSize, /* max packet size for endpoint */
 UINT32 bandwidth, /* bytes/frame or bytes/sec depending on pipe */
 UINT32 hostDelay, /* host controller delay per packet */
 UINT32 hostHubLsSetup /* host controller time for low-speed setup */
)

DESCRIPTION For recurring transfers (for example, interrupt or isochronous transfers) an HCD needs to
be able to calculate the bus time, measured in nanoseconds, which will be used by the
transfer.

2 Routines
usbRegRead32()

143

transferType specifies the type of transfer. For USB_XFRTYPE_CONTROL and
USB_XFRTYPE_BULK, the calculated time is always 0. These are not recurring transfers. For
USB_XFRTYPE_INTERRUPT, bandwidth must express the number of bytes to be transferred
in each frame. For USB_XFRTYPE_ISOCH, bandwidth must express the number of bytes to be
transferred in each second. This parameter is treated differently to allow greater flexibility
in determining the true bandwidth requirements for each type of pipe.

RETURNS worst case number of nanoseconds required for transfer

ERRNO None

SEE ALSO usbLib

usbRegRead16()

NAME usbRegRead16() – reads 16-bit USB Register Space

SYNOPSIS UINT16 usbRegRead16
 (
 struct vxbDev * pDev, /* strcut vxbDev * */
 void * pRegBase, /* pointer to base address */
 UINT32 offset, /* offset value */
 UINT32 flags /* vxBus access routine flag */
)

DESCRIPTION This routine will be used to read the 16 bit register value. The routine will call the vxBus
provided access routine to carry out 8-bit read operation.

RETURNS 16 bit value read from register space

ERRNO none

SEE ALSO usbVxbRegAccess

usbRegRead32()

NAME usbRegRead32() – reads 32-bit USB Register Space

SYNOPSIS UINT32 usbRegRead32

Wind River USB for VxWorks 6 API Reference, 2.4
usbRegRead8()

144

 (
 struct vxbDev * pDev, /* strcut vxbDev * */
 void * pRegBase, /* pointer to base address */
 UINT32 offset, /* offset value */
 UINT32 flags /* vxBus access routine flag */
)

DESCRIPTION This routine will be used to read the 32 bit register value. The routine uses
vxDev::vxbAccessList to read the register. The argument of this routine consist of pointer to
struct vxbDev type, pointer to base address and offset that should be added to base address.

RETURNS 32 bit value read from register space

ERRNO none

SEE ALSO usbVxbRegAccess

usbRegRead8()

NAME usbRegRead8() – reads 8-bit USB Register Space

SYNOPSIS UINT8 usbRegRead8
 (
 struct vxbDev * pDev, /* strcut vxbDev * */
 void * pRegBase, /* pointer to base address */
 UINT32 offset, /* offset value */
 UINT32 flags /* vxBus access routine flag */
)

DESCRIPTION This routine will be used to read the 8 bit register value. The routine will call the vxBus
provided access routine to carry out 8-bit read operation.

RETURNS 8 bit value read from register space

ERRNO none

SEE ALSO usbVxbRegAccess

usbRegWrite16()

NAME usbRegWrite16() – writes into 16-bit USB Register Space

2 Routines
usbRegWrite32()

145

SYNOPSIS VOID usbRegWrite16
 (
 struct vxbDev * pDev, /* strcut vxbDev * */
 void * pRegBase, /* pointer to base address */
 UINT32 offset, /* offset value */
 UINT16 value, /* value to write */
 UINT32 flags /* vxBus access routine flag */
)

DESCRIPTION This routine will be used to write to the 16-bit register value. The routine uses
vxDev::vxbAccessList to write the register. The argument of this routine consist of pointer
to struct vxbDev type, pointer to base address and offset that should be added to base
address. value field consist of the value to write

RETURNS N/A

ERRNO none

SEE ALSO usbVxbRegAccess

usbRegWrite32()

NAME usbRegWrite32() – writes into 32-bit USB Register Space

SYNOPSIS VOID usbRegWrite32
 (
 struct vxbDev * pDev, /* strcut vxbDev * */
 void * pRegBase, /* pointer to base address */
 UINT32 offset, /* offset value */
 UINT32 value, /* value to write */
 UINT32 flags /* vxBus access routine flag */
)

DESCRIPTION This routine will be used to write to the 32 bit register value. The routine uses
vxDev::vxbAccessList to write the register. The argument of this routine consist of pointer
to struct vxbDev type, pointer to base address and offset that should be added to base
address. value field consist of the value to write

RETURNS N/A

ERRNO none

SEE ALSO usbVxbRegAccess

Wind River USB for VxWorks 6 API Reference, 2.4
usbSpeakerDevInit()

146

usbSpeakerDevInit()

NAME usbSpeakerDevInit() – initialize USB speaker SIO driver

SYNOPSIS STATUS usbSpeakerDevInit (void)

DESCRIPTION Initializes the USB speaker SIO driver. The USB speaker SIO driver maintains an
initialization count, so calls to this function may be nested.

RETURNS OK, or ERROR if unable to initialize.

ERRNO S_usbSpeakerLib_OUT_OF_RESOURCES
Sufficient resources not available

S_usbSpeakerLib_USBD_FAULT
Fault in the USBD Layer

SEE ALSO usbSpeakerLib

usbSpeakerDevShutdown()

NAME usbSpeakerDevShutdown() – shuts down speaker SIO driver

SYNOPSIS STATUS usbSpeakerDevShutdown (void)

DESCRIPTION This function shuts down speaker SIO driver depending on initCount. Every call to this
function decrements the initCount, and when it turns 0, SIO speaker driver is shutdown.

RETURNS OK, or ERROR if unable to shutdown.

ERRNO S_usbSpeakerLib_NOT_INITIALIZED
Speaker SIO Driver is not initialized

SEE ALSO usbSpeakerLib

usbSpeakerDynamicAttachRegister()

NAME usbSpeakerDynamicAttachRegister() – Register speaker attach callback

2 Routines
usbSpeakerDynamicAttachUnregister()

147

SYNOPSIS STATUS usbSpeakerDynamicAttachRegister
 (
 USB_SPKR_ATTACH_CALLBACK callback, /* new callback to be registered */
 pVOID arg /* user-defined arg to callback */
)

DESCRIPTION callback is a caller-supplied function of the form:

typedef (*USB_SPKR_ATTACH_CALLBACK)
 (
 pVOID arg,
 SEQ_DEV *pSeqDev,
 UINT16 attachCode
);

usbSpeakerLib will invoke callback each time a USB audio device is attached to or removed
from the system. arg is a caller-defined parameter which will be passed to the callback each
time it is invoked. The callback will also be passed a pointer to the SEQ_DEV structure for
the channel being created/destroyed and an attach code of USB_SPKR_ATTACH or
USB_SPKR_REMOVE.

RETURNS OK, or ERROR if unable to register callback

ERRNO S_usbSpeakerLib_BAD_PARAM
Bad Parameter is recieved

S_usbSpeakerLib_OUT_OF_MEMORY
Sufficient memory is not available

SEE ALSO usbSpeakerLib

usbSpeakerDynamicAttachUnregister()

NAME usbSpeakerDynamicAttachUnregister() – Unregisters speaker attach callback

SYNOPSIS STATUS usbSpeakerDynamicAttachUnRegister
 (
 USB_SPKR_ATTACH_CALLBACK callback, /* callback to be unregistered */
 pVOID arg /* user-defined arg to callback */
)

DESCRIPTION This function cancels a previous request to be dynamically notified for audio device
attachment and removal. The callback and arg paramters must exactly match those passed
in a previous call to usbSpeakerDynamicAttachRegister().

RETURNS OK, or ERROR if unable to unregister callback

Wind River USB for VxWorks 6 API Reference, 2.4
usbSpeakerSeqDevLock()

148

ERRNO S_usbSpeakerLib_NOT_REGISTERED
Could not regsiter the attachment callback function

SEE ALSO usbSpeakerLib

usbSpeakerSeqDevLock()

NAME usbSpeakerSeqDevLock() – Marks SEQ_DEV structure as in use

SYNOPSIS STATUS usbSpeakerSeqDevLock
 (
 SEQ_DEV *pChan /* SEQ_DEV to be marked as in use */
)

DESCRIPTION A caller uses usbSpeakerSeqDevLock() to notify usbSpeakerLib that it is using the
indicated SEQ_DEV structure. usbSpeakerLib maintains a count of callers using a
particular SEQ_DEV structure so that it knows when it is safe to dispose of a structure when
the underlying USB speaker is removed from the system. So long as the "lock count" is
greater than zero, usbSpeakerLib will not dispose of an SEQ_DEV structure.

RETURNS OK, or ERROR if unable to mark SEQ_DEV structure in use.

ERRNO none

SEE ALSO usbSpeakerLib

usbSpeakerSeqDevUnlock()

NAME usbSpeakerSeqDevUnlock() – Marks SEQ_DEV structure as unused

SYNOPSIS STATUS usbSpeakerSeqDevUnlock
 (
 SEQ_DEV *pChan /* SEQ_DEV to be marked as unused */
)

DESCRIPTION This function releases a lock placed on an SEQ_DEV structure. When a caller no longer
needs an SEQ_DEV structure for which it has previously called usbSpeakerSeqDevLock(),
then it should call this function to release the lock.

2 Routines
usbTargControlPayloadRcv()

149

NOTE If the underlying USB speaker device has already been removed from the system, then this
function will automatically dispose of the SEQ_DEV structure if this call removes the last
lock on the structure. Therefore, a caller must not reference the SEQ_DEV again structure
after making this call.

RETURNS OK, or ERROR if unable to mark SEQ_DEV structure unused

ERRNO S_usbSpeakerLib_NOT_LOCKED
No lock to unlock

SEE ALSO usbSpeakerLib

usbTargControlPayloadRcv()

NAME usbTargControlPayloadRcv() – receives data on the default control pipe

SYNOPSIS STATUS usbTargControlPayloadRcv
 (
 USB_TARG_CHANNEL targChannel, /* target channel */
 UINT16 bfrLen, /* length of data to be received */
 pUINT8 pBfr, /* ptr to bfr */
 ERP_CALLBACK userCallback /* USB Target Applcaition Callback */
)

DESCRIPTION USB Targlib Layer automatically creates a pipe to manage communication on the default
control pipe (#0) defined by the USB. Certain application callbacks may need to receive
additional data on the control OUT endpoint in order to complete processing of the control
pipe request. This function allows a caller to receive data on a control pipe.

RETURNS OK, or ERROR if unable to submit ERP to receive additional data

ERRNO S_usbTargLib_GENERAL_FAULT
Fault occured in upper layers.

S_usbTargLib_BAD_PARAM
Bad Parameter is passed.

SEE ALSO usbTargDefaultPipe

Wind River USB for VxWorks 6 API Reference, 2.4
usbTargControlResponseSend()

150

usbTargControlResponseSend()

NAME usbTargControlResponseSend() – sends data to host on the control pipe

SYNOPSIS STATUS usbTargControlResponseSend
 (
 USB_TARG_CHANNEL targChannel, /* target channel */
 UINT16 bfrLen, /* length of response 0 */
 pUINT8 pBfr /* ptr to bfr */
)

DESCRIPTION The USB Target Layer automatically creates a pipe to manage communication on the
default control endpoint (#0) defined by the USB. Certain application callbacks may need
to formulate a response and send it to the host. This function allows a caller to respond to
a host control pipe request.* This function returns as soon as the transfer is enqueued.

RETURNS OK, or ERROR if unable to submit response to host.

ERRNO S_usbTargLib_GENERAL_FAULT
Fault occured in upper layers.

S_usbTargLib_BAD_PARAM
Bad Parameter is passed.

SEE ALSO usbTargDefaultPipe

usbTargControlStatusSend()

NAME usbTargControlStatusSend() – sends control transfer status to the host

SYNOPSIS STATUS usbTargControlStatusSend
 (
 USB_TARG_CHANNEL targChannel /* target channel */
)

DESCRIPTION This function is used to send the status to the host. This function is used when the control
transfer does not have a data stage.

RETURNS OK, or ERROR if unable to submit the status ERP.

ERRNO S_usbTargLib_GENERAL_FAULT
Fault occured in upper layers.

2 Routines
usbTargDeviceFeatureClear()

151

S_usbTargLib_BAD_PARAM
Bad Parameter is passed.

SEE ALSO usbTargDefaultPipe

usbTargCurrentFrameGet()

NAME usbTargCurrentFrameGet() – retrieves the current USB frame number

SYNOPSIS STATUS usbTargCurrentFrameGet
 (
 USB_TARG_CHANNEL targChannel, /* target channel */
 pUINT16 pFrameNo /* current frame number */
)

DESCRIPTION This function allows a caller to retrieve the current USB frame number for the bus to which
targChannel is connected. Upon return, the current frame number is stored in pFrameNo.

RETURNS OK, or ERROR if unable to retrieve USB frame number

ERRNO S_usbTargLib_TCD_FAULT
Fault occured in TCD

SEE ALSO usbTargDeviceControl

usbTargDeviceFeatureClear()

NAME usbTargDeviceFeatureClear() – clears a specific feature

SYNOPSIS STATUS usbTargDeviceFeatureClear
 (
 USB_TARG_CHANNEL targChannel, /* target channel */
 UINT16 ufeatureSelector /* feature to be cleared */
)

DESCRIPTION This function is used to clear a device specific feature.

RETURNS OK or ERROR if not able to clear the feature.

Wind River USB for VxWorks 6 API Reference, 2.4
usbTargDeviceFeatureSet()

152

ERRNO S_usbTargLib_TCD_FAULT
Fault occured in TCD.

SEE ALSO usbTargDeviceControl

usbTargDeviceFeatureSet()

NAME usbTargDeviceFeatureSet() – sets or enable a specific feature

SYNOPSIS STATUS usbTargDeviceFeatureSet
 (
 USB_TARG_CHANNEL targChannel, /* target channel */
 UINT16 ufeatureSelector, /* feature to be set */
 UINT8 uTestSelector /* test selector value */
)

DESCRIPTION This function is used to set or enable a device specific feature.

RETURNS OK or ERROR if not able to set the feature.

ERRNO S_usbTargLib_TCD_FAULT
Fault occured in TCD

SEE ALSO usbTargDeviceControl

usbTargDisable()

NAME usbTargDisable() – disables a target channel

SYNOPSIS STATUS usbTargDisable
 (
 USB_TARG_CHANNEL targChannel /* target to disable */
)

DESCRIPTION This function is the counterpart to the usbTargEnable() function. This function disables the
indicated target channel.

RETURNS OK, or ERROR if unable to disable the target channel.

2 Routines
usbTargInitialize()

153

ERRNO S_usbTargLib_TCD_FAULT
Fault occured in TCD.

S_usbTargLib_BAD_PARAM
Bad parameter is passed.

SEE ALSO usbTargInitExit

usbTargEnable()

NAME usbTargEnable() – enables target channel onto USB

SYNOPSIS STATUS usbTargEnable
 (
 USB_TARG_CHANNEL targChannel /* target to enable */
)

DESCRIPTION After attaching a TCD to usbTargLib and performing any other application- specific
initialization that might be necessary, this function should be called to enable a target
channel. The USB target controlled by the TCD will not appear as a device on the USB until
this function has been called.

RETURNS OK, or ERROR if unable to enable target channel.

ERRNO S_usbTargLib_TCD_FAULT
Fault occured in TCD.

S_usbTargLib_BAD_PARAM
Bad parameter is passed.

SEE ALSO usbTargInitExit

usbTargInitialize()

NAME usbTargInitialize() – initializes the USB Target Library

SYNOPSIS STATUS usbTargInitialize (void)

DESCRIPTION This routine is used to initialize the USB Target Library. It initializes the OS library, creates
the handles and mutexes.

Wind River USB for VxWorks 6 API Reference, 2.4
usbTargKbdCallbackInfo()

154

RETURNS OK or ERROR

ERRNO S_usbTargLib_GENERAL_FAULT
Fault occured in software layers.

S_usbTargLib_OUT_OF_RESOURCES
Sufficient resources are not available.

SEE ALSO usbTargInitExit

usbTargKbdCallbackInfo()

NAME usbTargKbdCallbackInfo() – returns usbTargKbdLib callback table

SYNOPSIS VOID usbTargKbdCallbackInfo
 (
 struct usbTargCallbackTable ** ppCallbacks, /* Callback table pointer
*/
 pVOID *pCallbackParam /* target app-specific
parameter */
)

DESCRIPTION This function is called by the initialization rountine. It returns the callback table information.

RETURNS N/A

ERRNO none.

SEE ALSO usbTargKbdLib

usbTargKbdInjectReport()

NAME usbTargKbdInjectReport() – injects a "boot report"

SYNOPSIS STATUS usbTargKbdInjectReport
 (
 pHID_KBD_BOOT_REPORT pReport, /* Boot Report to be injected */
 UINT16 reportLen /* Length of the boot report */
)

2 Routines
usbTargMsCallbackInfo()

155

DESCRIPTION This function injects the boot report into the interrupt pipe. pReport is the pointer to the boot
report ot be injected. reportErpCallback is called after the boot report is successfully sent to
the host.

RETURNS OK, or ERROR if unable to inject report

ERRNO none.

SEE ALSO usbTargKbdLib

usbTargMgmtCallback()

NAME usbTargMgmtCallback() – invoked when HAL detects a management event

SYNOPSIS STATUS usbTargMgmtCallback
 (
 pVOID pTargTcd, /* pointer to TARG_TCD structure */
 UINT16 mngmtCode, /* management event code */
 pVOID pContext /* parameter of management event */
)

DESCRIPTION This function is invoked by the HAL when the HAL detects a "management" event on a
target channel.

RETURNS OK or ERROR if there is an error in handling the management event.

ERRNO S_usbTargLib_TCD_FAULT
Fault occured in TCD

SEE ALSO usbTargDeviceControl

usbTargMsCallbackInfo()

NAME usbTargMsCallbackInfo() – returns usbTargPrnLib callback table

SYNOPSIS VOID usbTargMsCallbackInfo
 (
 struct usbTargCallbackTable ** ppCallbacks, /*USB_TARG_CALLBACK_TABLE
*/

Wind River USB for VxWorks 6 API Reference, 2.4
usbTargPipeCreate()

156

 pVOID * pCallbackParam /* Callback Parameter */
)

DESCRIPTION This function returns the callback table pointer .

RETURNS N/A

ERRNO none

SEE ALSO usbTargMsLib

usbTargPipeCreate()

NAME usbTargPipeCreate() – creates a pipe for communication on an endpoint

SYNOPSIS STATUS usbTargPipeCreate
 (
 USB_TARG_CHANNEL targChannel, /* target channel */
 pUSB_ENDPOINT_DESCR pEndpointDesc, /* USB_ENDPOINT_DESCR */
 UINT16 uConfigurationValue, /* configuration value */
 UINT16 uInterface, /* Number of interface which */
 /* holds this endpoint */
 UINT16 uAltSetting, /* alternate Setting */
 pUSB_TARG_PIPE pPipeHandle /* pointer to pipe handle */
)

DESCRIPTION This function creates a pipe for communication on an endpoint attached to a specific target
endpoint. In return we get the pipe handle which is used by that endpoint for
communication.

RETURNS OK, or ERROR if unable to create pipe

ERRNO S_usbTargLib_TCD_FAULT
Fault occured in TCD.

S_usbTargLib_BAD_PARAM
Bad parameter is passed.

S_usbTargLib_OUT_OF_RESOURCES
Sufficient resources not available.

SEE ALSO usbTargPipeFunc

2 Routines
usbTargPipeStatusGet()

157

usbTargPipeDestroy()

NAME usbTargPipeDestroy() – destroys an endpoint pipe

SYNOPSIS STATUS usbTargPipeDestroy
 (
 USB_TARG_PIPE pipeHandle /* pipe to be destroyed */
)

DESCRIPTION This function tears down a pipe previously created by calling usbTargPipeCreate().

RETURNS OK, or ERROR if unable to destroy pipe.

ERRNO S_usbTargLib_TCD_FAULT
Error occured in TCD.

SEE ALSO usbTargPipeFunc

usbTargPipeStatusGet()

NAME usbTargPipeStatusGet() – returns the endpoint status

SYNOPSIS STATUS usbTargPipeStatusGet
 (
 USB_TARG_PIPE pipeHandle, /* Handle to the pipe */
 pUINT8 pBuf /* Buffer to hold the pipe status */
)

DESCRIPTION This function is used to get the status of the pipeas per GET_STATUS request. The status of
the pipe is stored in the pointer variable pBuf

RETURNS OK, or ERROR if unable to get state

ERRNO S_usbTargLib_TCD_FAULT
Fault occured in TCD.

SEE ALSO usbTargPipeFunc

Wind River USB for VxWorks 6 API Reference, 2.4
usbTargPipeStatusSet()

158

usbTargPipeStatusSet()

NAME usbTargPipeStatusSet() – sets pipe stalled/unstalled status

SYNOPSIS STATUS usbTargPipeStatusSet
 (
 USB_TARG_PIPE pipeHandle, /* Handle to the pipe */
 UINT16 state /* State of the pipe to be set */
)

DESCRIPTION If the target application detects an error while servicing a pipe, it may choose to stall the
endpoint(s) associated with that pipe.
This function allows the caller to set the state of a pipe as
"stalled" or "un-stalled".

RETURNS OK, or ERROR if unable to set indicated state

ERRNO S_usbTargLib_TCD_FAULT
Fault occured in TCD.

SEE ALSO usbTargPipeFunc

usbTargPrnCallbackInfo()

NAME usbTargPrnCallbackInfo() – returns usbTargPrnLib callback table

SYNOPSIS VOID usbTargPrnCallbackInfo
 (
 pUSB_TARG_CALLBACK_TABLE *ppCallbacks, /* Pointer to callback */
 /* table */
 pVOID *pCallbackParam /* target app-specific */
 /* parameter */
)

DESCRIPTION This function is called by the initialization routine. It returns the information about the
callback table.

RETURNS N/A

ERRNO none

SEE ALSO usbTargPrnLib

2 Routines
usbTargRbcBlockDevCreate()

159

usbTargPrnDataInfo()

NAME usbTargPrnDataInfo() – returns buffer status/info

SYNOPSIS STATUS usbTargPrnDataInfo
 (
 pUINT8 * ppBfr, /* Pointer to the buffer address */
 pUINT16 pActLen /* Actual length of the data */
)

DESCRIPTION This function returns the status the bulk buffer which consist of the data sent by the printer.
pActLen will consist of the actual length of data to be printed.

RETURNS OK if buffer has valid data, else ERROR

ERRNO none.

SEE ALSO usbTargPrnLib

usbTargPrnDataRestart()

NAME usbTargPrnDataRestart() – restarts listening ERP

SYNOPSIS STATUS usbTargPrnDataRestart (void)

DESCRIPTION This function restarts the listening of ERP on Bulk Out Pipe.

RETURNS OK, or ERROR if unable to re-initiate ERP

ERRNO none

SEE ALSO usbTargPrnLib

usbTargRbcBlockDevCreate()

NAME usbTargRbcBlockDevCreate() – create an RBC BLK_DEV device.

Wind River USB for VxWorks 6 API Reference, 2.4
usbTargRbcBlockDevGet()

160

SYNOPSIS STATUS usbTargRbcBlockDevCreate (void)

DESCRIPTION This routine creates an RBC BLK I/O device. The RAM driver will be used for the actual
implementation.

RETURNS OK or ERROR, if not able to create the RAM Disk.

ERRNO none.

SEE ALSO usbTargRbcCmd

usbTargRbcBlockDevGet()

NAME usbTargRbcBlockDevGet() – return opaque pointer to the RBC BLK I/O DEV device

SYNOPSIS pVOID usbTargRbcBlockDevGet (void)

DESCRIPTION structure.

This routine returns an opaque pointer to the RBC BLK I/O DEV device structure.

RETURNS Pointer to the RBC BLK I/O DEV structure

ERRNO none

SEE ALSO usbTargRbcCmd

usbTargRbcBlockDevSet()

NAME usbTargRbcBlockDevSet() – set the pointer to the RBC BLK I/O DEV device structure.

SYNOPSIS STATUS usbTargRbcBlockDevSet
 (
 pVOID *blkDev /* pointer to the BLK_DEV device */
)

DESCRIPTION This routine sets the RBC BLK_DEV pointer that is accessed by the
usbTargRbcBlockDevGet() routine.

2 Routines
usbTargRbcCacheSync()

161

RETURNS OK or ERROR

ERRNO none

SEE ALSO usbTargRbcCmd

usbTargRbcBufferWrite()

NAME usbTargRbcBufferWrite() – write micro-code to the RBC device

SYNOPSIS STATUS usbTargRbcBufferWrite
 (
 UINT8 arg[10], /* the RBC command */
 UINT8 ** ppData, /* micro-code location on device */
 UINT32 * pSize /* size of micro-code location on device */
)

DESCRIPTION This routine writes micro-code to the RBC block I/O device.

RETURNS OK or ERROR

ERRNO none.

SEE ALSO usbTargRbcCmd

usbTargRbcCacheSync()

NAME usbTargRbcCacheSync() – synchronize the cache of the RBC device

SYNOPSIS STATUS usbTargRbcCacheSync
 (
 UINT8 arg[10] /* the RBC command */
)

DESCRIPTION This routine synchronizes the cache of the RBC block I/O device.

RETURNS OK or ERROR

Wind River USB for VxWorks 6 API Reference, 2.4
usbTargRbcCapacityRead()

162

ERRNO none

SEE ALSO usbTargRbcCmd

usbTargRbcCapacityRead()

NAME usbTargRbcCapacityRead() – read the capacity of the RBC device

SYNOPSIS STATUS usbTargRbcCapacityRead
 (
 UINT8 arg[10], /* RBC command */
 UINT8 **ppData, /* point to capacity data */
 UINT32 *pSize /* size of capacity */
)

DESCRIPTION This routine reads the capacity of the RBC block I/O device.

RETURNS OK or ERROR

ERRNO none.

SEE ALSO usbTargRbcCmd

usbTargRbcFormat()

NAME usbTargRbcFormat() – format the RBC device

SYNOPSIS STATUS usbTargRbcFormat
 (
 UINT8 arg[6] /* the RBC command */
)

DESCRIPTION This routine formats the RBC block I/O device.

RETURNS OK or ERROR

ERRNO none

2 Routines
usbTargRbcModeSelect()

163

SEE ALSO usbTargRbcCmd

usbTargRbcInquiry()

NAME usbTargRbcInquiry() – retrieve inquiry data from the RBC device

SYNOPSIS STATUS usbTargRbcInquiry
 (
 UINT8 cmd[6], /* the RBC command */
 UINT8 **ppData, /* location of inquiry data on device */
 UINT32 *pSize /* size of inquiry data on device */
)

DESCRIPTION This routine retrieves inquiry data from the RBC block I/O device.

RETURNS OK or ERROR

ERRNO none

SEE ALSO usbTargRbcCmd

usbTargRbcModeSelect()

NAME usbTargRbcModeSelect() – select the mode parameter page of the RBC device

SYNOPSIS STATUS usbTargRbcModeSelect
 (
 UINT8 arg[6], /* the RBC command */
 UINT8 ** ppData, /* location of mode parameter data on device */
 UINT32 * pSize /* size of mode parameter data on device */
)

DESCRIPTION This routine selects the mode parameter page of the RBC block I/O device. For
non-removable medium devices the SAVE PAGES (SP) bit shall be set to one. This indicates
that the device shall perform the specified MODE SELECT operation and shall save, to a
non-volatile vendor-specific location, all the changeable pages, including any sent with the
command. Application clients should issue MODE SENSE(6) prior to each MODE
SELECT(6) to determine supported pages, page lengths, and other parameters.

RETURNS OK or ERROR

Wind River USB for VxWorks 6 API Reference, 2.4
usbTargRbcModeSelect10()

164

ERRNO none.

SEE ALSO usbTargRbcCmd

usbTargRbcModeSelect10()

NAME usbTargRbcModeSelect10() – select the mode parameter page of the RBC device

SYNOPSIS STATUS usbTargRbcModeSelect10
 (
 UINT8 arg[10], /* the RBC command */
 UINT8 ** ppData, /* location of mode parameter data on device */
 UINT32 * pSize /* size of mode parameter data on device */
)

DESCRIPTION This routine selects the mode parameter page of the RBC block I/O device. For
non-removable medium devices the SAVE PAGES (SP) bit shall be set to one. This indicates
that the device shall perform the specified MODE SELECT operation and shall save, to a
non-volatile vendor-specific location, all the changeable pages, including any sent with the
command. Application clients should issue MODE SENSE(10) prior to each MODE
SELECT(10) to determine supported pages, page lengths, and other parameters.

RETURNS OK or ERROR

ERRNO none.

SEE ALSO usbTargRbcCmd

usbTargRbcModeSense()

NAME usbTargRbcModeSense() – retrieve sense data from the RBC device

SYNOPSIS STATUS usbTargRbcModeSense
 (
 UINT8 arg[6], /* the RBC command */
 UINT8 ** ppData, /* location mode parameter data on device */
 UINT32 * pSize /* size of mode parameter data on device */
)

2 Routines
usbTargRbcPersistentReserveIn()

165

DESCRIPTION This routine retrieves sense data from the RBC block I/O device.

RETURNS OK or ERROR

ERRNO none.

SEE ALSO usbTargRbcCmd

usbTargRbcModeSense10()

NAME usbTargRbcModeSense10() – request for mode sense 10 command

SYNOPSIS STATUS usbTargRbcModeSense10
 (
 UINT8 arg[10], /* the RBC command */
 UINT8 ** ppData, /* location mode parameter data on device */
 UINT32 * pSize /* size of mode parameter data on device */
)

DESCRIPTION This routine retrieves sense data from the RBC block I/O device.

RETURNS OK or ERROR

ERRNO none.

SEE ALSO usbTargRbcCmd

usbTargRbcPersistentReserveIn()

NAME usbTargRbcPersistentReserveIn() – send reserve data to the host

SYNOPSIS STATUS usbTargRbcPersistentReserveIn
 (
 UINT8 arg[10], /* the RBC command */
 UINT8 ** ppData, /* location of reserve data on device */
 UINT32 *pSize /* size of reserve data */
)

DESCRIPTION This routine requests reserve data to be sent to the initiator.

Wind River USB for VxWorks 6 API Reference, 2.4
usbTargRbcPersistentReserveOut()

166

RETURNS OK or ERROR

ERRNO none

SEE ALSO usbTargRbcCmd

usbTargRbcPersistentReserveOut()

NAME usbTargRbcPersistentReserveOut() – reserve resources on the RBC device

SYNOPSIS STATUS usbTargRbcPersistentReserveOut
 (
 UINT8 arg[10], /* the RBC command */
 UINT8 ** ppData, /* location of reserve data on device */
 UINT32 *pSize /* size of reserve data */
)

DESCRIPTION This routine reserves resources on the RBC block I/O device.

RETURNS OK or ERROR

ERRNO none

SEE ALSO usbTargRbcCmd

usbTargRbcPreventAllowRemoval()

NAME usbTargRbcPreventAllowRemoval() – prevent or allow the removal of the RBC device

SYNOPSIS STATUS usbTargRbcPreventAllowRemoval
 (
 UINT8 arg[6] /* the RBC command */
)

DESCRIPTION This routine prevents or allows the removal of the RBC block I/O device.

RETURNS OK or ERROR

2 Routines
usbTargRbcRelease()

167

ERRNO none

SEE ALSO usbTargRbcCmd

usbTargRbcRead()

NAME usbTargRbcRead() – read data from the RBC device

SYNOPSIS STATUS usbTargRbcRead
 (
 UINT8 arg[10], /* the RBC command */
 UINT8 ** ppData, /* pointer to where data will be read by host */
 UINT32 * pSize /* size of data to be read */
)

DESCRIPTION This routine reads data from the RBC block I/O device.

RETURNS OK or ERROR

ERRNO none
none

SEE ALSO usbTargRbcCmd

usbTargRbcRelease()

NAME usbTargRbcRelease() – release a resource on the RBC device

SYNOPSIS STATUS usbTargRbcRelease
 (
 UINT8 arg[6] /* the RBC command */
)

DESCRIPTION This routine releases a resource on the RBC block I/O device.

RETURNS OK or ERROR

Wind River USB for VxWorks 6 API Reference, 2.4
usbTargRbcRequestSense()

168

ERRNO none.

SEE ALSO usbTargRbcCmd

usbTargRbcRequestSense()

NAME usbTargRbcRequestSense() – request sense data from the RBC device

SYNOPSIS STATUS usbTargRbcRequestSense
 (
 UINT8 arg[6], /* the RBC command */
 UINT8 ** ppData, /* location of sense data on device */
 UINT32 *pSize /* size of sense data */
)

DESCRIPTION This routine requests sense data from the RBC block I/O device.

RETURNS OK or ERROR

ERRNO N/A

SEE ALSO usbTargRbcCmd

usbTargRbcReserve()

NAME usbTargRbcReserve() – reserve a resource on the RBC device

SYNOPSIS STATUS usbTargRbcReserve
 (
 UINT8 arg[6] /* the RBC command */
)

DESCRIPTION This routine reserves a resource on the RBC block I/O device.

RETURNS OK or ERROR

ERRNO none

2 Routines
usbTargRbcTestUnitReady()

169

SEE ALSO usbTargRbcCmd

usbTargRbcStartStop()

NAME usbTargRbcStartStop() – start or stop the RBC device

SYNOPSIS STATUS usbTargRbcStartStop
 (
 UINT8 arg[6] /* the RBC command */
)

DESCRIPTION This routine starts or stops the RBC block I/O device.

RETURNS OK or ERROR

ERRNO none

SEE ALSO usbTargRbcCmd

usbTargRbcTestUnitReady()

NAME usbTargRbcTestUnitReady() – test if the RBC device is ready

SYNOPSIS STATUS usbTargRbcTestUnitReady
 (
 UINT8 arg[6] /* the RBC command */
)

DESCRIPTION This routine tests whether the RBC block I/O device is ready.

RETURNS OK or ERROR

ERRNO none.

SEE ALSO usbTargRbcCmd

Wind River USB for VxWorks 6 API Reference, 2.4
usbTargRbcVendorSpecific()

170

usbTargRbcVendorSpecific()

NAME usbTargRbcVendorSpecific() – vendor specific call

SYNOPSIS STATUS usbTargRbcVendorSpecific
 (
 UINT8 arg[10], /* the RBC command */
 UINT8 ** ppData, /* location of sense data on device */
 UINT32 * pSize /* size of sense data */
)

DESCRIPTION This routine is a vendor specific call.

RETURNS OK

ERRNO none

SEE ALSO usbTargRbcCmd

usbTargRbcVerify()

NAME usbTargRbcVerify() – verify the last data written to the RBC device

SYNOPSIS STATUS usbTargRbcVerify
 (
 UINT8 arg[10] /* the RBC command */
)

DESCRIPTION This routine verifies the last data written to the RBC block I/O device.

RETURNS OK or ERROR.

ERRNO none.

SEE ALSO usbTargRbcCmd

2 Routines
usbTargSetupErpCallback()

171

usbTargRbcWrite()

NAME usbTargRbcWrite() – write to the RBC device

SYNOPSIS STATUS usbTargRbcWrite
 (
 UINT8 arg[10], /* the RBC command */
 UINT8 ** ppData, /* location where data will be written to device */
 UINT32 *pSize /* size of location on device */
)

DESCRIPTION This routine writes to the RBC block I/O device.

RETURNS OK or ERROR

ERRNO none

SEE ALSO usbTargRbcCmd

usbTargSetupErpCallback()

NAME usbTargSetupErpCallback() – handles the setup packet

SYNOPSIS VOID usbTargSetupErpCallback
 (
 pUSB_ERP pErp /* Pointer to ERP structure */
)

DESCRIPTION This function is called when a setup packet is received.

RETURNS N/A

ERRNO None

SEE ALSO usbTargDefaultPipe

Wind River USB for VxWorks 6 API Reference, 2.4
usbTargShutdown()

172

usbTargShutdown()

NAME usbTargShutdown() – shutdown the USB target library

SYNOPSIS STATUS usbTargShutdown (void)

DESCRIPTION This function is used to shutdown the USB Target Library. It frees the various resources
alloted.

RETURNS OK or ERROR

ERRNO S_usbTargLib_NOT_INITIALIZED
Initialized varable is used.

S_usbTargLib_TCD_FAULT
Fault occured in TCD.

S_usbTargLib_APP_FAULT
Application Specific fault occured.

SEE ALSO usbTargInitExit

usbTargSignalResume()

NAME usbTargSignalResume() – drives RESUME signalling on USB

SYNOPSIS STATUS usbTargSignalResume
 (
 USB_TARG_CHANNEL targChannel /* target channel */
)

DESCRIPTION If a USB is in the SUSPENDed state, it is possible for a device (target) to request the bus to
wake up (called remote wakeup). This function allows the caller to drive USB resume
signalling. The function will return after resume signalling has completed.

RETURNS OK, or ERROR if unable to drive RESUME signalling

ERRNO S_usbTargLib_TCD_FAULT
Fault occured in TCD

SEE ALSO usbTargDeviceControl

2 Routines
usbTargTcdDetach()

173

usbTargTcdAttach()

NAME usbTargTcdAttach() – to attach the TCD to the target library

SYNOPSIS STATUS usbTargTcdAttach
 (
 USB_TCD_EXEC_FUNC tcdExecFunc, /* single entry point of the TCD
*/
 pVOID tcdParam, /* parameter passed to TCD */
 pUSB_TARG_CALLBACK_TABLE pCallbacks, /*pointer to Callback functions
*/
 pVOID callbackParam, /* parameter to callback
functions */
 pUSB_TARG_CHANNEL pTargChannel /* target channel handle
returned */
)

DESCRIPTION This function is used to attach the TCD to the Target Library.In response to a successful TCD
attachment, usbTargLib returns a USB_TARG_CHANNEL handle to the caller.This handle
must be used in all subsequent calls to usbTargLib to identify a given target channel.

RETURNS OK or ERROR

ERRNO S_usbTargLib_OUT_OF_MEMORY
Memory not present to allocate variables.

S_usbTargLib_TCD_FAULT
Fault occured in TCD.

S_usbTargLib_OUT_OF_RESOURCES
Sufficient resources not available.

S_usbTargLib_BAD_PARAM
Bad parameter is passed.

S_usbTargLib_APP_FAULT
Application Specific Fault occured.

SEE ALSO usbTargInitExit

usbTargTcdDetach()

NAME usbTargTcdDetach() – detaches a USB target controller driver

SYNOPSIS STATUS usbTargTcdDetach

Wind River USB for VxWorks 6 API Reference, 2.4
usbTargTransfer()

174

 (
 USB_TARG_CHANNEL targChannel /* handle to target channel */
)

DESCRIPTION This function detaches a USB TCD which was previously attached to the usb Target Library
by calling usbTargTcdAttach(). targChannel is the handle of the target channel originally
returned by usbTargTcdAttach().

RETURNS OK, or ERROR if unable to detach TCD.

ERRNO S_usbTargLib_TCD_FAULT
Fault occured in TCD.

S_usbTargLib_BAD_PARAM
Bad parameter is passed.

S_usbTargLib_APP_FAULT
Application Specific Fault occured.

SEE ALSO usbTargInitExit

usbTargTransfer()

NAME usbTargTransfer() – to transfer data through a pipe

SYNOPSIS STATUS usbTargTransfer
 (
 USB_TARG_PIPE pipeHandle, /* handle to the pipe */
 pUSB_ERP pErp /* ERP to be transfered */
)

DESCRIPTION This function is used to initiate an transfer on the pipe indicated by pipeHandle. The transfer
is described by an ERP, or endpoint request packet, which must be allocated and initialized
by the caller prior to invoking usbdTargTransfer().

RETURNS OK or Error if not able to transfer data.

ERRNO S_usbTargLib_TCD_FAULT
Fault occured in TCD.

S_usbTargLib_BAD_PARAM
Bad parameter is passed.

SEE ALSO usbTargPipeFunc

2 Routines
usbTcdIsp1582EvalExec()

175

usbTargTransferAbort()

NAME usbTargTransferAbort() – cancels a previously submitted USB_ERP

SYNOPSIS STATUS usbTargTransferAbort
 (
 USB_TARG_PIPE pipeHandle, /* pipe for transfer to abort */
 pUSB_ERP pErp /* ERP to be aborted */
)

DESCRIPTION This function aborts an ERP which was previously submitted through a call to
usbTargTransfer().

RETURNS OK, or ERROR if unable to cancel USB_ERP

ERRNO S_usbTargLib_TCD_FAULT
Fault occured in TCD.

S_usbTargLib_BAD_PARAM
Bad parameter is passed.

SEE ALSO usbTargPipeFunc

usbTcdIsp1582EvalExec()

NAME usbTcdIsp1582EvalExec() – single Entry Point for ISP 1582 TCD

SYNOPSIS STATUS usbTcdIsp1582EvalExec
 (
 pVOID pTrb /* TRB to be executed */
)

DESCRIPTION This is the single entry point for the Philips ISP 1582 USB TCD (Target Controller Driver).
The function qualifies the TRB passed by the caller and fans out to the appropriate TCD
function handler.

RETURNS OK or ERROR if failed to execute TRB passed by caller.

ERRNO S_usbTcdLib_BAD_PARAM
Bad parameter is passed.

SEE ALSO usbTcdIsp1582InitExit

Wind River USB for VxWorks 6 API Reference, 2.4
usbTcdNET2280Exec()

176

usbTcdNET2280Exec()

NAME usbTcdNET2280Exec() – single Entry Point for NETCHIP 2280 TCD

SYNOPSIS STATUS usbTcdNET2280Exec
 (
 pVOID pTrb /* TRB to be executed */
)

DESCRIPTION This is the single entry point for the NETCHIP 2280 USB TCD (Target Controller Driver).
The function qualifies the TRB passed by the caller and fans out to the appropriate TCD
function handler.

RETURNS OK or ERROR if failed to execute TRB passed by caller.

ERRNO S_usbTcdLib_BAD_PARAM
Bad parameter is passed.

SEE ALSO usbTcdNET2280InitExit

usbTcdPdiusbd12EvalExec()

NAME usbTcdPdiusbd12EvalExec() – single entry point for PDIUSBD12 TCD

SYNOPSIS STATUS usbTcdPdiusbd12EvalExec
 (
 pVOID pTrb /* TRB to be executed */
)

DESCRIPTION This is the single entry point for the Philips PDIUSBD12 (ISA eval version) USB TCD (Target
Controller Driver). The function qualifies the TRB passed by the caller and fans out to the
appropriate TCD function handler.

RETURNS OK or ERROR if failed to execute TRB passed by caller.

ERRNO none.

SEE ALSO usbTcdPdiusbd12InitExit

2 Routines
usbUhcdExit()

177

usbTransferTime()

NAME usbTransferTime() – Calculates the bus time required for a USB transfer.

SYNOPSIS UINT32 usbTransferTime
 (
 UINT16 transferType, /* transfer type */
 UINT16 direction, /* transfer direction */
 UINT16 speed, /* speed of pipe */
 UINT32 bytes, /* number of bytes for packet to be calc'd */
 UINT32 hostDelay, /* host controller delay per packet */
 UINT32 hostHubLsSetup /* host controller time for low-speed setup */
)

DESCRIPTION This function calculates the time a transfer of a given number of bytes will require on the
bus, measured in nanoseconds (10E-9 seconds). The formulas used here are taken from
Section 5.9.3 of Revision 1.1 of the USB spec.

transferType, direction, and speed should describe the characteristics of the pipe/transfer as
USB_XFRTYPE_xxxx, USB_DIR_xxxx, and USB_SPEED_xxxx, repsectively. bytes is the size
of the packet for which the transfer time should be calculated. hostDelay and hostHubLsSetup
are the host delay and low-speed hub setup times in nanoseconds, respectively, and are
host-controller specific.

RETURNS Worst case number of nanoseconds required for transfer

ERRNO None

SEE ALSO usbLib

usbUhcdExit()

NAME usbUhcdExit() – uninitialize the USB UHCI Host Controller Driver.

SYNOPSIS USBHST_STATUS usbUhcdExit (void)

DESCRIPTION This function uninitialize the USB UHCD Host Controller Driver and detaches it from the
usbd interface layer.

RETURNS USBHST_SUCCESS, USBHST_FALIURE if the UHCD Host Controller uninitializaton fails

Wind River USB for VxWorks 6 API Reference, 2.4
usbUhcdInit()

178

ERRNO None.

SEE ALSO usbUhcdInitialization

usbUhcdInit()

NAME usbUhcdInit() – initialise the USB UHCI Host Controller Driver.

SYNOPSIS USBHST_STATUS usbUhcdInit (void)

DESCRIPTION This function initializes internal data structues in the UHCI Host Controller Driver. This
routine is typically called prior the the vxBus invocation of the device connect.

This function registers the UHCI HCD with the USBD Layer.

RETURNS USBHST_SUCCESS or
USBHST_FALIURE - if the UHCD Host Controller initialization fails

ERRNO None.

SEE ALSO usbUhcdInitialization

usbUhcdInstantiate()

NAME usbUhcdInstantiate() – instantiate the USB UHCI Host Controller Driver.

SYNOPSIS VOID usbUhcdInstantiate (void)

DESCRIPTION This routine instantiates the UHCI Host Controller Driver and allows the UHCI Controller
driver to be included with the vxWorks image and not be registered with vxBus. UHCI
devices will remain orphan devices until the usbUhcdInit() routine is called. This supports
the INCLUDE_UHCI behaviour of previous vxWorks releases.

The routine itself does nothing.

RETURNS N/A

2 Routines
usbVxbRootHubRemove()

179

ERRNO None.

SEE ALSO usbUhcdInitialization

usbVxbRootHubAdd()

NAME usbVxbRootHubAdd() – configures the root hub

SYNOPSIS VOID usbVxbRootHubAdd
 (
 VXB_DEVICE_ID pDevInfo /* struct vxDev* */
)

DESCRIPTION This function configures the root hub. The function is called by vxBus with VXB_DEVICE_ID
as its parameter. The routine will call the routine that is registered with the USBD to
confugure the root hub device.

RETURNS none

ERRNO none

SEE ALSO usbd

usbVxbRootHubRemove()

NAME usbVxbRootHubRemove() – removes the root hub

SYNOPSIS VOID usbVxbRootHubRemove
 (
 VXB_DEVICE_ID pDevInfo /* struct vxDev* */
)

DESCRIPTION This function is removes the root hub. The function is called by vxBus with VXB_DEVICE_ID
as its parameter. The routine will call the routine that is registered with the USBD to remove
the root hub device.

RETURNS none

ERRNO none

Wind River USB for VxWorks 6 API Reference, 2.4
usbdAddressGet()

180

SEE ALSO usbd

usbdAddressGet()

NAME usbdAddressGet() – Gets the USB address for a given device.

SYNOPSIS STATUS usbdAddressGet
 (
 USBD_CLIENT_HANDLE clientHandle, /* Client handle */
 USBD_NODE_ID nodeId, /* Node Id of device/hub */
 pUINT16 pDeviceAddress /* Currently assigned device address
*/
)

DESCRIPTION This routine returns the USB address assigned to device specified by nodeId.

RETURNS OK, or ERROR

ERRNO none

SEE ALSO usbTransUnitMisc

usbdAddressSet()

NAME usbdAddressSet() – Sets the USB address for a given device.

SYNOPSIS STATUS usbdAddressSet
 (
 USBD_CLIENT_HANDLE clientHandle, /* Client handle */
 USBD_NODE_ID nodeId, /* Node Id of device/hub */
 UINT16 deviceAddress /* New device address */
)

DESCRIPTION This routine sets the USB address at which a device will respond to future requests. Upon
return, the address of the device identified by nodeId will be changed to the value specified
in deviceAddress. deviceAddress must be in the range from zero through 127. The
deviceAddress must also be unique within the scope of each USB host controller.

The USBD manages USB device addresses automatically, and this routine should never be
called by normal USBD clients. Changing a device address may cause serious problems,
including device address conflicts, and may cause the USB to cease operation.

2 Routines
usbdBusStateSet()

181

RETURNS OK, or ERROR

ERRNO none

SEE ALSO usbTransUnitMisc

usbdBusCountGet()

NAME usbdBusCountGet() – Gets the number of USBs attached to the host.

SYNOPSIS STATUS usbdBusCountGet
 (
 USBD_CLIENT_HANDLE clientHandle, /* Client handle */
 pUINT16 pBusCount /* Word bfr to receive bus count */
)

DESCRIPTION This routine returns the total number of USB host controllers in the system. Each host
controller has its own root hub as required by the USB specification. Clients planning to
enumerate USB devices using the bus enumeration routines need to know the number of
host controllers in order to retrieve the node IDs for each root hub.

pBusCount must point to a UINT16 variable in which the total number of USB host
controllers will be stored.

NOTE The number of USB host controllers is not constant. Bus controllers can be added by calling
usbdHcdAttach() and removed by calling usbdHcdDetach(). Again, the dynamic attach
routines deal with these situations automatically, and are the preferred mechanism by
which most clients should be informed of device attachment and removal.

RETURNS OK, or ERROR if unable to retrieve bus count

ERRNO none

SEE ALSO usbTransUnitMisc

usbdBusStateSet()

NAME usbdBusStateSet() – Sets bus state, such as SUSPEND or RESUME.

SYNOPSIS STATUS usbdBusStateSet

Wind River USB for VxWorks 6 API Reference, 2.4
usbdClientRegister()

182

 (
 USBD_CLIENT_HANDLE clientHandle, /* Client handle */
 USBD_NODE_ID nodeId, /* node ID */
 UINT16 busState /* new bus state: USBD_BUS_xxxx */
)

DESCRIPTION This function allows a client to set the state of the bus to which the specified nodeId is
attached. The desired busState is specified as USBD_BUS_xxxx.

Typically, a client will use this function to set a bus to the SUSPEND or RESUME state.
Clients must use this capability with care, as it will affect all devices on a given bus, and
hence all clients communicating with those devices.

RETURNS OK, or ERROR if unable to set specified bus state

ERRNO N/A

SEE ALSO usbTransUnitInit

usbdClientRegister()

NAME usbdClientRegister() – Registers a new client with the USBD.

SYNOPSIS STATUS usbdClientRegister
 (
 pCHAR pClientName, /* Client name */
 pUSBD_CLIENT_HANDLE pClientHandle /* Client hdl returned by USBD */
)

DESCRIPTION This routine invokes the USBD function to register a new client. pClientName should point
to a string of not more than USBD_NAME_LEN characters (excluding the terminating NULL)
which can be used to uniquely identify the client. If successful, upon return the
pClientHandle will be filled with a newly-assigned USBD_CLIENT_HANDLE.

RETURNS OK, or ERROR if unable to register a new client.

ERRNO N/A

SEE ALSO usbTransUnitInit

2 Routines
usbdConfigurationGet()

183

usbdClientUnregister()

NAME usbdClientUnregister() – Unregisters a USBD client.

SYNOPSIS STATUS usbdClientUnregister
 (
 USBD_CLIENT_HANDLE clientHandle /* Client handle */
)

DESCRIPTION A client invokes this function to release a previously-assigned USBD_CLIENT_HANDLE.
The USBD will release all resources allocated to the client, aborting any outstanding URBs
which may exist for the client.

Once this function has been called with a given clientHandle, the client must not attempt to
reuse the indicated clientHandle.

RETURNS OK, or ERROR if unable to unregister the client.

ERRNO N/A

SEE ALSO usbTransUnitInit

usbdConfigurationGet()

NAME usbdConfigurationGet() – Gets the USB configuration for a device.

SYNOPSIS STATUS usbdConfigurationGet
 (
 USBD_CLIENT_HANDLE clientHandle, /* Client handle */
 USBD_NODE_ID nodeId, /* Node Id of device/hub */
 pUINT16 pConfiguration /* bfr to receive config value */
)

DESCRIPTION This function returns the currently selected configuration for the device or hub indicated by
nodeId. The current configuration value is returned in the low byte of pConfiguration. The
high byte is currently reserved and will be 0.

RETURNS OK, or ERROR if unable to get configuration

ERRNO none

SEE ALSO usbTransUnitStd

Wind River USB for VxWorks 6 API Reference, 2.4
usbdConfigurationSet()

184

usbdConfigurationSet()

NAME usbdConfigurationSet() – Sets the USB configuration for a device.

SYNOPSIS STATUS usbdConfigurationSet
 (
 USBD_CLIENT_HANDLE clientHandle, /* Client handle */
 USBD_NODE_ID nodeId, /* Node Id of device/hub */
 UINT16 configuration, /* New configuration to be set */
 UINT16 maxPower /* max power this config will draw */
)

DESCRIPTION This function sets the current configuration for the device identified by nodeId. The client
should pass the desired configuration value in the low byte of configuration. The high byte
is currently reserved and should be zero.

The client must also pass the maximum current which will be used by this configuration in
maxPower.

RETURNS OK, or ERROR if unable to set configuration

ERRNO none

SEE ALSO usbTransUnitStd

usbdCurrentFrameGet()

NAME usbdCurrentFrameGet() – Returns the current frame number for a USB.

SYNOPSIS STATUS usbdCurrentFrameGet
 (
 USBD_CLIENT_HANDLE clientHandle, /* Client handle */
 USBD_NODE_ID nodeId, /* Node Id of node on desired USB */
 pUINT32 pFrameNo, /* bfr to receive current frame no. */
 pUINT32 pFrameWindow /* bfr to receive frame window */
)

DESCRIPTION It is sometimes necessary for clients to retrieve the current USB frame number for a
specified host controller. This routine allows a client to retrieve the current USB frame
number for the host controller to which nodeId is connected. Upon return, the current frame
number is stored in pFrameNo.

If pFrameWindow is not NULL, the USBD will also return the maximum frame scheduling
window for the indicated USB host controller. The frame scheduling window is essentially

2 Routines
usbdDescriptorGet()

185

the number of unique frame numbers tracked by the USB host controller. Most USB host
controllers maintain an internal frame count which is a 10- or 11-bit number, allowing them
to track typically 1,024 or 2,048 unique frames. When starting an isochronous transfer, a
client may wish to specify that the transfer will begin in a specific USB frame. For the given
USB host controller, the starting frame number can be no more than frameWindow frames
from the current frameNo.

NOTE The USBD is capable of simultaneously managing multiple USB host controllers, each of
which operates independently. Therefore, it is important that the client specify the correct
nodeId when retrieving the current frame number. Typically, a client will be interested in
the current frame number for the host controller to which a specific device is attached.

RETURNS OK, or ERROR if unable to retrieve current frame number

ERRNO none

SEE ALSO usbTransUnitMisc

usbdDescriptorGet()

NAME usbdDescriptorGet() – Retrieves a USB descriptor.

SYNOPSIS STATUS usbdDescriptorGet
 (
 USBD_CLIENT_HANDLE clientHandle, /* Client handle */
 USBD_NODE_ID nodeId, /* Node Id of device/hub */
 UINT8 requestType, /* specifies type of request */
 UINT8 descriptorType, /* Type of descriptor */
 UINT8 descriptorIndex, /* Index of descriptor */
 UINT16 languageId, /* Language ID */
 UINT16 bfrLen, /* Max length of data to be returned
*/
 pUINT8 pBfr, /* Pointer to bfr to receive data */
 pUINT16 pActLen /* bfr to receive actual length */
)

DESCRIPTION A client uses this function to retrieve a descriptor from the USB device identified by nodeId.
requestType is defined as it was documented for the usbdFeatureClear() routine.
descriptorType specifies the type of descriptor to be retrieved and must be one of the
following values:

USB_DESCR_DEVICE
Specifies the device descriptor.

Wind River USB for VxWorks 6 API Reference, 2.4
usbdDescriptorSet()

186

USB_DESCR_CONFIG
Specifies the configuration descriptor.

USB_DESCR_STRING
Specifies a string descriptor.

USB_DESCR_INTERFACE
Specifies an interface descriptor.

USB_DESCR_ENDPOINT
Specifies an endpoint descriptor.

descriptorIndex is the index of the desired descriptor.

For string descriptors, the languageId should specify the desired language for the string.
According to the USB specification, string descriptors are returned in Unicode format and
the languageId should be the 16-bit language ID (LANGID) defined by Microsoft for
Windows as described in "Developing International Software for Windows 95 and
Windows NT." Please refer to Section 9.6.5 of Revision 1.1 of the USB specification for more
detail. For device and configuration descriptors, languageId should be zero.

The caller must provide a buffer to receive the descriptor data. pBfr is a pointer to a
caller-supplied buffer of length bfrLen. If the descriptor is too long to fit in the buffer
provided, the descriptor will be truncated. If a non-NULL pointer is passed in pActLen, the
actual length of the data transferred will be stored in pActLen upon return.

RETURNS OK, or ERROR if unable to get the descriptor

ERRNO none

SEE ALSO usbTransUnitStd

usbdDescriptorSet()

NAME usbdDescriptorSet() – Sets a USB descriptor.

SYNOPSIS STATUS usbdDescriptorSet
 (
 USBD_CLIENT_HANDLE clientHandle, /* Client handle */
 USBD_NODE_ID nodeId, /* Node Id of device/hub */
 UINT8 requestType, /* selects request type */
 UINT8 descriptorType, /* Type of descriptor */
 UINT8 descriptorIndex, /* Index of descriptor */
 UINT16 languageId, /* Language ID */
 UINT16 bfrLen, /* Max length of data to be returned
*/

2 Routines
usbdDynamicAttachRegister()

187

 pUINT8 pBfr /* Pointer to bfr to receive data */
)

DESCRIPTION A client uses this routine to set a descriptor on the USB device identified by nodeId. The
parameters requestType, descriptorType, descriptorIndex, and languageId are the same as those
described for the usbdDescriptorGet() routine. pBfr is a pointer to a buffer of length bfrLen
which contains the descriptor data to be sent to the device.

RETURNS OK, or ERROR if unable to set descriptor

ERRNO none

SEE ALSO usbTransUnitStd

usbdDynamicAttachRegister()

NAME usbdDynamicAttachRegister() – Registers client for dynamic attach notification.

SYNOPSIS STATUS usbdDynamicAttachRegister
 (
 USBD_CLIENT_HANDLE clientHandle, /* Client handle */
 UINT16 deviceClass, /* USB class code */
 UINT16 deviceSubClass, /* USB sub-class code */
 UINT16 deviceProtocol, /* USB device protocol code */
 BOOL vendorSpecific, /* For vendor specific devicers */
 /* TRUE - if vendor specific driver
*/
 /* FALSE - if class specific driver
*/
 USBD_ATTACH_CALLBACK attachCallback /* User-supplied callback */
)

DESCRIPTION Clients call this function to indicate to the USBD that they wish to be notified whenever a
device of the indicated class/sub-class/protocol (in the case of class-specific devices) or the
device of the indicated vendorid/ deviceid/BcdInfo (in case of vendor-specific devices) is
attached to or removed from the USB. A client may specify that it wants to receive
notification for an entire device class or only for specific sub-classes within that class.

For class-specific devices: deviceClass, deviceSubClass, and deviceProtocol must specify a USB
class/sub-class/protocol combination according to the USB specification. For the clients'
convenience, usbdLib.h automatically includes usb.h, which defines a number of USB
device classes as USB_CLASS_xxxx and USB_SUBCLASS_xxxx. A value of
USBD_NOTIFY_ALL in any of these parameters acts like a wildcard and matches any value
reported by the device for the corresponding field.

Wind River USB for VxWorks 6 API Reference, 2.4
usbdDynamicAttachRegister()

188

For vendor-specific devices: deviceClass, deviceSubClass, and deviceProtocol must specify a
USB vendorId/productId/bcdInfo combination.

vendorSpecific should be set to TRUE if the driver is vendor-specific or FALSE if it is USB
class-specific.

attachCallback must be a non-NULL pointer to a client-supplied callback routine of the form
USBD_ATTACH_CALLBACK:

typedef VOID (*USBD_ATTACH_CALLBACK)
 (
 USBD_NODE_ID nodeId,
 UINT16 attachAction,
 UINT16 configuration,
 UINT16 interface,
 UINT16 deviceClass,
 UINT16 deviceSubClass,
 UINT16 deviceProtocol
);

Immediately upon registration the client should expect that it may begin receiving calls to
the attachCallback routine. Upon registration, translation unit will call the attachCallback for
each device of the specified class which is already attached to the system. Thereafter, the
translation unit will call the attachCallback whenever a new device of the specified class is
attached to the system or a device is removed.

Each time the attachCallback is called, translation unit will pass the node ID of the device in
nodeId and an attach code in attachAction which explains the reason for the callback. Attach
codes are defined as:

USBD_DYNA_ATTACH
USBD is notifying the client that node ID is a device which is now attached to the
system.

USBD_DYNA_REMOVE
USBD is notifying the client that node ID has been detached (removed) from the
system.

When the attachAction is USBD_DYNA_REMOVE the nodeId refers to a node ID which is no
longer valid. The client should interrogate its internal data structures and delete any
references to the specified Node ID. If the client had outstanding requests to the specified
nodeId, such as data transfer requests, then the USBD will fail those outstanding requests
before calling the attachCallback to notify the client that the device has been removed. In
general, therefore, transfer requests related to removed devices should already be taken
care of before the attachCallback is called.

As a convenience to the attachCallback routine, the USBD also passes the deviceClass,
deviceSubClass, and deviceProtocol of the attached or removed nodeId each time it calls the
attachCallback. Please note that if multiple callbacks are registered, it must be for a different
handle and deviceClass/deviceSubClass/deviceProtocol.

2 Routines
usbdExit()

189

Note that this routine will call only one callback for each attach event. This is different from
some previous releases where a single attach could cause multiple callbacks.

RETURNS OK, or ERROR if unable to register for attach/removal notification.

ERRNO N/A

SEE ALSO usbTransUnitInit

usbdDynamicAttachUnRegister()

NAME usbdDynamicAttachUnRegister() – Unregisters a client for attach notification.

SYNOPSIS STATUS usbdDynamicAttachUnRegister
 (
 USBD_CLIENT_HANDLE clientHandle, /* Client handle */
 UINT16 deviceClass, /* USB class code */
 UINT16 deviceSubClass, /* USB sub-class code */
 UINT16 deviceProtocol, /* USB device protocol code */
 USBD_ATTACH_CALLBACK attachCallback /* user-supplied callback routine
*/
)

DESCRIPTION This function cancels a client's earlier request to be notified of the attachment and removal
of devices in the specified class. deviceClass, deviceSubClass, deviceProtocol, and attachCallback
are defined for the usbdDynamicAttachRegister() routine and must match exactly the
parameters passed in an earlier call to usbdDynamicAttachRegister.

RETURNS OK, or ERROR if unable to unregister for attach/removal notification.

ERRNO N/A

SEE ALSO usbTransUnitInit

usbdExit()

NAME usbdExit() – exits USBD2.0

SYNOPSIS USBHST_STATUS usbdExit(void)

Wind River USB for VxWorks 6 API Reference, 2.4
usbdFeatureClear()

190

DESCRIPTION This routine frees up memory allocated for the USBD2.0 layer and should only be called
when bringing the USB2.0 stack down. The routine also un-registers the hub bus type with
vxBus.

RETURNS USBHST_SUCCESS, USBHST_FAILURE if bus count is not zero

ERRNO None

SEE ALSO usbd

usbdFeatureClear()

NAME usbdFeatureClear() – Clears a USB feature.

SYNOPSIS STATUS usbdFeatureClear
 (
 USBD_CLIENT_HANDLE clientHandle, /* Client handle */
 USBD_NODE_ID nodeId, /* Node Id of device/hub */
 UINT16 requestType, /* Selects request type */
 UINT16 feature, /* Feature selector */
 UINT16 index /* Interface/endpoint index */
)

DESCRIPTION This function allows a client to clear a USB feature. nodeId specifies the node ID of the
desired device and requestType specifies whether the feature is related to the device, to an
interface, or to an endpoint as follows:

USB_RT_DEVICE
Device

USB_RT_INTERFACE
Interface

USB_RT_ENDPOINT
Endpoint

requestType also specifies if the request is standard, class-specific, or vendor-specific as
follows:

USB_RT_STANDARD
Standard

USB_RT_CLASS
Class-specific

USB_RT_VENDOR
Vendor-specific

2 Routines
usbdFeatureSet()

191

For example, USB_RT_STANDARD | USB_RT_DEVICE in requestType specifies a standard
device request.

The client must pass the feature selector of the device in feature. If featureType specifies an
interface or endpoint, then index must contain the interface or endpoint index. index should
be zero when featureType is USB_SELECT_DEVICE.

RETURNS OK, or ERROR if unable to clear feature

ERRNO none

SEE ALSO usbTransUnitStd

usbdFeatureSet()

NAME usbdFeatureSet() – Sets a USB feature.

SYNOPSIS STATUS usbdFeatureSet
 (
 USBD_CLIENT_HANDLE clientHandle, /* Client handle */
 USBD_NODE_ID nodeId, /* Node Id of device/hub */
 UINT16 requestType, /* Selects request type */
 UINT16 feature, /* Feature selector */
 UINT16 index /* Interface/endpoint index */
)

DESCRIPTION This function allows a client to set a USB feature. nodeId specifies the node ID of the desired
device and requestType specifies the nature of the feature as defined for the
usbdFeatureClear() function.

The client must pass the feature selector of the device in feature. If requestType specifies an
interface or endpoint, then index must contain the interface or endpoint index. index should
be zero when requestType includes USB_SELECT_DEVICE.

RETURNS OK, or ERROR if unable to set feature

ERRNO none

SEE ALSO usbTransUnitStd

Wind River USB for VxWorks 6 API Reference, 2.4
usbdHcdAttach()

192

usbdHcdAttach()

NAME usbdHcdAttach() – Attaches an HCD to the USBD.

SYNOPSIS STATUS usbdHcdAttach
 (
 HCD_EXEC_FUNC hcdExecFunc, /* Ptr to HCDÔø¾s primary entry point */
 void * hcdPciCfgHdr, /* HCD-specific parameter */
 pGENERIC_HANDLE pAttachToken /* Token to identify HCD in future */
)

DESCRIPTION The hcdExecFunc passed by the caller must point to the primary entry point of an HCD as
defined below:

typedef UINT16 (*HCD_EXEC_FUNC) (pHRB_HEADER pHrb);

RETURNS OK

ERRNO none

SEE ALSO usbTransUnitMisc

usbdHcdDetach()

NAME usbdHcdDetach() – Detaches an HCD from the USBD.

SYNOPSIS STATUS usbdHcdDetach
 (
 GENERIC_HANDLE attachToken /* AttachToken returned */
)

DESCRIPTION The attachToken must be the attach token originally returned by usbdHcdAttach() when it
first attached to the HCD.

RETURNS OK

ERRNO none

SEE ALSO usbTransUnitMisc

2 Routines
usbdInit()

193

usbdHubPortCountGet()

NAME usbdHubPortCountGet() – Returns the number of ports connected to a hub.

SYNOPSIS STATUS usbdHubPortCountGet
 (
 USBD_CLIENT_HANDLE clientHandle, /* Client handle */
 USBD_NODE_ID hubId, /* Node Id for desired hub */
 pUINT16 pPortCount /* bfr to receive port count */
)

DESCRIPTION usbdHubPortCountGet() gives clients a way to retrieve the number of downstream ports
provided by the specified hub. Clients can also retrieve this information by retrieving
configuration descriptors from the hub using the configuration routines described below.

hubId must be the node ID for the desired USB hub. An error will be returned if hubId does
not refer to a hub. pPortCount must point to a UINT16 variable in which the number of ports
on the specified hub will be stored.

RETURNS OK, or ERROR if unable to get the hub port count

ERRNO none

SEE ALSO usbTransUnitMisc

usbdInit()

NAME usbdInit() – initializes USBD2.0

SYNOPSIS USBHST_STATUS usbdInit(void)

DESCRIPTION This routine initializes the global variables for the USBD2.0 layer. It should be called before
any hub, hcd, or class driver initialization code.

RETURNS USBHST_SUCCESS, USBHST_FAILURE if event's could not be created

ERRNO None

SEE ALSO usbd

Wind River USB for VxWorks 6 API Reference, 2.4
usbdInitialize()

194

usbdInitialize()

NAME usbdInitialize() – Initializes the USBD.

SYNOPSIS STATUS usbdInitialize (void)

DESCRIPTION usbdInitialize() must be called at least once before calling other USBD functions.
usbdInitialize() prepares the USBD and translation unit to process URBs. Calls to
usbdInitialize() may be nested, allowing multiple USBD clients to be written
independently.

RETURNS OK, or ERROR if the initialization failed.

ERRNO N/A

SEE ALSO usbTransUnitInit

usbdInterfaceGet()

NAME usbdInterfaceGet() – Retrieves the current interface of a device.

SYNOPSIS STATUS usbdInterfaceGet
 (
 USBD_CLIENT_HANDLE clientHandle, /* Client handle */
 USBD_NODE_ID nodeId, /* Node Id of device/hub */
 UINT16 interfaceIndex, /* Index of interface */
 pUINT16 pAlternateSetting /* Current alternate setting */
)

DESCRIPTION This routine allows a client to query the current alternate setting for a given deviceís
interface. nodeId and interfaceIndex specify the device and interface to be queried,
respectively. pAlternateSetting points to a UINT16 variable in which the alternate setting
will be stored upon return.

RETURNS OK, or ERROR if unable to get the interface

ERRNO none

SEE ALSO usbTransUnitStd

2 Routines
usbdMngmtCallbackSet()

195

usbdInterfaceSet()

NAME usbdInterfaceSet() – Sets the current interface of a device.

SYNOPSIS STATUS usbdInterfaceSet
 (
 USBD_CLIENT_HANDLE clientHandle, /* Client handle */
 USBD_NODE_ID nodeId, /* Node Id of device/hub */
 UINT16 interfaceIndex, /* Index of interface */
 UINT16 alternateSetting /* Alternate setting */
)

DESCRIPTION This routine allows a client to select an alternate setting for a given deviceís interface. nodeId
and interfaceIndex specify the device and interface to be modified, respectively.
alternateSetting specifies the new alternate setting.

RETURNS OK, or ERROR if unable to set the interface

ERRNO none

SEE ALSO usbTransUnitStd

usbdMngmtCallbackSet()

NAME usbdMngmtCallbackSet() – sets a management callback for a client.

SYNOPSIS STATUS usbdMngmtCallbackSet
 (
 USBD_CLIENT_HANDLE clientHandle, /* Client handle */
 USBD_MNGMT_CALLBACK mngmtCallback, /* management callback */
 pVOID mngmtCallbackParam /* client-defined parameter */
)

DESCRIPTION Management callbacks provide a mechanism for the USBD to inform clients of
asynchronous management events on the USB. For example, if the USB is in the SUSPEND
state - see usbdBusStateSet() - and a USB device drives RESUME signalling, that event can
be reported to a client through its management callback.

clientHandle is a client's registered handle with the USBD. mngmtCallback is the management
callback routine of type USBD_MNGMT_CALLBACK invoked by the USBD when
management events are detected. mngmtCallbackParam is a client-defined parameter passed
to the mngmtCallback each time it is invoked. Passing a mngmtCallback of NULL cancels
management event callbacks.

Wind River USB for VxWorks 6 API Reference, 2.4
usbdNodeIdGet()

196

When the mngmtCallback is invoked, the USBD will also pass to it the USBD_NODE_ID of the
root node on the bus for which the management event has been detected and a code
signifying the type of management event as USBD_MNGMT_xxxx.

Clients are not required to register a management callback routine. Clients that do use a
management callback are permitted to register only one management callback per
USBD_CLIENT_HANDLE.

RETURNS OK, or ERROR if unable to register management callback

ERRNO N/A

SEE ALSO usbTransUnitInit

usbdNodeIdGet()

NAME usbdNodeIdGet() – Gets the ID of a node connected to a hub port.

SYNOPSIS STATUS usbdNodeIdGet
 (
 USBD_CLIENT_HANDLE clientHandle, /* Client handle */
 USBD_NODE_ID hubId, /* Node Id for desired hub */
 UINT16 portIndex, /* Port index */
 pUINT16 pNodeType, /* bfr to receive node type */
 pUSBD_NODE_ID pNodeId /* bfr to receive Node Id */
)

DESCRIPTION Clients use this routine to retrieve the node IDs of the devices attached to each port of a hub.
hubId and portIndex identify the hub and port to which a device may be attached. pNodeType
must point to a UINT16 variable to receive a type code as follows:

USB_NODETYPE_NONE
No device is attached to the specified port.

USB_NODETYPE_HUB
A hub is attached to the specified port.

USB_NODETYPE_DEVICE
A non-hub device is attached to the specified port.

If the node type is returned as USBD_NODE_TYPE_NONE, then a node ID is not returned and
the value returned in pNodeId is undefined. If the node type indicates a hub or device is
attached to the port, then pNodeId will contain the node ID of that hub or device upon return.

RETURNS OK, or ERROR if unable to get node ID

2 Routines
usbdNodeInfoGet()

197

ERRNO none

SEE ALSO usbTransUnitMisc

usbdNodeInfoGet()

NAME usbdNodeInfoGet() – Returns information about a USB node.

SYNOPSIS STATUS usbdNodeInfoGet
 (
 USBD_CLIENT_HANDLE clientHandle, /* Client handle */
 USBD_NODE_ID nodeId, /* Node Id of device/hub */
 pUSBD_NODE_INFO pNodeInfo, /* Structure to receive node info */
 UINT16 infoLen /* Len of bfr allocated by client */
)

DESCRIPTION This routine retrieves information about the USB device specified by nodeId. The USBD
copies node information into the pNodeInfo structure provided by the caller. This structure
is of the form USBD_NODEINFO as shown below:

typedef struct usbd_nodeinfo
 {
 UINT16 nodeType;
 UINT16 nodeSpeed;
 USBD_NODE_ID parentHubId;
 UINT16 parentHubPort;
 USBD_NODE_ID rootId;
 } USBD_NODEINFO, *pUSBD_NODEINFO;

nodeType specifies the type of node identified by nodeId and is defined as
USB_NODETYPE_xxxx. nodeSpeed identifies the speed of the device and is defined as
USB_SPEED_xxxx. This field is not updated. parentHubId and parentHubPort identify the
node ID and port of the hub to which the indicated node is attached upstream. If the
indicated nodeId happens to be a root hub, then parentHubId and parentHubPort will both be
zero.

Similarly, rootId identifies the node ID of the root hub for the USB to which nodeId is
attached. If nodeId itself happens to be the root hub, then the same value will be returned
in rootId.

This structure may grow. To provide backwards compatibility, the client must pass the
total size of the USBD_NODEINFO structure it has allocated in infoLen. The USBD will copy
fields into this structure only up to the infoLen indicated by the caller.

RETURNS OK, or ERROR if unable to retrieve node information

ERRNO None

Wind River USB for VxWorks 6 API Reference, 2.4
usbdPipeCreate()

198

SEE ALSO usbTransUnitMisc

usbdPipeCreate()

NAME usbdPipeCreate() – Creates a USB pipe for subsequent transfers.

SYNOPSIS STATUS usbdPipeCreate
 (
 USBD_CLIENT_HANDLE clientHandle, /* Client handle */
 USBD_NODE_ID nodeId, /* Node Id of device/hub */
 UINT16 endpoint, /* Endpoint address */
 UINT16 configuration, /* config w/which pipe associated */
 UINT16 interface, /* interface w/which pipe associated
*/
 UINT16 transferType, /* Type of transfer: control,
bulk... */
 UINT16 direction, /* Specifies IN or OUT endpoint */
 UINT16 maxPayload, /* Maximum data payload per packet
*/
 UINT32 bandwidth, /* Bandwidth required for pipe */
 UINT16 serviceInterval, /* Required service interval */
 pUSBD_PIPE_HANDLE pPipeHandle /* pipe handle returned by USBD */
)

DESCRIPTION This routine establishes a pipe which can then be used by a client to exchange data with a
USB device endpoint.

nodeId and endpoint identify the device and device endpoint, respectively, to which the pipe
should be connected. configuration and interface specify the configuration and interface with
which the pipe is associated.

transferType specifies the type of data transfers for which this pipe will be used:

USB_XFRTYPE_CONTROL
Control transfer pipe (message)

USB_XFRTYPE_ISOCH
Isochronous transfer pipe (stream)

USB_XFRTYPE_INTERRUPT
Interrupt transfer pipe (stream)

USB_XFRTYPE_BULK
Bulk transfer pipe (stream)

direction specifies the direction of the pipe as:

USB_DIR_IN
Data moves from device to host.

2 Routines
usbdPipeDestroy()

199

USB_DIR_OUT
Data moves from host to device.

USB_DIR_INOUT
Data moves bidirectionally (message pipes only).

If the direction is specified as USB_DIR_INOUT, the USBD assumes that both the in and out
endpoints identified by endpoint will be used by this pipe (see the discussion of message
pipes in Chapter 5 of the USB Specification). USB_DIR_INOUT may be specified only for
control pipes.

maxPayload specifies the largest data payload supported by this endpoint. Normally a USB
device will declare the maximum payload size it supports on each endpoint in its
configuration descriptors. The client will typically read these descriptors using the USBD
Configuration routines, then parse the descriptors to retrieve the appropriate maximum
payload value.

bandwidth specifies the bandwidth required for this pipe. For control and bulk pipes, this
parameter should be zero. For interrupt pipes, this parameter should express the number
of bytes per frame to be transferred. for isochronous pipes, this parameter should express
the number of bytes per second to be transferred.

serviceInterval specifies the maximum latency for the pipe in milliseconds. If a pipe needs to
be serviced, for example, at least every 20 milliseconds, then the serviceInterval value should
be 20. The serviceInterval parameter is required only for interrupt pipes. For other types of
pipes, serviceInterval should be zero.

If the USBD succeeds in creating the pipe it returns a pipe handle in pPipeHandle. The client
must use the pipe handle to identify the pipe in subsequent calls to the USBD transfer
routines. If there is insufficient bus bandwidth available to create the pipe (as might happen
for an isochronous or interrupt pipe), then the USBD will return an error and a NULL handle
in pPipeHandle.

RETURNS OK, or ERROR if pipe could not be create

ERRNO N/A

SEE ALSO usbTransUnitData

usbdPipeDestroy()

NAME usbdPipeDestroy() – Destroys a USB data transfer pipe.

SYNOPSIS STATUS usbdPipeDestroy

Wind River USB for VxWorks 6 API Reference, 2.4
usbdRootNodeIdGet()

200

 (
 USBD_CLIENT_HANDLE clientHandle, /* Client handle */
 USBD_PIPE_HANDLE pipeHandle /* pipe handle */
)

DESCRIPTION This routine destroys a pipe created by calling usbdPipeCreate(). The caller must pass the
pipeHandle originally returned by usbdPipeCreate().

RETURNS OK, or ERROR if unable to destroy the pipe.

ERRNO N/A

SEE ALSO usbTransUnitData

usbdRootNodeIdGet()

NAME usbdRootNodeIdGet() – Returns the root node for a specific USB.

SYNOPSIS STATUS usbdRootNodeIdGet
 (
 USBD_CLIENT_HANDLE clientHandle, /* Client handle */
 UINT16 busIndex, /* Bus index */
 pUSBD_NODE_ID pRootId /* bfr to receive Root Id */
)

DESCRIPTION This routine returns the node ID for the root hub of the specified USB host controller.
busIndex is the index of the desired USB host controller. The first host controller is index
zero and the last host controller's index is the total number of USB host controllers, as
returned by usbdBusCountGet(), minus one. < pRootId> must point to a USBD_NODE_ID
variable in which the node ID of the root hub will be stored.

RETURNS OK, or ERROR if unable to get the root node ID

ERRNO none

SEE ALSO usbTransUnitMisc

usbdShutdown()

NAME usbdShutdown() – Shuts down the USBD.

2 Routines
usbdStatisticsGet()

201

SYNOPSIS STATUS usbdShutdown (void)

DESCRIPTION usbdShutdown() should be called once for every successful call to usbdInitialize(). This
function frees memory and other resources used by the USBD and translation unit.

RETURNS OK, or ERROR if a shutdown failed.

ERRNO N/A

SEE ALSO usbTransUnitInit

usbdStatisticsGet()

NAME usbdStatisticsGet() – Retrieves USBD operating statistics.

SYNOPSIS STATUS usbdStatisticsGet
 (
 USBD_CLIENT_HANDLE clientHandle, /* Client handle */
 USBD_NODE_ID nodeId, /* Node Id of node on desired USB */
 pUSBD_STATS pStatistics, /* Ptr to structure to receive stats */
 UINT16 statLen /* Len of bfr provided by caller */
)

DESCRIPTION This routine returns operating statistics for the USB to which the specified nodeId is
connected.

The USBD copies the current operating statistics into the pStatistics structure provided by
the caller. This structure is defined as:

typedef struct usbd_stats
 {
 UINT16 totalTransfersIn;
 UINT16 totalTransfersOut;
 UINT16 totalReceiveErrors;
 UINT16 totalTransmitErrors;
 } USBD_STATS, *pUSBD_STATS;

This structure may grow. To provide backwards compatibility, the client must pass the size
of the USBD_STATS structure it has allocated in statLen. The USBD will copy fields into this
structure only up to the statLen indicated by the caller.

RETURNS OK

ERRNO N/A

SEE ALSO usbTransUnitMisc

Wind River USB for VxWorks 6 API Reference, 2.4
usbdStatusGet()

202

usbdStatusGet()

NAME usbdStatusGet() – Retrieves the USB status from a source such as a device or interface and
so on.

SYNOPSIS STATUS usbdStatusGet
 (
 USBD_CLIENT_HANDLE clientHandle, /* Client handle */
 USBD_NODE_ID nodeId, /* Node Id of device/hub */
 UINT16 requestType, /* Selects device/interface/endpoint */
 UINT16 index, /* Interface/endpoint index */
 UINT16 bfrLen, /* length of bfr */
 pUINT8 pBfr, /* bfr to receive status */
 pUINT16 pActLen /* bfr to receive act len xfr'd */
)

DESCRIPTION This routine retrieves the current status from the device indicated by nodeId. requestType
indicates the nature of the desired status as documented for the usbdFeatureClear()
routine.

The status word is returned in pBfr. The meaning of the status varies depending on whether
it was queried from the device, an interface, or an endpoint, class-specific routine, and so
on, as described in the USB Specification.

RETURNS OK, or ERROR if unable to get status

ERRNO none

SEE ALSO usbTransUnitStd

usbdSynchFrameGet()

NAME usbdSynchFrameGet() – Returns the isochronous synchronization frame of a device.

SYNOPSIS STATUS usbdSynchFrameGet
 (
 USBD_CLIENT_HANDLE clientHandle, /* Client Handle */
 USBD_NODE_ID nodeId, /* Node Id of device/hub */
 UINT16 endpoint, /* Endpoint to be queried */
 pUINT16 pFrameNo /* Frame number returned by device */
)

2 Routines
usbdTransfer()

203

DESCRIPTION It is sometimes necessary for clients to resynchronize with devices when the two are
exchanging data isochronously. This routine allows a client to query a reference frame
number maintained by the device. Please refer to the USB specification for more detail.

nodeId specifies the node to query and endpoint specifies the endpoint on that device. Upon
return, the deviceís frame number for the specified endpoint is returned in pFrameNo.

RETURNS OK, or ERROR if unable to retrieve the synchronization frame

ERRNO none

SEE ALSO usbTransUnitStd

usbdTransfer()

NAME usbdTransfer() – Initiates a transfer on a USB pipe.

SYNOPSIS STATUS usbdTransfer
 (
 USBD_CLIENT_HANDLE clientHandle, /* Client handle */
 USBD_PIPE_HANDLE pipeHandle, /* Pipe handle */
 pUSB_IRP pIrp /* ptr to I/O request packet */
)

DESCRIPTION A client uses this routine to initiate a transfer on a pipe indicated by pipeHandle. The transfer
is described by an IRP, or I/O request packet, which must be allocated and initialized by the
caller before invoking usbdTransfer().

The USB_IRP structure is defined in usb.h as:

typedef struct usb_bfr_list
 {
 UINT16 pid;
 pUINT8 pBfr;
 UINT16 bfrLen;
 UINT16 actLen;
 } USB_BFR_LIST;

typedef struct usb_irp
 {
 LINK usbdLink; // used by USBD
 pVOID usbdPtr; // used by USBD
 LINK hcdLink; // used by HCD
 pVOID hcdPtr; // used by HCD
 pVOID userPtr;
 UINT16 irpLen;
 int result; // returned by USBD/HCD
 IRP_CALLBACK usbdCallback; // used by USBD

Wind River USB for VxWorks 6 API Reference, 2.4
usbdTransfer()

204

 IRP_CALLBACK userCallback;
 UINT16 dataToggle; // filled in by USBD
 UINT16 flags;
 UINT32 timeout; // defaults to 5 seconds if zero
 UINT16 startFrame;
 UINT16 transferLen;
 UINT16 dataBlockSize;
 UINT16 bfrCount;
 USB_BFR_LIST bfrList [1];
 } USB_IRP, *pUSB_IRP;

The length of the USB_IRP structure must be stored in irpLen and varies depending on the
number of bfrList elements allocated at the end of the structure. By default, the structure
contains a single bfrList element, but clients may allocate a longer structure to accommodate
a larger number of bfrList elements.

flags defines additional transfer options. The currently defined flags are:

USB_FLAG_SHORT_OK
Treats receive (in) data underrun as OK.

USB_FLAG_SHORT_FAIL
Treats receive (in) data underrun as an error.

USB_FLAG_ISO_ASAP
Start an isochronous transfer immediately.

When the USB is transferring data from a device to the host the data may underrun. That
is, the device may transmit less data than anticipated by the host. This may indicate an error
condition, depending on the design of the device. For many devices, the underrun is
completely normal and indicates the end of the data stream from the device. For other
devices, the underrun indicates a transfer failure. By default, the USBD and underlying USB
HCD (Host Controller Driver) treat an underrun as an end-of-data indicator and do not
declare an error. If the USB_FLAG_SHORT_FAIL flag is set, then the USBD/HCD will
instead treat underrun as an error condition.

For isochronous transfers, the USB_FLAG_ISO_ASAP specifies that the isochronous transfer
should begin as soon as possible. If USB_FLAG_ISO_ASAP is not specified, then startFrame
must specify the starting frame number for the transfer. The usbdCurrentFrameGet()
routine allows a client to retrieve the current frame number and a value called the frame
scheduling window for the underlying USB host controller. The frame window specifies
the maximum number of frames into the future (relative to the current frame number)
which may be specified by startFrame. startFrame should be specified only for isochronous
transfers.

dataBlockSize may also be specified for isochronous transfers. If non-zero, dataBlockSize
defines the granularity of the isochronous data being sent. When the underlying HCD
breaks up the transfer into individual frames, it will ensure that the amount of data
transferred in each frame is a multiple of this value.

timeout specifies the length of the IRP timeout in milliseconds. If the caller passes a value of
zero, then the USBD sets a default timeout of USB_TIMEOUT_DEFAULT. If no timeout is

2 Routines
usbdTransferAbort()

205

desired, then timeout should be set to USB_TIMEOUT_NONE. Timeouts apply only to control
and bulk transfers. Isochronous and interrupt transfers do not time out.

bfrList is an array of buffer descriptors which describe data buffers to be associated with this
IRP. If more than the one bfrList element is required, then the caller must allocate the IRP
by calculating the size as

irpLen = sizeof (USB_IRP) + (sizeof (USB_BFR_DESCR) * (bfrCount - 1))

transferLen must be the total length of data to be transferred. In other words, transferLen is
the sum of all bfrLen entries in the bfrList.

pid specifies the packet type to use for the indicated buffer and is specified as
USB_PID_xxxx.

The IRP userCallback routine must point to a client-supplied IRP_CALLBACK routine. The
usbdTransfer() routine returns as soon as the IRP has been successfully placed in a queue.
If there is a failure in delivering the IRP to the HCD, then usbdTransfer() returns an error.
The result of the IRP should be checked after the userCallback routine has been invoked.

RETURNS OK, or ERROR if unable to submit IRP for transfer

ERRNO N/A

SEE ALSO usbTransUnitData

usbdTransferAbort()

NAME usbdTransferAbort() – Aborts a transfer.

SYNOPSIS STATUS usbdTransferAbort
 (
 USBD_CLIENT_HANDLE clientHandle, /* Client handle */
 USBD_PIPE_HANDLE pipeHandle, /* Pipe handle */
 pUSB_IRP pIrp /* ptr to I/O to abort */
)

DESCRIPTION This routine aborts an IRP submitted through a call to usbdTransfer().

RETURNS OK, or ERROR if unable to abort transfer

ERRNO N/A

SEE ALSO usbTransUnitData

Wind River USB for VxWorks 6 API Reference, 2.4
usbdVendorSpecific()

206

usbdVendorSpecific()

NAME usbdVendorSpecific() – Allows clients to issue vendor-specific USB requests.

SYNOPSIS STATUS usbdVendorSpecific
 (
 USBD_CLIENT_HANDLE clientHandle, /* Client handle */
 USBD_NODE_ID nodeId, /* Node Id of device/hub */
 UINT8 requestType, /* bmRequestType in USB spec. */
 UINT8 request, /* bRequest in USB spec. */
 UINT16 value, /* wValue in USB spec. */
 UINT16 index, /* wIndex in USB spec. */
 UINT16 length, /* wLength in USB spec. */
 pUINT8 pBfr, /* ptr to data buffer */
 pUINT16 pActLen /* actual length of IN */
)

DESCRIPTION Certain devices may implement vendor-specific USB requests which cannot be generated
using the standard routines described elsewhere. This routine allows a client to specify
directly the exact parameters for a USB control pipe request.

requestType, request, value, index, and length correspond exactly to the bmRequestType,
bRequest, wValue, wIndex, and wLength fields defined by the USB Specfication. If length
is greater than zero, then pBfr must be a non-NULL pointer to a data buffer which will
provide or accept data, depending on the direction of the transfer.

Vendor-specific requests issued through this routine are always directed to the control pipe
of the device specified by nodeId. This routine formats and sends a setup packet based on
the parameters provided. If a non-NULL pBfr is also provided, then additional in or out
transfers will be performed following the setup packet. The direction of these transfers is
inferred from the direction bit in the requestType param. For in transfers, the length of the
data transferred will be stored in pActLen if pActLen is not NULL.

RETURNS OK, or ERROR if unable to execute vendor-specific request

ERRNO N/A

SEE ALSO usbTransUnitData

usbdVersionGet()

NAME usbdVersionGet() – Returns USBD version information.

SYNOPSIS STATUS usbdVersionGet

2 Routines
usbtuDataVendorSpecificCallback()

207

 (
 pUINT16 pVersion, /* UINT16 bfr to receive version */
 pCHAR pMfg /* bfr to receive USBD mfg string */
)

DESCRIPTION This routine returns the USBD version. If pVersion is not NULL, the USBD returns its version
in BCD in pVersion. For example, version 1.02 would be coded as 01h in the high byte and
02h in the low byte.

If pMfg is not NULL it must point to a buffer of at least USBD_NAME_LEN bytes in length in
which the USBD will store the NULL-terminated name of the USBD manufacturer (e.g.,
"Wind River Systems" + \0).

RETURNS OK, or ERROR

ERRNO none

SEE ALSO usbTransUnitMisc

usbtuDataUrbCompleteCallback()

NAME usbtuDataUrbCompleteCallback() – Callback called on URB completion.

SYNOPSIS USBHST_STATUS usbtuDataUrbCompleteCallback
 (
 pUSBHST_URB urbPtr /* URB pointer */
)

DESCRIPTION This routine is called from an interrupt context by the USBD on a URB completion.

RETURNS USBHST_SUCCESS on success or USBHST_FAILURE on failure

ERRNO N/A

SEE ALSO usbTransUnitData

usbtuDataVendorSpecificCallback()

NAME usbtuDataVendorSpecificCallback() – Callback called on Vendor Specific Request

Wind River USB for VxWorks 6 API Reference, 2.4
usbtuInitClientIrpCompleteThreadFn()

208

SYNOPSIS USBHST_STATUS usbtuDataVendorSpecificCallback
 (
 pUSBHST_URB urbPtr /* URB pointer */
)

DESCRIPTION completion.

This routine is called from an interrupt context by the USBD on a vendor-specific request
completion.

RETURNS USBHST_SUCCESS

ERRNO N/A

SEE ALSO usbTransUnitData

usbtuInitClientIrpCompleteThreadFn()

NAME usbtuInitClientIrpCompleteThreadFn() – Client thread routine

SYNOPSIS VOID usbtuInitClientIrpCompleteThreadFn
 (
 pVOID driverParam
)

DESCRIPTION This routine is executed by a client thread. The thread waits in the message queue created
for the client. The message is of the type USBTU_CLIENTMSG. It acts based on the
USBTU_EVENTCODE in the message.

RETURNS N/A

ERRNO N/A

SEE ALSO usbTransUnitInit

usbtuInitClientThreadFn()

NAME usbtuInitClientThreadFn() – Client thread routine

SYNOPSIS VOID usbtuInitClientThreadFn

2 Routines
usbtuInitDeviceRemove()

209

 (
 pVOID driverParam
)

DESCRIPTION This routine is executed by a client thread. The thread waits in the message queue created
for the client. The message is of the type USBTU_CLIENTMSG. It acts based on the
USBTU_EVENTCODE in the message.

RETURNS N/A

ERRNO N/A

SEE ALSO usbTransUnitInit

usbtuInitDeviceAdd()

NAME usbtuInitDeviceAdd() – Device attach callback

SYNOPSIS USBHST_STATUS usbtuInitDeviceAdd
 (
 UINT32 hDevice,
 UINT8 interfaceNumber,
 UINT8 speed,
 void** ppDriverData
)

DESCRIPTION This function is called from an interrupt context by USBD on a device attach.

RETURNS USBHST_SUCCESS, or USBHST_FAILURE on failure

ERRNO N/A

SEE ALSO usbTransUnitInit

usbtuInitDeviceRemove()

NAME usbtuInitDeviceRemove() – Device detach callback

SYNOPSIS VOID usbtuInitDeviceRemove
 (
 UINT32 hDevice,

Wind River USB for VxWorks 6 API Reference, 2.4
usbtuInitDeviceResume()

210

 PVOID pDriverData
)

DESCRIPTION This function is called from an interrupt context by USBD on a device detach.

RETURNS N/A

ERRNO N/A

SEE ALSO usbTransUnitInit

usbtuInitDeviceResume()

NAME usbtuInitDeviceResume() – Device resume callback

SYNOPSIS VOID usbtuInitDeviceResume
 (
 UINT32 hDevice,
 PVOID pSuspendData
)

DESCRIPTION This function is called from an interrupt context by USBD on a device resume.

RETURNS N/A

ERRNO N/A

SEE ALSO usbTransUnitInit

usbtuInitDeviceSuspend()

NAME usbtuInitDeviceSuspend() – Device suspend callback

SYNOPSIS VOID usbtuInitDeviceSuspend
 (
 UINT32 hDevice,
 PVOID ppSuspendData
)

DESCRIPTION This function is called from the interrupt context by USBD on a device suspend.

2 Routines
vxbUsbEhciRegister()

211

RETURNS N/A

ERRNO N/A

SEE ALSO usbTransUnitInit

usbtuInitThreadFn()

NAME usbtuInitThreadFn() – Translation unit thread routine

SYNOPSIS VOID usbtuInitThreadFn
 (
 pVOID param /* User Parameter */
)

DESCRIPTION This routine is executed by the translation unit thread. The thread waits in the message
queue created for the translation unit. The message is of the type USBTU_TUMSG. It
performs appropriate actions based on the USBTU_EVENTCODE in the message.

RETURNS N/A

ERRNO N/A

SEE ALSO usbTransUnitInit

vxbUsbEhciRegister()

NAME vxbUsbEhciRegister() – registers the EHCI Controller with vxBus

SYNOPSIS VOID vxbUsbEhciRegister (void)

DESCRIPTION This routine registers the EHCI host controller Driver and EHCI Root-hub driver with
vxBus. Note that this can be called early in the initialization sequence.

RETURNS Nothing

ERRNO None.

Wind River USB for VxWorks 6 API Reference, 2.4
vxbUsbOhciRegister()

212

SEE ALSO usbEhcdInitExit

vxbUsbOhciRegister()

NAME vxbUsbOhciRegister() – registers OHCI driver with vxBus

SYNOPSIS VOID vxbUsbOhciRegister (void)

DESCRIPTION This routine registers the OHCI Driver with vxBus. The registration is done for both PCI and
Local bus type by calling the routine vxbDevRegister ().

Once the OHCI driver is registered, this function also registers the OHCI Root hub as
bus-controller type with vxBus

RETURNS None

ERRNO none

SEE ALSO usbOhci

vxbUsbUhciRegister()

NAME vxbUsbUhciRegister() – register the USB UHCI Host Controller Driver with vxBus.

SYNOPSIS VOID vxbUsbUhciRegister (void)

DESCRIPTION This routine registers the UHCI Host Controller Driver with vxBus and can be called from
either the target initialization code (bootup) or during runtime.

RETURNS None

ERRNO None.

SEE ALSO usbUhcdInitialization

	Wind River USB for VxWorks 6 API Reference, 2.4
	Contents
	1 Libraries
	cmdParser
	ossLib
	usbBulkDevLib
	usbCbiUfiDevLib
	usbDescrCopyLib
	usbEhcdBandwidth
	usbEhcdEventHandler
	usbEhcdInitExit
	usbEhcdRhEmulation
	usbEhcdTransferManagement
	usbEhcdUtil
	usbHalDeviceControlStatus
	usbHalEndpoint
	usbHalInitExit
	usbHalInterruptHandler
	usbHalUtil
	usbHandleLib
	usbHubInitialization
	usbKeyboardLib
	usbLib
	usbListLib
	usbMouseLib
	usbOhci
	usbOhciDebug
	usbPegasusEnd
	usbPrinterLib
	usbQueueLib
	usbSpeakerLib
	usbTargDefaultPipe
	usbTargDeviceControl
	usbTargInitExit
	usbTargKbdLib
	usbTargMsLib
	usbTargPipeFunc
	usbTargPrnLib
	usbTargRbcCmd
	usbTargRbcLib
	usbTargUtil
	usbTcdIsp1582InitExit
	usbTcdNET2280InitExit
	usbTcdPdiusbd12InitExit
	usbTransUnitData
	usbTransUnitInit
	usbTransUnitMisc
	usbTransUnitStd
	usbUhcdInitialization
	usbUhcdIsr
	usbUhcdManagePort
	usbUhcdRhEmulate
	usbUhcdScheduleQSupport
	usbUhcdScheduleQWaitForSignal
	usbUhcdScheduleQueue
	usbUhcdSupport
	usbVxbRegAccess
	usbd

	2 Routines
	CmdParserExitFunc()
	CmdParserHelpFunc()
	ExecCmd()
	GetHexToken()
	GetNextToken()
	KeywordMatch()
	PromptAndExecCmd()
	SkipSpace()
	TruncSpace()
	bulkInErpCallbackCSW()
	bulkInErpCallbackData()
	bulkOutErpCallbackCBW()
	bulkOutErpCallbackData()
	ossCalloc()
	ossFree()
	ossInitialize()
	ossMalloc()
	ossMemUsedGet()
	ossMutexCreate()
	ossMutexDestroy()
	ossMutexRelease()
	ossMutexTake()
	ossOldFree()
	ossOldInstall()
	ossOldMalloc()
	ossPartFree()
	ossPartIdGet()
	ossPartMalloc()
	ossPartSizeGet()
	ossPartSizeSet()
	ossSemCreate()
	ossSemDestroy()
	ossSemGive()
	ossSemTake()
	ossShutdown()
	ossStatus()
	ossThreadCreate()
	ossThreadDestroy()
	ossThreadSleep()
	ossTime()
	pegasusMuxTxRestart()
	pegasusOutIrpInUse()
	usbBulkBlkDevCreate()
	usbBulkDevInit()
	usbBulkDevIoctl()
	usbBulkDevLock()
	usbBulkDevShow()
	usbBulkDevShutDown()
	usbBulkDevUnlock()
	usbBulkDriveEmpty()
	usbBulkDriveShow()
	usbBulkDynamicAttachRegister()
	usbBulkDynamicAttachUnregister()
	usbBulkGetMaxLun()
	usbBulkShow()
	usbCbiUfiBlkDevCreate()
	usbCbiUfiDevInit()
	usbCbiUfiDevIoctl()
	usbCbiUfiDevLock()
	usbCbiUfiDevShutDown()
	usbCbiUfiDevUnlock()
	usbCbiUfiDynamicAttachRegister()
	usbCbiUfiDynamicAttachUnregister()
	usbConfigCountGet()
	usbConfigDescrGet()
	usbDescrCopy()
	usbDescrCopy32()
	usbDescrParse()
	usbDescrParseSkip()
	usbDescrStrCopy()
	usbDescrStrCopy32()
	usbEhcdExit()
	usbEhcdInit()
	usbEhcdInstantiate()
	usbEhcdRHCancelURB()
	usbEhcdRHDeletePipe()
	usbEhcdRHSubmitURB()
	usbEhcdRhClearPortFeature()
	usbEhcdRhCreatePipe()
	usbEhcdRhGetHubDescriptor()
	usbEhcdRhGetPortStatus()
	usbEhcdRhProcessClassSpecificRequest()
	usbEhcdRhProcessControlRequest()
	usbEhcdRhProcessInterruptRequest()
	usbEhcdRhProcessStandardRequest()
	usbEhcdRhSetPortFeature()
	usbHalTcdAddressSet()
	usbHalTcdAttach()
	usbHalTcdCurrentFrameGet()
	usbHalTcdDetach()
	usbHalTcdDeviceFeatureClear()
	usbHalTcdDeviceFeatureSet()
	usbHalTcdDisable()
	usbHalTcdEnable()
	usbHalTcdEndpointAssign()
	usbHalTcdEndpointRelease()
	usbHalTcdEndpointStateSet()
	usbHalTcdEndpointStatusGet()
	usbHalTcdErpCancel()
	usbHalTcdErpSubmit()
	usbHalTcdSignalResume()
	usbHandleCreate()
	usbHandleDestroy()
	usbHandleInitialize()
	usbHandleShutdown()
	usbHandleValidate()
	usbHidIdleSet()
	usbHidProtocolSet()
	usbHidReportSet()
	usbHstBusDeregister()
	usbHstBusRegister()
	usbHstDriverDeregister()
	usbHstDriverRegister()
	usbHstHCDDeregister()
	usbHstHCDRegister()
	usbHubExit()
	usbHubInit()
	usbKeyboardDevInit()
	usbKeyboardDevShutdown()
	usbKeyboardDynamicAttachRegister()
	usbKeyboardDynamicAttachUnregister()
	usbKeyboardSioChanLock()
	usbKeyboardSioChanUnlock()
	usbListFirst()
	usbListLink()
	usbListLinkProt()
	usbListNext()
	usbListUnlink()
	usbListUnlinkProt()
	usbMouseDevInit()
	usbMouseDevShutdown()
	usbMouseDynamicAttachRegister()
	usbMouseDynamicAttachUnregister()
	usbMouseSioChanLock()
	usbMouseSioChanUnlock()
	usbMsBulkInErpInUseFlagGet()
	usbMsBulkInErpInUseFlagSet()
	usbMsBulkInErpInit()
	usbMsBulkInStall()
	usbMsBulkInUnStall()
	usbMsBulkOutErpInUseFlagGet()
	usbMsBulkOutErpInUseFlagSet()
	usbMsBulkOutErpInit()
	usbMsBulkOutStall()
	usbMsBulkOutUnStall()
	usbMsCBWGet()
	usbMsCBWInit()
	usbMsCSWGet()
	usbMsCSWInit()
	usbMsIsConfigured()
	usbMsTestRxCallback()
	usbMsTestTxCallback()
	usbOhcdInit()
	usbOhciDumpEndpointDescriptor()
	usbOhciDumpGeneralTransferDescriptor()
	usbOhciDumpMemory()
	usbOhciDumpPendingTransfers()
	usbOhciDumpPeriodicEndpointList()
	usbOhciDumpRegisters()
	usbOhciExit()
	usbOhciInitializeModuleTestingFunctions()
	usbOhciInstantiate()
	usbPegasusDevLock()
	usbPegasusDevUnlock()
	usbPegasusDynamicAttachRegister()
	usbPegasusDynamicAttachUnregister()
	usbPegasusEndInit()
	usbPegasusEndLoad()
	usbPegasusEndUninit()
	usbPegasusReadReg()
	usbPrinterDevInit()
	usbPrinterDevShutdown()
	usbPrinterDynamicAttachRegister()
	usbPrinterDynamicAttachUnregister()
	usbPrinterSioChanLock()
	usbPrinterSioChanUnlock()
	usbQueueCreate()
	usbQueueDestroy()
	usbQueueGet()
	usbQueuePut()
	usbRecurringTime()
	usbRegRead16()
	usbRegRead32()
	usbRegRead8()
	usbRegWrite16()
	usbRegWrite32()
	usbSpeakerDevInit()
	usbSpeakerDevShutdown()
	usbSpeakerDynamicAttachRegister()
	usbSpeakerDynamicAttachUnregister()
	usbSpeakerSeqDevLock()
	usbSpeakerSeqDevUnlock()
	usbTargControlPayloadRcv()
	usbTargControlResponseSend()
	usbTargControlStatusSend()
	usbTargCurrentFrameGet()
	usbTargDeviceFeatureClear()
	usbTargDeviceFeatureSet()
	usbTargDisable()
	usbTargEnable()
	usbTargInitialize()
	usbTargKbdCallbackInfo()
	usbTargKbdInjectReport()
	usbTargMgmtCallback()
	usbTargMsCallbackInfo()
	usbTargPipeCreate()
	usbTargPipeDestroy()
	usbTargPipeStatusGet()
	usbTargPipeStatusSet()
	usbTargPrnCallbackInfo()
	usbTargPrnDataInfo()
	usbTargPrnDataRestart()
	usbTargRbcBlockDevCreate()
	usbTargRbcBlockDevGet()
	usbTargRbcBlockDevSet()
	usbTargRbcBufferWrite()
	usbTargRbcCacheSync()
	usbTargRbcCapacityRead()
	usbTargRbcFormat()
	usbTargRbcInquiry()
	usbTargRbcModeSelect()
	usbTargRbcModeSelect10()
	usbTargRbcModeSense()
	usbTargRbcModeSense10()
	usbTargRbcPersistentReserveIn()
	usbTargRbcPersistentReserveOut()
	usbTargRbcPreventAllowRemoval()
	usbTargRbcRead()
	usbTargRbcRelease()
	usbTargRbcRequestSense()
	usbTargRbcReserve()
	usbTargRbcStartStop()
	usbTargRbcTestUnitReady()
	usbTargRbcVendorSpecific()
	usbTargRbcVerify()
	usbTargRbcWrite()
	usbTargSetupErpCallback()
	usbTargShutdown()
	usbTargSignalResume()
	usbTargTcdAttach()
	usbTargTcdDetach()
	usbTargTransfer()
	usbTargTransferAbort()
	usbTcdIsp1582EvalExec()
	usbTcdNET2280Exec()
	usbTcdPdiusbd12EvalExec()
	usbTransferTime()
	usbUhcdExit()
	usbUhcdInit()
	usbUhcdInstantiate()
	usbVxbRootHubAdd()
	usbVxbRootHubRemove()
	usbdAddressGet()
	usbdAddressSet()
	usbdBusCountGet()
	usbdBusStateSet()
	usbdClientRegister()
	usbdClientUnregister()
	usbdConfigurationGet()
	usbdConfigurationSet()
	usbdCurrentFrameGet()
	usbdDescriptorGet()
	usbdDescriptorSet()
	usbdDynamicAttachRegister()
	usbdDynamicAttachUnRegister()
	usbdExit()
	usbdFeatureClear()
	usbdFeatureSet()
	usbdHcdAttach()
	usbdHcdDetach()
	usbdHubPortCountGet()
	usbdInit()
	usbdInitialize()
	usbdInterfaceGet()
	usbdInterfaceSet()
	usbdMngmtCallbackSet()
	usbdNodeIdGet()
	usbdNodeInfoGet()
	usbdPipeCreate()
	usbdPipeDestroy()
	usbdRootNodeIdGet()
	usbdShutdown()
	usbdStatisticsGet()
	usbdStatusGet()
	usbdSynchFrameGet()
	usbdTransfer()
	usbdTransferAbort()
	usbdVendorSpecific()
	usbdVersionGet()
	usbtuDataUrbCompleteCallback()
	usbtuDataVendorSpecificCallback()
	usbtuInitClientIrpCompleteThreadFn()
	usbtuInitClientThreadFn()
	usbtuInitDeviceAdd()
	usbtuInitDeviceRemove()
	usbtuInitDeviceResume()
	usbtuInitDeviceSuspend()
	usbtuInitThreadFn()
	vxbUsbEhciRegister()
	vxbUsbOhciRegister()
	vxbUsbUhciRegister()

