
Rational ® ClearQuest

Documentation

Supplement

Windows

Version

2003.06.13,

UNIX

patch

2003.06.00–6

Windows

and

UNIX

GI11-5979-00

���

Rational ® ClearQuest

Documentation

Supplement

Windows

Version

2003.06.13,

UNIX

patch

2003.06.00–6

Windows

and

UNIX

GI11-5979-00

���

Note

Before

using

this

information

and

the

product

it

supports,

read

the

information

in

“Notices,”

on

page

55.

1st

edition

(September

2004)

This

edition

applies

to

Windows

Version

2003.06.13

and

UNIX

patch

2003.06.00–6,

of

IBM

Rational

ClearQuest

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

©

Copyright

International

Business

Machines

Corporation

1997,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

Figures

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. v

Tables

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. vii

About

this

book

.

.

.

.

.

.

.

.

.

.

. ix

Who

should

read

this

book

.

.

.

.

.

.

.

.

. ix

Typographical

conventions

.

.

.

.

.

.

.

.

. ix

Related

information

.

.

.

.

.

.

.

.

.

.

.

. x

ClearQuest

documentation

roadmap

.

.

.

.

. x

Contacting

IBM

Rational

Customer

Support

.

.

.

. x

Summary

of

changes

.

.

.

.

.

.

.

. xiii

Chapter

1.

Introduction

.

.

.

.

.

.

.

. 1

Chapter

2.

New

code

page

features

.

.

. 3

Setting

the

data

code

page

in

the

ClearQuest

Maintenance

Tool

.

.

.

.

.

.

.

.

.

.

.

.

. 3

What

are

code

pages?

.

.

.

.

.

.

.

.

.

. 3

Setting

the

data

code

page

for

a

new

schema

repository

.

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Changing

the

ClearQuest

data

code

page

for

existing

schema

repositories

.

.

.

.

.

.

.

. 4

Supporting

the

EUC-JP

code

page

.

.

.

.

.

.

. 4

Using

installutil

setdbcodepagetoeucjpsafeshiftjis

. 4

Chapter

3.

Simplifying

deployment

with

new

database

drivers

.

.

.

.

.

.

.

.

. 5

Functions

of

database

property

pages

.

.

.

.

.

. 5

Setting

database

properties

for

Oracle

.

.

.

.

.

. 6

Setting

database

properties

for

SQL

Server

.

.

.

. 6

Chapter

4.

Changes

to

command-line

utilites

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

Updating

connect

options

for

installutil

.

.

.

.

. 9

Specifying

connect

options

in

installutil

for

Oracle

9

Specifying

connect

options

in

installutil

for

SQL

Server

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 9

New

subcommand

—

installutil

registerconnectoptions

.

.

.

.

.

.

.

.

.

.

. 10

Syntax

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 10

New

subcommand

—

installutil

getconnectoptions

10

Syntax

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 10

Updating

connect

options

for

pdsql

.

.

.

.

.

. 11

Specifying

connect

options

in

pdsql

for

Oracle

.

. 11

Specifying

connect

options

in

pdsql

for

SQL

Server

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 11

Using

cqreg

refresh

for

ClearQuest

clients

on

UNIX

11

Chapter

5.

API

and

Hooks

Updates

.

. 13

New

content

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Error

checking

and

validation

.

.

.

.

.

.

. 13

Debugging

your

code

.

.

.

.

.

.

.

.

.

. 14

Actions

and

access

control

.

.

.

.

.

.

.

. 15

Name

lookup

in

Perl

hooks

.

.

.

.

.

.

.

. 17

Default

entity

.

.

.

.

.

.

.

.

.

.

.

.

. 19

Editing

an

existing

record

.

.

.

.

.

.

.

. 20

When

the

record

is

committed

.

.

.

.

.

.

. 20

Performance

considerations

for

using

hooks

.

. 20

InvalidateFieldChoiceList

example

.

.

.

.

.

. 22

Using

Perl

for

external

applications

.

.

.

.

. 23

RATLC00702699,

APAR

IC37754;

Documentation

for

the

highlighting

of

keywords

in

the

ClearQuest

Designer

script

editor

.

.

.

.

.

. 23

Corrections

and

other

changes

to

documentation

.

. 25

RATLC00708226,

RATLC00706668,

RAMBU00050315;

Commit

behavior

documentation

enhancements

.

.

.

.

.

.

. 25

RATLC00712744;

Syntax

is

incorrect

for

the

GetFieldRequiredness

method

.

.

.

.

.

.

. 25

RATLC00712920,

RATLC00710309,

RAMBU00054358,

RAMBU00056057;

Date

timestamp

issues

.

.

.

.

.

.

.

.

.

.

. 25

RATLC00696630,

RATLC00696270,

RATLC00696759,

RATLC00710896;

Generating

reports

and

updates

to

SetHTMLFilename

documentation

.

.

.

.

.

.

.

.

.

.

.

. 25

RATLC00705428;

SuperUser

privilege

required

for

SetUserName

method

.

.

.

.

.

.

.

.

. 26

RATLC00707609;

Methods

to

set

and

get

user

privileges

.

.

.

.

.

.

.

.

.

.

.

.

.

. 26

RATLC00666959,

RATLC00698133,

RAMBU00046241;

Creating

PERL

and

VBScript

Hooks

of

the

same

name

causes

the

creation

of

new

hooks

to

fail

.

.

.

.

.

.

.

.

.

.

. 27

RATLC00712994,

RAMBU00036659;

CQString

is

not

MBCS,

which

is

not

suitable

for

internationalization

.

.

.

.

.

.

.

.

.

.

. 27

RATLC00703293,

APAR

IC37932;

SetLoginName

method

update

.

.

.

.

.

.

.

.

.

.

.

. 28

RATLC00701671,

APAR

IC37619;

Updates

to

the

description

of

the

UserLogon

method

database

set

argument

.

.

.

.

.

.

.

.

.

.

.

.

. 28

RATLC00712943,

RATLC00712310,

APAR

IC39076;

Updates

to

the

SetFrom

method

of

the

Mail

message

object

.

.

.

.

.

.

.

.

.

. 28

RATLC00705405;

Correction

to

″Running

a

Query

and

Reporting

on

its

Result

Set″

code

example

. 28

RATLC00453581,

RAMBU00050338,

RAMBU00035392,

RATLC00656939,

RATLC00712567,

RATLC00710254,

RATLC00705491,

RAMBU00009075,

RAMBU00010073,

RATLC00654966,

RAMBU00050417;

Actions

and

access

control

documentation

enhancements

.

.

.

.

.

.

. 29

RATLC00447393;

Setting

a

field

value

or

variable

29

RAMBU00036184;

Naming

a

field

.

.

.

.

.

. 29

RATLC00705480,

RAMBU00054500;

New

methods

that

enhance

performance

.

.

.

.

. 29

©

Copyright

IBM

Corp.

1997,

2004

iii

RATLC00450645,

RAMBU0046105;

ClearQuest

hooks

database

location

has

changed

.

.

.

.

. 33

RATLC00703780,

RAMBU0010103,

APAR

IC41898;

Package-installed

hooks

are

read-only

. 33

RATLC00699730;

Code

example

for

HasDuplicates

correction

.

.

.

.

.

.

.

.

. 33

RATLC00697318,

RATLC00708183;

StringIdToDbId

method

of

the

Session

object

.

. 34

RATLC00705438;

Perl

API

Build

method

syntax

34

RATLC00701064,

RATLC00705313;

Database

object

password

methods

require

SuperUser

privilege

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

RATLC00698109,

RATLC00696104;

UNIX

support

for

reports

in

a

workspace

.

.

.

.

.

.

.

. 35

RATLC00703013,

RATLC00713905,

RATLC00702914,

APAR

IC37813;

cqole.odl

and

cqole.dll

mismatch

.

.

.

.

.

.

.

.

.

.

. 35

RATLC00719064;

Perl

SetActive

method

not

working

correctly

with

Boolean

as

documented

. 35

SaveQueryDef

code

example

correction

.

.

.

. 36

RATLC00715405;

Document

the

Session.ClearNameValues

method

.

.

.

.

.

. 36

SaveQueryDef

method

of

the

Workspace

object

issues

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

RATLC00711964,

RAMBU00022729;

GetFieldRequiredness

return

value

for

read_only

fields

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 37

RATLC00715159,

RATLC00059373;

AddParamValue

method

allows

the

insertion

of

one

string

value

.

.

.

.

.

.

.

.

.

.

.

. 37

RATLC00703830,

RATLC00667284,

RAMBU00053964;

New

documentation

on

error

checking

and

validation

.

.

.

.

.

.

.

.

. 38

RATLC00371877;

UnmarkEntityAsDuplicate

method

of

the

Session

object

note

.

.

.

.

.

. 38

RATLC00718478;

ValidateQueryDefName

method

of

the

Workspace

object

.

.

.

.

.

.

.

.

. 38

RATLC00721299;

GetFieldOriginalValue

method

should

include

note

.

.

.

.

.

.

.

.

.

. 38

Upgrading

user

information

from

a

schema

repository

to

a

user

database

.

.

.

.

.

.

. 38

RATLC00722670,

APAR

IC40986;

RegisterSchemaRepoFromFile

and

GetLastSchemaRepoInfo

documentation

update

. 39

Updates

to

″Ensuring

that

record

data

is

current″

section

in

API

Reference

.

.

.

.

.

.

.

.

. 40

RATLC00445073,

RATLC00721111,

APAR

IC39464;

Hook

Performance

issues

and

guidelines

.

.

. 40

GetValueAsList

return

value

description

is

incorrect

in

API

Reference

.

.

.

.

.

.

.

.

. 40

Document

the

Entity.Reload

method

.

.

.

.

. 40

RATLC00717324,

RATLC00707206;

New

methods

for

hiding

records

types

.

.

.

.

.

.

.

.

. 41

RATLC00696096;

CtCmd

code

examples

for

UCM/ClearQuest

integrations

.

.

.

.

.

.

. 42

VBScript

Code

Example

Errors

in

API

Reference

45

RATLC00715484;

Version

information

for

newer

ClearQuest

API

methods

.

.

.

.

.

.

.

.

. 45

Chapter

6.

MultiSite

documentation

updates

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Upgrading

a

schema

version

with

ClearQuest

MultiSite

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

Upgrade

instructions

.

.

.

.

.

.

.

.

.

. 49

Synchronizing

multiple

user

database

families

with

msimportauto.bat

.

.

.

.

.

.

.

.

.

.

.

. 50

Why

should

I

use

the

msimportauto.bat

script?

50

Running

msimportauto.bat

.

.

.

.

.

.

.

. 51

repair

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 52

Applicability

.

.

.

.

.

.

.

.

.

.

.

.

. 52

Synopsis

.

.

.

.

.

.

.

.

.

.

.

.

.

. 52

Description

.

.

.

.

.

.

.

.

.

.

.

.

. 52

Restrictions

.

.

.

.

.

.

.

.

.

.

.

.

. 53

Options

and

arguments

.

.

.

.

.

.

.

.

. 53

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

. 54

See

also

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 54

Appendix.

Notices

.

.

.

.

.

.

.

.

.

. 55

iv

Documentation

Supplement

Figures

©

Copyright

IBM

Corp.

1997,

2004

v

vi

Documentation

Supplement

Tables

©

Copyright

IBM

Corp.

1997,

2004

vii

viii

Documentation

Supplement

About

this

book

This

books

contains

updates

to

the

ClearQuest

Administrator

Guide

and

ClearQuest

API

Reference.

Who

should

read

this

book

The

information

in

this

book

is

intended

for

ClearQuest

administrators

and

users

of

the

ClearQuest

API.

Typographical

conventions

This

manual

uses

the

following

typographical

conventions:

v

ccase–home–dir

represents

the

directory

into

which

the

ClearCase

Product

Family

has

been

installed.

By

default,

this

directory

is

/opt/rational/clearcase

on

UNIX

and

C:\Program

Files\Rational\ClearCase

on

Windows.

v

cquest-home-dir

represents

the

directory

into

which

Rational

ClearQuest

has

been

installed.

By

default,

this

directory

is

/opt/rational/clearquest

on

UNIX

and

C:\Program

Files\Rational\ClearQuest

on

Windows.

v

Bold

is

used

for

names

the

user

can

enter;

for

example,

command

names

and

branch

names.

v

A

sans-serif

font

is

used

for

file

names,

directory

names,

and

file

extensions.

v

A

sans-serif

bold

font

is

used

for

GUI

elements;

for

example,

menu

names

and

names

of

check

boxes.

v

Italic

is

used

for

variables,

document

titles,

glossary

terms,

and

emphasis.

v

A

monospaced

font

is

used

for

examples.

Where

user

input

needs

to

be

distinguished

from

program

output,

bold

is

used

for

user

input.

v

Nonprinting

characters

appear

as

follows:

<EOF>,

<NL>.

v

Key

names

and

key

combinations

are

capitalized

and

appear

as

follows:

SHIFT,

CTRL+G.

v

[

]

Brackets

enclose

optional

items

in

format

and

syntax

descriptions.

v

{

}

Braces

enclose

a

list

from

which

you

must

choose

an

item

in

format

and

syntax

descriptions.

v

|

A

vertical

bar

separates

items

in

a

list

of

choices.

v

...

In

a

syntax

description,

an

ellipsis

indicates

you

can

repeat

the

preceding

item

or

line

one

or

more

times.

Otherwise,

it

can

indicate

omitted

information.

Note:

In

certain

contexts,

you

can

use

“...”

within

a

pathname

as

a

wildcard,

similar

to

“*”

or

“?”.

For

more

information,

see

the

wildcards_ccase

reference

page.

v

If

a

command

or

option

name

has

a

short

form,

a

“slash”

(

/

)

character

indicates

the

shortest

legal

abbreviation.

For

example:

lsc/heckout

©

Copyright

IBM

Corp.

1997,

2004

ix

Related

information

ClearQuest

documentation

roadmap

Contacting

IBM

Rational

Customer

Support

If

you

have

questions

about

installing,

using,

or

maintaining

this

product,

contact

IBM

Rational

Customer

Support

as

follows:

The

IBM

software

support

Internet

site

provides

you

with

self-help

resources

and

electronic

problem

submission.

The

IBM

Rational

Software

Support

Home

page

can

be

found

at

http://www.ibm.com/software/rational/support/.

Voice

Support

is

available

to

all

current

contract

holders

by

dialing

a

telephone

number

in

your

country

(where

available).

For

specific

country

phone

numbers,

go

to

http://www.ibm.com/planetwide/.

More Information
Online documentation

Help files

Administration

Project
Management

Orientation

Database
Design

Installation Guide (Rational Desktop Products)

Installation Guide (Rational Server Products)

Installation Guide (UNIX)

Administrator's Guide (Rational ClearQuest)

Administrator's Guide (Rational ClearQuest MultiSite)

Upgrade Guide (Rational Suite)

Using Project Tracker
(Windows platforms;

see online
documentation)

Introduction

Release Notes
(See online documentation)

Designer tutorials
(See online documentation)

Administrator's Guide
(Rational ClearQuest)

API Reference
(See online

documentation)

x

Documentation

Supplement

Note:

When

you

contact

IBM

Rational

Customer

Support,

please

be

prepared

to

supply

the

following

information:

v

Your

name,

company

name,

ICN

number,

telephone

number,

and

e-mail

address

v

Your

operating

system,

version

number,

and

any

service

packs

or

patches

you

have

applied

v

Product

name

and

release

number

v

Your

PMR

number

(if

you

are

following

up

on

a

previously

reported

problem)

About

this

book

xi

xii

Documentation

Supplement

Summary

of

changes

This

is

a

first

edition.

©

Copyright

IBM

Corp.

1997,

2004

xiii

xiv

Documentation

Supplement

Chapter

1.

Introduction

This

documentation

supplement

explains

ClearQuest

and

ClearQuest

MultiSite

features

introduced

in

Windows

service

release

2003.06.13

and

UNIX

patch

2003.06.00–6.

The

information

in

this

document

supplements

the

information

in

the

versions

of

the

ClearQuest

Administrator

Guide,

ClearQuest

API

Reference,

and

ClearQuest

MultiSite

documentation

that

were

released

with

ClearQuest

Version

2003.06.00

for

Windows

and

UNIX.

©

Copyright

IBM

Corp.

1997,

2004

1

2

Documentation

Supplement

Chapter

2.

New

code

page

features

This

chapter

contains

information

on

two

new

features

in

Rational

ClearQuest

v2003.06.13

related

to

data

code

pages.

With

this

service

release,

data

code

pages

for

ClearQuest

schema

repositories

can

be

set

or

modified

using

the

ClearQuest

Maintenance

Tool

instead

of

the

installutil

command

line

utility.

In

addition,

this

service

release

adds

support

for

the

EUC-JP

database

code

page.

Setting

the

data

code

page

in

the

ClearQuest

Maintenance

Tool

Prior

to

IBM

Rational

ClearQuest

v.2003.06.13,

the

primary

way

to

set

a

ClearQuest

data

code

page

was

by

using

several

subcommands

from

the

installutil

command

line

utility.

With

ClearQuest

v.2003.06.13,

the

ClearQuest

Maintenance

Tool

allows

you

to

set

the

ClearQuest

data

code

page

when

you

create

or

modify

a

schema

repository.

What

are

code

pages?

Code

pages

specify

what

character

set

can

be

used

on

a

computer

or

in

an

application,

and

how

those

characters

are

stored

in

binary

format.

There

can

be

three

types

of

code

pages

in

a

ClearQuest

environment:

The

database

code

page

is

the

code

page

setting

for

the

vendor

database.

It

determines

which

characters

can

be

stored

in

the

database

that

house

the

ClearQuest

schema

repository

and

user

data.

The

client

code

page,

or

the

operating

system

code

page

for

ClearQuest

clients,

determines

which

characters

the

client

can

read

from

the

ClearQuest

database,

display

for

the

user,

process

and

write

back

to

the

ClearQuest

database.

The

ClearQuest

data

code

page,

created

in

ClearQuest

v2002.05.01

Patch

2,

helps

ClearQuest

enforce

consistency

between

the

data

code

page

and

the

client

code

pages

for

a

given

ClearQuest

schema

repository

and

the

associated

user

databases.

In

a

sense,

the

ClearQuest

data

code

page

stands

between

the

database

code

page

and

the

client

code

page,

to

help

ClearQuest

check

that

they

are

consistent.

For

more

information

about

code

pages,

see

the

IBM

Rational

ClearQuest

Administrator’s

Guide.

Setting

the

data

code

page

for

a

new

schema

repository

When

you

create

a

new

schema

repository,

the

ClearQuest

Maintenance

Tool

automatically

determines

the

code

page

of

the

operating

system

on

which

it

is

running,

and

offers

you

a

choice

to

set

the

ClearQuest

data

code

page

to

that

value

or

to

ASCII.

For

example,

if

you

are

running

the

ClearQuest

Windows

client

in

English,

the

code

page

of

the

operating

system

is

1252

(ANSI-Latin1).

The

ClearQuest

Maintenance

Tool

allows

you

to

set

the

data

code

page

to

either

1252

(ANSI-Latin1)

or

ASCII.

However,

if

you

are

running

the

ClearQuest

Maintenance

Tool

on

a

Japanese

932

(Shift-JIS)

client,

the

Maintenance

Tool

will

display

932

(Shift-JIS)

as

the

only

choice

because

the

Japanese

version

of

the

ClearQuest

client

already

contains

Japanese

characters.

©

Copyright

IBM

Corp.

1997,

2004

3

To

set

the

ClearQuest

data

code

page

for

new

schema

repositories

using

the

ClearQuest

Maintenance

Tool::

1.

From

the

Schema

Repository

menu,

select

Create.

2.

Enter

a

name

for

the

schema

repository

connection

highlighted

in

the

Existing

Connections

area

and

click

Next.

3.

In

the

Schema

Repository

Properties

area,

select

a

database

vendor

and

enter

the

required

database

properties

and

click

Next.

4.

In

the

ClearQuest

data

code

page

dialog

for

the

new

connection,

select

either

ASCII

or

the

platform

code

page

for

the

machine

on

which

the

Maintenance

Tool

is

running

and

click

Next.

5.

Continue

with

the

Create

Connection

wizard

to

either

create

a

sample

user

database

or

click

Finish

to

complete

the

schema

repository

creation

process..

Changing

the

ClearQuest

data

code

page

for

existing

schema

repositories

To

change

the

ClearQuest

data

code

page

for

existing

schema

repositories

using

the

ClearQuest

Maintenance

Tool:

1.

In

the

Existing

Connections

area,

select

the

connection

for

which

you

want

to

change

the

code

page.

Then

from

the

Schema

Repository

menu,

select

Change

Code

Page.

2.

For

the

Logon

information

fields,

enter

the

user

name

and

password

for

the

schema

repository

and

click

Next.

Only

users

with

Super

Privileges

are

allowed

to

change

the

code

page

value

for

the

schema

repository.

3.

In

the

ClearQuest

data

code

page

dialog,

select

to

change

the

setting

to

either

ASCII

or

the

platform

code

page

for

the

machine

on

which

the

Maintenance

Tool

is

running

and

click

Finish.

4.

ClearQuest

displays

a

warning

about

changing

code

page

values.

Click

OK

to

continue.

5.

ClearQuest

then

confirms

the

change

and

enters

the

data

code

page

value

in

a

log.

Click

Done

to

close

the

dialog.

Supporting

the

EUC-JP

code

page

With

version

2003.06.13,

ClearQuest

can

work

with

vendor

databases

that

use

the

EUC-JP

database

code

page.

To

set

a

schema

repository

to

work

with

the

EUC-JP

database,

use

the

new

installutil

setdbcodepagetoeucjpsafeshiftjis

subcommand

to

set

the

ClearQuest

data

code

page

to

a

value

of

60932,

a

Rational-defined

value

for

a

subset

of

the

Microsoft

Shift-JIS

character

set

that

can

be

written

safely

to

EUC-JP

databases.

This

setting

allows

ClearQuest

clients

on

machines

using

the

Shift-JIS

code

page

(932)

to

read

and

write

to

the

ClearQuest

databases.

Clients

that

are

not

on

a

machine

using

the

Shift-JIS

code

page

(932)

can

only

read

from

the

databases

and

cannot

modify

them.

Using

installutil

setdbcodepagetoeucjpsafeshiftjis

To

set

the

ClearQuest

data

code

page

to

60932

—

EUC-JP,

the

syntax

for

installutil

setdbcodepagetoeucjpsafeshiftjis

is

as

follows:

installutil

setdbcodepagetoeucjpsafeshiftjis

-dbset

2003.06.13

admin_user

admin_password

4

Documentation

Supplement

Chapter

3.

Simplifying

deployment

with

new

database

drivers

With

IBM

Rational

ClearQuest

version

2003.06.13

for

Windows

and

clearquest_p2003.06.00–6

for

UNIX,

IBM

Rational

is

providing

new

database

drivers

with

ClearQuest

for

Oracle

and

SQL

Server.

These

drivers

simplify

the

deployment

of

ClearQuest

clients,

and

also

improve

performance.

The

new

drivers

are

based

on

technology

from

DataDirect,

and

replace

the

database

drivers

from

OpenLink

that

were

used

in

previous

releases

of

ClearQuest.

For

environments

using

Oracle

databases,

you

do

not

need

to

install

Oracle

client

software

on

the

same

systems

as

the

ClearQuest

Windows

clients.

To

facilitate

the

use

of

the

new

drivers,

Rational

has

changed

the

database

property

pages

for

Oracle

and

SQL

Server.

This

chapter

explains

the

fields

in

the

database

property

pages

used

for

Oracle

and

SQL

Server.

Use

this

section

as

a

supplement

to

the

ClearQuest

documentation

and

online

help

from

earlier

releases.

The

workflows

and

procedures

described

in

the

existing

documentation

and

online

help

remain

the

same

except

for

the

database

property

pages

discussed

here.

If

you

have

an

environment

with

existing

pre-2003.06.13

ClearQuest

databases

and

clients,

see

the

IBM

Rational

Suites

Upgrade

Guideand

IBM

Rational

ClearQuest

Product

FamilyInstallation

Guide

for

UNIX

for

more

information

on

setting

these

database

properties.

Functions

of

database

property

pages

To

facilitate

the

use

of

the

new

drivers,

Rational

has

changed

the

database

property

pages

for

Oracle

and

SQL

Server.

Database

property

pages

open

when

you

perform

functions

related

to

either

connections

or

schema

repositories

using

the

ClearQuest

Maintenance

Tool,

such

as:

v

Creating

a

new

connection

v

Editing

a

connection

v

Duplicating

a

connection

v

Creating

a

new

schema

repository

v

Moving

a

schema

repository

v

Upgrading

a

schema

repository

v

Updating

a

schema

repository

Database

property

pages

also

open

when

you

perform

the

following

user

database

related

functions

using

the

ClearQuest

Designer,

such

as:

v

Upgrading

a

user

database

v

Moving

a

user

database

v

Viewing

the

properties

of

a

user

database

v

Updating

the

properties

of

a

user

database

Information

on

these

functions

is

available

in

the

IBM

Rational

ClearQuest

Administrator’s

Guide.

©

Copyright

IBM

Corp.

1997,

2004

5

Setting

database

properties

for

Oracle

In

ClearQuest

version

2003.06.13,

the

fields

shown

on

the

database

properties

page

for

Oracle

are:

v

Vendor

(Oracle)

v

Server

v

SID

v

User

Name

v

Password

v

Connect

Options

After

selecting

Oracle

in

the

Vendor

field,

complete

the

remaining

fields

as

follows:

1.

In

the

Server

field,

enter

the

machine

name

of

the

server

where

the

Oracle

database

is

running.

It

may

have

a

domain

name

added

to

it,

for

example,

dbserv.xxx.companyname.com.

2.

In

the

SID

(Oracle

System

Identifier)

field,

enter

the

name

of

the

database

instance

that

will

be

used

for

the

schema

repository.

3.

In

the

User

Name

field,

enter

the

user

name

you

created

for

the

database.

4.

In

the

Password

field,

enter

the

password

for

the

user

name.

5.

In

the

Connect

Options

field,

the

default

LOB_TYPE

(or

data

type)

is

CLOB.

When

you

are

creating

either

a

new

schema

repository

or

user

database

with

Oracle,

the

Connect

Options

field

displays

LOB_TYPE=CLOB.CLOB

stands

for

Character

Large

Object

and

is

the

default

value.

An

alternate

selection

is

LONG.

However,

CLOB

is

Oracle’s

preferred

method

for

storing

large

objects.

It

simplifies

the

way

database

administrators

set

up

searching

on

multiline

text

fields.

You

can

also

use

the

Connect

Options

field

to

change

the

port

number.

If

the

port

number

of

the

database

is

different

from

the

default

for

Oracle,

which

is

1521,

then

the

port

number

should

be

entered

in

this

field,

in

the

form

PORT=port_number

The

connect

options

field

can

also

be

used

to

enter

a

series

of

arguments

that

will

help

ClearQuest

clients

connect

with

ClearQuest

databases.

This

is

particularly

important

when

it

is

necessary

to

have

ClearQuest

clients

installed

in

a

prior

release

connect

to

a

ClearQuest

database

that

was

created

in

version

2003.06.13.

In

the

Connect

Options

field,

the

argument

names

are

not

case

sensitive,

but

the

values

are

case

sensitive.

Arguments

must

be

separated

by

semicolons,

with

no

spaces

in

between.

The

arguments

that

you

can

enter

in

the

Connect

Options

field

for

Oracle

include:

HOST=host;SID=sid;CLIENT_VER=[8.1,9.2];SERVER_VER=[8.1,9.2,10.1];LOB_TYPE=[long,

clob];PORT=port_number

Setting

database

properties

for

SQL

Server

In

ClearQuest

release

v2003.06.13,

the

fields

shown

on

the

database

properties

page

for

SQL

Server

are:

v

Vendor

(SQL

Server)

v

Physical

Database

Name

v

Database

Server

Name

v

Administrator

Name

v

Administrator

Password

6

Documentation

Supplement

v

Connect

Options

After

selecting

SQL_Server

in

the

Vendor

field,

complete

the

fields

as

follows:

1.

In

the

Physical

Database

Name

field,

enter

the

name

of

the

database

for

the

schema

repository.

2.

In

the

Database

Server

Name

field,

enter

the

machine

name

of

the

server

where

the

SQL

Server

database

is

running.

3.

In

the

Administrator

Name

field,

enter

the

user

name

you

created

for

the

SQL

Server

database.

4.

In

the

Administrator

Password

field,

enter

the

password

for

the

user

name.

5.

Leave

the

Connect

Options

field

blank,

if

you

are

going

to

use

the

default

port

number

and

database

instance

for

SQL

Server

on

that

machine.

ClearQuest

will

determine

these

values

automatically.

The

arguments

that

can

be

entered

in

the

Connect

Options

field

for

SQL

Server

are

PORT

and

INSTANCE.

ClearQuest

uses

port

number

1433

as

the

default

port.

If

the

port

number

of

the

database

is

different

from

the

default,

then

the

port

number

should

be

entered

in

this

field

in

the

form

PORT=port_number.

Note

that

argument

names

are

not

case

sensitive,

but

the

values

are

case

sensitive.

Arguments

must

be

separated

by

semicolons,

with

no

spaces

in

between.

ClearQuest

also

uses

the

default

instance,

which

generally

uses

the

same

setting

as

the

default

port

number.

For

SQL

Server

databases

on

Windows,

you

can

specify

an

instance

other

than

the

default

in

the

form,

INSTANCE=instance_name.

For

SQL

Server

databases

on

UNIX,

you

can

specify

an

instance

other

than

the

default

by

specifying

a

non-default

port

number.

Chapter

3.

Simplifying

deployment

with

new

database

drivers

7

8

Documentation

Supplement

Chapter

4.

Changes

to

command-line

utilites

This

chapter

contains

changes

to

theinstallutil

and

pdsqlcommand

line

utilities

related

to

the

new

database

driver

implementation

for

ClearQuest

v.2003.06.13

on

Windows

and

patch

2004C

on

UNIX.

It

also

contains

information

about

new

commands

for

ClearQuest

clients

on

Windows

and

UNIX:

v

(Windows)

installutil

registerconnectoptions

and

installutil

getconnectoptions

v

(UNIX)

cqregrefresh

Updating

connect

options

for

installutil

The

installutil

command

line

utility

includes

a

number

of

subcommands

that

can

be

useful

when

setting

up

or

modifying

databases.

The

command

syntax

has

been

updated

for

installutil

with

ClearQuest

v.2003.06.13

for

Windows

and

patch

2004C

for

UNIX.

The

changes

affect

how

the

connect

options

are

specified.

Examples

of

the

installutil

subcommands

that

have

been

updated

include:

v

installutil

convertschemarepo

v

installutil

convertuserdb

v

installutil

unlockschemarepo

Specifying

connect

options

in

installutil

for

Oracle

If

you

are

using

an

Oracle

database,

use

the

following

arguments

and

values

for

connect

options:

HOST=host;

SID=sid;

SERVER_VER=[8.1,9.2,10.1];

CLIENT_VER=[8.1,9.2];

LOB_TYPE=[long,clob];

PORT=port_number

Note

that

the

argument

names

are

not

case

sensitive,

but

the

values

are

case

sensitive.

Also,

arguments

must

be

separated

by

semicolons,

with

no

spaces

in

between.

Specifying

connect

options

in

installutil

for

SQL

Server

If

you

are

using

a

SQL

Server

database,

use

the

following

arguments

and

values

for

connect

options:

PORT=port_number;

INSTANCE=instance_name

Note

that

the

argument

names

are

not

case

sensitive,

but

the

values

are

case

sensitive.

Also,

arguments

must

be

separated

by

semicolons,

with

no

spaces

in

between.

©

Copyright

IBM

Corp.

1997,

2004

9

New

subcommand

—

installutil

registerconnectoptions

Use

the

installutil

registerconnectoptions

subcommand

to

modify

connect

option

parameters

for

SQL

Anywhere,

SQL

Server

and

Oracle

on

a

ClearQuest

Windows

client.

The

subcommand

operates

on

a

per-client

and

per-session

basis

and

should

only

be

used

in

cases

when

you

need

to

override

a

connection

from

a

ClearQuest

v.2003.03.16

client.

Note

that

the

argument

names

are

not

case

sensitive,

but

the

values

are

case

sensitive.

Also,

arguments

must

be

separated

by

semicolons,

with

no

spaces

in

between.

A

similar

command,

installutil

registeroracleoptions,

is

available

for

the

Oracle

database,

but

you

should

use

the

installutil

registerconnectoptions

for

Oracle

as

well

as

for

SQL

Anywhere

and

SQL

Server.

Syntax

installutil

registerconnectionoptions

db_vendor

connect_options

Where

Represents

db_vendor

The

database

vendor

name

connect_options

Oracle:

v

HOST=host;

v

SID=sid;

v

SERVER_VER=[8.1,9.2,10.1];

v

CLIENT_VER=[8.1,9.2];

v

LOB_TYPE=[long,clob];

v

PORT=port_number

SQL

Server:

v

PORT=port_number;

v

INSTANCE=instance_name

SQL

Anywhere:

v

SERVER_VER=[5.0,8.0]

New

subcommand

—

installutil

getconnectoptions

Use

the

installutil

getconnectoptions

subcommand

to

view

the

database

and

connect

option

parameters

you

have

set

on

a

ClearQuest

v.2003.06.13

Windows

client

for

either

a

SQL

Anywhere,

SQL

Server

or

Oracle

database.

Syntax

installutil

getconnectionoptions

db_vendor

-all

Where

Represents

db_vendor

Displays

the

connect

option

settings

for

a

database

vendor

name.

The

database

vendor

is

either

Oracle,

SQL

Server

or

SQL

Anywhere.

-all

Use

-all

in

place

of

db_vendor

to

display

connect

options

settings

for

all

database

vendors.

10

Documentation

Supplement

Updating

connect

options

for

pdsql

pdsql

is

a

command

line

SQL

utility.

It

can

be

used

to

open

an

SQL

session

with

any

database

vendor

supported

by

ClearQuest.

pdsqlsupports

all

common

SQL

commands.

The

command

syntax

has

been

updated

for

pdsql

with

ClearQuest

v.2003.06.13

for

Windows

and

patch

2004C

for

UNIX.

The

changes

affect

how

the

connect

options

are

specified.

Specifying

connect

options

in

pdsql

for

Oracle

If

you

are

using

an

Oracle

database,

use

the

following

arguments

and

values

for

connect

options:

HOST=host;

SID=sid;

SERVER_VER=[8.1,9.2,10.1];

CLIENT_VER=[8.1,9.2];

LOB_TYPE=[long,clob];

PORT=port_number

Note

that

the

argument

names

are

not

case

sensitive,

but

the

values

are

case

sensitive.

Also,

arguments

must

be

separated

by

semicolons,

with

no

spaces

in

between.

Specifying

connect

options

in

pdsql

for

SQL

Server

If

you

are

using

a

SQL

Server

database,

use

the

following

arguments

and

values

for

connect

options:

PORT=port_number;

INSTANCE=instance_name

Note

that

the

argument

names

are

not

case

sensitive,

but

the

values

are

case

sensitive.

Also,

arguments

must

be

separated

by

semicolons,

with

no

spaces

in

between.

Using

cqreg

refresh

for

ClearQuest

clients

on

UNIX

The

cqregrefresh

subcommand

can

be

used

on

ClearQuest

clients

on

UNIXto

refresh

a

connection

whenever

connection

information

changes.

Times

when

cqregrefresh

should

be

used

include

when

user

databases

are

created

or

modified,

and

when

schema

repositories

and

user

databases

are

moved.

cqregrefresh

should

also

be

used

for

each

UNIX

install

area

that

uses

the

changed

database

connection.

It

does

not

need

to

be

used

on

individual

ClearQuest

clients.

Usually

the

updated

connection

information

will

be

set

in

each

user’s

login

session.

The

following

example

shows

what

the

output

is

when

you

use

cqregshow

-all

to

display

information

on

all

the

connections

for

a

client:

axon

11:

cqreg

show

-all

Database

Set

Name:

WH0axonSS

Master

Database:

MASTR

Description:

Vendor:

SQL_SERVER

Server:

cqwds2

ConnectOptions:

Database:

WH0axonSS

User

Database:

PASNY

Description:

Sample

Database

Chapter

4.

Changes

to

command-line

utilites

11

Vendor:

SQL_SERVER

Server:

cqwds2

ConnectOptions:

Database:

WH0axonSS

The

cqregrefresh—dbsetexample

shows

how

to

update

the

connect

options

information

for

a

particular

connection:

axon

12:

cqreg

refresh

-dbset

UCM

The

cqregrefresh—alllast

example

shows

what

the

output

is

when

you

update

the

connect

options

information

for

all

connections:

axon

13:

cqreg

refresh

-all

Default

version

is

2003.06.00

Refresh

database

set

WH0axonSS

Db

registry

PASNY

needs

to

be

updated

Db

registry

PASNY

was

updated

successfully

Db

registry

MASTR

needs

to

be

updated

Db

registry

MASTR

was

updated

successfully

12

Documentation

Supplement

Chapter

5.

API

and

Hooks

Updates

This

section

contains

new

information

that

applies

to

the

ClearQuest

Perl

and

COM

APIs,

including

information

on

working

with

and

writing

hook

code

in

ClearQuest

Designer.

It

includes

updates

to

the

Hooks

chapter

of

the

Administrator’s

Guide

and

to

the

API

Reference.

The

categories

of

API

and

Hook

updates

for

this

release

are:

v

New

Content

-

includes

new

sections

containing

hooks

or

scripting

information

that

is

not

available

in

the

IBM

Rational

ClearQuest

Administrator’s

Guide

or

IBM

Rational

ClearQuest

API

Reference

for

this

release.

There

are

new

sections

for

actions

and

access

control,

nested

actions,

naming

conventions,

commit

behavior,

error

checking

and

validation,

and

performance

considerations.

v

Corrections

and

other

changes

to

documentation

-

include

content

updates

to

existing

ClearQuest

APIs

as

well

as

information

on

newly

implemented

(or

newly

supported

and

documented)

APIs.

New

content

This

section

includes

enhancements

to

the

current

ClearQuest

API

documentation

available

in

the

ClearQuest

Administrator’s

Guide

and

the

API

Reference,

including

new

content

and

additions

to

existing

sections.

v

Error

checking

and

validation

v

Debugging

your

code

v

Actions

and

access

control

v

Name

lookup

in

Perl

hooks

v

Default

entity

v

Editing

an

existing

record

v

When

the

record

is

committed

v

Performance

considerations

for

using

hooks

v

InvalidateFieldChoiceList

example

v

Using

Perl

for

external

applications

v

RATLC00702699,

APAR

IC37754;

Documentation

for

the

highlighting

of

keywords

in

the

ClearQuest

Design...

Error

checking

and

validation

For

many

methods

and

properties

of

the

ClearQuest

API,

you

must

check

the

return

value

to

validate

whether

or

not

the

call

returns

an

error.

v

For

calls

to

functions

that

return

an

object,

you

need

to

check

for

the

condition

if

the

specified

object

does

not

exist.

For

example,

if

you

call

the

Item

method

of

a

collection

object,

if

the

object

that

you

specify

is

not

in

the

collection,

the

return

value

is:

–

For

Perl,

an

undefined

object.

You

can

use

if

(undef($result))

{

...

};

to

detect

this

condition.

–

For

VB,

an

error

(E_INVALIDARG)

that

can

be

handled

by

the

On

Error

statement.

©

Copyright

IBM

Corp.

1997,

2004

13

v

For

calls

to

functions

that

have

a

String

return

value,

the

value

is

empty

if

there

is

no

error,

or

a

String

containing

the

description

of

the

error.

You

can

check

the

result

of

calling

the

method

and

if

the

value

is

not

empty,

you

can

retrieve

the

error

in

a

variable,

as

a

String

value.

For

example

the

Entity

object

SetFieldValue

method

is

defined

as

returning

a

String

value.

It

returns

an

empty

String

if

changes

to

the

field

are

permitted

and

the

operation

is

successful;

otherwise,

if

the

operation

fails,

this

method

returns

a

String

containing

an

explanation

of

the

error.

To

trap

the

error,

your

code

must

check

the

return

value.

For

example:

strRetVal

=

SetfieldValue

("Invalid_field",

"Invalid

value")

If

""

<>

strRetVal

Then

REM

handle

the

error

End

If

If

an

invalid

field

is

specified,

an

error

is

returned.

For

example:

The

Defect

SAMPL00000123

does

not

have

a

field

named

"Invalid_field".

Debugging

your

code

You

can

debug

your

schema

customization

effort

from

within

ClearQuest

using

a

number

of

different

utilities.

One

common

method

is

to

output

text

at

strategic

locations

in

the

code,

using

MsgBox

or

OutputDebugString.

v

MsgBox

This

function

is

available

on

Windows

only.

The

MsgBox

function

lets

you

place

a

Windows

Message

Box

on

the

screen

with

the

output

you

specify.

The

execution

of

the

hook

pauses

until

the

OK

button

on

the

Box

is

clicked

(for

example,

MsgBox

"My

Text.").

The

message

box

only

displays

where

the

hook

is

executed.

When

writing

VBScript

hooks,

you

can

use

the

message

box

(MsgBox)

function

to

output

debugging

information.

By

calling

this

utility

with

a

string

parameter,

a

popup

dialog

containing

the

text

is

displayed.

Note:

Do

not

invoke

this

utility

through

ClearQuest

Web.

If

you

use

the

MsgBox

function,

you

can

ensure

that

your

code

is

not

executed

in

a

Web

session

context

with

the

_CQ_WEB_SESSION

session

variable.

See

″Using

hooks

to

detect

a

Web

session″

in

the

Administrator’s

Guide

for

more

information.

v

DBWIN32

The

Windows

debugging

utility

dbwin32.exe

is

included

with

ClearQuest

for

Windows.

It

is

located

in

the

ClearQuest

installation

directory.

When

dbwin32.exe

is

active,

it

displays

all

messages

generated

by

the

OutputDebugString

method

of

the

Session

Object,

which

you

can

use

to

output

debugging

messages

from

a

hook

while

it

is

running.

By

calling

the

OutputDebugString

method,

the

related

debug

statements

appear

in

the

DBWin32

console.

Use

this

after

launching

DBWin32

to

see

messages.

v

ClearQuest

Designer

hook

compiler

This

utility

catches

some

syntax

errors.

v

Internet

Explorer

4.0

debugger

You

can

use

the

InternetExplorer

4.0

debugger

to

debug

your

hook

code.

You

can

download

and

install

this

debugger

at

the

following

address:

http://msdn.microsoft.com/scripting

>

Script

Debugger

A

hook

runtime

error

launches

the

debugger

(if

it

is

not

launched,

you

will

need

to

read

the

debugger

documentation).

To

force

the

debugger

to

be

launched,

add

a

stop

statement

to

your

hook

code,

and

the

debugger

will

be

launched

at

that

point.

14

Documentation

Supplement

v

Microsoft

Development

Studio

VBScript

debugger

General

debugging

of

VBScript

hooks

can

be

done

with

the

Microsoft

VBScript

Debugger.

If

you

have

Microsoft

Visual

Studio

installed,

you

can

use

its

VBScript

debugger

to

debug

your

hook

code.

Actions

and

access

control

An

Access

Control

hook

is

used

to

determine

whether

a

specific

user

is

permitted

to

execute

an

action

on

records

of

a

given

record

type.

This

hook

is

called

before

the

user

tries

to

execute

the

action.

Access

to

an

action

for

a

specific

record

type

can

be

restricted

through

ClearQuest

Designer

by

setting

the

authorization

of

the

Access

Control

field

in

the

Actions

table

for

that

record

type.

By

default,

all

users

have

access

to

all

actions.

However,

you

can

restrict

access

to

an

action

to

specific

user

groups.

For

example,

you

can

limit

the

ability

to

close

defects

to

one

specific

user

group.

Access

to

an

action

can

also

be

restricted

by

using

an

access-control

hook.

For

example,

to

restrict

the

ability

to

edit

an

Entity

(that

is,

a

record),

an

action

access

control

hook

can

be

written

so

that

EditEntity

(or

SetFieldChoiceList,

SetFieldValue,

or

BuildEntity)

could

be

accessed

only

by

users

with

the

appropriate

privileges.

Or

a

hook

could

restrict

access

to

the

action

Open

for

Development

to

the

owner

of

the

record.

Hooks

always

run

with

SuperUser

privileges

and

therefore,

are

not

subject

to

the

usual

access

control

or

field

behavior

restrictions.

For

example,

a

hook

could

modify

a

field

that

is

normally

read-only.

However,

a

hook

cannot

modify

ClearQuest

system

fields,

such

as

the

History

field.

When

a

hook

executes,

required

fields

remain

required.

However,

a

hook

can

dynamically

change

a

required

field

so

that

it

is

no

longer

required,

or

can

change

a

non-required

field

to

required.

A

hook

does

not

change

field

validation

rules,

so

data

must

still

comply

with

those

rules.

Primary

actions

Primary

actions

are

main

or

top-level

actions

that

are

initiated

by

a

user.

Base

and

nested

actions

execute

within

primary

actions

and

are

not

initiated

directly

by

users.

v

Access

controls

can

be

modified

for

actions

created

when

a

package

is

applied,

just

like

they

can

be

modified

for

any

other

type

of

action.

However,

any

access

control

restrictions

placed

in

a

base

action

will

apply

to

all

other

actions

for

that

record

type.

v

Access

control

hooks

are

not

run

for

nested

actions.

See

Hooks

in

nested

actions

for

more

information.

Note:

In

order

for

a

user

to

be

able

to

run

a

primary

action

(modify,

submit,

delete,

import,

change_state,

duplicate,

and

unduplicate),

the

current

user

must

be

in

the

access

control

list

for

the

primary

action

as

well

as

for

all

the

base

actions.

See

Base

actions

for

more

information.

Chapter

5.

API

and

Hooks

Updates

15

Base

actions

A

base

action

is

a

secondary

action

that

is

triggered

by

a

primary

or

top-level

action.

A

base

action

is

automatically

triggered

by

every

other

action

for

that

record

type.

Base

actions

allow

an

action

hook

to

be

written

once

and

then

re-used

with

multiple

actions.

For

example,

writing

a

base

action

and

adding

a

notification

hook

to

send

an

email

will

cause

an

email

to

be

sent

when

any

action

is

performed

on

the

record.

Each

step

of

an

action

(initialization,

access

control,

validation,

commit,

and

notification)

will

execute

the

hooks

of

all

base

actions

for

that

record

type,

followed

by

the

hook

for

the

main

action

itself.

A

base

action

cannot

be

initiated

directly

by

a

user,

so

it

does

not

appear

in

the

list

of

possible

actions

presented

to

the

user

in

the

Actions

menu.

There

can

be

multiple

base

actions

for

a

record

type.

Some

base

actions

can

be

added

to

a

schema

when

a

package

is

applied.

If

a

record

has

multiple

base

actions,

they

do

not

run

in

a

specific

order

but

are

followed

by

the

main

action

that

triggered

them.

Note:

Any

access

control

restrictions

placed

in

base

actions

apply

to

all

other

actions.

Nested

actions

A

nested

action

is

any

action

started

when

an

action

is

already

in

progress.

Nested

actions

can

be

started

only

when

a

hook

calls

the

BuildEntity

or

EditEntity

methods

of

the

Session

object.

Some

actions

can

be

both

a

primary

action

(initiated

directly

by

the

user)

and

a

nested

action

(initiated

by

a

hook).

Note:

Nested

actions

trigger

all

base

actions

for

that

record

type,

just

as

primary

actions

do.

Hooks

in

nested

actions:

Nested

actions

differ

from

primary

actions

in

that

action

access

control

hooks

and

notification

hooks

are

not

executed

for

nested

actions.

The

Action

Access

Control

hook

is

not

run

if

a

hook

starts

a

nested

action.

Because

all

hooks

execute

with

the

SuperUser

privilege,

the

privilege

level

is

already

at

its

highest

(SuperUser).

There

is

no

need

to

run

the

access

control

hook

for

the

nested

action.

Access

for

a

nested

action

is

also

granted

when

no

access

control

hook

is

fired.

Notification

hooks

do

not

normally

execute

for

a

nested

action.

Notification

hooks

are

commonly

used

to

send

an

email.

Having

each

nested

action

send

an

email

would

result

in

many

emails

sent

for

what

the

user

considers

to

be

one

action.

You

can

override

this

behavior

and

allow

nested

actions

to

execute

notification

hooks

by

setting

the

CQHookExecute

session

variable

to

a

value

of

1.

Setting

the

CQHookExecute

session

variable

can

be

done

with

the

following

code:

v

VBScript:

16

Documentation

Supplement

dim

session

set

session

=

GetSession

session.NameValue("CQHookExecute")

=

1

v

Perl:

$session->SetNameValue("CQHookExecute","1");

Within

a

Commit

hook,

the

commit

at

the

database

level

is

not

done

when

the

nested

action

is

committed,

but

is

combined

with

the

outer

level

commit

so

that

all

changes

are

included

as

one

atomic

transaction.

In

all

other

hook

types,

a

nested

action

is

committed

at

the

database

level,

independent

of

the

outer

level

commit.

The

only

way

to

combine

changes

made

in

a

nested

action

with

those

of

the

top-level

action,

as

a

single

database

transaction,

is

to

have

the

nested

action

inside

a

Commit

hook.

See

the

ClearQuest

Administrator’s

Guide

for

more

information

on

execution

order

of

hooks

and

when

a

record

is

committed.

For

setting

field

values,

see

the

SetFieldValue

method

of

the

Entity

object.

Name

lookup

in

Perl

hooks

Variables

in

Perl

are

of

several

types.

Common

types

include:

v

my

variables,

which

are

local

to

the

subroutine

in

which

they

are

declared.

v

Local

variables,

which

are

local

to

the

file

in

which

they

are

declared

(but

global

to

all

subroutines

within

that

file).

v

Global

variables,

which

are

not

declared

explicitly.

You

must

specify

global

variables

with

unique

names.

You

can

also

use

local

variables,

using

the

my

convention.

For

example:

my

($uvComponent);

It

is

possible

for

existing

Perl

hooks

to

have

name

look-up

problems.

A

ClearQuest

action,

Submit

for

example,

uses

a

single

Perl

interpreter

to

execute

all

the

action

hooks,

like

Action

Initialization,

and

all

the

field

hooks,

like

Field

Value

Changed,

that

are

written

in

Perl.

If

the

hook

code

does

not

declare

local

variables

with

the

my

keyword

before

it

uses

them,

the

variable

can

be

shared

between

hooks

unintentionally.

In

releases

before

v2003.06.00,

when

one

Perl

hook

called

another,

ClearQuest

compiled

the

second

hook

in

the

wrong

Perl

namespace.

In

release

v2003.06.00

and

later,

all

hooks

are

compiled

in

the

same

Perl

namespace.

This

can

affect

how

different

hooks

can

interfere

with

each

other

if

global

variables

are

used.

For

example:

sub

defect_Initialization

{

$variable

=

"1";

$entity->SetFieldValue("A",

$variable);

}

sub

a_ValueChanged

{

$entity->SetFieldValue("B",

$variable);

$entity->SetFieldValue("C",

$variable);

}

sub

b_ValueChanged

{

$variable

=

"3";

}

Chapter

5.

API

and

Hooks

Updates

17

The

variable

called

$variable

in

these

hook

subroutines

is

a

package

scope

variable.

This

means

that

subroutines

in

the

same

package

will

share

the

same

variable.

In

releases

before

v2003.06.00,

nested

hooks

were

in

a

different

Perl

package

from

the

initial

hook,

and

therefore

did

not

share

their

global

variables

with

the

initial

hook.

This

meant

that

the

above

example

was

interpreted

as

if

it

had

the

following

namespace

qualifiers:

package

main;

sub

defect_Initialization

{

$main::variable

=

"1";

$entity->SetFieldValue("A",

$main::variable);

}

package

CQEntity;

sub

a_ValueChanged

{

#

$CQEntity::variable

is

not

set,

so

defaults

to

an

empty

string.

$entity->SetFieldValue("B",

$CQEntity::variable);

$entity->SetFieldValue("C",

$CQEntity::variable);

}

sub

b_ValueChanged

{

$CQEntity::variable

=

"3";

}

A

Field

Value

Changed

hook

is

called

immediately

upon

changing

the

associated

field

(that

is,

before

returning

from

SetFieldValue),

so

the

above

code

executes

in

this

order:

$main::variable

=

"1";

#

From

defect_Initialization

#

$main::variable

is

set

to

"1"

$entity->SetFieldValue("A",

$main::variable);

#

From

defect_Initialization

#

Sets

A

to

"1"

#

ClearQuest

calls

a_ValueChanged

before

returning

$entity->SetFieldValue("B",

$CQEntity::variable);

#

From

a_ValueChanged

#

$CQEntity::variable

is

uninitialized

#

Sets

B

to

""

#

ClearQuest

calls

b_ValueChanged

before

returning

$CQEntity::variable

=

"3";

#

From

b_ValueChanged

#

$CQEntity::variable

changes

from

""

to

"3"

$entity->SetFieldValue("C",

$CQEntity::variable);

#

From

a_ValueChanged

#

Sets

C

to

"3"

As

a

result,

fields

A,

B

and

C

are

set

to

″1″,

″″

and

″3″,

respectively.

In

release

v2003.06.00

and

later,

Perl

hooks

are

compiled

into

the

same

namespace.

The

above

example

is

now

interpreted

as

if

it

has

the

following

namespace

qualifiers:

package

main;

sub

defect_Initialization

{

$main::variable

=

"1";

$entity->SetFieldValue("A",

$main::variable);

}

sub

a_ValueChanged

{

$entity->SetFieldValue("B",

$main::variable);

$entity->SetFieldValue("C",

$main::variable);

}

sub

b_ValueChanged

{

$main::variable

=

"3";

}

18

Documentation

Supplement

This

code

executes

in

this

order:

$main::variable

=

"1";

#

From

defect_Initialization;

#

$main::variable

is

set

to

"1"

$entity->SetFieldValue("A",

$main::variable);

#

From

defect_Initialization

#

Sets

A

to

"1"

#

ClearQuest

calls

a_ValueChanged

before

returning

$entity->SetFieldValue("B",

$main::variable);

#

From

a_ValueChanged

#

Sets

B

to

"1"

#

ClearQuest

calls

b_ValueChanged

before

returning

$main::variable

=

"3";

#

From

b_ValueChanged

#

$main::variable

changes

from

"1"

to

"3"

$entity->SetFieldValue("C",

$main::variable);

#

From

a_ValueChanged

#

Sets

C

to

"3"

As

a

result,

fields

A,

B

and

C

are

set

to

″1″,

″1″

and

″3″,

respectively.

To

avoid

unintentional

sharing

of

variable

values,

you

must

declare

those

variables

intended

to

be

local

to

a

hook

function

in

this

form:

sub

d_ValueChanged

{

my

$temp

=

$entity->GetFieldValue("d")->GetValue();

$session->OutputDebugString("d

now

set

to

$temp\n");

}

where

$temp

is

declared

to

be

local

to

the

d_ValueChanged

function,

and

this

assignment

to

$temp

does

not

change

the

value

of

another

variable

of

the

same

name.

Using

the

my

syntax

makes

the

variable

visible

only

within

a

specified

block

of

code.

Note:

$entity

and

$session

are

global

variables

defined

by

the

ClearQuest

core.

Default

entity

The

default

entity

for

a

hook

is

created

by

ClearQuest

before

a

hook

starts,

and

represents

the

current

record

upon

which

an

action

is

being

done.

For

Perl,

you

retrieve

this

object

using:

$entity

If

you

are

creating

another

entity

in

the

context

of

one

record’s

action

(such

as

executing

a

call

to

the

BuildEntity

method

to

submit

a

new

record),

you

need

to

maintain

the

scope

of

your

entity

variables.

There

are

two

approaches:

v

Use

the

same

variable

name

for

both

entities,

but

declare

one

of

them

using

my.

That

makes

only

one

of

them

accessible

at

any

time,

because

the

my

declaration

creates

a

new

variable

with

local

scope

which

masks

the

existing

global

definition

until

the

variable

goes

out-of-scope

(for

instance,

at

the

end

of

the

current

function).

v

Use

different

variable

names

for

each

entity.

For

VBScript,

you

can

use

the

me

declaration.

For

example:

call

DoSomething(me)

If

you

need

to

explicitly

reference

the

default

entity

object

in

order

to

pass

it

as

an

argument,

you

can

use

the

me

declaration

to

perform

operations.

For

example:

Msgbox

me.GetDisplayName()

Dim

xme

Set

xme

=

me

Msgbox

xme.LookupStateName

Chapter

5.

API

and

Hooks

Updates

19

Editing

an

existing

record

This

section

of

the

ClearQuest

API

Reference

should

include

the

following

additional

information

on

database

locking.

Only

one

user

at

a

time

can

edit

a

record.

If

two

users

attempt

to

edit

a

record

at

the

same

time,

ClearQuest

allows

only

one

of

them

to

commit

their

changes.

The

first

user

who

validates

and

commits

their

changes

is

successful.

When

the

other

user

tries

to

commit

their

changes,

they

receive

an

error

stating

that

the

record

has

been

updated

while

they

were

editing,

and

their

changes

cannot

be

safely

committed.

When

the

record

is

committed

The

Commit

hook

executes

after

the

database

has

been

updated

with

changes

to

the

current

record,

but

before

the

update

transaction

has

been

committed

to

the

database.

This

means

that

you

cannot

use

a

Commit

hook

to

modify

the

current

record;

such

modifications

are

not

applied

to

the

record.

Work

done

in

a

Commit

hook

is

done

while

locks

exist

in

the

database,

and

those

locks

may

prevent

other

users

from

running

queries,

creating

new

records,

or

modifying

existing

records.

For

performance

reasons,

it

is

best

to

minimize

the

work

done

in

a

Commit

hook.

Use

a

Commit

hook

only

for

actions

against

other

records

that

you

want

to

be

part

of

the

same

database

transaction

as

the

main

action.

For

example,

resolving

a

duplicate

defect

when

the

parent

defect

is

resolved.

You

must

ensure

that

you

are

placing

the

appropriate

calls

in

the

correct

context.

For

example,

you

would

not

call

Revert

from

a

Commit

hook,

nor

would

you

call

Commit

from

any

action

other

than

a

Commit

hook.

Performance

considerations

for

using

hooks

ClearQuest

supports

the

use

of

VBScript

or

Perl

for

writing

your

custom

hook

code.

However,

there

are

performance

and

functional

trade-offs

that

should

be

considered

when

choosing

the

scripting

language

and

the

types

of

operations

to

use

in

hooks.

Although

this

is

not

an

exhaustive

discussion

on

the

topic,

the

following

guidelines

should

be

applied

to

any

schema

modifications.

For

more

information

on

the

topic

of

ClearQuest

Schema

Performance,

see

the

IBM

developerWorks

Web

site.

v

ClearQuest

Web

The

ClearQuest

native

Windows

client

can

execute

hooks

written

in

either

VBScript

or

Perl.

The

same

is

true

for

the

ClearQuest

Web

server,

since

it

runs

in

a

Windows

environment.

However,

the

ClearQuest

native

UNIX/Linux

clients

can

execute

only

Perl

script.

Therefore,

if

a

ClearQuest

deployment

requires

any

native

UNIX/Linux

clients,

hooks

must

be

written

in

Perl.

If

you

are

deploying

ClearQuest

Web

exclusively,

or

only

in

combination

with

Windows

clients,

there

are

performance

advantages

on

the

ClearQuest

Web

server

to

choosing

VBScript

as

your

hook

scripting

language.

v

Database

Access

Accessing

the

database

is

typically

the

most

time

consuming

operation

a

hook

performs.

Examples

of

operations

that

require

database

access

are:

–

LoadEntity

and

GetEntity

operations

Retrieving

an

entity

(record)

requires

at

least

one

query

of

the

database

for

the

primary

record,

plus

one

query

for

each

REFERENCE

or

REFERENCE_LIST

field.

Entities

are

retrieved

explicitly

through

Session

20

Documentation

Supplement

methods

such

as

GetEntity

or

LoadEntity,

but

can

also

be

retrieved

implicitly

by

accessing

the

field

value

of

a

REFERENCE

field.

The

following

example

implicitly

loads

the

entity

referred

to

by

the

product

field,

and

then

retrieves

the

value

of

the

component

field

from

the

loaded

product

record:

$component

=

$entity->GetFieldValue("product.component")->GetValue();

The

time

to

load

an

entity

is

determined

by

the

complexity

of

the

schema,

primarily

by

the

number

of

reference

list

fields

in

the

selected

entity.

In

most

instances,

if

only

a

subset

of

an

entity’s

fields

are

required,

it

is

more

efficient

to

query

for

those

field

values

instead

of

retrieving

the

entire

entity.

–

Queries

Although

more

efficient

than

retrieving

entire

entity

records,

queries

still

require

database

access,

and

therefore

have

an

impact

on

your

overall

schema

performance.

Every

effort

should

be

made

to

minimize

the

number

of

database

round-trips.

For

instance,

rather

than

running

the

same

query

multiple

times

at

various

locations

in

the

hook

code,

a

query

can

be

executed

once,

and

the

ResultSet

values

can

be

cached

in

a

Session

variable.

Also,

retrieve

only

the

fields

that

are

essential

for

each

record.

Avoid

specifying

multiline

text

fields

in

query

result

sets,

as

this

requires

an

additional

database

round-trip

for

each

multiline

text

field

to

be

retrieved.

–

Choice

lists

with

the

Recalculate

Choice

List

option

set

When

you

choose

the

Recalculate

Choice

List

option

in

the

properties

of

a

choice

list,

the

hook

code

required

to

repopulate

the

valid

list

of

choices

is

executed

each

and

every

time

any

other

field

of

the

record

changes

value.

This

has

the

potential

to

cause

a

large

amount

of

unnecessary

query

traffic

to

and

from

the

database.

A

more

efficient

method

to

ensure

that

the

choice

list

is

valid

is

to

determine

the

other

fields

that

can

affect

the

values

in

this

choice

list,

and

force

the

choice

list

to

be

recalculated

only

when

those

field

values

change.

For

example,

if

you

are

collecting

data

in

an

Automobile

record

you

might

have

a

field

for

the

Manufacturer

of

the

automobile,

and

another

field

for

the

Model.

The

valid

list

of

choices

for

the

Model

field

depends

only

on

the

Manufacturer

selected.

The

inefficient

method

of

ensuring

that

the

choice

list

for

the

Model

field

is

always

valid

is

to

select

Recalculate

Choice

List

for

this

field.

Instead,

you

can

write

a

VALUE_CHANGED

hook

for

the

Manufacturer

field

that

invalidates

the

choice

list

for

the

Model

field.

See

InvalidateFieldChoiceList

example

for

more

information

on

using

this

method.
v

Cascading

Hooks

Cascading

hooks

are

caused

by

having

several

dependent

or

nested

relationships

between

fields.

Consider

the

automobile

Manufacturer

and

Model

dependency

discussed

earlier

in

this

section.

Extending

that

example,

suppose

that

once

a

Model

is

selected,

the

list

of

valid

choices

for

Body

Style

or

Color

or

Engine

could

change.

It

is

easy

to

see

how

changing

one

field

value

on

a

form

could

cause

a

cascade

of

hooks

to

be

executed

and

re-executed

for

the

other

fields.

The

depth

of

these

nested

field

relationships

should

be

minimized,

and

care

should

be

taken

in

the

implementation

of

the

schema

in

order

to

avoid

unnecessary

or

redundant

execution

of

hook

code.

v

AdminSession

objects

Getting

AdminSession

objects

has

an

impact

on

performance

and

there

may

be

alternatives

for

retrieving

data.

For

example,

instead

of

using

the

AdminSession

object

and

underlying

User

object

and

Group

object

methods

to

retrieve

user

or

group

information,

you

can

create

queries

for

User

and

Group

records

(stateless

record

types)

that

are

in

a

user

database.

Chapter

5.

API

and

Hooks

Updates

21

If

you

must

use

an

AdminSession

object,

you

can

cache

it

in

a

Session

variable

instead

of

creating

new

AdminSession

objects

for

each

login

or

hook

invokation

that

requires

it.

Additionally,

if

the

data

you

retrieve

through

the

AdminSession

object

is

not

changing,

then

you

can

cache

the

data

as

values

in

Session

variables.

InvalidateFieldChoiceList

example

In

the

following

example,

a

Defect

record

type

has

the

two

fields,

product

(a

reference

to

the

Product

record

type)

and

owner

(a

reference

to

User).

Each

Product

record

type

has

a

field

called

contributors

(a

reference

list

to

User).

In

order

for

the

owner

choice

list

field

to

be

updated

whenever

the

value

for

Product

is

changed,

you

can

use

the

InvalidateFieldChoiceList

method,

instead

of

using

the

Recalculate

Choice

List

option.

For

example,

in

the

Defect

record

type,

you

add

a

value

changed

hook

for

the

field

product

v

Perl

sub

product_ValueChanged

{

my($fieldname)

=

@_;

#

$fieldname

as

string

scalar

#

record

type

name

is

Defect

#

field

name

is

product

#

Make

sure

that

the

choice

list

for

owner

is

based

on

#

this

new

value

for

product.

$entity->InvalidateFieldChoiceList("owner");

}

and

you

add

a

choice

list

hook

for

the

field

owner.

sub

owner_ChoiceList

{

my($fieldname)

=

@_;

my

@choices;

#

$fieldname

as

string

scalar

#

@choices

as

string

array

#

record

type

name

is

Defect

#

field

name

is

owner

#

Is

the

value

of

product

set?

If

not,

return

an

empty

list.

my

$productFieldInfo

=

$entity->GetFieldValue("product");

return

@choices

unless

$productFieldInfo->GetValidationStatus()

==

$CQPerlExt::CQ__KNOWN_VALID;

return

@choices

unless

$productFieldInfo->GetValue()

ne

"";

#

Field

product

is

set

and

valid.

#

Get

the

list

of

contributors

on

this

product.

@choices

=

$entity->GetFieldValue("product.contributors")

->GetValueAsList();

return

@choices;

}

v

VBScript

Sub

product_ValueChanged(fieldname)

’

fieldname

As

String

’

record

type

name

is

Defect

’

field

name

is

product

InvalidateFieldChoiceList

"owner"

End

Sub

and

you

add

a

choice

list

hook

for

the

field

owner

Sub

owner_ChoiceList(fieldname,

choices)

’

fieldname

As

String

’

choices

As

Object

’

record

type

name

is

Defect

’

field

name

is

owner

22

Documentation

Supplement

’

Is

the

value

of

product

set?

If

not,

return

an

empty

list.

Dim

productFieldinfo

set

productFieldinfo

=

GetFieldValue("product")

if

productFieldinfo.GetValidationStatus()

<>

AD_KNOWN_VALID

then

exit

sub

productFieldInfovalue

=

productFieldinfo.GetValue()

if

productFieldInfovalue

=

""

then

exit

sub

’

Field

product

is

set

and

valid.

’

Get

the

list

of

contributors

on

this

product.

Dim

productFieldvalues

productFieldvalues

=

GetFieldValue("product.contributors").GetValueAsList()

for

each

contributor

in

productFieldvalues

choices.AddItem

contributor

next

End

Sub

Each

time

you

start

an

action,

owner_ChoiceList

is

run

once,

and

every

time

you

change

product,

the

owner

choice

list

is

invalidated.

The

user

interface

then

requests

the

choice

list,

which

forces

the

choice

list

hook

to

be

re-executed.

Using

Perl

for

external

applications

In

version

2003.06.00

and

later,

you

can

use

the

ClearQuest

API

with

either

CQperl.exe

or

ratlperl.exe.

Using

CQperl

implicitly

adds

the

correct

include

paths

to

CQPerlExt.pm

(the

Perl

package

that

provides

the

ClearQuest

API).

If

you

use

ratlperl

on

UNIX,

you

must

set

the

correct

path.

If

you

use

Perl

for

an

external

application,

IBM

Rational

recommends

that

you

limit

the

external

application

to

tasks

that

are

independent

of

actions,

such

as

querying,

reporting,

and

user

administration.

RATLC00702699,

APAR

IC37754;

Documentation

for

the

highlighting

of

keywords

in

the

ClearQuest

Designer

script

editor

This

section

describes

how

to

customize

the

coloring

and

display

of

hook

code

in

the

ClearQuest

Designer

script

editor

for

Perl

or

VBScript

hook

code.

When

working

with

hook

code

in

the

scripting

editor

in

ClearQuest

Designer,

there

is

a

limited

set

of

colors

in

the

presentation.

The

tool

displays

all

comments

in

green,

read-only

text

in

grey,

and

all

other

text

in

black.

These

color

settings

are

defined

in

two

ini

files

in

the

Rational/ClearQuest

directory:

v

VBScript.ini,

for

the

COM

API

v

PerlScript.ini

for

the

Perl

API

You

can

enhance

the

color

settings

by

customizing

these

files.

Each

color

setting

is

defined

as

a

color

group

(ColorGroup).

Each

of

the

ini

files

includes

a

set

of

defined

color

groups.

Two

forms

of

customization

are:

v

Modifying

the

colors

of

an

existing

color

group

v

Adding

new

color

groups

Each

color

group

has

a

Foreground

attribute

that

defines

the

color

of

the

text

and

a

Background

attribute

that

defines

the

background

color

for

the

text.

Chapter

5.

API

and

Hooks

Updates

23

Modifying

the

colors

of

an

existing

color

group

You

can

specify

the

color

settings

of

the

text

color

and

its

background

for

an

existing

color

group

by

modifying

the

Foreground

or

Background

attributes

of

that

color

group.

Each

of

these

attributes

requires

three

color

values

(red,

green,

blue)

in

the

range

of

0-255.

For

example:

ColorGroup

=

Comment

Foreground

=

238,183,17

Background

=

239,239,211

You

can

modify

the

values

for

any

given

color

group

to

customize

the

settings

that

ClearQuest

provides.

For

example,

change:

Foreground

=

238,183,17

to

Foreground

=

238,128,0

Adding

color

groups

You

can

add

color

groups

that

define

new

classes

of

information

to

help

distinguish

different

classes

of

text

(defined

as

different

color

groups)

in

the

script

editor.

For

example,

you

can

define

a

new

color

group

to

highlight

enumerated

constants

(that

are

defined

in

ClearQuest.bas)

by

defining

the

following

CQConstant

color

group:

[CQConstant]

Foreground

=

75,0,255

Background

=

239,239,211

DisplayName

=

CQConstant

Configurable

=

1

BackColorAutomatic

=

1

ForeColorAutomatic

=

0

Configurable

=

1

Within

the

ini

file

is

a

variable

(NumGroups)

that

is

set

to

the

number

of

color

groups.

For

example:

NumGroups=14

For

each

new

color

group

you

define,

you

must

increment

the

value

of

NumGroups

by

one.

Add

the

enumerated

constants

to

the

Keyword

list

and

set

them

to

the

defined

ColorGroup

name.

For

example:

[Keywords]

AD_SUPER_USER

=

CQConstant

In

addition

to

making

the

constants

more

visible,

this

solution

can

help

identify

spelling

errors,

since

a

misspelled

constant

would

not

be

defined

as

a

Keyword

and

therefore

not

highlighted.

Note:

The

definitions

in

the

ini

files

are

not

directly

linked

to

the

actual

ClearQuest

APIs.

Therefore,

changes

to

an

API

are

not

reflected

in

the

ini

files.

Depending

on

your

customizations,

manual

updates

to

the

ini

files

may

be

required.

Note:

Customizing

the

VBScript.ini

and

PerlScript.ini

files

has

no

effect

on

any

code

that

is

part

of

an

installed

package.

Package

installed

code

is

read-only.

24

Documentation

Supplement

Corrections

and

other

changes

to

documentation

This

section

includes:

v

Content

updates

to

existing

ClearQuest

API

functions

that

are

documented

in

the

API

Reference.

v

New

content,

including

newly

supported

or

documented

methods

that

should

be

included

in

the

API

Reference.

v

Newly

implemented

methods

that

should

be

included

in

the

API

Reference.

RATLC00708226,

RATLC00706668,

RAMBU00050315;

Commit

behavior

documentation

enhancements

Additional

information

should

be

included

in

the

ClearQuest

Administrator’s

Guide

on

Commit

behavior,

in

the

Hooks

chapter,

in

the

″When

the

record

is

committed″

section.

See

When

the

record

is

committed

for

the

updated

documentation

on

Commit

behavior.

For

additional

information,

see

Editing

an

existing

record

and

Hooks

in

nested

actions.

RATLC00712744;

Syntax

is

incorrect

for

the

GetFieldRequiredness

method

The

VBScript

syntax

for

the

GetFieldRequiredness

and

the

GetFieldType

methods

of

the

Entity

object

is

incorrect

in

the

ClearQuest

API

Reference.

Parentheses

should

be

included

for

the

arguments:

v

entity.GetFieldType

(field_name)

v

entity.GetFieldRequiredness

(field_name)

RATLC00712920,

RATLC00710309,

RAMBU00054358,

RAMBU00056057;

Date

timestamp

issues

The

function

for

the

current

timestamp

is

incorrect

in

the

ClearQuest

Administrator’s

Guide.

The

correct

code

for

the

GetCurrentDate

function

is:

sub

GetCurrentDate

{

my($sec,

$min,

$hour,

$mday,

$mon,

$year,

$wday,

$yday,

$time)

=

localtime();

return

sprintf("%4d-%2.2d-%2.2d

%2.2d:%2.2d:%2.2d",

$year

+

1900,

$mon

+

1,

$mday,

$hour,

$min,

$sec);

}

RATLC00696630,

RATLC00696270,

RATLC00696759,

RATLC00710896;

Generating

reports

and

updates

to

SetHTMLFilename

documentation

The

following

information

helps

resolve

issues

raised

with

generating

reports

using

the

API

and

receiving

an

Unknown

exception.

This

additional

information

applies

to

the

SetHTMLFilename

method

of

the

report

manager

(ReportMgr)

object.

You

must

call

this

method

before

calling

the

ExecuteReport

method

to

set

the

name

and

location

of

the

report

output

file.

You

specify

output

path

information

in

the

htmlPathName

parameter

of

the

SetHTMLFileName

method:

v

VBScript

reportMgr.SetHTMLFileName

htmlPathName

Chapter

5.

API

and

Hooks

Updates

25

v

Perl

$reportMgr->SetHTMLFileName(htmlPathName);

You

must

specify

a

directory

for

the

HTML

file

or

add

a

backslash

(″\″)

before

the

file

name.

For

Perl,

use

two

backslashes

(″\\″).

For

example:

v

VBScript:

c:\test.html

\test.html

v

Perl:

c:\\temp\\my-report.html

\\my-report.html

This

SetHTMLFileName

method

argument

requires

a

full

path

name

to

the

file

to

be

created.

If

the

file

is

to

be

exported

to

the

current

directory,

a

file

separator

needs

to

be

included

before

the

name

of

the

file.

For

example

(Perl):

$CQReportMgr->SetHTMLFileName("\\Output.html");

RATLC00705428;

SuperUser

privilege

required

for

SetUserName

method

The

SetUserName

method

of

the

Workspace

object

requires

SuperUser

privileges.

The

section

in

the

ClearQuest

API

Reference

for

this

method

should

include

the

following

note.

Note:

Users

must

have

SuperUser

privileges

to

call

this

method.

RATLC00707609;

Methods

to

set

and

get

user

privileges

Two

new

methods

in

the

User

object

for

setting

and

retrieving

user

privileges

are

available

in

the

Perl

API,

but

are

not

documented

in

the

ClearQuest

API

Reference.

v

GetUserPrivilege

v

SetUserPrivilege

GetUserPrivilege

v

Description

Tests

whether

the

User

has

a

specified

user

privilege.

Returns

True

if

the

User

has

the

specified

user

privilege;

False

if

they

do

not

have

the

specified

user

privilege.

Note:

This

method

is

for

Perl

only.

It

is

not

available

for

VBScript.

v

Syntax

Perl

$user->GetUserPrivilege(priv);

v

Identifier

Description

user

A

User

object.

priv

A

Long

containing

a

UserPrivilegeMaskType

constant.

Return

value

Returns

a

Boolean

True

if

the

User

has

the

specified

user

privilege;

False

if

they

do

not

have

the

specified

User

privilege.

v

See

Also

–

SetUserPrivilege

26

Documentation

Supplement

–

HasUserPrivilege

method

of

the

Session

Object

–

UserPrivilegeMaskType

constants

SetUserPrivilege

v

Description

Sets

a

User

privilege

to

True

if

authorizing

the

User

privilege

to

the

user’s

account;

False

if

not

allowing

the

User

privilege.

Note:

This

method

is

for

Perl

only.

It

is

not

available

for

VBScript.

v

Syntax

Perl

$user->SetUserPrivilege(priv,

bValue);

Identifier

Description

user

A

User

object.

priv

A

Long

containing

a

UserPrivilegeMaskType

constant.

bValue

A

Boolean

set

to

True

if

the

User

has

the

specified

user

privilege;

False

if

they

do

not

have

the

specified

User

privilege.

Return

value

None

on

success,

or

else

an

exception.

v

See

Also

–

GetUserPrivilege

–

HasUserPrivilege

method

of

the

Session

Object

–

UserPrivilegeMaskType

constants

RATLC00666959,

RATLC00698133,

RAMBU00046241;

Creating

PERL

and

VBScript

Hooks

of

the

same

name

causes

the

creation

of

new

hooks

to

fail

Creating

a

Perl

and

VBScript

record

hook

with

the

same

name

causes

the

following

problems

when

a

field

has

one

of

the

hooks

assigned

to

it

on

a

form:

v

The

error

message

All

forms

will

be

saved

and

closed

before

you

can

delete

or

rename

a

field.

Continue?

is

displayed.

Because

the

dialog

box

has

an

OK

button

only,

you

cannot

cancel

the

action,

and

the

field

is

not

removed

from

the

form.

v

The

new

hook

(with

the

requested

name)

is

created

along

with

another

hook,

New1.

This

prevents

the

creation

of

any

new

hooks

for

either

language,

and

you

cannot

delete

the

New1

hook

because

it

does

not

appear

in

the

list

of

record

scripts.

The

workaround

is

to

restart

ClearQuest

Designer

and

delete

the

script.

When

the

scripts

are

parsed,

the

New1

script

is

added

to

the

tree

view

and

can

then

be

deleted.

RATLC00712994,

RAMBU00036659;

CQString

is

not

MBCS,

which

is

not

suitable

for

internationalization

CQString

is

the

string

type

used

by

the

ClearQuest

Perl

API.

This

type

is

used

for

the

Perl

API,

so

any

Perl

hooks

or

external

Perl

scripts

use

it

to

pass

string

data

to

and

from

the

ClearQuest

core.

Chapter

5.

API

and

Hooks

Updates

27

CQString

uses

single-byte

characters.

To

make

it

use

wide

characters,

the

core

must

be

compiled

with

_UNICODE,

but

ClearQuest

is

compiled

with

_MBCS.

RATLC00703293,

APAR

IC37932;

SetLoginName

method

update

The

SetLoginName

method

does

not

work

as

described

in

the

ClearQuest

API

Reference.

The

following

sentence

should

be

removed

and

is

not

accurate:

If

either

a

blank

user

name

or

password

is

supplied,

no

error

will

occur

and

only

the

parameter

specified

will

be

changed.

Neither

argument

is

optional.

If

you

add

the

password

parameter,

then

the

value

you

specify

becomes

the

new

password.

If

you

leave

out

the

name

parameter,

a

type

mismatch

error

is

returned.

RATLC00701671,

APAR

IC37619;

Updates

to

the

description

of

the

UserLogon

method

database

set

argument

The

description

in

the

ClearQuest

API

Reference

for

the

database_set

argument

of

the

UserLogon

method

should

be

updated

as

follows:

A

String

that

specifies

the

name

of

the

database

set

or

connection

string.

Note:

You

can

use

an

empty

string

(″″)

if

you

have

only

one

database

set

or

to

refer

to

the

default

database

set.

The

default

database

set

name

is

the

one

that

matches

the

product

version

number

(for

example,

2003.06.00).

RATLC00712943,

RATLC00712310,

APAR

IC39076;

Updates

to

the

SetFrom

method

of

the

Mail

message

object

The

SetFrom

method

section

of

the

ClearQuest

API

Reference

should

include

the

following

additional

notes.

Note:

When

sending

SMTP

e-mail

on

a

Web

server,

the

server

machine

name

is

used

as

the

″From″

part

of

the

message

instead

of

the

submitter

e-mail

address,

unless

SetFrom

is

explicitly

used.

Note:

The

SetFrom

method

does

not

work

with

MAPI.

RATLC00705405;

Correction

to

″Running

a

Query

and

Reporting

on

its

Result

Set″

code

example

In

the

Perl

code

example

in

the

″Running

a

Query

and

Reporting

on

its

Result

Set″

section

of

the

ClearQuest

API

Reference,

the

following

statement

While($status

==

AD_SUCCESS)

should

be

While($status

==

CQPerlExt::CQ_SUCCESS)

28

Documentation

Supplement

RATLC00453581,

RAMBU00050338,

RAMBU00035392,

RATLC00656939,

RATLC00712567,

RATLC00710254,

RATLC00705491,

RAMBU00009075,

RAMBU00010073,

RATLC00654966,

RAMBU00050417;

Actions

and

access

control

documentation

enhancements

New

content

should

be

included

in

the

ClearQuest

Administrator’s

Guide

that

helps

resolve

issues

with

actions,

access

control,

nested

actions,

and

notification

hooks

not

running.

For

new

information

on

actions

and

access

control,

base

actions,

nested

actions

information,

see

Actions

and

access

control

and

its

subsections.

Note:

IBM

recommends

that

you

do

not

set

any

access

control

on

Base

actions.

You

can

modify

the

access

control

to

actions,

including

actions

that

may

be

added

to

your

schema,

by

applying

packages.

However,

any

access

control

restrictions

placed

in

base

actions

apply

to

all

other

actions.

RATLC00447393;

Setting

a

field

value

or

variable

When

setting

a

variable

to

be

local

in

a

Perl

hook,

use

the

my

declaration.

Additional

information

to

what

the

ClearQuest

API

Reference

provides

on

setting

a

field

value

(that

is,

using

the

SetFieldValue

method)

is

available

in

this

release.

See

Name

lookup

in

Perl

hooks.

RAMBU00036184;

Naming

a

field

You

cannot

declare

a

constant

or

variable

with

the

name

being

the

same

as

an

existing

field

name.

RATLC00705480,

RAMBU00054500;

New

methods

that

enhance

performance

New

methods

are

available

that

provide

improved

performance

of

existing

functionality.

The

following

methods

provide

shortcuts

to

functions

provided

by

other

existing

APIs.

v

Entity

object

methods:

–

GetFieldStringValue

–

GetFieldStringValueAsList

–

GetFieldStringValues

–

SetFieldValues
v

GetAllColumnValues

method

of

the

ResultSet

object

GetFieldStringValue

v

Description

Returns

the

list

of

values

of

the

specified

field

as

a

single

String.

This

method

is

equivalent

to

first

calling

the

GetFieldValue

method

to

obtain

a

FieldInfo

object

and

then

calling

the

GetValue

method

of

the

FieldInfo

object.

This

is

a

more

direct

and

more

efficient

way

to

get

the

value

of

a

field.

v

Syntax

VBScript

entity.GetFieldStringValue

field_name

Chapter

5.

API

and

Hooks

Updates

29

Perl

$entity->GetFieldStringValue(field_name);

Identifier

Description

entity

An

Entity

object

representing

a

user

data

record.

Inside

a

hook,

if

you

omit

this

part

of

the

syntax,

the

Entity

object

corresponding

to

the

current

data

record

is

assumed

(VBScript

only).

field_name

A

String

that

identifies

a

valid

field

name

of

an

Entity.

Return

value

A

String

that

contains

the

value

or

values

stored

in

the

field.

v

See

Also

–

GetValue

of

the

FieldInfo

Object

–

GetFieldValue

–

GetFieldStringValues

–

GetFieldStringValueAsList

–

SetFieldValues

–

SetFieldValue

GetFieldStringValueAsList

v

Description

Returns

a

list

of

string

values

for

the

specified

field.

This

method

is

equivalent

to

first

calling

the

GetFieldValue

method

to

obtain

a

FieldInfo

object

(and

then

calling

GetValueAsList

method

of

the

FieldInfo

object).

This

is

a

more

direct

and

more

efficient

way

to

get

the

value

of

a

field.

v

Syntax

VBScript

entity.GetFieldStringValueAsList

field_name

Perl

$entity->GetFieldStringValueAsList(field_name);

The

field_name

argument

is

a

String

that

identifies

a

valid

field

name

of

an

Entity.

Identifier

Description

entity

An

Entity

object

representing

a

user

data

record.

Inside

a

hook,

if

you

omit

this

part

of

the

syntax,

the

Entity

object

corresponding

to

the

current

data

record

is

assumed

(VBScript

only).

field_name

A

String

that

identifies

a

valid

field

name

of

an

Entity.

Return

value

For

VBScript,

a

1-element

Variant

Array

is

returned.

The

Variant

contains

the

list

of

values,

separated

by

vbLF.

If

the

field

contains

no

values,

this

method

returns

an

Empty

Variant.

For

Perl,

a

reference

to

an

array

of

strings

containing

the

values

in

the

list.

v

See

Also

–

GetValueAsList

of

the

FieldInfo

Object

–

GetFieldStringValues

–

SetFieldValues

–

SetFieldValue

30

Documentation

Supplement

GetFieldStringValues

v

Description

This

Entity

method

allows

multiple

field

values

to

be

retrieved

with

one

call.

The

field_names

parameter

is

a

String

array

of

field

names,

and

the

result

is

a

String

array

of

field

values,

in

the

same

order

as

the

input

array.

If

there

is

an

error

retrieving

any

one

of

the

named

fields

(for

example,

if

you

specify

an

invalid

name

of

a

field),

an

exception

is

thrown.

v

Syntax

VBScript

entity.GetFieldStringValues

field_names

Perl

$entity->GetFieldStringValues(field_names);

Identifier

Description

entity

An

Entity

object

representing

a

user

data

record.

Inside

a

hook,

if

you

omit

this

part

of

the

syntax,

the

Entity

object

corresponding

to

the

current

data

record

is

assumed

(VBScript

only).

field_names

For

VBScript,

a

Variant

containing

an

array

of

strings.

Each

String

identifies

a

valid

field

name

of

this

Entity

object.

For

Perl,

a

reference

to

an

array

of

strings

containing

the

valid

field

names.

Return

value

For

VBScript,

a

Variant

containing

an

array

of

strings.

Each

String

contains

the

value

or

values

stored

for

each

of

the

specified

field

names.

For

Perl,

a

reference

to

an

array

of

strings

containing

the

value

or

values

stored

for

each

of

the

specified

field

names.

v

See

Also

–

GetFieldStringValue

–

GetFieldStringValueAsList

–

SetFieldValues

–

SetFieldValue

SetFieldValues

v

Description

Places

the

specified

values

in

the

named

fields.

This

method

allows

multiple

field

values

to

be

set

with

one

call.

The

two

input

string

arrays

are

parallel

lists,

where

field_names

lists

the

field

names

and

new_values

lists

the

field

values.

For

example,

item

N

in

field_names

provides

the

field

name

and

item

N

in

new_values

provides

the

value

for

that

field.

The

return

value

is

an

array

of

result

messages

for

each

field.

Each

result

message

is

the

same

message

that

is

returned

by

a

single

call

to

the

SetFieldValue

method.

If

there

are

no

errors,

the

result

is

a

String

array

of

the

same

number

of

elements

as

field_names,

with

each

element

being

an

empty

String.

v

Syntax

VBScript

entity.SetFieldValues

field_names,

new_values

Perl

$entity->SetFieldValues(field_names,

new_values);

Chapter

5.

API

and

Hooks

Updates

31

Identifier

Description

entity

An

Entity

object

representing

a

user

data

record.

Inside

a

hook,

if

you

omit

this

part

of

the

syntax,

the

Entity

object

corresponding

to

the

current

data

record

is

assumed

(VBScript

only).

field_names

The

list

of

field

names

for

values

to

be

set.

For

VBScript,

a

Variant

containing

an

array

of

strings.

Each

String

contains

a

valid

field

name

of

this

Entity

object.

For

Perl,

a

reference

to

an

array

of

strings

containing

the

valid

field

names.

new_values

The

list

of

field

values

to

set

for

the

specified

field

names.

For

VBScript,

a

Variant

containing

an

array

of

strings.

Each

String

contains

a

field

value.

For

Perl,

a

reference

to

an

array

of

strings

containing

the

new

values.

Return

value

For

VBScript,

a

Variant

containing

an

array

of

result

messages

for

each

field.

For

Perl,

a

reference

to

an

array

of

strings

containing

the

result

messages

for

each

field.

If

changes

to

the

field

are

permitted,

this

method

returns

an

empty

String;

otherwise,

this

method

returns

a

String

containing

an

explanation

of

the

error.

v

See

Also

–

GetFieldStringValues

–

GetFieldStringValueAsList

–

GetFieldStringValue

–

SetFieldValue

GetAllColumnValues

v

Description

Returns

all

column

values

in

the

result

set

as

an

array

of

strings

(for

Perl,

a

reference

to

an

array

of

strings).

The

result

contains

a

pair

of

strings

for

each

item:

–

The

first

string

of

each

pair

is

the

column

name

(in

uppercase).

–

The

second

string

is

the

column

value.

For

example,

given

a

query

asking

for

Id

and

Headline,

a

successful

result

of

calling

this

method

would

be

an

array

containing

4

elements:

–

″ID″

–

″SAMPL00001234″

–

″HEADLINE″

–

″This

is

a

test″

By

returning

a

pair

of

strings

for

each

column,

you

can

design

code

independent

of

the

order

of

the

items

in

the

result

set.

The

MoveNext

parameter

controls

whether

this

function

calls

the

MoveNext

method

before

retrieving

the

data.

If

there

is

an

error

executing

the

MoveNext

method,

the

return

value

of

GetAllColumnValues

is

a

result

array

containing

one

element,

the

String

form

of

the

ErrorFetchStatus

value

that

would

have

been

returned

from

the

MoveNext

method.

A

non-error

result

always

has

an

even

number

of

elements

in

the

array.

v

Syntax

VBScript

resultset.GetAllColumnValues

MoveNext

Perl

$resultset->GetAllColumnValues(MoveNext);

32

Documentation

Supplement

Identifier

Description

resultset

A

ResultSet

object,

representing

the

rows

and

columns

of

data

resulting

from

a

query.

MoveNext

A

Boolean

that

specifies

whether

or

not

to

call

the

MoveNext

method

before

retrieving

all

of

the

column

values

for

a

row

in

the

result

set.

Return

value

For

Visual

Basic,

a

Variant

array

of

strings

containing

the

column

names

and

column

values.

For

Perl,

a

reference

to

an

array

of

Strings

containing

the

column

names

and

column

values.

v

See

Also

–

MoveNext

–

Execute

–

GetColumnLabel

–

GetColumnType

–

GetNumberOfColumns

RATLC00450645,

RAMBU0046105;

ClearQuest

hooks

database

location

has

changed

The

location

of

the

ClearQuest

Hooks

database

that

is

listed

in

the

ClearQuest

API

Reference

and

in

the

ClearQuest

Administrator’s

Guide

is

no

longer

correct

nor

in

service.

You

can

access

the

hooks

by

navigating

to:

v

http://www.ibm.com/developerworks/rational/library/4236.html

v

http://www.ibm.com/developerworks/rational/products/clearquest

and

selecting

″IBM

Rational

ClearQuest

hooks

index.″

RATLC00703780,

RAMBU0010103,

APAR

IC41898;

Package-installed

hooks

are

read-only

The

following

information

on

package-installed

hooks

should

be

added

to

the

ClearQuest

Administrator’s

Guide

hooks

chapter:

When

you

install

a

package,

hooks

may

be

added

to

your

schema.

However,

these

scripts

are

part

of

the

Package

and

not

part

of

your

hook

code.

Package-owned

scripts

cannot

be

deleted.

They

are

read-only

and

not

part

of

the

code

owned

by

a

schema.

For

this

reason,

there

is

no

relationship

between

the

default

language

setting

you

choose

for

your

hook

code

and

the

language

that

hooks

owned

by

a

Package

are

implemented

in.

RATLC00699730;

Code

example

for

HasDuplicates

correction

The

code

example

for

the

HasDuplicates

method

in

the

ClearQuest

API

Reference

is

incorrect.

Here

is

the

correct

code:

$originalID

=

$entity->GetDisplayName();

if

($entity->HasDuplicates())

{

$session

=

$entity->GetSession();

$duplicateLinkList

=

$entity->GetDuplicates();

$cnt

=

$duplicateLinkList->Count();

#

Output

the

IDs

of

the

parent/child

records

for

($i

=

0;

$i<$cnt;

$i++)

{

$itm

=

$duplicateLinkList->Item($i);

$duplicateObj

=

$itm->GetChildEntity();

Chapter

5.

API

and

Hooks

Updates

33

$duplicateID

=

$duplicateObj->GetDisplayName();

$session->OutputDebugString("Parent

ID:".$originalID."

child

Id:"$duplicateID);

}

}

RATLC00697318,

RATLC00708183;

StringIdToDbId

method

of

the

Session

object

The

description

in

the

API

Reference

for

the

StringIdToDbId

method

of

the

Session

object

includes

information

about

the

format

of

IDs

for

stateless

record

types.

However,

the

method

does

not

work

for

stateless

record

types.

The

StringIdToDbId

method

(and

also

the

DbIdToStringId

method)

accept

IDs

of

the

form

used

for

stateful

record

types,

either

a

record

number

by

itself

or

with

the

database

name

at

the

front

(for

example,

SAMPL00001234).

v

The

documentation

for

both

the

StringIdToDbId

and

DbIdToStringId

methods

should

include

the

following

note:

Note:

This

method

does

not

currently

support

stateless

record

types.

v

The

description

in

the

API

Reference

for

the

StringIdToDbId

method

should

be:

Returns

the

database

ID

(DbId)

translated

from

string

ID.

The

DbId

is

a

unique

number

assigned

to

every

record

by

ClearQuest.

For

stateful

records,

the

string

ID

is

the

display

name

(for

example,

SAMPL00001234).

Note:

This

method

does

not

currently

support

stateless

record

types.

RATLC00705438;

Perl

API

Build

method

syntax

The

correct

Perl

syntax

for

getting

a

ClearQuest

Session

is:

$CQsession

=

CQSession::Build();

While

there

are

also

examples

available

using

$CQsession

=

CQPerlExt::CQSession_Build();

the

correct

syntax

is

to

use

the

Build

method

of

the

Session

object.

For

example:

use

CQPerlExt;

my

$sessionObj

=

CQSession::Build();

CQSession::Unbuild($sessionObj);

Note:

This

syntax

applies

for

all

Build

methods

available

(such

as,

in

the

AdminSession

object)

in

the

ClearQuest

Perl

API.

RATLC00701064,

RATLC00705313;

Database

object

password

methods

require

SuperUser

privilege

The

following

Database

object

password

properties

require

the

SuperUser

privilege.

v

DBOPassword

v

ROPassword

v

RWPassword

The

API

Reference

should

include

the

following

note

in

each

section

for

these

methods.

Note:

You

must

have

SuperUser

privileges

for

this

method

to

return

the

password.

For

users

without

the

SuperUser

privilege,

an

exception

is

thrown.

34

Documentation

Supplement

RATLC00698109,

RATLC00696104;

UNIX

support

for

reports

in

a

workspace

The

ClearQuest

Perl

API

now

supports

creating

and

editing

report

functionality

for

UNIX.

Perl

support

has

been

added

for

the

following

two

methods:

v

CQWorkSpaceMgr->GetReportMgrByReportDbId($report_dbid);

v

CQReportMgr->GetQueryDef();

These

methods

have

a

note

in

the

API

Reference

that

they

are

for

Windows

only.

This

is

no

longer

true

and

the

sentence

should

be

removed.

The

methods

are

now

supported

for

UNIX.

RATLC00703013,

RATLC00713905,

RATLC00702914,

APAR

IC37813;

cqole.odl

and

cqole.dll

mismatch

In

version

2003.06.00,

there

was

a

version

mismatch

between

two

files

affecting

the

ClearQuest

COM

API

(cqole.odl

and

cqole.dll)

that

causes

some

discrepancies

between

what

is

documented

in

the

API

Reference

and

what

is

visible

in

an

object

browser.

In

particular,

the

GetSuiteProductVersion

method

of

the

Session

object

and

the

methods

supporting

code

page

settings

in

the

Session

and

AdminSession

objects

do

not

appear

in

cqole.odl

nor

in

an

object

browser,

although

they

are

included

in

cqole.dll.

With

the

fix

in

version

2003.06.13,

the

new

Session

and

AdminSession

object

methods

are

now

visible

in

an

object

browser.

In

the

API

Reference,

the

GetSuiteProductVersion

method

of

the

Session

object

is

documented.

For

backwards

compatibility,

there

should

also

be

the

GetSuiteVersion

method.

This

method

returns

the

same

value

as

GetSuiteProductVersion.

GetSuiteVersion

v

Description

Returns

the

Suite

version

string.

This

is

the

same

version

string

as

the

one

returned

by

the

Suite

version

DLL

file

and

displayed

in

the

About

box

of

ClearQuest.

You

do

not

need

to

be

logged

in

to

a

database

to

use

this

method.

Note:

This

method

is

for

COM

only.

For

Perl,

see

the

ProductInfo

Object.

v

Syntax

VBScript

session.GetSuiteVersion

Identifier

Description

session

The

Session

object

that

represents

the

current

database-access

session.

Return

value

A

String

containing

the

Suite

version.

RATLC00719064;

Perl

SetActive

method

not

working

correctly

with

Boolean

as

documented

The

Perl

SetActive

methods

of

the

Group

and

User

objects

do

not

work

correctly

with

a

Boolean

argument,

as

documented

in

the

API

Reference.

The

methods

fail

if

you

use

True

or

False

for

the

argument.

The

workaround

is

to

use

1

instead

of

True

and

0

instead

of

False.

Chapter

5.

API

and

Hooks

Updates

35

SaveQueryDef

code

example

correction

The

code

example

in

the

API

Reference

for

the

SaveQueryDef

method

of

the

Workspace

object

does

not

define

the

RootFolder

variable

before

it

is

included

as

an

argument

in

the

call

to

SaveQueryDef.

The

following

line

should

be

added:

my

$RootFolder;

The

correct

code

example:

use

CQPerlExt;

my

$CQSession

=

CQSession::Build();

my

$RootFolder

=

"Public

Queries";

$CQSession->UserLogon($ologon,

$opw,

$odb,

"");

$workspace

=

$CQSession->GetWorkSpace();

$QueryDef

=

$CQSession->BuildQuery("Defect");

@owner

=

("jswift");

@state

=

("Closed");

@dbfields

=

("ID","State","Headline");

foreach

$field

(@dbfields)

{

$QueryDef->BuildField($field);

}

$FilterNode1

=

$QueryDef->BuildFilterOperator($CQPerlExt::CQ_BOOL_OP_AND);

$FilterNode1->BuildFilter("Owner",

$CQPerlExt::CQ_COMP_OP_EQ,

\@owner);

$FilterNode1->BuildFilter(’State’,

$CQPerlExt::CQ_COMP_OP_NOT_IN,

\@state);

$ResultSet

=

$CQSession->BuildResultSet($QueryDef);

$ResultSet->Execute();

$workspace->SaveQueryDef("delete

me",

$RootFolder,

$QueryDef,

1);

print

"’$RootFolder/delete

me’

copied\n";

}

CQSession::Unbuild($CQSession);

RATLC00715405;

Document

the

Session.ClearNameValues

method

The

ClearQuest

API

Reference

does

not

include

documentation

for

the

ClearNameValues

method

of

the

Session

object.

It

should

include

the

following

information:

v

Description

Clears

all

name

values

for

the

current

session.

A

name

value

defines

a

session-level

variable.

Once

it

is

set,

it

is

accessible

as

long

as

the

session

is

still

alive.

This

method

clears

up

all

defined

values

for

the

current

session.

For

more

information

on

name

values,

see

the

″NameValue″

method

and

the

″Using

Session

Variables″

sections

in

the

ClearQuest

API

Reference.

v

Syntax

VBScript

session.ClearNameValues

Perl

$session->ClearNameValues();

Identifier

Description

session

The

Session

object

that

represents

the

current

database-access

session.

Return

value

None.

36

Documentation

Supplement

SaveQueryDef

method

of

the

Workspace

object

issues

There

are

some

issues

with

the

SaveQueryDef

method

of

the

Workspace

object.

VBScript:

workspace.SaveQueryDef

qdefName,

qdefPath,

queryDef,

overwrite

Perl:

$workspace->SaveQueryDef(qdefName,

qdefPath,

queryDef,

overwrite);

v

RATLC00707958,

APAR

IC40118

The

SaveQueryDef

method

returns

an

error

if

the

query

already

exists,

with

either

a

0

or

1

value

specified

for

the

overwrite

parameter.

The

last

parameter

to

the

SaveQueryDef

method

is

a

Boolean

value

that

specifies

whether

or

not

to

overwrite

an

existing

QueryDef

object

with

the

same

name

and

path

(0

=

no

overwrite,

1

=

overwrite).

Specifying

the

value

=

1

should

not

return

an

error.

v

RATLC00708730

The

SaveQueryDef

method

does

not

copy

a

query

to

the

Public

Queries

folder.

It

creates

a

query

in

a

new

(additional)

Personal

Queries

folder

(not

in

the

Public

Queries

folder)

when

you

specify

a

pathname

(the

qdefPath

argument)

of

the

folder

in

a

Public

Queries

location.

v

RATLC00712832,

APAR

IC40152

Using

the

SaveQueryDef

method

to

save

a

query

to

a

Public

Queries

folder

returns

inconsistent

results.

When

using

the

SaveQueryDef

method

to

save

a

QueryDef

object,

the

query

does

not

appear

in

all

ClearQuest

client

interfaces,

nor

for

all

users.

RATLC00711964,

RAMBU00022729;

GetFieldRequiredness

return

value

for

read_only

fields

GetFieldRequiredness

method

of

the

Entity

object

appears

to

return

an

incorrect

value

for

read_only

fields.

When

using

the

GetFieldRequiredness

method,

it

does

not

return

a

value

of

3

to

indicate

that

a

field

is

read_only.

This

is

currently

the

correct

behavior

and

the

following

note

should

be

included

in

the

API

Reference.

Note:

Because

hooks

operate

with

Administrator

privileges

(SuperUser),

they

can

always

modify

the

contents

of

a

field,

regardless

of

its

current

behavior

setting.

If

the

field

is

read_only

to

a

ClearQuest

user

but

is

modifiable

in

the

context

of

a

hook,

then

the

return

value

is

not

read_only.

RATLC00715159,

RATLC00059373;

AddParamValue

method

allows

the

insertion

of

one

string

value

The

AddParamValue

method

of

the

ResultSet

object

can

be

used

to

assign

one

or

more

values

to

a

parameter.

However,

you

must

call

this

method

for

each

individual

value.

For

example,

for

a

query

with

a

dynamic

filter

on

the

State

field

with

two

states,

you

call

the

method

two

times:

$resultset->AddParamValue(1,

"Submitted");

$resultset->AddParamValue(2,

"Resolved");

Chapter

5.

API

and

Hooks

Updates

37

RATLC00703830,

RATLC00667284,

RAMBU00053964;

New

documentation

on

error

checking

and

validation

New

documentation

is

available

on

error

checking,

validation,

and

the

SetFieldValue

method.

See

Error

checking

and

validation

for

additional

information

to

what

is

provided

in

the

API

Reference.

RATLC00371877;

UnmarkEntityAsDuplicate

method

of

the

Session

object

note

When

a

record

is

unmarked

as

a

duplicate

using

the

UnmarkEntityAsDuplicate

method

in

a

ClearQuest

script,

it

does

not

remove

the

association

in

the

Parent-Child

Entity

table.

The

UnmarkEntityAsDuplicate

method

removes

the

association

information

from

the

Child,

but

not

from

the

Parent

entity.

The

documentation

for

the

UnmarkEntityAsDuplicate

method

in

the

API

Reference

should

include

the

following

note:

Note:

This

method

removes

the

duplicate

information

from

the

Child

entity,

but

does

not

remove

the

duplicate

information

from

the

Parent

entity.

RATLC00718478;

ValidateQueryDefName

method

of

the

Workspace

object

The

ValidateQueryDefName

method

of

the

Workspace

object

can

be

used

to

ensure

that

a

given

query

(QueryDef

object)

name

and

path

are

valid

in

the

workspace.

However,

the

description

in

the

API

Reference

describes

the

return

value

as

None.

This

is

only

true

if

the

name

and

path

are

valid.

The

method

throws

an

exception

if

the

QueryDef

name

or

path

is

not

valid.

It

checks

the

name

for

invalid

characters

and

ensures

that

the

query

itself

does

not

already

exist

in

the

folder

named

by

the

path

parameter.

If

the

QueryDef

path

is

empty,

there

is

not

a

complete

or

consistent

validation.

RATLC00721299;

GetFieldOriginalValue

method

should

include

note

Documentation

for

GetFieldOriginalValue

method

in

the

API

Reference

should

include

the

following

note

that

the

method

does

not

work

in

an

access

control

hook.

Note:

Calling

this

method

from

an

action

access

control

hook

returns

the

original

value

of

the

record’s

field

regardless

of

whether

or

not

the

current

action

is

a

change-state

action.

Upgrading

user

information

from

a

schema

repository

to

a

user

database

When

making

changes

to

user

information

in

a

schema

repository,

in

order

to

propagate

the

changes

from

the

schema

repository

to

the

user

databases

you

must

upgrade

the

user

databases

with

one

of

the

following

methods:

v

UpgradeInfo

method

of

the

User

object

Upgrades

one

user

(that

is,

one

User

object)

in

all

databases

the

user

is

subscribed

to.

It

does

not

update

group

memberships,

and

only

updates

user

properties

such

as

is-active,

e-mail,

full

name,

and

phone.

38

Documentation

Supplement

v

UpgradeMasterUserInfo

method

of

the

Database

object

Upgrades

all

user

and

group

information

for

one

database,

including

the

user

and

groups

records

and

group

memberships.

For

existing

users,

you

can

propagate

changes

with

either

of

the

following

methods:

v

Get

a

list

of

user

databases

in

the

schema

repository,

iterate

through

each

one

calling

the

UpgradeMasterUserInfo

method

of

the

Database

object

(CQDatabase->UpgradeMasterUserInfo).

v

Call

the

UpgradeInfo

method

of

the

User

object

(CQUser->UpgradeInfo).

For

newly

created

users,

if

you

create

new

ClearQuest

users

by

using

the

CreateUser

method

of

the

AdminSession

object

(CQAdminSession->CreateUser)

and

set

privileges,

password,

and

other

user

information

that

you

want

propagated

from

a

schema

repository

to

user

databases,

you

must

use

the

UpgradeMasterUserInfo

method

of

the

Database

object

(by

iterating

through

a

list

of

user

databases

in

the

schema

repository

and

calling

CQDatabase-
>UpgradeMasterUserInfo

for

each

user

database).

The

UpgradeInfo

method

was

introduced

(in

version

2003.06.00)

to

provide

a

way

to

propagate

user/group

information

from

the

schema

repository

to

all

affected

user

databases.

However,

the

method

only

works

for

an

existing

user

and

not

for

a

newly-created

user.

Note:

You

cannot

update

Group

membership

using

the

UpgradeInfo

method

of

the

User

object.

Only

the

properties

that

can

be

set

by

the

methods

of

the

User

object

are

updated

by

calling

UpgradeInfo.

Group

membership

is

changed

with

the

methods

of

the

Group

object,

and

the

UpgradeMasterUserInfo

method

of

the

Database

object

must

be

used

to

update

Group

information

settings.

RATLC00722670,

APAR

IC40986;

RegisterSchemaRepoFromFile

and

GetLastSchemaRepoInfo

documentation

update

The

RegisterSchemaRepoFromFile

and

GetLastSchemaRepoInfo

methods

of

the

AdminSession

object

are

described

in

the

API

Reference

and

should

include

the

following

updated

information:

v

RegisterSchemaRepoFromFile

Creates

a

new

database

set

(also

known

as

a

connection

in

ClearQuest

Maintenance

Tool)

using

the

file

path

argument.

Returns

an

error

message

if

an

error

occurred.

The

file

path

argument

is

the

path

name

of

a

connection

profile

file

created

by

ClearQuest

Maintenance

Tool.

Note:

This

method

does

not

currently

work

with

versions

of

ClearQuest

Maintenance

Tool

that

support

multiple

database

sets

in

a

profile

file.

v

GetLastSchemaRepoInfo

Returns

schema

repository

information

for

the

current

connection.

It

can

be

useful

to

save

the

schema

repository

connection

information

in

a

file.

This

is

called

a

schema

repository

location

file

(that

is,

a

profile

file).

The

name

of

this

file

is

stored

in

the

schema

repository

and

whenever

the

schema

repository

location

changes,

the

file

is

automatically

updated.

This

method

is

used

to

save

and

retrieve

information

from

the

file.

Chapter

5.

API

and

Hooks

Updates

39

For

versions

of

ClearQuest

that

do

not

support

multiple

database

sets,

the

GetLastSchemaRepoInfo

method

finds

the

most

recently

registered

schema

repository

(from

the

current

or

prior

releases)

to

be

used

during

an

upgrade

to

propagate

database

connections.

Note:

This

method

does

not

currently

work

for

versions

of

ClearQuest

that

support

multiple

database

sets.

Updates

to

″Ensuring

that

record

data

is

current″

section

in

API

Reference

The

″Ensuring

that

record

data

is

current″

section

in

the

API

Reference

should

be

updated

to

reflect

the

newly

documented

Reload

method

of

the

Entity

object.

The

correct

text

should

be:

In

a

multiuser

system,

you

can

view

the

contents

of

a

record

without

conflicting

with

other

users.

However,

if

another

user

is

updating

a

record

while

you

access

a

field

of

that

record,

you

might

get

the

field’s

old

contents

instead

of

the

new

contents.

The

FieldInfo

object

returned

by

the

GetFieldValue

method

of

the

Entity

object

contains

a

snapshot

of

the

field’s

data.

Calling

GetFieldValue

to

get

the

field

value

again

does

not

refresh

the

cached

data,

but

only

returns

the

previously

cached

value.

You

must

call

the

Reload

method

of

the

Entity

object

to

refresh

the

cached

information

to

see

any

changes

that

another

user

might

have

made.

RATLC00445073,

RATLC00721111,

APAR

IC39464;

Hook

Performance

issues

and

guidelines

New

content

on

performance

guidelines

should

be

included

in

the

API

Reference.

See

Performance

considerations

for

using

hooks

for

this

information.

Also

see

InvalidateFieldChoiceList

example

for

a

code

example

for

recalculating

a

choice

list.

GetValueAsList

return

value

description

is

incorrect

in

API

Reference

The

return

value

description

for

the

GetValueAsList

method

of

the

FieldInfo

object

is

incorrect

in

the

API

Reference.

The

correct

return

value

description

should

be:

For

Visual

Basic,

a

Variant

array

is

returned.

The

Variant

contains

the

list

of

values,

separated

by

vbLF

(for

scalar

fields,

returns

a

1-element

Variant

array).

If

the

field

contains

no

values,

this

method

returns

an

Empty

Variant.

Document

the

Entity.Reload

method

The

ClearQuest

API

Reference

does

not

include

documentation

for

the

Reload

method

of

the

Entity

object.

It

should

include

the

following

information:

v

Description

Refreshes

the

current

in-memory

copy

of

the

record

with

the

latest

value

from

the

database.

For

more

information,

see

Updates

to

″Ensuring

that

record

data

is

current″

section

in

API

Reference.

v

Syntax

VBScript

entity.Reload

40

Documentation

Supplement

Perl

$entity->Reload();

Identifier

Description

entity

An

Entity

object

representing

a

user

data

record.

Inside

a

hook,

if

you

omit

this

part

of

the

syntax,

the

Entity

object

corresponding

to

the

current

data

record

is

assumed

(VBScript

only).

Return

value

None.

v

See

Also

–

Commit

–

IsEditable

–

Validate

–

EditEntity

of

the

Session

Object

RATLC00717324,

RATLC00707206;

New

methods

for

hiding

records

types

This

release

of

ClearQuest

includes

a

new

feature

that

provides

record

hiding

for

record

types

that

a

user

does

not

have

authorization

to

submit.

Any

record

type

that

a

user

cannot

submit

(based

on

access

control

by

either

group

list

or

hook)

does

not

appear

in

the

record

list

(Choose

Record

Type...

dialog)

when

they

select

Actions

>

New.

With

this

feature,

users

see

a

restricted

list

of

record

types

instead

of

all

record

types

in

the

schema.

Without

this

feature,

users

see

all

record

types

but

receive

an

error

if

they

attempt

to

submit

a

record

type

for

which

they

do

not

have

authorization.

With

this

enhancement,

two

new

methods

of

the

Entity

Object

are

available

in

the

ClearQuest

API:

v

CanSubmit

v

GetEntityDefNamesForSubmit

CanSubmit

v

Description

Returns

True

if

the

current

user

is

allowed

to

submit

the

named

record

type.

The

result

is

based

on

any

access

control

applied

to

the

record

type,

such

as

a

group

list

or

a

hook.

v

Syntax

–

VBScript

entity.CanSubmit

entDefName

–

Perl

$entity->CanSubmit($entDefName);

Identifier

Description

entity

An

Entity

object

representing

a

user

data

record.

Inside

a

hook,

if

you

omit

this

part

of

the

syntax,

the

Entity

object

corresponding

to

the

current

data

record

is

assumed

(VBScript

only).

entDefName

A

String

that

specifies

the

name

of

an

EntityDef.

Return

value

A

String

that

contains

the

value

or

values

stored

in

the

field.

v

See

Also

Chapter

5.

API

and

Hooks

Updates

41

–

GetEntityDefNamesForSubmit

GetEntityDefNamesForSubmit

v

Description

Returns

the

list

of

all

record

types

the

user

is

allowed

to

submit.

Like

CanSubmit,

the

result

is

based

on

any

access

control

applied

to

the

record

type,

such

as

a

group

list

or

a

hook.

The

result

is

similar

to

GetEntityDefNames,

but

always

contains

fewer

elements,

since

GetEntityDefNames

includes

all

record

types

(such

as

User

and

Group)

which

cannot

be

submitted.

See

the

GetEntityDefNames

method

of

the

Session

object

in

the

API

Reference

for

more

information.

v

Syntax

–

VBScript

entity.GetEntityDefNamesForSubmit

–

Perl

$entity->GetEntityDefNamesForSubmit();

Identifier

Description

entity

An

Entity

object

representing

a

user

data

record.

Inside

a

hook,

if

you

omit

this

part

of

the

syntax,

the

Entity

object

corresponding

to

the

current

data

record

is

assumed

(VBScript

only).

Return

value

For

Visual

Basic,

returns

a

Variant

containing

an

array

of

Strings

containing

the

EntityDef

names

the

user

is

allowed

to

submit.

For

Perl,

returns

a

reference

to

an

array

of

Strings

containing

the

EntityDef

names

the

user

is

allowed

to

submit.

v

See

Also

–

GetEntityDefNames

of

the

Session

Object

–

CanSubmit

RATLC00696096;

CtCmd

code

examples

for

UCM/ClearQuest

integrations

The

API

Reference

should

include

the

following

new

sections

that

provide

information

on

using

CtCmd

with

the

ClearQuest

Perl

API,

for

integrations

between

ClearCase

and

ClearQuest.

Using

CtCmd

with

ClearQuest

Perl

scripts

for

ClearCase

integrations

In

order

to

facilitate

integrations

between

IBM

Rational

ClearQuest

and

ClearCase,

or

integrations

with

other

products,

it

is

useful

to

be

able

to

obtain

information

about

objects

in

ClearCase

VOBs

and

PVOBs.

From

ClearQuest

Perl

scripts,

you

can

use

CtCmd,

a

Perl

module

that

provides

an

interface

to

ClearCase.

You

can

locate

the

CtCmd

Perl

module

at:

http://cpan.org/modules/by-
category/03_Development_Support/ClearCase/CtCmd-1.03.tar.gz

In

order

to

use

this

Perl

module

in

ClearCase

triggers

for

ClearQuest

integrations

(such

as

checking

in

schema

changes),

and

in

ClearQuest

Perl

hook

scripts,

you

must

build

CtCmd

on

Windows

(following

the

instructions

included

with

the

CtCmd

kit)

and

install

it

to

a

globally

accessible

UNC

path.

In

Using

CtCmd

for

UCM

and

ClearQuest,

there

is

code

to

enable

using

the

correct

module

path

based

on

the

platform

(OSNAME

in

the

following

examples),

which

allows

the

hook

scripts

to

pass

validation

at

check

in.

42

Documentation

Supplement

Building

CtCmd

to

work

with

cqperl

on

UNIX:

After

following

the

instructions

for

unpacking

the

kit,

check

to

see

if

ratlperl

is

found

using

your

PATH

environment

variable.

If

not,

add

the

path:

setenv

PATH

/opt/rational/common/bin:$PATH

Build

from

the

directory

where

you

unpacked

the

kit:

ratlperl

Makefile.PL

make

make

test

make

install

Note

that

by

using

ratlperl,

make

install

bases

the

install

path

off

of

the

path

to

ratlperl.

In

this

example,

after

running

″make

install″,

CtCmd

is

installed

to

/opt/rational/common/lib/perl5/site_perl/5.6.1/sun4-solaris-multi/ClearCase.

This

is

acceptable

as

long

as

/opt

is

an

exported

drive

accessible

by

all

UNIX

ClearQuest

clients

(such

as

/net/qsun176/opt).

You

can

verify

the

installation

by

invoking

the

example

Perl

script

below

using

either

ratlperl

or

cqperl.

For

example:

cqperl

script_name;

Using

CtCmd

for

base

ClearCase

and

ClearQuest:

use

English;

unshift(

@INC,

"/net/qsun176/opt/rational/common/lib/perl5/site_perl/5.6.1/

sun4-solaris-multi/ClearCase"

);

require

("CtCmd.pm");

my

$ccinst

=

ClearCase::CtCmd->new();

my

$result;

#

get

parent

stream

and

stream

type

of

an

activity

my

$status;

my

$stream;

my

$istream;

my

$str_type;

my

$project;

($status,

$stream)

=

$ccinst->exec("des","-fmt","%[stream]p",

"activity:MCK00000031\@/var/tmp/beth_pvob");

print(

"Status:

"

.

$status

.

"\n"

);

($status,

$project)

=

$ccinst->exec("des","-fmt","%[project]p",

"stream:$stream\@/var/tmp/beth_pvob");

print(

"Status:

"

.

$status

.

"\n"

);

($status,

$istream)

=

$ccinst->exec("des","-fmt","%[istream]p",

"project:$project\@/var/tmp/beth_pvob");

print(

"Status:

"

.

$status

.

"\n"

);

print(

"Activity:

MCK00000031\nStream:

"

.

$stream

.

"\nProject:

"

.

$project

.

"\nIntegration

Stream:

"

.

$istream

.

"\n"

);

#

find

out

if

stream

is

integration

stream

if

(

$stream

!~

$istream

)

{

$result

=

"Current

stream

is

not

the

integration

stream";

}

else

{

$result

=

"Current

stream

is

the

integration

stream";

}

print($result);

Using

CtCmd

for

UCM

and

ClearQuest:

Chapter

5.

API

and

Hooks

Updates

43

#

Start

of

Global

Script

UCU_CQActBeforeChact

sub

UCU_CQActBeforeChact

{

#

the

English

Perl

module

is

necessary

for

the

use

of

the

OSNAME

variable

use

English;

if

(

$OSNAME

=~

/Win/i

)

{

#

UNC

path

to

CtCmd.pm

built

for

Windows

unshift

(

@INC,

"//otterpop/c/Progra\~1/Perl/site/lib/ClearCase"

);

}

else

{

#

NFS

path

to

CtCmd.pm

built

for

Solaris

#

if

other

platforms

will

be

used,

this

block

should

also

check

for

the

#

Unix

platform

and

set

the

include

path

accordingly.

unshift

(

@INC,

"/net/qsun176/usr1/rational/common/lib/perl5/site_perl/5.6.1/

sun4-solaris-multi/ClearCase"

);

}

require

("CtCmd.pm");

my

($result);

my

($param)

=

@_;

#

#

This

record

hook

is

invoked

by

SQUID

to

invoke

the

"Perform

ClearQuest

#

Action

Before

Changing

Activity"

policy.

If

the

activity

is

not

in

#

a

single

stream

project,

or

is

not

in

the

project’s

integration

#

stream,

the

UCM

change

activity

should

fail.

#

#

INPUT:

#

-

Param

must

be

a

string

with

this

format:

#

"entity-type|entity-id|project_info|stream_info"

(vertical

bars

are

#

delimeters)

#

which

represents

the

entity

bound

to

the

SUM_Project

which

was

#

delivered,

and

whether

the

entity

is

valid

or

not

#

OUTPUT:

#

-

If

the

entity

is

valid,

this

returns

an

empty

string

#

-

If

the

entity

is

not

valid,

this

returns

a

string

#

to

be

displayed

as

an

error

message.

#

#

Parse

the

param

string,

but

we

will

ignore

project_info

and

stream_info

#

in

this

example

my

$entity_type;

my

$entity_id;

my

$project_info;

my

$stream_info;

($entity_type,

$entity_id,

$project_info,

$stream_info)

=

split

(’\|’,

$param);

#

Create

CtCmd

instance

my

$inst_cc

=

ClearCase::CtCmd->new();

#

get

parent

stream

and

stream

type

my

$status;

my

$stream;

my

$istream;

my

$str_type;

my

$project;

#

get

the

stream

name

from

the

entity_id

($status,

$stream)

=

$inst_cc->exec("des","-fmt","%[stream]p",$entity_id);

#

get

the

project

name

from

the

stream

($status,

$project)

=

$inst_cc->exec("des","-fmt","%[project]p",$stream);

#

get

the

name

of

the

project’s

integration

stream

($status,

$istream)

=

$inst_cc->exec("des","-fmt","%[istream]p",

$project);

#

get

parent

project

type

(note:

model

fmt

is

broken

in

MCK,

returns

blank

string)

my

$proj_type;

($status,

$proj_type)

=

$inst_cc->exec("des","-fmt","%[model]p",$project);

#

find

out

if

project

is

single

stream

or

parent

stream

is

#

integration

stream

#

NOTE:

if

proj_type

is

SIMPLE,

then

stream

should

always

be

an

#

integration

stream

if

(

($proj_type

!~

"SIMPLE")

&&

($stream

!~

$istream)

)

{

$result

=

"Unable

to

change

activity";

44

Documentation

Supplement

}

else

{

$result

=

"";

}

return

$result;

}

#

End

of

Global

Script

UCU_CQActBeforeChact

Windows

platforms:

For

integrations

between

ClearQuest

and

ClearCase,

there

is

no

solution

for

Windows

at

this

time

using

CtCmd.

Instead,

use

the

ClearCase

Automation

Library

(CAL).

For

more

information

and

a

code

example,

see

″Using

CAL

methods

in

ClearQuest

hook

scripts″

in

the

ClearQuest

Administrator’s

Guide.

VBScript

Code

Example

Errors

in

API

Reference

There

are

two

VBScript

code

examples

in

the

API

Reference

that

are

incorrect

and

should

be

updated

with

the

following

code.

v

VBScript

Code

example

error

for

GetChildEntity

method

of

the

Link

object.

There

should

be

a

set

statement

before

duplicateObj

=

duplicateLink.GetChildEntity.

The

object

(duplicateObj)

also

needs

to

be

defined

with

the

Dim

statement.

The

correct

example

is:

originalID

=

GetDisplayName

If

HasDuplicates

Then

duplicateLinkList

=

GetDuplicates

’

Output

the

IDs

of

the

parent/child

records

Dim

duplicateObj

For

Each

duplicateLink

In

duplicateLinkList

set

duplicateObj

=

duplicateLink.GetChildEntity

duplicateID

=

duplicateObj.GetDisplayName

OutputDebugString

"Parent

ID:"

&

originalID

&

_

"

child

Id:"

&

duplicateID

Next

End

if

v

VBScript

Code

example

error

for

GetEntityDefNames

method

of

the

Session

object.

There

should

not

be

a

set

statement

before

entityDefNames

=

sessionObj.GetEntityDefNames.

The

correct

example

is:

set

sessionObj

=

GetSession

’

Get

the

list

of

names

of

all

record

types.

entityDefNames

=

sessionObj.GetEntityDefNames

’

Iterate

over

all

the

record

types

for

each

name

in

entityDefNames

set

entityDefObj

=

sessionObj.GetEntityDef(name)

’

Do

something

with

the

EntityDef

object

Next

RATLC00715484;

Version

information

for

newer

ClearQuest

API

methods

This

section

lists

functions

in

the

Perl

and

COM

APIs

that

became

available

in

ClearQuest

version

2003.06.00

and

in

version

2002.05.00.

New

in

version

2003.06.00

The

following

note

should

be

added

to

the

following

methods

in

the

API

Reference:

Note:

This

method

became

available

in

version

2003.06.00.

v

For

both

the

COM

and

Perl

APIs:

Chapter

5.

API

and

Hooks

Updates

45

–

AdminSession

object:

-

IsStringInCQDataCodePage

-

CQDataCodePageIsSet

-

IsUnsupportedClientCodePage

-

IsClientCodePageCompatibleWithCQDataCodePage

-

GetCQDataCodePage

-

GetClientCodePage

-

ValidateStringInCQDataCodePage
–

Entity

object:

-

GetFieldStringValue

-

GetFieldStringValueAsList

-

GetFieldStringValues

-

SetFieldValues
–

EntityDef

object:

-

LookupFieldDefNameByDbName

-

LookupFieldDefDbNameByName
–

Session

object:

-

IsRestrictedUser

-

SetRestrictedUser

-

IsStringInCQDataCodePage

-

CQDataCodePageIsSet

-

IsUnsupportedClientCodePage

-

IsClientCodePageCompatibleWithCQDataCodePage

-

GetCQDataCodePage

-

GetClientCodePage

-

ValidateStringInCQDataCodePage
–

ResultSet

object:

-

GetAllColumnValues

-

UpgradeInfo
v

For

the

COM

API

only:

–

Session

object:

-

GetSuiteProductVersion

New

in

version

2002.05.00

The

following

note

should

be

added

to

the

following

methods

in

the

API

Reference:

Note:

This

method

became

available

in

version

2002.05.00.

v

For

both

the

COM

and

Perl

APIs:

–

Session

object:

-

IsReplicated

-

EntityExists

-

EntityExistsByDbId

-

IsMultisiteActivated

-

RegisterSchemaRepoFromFileByDbSet

-

IsPackageUpgradeNeeded

46

Documentation

Supplement

-

StringIdToDbId

-

DbIdToStringId
–

Workspace

object:

-

GetPublicFolderName

-

GetPersonalFolderName

-

GetWorkspaceItemDbIdList

-

SiteExtendedNameRequired

-

GetWorkspaceItemName

-

GetWorkspaceItemSiteExtended

-

GetWorkspaceItemPathName

-

GetWorkspaceItemType

-

RenameWorkspaceItemByDbId

-

DeleteWorkspaceItemByDbId

-

GetQueryDefByDbId

-

InsertNewQueryDef

-

UpdateQueryDef

-

GetChartDef

-

GetChartDefByDbId

-

InsertNewChartDef

-

UpdateChartDef

-

GetReportMgrByReportDbId

-

CreateWorkspaceFolder

-

GetQueryDbIdList

-

GetChartDbIdList

-

GetReportDbIdList

-

GetWorkspaceItemParentDbId
–

AdminSession

object:

-

IsReplicated

-

IsMultisiteActivated

-

GetLastSchemaRepoInfoByDbSet

-

RegisterSchemaRepoFromFileByDbSet
v

For

the

COM

API

only:

–

Session

object:

-

GetProductVersion

-

GetSuiteVersion

-

GetStageLabel
v

For

the

Perl

API

only:

–

AdminSession

object:

-

GetLocalReplicaName

-

GetReplicaNames
–

Attachments

object:

-

Exists
–

ClearQuest

object:

-

IsWindows

-

IsUnix

Chapter

5.

API

and

Hooks

Updates

47

–

Entity

object:

-

AddAttachmentFieldValue

-

DeleteAttachmentFieldValue

-

EditAttachmentFieldDescription

-

LoadAttachment

-

GetAttachmentDisplayNameHeader

-

EditEntity
–

Group

object:

-

RemoveUser

-

GetMasterReplicaName

-

SetMasterReplicaByName
–

ProdInfo

object:

-

GetSuiteProductVersion
–

QueryDef

object:

-

IsFieldLegalForQuery

-

GetPrimaryEntityDefName
–

Session

object:

-

GetEntityDefOrFamily

-

IsWindows

-

IsUnix

-

GetProductInfo
–

User

object:

-

SetUserPrivilege

-

GetUserPrivilege

-

GetMasterReplicaName

-

SetMasterReplicaByName

48

Documentation

Supplement

Chapter

6.

MultiSite

documentation

updates

Upgrading

a

schema

version

with

ClearQuest

MultiSite

This

procedure

describes

how

to

introduce

a

new

schema

version

to

a

ClearQuest

MultiSite

clan

by

synchronizing

the

new

schema

to

all

sites

before

upgrading

any

user

databases.

IBM

Rational

requires

that

you

follow

this

procedure

to

help

ensure

a

stable

and

reliable

ClearQuest

MultiSite

environment.

In

addition

to

following

this

procedure,

you

must

also

not

do

the

following

when

using

ClearQuest

MultiSite:

v

Delete

record

types

and

states

v

Change

the

working

master

if

all

databases

are

not

using

the

same

schema

version

v

Change

mastership

of

package-owned

queries

Upgrade

instructions

1.

Make

the

desired

schema

changes

and

test

them

against

a

local

test

database.

2.

Notify

all

users

that

maintenance

is

scheduled

and

they

must

disconnect

from

all

user

databases

in

the

ClearQuest

MultiSite

clan.

3.

Suspend

automated

synchronization

between

all

user

databases

in

the

ClearQuest

MultiSite

clan.

4.

(Optional)

Stop

and

restart

your

vendor

database

server

to

ensure

that

there

are

no

open

connections

to

the

schema

repository

or

user

databases.

5.

Synchronize

all

sites

in

the

ClearQuest

MultiSite

clan.

After

synchronization,

check

the

incoming

and

outgoing

storage

bays

to

make

sure

that

all

packets

were

sent

and

imported.

Run

the

lsepoch

command

at

each

site

to

verify

that

all

replicas

report

the

same

epoch

estimates.

6.

Back

up

all

schema

repositories

and

user

databases

in

the

ClearQuest

MultiSite

clan.

7.

Check

in

the

new

schema

version

at

the

master

schema

repository

replica,

but

DO

NOT

upgrade

the

user

database.

8.

Export

and

send

an

update

packet

from

the

MASTR

family

only

(not

the

user

database

family)

to

all

other

sites

in

the

clan.

multiutil

syncreplica

-export

-clan

DEMO

-site

SITEA

-family

MASTR

-u

admin

-p

""

-out

c:\cqms\syncA.xml

SITEB

Multiutil:

Packet

file

’c:\cqms\syncA.xml’

generated

9.

Import

the

update

packet

at

all

sites.

multiutil

syncreplica

-import

-clan

DEMO

-site

SITEB

-family

MASTR

-u

admin

-p

""

c:\cqms\syncA.xml

Multiutil:

1

transactions

from

SITEA

have

been

replayed

into

the

MASTR

database

Multiutil:

Deleting

packet

c:\cqms\syncA.xml

Note:

At

this

point,

the

schema

version

exists

at

all

the

sites

in

the

clan,

but

the

user

databases

have

not

been

upgraded.

©

Copyright

IBM

Corp.

1997,

2004

49

10.

Upgrade

the

user

databases

by

performing

the

following

steps.

This

ensures

that

all

replicas

in

the

family

are

running

the

same

version

of

the

schema

before

synchronization

is

restarted.

a.

Upgrade

the

user

database

at

the

working

master

site.

b.

Synchronize

all

sites.

c.

Upgrade

the

user

databases

at

all

remaining

sites.
11.

Restart

synchronization

among

the

user

databases

at

your

sites.

12.

Confirm

that

all

synchronizations

are

successful

and

that

all

user

databases

in

the

clan

are

using

the

same

schema

version.

13.

Notify

users

that

the

replicas

are

available.

Synchronizing

multiple

user

database

families

with

msimportauto.bat

The

Administrator’s

Guide

for

Rational

ClearQuest

MultiSite

does

not

include

information

about

the

new

msimportauto.bat

script

that

you

can

use

to

synchronize

replicas

with

multiple

user

database

families.

The

following

sections

explain

when

to

use

the

tool

and

provide

syntax

examples

and

instructions.

Why

should

I

use

the

msimportauto.bat

script?

In

certain

circumstances,

successful

import

of

user

database

update

packets

may

depend

on

information

contained

in

other

user

database

packets.

If

your

schema

repository

is

associated

with

multiple

user

database

families,

import

may

fail

if

the

packets

are

not

replayed

in

the

order

they

were

generated.

Example

A

particular

clan,

with

sites

in

Boston

and

Denver

has

two

user

databases,

User1

and

User2.

The

Boston

administrator

generates

a

synchronization

packet

for

User1

(Packet1)

and

then

generates

one

for

User2

(Packet2).

While

the

packets

are

being

created,

an

administrator

modifies

user

account

information;

this

causes

schema

repository

oplog

content

to

be

included

in

both

of

the

user

database

packets.

Some

time

later,

the

Boston

administrator

generates

another

pair

of

user

database

synchronization

packets

for

User1

(Packet3)

and

User2

(Packet4).

Again,

an

administrator

modifies

user

account

information

while

the

packets

are

being

created,

and

schema

repository

oplog

content

is

included

in

both

user

database

packets.

All

four

packets

are

sent

to

the

Denver

site.

At

the

Denver

site,

the

administrator

runs

syncreplica

-import

and

specifies

the

User1

database

family.

Packet1

and

Packet3

are

both

intended

for

the

User1

family.

Import

of

Packet1

is

successful

and

replays

oplogs

in

User1

and

the

schema

repository.

However,

import

of

Packet3

fails,

because

it

depends

on

schema

repository

database

oplogs,

contained

in

Packet2,

which

have

not

yet

been

replayed

at

the

Denver

replica.

Solution

To

avoid

this

situation,

packets

created

at

the

exporting

site

must

be

replayed

in

the

same

sequence

at

the

importing

sites.

IBM

recommends

that

you

use

the

msimportauto.bat

script,

which

is

included

with

this

version

of

ClearQuest.

This

script

scans

the

import

directory

for

update

packets

and

then

attempts

to

import

the

packets

to

each

family.

If

any

packets

are

successfully

imported,

the

imported

packets

are

deleted

from

the

directory

and

the

script

attempts

to

import

the

next

packet.

The

script

stops

executing

when

all

packets

are

replayed

and

the

directory

is

empty.

If

a

series

of

import

attempts

results

in

no

packets

being

deleted

from

the

directory,

the

script

stops

executing

and

import

fails.

50

Documentation

Supplement

Running

msimportauto.bat

Use

the

msimportauto.bat

script

to

import

update

packets

in

the

correct

order

when

a

clan

contains

multiple

user

databases.

The

script

can

also

be

used

to

perform

syncreplica

-export.

Syntax

msimportauto

[

-debug

level

][

-MaxLoops

num-loops

[

-TimeToWait

seconds

]]

[

-AndDoExport

]{

-clan

clan-name

clan-info

}

Operating

modes

This

program

operates

in

one

of

the

following

modes:

v

Synchronize

now.

The

program

receives

pending

updates,

sends

pending

updates

(optionally,

with

-AndDoExport),

and

exits.

Use

this

mode

if

you

want

to

synchronize

immediately

or

if

you

want

to

schedule

program

execution

with

an

external

scheduler

package,

such

as

the

Windows

Scheduled

Tasks

facility

or

the

ClearCase

scheduler.

v

Loop

and

wait.

The

program

receives

pending

updates,

sends

pending

updates

(optionally,

with

-AndDoExport),

sleeps

a

specified

number

of

seconds;

it

then

loops

back

and

receives,

sends,

and

sleeps

again.

Use

this

mode

if

you

want

the

program

to,

in

effect,

act

as

its

own

scheduler.

Options

and

arguments

-debug

level

Set

the

debug

level:

0

Apply

packets

to

database;

don’t

produce

any

debugging

output

1..9

Show

diagnostic

information

and

apply

packets

to

database

(higher

numbers

show

more

granular

output)

10+

Show

diagnostic

information,

don’t

apply

packets

to

database

-MaxLoops

num-loops

Specifies

the

number

of

times

the

script

will

perform

a

receive,

send,

and

sleep

cycle

(one

iteration)

in

loop-and-wait

mode.

-TimeToWait

seconds

Specifies

the

amount

of

time,

in

seconds,

between

iterations.

If

-MaxLoops

is

specified,

but

-TimeToWait

is

not,

the

default

is

30

seconds

between

iterations.

-AndDoExport

Issue

syncreplica

-export

commands

for

the

input

databases

(includes

export

as

part

of

the

receive,

send,

and

sleep

cycle).

-clan

clan-name

Specifies

the

clans

to

synchronize.

Multiple

clans

may

be

specified

in

one

command,

but

the

-clan

switch

must

be

repeated.

clan-info

Specify

clan-info

in

the

following

format

(no

spaces):

admin_username,admin_password;storage_class

|

directory;family_1,my_site,other_site_1[,other_site_2,]...[,other_site_n]

[;family_2,my_site,other_site_1...]...[;family_n,my_site,other_site_1

[,other_site_2,]...[,other_site_n]]

Chapter

6.

MultiSite

documentation

updates

51

my_site

is

the

local

site

that

will

be

imported

into

and

exported

from.

other_site_#

specifies

the

other

sites

in

the

clan

to

be

exported

to

and

imported

from.

Examples

The

following

commands

must

be

entered

on

one

line.

v

In

this

example,

two

clans,

TEST

and

TEST1

are

synchronized.

TEST

contains

two

user

database

families

(te

and

te2)

and

TEST1

contains

one

(d2).

Both

clans

use

directories

to

store

packets.

msimportauto

-debug

1

-clan

TEST

admin,"";C:\testdir\test;te,siteb,sitea;te2,siteb,sitea-clan

TEST1

admin,"";c:\testdir\test;d2,sitea,siteb

v

In

this

example,

three

clans

(TESTCLAN,

TESTCLAN2,

and

TESTCLAN3)

are

synchronized.

Clan

TESTCLAN

consists

of

two

user

database

families,

te

and

te2.

Clans

TESTCLAN

and

TESTCLAN3

use

the

MultiSite

synchronization

server,

while

TESTCLAN2

uses

the

directory

c:\TESTCLAN2

to

store

packets.

msimportauto

-debug

0

-MaxLoops

2

-TimeToWait

30

-clan

TESTCLANadmin,"";

cq_default;te,SITEA,SITEB,SITEC;te2,SITEA,SITEB

-clan

TESTCLAN2

admin,"";c:\TESTCLAN2;d2,SITEA,SITEB

-clan

TESTCLAN3

admin,"";cq_default;dt3,SITEA,SITEB-AndDoExport

repair

Displays

or

deletes

entries

from

the

ratl_uuid

table

of

a

replica

Applicability

Product

Command

type

MultiSite

multiutil

subcommand

Platform

UNIX

Windows

Synopsis

repair

-orphaned_ratl_uuids

[

-delete

]

-cl/an

clan-name

-site

site-name

-fam/ily

family-name

-u/ser

username

[

-p/assword

]

password

Description

If

the

ratl_uuid

table

of

a

replica

contains

entries

that

are

not

also

included

in

the

master_uuid

table,

a

mkreplica

command

may

fail

in

one

of

the

following

ways:

v

The

mkreplica

-export

operation

succeeds,

but

the

import

operation

fails

v

The

mkreplica

-export

operation

fails

with

the

following

error:

There

are

num-entries

entries

in

the

ratl_uuids

table

that

have

no

corresponding

rows

in

the

master_uuids

table.

To

remove

these

’orphaned’

rows

from

the

ratl_uuids

table,

please

backup

the

master

and

user

databases,

then

execute

’multiutil

repair

-orphaned_ratl_uuids

-delete

...’,

specifying

the

same

clan,

site,

family,

user

and

52

Documentation

Supplement

password

information.

Multiutil:

The

mkreplica

-export

command

failed.

You

can

use

the

repair

command

to

view

or

delete

the

″orphaned″

entries

in

the

ratl_uuid

table.

After

you

delete

the

entries

from

the

ratl_uuid

table,

mkreplica

-export

and

-import

operations

will

no

longer

fail.

Locking

the

Replica

The

repair

command

locks

the

specified

database

replica.

Locking

it

ensures

that

while

the

repair

command

is

running,

no

other

changes

are

made

to

the

replica.

The

database

replica

is

unlocked

after

the

repair

command

is

completed.

Restrictions

Locks:

This

command

fails

if

the

database

is

locked

(for

example,

during

the

upgrade

process)

or

while

another

ClearQuest

MultiSite

operation

is

being

performed.

Options

and

arguments

Specifying

the

operation

Default

Displays

all

entries

in

the

ratl_uuids

table

that

have

no

corresponding

rows

in

the

master_uuids

table.

-delete

Deletes

all

entries

in

the

ratl_uuids

table

that

have

no

corresponding

rows

in

the

master_uuids

table.

Specifying

the

clan,

site,

and

family

Default

Clan:

First

clan

replicated

at

this

site.

If

there

is

more

than

one

clan

at

the

site,

–clan

is

required.

Site:

Current

site.

If

there

is

more

than

one

site

on

this

host,

–site

is

required.

Family:

No

default;

you

must

specify

a

family.

–cl/an

clan-name

Name

of

the

replica‘s

clan.

–site

site-name

Name

of

the

replica‘s

site.

–fam/ily

family-name

User

database

family:

Database

name

given

to

the

user

database

when

it

was

created.

Schema

repository

family:

The

family

name

is

MASTR.

Specifying

a

user

name

and

password

Default

You

must

specify

a

user

name

and

password.

–u/ser

user

Name

of

a

user

with

Super

User

privileges.

Chapter

6.

MultiSite

documentation

updates

53

–p/assword

password

Password

associated

with

the

specified

user.

Examples

In

these

examples,

the

lines

are

broken

for

readability.

You

must

enter

each

command

on

a

single

physical

line.

v

At

the

boston_hub

replica,

display

a

list

of

all

entries

in

the

ratl_uuids

table

that

have

no

corresponding

rows

in

the

master_uuids

table.

multiutil

repair

-orphaned_ratl_uuids

-clan

telecomm

-site

boston_hub

-family

DEV

-user

susan

-p

passwd

v

Delete

all

entries

in

the

ratl_uuids

table

of

the

boston_hub

replica

that

have

no

corresponding

rows

in

the

master_uuids

table.

multiutil

repair

-orphaned_ratl_uuids

-delete

-clan

telecomm

-site

boston_hub

-family

DEV

-user

susan

-p

passwd

See

also

mkreplica

54

Documentation

Supplement

Appendix.

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

grant

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

″AS

IS″

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

©

Copyright

IBM

Corp.

1997,

2004

55

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

IBM

Corporation

Department

BCFB

20

Maguire

Road

Lexington,

MA

02421

U.S.A.

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

document

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement

or

any

equivalent

agreement

between

us.

Any

performance

data

contained

herein

was

determined

in

a

controlled

environment.

Therefore,

the

results

obtained

in

other

operating

environments

may

vary

significantly.

Some

measurements

may

have

been

made

on

development-level

systems

and

there

is

no

guarantee

that

these

measurements

will

be

the

same

on

generally

available

systems.

Furthermore,

some

measurement

may

have

been

estimated

through

extrapolation.

Actual

results

may

vary.

Users

of

this

document

should

verify

the

applicable

data

for

their

specific

environment.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs

in

source

language,

which

illustrates

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

IBM’s

application

programming

interfaces.

Each

copy

or

any

portion

of

these

sample

programs

or

any

derivative

work,

must

include

a

copyright

notice

as

follows:

(c)

(your

company

name)

(year).

Portions

of

this

code

are

derived

from

IBM

Corp.

Sample

Programs.

(c)

Copyright

IBM

Corp.

_enter

the

year

or

years_.

All

rights

reserved.

Additional

legal

notices

are

described

in

the

legal_information.html

file

that

is

included

in

your

Rational

software

installation.

Trademarks

56

Documentation

Supplement

IBM,

Rational,

DB2

,

ClearCase,

ClearCase

MultiSite,

ClearQuest,

and

RequisitePro

are

trademarks

of

International

Business

Machines

Corporation

in

the

United

States,

other

countries,

or

both.

Java

and

all

Java-based

trademarks

and

logos

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Microsoft,

Windows,

Windows

NT,

and

the

Windows

logo

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Linux

is

a

trademark

of

Linus

Torvalds

in

the

United

States,

other

countries,

or

both.

Other

company,

product

or

service

names

may

be

trademarks

or

service

marks

of

others.

Appendix.

Notices

57

58

Documentation

Supplement

Readers’

Comments

—

We’d

Like

to

Hear

from

You

ClearQuest

Documentation

Supplement

Windows

Version

2003.06.13,

UNIX

patch

2003.06.00–6

Publication

No.

GI11-5979-00

Overall,

how

satisfied

are

you

with

the

information

in

this

book?

Very

Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Overall

satisfaction h h h h h

How

satisfied

are

you

that

the

information

in

this

book

is:

Very

Satisfied Satisfied Neutral Dissatisfied Very

Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy

to

find h h h h h

Easy

to

understand h h h h h

Well

organized h h h h h

Applicable

to

your

tasks h h h h h

Please

tell

us

how

we

can

improve

this

book:

Thank

you

for

your

responses.

May

we

contact

you?

h

Yes

h

No

When

you

send

comments

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

your

comments

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

Name

Address

Company

or

Organization

Phone

No.

Readers’

Comments

—

We’d

Like

to

Hear

from

You

GI11-5979-00

GI11-5979-00

����

Cut

or

Fold
Along

Line

Cut

or

Fold
Along

Line

Fold

and

Tape

Please

do

not

staple

Fold

and

Tape

Fold

and

Tape

Please

do

not

staple

Fold

and

Tape

NO

POSTAGE
NECESSARY
IF

MAILED

IN

THE
UNITED

STATES

BUSINESS

REPLY

MAIL

FIRST-CLASS

MAIL

PERMIT

NO.

40

ARMONK,

NEW

YORK

POSTAGE

WILL

BE

PAID

BY

ADDRESSEE

IBM

Corporation

Attn:

Dept

CZLA

20

Maguire

Road

Lexington,

MA

02421-3112

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

����

Printed

in

USA

GI11-5979-00

	Contents
	Figures
	Tables
	About this book
	Who should read this book
	Typographical conventions
	Related information
	ClearQuest documentation roadmap

	Contacting IBM Rational Customer Support

	Summary of changes
	Chapter 1. Introduction
	Chapter 2. New code page features
	Setting the data code page in the ClearQuest Maintenance Tool
	What are code pages?
	Setting the data code page for a new schema repository
	Changing the ClearQuest data code page for existing schema repositories

	Supporting the EUC-JP code page
	Using installutil setdbcodepagetoeucjpsafeshiftjis

	Chapter 3. Simplifying deployment with new database drivers
	Functions of database property pages
	Setting database properties for Oracle
	Setting database properties for SQL Server

	Chapter 4. Changes to command-line utilites
	Updating connect options for installutil
	Specifying connect options in installutil for Oracle
	Specifying connect options in installutil for SQL Server

	New subcommand — installutil registerconnectoptions
	Syntax

	New subcommand — installutil getconnectoptions
	Syntax

	Updating connect options for pdsql
	Specifying connect options in pdsql for Oracle
	Specifying connect options in pdsql for SQL Server

	Using cqreg refresh for ClearQuest clients on UNIX

	Chapter 5. API and Hooks Updates
	New content
	Error checking and validation
	Debugging your code
	Actions and access control
	Primary actions
	Base actions
	Nested actions

	Name lookup in Perl hooks
	Default entity
	Editing an existing record
	When the record is committed
	Performance considerations for using hooks
	InvalidateFieldChoiceList example
	Using Perl for external applications
	RATLC00702699, APAR IC37754; Documentation for the highlighting of keywords in the ClearQuest Designer script editor
	Modifying the colors of an existing color group
	Adding color groups

	Corrections and other changes to documentation
	RATLC00708226, RATLC00706668, RAMBU00050315; Commit behavior documentation enhancements
	RATLC00712744; Syntax is incorrect for the GetFieldRequiredness method
	RATLC00712920, RATLC00710309, RAMBU00054358, RAMBU00056057; Date timestamp issues
	RATLC00696630, RATLC00696270, RATLC00696759, RATLC00710896; Generating reports and updates to SetHTMLFilename documentation
	RATLC00705428; SuperUser privilege required for SetUserName method
	RATLC00707609; Methods to set and get user privileges
	GetUserPrivilege
	SetUserPrivilege

	RATLC00666959, RATLC00698133, RAMBU00046241; Creating PERL and VBScript Hooks of the same name causes the creation of new hooks to fail
	RATLC00712994, RAMBU00036659; CQString is not MBCS, which is not suitable for internationalization
	RATLC00703293, APAR IC37932; SetLoginName method update
	RATLC00701671, APAR IC37619; Updates to the description of the UserLogon method database set argument
	RATLC00712943, RATLC00712310, APAR IC39076; Updates to the SetFrom method of the Mail message object
	RATLC00705405; Correction to "Running a Query and Reporting on its Result Set" code example
	RATLC00453581, RAMBU00050338, RAMBU00035392, RATLC00656939, RATLC00712567, RATLC00710254, RATLC00705491, RAMBU00009075, RAMBU00010073, RATLC00654966, RAMBU00050417; Actions and access control documentation enhancements
	RATLC00447393; Setting a field value or variable
	RAMBU00036184; Naming a field
	RATLC00705480, RAMBU00054500; New methods that enhance performance
	GetFieldStringValue
	GetFieldStringValueAsList
	GetFieldStringValues
	SetFieldValues
	GetAllColumnValues

	RATLC00450645, RAMBU0046105; ClearQuest hooks database location has changed
	RATLC00703780, RAMBU0010103, APAR IC41898; Package-installed hooks are read-only
	RATLC00699730; Code example for HasDuplicates correction
	RATLC00697318, RATLC00708183; StringIdToDbId method of the Session object
	RATLC00705438; Perl API Build method syntax
	RATLC00701064, RATLC00705313; Database object password methods require SuperUser privilege
	RATLC00698109, RATLC00696104; UNIX support for reports in a workspace
	RATLC00703013, RATLC00713905, RATLC00702914, APAR IC37813; cqole.odl and cqole.dll mismatch
	RATLC00719064; Perl SetActive method not working correctly with Boolean as documented
	SaveQueryDef code example correction
	RATLC00715405; Document the Session.ClearNameValues method
	SaveQueryDef method of the Workspace object issues
	RATLC00711964, RAMBU00022729; GetFieldRequiredness return value for read_only fields
	RATLC00715159, RATLC00059373; AddParamValue method allows the insertion of one string value
	RATLC00703830, RATLC00667284, RAMBU00053964; New documentation on error checking and validation
	RATLC00371877; UnmarkEntityAsDuplicate method of the Session object note
	RATLC00718478; ValidateQueryDefName method of the Workspace object
	RATLC00721299; GetFieldOriginalValue method should include note
	Upgrading user information from a schema repository to a user database
	RATLC00722670, APAR IC40986; RegisterSchemaRepoFromFile and GetLastSchemaRepoInfo documentation update
	Updates to "Ensuring that record data is current" section in API Reference
	RATLC00445073, RATLC00721111, APAR IC39464; Hook Performance issues and guidelines
	GetValueAsList return value description is incorrect in API Reference
	Document the Entity.Reload method
	RATLC00717324, RATLC00707206; New methods for hiding records types
	CanSubmit
	GetEntityDefNamesForSubmit

	RATLC00696096; CtCmd code examples for UCM/ClearQuest integrations
	Using CtCmd with ClearQuest Perl scripts for ClearCase integrations

	VBScript Code Example Errors in API Reference
	RATLC00715484; Version information for newer ClearQuest API methods
	New in version 2003.06.00
	New in version 2002.05.00

	Chapter 6. MultiSite documentation updates
	Upgrading a schema version with ClearQuest MultiSite
	Upgrade instructions

	Synchronizing multiple user database families with msimportauto.bat
	Why should I use the msimportauto.bat script?
	Example
	Solution

	Running msimportauto.bat
	Syntax
	Operating modes
	Options and arguments
	Examples

	repair
	Applicability
	Synopsis
	Description
	Restrictions
	Options and arguments
	Examples
	See also

	Appendix. Notices
	Readers’ Comments — We'd Like to Hear from You

