GEVOLELS ClearQuest

Windows Version 2003.06.13, UNIX patch 2003.06.00-6
Windows and UNIX

Documentation Supplement

GI11-5979-00

CEVIEIN ClearQuest

Windows Version 2003.06.13, UNIX patch 2003.06.00-6
Windows and UNIX

Documentation Supplement

GI11-5979-00

Note
FBefore using this information and the product it supports, read the information in|“Notices,” on page 55/

1st edition (September 2004)

This edition applies to Windows Version 2003.06.13 and UNIX patch 2003.06.00-6, of IBM Rational ClearQuest and
to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright International Business Machines Corporation 1997, 2004. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents
Figures.V
Tables « . . . Vi

AboutthisbookiXx

Who should read thisbookix
Typographical conventionsix
Related information X

ClearQuest documentat1on roadmap A
Contacting IBM Rational Customer Support. . . . x
Summary of changes . Xiii
Chapter 1. Introduction 1

Chapter 2. New code page features. . . 3
Setting the data code page in the ClearQuest

Maintenance Tool. N |
What are code pages?3
Setting the data code page for a new schema
repository3

Changing the ClearQuest data code page for

existing schema repositories .4
Supporting the EUC-JP code page . .4
Using installutil setdbcodepagetoequsafeshrftjls .4
Chapter 3. Simplifying deployment with
new database drivers . -5
Functions of database property pages . .5
Setting database properties for Oracle . .6
Setting database properties for SQL Server .6
Chapter 4. Changes to command-line
utilites . -9
Updating connect optlons for 1nstallut11 . .9
Specifying connect options in installutil for Oracle 9
Specifying connect options in installutil for SQL
Server . . . oo 09
New subcommand — 1nstallut1l
reglsterconnectoptlons . (0
Syntax 10
New subcommand — mstallutrl getconnectoptlons 10
Syntax10
Updating connect optlons for pdsql o .11

Specifying connect options in pdsql for Oracle .11

Specifying connect options in pdsql for SQL

Server1
Using cqreg refresh for ClearQuest chents on UNIX 11

Chapter 5. APl and Hooks Updates . . 13
New content B
Error checking and Vahdatlon A ¢
Debugging your code14

© Copyright IBM Corp. 1997, 2004

Actions and access control
Name lookup in Perl hooks .
Default entity.
Editing an existing record
When the record is committed . .
Performance considerations for using hooks
InvalidateFieldChoiceList example.
Using Perl for external applications
RATLC00702699, APAR IC37754; Documentatlon
for the highlighting of keywords in the
ClearQuest Designer script editor . .
Corrections and other changes to documentatron
RATLC00708226, RATLC00706668,
RAMBU00050315; Commit behavior
documentation enhancements .
RATLC00712744; Syntax is incorrect for the
GetFieldRequiredness method .
RATLC00712920, RATLC00710309,
RAMBU00054358, RAMBU00056057; Date
timestamp issues
RATLC00696630, RATLCOO696270
RATLC00696759, RATLC00710896; Generating
reports and updates to SetHTMLFilename
documentation
RATLC00705428; SuperUser perllege requlred
for SetUserName method. .
RATLCO00707609; Methods to set and get user
privileges . .o
RATLC00666959, RATLC00698133
RAMBUO00046241; Creating PERL and VBScript
Hooks of the same name causes the creation of
new hooks to fail .
RATLC00712994, RAMBU00036659 CQStrmg is
not MBCS, which is not suitable for
internationalization .
RATLC00703293, APAR IC37932 SetLogmName
method update .
RATLC00701671, APAR IC37619 Updates to the
description of the UserLogon method database
set argument . .
RATLC00712943, RATLCOO712310 APAR
IC39076; Updates to the SetFrom method of the
Mail message object .
RATLCO00705405; Correction to ”Runnmg a Query
and Reporting on its Result Set” code example
RATLC00453581, RAMBU00050338,
RAMBU00035392, RATLC00656939,
RATLC00712567, RATLC00710254,
RATLC00705491, RAMBU00009075,
RAMBU00010073, RATLC00654966,
RAMBU00050417; Actions and access control
documentation enhancements .
RATLC00447393; Setting a field value or varlable
RAMBU00036184; Naming a field . .
RATLC00705480, RAMBU00054500; New
methods that enhance performance

.15
.17
. 19
. 20
. 20
. 20
.22
.23

.23

. 25

. 25

. 25

.25

. 26

. 26

.27

.27

. 28

. 28

.28

. 29

.29

. 29

iii

RATLC00450645, RAMBU0046105; ClearQuest
hooks database location has changed .
RATLC00703780, RAMBU0010103, APAR
1C41898; Package-installed hooks are read-only
RATLC00699730; Code example for
HasDuplicates correction .

RATLC00697318, RATLCOO708183
StringldToDbld method of the Session object .
RATLC00705438; Perl API Build method syntax
RATLC00701064, RATLC00705313; Database
object password methods require SuperUser
privilege .

RATLC00698109, RATLC00696104 UNIX support
for reports in a workspace .
RATLC00703013, RATLCOO713905
RATLC00702914, APAR IC37813; cqole.odl and
cqole.dll mismatch . .
RATLC00719064; Perl SetAct1ve method not
working correctly with Boolean as documented
SaveQueryDef code example correction .
RATLC00715405; Document the
Session.ClearNameValues method . .
SaveQueryDef method of the Workspace ob]ect
issues . .
RATLC00711964 RAMBU00022729
GetFieldRequiredness return value for read_only
fields .

RATLC00715159, RATLC00059373
AddParamValue method allows the insertion of
one string value .

RATLC00703830, RATLCOO667284
RAMBU00053964; New documentation on error
checking and validation . .
RATLC00371877; UnmarkEntltyAsDuphcate
method of the Session object note . .
RATLC00718478; ValidateQueryDefName method
of the Workspace object

RATLC00721299; GetFleldOrlgmalValue method
should include note . .
Upgrading user information from a schema
repository to a user database

iV Documentation Supplement

. 33

. 33

. 33

. 34

34

. 34

. 35

. 35

. 35
. 36

. 36

. 37

. 37

. 37

. 38

. 38

. 38

. 38

. 38

RATLC00722670, APAR 1C40986;
RegisterSchemaRepoFromFile and
GetLastSchemaRepolnfo documentation update . 39
Updates to "Ensuring that record data is current”

section in API Reference . . . 40
RATLC00445073, RATLC00721111 APAR IC39464
Hook Performance issues and guidelines . . . 40
GetValueAsList return value description is

incorrect in API Reference40
Document the Entity.Reload method . . 40
RATLC00717324, RATLC00707206; New methods

for hiding records types . . .4
RATLC00696096; CtCmd code examples for
UCM/ClearQuest integrations42

VBScript Code Example Errors in API Reference 45
RATLCO00715484; Version information for newer
ClearQuest APl methods45

Chapter 6. MultiSite documentation

updates 49

Upgrading a schema version w1th ClearQuest

MultiSite . . . T
Upgrade mstructlons .o . 49

Synchronizing multiple user database famlhes w1th

msimportauto.bat 50
Why should I use the m51mp0rtauto bat SCI‘lpt7 50
Running ms1mportaut0 bat51

repair . . o ¥4
Apphcablhty ..o UB2
Synopsisb52
Description52
Restrictions53
Options and arguments53
Examples54
Seealso.54

Appendix. Notices.55

Figures

© Copyright IBM Corp. 1997, 2004

Vi Documentation Supplement

Tables

© Copyright IBM Corp. 1997, 2004

vii

viil Documentation Supplement

About this book

This books contains updates to the ClearQuest Administrator Guide and
ClearQuest API Reference.

Who should read this book

The information in this book is intended for ClearQuest administrators and users
of the ClearQuest API.

Typographical conventions

This manual uses the following typographical conventions:

ccase—home—dir represents the directory into which the ClearCase Product Family
has been installed. By default, this directory is /opt/rational/clearcase on UNIX
and C:\Program Files\Rational\ClearCase on Windows.

cquest-home-dir represents the directory into which Rational ClearQuest has been
installed. By default, this directory is /opt/rational/clearquest on UNIX and
C:\Program Files\Rational\ClearQuest on Windows.

Bold is used for names the user can enter; for example, command names and
branch names.

A sans-serif font is used for file names, directory names, and file extensions.

A sans-serif bold font is used for GUI elements; for example, menu names and
names of check boxes.

Italic is used for variables, document titles, glossary terms, and emphasis.

A monospaced font is used for examples. Where user input needs to be
distinguished from program output, bold is used for user input.

Nonprinting characters appear as follows: <EOF>, <NL>.

Key names and key combinations are capitalized and appear as follows: SHIFT,
CTRL+G.

[] Brackets enclose optional items in format and syntax descriptions.

{ } Braces enclose a list from which you must choose an item in format and
syntax descriptions.

| A vertical bar separates items in a list of choices.

... In a syntax description, an ellipsis indicates you can repeat the preceding item
or line one or more times. Otherwise, it can indicate omitted information.

Note: In certain contexts, you can use “...” within a pathname as a wildcard,
similar to “*” or “?”. For more information, see the wildcards_ccase

reference page.

If a command or option name has a short form, a “slash” (/) character
indicates the shortest legal abbreviation. For example:

1sc/heckout

© Copyright IBM Corp. 1997, 2004 ix

Related information

ClearQuest documentation roadmap

Database
Design

Administrator's Guide
(Rational ClearQuest)

API Reference
(See online
documentation)

Orientation

Introduction

Release Notes
(See online documentation)

Designer tutorials
(See online documentation)

More Information
Online documentation
Help files

Administration

Project
Management

Using Project Tracker
(Windows platforms;
see online
documentation)

Installation Guide (Rational Desktop Products)
Installation Guide (Rational Server Products)

Installation Guide (UNIX)

Administrator's Guide (Rational ClearQuest)
Administrator's Guide (Rational ClearQuest MultiSite)

Upgrade Guide (Rational Suite)

Contacting IBM Rational Customer Support

If you have questions about installing, using, or maintaining this product, contact
IBM Rational Customer Support as follows:

The IBM software support Internet site provides you with self-help resources and
electronic problem submission. The IBM Rational Software Support Home page can
be found at http:/ /www.ibm.com/software/rational /support/.

Voice Support is available to all current contract holders by dialing a telephone
number in your country (where available). For specific country phone numbers, go
to http://www.ibm.com/planetwide/.

X Documentation Supplement

Note: When you contact IBM Rational Customer Support, please be prepared to
supply the following information:

* Your name, company name, ICN number, telephone number, and e-mail
address

* Your operating system, version number, and any service packs or patches
you have applied

e Product name and release number

* Your PMR number (if you are following up on a previously reported
problem)

About this book X1

X11 Documentation Supplement

Summary of changes

This is a first edition.

© Copyright IBM Corp. 1997, 2004 xiii

X1V Documentation Supplement

Chapter 1. Introduction

This documentation supplement explains ClearQuest and ClearQuest MultiSite
features introduced in Windows service release 2003.06.13 and UNIX patch
2003.06.00-6. The information in this document supplements the information in the
versions of the ClearQuest Administrator Guide, ClearQuest API Reference, and
ClearQuest MultiSite documentation that were released with ClearQuest Version
2003.06.00 for Windows and UNIX.

© Copyright IBM Corp. 1997, 2004 1

2 Documentation Supplement

Chapter 2. New code page features

This chapter contains information on two new features in Rational ClearQuest
v2003.06.13 related to data code pages. With this service release, data code pages
for ClearQuest schema repositories can be set or modified using the ClearQuest
Maintenance Tool instead of the installutil command line utility. In addition, this
service release adds support for the EUC-JP database code page.

Setting the data code page in the ClearQuest Maintenance Tool

Prior to IBM Rational ClearQuest v.2003.06.13, the primary way to set a ClearQuest
data code page was by using several subcommands from the installutil command
line utility. With ClearQuest v.2003.06.13, the ClearQuest Maintenance Tool allows
you to set the ClearQuest data code page when you create or modify a schema
repository.

What are code pages?

Code pages specify what character set can be used on a computer or in an
application, and how those characters are stored in binary format. There can be
three types of code pages in a ClearQuest environment:

The database code page is the code page setting for the vendor database. It
determines which characters can be stored in the database that house the
ClearQuest schema repository and user data.

The client code page, or the operating system code page for ClearQuest clients,
determines which characters the client can read from the ClearQuest database,
display for the user, process and write back to the ClearQuest database.

The ClearQuest data code page, created in ClearQuest v2002.05.01 Patch 2, helps
ClearQuest enforce consistency between the data code page and the client code
pages for a given ClearQuest schema repository and the associated user databases.
In a sense, the ClearQuest data code page stands between the database code page
and the client code page, to help ClearQuest check that they are consistent. For
more information about code pages, see the IBM Rational ClearQuest
Administrator’s Guide.

Setting the data code page for a new schema repository

When you create a new schema repository, the ClearQuest Maintenance Tool
automatically determines the code page of the operating system on which it is
running, and offers you a choice to set the ClearQuest data code page to that value
or to ASCIL

For example, if you are running the ClearQuest Windows client in English, the
code page of the operating system is 1252 (ANSI-Latin1). The ClearQuest
Maintenance Tool allows you to set the data code page to either 1252
(ANSI-Latinl) or ASCIIL. However, if you are running the ClearQuest Maintenance
Tool on a Japanese 932 (Shift-JIS) client, the Maintenance Tool will display 932
(Shift-JIS) as the only choice because the Japanese version of the ClearQuest client
already contains Japanese characters.

© Copyright IBM Corp. 1997, 2004 3

To set the ClearQuest data code page for new schema repositories using the
ClearQuest Maintenance Tool::

1. From the Schema Repository menu, select Create.

2. Enter a name for the schema repository connection highlighted in the Existing
Connections area and click Next.

3. In the Schema Repository Properties area, select a database vendor and enter
the required database properties and click Next.

4. In the ClearQuest data code page dialog for the new connection, select either
ASCII or the platform code page for the machine on which the Maintenance
Tool is running and click Next.

5. Continue with the Create Connection wizard to either create a sample user
database or click Finish to complete the schema repository creation process..

Changing the ClearQuest data code page for existing schema
repositories

To change the ClearQuest data code page for existing schema repositories using
the ClearQuest Maintenance Tool:

1. In the Existing Connections area, select the connection for which you want to
change the code page. Then from the Schema Repository menu, select Change
Code Page.

2. For the Logon information fields, enter the user name and password for the
schema repository and click Next. Only users with Super Privileges are allowed
to change the code page value for the schema repository.

3. In the ClearQuest data code page dialog, select to change the setting to either
ASCII or the platform code page for the machine on which the Maintenance
Tool is running and click Finish.

4. ClearQuest displays a warning about changing code page values. Click OK to
continue.

5. ClearQuest then confirms the change and enters the data code page value in a
log. Click Done to close the dialog.

Supporting the EUC-JP code page

With version 2003.06.13, ClearQuest can work with vendor databases that use the
EUC-JP database code page.

To set a schema repository to work with the EUC-JP database, use the new
installutil setdbcodepagetoeucjpsafeshiftjis subcommand to set the ClearQuest data
code page to a value of 60932, a Rational-defined value for a subset of the
Microsoft Shift-JIS character set that can be written safely to EUC-JP databases.

This setting allows ClearQuest clients on machines using the Shift-JIS code page
(932) to read and write to the ClearQuest databases. Clients that are not on a
machine using the Shift-JIS code page (932) can only read from the databases and
cannot modify them.

Using installutil setdbcodepagetoeucjpsafeshiftjis

To set the ClearQuest data code page to 60932 — EUC-]JP, the syntax for installutil
setdbcodepagetoeucjpsafeshiftjis is as follows:

installutil setdbcodepagetoeucjpsafeshiftjis -dbset 2003.06.13 admin_user
admin_password

4 Documentation Supplement

Chapter 3. Simplifying deployment with new database drivers

With IBM Rational ClearQuest version 2003.06.13 for Windows and
clearquest_p2003.06.00-6 for UNIX, IBM Rational is providing new database
drivers with ClearQuest for Oracle and SQL Server. These drivers simplify the
deployment of ClearQuest clients, and also improve performance. The new drivers
are based on technology from DataDirect, and replace the database drivers from
OpenLink that were used in previous releases of ClearQuest. For environments
using Oracle databases, you do not need to install Oracle client software on the
same systems as the ClearQuest Windows clients.

To facilitate the use of the new drivers, Rational has changed the database property
pages for Oracle and SQL Server. This chapter explains the fields in the database
property pages used for Oracle and SQL Server. Use this section as a supplement
to the ClearQuest documentation and online help from earlier releases. The
workflows and procedures described in the existing documentation and online
help remain the same except for the database property pages discussed here.

If you have an environment with existing pre-2003.06.13 ClearQuest databases and
clients, see the IBM Rational Suites Upgrade Guideand IBM Rational ClearQuest
Product Familylnstallation Guide for UNIX for more information on setting these
database properties.

Functions of database property pages

To facilitate the use of the new drivers, Rational has changed the database property
pages for Oracle and SQL Server. Database property pages open when you
perform functions related to either connections or schema repositories using the
ClearQuest Maintenance Tool, such as:

* Creating a new connection
 Editing a connection

* Duplicating a connection

* Creating a new schema repository
* Moving a schema repository

* Upgrading a schema repository

» Updating a schema repository

Database property pages also open when you perform the following user database
related functions using the ClearQuest Designer, such as:

* Upgrading a user database

* Moving a user database

 Viewing the properties of a user database
* Updating the properties of a user database

Information on these functions is available in the IBM Rational ClearQuest
Administrator’s Guide.

© Copyright IBM Corp. 1997, 2004 5

Setting database properties for Oracle

In ClearQuest version 2003.06.13, the fields shown on the database properties page
for Oracle are:

* Vendor (Oracle)
* Server

* SID

* User Name

* Password

* Connect Options

After selecting Oracle in the Vendor field, complete the remaining fields as follows:

1. In the Server field, enter the machine name of the server where the Oracle
database is running. It may have a domain name added to it, for example,
dbserv.xxx.companyname.com.

2. In the SID (Oracle System Identifier) field, enter the name of the database
instance that will be used for the schema repository.

3. In the User Name field, enter the user name you created for the database.
4. In the Password field, enter the password for the user name.
5. In the Connect Options field, the default LOB_TYPE (or data type) is CLOB.

When you are creating either a new schema repository or user database with
Oracle, the Connect Options field displays LOB_TYPE=CLOB.CLOB stands for
Character Large Object and is the default value. An alternate selection is LONG.
However, CLOB is Oracle’s preferred method for storing large objects. It simplifies
the way database administrators set up searching on multiline text fields.

You can also use the Connect Options field to change the port number. If the port
number of the database is different from the default for Oracle, which is 1521, then
the port number should be entered in this field, in the form PORT=port_number

The connect options field can also be used to enter a series of arguments that will
help ClearQuest clients connect with ClearQuest databases. This is particularly
important when it is necessary to have ClearQuest clients installed in a prior
release connect to a ClearQuest database that was created in version 2003.06.13. In
the Connect Options field, the argument names are not case sensitive, but the
values are case sensitive. Arguments must be separated by semicolons, with no
spaces in between.

The arguments that you can enter in the Connect Options field for Oracle include:
HOST=host;SID=sid;CLIENT VER=[8.1,9.2] ;SERVER_VER=[8.1,9.2,10.1];LOB_TYPE=[1ong, clob];PORT=port_number

Setting database properties for SQL Server
In ClearQuest release v2003.06.13, the fields shown on the database properties page
for SQL Server are:
* Vendor (SQL Server)
* Physical Database Name
* Database Server Name
* Administrator Name

¢ Administrator Password

6 Documentation Supplement

* Connect Options

After selecting SQL_Server in the Vendor field, complete the fields as follows:

1. In the Physical Database Name field, enter the name of the database for the
schema repository.

2. In the Database Server Name field, enter the machine name of the server
where the SQL Server database is running.

3. In the Administrator Name field, enter the user name you created for the SQL
Server database.

4. In the Administrator Password field, enter the password for the user name.

5. Leave the Connect Options field blank, if you are going to use the default port
number and database instance for SQL Server on that machine. ClearQuest will
determine these values automatically.

The arguments that can be entered in the Connect Options field for SQL Server are
PORT and INSTANCE. ClearQuest uses port number 1433 as the default port. If
the port number of the database is different from the default, then the port number
should be entered in this field in the form PORT=port_number. Note that
argument names are not case sensitive, but the values are case sensitive.
Arguments must be separated by semicolons, with no spaces in between.

ClearQuest also uses the default instance, which generally uses the same setting as
the default port number. For SQL Server databases on Windows, you can specify
an instance other than the default in the form, INSTANCE=instance_name. For
SQL Server databases on UNIX, you can specify an instance other than the default
by specifying a non-default port number.

Chapter 3. Simplifying deployment with new database drivers 7

8 Documentation Supplement

Chapter 4. Changes to command-line utilites

This chapter contains changes to theinstallutil and pdsqlcommand line utilities
related to the new database driver implementation for ClearQuest v.2003.06.13 on
Windows and patch 2004C on UNIX.

It also contains information about new commands for ClearQuest clients on
Windows and UNIX:

* (Windows) installutil registerconnectoptions and installutil getconnectoptions
* (UNIX) cqregrefresh

Updating connect options for installutil

The installutil command line utility includes a number of subcommands that can

be useful when setting up or modifying databases. The command syntax has been
updated for installutil with ClearQuest v.2003.06.13 for Windows and patch 2004C
for UNIX. The changes affect how the connect options are specified.

Examples of the installutil subcommands that have been updated include:
* installutil convertschemarepo
* installutil convertuserdb

¢ installutil unlockschemarepo

Specifying connect options in installutil for Oracle

If you are using an Oracle database, use the following arguments and values for
connect options:

HOST=host;

SID=sid;

SERVER_VER=[8.1,9.2,10.1];

CLIENT_VER=[8.1,9.2];

LOB_TYPE=[Tong,clob];

PORT=port_number

Note that the argument names are not case sensitive, but the values are case
sensitive. Also, arguments must be separated by semicolons, with no spaces in
between.

Specifying connect options in installutil for SQL Server
If you are using a SQL Server database, use the following arguments and values
for connect options:

PORT=port_number;
INSTANCE=instance_name

Note that the argument names are not case sensitive, but the values are case
sensitive. Also, arguments must be separated by semicolons, with no spaces in
between.

© Copyright IBM Corp. 1997, 2004 9

New subcommand — installutil registerconnectoptions

Use the installutil registerconnectoptions subcommand to modify connect option
parameters for SQL Anywhere, SQL Server and Oracle on a ClearQuest Windows
client. The subcommand operates on a per-client and per-session basis and should
only be used in cases when you need to override a connection from a ClearQuest
v.2003.03.16 client. Note that the argument names are not case sensitive, but the
values are case sensitive. Also, arguments must be separated by semicolons, with
no spaces in between.

A similar command, installutil registeroracleoptions, is available for the Oracle
database, but you should use the installutil registerconnectoptions for Oracle as
well as for SQL Anywhere and SQL Server.

Syntax
installutil registerconnectionoptions db_vendor connect_options
Where Represents
db_vendor The database vendor name
connect_options Oracle:
* HOST=host;
» SID=sid;

¢ SERVER_VER=[8.1,9.2,10.1];
¢ CLIENT_VER=[8.1,9.2];

¢ LOB_TYPE=[long,clob];

* PORT=port_number

SQL Server:
¢ PORT=port_number;
* INSTANCE=instance_name

SQL Anywhere:
* SERVER_VER=[5.0,8.0]

New subcommand — installutil getconnectoptions

Use the installutil getconnectoptions subcommand to view the database and
connect option parameters you have set on a ClearQuest v.2003.06.13 Windows
client for either a SQL Anywhere, SQL Server or Oracle database.

Syntax
installutil getconnectionoptions db_vendor -all
Where Represents
db_vendor Displays the connect option settings for a database vendor name.

The database vendor is either Oracle, SQL Server or SQL Anywhere.

-all Use -all in place of db_vendor to display connect options settings for
all database vendors.

10 Documentation Supplement

Updating connect options for pdsq|l

pdsql is a command line SQL utility. It can be used to open an SQL session with
any database vendor supported by ClearQuest. pdsqlsupports all common SQL
commands. The command syntax has been updated for pdsql with ClearQuest
v.2003.06.13 for Windows and patch 2004C for UNIX. The changes affect how the
connect options are specified.

Specifying connect options in pdsql for Oracle

If you are using an Oracle database, use the following arguments and values for
connect options:

HOST=host;

SID=sid;

SERVER_VER=[8.1,9.2,10.1];

CLIENT_VER=[8.1,9.2];

LOB_TYPE=[Tong,clob];

PORT=port_number

Note that the argument names are not case sensitive, but the values are case
sensitive. Also, arguments must be separated by semicolons, with no spaces in
between.

Specifying connect options in pdsql for SQL Server

If you are using a SQL Server database, use the following arguments and values
for connect options:

PORT=port_number;
INSTANCE=instance_name

Note that the argument names are not case sensitive, but the values are case
sensitive. Also, arguments must be separated by semicolons, with no spaces in
between.

Using cqreg refresh for ClearQuest clients on UNIX

The cqregrefresh subcommand can be used on ClearQuest clients on UNIXto
refresh a connection whenever connection information changes.

Times when cqregrefresh should be used include when user databases are created
or modified, and when schema repositories and user databases are moved.

cqregrefresh should also be used for each UNIX install area that uses the changed
database connection. It does not need to be used on individual ClearQuest clients.
Usually the updated connection information will be set in each user’s login session.

The following example shows what the output is when you use cqregshow -all to
display information on all the connections for a client:

axon 11: cqreg show -all

Database Set Name: WHOaxonSS

Master Database: MASTR
Description:

Vendor: SQL_SERVER
Server: cqwds?2
ConnectOptions:
Database: WHOaxonSS

User Database: PASNY
Description: Sample Database

Chapter 4. Changes to command-line utilites 11

Vendor: SQL_SERVER

Server: cqwds?2
ConnectOptions:
Database: WHOaxonSS

The cqregrefresh—dbsetexample shows how to update the connect options
information for a particular connection:

axon 12: cqreg refresh -dbset UCM

The cqregrefresh—alllast example shows what the output is when you update the
connect options information for all connections:

axon 13: cqreg refresh -all

Default version is 2003.06.00

Refresh database set WHOaxonSS

Db registry PASNY needs to be updated

Db registry PASNY was updated successfully
Db registry MASTR needs to be updated

Db registry MASTR was updated successfully

12 Documentation Supplement

Chapter 5. APl and Hooks Updates

This section contains new information that applies to the ClearQuest Perl and
COM APIs, including information on working with and writing hook code in
ClearQuest Designer. It includes updates to the Hooks chapter of the
Administrator’s Guide and to the API Reference.

The categories of API and Hook updates for this release are:

* New Content - includes new sections containing hooks or scripting information
that is not available in the IBM Rational ClearQuest Administrator’s Guide or IBM
Rational ClearQuest API Reference for this release. There are new sections for
actions and access control, nested actions, naming conventions, commit behavior,
error checking and validation, and performance considerations.

* Corrections and other changes to documentation - include content updates to
existing ClearQuest APIs as well as information on newly implemented (or
newly supported and documented) APlIs.

New content

This section includes enhancements to the current ClearQuest API documentation
available in the ClearQuest Administrator’s Guide and the API Reference, including
new content and additions to existing sections.

+ |Error checking and validation|

* [Debugging your code

° |Actions and access contro]l

+ [Name lookup in Perl hooks|

 |Default entity

+ |[Editing an existing record|

¢ [When the record is committed|

+ |Performance considerations for using hooks|

* |InvalidateFieldChoiceList example|

« |Using Perl for external applications|

« |IRATLC00702699, APAR IC37754; Documentation for the highlighting of|
keywords in the ClearQuest Design..]

Error checking and validation
For many methods and properties of the ClearQuest API, you must check the
return value to validate whether or not the call returns an error.

* For calls to functions that return an object, you need to check for the condition if
the specified object does not exist. For example, if you call the Item method of a
collection object, if the object that you specify is not in the collection, the return
value is:

— For Perl, an undefined object. You can use
if (undef($result)) { ... };

to detect this condition.

— For VB, an error (E_INVALIDARG) that can be handled by the On Error
statement.

© Copyright IBM Corp. 1997, 2004 13

* For calls to functions that have a String return value, the value is empty if there
is no error, or a String containing the description of the error. You can check the
result of calling the method and if the value is not empty, you can retrieve the
error in a variable, as a String value.

For example the Entity object SetFieldValue method is defined as returning a
String value. It returns an empty String if changes to the field are permitted and
the operation is successful; otherwise, if the operation fails, this method returns
a String containing an explanation of the error.

To trap the error, your code must check the return value. For example:

strRetVal = SetfieldValue ("Invalid_field", "Invalid value")
If "" <> strRetVal Then

REM handle the error
End If

If an invalid field is specified, an error is returned. For example:
The Defect SAMPLO0000123 does not have a field named "Invalid_field".

Debugging your code

You can debug your schema customization effort from within ClearQuest using a
number of different utilities. One common method is to output text at strategic
locations in the code, using MsgBox or OutputDebugString.

* MsgBox
This function is available on Windows only.

The MsgBox function lets you place a Windows Message Box on the screen with
the output you specify. The execution of the hook pauses until the OK button on
the Box is clicked (for example, MsgBox "My Text."). The message box only
displays where the hook is executed.

When writing VBScript hooks, you can use the message box (MsgBox) function
to output debugging information. By calling this utility with a string parameter,
a popup dialog containing the text is displayed.

Note: Do not invoke this utility through ClearQuest Web. If you use the MsgBox
function, you can ensure that your code is not executed in a Web session
context with the _.CQ_WEB_SESSION session variable. See "Using hooks
to detect a Web session” in the Administrator’s Guide for more information.

* DBWINB32

The Windows debugging utility dbwin32.exe is included with ClearQuest for
Windows. It is located in the ClearQuest installation directory. When
dbwin32.exe is active, it displays all messages generated by the
OutputDebugString method of the Session Object, which you can use to output
debugging messages from a hook while it is running. By calling the
OutputDebugString method, the related debug statements appear in the
DBWin32 console. Use this after launching DBWin32 to see messages.

* ClearQuest Designer hook compiler
This utility catches some syntax errors.
* Internet Explorer 4.0 debugger

You can use the InternetExplorer 4.0 debugger to debug your hook code. You
can download and install this debugger at the following address:

http:/ /msdn.microsoft.com/scripting > Script Debugger

A hook runtime error launches the debugger (if it is not launched, you will need
to read the debugger documentation). To force the debugger to be launched, add
a stop statement to your hook code, and the debugger will be launched at that
point.

14 Documentation Supplement

* Microsoft Development Studio VBScript debugger

General debugging of VBScript hooks can be done with the Microsoft VBScript
Debugger. If you have Microsoft Visual Studio installed, you can use its VBScript
debugger to debug your hook code.

Actions and access control

An Access Control hook is used to determine whether a specific user is permitted
to execute an action on records of a given record type. This hook is called before
the user tries to execute the action.

Access to an action for a specific record type can be restricted through ClearQuest
Designer by setting the authorization of the Access Control field in the Actions
table for that record type.

By default, all users have access to all actions. However, you can restrict access to
an action to specific user groups. For example, you can limit the ability to close
defects to one specific user group.

Access to an action can also be restricted by using an access-control hook. For
example, to restrict the ability to edit an Entity (that is, a record), an action access
control hook can be written so that EditEntity (or SetFieldChoiceList,
SetFieldValue, or BuildEntity) could be accessed only by users with the
appropriate privileges. Or a hook could restrict access to the action Open for
Development to the owner of the record.

Hooks always run with SuperUser privileges and therefore, are not subject to the
usual access control or field behavior restrictions. For example, a hook could
modify a field that is normally read-only. However, a hook cannot modify
ClearQuest system fields, such as the History field.

When a hook executes, required fields remain required. However, a hook can
dynamically change a required field so that it is no longer required, or can change
a non-required field to required.

A hook does not change field validation rules, so data must still comply with those
rules.

Primary actions

Primary actions are main or top-level actions that are initiated by a user. Base and
nested actions execute within primary actions and are not initiated directly by
users.

* Access controls can be modified for actions created when a package is applied,
just like they can be modified for any other type of action. However, any access
control restrictions placed in a base action will apply to all other actions for that
record type.

e Access control hooks are not run for nested actions. See Hooks in nested actions
for more information.

Note: In order for a user to be able to run a primary action (modify, submit,
delete, import, change_state, duplicate, and unduplicate), the current user
must be in the access control list for the primary action as well as for all the
base actions. See Base actions for more information.

Chapter 5. API and Hooks Updates 15

Base actions

A base action is a secondary action that is triggered by a primary or top-level
action. A base action is automatically triggered by every other action for that
record type.

Base actions allow an action hook to be written once and then re-used with
multiple actions. For example, writing a base action and adding a notification hook
to send an email will cause an email to be sent when any action is performed on
the record.

Each step of an action (initialization, access control, validation, commit, and
notification) will execute the hooks of all base actions for that record type,
followed by the hook for the main action itself.

A base action cannot be initiated directly by a user, so it does not appear in the list
of possible actions presented to the user in the Actions menu.

There can be multiple base actions for a record type. Some base actions can be
added to a schema when a package is applied.

If a record has multiple base actions, they do not run in a specific order but are
followed by the main action that triggered them.

Note: Any access control restrictions placed in base actions apply to all other
actions.

Nested actions
A nested action is any action started when an action is already in progress.

Nested actions can be started only when a hook calls the BuildEntity or EditEntity
methods of the Session object. Some actions can be both a primary action (initiated
directly by the user) and a nested action (initiated by a hook).

Note: Nested actions trigger all base actions for that record type, just as primary
actions do.

Hooks in nested actions: Nested actions differ from primary actions in that action
access control hooks and notification hooks are not executed for nested actions.

The Action Access Control hook is not run if a hook starts a nested action. Because
all hooks execute with the SuperUser privilege, the privilege level is already at its
highest (SuperUser). There is no need to run the access control hook for the nested
action.

Access for a nested action is also granted when no access control hook is fired.

Notification hooks do not normally execute for a nested action. Notification hooks
are commonly used to send an email. Having each nested action send an email
would result in many emails sent for what the user considers to be one action. You
can override this behavior and allow nested actions to execute notification hooks
by setting the CQHookExecute session variable to a value of 1.

Setting the CQHookExecute session variable can be done with the following code:
* VBScript:

16 Documentation Supplement

dim session
set session = GetSession
session.NameValue("CQHookExecute") = 1

e Perl:
$session->SetNameValue("CQHookExecute","1");

Within a Commit hook, the commit at the database level is not done when the
nested action is committed, but is combined with the outer level commit so that all
changes are included as one atomic transaction.

In all other hook types, a nested action is committed at the database level,
independent of the outer level commit. The only way to combine changes made in
a nested action with those of the top-level action, as a single database transaction,
is to have the nested action inside a Commit hook.

See the ClearQuest Administrator’s Guide for more information on execution order
of hooks and when a record is committed. For setting field values, see the
SetFieldValue method of the Entity object.

Name lookup in Perl hooks

Variables in Perl are of several types. Common types include:
* my variables, which are local to the subroutine in which they are declared.

* Local variables, which are local to the file in which they are declared (but global
to all subroutines within that file).

* Global variables, which are not declared explicitly.

You must specify global variables with unique names. You can also use local
variables, using the my convention. For example:

my ($uvComponent);

It is possible for existing Perl hooks to have name look-up problems. A ClearQuest
action, Submit for example, uses a single Perl interpreter to execute all the action
hooks, like Action Initialization, and all the field hooks, like Field Value Changed,
that are written in Perl. If the hook code does not declare local variables with the
my keyword before it uses them, the variable can be shared between hooks
unintentionally.

In releases before v2003.06.00, when one Perl hook called another, ClearQuest
compiled the second hook in the wrong Perl namespace. In release v2003.06.00 and
later, all hooks are compiled in the same Perl namespace. This can affect how
different hooks can interfere with each other if global variables are used. For
example:

sub defect_Initialization

{

$variable = "1";
fentity->SetFieldValue("A", $variable);

sub a_ValueChanged

{
$entity->SetFieldValue("B", $variable);
fentity->SetFieldValue("C", $variable);

}
sub b_ValueChanged
{

$variable = "3";

}

Chapter 5. API and Hooks Updates 17

The variable called $variable in these hook subroutines is a package scope variable.
This means that subroutines in the same package will share the same variable.

In releases before v2003.06.00, nested hooks were in a different Perl package from
the initial hook, and therefore did not share their global variables with the initial
hook. This meant that the above example was interpreted as if it had the following
namespace qualifiers:

package main;

sub defect_Initialization

{

$main::variable = "1";
$entity->SetFieldValue("A", $main::variable);
}

package CQEntity;

sub a_ValueChanged

$CQEntity::variable is not set, so defaults to an empty string.
$entity->SetFieldValue("B", $CQEntity::variable);
$entity->SetFieldValue("C", $CQEntity::variable);

}

sub b_ValueChanged

$CQEntity::variable = "3";
1

A Field Value Changed hook is called immediately upon changing the associated
field (that is, before returning from SetFieldValue), so the above code executes in
this order:

$main::variable = "1"; # From defect_Initialization
$main::variable is set to "1"
fentity->SetFieldValue("A", $main::variable); # From defect Initialization
Sets A to "1"
ClearQuest calls a_ValueChanged before returning
$entity->SetFieldValue("B", $CQEntity::variable); # From a_ValueChanged
$CQEntity::variable is uninitialized
Sets B to ""
ClearQuest calls b_ValueChanged before returning
$CQEntity::variable = "3"; # From b_ValueChanged
$CQEntity::variable changes from "" to "3"
$entity->SetFieldValue("C", $CQEntity::variable); # From a_ValueChanged
Sets C to "3"

As a result, fields A, B and C are set to "1”, "" and "3", respectively.

In release v2003.06.00 and later, Perl hooks are compiled into the same namespace.
The above example is now interpreted as if it has the following namespace
qualifiers:

package main;
sub defect_Initialization

{
$main::variable = "1";
$entity->SetFieldValue("A", $main::variable);
1
sub a_ValueChanged
{

$entity->SetFieldValue("B", $main::variable);
$entity->SetFieldValue("C", $main::variable);

1
sub b_ValueChanged
{
$main::variable = "3";
1

18 Documentation Supplement

This code executes in this order:

$main::variable = "1"; # From defect_Initialization;
$main::variable is set to "1"
$entity->SetFieldValue("A", $main::variable); # From defect Initialization
Sets A to "1"
ClearQuest calls a_ValueChanged before returning
fentity->SetFieldValue("B", $main::variable); # From a_ValueChanged
Sets B to "1"
ClearQuest calls b_ValueChanged before returning
$main::variable = "3"; # From b_ValueChanged
$main::variable changes from "1" to "3"
fentity->SetFieldValue("C", $main::variable); # From a_ValueChanged
Sets C to "3"

As a result, fields A, B and C are set to "1", "1” and "3", respectively.

To avoid unintentional sharing of variable values, you must declare those variables
intended to be local to a hook function in this form:

sub d_ValueChanged

{
my $temp = $entity->GetFieldValue("d")->GetValue();
$session->0utputDebugString("d now set to $temp\n");
1

where $temp is declared to be local to the d_ValueChanged function, and this
assignment to $temp does not change the value of another variable of the same
name. Using the my syntax makes the variable visible only within a specified block
of code.

Note: $entity and $session are global variables defined by the ClearQuest core.

Default entity

The default entity for a hook is created by ClearQuest before a hook starts, and
represents the current record upon which an action is being done.

For Perl, you retrieve this object using:
$entity

If you are creating another entity in the context of one record’s action (such as
executing a call to the BuildEntity method to submit a new record), you need to
maintain the scope of your entity variables. There are two approaches:

* Use the same variable name for both entities, but declare one of them using my.
That makes only one of them accessible at any time, because the my declaration
creates a new variable with local scope which masks the existing global
definition until the variable goes out-of-scope (for instance, at the end of the
current function).

* Use different variable names for each entity.

For VBScript, you can use the me declaration. For example:
call DoSomething(me)

If you need to explicitly reference the default entity object in order to pass it as an
argument, you can use the me declaration to perform operations. For example:
Msgbox me.GetDisplayName()

Dim xme

Set xme = me
Msgbox xme.LookupStateName

Chapter 5. API and Hooks Updates 19

Editing an existing record

This section of the ClearQuest API Reference should include the following
additional information on database locking.

Only one user at a time can edit a record. If two users attempt to edit a record at
the same time, ClearQuest allows only one of them to commit their changes. The
first user who validates and commits their changes is successful. When the other
user tries to commit their changes, they receive an error stating that the record has
been updated while they were editing, and their changes cannot be safely
committed.

When the record is committed

The Commit hook executes after the database has been updated with changes to
the current record, but before the update transaction has been committed to the

database. This means that you cannot use a Commit hook to modify the current
record; such modifications are not applied to the record.

Work done in a Commit hook is done while locks exist in the database, and those
locks may prevent other users from running queries, creating new records, or
modifying existing records. For performance reasons, it is best to minimize the
work done in a Commit hook.

Use a Commit hook only for actions against other records that you want to be part
of the same database transaction as the main action. For example, resolving a
duplicate defect when the parent defect is resolved. You must ensure that you are
placing the appropriate calls in the correct context. For example, you would not
call Revert from a Commit hook, nor would you call Commit from any action
other than a Commit hook.

Performance considerations for using hooks

ClearQuest supports the use of VBScript or Perl for writing your custom hook
code. However, there are performance and functional trade-offs that should be
considered when choosing the scripting language and the types of operations to
use in hooks. Although this is not an exhaustive discussion on the topic, the
following guidelines should be applied to any schema modifications. For more
information on the topic of ClearQuest Schema Performance, see the IBM
developerWorks Web site.

¢ ClearQuest Web

The ClearQuest native Windows client can execute hooks written in either
VBScript or Perl. The same is true for the ClearQuest Web server, since it runs in
a Windows environment. However, the ClearQuest native UNIX/Linux clients
can execute only Perl script. Therefore, if a ClearQuest deployment requires any
native UNIX/Linux clients, hooks must be written in Perl. If you are deploying
ClearQuest Web exclusively, or only in combination with Windows clients, there
are performance advantages on the ClearQuest Web server to choosing VBScript
as your hook scripting language.

¢ Database Access

Accessing the database is typically the most time consuming operation a hook
performs. Examples of operations that require database access are:

— LoadEntity and GetEntity operations

Retrieving an entity (record) requires at least one query of the database for
the primary record, plus one query for each REFERENCE or
REFERENCE_LIST field. Entities are retrieved explicitly through Session

20 Documentation Supplement

methods such as GetEntity or LoadEntity, but can also be retrieved implicitly
by accessing the field value of a REFERENCE field. The following example
implicitly loads the entity referred to by the product field, and then retrieves
the value of the component field from the loaded product record:

$component = $entity->GetFieldValue("product.component")->GetValue();

The time to load an entity is determined by the complexity of the schema,
primarily by the number of reference list fields in the selected entity. In most
instances, if only a subset of an entity’s fields are required, it is more efficient
to query for those field values instead of retrieving the entire entity.

— Queries

Although more efficient than retrieving entire entity records, queries still
require database access, and therefore have an impact on your overall schema
performance. Every effort should be made to minimize the number of
database round-trips. For instance, rather than running the same query
multiple times at various locations in the hook code, a query can be executed
once, and the ResultSet values can be cached in a Session variable. Also,
retrieve only the fields that are essential for each record. Avoid specifying
multiline text fields in query result sets, as this requires an additional
database round-trip for each multiline text field to be retrieved.

— Choice lists with the Recalculate Choice List option set

When you choose the Recalculate Choice List option in the properties of a
choice list, the hook code required to repopulate the valid list of choices is
executed each and every time any other field of the record changes value.
This has the potential to cause a large amount of unnecessary query traffic to
and from the database. A more efficient method to ensure that the choice list
is valid is to determine the other fields that can affect the values in this choice
list, and force the choice list to be recalculated only when those field values
change.

For example, if you are collecting data in an Automobile record you might
have a field for the Manufacturer of the automobile, and another field for the
Model. The valid list of choices for the Model field depends only on the
Manufacturer selected. The inefficient method of ensuring that the choice list
for the Model field is always valid is to select Recalculate Choice List for this
field. Instead, you can write a VALUE_CHANGED hook for the
Manufacturer field that invalidates the choice list for the Model field. See
[InvalidateFieldChoiceList examplg for more information on using this
method.

* Cascading Hooks

Cascading hooks are caused by having several dependent or nested relationships
between fields. Consider the automobile Manufacturer and Model dependency
discussed earlier in this section. Extending that example, suppose that once a
Model is selected, the list of valid choices for Body Style or Color or Engine
could change. It is easy to see how changing one field value on a form could
cause a cascade of hooks to be executed and re-executed for the other fields. The
depth of these nested field relationships should be minimized, and care should
be taken in the implementation of the schema in order to avoid unnecessary or
redundant execution of hook code.

* AdminSession objects

Getting AdminSession objects has an impact on performance and there may be
alternatives for retrieving data. For example, instead of using the AdminSession
object and underlying User object and Group object methods to retrieve user or
group information, you can create queries for User and Group records (stateless
record types) that are in a user database.

Chapter 5. API and Hooks Updates 21

If you must use an AdminSession object, you can cache it in a Session variable
instead of creating new AdminSession objects for each login or hook invokation
that requires it. Additionally, if the data you retrieve through the AdminSession
object is not changing, then you can cache the data as values in Session
variables.

InvalidateFieldChoiceList example

In the following example, a Defect record type has the two fields, product (a
reference to the Product record type) and owner (a reference to User). Each
Product record type has a field called contributors (a reference list to User).

In order for the owner choice list field to be updated whenever the value for
Product is changed, you can use the InvalidateFieldChoiceList method, instead of
using the Recalculate Choice List option.

For example, in the Defect record type, you add a value changed hook for the field
product

¢ Perl

sub product_ValueChanged {
my ($fieldname) = @ ;
$fieldname as string scalar
record type name is Defect
field name is product
Make sure that the choice list for owner is based on
this new value for product.
$entity->InvalidateFieldChoicelList("owner");

}
and you add a choice list hook for the field owner.
sub owner_Choicelist

{
my($fieldname) = @ ;
my @choices;
$fieldname as string scalar
@choices as string array
record type name is Defect
field name is owner
Is the value of product set? If not, return an empty list.
my $productFieldInfo = $entity->GetFieldValue("product");
return @choices unless
$productFieldInfo->GetValidationStatus() == $CQPerlExt::CQ__ KNOWN_VALID;
return @choices unless $productFieldInfo->GetValue() ne "";
Field product is set and valid.
Get the 1list of contributors on this product.
@choices = $entity->GetFieldValue("product.contributors")
->GetValueAsList();
return @choices;

}
* VBScript

Sub product_ValueChanged(fieldname)
" fieldname As String
' record type name is Defect
" field name is product
InvalidateFieldChoicelList "owner"
End Sub

and you add a choice list hook for the field owner

Sub owner_ChoicelList(fieldname, choices)
" fieldname As String
" choices As Object
" record type name is Defect
" field name is owner

22 Documentation Supplement

Using

" Is the value of product set? If not, return an empty list.
Dim productFieldinfo
set productFieldinfo = GetFieldValue("product")
if productFieldinfo.GetValidationStatus() <> AD_KNOWN_VALID then exit sub
productFieldInfovalue = productFieldinfo.GetValue()
if productFieldInfovalue = "" then exit sub

" Field product is set and valid.
' Get the list of contributors on this product.
Dim productFieldvalues
productFieldvalues = GetFieldValue("product.contributors").GetValueAsList()
for each contributor in productFieldvalues
choices.AddItem contributor
next

End Sub

Each time you start an action, owner_ChoiceList is run once, and every time you
change product, the owner choice list is invalidated. The user interface then
requests the choice list, which forces the choice list hook to be re-executed.

Perl for external applications

In version 2003.06.00 and later, you can use the ClearQuest API with either
CQperl.exe or ratlperl.exe. Using CQperl implicitly adds the correct include paths
to CQPerlExt.pm (the Perl package that provides the ClearQuest API). If you use
ratlperl on UNIX, you must set the correct path. If you use Perl for an external
application, IBM Rational recommends that you limit the external application to
tasks that are independent of actions, such as querying, reporting, and user
administration.

RATLC00702699, APAR IC37754; Documentation for the
highlighting of keywords in the ClearQuest Designer script

editor

This section describes how to customize the coloring and display of hook code in
the ClearQuest Designer script editor for Perl or VBScript hook code.

When working with hook code in the scripting editor in ClearQuest Designer,
there is a limited set of colors in the presentation. The tool displays all comments
in green, read-only text in grey, and all other text in black. These color settings are
defined in two ini files in the Rational/ClearQuest directory:

* VBScript.ini, for the COM API
* PerlScript.ini for the Perl API

You can enhance the color settings by customizing these files. Each color setting is
defined as a color group (ColorGroup). Each of the ini files includes a set of
defined color groups.

Two forms of customization are:
¢ Modifying the colors of an existing color group
* Adding new color groups

Each color group has a Foreground attribute that defines the color of the text and a
Background attribute that defines the background color for the text.

Chapter 5. API and Hooks Updates 23

Modifying the colors of an existing color group

You can specify the color settings of the text color and its background for an
existing color group by modifying the Foreground or Background attributes of that
color group. Each of these attributes requires three color values (red, green, blue)
in the range of 0-255. For example:

ColorGroup = Comment
Foreground = 238,183,17
Background = 239,239,211

You can modify the values for any given color group to customize the settings that
ClearQuest provides. For example, change:

Foreground = 238,183,17

to
Foreground = 238,128,0

Adding color groups

You can add color groups that define new classes of information to help
distinguish different classes of text (defined as different color groups) in the script
editor. For example, you can define a new color group to highlight enumerated
constants (that are defined in ClearQuest.bas) by defining the following
CQConstant color group:

[CQConstant]

Foreground = 75,0,255

Background = 239,239,211

DispTayName = CQConstant

Configurable =1
BackColorAutomatic
ForeColorAutomatic
Configurable = 1

1
0

Within the ini file is a variable (NumGroups) that is set to the number of color
groups. For example:

NumGroups=14

For each new color group you define, you must increment the value of
NumGroups by one.

Add the enumerated constants to the Keyword list and set them to the defined
ColorGroup name. For example:

[Keywords] AD_SUPER_USER = CQConstant

In addition to making the constants more visible, this solution can help identify
spelling errors, since a misspelled constant would not be defined as a Keyword
and therefore not highlighted.

Note: The definitions in the ini files are not directly linked to the actual
ClearQuest APIs. Therefore, changes to an API are not reflected in the ini
files. Depending on your customizations, manual updates to the ini files
may be required.

Note: Customizing the VBScript.ini and PerlScript.ini files has no effect on any
code that is part of an installed package. Package installed code is read-only.

24 Documentation Supplement

Corrections and other changes to documentation

This section includes:

* Content updates to existing ClearQuest API functions that are documented in
the API Reference.

* New content, including newly supported or documented methods that should
be included in the API Reference.

* Newly implemented methods that should be included in the API Reference.

RATLC00708226, RATLC00706668, RAMBU00050315; Commit
behavior documentation enhancements

Additional information should be included in the ClearQuest Administrator’s Guide
on Commit behavior, in the Hooks chapter, in the "When the record is committed”
section. See[When the record is committed| for the updated documentation on
Commit behavior.

For additional information, see [Editing an existing record| and [Hooks in nested|

RATLC00712744; Syntax is incorrect for the
GetFieldRequiredness method

The VBScript syntax for the GetFieldRequiredness and the GetFieldType methods
of the Entity object is incorrect in the ClearQuest API Reference. Parentheses should
be included for the arguments:

* entity.GetFieldType (field name)

* entity.GetFieldRequiredness (field name)

RATLC00712920, RATLC00710309, RAMBU00054358,
RAMBU00056057; Date timestamp issues

The function for the current timestamp is incorrect in the ClearQuest
Administrator’s Guide. The correct code for the GetCurrentDate function is:
sub GetCurrentDate {

my($sec, $min, $hour, $mday, $mon, $year, $wday, $yday, $time) =

Tocaltime();

return sprintf("%4d-%2.2d-%2.2d %2.2d:%2.2d:%2.2d", $year + 1900,

$mon + 1, $mday, $hour, $min, $sec);

}

RATLC00696630, RATLC00696270, RATLC00696759,
RATLC00710896; Generating reports and updates to
SetHTMLFilename documentation

The following information helps resolve issues raised with generating reports
using the API and receiving an Unknown exception. This additional information
applies to the SetHTMLFilename method of the report manager (ReportMgr)
object.

You must call this method before calling the ExecuteReport method to set the name
and location of the report output file. You specify output path information in the
htmlPathName parameter of the SetHTMLFileName method:

* VBScript
reportMgr.SetHTMLFileName htmlPathName

Chapter 5. API and Hooks Updates 25

e Perl
$reportMgr->SetHTMLFileName (htmlPathName) ;

You must specify a directory for the HTML file or add a backslash ("\") before the
file name. For Perl, use two backslashes ("\\"). For example:

* VBScript:

c:\test.html
\test.html

e Perl:

c:\\temp\\my-report.html
\\my-report.html

This SetHTMLFileName method argument requires a full path name to the file to
be created. If the file is to be exported to the current directory, a file separator
needs to be included before the name of the file. For example (Perl):

$CQReportMgr->SetHTMLFi1eName ("\\Output.html");

RATLC00705428; SuperUser privilege required for
SetUserName method

The SetUserName method of the Workspace object requires SuperUser privileges.
The section in the ClearQuest API Reference for this method should include the
following note.

Note: Users must have SuperUser privileges to call this method.

RATLC00707609; Methods to set and get user privileges

Two new methods in the User object for setting and retrieving user privileges are
available in the Perl API, but are not documented in the ClearQuest API Reference.

* |GetUserPrivilegel
* |SetUserPrivilege]

GetUserPrivilege
* Description

Tests whether the User has a specified user privilege. Returns True if the User
has the specified user privilege; False if they do not have the specified user
privilege.

Note: This method is for Perl only. It is not available for VBScript.
* Syntax
Perl

$user->GetUserPrivilege(priv);

Identifier Description

user A User object.

priv A Long containing a UserPrivilegeMaskType constant.

Return value Returns a Boolean True if the User has the specified user
privilege; False if they do not have the specified User privilege.

e See Also
— [SetUserPrivilege]

26 Documentation Supplement

— HasUserPrivilege method of the Session Object
— UserPrivilegeMaskType constants

SetUserPrivilege
* Description

Sets a User privilege to True if authorizing the User privilege to the user’s
account; False if not allowing the User privilege.

Note: This method is for Perl only. It is not available for VBScript.
* Syntax
Perl

$user->SetUserPrivilege(priv, blalue);

Identifier Description
user A User object.
priv A Long containing a UserPrivilegeMaskType constant.
bValue A Boolean set to True if the User has the specified user privilege;
False if they do not have the specified User privilege.
Return value None on success, or else an exception.
* See Also
- |GetUserPrivilege

— HasUserPrivilege method of the Session Object
— UserPrivilegeMaskType constants

RATLC00666959, RATLC00698133, RAMBUO00046241; Creating
PERL and VBScript Hooks of the same name causes the
creation of new hooks to fail

Creating a Perl and VBScript record hook with the same name causes the following
problems when a field has one of the hooks assigned to it on a form:
¢ The error message

A1l forms will be saved and closed before you can delete or
rename a field. Continue?

is displayed. Because the dialog box has an OK button only, you cannot cancel
the action, and the field is not removed from the form.

¢ The new hook (with the requested name) is created along with another hook,
New1. This prevents the creation of any new hooks for either language, and you
cannot delete the New1 hook because it does not appear in the list of record
scripts.

The workaround is to restart ClearQuest Designer and delete the script. When the
scripts are parsed, the New1 script is added to the tree view and can then be
deleted.

RATLC00712994, RAMBU00036659; CQString is not MBCS,
which is not suitable for internationalization

CQString is the string type used by the ClearQuest Perl APL This type is used for
the Perl API, so any Perl hooks or external Perl scripts use it to pass string data to
and from the ClearQuest core.

Chapter 5. API and Hooks Updates 27

CQString uses single-byte characters. To make it use wide characters, the core
must be compiled with _UNICODE, but ClearQuest is compiled with _MBCS.

RATLCO00703293, APAR IC37932; SetLoginName method
update

The SetLoginName method does not work as described in the ClearQuest API
Reference. The following sentence should be removed and is not accurate:

If either a blank user name or password is supplied, no error will occur and only
the parameter specified will be changed.

Neither argument is optional. If you add the password parameter, then the value
you specify becomes the new password. If you leave out the name parameter, a
type mismatch error is returned.

RATLC00701671, APAR IC37619; Updates to the description of
the UserLogon method database set argument

The description in the ClearQuest API Reference for the database_set argument of
the UserLogon method should be updated as follows:

A String that specifies the name of the database set or connection string.

Note: You can use an empty string ("”) if you have only one database set or to
refer to the default database set. The default database set name is the one
that matches the product version number (for example, 2003.06.00).

RATLC00712943, RATLC00712310, APAR I1C39076; Updates to
the SetFrom method of the Mail message object

The SetFrom method section of the ClearQuest API Reference should include the
following additional notes.

Note: When sending SMTP e-mail on a Web server, the server machine name is
used as the "From” part of the message instead of the submitter e-mail
address, unless SetFrom is explicitly used.

Note: The SetFrom method does not work with MAPI.

RATLC00705405; Correction to "Running a Query and
Reporting on its Result Set” code example

In the Perl code example in the "Running a Query and Reporting on its Result Set”
section of the ClearQuest API Reference, the following statement

While($status == AD_SUCCESS)

should be
While($status == CQPerlExt::CQ SUCCESS)

28 Documentation Supplement

RATLC00453581, RAMBU00050338, RAMBU00035392,
RATLC00656939, RATLC00712567, RATLC00710254,
RATLC00705491, RAMBU00009075, RAMBU00010073,
RATLC00654966, RAMBU00050417; Actions and access
control documentation enhancements

New content should be included in the ClearQuest Administrator’s Guide that helps
resolve issues with actions, access control, nested actions, and notification hooks
not running.

For new information on actions and access control, base actions, nested actions
information, see [Actions and access control|and its subsections.

Note: IBM recommends that you do not set any access control on Base actions.
You can modify the access control to actions, including actions that may be
added to your schema, by applying packages. However, any access control
restrictions placed in base actions apply to all other actions.

RATLC00447393; Setting a field value or variable

When setting a variable to be local in a Perl hook, use the my declaration.

Additional information to what the ClearQuest API Reference provides on setting a
field value (that is, using the SetFieldValue method) is available in this release. See
[Name lookup in Perl hooks|

RAMBUO00036184; Naming a field

You cannot declare a constant or variable with the name being the same as an
existing field name.

RATLCO00705480, RAMBUO00054500; New methods that
enhance performance

New methods are available that provide improved performance of existing
functionality. The following methods provide shortcuts to functions provided by
other existing APIs.

* Entity object methods:
— [GetFieldStringValue|
— |GetFieldStringValueAsList]
- [GetFieldStringValues|

- EetFieldValues|

+ |GetAllColumnValues| method of the ResultSet object

GetFieldStringValue

* Description

Returns the list of values of the specified field as a single String.

This method is equivalent to first calling the GetFieldVValue method to obtain a
FieldInfo object and then calling the GetValue method of the FieldInfo object.
This is a more direct and more efficient way to get the value of a field.

* Syntax
VBScript
entity.GetFieldStringValue field name

Chapter 5. API and Hooks Updates 29

Perl

$entity->GetFieldStringValue(field name);

Identifier

Description

entity

An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding
to the current data record is assumed (VBScript only).

field_name

A String that identifies a valid field name of an Entity.

Return value

A String that contains the value or values stored in the field.

e See Also

— GetValue of the FieldInfo Object

— GetFieldValue

— GetFieldStringValues
— GetFieldStringValueAsList

— SetFieldValues
— SetFieldValue

GetFieldStringValueAsList

* Description

Returns a list of string values for the specified field.

This method is equivalent to first calling the GetFieldValue method to obtain a
FieldInfo object (and then calling GetValueAsList method of the FieldInfo
object). This is a more direct and more efficient way to get the value of a field.

* Syntax
VBScript

entity.GetFieldStringValueAsList field name

Perl

$entity->GetFieldStringValueAsList(field name);
The field_name argument is a String that identifies a valid field name of an

Entity.

Identifier

Description

entity

An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding
to the current data record is assumed (VBScript only).

field_name

A String that identifies a valid field name of an Entity.

Return value

For VBScript, a 1-element Variant Array is returned. The Variant
contains the list of values, separated by vbLFE. If the field
contains no values, this method returns an Empty Variant. For
Perl, a reference to an array of strings containing the values in
the list.

e See Also

— SetFieldValues
SetFieldValue

30 Documentation Supplement

GetValueAsList of the FieldInfo Object
GetFieldStringValues

GetFieldStringValues

* Description
This Entity method allows multiple field values to be retrieved with one call.
The field_names parameter is a String array of field names, and the result is a
String array of field values, in the same order as the input array. If there is an
error retrieving any one of the named fields (for example, if you specify an
invalid name of a field), an exception is thrown.

* Syntax
VBScript
entity.GetFieldStringValues field names
Perl
$entity->GetFieldStringValues(field names);

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding
to the current data record is assumed (VBScript only).

field_names For VBScript, a Variant containing an array of strings. Each
String identifies a valid field name of this Entity object. For Perl,
a reference to an array of strings containing the valid field
names.

Return value For VBScript, a Variant containing an array of strings. Each
String contains the value or values stored for each of the
specified field names. For Perl, a reference to an array of strings
containing the value or values stored for each of the specified
field names.

* See Also
GetFieldStringValue
GetFieldStringValueAsList
SetFieldValues
SetFieldValue

SetFieldValues

* Description

Places the specified values in the named fields. This method allows multiple
field values to be set with one call. The two input string arrays are parallel lists,
where field_names lists the field names and new_values lists the field values. For
example, item N in field_names provides the field name and item N in new_values
provides the value for that field.

The return value is an array of result messages for each field. Each result
message is the same message that is returned by a single call to the
SetFieldValue method. If there are no errors, the result is a String array of the
same number of elements as field_names, with each element being an empty
String.

* Syntax
VBScript
entity.SetFieldValues field names, new values
Perl
$entity->SetFieldValues(field names, new _values);

Chapter 5. API and Hooks Updates 31

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding
to the current data record is assumed (VBScript only).

field_names The list of field names for values to be set. For VBScript, a
Variant containing an array of strings. Each String contains a
valid field name of this Entity object. For Perl, a reference to an
array of strings containing the valid field names.

new_values The list of field values to set for the specified field names. For
VBScript, a Variant containing an array of strings. Each String
contains a field value. For Perl, a reference to an array of strings
containing the new values.

Return value For VBScript, a Variant containing an array of result messages for
each field. For Perl, a reference to an array of strings containing
the result messages for each field. If changes to the field are
permitted, this method returns an empty String; otherwise, this
method returns a String containing an explanation of the error.

* See Also
GetFieldStringValues
GetFieldStringValueAsList
GetFieldString Value

— SetFieldValue

GetAllColumnValues
* Description

Returns all column values in the result set as an array of strings (for Perl, a
reference to an array of strings).

The result contains a pair of strings for each item:
— The first string of each pair is the column name (in uppercase).
— The second string is the column value.

For example, given a query asking for Id and Headline, a successful result of
calling this method would be an array containing 4 elements:

- "ID"

- "SAMPL00001234"

— "HEADLINE"

— "This is a test”

By returning a pair of strings for each column, you can design code independent
of the order of the items in the result set.

The MoveNext parameter controls whether this function calls the MoveNext
method before retrieving the data. If there is an error executing the MoveNext
method, the return value of GetAllColumnValues is a result array containing
one element, the String form of the ErrorFetchStatus value that would have
been returned from the MoveNext method. A non-error result always has an
even number of elements in the array.

* Syntax
VBScript
resultset.GetA11ColumnValues MoveNext
Perl

$resultset->GetA11ColumnValues (MoveNext);

32 Documentation Supplement

Identifier Description

resultset A ResultSet object, representing the rows and columns of data
resulting from a query.

MoveNext A Boolean that specifies whether or not to call the MoveNext
method before retrieving all of the column values for a row in
the result set.

Return value For Visual Basic, a Variant array of strings containing the column
names and column values. For Perl, a reference to an array of
Strings containing the column names and column values.

* See Also
— MoveNext
— Execute
— GetColumnLabel
- GetColumnType
— GetNumberOfColumns

RATLCO00450645, RAMBUO0046105; ClearQuest hooks database
location has changed

The location of the ClearQuest Hooks database that is listed in the ClearQuest API
Reference and in the ClearQuest Administrator’s Guide is no longer correct nor in
service. You can access the hooks by navigating to:

* http://www.ibm.com/developerworks/rational/library/4236.html

* http://www.ibm.com/developerworks/rational /products/clearquest and
selecting "IBM Rational ClearQuest hooks index.”

RATLC00703780, RAMBU0010103, APAR 1C41898;
Package-installed hooks are read-only

The following information on package-installed hooks should be added to the
ClearQuest Administrator’s Guide hooks chapter:

When you install a package, hooks may be added to your schema. However, these
scripts are part of the Package and not part of your hook code.

Package-owned scripts cannot be deleted. They are read-only and not part of the
code owned by a schema. For this reason, there is no relationship between the
default language setting you choose for your hook code and the language that
hooks owned by a Package are implemented in.

RATLC00699730; Code example for HasDuplicates correction

The code example for the HasDuplicates method in the ClearQuest API Reference is
incorrect. Here is the correct code:

$originalID = $entity->GetDisplayName();
if ($entity->HasDuplicates())

{
$session = $entity->GetSession();
$duplicateLinkList = $entity->GetDuplicates();
$cnt = $duplicatelLinkList->Count();

Output the IDs of the parent/child records
for ($i = 0; $i<$cnt; $i++)

$itm = $duplicateLinkList->Item($i);
$duplicateObj = $itm->GetChildEntity();

Chapter 5. API and Hooks Updates 33

$duplicateID = $duplicateObj->GetDisplayName();
$session->0utputDebugString("Parent ID:".$originallD." child
Id:"$duplicatelD);

}

}

RATLC00697318, RATLC00708183; StringldToDbld method of
the Session object

The description in the API Reference for the StringldToDbId method of the Session
object includes information about the format of IDs for stateless record types.
However, the method does not work for stateless record types. The
StringldToDbId method (and also the DbIdToStringld method) accept IDs of the
form used for stateful record types, either a record number by itself or with the
database name at the front (for example, SAMPL00001234).

* The documentation for both the StringldToDbld and DbIdToStringld methods
should include the following note:

Note: This method does not currently support stateless record types.
* The description in the API Reference for the StringldToDbId method should be:

Returns the database ID (Dbld) translated from string ID. The Dbld is a unique
number assigned to every record by ClearQuest. For stateful records, the string
ID is the display name (for example, SAMPL00001234).

Note: This method does not currently support stateless record types.

RATLC00705438; Perl APl Build method syntax

The correct Perl syntax for getting a ClearQuest Session is:
$CQsession = CQSession::Build();

While there are also examples available using
$CQsession = CQPerlExt::CQSession Build();

the correct syntax is to use the Build method of the Session object. For example:
use CQPerlExt; my $sessionObj = CQSession::Build(); CQSession::Unbuild(§session0Obj);

Note: This syntax applies for all Build methods available (such as, in the
AdminSession object) in the ClearQuest Perl APL

RATLC00701064, RATLC00705313; Database object password
methods require SuperUser privilege
The following Database object password properties require the SuperUser
privilege.
* DBOPassword
* ROPassword
* RWPassword

The API Reference should include the following note in each section for these
methods.

Note: You must have SuperUser privileges for this method to return the password.
For users without the SuperUser privilege, an exception is thrown.

34 Documentation Supplement

RATLC00698109, RATLC00696104; UNIX support for reports in
a workspace

The ClearQuest Perl API now supports creating and editing report functionality for
UNIX. Perl support has been added for the following two methods:

* CQWorkSpaceMgr->GetReportMgrByReportDbld($report_dbid);
¢ CQReportMgr->GetQueryDef();

These methods have a note in the API Reference that they are for Windows only.
This is no longer true and the sentence should be removed. The methods are now
supported for UNIX.

RATLCO00703013, RATLC00713905, RATLC00702914, APAR
IC37813; cqole.odl and cqole.dll mismatch

In version 2003.06.00, there was a version mismatch between two files affecting the
ClearQuest COM API (cqole.odl and cqole.dll) that causes some discrepancies
between what is documented in the API Reference and what is visible in an object
browser. In particular, the GetSuiteProductVersion method of the Session object
and the methods supporting code page settings in the Session and AdminSession
objects do not appear in cqole.odl nor in an object browser, although they are
included in cqole.dlL

With the fix in version 2003.06.13, the new Session and AdminSession object
methods are now visible in an object browser.

In the API Reference, the GetSuiteProductVersion method of the Session object is
documented. For backwards compatibility, there should also be the
GetSuiteVersion method. This method returns the same value as
GetSuiteProductVersion.

GetSuiteVersion
* Description

Returns the Suite version string. This is the same version string as the one
returned by the Suite version DLL file and displayed in the About box of
ClearQuest. You do not need to be logged in to a database to use this method.

Note: This method is for COM only. For Perl, see the ProductInfo Object.

* Syntax
VBScript
session.GetSuiteVersion
Identifier Description
session The Session object that represents the current database-access
session.
Return value A String containing the Suite version.

RATLC00719064; Perl SetActive method not working correctly
with Boolean as documented

The Perl SetActive methods of the Group and User objects do not work correctly
with a Boolean argument, as documented in the API Reference. The methods fail if
you use True or False for the argument. The workaround is to use 1 instead of
True and 0 instead of False.

Chapter 5. API and Hooks Updates 35

SaveQueryDef code example correction

The code example in the API Reference for the SaveQueryDef method of the
Workspace object does not define the RootFolder variable before it is included as an
argument in the call to SaveQueryDef. The following line should be added:

my $RootFolder;

The correct code example:

use CQPerlExt;

my $CQSession = CQSession::Build();

my $RootFolder = "Public Queries";

$CQSession->UserLogon($ologon, $opw, $odb, "");

$workspace = $CQSession->GetWorkSpace();

$QueryDef = $CQSession->BuildQuery("Defect");

@owner = ("jswift");

@state = ("Closed");

@dbfields = ("ID","State","Headline");

foreach $field (@dbfields) {

$QueryDef->BuildField($field);

}

$FilterNodel = $QueryDef->BuildFilterOperator($CQPerlExt::CQ BOOL OP_AND);
$FilterNodel->BuildFilter("Owner", $CQPerlExt::CQ_COMP_OP_EQ, \@owner);
$FilterNodel->BuildFilter('State', $CQPerlExt::CQ_COMP_OP_NOT_IN, \@state);
$ResultSet = $CQSession->BuildResultSet ($QueryDef);

$ResultSet->Execute();

$workspace->SaveQueryDef("delete me", $RootFolder, $QueryDef, 1);

print "'$RootFolder/delete me' copied\n";

1
CQSession::Unbuild($CQSession);

RATLCO00715405; Document the Session.ClearNameValues
method

The ClearQuest API Reference does not include documentation for the
ClearNameValues method of the Session object. It should include the following
information:

* Description

Clears all name values for the current session. A name value defines a
session-level variable. Once it is set, it is accessible as long as the session is still
alive. This method clears up all defined values for the current session. For more
information on name values, see the "NameValue” method and the "Using
Session Variables” sections in the ClearQuest API Reference.

* Syntax
VBScript
session.ClearNameValues
Perl

$session->ClearNameValues();

Identifier Description

session The Session object that represents the current database-access
session.

Return value None.

36 Documentation Supplement

SaveQueryDef method of the Workspace object issues

There are some issues with the SaveQueryDef method of the Workspace object.

VBScript:
workspace.SaveQueryDef qdefName, qdefPath, queryDef, overwrite

Perl:
$workspace->SaveQueryDef (qdefName, qdefPath, queryDef, overwrite);
* RATLC00707958, APAR 1C40118

The SaveQueryDef method returns an error if the query already exists, with
either a 0 or 1 value specified for the overwrite parameter.

The last parameter to the SaveQueryDef method is a Boolean value that
specifies whether or not to overwrite an existing QueryDef object with the same
name and path (0 = no overwrite, 1 = overwrite). Specifying the value = 1
should not return an error.

* RATLC00708730

The SaveQueryDef method does not copy a query to the Public Queries folder.
It creates a query in a new (additional) Personal Queries folder (not in the
Public Queries folder) when you specify a pathname (the gdefPath argument) of
the folder in a Public Queries location.

* RATLC00712832, APAR IC40152

Using the SaveQueryDef method to save a query to a Public Queries folder
returns inconsistent results. When using the SaveQueryDef method to save a
QueryDef object, the query does not appear in all ClearQuest client interfaces,
nor for all users.

RATLC00711964, RAMBU00022729; GetFieldRequiredness
return value for read_only fields

GetFieldRequiredness method of the Entity object appears to return an incorrect
value for read_only fields. When using the GetFieldRequiredness method, it does
not return a value of 3 to indicate that a field is read_only. This is currently the
correct behavior and the following note should be included in the API Reference.

Note: Because hooks operate with Administrator privileges (SuperUser), they can
always modify the contents of a field, regardless of its current behavior
setting. If the field is read_only to a ClearQuest user but is modifiable in the
context of a hook, then the return value is not read_only.

RATLCO00715159, RATLC00059373; AddParamValue method
allows the insertion of one string value

The AddParamValue method of the ResultSet object can be used to assign one or
more values to a parameter. However, you must call this method for each
individual value. For example, for a query with a dynamic filter on the State field
with two states, you call the method two times:

$resultset->AddParamValue(1l, "Submitted");
$resultset->AddParamValue(2, "Resolved");

Chapter 5. API and Hooks Updates 37

RATLC00703830, RATLC00667284, RAMBU00053964; New
documentation on error checking and validation

New documentation is available on error checking, validation, and the
SetFieldValue method. See [Error checking and validation| for additional
information to what is provided in the API Reference.

RATLC00371877; UnmarkEntityAsDuplicate method of the
Session object note

When a record is unmarked as a duplicate using the UnmarkEntityAsDuplicate
method in a ClearQuest script, it does not remove the association in the
Parent-Child Entity table. The UnmarkEntityAsDuplicate method removes the
association information from the Child, but not from the Parent entity.

The documentation for the UnmarkEntityAsDuplicate method in the API Reference
should include the following note:

Note: This method removes the duplicate information from the Child entity, but
does not remove the duplicate information from the Parent entity.

RATLCO00718478; ValidateQueryDefName method of the
Workspace object

The ValidateQueryDefName method of the Workspace object can be used to
ensure that a given query (QueryDef object) name and path are valid in the
workspace. However, the description in the API Reference describes the return
value as None. This is only true if the name and path are valid.

The method throws an exception if the QueryDef name or path is not valid. It
checks the name for invalid characters and ensures that the query itself does not
already exist in the folder named by the path parameter.

If the QueryDef path is empty, there is not a complete or consistent validation.

RATLCO00721299; GetFieldOriginalValue method should include
note

Documentation for GetFieldOriginalValue method in the API Reference should
include the following note that the method does not work in an access control
hook.

Note: Calling this method from an action access control hook returns the original
value of the record’s field regardless of whether or not the current action is
a change-state action.

Upgrading user information from a schema repository to a
user database

When making changes to user information in a schema repository, in order to
propagate the changes from the schema repository to the user databases you must
upgrade the user databases with one of the following methods:

* Upgradelnfo method of the User object

Upgrades one user (that is, one User object) in all databases the user is
subscribed to. It does not update group memberships, and only updates user
properties such as is-active, e-mail, full name, and phone.

38 Documentation Supplement

* UpgradeMasterUserInfo method of the Database object

Upgrades all user and group information for one database, including the user
and groups records and group memberships.

For existing users, you can propagate changes with either of the following
methods:

* Get a list of user databases in the schema repository, iterate through each one
calling the UpgradeMasterUserInfo method of the Database object
(CQDatabase->UpgradeMasterUserInfo).

* Call the Upgradelnfo method of the User object (CQUser->Upgradelnfo).

For newly created users, if you create new ClearQuest users by using the
CreateUser method of the AdminSession object (CQAdminSession->CreateUser)
and set privileges, password, and other user information that you want propagated
from a schema repository to user databases, you must use the
UpgradeMasterUserInfo method of the Database object (by iterating through a list
of user databases in the schema repository and calling CQDatabase-
>UpgradeMasterUserInfo for each user database).

The Upgradelnfo method was introduced (in version 2003.06.00) to provide a way
to propagate user/group information from the schema repository to all affected
user databases. However, the method only works for an existing user and not for a
newly-created user.

Note: You cannot update Group membership using the Upgradelnfo method of
the User object. Only the properties that can be set by the methods of the
User object are updated by calling Upgradelnfo. Group membership is
changed with the methods of the Group object, and the
UpgradeMasterUserInfo method of the Database object must be used to
update Group information settings.

RATLC00722670, APAR 1C40986;
RegisterSchemaRepoFromFile and GetLastSchemaRepoinfo
documentation update

The RegisterSchemaRepoFromFile and GetLastSchemaRepolnfo methods of the
AdminSession object are described in the API Reference and should include the
following updated information:

* RegisterSchemaRepoFromFile

Creates a new database set (also known as a connection in ClearQuest
Maintenance Tool) using the file path argument. Returns an error message if an
error occurred. The file path argument is the path name of a connection profile
file created by ClearQuest Maintenance Tool.

Note: This method does not currently work with versions of ClearQuest
Maintenance Tool that support multiple database sets in a profile file.

* GetLastSchemaRepolnfo
Returns schema repository information for the current connection.

It can be useful to save the schema repository connection information in a file.
This is called a schema repository location file (that is, a profile file). The name
of this file is stored in the schema repository and whenever the schema
repository location changes, the file is automatically updated. This method is
used to save and retrieve information from the file.

Chapter 5. API and Hooks Updates 39

For versions of ClearQuest that do not support multiple database sets, the
GetLastSchemaRepolInfo method finds the most recently registered schema
repository (from the current or prior releases) to be used during an upgrade to
propagate database connections.

Note: This method does not currently work for versions of ClearQuest that
support multiple database sets.

Updates to "Ensuring that record data is current” section in
API Reference

The "Ensuring that record data is current” section in the API Reference should be
updated to reflect the newly documented method of the Entity object. The
correct text should be:

In a multiuser system, you can view the contents of a record without conflicting
with other users. However, if another user is updating a record while you access a
field of that record, you might get the field’s old contents instead of the new
contents. The FieldInfo object returned by the GetFieldValue method of the Entity
object contains a snapshot of the field’s data.

Calling GetFieldValue to get the field value again does not refresh the cached
data, but only returns the previously cached value. You must call the
method of the Entity object to refresh the cached information to see any changes
that another user might have made.

RATLC00445073, RATLC00721111, APAR 1C39464; Hook
Performance issues and guidelines

New content on performance guidelines should be included in the API Reference.
See [Performance considerations for using hooks for this information. Also see
[InvalidateFieldChoiceList example| for a code example for recalculating a choice
list.

GetValueAsList return value description is incorrect in AP/
Reference

The return value description for the GetValueAsList method of the FieldInfo

object is incorrect in the API Reference. The correct return value description should
be:

For Visual Basic, a Variant array is returned. The Variant contains the list of values,
separated by vbLF (for scalar fields, returns a 1-element Variant array). If the field
contains no values, this method returns an Empty Variant.

Document the Entity.Reload method

The ClearQuest API Reference does not include documentation for the Reload
method of the Entity object. It should include the following information:

* Description

Refreshes the current in-memory copy of the record with the latest value from
the database. For more information, see [Updates to "Ensuring that record data i
[current” section in API Reference}

* Syntax
VBScript
entity.Reload

40 Documentation Supplement

Perl
$entity->Reload();

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding
to the current data record is assumed (VBScript only).

Return value None.

* See Also
— Commit
— IsEditable
Validate
EditEntity of the Session Object

RATLC00717324, RATLC00707206; New methods for hiding
records types

This release of ClearQuest includes a new feature that provides record hiding for
record types that a user does not have authorization to submit.

Any record type that a user cannot submit (based on access control by either group
list or hook) does not appear in the record list (Choose Record Type... dialog)
when they select Actions > New. With this feature, users see a restricted list of
record types instead of all record types in the schema. Without this feature, users
see all record types but receive an error if they attempt to submit a record type for
which they do not have authorization.

With this enhancement, two new methods of the Entity Object are available in the
ClearQuest API:

.

* |GetEntityDefNamesForSubmif

CanSubmit

* Description

Returns True if the current user is allowed to submit the named record type. The
result is based on any access control applied to the record type, such as a group
list or a hook.

* Syntax
— VBScript
entity.CanSubmit entDefName
— Perl
$entity->CanSubmit ($entDefName) ;

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding
to the current data record is assumed (VBScript only).

entDefName A String that specifies the name of an EntityDef.
Return value A String that contains the value or values stored in the field.
* See Also

Chapter 5. API and Hooks Updates 41

— [GetEntityDefNamesForSubmit

GetEntityDefNamesForSubmit

* Description

Returns the list of all record types the user is allowed to submit. Like
CanSubmit, the result is based on any access control applied to the record type,
such as a group list or a hook. The result is similar to GetEntityDefNames, but
always contains fewer elements, since GetEntityDefNames includes all record
types (such as User and Group) which cannot be submitted. See the
GetEntityDefNames method of the Session object in the API Reference for more
information.
* Syntax

— VBScript

entity.GetEntityDefNamesForSubmit
— Perl

$entity->GetEntityDefNamesForSubmit();

Identifier Description

entity An Entity object representing a user data record. Inside a hook, if
you omit this part of the syntax, the Entity object corresponding
to the current data record is assumed (VBScript only).

Return value For Visual Basic, returns a Variant containing an array of Strings
containing the EntityDef names the user is allowed to submit.
For Perl, returns a reference to an array of Strings containing the
EntityDef names the user is allowed to submit.

e See Also
— GetEntityDefNames of the Session Object

- [CanSubmid

RATLC00696096; CtCmd code examples for UCM/ClearQuest
integrations

The API Reference should include the following new sections that provide
information on using CtCmd with the ClearQuest Perl API, for integrations
between ClearCase and ClearQuest.

Using CtCmd with ClearQuest Perl scripts for ClearCase
integrations

In order to facilitate integrations between IBM Rational ClearQuest and ClearCase,
or integrations with other products, it is useful to be able to obtain information
about objects in ClearCase VOBs and PVOBs. From ClearQuest Perl scripts, you
can use CtCmd, a Perl module that provides an interface to ClearCase. You can
locate the CtCmd Perl module at: http://cpan.org/modules/by-
category/03_Development_Support/ClearCase/CtCmd-1.03.tar.gz

In order to use this Perl module in ClearCase triggers for ClearQuest integrations
(such as checking in schema changes), and in ClearQuest Perl hook scripts, you
must build CtCmd on Windows (following the instructions included with the
CtCmd kit) and install it to a globally accessible UNC path. In [Using CtCmd for]|
[UCM and ClearQuest) there is code to enable using the correct module path based
on the platform (OSNAME in the following examples), which allows the hook
scripts to pass validation at check in.

42 Documentation Supplement

Building CtCmd to work with cqperl on UNIX: After following the instructions
for unpacking the kit, check to see if ratlperl is found using your PATH
environment variable. If not, add the path:

setenv PATH /opt/rational/common/bin:$PATH

Build from the directory where you unpacked the kit:

ratlperl Makefile.PL
make

make test

make install

Note that by using ratlperl, make install bases the install path off of the path to
ratlperl. In this example, after running "make install”, CtCmd is installed to
/opt/rational/common/lib/perl5/site_perl/5.6.1/sun4-solaris-multi/ClearCase.
This is acceptable as long as /opt is an exported drive accessible by all UNIX
ClearQuest clients (such as /net/qsunl76/opt).

You can verify the installation by invoking the example Perl script below using
either ratlperl or cqperl. For example:

cqperl script_name;

Using CtCmd for base ClearCase and ClearQuest:

use English;
unshift(@INC, "/net/qsunl76/opt/rational/common/1ib/perl15/site perl/5.6.1/
sund-solaris-multi/ClearCase");

require ("CtCmd.pm");
my $ccinst = ClearCase::CtCmd->new();
my $result;
get parent stream and stream type of an activity
my $status;
my $stream;
my $istream;
my $str_type;
my $project;
($status, $stream) = $ccinst->exec("des","-fmt","%[stream]p",
"activity:MCKOOOO0O31\@/var/tmp/beth_pvob");

print("Status: " . $status . "\n");
($status, $project) = $ccinst->exec("des","-fmt","%[project]p",
"stream:$stream\@/var/tmp/beth _pvob");

print("Status: " . $status . "\n");
($status, $istream) = $ccinst->exec("des","-fmt","%[istream]p",
"project:$project\@/var/tmp/beth_pvob");

print("Status: " . $status . "\n");
print("Activity: MCKOOOO0031\nStream: " . §stream . "\nProject: " .
$project . "\nIntegration Stream: " . $istream . "\n");

find out if stream is integration stream
if ($stream !~ $istream) {
$result = "Current stream is not the integration stream";

else {
$result = "Current stream is the integration stream";

}
print($result);

Using CtCmd for UCM and ClearQuest:

Chapter 5. API and Hooks Updates 43

Start of Global Script UCU_CQActBeforeChact

sub UCU_CQActBeforeChact {
the English Perl module is necessary for the use of the OSNAME variable
use English;
if ($OSNAME =~ /Win/i) {
UNC path to CtCmd.pm built for Windows
unshift (@INC, "//otterpop/c/Progra\™~1/Perl/site/1ib/ClearCase");
}
else {
NFS path to CtCmd.pm built for Solaris
if other platforms will be used, this block should also check for the
Unix platform and set the include path accordingly.
unshift (@INC, "/net/qsunl76/usrl/rational/common/1ib/per15/site_perl/5.6.1/
sund-solaris-multi/ClearCase");
}
require ("CtCmd.pm");
my ($result);
my ($param) = @_;
This record hook is invoked by SQUID to invoke the "Perform ClearQuest
Action Before Changing Activity" policy. If the activity is not in
a single stream project, or is not in the project's integration
stream, the UCM change activity should fail.

INPUT:
- Param must be a string with this format:
"entity-type|entity-id|project_info|stream info" (vertical bars are
delimeters)
which represents the entity bound to the SUM_Project which was
delivered, and whether the entity is valid or not
OUTPUT:
- If the entity is valid, this returns an empty string
- If the entity is not valid, this returns a string
to be displayed as an error message.
Parse the param string, but we will ignore project_info and stream_info
in this example
my $entity type;
my $entity id;
my $project_info;
my $stream_info;
($entity type, $entity id, $project info, $stream info) = split ('\|', $param);
Create CtCmd instance
my $inst_cc = ClearCase::CtCmd->new();
get parent stream and stream type
my $status;
my $stream;
my $istream;
my $str_type;
my $project;
get the stream name from the entity_id
($status, $stream) = §inst_cc->exec("des","-fmt","%[stream]p",$entity id);
get the project name from the stream
($status, $project) = $inst_cc->exec("des","-fmt","%[project]p",$stream);
get the name of the project's integration stream
($status, $istream) = $inst_cc->exec("des","-fmt","%[istream]p", $project);
get parent project type (note: model fmt is broken in MCK, returns blank
string)
my $proj_type;
($status, $proj_type) = $inst_cc->exec("des","-fmt","%[model]p",$project);
find out if project is single stream or parent stream is
integration stream
NOTE: if proj_type is SIMPLE, then stream should always be an
integration stream
if (($proj_type !™ "SIMPLE") && ($stream !™ $istream)) {
$result = "Unable to change activity";

S S H 3 I H O Hk I

S S e 3 I H R

44 Documentation Supplement

1
else {

$result = "";
1

return $result;

}
End of Global Script UCU_CQActBeforeChact

Windows platforms: For integrations between ClearQuest and ClearCase, there is
no solution for Windows at this time using CtCmd. Instead, use the ClearCase

Automation Library (CAL). For more information and a code example, see "Using
CAL methods in ClearQuest hook scripts” in the ClearQuest Administrator’s Guide.

VBScript Code Example Errors in APl Reference

There are two VBScript code examples in the API Reference that are incorrect and
should be updated with the following code.

* VBScript Code example error for GetChildEntity method of the Link object.
There should be a set statement before duplicateObj =
duplicatelink.GetChildEntity. The object (duplicateObj) also needs to be defined
with the Dim statement. The correct example is:
originalID = GetDisplayName
If HasDuplicates Then
dupTicatelLinkList = GetDuplicates

' Qutput the IDs of the parent/child records
Dim duplicateObj

For Each duplicatelLink In duplicatelLinkList

set duplicateObj = duplicatelLink.GetChildEntity

duplicateID = duplicateObj.GetDisplayName

OutputDebugString "Parent ID:" & originallD & _

" child Id:" & duplicatelD

Next

End if
* VBScript Code example error for GetEntityDefNames method of the Session

object. There should not be a set statement before entityDefNames =

sessionObj.GetEntityDefNames. The correct example is:
set sessionObj = GetSession

' Get the 1ist of names of all record types.
entityDefNames = sessionObj.GetEntityDefNames

' Iterate over all the record types
for each name in entityDefNames
set entityDefObj = sessionObj.GetEntityDef (name)

" Do something with the EntityDef object
Next

RATLC00715484; Version information for newer ClearQuest
APl methods

This section lists functions in the Perl and COM APIs that became available in
ClearQuest version 2003.06.00 and in version 2002.05.00.

New in version 2003.06.00
The following note should be added to the following methods in the API
Reference:

Note: This method became available in version 2003.06.00.
¢ For both the COM and Perl APIs:

Chapter 5. API and Hooks Updates 45

— AdminSession object:
- IsStringInCQDataCodePage
- CQDataCodePagelsSet
- IsUnsupportedClientCodePage
- IsClientCodePageCompatibleWithCQDataCodePage
- GetCQDataCodePage
- GetClientCodePage
- ValidateStringInCQDataCodePage
— Entity object:
- GetFieldStringValue
- GetFieldStringValueAsList
- GetFieldStringValues
- SetFieldValues
— EntityDef object:
- LookupFieldDefNameByDbName
- LookupFieldDefDbNameByName
— Session object:
- IsRestrictedUser
- SetRestrictedUser
- IsStringInCQDataCodePage
- CQDataCodePagelsSet
- IsUnsupportedClientCodePage
- IsClientCodePageCompatibleWithCQDataCodePage
- GetCQDataCodePage
- GetClientCodePage
- ValidateStringInCQDataCodePage
— ResultSet object:
- GetAllColumnValues
- Upgradelnfo
* For the COM API only:
— Session object:
- GetSuiteProductVersion

New in version 2002.05.00
The following note should be added to the following methods in the API
Reference:

Note: This method became available in version 2002.05.00.
* For both the COM and Perl APIs:
— Session object:
- IsReplicated
- EntityExists
- EntityExistsByDbld
- IsMultisiteActivated
- RegisterSchemaRepoFromFileByDbSet
- IsPackageUpgradeNeeded

46 Documentation Supplement

Stringld ToDbld
DbldToStringld

— Workspace object:

GetPublicFolderName
GetPersonalFolderName
GetWorkspaceltemDbldList
SiteExtendedNameRequired
GetWorkspaceltemName
GetWorkspaceltemSiteExtended
GetWorkspaceltemPathName
GetWorkspaceltemType
RenameWorkspaceltemByDbld
DeleteWorkspaceltemByDbld
GetQueryDefByDbld
InsertNewQueryDef
UpdateQueryDef
GetChartDef
GetChartDefByDbld
InsertNewChartDef
UpdateChartDef
GetReportMgrByReportDbld
CreateWorkspaceFolder
GetQueryDbldList
GetChartDbldList
GetReportDbldList
GetWorkspaceltemParentDbld

— AdminSession object:

IsReplicated

IsMultisiteActivated
GetLastSchemaRepolnfoByDbSet
RegisterSchemaRepoFromFileByDbSet

¢ For the COM API only:
— Session object:

GetProductVersion
GetSuiteVersion
GetStageLabel

* For the Perl API only:
— AdminSession object:

GetLocalReplicaName
GetReplicaNames

— Attachments object:

Exists

— ClearQuest object:

IsWindows
IsUnix

Chapter 5. API and Hooks Updates

47

48 Documentation Supplement

Entity object:

- AddAttachmentFieldValue

- DeleteAttachmentField Value

- EditAttachmentFieldDescription
- LoadAttachment

- GetAttachmentDisplayNameHeader
- EditEntity

Group object:

- RemoveUser

- GetMasterReplicaName

- SetMasterReplicaByName
ProdInfo object:

- GetSuiteProductVersion
QueryDef object:

- IsFieldLegalForQuery

- GetPrimaryEntityDefName
Session object:

- GetEntityDefOrFamily
IsWindows

- IsUnix

- GetProductInfo

User object:

- SetUserPrivilege

- GetUserPrivilege

- GetMasterReplicaName
- SetMasterReplicaByName

Chapter 6. MultiSite documentation updates

Upgrading a schema version with ClearQuest MultiSite

This procedure describes how to introduce a new schema version to a ClearQuest
MultiSite clan by synchronizing the new schema to all sites before upgrading any
user databases. IBM Rational requires that you follow this procedure to help
ensure a stable and reliable ClearQuest MultiSite environment. In addition to
following this procedure, you must also not do the following when using
ClearQuest MultiSite:

* Delete record types and states

¢ Change the working master if all databases are not using the same schema
version

* Change mastership of package-owned queries

Upgrade instructions

1.
2.

Make the desired schema changes and test them against a local test database.

Notify all users that maintenance is scheduled and they must disconnect from
all user databases in the ClearQuest MultiSite clan.

Suspend automated synchronization between all user databases in the
ClearQuest MultiSite clan.

(Optional) Stop and restart your vendor database server to ensure that there
are no open connections to the schema repository or user databases.

Synchronize all sites in the ClearQuest MultiSite clan. After synchronization,
check the incoming and outgoing storage bays to make sure that all packets
were sent and imported. Run the Isepoch command at each site to verify that
all replicas report the same epoch estimates.

Back up all schema repositories and user databases in the ClearQuest
MultiSite clan.

Check in the new schema version at the master schema repository replica, but
DO NOT upgrade the user database.

Export and send an update packet from the MASTR family only (not the user
database family) to all other sites in the clan.

multiutil syncreplica -export -clan DEMO -site SITEA -family MASTR
-u admin -p "" -out c:\cqms\syncA.xml SITEB
Multiutil: Packet file 'c:\cgms\syncA.xml' generated

Import the update packet at all sites.

multiutil syncreplica -import -clan DEMO -site SITEB -family MASTR
-u admin -p "" c:\cqms\syncA.xml

Multiutil: 1 transactions from SITEA have been replayed into the
MASTR database

Multiutil: Deleting packet c:\cgms\syncA.xml

Note: At this point, the schema version exists at all the sites in the clan, but
the user databases have not been upgraded.

© Copyright IBM Corp. 1997, 2004 49

10. Upgrade the user databases by performing the following steps. This ensures
that all replicas in the family are running the same version of the schema
before synchronization is restarted.

a. Upgrade the user database at the working master site.
b. Synchronize all sites.
c. Upgrade the user databases at all remaining sites.
11. Restart synchronization among the user databases at your sites.

12. Confirm that all synchronizations are successful and that all user databases in
the clan are using the same schema version.

13. Notify users that the replicas are available.

Synchronizing

multiple user database families with msimportauto.bat

The Administrator’s Guide for Rational ClearQuest MultiSite does not include
information about the new msimportauto.bat script that you can use to
synchronize replicas with multiple user database families. The following sections
explain when to use the tool and provide syntax examples and instructions.

Why should | use the msimportauto.bat script?

In certain circumstances, successful import of user database update packets may
depend on information contained in other user database packets. If your schema
repository is associated with multiple user database families, import may fail if the
packets are not replayed in the order they were generated.

Example

A particular clan, with sites in Boston and Denver has two user databases, Userl
and User2. The Boston administrator generates a synchronization packet for Userl
(Packetl) and then generates one for User2 (Packet2). While the packets are being
created, an administrator modifies user account information; this causes schema
repository oplog content to be included in both of the user database packets.

Some time later, the Boston administrator generates another pair of user database
synchronization packets for Userl (Packet3) and User2 (Packet4). Again, an
administrator modifies user account information while the packets are being
created, and schema repository oplog content is included in both user database
packets.

All four packets are sent to the Denver site. At the Denver site, the administrator
runs syncreplica -import and specifies the Userl database family. Packetl and
Packet3 are both intended for the Userl family. Import of Packetl is successful and
replays oplogs in Userl and the schema repository. However, import of Packet3
fails, because it depends on schema repository database oplogs, contained in
Packet2, which have not yet been replayed at the Denver replica.

Solution

To avoid this situation, packets created at the exporting site must be replayed in
the same sequence at the importing sites. IBM recommends that you use the
msimportauto.bat script, which is included with this version of ClearQuest. This
script scans the import directory for update packets and then attempts to import
the packets to each family. If any packets are successfully imported, the imported
packets are deleted from the directory and the script attempts to import the next
packet. The script stops executing when all packets are replayed and the directory
is empty. If a series of import attempts results in no packets being deleted from the
directory, the script stops executing and import fails.

50 Documentation Supplement

Running msimportauto.bat

Use the msimportauto.bat script to import update packets in the correct order
when a clan contains multiple user databases. The script can also be used to
perform syncreplica -export.

Syntax

msimportauto [-debug level][-MaxLoops num-loops [-TimeToWait seconds]]

[~-AndDoExport |{ -clan clan-name clan-info }

Operating modes
This program operates in one of the following modes:

* Synchronize now. The program receives pending updates, sends pending
updates (optionally, with ~AndDoExport), and exits. Use this mode if you want
to synchronize immediately or if you want to schedule program execution with
an external scheduler package, such as the Windows Scheduled Tasks facility or
the ClearCase scheduler.

* Loop and wait. The program receives pending updates, sends pending updates
(optionally, with ~AndDoExport), sleeps a specified number of seconds; it then
loops back and receives, sends, and sleeps again. Use this mode if you want the
program to, in effect, act as its own scheduler.

Options and arguments
-debug level

Set the debug level:

0 Apply packets to database; don’t produce any debugging output

1.9 Show diagnostic information and apply packets to database (higher numbers
show more granular output)

10+ Show diagnostic information, don’t apply packets to database

-MaxLoops num-loops
Specifies the number of times the script will perform a receive, send, and sleep
cycle (one iteration) in loop-and-wait mode.

-TimeToWait seconds
Specifies the amount of time, in seconds, between iterations. If -MaxLoops is
specified, but -TimeToWait is not, the default is 30 seconds between iterations.

-AndDoExport
Issue syncreplica -export commands for the input databases (includes export
as part of the receive, send, and sleep cycle).

-clan clan-name
Specifies the clans to synchronize. Multiple clans may be specified in one
command, but the -clan switch must be repeated.

clan-info
Specify clan-info in the following format (no spaces):

admin_username,admin_password;storage_class |
directory,family_1,my_site,other_site_1[,other_site_2,]...[,other_site_n]
[;family_2,my_site,other_site_1...]...[;family_n,my_site,other_site_1
[,other_site_2,]...[,other_site_n]]

Chapter 6. MultiSite documentation updates 51

my_site is the local site that will be imported into and exported from.
other_site_# specifies the other sites in the clan to be exported to and imported
from.

Examples
The following commands must be entered on one line.

* In this example, two clans, TEST and TEST1 are synchronized. TEST contains
two user database families (te and te2) and TEST1 contains one (d2). Both clans
use directories to store packets.

msimportauto -debug 1 -clan TEST
admin,"";C:\testdir\test;te,siteb,sitea;te2,siteb,sitea-clan TEST1
admin,"";c:\testdir\test;d2,sitea,siteb

* In this example, three clans (TESTCLAN, TESTCLANZ2, and TESTCLAN3) are
synchronized. Clan TESTCLAN consists of two user database families, te and
te2. Clans TESTCLAN and TESTCLANS3 use the MultiSite synchronization
server, while TESTCLAN2 uses the directory c:\TESTCLAN?2 to store packets.

msimportauto -debug 0 -MaxLoops 2 -TimeToWait 30 -clan
TESTCLANadmin,""; cq_default;te,SITEA,SITEB,SITEC;te2,SITEA,SITEB
-clan TESTCLAN2 admin,"";c:\TESTCLAN2;d2,SITEA,SITEB

-clan TESTCLAN3 admin,"";cq_default;dt3,SITEA,SITEB-AndDoExport

repair
Displays or deletes entries from the ratl_uuid table of a replica
Applicability
Product
Command type
MultiSite
multiutil subcommand
Platform
UNIX
Windows
Synopsis
repair -orphaned_ratl_uuids [-delete] -cl/an clan-name -site site-name
-fam/ily family-name -u/ser username | -plassword | password
Description
If the ratl_uuid table of a replica contains entries that are not also included in the
master_uuid table, a mkreplica command may fail in one of the following ways:
* The mkreplica -export operation succeeds, but the import operation fails
* The mkreplica -export operation fails with the following error:
There are num-entries entries in the ratl_uuids table that have no
corresponding rows in the master uuids table. To remove these
'orphaned' rows from the ratl uuids table, please backup the master
and user databases, then execute 'multiutil repair -orphaned ratl uuids
-delete ...', specifying the same clan, site, family, user and
52 Documentation Supplement

password information.
Multiutil: The mkreplica -export command failed.

You can use the repair command to view or delete the "orphaned” entries in the
ratl_uuid table. After you delete the entries from the ratl_uuid table, mkreplica
-export and -import operations will no longer fail.

Locking the Replica

The repair command locks the specified database replica. Locking it ensures that
while the repair command is running, no other changes are made to the replica.
The database replica is unlocked after the repair command is completed.

Restrictions

Locks: This command fails if the database is locked (for example, during the
upgrade process) or while another ClearQuest MultiSite operation is being
performed.

Options and arguments
Specifying the operation
Default

Displays all entries in the ratl_uuids table that have no corresponding rows
in the master_uuids table.

-delete
Deletes all entries in the ratl_uuids table that have no corresponding rows
in the master_uuids table.

Specifying the clan, site, and family

Default
Clan: First clan replicated at this site. If there is more than one clan at the
site, —clan is required.

Site: Current site. If there is more than one site on this host, —site is
required.

Family: No default; you must specify a family.

—cl/an clan-name
Name of the replica’s clan.

—site site-name
Name of the replica’s site.

—fam/ily family-name
User database family: Database name given to the user database when it
was created.

Schema repository family: The family name is MASTR.

Specifying a user name and password

Default
You must specify a user name and password.

—u/ser user
Name of a user with Super User privileges.

Chapter 6. MultiSite documentation updates 53

—p/assword password
Password associated with the specified user.

Examples

In these examples, the lines are broken for readability. You must enter each
command on a single physical line.

* At the boston_hub replica, display a list of all entries in the ratl_uuids table that
have no corresponding rows in the master_uuids table.

multiutil repair -orphaned_ratl_uuids -clan telecomm -site boston_hub
-family DEV -user susan -p passwd

* Delete all entries in the ratl_uuids table of the boston_hub replica that have no
corresponding rows in the master_uuids table.

multiutil repair -orphaned_ratl_uuids -delete -clan telecomm
-site boston_hub -family DEV -user susan -p passwd

See also

mkreplica

54 Documentation Supplement

Appendix. Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation North Castle Drive
Armonk, NY 10504-1785

USA.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created

© Copyright IBM Corp. 1997, 2004 55

programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Department BCFB
20 Maguire Road
Lexington, MA 02421
US.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

(c) (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. (c) Copyright IBM Corp. _enter the year or years_. All rights

reserved.

Additional legal notices are described in the legal_information.html file that is
included in your Rational software installation.

Trademarks

56 Documentation Supplement

IBM, Rational, DB2 , ClearCase, ClearCase MultiSite, ClearQuest, and RequisitePro
are trademarks of International Business Machines Corporation in the United
States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks of Sun Microsystems,
Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Other company, product or service names may be trademarks or service marks of
others.

Appendix. Notices 57

58 Documentation Supplement

Readers’ Comments — We’d Like to Hear from You

ClearQuest
Documentation Supplement
Windows Version 2003.06.13, UNIX patch 2003.06.00-6

Publication No. GI11-5979-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied
Overall satisfaction]]] O O

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied
Accurate] O O]]
Complete O O]]]
Easy to find]]] O]
Easy to understand O O U U U
Well organized O O O] 0 U
Applicable to your tasks O]] |]

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? [] Yes [] No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You

GI11-5979-00

Fold and Tape

Please do not staple

BUSINESS REPLY MAIL

FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

Fold and Tape

Gl11-5979-00

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Atin: Dept CZLA
20 Maguire Road
Lexington, MA
02421-3112

Please do not staple

Fold and Tape

NO POSTAGE
NECESSARY

IF MAILED IN THE
UNITED STATES

-

Fold and Tape

Cut or Fold
Along Line

Cut or Fold
Along Line

Printed in USA

GI11-5979-00

	Contents
	Figures
	Tables
	About this book
	Who should read this book
	Typographical conventions
	Related information
	ClearQuest documentation roadmap

	Contacting IBM Rational Customer Support

	Summary of changes
	Chapter 1. Introduction
	Chapter 2. New code page features
	Setting the data code page in the ClearQuest Maintenance Tool
	What are code pages?
	Setting the data code page for a new schema repository
	Changing the ClearQuest data code page for existing schema repositories

	Supporting the EUC-JP code page
	Using installutil setdbcodepagetoeucjpsafeshiftjis

	Chapter 3. Simplifying deployment with new database drivers
	Functions of database property pages
	Setting database properties for Oracle
	Setting database properties for SQL Server

	Chapter 4. Changes to command-line utilites
	Updating connect options for installutil
	Specifying connect options in installutil for Oracle
	Specifying connect options in installutil for SQL Server

	New subcommand — installutil registerconnectoptions
	Syntax

	New subcommand — installutil getconnectoptions
	Syntax

	Updating connect options for pdsql
	Specifying connect options in pdsql for Oracle
	Specifying connect options in pdsql for SQL Server

	Using cqreg refresh for ClearQuest clients on UNIX

	Chapter 5. API and Hooks Updates
	New content
	Error checking and validation
	Debugging your code
	Actions and access control
	Primary actions
	Base actions
	Nested actions

	Name lookup in Perl hooks
	Default entity
	Editing an existing record
	When the record is committed
	Performance considerations for using hooks
	InvalidateFieldChoiceList example
	Using Perl for external applications
	RATLC00702699, APAR IC37754; Documentation for the highlighting of keywords in the ClearQuest Designer script editor
	Modifying the colors of an existing color group
	Adding color groups

	Corrections and other changes to documentation
	RATLC00708226, RATLC00706668, RAMBU00050315; Commit behavior documentation enhancements
	RATLC00712744; Syntax is incorrect for the GetFieldRequiredness method
	RATLC00712920, RATLC00710309, RAMBU00054358, RAMBU00056057; Date timestamp issues
	RATLC00696630, RATLC00696270, RATLC00696759, RATLC00710896; Generating reports and updates to SetHTMLFilename documentation
	RATLC00705428; SuperUser privilege required for SetUserName method
	RATLC00707609; Methods to set and get user privileges
	GetUserPrivilege
	SetUserPrivilege

	RATLC00666959, RATLC00698133, RAMBU00046241; Creating PERL and VBScript Hooks of the same name causes the creation of new hooks to fail
	RATLC00712994, RAMBU00036659; CQString is not MBCS, which is not suitable for internationalization
	RATLC00703293, APAR IC37932; SetLoginName method update
	RATLC00701671, APAR IC37619; Updates to the description of the UserLogon method database set argument
	RATLC00712943, RATLC00712310, APAR IC39076; Updates to the SetFrom method of the Mail message object
	RATLC00705405; Correction to "Running a Query and Reporting on its Result Set" code example
	RATLC00453581, RAMBU00050338, RAMBU00035392, RATLC00656939, RATLC00712567, RATLC00710254, RATLC00705491, RAMBU00009075, RAMBU00010073, RATLC00654966, RAMBU00050417; Actions and access control documentation enhancements
	RATLC00447393; Setting a field value or variable
	RAMBU00036184; Naming a field
	RATLC00705480, RAMBU00054500; New methods that enhance performance
	GetFieldStringValue
	GetFieldStringValueAsList
	GetFieldStringValues
	SetFieldValues
	GetAllColumnValues

	RATLC00450645, RAMBU0046105; ClearQuest hooks database location has changed
	RATLC00703780, RAMBU0010103, APAR IC41898; Package-installed hooks are read-only
	RATLC00699730; Code example for HasDuplicates correction
	RATLC00697318, RATLC00708183; StringIdToDbId method of the Session object
	RATLC00705438; Perl API Build method syntax
	RATLC00701064, RATLC00705313; Database object password methods require SuperUser privilege
	RATLC00698109, RATLC00696104; UNIX support for reports in a workspace
	RATLC00703013, RATLC00713905, RATLC00702914, APAR IC37813; cqole.odl and cqole.dll mismatch
	RATLC00719064; Perl SetActive method not working correctly with Boolean as documented
	SaveQueryDef code example correction
	RATLC00715405; Document the Session.ClearNameValues method
	SaveQueryDef method of the Workspace object issues
	RATLC00711964, RAMBU00022729; GetFieldRequiredness return value for read_only fields
	RATLC00715159, RATLC00059373; AddParamValue method allows the insertion of one string value
	RATLC00703830, RATLC00667284, RAMBU00053964; New documentation on error checking and validation
	RATLC00371877; UnmarkEntityAsDuplicate method of the Session object note
	RATLC00718478; ValidateQueryDefName method of the Workspace object
	RATLC00721299; GetFieldOriginalValue method should include note
	Upgrading user information from a schema repository to a user database
	RATLC00722670, APAR IC40986; RegisterSchemaRepoFromFile and GetLastSchemaRepoInfo documentation update
	Updates to "Ensuring that record data is current" section in API Reference
	RATLC00445073, RATLC00721111, APAR IC39464; Hook Performance issues and guidelines
	GetValueAsList return value description is incorrect in API Reference
	Document the Entity.Reload method
	RATLC00717324, RATLC00707206; New methods for hiding records types
	CanSubmit
	GetEntityDefNamesForSubmit

	RATLC00696096; CtCmd code examples for UCM/ClearQuest integrations
	Using CtCmd with ClearQuest Perl scripts for ClearCase integrations

	VBScript Code Example Errors in API Reference
	RATLC00715484; Version information for newer ClearQuest API methods
	New in version 2003.06.00
	New in version 2002.05.00

	Chapter 6. MultiSite documentation updates
	Upgrading a schema version with ClearQuest MultiSite
	Upgrade instructions

	Synchronizing multiple user database families with msimportauto.bat
	Why should I use the msimportauto.bat script?
	Example
	Solution

	Running msimportauto.bat
	Syntax
	Operating modes
	Options and arguments
	Examples

	repair
	Applicability
	Synopsis
	Description
	Restrictions
	Options and arguments
	Examples
	See also

	Appendix. Notices
	Readers’ Comments — We'd Like to Hear from You

