The State Explosion Problem

Antti Valmari

Tampere University of Technology, Software Systems Laboratory,
PO Box 553, FIN-33101 Tampere, FINLAND,
email: ava@cs.tut.fi

Abstract. State space methods are one of the most important approach-
es to computer-aided analysis and verification of the behaviour of con-
current systems. In their basic form, they consist of enumerating and
analysing the set of the states the system can ever reach. Unfortunately,
the number of states of even a relatively small system is often far greater
than can be handled in a realistic computer. The goal of this article is to
analyse this state ezplosion problem from several perspectives. Many ad-
vanced state space methods alleviate the problem by using a subset or an
abstraction of the set of states. Unfortunately, their use tends to restrict
the set of analysis or verification questions that can be answered, mak-
ing it impossible to discuss the methods without some taxonomy of the
questions. Therefore, the article contains a lengthy discussion on alter-
native ways of stating analysis and verification questions, and algorithms
for answering them. After that, many advanced state space methods are
briefly described. The state explosion problem is investigated also from
the computational complexity point of view.

1 Introduction

There are two main approaches to checking that a concurrent system is correct
with respect to a formal specification: theorem proving and state space methods.

Theorem proving is based on formulating the correctness claim as a mathe-
matical theorem. The theorem is then proven either manually or with the help
of a theorem proving tool. The proof usually uses several invariants and variant
functions or bound functions. An invariant states a property that all states that
the system can reach must have. Invariants are used for showing that the sys-
tem does only correct or “acceptable” things. A variant states an upper limit to
the number of times that something can happen before something else happens.
Variants are used to show that a system makes progress, and eventually does
the things it should do. Because verification of concurrent systems by theorem
proving is a major paradigm, the amount of literature on it is huge and cannot
be surveyed here. As a starting point for reading one can use the textbooks and
surveys [10, 19, 29, 56, 60], for instance.

Because manual proving of theorems takes time, requires highly skilled per-
sonnel, and is prone to human errors, several more or less automatic theorem
prover tools have been developed. Although such a tool is sometimes able to
prove the correctness of an invariant or variant fully automatically, it is more

430

commoeon that lots of human assistance is needed. Furthermore, the invariants and
variants must almost always be provided by the user. Theorem-proving-based
verification is thus very seldom fully automatic. In practice, theorem prover tools
can be used only by specially trained personnel, and the construction of a proof
may take lots of time, even weeks.

Another problem with theorem proving is that it is geared towards proving
correctness. As a consequence, it is not particularly good in providing debugging
information, that is, information on the nature and location of errors. Basically,
an error manifests itself by causing all proof attempts to fail. The error can
often be traced by locating the invariant or variant that could not be proven,
and analysing where attempts to prove it fail. This is, however, an indirect and
sometimes unpleasant way of debugging. A related problem is that theorem
proving is clumsy in the analysis of system behaviour. That is, it is not good
in answering questions of the type “how does the system behave” instead of
“is it certain that the system behaves so-and-so”. These features make theorem
proving somewhat ill-suited to development work, such as experimenting with
new system design ideas, and fixing an incorrect design.

The other side of the coin is that theorem proving is very generally applicable.
For instance, unbounded data types (such as the ordinary integers) can often
be handled without particular difficulties. To give another example, theorem
proving techniques work well with systems whose process structure evolves, that
is, where new processes are added and old processes aborted during an execution
of the system.

State space methods aim at more automatic analysis and verification of the
behaviour of systems. In their basic form, they are based on constructing a
structure that consists of all states that a system can reach, and all transitions
that the system can make between those states. This structure is often called
the state space. The construction of state spaces can be fully automated. Fur-
thermore, practical algorithms are known for answering various verification and
analysis questions, given the state space of a system. No invariants or variants
need be provided by the user. Therefore, at best, the “only” task that the user
of a state space method has to be able to accomplish is to formulate an analysis
or verification question and start a tool. As a consequence, state space methods
can be used by less trained personnel than theorem proving. When state space
methods apply, they are also usually fast to use.

Many state space methods are capable of producing good debugging infor-
mation if the system proves incorrect. Purthermore, if a system cannot be fully
investigated for some reason, state space methods are often able to give partial
answers. Although an incomplete analysis cannot prove the correctness of a cor-
rect system, it can point out an error in an incorrect system. These properties
make state space methods good for experimenting and as an advanced form of
testing. Another advantage of state space methods is that they are flexible: a
large set of analysis and verification questions of many different kinds can be
answered from a single state space. This is different from, say, place invariants
and structure theory [73, 17] of Petri nets, that can answer only certain kinds of

431

questions (although sometimes very efficiently). State space methods also sup-
port the analysis of behaviour well.

State space methods are thus free from most of the problems of theorem
proving, and sound like an almost ideal behavioural analysis and verification
technique. Unfortunately, they suffer from one problem that is so big and funda-
mental that it has led many to believe that state space methods will never work
well enough for large-scale practical use: state ezplosion. The number of states
of almost any system of interest is huge. To get an appreciation of how serious
the state explosion problem is, it suffices to investigate the number of states of
some rather trivial systems:

— The system consisting of n non-interacting processes, each with k local states,
has k™ states.

— The classic dining philosophers system with n 4-state philosophers (Figure 1
left) has 3" — 1 states.

~ A simple token ring protocol described in [38] (Figure 1 right) has 9n27~2
states, where n is the number of stations.

0 L

Ind = {(1),(2),...,(n)}
I1={(2),(3),...,(n)}
i®@l=imodn+1

Fig. 1. The dining philosophers system (left) and the Graf-Steffen token ring
(right} as high-level nets.

These examples reveal a common pattern: in a family of similar systems of
different size, the number of states tends to grow exponentially in the parameter
that describes the size (“n” in the above examples). More generally, intuitively
speaking, the size of a state space of a system tends to grow exponentially in
the number of its processes and variables, where the base of the exponentiation
depends on the number of local states a process has and the number of values a

432

variable may store, and on some kind of “tightness” of the connection between
the components of systems (that is, the extent to which the local states of com-
ponents are determined by the local states of other components). In the above
examples, the bases are small because the systems are simple and rather tightly
coupled. In many practical analysis or verification tasks the situation is much
worse.

At first sight, the state explosion problem looks so formidable that it seems
to make state space methods useless for analysis and verification of systems in
practice. However, the great advantages of state space methods have motivated
researchers to try to find ways of alleviating the problem. During the last decade,
many methods have been suggested that reduce the number of states that need
to be constructed for answering certain verification or analysis questions. Such
enhanced state space methods increase substantially the size of systems that can
be analysed or verified, while preserving most of the advantages of state space
methods. The goal of this article is to discuss many issues arising in attempts
to cure the state explosion problem, and to briefly introduce several enhanced
state space methods.

Unfortunately, most state space reduction techniques sacrifice one or another
of the advantages of state space methods. Most often, an advanced state space
method can answer only certain kinds of analysis or verification questions with-
out losing its ability to reduce the number of states. In some cases the algorithm
for constructing the reduced state space takes advantage of details of the par-
ticular verification question, and may run simultaneously and interact with the
algorithm that answers the question. As a consequence, advanced state space
methods cannot be properly discussed without first making a classification of
different kinds of analysis and verification questions, and investigating a bit the
algorithms with which they can be solved.

The next section introduces many commonly used concepts that relate to
state spaces, system behaviour, and the abstractions used for extracting the lat-
ter from the former. After that, the structure of typical analysis and verification
problems is examined in Section 3. Section 4 is devoted to a discussion of various
kinds of analysis and verification questions, and state space algorithms for an-
swering them. Then the state explosion problem is analysed from the complexity
theory point of view in Section 5. Some strategies to state space reduction are
discussed in Section 6, and many individual reduction techniques in Section 7.
The conclusions are in Section 8.

2 Basic Concepts

2.1 State Spaces and Executions

To capture those aspects of state spaces that are used by the state space methods
discussed later, we define a state space as the tuple (S, T, A, Sy), where

— S is a set of states.
— T is a set of structural transitions.

433

— A is a set of semantic transitions or edges. It satisfies AC Sx T x S.
— 87 is a set of initial states. It has the properties Sy C S and St # 8.

“States” are simply (a subset of) the global states of the system under anal-
ysis. Often, but not always, only those states are included that the system can
reach during an execution that starts in an initial state. In the case of Petri
nets, states are called markings, and they are usually denoted with the letter M
(perhaps with extensions, like M’, Mji41).

“Structural transitions” are entities whose execution causes the system under
analysis to change its state. They may be, for instance, atomic statements in
a concurrent programming language, or Petri net transitions. They are thus
present in the program or system under analysis.

“Semantic transitions”, on the other hand, model actual changes of state by
the system. They relate to the behaviour of the system, not the system itself.
They can be called occurrences of structural transitions. Formally, a semantic
transition is a triple (s,t, s') consisting of a start state s € S, structural transi-
tiont € T, and end state s' € §. As we will see below, sometimes the middle
component ¢ is omitted or replaced by a more abstract transition label. To help
reading, specific notation is often used for saying that a triple is a semantic

transition, such as M[t)M’ in the case of Petri nets, and s = s’ or s —a— s’ in

process algebras. In other words, s —t— s’ & (s,1,8') € A.

“Initial states” are the states the system may be in when its execution starts.
It is customary to define only one initial state. Petri nets, for instance, are typi-
cally defined with one initial marking, which we will denote with M. However,
the possibility of more than one initial state is sometimes important. For in-
stance, one might want to show that a system is correct independently of the
initial value of some variable. Then one can use a set of initial states, consisting
of one initial state for each possible value of the variable.

A state space with many initial states can be transformed to a state space
with one initial state by adding a new state spew, declaring it as the initial
state, and adding the semantic transition (spew, t, s) for every transition (sy, 1, s)
that starts in any initial state s;. If there is an initial state that has no incoming
transitions, it can be used instead of spew. It is intuitively easy to accept that this
transformation does not change the “behaviour” of the state space, and it is also
mathematically true for almost all precise notions of “behaviour” or “behavioural
property” in this article (home state properties are an exception). Although this
description was at the level of the global state space, this construction produces
the desired result also when applied to each individual component of the system.
Therefore, it is often implementable in a verification model in practice.

A state space is finite if and only if § and T are finite — then also A and
Sy are finite. For talking about the computational complexity of state space
algorithms it is handy to define the size of a finite state space as |S|+ |T} 4+ |A].
In all but exceptional cases |S|+ |T|+]4| = ©(|A]), and the presence of |S| and
|T'| in the measure of size simplifies the treatment of the exceptional cases. The
state space is finitely branching if and only if each state has a finite number of
output edges; that is, for every s € S, the set ({s} x T x §) N A is finite.

434

The notion of the “universe” U of “syntactically possible states” is often
useful when discussing the construction of state spaces from a description of the
system in some modelling formalism, such as Petri nets or a parallel programming
language. In such a description, the (global) state of the system is a combination
of the local states of its components, values in its variables, etc. The universe
is simply the set of all such combinations. It is common that it contains many
states that the system cannot reach. The set S of the states of a state space is
always a subset of U.

Sequences of semantic transitions are often abbreviated, and the structural
transitions that label them can be omitted:

sg —t1— 8y —f3—> -+« —t,—> 5, means that sp —~f1— s1, 81 —l2—> 83, ..., and
Spn—1 —tn—> Sn.

sg —t1ty - -1n—> s, claims that there are states s, 82,..., 8,1 such that
sg —t1—> 81 ~tg—> - -+ —tp—+ s, . By choosing n = 0 we see that s —e— s holds
for every s € S, where ¢ denotes the empty sequence.

s — s’ says that there is some t € T such that s —t— s’

s =* s’ holds if and only if there is a (possibly empty) sequence t1t3- - -t, of
structural transitions such that s —tyt3---t,— 5.

Structural transitions are not needed by all state space methods. If they are
absent, then a state space is defined as the triple (S, 4, S5;), where AC S x S
and § # Sy C S. A semantic transition (s,s’) € A may then be written as
s — §', and sequences of zero or more semantic transitions as s —* s,

A structural transition £ is enabled in a state s, if and only if there is a state
s’ such that (s,t,s’) € A. This is often written in process algebras as s —¢—, and
in Petri nets as M[t). If s —t— &', then it is said that ¢ may occur in s yielding
s'. We say that a state is a deadlock if no structural transition is enabled in it.

A structural transition ¢ is deterministic if and only if the state result-
ing from its occurrence in any given state is unique, that is, Vs,s;,s2 € S :
(s —t— 51 A 5 —t—> 83 = s; = s3). If determinism is not guaranteed, then struc-
tural transitions are said to be nondeterministic. For example, place/transition
net (that is, “ordinary” Petri net) transitions are deterministic, but transition
labels in process algebras are nondeterministic.

When modelling a system at a low level of abstraction, it is usually possible
to get rid of any nondeterministic structural transition ¢ by replacing it with a
set of deterministic structural transitions, which together represent exactly the
possible outcomes of the occurrences of ¢. At higher levels of abstraction this is
not always possible. For instance, assume that a communication protocol may
reply ok or error to a transmission request. At a detailed level of abstraction, the
choice between ok and error is determined by a loss or no loss of a message in a
channel. If we look at the service provided by the protocol (that is, how its users
see it), the transitions corresponding to the operation of the channel are not
shown, so the choice between ok and error looks nondeterministic. Because many
advanced state space methods rely on these kinds of abstractions, we cannot
avoid nondeterministic transitions in the sequel.

435

An ezecution of a system is a finite or infinite sequence (so, 1, 51,%2,...,tn, 8p)
or (so,t1,51,%2,...) such that so € St and so —t1— 81 —t3— -+ —tp— s, (or
sg —t1— 81 —~ta— - -). A finite execution may be incomplete in the sense that
it may end in a state with enabled structural transitions. Thus every prefix of
an execution that ends with a state (instead of a transition) is an execution. In
particular, a single state s is an execution if and only if s € S;. An execution
is deadlocking, if and only if it is finite and its last state is a deadlock state.
An execution is complete, if and only if it is infinite or deadlocking. The set of
executions of a system is the same as the set of all prefixes of the complete ex-
ecutions of the system. We denote the set of complete executions of the system
in question by CEz.

We can talk about executions that start at some given state s. The definitions
are otherwise the same as above, but the requirement sg € Sy is replaced by
S0 = 8.

A state s’ is reachable from the state s, if and only if it is the last state of
some finite execution starting at s, that is, s =* s'. The set of Petri net markings
reachable from the marking M is denoted by [M). A semantic transition is
reachable from s, if and only if its start state is — then also its end state is.
A state or semantic transition is reachable, if and only if it is reachable from
some initial state. By the reachable part of a state space (S, T, 4, Sy} we mean
the tuple (S’,T, A, Sr), where S’ is the set of reachable states and 4’ is the
set of reachable semantic transitions. Most state space tools construct only the
reachable part of the state space,! and it is intuitively clear that the “behaviour”
of a system depends only on it. Indeed, all formal definitions of behavioural
properties in this article take only the reachable part into account.

A state space represents an interleaving semantics of a system. That is, it does
not model the possibility that two or more structural transitions occur simulta-
neously. Semantic structures where this possibility is modelled are often called
true concurrency models. An obvious way of extending state spaces to a true con-
currency model would be to add semantic transitions labelled by nonempty sets
of simultaneously occurring structural transitions. The corresponding semantics
is often called step semantics.

Opinions differ as to whether interleaving or true concurrency semantics
should be used in verification. If the property in question is inherently truly
concurrent, then, of course, interleaving models are not appropriate. On the
other hand, deadlocks, livelocks, formulae in typical temporal logics — perhaps
most of the properties that people want to analyse or verify — are insensitive
to the difference between interleaving and truly concurrent models.?

! Not all, though. Symbolic model checking with BDDs is one exception.

2 This is one of the statements that loses its validity in weird enough situations. Con-
sider a parallel composition of infinitely many non-interacting processes that make
one step each and then terminate. In a truly concurrent model the system as a whole
can terminate, but not in the interleaving model, because in it only finitely many
transitions can be executed in a finite time.

436

Truly concurrent models are sometimes suggested as a way of avoiding state
explosion. Step semantics does not seem promising in this respect, because it
does not affect the number of states and increases the number of semantic tran-
sitions. However, it is not the only possible truly concurrent semantics of sys-
tems. Indeed, we will see in Section 7.2 that states can be reduced with another
truly concurrent semantic model, namely the unfoldings of Petri nets. Interest-
ingly, concurrency can also be taken advantage of when constructing a reduced
interleaving state space, as will be explained in Section 7.4.

2.2 Abstractions of States and Transitions

It is often reasonable to define the correctness of a system at a higher level of
abstraction than the system itself. (As a matter of fact, this is what the fa-
mous software engineering principle of keeping “what” and “how” apart from
each other recommends.) Instead of formulating correctness claims and analysis
questions in terms of the details of individual states and structural transitions,
more abstract notions may be defined that capture those properties of states
and structural transitions that are relevant for the user of the system. For in-
stance, it is more pleasant to require “processes 1 and 2 should not be in their
critical sections simultaneously” than “processes 1 and 2 should not be in line 7
simultaneously”.

At first sight this kind of abstraction might seem a minor user-friendliness
issue, but it is actually crucial for many advanced state space methods. This
is because they are based on throwing away information on those aspects of
system behaviour that are not relevant for the specification or analysis questions.
Without abstraction, an analysis question can potentially refer to just anything,
leaving the state space method little or no room for obtaining reduction. In the
presence of the abstraction, one can stipulate that the question may refer to the
system only with the abstract concepts, and the state space method can take
advantage of this fact. (This is an example of “information hiding”, another
famous principle in software engineering.)

For the purpose of discussing typical abstraction mechanisms, we employ
two sets of “observables”, IT and X, together with a special symbol “7”. The
intention is that the properties of the system may be referred to only with these
observables.

IT is a set of (atomic) propositions. Propositions refer to the properties of in-
dividual states. More formally, a proposition ¢ is a function from S to the

set {False, True} of truth values. Examples: Critical2 &y «process 2 is in its

critical section”, AB_empty &L “There are no messages in the channel AB”,
plois.good <5 M(p1) > M(pa).

5 is a set of observable transition labels, also called observable or visible actions.
The set X is often called the alphabet. Transition labels are, in essence, user-
oriented names of individual (structural or semantic) transitions or groups
of them. Examples: “press_start_button”, “send.message(12345)”.

437

T is a special unobservable or invisible action. It is used to label those transitions
that the specification should not talk about, because they are intended to
model implementation details and be internal to the system. The formula
T ¢ X is assumed to hold.

The values of the observables on a given state space (5,7, A, Sy} are deter-
mined by the following two evaluation functions.

& : S+ 27 assigns to each s € S the set £;7(s) C IT of propositions that hold
in s. That is, ¢(s) = True (i.e. ¢ holds in s, often written as s |= ¢) if and
only if ¢ € £x1(s).

Ex : T — X U{r} gives new names to structural transitions. Several different
structural transitions may have the same name. The structural transitions
whose occurrences are intended to be unobservable are given the name T,
that is, £x(t) = 7.

One might ask for the reason of having both structural transitions 7', and
labels of transitions Z'U {r}. The two play a different role. Structural transitions
come from the formalism used for describing the system — they tell something
about how the system has been put together. Transition labels, on the other
hand, reflect the meaning of a semantic transition at some higher level of ab-
straction, or from the point of view of the user of the system. It is common that
an operation is modelled with more than one structural transition, especially if
the system description formalism is not rich.

For instance, the assignment of zero tokens to a place/transition net place
with capacity n in one transition occurrence requires n+1 alternative transitions,
one for each possible number of tokens before the assignment. This is because
a place/transition net transition can change the number of tokens only by a
constant value, and the operation requires n+ 1 different changes to be possible.
However, all the alternative transitions model the same operation, so it is good
if they can be given a common name such as “reset.z”.

Another reason for having the two levels is that some advanced verification
methods can take advantage of the low-level information provided by structural
transitions, while answering verification questions stated in terms of transition
labels. The CSP-preserving stubborn set method in Section 7.4 is an example.
It uses X to determine whether the swapping of successive transition occur-
rences affects the property that is being verified, and T to find out whether both
orderings will lead to the same future states.

If transition labels are needed but structural transitions are not, then it is
customary to replace T in the definition of state spaces by X or YU{7}, yielding
(S,X,A,Sr). Then A C Sx (ZU{r}) xS, and £x becomes the identity function
and is discarded. This is the usual case with process algebras, for instance.

The functions £ and €5 can be extended to executions in a natural way:

- gH(<50)t1)sl)t2)'-',tnysn)) = <£H(30),8H(51),-~-,£H(5n)>a
- 52((50,t1,81,t2, . ..,t,,,s,,)) = <gz(t1),82(t2), .. .,Sz(t,,)), and

438

~ Emyz (50,11, 51,12, . .y Tn, 80)) =
(€m(30),Ex(t1), Em(s1), E5(ta), - -, Ex(tn), Em(sn))-

Stuttering. An important issue arising with E-abstracted executions is that of
stuttering. Stuttering means that a semantic transition in an execution has no
observable effect. Let & = (sq,1, 51,12, ...,tn, sn) be afinite or infinite execution.
When IT is used stuttering means that £n(si41) = En(si) for some i, and with
X that £5(¢;) = 7 for some i.

The exact number of transitions a concurrent system takes to accomplish
some task is usually considered irrelevant in verification. For instance, we do not
usually care whether it took 5 or 10 internal transitions for a protocol to deliver
a message. Therefore, executions that differ only in the amount of stuttering
are usually considered equivalent in verification, with the exception that infinite
stuttering (that is, £x(s;) = £x(s;i) or Ex(t;) = 7 for every j > i) is commonly
distinguished from finite stuttering.

A property is stuttering-insensitive if and only if its truth value never changes
when finite stuttering is added to or removed from a system. Most properties
we want to verify are stuttering-insensitive. When verifying such properties, if
En(&) = (Po, P1,...,P,) is finite, we could remove all P; that satisfy P; =
P;_, without modifying verification results. From an infinite (P, P, ...) we can
remove all P; such that P; = P;_; and there is j > ¢ such that P; # P;. Similarly,
we could remove all T-symbols from £5(£), as long as we do not remove any
infinite suffix consisting only of 7s.

State-based and action-based formalisms. In many formalisms, one can
refer to the properties of a system only with the elements of I7. Because X is
not used, structural transitions cannot be referred to, and semantic transitions
can be referred to only indirectly, as changes of state. Such formalisms can
be called state-based. Most (but not all) temporal logics are in this category. In
action-based formalisms IT is not used but X is. Most, if not all, process algebras
are action-based. So are also some temporal logics, most notably those that have
been intended to be used in connection with process algebras.

It would be possible to use both IT and X in the same abstraction formalism,
but such formalisms seem to be rare. One reason for this is that in many cases, in-
formation about states is redundant if information about actions (i.e. transition
labels) is available, and vice versa. Let s —t— s’. State information can be en-
coded into actions by replacing £x(t) with the pair (£x(t), £n(s')), and storing
Em(s1) separately for each initial state s;. This approach has, unfortunately, a
problem: it is not clear which pairs could take the role of the invisible action,
because the set £i7(s’) may be important in the pair (7, (s’)). Furthermore,
this idea is difficult to implement at the level of the modelling formalism (such
as Petri nets), because the global state is needed for computing £;7(s').

These problems can be solved by using the triples (€x(t), Pon, Post) where
Pon = En(s’) — €n(s) and Por = En(s) — £m(s’) as the new transition labels.
The idea is that P,, and P,y describe the change in the E-abstracted state

439

caused by the occurrence of ¢, so the triple (r,0,0) can be used as the invisible
action. Furthermore, the information that P,, and P,¢ contain is local in the
sense that it can be computed based on knowledge of the neighbourhood of ¢. It
is worth noticing that if originally all transitions are labelled with 7, then this
mapping transforms state stuttering (i.e. repetition of the same £p-abstracted
state) into action stuttering (i.e. occurrence of the invisible action), and vice
versa.

Similarly, action information can be encoded into states by adding the label of
the most recently executed transition into each state. This may divide the state
to several copies, one for each possible input transition label, but this is usually
pretty harmless. If insensitivity to stuttering is desired, then one may store the
most recent observable transition label together with a bit that alternates its
value each time a transition with an observable label occurs. The purpose of the
bit is to make it possible to distinguish repeated occurrences of the same visible
action. Repetition of the same visible action is not stuttering and should not be
ignored in verification. For instance, if a protocol may execute, in a row, two
receive(msg)-actions with the same message msg, then we would probably want
to know it, because it may be a sign of erroneous duplication of a message. Also
this mapping makes state-based and action-based stuttering match each other.

The above encodings of state information to transitions and transition in-
formation to states are important, because they allow the use of state-based
methods for action-based verification tasks and vice versa. For instance, the
stubborn set methods (Section 7.4) are inherently action-based because they
rely on analysing relations between structural transitions, but thanks to the
above mapping they can be applied to state-based linear temporal logic.

2.3 Linear and Branching Time

Let us assume that we have decided to use an abstraction mechanism consisting
of IT and &7, X~ and £y, or both. The mechanism specifies what we can say about
the properties of individual states and transitions. Another important question
is: What do we want to be able to say about their relations over time?

Linear time. One popular answer is that it suffices to look separately at each
complete execution of the system or, more precisely, what can be seen of it
through the abstraction mechanism. In other words, “¢ |= ¢” (what it means for
an execution £ to satisfy a property ¢) is defined as £;7(€) = @ or £x(€) E @ or
En+5(€) E ¢, and the system has the property ¢ if and only if £ }= ¢ for every
¢ € CEz. Any property whose validity is defined in this way is a linear-time
property.

For instance, as we will soon demonstrate, reachability of a deadlock, and
4-boundedness of a Petri net place p (that is, VM € [M) : M (p) < 4) are linear-
time properties. So is the property that at any instant of time, the sequence
of messages that have been output from an alleged fifo queue is a prefix of the
input sequence; and the property that the length of the output sequence will
eventually be at least the same as the present length of the input sequence.

440

Reachability of a deadlock can be checked (in the mathematical, not necessar-

ily computational, sense) by including the proposition is_deadlock SovierT:

~M[t) in I1, going through all abstracted states in the sequences in £;7(CEr) =
{&n(8) } ¢ € CEz}, and checking whether is_deadlock holds in any of them.
The same principle applies to 4-boundedness. To analyse the properties of the
fifo, one may include in X the actions input(z) and output(z) for every possi-
ble message type #. Then the “prefix” property can be checked by searching
Ex(CEz) = {€5(€) | € € CEz} for a prefix of an abstracted execution that
violates the property. Finally, the “length” property is violated if and only if
£5(CEz) contains an abstracted complete execution with a finite number of
output messages that is smaller than the number of input messages (the latter
may be infinite).

As an example of a property that, making reasonable assumptions about the
abstraction (we will return to this at the end of this section), is not linear-time
we may take “liveness” of structural transitions in the Petri net sense of the
word. A structural transition ¢ € T is Petri-net-live, if and only if VM € [M;):
M’ € [M): M'[t) (or, in the CTL logic that will be introduced in Section 4.3,
AG EF “t is enabled”}.

Figure 2 shows a Petri net and its state space abstracted such that IT =
{t_enab}, where t_enab holds in exactly those states where ¢ is enabled. The
transition ¢ is not Petri-net-live, but if the dashed transition is removed from
the net, then ¢ becomes Petri-net-live. The set £ (CEx) of complete abstracted
executions of the net consists of the sequences (P, P1, P, ...), where P; = 0
whenever i = 0 or i is odd, and each of the remaining P; is either {¢_enab} or 0.
The same set is obtained if the dashed transition is removed. So we see that the
removal of the dashed transition does not affect the linear-time properties of the
net with respect to the abstraction I7, although it affects the Petri-net-liveness
of t. Therefore, Petri-net-liveness of ¢ cannot be reasoned from £ (CEz), and
Petri-net-liveness is not a linear-time property.

It is worth noticing that the fact that I refers to the marking of only one
place (namely the input place of t) was not important in the above example.
The example remains valid for every IT that contains t_enab and does not refer
to M (P1)~

Branching time. On the other hand, Petri-net-liveness can be determined
if _enab € IT and all ezecution trees of the system are known. Just like the
definition of an execution, the definition of an execution tree requires that one
initial state s; € S5 is chosen as the starting point. Consider the part of the state
space that consists of the states and semantic transitions that are reachable from
sr. An execution tree is an unfolding of that part into a tree. It represents all
executions that start at sy, and it also records all the positions where any two
executions separate from each other.

An execution tree of the state space (S, T, A, Sr) with the start state sy € St
may be defined formally as the rooted edge-labelled graph (V, E, sy) such that

— V is the set of finite executions (sq, 11, . .., s, 8n) of the system where 55 = 51

441

Fig. 2. A Petri-net-liveness example.

— E={ (51,80, (81, 5,8,8)) | (51, .., 8) EV A(s,t,8) € A}

Although the nodes of the execution tree are defined above as executions and
thus each node contains complete information of its history, one should consider
nodes as anonymous and void of any information other than that provided by
&57. Unifying nodes with their histories is just a mathematical trick that ensures
that the result is a tree. The edges of an execution tree may be defined also as

E={({s1,...,8),Ex(t),(s1,...,5,t,8)) | (s1,...,8) EVA(s,t,s) € A}
if structural transitions are abstracted with X, or

E = { ((s;,...,s),(s;,...,s,t,s’)) [(s1,...,8) EVATIET : (51,5) € A}
if structural transitions are abstracted away totally.

Any property whose validity is defined on £-abstracted execution trees is a
branching-time property. We may call a branching-time property proper if it is
not also a linear-time property. Thus Petri-net-liveness is a proper branching-
time property.

Even the set of branching-time properties does not cover all properties of
interest. Consider the net in Figure 3, and assume that I = {pl,p2, p3,p4},

where pi <5 M(p;) = 1. A marking My is a home marking if and only if it
is reachable from all reachable markings, that is, VM € [M;): My € [M), or
AG EF “the marking is Mg”. The example net does not have home markings.
However, if ps and its adjacent arc are removed, then M(ps) = 1 A M(p1) =
M (py) = M(p3) = 0 becomes a home marking.

On the other hand, because we assumed that pb ¢ II, the £ 5-abstracted
execution trees of the net with and without ps are the same. As a consequence,
under this abstraction the property “My is a home marking” is not a branching-
time property. That it was possible to describe it with the above CTL formula
is because the formula implicitly refers to ps in “the marking is Mg”.

442

P2 P3

P4

Fig. 3. A home marking example.

In the above examples we assumed that an abstraction mechanism was used
that prevented us from reading the marking of one place of the net. This was
necessary, because if no abstraction mechanism is used, then the distinction be-
tween linear-time, branching-time and even more general state space properties
disappears in a certain theoretical sense. Namely, then we would have access to
the properties of the states and transitions in full detail, and could reconstruct
the reachable part of the state space from the set of complete executions by
merging all occurrences of the same state. As a consequence, any state space
property that does not depend on unreachable states could be checked from the
set of complete executions. In the presence of an abstraction mechanism this
trick does not work, because then we cannot be sure that s; and s, are the same
state even if we know that £7(s1) = Em(s2).

2.4 Safety, Liveness, and Fairness

In the verification of sequential programs the distinction between partial cor-
rectness and termination has proven useful. Partial correctness means that the
program does not ever do anything illegal such as deliver incorrect results or
crash. Partial correctness requirements depend on the task of the program, and
are often formulated in some programming logic. The requirement of termina-
tion is the same for all programs, and it is simple to state: the program should
not run forever. Partial correctness is proven with weakest preconditions, loop in-
variants, etc., while proofs of termination are usually based on bound or variant
functions whose values decrease as the program continues execution but cannot
decrease without limit. Thus the techniques used for stating and proving termi-
nation are very different from the techniques used for stating and proving partial
correctness.

A similar distinction has been made in the world of concurrent systems be-
tween safety and liveness (or progress) properties [55]. Safety plays the role of

443

partial correctness and liveness that of termination. Since concurrent programs
are usually not intended to terminate, liveness consists of a set of requirements of
the kind “these things should eventually happen”. Unlike termination, liveness
properties are system-specific and often difficult to formulate.

Linear-time safety properties can be defined as those properties of £-ab-
stracted executions that have finite counterexamples. If a prefix of an execution
matches any one of the counterexamples, then the execution violates the prop-
erty, no matter how it continues. A system has a safety property, if and only if all
its executions have it. The “prefix” property of a fifo queue and 4-boundedness
of a Petri net place (Section 2.3) are safety properties. Namely, to demonstrate
that either one of them does not hold, it suffices to give an example of a finite,
perhaps incomplete execution in which a message is output that has not been
input, or the place contains at some point more than four tokens. Also the prop-

erty “the program will not terminate” is a safety property, if we assume that &g

contains the proposition stopped Eovier: (s —t—).

The precise meanings of the terms “liveness” and “progress” vary. In this arti-
cle we roughly follow {2, 59] and define linear-time liveness properties as the prop-
erties such that £-abstractions of only complete executions qualify as counterex-
amples. Furthermore, if the complete execution is finite and its £-abstraction
is (Po, a1, P1,az, . ..,an, P,), then also its infinite completion should be a coun-
terexample, where the completion is (Py, a1, Py, a2,...,0n, Pa, T, Pa, 7, P, ..)
(that is, the last abstracted state is repeated forever with invisible transitions
in between). This extra condition ensures that no property is simultaneously a
safety and liveness property.

For instance, the property “the program will eventually terminate” is a live-
ness property, because to demonstrate that it does not hold, an infinite, and thus
complete, execution is needed. If we have observed the execution of a system only
a finite time and the system has not terminated, we cannot claim that the ex-
ecution violates any liveness property, because it is possible that the execution
continues in a way that makes the property valid. The “length” property of fifo
queues is a liveness property. This is because if n messages have been input to
the queue and less than n have been output, it is possible that the remaining
messages will come out if we wait long enough.

The definition of safety can be naturally applied to branching time by re-
placing “execution trees” for “executions”. Because an execution tree may be si-
multaneously infinite and incomplete, it is not immediately clear how branching-
time liveness should be defined. For instance, a counterexample for the Petri-
net-liveness of a transition ¢ has to contain a complete branch where ¢ is never
enabled, but other branches of the tree may be discarded.

If a linear-time safety property does not hold, then there is a finite execution
that works as a counterexample. A state space tool can print that execution,
and the user can use it to trace the reason of the error. If a linear-time liveness
property does not hold, then counterexamples are usually infinite. An infinite
execution cannot be printed in full, but almost always a counterexample can
be made to consist of a finite prefix followed by an infinitely repeating finite

444

cycle, and the prefix and the cycle can be printed. Counterexamples for proper
branching-time properties are more complicated. Let us again use Petri-net-
liveness as an example. It is easy to print an execution that leads to a state
after which ¢ cannot any more become enabled, but it is not clear what the tool
should print to show that ¢ indeed stays disabled from that state on.

Safety properties are easier to handle in verification than liveness properties
in at least two ways. First, there are verification approaches and algorithms that
work for safety properties, but not for liveness properties. We will see examples
of this in Section 7. Second, validity of a liveness property tends to depend
on subtle assumptions about the scheduling policy of the system and liveness
properties of its components, while safety properties are totally insensitive to
them. For instance, a mutual exclusion algorithm cannot guarantee that each
customer that has requested for the shared resource will eventually get it, unless
it is assumed that each customer who gets the resource will eventually release it.
(The usefulness of Petri-net-liveness in verification is increased by the fact that
although it fulfills to some extent similar verification needs as liveness properties,
it does not depend on fairness assumptions.)

Fairness 1s a particular type of assumption that is very often needed for
ensuring liveness. Numerous different notions of fairness have been defined (see
the book [28], for instance). Perhaps the following two from [59] are the most well
known. Weak fairness (also known as justice) towards a structural transition ¢
promises that if ¢ is enabled in every state from some point on, then it will
eventually occur. The definition rules out executions where, after some state, ¢
never occurs although it is always ready to occur. Thus weak fairness is suitable
for modelling assumptions such that each process of a system gets processor
time.

Strong fairness (or compassion) requires that if ¢ is enabled infinitely many
times, then it should also occur infinitely many times. With strong fairness one
can specify, for instance, that a server does not systematically disfavour any one
of its clients.

3 Structure of the Analysis or Verification Problem

State space methods are good both in the verification, analysis, validation and
error detection of the behaviour of systems. In this article, these terms have the
following meanings.

Verification is the act of proving or checking that a formal system has a for-
mally stated property. In the strictest interpretation of the word, the goal
is just to find rigorous evidence to the claim that the system is correct in
the sense of having the property. If the system is not correct, then it suffices
that a verification technique fails either by not terminating or by giving a
failure report that leaves the correctness question unanswered. This kind of
a verification technique may be called one-sided — it can answer “yes, the
system is correct” and perhaps also “cannot say”, but it cannot answer “no,
it is incorrect”.

445

In a more permissive interpretation, a verification technique may also
give the answer “incorrect” and, better still, give some debugging informa-
tion, such as an example of an execution thai violates the specification. A
verification technique that, given enough time and memory, is guaranteed
to eventually terminate with the answer “yes” or “no” is a verification al-
gorithm. A one-sided verification algorithm will eventually terminate and
answer “yes” or “cannot say”.

Analysis means finding answers to formal questions about the behaviour of a
system. Analysis differs from verification in that

— the question i8 not necessarily a “yes” /“no” question, and

— even if it is, the answer “yes” is not given priority over “no”.
An analysis algorithm is guaranteed to eventually terminate with a correct
answer {other than “cannot say”), unless it runs out of computer resources.
Examples of analysis questions: “What is the maximum number of messages
simultaneously in this queue?”, “Give me a list of those Petri net places that
have more than one token in some reachable marking.”

Validation is the process of obtaining confidence that a system behaves as
intended. The behaviour of the system is compared to the expectations of
the human being who is validating the system. Validation is thus always
inherently informal.

Verification does not guarantee that a system behaves as we want, be-
cause we might have made an error when formulating the correctness criteria
(not to mention the problem that the object of verification is never the real
system, but only a formal model of it, that may or may not represent the
system accurately enough). Formal analysis or verification may, however, be
used as a means of validation. Knowing that a system does not deadlock
and that its input and output are related in a certain way may increase our
reliance on it quite a lot. Some other, widely used forms of validation are
ordinary testing and reviews of program code.

Error detection is, in a sense, opposite to verification and validation: its pur-
pose is to find errors. In most cases the goal of making a flawless system
is beyond reach. Therefore, the less ambitious goal of finding as many of
the remaining errors as possible within reasonable time and costs is taken.
Ordinary testing is widely used for this purpose. Analysis and verification
algorithms are also useful, because they are powerful in detecting errors, and
they tend to find different errors than testing.

With this attitude, the failure of one individual analysis or verification
run because of state explosion is a pity, but not a catastrophe — the search
for errors may be continued with another, perhaps simpler analysis question.
The verification system is successful if it reveals errors, even if it falls far short
of full coverage of the state space. Furthermore, the capability of finding
errors is more important than the ability of proving correctness when trying
to convince engineers of the benefits of verification algorithms and tools. An
engineer does not necessarily know what verification means and is perhaps
not much impressed when told I verified your design and it is correct”, but

446

pointing out an error that the engineer was not aware of gives the engineer
concrete evidence of the power and usefulness of state space techniques.

To some extent, the difference between verification and analysis is a matter of
taste, or point of view. For instance, a verification algorithm (in the above sense)
is also an analysis algorithm, and the production of debugging information can
be thought of as analysis. One practical difference in the use of these terms is
that in analysis, one does most of the thinking affer running the tool, while in
verification most of the thinking is done before running the tool. Formulating
a reasonable correctness claim for verification takes a lot of effort, whereas the
answer can be interpreted easily, especially if it happens to be “yes”. In analysis,
on the other hand, a question may be thrown in just to see what happens, and
interpreting the answer may take quite some time.

A typical framework for computer-aided analysis or verification has the fol-
lowing four components:

1. A formalism for modelling the system. It may be, for instance, a par-
allel programming language, some class of Petri nets, a process-algebraic
language, or a formalism consisting of finite-state automata communicating
via first-in-first-out queues. In the sequel we will call it modelling formalism.

2. A formalism for stating analysis questions or properties for verifi-
cation. We will call the former query formalism and the latter specification
formalism. Examples are state space query languages and temporal logics. A
specification or query formalism may also contain aspects that are related to
the modelling formalism, such as, in the case of Petri nets, fact transitions®
and lists of places that are expected to be bounded. A query formalism may
be rudimentary, and may reside in part or in full in the names and options of
the commands used for invoking analysis tools. A document in a specification
formalism is a specification.

3. A formal meaning for the relation “the system has the properties”.
The system is given in a modelling formalism, and “the properties” mean
either the specification, or the results of an analysis. This relation is known
as satisfies in the remainder of this article. In the case of temporal logics
the satisfies-relation is usually the “is-a-model-of”-relation denoted by “I=".
With process algebras it is commonly some process equivalence or preorder.
A Petri net satisfies a fact transition if and only if the fact transition is
disabled in all reachable markings.

4. An algorithm for checking whether a given system satisfies a given
specification. Even if we restrict ourselves to state-space-based algorithms,
the algorithm and its computational complexity depend heavily on the spec-
ification formalism. Sections 6 and 7 are devoted to a discussion of various
ways of organising a verification algorithm, and of techniques that can be
used to avoid or alleviate the effects of state explosion.

% In Petri net terminology, a fact transition is a structural transition that is never
expected to be enabled. Thus the negation of its enabling condition is expected to
always hold, to be a persistent fact.

447

Some major specification formalisms and the corresponding satisfies-relations
and algorithms will be discussed in Section 4.

4 Specification and Query Formalisms

4.1 Statistics at the Level of Modelling Formalism

Many state space tools can produce various statistics on the state space that are
formulated in the terminology of the modelling formalism. A Petri net tool, for
instance, may generate lists of deadlock markings, maximum numbers of tokens
in each place, transitions that never occur, transitions that are not Petri-net-live,
etc. To get the lists, the user needs not do more than tell the tool to print them.
On the other hand, after the lists have been printed, the user has to think a lot
to check whether the results are acceptable and the system is working correctly.
So this approach is more oriented towards analysis than verification.

Because a typical state space contains vast amounts of information, lists
of the above kind may be rather long. Therefore, and also to facilitate more
detailed investigation of the state space, some state space tools allow the user
to make various queries on the state space. For instance, the user may ask for
a list of markings where a certain transition is enabled. Advanced state space
query languages allow the user to talk about the properties of a marking in great
detail, investigate the immediate predecessor and successor markings of a given
marking, pose questions about the reachability relation, etc.

State space statistics can usually be produced and queries of this kind an-
swered efficiently with rather simple algorithms. The properties that can be
checked with a typical state space query language concentrate on linear-time
safety properties. Home markings, questions about the reachability relation,
etc. allow the analysis of some other types of properties, but these facilities
tend to be somewhat ad-hoc and clumsy. This observation has an explanation:
we will see in Section 4.3 that it is very unlikely that simple, efficient verification
algorithms exist for a certain powerful specification formalism that is capable of
expressing liveness and branching-time properties (namely CTL*). A formalism
for specifying a wide range of properties has thus to be chosen carefully, in order
to make it expressive enough without making it too expensive to use.

Another problem with statistics and queries that are at the level of the mod-
elling formalism is that they are sometimes not “semantic” enough. They do not
use a terminology that is relevant for the system, but the terminology of the
modelling formalism. For instance, a tool can produce a list of halted states, but
cannot divide them into illegal deadlock and legal termination states unless the
notion of “legal” is somehow explained to the tool. Furthermore, sometimes the
statistics answer a slightly wrong question. As an example we will discuss home
states.

As was defined in Section 2.3, a home state is a state that is reachable from
all reachable states of the system. If a system has a home state, then it has some
mode of operation that it can always enter but never exit. The existence of a

448

home state is usually a good sign, because it reveals that the system cannot
do anything irrevocable after an initialisation stage; whatever is the service it
provides in and around the home state, it can and will provide it forever. It is,
however, possible that the home state belongs to a livelock or even deadlock,
in which case the intended service is provided in the “initialisation stage”, if at
all. This is not possible if all initial states are home states, which is, therefore,
considered as a particularly good sign. Home states are a special case of the
analysis of strongly connected components of the state space.

Consider any Petri net that has a home state. Let us add to it the isolated net
fragment that is shown on the left in Figure 4. This addition has absolutely no
effect on the behaviour of the rest of the net. The only thing it does is to introduce
exactly one extra semantic transition that is chosen from two possibilities, may
take place at any instant of time, and occurs only once. Therefore, making the
usual assumption that stuttering is insignificant, the addition does not affect the
correctness of the net. However, after the addition the net has no home states.
So we see that home states are “fragile” in the sense that a modification that
is totally irrelevant for the correct functioning of the net can make a significant
change to its home state properties.

g%%

Fig. 4. Two isolated net fragments.

From the point of view of this article, comprehensive statistics and versatile
query languages have yet another drawback. Namely, they do not go together
well with techniques for alleviating state explosion. Many state space reduction
methods are based on throwing some information away. To obtain correct results,
a method should preserve those pieces of information that may be needed for
producing the answers. When comprehensive statistics are produced or versatile
query languages are used, the method should preserve lots of information from
all over the net and all over its state space. As a consequence, good reduction
results cannot be obtained.

On the other hand, the user seldom needs all that information. If we restrict
ourselves to certain parts of the net by, say, letting the analysis questions only
refer to certain places and transitions, then the reduction methods can throw
away information on the uninteresting places and transitions and yield better
results. This can be done with the abstraction mechanisms of Section 2.2.

449

4.2 Instrumenting the Model

Software modules are often tested in a test bed that sends them input, and
receives and checks their output. The same idea can be applied to verification. For
instance, a high-level Petri net verification model of a communication protocol
may be augmented with the net fragment in Figure 5. As long as the protocol
works correctly, the test bed keeps on sending it new messages for transmission.
If the protocol ever delivers a wrong message, then t3 occurs, and if it duplicates
a message, then #4 may occur. If it fails to deliver a message then the system
either deadlocks or livelocks depending on whether the protocol part stops.

0 /()\”P ()

The protocol

Fig. 5. A protocol test bed.

Deadlock and the occurrence of t3 or t4 can be easily checked from typical
state space statistics of the kind in Section 4.1. If the initial states of the system
as a whole are home states, then it is certain that the protocol cannot enter a
livelock that it could not exit. On the other hand, the absence of home states
does not necessarily mean that the protocol is incorrect in this respect.

The absence of livelocks that the protocol can exit cannot be verified with
home states, occurrence checks and Petri-net-liveness checks. To see this, it suf-
fices to take a net without such livelocks and add to it the net fragment on the
right in Figure 4. (If we consider that this addition should not cause a livelock
because the added transition cannot prevent the rest of the net from making
progress, then this example demonstrates the need for fairness assumptions.)

On-the-fly verification of linear-time safety properties. In the above
example, t3 and t4 were used as fact transitions, that is, Petri net transitions
which are never expected to be enabled. Because the enabling condition of a fact
transition may refer to several places all over the net, and because one can add
extra places to keep track of useful information, fact transitions offer a rather
versatile way of specifying verification questions.

450

It is actually easy to see that fact transitions can be used to check any linear-
time property whose counterexamples can be expressed as a regular language
over T or ZU{r}. For every such property there is a finite automaton that accepts
exactly the finite sequences of transition occurrences that violate the property.
This automaton can be easily built from Petri net places and transitions and
connected to the system with transition fusion.* The arrival of a token to a place
that corresponds to an acceptance state of the automaton can be detected with
a fact transition.

If the properties of interest are stuttering-insensitive, then r-transitions of
the system need not be fused with any transitions of the automaton. This is
important for some advanced state space methods, such as the compositional
analysis of Section 7.3.

There is an alternative way of connecting the test automaton to the system
that is handy for state-based specifications, and used especially with the Biichi
automata that are described later in this section (Section 4.2). In it, the test
automaton makes its first transition according to what elements of II are valid
in the initial state of the system. Then, for each semantic transition (s,,s’) of
the system, the test automaton makes a transition according to what elements of
IT are valid in §'. (A more formal definition will be given when Biichi automata
are discussed in more detail.) This way of connection requires support from the
state space construction tool, as it cannot be implemented in typical modelling
formalisms.

Can fact transitions and finite test automata express all linear-time safety
properties? There is a classic simple argument from set theory that answers
“no, no formalism can”. Let X' = {a,b}. Consider any X C {0,1,2,...}, and
let ¢ x be the property “the number of a-transitions before the first b-transition
is in X”. The number of such properties is clearly uncountable. On the other
hand, any object or property we ever specify in any formalism must have a
finite description in that formalism (although the object itself may be infinite),
otherwise we cannot write the specification in full. A finite description is a finite
string of characters, and there are only countably many of them. Therefore, there
are much more properties than specifications.

Because of the above, it is more meaningful to ask whether all those linear-
time safety properties can be specified with fact transitions and finite test au-
tomata that can with some other given formalism. The answer is obviously “yes”
for all process-algebraic semantics of Section 4.4 provided that the specification
LTS is finite, because the automata-theoretic complement of the specification
LTS can be used as the test automaton. The answer is also “yes” for all the
linear-time safety properties that can be expressed in the temporal logics of Sec-
tion 4.3, assuming either that the modelling formalism allows the encoding of

4 Transition fusion means that all transitions ¢s in the system and ¢4 in the automaton
such that £x(ts) = Eg(ta) are replaced by transitions tsa, one for each possible
(ts, ta)-pair. The input and output arcs of ts and t4 are copied to tsa with their
possible arc inscriptions, and the guard of £s4 is the conjunction of the guards of ts
and £4.

451

atomic propositions on states into X in the sense of Section 2.2, or that the au-
tomaton is connected to the system with the alternative state-based mechanism
discussed above. So we see that fact transitions and finite test automata are ac-
tually quite expressive {although they have also limitations, as will be discussed
below).

A larger set of properties is obtained if the test automaton is allowed to
be unbounded — any Turing machine, for instance. However, although many
modelling formalisms allow the implementation of infinite-state automata, such
automata tend to cause serious problems to verification algorithms and tools.

The fact that fact transitions allow the verification of any property whose
counterexamples can be expressed as a regular language over T or X does not
imply that this is always practical, or compatible with an advanced verification
method one plans to use, or sufficient for verifying even simple properties stated
in terms of II. Representing the condition “no structural transition is enabled”
as the disjunction of the enabling conditions of a set of fact transitions is possible
in the case of Petri nets where each place may store at most one token at any
instant of time, but it may be awkward and require an exponential number of
fact transitions. With ordinary Petri nets it is not even possible, because it would
make it possible to implement a transition that is enabled exactly when a certain
place is empty. This, in turn, would make it possible to simulate two-counter
machines, but that is impossible, because two-counter machines can simulate
Turing machines, and ordinary Petri nets cannot. If an advanced verification
method relies on the assumption that the model has a certain special property
— that it is a free-choice Petri net, for instance — then it may be that the
addition of the fact transition destroys this property, making it impossible to
use the method.

When a fact transition becomes enabled it is known that the system is not
correct. A state space tool may then immediately stop and print a message. This
may save lots of analysis time. Such use of fact transitions is a rudimentary form
of on-the-fly verification, a powerful idea that we will investigate in more detail
in Section 6.

On-the-fly livelock detection. Fact transitions can be used only for linear-
time safety properties. We mentioned earlier that livelocks that the protocol
can exit cannot be checked with them. In general, a livelock corresponds to an
infinite execution that produces no useful result.

In the protocol example, it is reasonable to expect that for each message
given for transmission, the protocol computes only a finite amount of time. As
a consequence, every infinite execution of the system should have an infinite
number of transmission requests, that is, occurrences of ¢;. This is an example
of a general technique for specifying absence of livelocks: a set of progress tran-
sitions is specified, and a livelock is reported if and only if the system has an
infinite execution that contains only a finite number of occurrences of progress
transitions. If the state space is finite, then a livelock of this kind corresponds
to a cycle where no edge is labelled by a progress transition.

452

Instead of progress transitions, it is possible to define progress states as the
states that satisfy some condition, and interpret livelocks as cycles which do
not contain progress states. Such a cycle is called non-progress cycle in [43]. In
the protocol test bed example, one can define that progress states are those
where p, is marked. At first it might seem that this technique would lose those
livelocks where the protocol is not transmitting a message, because then p, is
continuously marked. This is not the case, however, because in such a situation ¢;
is enabled, and the state space tool will investigate also the sequence consisting
of the livelock preceded by an occurrence of ¢;. In this execution p, is empty, so
the livelock is detected.

We see from this example that a test bed need not necessarily be determinis-
tic: it suffices that at least one nondeterministic alternative leads to the detection
of the error, and no alternative gives a false alarm. A deterministic test bed is,
however, often better than a nondeterministic one in that with it, the state space
tool will report an error immediately when enough of the behaviour of the system
has been investigated. When a nondeterministic test bed is being used, it may
be that an alternative that does not give an alarm is investigated first. Then it is
possible that erroneous behaviour and after it many more states are investigated
before an error-detecting branch of the test bed is finally chosen and the error
is detected.

In the action-based case it is natural to declare all transitions with a visible
label as progress transitions. Then livelocks correspond to £gp-abstracted infi-
nite executions that end up with an infinite sequence of r-transitions. It is not
necessarily the case that all such executions are errors. If the error executions
are taken and all 7-transitions are removed from them, a language consisting
of finite strings and representing some stuttering-insensitive liveness property is
obtained. If that language is regular, it can be represented as a finite automaton.

In [87] that automaton was connected to the system with transition fusion
just like above with safety properties. Non-progress cycles were reported if and
only if the automaton was in an acceptance state. Thus progress transitions
(visible transitions) were used simultaneously with progress states (global states
where the automaton is not in an acceptance state) for efficient on-the-fly detec-
tion of a large set of livelock errors. We may call finite automata that are used
in this way livelock detection automata. They are particularly useful for certain
process-algebraic verification tasks (Section 4.4).

Cycles of a finite directed graph can be detected easily and efficiently with
the ordinary depth-first search. If the first search does not cover the graph in
full, then a new search is initiated in some ignored vertex and so on, until all
vertices have been investigated. Following the colour encoding in [15], let us call
a vertex gray if the search has entered it but not yet backtracked from it. The
graph has a cycle if and only if the search ever encounters an edge from the
current vertex to a grey vertex. Non-progress cycles can be found from a finite
state space by first removing all edges that correspond to occurrences of progress
transitions or are adjacent to progress states, and then seeking for cycles.

It is also possible to integrate the detection of non-progress cycles with the

453

construction of the state space by processing states and their output (semantic)
transitions in a certain order, as was explained in [87]. The basic idea is to
investigate progress transitions or semantic transitions that start in a progress
state only when there are no other uninvestigated semantic transitions, and
investigate all other semantic fransitions in depth-first order. This yields an
on-the-fly algorithm for detecting livelocks.®

Progress transitions or states can also be used in the presence of cerfain
fairness assumptions. For instance, we may want to check that the protocol
always eventually delivers the correct message, assuming that the channel loses
only a finite number of messages in a row. This can be done by declaring both
to and fess as progress transitions, where t05 is the transition that corresponds
to loss of messages in the channel. Then a non-progress cycle corresponds to an
execution where the last message is not delivered, although only a finite number
of messages is lost. The remaining executions either contain an infinite number
of deliveries, or violate the fairness assumption.

On-the-fly error detection with Biichi automata and tester processes.
With progress transitions or states, an error is declared if an infinite execu-
tion contains only a finite number of them. There is an alternative, even more
versatile way of detecting errors: states that are visited or transitions that oc-
cur an infinite number of times in an erroneous execution. A Biichi automaton
B=(Q,X, 4,45, F) is otherwise like a finite automaton (thus A C Q x ¥ x @,
gr € @ and F C @), but the notion of “acceptance” has been defined in a dif-
ferent way. Namely, B accepts an infinite string ajasas-- - of elements of 2 if
and only if there is an infinite sequence gpqi1q2 - - - of states such that ¢o = ¢,
(gi-1,ai,9i) € Afori> 1, and ¢; € F for infinitely many values of .

A Biichi automaton B is usually connected to the system such that the al-
phabet of B is 277 that is, the set of all subsets of the set of atomic propositions.
Initially and immediately after each semantic transition of the system, B makes
a transition according to the propositions that hold in the system state. More
formally, the joint state space of a state space {S,T, A, Sy} and the Biichi au-
tomaton (Q, 27, Ag, g1, F) has

- { (s1,9) { st € St A (q1,€n(s1),9) € Ap } as its initial states, and

~ the rule (s, q) —t— (s', ¢') <5 (5,1, 5') € AN (q,En(s'), ¢') € Ap determines
the set of transitions.®

5 Also [43] describes an algorithm for the task, but it is based on investigating each
state twice. The algorithm in [87] does it only once, and is thus usually more efficient.
“Usually”, because the two algorithms differ in the order in which the state space
is investigated, making it possible for the [43] algorithm to detect an error earlier in
some cases.

The connection may be defined also such that B determines its move according to s
instead of s'. Then the initial states would be { (s1,q1) | sr € 81 } This formulation

does not, however, work appropriately in the presence of deadlock states.

[+

454

Because 27 might be big and not all propositions P € IT are always relevant,
the transitions of B may be labelled also by two sets Po, C IT and Py C I1. The
transition (g, Pon, Potf, ') is then an abbreviation of the set of the transitions
(g, P,¢') such that P, C P and PysN P = @. That is, B may make the transition
(¢, Pon, Potr, '), if and only if at least the propositions in Py, evaluate to True and
at least the propositions in Py evaluate to False in the system state according
to which B chooses its transition.

Because a Biichi automaton expects an infinite input string, deadlock states
have to be handled as a special case. The usual assumption is to add a 7
transition from the deadlock state to itself, or simulate such a transition in the
state space construction tool or the algorithm that checks whether the automaton
accepts. We saw a similar trick already in Section 2.4 when defining liveness
properties.

With this approach, the detection of an error corresponds to acceptance by
the Biichi automaton. This acceptance can be checked by seeking for a strongly
connected component in the state space where in at least one of the states the
local state of the Biichi automaton is an acceptance state. The cost of doing this
is proportional to the size of the joint state space of the system and the Biichi
automaton which, in turn, is in the worst case proportional to the product of the
size of the system state space and the size of the Biichi automaton. The checking
of a state space against a Biichi automaton is thus inexpensive.

There is also a nice and efficient algorithm for detecting Biichi acceptance on
the fly [16]. It is based on investigating the state space in depth-first order, and
starting a second search on already investigated states each time the primary
search is about to backtrack from a Biichi acceptance state.

A Biichi automaton may be connected to the system also with other meth-
ods, such as transition fusion. The automaton may be connected to all or just
visible transitions. In the latter case only stuttering-insensitive properties can be
checked. On the other hand, fusion with all transitions is bad for some important
methods of alleviating state explosion.

Fusion with only visible transitions makes it possible that an execution is in-
finite, but the Biichi automaton does not participate it from some point on. This
raises a question: if the Biichi automaton stops in an acceptance state, should
the corresponding execution be declared as erroneous? It may be reasonable to
do so. On the other hand, this is exactly the situation for which we introduced
livelock detection automata above. Therefore, it may also be reasonable to let
the Biichi automaton ignore all executions where it stops, and handle them with
a separate livelock detection automaton.

Of course, the same automaton may have acceptance states of both kinds,
and even more. In [87] the use of four kinds of acceptance states was suggested.
An error is declared if

— the automaton ever reaches a reject state,
— the system stops while the automaton is in a deadlock monitor state,
— the system livelocks while the automaton is in a livelock monitor state, or

455

— the automaton passes infinitely many times through an infinite trace monitor
state.

So these automata combine the acceptance states of Biichi automata, livelock
detection automata, and the finite automata that were used above for on-the-fly
verification of safety properties, and treat deadlocks as a special case. They were
called tester processes in [87] because of their intended application in process-
algebraic verification (Section 4.4).

It is easy to add error detection by reject and deadlock monitor states to
any state space construction algorithm, including the above-mentioned on-the-
fly algorithms for detecting non-progress cycles and Biichi acceptance. Thus
the first, the second, and one of the latter two kinds of errors can be detected
during the same construction of the state space. Unfortunately, the on-the-fly
algorithms for non-progress cycles and Biichi acceptance require the construction
of the state space in different order, and are thus difficult to combine. On the
other hand, we will see in Section 4.4 that the combination of the first three
kinds of acceptance states suits well for process-algebraic verification.

It is known that everything that can be specified in the linear temporal logic
of Section 4.3 can be checked with Biichi automata. {Actually, Bichi automata
are strictly more expressive than the logic.) One may therefore ask: what need
is there for reject and livelock monitor states? In the case of reject states the
answer lies in the fact that with them, errors are found much earlier than with
the above on-the-fly algorithm for Biichi acceptance. The situation with livelock
monitor states is less straightforward, but there is a heuristic argument that
suggests that also then Biichi acceptance tends to be significantly slower. It is
as follows.

The above on-the-fly algorithm for Biichi acceptance is based on a depth-
first search, and finds errors when backtracking. Thus an error cannot be found
before some branch of the depth-first search tree has been constructed in full. On
the other hand, the above on-the-fly algorithm for non-progress cycle detection
detects an error immediately when it has constructed all states and semantic
transitions of a non-progress cycle. Furthermore, because it disfavours progress
states and transitions, it will complete any non-progress cycle rather soon after
finding a state in it. One has to notice, however, that this reasoning does not take
into account all factors that affect the relative speeds of the algorithms. Deeper
theoretical analysis or experimental results would be needed for checking whether
non-progress cycle detection really is faster in practice, but for the time being
none is available.

The theoretical properties of Biichi and many other types of automata on
infinite objects are surveyed in [80].

4.3 Temporal Logics

Temporal logics are ordinary logics augmented with operators for specifying tem-
poral relationships. The temporal logics used in the verification of systems are
usually state-based, but also action-based logics have been suggested, especially

456

in connection with process algebras. Temporal logics are often very expressive,
but specifications written in them tend to be somewhat cryptic.

The syntax of a typical temporal logic consists of the following components
(we restrict ourselves to propositional temporal logics, that is, logics without
variable symbols and the quantifiers “v”, “3”):

— atomic propositions,
— ordinary propositional operators, and
— temporal operators.

The set of atomic propositions of a state-based logic is what we called IT
in Section 2.2. It is the link that connects the logic to the application domain.
From the point of view of the logic IT is just some abstract set whose content is
not important. From the point of view of a user of a temporal logic verification
tool the contents of IT are important, because they specify the elementary terms
in which the user can talk about the properties of the system. This makes it
reasonable to divide a temporal logic verification tool into two parts:

— A modelling-formalism-dependent part that gives the user versatile facilities
for writing expressions that describe the properties of individual states, such
as "!M[t1> A M(pz) > M(p3).

— A temporal part that treats the expressions of the above part as atomic
propositions, and analyses the temporal relations of states.

The ordinary propositional operators are and “A”, or “v”, not “-~”, implies
, etc. They have their usual meanings.

The first temporal operators that we will discuss, namely the path operators,
talk about the properties of infinite sequences ¢ = (P, Py, Py, ...) of subsets of
IT. In a typical application, the sequence o is the £-abstraction of a complete
execution of the system in question. If the execution is finite, it is completed
to infinite by letting its last state repeat forever. The most important path
operators and their meanings are:

“

If o € I, then (Pp, P, Py,...) E ¢ if and only if ¢ € Py (i.e. ¢ holds in Pp).

(P, Py, P, ...) = Op if and only if (P;, Piy1, Pit2,...) = ¢ for every i > 0.
“O¢” thus means that ¢ holds continuously from now on, and is pronounced
“always ¢” or “henceforth ¢”.

(Po, Py, P, ...) | Op if and only if (P;, Pit1, Pig2,...) = @ for at least one
i > 0. “Op” thus means that ¢ holds now or will hold at least once in the
future, and is pronounced “eventually ¢” or “sometimes ¢”. The formula
O & -0y holds.

(Po, P1, Py, ...) | ¢ U ¢ if and only if there is i > 0 such that
(P;, Pis1, Piy2,...) E ¢, and (P}, Pj41, Pj42, ...} = ¢ for every j such that
0<j<i “<pll 4 is pronounced “p until ¥” and means that ¥ will
eventually hold, and ¢ holds until then. The formula O¢ < True i ¢ holds.

457

(Po, P1, Py, ...) E Qpifandonlyif (P, Py, P3,...) = ¢. “O¢” thus means that
¢ will hold in the next state. The use of this operator in specification is often
discouraged, because, unlike with “0” “0” and “U”, with it one can specify
properties that are sensitive to stuttering. However, “Q0” is important for
the development of temporal logic verification algorithms, because formulas
such as o U ¥ & ¥V ¢ A O(p U) use it and have proven useful in that
work.

Many other path operators have been defined in the literature, such as “weak
until” that is equivalent to (¢ U ¥) V Oy, “~” or “leads to” O(p => Ov), and
operators that refer to the past instead of the future.

The infinite repetition of the last state of a finite complete execution guaran-
tees that Oy has a well-defined meaning also in the last state of the execution.
The meanings of “01”, “O” and “U” are not affected by it. Terminating exe-
cutions were extended to infinite also in the definition of liveness properties in
Section 2.4, and of acceptance of Biichi automata in Section 4.2

The extension has the consequence that unless I contains enough informa-
tion for characterising deadlock states, the temporal logics in this section do
not suffice for distinguishing between a deadlock and livelock. At first this might
seem a deficiency, but it is actually in harmony with the “philosophy” of abstrac-
tion: all that matters is when and how the £;-abstracted state may change, and
if it does not change from some point on, it is not important whether the system
has terminated or is running an endless invisible loop.

LTL. So far we have defined what it means for a complete execution to satisfy a
temporal logic formula. Now we need to define it for a system. The simplest way
to do that is to say that a system satisfies a formula built of the above operators,
if and only if all of its complete executions satisfy it. With this definition, the
logic consisting of the above operators can be only used to specify properties
that are linear-time in the sense of Section 2.3. Correspondingly, it is called
(propositional) linear temporal logic, and often abbreviated as “LTL”.

LTL has been studied extensively in numerous articles, and the textbooks
[59, 60]. The sublogic of LTL where the use of “O” is forbidden is denoted
by LTL_x in this article. With it, only stuttering-insensitive properties can be
specified.

If ¢ is an LTL formula and ¢ is an infinite sequence of subsets of /7, then o
satisfies either ¢ or ~p. However, the same is not true for systems: it is possible
that neither ¢ nor - holds in a given system. This is because the system may
have one execution that satisfies ¢ thus violating -, and another one that
violates @. This induces a natural preorder relation between systems for any
fixed IT: Sys, implements or is more deterministic than Sys,, if and only if
¢ k= Sys, implies ¢ |= Sys, for every LTL-formula ¢ whose atomic propositions
are from II.

A model checking algorithm inputs a state space and a temporal logic for-
mula ¢ and checks whether ¢ is a true statement about the state space. LTL

458

has a model checking algorithm whose worst-case time consumption is linear in
the size of the state space, and exponential in the length of the formula [57].
It is thus feasible for short LTL formulae, but may run very long with long
formulae. Fortunately, the time consumption of the algorithm depends on what
operators and how are used in the formula, so not every long formula causes the
algorithm to slow down. Furthermore, the LTL formulae needed in verification
are often rather short. It is very unlikely that a worst-case polynomial time LTL
model checking algorithm could ever be found, because the LTL model checking
problem is known to be PSPACE-complete [78].

The above-mentioned model checking algorithm is not particularly popular
in automatic verification as such, but its basic techniques have been used in an
alternative, more popular approach. Namely, every LTL formula can be com-
piled to a Biichi automaton that accepts exactly the executions described by
the formula. One advanced practical algorithm for this was given in [32]. As was
told in Section 4.2, Biichi automata can be efficiently and even on the fly used
for verifying that no execution has the property described by the automaton.
Therefore, the validity of any LTL formula ¢ can be checked by constructing
a Biichi automaton for - and checking the system with it. This technique is
called the automata-theoretic approach to model checking [97], and it suits well
both ordinary and on-the-fly verification.

Unfortunately, the PSPACE-hardness of LTL model checking must manifest
itself somewhere also in the automata-theoretic approach: the size of a Biichi
automaton may be exponential compared to the size of the LTL formula from
which it was constructed.

Assume that f_enab denotes that the structural transition ¢ is enabled, and
t_occ that it has just occurred. Weak fairness towards ¢ can be expressed with
the LTL formula ¢Ot_enab = 0Ot 0cc, and strong fairness with OOf_enab =
0Ot occ. As a consequence, a fairness assumption could be taken into account
in the verification of the LTL formula ¢ by expressing the assumption with an
LTL formula v, and checking the validity of ¥ = ¢. However, because fairness
assumptions are very common, special techniques for handling them have been
developed and integrated to LTL model checking algorithms.

CTL and CTL*. Another possibility of extending the logic to apply to systems
relies on the following two new operators. They say whether a formula should
be valid in one or all possible executions that start at a given state s:

s | Agp, if and only if ¢ holds in all paths of the state space that start at s.
s |= Eyp, if and only if ¢ holds in at least one path of the state space that starts
at s.

The system satisfies a formula, if and only if all of its initial states satisfy it.
Because the validity of A- and E-formulae has been defined for every in-
dividual state of the state space, it is meaningful to apply path operators on
formulae built with A and E, In this way one gets formulae like A O E O ¢_enab,
which says that in all possible futures, there is always a future where eventually

459

t_enab holds. If t_enab means that ¢ is enabled, then this formula expresses the
Petri-net-liveness of ¢. In this context the operators “00”, “¢”, “U” and “Q” are
usually written as “G”, “F”, “U” and “X”, respectively. Thus the above formula
is more commonly written as A G E F {_enab.

This logic was developed by Emerson and Halpern [20] on the basis of LTL
and the earlier CTL logic of Clarke and Emerson [11], and it is known as CTL*
(“CTL” stands for computation tree logic). The validity of CTL*-formulae could
also be defined on execution trees instead of state spaces, but that would not
change the meaning of the logic. Properties expressible with CTL* are thus
branching-time in the sense of Section 2.3. Any LTL formula ¢ can be repre-
sented as the CTL* formula Ay, so CTL* is an extension of LTL. As a conse-
quence, also CTL* model checking is PSPACE-hard. It is not harder, though,
as was proven in [21].

The older logic CTL is a restriction of CTL*. It has a fast model checking
algorithm [11]. In CTL, every path operator must be immediately preceded by A
or E. Thus AGEFt_enab is a valid CTL formula (and more commonly written as
AGEFt_enab), but E(¢ UG#) is not. CTL has become very popular in automatic
verification. Although not all LTL formulae can be expressed in CTL, CTL seems
to have enough expressive power for many verification tasks, and its efficient
model checking algorithm is definitely an advantage. Like with LTL, the use of
the next state operator is sometimes forbidden, yielding the logics CTL._x and
CTL®x.

The basic idea of the CTL model checking algorithm can be illustrated with
the case of the AU operator; the remaining operators can be handled with similar
methods. Let us say that a state is p-marked, if and only if the algorithm has
found out that ¢ holds in it. Consider a formula of the form § = A(p U ¢).
The algorithm is first run recursively to p-mark every state where ¢ holds,
and similarly with . Then every 1-marked state is marked with 6. Finally the
following is repeated as long as possible: if there is a state s that is p-marked
but not #-marked, and each of its immediate successor states is f-marked, then s
is marked with 4. This last stage can be implemented efficiently with a suitable
backwards search.

In order to compare CTL* and CTL*x to the branching-time process-al-
gebraic semantic models discussed in Section 4.4, we define two equivalence no-
tions between the state spaces Sys, = (S1, 41, Sn) and Sys, = (S2, A2, 512) [7}:

1. Sys, and Sys, are II-bisimilar if and only if there is a relation “~” C S1 x 5>
such that the following hold for every s, s} € Sy and s, 55 € S (the prefix
“IT” was added to the name of the relation to avoid confusion with the
“strong bisimilarity” relation in Section 4.4):

— If 5y ~ 85 and w € IT, then s; |= 7 if and only if s, | 7.
— If s; € Sy1, then there is s € Sty such that s; ~ s.
~ If s9 € Sr9, then there is s € Sy such that s ~ s5.
~ If sy ~ 53 and (sl,s'l) € Ay,
then there is s such that s] ~ 5 and (s3,5) € As.

460

— If 51 ~ 59 and (s, 55) € A,
then there is s such that s ~ s} and (s1,s) € 4;.

2. The complete executions (s1,0,81,1,51,2,-..) and (820,821, 52.2,...) stutter-
simulate each other according to the relation “~” C §; x Sy, if and only if
(6‘1,0, $1,1,51,2 -) has a partition B1’o, Bi,1,Bi,...and (82’0, $2,1,82,2, - -)
has a partition Bao,B21,B22,... such that for every ¢ > 0 the following
hold: 0 < |B1,,’| < 00,0 < |Bz’,'| < o0, and Vs, € Bl,i :Vsg € Bg’,‘ D81 ™ Sg.
The state spaces Sys; and Sys, are stultering equivalent if and only if there
is a relation “~” C S; x S5 such that the following hold for every s; € Sy
and s3 € S3:

— If 5y o s9 and 7 € I, then sy = n if and only if 53 = 7.

— If 5y € Sry, then there is s € Sy5 such that 51 ~ s.

— If 55 € Sy9, then there is s € Sry such that s &~ s5.

— If 51 o s9, then for every complete execution of Sys, that starts at s,
there is a complete execution of Sys, starting at s, such that the two
executions stutter-simulate each other according to “~”.

— If s = sg, then for every complete execution of Sys, that starts at s,
there is a complete execution of Sys, starting at s; such that the two
executions stutter-simulate each other according to “~”.

It is relatively easy to see that if Sys; and Sys, are II-bisimilar and Sys;
satisfies a CTL* formula ¢, then also Sys, |= ¢. This was proven in [7] together
with a reverse result where CTL (without the “*”) suffices: if Sys; and Sys, are
finite and satisfy the same CTL formulae, then they are IT-bisimilar. A similar
pair of results holds for stuttering equivalence, CTLXx, and CTL_x.

The article [19] is an excellent survey on various temporal logics and their
theoretical properties, including model checking.

4.4 Process-Algebraic Semantics

A process algebra, such as the Calculus of Communicating Systems (CCS) [65]
and Communicating Sequential Processes (CSP) [6, 42, 75] consists of a language
for specifying systems, and a theory of the behaviour of the systems specified in
that language. Most (or perhaps all) process algebras are action-based. Instead
of structural transitions, emphasis is put on actions that are £x-abstractions
(Section 2.2) of structural transitions. Correspondingly, in the context of process
algebras, state spaces are usually defined as (S, X, 4, S;), where L does not
contain the invisible action symbol 7, and A C Sx (ZU{r}) x S. Such structures
are called labelled transition systems, abbreviated LTS. Occurrences of actions
(i-e. semantic transitions) are sometimes called events.

Process composition operators. The language of a process algebra is a
“modelling formalism” in the sense of Section 3. It practically always contains
some operators for parallel composition of processes and for hiding of actions.
(The CCS language does not have a separate hiding operator, but its parallel

461

composition is capable of hiding.) Communication between parallel processes is
synchronous, like Ada rendez-vous. The meanings of operators are usually de-
fined in terms of expressions of the language, and their details vary, but the basic
ideas can be illustrated with state-space-level definitions.

The following definition corresponds to a popular version of parallel com-
position. Let Ly = (S1, %1, A1, S11) and Lg = (S2, £y, Ag, Sr2) be LTSs. Their
parallel composition L1||Lz is the LTS (S, X, A, Sy) such that

- S= 51 X Sz
- 2 =31UX,
- ((31, s3),a, (51, s3)) € A if and only if either
o (s1,a,81) € Ay, a ¢ Xy, and 55 = 53,
e a ¢ Xy, sy =51, and (s2,a,s) € Ay, or
o (s51,a,81) € Ay, (52,0a,85) € Ay, and a # 7.
- Sr=58n x5

Since 7 is never a member of X, this definition implies that a component
of a parallel composition can do its 7-transitions independently of and without
affecting the state of the other component, and this is the only way in which
r-transitions can be executed. The same holds for transitions that are labelled
with a visible action that is not in the alphabet of the other component, because
(s,a,s') € Aimplies a € X or a = 7. If a visible action is in the alphabet of
both components, then a corresponding transition must be executed by both
components simultaneously. This parallel composition is essentially the same
thing as the transition fusion of Section 4.2.

This definition extends easily to more than two components. Alternative
definitions of parallel composition may specify the synchronisation of visible
actions in a different way, but it is probably universal that 7-transitions do not
synchronise. A parallel composition computed according to the above definition
contains usually many unreachable states. Since their presence is most of the
time either insignificant or harmful, the definition of parallel composition is often
formulated in such a way that unreachable states and their adjacent semantic
transitions are not generated or are removed from the result. This is not an
important issue, however, because, with reasonable notions of “behaviour”, the
removal of unreachable states does not affect the behaviour of the system.

The hiding operator converts visible actions into 7. A popular version of it
can be defined as hide A4 in (S, X, A, S1) = (S, 2, A, Si), where A is some set
of actions, and

- X=X ~A, and
- A = {(s,a,5) | (5,0, EANag A}
U{(s,¢)|FacA:(s,a,5) € A}.

Strong bisimilarity. As was mentioned above, a theory of the behaviour of
systems is an essential component of a process algebra. Because the theory of
CCS was originally presented in the context of the CCS language and similarly

462

for CSP, it is common to associate each theory to a particular language. This is
not necessary, however, and we can and will discuss the theories of behaviour at
the level of state spaces in the sequel.

To jump from a language to state spaces it suffices that an operational se-
mantics for process-algebraic expressions is defined which, given any well-defined
expression in the language, produces a labelled transition system that represents
the behaviour of the object described by the expression. For a reason that will
be described later in this section, there is significant freedom in the choice of
the technical details of this semantics. For instance, even if it is intuitively clear
that the system has only a finite number of states, there is no compelling reason
to require that the corresponding LTS must be finite.

Behavioural equivalence is a central notion in process-algebraic theories of be-
haviour. Behavioural equivalences can be divided to two categories according to
how they treat 7-transitions. In the first category 7 is handled in the same way as
all visible actions. This category contains only one important equivalence: strong
bisimilarity [66] The LTSs L; = (Sl,Z,Al,Sjl) and L = (52,2, Az,S]g)
that have the same alphabet are (strongly) bisimilar, denoted in this article by
Ly ~ Lo, if and only if there is a relation “~” C S; x Sy such that the following
hold for every s1,s, € S1, s2,85 € Sz, and a € ZU {r}:

— If 57 € Sp1, then there is s € Sy such that s ~ s.
— If 59 € Sy, then there is s € Spp such that 8 ~ s5.
— If 51 ~ 55 and (s1,a,8]) € Ay,

then there is s such that s ~ s and (s, a,5) € As.
— If 51 ~ s and (s2,a, %) € Ay,

then there is s such that s ~ s, and (s1,a,s) € 4.

The relation “~” is called a strong bisimulation. The basic idea of this defi-
nition is that if the LTSs are in strongly bisimilar states and one of them makes
a transition, the other can simulate it with a transition of its own such that
the labels of the transitions are the same, and after both transitions the sys-
tems are again in strongly bisimilar states. Since it is assumed that every initial
state of each LTS is simulated by some initial state of the other LTSs, a sim-
ple induction argument reveals that each system can simulate everything the
other does. It is difficult to think of any property of LTSs that could reason-
ably be called “behavioural” and that would hold in one and not in the other
of two strongly bisimilar LTSs. (Two strongly bisimilar LTSs can have different
numbers of states, for instance, but the number of states can hardly be called
“behavioural”.)

Two strongly bisimilar systems thus have “the same behaviour” in a very
strong sense. Indeed, strong bisimilarity is the strongest equivalence that is in
common use in process algebras. It is useful for technical purposes, such as
abstracting away from irrelevant details of the mapping that associates to each
process-algebraic expression the LTS that represents its behaviour. It is needed
because it is common that two process-algebraic expressions that, according
to our intuition, have obviously the same behaviour are nevertheless formally

463

different because of syntactic details, and cannot thus be unified outright. For
instance, according to the above definition, L1||Ly is not the same as L,||Lq,
because their states list their components in opposite order.

The Lotos specification language [44, 4] provides another, more fundamental
example. Its operational semantics is defined in such a way that a cyclic process
“remembers” the number of times the cycle has been executed. As a consequence,
the state after the cycle is formally different from the state before the cycle
although intuitively it is “the same state”, and the resulting LTS is not a cycle
but an infinite chain. However, the chain can be folded into a cycle on the basis
that the start states of each round are strongly bisimilar. Strong bisimilarity
gives a sound mathematical notion for unifying states.”

Algorithms for strong bistmilarity. We may say that two states s; and sg of
an LTS L = (8, X, A, Sy) are strongly bisimilar, if and only if there is a strong
bisimulation relation between (S, X, A, {s1}) and (S, X, A, {s2}). Let {[s]] denote
the set of states that are strongly bisimilar with s, and let Lmin = (57, Z, &, S}),
where S’ = {[[s]]] s€ S}, S ={ls] l s € Sr}, and ([[s]], @, [[s]) € A if
and only if there is s’ € [[s']] such that (s,a,s”’) € A (this definition of A’
is independent of the choices of the states s that span the sets [[s]]). Then
L ~¢ Lmin.

Furthermore, it is possible to show that if L is finite, then Lpmi, is minimal
(that is, has the smallest possible number of states and transitions) among the
LTSs that are strongly bisimilar to L, and all LTSs that are strongly bisimilar
to L and have as few states as Lmin are the same as Ly, except for the names
of states. A similar result holds also when L is infinite, although then one has
to be careful with what is meant by “minimal”.

There is a very efficient algorithm that constructs L, from any given finite
LTS [26]. It resembles the classic “block splitting” algorithm for the minimisa-
tion of deterministic finite automata. It can also be used for checking strong
bisimilarity of two finite LTSs simply by minimising their disjoint union. The
LTSs are strongly bisimilar, if and only if each block that contains an initial
state of one of them also contains an initial state of the other.

Strong bisimilarity is almost the same as the IT-bisimilarity of Section 4.3.
The only difference is that now the labels of matching transitions are compared
instead of the sets of propositions that hold in matching states. This difference
can be easily taken into account in the minimisation of an LTS with block split-
ting. As a consequence, algorithms for strong bisimilarity can be taken advantage
of in the verification of CTL* formulae.

Abstract process equivalences. The second category of behavioural equiva-~
lences consists of those where most information about r-transitions is abstracted
away in one way or another. We will call them abstract process equivalences. It

7 Mathematicians often use isomorphism for these kinds of tasks. Isomorphism is a
strictly stronger notion than strong bisimilarity. It is too strong for the above Lotos
example, because it does not unify a cycle with the infinite chain that is its unfolding.

464

is often desirable to preserve some information on the indirect consequences of
r-transitions. However, opinions differ regarding how much and what kind of
information should be preserved, which has led to the development of many
different equivalences. Furthermore, the desire of making equivalences to have
certain mathematical properties that are useful either for theory development
{such as unique minimal solutions to recursive equations) or for applications has
further increased the number of equivalences that have been presented in the
literature. The survey [95] lists 155. In this article we can mention only some.
Fortunately, many of the others are small variations of what we will present.

An important requirement, especially from the point of view of advanced
verification methods, is that the equivalence should be a congruence with respect
to parallel composition, hiding, and whatever other process operators are used.
This means that if “~” denotes the equivalence, then L; ~ L, should guarantee
that hide A in L; ~ hide A in L,, L1||L ~ L,||L, L||Ly ~ L||L2, and similarly
for the other operators, where Ly, Ly and L are arbitrary LTSs. The congruence
property guarantees that any LTS that is a component of a bigger system can
freely be replaced by an equivalent LTS, and the behaviour of the bigger system
does not change. Although the congruence property seems a natural one, it is
difficult to obtain, and many otherwise nice equivalences lack it.

Trace semantics and verification with a process equivalence. The sim-
plest widely used abstract process equivalence is trace equivalence. In process al-
gebras, a trace is the sequence of visible actions obtained from a finite execution
by removing all states and all 7-symbols. In other words, it is the £g-abstraction
of a finite execution with all stuttering removed. (Process-algebraic traces have
thus nothing to do with Mazurkiewicz traces [61].)

The set of traces of an LTS (which we will denote with Tr(L)) is called its
trace semantics, and two LTSs that have a common alphabet are trace equivalent
(written as Ly =~ Lo in the sequel) if and only if they have the same trace
semantics. Trace preorder “Ty,” is defined by Ly Ty Lo if and only if Tr(L;) C
Tr(L2).2 Trace equivalence is a congruence with respect to most, or perhaps all,
process operators that have been suggested in the literature.

Trace semantics can be used in the verification of a system Sys in at least
three different ways. For the sake of examples, let us assume that Sys is a model
of a communication protocol implementation that consists of a protocol sender
process and a protocol receiver process connected to each other via a bidirec-
tional channel, such that all actions are hidden except those with which the
protocol sender inputs transmission requests from and reports success or failure
to the sending client, and those with which the protocol receiver delivers ar-
rived messages to the receiving client. Assume further that Spec is a single LTS
that models the service that the protocol is supposed to provide to the clients.
We presume that Spec has the same alphabet as Sys; if necessary, the hiding
operator is first used to convert the extra actions in either alphabet to 7.

8 This direction of “J” seems to be more common in the literature, although also the
opposite direction has supporters.

465

1. One can compare whether Sys =~ Spec. If not, then Sys either has an
illegal sequence of communication with the clients of the protocol (such as
the delivery of a wrong message), or it lacks some desired sequence (for
instance, fails to deliver a message). If yes, then Sys provides exactly the
required service as far as one can say on the basis of the trace semantics.

2. One can compare whether Sys T Spec. It is common that a specification
does not define a system in full, but only states minimal requirements that
the system must satisfy. In the case of a protocol, Spec may allow the protocol
sender to give up and report failure to the sending client, if it does not
receive an acknowledgement from the protocol receiver within a specified
time. However, if the channel and protocol receiver are reliable and fast
enough, then the acknowledgement is never lost or delayed, and Sys never
reports failure. In that case Sys lacks some traces that Spec has, but for
a very acceptable reason. In this kind of a situation the requirement that
Sys =~ Spec is too stringent, but Sys Ty Spec works well (except that for
many applications, it is not stringent enough, but other process equivalences
that are described later in this section will solve this problem).

3. One can construct a small LTS that is trace-equivalent to Sys and investigate
its properties, for example, with model checking tools. Of course, one should
investigate only those properties ¢ that trace equivalence preserves in the
sense that if L; = ¢ and Ly o~y Lo, then Ly E .

In the terminology of Section 3, Spec is the “specification”. As a consequence,
the “specification formalism” is the formalism in which Spec was written, that
is, a process-algebraic language or LTSs. It may very well be the same formalism
in which Sys was written! The “satisfies” relation that says what it means for
the system to satisfy its specification is 2, in the first case above, and 2, in
the second case.

Let ¢ be any stuttering-insensitive linear-time safety property over X. Let
L, be an LTS whose finite executions are exactly those which do not violate
¢. The LTS L, is not necessarily finite, but it exists, at least in a theoretical
sense. Now, an LTS L has the property ¢, which we may write as L = ¢, if and
only if L 3y L,. We see that preorder checking is conceptually close to model
checking. This fact has useful consequences in automatic verification: thanks to
it, similar techniques can be used for model checking and preorder checking in
many cases.

Because trace semantics is defined on the basis of finite executions, it pre-
serves only stuttering-insensitive linear-time safety properties. On the other
hand, as the following simple argument shows, it preserves all of them. If L
violates a stuttering-insensitive linear-time safety property ¢, then it has a fi-
nite execution £ that acts as a counterexample. Let o be the trace corresponding
to that execution. If L' ~, L, then also L' has a finite execution that has o as
its trace; call it &’. The executions £ and &' differ only in the amount of finite
stuttering. Thus also £’ is a valid counterexample to , because ¢ is stuttering-
insensitive. So L’ violates . This argument is valid also for state-based proper-
ties, if the transformation in Section 2.2 is used for encoding state information
into actions.

466

In Section 4.2 we pointed out that no formalism can specify all safety prop-
erties, because there are uncountably many of them. This might seem to be
in contradiction with the above claim that trace semantics preserves all safety
properties, because trace semantics was used above in specification by describing
an LTS Spec and requiring that Sys o, Spec or Sys Ty Spec. There is no con-
tradiction, however, because trace semantics was not used as the specification
formalism but as an abstract mathematical concept that serves as the “satisfies”
relation. The specification formalisim is the formalism used for describing Spec,
and it allows only countably many specifications to be written.

Algorithms for trace semantics. Every finite LTS L can be interpreted as a finite
automaton in the classic automata-theoretic sense — we only need to specify
which states are accepting. If we declare that all states are accepting, then Tr(L)
is the same as the language accepted by the automaton. As a consequence, classic
algorithms can be used for determinising LTSs, and minimising deterministic
LTSs and comparing the languages they accept. Unfortunately, these algorithms
consume exponential time (and space) in the worst case, because the minimal
deterministic finite automaton that accepts the same language as a given finite
automaton may be exponentially larger than the latter.

That Sys O Spec holds can be checked on the fly as follows. First Spec
is determinised yielding DSpec. Then the LTS Sys||DSpec is computed. If the
result has at least one state where Sys is ready to execute a visible action that
DSpec is not ready to execute, then Sys i Spec does not hold, otherwise it
does.

Instead of comparing the next possible actions of Sys and DSpec in each
joint state, the errors can also be detected with the machinery of tester pro-
cesses in Section 4.2. It suffices to add one extra reject state sgp, and extra
transitions (s, a, sg) to DSpec for those s € Spspec and a € X such that DSpec
has no a-transition out of s. Then violations against Sys Ty, Spec are detected
as Sys||DSpec reaching any state of the form (s, sg). This algorithm consumes
exponential time and memory in the size of Spec, but only linear time in the size
of Sys. If Spec is deterministic, then this algorithm is linear in the sizes of both
of its arguments.

1t is known well that the problem of checking whether a finite automaton A =
(Q, X, A, qr, F) accepts all strings in Z* is PSPACE-complete (see e.g., [1, 30]).
Consider the LTS L = (S, X', 4’, Sy) that is obtained from 4 by choosing a new
state spew ¢ @ and a new action § ¢ A and letting S = QU {spew}, &' = ZU{d},
A = AU { (5,4, Snew) I 5 € F} U { (Snew,a, Snew) 1 a € X'}, and St = {q1}.
The automaton .4 accepts all strings in £* if and only if Tr(L) = X'*. Thus the
question “are all finite strings over the alphabet of a given LTS traces of that
LTS” is PSPACE-hard.

The problem “does Sys Zi Spec hold” is in PSPACE, because an execution
o of Sys can be guessed that produces a trace that is not in Tr(Spec), and
“c ¢ Tr(Spec)” can be verified by maintaining the set of all the states where
Spec could be when simulating the trace. Polynomial space does not necessarily

467

suffice for storing the trace, but it need not be stored, if simulation is interleaved
with the guessing of the execution.

From the above results we can reason that the problems “does Sys ==, Spec
hold” and “does Sys i, Spec hold” are PSPACE-complete, even if Sys is re-
placed by the one-state LTS Ally that has a transition from that state to itself
for every member of 2. Namely, the question “does Ally i Spec hold” is the
same as “is Tr(Spec) = X*”. Therefore, checking “Sys i Spec” is PSPACE-
complete in the size of Spec. On the other hand, the above algorithm checks it
in time that is linear in the size of Sys. Indeed, the question “does Sys 3, Allz
hold” is computationally very easy: its answer is always “yes”.

In conclusion, we can check Sys 3y Spec inexpensively in terms of the size
of Sys, but expensively in the size of Spec. It is common that Sys, representing
the implementation, consists of several parallel processes and has a huge state
space, while Spec consists of only one process and has a small state space. This
is fortunate, because it means that expensive operations are done to small and
inexpensive operations to big objects. This observation generalises to the veri-
fication of linear-time properties in many formalisms: we already saw a similar
situation with LTL (Section 4.3), and we will soon see it again with certain other
linear-time abstract process semantics. If we wanted to verify Sys =~ Spec or
Spec T Sys, then we would have to do expensive operations also to Sys, leading
soon to the exhaustion of computational resources. This suggests that we can
attack the state explosion problem much better if we prefer “J”-type notions of
“system satisfies specification” over “~”-type.

Another operation used frequently in process-algebraic verification is LTS
reduction. It means the construction of an LTS that is equivalent to the input
LTS, but as small as the algorithm can produce. If the result is the smallest
possible equivalent LTS, then this operation is known as minimisation of the
LTS. Unfortunately, as the counterexample in Figure 6 shows, trace semantics
does not guarantee the existence of a unique minimal equivalent LTS. Even the
problem of finding some equivalent LTS with the smallest possible number of
states is PSPACE-hard, because its solution can obviously be easily used to solve
“does Sys ~i Ally hold”. (It is also in PSPACE because it can be solved by
constructing LTSs of increasing size until an equivalent one is found.)

Fig. 6. Two non-isomorphic trace-equivalent minimal LTSs.

Fortunately, various heuristics can be used for trace-equivalence-preserving

468

LTS reduction. Examples include minimisation with respect to weak bisimilarity,
and the construction of the minimal equivalent deterministic LTS with rejection
of the result if it is not smaller than the input LTS. These kinds of techniques
have proven to work reasonably well in practice.

Refusals, failures and divergence. Because trace semantics does not pre-
serve any liveness properties, other semantics have been developed. Uulike in
temporal logics, in process algebras it is common (but not ubiquitous) to distin-
guish between deadlock and livelock. This is partly due to a reason illustrated
by the following example. If L is ready to do an a-transition and only it, a is not
in the alphabet of either Ly or Ly, and L1 is in deadlock and L; in livelock, then
L||L, is guaranteed to eventually do an a-transition, but L|| L, is not. In terms of
a single-processor multi-process computer system, the system running L||L; will
eventually execute L because L, is not executable, but the system running L||L,
might spend all processor time on L, unless we make some fairness assumption
about the scheduling policy. So we see that although we cannot detect directly
whether an LTS has deadlocked or livelocked, we can find it out by putting the
LTS into a suitable context.

A livelock corresponds to an infinite execution that has only a finite number
of visible transitions. The removal of all 7-symbols from the E£5x-abstraction of
the execution yields a finite sequence. That sequence is called a divergence trace.
We will denote the set of the divergence traces of an LTS L with Divtr(L).

To obtain a congruence that handles deadlocks properly, a more general no-
tion of refusal has been defined in process algebras. The need for more generality
can be illustrated with the following example. Consider two LTSs L; and Lo,
both of which have {a, b} as their alphabet. It may be that in some situation, L;
is ready to execute an a-transition but not any b-transition, while L, is ready
for b but not a. Then L;}|Ls is in deadlock, although neither process would be
in deadlock if it were alone.

Let L = (S,X,A,Sr) be an LTS, A C X, and s € S. We say that s is
stable, or L is stable in s, if and only if ~(s —7— }, that is, s has no outgoing
r-transitions. Furthermore, s refuses A, or L refuses A in s, if and only if s
is stable and has no outgoing transitions labelled with an element of A.° This
definition has the consequence that L;}||L, deadlocks in (s1, s2) if and only if 54
and s, are stable, and there are sets A; and Aj such that A, UA, = 2, UL,
and L; refuses A; in s; for ¢ € {1,2}. It is worth noticing that if a belongs to
both X; and X3, then it suffices that @ is in one of A; and Aj; that is, one of
the LTSs is not ready for a.

A stable failure of an LTS L = (S, X, A, s1) is any pair (o, A) such that L
has a stable state s that refuses A, and a finite execution that ends at s and has
o as the corresponding trace. The set.of the stable failures of L is denoted by
Sfail(L). The set of traces that lead to a deadlock is {o t (0, %) € Sfail(L) },
and we have the identity Tr(L) = Divtr(L) U { ¢ | (¢,8) € Sfail(L) }.

® Not all authors require the stability of s in this definition.

469

Finally, consider an infinite execution that contains an infinite number of
occurrences of visible transitions. The result of the removal of all r-symbols
from its Ex-abstraction is an infinite sequence of elements of X, and it is called
an infinite trace. The notation Infir(L) denotes the set of the infinite traces of
L. Let Trw(L) = {w € I¥ |VYo <w:0 € Tr(L) }, that is, Trw(L) is the set of
those infinite sequences of elements of X whose every proper prefix is a trace of
L. It is clear that Inftr(L) C Trw(L). If L is finite, then also Trw(L) C Inftr(L).

Because Tr(L), Divtr(L) and Inftr(L) are defined on the basis of executions,
they are linear-time notions. The set Sfail(L) can be thought of as having some
branching-time aspect, because its elements talk about all possible next visible
actions after a particular execution. However, whether or not a state refuses a set
of actions can be thought of as a property of the state, and thus a member of IT.
In this interpretation, the property “L has the stable failure {0, A)” is clearly a
linear-time property. Therefore, we will classify as linear-time all abstract process
semantics that are only built from Tr(L), Sfail(L), Divtr(L) and Inftr(L).

Failure-based semantic models. The most well-established linear-time ab-
stract process semantics that preserves some liveness properties is certainly the
standard failures—divergences model of CSP [6, 42, 75]. Because of reasons that
at least partly depend on the mathematical approach used in the development
of the theory of CSP, this semantics uses different notions of failures and diver-
gences from what we defined above,

Let CSPdivtr(L) = {o € Z* I 3p: p < oAp € Divtr(L) }. That is,
a CSP-divergence trace of L is any divergence trace of L continued with any
finite sequence of actions. CSP-failures of L are all stable failures of L, and
all pairs {0, A) where o is a CSP-divergence trace of L and A C X. That is,
CSPfail(L) = Sfail(L) U (CSPdivtr(L) x 2¥). The CSP-semantics of L is the
pair (CSPfail(L), CSPdivtr(L)), and CSP-preorder and CSP-equivalence of two
LTSs that have the same alphabet are defined as

Ly Jcse L2 Vi
CSPfail(L,) C CSPfail(Ly) A CSPdivtr(L,) C CSPdivtr(L,), and

def
Ly ~csp Ly <= Ly Dcsp Lo ALy Jesp Ly

The CSP-semantics of L has the property that if o is a divergence trace,
then op is a CSP-divergence trace and {op, A) is a CSP-failure, for every p € 2*
and A C X. This implies that CSP-semantics does not preserve any information
about the behaviour of the system after it has executed ¢. This property of
CSP-semantics is called catastrophic divergence. Any system C' that has ¢ as
a divergence trace has CSPdivtr(C) = 5* and CSPfail(C) = £* x 2%, and is
called chaos. The catastrophic divergence property makes CSP-semantics useless
for analysing the behaviour of a system after a divergence trace. Despite this,
CSP-semantics has been very successful both in terms of theory development and
practical use. The textbook [75] is a thorough treatment of the CSP language,
semantic theory of CSP, and automatic verification in the context of CSP.

470

The catastrophic divergence problem has motivated researchers to develop
alternative semantic models based on some kinds of failures and/or divergence
traces. Among them, the Chaos-Free Failures Divergences (CFFD) semantics
[94] is interesting because of its special relation to LTL_x (Section 4.3). It is
the triple (Sfail(L), Divtr(L), Inftr(L)). (Originally it had also a fourth énitial
stability component. It was needed for ensuring the congruence property in the
presence of the so-called choice process composition operator.) CFFD-preorder
and -equivalence are defined just like the corresponding CSP notions. If the
LTSs are finite, then the sets of infinite traces need not be compared, because
then Inftr(L) = Trw(L) and Trw(L) is uniquely determined by Sfail(L) and
Divtr(L).

CFFD-equivalence implies CSP-equivalence, trace equivalence and the NDFD.
equivalence mentioned below in the sense that if Ly ocpep L2, then Ly ~csp L2,
Ly ~ Ly and Ly ~nprp L2. Furthermore, NDFD-equivalence implies CSP- and
trace equivalences.

Assume that IT is encoded into X as was discussed in Section 2.2. Then
CFFD-equivalence is the weakest possible (that is, makes least distinctions be-
tween systems) congruence that (1) preserves the validity of formulae written
in LTL_x, and (2) distinguishes between deadlock and livelock. Furthermore, a
slight modification of CFFD-equivalence called nondivergent failures divergences
(NDFD, it takes into account only those stable failures (o, A) where o is not a
divergence trace) equivalence is the weakest congruence that has the property
(1). These facts were proven in [47], and elaborated a bit further in [89]. Due
to them, CFFD- and NDFD-semantics provide a means for applying process-
algebraic verification methods to the verification of LTL_x formulae.

CFFD- and NDFD-equivalences do, however, suffer from a problem that to
some extent restricts their applicability to the verification of liveness properties
in general and LTL_x formulae in particular: they do not handle fairness assump-
tions in a satisfactory way. As was mentioned in Section 4.3, fairness assumptions
can be encoded in the formula whose validity is being verified. However, doing
that leads to a big L, and that is bad for process-algebraic methods of allevi-
ating state explosion. This problem is not a deficiency of only the CFFD- and
NDFD-equivalences, but is present in most or all abstract process semantics that
are both congruences and strong enough for handling liveness properties. Some
ways of working around it have been found [71, 92}, but more work needs to be
done in this field.

Algorithms for failure-based semantics. Most complexity results concerning trace
semantics generalise relatively easily to CSP-, CFFD- and NDFD-semantics. For
instance, the LTSs in Figure 6 are CSP-, CFFD- and NDFD-equivalent, thus also
these equivalences fail to have unique minimal LTSs.

The paper [14] shows how algorithms for strong bisimilarity can be used for
failure-based semantic models by first transforming the LTSs into acceptance
graphs that are based on the acceptance trees of [41]. Acceptance graphs are, in
essence, deterministic LTSs augmented with a special representation for refusal
and divergence information. Acceptance graphs were applied in a slightly differ-

471

ent way in [93], where algorithms for LTS equivalence comparison and reduction
according to CFFD semantics were developed. The results of {93} can be adapted
to CSP- and NDFD-semantics.

The tester processes presented towards the end of Section 4.2 can be used
for checking CFFD-preorder, and even without infinite trace monitor states [87].
The basic idea is that illegal traces are caught with reject states, illegal stable
failures with deadlock monitor states, and illegal divergence traces with livelock
monitor states. Illegal infinite traces need not be worried of, because the presence
of such a trace in a finite LTS implies the presence of an illegal stable failure
or illegal divergence trace. Reject states are not absolutely necessary because
every illegal trace can be detected as an illegal deadlock or illegal divergence
trace. Reject states are, however, very easy to implement efficiently in a state
space tool, and they detect an error immediately when the error trace has been
executed, while deadlock and livelock monitor states require continuation to a
deadlock or livelock. Reject states thus improve efficiency.

There is an algorithm that, given an LTS Spec, produces a tester process
that checks Sys Zlcrpp Spec. It is based on the construction of the DSpec with
an extra reject state sg that was defined in “Algorithms for trace semantics”,
the taking of “mirror images” of refusal sets as has been described in [5], and
the marking of those states as deadlock and livelock monitor states which corre-
spond to traces after which Spec cannot deadlock or livelock, respectively. The
algorithm consumes exponential time and space in the worst case, both because
the number of states may grow exponentially, and because the handling of re-
fusal sets may be expensive with pathological inputs. In practice, however, the
algorithm often runs reasonably fast. This approach can be adapted to NDFD-
and CSP-preorders with small changes. Like with trace semantics, the use of
tester processes is inexpensive in the size of Sys.

Another on-the-fly method for checking CSP-preorder was described in [74,
75]. It also relies on constructing DSpec, but from then on it works differently
from the previous one. It augments DSpec with an acceptance-tree-type repre-
sentation of refusal and divergence information, making it possible to compare
on the fly each state of Sys directly with the corresponding state in DSpec. (The
“corresponding state” is the unique state of DSpec that is reached with the same
trace as with which the state of Sys was reached.) Again, small changes suffice
to apply this algorithm to CFFD- and NDFD-preorders.

Branching-time abstract semantics. Weak bisimilarity or observation equiv-
alence [65) is certainly the most well known abstract branching-time semantic
model in process algebras. Its definition resembles that of strong bisimilarity, but
has the difference that when simulating a transition, the simulating LTS may do
any number of transitions (including zero) as long as the resulting sequence of
the visible actions is the same in both sides.

Let s —7*—; s’ denote that s’ can be reached from s with zero or more 7-
transitions in the LTS in question. The LTSs L; = (5, X, 41,Sn) and Ly =
(82, X, Aa, S12) are weakly bisimilar, denoted here Ly ~wp L2, if and only if

472

there is a relation “~” C S; x S such that for every s;,s; € Sy, 52,55 € Ss,
and a € L

— If s; € Sp1, then there is s € Syy such that sy ~ s.

— If 89 € Sr3, then there is s € Syy such that s ~ sg.

— If 81 ~ 55 and (s1,7,8)) € 4y,
then there is s such that s —7*—3s and s} ~ s.

— If 51 ~ s and (s2,7, 55) € Ay,
then there is s such that s; —r*—>; s and s ~ s5.

— If 51 ~ s2 and (s1,a,8}) € Ay, then there are s, s’ and s such that
sy —7* 258", (s',a,8”") € Ay, &' —7* 35, and 5] ~ 5.

— If 51 ~ sy and (sg,a,55) € As, then there are s, s’ and s” such that
81—t 8, (¢,a,8") € Ay, 8" —7* =15, and s ~ 5.

The definition allows the simulation of a local 7-loop (that is, a transition
of the form (s, 7, s)) by no transition at all. As a consequence, weak bisimilarity
does not distinguish deadlock from livelock. If this is considered a deficiency,
an extra requirement may be added saying that if s; ~ s», then s; —7%—; &
89 —T“—3 , where s—7“— means that there is an infinite execution that starts in
s and contains only 7-transitions. This modification of weak bisimilarity implies
CFFD-equivalence (excluding the “initial stability” component). Its theory and
algorithms were investigated in [18].

Assume that an LTS L = (S, X, 4, Sr) is converted to Sat(L) = (S, 2, A’, 51)
such that A’ = AU Se¢y U Sey, where Sat and Sc stand for “saturate” and
“shortcut”, Se; = { (s,a,8') | (s # s'Va # 7)Ads1, 83 : s —T* 51 A(51,0,82) €
AAsy~1*—5}, and Sc; = {(s,7,9)] s € S }. Clearly L/ ~yp L. What is more,
Ly ~wb Lo ¢ Sat(Ly) =~ Sat(Lz). The computation of Sat(L) is essentially
the problem of computing the transitive closure of a relation. It can be solved
in cubic time (even faster, but the significance of the known faster algorithms is
mostly theoretical).

In this way minimisation and comparison of LTSs according to weak bisimi-
larity can be converted to the related problems with strong bisimilarity, which,
as we have seen, have very efficient algorithms. This approach is from [48], and
yields cubic equivalence checking and minimisation algorithms for weak bisim-
ilarity. Unfortunately, the number of semantic transitions in a saturated LTS
tends to be high, so this approach consumes a lot of memory. This can be avoided
by simulating the “—7*— ”-relation as needed instead of storing it in an explicit
form, but then the algorithm becomes slower,

It is clear that weak bisimilarity does not preserve the validity of all CTL_x-
formulae, because it discards livelock information. However, as the following
example demonstrates, weak bisimilarity does not even preserve the validity
of all those CTL_x properties that do not depend on livelocks. The LTSs in
Figure 7 are weakly bisimilar, but the formula EG (—|a A (EFa Vv -«EFB)) holds
only in the rightmost one.

In Section 4.3 a stuttering equivalence was defined that preserves the validity
of CTL*x-formulae. It requires that each state of an execution at one side is

473

Fig. 7. Weak bisimilarity does not preserve CTL.

simulated by one or more states at the opposite side. Therefore, according to
it, the execution where the rightmost LTS in Figure 7 jumps to the bottom left
state without visiting the bottom middle state cannot be stutter-simulated by
the leftmost LTS, because this execution has no state that could be the pair of
the bottom middle state.

Branching bisimilarity [96] is a process-algebraic equivalence that is between
weak bisimilarity and stuttering equivalence. Branching bisimilarity implies weak
bisimilarity, and differentiates the L'TSs in Figure 7 from each other. It, too, dis-
cards livelock information, and therefore fails to preserve the validity of CTL_x
formulae. It can be modified to preserve CTL..x, but then it becomes essentially
the same as stuttering equivalence. One attractive feature of branching bisimi-
larity is that its algorithms are similar to the algorithms for weak bisimilarity,
but need less memory, because the saturation of LTSs is not needed.

The article [90] is a tutorial on the basic ideas of process-algebraic semantic
models and automatic verification with them.

5 The Complexity of Verification

5.1 Complexity in Terms of the State Space

In the previous section we mentioned the computational complexity of some
verification tasks as a function of the size of the state space |S| and the size of
the property or specification |p|:

— The checking of various individual properties, such as the absence of dead-
locks, 4-boundedness of a Petri net place and Petri-net-liveness of a transition
are linear in {S}.

— LTL and CTL* model checking are linear in |S| and PSPACE-complete
in p}.

— CTL model checking is linear in |S| and |¢|.

— Minimisation with respect to trace, CSP-, CFFD- and NDFD-semantics is
not well-defined, because there is no unique minimum. Finding some equiv-
alent LTS with a minimal number of states is PSPACE-complete.

— Trace, CSP-, CFFD- and NDFD-equivalence checking are PSPACE-com-
plete.

474

— Trace, CSP-, CFFD- and NDFD-preorder checking are linear in the alleged
smaller LTS, and PSPACE-complete in the other argument.

— An LTS can be minimised with respect to weak or branching bisimilarity in
O(]S|3) time.

— Equivalence according to weak or branching bisimilarity can be checked in

O(lS1 !3 +]Szla) time,

Excluding CTL* model checking, the above results suggest a general ten-
dency: verification tasks related to linear-time properties tend to be PSPACE-
complete, whereas similar tasks for branching time can be performed in low-order
polynomial time. This may feel counterintuitive, because branching time seems
more complicated than linear time and, for instance, weak bisimilarity implies
trace equivalence. The case of LTL vs. CTL has an easy explanation: CTL re-
stricts seriously what one can say about the properties of individual executions,
and when those restrictions are removed (yielding CTL*), model checking be-
comes PSPACE-hard again. In the case of weak bisimilarity vs. trace semantics
the explanation lies in the fact that checking equivalence under two different se-
mantics is two distinct problems that do not necessarily have much in common,
even if one of the equivalences implies the other. We will now illustrate this with
an example.

Consider the following seven different equivalences, each of which implies
the next: identity ((S1, Z1, A1,8n) = (S2, X2, 44, S12) if and only if S; = S5,
2 =5, Ay = Ay, and Si1 = Sr2), isomorphism, strong bisimilarity, branching
bisimilarity, weak bisimilarity, trace equivalence, and the “universal” equivalence
that says that all LTSs are equivalent. Identity is easy: it can be checked in linear
time on the average by inputting the LTSs into a hash table, and in worst-case
linear time by replacing the hash table with the (impractical) data structure in
exercise 12.1-4 of [15]. Isomorphism is clearly in NP, but has not been proven
NP-complete — as a matter of fact, it is a strong candidate for a problem that
is not solvable in polynomial time but is not NP-hard either [30]. It is thus
rather complex. Strong bisimilarity, despite of its resemblance to isomorphism,
can be checked in low-order polynomial time. Known algorithms for branching
bisimilarity take some more time and weak bisimilarity still some more, but
they are still within cubic time. Trace equivalence is PSPACE-complete and thus
(apparently) the hardest in this list. On the other hand, the universal equivalence
is the easiest of all: the algorithm print “yes” solves it in constant time.

We see that the strength of an equivalence and the complexity of its equiv-
alence checking have low correlation. The fact that branching-time semantic
models have fast equivalence checking algorithms seems thus coincidental. In-
tuitively, their low complexity compared to equivalence checking in linear-time
models is due to the fact that branching-time tasks rely on local information,
while linear-time verification requires simultaneous information about all possi-
ble executions that have the same £-abstraction.

We will see in Section 5.3 that there is, however, a sense in which the weakness
of an equivalence is beneficial regarding the cost of verification.

475

5.2 Complexity in Terms of the Modelling Formalism

In the previous section we discussed the complexity of verification as a function
of the size of the state space of the system. In reality, the system is usually not
originally given as a state space, but as a program in some concurrent program-
ming language, Petri net, parallel composition of LTSs, etc. This representation
is typically much, much smaller than the state space — after all, that is what the
state explosion problem is about. As a consequence, the complexity of a problem
as a function of the size of the state space does not give complete picture of the
cost of verification.

Numerous results exist about the complexity of the verification of some prop-
erty from a system represented in some formalism. One can derive more with
the following technique. (More detail can be found in [89], for instance.)

A linear bounded automaton is a nondeterministic single-tape Turing machine
whose use of the tape is restricted as follows. The input string is surrounded by
two endmarkers that the machine cannot write over or bypass. The tape alphabet
may be much larger than that used in the input string, and the machine is allowed
to write over the input. Therefore, the machine can use the part of the tape that
originally contains the input also as working storage. As a consequence, the
working storage of the machine is linear in the size of the input string (while
with the ordinary nondeterministic Turing machine it is unbounded).

The question whether a given linear bounded automaton accepts a given
string is PSPACE-complete ({30], p. 265). A linear bounded automaton is ba-
sically a finite automaton that has access to a fixed amount of memory that it
can address only by jumping from a memory cell to the next or previous cell.
Given a typical formalism that is intended for modelling concurrent systems, it
is usually relatively easy to design a system that simulates an arbitrary linear
bounded automaton with an arbitrary input, and whose size is polynomial in
the size of the description of the automaton and input. The simulator can be
made such that when the automaton reaches an acceptance state, the simulator
does something that it otherwise cannot do, such as stops or executes a certain
transition. Checking the ability of doing “that something” is thus PSPACE-hard
for the formalism in question. In this way it is possible to show that the detection
of deadlocks, checking whether a given structural transition may ever become
enabled, and so on are PSPACE-hard for Petri nets, parallel labelled transition
systems, and so on.

To prove that something is PSPACE-complete instead of just PSPACE-hard,
it suffices to additionally show that an execution leading to a deadlock, ending
up with the occurrence of a given structural transition, etc. can be simulated
using at most a polynomial amount of space as a function of the size of the de-
scription of the system. Because of the famous result by Savitch that PSPACE
= NPSPACE ({76}, [30] p. 176, [1] p. 395), the simulator needs not “know” what
step it should take next if there are many choices; we may assume that it can
always “guess” it. However, when making proofs of this kind, one has to remem-
ber that polynomial space does not usually suffice for storing the guesses or the
simulated sequence, so the sequence can be used only once in the proof.

476

The detection of deadlocks, checking whether a given structural transition
may ever become enabled, and so on are indeed PSPACE-complete for parallel
labelled transition systems and many other formalisms. The result is not valid
for ordinary Petri nets because polynomial space does not suffice for storing the
marking, as the number of tokens in a place may grow very high. It becomes
valid if a fixed upper bound to the number of tokens is enforced for each place.

We can make the conclusion from the above that an interesting verification
problem for an interesting modelling formalism can be easier than PSPACE-hard
only in exceptional cases. Excluding those exceptional cases (and ignoring the
very unlikely possibility that PSPACE = P), every verification algorithm for an
interesting task must have bad worst-case performance. Thus each verification
method must contain at least one potentially expensive step. With ordinary state
spaces, this step is obviously the construction of the state space. The same holds
for most advanced methods discussed in Section 7. We will see in Section 7.2 that
there are methods that can sometimes pack full state space information into a
very small representation, but with them the problem of extracting eventual
answers from the packed state space tends to be complicated.

Fortunately, the above complexity results apply only to the worst case. They
do not prevent a verification method from being reasonably efficient in a large
set of practical cases. They do, however, imply that for each method there are
systems with which the method becomes very slow (unless PSPACE = P).

5.3 How Much Information to Preserve?

An advanced state space method can reduce the size of the state space either
by throwing some information away, or by representing the information in a
denser form. Throwing information away implies that some verification questions
cannot any more be answered. In theory, packing the information more densely
does not rule out the ability to answer any verification question. In practice,
both the above complexity results and experience with advanced state space
methods suggest that if the packed representation is significantly denser than the
ordinary state space, then extracting the answers to certain verification questions
becomes so difficult that it becomes a bottleneck. It is thus reasonable to accept
the idea that state explosion cannot be significantly alleviated without losing
some analysis capability.

Consider two sets I} and Iy of analysis questions such that Iy} C I and
I't # I';. Any method that is capable of answering all questions in I can be
used also for I'y. Furthermore, there may be advanced methods that are legal for
Iy, but fail to answer correctly some verification question in I’y — I';. Therefore,
at least in principle, It allows the use of at least the same and may allow more
tools for attacking the state explosion problem than I'y. Therefore, the more
information we are willing to give away, the more we can do to avoid state
explosion.

As an example of the above principle, we will now explain how the fact that
some equivalence (say, trace equivalence) preserves strictly less information than
some other (weak bisimilarity, for instance) can be used to reduce the cost of

477

verification, although equivalence checking and minimisation are expensive for
trace equivalence and cheap for weak bisimilarity. To compare the uses of two
different equivalences in the same verification task it is necessary to assume that
both equivalences apply to that task, that is, they preserve the property ¢ in
question. For instance, if ¢ is any linear-time safety property that is stated in
terms of X, then both trace equivalence and weak bisimilarity preserve it. In
such a situation the equivalences are just tools in the verification of ¢, not goals
in themselves.

As will be discussed in more detail in Section 7.3, equivalences can be used
to avoid the construction of the full state space of the system, and produce a
smaller but equivalent state space instead. Because any two weakly bisimilar
state spaces are also trace-equivalent but the opposite does not hold, trace se-
mantics allows the production of smaller state spaces than weak bisimilarity.
Computing the smallest possible trace-equivalent state space is expensive, but it
is not necessary in this kind of an application. It is perfectly legal to first run the
inexpensive algorithm that produces the unique minimal weakly bisimilar state
space, and then apply some inexpensive trace-equivalence-preserving heuristics
to reduce the result further still, and perhaps minimise again with respect to
weak bisimilarity. In this way a state space is constructed that is never bigger
and may be much smaller than the smallest weakly bisimilar state space, but is
still valid for the verification of any linear-time safety property ¢.

5.4 How Much Memory is Really Needed?

Consider the problem of detecting deadlocks from an ordinary Petri net that has
the property that no place ever contains more than one token. This problem can
be easily solved by constructing the state space, if enough time and memory is
available. The number of the reachable states of the net may be exponential, so
this method uses exponential space and consequently also exponential time in
the worst case. Even so, unless the net belongs to some special subclass, state
spaces are the most practical deadlock detection method known today. We saw
above, however, that deadlock detection is PSPACE-complete for this type of
Petri nets. Deadlocks can thus be detected in polynomial space, at least in theory.
Why are polynomial space deadlock detection algorithms not used in practice?

The result that deadlocks can be detected in polynomial space relies on a
theorem by Savitch ([76], [30] p. 176, [1] p. 370). From the proof that Savitch gave
to his theorem, it is possible to derive the following polynomial space algorithm
“js_reachable(M1, Ma, k)” for checking whether M; is reachable from M, in at
most k steps.

If & = 0 the algorithm returns True if M; = My, and False otherwise. If
k = 1 the algorithm returns True if there is a structural transition ¢ such that
M; [t) M, and False otherwise. For bigger values of k, the algorithm constructs
and tests one at a time every possible marking M that assigns to each place
either 0 or 1 tokens. A marking is tested by calling “is_reachable(M;, M, |£])”
and “is_reachable(M, M2, [£])”. If both calls return True, then it is known that
there is a path from M; to M, that goes through M, so the algorithm returns

478

True. If either call returns False, the test of M fails, and the algorithm proceeds
to the next value of M. If the test fails for all values of M, then the algorithm
returns False. This is correct, because if there were a path from M; to M, whose
length is at most k, then the middlemost marking of the path would make both
“is_reachable(M;, M, | £])” and “isxeachable(M, Ma, [£])” to return True.

Let the number of the places in the net be n. The net has at most 2" reachable
markings, because we assumed that M(p) < 1 for every place p and reachable
marking M. Therefore, if M> is reachable from Mj, it is reachable via a path
whose length is less than 2. As a consequence, reachability of a deadlock can
be checked by letting M scan through all initial markings and M> through
all markings, and by calling “is.reachable(My, Ma, 2")” for each M; that is a
deadlock. Each such call creates a tree of recursive calls of “is_reachable” whose
height is at most n + 1. Each invocation of “is_reachable(M;, My, k)” consumes
only ©(n) bits of memory, because each of M, M;, M3 and k fits n+1 bits. Thus
the total memory consumption is O(n?), which is low-order polynomial in 7.

The memory consumption of the above algorithm is actually quite reason-
able. Even a straightforward non-optimised stack-based (instead of recursive)
implementation survives with 4n + 2 bits of memory per recursion level. If, for
instance, n = 1000, then roughly 4 000 000 bits or 500 kilobytes of memory
suffices for checking the reachability of a deadlock.

On the other hand, the time consumption of the above algorithm is woeful.
If no markmg is reachable from another, then the bottom level of recursion is
called 2" times. That is 2! °°° 990 or roughly 103%° 990 times for n = 1000. The
estimated age of the universe is only about 1027 nanoseconds.

The reason why the above algorithm consumes so little space and so much
time is that it throws away almost all subresults it has computed, and recom-
putes them again and again. Significant savings in time may be obtained by
storing the subresults and fetching them from the store as needed instead of re-
computing them. But that would require exponential memory. This observation
is valid for PSPACE-complete problems in general: although they can be solved
in polynomial space in theory, in practice exponential space is used because it
is much faster.

In conclusion, it is in theory possible to solve interesting verification tasks
in relatively small memory. However, the known algorithms that do that con-
sume unimaginable amounts of time. The possibilities of making a big enough
improvement to the speed of the algorithms while keeping the memory con-
sumption polynomial seem minuscule. On the other hand, a much, much faster
algorithm is obtained, one that is often fast enough in practice, if one is willing
to use much more memory and store intermediate results in it. This is exactly
what the state space methods do.

6 Reduction Strategies

An advanced verification algorithm that tries to alleviate state explosion may be
organised in many different ways. In this section we discuss the most important
of them.

479

Transparent construction-time reduction. Perhaps the easiest way of con-
necting a state explosion alleviation method to verification with state spaces is
transparent construction-time reduction. In it, instead of the full state space, a
reduced state space is constructed that gives the same answers to a predefined
class of verification questions as the full state space would give. Specifications
may be checked and analysis questions may be answered with the same algo-
rithms and tools as with full state spaces.

In order to avoid incorrect answers, the user has to know what properties
the reduced state space has preserved, or the analysis tool must refuse to answer
illegal questions. The latter may be implemented by adding to the state space
some information on what properties it preserves.

The basic stubborn set method that preserves deadlocks and non-termination
{Section 7.4) is an example of transparent construction-time reduction. So is
also the compositional LTS construction method that is commonly used in the
verification of process-algebraic equivalences between systems (Section 7.3).

Guided construction-time reduction. Guided construction-time reduction
is an elaboration of transparent construction-time reduction, where information
about the analysis or verification question or special knowledge on the system
is used for guiding the construction of the reduced state space. The abstraction
mechanisms of Section 2.2 are one simple way of doing this: the set 17 or X is
specified before the construction of the reduced state space, the state space re-
duction algorithm uses knowledge of that set to decide where it may reduce, and
only the elements in the set can be used as basic components in the verification
questions. When the user wants to ask a question that refers to details that are
not present in IT or X, a new state space has to be constructed.

For instance, the LTL_x and CTL* x-preserving stubborn set methods (Sec-
tion 7.4) work in this way. Also compositional LTS construction falls into this
category when it is used as an aid in the verification of individual properties
{such as mutual exclusion) instead of checking process equivalence.

If the user specifies a small IT or X, then the state space can answer only a
small set of verification questions. On the other hand, if IT or X' is made larger,
then also the state space becomes larger and may soon exceed the capacity of
the verification tools. The user is thus in a trade-off situation.

The user may have special knowledge of the system that is useful in allevi-
ating state explosion. For instance, the user may know that a correct token-ring
system contains at most one token at any instant of time. Because an incorrect
system does not necessarily have this property, one has to be careful when taking
advantage of this kind of information in verification in order to avoid circular
reasoning. In Sections 7.1 and 7.3 we will see examples of how this can be done
(the elimination of remnant variable values with uninitialise-statements, and
the interface processes of Graf and Steffen).

480

Preprocessing the model. State explosion can be alleviated also by modifying
the system description before starting the construction of the state space, or by
taking the needs of state space methods into account already when modelling
the system. For instance, it is customary to use in a verification model as few
variables as possible and to restrict their types to as small as possible. It is also
customary to make the degree of atomicity of transitions as coarse as possible.

The correctness of abstractions of this kind is in the responsibility of the
author of the verification model. It is also possible to apply sound theories and
automatic tools for preprocessing the model such that it is guaranteed that the
answers to certain verification questions are not changed. This is the topic of
Section 7.1.

Packed state spaces. A packed state space is a nonstandard, dense way of
storing the state space or a part of it. The packed state space may contain full or
incomplete information on the interleaved (or even true concurrency) behaviour
of the system.

The analysis algorithms and {ools have to be modified to work on packed
state spaces instead of ordinary ones. Because the information on states and
semantic transitions is to some extent implicit in a packed state space, extract-
ing an answer to a verification question is sometimes hard. This leads to slow
and complicated algorithms for certain verification questions. As a consequence,
methods based on packed state spaces tend to work well only for certain types
of analysis questions, even if no information is lost in the packing. Fortunately,
the most important types of packed state spaces support well quite large types
of analysis questions.

The symmetry method, the unfolding method, and BDDs are examples of
packed state space methods that preserve full information. Petri net coverabil-
ity graphs preserve incomplete information, and allow the verification of only
a restricted class of properties. Also Holzmann’s supertrace algorithm throws
information away. It allows the handling of a rather large set of properties, but
gives only approximate answers. It is thus not a verification method but a valida-
tion and error detection method. All these methods are described in Section 7.2.

The construction of an ordinary state space is based on the execution of
individual structural transitions in individual states, that is, the construction
of semantic transitions one at a time. With packed state spaces this scheme
has to be modified to at least some extent, because the processing of semantic
transitions one by one would lead to a total amount of work of the order of the
size of the full state space, which would largely destroy the benefits of packing.
With the symmetry, coverability graph and supertrace methods, the construction
of semantic transitions does not differ much from the construction of ordinary
state spaces (except that semantic transitions are not stored when supertrace is
used). On the other hand, when the set of reachable states is represented with a
BDD, semantic transitions are handled with an entirely different technique that
will be discussed in Section 7.2.

A packed state space that preserves full information on the behaviour of

481

a system must rely on some regularity in the behaviour, otherwise the packed
representation could not be essentially smaller than an explicit representation.
The symmetry method, for instance, relies on the assumption that the system
consists of several components that are identical except the name or index of the
component. Therefore, intuitively speaking, the storing of many behaviours can
be replaced by a remark that says that those behaviours are the same as certain
stored behaviours except the naming of entities.

The regularity on which a packed state space relies needs not be well-specified.
For example, the type of regularity that BDDs rely on is very difficult to char-
acterise.

On-the-fly verification. In on-the-fly verification the algorithm that checks
the validity of a property is integrated to the algorithm that constructs the
state space. The construction of the state space is stopped immediately when
an error against the property is found. The state space is usually thrown away
when the algorithm has finished. We have seen several on-the-fly algorithms and
techniques already in Sections 4.2, 4.3 and 4.4.

To appreciate the importance of on-the-fly verification, let us consider the
introduction of an error to an originally correct system. In some cases the error
makes the state space of the system smaller — this happens, for example, if it
causes the system to deadlock right at the start. It is more common, however,
that the error greatly increases the size of the state space. This is because a cor-
rect system almost always obeys some state invariant that significantly restricts
the number of states that it can reach, and is violated by the broken system.

For instance, the alternating bit values of messages in a fifo channel of the
well-known alternating bit protocol are not arbitrary, but they can change in at
most one point within the fifo. If the capacity of the channel is k and the actual
contents of the message are not modelled, arbitrary values of the alternating bits
allow 20 + 2! 4 ... 4+ 2% = 25+1 _ 1 different contents of the channel, whereas
only 1+2-142-24---4+2-k = k%4 k4 1 value combinations satisfy the
invariant. Once the broken system has entered a state that violates the invariant,
usually nothing stops it from slowly corrupting the state more and more, and
thus eventually reaching a great number of states that are disallowed by the
invariant.

It is obvious that stopping when an error is found does not speed up the
verification of a correct system. On the other hand, we argued above that an
incorrect system tends to have a much larger state space than the corresponding
correct system. If the validity of the above invariant is monitored on the fly
with a method that detects violations without delay, then analysis is stopped at
the latest when one more state has been constructed than what the invariant
permits. On-the-fly verification thus tends to reduce the number of states of the
erroneous system back to roughly the same level with the correct system. This
is of great help when testing design ideas during system development.

According to the above reasoning, the ability of an on-the-fly method to keep
the state space small depends on how soon the method detects the error after

482

all states of an erroneous execution have been constructed. Because of this, we
recommended in Section 4.2 the use of reject states and livelock monitor states
for checking linear-time safety properties and livelocks, even if they could be
checked also with Biichi automata (or infinite trace monitor states).

On-the-fly verification may reduce the number of states in also another way,
by avoiding the construction of those parts of the state space that are not relevant
for the property. This may be thought of as an instance of guided construction-
time reduction, and it reduces states also when analysing a correct system. For
the sake of an example, consider a tester process (Section 4.2) that is connected
to the system with transition fusion. Assume that the alphabet of the system
is ¥ = {a,b,¢}, and the property to be checked is “if the first visible action

is a, then the next one is 4”. The 3-state testerb—ﬁ'c'_%:O (the black state is
a reject state) suffices for checking the property. Due to transition fusion, the
tester prevents the system from executing & or ¢ as the first visible action, thus
pruning a potentially big part of the state space.

On-the-fly verification can often be combined to advanced state space meth-
ods of other kinds, and some advanced methods (most notably Holzmann’s su-
pertrace, Section 7.2) actually require the use of on-the-fly verification. However,
the addition of extra components to the system that is required by most on-the-
fly methods sometimes more or less destroys the ability of an advanced state
space method to reduce states.

For instance, the addition of a Biichi automaton by synchronising with ev-
ery structural transition of the system makes stubborn-set-type methods (Sec-
tion 7.4) and process-algebraic compositionality (Section 7.3) more or less use-
less, because that requires the making of every transition visible, and (signifi-
cant) reduction is obtained only from invisible transitions. This problem can be
avoided by using an automaton that represents a stuttering-insensitive property,
and either connecting it to only visible transitions (then one has to be careful
with infinite stuttering, because the automaton does not even see stuttering), or
synchronising it to each state and using a method that preserves the property
without getting guidance from the automaton.

The lesson to be learnt here is that although it is often technically possible
to use more than one advanced verification paradigm or method simultaneously,
it may lead to bad results if done without good enough understanding of the
situation.

7 Advanced State Space Methods

Many different methods for coping with state explosion have been suggested in
the literature, and the field is still evolving rapidly. In this section the basic ideas
of a dozen or so methods are described. The discussion concentrates on methods
and ideas whose importance has already been proven by practical use, influence
on ongoing research, or some other way. Unfortunately, it would have required
too much effort to carefully assess the merits of all the numerous approaches
suggested in the literature. It is thus possible that some important ideas may

483

be missing from this section. Stubborn-set-type methods are presented in more
detail than other methods because there was a wish that this article would also
serve as a stubborn set tutorial.

7.1 Preprocessing Methods

Every experienced user of state space tools knows that the way in which the
system is modelled for the tool may have a great effect on the size of the state
space. Some of the tricks that (assuming sufficient tool support) the modeller
of the system can use to alleviate state explosion without affecting verification
results are discussed in this section.

Elimination of remnant variable values. The state of a system is deter-
mined by the history of the system, and usually most of the state information
affects the future behaviour of the system. With some systems it is, however,
possible that some variable may contain several different values due to different
histories, but all values lead to the same possible future behaviours. We might
then say that the variable contains a remnant value.

A good example of remnant values can be found from within a communication
protocol with a bounded number of retransmissions. The protocol sender process
contains a counter for keeping track of transmission attempts. After the sender
has received an acknowledgement, the counter will not be touched until the
sender receives a new transmission request from the sending client. Then it resets
the counter to zero. Thus the value of the retransmission counter is unnecessary
between the reception of the acknowledgement and the start of the transmission
of a new message.

Although remnant values do not affect future behaviour, they contribute to
the global state of the system, and thus increase the number of reachable states.
This effect can be prevented by adding to the verification model of the system
statements that reset the variable to a specified value immediately after the value
of the variable becomes unnecessary.

If the reset statements are added manually, there is the risk that a variable
is reset although its value is not unnecessary, which may lead to incorrect ver-
ification results. Fortunately, this risk can be avoided if the input language of
the verification tool contains the following feature. In addition to the “normal”
values, the type of each variable should contain a special value undefined, and
there should be a statement uninitialise(v) that assigns undefined to the vari-
able v. Each attempt to use the value of v when it is undefined is immediately
reported by the verification tool as a run-time error (like division by zero). Thus
the modeller can add uninitialise-statements wherever the value of the variable
is believed to be remnant, and the tool reveals if it was not remnant after all.

Coarsening of atomicity. The sizes of atomic actions have a great effect on
the size of the state space of a system. As a consequence, system modellers often
try to make the actions as large as possible. Unfortunately, careless coarsening

484

of atomicity often removes important behavioural errors that we would like to
find with verification algorithms. A widely used way of avoiding this problem is
to adhere to the following “critical reference” rule.

Let us say that a reference to a variable (or any other block of memory) that
is shared by two or more parallel processes is critical, if and only if some other
process can write to that variable (that is, change its value), or the reference is a
writing reference and some other process has access to the variable. If a sequence
of statements contains at most one critical reference, may be blocked only at the
beginning, and does not contain a potentially non-terminating loop, then the
sequence may be collapsed to one atomic action without affecting the answer to
almost any verification question. There are special cases where this rule can be
made more liberal. For instance, if only one process can write ‘to an unbounded
fifo and no process can test the emptiness of the fifo, then the writing reference
needs not be considered critical.

The coarsening of atomicity often requires support from the modelling lan-
guage. For instance, the Promela modelling language of the Spin tool contains
an “atomic” statement with which an arbitrarily long sequence of successive
transitions can be glued into one atomic transition [43]. If such a sequence is de-
terministic, then coarsening may be implemented in a state space construction
tool by executing the whole sequence as one semantic transition. If the sequence
contains a nondeterministic choice, then it may simplify the implementation to
store the state where the choice is made. In this “intermediate” state no other
transitions than those that belong to the process in question are investigated.

A simple technique that facilitates both the implementation of the above in-
termediate states and some other modelling tricks is to assign priorities to struc-
tural transitions. A low-priority transition may occur only if no higher-priority
transition is enabled. An example of other uses of priorities is the modelling of
the assumption that a timer does not occur prematurely, that is, while some
other processing is still going on. This is achieved be giving the expiration of the
timer lower priority than anything else.

The stubborn-set-type methods of Section 7.4 have a similar but usually
much stronger effect than the coarsening of atomicity. Coarsening is thus more
or less unnecessary when those methods are used. Coarsening is, however, much
easier to implement, and, unlike stubborn-set-type methods, can be used with
almost any verification question. Only questions that refer to states in the middle
of a coarsened action or are sensitive to the disappearance of such states cannot
be answered when actions are coarsened.

System transformations. The effect of the elimination of remnant variable
values and coarsening of atomicity may to some extent be obtained by applying
suitable transformations to the system model before the construction of the
state space. Examples of such transformations of Petri nets are given in [40].
Unfortunately, system transformations tend to either preserve only a restricted
set of behavioural properties, or contain complicated conditions on their use. An
example of good use of net reductions is contained in [77].

485

System transformations work at the structural level. They cannot thus take
advantage of situations where, for instance, a variable contains a remnant value
(Section 7.1) but this fact cannot be seen by investigating the structure of the
system. Process-algebraic equivalence-preserving reductions of state spaces (Sec-
tion 7.3) can almost always do the same as system transformations and much
more. Their use, however, requires that the state space of a suitably chosen part
of the system is first constructed. Sometimes such a part cannot be identified,
or has too big a state space. In such a situation process-algebraic reductions do
not make system transformations unnecessary.

Data-independence. Many systems are data-independent in the sense that
they just move data around without looking at it or modifying it. Most obvious
examples of this are communication protocols and cache memories. In such a
case it is clearly unnecessary for verification to model the data in full detail.
However, if the model contains only one data value, then errors such as the
swapping of messages in a protocol cannot be detected. This raises the question:
what is the minimum (or at least a sufficient) number of data values for detecting
all behavioural errors of a given data-independent system?

This question is usually answered with relatively simple manual reasoning.
For instance, two different values suffice for detecting the swapping of two suc-
cessive messages in a data-independent protocol. To see this, assume that the
protocol may swap the nth and (n + 1)th message in a sequence of m messages,
where m may be infinite or any finite integer greater than n. {We have to give n
and m this much freedom, unless we know that the possibility of swapping two
messages does not depend on the total length of the sequence and the location
of the swapping within it.)

Because of data-independence, the swapping may occur also in the sequence
that consists of n messages of type m; and then m — n (or infinitely many, if
m = 0o) messages of type mg. In that case the output of the protocol contains at
least one instance of mg being immediately followed by my. On the other hand,
such an output is impossible for the given input sequence if the protocol never
sSwaps messages.

Swapping may thus be detected by adding to the system a data source process
that gives the protocol an arbitrary sequence of the above kind, and a tester
process that checks the output of the protocol. Only two values of messages are
needed. State explosion is further reduced by the fact that the two values are
not sent in arbitrary combinations. The error is detected on-the-fly which, as
was discussed in Section 6, also helps to alleviate state explosion.

The theory of data-independence was carefully investigated in [99]. Recently,
several theorems giving sufficient numbers of data values in CSP-type preorder
verification were developed by Ranko Lazié; these results are summarised in [75].
A theory that allows the postponing of the instantiation of data values in process-
algebraic compositional verification (Section 7.3) until doing it causes less state
explosion was developed in [51].

486

Further remarks on modelling a system for verification. The size of a
state space of a system is at worst proportional to the product of the numbers of
different local states and values that its component processes and variables may
have. For simplicity, we will discuss only the values of variables in the sequel.
This does not imply loss of generality, because the set of local states of a process
can be thought of as a variable whose value specifies the current local state.

The more a variable v contains “arbitrary” information that does not depend
on the values of other variables, the bigger is the contribution of v to the size
of the state space. In particular, if the value of v can be uniquely determined
from the values of the other variables, then v is harmless from the point of view
of state explosion. (Due to this, tester processes used in on-the-fly verification
like in Section 4.2 do not usually increase the size of the state space very much.)
Therefore, it is not essential to keep the number of variables small; what is
essential is to ensure that the variables do not store arbitrary information.

It is common that a system contains more than one variable of some data
type, and that the values of those variables may be partially unrelated. For
instance, one of the variables may contain the value that is currently being
processed, while another contains the previously processed value as a remnant
value. In such a situation, making the data type grow affects the size of the state
space more than linearly. Because of this, it is often important for state space
methods to keep data types very small. This also explains why elimination of
remnant values sometimes helps a lot in fighting state explosion.

The power of coarsening of atomic actions has a similar explanation. Coarsen-
ing reduces the extent to which component processes may proceed independently
of each other and without affecting non-local variable values. It thus reduces sig-
nificantly the amount of arbitrary information in component processes.

Many systems contain one or more parameters which may assume different
values. Examples of such parameters are the number of philosophers in the dining
philosophers system, and the window size, maximum number of retransmissions
and queue capacities in a sliding window protocol. Strictly speaking, such “sys-
tems” are actually infinite families of similar systems of different size. Most state
space methods require that all such parameters are given a constant value, and
usually the values must be small to avoid state explosion. Fortunately, it seems
that the majority of design errors manifest themselves already with small values
of parameters. Therefore, verification with small parameter values can be used
as an error detection and validation method for systems with large parameter
values.

7.2 Methods Based on Packed State Spaces

Holzmann'’s superirace. Most modelling formalisms allow the representation
of the state of the system as a bit vector of fixed length, at least if integers,
queues, etc. are replaced with bounded data types such as 8-bit integers and
queues of fixed capacity. A bit vector of length k has 2 different value combina-
tions. These combinations comprise a “universe” U of all “syntactically possible”
states, of which the set S of reachable states is a subset. It is common that only

487

a small fragment of syntactically possible states are reachable. Consider the n
dining philosophers system in Figure 1. The state of a philosopher can be en-
coded to two bits, and the state of a fork to one bit. This makes a total of 3n
bits and thus 23® = 8" value combinations. However, only 3" — 1 of them are
reachable. We can say that S is usually sparse.

The most memory-efficient way of storing an entirely arbitrary subset X of
a set U = {uy,us,...,u,} of n elements is a bit vector of length n, where the
value of the sth bit tells whether u; € X. To avoid confusion with bit vectors
that represent states, we will use the term bitset of a bit vector that stores a set.
With sparse sets, the bitset approach leads to the storing of numerous “no” bits,
making the explicit enumeration of all elements of X as the keys of the records
of some data structure {such as a linked list, hash table, or binary tree} much
more memory-efficient. For instance, the state of the 10 philosophers system fits
30 bits or 4 bytes. If we assume that the data structure requires two additional
4-byte pointers per record, the total amount of memory becomes 59 048 states
x 12 bytes/state =~ 700 kilobytes. The bitset representation requires 239/8 =
128 megabytes.

Because of this, the majority of traditional state space tools store states in
explicit form. The use of bitsets is possible only if the state can be encoded to a
number of bits that is at most the base 2 logarithm of the amount of available
memory in bits.

The classic state space construction algorithm needs to store two sets of
states: the states Found that have been found so far, and its subset Incomplete
consisting of those states that have been found but not yet fully processed. When
the algorithm is run, Found keeps on growing until it contains all reachable
states, while Incomplete alternates between growing and shrinking. It is rather
common that the size of Incomplete stays small compared to the set of reachable
states. Thus the bottleneck is the storing of Found.

The basic idea of Holzmann’s supertrace algorithm [43] is to replace Found
with an approximation that is obtained by artificially mapping the set U of all
syntactically possible states to a small enough set H, and store the approxima-
tion as a bitset H[]. The mapping is implemented as a hash function h : U — H
that takes the original representation of a state s as a long bit vector and pro-
duces a short enough bit vector h(s). The test s € Found is replaced by the test
H [h(s)] =1.

Because |H| < |U} (and |H| << |U}), the risk of two different reachable states
mapping to the same element of H (hash collisions, in other words) cannot be
eliminated. As a consequence, every now and then the supertrace algorithm
treats a newly found state as an old state and fails to add it to Incomplete. This
causes the algorithm to ignore the output transitions of some or many states,
and leave a part of the state space uninvestigated. Supertrace is thus not a
verification algorithm, but a validation and error detection algorithm.

The bitset approximation of Found is not particularly useful after super-
trace has terminated, because it is neither a lower (an unreachable state may
hash to a marked bit) nor an upper (supertrace did not investigate all reachable

488

states) approximation of the set of reachable states. It is difficult to think of any
way how supertrace could store reasonable additional information on the sets of
states and semantic transitions that it has investigated without increasing the
memory requirements at least by an order of magnitude. Therefore, with super-
trace, errors must be detected on the fly. Fortunately, as we saw in Section 4.2,
violations against linear-time safety properties, linear-time livelock properties
and even arbitrary LTL properties can be detected on-the-fly. Supertrace has
thus wide applicability.

Perhaps the most important advantage of supertrace is that it can be used
almost independently of the size of the state space of the system in question and
the amount of available memory. Supertrace never investigates more states than
fits the bitset. This also sets an upper limit to the time consumption of super-
trace. If the bitset is small, hash collisions start to occur early in the analysis,
and only a small fraction of the state space is investigated. If more memory is
given, the bitset may be made larger, leading to the investigation of a bigger
part of the state space.

In this way supertrace almost always gives an answer within the resources
given to it, and the quality of the answer improves if the resources are increased.
Furthermore, set membership can be tested and a new element added very effi-
ciently with bitsets, so supertrace uses the resources given to it in an exception-
ally efficient way. It may, however, run out of memory, because the set Incomplete
is stored in the ordinary way, and its maximum size may be difficult to predict
in advance.

Supertrace is thus not a verification technique, but it is a very pragmatic
validation and error detection technique. In addition, it is easy to implement.

Petri net coverability graphs. A marking M’ of a place/transition net covers
a marking M, denoted by M’ > M, if and only if M'(p) > M(p) for every place
p. The notation M’ > M means that M’ > M and M’ # M. If M’ covers M
and M [t) My, then there is a marking Mj such that M’ [t) M] and M; covers
M;. As a matter of fact, M{ — My = M' — M, where M, — M, denotes the
function from places to integers such that (M, — My)(p) = Mz (p) — My(p) for
every place p. This fact implies that if My [tit2...t,) My and M; > My, then
Ml [tltz . .tn) M2 [t1t2 . .t,—,,) M3 [tltz N .tn) ey where Mk = M() +k(M1 - Mo).
If, furthermore, My € [M;) and p is a place such that M;(p) > My(p), then the
number of tokens in p may grow without limit, and [M;) is infinite.

On the other hand, if a place/transition net has a finite number of places
and transitions but an infinite number of reachable markings, then it can be
proven to have an infinite execution with infinitely many different markings.
Furthermore, any such execution has a marking My and a later marking M,
such that M; > M,.

Let us use the term w-marking of any function from the set of places to
{0,1,2,...} U {w}, where w is a special symbol that denotes unboundedness.
The notion of covering can be extended to w-markings by defining that i < w
(and thus i < w) for every integer i. An w-marking M, denotes a set [[M,]] of

489

ordinary markings such that

— for every place p and every M € [[M,]], if M, (p) # w, then M(p) = M, (p);
and

— for every ordinary marking M such that M < M,,, [[M,,]] contains an ordi-
nary marking M’ such that M < M’

The set denoted by an w-marking M, that contains no w-symbols is thus
{M,}. If M, contains w-symbols, [[M,]] is not uniquely defined, but it is cer-
tainly infinite. If M and M’ are ordinary markings, then M < M, & IM’' €
([(M]]: M < M.

What it means for a transition to be enabled in an w-marking, and what is
the result of its occurrence are defined like with place/transition nets, except
that a place marked with w always contains enough tokens, and is marked with
w also after the transition occurrence. This implies that if M, contains at least
one w-symbol, then M,, [t) M/ represents an infinite number of occurrences of ¢
from a marking in [[M,]] to a marking in [[M]].

A coverability graph of a place/transition net is constructed like the ordinary
state space with the following exception. Each time it is found out that a newly
constructed w-marking (remember that also ordinary markings are w-markings)
M covers and is reachable from an older w-marking M, M’ is replaced by the
unique w-marking M,, such that M € [[M,]], M’ € [[M,]}, and M, contains
as few w-symbols as possible. The details of when and to which w-markings
M’ is compared may vary, and it is also possible to replace M,, for M instead
of or in addition to M'’. To guarantee termination it suffices that each newly
constructed M’ is compared to each w-marking in the path along which M’ was
found. Figure 8 shows an example of a Petri net and its coverability graph.

100 — 200114 {000

2 [its N
Iﬁ)}——*{Owl}———-—’{OwO]
31

Fig. 8. A coverability graph example.

Coverability graphs can be easily used to detect unbounded places of a
place/transition net. Because the set represented by an w-marking is not uniquely
defined, coverability graphs cannot be used for checking the reachability of a

490

marking. For instance, if the weight of the arc from ¢, to ps were changed to
2 in Figure 8, then the coverability graph would not change, but the marking
110 would become unreachable. This implies that there are simple state-based
properties that cannot be verified from coverability graphs. On the other hand,
coverability graphs can be used for checking reachability of a state where a tran-
sition is enabled. As was discussed in Section 4.2, this suffices for checking a
large set of action-based linear-time safety properties.

Regarding liveness properties, the example net cannot execute t3 an infinite
number of times. However, if a new arc were drawn from ¢3 to ps, then ¢3 would
become infinitely executable without any change in the coverability graph. Thus
coverability graphs throw away essential information regarding the verification
of liveness properties.

Coverability graphs are a technique for handling infinite state spaces. They
are of no help if the state space is known to be finite. A coverability graph of
a Petri net with a finite number of reachable markings is the same as its state
space.

With coverability graphs it is possible to answer many questions that are
undecidable for Turing machines, such as the possibility of non-termination.
This implies that place/transition nets are computationally strictly weaker than
Turing machines, and that the coverability graph construction cannot be fully
transformed to Turing-strong formalisms such as automata that communicate
through unbounded fifo-queues. On the other hand, the ideas of coverability
graphs could perhaps be of use also with fifo systems. They provide an incomplete
test for detecting that the state space is infinite, and allow some reasoning from
an infinite state space. Because of undecidability, the coverability graph of a fifo
system will every now and then be infinite and thus impossible to construct,
but state spaces that are too big to be constructed have always been a part of
everyday life with state space methods.

More information on coverability graphs can be found in many books on the
theory or analysis of Petri nets. The usual definition of coverability graphs is
somewhat liberal, making it possible to obtain different coverability graphs from
the same Petri net. The article [27] defines and analyses minimal coverability
graphs and shows how they can be constructed. The minirmal coverability graph
of a Petri net is unique.

The symmetry method. Many systems exhibit symmetry in one form or
another. For instance, a system may contain several identical components that
are coupled to each other and the rest of the system in a regular way. Consider a
system with the syntactically possible states U and the state space (S, T, 4, Sr).
The notion of symmetry may be formalised with the aid of a set of bijections
[: (UUT) = (UUT) that have for every states s and s’ and structural transition
t the properties that f(s) € U, f(¢) € T and s —t— s’ & f(s) —f(t)— f(s)'.
Furthermore, if s € Sy, then also f(s) € S; and vice versa. We may call such
bijections symmetry bijections.

It is clear that the identity function Id : (UUT) » (UUT) : ld(z) = =

491

is a symmetry bijection. Furthermore, if f and g are symmetry bijections, then
so are also the inverse f~! of f and the function composition g o f defined by
(g o f)(z) = g(f(z)). Let B be a nonempty set of symmetry bijections, and
assume that B* is the set of all symmetry bijections that can be constructed
from the elements of B by repeated application of the inverse and/or function
composition operations. For instance, in the case of a token-ring protocol, if B
contains only one element and that element is the rotation of the ring one step
to the right, then B* is the set of all rotations of the protocol. If B consists of
all possible ways of swapping two clients in a star-shaped client-server system
with one server and many clients, then B* is the set of all permutations of the
client processes.

The pair (B*, o) is a mathematical group, and the relation s ~ s’ & af €
B* : s’ = f(s) is an equivalence. Let us denote its equivalence classes with [[s]].
That is, [[s]] = { f(s) | f € B*}. It follows from the above definitions that if
any state in [[s]] is reachable, then every state in [[s]] is reachable. Then we may
say that [[s]] is reachable.

The basic idea of the reduction of state spaces with symmetries is to store
only one state from each reachable [[s]]. We may call that state the represen-
tative for [[s]]. If s has been stored and s —t—+ s, then an edge is stored that
starts from s, is labelled with ¢, and ends in the state s, that represents [[s']].
(Some versions of the symmetry method store as an additional label of the edge
the symmetry bijection h or h~! such that s, = h(s’).) It may or may not be
the case that s, = s’. This means that for every reachable semantic transition
(s,t,5'), the symmetry method stores the semantic transition (f(s), f(t),g(s’)),
where f and g are some symmetry bijections. Furthermore, if (s,t, s') is an edge
in the symmetry state space, then there is a symmetry bijection g such that
(f(s), f(t), f(g9(s"))) is a reachable semantic transition for every symmetry bi-
jection f. Therefore, assuming that the set of symmetry bijections is known, the
symmetry method preserves full information on the reachable part of the state
space.

We pointed out in Section 5.3 that even if a packed state space preserves full
information on the behaviour, it is not guaranteed that answers to verification
questions can be extracted efficiently enough. Fortunately, if each [[s]] is finite
(which is certainly the case if the ordinary state space of the system is finite),
then the symmetry method can be used to verify all LTL properties with the on-
the-fly techniques in Section 4.2. In order to not break the symmetry and thus
invalidate the symmetry method, one has to add to the system the necessary
number of symmetric copies of the fact transition, Biichi automaton, or tester
process with which the property is represented. Then errors can be detected
with reject states, deadlock monitor states, livelock monitor states and Biuchi
acceptance states (or infinite trace monitor states) exactly like with ordinary
state spaces. We will now show that this is the case with Biichi acceptance; the
other forms of error detection can be handled similarly (and do not need the
finiteness assumption in the case of reject and deadlock monitor states).

Consider an infinite execution sq —t;— s; —ts— .-+ that goes infinitely

492

many times through some Biichi acceptance state sg. The symmetry state
space contains the path fo(so) —fo(t1)— fi(s1) —fi(t2)— -, where fo, fi,

. are some symmetry bijections. This path contains infinitely many occur-
rences of elements of [[sp]]. Because [[sp]] is finite, at least one element in it
occurs infinitely many times, and the path fo(so) — fo(t1)— fi(s1) = fi(t2)— ---
is Biichi-accepted. If, on the other hand, the symmetry state space contains
a path sp —1;— 81 —i2— - .- where some Biichi acceptance state sp occurs
infinitely many times, then fy(so) —fo(t1)— fi(s1) —fi(t2)— --- is an exe-
cution for at least some symmetry bijections fo, fi, Due to the same
reason as above, some s € [[sg]] occurs infinitely many times in that execu-
tion. Let f be the symmetry bijection that maps s to its corresponding accep-
tance state in the Biichi automaton that represents the original property. Then
F(fo(s0)) =f(fo(t1))= F(fa(s1)) =f(f1(t2))— --- is an execution that violates
the property.

Efficient verification of proper branching-time properties with the symmetry
method is possible, but less straightforward. The problem can be illustrated with
z (=

the net oy where # may get the values 0, 1, 2 and 3. If f(z) =
(z + 1) mod 4, then the occurrence mode z = 1 of the rightmost transition is
Petri-net-live, but it is not if f(z) = (x + 2) mod 4. However, in both cases the
symmetry state space has the structure O—C&3. To decide Petri-net-liveness it
is thus necessary to look at the actual symmetry bijections in addition to the
structure of the symmetry state space, making verification more difficult.

The state space reduction power of the symmetry method depends crucially
on the set of symmetry bijections that is used. The application of rotation sym-
metry to a ring-like system of n components can divide the number of states
by at most n, which is usually not sufficient for curing state explosion. On the
other hand, the symmetry consisting of all permutations can give much better
reduction results.

The addition of (all symmetric copies of) a Biichi automaton or tester process
to a system increases the amount of information that is stored of each symmetric
component. States that would be symmetric without the extra information may
become asymmetric in the presence of the extra information. Because of this
effect, on-the-fly verification with symmetries does not always work well. This
effect can be fought against when designing the automaton by paying careful
attention to the amount and nature of the information that it stores.

The construction of symmetry state spaces and their use in the verification
of Petri nets has been discussed in [46]. The symmetry method was applied
to CTL* model checking in [12, 22], of which [12] used also BDDs. The use of
symmetries when model checking with Biichi automata in the presence of fair-
ness assumptions was investigated in [23, 39]. The combination of the symmetry
method with the stubborn set method (Section 7.4) was investigated in [84, 53]
with a small number of case studies, and was found to be better than either
method alone.

493

The unfolding method. Consider an ordinary Petri net A that has the prop-
erty that M(p) < 1 for every place p in every reachable marking M. Let My
be an initial marking of . The unfolding of N from My is a (usually infinite)
unmarked acyclic Petri net ¥ that represents the truly concurrent behaviour of
N in a certain way. Each place b of U corresponds to some place fb(b) (b “folded
back”) of N, and similarly for transitions. The unfolding of A is obtained as
follows.

To start with, a place b is added to U for each place p; of A that is marked in
M, and, naturally, fb(b]) is chosen to be p;. We will call these places the initial
places of U. Then new places and transitions are added according to the following
rule as long as possible. Let ¢ be a transition of A, and let the numbers of input
and output places of ¢ be denoted by k and h. If by, ..., by are places of U such
that they are concurrent in the sense explained soon, and fb{(b1), ..., fb(bs) are
exactly the input places of ¢, then a new transition e and new places b, ...,b}
are added, and arcs are drawn from each b; to € and from e to each b}, provided
that such a transition and places have not already been added. The function fb is
extended to the newly added elements such that fb(e) = t and {fb(b}), ..., fo(b})}
is the set of the output places of ¢.

In the unfolding, a place can never have more than one input transition.
Furthermore, every place is reachable from at least one initial place. Let b; and
by be two different places of If. They are causally related, if and only if there
is a path from one of them to the other. They are in conflict, if and only if U/
has a place b such that b # by, b # b, and there is a path from b to b; and
another path from b to bs such that the paths have nothing else in common than
b. Finally, the places by, ..., bx of U are concurrent, if and only if no two of them
are causally related or in conflict. It follows from the construction of I that no
two of its places can simultaneously be causally related and in conflict.

Let M be the marking of U, where each initial place contains exactly one
token, and the remaining places contain no tokens. Consider the set of markings
that U can reach starting from M. If M € [M]) is the marking where exactly
the places by, ...,b, are marked, then we let f6(M) denote the marking of N
where exactly fb(b1),..., fb{b,) are marked. For instance, fo(M;) = M (that
is, the initial marking of A'). The construction of i guarantees that if M €
[M]), then fb(M) is a reachable marking of V. If, furthermore, M [e) M’, then
M) [5(€) (M),

In the reverse direction, if M is a reachable marking of N, then U has a
reachable marking M such that B{M) = M. If, furthermore, M [t) M’, then
U has a transition e and a marking M’ such that M [e) M, fb(e) = t and
Jo(M’) = M. (To see that this holds it is helpful to first notice that the property
“all simultaneously marked places are concurrent” is an invariant property of I
with the initial marking M;.) Thus U contains complete information on the
reachable part of the state space of V.

The unfolding i/ is usually infinite and cannot be constructed as such. How-
ever, if AV is finite, then I has at least one finite prefix that represents all reach-
able states of A'. An algorithm for constructing one such prefix was presented

494

in [62]. Its result — let us call it the finite unfolding and denote it with &/fi" —
may be much smaller than the state space of N. Some properties of A can be
checked easily from Ufi" such as the reachability of a state where a certain transi-
tion is enabled. Unfortunately, the checking of many seemingly simple properties
from U™ is quite hard, as the following example from [62] demonstrates.

Let ¢ = ¢1 A --- A ¢ be a Boolean formula in 3-conjunctive normal form
(that is, each ¢; is a disjunction of three different literals, where a literal is either
a variable symbol or a negated variable symbol). Let the variables that occur in
¢ be v1,...,vn,. We will now construct a Petri net NV, from ¢. For each variable
v; the net contains two transitions tf and t] and three places p!, pf and p/.
There is an arc from p! to tf, from ¢} to pf, from p! to t], and from t] to p].
For each conjunct @; = Ij1 V1j3 V13 there are two transitions ¢ and ¢t7° and a
place pf. The place pf has input arcs from both ¥ and £°, and an output arc
to ¢3°. Finally, for each k € {1,2,3}, t7 has an input arc from pf if and only if
ljx = vi, and p] if and only if I;; = —w; (here “=” indeed goes together with
“T”). The places p{ are initially marked, and the other places are not.

The unfolding of N, is the same as N, without the initial marking, except
that each pj“?-t;?°-pair is replaced by an infinite linear chain of places and tran-
sitions. By cutting these chains after the second place, a finite unfolding L(Li" is
obtained that represents all reachable markings of NV,,. It can thus be constructed
from ¢ in polynomial time.

Consider any marking where for each i, either pf or p] is marked, and the
remaining places are empty. This marking is clearly reachable from the initial
marking of NV, If that marking corresponds to an assignment of truth values to
v1,...,Un that makes ¢ false, then at least one ; is false, and t¥ is enabled.
Otherwise all ¢; are true, and N, is in a deadlock. It is clear that in all other
reachable markings some ¢ or some % is enabled. Therefore, N, may deadlock
if and only if ¢ is satisfiable. As a consequence, detecting deadlock from N,
and thus also from Uf"| is NP-hard. So the existence of a worst-case polynomial
time algorithm for deadlock detection from the finite unfolding is very unlikely.

On the other hand, it is trivial to check reachability of a deadlock from the
state space of a system in linear time — linear in the size of the state space. In
the case of N, (and many other systems, for that matter), linear in the size of
the state space is exponential in the size of the system, because the state space
clearly has an exponential number of states. So we see that the detection of
deadlocks (most likely) contains an exponential step both with unfoldings and
with state spaces, it is just that with unfoldings this step is after and with state
spaces during the construction of the object that represents the behaviour of
the system. As a matter of fact, making the very likely assumption that NP #
PSPACE, every deadlock detection method must contain a step that cannot be
performed in (even nondeterministic) polynomial time.

The difficulty of finding a deadlock from the finite unfolding is thus a con-
sequence of the facts that finding a deadlock is hard with any method, and,
for a significant class of systems, the unfolding is small and can be constructed
in polynomia} time. We can interpret this by saying that the finite unfolding is

495

an “intermediate” representation of behaviour that is between a Petri net and
its state space. Because it is sometimes much smaller than the state space, and
not everything is hard to check from it, it provides answers to some questions
on some systems with much less time and memory than state spaces do. There
are, however, many systems for which the finite unfolding is of exponential size.
This 1s the case at least when an exponential number of transition occurrences is
needed before a certain transition becomes enabled. A binary counter is a simple
example.

For the practical use of unfoldings, it is important to distinguish properties
that can be checked easily and efficiently enough. Although deadlock detection
is hard in the worst case, [62] presents a heuristic algorithm that works often
well. An alternative algorithm that uses integer linear-algebraic techniques was
given in [64].

An algorithm for checking the validity of formulae in a certain simple tem-
poral logic from the finite unfolding was developed in [24]. The logic consists
of atomic propositions of the form “M(p) = 1”7, the Boolean connectives “A”
and “=”, and the CTL operator “EF” (from which “v” and “AG” can be con-
structed). The publication [24] also distinguishes a non-trivial class of Petri nets
for which the finite unfolding is always small and constructible in polynomial
time, yielding polynomial time verification algorithms for formulae of the above
logic that are in a certain form. (Of course, the binary counter cannot be mod-
elled with such Petri nets, and the conversion of an arbitrary formula to the
required form may increase its length exponentially.)

The original algorithm [62] for constructing a finite unfolding may produce
an unnecessarily large result if the Petri net contains lots of conflicts, leading
sometimes to finite unfoldings that are significantly bigger than the correspond-
ing state spaces. An improved algorithm that avoids this problem was presented
in [25].

Binary decision diagrams. An (ordered) binary decision diagram or (O)BDD
[8] is a data structure for representing a set of bit vectors of equal length or,
equivalently, a Boolean formula. It is a directed acyclic graph whose each vertex
has either zero or exactly two successor vertices. Vertices with no output edges
are labelled by “F” or “T”. Each of the remaining vertices is labelled by a
variable, and its output edges are labelled by “0” and “1”. Exactly one vertex,
the root, has no incoming edge. Figure 9 shows a BDD that represents the set
{0011,0111,1011,1100,1101,1110,1111}, or the formula (v; Ava) V (v3 Avg). A
vector v1vov3vy is in the set if and only if the corresponding path from the root
down through the BDD ends with “T”, where the “corresponding” path is the
one where the output edge from each node v; is selected according to the value
of v;.

BDDs are usually made as small as possible by merging any two nodes that
are roots of isomorphic sub-BDDs, and removing all nodes whose both output
edges lead to isomorphic sub-BDDs. This can be done very efficiently by work-
ing bottom-up. The ordering in which the variables occur in a BDD is fixed.

496

Fig.9. A BDD example: (v1 A va) V (v3 A vg).

This has the consequence that each set has a unique fully reduced BDD rep-
resentation and, furthermore, basic set operations including union, intersection,
complementation, and equivalence test can be done efficiently with fully reduced
BDDs. On the other hand, the size of a BDD (that is, the number of nodes in
it) may depend crucially on the ordering of the variables, and it is difficult to
know in advance whether a particular ordering would be good.

Several BDDs over the same set of variables and with the same ordering of
those variables can be represented efficiently in one data structure by sharing
identical sub-BDDs. This is useful in algorithms that manipulate BDDs.

With BDDs, it is natural to think of each structural transition ¢ as defining
a relation in § x S or, if the structural transitions are deterministic, a partial
function S+ S. This relation can be represented as a Boolean formula R;(s, s)
where s and s’ are the state before and after the occurrence of ¢. In these terms,
the enabling condition of t is 3s’ : R¢(s, s'). The set of all structural transitions
corresponds to the formula R(s, s) LN Vier Bi(s,).

Assuming that the formula S{s) describes some set of states, the formula
3s’ : S(s') A R(s',s) describes the set of those states that are reachable from
the present set with one transition occurrence. A formula representing the set
of all reachable states may be constructed by starting with a formula S(s) that
represents the set of initial states, and repeating the operation S(s) := S(s) V
s’ : S(s’) A R(s', s) until S(s) does not change any more. (Alternatively, one
can restrict the application of R(s’,s) to those reachable s’ to which it has not
yet been applied, or those that the previous application of R(s,s) produced.)
All these formulae can be represented with BDDs, and the operations needed in
this approach can be performed efficiently in the sizes of the BDDs.

When the set S(s) of reachable states is obtained, one can check whether it
contains a forbidden state by describing forbidden states with a formula F(s),
computing S(s)AF(s), and checking whether the result is False. Other properties

497

may be checked with more complicated algorithms, such as the algorithm for
Petri net liveness in [67]. Perhaps the most important such algorithm is the
symbolic model checking algorithm for CTL, LTL, weak bisimilarity and some
other properties described in [9]. In it, the construction of the BDD proceeds
backwards guided by the formula that is being checked. A BDD representing the
set G(s) of syntactically possible states that satisfy the formula is obtained as a
result. One can then compute I(s) A =G(s) where I(s) models the set of initial
states to verify that the system satisfies the formula.

As was mentioned in Section 6, to obtain a small BDD it is necessary that
the set of the reachable states of a system is regular in some informal and not
well understood sense. {In the case of symbolic model checking it is the set of
syntactically possible states that satisfy the formula that must be regular.) On
the other hand, the total number of states is seldom an important factor of the
BDD size. As a consequence, intermediate BDDs may be much larger than the
final BDD in the above algorithm for constructing a BDD for the set of reachable
states. For instance, [67] contains case studies where the biggest BDD has more
than ten times as many nodes as the final BDD. Furthermore, systems exist
which have no small BDDs. A combinatorial multiplier circuit is an often cited
example. This problem has been attacked by developing variants of BDDs.

It is unclear whether it is useful to combine BDDs to other state space re-
duction methods. Most methods discussed in this article aim at reducing the
number of states, but the number of states is not important with BDDs. On the
other hand, the simultaneous use of another method may well pay off, if it makes
the set of states more regular in the above informal sense. For instance, [3] con-
tains a successful example of the combination of BDDs to a stubborn-set-type
method.

BDDs have found lots of use especially in circuit design, as can be seen from
the survey [63).

7.3 Methods Based on Process-Algebraic Compositionality

Compositional LTS construction. The goal of compositional LTS construc-
tion is to construct a reduced state space that is equivalent to the full state
space in the sense of some process equivalence. The method is usually applied to
process-algebraic verification of the kind in Section 4.4, but it can also be used
for state-based verification.

The method can be illustrated with the example in Figure 10. The ordinary
LTS of the example system can be computed according to the process-algebraic
expression

P =hideu,v,w,z, yin(P1||P2||P3HP4).
Due to the properties of hiding and parallel composition, the expression

hide w, z in (hide u, vin(P; || P3) || hide y in(P,|| P4))

498

produces the same result (excluding the names of states). Let ~ be a process
equivalence that is a congruence with respect to “hide” and “||”. If Red is an
algorithm that reduces an LTS but preserves ~, then P ~ P,oq, where

Pred = hide w, z in(Red(hide u, v in(Py || Ps)) || Red(hide y in(P;|| Ps))).

Thus P,q can be used for verifying all the properties that are preserved by ~.
On the other hand, the LTS P,.q may be much smaller than the LTS P. (Suitable
equivalences ~and reduction algorithms Red were discussed in Section 4.4).

al b c
Py wi p
ul v Yy
P z P,

Fig. 10. A system consisting of four processes.

Compositional LTS construction can be applied hierarchically. For instance,
if P; consists of several processes, then a compositionally constructed reduced
LTS of it can be used in its place. Even if Py is a single process, it may be
worthwhile to replace it by its reduced LTS.

Compositionality is inherent in process-algebraic theories, so it is difficult to
give anyone credit of inventing compositional LTS construction. An early article
where its use was explicitly suggested in a modern form is [58]. The article [90]
is a tutorial on compositional LTS construction.

Compositional LTS construction is most often used for the verification of
action-based properties of systems with synchronous interprocess communica-
tion, but it can be used also for state-based properties and with shared-variable
communication. Shared variables can be handled by thinking of them as pro-
cesses in their own right. Statements that read, test or modify the values of a
shared variable are interpreted as actions that synchronise with the variable.
When all processes that touch a shared variable have been added to the system,
a special initialisation operator is used to give the variable its initial value and
hide it from the interface of the (sub)system. This trick was applied to Petri net
places in [88].

State-based properties can be handled by encoding state properties into ac-
tion names as was described in Section 2.2. It is also possible to proceed as
follows [88, 89]. Consider a state-based temporal logic formula ¢ such that its
atomic propositions refer to the local states of processes Pi,..., P,, but not to
the local states of processes Q1, ..., Q@m. Then the validity of p on Py||...||P, ||

499

Q1}]...]|@m can be checked by compositionally constructing a reduced LTS Qreq
of @1l] .. .1|@m, and checking the validity of ¢ on Pil|...||Pn || Qred. Of course,
the equivalence that is preserved by the reduction must preserve the temporal
logic in which ¢ was written. NDFD-equivalence preserves LTL_x and branching
bisimilarity has a variant that preserves CTL_x and even CTL*x.

The interface processes of Graf and Steffen. The ability of compositional
LTS construction to save effort relies on the assumption that the intermediate
LTSs are smaller than the full LTS of the whole system. This is not always the
case. A typical example is a token-ring protocol where one token circulates in a
ring consisting of n processes. To keep the example simple to discuss, we assume
that a process without a token can be in one and the process with the token
in two different states. Then the system as a whole has only 2n different states.
The number of states is that small, because the system maintains the property
that there is only one token in the ring. Any process that is not in the possession
of the token is willing to input the token, but in all but one case the previous
process in the ring does not have the token and is thus unable to give it.

Consider then an open-ended segment of the token ring consisting of k < n
processes. The input actions of the first process of the segment are now connected
to nowhere. Therefore, if the first process does not have a token, then it can input
one even if some other process in the segment has a token. As a consequence,
the segment may contain up to k tokens, and may be in 3* different states. Even
for relatively small values of k, 3 is much bigger than 2n.

The problem in this example is that a subsystem that is isolated from its
proper context may exhibit lots of “spurious” behaviour that it does not have
when it is a part of the system as a whole. This problem was pointed out in [38],
and essentially the following solution was suggested. The fact that the full system
allows the segment to contain only one token at a time is modelled by augmenting
the segment with an extra process I that monitors the input and output of
the segment, and lets the segment contain at most one token at a time. That
process might be called an interface process, because it monitors and restricts
the interface of the subsystem. The process I allows the segment to input a token
even if it already contains one, but then the input action leads to a specially
marked “cut” state where no actions are possible. This restricts the number of
states of the segment to 2k + 2 — one state with no tokens, 2k states with one
token and the special cut state with two tokens. Whenever the segment contains
at most one token, / does not prevent any actions of the segment.

An LTS L of the system as a whole is constructed compositionally in the usual
way, except that wherever needed, subsystems are augmented with suitable in-
terface processes, and the special cut states are treated during LTS reduction
as equivalent to each other and different from all other states. In L, inputting
a second token should be impossible and the cut states should thus have disap-
peared. If this did not happen, then the user knows that some I was incorrect,
and L is not valid for verifying the system. If the cut states did disappear, then
the interface processes have no effect on the behaviour of the complete system,

500

and L is equivalent to what would have been obtained without them.

Instead of cut states, [38] developed and used a theory of “undefinedness”
predicates. The theory allows the merging of any states whose Sj-components
are the same during the computation of the parallel composition of a subsystem
S; and its interface process I;.

The use of compositional LTS construction in this example is clearly an
overkill, because the system as a whole has so few states. The purpose of the
example was only to illustrate the spurious behaviour problem, and the use of
interface processes for avoiding it. In [38] the token ring in Figure 1 was used as
an example. It has 9n2"~2 states, but if all actions except move tkn are hidden
and the full LTS is reduced preserving weak bisimilarity, then the result contains
only n states. Any attempt to use the ordinary compositional LTS method leads
to LTSs that are bigger than the full LTS, but the biggest LTS encountered with
interface processes has (according to the numerical experiments in [38]) only
4n + 4 states.

The interface processes resemble on-the-fly verification in that they allow the
user to give the verification algorithm information about the ezpected (not nec-
essarily real) behaviour of the system that helps to keep the number of states
small. The user cannot fool the algorithm to give wrong answers by giving in-
correct information, because verification results are obtained only if cut states
disappear and the information has thus proven correct.

Behavioural fixed points and network invariants. Sometimes process-
algebraic compositionality makes it possible to verify an infinite family of similar
systems of increasing size. The dining philosophers system provides a simple ex-
ample. It was observed in [93] that when a CFFD-semantics-preserving reduced
LTS was constructed for it with the compositional approach, the open-ended
segment PF; with four philosophers and forks where only the interface actions
at the ends are visible is CFFD-equivalent to the segment PF3 consisting of
three philosophers and forks. By adding k philosophers and forks to PF4 and
similarly to PF3 we get the result that PFy,4 ~crrp PF k43, which implies that
PF; ~crep PF3 for any i > 3.

The system of n dining philosophers can be composed of one philosopher and
fork that are connected to both ends of PF,_1. As a consequence, the analysis
results obtained from the four-philosopher system are valid also for all larger
philosopher systems, provided that the analysis questions refer only to the state
of one philosopher and to the fork on her left side (the fork that he takes first).
However, that suffices for detecting deadlock and starvation in the philosopher
system.

The situation where the behaviour of a system does not change when more
components are added to it may be called a behavioural fized point. The stronger
a behavioural equivalence is, the less likely it is to yield a behavioural fixed point
in a given system. One would thus expect behavioural fixed points to be found
more often with trace, CFFD- and CSP-equivalences than with weak bisimilarity.

The behavioural fixed point method can also be used for the verification

501

of systems with integer parameters that represent some upper bounds, as was
demonstrated in [92]. The maximum number of transmission attempts that a
sender process of a communication protocol will make before giving up is an
example of such an upper bound. The basic idea is to model a counter that
counts towards the upper bound as a stack of processes that may be added to
the system one by one, thus increasing the upper bound. If a behavioural fixed
point is found when the bound is k, then the system is independent of the value
of the bound provided that it is at least k. This method was also used in [92] to
model a certain fairness assumption by letting the counter count the number of
times a certain unfavourable action (namely the loss of a message in a channel)
has been chosen in a row instead of a favourable action.

Other methods that make it possible to verify an infinite family of systems
of similar structure include [13, 54, 100].

7.4 Methods Based on Commutativity

Introduction to stubborn-set-type methods. The total effect of a set of
concurrent actions is independent of the order in which the actions occur. As is
obvious from the trivial “n non-interacting k-state processes” example of Sec-
tion 1, the fact that the ordinary state space contains all possible orderings of
concurrent actions is a major source of state explosion.

This observation has led many researchers to develop advanced state space
methods where only some of the orderings are investigated, ideally only one
ordering for each set of concurrent actions. In these methods, at each state
that has been added to the reduced state space, only a subset of the semantic
transitions out of that state are investigated. In other words, only a subset of
structural transitions is used when constructing output edges for the state. The
subset is chosen such that the occurrences of the remaining structural transitions
can be postponed, or perhaps ignored altogether, without modifying the answers
to the verification questions at hand.

Although the above idea is natural, a number of problems arise when trying
to turn it into a working verification method. We will illustrate them with the
aid of Figure 11.

— An enabled structural transition £ may be in conflict with another struc-
tural transition ¢’ that is disabled at the moment (“conflict” means, roughly
speaking, that they are not concurrent even when both of them are enabled).
This is the situation, for instance, with #5 and t3 of the example net in the
marking M3 47 where exactly ps, p4 and p7 are marked. Executions where t
becomes enabled and occurs (perhaps disabling t) before the occurrence of
t should not be ignored. Therefore, ¢’ must somehow be taken into account
in that state although it is disabled.

— Sometimes only one of two concurrent actions is taken in an execution that
is relevant for verification. This happens, for instance, if we want to check
the reachability of the above-mentioned marking M 4 7. Namely, initially ¢4
and t4 are concurrent, but only ¢; should occur to reach M3 4,7. The method

502

must thus be able to favour one transition over another if that is important
for the verification question.

— Some verification tasks require that the ordering of concurrent actions is
partially preserved. For instance, to preserve the set of the process-algebraic
traces of a system, the ordering of all transitions ¢ such that £5(t) # 7 must
be preserved.

— The transitions that will be investigated in a state must be chosen reasonably
efficiently, and the choice cannot rely on information on states that have not
yet been investigated. For instance, it is obvious for a human who knows the
net well that in M> 4 7 it suffices to investigate {4 alone but it is not sufficient
to investigate ty alone, although both are enabled. An algorithm is needed
for this kind of an analysis.

— The tgnorance problem: If the investigation of some structural transition is
postponed in each state of a cycle, then there is the risk that the transi-
tion is postponed forever. As an extreme example, if only ¢ is investigated
in the initial marking of the example net, then no other markings will be
constructed, and most of the behaviour of the net will be ignored.

[

i3 14
| O
Qp/z .
123 s
P3 Pe

Fig.11. A stubborn set example.

p7

tel |

Different verification tasks require different answers to these problems, and
different researchers have fine-tuned the details in different ways. This has led
to the development of several methods under the names stubborn sets (since
1988 [81, 82]), persistent sets (since 1990 [33], although the term “persistent”
is slightly more recent) and ample sets (since 1993 [68], but the idea was used
in manual verification already in [49]). The persistent set approach is explained
in detail in [34], and ample sets in [70]. These methods are so similar that it

503

would perhaps be a good idea to think of them as variants of the same method.
In this article we call them stubborn-set-type methods. We use mostly the basic
technical definitions in [72, 98], because they both cover or generalise most of
the definitions in the literature, and are intuitively reasonably clear.

Stubborn-set-type methods are often classified as partial-order methods, but
in the opinion of the present author that is somewhat misleading. “Partial or-
der” refers to the truly concurrent semantics known as Mazurkiewicz traces [61],
in which the ordering of actions is, indeed, partial. It would be tempting to
think of stubborn-set-type methods as attempting to construct one linearisation
of each Mazurkiewicz trace of the system, taking advantage of the symmetric
independency relation in the theory of Mazurkiewicz traces.

In reality, however, the methods construct representatives for executions of
the system, where a representative is not necessarily a member of the same
Mazurkiewicz trace as an execution that it represents. The construction of rep-
resentatives is based on an asymmetric relation that is more liberal than the
independency relation. Furthermore, a Mazurkiewicz trace that is not relevant
for the verification question at hand may be left without representatives. We will
return to this issue after presenting the basic stubborn set method.

Basic stubborn set method. A set T, C T of structural transitions is dynam-
ically stubborn at state sg, if and only if the following hold:

Dl Ift €Ty, t1,...,tn & Ts, so —tita - - -tn— 5, and s, —t— s, then there is 55
such that sp —t— s} and s ~t1te- - -t,~> s},

D2 There is at least one transition t, € T; such that if ¢;,...,¢, ¢ T, and
so—t1ty -+ - tp—>8,, then s, —tx~>. The transition ty is called a key transition
of T, at s.

By letting n = 0 in D2 we see that a key transition is enabled. A set of
structural transitions is strongly dynamically stubborn at state s, if and only
if it is dynamically stubborn at s, and all of its enabled transitions are key
transitions, that is, they qualify as the t) in D2. Strongly dynamically stubborn
sets are an important subclass of dynamically stubborn sets, because most (but
not all) known algorithms for stubborn set construction produce them, and some
analysis algorithms require them.

Because a dynamically stubborn set must contain a key transition, deadlock
states have no dynamically stubborn sets. (A deadlock state is a state with no
enabled structural transitions.) If s is not a deadlock state, then the set T of
all structural transitions is dynamically stubborn and even strongly dynamically
stubborn at s.

Let T; : S — 2T be a function that assigns to each non-deadlock state s a
dynamically stubborn set Ty(s). The basic stubborn set method starts with the
initial states, and constructs for each state s that has been found so far only
those output edges and immediate successor states that are obtained by firing
the enabled structural transitions in T(s).

504

Let s4 be a deadlock state and s any state in the reduced state space con-
structed with the basic stubborn set method. If s —t1t5---t,— 54, then D2
implies that at least one of ¢1, 1, .. .,t, must belong to T;(s), because otherwise
all key transitions of Ty(s) would be enabled at s4. Let ¢ be as small as possible
such that ¢; € Ty(s). D1 implies that there is s’ such that s —t;— s’, and sq is
reachable from s with n — 1 steps, namely by firing 1, ..., tic1, fig1, ..., in.
If 5 is an initial state, then by repeating this argument in s’ and so on a total
of n times we see that the reduced state space contains s4. We have shown the
hardest part of the following theorem:

A reduced state space that has been constructed with the basic stubborn set
method (that is, for each state s in it, T5(s) satisfies D1 and D2) contains
all deadlock states of the system that are reachable from the initial states.
Furthermore, all deadlock states of the reduced state space are deadlock
states of the system.

If the transitions are deterministic, then the following can be proven from
D1 and D2:

D3 If T; is dynamically stubborn at s, t1,12,... € T5, tk is a key transition of T;
at s, and s—t1ty - - -—, then there is s’ such that s—ty—»s’ and s’ —t1t5--—.

From D1, D2 and D3 it is not difficult to prove that if the system has an
infinite execution, then also its reduced state space obtained with the basic stub-
born set method contains an infinite execution. Therefore, the basic stubborn
set method can be used for checking whether a system with deterministic transi-
tions may fail to terminate. The result can be applied also when transitions are
not deterministic by first showing that the stubborn sets that are used satisfy
D3.

A reduced state space that has been constructed with the basic stubborn
set method contains an infinite execution if and only if the full state space
contains an infinite execution, provided that either all structural transitions
of the system are deterministic, or T;(s) satisfies D3 in each state s of the
reduced state space.

On alternative definitions of stubborn sets. Several different definitions of stub-
born (or ample or persistent) sets of different strength have appeared in the
literature. We say that a definition of stubborn sets is weaker than another def-
inition, if every set that is stubborn according to the latter is stubborn also
according to the former, but not necessarily vice versa.

The weaker a definition of stubborn sets is, the more sets it classifies as stub-
born, and the better are the chances that a stubborn set with very few enabled
transitions may be found. As a consequence, weak definitions of stubborn sets
have more potential for good reduction results than strictly stronger definitions.
This has motivated researchers to try to find as weak definitions as possible
without making the theory too complicated [36, 50, 72, 81, 83]. The conditions

505

D1 to D3 (essentially from [72]) were chosen for this article, because they are
simple and among the weakest that have appeared in the literature.

As an example of the above, consider the situation where a process is ready to
read from a non-empty fifo queue that other processes can access only by writing
to it. Assume that the process has no alternative actions to the reading. Let #,¢aq
be the structural transition that corresponds to the reading. The conditions D1
to D3 classify the set {treaa} as dynamically stubborn (and even strongly). On the
other hand, writing to and reading from a fifo are not independent in the “classic”
sense used, for instance, in the theory of Mazurkiewicz traces, because sometimes
the writing transition enables the reading transition. Therefore, {tead} could not
be stubborn according to the classic notion of independency. This problem does
not affect D1 to D3, because we applied them in a state where tread is known to
be enabled.

As a consequence, a theory of stubborn sets based on the classic notion of
independency would yield worse reduction results than the theory presented in
this article. So the theory of Mazurkiewicz traces is not an optimal starting
point for the development of stubborn-set-type methods, although it provides
good background intuition.

Unlike an ample set [70] or persistent set [34], a stubborn set may contain
disabled transitions. Disabled transitions might seem unnecessary, because they
do not contribute to the set of cutput edges of a state. However, their presence
simplifies the formulation of both the conditions V and L2 that will be pre-
sented later, and the notion of static stubborn sets that is useful for developing
stubborn set construction algorithms. It was shown in [98] that if transitions are
deterministic, then the non-empty persistent sets of {34] correspond precisely to
the sets of enabled transitions of strongly dynamically stubborn sets.

Static definitions of stubborn sets. To implement the basic stubborn set
method, it is necessary to design an algorithm that, given a non-deadlock state,
produces the enabled transitions in a dynamically stubborn set of transitions.
The set of all structural transitions is stubborn at every non-deadlock state,
but it should be returned only as a last resort, because it will not yield any
reduction of the number of output edges of the state. The definition of dynamical
stubbornness does not directly lead to an algorithm, because it refers to states
that are in the future of s and are thus not yet available.

To solve this problem, a static notion of a stubborn set of structural transi-
tions has been defined. (Historically, stubborn sets were defined before dynam-
ically stubborn sets.) This notion depends on the formalism used for modelling
the system, and can be given several different definitions even for the same for-
malism, depending on how much effort one is willing to put into the analysis of
the dependencies between transitions. What is important is that one must be
able to prove for the chosen notion of stubborn sets that each stubborn set is
also a dynamically stubborn set. A definition of “stubborn sets” is thus nothing
but a static sufficient condition for a set being dynamically stubborn. Further-
more, if transitions are not deterministic and one wants to use stubborn sets for

506

the detection of failure of termination, then one should show also that the sets
satisfy D3.

In the case of ordinary Petri nets, the following is a possible simple definition
of stubborn sets:!?

— Ift € T, and —M][t), then there is p € ot such that
M(p) < W(p,t) and ep C Ts.
— Ift € T, and M|t), then (et)e C T, or o(et) C T,.
— T, contains a transition #x such that M[ty) and (ety)e C T..

This definition can be converted to a more restricted definition that allows
only strongly dynamically stubborn sets simply by removing “or e(et) C 7,”.

Also the following, more complicated definition from [83] (with a small im-
provement from [98]) implies D1 and D2. It represents a more careful analysis of
the dependencies between transitions. It is implied by the above simple defini-
tion but is not equivalent. Therefore, it accepts more sets as stubborn. So it can
yield smaller stubborn sets than the above simple definition and thus produce
better reduction results.

— Ift € T, and -~ M|[t), then there is p € ot such that M(p) < W(p,t) and
{t' |W(p,t)<W({E',p) AW(p,t) < M(p)} C T
— Ift € T, and M[t), then for every p € ot, either
{t | min(W(t,p), W(t',p)) < min(W(p,t), W(p,)} CTy, or
{t | min(W(t,p), W(p,t')) < min(W(p,t), W({t',p)) } C Ts.
— T contains a transition #; such that M[tc) and for every p € oty
{¢ | wW(t',p) < min(W(p,t), W(p,t)) } C T.

A strong version is obtained by replacing everything after and including the
“or” with “T; contains a transition tx such that M[ty).”

The following is an example of a definition of stubborn sets with nonde-
terministic transitions, stated in the language of labelled transition systems
(Section 4.4). It applies to the state (sy,...,sn) of L = Li}|---||Ln, where
L; = (Si, X, A, Spi) for 1 < i < n,and “s;—a—; s;” denotes that (s;, a,s!) € 4;.
It produces only strongly dynamically stubborn sets, and guarantees also D3.
To simplify the presentation of the definition, it is assumed that each T-action is
subscribed by the index of the component process that executes it. The stubborn
set Ty is a subset of T U {ry,...,m}.

— If a € T, and =(s —a—), then there is 1 < i < n such that a € X; U {13},
-l(s,- ——a—),-), and {b I 8; —b—; } CT..

— If a € T, and s —a-+, then for every 1 < ¢ < n, either ¢ ¢ X U {5}, or
{bls,'—b—h' } gTs

10 uqg” denotes the set of the input places or transitions of the transition or place z,
“ze” is the similar notion for output, and “ez” and “ze” are extended to sets by
taking the union of the results for each member of the set. W(p,t) and W(t, p) are
the numbers of tokens that the transition ¢ consumes from and produces for the
place p when it occurs.

507

— There is ay € T; such that s —ax— .

As was emphasised above, each of the above definitions is static in the sense
that, unlike the earlier definition of dynamically stubborn sets, it refers to only
one state. Given a state and a set of transitions, it is possible (and easy) to check
whether the set satisfies the definition in the state.

When constructing a reduced state space with stubborn-set-type methods,
it is necessary at each state to construct a “good” stubborn set, given only the
state. It is not known what stubborn set would be the best regarding reduction
results. For instance, [82] contains an example showing that always choosing the
stubborn set with the smallest number of enabled transitions does not necessarily
produce the smallest reduced state space. Even so, it is easy to believe that
trying to keep the number of enabled transitions small is a reasonable heuristics.
In particular, if the set of enabled transitions in T5 is a proper subset of the
set of enabled transitions in Ty, then Ty, is preferable, because with it the basic
stubborn set method cannot produce a bigger but may produce a smaller reduced
state space than with ;.

Algorithms for constructing stubborn sets. Each of the above static defi-
nitions of stubborn sets can be thought of as consisting of a requirement of the
form “T, must contain a transition ¢, with a certain property k”, and of condi-
tions of the form “if t € T, then all transitions in either fi(s,t) or fa(s,t) or
...or fx(s,t) must be in T,;”, where f, ..., fi are functions of the state and ¢.
If we are ready to give up some of the generality of the above definitions, we can
introduce a more or less arbitrary rule for choosing one of the f;, given s and t.
Then the above conditions span a binary relation between transitions that we
will denote with “~7: t; ~» 19 PN ts € fi(s,).

For instance, in the case of the first of the above definitions, we may choose
11 ~ 1o PN ot; Nety # 0 when M[ty), and ¢, ~ 2 Lty ty € ep(M,t;) when
—M][t1), where p(M,1) is the smallest-numbered input place of ¢ according to
some fixed numbering of places such that M (p(M,t)) < W(p(M,1),t).

The closure algorithm. The above notions lead to a simple sufficient graph-
theoretic condition for stubborn sets: if a set is closed under “~»” and it contains
a transition that has the property k, then it is stubborn. Therefore, a stubborn
set may be constructed by picking a transition) that satisfies k, and then
performing a graph search (such as the depth-first search) in the graph (T',~)
starting at Zy.

This algorithm is easy to implement and reasonably fast: it consumes O(|T'|+
|~|) time (but see the comment on speed below). The size of “~+” depends on
the modelling formalism. In the case of Petri nets it is at most ¢%|T'|, where c is
the maximum pumber of input or output places or transitions of a transition or
place. It can be reduced to 2¢|T] by letting also the places act as vertices of the
graph, yielding O(c|T|) worst-case time.

Unfortunately, the quality of the stubborn sets this algorithm produces de-
pends a lot on the choices of the start transitions.

508

The strong component algorithm. A better stubborn set is obtained by searching
from (T, ~) for a maximal strongly connected component such that it contains a
transition that satisfies k, and no other maximal strongly connected component
reachable from it contains such a transition [81]. The stubborn set consists of
the transitions in that component and all components reachable from it.

If the f; are chosen such that each enabled transition automatically satisfies
k, then this reduces to a search for a maximal strongly connected component
that contains an enabled transition but its descendants do not (and then the
resulting sets are strongly dynamically stubborn}. For instance, with the above
simple definition this means that if ¢ is enabled, (ot)e is used and not e(et).

In this application, it is better to search for the component with Tarjan’s al-
gorithm [79, 1] than with the more modern one described in [15]. This is because
the former can be easily adapted to stop when a suitable component has been
found even if most of (T, ~) has not been touched, whereas the latter requires
that (7, ~) is searched completely through at least once. The former algorithm
has thus much better best-case performance than the latter. Also this stubborn
set construction algorithm consumes O(|T'| + |~|) or O(c|T|) time in the worst
case.

Instead of stopping immediately when the first suitable component has been
found, the algorithm can be continued until it has found all suitable components.
Then the one resulting in the smallest number of enabled transitions in the
stubborn set may be chosen.

The deletion algorithm. The need to choose artificially one of the above-men-
tioned functions f; can be avoided by spending more time in the construction of
stubborn sets as follows [82]. One can take the different f; into account by replac-
ing (T,~) by a more complicated graph containing “and”- and “or”-vertices.
For instance, in the case of the above simple definition of stubborn sets for Petri
nets, a disabled transition ¢ corresponds to an or-vertex such that ¢ ~ p for every
p such that M(p) < W(p,t), and each such p corresponds to an and-vertex such
that p ~» t/ for each t' € op.

The algorithm starts with the full graph, and performs “removal searches”.
Each removal search starts by removing an enabled transition. When any vertex
of the graph is removed, also those of its immediate “~”-predecessor vertices
are removed that either are and-vertices, or are or-vertices and have lost all of
their immediate “~»”-successors. If the graph does not any more correspond to a
stubborn set after a removal search, then the effects of the search are cancelled.
Removal searches are continued as long as possible. The worst-case time con-
sumption of this algorithm is O(|T||~{). With the above Petri net definitions
this makes O(c|T|?).

The time spent in constructing a stubborn set is an important factor in the
time taken by the stubborn set method, because a stubborn set is constructed in
every state that is investigated. Although all of the above algorithms have good
asymptotic performance, they require a lot of analysis of “~”.

509

In particular, the above definitions of stubborn sets of Petri nets may cause
the algorithms to investigate long chains consisting of a disabled transition, its
empty input place, a disabled input transition of that place, and so on. The
above process-algebraic definition is better in this respect, because it causes the
analysis to jump directly to the location where the control of the process is at
the moment, instead of stepping one disabled transition at a time. It can be
further improved by precomputing information on the reachability between the
states of the same component LTS, and not making the jump if the start point
of the jump is not reachable from the end point of the jump.

It may sometimes be more efficient to use simple heuristics for constructing
a stubborn set rapidly, and use the set of all transitions when the heuristics
fail. This may lead to worse stubborn sets and a bigger reduced state space,
but may pay back in time consumption if the heuristics are fast enough. For
instance, in [34] an algorithm is investigated that, in essence, computes the set
of transitions that are reachable from an enabled tramsition with “~”, until
either the set is ready, or a disabled transition is encountered. In the latter case,
the algorithm gives up and returns the set of all transitions.

When the stubborn set method is combined to packed state space methods
such as the symmetry method, the problem of constructing good stubborn sets
fast enough becomes more challenging. For instance, stubborn sets for a coloured
Petri net may be constructed by first unfolding the net to an ordinary Petri net
and then using the above methods, but one would not like to do this, because the
ordinary Petri net may be much bigger than the original coloured Petri net. Un-
fortunately, in [53] it is shown that unfolding or something equally expensive is
sometimes unavoidable in the construction of “good” stubborn sets for coloured
Petri nets. It is, however, possible to find “good” stubborn sets in time that is
proportional to the size of the coloured Petri net, if the net is given additional
structure [53].

Another result of this kind is the definition of stubborn sets in {51]. It works
for parallel labelled transition systems that are extended with symbolic data.

Stubborn set methods for safety properties. Because of the above-men-
tioned “ignorance” problem, the basic stubborn set method is not good for check-
ing other properties than those that directly relate to the termination of the
system. The addition of the following assumption makes the basic stubborn set
method capable of analysing various safety properties.

S For every state s in the reduced state space and every t € T, if s —t— |
then there is an execution sg ~f;— sy —fg— - -- —t,—> 5, such that so = s,
t € Ts(s,), and ¢; 1s a key transition of Ty(s;—1) for 1 <i < n.

We say that a structural transition t is ignored at s in the reduced state
space, if a violation of S occurs with s and ¢. Ignoring a structural transition
resembles being weakly unfair to it, but is not the same thing. Weak fairness
states a requirement for all futures, whereas £ is not ignored if there is at least
one future of a particular kind.

510

If the conditions D1, D2 and S hold in a reduced state space, then the follow-
ing claims hold [83]. They make it possible to check a number of safety properties
from a reduced state space. The last three of the claims are corollaries of the
first one. By a terminal component we mean a maximal strongly connected com-
ponent such that each edge that starts in the component also ends in it.

— If s—t1ty - -1,— s is a finite execution that starts at a state s that is in the
reduced state space, then there are structural transitions t,41,...,tn4k (K >
0) and a state s” such that s’ —t,4 - - -tn4x— 5", and the reduced state space
contains the execution s —~tr(1)tx(2)"* tx(ntk)—> §” for some permutation
tﬂ'(l}atﬂ'(z)) ce stvr(n-i-k) of t1,t2,. . tngke

— A structural transition t labels an edge in the reduced state space if and only
if t labels an edge in the full state space.

— A structural transition ¢ is Petri-net-live (Section 2.3) if and only if ¢ is
Petri-net-live in the reduced state space.

— If the full state space is finite and contains a terminal component C, then the
reduced state space contains a terminal component Cleq such that Ceq C C,
and a structural transition t occurs in Cleq if and only if it occurs in C'. In the
reverse direction, each terminal component Creq of the reduced state space
is a subset of some terminal component C of the full state space such that ¢
occurs in Creq if and only if it occurs in C.

The second of the above results makes it possible to verify various linear-
time safety properties with the fact transition technique and tester processes
described in Section 4.2. In this approach it is important that the tester process
synchronises only with a subset of the transitions of the system. This is because
the addition of the tester introduces new dependencies between the transitions
it synchronises with. If the tester is synchronised with every transition, then it is
almost always the case that the stubborn set must contain all enabled transitions,
leading to no reduction in the size of the state space.

A strong stubborn set algorithm for ensuring the condition S. In the case of
strongly stubborn sets, the condition S reduces to “if s is in the reduced state
space and s—¢—, then { is investigated in at least one of the states that are reach-
able from s in the reduced state space”. This observation leads to an efficient
algorithm for ensuring that S holds [83]. In it, the reduced state space is con-
structed in depth-first order. Tarjan’s algorithm is used during the construction
to recognise terminal components of the state space.

Assume that a terminal component has just been completed, and the con-
struction of the reduced state space is just about to backtrack from a state s in
the component to a state outside the component (or is about to terminate, if
s has no predecessor states in the depth-first search tree). We will say that the
structural transition t is ignored in the component, if it is enabled in s but occurs
nowhere in the component, The algorithm checks that no structural transition
is ignored in the component. If this does not hold, the stubborn set T;(s) that
was used in s is extended such that at least one structural transition that was

511

ignored in the component is included into the extended set, and the extended
set is stubborn.

From the point of view of the depth-first search discipline and Tarjan’s algo-
rithm, the extension of T;(s) adds new output edges to s, and does that exactly
when the original output edges have been scanned through. Because the depth-
first search has not yet made any actions after investigating the original output
edges of s, from its point of view the newly added output edges could have
been there all the time. Therefore, the extension of T5(s) does not confuse the
depth-first search discipline or Tarjan’s algorithm.

One possibility of computing the extension of T(s) is to compute a new
stubborn set that contains a transition that is ignored in the component. This is
correct, because it is easy to check from D1 to D3 that the union of two stubborn
sets is stubborn. If both the original T;(s) and its extension are constructed with
the closure or strong component algorithm using the same relation “~»”, then
the construction of the extension needs not enter the original stubborn set.

More details of this algorithm are given in [83].

Preserving process-algebraic traces. The above algorithm makes it possible to
check on the fly whether L, T, Lo with the tester processes described in Sec-
tion 4.2. It is, however, sometimes beneficial to have an algorithm that preserves
process-algebraic traces and is transparent in the sense of Section 6. This is the
case, for instance, if the LTS is intended to be used as a component in the
compositional LTS construction method of Section 7.3. This goal is obtained by
stating an additional requirement for the stubborn sets T;(s) that are used in
the states s of the reduced state space:

V If Ty(s) contains a structural transition ¢ such that s ~t— and €x(t) # 7,
then Ty(s) contains all those structural transitions ¢’ such that Ex(t') # 7
(even if ¢ is disabled).

The condition is labelled “V” because it talks about the handling of wvisi-
ble transitions, that is, those structural transitions whose £g-abstraction is not
7. It ensures that when the stubborn set method produces a representative for
an execution, it does not change the relative ordering of visible transitions. As-
suming that D1, D2, S and V are satisfied, then the reduced state space is
trace-equivalent with the full state space.

There are at least two practical ways of implementing V. The more com-
plicated one consists of first trying to find a stubborn set which contains no
enabled visible transitions with, for instance, the strong component algorithm.
If that fails, then the closure algorithm is applied to every visible transition and
the union of the results is taken. The simpler way consists of just adding to “~»”
an edge from ¢; to ¢, for every enabled visible ¢; and visible t5 before attempting
to construct a stubborn set.

If all transitions are visible, then V forces the reduced state space to be the
same as the full state space. Therefore, no reduction is obtained unless there are
invisible transitions.

512

The above-mentioned on-the-fly method of checking “3J.,” with tester pro-
cesses does not need the condition V. Therefore, it might seem to allow for better
stubborn sets. Sometimes it indeed does that, but perhaps not as often as one
might think, because the addition of the tester process to the system introduces
new dependencies between transitions. In particular, if the tester process is syn-
chronised only with the visible actions and it never refuses any visible actions,
then each state s, of the tester process has for every a € X' an output edge that is
labelled with a. In most (but not all) cases this implies that if one output action
of s is taken into the stubborn set, then all of them must be taken, which is
equivalent to the extension of “~»” described above. If the tester is synchronised
with all actions instead of just visible ones, then the situation is even worse,
because then almost all actions become dependent of each other.

It is essential for V that a stubborn set may contain disabled transitions.
Instead of V, [70] uses the strictly stronger condition V' that either T¢(s) con-
tains no enabled visible transitions, or T;(s) = T'. This condition leads to worse
reduction results than V, but is easier to implement.

Other ways of handling safety properties. An alternative approach to the ver-
ification of safety properties that is based on a transformation of the system
description was presented in [37]. Safety properties can be analysed also with
the CFFD-, LTL_x-, and branching-time-preserving stubborn set methods that
are described below.

Stubborn set methods for liveness properties. The above stubborn set
methods for safety properties suffice for the verification of various properties
whose validity depend on finite executions. However, they do not suffice for prop-
erties that depend on infinite executions, as the example in Figure 12 demon-
strates. In the example, a and b are visible actions, and 71, 7 and 73 are invisible.
If the dashed edges are removed, the resulting reduced state space satisfies D1,
D2, D3, S and V. However, according to it it is guaranteed that if a is executed,
then also b will be executed, although this is not true in the full state space.

Fig. 12. Safety-preserving stubborn set methods do not suffice for liveness.

513

The following two conditions make the stubborn set method capable of han-
dling various linear-time liveness properties. They replace the condition S.

L1 If s is a state in the reduced state space such that there is ¢t € T such that
Ex(t) = r and s —t— in the full state space, then T;(s) has a key transition
t such that £x(tk) = 7.

L2 If s —t;~+ 81 —t2— --- is an infinite execution in the reduced state space
starting at any state sq, then for each ¢, such that £5(t,) # 7, there is i > 0
such that t, € T¢(s;). (This implies that there are actually infinitely many
such i.)

Regarding the execution My —ma7§—> of the system in Figure 12, L2 ensures
that a is investigated after 71 (the infinite execution in L2 is My —ny78'—). L1
ensures that 73 is investigated after a.

The following theorem is slightly strengthened from a similar one in {86]:

— If s is a state in a reduced state space that satisfies the conditions D1, D2,
D3, V, L1 and L2, and if s —¢3t5 - - -— is an infinite execution that starts at
s, then the reduced state space contains an infinite execution s —#{t5 - - -—
such that Ex(tity---) =Ez(tita--).

— If s is a state in a reduced state space that satisfies the conditions D1, D2
and V, and if s —#115 - - -1,~% 54 is a finite execution that starts at s and ends
in a deadlock state, then the reduced state space contains a finite execution
s—tith -t~ sq such that Eg(tith - -1,) = Ex(tity - -1,), and 11t - - 17 is
a permutation of t1¢5 - - -1,.

The condition L1 can be implemented by first constructing a stubborn set
without worrying about L1, and then extending L1 to contain an invisible key
transition if necessary. The closure and strong component algorithms are handy
for computing the extension. If the condition V is replaced by the stronger
condition V' mentioned above, then L1 holds automatically and needs not be
worried of.

With finite state spaces, L2 is equivalent to the condition that for each visible
transition #,, each cycle of the state space must contain at least one state s such
that Ty(s) contains t,. Perhaps surprisingly, t, needs not be enabled in s; it
suffices that it affects the construction of the stubborn set. This condition is
difficult to implement in its full generality. It is, however, easily implementable,
if we do not mind using the same s for each t,. Then cycles that violate it can be
recognised with the non-progress cycle detection algorithm that was explained
in Section 4.2. The stubborn set of the current state is extended with the “~”-
closure of visible transitions if necessary. More detail can be found in [85, 86].

Another possibility is to construct the reduced state space in depth-first
order, and extend the stubborn set each time the current state has an output
edge to any state in the depth-first stack [68, 70]. (Only the edges in the reduced
state space are taken into account in this test.) This algorithm is much simpler
than the previous one, but extends stubborn sets more often.

514

Like with V and V', it is possible to simplify the implementation of L2 at the
cost of less reduction by requiring that 73(s) = T in the states s whose stubborn
sets are extended [68, 70]. We will call this condition L2’.

Stubborn set methods for LTL_x. The above theorem yields a transparent con-
struction-time reduction method that preserves the validity of LTL_x-formulae
(or stuttering-insensitive LTL formulae). Let IT be the set of atomic propositions
that appear in the formulae. We say that a structural transition ¢ affects a
proposition P € IT if and only if the reachable part of the state space contains
states s and s’ such that s ~t— s’, and either s = P and ¢ E —P,or s =P
and s’ k= P. That is, t affects P if and only if some occurrence of ¢ changes the
truth value of P.

Let Ty be a set of structural transitions such that it contains at least those
transitions that affect any P € II. The set Ty is allowed to be larger than the
precise set of transitions that affect members of 1T, because the precise set may
be difficult to find, and the use of a larger set does not sacrifice correctness
{(although it may lead to worse reduction results). The theorem that underlies
the LTL..x-preserving stubborn set method is as follows:

If all transitions in Ty are treated as visible and a reduced state space is
constructed such that the conditions D1, D2, D3, V, L1 and L2 are satisfied,
then the truth value of any LTL_x-formula whose atomic propositions belong
to II is the same in the reduced and full state spaces.

Due to the condition V, the larger IT is, the larger will the reduced state
space usually be. If ¢ is of the form 5 A - - - A g, then this effect may be fought
against by verifying each ¢; separately. Then more than one reduced state space
is constructed. However, with some luck each ¢; uses a smaller set of visible
transitions and leads to a much smaller reduced state space than ¢, so significant
savings in total effort are possible (but not guaranteed). Unfortunately, this
technique does not yield correct results for formulae of the form ¢, V 3.

A more general technique for distributing the set of visible transitions was
suggested in [68]. That paper assumed that the underlying model of computation
is fair in a certain particular sense; we will return to this assumption a bit later.
The LTL_x-formula ¢ in question is converted into a form B{e:, . .., k), where
B(zy,...,zx) represents some Boolean combination of 1, ..., zx, and each ¢; is
as small as possible. For instance, O{(¢ A O¢) can be converted to (D) A (OOY).

In this technique, only one reduced state space is constructed. Even so, in-
stead of one set of visible transitions, each subformula has its own set, and the
condition V is applied to each set separately. If ¢; only affects atomic proposi-
tions in ¢; and ¢, only those in ¢, and both ?; and t; are enabled, then the
original condition V insists that if ¢; is in the stubborn set, then also ¢; must
be. On the other hand, this requirement disappears when V is applied to each
subformula separately. This leads to smaller stubborn sets and better reduction
results.

If V is applied to each subformula separately, then the proper treatment
of the condition L1 becomes complicated. This problem did not arise in [68],

516

because the fairness assumption in it made L1 unnecessary. On the other hand,
the assumption rejects the execution My —mary— of the system in Figure 12
as unfair, so we are not always willing to make it. The thesis [98] solves this
problem by showing how both V and L1 can be distributed to subformaulae, so
that the fairness assumption of [68] is not any more needed.

Handling fairness assumptions. The correctness of a system with respect to an
LTL_x-formula that expresses some liveness property often depends on some
fairness assumptions (Section 2.4) about the system. As the following exam-
ples illustrate, customary fairness assumptions are not easy to handle with the
LTL_x-preserving stubborn set method, because the method may choose an
unfair representative to a fair execution that violates a property.

Consider the alleged property O(M(ps) = 1) of the net on the left in Fig-
ure 13, when strong fairness towards {5 is assumed. In the situation where exactly
p2 and p3 are marked, a typical implementation of the LTL_x-preserving stub-
born set method would fire t3 and only it, because {t3} is then stubborn, but no
set not containing f3 is stubborn. The situation is symmetric when exactly p;
and py4 are marked. As a consequence, in each infinite execution in the reduced
state space, ts is enabled infinitely often. They are thus unfair and do not qualify
as counterexamples to O(M{ps) = 1). So the reduced state space would lead to
the conclusion that O(M(ps) = 1) holds. On the other hand, the full state space
contains the fair counterexample My —(t1t9t384)¥— .

L T8 [2 [_ts [_Jta ty t3
P2 P4 p2
ts ta
Ps p3

Fig.13. Two fairness examples.

The net on the right in the figure exemplifies a similar problem with weak
fairness. Let the formula be O(M{ps) = 1), and assume weak fairness towards
t4. The LTL_x-preserving stubborn set method may choose {¢1} as the stubborn
set used in the initial marking. Unfortunately, if it does that, then it looses the
only fair counterexample to the formula.

This problem can be avoided by representing the fairness assumptions as a
part of the formula to be verified in the form “(fairy A - - - A fair,) => property”.

516

Then the ordinary LTL _x-preserving stubborn set method is guaranteed to treat
the fairness assumptions correctly, because they need no special treatment. This
technique has, however, the problem that with it, very many transitions must be
visible, which leads to bad reduction results. Fortunately, “(fairi A - - - Afair,) =
property” is a Boolean combination of “fairy”, ..., “fair,”, and “property”, so the
above-mentioned techniques of [68, 98] can be used to alleviate the problem.

Another possibility is to use fairness assumptions that are insensitive to the
difference between a sequence and its representative chosen by the stubborn-
set-type method. With this goal in mind, in [68, 70] the following atypical but
natural fairness assumption was suggested. Furthermore, the LTL_x-preserving
stubborn set method was proven correct when it and L2’ are assumed and the
classic notion of “dependency” is used, even if the conditions L1 and D3 are
dropped:

[68, 7TO]-fairness If a structural transition ¢ is enabled continuously from some
state on in an execution, then some transition that is dependent on t —
perhaps ¢ itself — occurs in the execution somewhere after that state. This
is required from every t € T'.

Stubborn set methods for failure-based process semantics. A reduced state space
that is constructed according to the LTL_x-preserving stubborn set method —
that is, obeying D1, D2, D3, V, L1 and L2 — is CFFD-equivalent {and thus
also CSP- and NDFD-equivalent) with the full state space, assuming that all
transitions ¢ such that £x(t} # r are treated as visible by the conditions V, L1
and L2. Therefore, the LTL_x-preserving stubborn set method can also be used
as a method of computing reduced parallel compositions when any of these three
semantics is used.

When using the method, it is useful to notice that if the system is of the
form

hideal, ey Gk in(l}lﬂ . '”Ln))

then the transitions of Li}|---||L, labelled with a; or ... or ax need not be
considered visible by V, L1 and L2, because they are invisible at the system
level, although they are visible from the point of view of an individual L;.

The use of stubborn sets is beneficial even if the resulting state space will
be further reduced with some process-algebraic LTS reduction algorithm. This
is because the stubborn set method reduces the risk of the parallel composition
being so big that it cannot be constructed or processed by the LTS reduction
algorithm.

Worth mentioning is the fact that if a reduced state space obeys D1, D2, V
and L1, then it contains all the stable states and all the stable failures of the
original state space. Furthermore, if it obeys D1, D2, D3, V and L1, then it is
CSP-equivalent with the full state space. In other words, L2 is not needed to
preserve the CSP-semantics of a state space. This is an interesting consequence
of the fact that, as was explained in Section 4.4, divergence is “catastrophic” in
the CSP-semantics.

Stubborn set methods for process algebras were surveyed in [91].

517

On-the-fly methods. The use of automata-theoretic on-the-fly verification meth-
ods simultaneously with stubborn-set-type methods was discussed already in
connection with safety-property-preserving stubborn set methods. Those Biichi
automata that are connected to the system with the state synchronisation tech-
nique and do not restrict the transitions of the system (Section 4.2) are invisible
to the stubborn set method. Therefore, Bilichi automata can be used simulta-
neously with the LTL_x-preserving stubborn set method. This idea has been
developed further in [69].

An alternative approach is to connect the Biichi automaton (or tester process,
Section 4.2) with transition fusion to only the visible transitions of the system.
The automaton is now allowed to restrict the behaviour of the system. This idea
was investigated in [87].

When verifying an LTL_x-formula, it is often the case that an atomic propo-
sition becomes irrelevant for the formula at some point of an execution. This is
the case, for instance, with the formula O(P = 0O-(Q)): when a state s such that
P € &p1(s) has been seen, P does not matter any more, but the only interest-
ing thing is whether @@ may become true. An advanced on-the-fly method that
exploits this fact was developed in [52].

A stubborn set method for branching time properties. A stubborn-
set-type method that preserves the validity of CTL* x-formulae was presented
in [31], and adapted to nondeterministic structural transitions in [91]. To pre-
serve the validity of CTL* x-formulae, it is important that the points in time
when decisions between different futures are made are located correctly with
respect to each other and relative to £-abstracted states. This is exemplified
by Figure 14 and the CTL-formula EF(a A (EFS) A (EG—f)). The formula holds
in the net in the figure. The transitions ¢ and t3 are invisible with respect to
it, so the LTL_x-preserving stubborn set method would allow to choose {t2,3}
as the stubborn set that is used in the initial marking. That would, however,
lead to a reduced state space where the formula does not hold, because in it the
choice between t5 and t3 occurs too early.

Lt [fta s |

tq B

«

Fig. 14. A branching time example.

Because of the above problem, the CTL* x-preserving stubborn set method

518

is based on the following, rather strong condition:

B If s is a state in the reduced state space, then the stubborn set Ti(s) ei-
ther contains only one enabled structural transition, and that transition is
invisible; or it contains all enabled structural transitions.

The following theorem expresses the correctness of the CTL* x-preserving stub-
born set method:

If all structural transitions are deterministic, all structural transitions in Ty
are treated as visible, and a reduced state space is constructed such that
the conditions D1, D2, §, and B are satisfied, then the truth value of any
CTL* x-formula whose atomic propositions belong to IT is the same in the
reduced and full state spaces.

The construction of stubborn sets that satisfy D1, D2 and B is simple, because
only the set of all structural transitions and the sets containing exactly one
enabled structural transition need be taken into account. One may first scan
through all enabled invisible structural transitions with the hope of finding one
that, together with a suitable set of disabled structural transitions, satisfies D1
and D2. If that fails, then all structural transitions are taken.

Also the implementation of S is easy in this context, because states that do
not have all enabled structural transitions in their stubborn sets have exactly
one successor state. Such states may be constructed in a linear sequence. S is
violated whenever the sequence enters any of its states anew. Then an arbitrary
state of the sequence can be picked, and its output edges re-examined using this
time the set of all transitions.

Allowing nondeterministic transitions. The condition B does not suffice with
nondeterministic structural transitions, because it does not rule out the possi-
bility that the same transition may occur in two different ways leading to two
different futures. In [91] a stronger condition was suggested that is based on
the notion of super-determinism. We use the labelled transition system notation
(Section 4.4) for explaining it, because nondeterministic transitions (or actions)
are frequently used with them.

An action a € X is super-deterministic in the state so, if and only if the
existence of an execution sy —a;— - -+ —an— 8, where ay,...,a, # a implies
the existence of states s, ..., s/, such that sjf —a1— --- —a,— s, and for every
0 <i<n:s;—a—s), and if s; —a— s”, then s = s}. Less formally, a super-
deterministic action is enabled, can yield only one result when it occurs even
if other actions are executed before it, the execution of other actions cannot
disable it, and its execution commutes with the execution of the other actions.

NB If s is a state in the reduced state space, then the stubborn set T;(s) either
contains only one enabled structural transition, and that transition is invisi-
ble and super-deterministic; or it contains all enabled structural transitions.

519

The condition NB implies D1 and D2. Therefore, the CTL¥x-preserving stub-
born set method can be formulated as follows in the presence of nondeterministic
transitions:

If all structural transitions in Ty are treated as visible, and a reduced state
space is constructed such that the conditions S and NB are satisfied, then
the truth value of any CTLXx-formula whose atomic propositions belong to
II is the same in the reduced and full state spaces.

If an LTS is constructed with the CTL* x-preserving stubborn set method, then
it is branching bisimilar and thus also weakly bisimilar with the ordinary LTS
of the system, assuming that all transitions ¢ such that £x(¢) # 7 are treated as
visible.

The following sufficient condition for super-determinism [91] can be used in
implementing the CTLXx-preserving stubborn set method in the presence of
nondeterministic transitions. Let L1||---||L, be a parallel composition of LTSs,
and (s1,..., S,) its state. Assume that (s1,...,s,) —a— . If for each 1 <7 < n,
either @ ¢ X; U {r}, or the local state s; has only one output transition in the
LTS L;, then a is super-deterministic in (s1,...,s,). In other words, a is super-
deterministic in (s1, ..., sn), if each L; that is interested in a-actions is ready to
do only one transition, and that transition is labelled with a.

On the strength of the CTLXx-preserving method. Stubborn set methods demon-
strate nicely the principle that the more information one is willing to give away,
the more powerful state space reduction methods are available. In this section
we started with a method that is valid only for the verification of termination-
related properties, and ended up with a method for full CTL*x and branching
bisimilarity. Each time when we moved from a method to the next, we added
one or more new restrictions on the construction of stubborn sets.

Although the relative strengths of the conditions underlying the methods are
not always formally comparable, it is intuitively clear that B and NB prevent
the use of a small stubborn set much more often than D3, V, L1 and L2, so
the ability of the CTL* x-preserving method of reducing state spaces is smaller
than that of the other methods. On the other hand, it is easy to produce a fast
implementation for the CTLXx-preserving method without losing much of its
generality, whereas the attempt to exploit the full power of the safety-property-
preserving and LTL_x-preserving methods leads to complicated and significantly
slower algorithms. It is not known how significant the difference between the
reduction power of the CTL¥*x- and LTL..x-preserving methods is in practice.

There are two important stuttering-insensitive branching-time specification
formalisms that are strictly less powerful than CTL*x and branching bisimi-
larity, namely CTL_x and weak bisimilarity. It would be interesting to find a
stubborn-set-type method that would preserve one of these, and would improve
reduction results by not preserving CTL%x and branching bisimilarity. Unfortu-
nately, the example in Figure 14 is valid also for CTL_x and weak bisimilarity,
so the chances of finding such a method seem small.

520

Sleep sets. Sleep sets were first presented in [33], and perhaps the best source on
them is [34]. Their theory has not been developed as far as that of stubborn sets.
While stubborn-set-type methods save effort by postponing the investigation
of structural transitions to future states, sleep sets avoid the investigation of
transitions that have been investigated in the past states.

Assume that t; and 5 are enabled and independent of each other in some
state s, and neither of them has been put to sleep in the sense described below.
Unlike stubborn-set-type methods, the sleep set method investigates both ¢; and
ty at s. Assume that ¢, is investigated before t3. Then, when investigating s,
t; is put to sleep. Sleeping transitions will not be taken into account in future
states until they are woken up. A sleeping transitions is woken up for certain
reasons, such as the occurrence of a transition that is dependent on it.

As such, the sleep set method does not reduce the number of reachable states,
it reduces only the number of edges. However, it can be used simultaneously with
stubborn-set-type methods, and the combination gives better reduction results
(in terms of reachable states) than the stubborn-set-type methods alone.

As was pointed out in [35], sleep sets can also be used to improve the state
space caching method of [45]. The basic idea of state space caching is simply
to start throwing reachable states away from the memory of the state space
construction tool when the memory fills up. If a state has more than one input
edge, as is very common in the presence of concurrency, and if it is thrown away
before investigating all of its input edges, then it and at least a subset of its
successor states will be constructed more than once. This is bearable if the full
state space is not much bigger than what fits the memory, but leads to dramatic
decrease of the performance of the algorithm if the full state space is big enough.
Sleep sets reduce the number of times a state is entered, and therefore reduce the
number of times a state is re-constructed. An impressive example of the power
of sleep sets in this application is given in [34].

8 Conclusions

Many different techniques based on widely diverse principles have been suggested
for alleviating the state explosion problem. In this article we have discussed a
number of them. None of today’s techniques solves the state explosion prob-
lem once and for all, and, because of the results regarding the computational
complexity of typical verification tasks, it is unlikely that a perfect solution will
be found in the near future. Even so, today’s techniques facilitate the analysis,
validation and verification of much bigger systems than ordinary state space
construction. Although they are not strong and easy enough to be routinely
used in all production of concurrent software and hardware, they can help a lot
in finding serious design flaws in systems, and the proving of the correctness of
various critical details.

An advanced state space method practically always restricts the set of prop-
erties that can be analysed or verified. This implies that the user of the method
has to have at least some idea of the analysis questions before starting the tool.

521

If, during the analysis, new questions become relevant, it may be that a new
reduced state space has to be constructed to answer them. This is a drawback
compared to the use of full state spaces, where the same state space can be used
for answering all analysis questions, even if the user invents new questions after
obtaining the answers to the original ones. On the other hand, when the full
state space of the system is too big to be constructed, it is better to get answers
one at a time than to get no answers at all.

Because many advanced state space methods work well only with certain
kinds of analysis questions, the user of the methods has to decide what kinds of
questions will be asked. The smaller set of question types the user is happy with,
the more methods are available for alleviating state explosion. Some arguments
in favour of and against certain question types are given in the following.

Sensitivity to stuttering. Stuttering is usually not a problem for methods based
on packed state spaces (perhaps excluding the unfolding method). In contrast,
methods that are based on commutativity (Section 7.4) or process-algebraic com-
positionality (Section 7.3) are valid only for stuttering-insensitive properties.

Because the level of atomicity is often artificial to some extent, and because
knowledge of how many actions of a parallel, independent process were scheduled
between two actions of an interesting process in a one-processor machine is
unimportant, many researchers consider stuttering as irrelevant in the context
of concurrent systems.

Linear vs. branching time. Excluding CTL* and CTLX*x, the most common
branching-time specification and query formalisms have fast algorithms for the
last step of the verification of a property. With linear-time formalisms the al-
gorithms for the last step tend to take exponential time in the length of the
description of the property in the worst case (with the exception of preorder
checking against a deterministic process-algebraic specification).

One may argue, however, that the bad worst-case performance of linear-time
model and preorder checking is not an important problem, because the descrip-
tion of the property is often small, at least compared to the size of the system.
Furthermore, linear-time formalisms allow the use of more powerful state space
reduction methods than branching-time formalisms. For instance, we pointed out
in Section 5.3 that labelled transition systems can be reduced more with failure-
based semantic models than with weak bisimilarity. To give another example,
the CTL* x-preserving stubborn set method allows the use of a non-trivial stub-
born set (that is, one that does not contain all enabled transitions) much less
often than the LTL_x-preserving method. Finally, it is difficult to think what a
branching-time version of Holzmann’s supertrace (Section 7.2) might look like.

As a consequence, although linear-time formalisms lose in the checking of the
property from the reduced state space, they may win a lot during the construc-
tion of the reduced state space. It is thus difficult to say which approach is faster
in practice. This question was analysed in more detail in [89].

Linear-time formalisms have also the advantage that if a property does not
hold, then a counterexample that the user can easily simulate and analyse can
be provided.

522

The verification of linear-time liveness properties needs often that fairness
assumptions are made and taken into account. Fairness assumptions are prob-
lematic to certain advanced state space methods, including the process-algebraic
compositional LTS construction in Section 7.3 and the LTL_x-preserving stub-
born set method in Section 7.4. Petri-net-liveness, or more generally the CTL
“AG EF”, gives to some extent similar information as linear-time liveness, al-
though they are not precisely the same: linear-time liveness guarantees that,
say, a structural transition ¢ will occur in the future, whereas Petri-net-liveness
only promises that the future occurrence of ¢ is possible and cannot be made
impossible.

Petri-net-liveness may, therefore, fall a bit short from what the user wants.
It does not, however, need fairness assumptions; we saw in Section 7.4 that it
is preserved by the safety-property-preserving stubborn set method; and it is
within the scope of the unfolding method in Section 7.2. It is thus a particularly
interesting branching-time operator from the point of view of alleviating state
explosion.

State- vs. action-based. In many cases it is easy to switch from a state-based
specification to an action-based one or vice versa with the mappings of Sec-
tion 2.2. In those cases the choice between a state- or action-based formalism
does not have much significance from the point of view of advanced verification
methods.

There are, however, situations where advanced verification methods clearly
favour one approach over the other. For instance, we saw in Section 7.2 that
checking whether a certain transition can ever occur is easy for the unfolding
method, but checking the reachability of a state with a certain property is dif-
ficult, unless the property can be handily encoded as the enabling condition of
one or few transitions. It seems that the majority of advanced state space meth-
ods either handle arbitrary atomic propositions over states without difficulties
(for instance, binary decision diagrams and Holzmann’s supertrace), or require
that the properties are ultimately stated in terms of actions (for instance, visible
transitions in the stubborn-set-type methods). In the former case actions can be
talked about by describing their enabling condition and the change of state they
cause. It thus seems that action-based formalisms allow the use of more state
space methods.

Action-based approaches often provide automatic insensitivity to stuttering.
For instance, if a Biichi automaton is connected to the system with fusion with
visible transitions instead of synchronisation to every state, then the automaton
does not see stuttering. The acceptance condition of the automaton must then
be modified so that executions where the automaton makes only a finite number
of transitions are handled properly. This is not a big problem, because something
similar has to be done in any case with executions that lead to deadlock states.
We saw in Section 4.2 that the action-based approach allows faster on-the-fly
detection of errors by facilitating the use of four different kinds of acceptance
states for different types of erroneous executions.

523

We started this article by comparing state space methods to theorem proving.
The goal of that was to highlight the advantages and disadvantages of state
space methods. Despite the development of advanced state space methods, the-
orem proving is still much stronger in certain tasks, such as the proving of
parameterised results. Sometimes best results are obtained by combining state
space methods and theorem proving, for instance, by using a model checker as a
sub-tool of a theorem prover, or debugging a system with state space methods
and fixed parameter values, but conducting the final correctness proof with a
theorem prover and symbolic parameters.

Acknowledgement Numerous researchers have contributed to this article by
developing the original ideas, and communicating them to me through their
books, papers, talks and discussions. I am afraid that here and there I was
unable to trace the true source of an idea, and was unable to give the original
inventor the recognition that (s)he deserves — please accept my apologies. Jaco
Geldenhuys and Ilkka Kokkarinen helped me to reduce the number of errors in
this article.

References

1. Aho, A. V., Hopcroft, J. E. & Ullman, J. D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley 1974, 470 p.

2. Alpern, B. & Schneider, F. B.: “Defining Liveness”. Information Processing Letters
21(4), 1985, pp. 181-185.

3. Alur, R., Brayton, R. K., Henzinger, T. A., Qadeer, S. & Rajamani, S. K.: “Partial-
Order Reduction in Symbolic State Space Exploration”. Proc. Computer Aided
Verification (CAV) ’97, Lecture Notes in Computer Science 1254, Springer-Verlag
1997, pp. 340-351.

4. Bolognesi, T. & Brinksma, E.: “Introduction to the ISO Specification Language
LOTOS”. Computer Networks and ISDN Systems 14 (1987), pp. 25-59.

5. Brinksma, E.: “A Theory for the Derivation of Tests”. Protocol Specification, Test-
ing and Verification VIII (Proc. International IFIP WG 6.1 Symposium, 1988},
North-Holland 1988, pp. 63-74.

6. Brookes, S. D., Hoare, C. A. R. & Roscoe, A. W.: “A Theory of Communicating
Sequential Processes”. Journal of the ACM, 31 (3) 1984, pp. 560-599.

7. Browne, M. C., Clarke, E. M. & Grumberg, O.: “Characterizing Finite Kripke
Structures in Propositional Temporal Logic”. Theoretical Computer Science 59,
1988, pp. 115-131.

8. Bryant, R. E.: “Graph-Based Algorithms for Boolean Function Manipulation”.
IEEE Transactions on Computers C-35 (8) 1986, pp. 677-691.

9. Burch, J. R., Clarke E. M., McMillan K. L., Dill D. L. & Hwang, L. J.: “Symbolic
Model Checking: 10%° States and Beyond”. Information and Computation 98 (2)
1992, pp. 142-170.

10. Chandy, K. M. & Misra, J.: Parailel Program Design: A Foundation. Addison-
Wesley 1988, 516 p.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20,

21.

22.

23.

24.

25.

26.
27.
28.

29.
30.

524

Clarke, E. M. & Emerson, E. A.: “Design and Synthesis of Synchronization Skele-
tons using Branching Time Temporal Logic”. Proc. Workshop on Logics of Pro-
grams, Lecture Notes in Computer Science 131, Springer-Verlag 1981, pp. 52-71.
Clarke, E. M., Filkorn, T. & Jha, S.: “Exploiting Symmetry in Temporal Logic
Model Checking”. Proc. Computer-Aided Verification (CAV) ’98, Lecture Notes in
Computer Science 697, Springer-Verlag 1993, pp. 450-462.

Clarke, E. M., Grumberg, O. & Jha, S.: “Verifying Parameterized Networks using
Abstraction and Regular Languages”. Proc. CONCUR ’95, 6th International Con-
ference on Concurrency Theory, Lecture Notes in Computer Science 962, Springer-
Verlag 1995, pp. 395-407.

Cleaveland, R. & Hennessy, M.: “Testing Equivalence as a Bisimulation Equiva-
lence”. Formal Aspects of Computing, 5 (1) 1993, pp. 1-20.

Cormen, T. H., Leiserson, C. E. & Rivest, R. L.: Introduction to Algorithms. The
MIT Press, 1990, 1028 p.

Courcoubetis, C., Vardi, M., Wolper, P. & Yannakakis, M.: “Memory-Efficient
Algorithms for the Verification of Temporal Properties”, Formal Methods in System
Design 1 (1992), pp. 275-288.

Desel, 1. & Esparza, J.: Free Choice Petri Nets. Cambridge Tracts in Theoretical
Computer Science 40, Cambridge University Press 1995, 244 p.

Eloranta, J., Tienari, M. & Valmari, A.: “Essential Transitions to Bisimulation
Equivalences”. Theoretical Computer Science 179 (1997) pp. 397-419.

Emerson, E. A.: “Temporal and Modal Logic”. Handbook of Theoretical Computer
Science, Volume B: Formal Models and Semantics, Elsevier Science Publishers
1990, pp. 995-1072.

Emerson, E. A., & Halpern, J. Y.: “Sometimes’ and ‘Not Never’ Revisited: on
Branching Versus Linear Time Temporal Logic”. Journal of the ACM 33 (1) 1986,
pp. 151-178.

Emerson, E. A., & Lei, C.-L.: “Modalities for Model Checking: Branching Time
Strikes Back”. Science of Computer Programming, 8, 1987, pp. 275-306.
Emerson, E. A. & Sistla, A. P.: “Symmetry and Model Checking”. Proc. Computer-
Aided Verification (CAV) ’98, Lecture Notes in Computer Science 697, Springer-
Verlag 1993, pp. 463-477.

Emerson, E. A. & Sistla, A. P.: “Utilizing Symmetry when Model-Checking under
Fairness Assumptions: An Automata-Theoretic Approach”. ACM Transactions on
Programming Languages and Systems, 19 (4) 1997, pp. 617-638.

Esparza, J.: “Model Checking Using Net Unfoldings”. Science of Computer Pro-
gramming (1994) 23: 151-195.

Esparza, J., Romer, S. & Vogler, W.: “An Improvement of McMillan’s Unfold-
ing Algorithm”. Proc. Tools and Algorithms for the Construction and Analysis of
Systems 96, Lecture Notes in Computer Science 1055, Springer-Verlag 1996, pp.
87-106.

Fernandez, J.-C.: “An Implementation of an Efficient Algorithm for Bisimulation
Equivalence”. Science of Computer Programming 13 (1989/90) pp. 219-236.
Finkel, A.: “The Minimal Coverability Graph for Petri Nets”. Advances in Pelri
Nets 1993, Lecture Notes in Computer Science 674, pp. 210-243.

Francez, N.: Fairness. Springer-Verlag 1986, 295 p.

Francez, N.: Program Verification. Addison-Wesley 1992, 312 p.

Garey, M. R. & Johnson, D. S.: Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman and Company, 1879, 340 p.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.
43.

44.

45.

46.

47.

525

Gerth, R., Kuiper, R., Peled, D. & Penczek, W.: “A Partial Order Approach to
Branching Time Logic Model Checking”. Proc. Third Israel Symposium on the
Theory of Computing and Systems, IEEE 1995, pp. 130-139.

Gerth, R., Peled, D., Vardi, M. & Wolper, P.: “Simple On-the-fly Automatic Veri-
fication of Linear Temporal Logic”. Proc. Protocol Specification, Testing and Ver-
ification 1995, Chapman & Hall 1995, pp. 3-18.

Godefroid, P.: “Using Partial Orders to Improve Automatic Verification Meth-
ods”. Proc. Computer-Aided Verification 90, AMS-ACM DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science, Vol. 3, 1991, pp. 321~340.
Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems,
An Approach to the State-Ezplosion Problem. Lecture Notes in Computer Science
1032, Springer-Verlag 1996, 143 p. (Earlier version: Ph.D. Thesis, University of
Ligge, 1994.)

Godefroid, P., Holzmann, G. J. & Pirottin, D.: “State Space Caching Revisited”.
Proc. Computer-Aided Verification (CAV) ’92, Lecture Notes in Computer Science
663, Springer-Verlag 1993, pp. 178-191.

Godefroid, P. & Pirottin, D.: “Refining Dependencies Improves Partial-Order Ver-
ification Methods”. Proc. Computer-Aided Verification (CAV) ’93, Lecture Notes
in Computer Science 697, Springer-Verlag 1993, pp. 438-449.

Godefroid, P., & Wolper, P.: “Using Partial Orders for the Efficient Verification
of Deadlock Freedom and Safety Properties”. Proc. Computer Aided Verification
(CAV) ’91, Lecture Notes in Computer Science 575, Springer-Verlag 1992, pp. 332-
342.

Graf, 8. & Steffen, B.: “Compositional Minimization of Finite State Processes”.
Proc. Computer-Aided Verification ’90, AMS-ACM DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, Vol. 3, 1991, pp. 57-73.

Gyuris, V. & Sistla, P.: “On-the-Fly Model Checking Under Fairness That Ex-
ploits Symmetry”. Proc. Computer Aided Verification (CAV) ’97, Lecture Notes
in Computer Science 1254, Springer-Verlag 1997, pp. 232-243.

Haddad, S.: “A Reduction Theory for Coloured Nets”. Advances in Petri Nets
1989, Lecture Notes in Computer Science 424, Springer-Verlag 1990, pp. 209-235.
Also in High-level Petri Nets. Theory and Application, Springer-Verlag 1991, pp.
399-425.

Hennessy, M.: “Acceptance Trees”. Journal of the ACM, 32 (4) 1985, pp. 896-928.
Hoare, C. A. R.: Communicating Sequential Processes. Prentice-Hall 1985, 256 p.
Holzmann, G. J.: Design and Validation of Computer Protocols. Prentice-Hall 1991,
500 p.

150 8807 International Standard: Informalion processing systems — Open Sys-
tems Interconnection — LOTOS — A formal description technigue based on the
temporal ordering of observational behaviour. International Organization for Stan-
dardization 1989, 142 p.

Jard, C. & Jéron, T.: “Bounded-memory Algorithms for Verification On-the-fly”.
Proc. Computer Aided Verification (CAV) ’91, Lecture Notes in Computer Science
575, Springer-Verlag 1992, pp. 192-202.

Jensen, K.: Coloured Petri Nets. Volume 2, Analysis Methods. Monographs in The-
oretical Computer Science, Springer-Verlag 1995, 174 p.

Kaivola, R. & Valmari, A.: “The Weakest Compositional Semantic Equivalence
Preserving Nexttime-less Linear Temporal Logic”. Proc. CONCUR ’92, Third In-
ternational Conference on Concurrency Theory, Lecture Notes in Computer Sci-
ence 630, Springer-Verlag 1992, pp. 207-221.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.
66.

526

Kanellakis, P. C. & Smolka, S. A.: “CCS Expressions, Finite State Processes, and
Three Problems of Equivalence”. Information and Computation 86 (1990) pp. 43—
68.

Katz, S. & Peled, D.: “An Efficient Verification Method for Parallel and Distributed
Programs”. Proc. Linear Time, Branching Time and Partial Order in Logics and
Models for Concurrency 1988, Lecture Notes in Computer Science 354, Springer-
Verlag 1989, pp. 489-507. ‘

Katz, S. & Peled, D.: “Defining Conditional Independence Using Collapses”. The-
oretical Computer Science 101 (1992), pp. 337-359.

Kokkarinen, 1.: A Verification-Oriented Theory of Data in Labelled Transition Sys-
tems. Ph.D. Thesis, Tampere University of Technology Publications 234, Tampere,
Finland 1998, 105 p.

Kokkarinen, 1., Peled, D. & Valmari, A.: “Relaxed Visibility Enhances Partial
Order Reduction”. Proc. Computer Aided Verification (CAV) ’97, Lecture Notes
in Computer Science 1254, Springer-Verlag 1997, pp. 328-339.

Kristensen, L. M. & Valmari, A.: “Finding Stubborn Sets of Coloured Petri Nets
Without Unfolding”. To appear in Proc. International Conference on Application
and Theory of Petri Nets, 1998, 20 p.

Kurshan, R. P., Merritt, M., Orda, A. & Sachs, S. R.: “A Structural Linearization
Principle for Processes”. Formal Methods in System Design 5, 1994, pp. 227-244.
Lamport, L.: “Proving the Correctness of Multiprocess Programs”. IEEE Trans-
actions on Software Engineering, SE-3(2), 1977, pp. 125-143.

Lamport, L. & Lynch, N.: “Distributed Computing: Models and Methods”. Hand-
book of Theoretical Computer Science, Volume B: Formal Models and Semantics,
Elsevier Science Publishers 1990, pp. 1157-1199.

Lichtenstein, O. & Pnueli, A.: “Checking that Finite State Concurrent Programs
Satisfy Their Linear Specifications”. Proc. 12th ACM Symposium on Principles of
Programming Languages, 1985, pp. 97-107.

Madelaine, E. & Vergamini, D.: “AUTO: A Verification Tool for Distributed Sys-
tems Using Reduction of Finite Automata Networks”. Proc. Formal Description
Techniques II (FORTE ‘89), North-Holland 1990, pp. 61-66.

Manna, Z. & Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems,
Volume I: Specification. Springer-Verlag 1992, 427 p.

Manna, Z. & Pnueli, A.: Temporal Verification of Reactive Systems, Volume II:
Safety. Springer-Verlag 1995, 512 p.

Mazurkiewicz, A.: “Trace Theory”. Petri Nets: Applications and Relationships to
Other Models of Concurrency, Lecture Notes in Computer Science 255, Springer-
Verlag 1987, pp. 279-324.

McMillan, K.: “Using Unfoldings to Avoid the State Explosion Problem in the
Verification of Asynchronous Circuits”. Proc. Computer-Aided Verification (CAV)
’92, Lecture Notes in Computer Science 663, Springer-Verlag 1993, pp. 164-177.
Meinel, C. & Theobald, T.: “Ordered Binary Decision Diagrams and Their Sig-
nificance in Computer-Aided Design of VLSI Circuits”. Bulletin of the European
Association for Theoretical Computer Science 64, 1998, pp. 171-187.

Melzer, S. & Romer, S.: “Deadlock Checking Using Net Unfoldings”. Proc. Com-
puter Aided Verification (CAV) ’97, Lecture Notes in Computer Science 1254,
Springer-Verlag 1997, pp. 352-363.

Milner, R.: Communication and Concurrency. Prentice-Hall 1989, 260 p.

Park, D.: “Concurrency and Automata on Infinite Sequences”. Theoretical Com-
puter Science: 5th GI-Conference, Lecture Notes in Computer Science 104,
Springer-Verlag 1981, pp. 167-183.

67.

68.

69.

70.

71.

72.

73.

74.

75.
76.

77.

78.

79.

80.

81.

82.

83.

84,

85.

527

Pastor, E., Roig, O., Cortadella, J. & Badia, R.: “Petri Net Analysis Using Boolean
Manipulation”. Proc. Application and Theory of Petri Nets 1994, Lecture Notes
in Computer Science 815, Springer-Verlag 1994, pp. 416-435.

Peled, D.: “All from One, One for All: On Model Checking Using Representatives”.
Proc. Computer-Aided Verification (CAV) ’98, Lecture Notes in Computer Science
697, Springer-Verlag 1993, pp. 409-423.

Peled, D.: “Combining Partial Order Reductions with On-the-fly Model-Checking”.
Formal Methods in System Design 8 (1) 1996: 39-64.

Peled, D.: “Partial Order Reduction: Linear and Branching Temporal Logics and
Process Algebras”. Proc. POMIV’96, Workshop on Partial Order Methods in Ver-
tfication, DIMACS Series in Discrete Mathematics and Theoretical Computer Sci-
ence Vol. 29, American Mathematical Society 1997, pp. 233-257.

Puhakka, A. & Valmari, A.: “Verification of Self-Synchronizing Alternating Bit
Protocols with ARA”. Proc. Fifth Symposium on Programming Languages and
Software Tools, University of Helsinki, Department of Computer Science, Report
C-1997-37, pp. 167-178.

Rauhamaa, M.: A Comparative Study of Methods for Efficient Reachability Anal-
ysis. Lic.Tech. Thesis, Helsinki University of Technology, Digital Systems Labora-
tory, Research Report A-14, Espoo, Finland 1990, 61 p.

Reisig, W.: Petri Nets, An Introduction. EATCS Monographs on Theoretical Com-
puter Science, Vol. 4, Springer-Verlag 1985, 161 p.

Roscoe, A. W.: “Model-Checking CSP”. A Classical Mind: Essays in Honour of
C. A. R. Hoare, Prentice-Hall 1994, pp. 353-378.

Roscoe, A. W.: The Theory and Practice of Concurrency. Prentice-Hall 1998, 565 p.
Savitch, W. J.: “Relationships Between Nondeterministic and Deterministic Tape
Complexities”. Journal of Computer and System Sciences 4, 1970, pp. 177-192.
Shatz, S. M., Tu, S., Murata, T. & Duri, S.: “Application of Petri Net Reduction for
Ada Tasking Deadlock Analysis”. IEEE Transactions on Parallel and Distributed
Systems 7 (12) 1996, pp. 1307-1322.

Sistla, A. P. & Clarke, E. M.: “The Complexity of Propositional Linear Temporal
Logics”. Journal of the ACM 32 (3) 1985, pp. 733-749.

Tarjan, R. E.: “Depth-first Search and Linear Graph Algorithms”. SIAM Journal
on Computing, 1 (2) 1972, pp. 146-160.

Thomas, W.: “Automata on Infinite Objects”. Handbook of Theoretical Computer
Science, Volume B: Formal Models and Semantics, Elsevier Science Publishers
1990, pp. 133-191.

Valmari, A.: “Error Detection by Reduced Reachability Graph Generation”. Proc.
9th Furopean Workshop on Application and Theory of Petri Nets, 1988, pp. 95-112.
Valmari, A.: State Space Generation: Efficiency and Practicality. Ph.D. Thesis,
Tampere University of Technology Publications 55, Tampere, Finland 1988, 169 p.
Valmari, A.: “Stubborn Sets for Reduced State Space Generation”. Advances in
Petri Nets 1990, Lecture Notes in Computer Science 483, Springer-Verlag 1991,
pp. 491-515.

Valmari, A.: “Stubborn Sets of Coloured Petri Nets”. Proc. 12th International
Conference on Application and Theory of Petri Nets, 1991, pp. 102-121.

Valmari, A.: Alleviating State Ezplosion during Verification of Behavioural Equiv-
alence. Department of Computer Science, University of Helsinki, Report A-1992-4,
Helsinki, Finland 1992, 57 p.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

528

Valmari, A.: “A Stubborn Attack on State Explosion”. Formal Methods in System
Design, 1: 297-322 (1992).

Valmari, A.: “On-the-fly Verification with Stubborn Sets”. Proc. Computer-Aided
Verification (CAV) ’98, Lecture Notes in Computer Science 697, Springer-Verlag
1993, pp. 397-408.

Valmari, A.: “Compositional Analysis with Place-Bordered Subnets”. Proc. Appli-
cation and Theory of Petri Nets 1994, Lecture Notes in Computer Science 815,
Springer-Verlag 1994, pp. 531-547.

Valmari, A.: “Failure-based Equivalences Are Faster Than Many Believe”. Proc.
Structures in Concurrency Theory 1995, Springer-Verlag “Workshops in Comput-
ing” series, 1995, pp. 326-340.

Valmari, A.: “Compositionality in State Space Verification Methods”. Invited talk,
Proc. Application and Theory of Petri Nets 1996, Lecture Notes in Computer
Science 1091, Springer-Verlag 1996, pp. 29-56.

Valmari, A.: “Stubborn Set Methods for Process Algebras”. Proc. POMIV’96,
Workshop on Partial Order Methods in Verification, DIMACS Series in Discrete
Mathematics and Theoretical Computer Science Vol. 29, American Mathematical
Society 1997, pp. 213-231.

Valmari, A. & Kokkarinen, 1.: “Unbounded Verification Results by Finite-State
Compositional Techniques: 10*™ States and Beyond”. Proc. 1998 International
Conference on Application of Concurrency to System Design, IEEE Computer So-
ciety 1998, pp. 75-85.

Valmari, A. & Tienari, M.: “An Improved Failures Equivalence for Finite-State
Systems with a Reduction Algorithm”. Proc. Protocol Specification, Testing and
Verification XI, North-Holland 1991, pp. 3-18.

Valmari, A. & Tienari, M.: “Compositional Failure-Based Semantic Models for
Basic LOTOS”. Formal Aspects of Computing (1995) 7: 440-468.

van Glabbeek, R.: “The Linear Time — Branching Time Spectrum 1I: The Se-
mantics of Sequential Systems with Silent Moves”. Proc. CONCUR ’98, Fourth
International Conference on Concurrency Theory, Lecture Notes in Computer Sci-
ence 715, Springer-Verlag 1993, pp. 66-81.

van Glabbeek, R. & Weijland, W.: “Branching Time and Abstraction in Bisimu-
lation Semantics {Extended Abstract)”. Proc. IFIP International Conference on
Information Processing '89, North-Holland 1989, pp. 613-618.

Vardi, M. Y. & Wolper, P.: “An Automata-Theoretic Approach to Automatic
Program Verification”. Proc. IEEE Symposium on Logic in Computer Science,
1986, pp. 332-344.

Varpaaniemi, K.: On the Stubborn Set Method in Reduced State Space Genera-
tion. Ph.D. Thesis, Helsinki University of Technology, Digital Systems Laboratory,
Research Report A-51, Espoo, Finland 1998, 105 p.

Wolper, P.: “Expressing Interesting Properties of Programs in Propositional Tem-
poral Logic”. Proc. 13th ACM Symposium on Principles of Programming Lan-
guages, 1986, pp. 184-193.

100. Wolper, P. & Lovinfosse, V.: “Verifying Properties of Large Sets of Processes with

Network Invariants”. Proc. Workshop on Automatic Verification Methods for Finite
State Systems, Lecture Notes in Computer Science 407, Springer-Verlag 1989, pp.
68-80.

