
Efficient Performance Analysis Techniques for
Stochastic Well-Formed Nets and

Stochastic Process Algebras

G. Franceschinis and M. Ribaudo

Dipartimento di Informatica
Universith di Torino, Torino, Italy

Phone: +39-11-7429111, Telefax: +39-11-751603
E-maih giuliana~di.unito.it, marina~di.unito.it

Abstract. Stochastic Well Formed Nets and Stochastic Process Alge-
bras are high level description languages for the specification and the
performance evaluation of concurrent systems. In both formalisms the
performance analysis of the modelled system can be performed by gener-
ating a continuous time Markov chain of the size of the model state space:
this often leads to the so called state space explosion problem which can
prevent the possibility of completing the desired analysis. In this chapter
we will present two state space aggregation techniques, each working on
one of the two formalisms, allowing efficient performance analysis. The
advantages and disadvantages of the two techniques will be discussed and
compared.

Keywords : High Level Petri Nets, Stochastic Petri Nets, Stochastic Process
Algebras, Performance Evaluation, Markov Chains, Lumpability.

1 Introduct ion

Stochastic Petri Nets (SPNs) are a timed flavour of Petri nets that have been
used for the modelling and performance evaluation of concurrent system since
the early eighties. The performance analysis methods available for SPNs are the
Montecarlo simulation, mad the solution of the stochastic process (continuous
time Markov chain - CTMC) that can be derived from the SPN reachability
graph (see Chapter [2]). As the (untimed) Petri net formalism evolved into a
number of high level variants (Predicate/Transition Nets, Coloured Petri Nets,
etc.), also SPNs have been enhanced to provide a more powerful modelling for-
malism.

The introduction of High Level (stochastic) Petri Net (HLPN) formalisms,
on one hand has increased the appealing of this modelling language for the
study of realistic systems, on the other hand it has exacerbated the so called
state space explosion problem. Since the introduction of the HLPN formalisms,
several research efforts have been devoted to the development of new analysis
techniques capable of exploiting the possibility of parameterisation offered by
these modelling languages, and in particular capable of drawing on the presence

387

of behavioural symmetries in the model [35, 42]. The exploitation of symmetries
at the reachability graph construction level is often an effective method to cope
with the state space explosion problem. Intuitively, markings that lead to similar
future behaviour can be grouped into equivalence classes, and the system prop-
erties can thus be studied on a subset of reachable markings (one representative
for each equivalence class).

In the first part of this chapter we describe a method for the construction
of reduced teachability graphs (called Symbolic Reachability Graph - SlZG) of
Stochastic Well-formed Nets (SWNs), a high level SPN formalism in which be-
havioural symmetries can be automatically discovered and exploited through
the concept of symbolic marking. The symbolic marking idea has been first in-
troduced in [26] for the class of Regular Nets (RN), and was later extended to
the less restrictive formalism of Well-formed Nets (WN) [10]. The basic idea be-
hind these two classes of HLPN is to naturally lead the modeller to describe the
system in such a way that the behavioural symmetries are implicitly expressed
in the model and can thus be automatically exploited: this is achieved through
a carefully chosen syntax for the definition of the places colour domains and
the arc expressions. The other interesting idea which distinguishes the approach
presented in this chapter from other similar approaches (e.g., the OS-graph pre-
sented in [38]) is that equivalence classes of markings are represented by a unique,
symbolic representation, the symbolic marking. Moreover a symbolic firing rule
is defined that allows to directly obtain the set of symbolic markings reachable
from a given symbolic marking without ever generating the ordinary markings
belonging to them. Finally, the chosen symbolic marking representation and the
symbolic firing definition allow to group several transition firings into a single
symbolic firing [13], hence achieving a reduction also in the number of RG arcs.
Most interesting (qualitative) properties that can be proved on the complete
RG, can be also proved on the SRG.

When RN and WN are extended to include also timing information (we are
assuming here a definition of timing similar to that of Generalized Stochastic
Petri Nets - GSPN - presented in Chapter [2]), the question that naturally arises
is: can we exploit the reduction achieved on the RG also for performance analysis
purposes? More precisely, can we aggregate the CTMC isomorphic to the RG and
still obtain the same performance figures from it? Some preliminary ideas in this
direction were presented in [9, 41, 51]. The stochastic extension of RN (without
immediate transitions) was presented in [20]: in this paper it was shown that the
CTMC associated with the RG of a lZN model, is lumpable with respect to the
aggregation induced by the SRG algorithm, moreover the lumped Markov chain
can be directly derived from the SRG, and used to compute any performance
measure that could be computed on the (usually much) larger CTMC. This result
has been later shown to hold Mso for the SWN formalism, WNs extended with
exponentially distributed stochastic timing and immediate transitions [12, 39],
and will be presented in Section 3.4. A similar technique has been developed at
the same time for the formalism of Stochastic Activity Networks [49].

In [15, 46] it has been shown that the use of symbolic marking and symbolic

388

firing can also improve the efficiency of event driven simulation of SWN models:
this is due to the grouping of ordinary firings into symbolic firings that reduces
the cost of event list management.

Tool support for the computation of the SRG and the lumped Markov chain
of an SWN model, and for efficient simulation of SWN models through the use of
the symbolic marking representation is available within the GreatSPN tool [t, 17]
(versions 1.7 and 2.x).

In the second part of this chapter we will present another approach to effi-
cient performance analysis based on a related formalism more recently developed:
Stochastic Process Algebras (SPA) [5, 8, 29, 33], a timing extension of Process
Algebras [34, 43] introduced for modelling and performance analysis of concur-
rent systems. These are abstract languages for the description of concurrent
systems whose peculiar feature is compositionality: complex systems are built
composing smaller subsystems by means of language operators. Like in SPNs,
from the transition diagram underlying an SPA model it is possible to derive a
CTMC, the starting point for the computation of performance figures.

SPA inherited from standard process algebras the compositional technique
for model construction and also the possibility of exploiting equivalences between
models for model verification and simplification, features which are not present
in the SWN formalism. Moreover, equivalence notions have been extended to
take into account also timing information [5, 29, 32] (in pure process algebras
only functional aspects are considered). This extension has been proved to be
very powerful for achieving aggregation, both at the state space level and at the
Markov chain level. Like in the case of the SWN formalism, states which lead
to the same future behaviour are grouped into equivalence classes which form
the states of an aggregated state space. In this formalism, however, equivalence
classes are computed a posteriori looking for equivalences within the state space
of the model. Indeed it is possible to improve the performance of the generation
of an aggregated state space by exploiting the compositional technique to model
construction provided by the formalism, and by computing and aggregating par-
tial state spaces underlying model subcomponents.

Compared to SPNs and their extensions, SPAs are a rather novel research
topic however some tools [24, 30] already exist for the specification of SPA mod-
els, the generation of their state spaces, the computation of equivalence classes of
states, the calculation of performance measures based on the underlying CTMCs.

For making more concrete the description of the SWN and the SPA for-
malisms and the corresponding efficient analysis techniques, throughout this
chapter we will use a common example of a simple communication protocol, the
same example already used in Chapter [37] for introducing Coloured Petri Nets.

The Chapter is organised as follows: in Section 2 SWNs are introduced by
means of the protocol example, in Section 3 the state space aggregation and the
CTMC lumping techniques based on the SRG are presented. In Section 4 SPAs
are introduced by means of the same example of Section 2, and in Section 5 the
corresponding aggregation techniques are illustrated showing that SPAs allow
to find some aggregations that cannot be exploited by the SRG. Finally, in

389

Section 6 we indicate some new results that extend the work presented in the
chapter, indicating possible future evolution of the research on this topic.

2 Stochast ic W e l l - F o r m e d Nets

In this section we define the SWN formalism. We first introduce SWNs informally
through an example (we have chosen the same running example of Chapter [37]
on Coloured Petri Nets - CPN), then we give its formal definition.

Let us recall that the extension of the PN formalism obtained by introduc-
ing colours has been motivated by the need of representing complex systems
with compact models. Systems are made up of several components, and it often
happens that several components in a system have the same characteristics: for
example in a network of workstations we may have several workstations of the
same type. A PN model of a system can be obtained by composing the models
of the subsystems, and in case several copies of similar subsystems are present,
several copies of the same submodel will also appear in the PN model. In this
situation it is very convenient to include a single submodel of each type and
then use distinguishable tokens and distinguishable transition firings to be able
to maintain the same information; this approach has the further advantage of
making the complete model parametric in the number of submodels of each type.

For example, in a model of a network of workstations, we may have the
submodel representing the behaviour of a given workstation type: the possible
states of the workstation are represented by some configuration of tokens in the
places of the submodel. The states of different workstations of the same type
can be embedded into a single submodel by assigning a colour (i.e., a unique
identifier) to each workstation and representing the state of a given workstation
through a configuration of tokens of the corresponding colour in the places of the
submodet. A state change of a given workstation shall correspond to the firing
of a transition in the submodel acting only on the tokens of proper colour: this
leads to the definition of transition instance as a pair transition name, colour of
tokens involved in the firing; functions associated with the arcs relate tile colours
associated with a transition instance and the colours of the tokens withdrawn
form the transition input places and put into the transition output places.

The idea of folding outlined above can be extended further and in fact, using
coloured tokens, coloured transition instances, and assigning functions to arcs
that relate transition colours and place colours, it is possible to fold a given
PN model in several different ways, up to the extreme case in which all places
are tblded into a single place, all transitions are folded into a single transition,
and all the information about the model behaviour is embedded into the (very
complex) function associated with the arcs connecting the only two nodes in the
model.

Although there is no general rule allowing to decide which is the best degree
of compactness of an high level PN model, in our opinion it is important to
find a good trade off between the net size and the amount of information on the
model behaviour that is conveyed by its graphical structure. The SWN formalism

390

presented in this section, naturally leads to the definition of models with rather
simple arc functions, hence discouraging the modeller from hiding in the arc
functions relevant aspects of the model behaviour.

2 .1 A s i m p l e p r o t o c o l e x a m p l e

CI¢]
<c,d>

Ne:

OIdAck

C~r,DATA CNT,DATA
T,DATA R~eJved (:24T, DATA Received

'nPBuf <c~t > ? I~h~PBUf <c d> ?

c,d> o]<c,d>

N~x N~x

<¢o>

RXOUtBUf RxOuIBuf

SndlnpBuf

Limit

d~m)ffino~vedlo

• .. \ Ok_oc_LmtAck

O D ~ h01ceAck RxOuIBuf

@)

Fig. 1. SWN model of a communication protocol with one sender and one receiver.

Let us consider the following simple communication protocol involving one sender
and one receiver exchanging messages over a net that may lose packets. The
sender must send a pool of packets to the receiver, and the packets have to
be received in a predefined order, hence they are numbered. The sender starts
sending the first packet, and it keeps resending the same packet until it receives
an acknowledge message from the receiver, saying that it is ready to receive the
second packet; then the same procedure is repeated for each subsequent packet
until every packet in the pool has been sent.

The receiver has an internal counter that keeps track of the next packet to be
received: initially it is set to one. Each time the receiver gets a new packet from
the network, if its number is equal to the internal counter value, then the packet
is stored and the internal counter is increased by one, otherwise the packet is
discarded; in any case the receiver sends back an acknowledge message to the
sender containing the current value of the internal counter.

391

A first SWN model of this simple protocol is depicted in Fig. 1 (see the cor-
responding CPN model in Fig. 1 of Chapter [37]). An SWN model definition
comprises a number of finite, non empty sets called basic colour classes, a set
of places, each with an associated colour domain, a set of transitions, each with
an associated guard, a set of (input, output or inhibitor) arcs connecting places
and transitions, each with an associated expression used to define the enabling
condition and state change of a transition instance. In addition, each transition
has a priority function and a weight/rate function, whose semantics corresponds
to that defined for GSPNs [2]. Transitions with priority 0 are timed and rep-
resent activities that take time, transitions with priority grater than zero are
immediate and represent logic actions that take no time. Rates are assigned to
timed transitions, while weights are assigned to immediate transitions. The rates
are used to determine the duration of timed transition firings, while weights are
used to perform probabilistic conflict resolution among immediate transitions
that fire in zero time.

In our example, there are two basic colour classes, CNT and DATA represent-
ing the possible values of a packet counter and the actual data to be transmitted
respectively. The class CNT is ordered, meaning that a successor function is de-
fined on it, while class DATA is not. Basic colour classes may be partitioned into
several static subclasses: in this example, C51T is composed of two static sub-
classes, numpck = {0, . . . , max-l}, last = {max} where max is the total number
of packets that must be sent to the receiver. The successor function (denoted !)
is defined as follows: Vc C CNT, !c = (c + 1) rood max+ 1. Class DATA instead
contains a single static subclass data = {datao,. . . , datarnax-1}.

The model in Fig. l(a) is composed of three submodels: the sender submodel
comprising places Send, Ne×tSnd, SndOutBuf, and SndlnpBuf, and transitions
Send, RecAck, and OIdAck, the receiver submodel comprising places Received,
Ne×tRec, R×lnpBuf, and R×OutBuL and transitions RecPck and OIdPck, finally
the network submodel comprising places Limit, SndOutBuf, SndlnpBuf, R×lnpBuf,
R×OutBuf, ChoicePck, and ChoiceAck, and transitions T×Pck, OkPck, LostPck,
T×Ack, OkAck, and kostAck; the complete model can be obtained by fusion of
places with same name. Observe that the SWN formalism does not allow to
define a model in a compositional way, the reason for describing the protocol
model in terms of submodels is just to make it easier to understand, and to
make it comparable with the corresponding model in Chapter [37].

Place Send represents the complete set of packets to be transmitted, place
NextSnd represents the next packet to be sent, place SndOutBuf represents the
output buffer of the sender, while place SndlnpBuf represents the sender input
buffer; place Received represents the set of packets Mready received, place Nex-
tRec represents the next packet expected by the receiver, place RxlnpBuf and Rx-
OutBuf represent the receiver input and output buffers respectively; place Limit
represents the network capacity, i.e. the overall number of packets (either data or
acknowledges) that can be simultaneously circulating in the network. Transition
Send represents the network accepting a message from the sender, transitions Re-
cAck and OldAck represent the reception of a new and old acknowledge packet

392

respectively (an acknowledge packet is old if the same acknowledge has been
already received by the sender before). Transitions RecPck and OIdPck represent
the reception of a new and an old data packet respectively, transition TxPck
represents the transportation of a da ta packet from the sender to the receiver,
while transitions OkPck and kostPck represent the delivery of a data packet into
the receiver input buffer and a da ta packet loss respectively, transitions TxAck,
OkAck, and kostAck have similar meaning, but refer to acknowledge messages.

Place colour domains are defined as Cartesian product of basic colour classes,
possibly with repetitions of the same class. For example the colour domain of
place Send is CN-I- x DATA (in the picture of Fig. 1, printed out from the Great-
SPN package, it is indicated as CNT,DATA next to the place name) meaning that
the tokens contained into place Send are pairs (sequence number, data) modelling
a packet to be sent. Place RxOutBuf instead has colour domain CNT, meaning
that the tokens it may contain are identified by a number between 0 and max
representing acknowledge messages carrying the sequence number of the next
packet expected by the receiver.

A marking m of an SWN, is a place-indexed vector, with 1 Vp E P, m[p] E
Bag(cdom(p)). The initial marking is defined as follows:

m0[Send] = Mdata, where Mdata = {(i, da ta i) , i E O , . . . , m a x - 1}
mO[NextSnd] = mO[NextRec] = Mfirst, where Mfirst = {(0}}
mO[Limit] = L where L E IN+; all other places are initially empty.

Observe that in this model the cotours are used to represent data associated with
tokens, hence a token can represent complex objects (e.g., messages); moreover
we can observe that colours have been used to fold several similar subnets, each
representing the possible evolution of a specific packet in the system.

Transitions in SWN models, as in CPN models, have an associated set of
variables, each with a type among the basic colour classes. Intuitively this means
that a transition represents a set of similar events, and the variables are event
parameters: by assigning actual colour objects to the variables we can identify
a specific event in the set. In SWN terminology, an assignment of values to
the variables of a transition defines a transition instance. There is an analogy
between transition variables and formal parameters of procedures: to actually
execute a procedure (to fire a transition) we have to instantiate all its formal
parameters with actual values (we have to assign colour objects to the variables).

For example the variables of transition OldPck are c E CNT, co E CNT, and
d E DATA. Transition OldPck represents all possible events of type reception
of an old packet; a specific event of this type is characterised by the number
of the old data packet being received (variable c), the actual da ta contained in
the packet (variable d), and the current value of the receiver's packet counter
(variable co). The assignment c ~-- 1, co +-- 2, d +-- data1 defines a possible

1 Given a set . i, Bag(A) denotes the set of all possible rnultisets on A; a multiset is a
set which may contain multiple copies of the same element. The colour domain of a
place p is denoted cdom(p).

393

instance of OIdPck corresponding to the event: the receiver gets an old packet
number 1 containing the data dataa, while its internal packet counter is 2.

Transitions have an associated guard or predicate (by default it is true)
and only the instances that satisfy the guard may be enabled. For example
the above instance of OldPck satisfies the guard [c < > co] while the instance
c +-- 1, co +- 1, d +-- data1 does not. This is consistent with the meaning
of variables c and co: a packet is not old if its number is equal to the internal
counter of the receiver. Another example of transition guard is [d(c) = numpck]
associated with transition Send: the meaning is that only instances of Send as-
signing a number in static subclass numpck to variable c can be enabled (the
notation d(c) is used within GreatSPN to denote the static subclass c belongs
to).

The arc expressions in our running example are tuples of variables and of
variable successors. In general an arc expression in SWNs is a weighted sum
of (guarded) tuples, and each element in a tuple is in turn a weighted sum of
variables (all of the same type), of the corresponding successors, and of con-
stants denoting the set of all objects in a given static subclass. Given an as-
signment of values to variables, an expression tuple can be evaluated by first
evaluating the expression contained in each element, and then composing the
results through the Cartesian product operator. In general the evaluation of
an arc expression gives a multiset of tuples: in our simple example all arc ex-
pressions evaluate to cardinality one multisets. For example, given the assign-
meat c +- 1,d +-- data1, expression (!c) evaluates to {(2)}, expression (c,d)
evaluates to {(1, data1)}, expression (!c, d) evaluates to {(2, data1)}, expression
2(c, d} + (!c, d) = (2c+!c, d) evaluates to {2(1, data1}, (2, data1}}, and expression 2
(c, Sdata) evaluates to {(1, data1}, (1, data2) (1, datama~.)}. A more complex
example of arc expression is [co = c](!co) + [co < > where the tuples are
guarded. A guarded tuple evaluates to the empty set if the associated guard is
not satisfied, if instead the guard is satisfied it gets the value of the tuple follow-
ing the guard. Hence the expression [co = c](!co} + [co < > c](co) evaluates to (3)
for the assignment c +-- 2, co +- 2, while it evaluates to (2) for the assignment
c +-- 1, co +- 2. Observe that when a given transition instance (i.e., a given as-
signment) makes an arc expression evaluate to the empty set, this is equivalent
to canceling that arc for that transition instance.

The use of arc expressions with guards allows to construct more compact
models, however it decreases the amount of graphically conveyed information:
for example in Fig. 1 (b) it is shown an alternative representation of the receiver
part with one transition less. In this version of the model, RecPck represents both
cases of reception of a packet, to be stored or to be discarded (because it is out of
sequence). In the model of Fig. l(a) it is graphically evident that packets may be
discarded, while in the variant of Fig. 1 (b) this information is hidden in the arc
expression from transition RecPck to place Received. This is a typical example
of different possible choices in the degree of compactness of a coloured model.

2 S~.t~t_~ubcLnam~ is a constant function returning the set of elements in static subclass
stat_subcl_name.

394

Another similar example is that of transitions OkAck and kostAck that could
be merged as shown in Fig. l(c), but in this case it would be less evident that
acknowledge messages may get lost. Let us comment briefly Fig. l(c): a new
class TXMODE=arrived LJ notarrived with arrived = {ok}, notarrived = {lost}
has been defined and a variable m ETXMODE is used to decide whether a
given instance of transition Ok_or_LostAck represents a delivery of acknowledge
message or an acknowledge message loss. The initial marking of place Mode is
the whole set TXMODE. Note that this place plays a role similar to that of place
SA in the CPN of Fig. 3 in [37], however in our model it is not used to influence
the probability of firing Ok_or_LostAck in either mode, since in SWNs the firing
probability can be defined by assigning suitable weights to transitions.

In the initial marking, only the transition instance Send(c 4-- 0, d 4- datao)
is enabled due to the presence of token C0, datao) in place Send, a token (0)
in place NextSnd and some neutral token in place Limit. Its firing puts a new
token of colour Co, datao) into place SndOutBuf and withdraws one neutral to-
ken from place Limit; let us call this new marking ml. Marking ml enables two
transition instances: Send(c 4-- O,d 4- datao) and TxPck(c 4-- O,d ~-- datao);
both m0 and ml are tangible markings, i.e. markings in which the model spends
some time, in fact they enable only timed transitions, whose firing requires some
time to be completed. By firing the TxPck instance, the token C 0, datao) is with-
drawn from place SndOutBuf and a token of the same colour is put into place
ChoicePck: the new reached marking, m2, is vanishing since it enables two im-
mediate transitions, namely OkPck and LostPck, and the model always passes
through it without spending time. Observe that in m2, also timed transition
Send has enough tokens in its input places to be enabled, however immediate
transitions have higher priority over timed ones.

Let us now discuss the definition of the timing and probabilistic conflict res-
olution of the model. All the activities of the system that take time are modeled
as timed transitions (graphicMly represented as white boxes). Immediate transi-
tions (graphically represented as thin bars) are instead used to model logical ac-
tions in the systems that take no time, or activities that take a negligible amount
of time. In the model of Fig. 1Ca) all transitions are timed, except OkPck, Lost-
Pck, OkAck, LostAck, that represent logical actions, i.e., the Crandom) choice
of whether the network has correctly delivered or lost a message. In order to
include in the model the information that messages get lost with probability
20/100 while they are correctly delivered with probability 80/100, weights 0.2
and 0.8 must be assigned to transitions LostPck and OkPck respectively (the
same applies to LostAck and OkAck). Observe that in this example all instances
of LostPck have the same weight 0.2, and all instances of OkPck have the same
weight 0.8; in the example of Fig. l(c) where transitions kostPck and OkPck
are represented by a single transition Ok_or_kostPck, we should have assigned
weight 0.2 to the transition instances with m E notarrived and weight 0.8 to the
transition instances with m E arrived. As pointed out in [37], it might be useful
to introduce in this model a delay between subsequent retransmissions of the
same packet: to model this feature we need to refine place Send into a subnet

395

place-timed transition-place as shown in Fig. 2, and associate the required delay
with transition wait.

To express the durations of the activities represented by timed transitions,
the modeller has to assign a delay to each timed transition instance. Transition
delays in SWNs are actually negative exponentially distributed random variables
(see Chapter [2]), and the modeller provides the average delay (in the GreatSPN
package the modeller actually provides the average transition rate, which is the
parameter characterising the negative exponential distribution, and is the inverse
of the average delay). It is often the case that all instances of a given transition
in an SWN model have the same associated delay: in our case this is true for all
t imed transitions in the model. For example, the delay associated with transition
Send represents the (average) time spent by the sender to prepare a message and
make it available in its output buffer, and it is the same for all possible messages
that the sender may want to send.

CNT DATA ~ NT T 'Send wa t C ,DA A <c,d> <c,d> wait

I d (c) = n ~ C N T , D A T A

NeCk,NSrnd (,~i, s!

~]~ Limit

Fig. 2. Refinement of place Send to intro-
duce a delay between subsequent retrans-
missions.

CNT,DATA
RxInpBuf

c ~
CNT,DATA
ChosenPackct

tOOSepck

:c,d>
NT <c>

hreads

I j __~<co> < ,c '~ <it>

J
<co>

:NT
RxOutBuf

CNT,DATA
l Received

Fig. 3. Refinement of transition TxPck to
represent sequential transmission of pack-
ets.

Let us discuss one more issue, related with the race conflict resolution policy
for timed transitions adopted by the SWN formalism (in the same way as SPNs
and GSPNs do: this is described in another chapter of this book [2]): when more
than one token is concurrently present in place R×lnpBuf, enabling one or more
instances of transitions Old Pck and one instance of transition RecPck, the default
interpretation is that the activities represented by the different enabled instances
run in parallel (as if the receiver had multiple threads running in parallel, able
to process several packets at the same time). If we wish instead to represent a
single threaded receiver, processing one packet at a time, the receiver submodel
structure should be refined to select one packet from place RxlnpBuf, process
it, and only after sending the corresponding acknowledge message, process the
next one (see Fig. 3). Similar considerations hold for the sender submodel that

396

in the current version represents a mult i threaded sender, able to concurrently
send a new packet and receive one or more acknowledge messages, and for the
transmission submodel tha t models a network able to t ransport all the da ta and
acknowledge packets in parallel.

Once the SWN model has been completely defined, its qualitative behaviour
can be checked on the underlying 3 untimed model using the available analysis
methods for 4 WNs. One such analysis method consists of generating the RG
(provided it is finite) and then checking the desired behaviourM properties on
it (see Chapter [37] for a comprehensive list of interesting qualitative properties
tha t can be checked on the RG of a CPN).

The performance evaluation phase instead can be performed through Monte
Carlo simulation, or through the (numerical) analysis of the Markov chain asso-
ciated with the RG. In this paper we shall focus on the lat ter type of analysis
method, restricting ourselves to the case of steady s ta te analysis of ergodic mod-
els with finite state spaces. If the initial state is an home state, the CTMC
associated with the RG is ergodic: we shall therefore concentrate on models
whose initial marking is an home state.

r

I CNT'DATA_ J "~ <c,d> ~<S,S. ~<S,S.
(Iv~d~' a CN]I',D~TA CI~DATA CI~

Send v ~--,,..,.<c,d> Sn~OuiBuf Choi~Pck Rxll
d <c d:> <c,d> <c,d>) ~ <c,d> =(

/ : ~ l d{i d{ c)=nuSmet~,~k ix\ TxPck \ OkPck
< / \ ",~c,d> m °l,, \

, , ' nit R ; [d(c)] ~ r s t ~ m t t

\ ~ > / / \ Lo,U~k
<c> <c>

~..// F~r OkAck I Cm
~'~""~> ~ndInpBuf IChoiceAck

. OldAck) < S >) < S >

<S,S>

DATA
)Buf <c,d>

:c,d>
CNT <c>

N e x t R ~ " " ~
<co> list

,, <!c> j

RxOutBuf
<S>

S data>
DATA
Received

d>

, RccPck

Fig. 4. Ergodic SWN model of a communication protocol with one sender and one
receiver.

3 The WN underlying an SWN is simply the model obtained by disregarding the tran-
sition rates/weights. Note that since in SWNs the delays are interpreted as negative
exponentially distributed random variables, and since the negative exponential dis-
tribution has infinite support, the possible qualitative behaviours of the timed model
are exactly the same as those of the corresponding untimed model.

4 Since WNs can be considered as a subclass of CPNs, all the analysis methods available
for CPNs, can be applied to WNs as well.

397

The model of the protocol in Fig. 1 is not ergodic: in fact it contains a deadlock
corresponding to the state in which all messages have been successfully sent
and received, and the network does not contain any message. This model can
be made ergodic by adding a transition that restarts the system every time
it reaches its (correct) final state, as shown in Fig. 4: in this way the steady
state performance indices that are computed on this model represent its average
behaviour considering an infinite number of possible executions of the protocol.

Let us now consider a different version of the protocol in which one sender
has to broadcast the messages to several receivers. We assume that the network
either delivers a given message to all receivers or none receiver gets the message.
Each receiver has its own counter keeping track of the next message it expects.
The sender has one counter for each receiver representing the next packet to be
sent to that receiver; these counters are updated on the basis of the acknowledge
messages received from the different receivers. Each time the sender decides
to send a packet, it randomly chooses one receiver r, and broadcasts to all
receivers the next message to be sent to r. This implies that a receiver may
find in its buffefi the next expected message, an old message, or a new message
out of sequence: only in the first case the message is accepted and the internal
counter updated, while in the other two cases the message is discarded. In the
new system, acknowledge messages contain a receiver identifier r and a message
number n. If n is less than or equal to the value of the sender counter for receiver
r, it is considered as an old acknowledge and discarded, otherwise, the counter
for receiver r is updated to n. Observe that while in the first model the sender
counter of the next packet to be sent can only be increased by one at each
acknowledge reception, now the sender counter associated with a given receiver
can be increased by more than one.

Since we are assuming that all receivers in the new system behave in the
same way, we can take advantage of colours to avoid repeating the receiver
submodel as many times as the number of receivers in the system. A new basic
colour class RFC is thus introduced, composed of a single static subclass rec =
{ r l , . . . , r~¢c}, where nrec is the number of receivers in the system.

In Fig. 5 an SWN model of the system with multiple receivers is depicted 6.
The colour structure of this model has been simplified on one hand, by elimi-
nating the class DATA which was redundant 7, and enriched with the receivers
colour class on the other hand. With the elimination of class DATA the place
Send has become impl ic i t and therefore it has been deleted fl'om the model. All
places but SndOutBuf have the new colour class RFC in their colour domain,
to distinguish messages destined to/arriving from a given receiver, and packet

5 Note that messages are taken from the buffer in a random order, i.e., not necessarily
in the same order of arrival.

6 The model in Fig. 5 is not ergodic but it can be easily made ergodic in the same way
as the SWN model of Fig. 4

7 Note that the information on the data actually transmitted, at the detail level of
this model is not relevant; algorithms have been defmed for the automatic detection
and elimination of redundant colour components in SWNs [14].

398

CNT,RE
NcxtSnd

<c.t>

<c> ~:-<C>'U <C>'~K < c > - • <c.~> - V ~ /

<c,l> <¢,1~ /_ \ <:> 11/Z:o

ir~ N Limit OldPck r~(" '~- - - - - - - -~ .J:

\ / \ I~,stAck I__ _

<g,r>
<c,r> TxAck :o,

~C,l~

iscard)/~ lco<>c]
<@ ,r>

Fig. 5. SWN model of a communication protocol with one sender and nrec receivers.

counters (places NextRec and NextSnd that refer to a given receiver).

Other changes with respect to the single receiver model are the new transition
Discard that represents a packet that was never received before, but is discarded
by the receiver because it is out of sequence (these packets have an associated
number greater than the current counter value in NextRec), and the transition
RecAck representing the reception of an acknowledge which is stored into place
NextSnd if it is greater than the current counter value in this place for the same
receiver, while it is discarded otherwise. Observe that this behaviour is described
in the model by using the function max() in the expression labelling the arc from
transition RecAck to place NextSnd, however this function is unfortunately not
allowed in SWNs (the reason for this restriction will be clarified in Sec. 3). In the
single receiver model we could simply overcome this problem by splitting transi-
tion RecAck into two transitions, RecAck and OldAck, one for new acknowledges,
the other for old ones. This solution relies on the assumption that it is not pos-
sible to receive an acknowledge whose number is greater than the successor of
the current value of the counter in NextSnd, hence it cannot work in the new
model where this assumption is not satisfied. A possible solution is depicted in
Fig. 6: it uses immediate transitions to process in several steps (which take no
time) an acknowledge message, to properly update the marking of place NextSnd
and of the additional place OIdAcks. The latter place is used to store, for each
receiver, the set of already acknowledged packet numbers. When a new acknowl-
edge (c, r) arrives, all the acknowledges between the current counter value (co, r)
in NextSnd and (e, r) are put into OIdAcks. For example if place NextSnd contains
the tokens (2, rl), (0, r2} , OIdAcks contains (0, rl), (1, rl), meaning that packets
with number 0 and 1 have already been acknowledged by receiver rl, while no
acknowledges have been received yet from receiver r2. If now an acknowledge ar-
rives represented by the presence of token (2, r2) into place $ndlnpBuf (meaning
that the next expected packet from receiver r2 is the number 2), transition Many-

399

Ack is enabled: upon its firing, token (2, r2) replaces (0, r2) into NextSnd, and an
immediate transition sequence firing is triggered by putting a token (1, r2) into
place OpdateAck. Hence, the immediate transition sequence following the firing
of ManyAck is: update(c 6- 1, r 6- r2, cp 6- 0), update(c 6- O, r 6- r~, cp ~ m a z) ,
endl(c 6- m a z , r +-- r2). After the occurrence of this firing sequence (which has
priority with respect to any other timed activity in the net), the marking of
place 01dAcks will be equal to (0, rl), (1, rl), (0, r2), (1, r2). Now, if an acknowl-
edge of packet number 2 arrives from receiver r2, represented by the presence
of token (1, r2) into place SndlnpBuf, it will be discarded as an old one (firing
of transition OIdAck(c 6- 0, r 6- r2)) because it was implicitly contained in the
previous acknowledge of packet number 2 from the same receiver.

CNT,REC
NextSnd

~ rst

CNT,REC / ~ ~ < ~ . r >)) <!c'r>
ol~Acks & ~ - 7 / / . , , <c~r> < ,C, l '>

<c,r> .~----"~ f I \~.~"--...~,r> [d(c)=numpck] / / / / f / / SndInpBuf

NqthimgReceivedYet /
[d(c)=lasq <!c,r>

[~ ,,,

Fig. 6. Detailed view of the actual SWN implementation of the acknowledge packets
reception in the multireceiver model.

2.2 SWN formal defini t ion

In this section we give a formal definition of the concepts informally introduced
in the previous section.

Def ini t ion1 Stochas t ic Wel l - formed Net . A Stochastic Well-formed Net,
is a 10-tuple

A/" = (P ,T ,C , c d o m , ~ , I , O , H , II , W)

where:

400

P is the finite set of places;
T is the finite set of transitions, P N T = 0, P U T ~£ 0;
C is the family of basic colour classes: C = {C1, . . . ,Cn}; Ci is partitioned in

ns
static subclasses: Ci = U~=I D~,q; if ni = 1 then no distinction is made
between class Ci and the umque subclass Di,1;

cdom: P U T -4 ~i=l,...,n C~ ~, where ~ is a Cartesian product and ei is the
number of occurrences of-Gi in the colour domain of a given place or tran-
sition.

~(t) : cdom(t) -+ {true, false} is a standard predicate (see Definition 2) associ-
ated with transition t;

I (p , t) ,O(p , t) , H(p,t): cdom(t) --~ Bag(cdom(p)) are the arc expressions (see
Definition 3) associated respectively with an input, output , or inhibitor arc
connecting transition t and place p;

H(t) : cdom(t) -+ IN is a priority function, defining a priority (expressed as a
natural number) for each instance of transition t; there is a restriction on
the priority functions: two instances of a given transition may be assigned
different priorities only if there exists a standard predicate capable of distin-
guishing the two.

W(t): cdom(t) x ((~)peP Bag(cdom(p))) -4 IR + defining a rate for each (expo-
nential) t imed transition instance and a weight for each immediate transition
instance. The transition rate/weight function may depend on the transition
instance and it may be marking dependent, however, the type of dependence
on the instance or on the marking is restricted in such a way that no explicit
reference to precise elements in colour classes is made.

D e f i n i t i o n 2 S t a n d a r d P r e d i c a t e . A standard predicate (or guard) associ-
ated with a transition t is a boolean expression of basic predicates. The allowed
basic predicates are: x = y, x =!y, d(x) = Di,j, d(x) - d(y), where x, y are vari-
ables associated with transition t of the same type Ci, !y denotes the successor
of y (assuming that the type of y is an ordered class), and d(x) denotes the static
subclass x belongs to.

D e f i n i t i o n 3 A r c E x p r e s s i o n s . An arc expression has the following form:

 k. red]Fk
k

where ~a is a positive integer, Fk is a function and [predk] is a standard predicate.
Each Fa : cdom(t) --~ Bag(cdom(p)) is a function of the form

F= ® Q
CiE Cj=l,...,e,

with ei representing the number of occurrences of class Ci in colour domain of
place p

Each function f : in turn is defined as:

q=l xEvar i (t)

401

where SD,,q, x and !z are basic functions (defined hereafter), vari(t) is the set
of variables associated with transition t of type Ci, ai,q, fix and 7x are natura l
numbers.

The evaluation of function "[pred]f" is defined as:

~red]f(c) = If pred(c) then f(c) else 0.

The multiset resulting from the evaluation of a tuple of basic functions is ob-
tained by Cartesian product composition of the multisets resulting from the eval-
uation of the tuple elements. As it can be observed in the formal definition of
arc expressions, there are three types of basic functions: the projection function,
the successor function and the diffusion/synchronisation function. The syntax
used for the projection function is x, where x is one of the transition variables; it
is called projection because it selects one element from the tuple of value assign-
ments defining the transition colour instance. The syntax used for the successor
function is !x where x is again one of the transition variables, it applies only
to ordered classes and returns the successor of the object assigned to x in the
transition eolour instance. Finally, the syntax for the diffusion/synchronisation
function is S'c, (or SD,,~): it is a constant function that returns the whole set
of objects of class Ci (of static subclass Di,j C Ci). It is called synchronisation
when used on a transition input arc because it implements a synchronisation
among a set of eoloured tokens contained into a place, while it is called diffusion
when used on a transition output arc because it puts several tokens of different
eolour into a place.

D e f i n i t i o n 4 M a r k i n g o f a n S W N . rn is a place indexed vector which assigns
to each place p a multiset over cdom(p): m[p] E Bag(cdom(p)).

D e f i n i t i o n 5 S W N m o d e l . An SWN model is a pair

{2(, m0 }

where H is an SWN net and rn0 is the initial marking.

For reasons tha t will become clear later on, it is useful to define a symmetric
initial marking of an SWN model.

D e f i n i t i o n 6 S y m m e t r i c m a r k i n g o f a n S W N m o d e l . A marking m of an
SWN model is symmetr ic if it can be expressed as follows:

Vpc P,m[p] = ~ ~
~6~c,~ c C,~

where ~ is a tuple of static subclasses (consistent with the colour domain of the
corresponding place), and a~ C IN is the coefficient of tuple ~.

402

As usual a tuple (A1,. . . ,Ak) of sets represents the set of tuples obtained by
composing the sets through the Cartesian product operator:

(A1 , . . . ,Ak) := (~ Ai
i=l...,k

Defini t ion ? Trans i t ion ins tances enabl ing and firing. A transition instance
t(c) has concession in marking m iff

- for each place p in the transition input set: I(p,t)(c) C m~]
- for each place p in the transition inhibition set:

Vc' e cdom(p) : g(p, t)(c)(c') > 0, m[p](d) < H(p, t)(c)(c')
- = t ue

A transition instance t(c) is enabled in in marking m if it has concession in m
and there is no higher priority transition instance that has concession:

- /3t'(c'): t'(d) has concession in m and II(t')(d) > II(t)(c).

A transition instance t(c) which is enabled in marking m may fire yielding the
marking m', denoted m[t(c))m'. The new marking m' is obtained as follows:

- Vp, rn'[p] = m[p] - I (t , p) (c) + O(t,p)(c)

Let us comment a little bit on the definition of weight/rate functions W that
are part of the model specification allowing to derive a CTMC from the model
RG. Observe that the restrictions on the definition of the priority and transi-
tion rate functions are needed to ensure that symmetry presented at a qualita-
tive behaviour level is reflected also at a quantitative behaviour level: this is a
mandatory requirement to apply the efficient performance analysis algorithms
described later on.

In practice, the type of priority and rate functions used are even more restric-
tive than needed (but easier to specify and to deal with in an implementation),
and are based on the concept of static partition of a transition colour domain
and marking as defined in [11]. Intuitively, in this more restricted definition the
rate/weight function can depend only on the static classes which contain the
objects involved in a transition firing and that compose the marking.

We do not explain here how the CTMC underlying an SWN model is defined
since it can be derived in a straightforward way from the definition of the CTMC
underlying a GSPN model presented in Chapter [2]. Further details can be found
in [11, 12].

3 T h e S y m b o l i c R e a c h a b i l i t y G r a p h

We discuss in this section the notions of symbolic marking, symbolic firing and
symbolic reachability graph. The discussion will be rather informal, mainly based
on the running example of the communication protocol already presented in
Section 2.1. The interested reader may find formal definitions in the papers [12,
13] suggested in the bibliography.

403

3.1 Symbolic marking

As briefly discussed in Chapter [37], it is possible to use some forms of equiva-
lences to obtain a reduced, or condensed, state space underlying a CPN model.
Also SWNs provide a modelling framework in which the equivalences between
states, which are based on intrinsic symmetries, can be automatically detected
and used naturally as a way for reducing the size of the underlying state space.

Let us explain what does it mean automatically detect the intrinsic sym-
metries. Intuitively, a symmetric system is composed of replicas of the same
components, all sharing the same behaviour: we have seen a first example of
a symmetric system in Section 2.1, when discussing the protocol example for
the case of multiple receivers. The symmetry present in this system, allows us
to represent the state in a more abstract form: instead of keeping track of the
state of each receiver we could just keep track of how many receivers are in a
given state, independently of their actual identity. This can be done only if the
potential behaviour of a receiver does only depend on its current state and not
on its identity, i.e. if all receivers behave homogeneously.

The idea of homogeneous behaviour is the basis for the definition of the so
called symbolic marking and the consequent generation of a more compact state
space. Let us fix the number of receivers in our example and consider the case
of nrec = 3. In the initial marking of the net shown in Fig. 5 we can identify the
following situation:

1. the sender is ready to send the first da ta packet

2. all the receivers are ready to receive the first data packet

3. all the buffers are empty

4. no messages are circulating in the network

Let us suppose that, after a certain number of transition firings, we reach the
following new situation:

1. the first two receivers have already received and acknowledged the first two
data packets and are now waiting for the third data packet

2. the third receiver is still waiting for the first da ta packet

3. the sender is ready to broadcast either the second da ta packet required by
the first two receivers or the first da ta packet required by the third receiver

4. the buffer SndOutBuf contains the first data packet

5. the buffer RxlnpBuf contains the first data packet for the third receiver

6. the buffer RxOutBuf contains two acknowledge messages expressing the fact
that receivers r l and r2 are now waiting packet number three

7. since there are five messages circulating in the network (three for the broad-
cast of packet number 1 and two acknowledges), there is only room left for
other L - 5 messages.

404

The marking s m ~ that models such a situation is the following:

NextSnd (<I, r3>, <2, rl>, (2, r2))
RxlnpBuf(<l, r3>)
Received ((1, r~), (2, r~), (1, r2>, (2, r2))
Limit(L - 5)

SndOutBuf((1))
NextRec(<1, r3), <3, rl>, <3, r2>)
RxOutBuf((3, rl> , (3, r2>)

Now, notice that there are situations which are similar to the one just described
and that can be obtained from it by applying a p e r m u t a t i o n on the receivers.
For instance, if we exchange the first and third receiver we obtain the marking
m" below:

NextSnd ((1, r1>, <2, r2>, (2, r3>) SndOutBuf(<l>)
RxlnpBuf(<l, rl>) NextRec((l, rl>, <3, r2), (3, r3>)
Received ((1, r2>, (2, r2), (1, r3>, (2, r3>) RxOutBuf((3, r2>, (3, r3))
Limit(L - 5)

The same reasoning holds when we exchange the second and third receiver. In
fact, when we permute the identities of the receivers we obtain markings which
describe the same situation and which are characterised by an equivalent future
behaviour in terms of possible transition firing sequences. This allows us to define
an equivalence notion for markings that are equal up to the permutation of the
receiver identities:

m l ", m2 ¢:~ 3s : m 2 ~ s . m 1

where s : REC -+ REC is a permutation operator on the class of receivers, and
the application of a permutat ion s to a marking m, denoted s . m , consists of
substituting each occurrence of any ri E REC in m with s(ri).

The following property holds for markings that are equal up to the permu-
tation of the receiver identities:

¢ = *

where s(c) denotes the application of a permutation s to a transition colour
instance c. Hence, whenever a transition instance t(c) is enabled in a marking
m, we are sure that there will be a corresponding instance t (d) enabled in
any marking m ~ equivalent to m. Moreover, the two markings reached are in
turn equivalent. Notice that this property is the analogous of the notion of
bisimulation which has been introduced for Process Algebras [43] and that will
be discussed in Section 4.

The above property holds because the arc expressions, the transition predi-
cates and the priorities of SWNs satisfy the following conditions [13]:

Vs: s . I = I . s , s .O = O.s , s . N = H . s

Vs: ~(e) = ~(s(c)) and U(c) = / / (s(c))

s We consider non empty places only and we use a slightly modified notation for the
marking, enumerating in round brackets the tuples contained in each place.

405

Our objective now is to exploit this equivalence relation among markings to
reduce the state space size: since equivalent markings lead to the same behaviour
we want to avoid generating all the states in a given equivalence class. There are
different possible approaches to achieve this goal:

1. when a marking m is reached while constructing the (reduced) RG, it is
added into the RS only if the RS does not contain any marking in the same
equivalence class yet;

2. the RS does not contain markings but rather symbolic representations of the
equivalence classes (the symbolic markings), the set of reachable equivalence
classes and the arcs connecting them is obtained by defining a symbolic firing
rule working directly at the symbolic marking level.

The Symbolic Reachability Graph (SRG) adopts the latter approach, the ad-
vantages being a reduced computational cost for deciding whether a reached
marking belongs to a new equivalence class never reached before, that requires
a test for equivalence in the former approach rather than a test for equality, and
a more abstract representation of the equivalence class [13].

In order to explain the concept of symbolic marking let us go back to our
running example. We can start by defining a more abstract description of state
m' which gives us the possibility of defining the whole set of markings equivalent
to it. Such an abstract description could be informally expressed as follows:

1. (any) two receivers have already received two data packets each, and they
have already acknowledged the receptions of the first data packet

2. the remaining receiver is still waiting for the first data packet
3. the sender is ready to broadcast the second data packet required by the two

receivers (of item 1) and the first data packet, to the remaining receiver
4. the buffer SndOutBuf contains the first data packet
5. the buffer RxlnpBuf contains the first data packet for the receiver of item 2

waiting for it
6. the buffer RxOutBuf contains two acknowledges expressing the fact that two

receivers (of item 1) are waiting for the third packet.

This in%rmal description can be formally expressed by defining sets of receivers
that in the current marking play the same role (i.e. receivers currently in the
same state). For instance, in the case of marking m' it is possible to identify
a partition of the colour class REC into two disjoint subsets RECz = {r3} and
REC2 = {rz, r2}: where REC1 represents the set of receivers still waiting the first
data packet and REC2 represents the set of receivers that have already received
two data packets each, and have already acknowledged the reception of the first
data packet. In marking m" we can identify the same partition of receivers into
two subsets REC1 and REC2 ofcardinality 1 and 2 respectively, the only difference
being the actual identity of the receivers belonging to the subset¢" REC1 = {rl }
and REC2 = {r2, r3}.

Now, if we forget about the identity of the receivers belonging to the subsets
RECi, and only keep the information on the cardinality of the subsets (notice

406

that the subsets must form a partition of class REC, i.e. they are disjoint and
their union must be the whole class REC), we obtain the desired symbolic rep-
resentation of the equivalence class of markings:

NextSnd(<l, RECI>, (2, REC2))
RxlnpBuf((1, RECI))
Received (<1, RECk>, (2, REC2))
Lirnit(L - 5)

SndOutBuf((1>)
NextRec((1, REQ>, (3, REC2))
RxOutBuf(<3, RECk>)
IREQI = I, IREC~I = 2

Observe that in the symbolic marking representation the symbols RECi, repre-
senting subsets of (unidentified) receivers, replace the receiver identities rj E REC
in the tuples representing the tokens. Since subsets can have cardinality greater
than one, the representation of a symbolic marking can be much more compact
than the representation of the ordinary markings belonging to the correspond-
ing equivalence class. For example in the above symbolic marking representation,
places NextSnd and NextRec contain only two tuples and place RxOutBuf contains
only one tuple while all these places contained one more tuple in the representa-
tion of the ordinary markings m ~ and m u belonging to this equivalence class. The
reason is that tuple (3, REC2) actually represents any two tokens (3, rx) + (3, ry)
with r=, ry E REC, r= • ry, because the cardinality of REC2 is two.

Let us now define more formally how it is possible to transform an ordinary
marking into the symbolic marking representing the equivalence class it belongs
to. Although intuitively we can say that the receivers grouped in the same subset
are those with the same potential future behaviour, it is not necessary to actually
check the future evolution of the net from the marking to decide how to group
receivers, instead this can be done syntactically by observing the state of the
receivers, i.e. their distribution in the model places. Informally, given a marking
m the distribution of an object ci into the places for that marking is defined by:

1. the set of places p E P such that ci appears in m[p];
2. for each place p in the above set, and for each tuple in m[p] having ci among

its elements, the multiplicity of the tuple, the position of element ci in the
tuple, and the identity and position of the other elements in the tuple.

The distribution 9 of the two receivers rl, r2 in marking m' is the same, i.e.

NextSnd (i(2, .))+ NextRec(1<3, .))+ RxOutBuf(l(3, .)) + Received(l(l, .), i<2, .>)

therefore we can conclude that they have the same potential future behaviour
and hence group them into subset REC2. The remaining receiver instead has a
different distribution, namely:

NextSnd (i(1, .)) -F NextRec(l<l, .)) ÷ RxlnpBuf(l(1, .))

and hence is kept in a separate subset REC1 of cardinality one.

9 For an object ci the expression PlaceName(n(cj, .)) means that it appears in the
place PlaceName as second element a 2-tuple of multiplicity n, whose first element
is cj.

407

Given a partition of the receivers into subsets RECi, the symbolic representa-
tion rh of m is obtained as follows: for each place p E P with colour domain CNT,
rh[p] = m[p], for each place p E P with colour domain CNT x REC, include in
rh(p) a tuple n(c, RECj) iff 10 ~r~eReC~ n(c, rh) C m~].

On the other hand, given a symbolic marking representation all ordinary
markings belonging to it can be obtained by enumeration of all possible assign-
ments of receivers to subsets, satisfying the requirement that a given receiver
must belong to one and only one subset, and the number of receivers assigned
to a subset must be consistent with the subset cardinality (which is part of the
symbolic marking definition).

In our example, there are three possible assignments of receivers to subsets
RECI and REC2, each corresponding to one of the three ordinary markings be-
longing to the equivalence class represented by the symbolic marking.

REQ = { r l }
RECI ----- {r2}
RECI = {r3}

REC2 = {r2, r3}
REC2 = {rl,r3}
REC2 = {rl,r2}

In the SRG terminology, the subsets RECi are called dynamic subclasses. The
partitioning of a colour class into dynamic subclasses is marking dependent and
must not be confused with the partition of the colour classes into static sub-
classes which is fixed and is part of the colour class definition. There is a further
requirement about dynamic subclasses: each dynamic subclass must be a subset
of only one static subclass; for each dynamic subclass, the indication of the sym-
bolic subclass it belongs to, is part of the symbolic marking definition. In our
running example we could omit this information because class REC comprises a
single static subclass.

To summarise, the following steps are necessary to introduce the notion of
symbolic marking

1. basic colour classes are partitioned into dynamic subclasses, each containing
elements that have the same possible future behaviour;

2. the identities of the objects within dynamic subclasses are lost; dynamic
subclasses are simply characterised by their cardinality;

3. the coloured tokens in the places of the net are replaced by symbolic tokens
which are tuples of dynamic subclasses; each symbolic marking corresponds
to a set of ordinary markings, depending on the number of different possible
assigmnents of actual objects sets to the dynamic subclasses.

The definition of symbolic marking given so far, does not ensure that the rep-
resentation of an equivalence class through a symbolic marking is unique. For
instance, the assignment of names to dynamic subclasses is completely arbi-
trary: we thus need some additional constraint on the representation leading to
a unique (canonical) representation of a symbolic marking.

10 Observe that given our definition of partition into subsets of receivers with same
distribution into places, if n(c, rh) C_ m[p],rh E REC3 =~ n(c, rk) C rn[p], Vrk e REC~.

408

The two constraints on the symbolic marking giving a canonical representa-
tion are:

1. the partition of the basic colour classes into dynamic subclasses must be
minimal,

2. the names assigned to dynamic subclasses must give a lexicographically min-
imal symbolic marking representation.

The minimality requirement of item 1, refers to the number of dynamic subclasses
in each basic class; intuitively we want to have the smallest possible number
of dynamic subclasses since this minimises the size of the symbolic marking
representation. A symbolic marking is said to be minimal when it is not possible
to find any pair of dynamic subclasses belonging to the same static class that
have the same distribution over the places of the net.

Observe that there are several possible representations that minimise the
number of dynamic subclasses, which are equal up to a renaming of the dynamic
subclasses: here comes into play the second constraint. A canonical represen-
tation can be obtained by introducing an ordering relation among all possible
representations of a symbolic marking that minimise the number of dynamic
subclasses. We use the lexicographical ordering, and choose the lexicograph-
ically minimal representation (of course a lexicographic order can be defined
only after defining a fixed - though arbitrary - order for places in the marking
representation). The complete algorithm for the computation of the canonical
representation is described in [10].

One remark is important about the initial symbolic marking: since in general
symbolic markings can contain several ordinary markings, this can be the case
also for the initial marking. In this case, the set of reachable symbolic markings
would represent all ordinary markings reachable from any ordinary marking be-
longing to the initial symbolic marking. It is however frequent that the initial
symbolic marking represents just one ordinary marking: this is true if each static
subclass is initially completely grouped into a single dynamic subclass. This spe-
cial type of marking is called symmetric (see Definition 6). The initial marking
of our running example can indeed be represented by a symmetric symbolic
marking. As we shall see later, having a symmetric initial marking simplifies the
study of ergodicity which is an important property when the intended use of the
model is the analysis of the steady state timed behaviour of the system.

3.2 Symbol ic Enabl ing and Symbolic F i r ing

Starting from the notion of symbolic marking a symbolic enabling rule and a
symbolic firing rule have been defined.

In a symbolic firing instance dynamic subclasses are assigned to the transition
parameters instead of the actual objects. When we assign a dynamic subclass to a
transition parameter we mean that any object of that subclass may be selected
for assignment to the parameter. It does not actually matter which object is
chosen since they all have the same potential future behaviour.

409

In order to define the symbolic firing rule we need to introduce the notion
of split symbolic marking. From each dynamic subclass assigned to one of the
transition variables, we need to pick an (arbitrary) object that will be actually
involved in the transition firing. Each dynamic subclass involved in a symbolic
transition firing is thus split into two new subclasses, one containing the object
selected for the firing and the other containing all the remaining objects.

The first new dynamic subclass has cardinality one and represents the single
object involved in the firing, the second subclass has one element less than the
originating subclass, and contains all the other objects which are not involved
in the firing. After splitting, the cardinality one dynamic subclass is assigned to
the transition instance to be checked for enabling and possibly fired.

The symbolic enabling rule is exactly the same as the usual enabling rule with
the only difference that now dynamic subclasses are assigned to the transition
variables in a symbolic transition instance, and hence the are expressions evalu-
ation nmst be extended to dynamic subclasses. Since after splitting the involved
dynamic subclasses have cardinality one, they can be treated as normal objects.
Concerning the constant function Sc,, in this case it returns the complete set
of dynamic subclasses within class Ci rather than the set of objects of Ci. Once
the input/ inhibit ion arc functions are evaluated, the enabling test is the same
as usual: the symbolic marking of each input place must contain the multiset
obtained by evaluation of the corresponding are expression, and each inhibitor
place must not contain the multiset obtained by evaluation of the corresponding
arc expression.

Hence, the symbolic firing comprises four steps:

1. Splitting: the dynamic subclasses assigned to the transition variables are split
in two new dynamic subclasses, one containing the single object actually
involved in the firing, the other containing the remaining objects. This step
is obviously not performed in the case of subclasses of cardinality one.

2. Firing: the input /output arc expressions are evaluated by substituting the
variables with the new cardinality one subclasses assigned to them: the cor-
responding multisets of symbolic tokens are withdrawn f rom/added to the
transition input /output places. The new symbolic marking representation
m ~ reached after the firing is usually not canonical.

3. Minimality: the minimal representation of rh ~ is obtained by merging the
dynamic subclasses that have the same distribution over the places of the
net. The dynamic subclass resulting from the merge operation will have
a cardinality equal to the sum of the cardinalities of the merged dynamic
subclasses.

4. Canonical representation: the canonical representation rh" of rh ~ is obtained
by applying a lexicographic ordering operation.

Let us make a remark: the implication of assigning a whole dynamic subclass to
variables in symbolic transition instances is that a symbolic firing may represent
several ordinary firings. Let us explain this on two examples of symbolic firings

410

enabled in the symbolic marking rhl below:

NextSnd (<2, RECI), (2, REC2))
NextRec((2, REC1), (3, REC2))
Received (<1, RECI>, (1, REC2>, <2, REC2>)
IREQI = 1, IREC21 = 2

RxlnpBuf((2, RECI))
RxOutBuf((3, RECk))
Limit(L - 3)

The two symbolic firing instances we shall consider are: RecPck(c 4-- 2, r e--
REC1) and TxAck(c +- 3, r 4-- REC2). The first transition instance involves dy-
namic subclass RECt of cardinality 1, hence splitting is not needed in this case.
It is enabled because a token (2, REC1) is contained both in place NextRec and
in place RxlnpBuf so that we can proceed in the actual firing pretty much in
the same way as we perform an ordinary firing. The new symbolic marking rh2
reached is:

NextSnd (<2, RECl >, (2, RECk>)
NextRec((3, RECl), (3, RECk>) RxOutBuf(<3, REQ), (3, REC2>)
Received((1, RECI>, (2, RECI>, (i , REC2>, (2, REC2>) Limit(L - 3)
IREQI = 1, IREC21 = 2

It is easy to see that this representation does not minimise the number of dy-
namic subclasses, indeed now both subclasses REC1 and REC2 have the same
distribution in the places and hence can be merged leading to the new symbolic
marking representation:

NextSnd((2, RECl))
NextRec((3, RECl))
Received (<1, RECI>, (2, RECI>)
IREQ[= 3

RxOutBuf(<3, RECl>)
Limit(L - 3)

Since this symbolic firing involved only a subclass of cardinality one, it rep-
resented just one ordinary firing. The second symbolic firing instance instead,
represents two ordinary firings, one for each object that can be chosen within
the dynamic subclass REC2 (see Fig. 7 for a pictorial representation of the exam-
ple). In this case we need to first split dynamic subclass REC2 into two subclasses
REC2 and REC3 representing respectively the object chosen for the firing and the
remaining objects in the subclass. We thus obtain the split symbolic marking
representation below:

NextSnd(<2, RECI>, (2, REC2>, (2, REC3)) RxlnpBuf((2, RECI>)
NextRec(<2, RECI>, <3, REC2>, (3, REC3>) RxOutBuf(<3, RECk>, (3, REC3>)
Received((1, REC1), (1, REC2>, (2, REC2, >(1, REC3>, <2, REC3>) Limit(L - 3)
IREQI = 1, IREC~I = i, IREQI = 1

The transition instance TxAck(c 4-- 3, r 4-- REC2), with the new subclass REC2
assigned to variable r, is enabled since token (3, RECk) is contained into place

411

RecP
~n2 ck

Fig. 7. Marking and symbolic firing aggregation in the SRG.

RxOutBuf. After performing the firing, we obtain the new (vanishing) symbolic
marking 7hs

NextSnd((2, RECk), (2, REC2), (2, REC3}) RxlnpBuf((2, RECI))
NextRec((2, RECI}, (3, REC2}, (3, REC3>) -RxOutBuf((3, REC3})
Received ((1, RECI}, (1, REC2}, <2, REC2, }(1, REC3}, (2, REC3})
ChoiceAck((3, REC2}) Limit(L - 3)
IREC~I = I, IREC21 = I, IRECal--- 1

This representation is already minimal with respect to the grouping into dy-
namic subclasses, however it is not yet canonical: in fact by exchanging (the
names of) dynamic subclasses REC2 and REC3 we obtain a representation that
is lexicographically less than that obtained after the firing.

The reMer may have observed that in the above example, the objects of
class REC have been treated in a symbolic way, while the objects of class CNT
have been represented in the usual way. This is because there is no exploitable
symmetry within class CNT since we need to identify the first packet and all
its successors (the behaviour of the system is not independent on their actual
identity). The example above concerns the exploitation of symmetries of a non
ordered class, t reatment of ordered classes is slightly more complicated than that
of non ordered ones, and will not be explained in this chapter: the reader may
re[hr to [11] for more details on this topic.

Finally, tile symbolic marking and the symbolic firing rule can deal also with
several simultaneous classes with symmetries.

3 . 3 G e n e r a t i o n a n d ana lys i s o f t h e S y m b o l i c R e a c h a b i l i t y G r a p h

The Symbolic Reachability Graph (SRG) describes the evolution of an SWN
model through a set of macro-states (the equivalence classes represented by
symbolic markings). Each macro-state represents a set of more detailed states
which are equivalent. The nodes of the SRG are labelled with symbolic markings
in canonical form and the arcs are labelled with symbolic firing instances. The
algorithm for the SRG generation has the same structure of the algorithm for

412

the generation of the RG with marking and firings replaced by their symbolic
counterparts: a detailed description of this algorithm may be found in [13].

The strength of the SRG approach is due to the possibility of reducing the
state space size, while still being able to study at the SRG level most of the
properties that can be studied on the complete RG. We mention here the most
relevant properties omitting their proofs (that can be found in [13]).

The SRG and RG are equivalent with respect to teachability, i.e., all ordi-
nary markings reachable from the set of initial ordinary markings belonging to
the initial symbolic marking are represented by some symbolic marking in the
symbolic RS and vice-versa. This means for example that if the RG contains
a deadlock, this can be found also in the SRG. Another important property is
that the RG is finite if and only if the SRG is finite. Also liveness of transitions
in the SRG can be related to liveness of transitions in the RG since any firing
sequence in the RG has a counterpart in the SRG and vice-versa.

As mentioned before, a property which is very relevant in the context of SPNs
is ergodicity: the problem is to check whether the RG is strongly connected. If the
RG of an SWN model is strongly connected, the corresponding SRG is strongly
connected too but, in general, the vice-versa does not hold. In the particular
case of a symmetric initial marking however, if the SRG is strongly connected,
also the RG is so. In [11] a less restrictive sufficient condition for RG ergodicity
has been defined.

Another set of important properties, called numerical properties, allows one
to compute both the number of ordinary markings belonging to a given equiv-
alence class and the number of ordinary firings represented by each symbolic
firing (see [12] for the details): as we shall see later, these properties are very
important for the performance analysis of SWN models through the SRG.

If arbitrary qualitative properties have to be checked on the model state
space, as for example any kind of property that can be expressed through tem-
poral logic formulae, then it might be necessary to partially unfold the SRG,
depending on the type of formula expressing the property. In [36] it is shown
how the SRG can be used to prove SWN models qualitative properties expressed
as CTL formulas by applying model checking techniques. It is worthwhile high-
lighting that recently some papers have appeared on the possibility of exploiting
symmetries in the framework of temporal logic model checking [18, 21] which
are based on ideas similar to those presented in this chapter for SWNs.

We conclude this section showing some numerical results we obtained using
the GreatSPN tool [17]: we have computed the SR.G of the SWN model of Fig. 5
varying the network capacity, the number of receivers and of data packets to be
sent, and computed the size of the corresponding RG by using a formula that
allows to compute the number of ordinary markings represented by a symbolic
marking. The SRG and RG sizes are listed in Table 1: they coincide with the
number of states in the ordinary and condensed state spaces computed for the
multiple receivers CPN model of Chapter [37].
It can be observed that in the case of two receivers the size of the RG is close
twice the size of the corresponding SRG. In the case of three receivers the ratio

413

Recs Lim Packets R G S R G R G / S R G
2 2 2 245 131 1,870
2 2 3 529 277 1,910
2 2 4 921 477 1,931
2 3 2 3.609 1.819 1,984
2 3 3 14.025 7.037 1,993
2 3 4 35.909 17.991 1,996
3 3 3 9.775 1.903 5,137
3 3 4 22.317 4.195 5,320
3 4 2 104.258 18.253 5,712
4 4 2 39.617 2.559 15,481
4 4 3 172.581 9.888 17,454
5 5 2 486.767 8.387 58,038
6 6 2 5.917.145 24.122 245,301

Table 1. Sizes of RGs and SRGs of the net model of Fig. 5.

between the RG and the SRG sizes is almost 5, while with four receivers we
have a ratio of about 16, . . . Observe that the aggregation which can be achieved
when using the SRG algorithm is bounded from above by the product of the
factorial of co]our classes cardinalities (in the protocol example I RECt!).

3.4 S R G a g g r e g a t i o n a n d l u m p a b i l i t y o f M a r k o v c h a i n s

In this section we discuss the relation between the state space aggregation due to
the application of the SRG algorithm and the lumpability of the CTMC that can
be derived from the RG. The aim is to reduce the cost of performance analysis
exploiting again the model symmetries. We first give the definition of ordinary,
exact and strict lumpabil i ty (according to the definitions in [7]), then we discuss
the lumpabil i ty of the CTMC underlying an SWN model.

D e f i n i t i o n 8 O r d i n a r y L u , n p a b i l i t y o f M C . Let S = { s l , . . . , s n } be the
set of states of a CTMC, Q be the corresponding infinitesimal generator and
A = { A 1 , . . . , A k } be a parti t ion of S into aggregates. The strong lumpabil i ty
condition is defined as:

VAi, Aj E A, Vsil, si2 E Ai, ~ qil,k = E qi2,k
skEAj skEAj

If ordinary lumpabil i ty (also called strong lumpabil i ty in the literature) holds,
then a lumped CTMC can be constructed with rates between aggregate Ai and
A i equal to:

= ~ qh,a, where sh E Ai q~,j
skEAj

and steady state analysis of the CTMC can be performed on the reduced MC.

414

Defin i t ion9 Exact Lumpab i l i ty of MC. Let S = {s l , . . . , sn} be the set
of states of a CTMC, Q be the corresponding infinitesimal generator and A =
{ A1, . . . , Ak } be a partition of S into aggregates. The exact lumpability condition
is defined as:

VAi,Aj E A, Vsii, si2 E Ai, Z qk,ii = Z qk,i~
skEAj skEAj

If exact lumpability holds, then all states in an aggregate have the same steady
state probability, hence a lumped CTMC can be built whose inter aggregate
transition rates are given by:

1

shEA~ skEAj

If both ordinary and exact lumpability conditions are satisfied, we can compute
the aggregate MC with any formula above since in this case they are equivalent.
Moreover, we know that the states within an aggregate are equiprobable. The
name strict lumpability has been introduced in [7] meaning that both exact and
strong lumpability conditions are met.

In [11] it has been shown that strict lumpability holds for the CTMC corre-
sponding to an SWN model with respect to the SRG aggregation. Since it is easy
to compute the number of ordinary markings belonging to a symbolic marking,
we can compute any performance index that could be computed on the complete
CTMC by generating and solving only the aggregated CTMC.

P ropos i t i on 10. The CTMC corresponding to the RG of an SWN model satis-
fies the strict lumpability conditions with respect to the aggregation of (ordinary)
markings into symbolic markings.

The above result tells us that we can exploit the SRG aggregation also for
performance evaluation purposes. This result can be fully exploited because not
only we can solve a lumped MC to obtain performance indices, but we are able
to build the lumped MC directly from the SRG, without ever computing the
complete MC.

P r o p o s i t i o n l l . The lumped CTMC corresponding to the SRG of an SWN
model can be directly computed using only the information on the transition
instance rates/weights and the SRG.

The rates between two symbolic markings rh and rh' can be obtained as the sum
over all symbolic transition instances t(6) leading from rh to rh ' of the product
It(~)lO(t(~)) where It(~)l represents the number of ordinary firings represented
by symbolic firing It(~)l and O(t(~)) is the rate of any ordinary firing represented
by symbolic firing t(~). Observe that the constraints imposed in the definition of
the transition firing rates (see Definition 1) guarantees that all ordinary firings
grouped into a symbolic firing are assigned the same rate.

415

In our example of rhl[TxAck(c +-- 3, r +-- REC2))rh3, the rate is given by 2r/
where l / r / is the average delay experienced by an acknowledge packet traversing
the network from the receiver to the sender, while the factor 2 accounts for
the fact that the above symbolic firing instance represents 2 ordinary firings (as
shown in Figure 7).

3.5 C o m p u t a t i o n of pe r fo rmance indices f rom the l u m p e d C T M C

Let us spend a few words on what kind of performance indices can be defined on
an SWN model: as in GSPN models, starting from the steady state probability
distribution of all the markings in the reachability set, it is possible to define more
high level indices like, for example, the probability distribution of the number
of tokens into places, transition throughputs, or other user defined performance
indices. A convenient way of defining these performance indices is through reward
functions (see Chapter [2]).

However, since now tokens are coloured, and the firing refers to transition
instances, one may choose whether to compute the distribution of coloured to-
kens into places, or rather the distribution of tokens into places independently
on the colour, or even something in between the two, like for example the prob-
ability distribution of tokens into a given place, partitioned on static subsets.
Similarly, one may be interested in the overall throughput of a given transition,
independently on the instance, or may want to know the throughput of a specific
instance or of subsets of instances with common characteristics.

Examples of high-level performance indices in our running examples are:
average time required to send the whole pool of packets to the receiver(s) (this
is a function of the throughput of transition Restart), utilisation of the network
(function of the token probability distribution of place Limit), ratio between
the number of useless (i.e., old) and useful received packets (function of the
throughputs of transitions OIdPck and RecPck).

In the model with n > 1 receivers, one may want to ask questions on the
performance of a specific receiver, e.g. the average number of packets into the
receiver input buffer: due to the constraint in the definition of transition delays it
is possible to efficiently compute this kind of indices exploiting the fact that the
receivers behave homogeneously, both from a qualitative and from a quantitative
point of view, and that the average number of packets in the input buffer is the
same for all receivers.

3.6 Discussion

We conclude this section by summarising the main ideas and advantages of the
SRG technique: given an SWN model, comprising one or more colour classes,
the technique allows to automatically exploit the behavioural symmetries of the
system through the use of the symbolic marking representation and the symbolic
firing rule. This can be done thanks to the particular way of defining places
colour domain and arc expressions peculiar of SWNs, which guarantee that any
pair of markings which are equal up to permutation of objects within basic

416

colour classes are equivalent, i.e. lead to the same future behaviour. Symbolic
markings represent equivalence classes of ordinary markings. The symbolic firing
rule allows to generate all symbolic markings reachable from a given symbolic
marking, so that the RG generation algorithm can be easily adapted to directly
generate the SRG, whose size is usually much smaller than that of the RG, while
retaining enough information to prove most interesting qualitative properties.
The other important feature of this technique concerns the performance analysis
of SWN systems, in fact a lumped CTMC can be directly derived from the SRG
allowing to compute the same performance indices that could be computed for
the complete CTMC. Moreover, the notion of symbolic marking and symbolic
firing have also been used to improve the efficiency of event driven simulation of
SWN models [15, 46].

Finally, observe that the SRG captures only those equivalences which are due
to permutations (rotations) of objects belonging to the same colour class while
it cannot capture other forms of equivalences, like for example those based on
the idea of making all old packets and old acknowledges in the protocol example
indistinguishable, presented in Chapter [37] and in [40].

Moreover, it might be the case that the way of composing colour classes to
model a system can in some not very intuitive case lead to less aggregation than
a more clever model could do (see [16] for examples on this topic).

4 S t o c h a s t i c P r o c e s s A l g e b r a s

Stochastic Process Algebras (SPA) [5, 8, 29, 33] are a timed extension of Pro-
cess Algebras [43, 34] introduced for the specification, understanding, and per-
formance analysis of concurrent systems composed of entities that execute inde-
pendently and cooperate through communication.

We will describe here a generic SPA language, which has most of the ba-
sic ingredients of the stochastic algebraic languages proposed in the literature.
Systems are described as interactions of components that can perform a set of
activities described as pairs (c~, r), where a is the type of the activity and r E IR +
is the parameter of the negative exponential distribution governing its duration.
Whenever a process P can perform an action, a duration is sampled: the result-
ing number specifies how long it will take to complete the action. If there are
several concurrently enabled actions which are in conflict, the conflict is solved
by means of a race policy, like was the case of SPNs [2].

SPA terms may be written considering a core set of language operators. The
syntax for language terms can be defined by the grammar below.

P : : = N i l I (a,r).P I P + Q I P[IsQ I P /H I A

The names and the intuitive meanings of the operators are the following:

- Inac t iv i ty : Nil represents a process that cannot perform any action.
- Prefix: (~, r).P is the process that after a certain delay (negative expo-

nentially distributed) performs an action of type a and then behaves like

417

P. Actions can be active or passive, the second being executable only when
synchronised with active actions; the rate of passive actions is unspecified.
Some languages [5, 29] allow also actions that happens in zero time with
priority over t imed actions.

- Choice : The component P + Q enables activities of P and Q. A race policy
governs the dynamic behaviour of this language expression. All the enabled
activities are at tempting to proceed, but only that with the shorter duration
will succeed and determine the future behaviour of P + Q.

- C o o p e r a t i o n : The component PIIsQ represents a system where the pro-
cesses P and Q are executing some of their actions independently and some-
times work together to perform some common activities. The cooperation
between components follows the CSP style of communication [34]. The set S
is called the synchronisation or cooperation set and defines the action types
on which the components must synchronise.
Activities with action types in the set S are assumed to require the simulta-
neous involvement of both components. The resulting activity will have the
same action type as the two contributing activities and a rate computed as
a function of the rates of the activities participating in the synchronisation.
An interesting discussion about the different proposals for the computat ion
of synchronisation rate may be found in [31].
When the set S is empty, IIs has the effect of parallel composition, allowing
components to proceed concurrently without any interaction between them
(in this case the concise notation PNQ is usually used).

- H id ing : P/H is a process that cannot perform any action belonging to the
set H. These actions appear as the invisible action r (they can be regarded
as internal delays) and they are not accessible for cooperation.

- C o n s t a n t : Constants are components whose meaning is given by defining
an equation such as A ~f P that gives the constant A the behaviour of P.
Constants are used to define recursive behaviours.

The formal semantics for the operators is given following the structural oper-
ational semantics style of Plotkin [45], the interested reader can refer to the
literature for further details about this topic.

Each component P is characterised by the set of reachable states. Apply-
ing the semantic rules a transition diagram may be associated with each SPA
term. This transition diagram can be viewed as an alternative way for describ-
ing the behaviour of the system: the nodes are labelled by elements of the set of
reachable states (i.e., language expressions), and the arcs are labelled by pairs
(action type, r) describing the actions that caused the state change. Notice the
analogy existing between the transition diagram underlying an SPA model and
the teachability graph underlying an SPN model.

The Markov process underlying any finite SPA component can be obtained
directly from the transition diagram: a state of the Markov process is associated
with each node of the graph and the transitions between states are defined by
the arcs of the graph. Since all activity durations are exponentially distributed,
the total transition rate between two states will be the sum of the activity rates

418

labelling arcs connecting the corresponding nodes in the transition diagram.
One of the most important aspect of process algebras, and of SPAs, is the

possibility of defining equivalence relation between processes [43] which can be
used to compare process specifications and to replace one specification by an-
other one which exhibits an equivalent behaviour, but possibly has a different
representation. Several notions of equivalence have been defined for SPAs. Some
of them consider only the functional aspects of the components, some consider
only the temporal aspects, and other consider both aspects.

When we consider the functional aspects only, we can apply to SPA spec-
ifications a well known notion of equivalence: strong bisimulation; it was first
introduced in [44] and formally defined for CCS in [43] and it is fundamental in
the untimed process algebra theory. Two components P and Q are considered
equivalent if they cannot be distinguished by an external observer: essentially
anything either one can do is matched by something the other can do and af-
terwards they remain equivalent. Hence, if P and Q are strongly bisimitar, any
action, including the invisible action r, performed by one must be matched by
the other. The notion of strong bisimulation is very strict and makes distinc-
tion between components even if they differ in their internal behaviours only.
A weaker notion of equivalence which disregards from r actions (i.e. from the
internal behaviour) and considers only the observable actions of the components
(i.e. their external behaviour) has also been defined [43].

Another fundamental notion in the process algebras theory is the notion of
congruence. An equivalence relation is a congruence when it is preserved by
all combinators of the language. This means that, whenever two components
P and Q are equivalent with respect to a given equivalence notion which has
been proved to be a congruence, we can compose them with a third component
obtaining two models that are still equivalent. Alternatively, we can say that the
two components P and Q can be interchanged in any complex system S, with
confidence that its behaviour remains the same.

Again we refer to the literature for more information on equivalence notions
and congruences while in Section 5.2 we will briefly discuss one equivalence no-
tion which takes into account both functional and temporal aspects and has been
defined for model aggregation.

4.1 The pro tocol example

We describe now the SPA model of the protocol example already presented
in Section 2.1. We will use timed actions only but for readability we will not
introduce rates in the specification. The actions will be represented by their
types only and we assume that those with the same type have the same rate.
The compositional technique for the model definition requires to specify first
the components in isolation and subsequently to define their interactions. Sev-
eral processes have been identified: the sender, which is responsible for send-
ing the data packets, the receiver, which is responsible of the reception of the
packets and of the sending of acknowledge messages, and the network, which is
composed of several buffers for the storing of different types of messages. The

419

l tstpcki
sndi oldpckj (i < j <_ max)

: ~ n d O u t B u ~ RxlnBuf I I
I recpcki ~

Sender

recacki [SndlnBuf ~ R x O u t B u f i= l
I I - I I- oldpcki

oldackj (i < j < max)

Fig. 8. Abstract view of the protocol example.

network component is in turn composed of smaller subcomponents, each one
modelling a single buffer. Moreover we have a component responsible for lim-
iting the number of messages simultaneously circulating in the network. Fig. 8
shows an abstract view of the components involved in the system except the one
which is responsible of limiting the number of messages concurrently t ransmit ted
(we have omitted it to avoid cluttering the schema with too many arcs).

Each component is sequential i.e., written by means of prefix, choice and
constant operators• The interactions among the components are specified making
use of the parallel composition operator and proper synchronisation sets. In order
to facilitate the understanding of the components described below the have used
action names similar 11 to transitions labels in the net shown in Fig. 4.

Let us now go into the details of the sender: it must send a pool of packets
and keeps sending the same packet until it has received a proper acknowledge
message from the receiver. A possible specification of such a behaviour in the
case a pool of max data packets could be the following:

NextSndo
Nex tSnd l

NeztSndi def=

clef
NextSndma~ =

clef
= Sndl.NextSndo + recackl .NcxtSndl
de~ snd2.NextSndl + oldackl .NextSndl + recack2.NextSnd2

sndi+t .Nez tSndi + oldacki.NeztSndi + recacki+l.NextSndi+l

oldackmaz .N extSndma~ + restart .N extSndo

In the initial state, NextSndo, two possible actions are enabled: sndl, modelling
the sending of the first da ta packet, and recackl, modelling the reception of the
acknowledge message for the first data packet. The pessimistic strategy requires
that the sender keeps transmitting a packet until it receives an acknowledge for
it. This behaviour is obtained by keeping the sender in the state NextSndo until
the action recackl is performed• After the execution of recackl, the component
moves to the next state NextSnd l . Notice that the choice between the two

x 1 We have chosen to write action names using small letters only, to distinguish them
from the names of the components.

420

actions sndl and recacky is random at this level of the component definition,
while in the complete model it will depend on which action is offered by the
other components. These two actions in fact (and many others) will form the
cooperation sets on which components must synchronise. We will return to this
notion when forming the complete model of the system.

Starting from the state NeztSndl three actions are enabled: snd2, modelling
the sending of the second data packet, otdackl, modelling the reception of old
acknowledge messages, and recack2 representing the reception of the acknowl-
edge message for the second data packet. When this new acknowledge message
is received the component evolves into NeztSnd3, and so on, until it reaches
the state NextSndma= in which only old acknowledges can be received until a
restart action, that moves back to the initial state, is performed. Notice that the
execution of action oldacki represents a situation in which the sender is receiving
an acknowledge for a message of index j with 1 _< j < i, i.e. an old acknowledge,
while its internal state is NextSndi.

The receiver is modelled by a component, called NeztReco, which has the
following specification:

d e f
NeztReco =

d e f
NextRecl =
. o .

clef
NextReci =

clef
NextRecma= =

recpckl.NextRecx
recpck2.N extRec2 + oldpckl.N ext Recl

recpcki+l.NextReci+l + oldpcki.NextReci

oldpckmax.N ext Reema~ + restart.N extReco

The first action that the receiver can perform, recpckl, represents the reception
of the first data packet. Afterwards the second data packet (recpck2) or old
data packets (oldpckl) can be received. This behaviour is repeated until all data
packets have been received and the receiver evolves into NextRec,~a~, state
in which only old packets can be received (oldpckma=) until a restart action is
performed. Notice that any action oldpcki represents the reception of old packets
numbered t, 2 , . . . , i, while the receiver was expecting a packet numbered i + 1.

Several components are used to model the buffers of the network; we will
describe in detail the SndOutBuf buffer connecting the sender to the network,
all the other buffers having a similar specification.

SndOutBu f~ aa= sndi.SndOutBu f~
SndOutBuf~ d,,= snd~.SndOutBuf~ + txpek~.SndOutBuJ~ + lstpek~.SndOutBuf~

SndOutBu f~ a~= tzpcki.SndOutBu f~_ 1 + lstpcki.SndOutBu f~_ i

The variable i may assume values i = 1 , . . . , max corresponding to the number
associated with data packets that can circulate in the network: a buffer that can
contain packets of max different numbers is specified as the parallel composition
of max buffers, one for each packet number.

421

The state SndOutBufio offers a sndi action, representing a situation in which
the buffer can accept a data packet number i. When one packet is stored in the
buffer, the component evolves into SndOutBuf~ where three actions are enabled.
A new packet number i can be stored in the buffer (sndi), the packet can be
transmitted through the network (tzpcki) or the packet can be lost (lstpcki).
The choice of the action to be performed will be determined by what is offered
by cooperating components. The same actions are offered in the other states
until the buffer is full (SndOutBuf~) . Notice that , until we do not fix the value
of k, we are modelling buffers with an unknown number of positions.

All the other buffers have similar specifications which are written below with-
out any comment.
R x I n B u f i ° d,e = txpck~.RzInBuf l

l ' n a ~

RxInB u f ~ dof i --- txpcki .Rx l n B u f~ + E oldpckj.Rx l n B u f~ + recpcki.Rx l n B u f~
j=i

m a t

RxI .u/ d" E = oldpckj .RxlnBuf~_ 1 + recpcki .RxlnBuf~_ 1
j = i

R x O u t B u ~ d~ i = recpcki .RxOutBuf l + oldpcki.RxOutBuf~
RxOutBuf~ do~ i oIdpcki.RxOutBuf~+ = recpcki.RxOutBuf~ +

ls tacki .RxOutBu fio + txack i .RzOut .Bu f f o

RxOutBuf~ d~f i • = ls tacki .RxOutBuf~_l + txacki .RxOut .Buf~_ 1

SndlT~Buf~ ~f txacki .SndInBuf~
rrl a :g

SndlnBuf~ ~'~ i = + eack, + o d ckj.S,d B fo
j=i

m (t x

Snd lnBu f~ ~frecacki .SndInBuf~_ 1 q- E o l d a c k j . S n d I n B u f ~ _ l
j----i

The Lira component is responsible of limiting the maximum number of messages
simultaneously present in the network. In the net of Fig. 5 the initial marking of
place Lira is equal to two, meaning that we admit at most two messages. This
is obtained in SPA using the following specification:

clef
Lira2 = sndt .Lira1 + . . . + sndmax.Liml + restart.Lira2

clef
Lira1 = sndl.Limo + . . . + sndmaz.Limo+

lstpckl .Lim2 + . . . + lstpckrn~.Lim2 + lstackl .Lira2 + . . . +
lstackmaz .Lira, Jr recackl.Lim2 + . . . q- recackmaz.Lirn2+
oldackl.Lim2 + . . . + oldackmaz.Lim2

d e f
Limo = ls tpckl .Liml + . . . + lstpckma=.Liml + ls tackl .Liml + . . . +

lstackmax.Liml + recackl.Liml + . . . + recackmax.Liml +
oIdackl.Liml + . . . + oldackmax.Liml

Notice that, once we have fixed the number of concurrently circulating messages,

422

we can also fix the minimum size of the buffers (k = 2 in this case). Of course
we could also have buffers with more positions but we can be sure that these
positions will never be occupied.

Finally, we can obtain the model of the whole system by specifying the in-
teractions among all the components; the complete protocol specification is thus
defined as:

Protocol ~ Lirn211sl (Nez tSndo]s~((SndOutBuf~ ~ . . . IISndOutBu f ~) l s ,
(Rx l n B u f~ ~ . . . IIRzlnBu f ~ a~) ~s, Nez tReco ~s, (R x O u t B u f~ It
---II RxOut Bu f~ naz) ~ss (SndInBu flo I1---USndInBu:~ a~)))

$ 1 = { s a d 1 , . . . , s n d m a z , l s t a c k l , . . . , l s t a c k , ~ a x , l s t p c k l , . . . , I s t p c k m a ~ ,

r e c a c k l , . . . , r e c a c k m ~ , o l d a c k l , . . . , o l d a c k m ~ z , r e s t a r t }

$ 2 = { s n d l , . . . , s n d m ~ , r e c a c k l , . . . , r e c a c k m a x , o l d a c k l , . . . , o l d a c k r ~ a z }

$ 3 = { t z p c k l , . . . , t z p c k m a ~ }

$ 4 = { r e c p c k l , . . . , r e c p c k m a z , o l d p c k l , . . . , o l d p c k m a z }

S ~ = { t z a c k l , . . . , t x a c k m a z }

We have computed the ordinary state space underlying this model for different
numbers of data packets and different numbers of messages concurrently sent in
the net using the T I P P tool [30]. Some results are listed in Table 2.

Lim Packets States Transitions
2 2 83 282
2 3 172 608
2 4 293 1058
2 5 446 1632
3 2 299 1282
3 3 846 3876
3 4 1829 8690

Table 2. Number of ordinary states for the P r o t o c o l specification.

We end this section inviting the reader to observe that there exists a close
relation between places and transitions in the net model of Fig. 5 and (subcom-
ponent) derivatives and actions in the SPA model presented here. For example,
place NextSnd, which models the sender, is the input place of transition Send 12,
which models the sending of a data packet. After its firing, a da ta packet is
stored into the buffer connecting the sender to the network, modelled by place
SndOutBuf. The same behaviour is obtained in the SPA specification by impos-
ing a synchronisation on action type s a d 1 between the processes N e z t S n d o and
S n d O u t B u f ~ .

12 We do not consider place Send whose marking never changes during the net evolution.

423

The mapping of nets models into algebraic specification, or vice-versa, requires
some ingenuity. However, rules have been identified to guide the translation
process and the interested reader may refer to the literature for major details
about this topic [4, 48].

5 Aggregation in SPA

SPAs, as well as SPNs, suffer from the so-called state space explosion prob-
lem: to cope with this problem aggregation techniques have been defined in this
framework too.

We wilt describe in this section an aggregation technique based on a notion
of equivalence which has been firstly defined in Performance Evaluation Process
Algebra (PEPA) [33] where has been called strong equivalence [32]. We will use
the notation proposed for PEPA but most of the considerations we will discuss
can also be extended to other languages [5, 29] by just adapting the notation.

First we need some definitions to understand this aggregation technique.
We recall that in PEPA the reachable states (the language terms) are called
derivatives, the set of all reachable states is the derivative set (DS), the transition
diagram is called derivation graph (DG), and the aggregated transition diagram
is called lumped derivation graph (LDG).

The transition rate between two components (/i and Cj, denoted by q(Ci, Cj),
is the sum of the activity rates labelling arcs connecting node Ci to node Cj.
The conditional transition rate from Ci to (J~ via an action type a is denoted
by q(Ci, Cj, ~). This is the sum of the rates corresponding to actions of type
labelling arcs connecting the corresponding nodes in the DG. The conditional
transition rate is thus the rate at which a system behaving as component Ci
evolves to the behaviour of component Cj after having completed an activity of
type a.

If we consider a set of possible derivatives S, the total conditional transition
rate from Ci to S, denoted q[Ci, S, ~], is equal to the sum of the conditional
transition rates from Ci to components Cj belonging to S:

CjES

The concept of total conditional transition rate is the basis for the definition of
strong equivalence since two PEPA components are considered strongly equiv-
alent if for any action type c~, the total conditional transition rates from those
components to any equivalence class, via activities of this type, are the same.

The notion of strong equivalence has been used in [32] to define a procedure
for the generation of aggregated Markov processes underlying SPA models. The
state space of an SPA model is partitioned into equivalence classes. Once the
equivalence classes have been identified, they forrn the states of the aggregated
state space and they label the nodes of an LDG. Instead of deriving the CTMC
from the DG underlying the model, it is possible to derive a lumped CTMC
starting from the LDG which has been built. The LDG and the aggregated

424

CTMC are isomorphic: each state in the LDG corresponds to a state in the
Markov process, and the transition rates between nodes are the sum of the total
conditional transition rates attached to the arcs connecting them.

Unfortunately, the partitioning of the DS still requires its generation for the
complete model. In some cases this set can be so large that even the aggrega-
tion of the model is infeasible. However, all the benefits of this technique can
be obtained by taking advantage of the fact that strong equivalence is a congru-
ence, and by exploiting the compositional structure of the model [32]. Instead of
constructing the complete DS of the entire model and then partitioning it into
equivalence classes, it is possible to generate partial DSs by considering pairs
of cooperating components in turn. These partial DSs can be aggregated and
the corresponding lumped components can be computed by considering the as-
sociated LDGs. Furthermore, each pair of components can be replaced by the
lumped one into the original model, obtaining a new model which is strongly
equivalent to the original (i.e. its behaviour is maintained) but, in general, has
a smaller DS.

Let us informally explain this procedure by considering the expression Sys ~f
P[[s,Q[[sR[[s2T, where P, Q, R and T are the model components. We can for ex-
ample compute the partial DSs underlying P[[slQ and RIIs2T, partition them
into equivalence classes, compute the underlying LDGs, and form the new (ag-
gregated) components 13, say P~Q and/~T. These new components exhibit exactly
the same behaviour of PUs,Q and RUs2T , respectively, and can be substituted
in Sys having confidence that its behaviour will be maintained. Hence we obtain
the new specification Sys' d,~ i~Q[[si~ T which has the same behaviour of Sys
but less states.

Notice that the DS of the original model does not need to be constructed, and
that no CTMC is derived until the aggregation procedure is complete. Details
of the procedure that realises the compositional aggregation technique may be
found in [32, 33].

The aggregated Markov chain which can be obtained by means of strong
equivalence satisfies the lumpability conditions and therefore all the states be-
longing to a single aggregate move towards the other aggregates with the same
probabilities. However, the lumpability is not strict [7] (see Section 3.4) and
therefore equivalent states within the same aggregate are not equiprobable. This
means that, once we know the probability of being into a single aggregate, we
cannot compute the probability of being into a single ordinary state by simply
dividing this probability by the number of states within the macro-state; also
the performance indices that can be computed can refer to macro-states only.

5.1 Horizontal and vertical aggregation

We discuss in this section some forms of aggregation which are possible when
using the strong equivalence relation; further details may be found in [47].

13 An aggregated component is derived from the LDG in such a way that its (ordinary)
state space has exactly the same states of the LDG.

425

Let us consider a simple model P g* P1 lIP1 where P1 is specified as follows:

P1 ~ (a, rl).P2 P2 a___., (fl, r2).Pa

The DS underlying the model is:

DS(P) = {P~IIP~, P~P2, P2~P1, P2~P2, P,~P3, P3~P~, P2~Pa, P311P2, P31IP3}

The DG of P has the so called diamond structure and it is shown in Fig. 9(a).
The states P1 lIP2 and P2IIP1 are strongly equivalent because they enable actions

P1 ~ PI

(oG r < ~ ri)

~ //(P,"2)

P~P3

[P1 IP1]

, 2r~)

" , . [P1 lIPs] r

[P~UP~]

(a) (b)

Fig. 9. DG and LDG of P ~f P11tP1.

of the same type (a, resp. 3) with the same total conditional transition rate
(rl, resp. r2) and, afterwards, they reach equivalent states (P~IIP2, ,'esp. PtllP3
and P~IIP1)- Hence P~ UP2 and P2 liP1 belong to the same equivalence class which
we denote as [P1HP;]. The same reasoning holds for the pairs PI[[P3 and P311r~,
P211P3 and PalIP2, i.e. for those derivatives that are parallel composition of the
same set of components but in different order. Therefore we can parti t ion the
DS of P into equivalence classes as follows:

[P~IIPd : {PIltP~}
[P~tIP3] : {P~ lIP3, P311P~}
[PaltPa] = {PAPa}

[PlttP~] = {PltlP2, P2tlP~}
[P~llP3] = {P211P3, P~llP2}

If we consider only the equivalence classes instead of the ordinary derivatives
we obtain the LDG depicted in Fig. 9(b) and the corresponding aggregated

426

component 14 could be written as follows:

Q I def = (a,2rl).Q2
Q3 dcf = (fl, 2r2).Q5
Q5 a~f = (~, r2).Q6

Q2 ~ (a, rl).Q3 + (fi, r2).Q4
Q4 d,=~ (a, rl).Q5

This kind of reduction in the derivation graph takes into account only one among
different, but equivalent, interleavings and graphically it can be seen as an hori-
zontal aggregation in which equivalent nodes which are at the same level within
the graph are folded together. It is easy to see such folding comparing the two
graphs in Fig. 9. We invite the reader to observe that this idea of considering
equivalent those derivatives that can be obtained by permutat ion of the com-
ponents within the parallel composition operator closely reminds the idea of
permutat ion of similar objects within dynamic subclasses discussed in Section 3
for the SWN formalism.

The Strong equivalence relation allows also another kind of reduction of the
state space which does not consider permutations of the same components within
derivatives but repeated patterns of behaviour within the specification of the
components. We call this reduction vertical aggregation in contrast to the hor-
izontal one just discussed. In this case we consider as belonging to the same
equivalence class those states characterised by the same pattern of behaviour,
i.e. those states that execute actions of the same type, with the same total tran-
sition rates, and afterwards reach states which are still equivalent.

Let us again explain this fact on the following simple example whose DG is
shown in Fig. 10(a).

clef
P1 = (a, rl).P2

def
P3 = (a, rl) .P4

P2a'=f(~,r2).Pl+(fl, r2).Pa
def

P4 = (~,2 "r2).Pl

~,r2)

lw

[e,]

[P21

2r2)

(a) (0
Fig. 10. DG and LDG of P~.

14 When we write an aggregated component starting from an LDG we associate arbi-
trary names with the derivatives,

427

In the component described above we can identify two equivalence classes [P1] =
{P1, Pa} and [P2] = {P2, P4} which form the states of the LDG drawn in the left
part of Fig. 10. In this case we have identified a repeated pattern of behaviour
within a single component and we have added to the same equivalence class
those states which generate such a repetitive behaviour. Hence we can write a
new model whose underlying transition diagram is exactly the LDG of Fig. 10(b);
a possible specification is:

Q2 gf (9, 2r2).Q1

Notice that this type of equivalence is in general difficult to capture with the
SRG technique because it is difficult to characterise it syntactically on the state
description since it refers to symmetries which are hidden in the behaviour of
the model.

5.2 A g g r e g a t i o n o f t h e p r o t o c o l e x a m p l e

We discuss in the following sections different forms of aggregation which can
be computed on the SPA model of the protocol example we have introduced in
Section 4.1. First we show how it is possible to find equivalent states within the
state space when we ignore the identities of data packets and acknowledges that
are old. In Section 5.2 we consider also timing information and we discuss the
aggregation which can be obtained by applying strong equivalence. Finally, in
Section 5.2 we modify our model to obtain the protocol example with multiple
receivers and we discuss the new form of aggregation which can be obtained with
this modified specification.

A g g r e g a t i o n d u e to o ld packe t s a n d o ld a c k n o w l e d g e s Let us explain the
aggregation due to old packets and old acknowledges [40] through an example:
suppose that the receiver is in state NextRecj expecting a data packet number
j + 1. Any data packet of number i less that j will not change its state and will
be considered all old packet. When the receiver gets an old packet, it executes
the action oldpckj producing an acknowledge message for the sender to let it
know that the next expected packet is that numbered j + 1.

As we have just said, the reception of an old packet does not change the
future behaviour of the receiver, independently of the actual identity of the old
packet itself. This means that we can consider as equivalent all those states that
differ only for the identity of the old packets circulating in the network since
they have the same future behaviour. Therefore we can group them into the
same equivalence class.

The same reasoning holds when we consider old acknowledges instead of
old packets and the sender instead of the receiver. Here we simply recall that
an acknowledge is old when the sender is in a state NextSndj waiting for the
acknowledge tbr packet j (recackj) and acknowledges of messages i < j are on
their way to the sender.

428

The key point of the model that allows the exploitation of this equivalence
is in the RxInBuf and SndInBuf definitions. Let us explain the RxInBuf
buffer, the case of old acknowledges being similar. If we consider the case of two
data packets and Lim equal to two, the specification is the following:

RxInBuflo
RxInBuf l

RxlnBuf~

RxInBuf~
RzInBuf~

RxlnBuf~

~ txpckl.RxInBuf~
~f txpckl.RxInBuf~ +

recpckl.RxInBuflo + oldpckl.RxInBuflo + oldpck2.RxInBuf]
~ recpckl .RxInBufl + oldpckl.RxInBufl + oldpck~.RzInBufl

~ txpck2.RxInBu f~
~ txpck2.RzInBuf~ +

recpek2.RzInBuf~ + oldpck2.RzInBuf2o
~f recpck2.Rx InBu f~ + oldpck2.Rz InBu f~

We have two instances of the buffer, one for each type of packet. When the buffer
for packets number i is empty and there are less than two circulating messages,
the network can transmit a packet and the buffer moves to a new state where only
one position is available. In this situation eventually the network can transmit
a second packet of type i, filling the buffer, or the receiver can get a message
which can be new (recpck~) or can be old (oldpckj).

The buffer for data packets number 1 can perform both actions oldpckl and
oldpck2 which have the following meaning: the receiver is in state 1 or 2 and one
old packet number I is received. The buffer for packets number 2 can perform
only the action oldpck2 with the following meaning: the receiver is in state 2 and
one old packet number 2 is received.

When the receiver is in state NextRec2 it performs the same action oldpck2
for all old packets number 1 and number 2, and afterwards the same state is
reached in both cases. Therefore these states tha t differ only in the number
associated with old packets are equivalent.

If now we hide actions tzpcki,lstpcki,txacki,lstacki,i = 1,2 we obtain a
model whose abstract view is shown in Fig. 11. The network is now a black box:
the only visible actions involve the interactions between the network and the
sender, and the network and the receiver while the interactions between the
buffers within the network are completely hidden.

By applying strong bisimulation to this model we obtained the aggregated results
listed in Table 3 which coincide with those of the CPN example presented in
Chapter [37].

Before ending this section let us show in detail one example of equivalence class
in the case of Lim = 2 and two da ta packets. The following two states 15 resulted

15 We have chosen to write only the components which are important for the discussion,
the missing ones, indicated by (.), being exactly the same in both states.

429

sndi ~1

oldackj (i < j < max)

Network

oldpckj (i < j < max)

recpcki ¢~

oldpcki

Fig. 11. Abstract view of the protocol example with hiding.

Lim
2
2
2
2
3
3
3

Packets Ord. s ta tes
2
3
4
5
2
3
4

Equiv. classes
83 69

172 112
293 155
446 198
299 204
846 348

1829 492

Table 3. Condensed state space of the Protocol specification.

to be equivalent:

Limo [Is~ (Nex tSndl Ils~ (.)I[s3 (R x l n B u f l 1 ttRx InBuf~)]ls4
N e~t R~c~ II~ (RxOut Bu f 1 It n~O~t B,, f?) tls~ (.))

Li,,o IIs, (NextSndlUs,(.)tls~ (RxInBuf~ l[RxlnBuf~)lls,

In both cases, in fact, there are two circulating messages (Limo), the receiver
has already got both data packets (NextRec2) and the sender is still waiting for
the acknowledges for the second data packet (NextSndl). The only difference
between these two states is the content of the buffer RxInBuf . However, since
in both cases the packets in this buffer are old, there is no distinction between
them, i.e. they belong to the same equivalence class.

A d d i n g t i m i n g s p e c i f i c a t i o n We have discussed so far an algebraic specifi-
cation without considering any t iming information. When we add proper rates
to our actions we obtain the corresponding stochastic model suitable for the
computa t ion of performance measures.

Moreover, when we apply the notion of strong equivalence discussed in Sec-
tion 5 to our specification, we obtain less aggregation on the state space with
respect to that obtained with strong bisimulation. This is due to the fact tha t

430

in this case we are taking into account not only action types but also the total
conditional transition rates exiting from the derivatives.

Let us consider the following three states which enable actions oldpck2:

L imo }1 s, (N ext Snd2 II s2 (.)Us: (R x I n B u f ~ I[RxInBuf~)~s4 N ext Rec2 IIs4 (.)lls5 (.))
Limo]Is, (NextSnd2]1 s2 (.)I[s~ (R x I n B u f ~ U R x I n B u f l 2) ~s4 gextRec2 ~s, (.)Ils~ (.))
L imo ~s, (N extSnd2 Hs2 (.) l[s3 (Rx In Bu f~ ~RxInBuf~) ~s, N extRec2 ~s4 (.) lIs~ (.))

If all oldpcki actions have the same rate Aotdpck, the global rate for action type
oldpck2 exiting from the first two states is equal to 2. Aoldpck, since two instances
of oldpck2 are enabled. In the case of the third state instead the global rate for
oldpck2 is equal to AoZdvck since only one instance is enabled. For this reason, the
third state is kept separate from the first two when considering both functionM
and temporal aspects while, from a purely functional point of view, these three
states are considered to be equivalent.

Notice that the distinction among these states is due to our choice of mod-
elling every buffer as the parallel composition of several instances of the same
component, one for each packet number, and to the adoption of the race policy
for the solution of actions conflicts. This could not happen in a model with FIFO
sequential buffers. As was discussed in Section 2.1, we are indeed modelling a
multi threaded receiver able to process several packets at the same time, a more
complex specification is required to represent a single threaded receiver.

T h e case o f m o r e r e c e i v e r s We have presented in Section 2.1 a different
version of the protocol in which the sender has to broadcast its messages to
several receivers. We have also shown that it is possible to detect the symmetries
within this system due to the presence of replicas of the same component (the
receiver).

Here we will discuss the same modified example in terms of an algebraic
specification (without going into all the details of the model). In the net of Fig. 5
a new colour class REC has been introduced to distinguish among the receivers
without the necessity of adding new subnets in the complete model. This colour
class allows to distinguish among the packets received and the acknowledges sent
by each receiver, and to keep track of the state of each single receiver.

In SPA there is no notion of coloured components so that we need to repli-
cate several components when passing from the single receiver to the multiple
receivers case. Since we need to distinguish not only the state of the different
receivers (modelled by components NextReci) but also which receiver got a mes-
sage or sent an acknowledge, we had to replicate also the sender component and
most of the buffers. More precisely, we have grouped all the sequential compo-
nents corresponding to portions of the net in which the new class REC has been
introduced, into a macro-component that we have called SndNetRec and then

431

replicated this component nrec times.

S n d N e t R e c %~ N e x t S n d o 11 (R x I n B u /] 11... IIRalnBuf~"=)llR, Ne~tneco UR,
(R x O u t B u f~ ~ . . . N R x O u t B u f ~ a~) ~n~ (S n d I n B u flo ~ . . .] S n d l n B u f ~ a~)

1=tl = { recpckl , . . . , recpckma~, oldpckl, . . . , oldpckmax, dscpcko, . . . , dscpckma=}
R~ = { t x a c k l , . . . , txackma~}

Actually, the specification of the sender in this new model is slightly different
from the previous one since now acknowledge messages can be received out
of sequence due to the way the sender broadcasts the da ta packets to all the
receivers. Hence, when the sender is in state i, it can receive an acknowledge for
a packet of type j with j bigger that i. This models a correct situation in which
some of the receivers already got their first j packets and acknowledged them
while others received the j packets but some of the corresponding acknowledges
have been lost. When this case is recognised the sender must j u m p forward into
state j . A possible specification of such a behaviour could be the following:

N e x t S n d o

N e x t S n d l

N e x t S n d i

clef
= s n d i . N e x t S n d o +

recackl . N e x t S n d l + . . . + r ecackmax .Nex tSndmax
d e f
= s n d 2 . N e x t S n d l + o l d a c k l . N e x t S n d l +

recack2 .Nex tSnd2 + . . . + recackma~ .Nex tSndmar

N e x i S n d m ~

clef
= s n d i + l . N e x t S n d i + o l d a c k i . N e x t S n d i +

recacki+l . N e x t S n d i + l + . . . + r ecackmax .Nex tSndmax

clef
= oldackmax.NextSndma~: + r e s t a r t . N e x t S n d o

Also the receivers can get packets which are out of sequence, i.e. future packets•
On the receiver side, however, future packets must be discarded• This may hap-
pen when the packets are received in the wrong order (recall that the network
does not guarantee that the packets are received in the same order as they are
sent). The component belows model such a behaviour: we have introduced the
actions dscpcki representing the discarding of out of sequence messages, i.e. the
discarding of messages of type j which are received when the receiver is in a
state i smaller than j . After having discarded an out of sequence packet, the
receiver keeps waiting for the correct one.

N e x t R e c o

N e x t R e c l

N e x t R e c i

d e f
= r e e p c k l . N e x t R e e l + dscpcko .Nex tReco
d e f
= recpck2 .Nex tRec2 + o l d p c k l . N e x t R e c l + d s c p c k l . N e x t R e c l

d e f
= recpcki+1.NextReci+l + o ldpck i .Nex tRec i + dscpck i .Nex tRec l

d e f
N e x t R e c m a x = oldpckmax.NextRecma= + r e s t a r t . N e x t R e c o

To obtain the specification of the whole system with nrec receivers, nrec replicas
of tile macro-component must be composed by parallel composition. Moreover,

432

since the sending of a message implies a broadcast to all receivers, the macro-
components must synchronise on actions txpcki. Finally, the macro-components
must synchronise with the Lim component and with the SndOutBuf~ buffers
(notice that these are the only components whose corresponding subnets do not
make use of the REC colour class in the net of Fig. 5).

In the case of two receivers, two da ta packets, and two concurrent messages
we obtain the following model:

TwoRec ~ Lim2 ils, (SndOutBu f~ [[SndOutBu f3)I[s2 (SndNetRec][s3 SndNetRec)

$1 = { sndl , snd2, lstackl, lstack2, lstpckl, lstpck2, recackl, recack2,
oldackl, oldack2, restart}

S~ = {sndl, snd2, txpckl, txpck2}
$3 = {txpckl,txpck2}

By running the T I P P tool we have again computed the ordinary and the ag-

Recs L i m P a e k e t s O r d . statesi
2 2 2 245
2 2 3 529
2 2 4 921
2 3 2 3609
2 3 3 14025
3 3 3 9775

Equiv. classes
111
217
357

Table 4. Condensed state space with multiple receivers.

gregated state spaces underlying different models obtaining the results listed in
Table 4. If we analyse the numbers we obtained we can immediately observe that
in the case of two receivers the aggregated state spaces have less than half of
the states of the ordinary state spaces. This is due to the fact that we captured
different types of aggregations: the horizontal aggregation, due to the interchang-
ing of the receivers (corresponding to the aggregation by symmetry exploitation
of the SRG), and two different vertical aggregations, one due to equivalences
among old packets and old acknowledges (the same discussed in Section 5.2 for
the case of a single receiver), the other due the reception of acknowledges which
are out of sequence.

Let us explain this third form of aggregation considering the following states

433

which resulted to be equivalent:

Lira1 I}s, (.) lls~NextSnd~
IIs~NextSndo

Lira1 IIs~ (-) ~s2NextSndo
II s~ Next Snd2

Lira1 IIs,(.) ~s~NextSnd2
Ils~NextSndl

Limz IIs, (.) IIs~NextS~da
Ils~ N extSnd~

U(') IIR1 Nextnec211I~1 (.)~1~ (SndInBuf~ IISndInBuf °)
I](.) I]RI NextRec2 lira (.)]]R2 (SndInBu f~ N SndInBu f~)
[l(.)~ RI YextRee~ ~R~ (.)~t~ (SndInBuf~ NSndInBu f~)
H(.) H R~ Next Rec2 H R~ (.)11 R2 (SndIn B u f ~ II SndIn Bu f f)
I[(.)III~ NextRec2 []R~ (.)~1~2 (SndInBuf~]lSndInBuf °)
~(.) ~1~ YextRec2 ~!~, (.)~1~2 (SndInBu flo ~SndInBu f~)
I1(.) IlR~ N ext Ree2]lR~ (.) lln~ (SndInSu f ~ I] SndInBu f~)
I1(.) IIR~ NextRec2 I11~ (.)~1~2 (SndInBu f~ IISndInBu f °)

The first two states are obviously equivalent being one the permutation of the
other, analogously for the last two states. Less obvious is the fact that they all
belong to the same equivalence class. In all the states the receivers already got
both packets (NextRec2) but in the first two states the acknowledges for the
first packets have been lost (the sender is still in state NextSndo) while in the
last two states they reached the sender (NextSnda). If we consider the enabled
actions, however, we can observe that the four states enable action recack2 only
(SndInBuf~). By executing this action, they all evolve to the same state since
in the first two states the loss of the acknowledges is recognised and the sender
correctly jumps to the final state NextSnd2, like in the case of the last two
states.

5.3 Discussion

The methodology we have used in the previous sections to compute an aggre-
gated state space underlying an SPA model requires first to generate its under-
lying state space and then to investigate it looking for sets of equivalent states.
The advantage of this technique with respect to the SRG algorithm is that in this
case it is possible to detect more general forms of aggregation (see Section 5.2),
not only those due the permutations of symmetric objects, like was the case of
the protocol example with multiple receivers.

Unfortunately, we have experienced that the computation of equivalence
classes is time consuming, specially when compared with the time required to
compute the SRG.

A possible way for improving the performance of the aggregation step requires
to take advantage of the fact that the equivalences we have used are congruences.
Instead of deriving the whole state space and then looking for equivalent states,
we could apply the procedure briefly introduced in Section 5, i.e. we could com-
pute partial state spaces considering groups of cooperating components, aggre-
gate them, derive the corresponding aggregated submodels and substitute them
into the model again.

Another improvement considers the fact that we did not make use of any sym-
bolic representation of the state, like it was the case for the SRG based technique.
Instead one could think of defining sort of macro-derivatives representing sets of
equivalent derivatives: this idea of macro-derivatives has been exploited in [25]

434

where an algorithm for the computation of an aggregated state space underlying
a PEPA model which automatically recognises the symmetries within the model,
in the style of the SRG algorithm, has been defined. The algorithm avoids the
derivation of equivalent ordinary derivatives since a canonical form for language
expressions, analogous to the canonical symbolic marking, has been proposed;
the algorithm has already been implemented in the PEPA workbench [24].

6 M o r e a d v a n c e d r e s e a r c h t o p i c s

The work on state space reduction presented in this paper has been extended in
several ways in more recent papers.

In [14] a reduction technique based on structural decolorisation of SWN mod-
els has been proposed. This technique consists of detecting structurally redun-
dant parts of the colour specification of an SWN model. When applied before
the computation of the SRG technique, it can lead to further reduction on the
SRG size, moreover, even in case the SRG algorithm itself is able to achieve the
same reduction with and without decolorisation, the time required for the SRG
computation is reduced if redundant colour components have been eliminated
beforehand. In [3] the decolorisation technique has been extended to work also
for performance evaluation purposes.

In [22, 23] an extension of the SRG lumping technique has been proposed,
that allows to obtain bounds on SWN models performance indices, when the
qualitative behavioural symmetries are not completely reflected at the quanti-
tative level (hence leading to quasi-lumpable MC instead of a strictly lumpable
MC).

In [27] an extension of the SRG has been proposed, that allows to get more
reduction than the original technique in models that do not completely satisfy the
conditions that ensure the equivalence among all ordinary markings belonging
to a symbolic marking. This for example could be due to the use of more general
arc expressions or transitions predicates than allowed by the SWN formalism.
The work on Extended SRG, however, does not extend the results concerning
the lumpability of the underlying CTMC.

Finally, some works have been proposed to combine the symmetry exploita-
tion technique with other techniques developed to cope with the state space
explosion problem. In [50] it has been shown that the stubborn set method and
the symmetry exploitation method for CPNs are orthogonal and can be ap-
plied simultaneously to achieve more reduction in the state space size. In [6]
it has been proposed an efficient method for the computation of stubborn sets
of SWNs. Hence, a promising future research direction could be the combina-
tion of this method with the SRG technique. In [28] it has been shown how the
SRG technique can be combined with the decomposition techniques based on
Kronecker algebra operators [19].

435

References

t. Greatspn home page. URL:http://www.di.unito.it/WWW/PEgroup/GreatSPN/.
2. M. Ajmone Marsan, A. Bobbio, and S. Donatelli. Petri Nets in Performance Anal-

ysis: an Introduction. In this book.
3. M. Ajmone Marsan, S. Donatelli, G. Franceschinis, and F. Neri. Reductions in

Generalized Stochastic Petri Nets and Stochastic Well-formed Nets: An Overview
and an Example of Application. In J. Walrand, K. Bagchi, and G. Zobrist, editors,
Network Performance Modeling and Simulation. Gordon and Breach Publishers
INC, 1997.

4. M. Bernardo, L. DonatieUo, and R. Gorrieri. Giving a Net Semantics to Marko-
vian Process Algebras. In Proc. 6th International Workshop on Petri Nets and
Performance Models, Durham, NC, 1995.

5. M. Bernardo and R. Gorrieri. A Tutorial on EMPA: A Theory of Concurrent
Processes with Nondeterminism, Priorities, Probabilities and Time. Theoretical
Computer Science, 1998. to appear.

6. R. Brgan and D. Poitrenaud. An efficient algorithm for the computation of stub-
born sets of well formed petri nets. In Proceedings of 16th Int. Conference on
Application and Theory of Petri Nets, ICATPN '95, pages 121-140, Torino, Italy,
.June 1995.

7. P. Buchholz. Exact and ordinary lumpability in finite markov chains. Journal of
Appl. Prob., 31.59-75, 1994.

8. P. Buchholz. Markovian Process Algebra: Composition and Equivalence. In
U. Herzog and M. Rettelbach, editors, Proc. 2 nd Workshop on Process Algebra
and PeT:formance Modelling, Ertangen, 1994.

9. G. Chiola, G. Bruno, and T. Demaria. Introducing a color formalism into gener-
alized stochastic Petri nets. In Proc. 9 t~ Europ. Workshop on Application and
Theory of Petri Nets, Venezia, Italy, June 1988.

10. G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. On Well-Formed
coIoured nets and their symbolic reachability graph. In Proc. 11 t~ Intern. Confer-
ence on Application and Theory of Petri Nets, Paris, France, June 1990. Reprinted
in High-Level Petri Nets. Theory and Application, K. Jensen and G. Rozenberg
(editors), Springer Verlag, 1991.

11. G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochastic Well-
Formed coloured nets and muItiprocessor modelling applications. In K. Jensen and
G. Rozenberg, editors, High-Level Petri Nets. Theory and Application. Springer
Ver]ag, 1991.

12. G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochastic well-formed
coloured nets for symmetric modelling applications. 1EEE Transactions on Com-
puters, 42(11), Nov. 1993.

13. G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. A Symbolic Reach-
ability Graph for Coloured Petri Nets. Theoretical Computer Science B (Logic,
semantics and theory of programming), 176(1&2):39-65, April 1997.

14. G. Chiola and G. Franceschinis. A structural colour simplification in Well-Formed
coloured nets. In Proc. 4 t~ Intern. Workshop on Petri Nets and Performance
Models, pages 144-153, Melbourne, Australia, Dec. 1991. IEEE-CS Press.

15. G. Chiola, G. Franceschinis, and R. Gaeta. A symbolic simulation mechanism for
Well-Formed coloured Petri nets. tn Proc. 25 tr SCS Annual Simulation Sympo-
sium, Orlando, Florida, April 1992.

436

16. G. Chiola, G. Franceschinis, and R. Gaeta. Modelling symmetric computer archi-
tectures by SWNs. In Proc. of the 15 *~ Intern. Conference on Applications and
Theory of Petri Nets, number 815 in Lecture Notes in Computer Science. Springer-
Verlag, 1994.

17. G. Chiola, G. Franceschinis, R. Gaeta, and M. Ribaudo. GreatSPN 1.7: Graphical
Editor and Analyzer for Timed and Stochastic Petri Nets. Performance Evalua-
tion, special issue on Performance Modeling Tools, 24(1&2):47-68, 1995.

18. E.M. Clarke, R. Enders, T. Filkorn, and S. Jha. Exploiting symmetry in temporal
logic model checking. Formal methods in system design, 9:77-104, 1996.

19. S. Donatelli. Superposed stochastic automata: a class of stochastic Petri nets with
parallel solution and distributed state space. Performance Evaluation, 18:21-36,
1993.

20. C. Dutheillet and S. Haddad. Regular stochastic Petri nets. In Proc. lOth Intern.
Conf. Application and Theory of Petri Nets, Bonn, Germany, June 1989.

21. E. Allen Emerson and A. Prasad Sistla. Symmetry and model checking. Formal
methods in system design, 9:105-131, 1996.

22. G. Franceschinis and R.R. Muntz. Bounds for quasi-lumpable markov chains. Per-
formance Evaluation, 20(1), May 1994. (Performance '93. 16th IFIP Working
Group 7.3 International Symposium on Computer Performance Modeling, Mea-
surement and Evaluation, Rome, Italy, 27 Sept.-1 Oct. 1993).

23. G. Franceschinis and R.R. Muntz. Computing bounds for the performance indices
of quasi-lumpable stochastic well-formed nets. IEEE Transactions on Software
Engineering, 20(7), July 1994.

24. S. Gilmore and J. Hillston. The PEPA workbench: A tool to support a Process
Algebra based approach to performance modelling. In Proc. Seventh International
Conference on Modelling Techniques and Tools for Computer Performance Evalu-
ation, Vienna, 1994.

25. S. Gilmore, J. Hillston, and M. Ribaudo. An Efficient Algorithm for Aggregating
PEPA Models. Technical report, University of Edinburgh, 1998.

26. S. Haddad. Une Categorie Regulier de Reseau de Petri de Haut Niveau: Definition,
Proprietes et Reductions. PhD thesis, Lab. MASI, Universite P. et M. Curie (Paris
6), Paris, France, Oct 1987. These de Doctorat, RR87/197 (in French).

27. S. Haddad, J-M Ilie, M. Taghelit, and B. Zouari. Symbolic marking graph and
partial symmetries. In Proceedings of 16th Int. Conference on Application and
Theory of Petri Nets, ICATPN '95, pages 238-257, Torino, Italy, June 1995.

28. S. Haddad and P. Moreaux. Evaluation of High Level Petri nets by means of
aggregation and decomposition. In Proc. 6 te Intern. Workshop on Petri Nets and
Performance Models, Durham, NC, USA, Oct. 1995.

29. H. Hermanns, U. Herzog, and V. Mertsiotakis. Stochastic Process Algebras - Be-
tween LOTOS and Markov Chains. Computer Networks and ISDN Systems, 1998.
to appear.

30. H. Hermanns, V. Mertsiotakis, and M. Rettelbach. A Construction and Analysis
Tool Based on the Stochastic Process Algebra TIPP. In Proc. of 2nd Int. Workshop
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS
"96), volume 1055 of LNCS. Springer, 1996.

31. J. Hillston. The Nature of Synchronization. In U. Herzog and M. Rettelbach,
editors, Proc. 2 nd Workshop on Process Algebra and Performance Modelling, Er-
langen, 1994.

32. J. Hillston. Compositional Markovian modelling using a process algebra. In Proc.
2nd International Workshop on the Numerical Solution of Markov Chains, Raleigh,
North Carolina, Jan. 1995.

437

33. Jane Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

34. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
35. P. Huber, A.M. Jensen, L.O. Jepsen, and K. Jensen. Towards reachabifity trees for

high-level Petri nets. In G. Rozenberg, editor, Advances on Petri Nets '84, volume
188 of LNCS, pages 215-233. Springer Verlag, 1984.

36. J-M. Ilie and K. Ajami. Model checking through the symbolic reachability graph.
In Proc. of TapSoft'97 Theory and Practice of Software Development - 7th CAAP,
LNCS 1214, pages 213-224, Lille, France, April 1997. Springer-Verlag. Extended
version in An Automatique Technique for CTL * Model Checking, LIP6 Internal
Report n.017, 1997.

37. K. Jensen. An introduction to the practical use of Coloured Petri nets. In this
book.

38. K. Jensen. Coloured Petri Nets, Basic Concepts, Analysis Methods and Practical
Use. Volume 2. Springer Verlag, 1995.

39. K. Jensen and G. Rozenberg, editors. High-Level Petri Nets. Theory and Applica-
tion. Springer Verlag, 1991.

40. J. B. Jorgensen and L. M. Kristensen. Verification of Coloured Petri Nets Us-
ing State Space Equivalneces. In Petri Nets in System Engineering (PSNE '97)
Modelling, Verification, and Validation- FBI-HH-B-205//97, Hamburgh, 1997.

41. C. Lin and D.C. Marinescu. On stochastic high level Petri nets. In Proc. Intern.
Workshop on Petri Nets and Performance Models, Madison, WI, USA, August
1987. IEEE-CS Press.

42. M. Linqvist. Parametrized reachability trees for predicate transition nets. In Proc.
11 t~ Intern. Conference on Application and Theory of Petri Nets, Paris, France,
June 1990.

43. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
44. D. Park. Concurrency and Automata on Infinite Sequences. In Proc. 5 te GI Conf.

on Theoretical Computer Science, volume 104 of LNCS, 1981.
45. G.D. Plotkin. An operational semantics for CSP. Technical Report CSR-114-82,

The University of Edinburgh, May 1982.
46. R.Gaeta. Efficient discrete-event simulation of colored petI~ nets. IEEE Transac-

tion on Software Engineering, 22(9):629-639, Sept. 1996.
47. M. Ribaudo. On the Aggregation Techniques in Stochastic Petri Nets and Stochas-

tic Process Algebras. The Computer Journal, 38(6), 1995.
48. M. Ribaudo. Stochastic Petri nets semantics for stochastic process algebras. In

Proc. 6 te Intern. Workshop on Petri Nets and Performance Models, Durham, NC,
USA, Oct. 1995.

49. W. H. Sanders and J. F. Meyer. Reduced base model construction methods for
stochastic activity networks. IEEE Journal on Selected Areas in Communications,
9(1):25-36, Jan. 1991. Special Issue on Computer-Aided Modeling, Analysis and
Design of Communication Networks.

50. A. Valmari. Stubborn sets of coloured petri nets. In Proceedings of 12th Int.
Conference on Application and Theory of Petri Nets, ICATPN '91, pages 102-
121, Gjern, Denmark, June 1991.

51. A. Zenie. Colored stochastic Petri nets. In Proe. Intern. Workshop on Timed Petri
Nets, pages 262-271, Torino, Italy, July 1985. IEEE-CS Press.

