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Abstract. The synthesis problem for nets consists in deciding whether 
a given graph is isomorphic to the marking graph of some net and then 
constructing it. This problem has been solved in the literature for vari- 
ous types of nets ranging from elementary nets to Petri nets. The general 
principle for the synthesis is to inspect regions of graphs representing ex- 
tensions of places of the likely generating nets. We follow in this survey 
the gradual development of the theory of regions from its foundation 
by Ehrenfeucht and Rozenberg, with a particular insistence on the ab- 
stract meaning of the theory, which is a general product decomposition 
of graphs into atomic components determined by a parameter called a 
type of nets, and on the derivation of efficient algorithms for net synthesis 
based on linear algebra. 
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1 T e r m i n o l o g y  o f  G r a p h s  

Since the terminology on graph theory varies a lot from one author  to the other, 
we found it necessary to begin by defining the terminology used in this document. 

1.1 G r a p h s  

A graph G = (X, E)  is a collection X of vertices or nodes together with a 
collection E of edges. The graph is said to be finite if it has finitely many vertices 
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and edges. Each edge has either one endpoint: end(e) = {x} in which case e is 
termed a loop at vertex x, or two endpoints: end(c) = {x, y} in which case e is 
termed a link between vertices x and y. A graph is simple if it is loop-free: each 
edge is a link, and has no multiple edge: end(el) = end(e2) =~ el = e2. Therefore 
an edge of a simple graph may be identified with the pair of its endpoints. The 
incidence matrix of a graph G is a matrix A with elements 0 and 1, where each 
row corresponds to a vertex, each column corresponds to an edge, and A(x, e) 
is 1 if and only if x is an endpoint of e. A chain of length n > 1 with endpoints 
{xl,  xn+l } is a finite sequence (xl, cl, x2 , . . . ,  xn, en, xn+t) of vertices and edges 
such tha t  end(e~) = {xi ,xi+l}  for all 1 < i < n. We say that  the chain connects 
its endpoints. For convenience, we consider tha t  every vertex is connected to 
itself by an empty chain. The connected component of a vertex is the set of 
vertices connected to this vertex by some chain; the graph is connected if it has 
only one connected component. A non empty chain is said to  be simple if all 
edges are distinct, a chain is said to be elementary if all the vertices but  possibly 
the endpoints are pairwise distinct. A cycle is a simple chain whose endpoints 
coincide: xl = xn+l. A tree is a graph with no cycle or alternatively a graph 
in which any two vertices are connected by a unique chain. G'  = (X' ,  E ' )  is a 
subgraph of G = (X, E)  if X'  C_ X,  E'  C E, and the mappings that  send an 
edge e E E '  to its endpoints in G' and in G coincide. G' spans G if X '  = X; a 
spanning tree of G is a subgraph which is a tree spanning G. 

1.2 Directed Graphs 

An orientation of an edge e is an ordered pair of vertices (x, y) such that  end(e) -- 
{x,y},  thus a loop at x has only one possible orientation: (x,x), while a link 
between x and y has two possible orientations: (x, y) and (y, x). We let e : (x, y) 
denote the assignement of the orientation (x, y) to the edge e; the vertices x -- 
0 ° (e) and y = 01 (e) are respectively called the source and target of edge e. An 
oriented edge is sometimes called an arc. A directed graph is a graph whose edges 
are given an orientation. A directed graph is simple if it is loop-free and has no 
multiple arc in the sense that  two edges with the same endpoints are necessarily 
given opposite orientations: (el : (x, y) A e2 : (x, y)) ~ el = e2. Therefore an 
edge of a simple directed graph may be identified with the ordered pair of its 
endpoints, and in that  case we write e = (x,y)  when 0°(e) = x and 01(e) = y. 
Notice tha t  the underlying graph of a simple oriented graph may not be simple 
as we can find two edges with the same endpoints but  with opposite orientations. 
A subgraph of a directed graph G is a subgraph of the underlying graph with 
the orientations of edges inherited from G. The notions of chain, cycle, tree, 
spanning subgraph and spanning tree do not depend on the orientation of edges; 
therefore a chain (cycle, tree, ...) of a directed graph is a chain (cycle, tree, 
• ..) of the underlying graph• The specific notions that  take the orientation into 
account are the following. A path of length n > 1 from Xl to Xn+l is a finite 
sequence (xl ,  cl ,  x 2 , . . . ,  xn, en, xn+l) of vertices and edges such that  0 ° (ei) = x~ 
and 01(ei) = xi+l for all 1 < i < n. For convenience, we consider that  there 
exists an empty path from any vertex to itself. A non empty path  is said to  
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be simple if all edges are distinct. A path is said to be elementary if all the 
vertices but possibly the endpoints are distinct. A circuit is a simple path whose 
endpoints coincide: xl = xn+l. Thus paths and circuits are respectively chains 
and cycles of the underlying graph whose edges have compatible orientations. 
The incidence matrix of a directed graph is the matrix A : X x E -+ {-1;  0; 1} 

1 if c0°(e)----x 
given by A(x ,e)  = -1  if col(e)=x. 

0 otherwise 

2 Regional Representation of Partial 2-Structures 

The theory of regions was founded by Ehrenfeucht and Rozenberg in [22] with the 
aim to obtain a set-theoretic representation of directed graphs (X, E), enriched 
with an equivalence -- on edges. The resulting structures (X, E, =_) are termed 
partial 2-structures. The representation problem for partial 2-structures consists 
in attaching properties p to nodes x so that  the Kripke structure so obtained may 
be abstracted without loss of information to the data  {x* I x C X} and {e* I e E 
E}, where a node is encoded by the set x* = {Pl x ~ p} of properties it satisfies 
and an edge by the pair e* = (x* \ y*,y* \ x*) where x and y are the respective 
source and target of e. The main difficulty is to reconstruct the equivalence 
relation - ,  and this cannot be done unless the considered properties are altered 
uniformly when passing along every edge in each equivalence class. These specific 
properties, seen as sets of nodes when identified with their extensions {x I x ~ p}, 
are called regions in [22]. The presentation of regions in partial 2-structures given 
below is directly inspired from [22], where the proofs of the results may be found. 
The algorithmic aspects of elementary net synthesis will be examined in the next 
section. 

2.1 Partial  2-Structures and their Regions  

Def ini t ion 2.1 A partial 2-structure is a triple G = (X, E, =) where X is a 
finite non empty set of nodes, E C E2(X) = {(xl ,x2) E X × X I xl ~ x2} is a 
set of 2-edges over X ,  a n d -  is an equivalence relation on E. When E = E2(X)  
is the whole set o] 2-edges over X ,  G is called a 2-structure. 

Partial 2-structures may be viewed as equivalence classes of labelled simple di- 
rected graphs, where two graphs are equivalent if their labelling functions have 
the same kernel. Of particular interest are the partial set 2-structures defined as 
follows. 

Definit ion 2.2 A partial set 2-structure of a finite set B is a partial 2-structure 
G = (X, E, =_~) where X C 79(B) and --~ is the kernel of the function 5((M, M') )  
= ( M \ M ' ,  M ' \ M )  for M, M'  E X .  Let S2S(B)  denote the (full) set 2-structure 
of B; i.e. when X = "P(B) and E = E2(X). 
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Thus in particular, any partial set 2-structure G of B is a substructure of 
S2S(B).  In notation, G < S2S(B) where (X1,E1,-=l) <_ (X2,E2,-=2) if X1 C_ 
)(2, E1 C_ E2 and -=1 is the restriction of -=2 on E1 x El. The representation 
problem for partial 2-structures may be stated as follows. 

Which partial 2-structures are isomorphic to substructures of S2S(B) 
for some finite set B (of tokens)? 

The best way to grasp this problem is to examine the extents Rb of representation 
tokens b E B in the structure S2S(B) itself, let Rb = {M e 7)(B)J b e M}. So, 
b e M if and only if M E Rb. The following may be observed. 

1. For every pair of equivalent 2-edges (/1//1, M~) and (/1//2, M~), and for every 
b E B, b E M1 \ M~ entails b e M2 \ M~ and symmetrically b e M~ \ M1 
entails b e M~ \ M2. This can also be expressed as follows: 

- (M1 e Rb A M~ ¢ Rb) ~ (M2 e Rb A M~ ¢_ Rb); 
-- (M1 ~. Rb A M~ e Rb) ::~ (M2 ¢ Rb A M~ e Rb). 

Thus, all the 2-edges in an equivalence class are incident to Rb outwards, or 
they are incident to Rb inwards, or they are not incident to Rb. 

2. VM1,M2 eT)(B) MI ~ M2==> (Sbe B Ml e Rb C~ M2 ¢ Rb). 
3. For every pair of inequivalent 2-edges (M1, M~) and (M~, M~), there exists 

some token b E B such that one 2-edge is incident to Rb and the other is 
not, or one 2-edge is incident to Rb inwards and the other is incident to Rb 
outwards. 

These properties are also valid for substructures (X, E , - 6 )  of S2S(B),  where 
Rb is the set {M e XJ b e M}. 

Defini t ion 2.3 A region in a partial 2-structure G = (X, E , - )  is a subset of 
nodes R C_ X such that for every pair of equivalent 2-edges (xl, Xrl) and (x2, x~) 
in E: (xl e R A x ~  C R) => (x2 e R A x '  2 ¢ R ) ,  and (xt ¢~ R A x  l e R)=~ (x2 tg 
R A x '  2 e R). Let T~G denote the set of (non trivial) regions of G, and for x e X ,  
let n c ( x )  = {R e nGI z ~ R}. 

It is worth noting that the complement X \ R of a region R is a region. In 
particular X and 0 are regions (the trivial regions). Now the non trivial regions 
may serve as representation tokens for states, that is nodes, and at the same 
time for events, that is classes of equivalent 2-edges. One obtains in this way 
regional versions of partial 2-structures defined as follows. 

D e f i n i t i o n  2.4 Given a partial 2-structure G = (X, E , - ) ,  the regional version 
of G is the partial set 2-structure regv(G) = (X', E ~, -=~) with components X '  = 
{7~G(x)j x e X }  and E' = {(T~a(x),T~G(x'))J (x,x') e E}.  

In this construction, illustrated in Fig. 1, a node x is mapped to the set T~v(x) 
of the regions which include x. It appears from Fig. 1, where equivalent edges 
bear a common label, that the map regv is not an equivalence of partial 2- 
structures. The following theorem states when regv  maps a partial 2-structure 
isomorphically to a partial set 2-structure (the regional representation of the 
latter). 
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C •  

R 0 = {1,2,3,4} 
a ~ R-'-o = ~ 

R...~I = {1, 2} 
.% = {3 ,  4 }  
,~.~= = {1 ,  3}  
R2 = {2 ,  4}. 

Fig. 1. a partial 2-structure and its regional version 

T h e o r e m  2.5 A partial 2-structure G = (X, E,  -=) is isomorphic to a substruc- 
ture of some set 2-structure if and only if G ~ regv(G) (with T~G(') as the 
isomorphism) if and only if the following two axioms of separation are satisfied: 

1. STATES SEPARATION: VXl,X2 E X Xl 7 £ x2 :=~ 2R E ~ v  (xl E R ~ x2 
R). 

2. EVENTS SEPARATION: for all (xl,x~),(x2,xr2) E E with ( x l , x l )  ~ (x2,x~) 
there exists some region R E T~G such that either (Xl,X~) is incident to 

X ! t R outwards and (x2, 2) is not or (x2,x2) is incident to R outwards and 
(xl ,  x~) is not. 

There may exist nodes Xl, x2, xa and x4 such that  (xl,x2) E E, 5(x~,x~) = 
5(x~, x~), and (x3, x4) ~ E. Therefore regv(G) is not characterized by the sets 
{x*[ x E X} and {e* l e E E}. In order to reduce the mismatch, one should 
impose the additional axiom: V(xl, x2) E E VX3, X4 E X 5(T~ G (Xl) , '~G(X2))  ---- 
5(T~c(x3),?EG(x4)) ~ (x3,x4) E E. Further on this way, one can even impose 
one or two stronger axioms: 
FORWARD CLOSURE: V(Xl,X:) e E Vx3 C Z (~(x~) \~c(x:) C_ R~(x3) ^ 
nG(X3)NT2~.G(X2)\~)r~G(Xl) = ~) ::~ ~x4 E X (X3, X4) E E / ~  ~ ( n G ( X l ) ,  ~'~G(X2)) = 

(nc(x3) ,nG(x4) ) .  

BACKWARD CLOSURE: V(Xl,X2) E E Vx4 C X (']'2~G(X2)\']',~,G(Xl) C "~G(X4) /k 
n c ( x 4 ) n n G ( x ~ ) \ n c ( x ~ )  = ~) =~ 3x3 e x (x3, x4) e E i ~ (nc (x l ) ,  nG(x~)) = 

( n c ( x z ) , n c ( x ~ ) ) .  

Partial  2-structures may be considered too general from a practical point of view, 
and one may prefer focusing on reachable partial 2-structures, such tha t  all nodes 
can be reached by paths with a common origin. A familiar example of reachable 
partial set 2-structures is the class of sequential case graphs of elementary net 
systems. 

D e f i n i t i o n  2.6 An elementary net is a directed bipartite graph N = (P, E, F)  
such that d o m ( F )  U r a n ( F )  = P U E. Elements of P ,  respectively E,  are called 
conditions (or places), resp. events. Let x E *y and y E x* be alternative 
notations of (x, y) E F.  A case (or marking) of N is a subset of conditions 
M E 79(P). An event e has concession in case M (noted M[e>) i f  and only 
if (°e, e °) -- (i(M, M')  for some case M '  (thus uniquely defined). The event e 
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may then fire at M,  resulting in the step M[e > M'. Thus, M[e > if and only if 
" eC  M A M M e  ° =0 ,  and t h e n M [ e > M '  where M'  = ( M \ ' e )  Ue ' .  

A n e t i s p u r e i f V x e P U E  x ° M . x = 0 ; i t i s s i m p l e i f V x , y E P u E  (x" = 
y" A "x = "y) =~ x = y. The  elementary nets considered from now on are 
assumed to  be pure and simple. 

D e f i n i t i o n  2.7 An elementary net system is a structure Af = (P, E, F, Mo) 
where N = (P, E, F) is the underlying net and Mo (in P ( P ) )  is the initial 
case. The sequential case graph of flf is the partial set 2-structure scg(flf) -- 
(X ' ,E ' ,=~)  where X '  C_ 7~(P) is the smallest set of cases reachable from Mo by 
sequences of steps M[e > M' and E' is the set of corresponding pairs (M, M') .  

L e m m a  2.8 A partial set 2-structure G = (X, E , - 6 )  is the sequential case 
graph of an elementary net system if and only if it is reachable and the following 
property is satisfied:V(xl,x2) E E  Vx3 E X  ( x l \ x 2  C_x3 A x 3 n x 2 \ x l  = 
0) ~ ~x4 • X ((x3,x4) • E A ~(z l ,x~)  = ~(x3,z4)) .  

From Theo. 2.5 and Lem. 2.8, one obtains the following. 

C o r o l l a r y  2.9 A partial 2-structure G = (X, E,--)  is isomorphic to the se- 
quential case graph of an elementary net system if and only if it is reachable and 
satisfies the axioms of states separation, events separation, and forward closure. 

The  elementary net system in the above corollary is essentially the set of the 
ordered symmetric differences 5(TOo(x), T~G(y)) for 2-edges (x, y) • E.  The rep- 
resentation problem for partial 2-structures set at the beginning of the section 
has in fact been given the solution x* = T~o(x). The places of the net are the 
regions r E T~(G), the events are the equivalence classes of edges, and the flow 
relation is such that:  F([e]=,r) ~:~ r • T~G(y) \ T~G(x) for some (x,y) • E; and 
F(r, [e]_) ¢~ r • T~G(x) \ ~G(y) for some (x,y) • E. The initial case of the 
net system is defined as T~a(Xo) for some xo • X such that  every node of G is 
reachable from xo. 

2.2 E l e m e n t a r y  A u t o m a t a  

The second part  of the section paves the way for the algorithmic analysis of 
the region based correspondence between reachable graphs and elementary net 
systems. With this objective in mind, we recast the results obtained so far into 
the framework of transition systems, and illustrate the modified correspondence 
on a complete example. 

D e f i n i t i o n  2.10 A (labelled) transition system is a triple A = (S, E, T)  with a 
set of states S, a set of events E, and a set of transitions T C_ S x E x S. Let 
s _5~ s' be an equivalent notation for (s, e, s ~) E T.  An event e is enabled at state 
s (noted s 4 )  if s -% s' for some s'. An event e is co-enabled at s' (noted -~ s') 
if s 4 s' for some s. An automaton is a structure ,4 = (S, E, T, So) consisting of 
an underlying transition system A = (S, E, T)  and an initial state So E S. 
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A partial 2-structure G -- (X, E,  --) may be identified with the transition system 

(X,  E~ - ,  T)  where x [ 3  x' if and only if (x, x ' )  =_ e. This transition system is 
loop free: s -5 s' ~ s ~ s r, has no multiple arc: s ~ s' A s 24 s' ~ el = e~, and it is 
reduced: Ve E E 3s, g E S s -5 s'. The sequential case graphs of the reduced 
net systems defined hereafter fall in this subclass of transition systems. 

Definit ion 2.11 An elementary net system Af = (P, E,  F, Mo) is reduced i f  
every event e E E has concession at some case M reachable from Mo, and for 
every two distinct conditions p,p~ E P there exists some case M reachable from 
Mo such that p E M ¢:~ p~ ~ M .  The dual of a reduced elementary net system 
Af  is the automaton Af* = (S, E,  T, Mo) where S is the set of cases reachable 
from Mo by sequences of steps M[e > M ~ and T is the set of the corresponding 
transitions ( M,  e, Mr).  

Thus Af* is essentially the image of scg(Af) through the map which sends the 
equivalence class of 2-edges {(M, M')] (f(M, M' )  -- (°e, e°)} to the event e. Since 
Af is simple and reduced, this map is one to one and onto. By construction, 
fir* is reachable from Mo, deterministic: M -5 M'  A M -5 M" ~ M r = M H, and 
co-deterministic: M'  -5 M A M" -5 M ~ M r ---- M rr. The definition of regions 
may be carried to automata  in the following form. 

Definit ion 2.12 A region in an automaton .4 = (S, E ,  T, So), or in the un- 
derlying transition system ( S , E , T ) ,  is a subset of states R C S such that 

-h s2 A s3 -h s4 ~ ~ sl E R A s 2  ~ R ~ s3 E R A s4 C R 

t sl ~. R A s2 E R ~ sa C R A s4 E R 

(non trivial) regions of A ,  and for s E S let T~A(s) = 

Ve 6 E V 8 1 , s 2 , s 3 , 8 4  6 S 81 

Let T~A denote the set of 
{R c P~AI s ~ R}. 

Thus, R is a region if and 
whether the transition is 

only if the label e of a transition suffices to determine 
incident to R inwards (R is then termed an output  

region for e, noted e°R),  or it is incident to R outwards (R is then termed an 
input region for e, noted R°e), or it is not incident to R (it is internal to R or 
external to R). In particular, if ,4 is reachable and reduced, the non trivial regions 
of A may be represented as maps 77R : E --~ { - 1 , 0 , 1 }  such that  ~?R(e) = 1 if 
e°R, ~n(e) = - 1  if R 'e ,  and yR(e) = 0 otherwise; the characteristic function of 
R, let XR : S -~ {0, 1} where XR(s) = 1 ¢*~ s E R,  is then the unique map such 
that  s -5 s' ~ ~R(e) = XR(S') -- XR(s). 

It is easily seen that  for every condition p of a net system AT, the set of the 
reachable cases M that  contain p is a region of AT*. This region, denoted by p* 
and called the extension of p, is such that  e*p * ¢:~ e E "p and p**e t=~ e E p°. 
Reversing the process which leads from net systems to sequential case graphs, 
let us recast the definition of regional versions in terms of nets and net systems. 

D e f i n i t i o n  2.13 Given an automaton .4 = ( S , E , T ,  so), the dual of .4 is the 
(reduced) elementary net system ,4* = (T~A, ( E / ~ )  \ {E}, F, s~) where: .~ is the 
equivalence on E induced by regions, let 

el "~ e2 ~=~ (VR E T~A e l ° R  ¢~ e2°R A R ' e l  ¢:~ R'e2);  
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is the equivalence class of the events which are inputless and outputless i.e. 
which are internal or external to all regions, if such events exist; F is the flow 
relation such that F([e]~,R) ¢~ e 'R  and F(R,[e]~) ¢~ R°e; and s~ = {R E 

The net system -4* is also called the saturated net version of .4 (for reasons ex- 
plained in the sequel). The counterpart of Cor. 2.9 for automata is the following. 

T h e o r e m  2.14 An automaton A = (S ,E ,T ,  so) is isomorphic to the duaI Af* 
of an elementary net system if and only if A :~ -4** if and only if A is simple (it 
has neither loop nor multiple arc), reduced, reachable and it satisfies the following 
properties of separation: 
ssP (States Separation Property): 

Vs, s ' E S  s # s ' ~ g R E T ~ t  ( s E R c ~ s ' ~ _ R )  

EsP (Events Separation Property): 

Ve, g E E  e ~ g : : r 3 R E ~ A  (R'e A not(R°g)) V (e°R A not(g°R)) 

ESSP (Events-States Separation Property): 

V e E E  V s E S  no t ( s4 )  ~ 3 R E T ~ A ( R ' e  A s C R )  V (e*R A s E R )  

An automaton satisfying these conditions is termed an elementary automaton. 

Observe that every event in an elementary automaton has input regions and 
output regions (from ssP), hence the map sending e to [e]~ is a bijection between 
E and (E l  ,~) \ {e} (from ESP). The isomorphism from .4 to .4** (the sequential 
case graph of the saturated net version of .4) maps e to [e]~ and s to s* -- 
{R E T~A] s E R}. This isomorphism applies in particular to sequential case 
graphs, whence Af* ~ Af*** for every elementary net system. However, Af = 
(P, E, F, M0) is generally not isomorphic to its double dual iV'**. In fact, every 
condition p of Af induces a corresponding region p* of A/'* which includes the 
reachable cases in which condition p holds, and J~f is isomorphic to the full subnet 
system of fir** with set of events E / ~  (= E) and set of places {P*I P E P}. Thus, 
whenever Af'* -- Af*, AP is isomorphic to a subnet system of iV'** which is for that 
reason termed the saturated version of Af. Now, for an elementary automaton 
.4, -4 ~ ,4** entails that A* -~ .4"**, hence .4* is always a saturated net system. 
The aim of the next section is to optimize the synthesis process by looking at 
admissible subnets Af of .4* such that A - A f*. 

Before tackling the synthesis problem, we proceed to simplifying the pre- 
sentation of elementary automata, and retrieve the usual presentation given in 
[11, 19, 34]. 

Proposition 2.15 Let automaton A be simple, reduced and reachable, then -4 
is elementary if and only if the separation properties ssP and EssP are satisfied. 
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Proof: Let A = ( S , E , T ,  so), and assume for contradiction e ¢ e' and VR E 
e t 

T~A ( R ' e  ~ R ' e  t) A (e*R ,~ e " R ) .  We show tha t  s 4 s' entails s--+ s' 
e ! 

contradicting the assumption tha t  A is simple. Assume s -~ s' and not s -+, then 
by ESSP: ~R e 7P~A (R ' e  t A 8 ¢ R) V (e'*R A s E R) and the contradiction of 

s 4 s' follows from the definition of regions. Let s" E S such tha t  s -+ s", then 
T~A(s") = T~x(s) \ *e' U e "  = T~x(s) \ * e U e  ° = 7~A(s') and s' = s" follows from 
ESP. ]] 
For complete proofs of the results which have been s tated in this subsection, the 
reader is referred to [19] where partial  2-structures are by-passed. 

As an illustration, let us consider the elementary net system and the case 
graph given in Fig. 2. In Fig. 3 are displayed some of the non trivial regions of 

Sl = {~2; yl} 
82 = {~1; y2}  
s3 = {xs;z;yl} 
s4 : {zl;z;ys} 
85 = { X 3 ;  Y2}  

s6 = {x2; us}  
s7 = {xs; z; y3} 

Fig. 2. an elementary net system and its case graph 

this automaton.  The missing items can be obtained by symmetry.  Each drawing 

Fig. 3. some regions of the case graph of the elementary net system of Fig. 2 and their 
associated atomic net systems 

represents a region R consisting of black states. The  flow relations for the region 
R and for its complement  ~ R  -- S \ R are also represented pictorially; finally one 
token indicates which of these complementary  regions contains the initial state. 
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We end up with the elementary net system of Fig. 4, which is the original net 
of Fig. 2 enriched with additional places (indicated by dashed lines) but with 
unchanged behaviour. The original net system is embedded into its saturated 

F- 

~X3 

" :  ' " ' - . "  i--" " : 

q 

~ r a  

Fig. 4. the embedding of the elementary net system of Fig. 2 into its double dual 

version by the map that sends a place x to its extension in the state graph i.e. 
the set of markings {M E S[ x E M}. 

3 T h e  S y n t h e s i s  o f  E l e m e n t a r y  N e t  S y s t e m s  

All automata considered in this section are assumed to be pre-elementary, i.e. 
simple, reachable and reduced. The synthesis problem of elementary net systems 
[19] is as follows: 

Given a finite automaton ~4 = (S, E, T, So), decide whether ~4 ~- J~f* for 
some elementary net system Af with the same set of events E, and if so, 
construct Af. 

Since the set T£A of all the regions of .4 is finite, we already know from Prop. 2.15 
that this problem can be decided in exponential time by simultaneously explor- 
ing T~A, for checking satisfaction of the separation properties EsP and ESSP, 
and constructing Af = .4*. The aim of this section is to improve on this brute 
force solution. We review first Desel and Reisig's study of admissible sets of re- 
gions and their techniques for eliminating redundant regions. Next we account 
for Bernardinello's results on the synthesis of state machine decomposable net 
systems, based on the crucial remark that the minimal regions of an automaton 
form an admissible set, and for subsequent work by Cortadella et al. on the re- 
alization of automata by elementary nets up to some quotient of automata. We 
finally report the results obtained on the complexity of the synthesis problem in 
[25, 3]. 
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3.1 A d m i s s i b l e  se t s  o f  r eg ions  

In an elementary net system Af = (P, E, F, Mo), each condition p E P determines 
an atomic subnet system of A/', let Alp = ({p}, E,  Fp, M0,p) where Fp is the 
restriction of F and Mo,p(p) = Mo(p). If we do not care about  the isolated 
events in Alp, these atomic subnet systems are elementary and Af is just their sum 
EpEP "]~fP' where nets are glued together on events e E E. This decomposition 
may be used to isolate the contribution of each condition p E P to the global 
structure of the sequential case graph Af*. This automaton may be seen as a 
deterministic recognizer of finite sequences, in which every state (i.e. case) is 
accepting. An automaton of this type is characterized up to isomorphism by 
the language L it accepts plus the equivalence - on L which identifies these 
sequences that  lead to a common (accepting) state. Now in the case of Af*, ~: 
and - are the intersections for p ranging over P of the respective languages and 
equivalences characteristic of A/p: L = NpEpf¢ p and - =  ApE P ~--p. Thus the role 
of each condition p is twofold: on the one hand, p cuts off sequences u • e such 
that  u E L but u • e ¢~ £p, and on the other hand p separates pairs of words 
u, v E L such that  u ~p v. 

Returning to the synthesis problem, let us now clarify the relationship be- 
tween automata  and atomic net systems. Let .4 = (S, E,  T, So) be a finite 
deterministic automaton,  with language L and equivalence - ,  and let Alp = 
({p}, E, Fp, Mo,p) be an atomic net system, inducing a dual automaton Alp with 
language £p and equivalence ~p. The automaton Alp has two states, 0 and {p}, 

one of which is M0,p, and it has transitions 0 4 {p} if Fp (e, p), {p} ~ 0 if Fp (p, e), 
and otherwise 0 ~ 0 and {p} -~ {p}. Suppose L C_ Lp and -C_-p.  Let Rp be the 
subset of states s E S such that  so -~ s in .A and Mo,p -~ {p} in Alp for some 
sequence of events u E E*. Then Rp is a region of fl., so E Rp t:~ Mo,p = {p}, 
and for every e E E: Rp'e  ¢~ Fp(p,e) and e 'Rp ~:~ Fp(e,p). Conversely, for 
any region Rp of ,4, the elementary net system Alp defined by the above rela- 
tions induces a dual automaton flfp such that  /: c_ /:p and _--C-p. Moreover, 

Rp separates two distinct states g and s" such that  so 2+ s' and so 2+ s" in .A if 
and only if u ~p v, and Rp separates a state s such that  so -~ s from an event 
e such that  not(s ~ )  if and only if u • e ~ /:p. Therefore, given a net system 
Af = ( P , E , F ,  Mo) = ~pEpAfp,  the dual automaton Af* is isomorphic to the 
automaton .A if and only if L = MpepLp and - =  NpEp -~--p, if and only if for all 
p E P,  Alp is an atomic net system defined from some corresponding region Rp 
in ~4 and the following properties are satisfied: 
SSP':VU, VE~ u ~ v =~ 3p E P U ~p V, 
E S S P ' : ~ u E ~  Ve E E u . e ~ £ :=~ 3p e P u . e ~_ Ep, 
if and only if the family of regions {Rp[ p E P} is admissible according to the 
following definition. 

D e f i n i t i o n  3.1 Given an automaton A = (S, E, T, so), a subset of regions {Rp[ 
p E P}  C_ T~A is admissible if and only if it includes witnesses for the satisfaction 
of every instance of the following separation problems where e E E and s, s', s" E 
S are such that s r ~ s" and not(s -~): 



540 

s sP ( s ' , s ' ) :  3 p e P  s' E Rp c~ s" f[ P~, 
EssP(s, e): 3p • P (P~'e ^ s ¢ P~) v (e 'R .  ^ s • ap).  

It is easily seen that problem ssP(s', s')  cannot be solved positively in a non- 
deterministic automaton .4 where s -~ s' and s -% s" for s' ~ s ' .  One rediscovers 
in this way a basic result established in [19]. 

T h e o r e m  3.2 An automaton A = (S, E, T, so) is isomorphic to A/* for A~ = 
(P, E, F, Mo ) if and only if for every p G P, the atomic subnet system A/p of A~ 
may be defined from some corresponding region Rp of .A, and the set of regions 
{Rv] p G P} is admissible. 

In view of Def. 3.1 and Theo. 3.2, the synthesis problem for ,4 = (S ,E ,T ,  so) 
may be solved by considering at most ISI x (Isl + lED regions of A. Nevertheless, 
this does not indicate how to select these regions from T~ .  The purpose is 
to construct a subset of regions T~ C_ ~ t  as small as possible such that T~ 
is admissible if and only if the whole set of regions T~t is admissible. Some 
structural rules are proposed in [19] for the stepwise elimination of redundant 
regions, starting from T~.  

Defini t ion 3.3 Let T¢ C Ti~t be a set of regions. A region R • T¢ is redundant 
in ~ if the following assertions are equivalent: (i) 7~ is admissible (ii) 7~ \ {R} 
is admissible. 

Proposition 3.4 Let A = (S, E, T, so) and lrt E T~ C T~A. In each of the fol- 
lowing cases R is redundant in T~. 

1. s \ n e n ,  
Z. 3R1 ,R2 ,Rs ,R4eT¢  R = R 1 M R 2  A S k R = R 3 A R 4 ,  
3. 3R1,R2,Ra,R4ET~ R = R I O R 2  A S \ R = R 3 U R a ,  
~ . 3 R 1 , R 2 e T ¢  R = R 1 N R 2  A V s e R  V e E E  V s ' G S \ R  s 4 s ' ~  

s' ¢_ R1 0 R2. 

Once a reduced set of regions 7~ has been obtained from 7~t, one can check 
directly from Def. 3.1 whether it is admissible, proving that A is elementary, and 
then extract from T£ a minimal subset {RpI p e P} such that .4 ~ (~peP  A/p)*. It 
is worth noting that there exists in general no least admissible set of regions. This 
fact is illustrated in Fig. 5 by the so-called '~our seasons" example reproduced 
from [19]. The "four seasons" automaton may be realized by two minimal subnet 
systems of the dual saturated net system: one has four conditions and is contact- 
free while the other one has three conditions but is not contact-free. 

Def ini t ion 3.5 An elementary net system A~ = (P, E, F, Mo) is contact-free if 
" e C M ~ M N e" = ~ for every event e and for every reachable case M. 

Thus, the subclass of elementary net systems which are contact-free and reduced 
coincides with the subclass of the reduced and one-safe Petri nets. Now, every 
saturated net system A / =  (P, E, F, Mo) is contact-free: every condition p • P 
induces two complementary regions Rp and ~ in A/*, and since A/" - A/** there 
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l ' l  b 
c 

{ 1 } ~ 2 }  

Fig. 5. the four seasons example: the automaton (on the left), the saturated net system 
(on the middle) and two elementary net systems corresponding to minimal sets of 
regions (on the right) 

should exist some condition ~ E P such that  R~ = Rp. Therefore, every elemen- 
tary  automaton may be realized by a one-safe Petri net. The following adaptat ion 
of Theo. 3.2, based on the use of complementary regions, is established in [19] 

P r o p o s i t i o n  3.6 An automaton A = (S, E, T, So) is isomorphic to Af* for a 
contact-free net system A/ = (P, E, F, M0) = ~ p e P  Alp if and only if every 
atomic subnet system Alp oral" may be defined from a corresponding region R v E 
7E.4 and the following properties of separation are satisfied: 
SSP: Vs, s ' e S  s # s ' ~ 3 p E P  s E R p c ~ s ' ¢ R  v 
ESSP ~ : Ye e E Vs E S not(s 4 )  ~ 31) e P Rv*e A s • R v. 

3.2 M i n i m a l  Reg ions  

Among the admissible sets of regions of an elementary automaton, the set of 
minimal regions plays a distinguished role because it leads naturally, as shown 
in [11], to a state machine decomposable (and hence contact-free) net system 
realizing the automaton. 

D e f i n i t i o n  3.7 An elementary net system Af = (P, E,  F, Mo) is a state machine 
if its initial case is a singleton and every event has one precondition and one 
postcondition. A state machine component o l a f  = (P, E, F, Mo) is a state ma- 
chine Af' = (P' ,  E',  F',  M~) such that P'  C_ P,  E'  = {e E El ( ' e  U e °) [7 P'  ~ 0), 
F'  = F M ( E  t × P ' U P  t x E'),  and M~ = MoMP t. A state machine decomposition 
of Af : (P, E, F, Mo) is a family of state machines, let A f i=  (Pi, Ei, Fi, M0,i), 
such that P = UiP~, E = UiEi, F = UiFi, and Mo = UiM0,i. 

A state machine is nothing else than a reachable automaton, as can be seen from 
Fig. 6 where the elementary net system given in Fig. 2 is decomposed into three 
state machine components. The respective state machine components model se- 
quential processes which are synchronized on their common events. In this ex- 
ample, the synchronization prevents the leftmost and rightmost processes from 
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Fig. 6. three state machine components of the net system of Fig. 2 

q 

entering simultaneously the critical section figured by the mutually exclusive con- 
ditions x2 and Y2. Each state machine component Afi of a net system Af = ~ hfi 
may be seen as a sequential observer of A/'*, projecting cases of Af on observable 
conditions p e Pi- By definition of state machine components, each case of A/" 
projects to one and exactly one condition p E P~, hence each case of ]¢" belongs 
to exactly one region Rp of A #* such that  p e Pi. 

Proposition 3.8 Every state machine component A/'i = (Pi, Ei, Fi, Mo,i) of an 
elementary net system IV" = ~ i  Afi determines a regional partition {Rp[ p e Pi} 
of the sequential case graph A#*. Conversely, every regional partition {Rp[ p e P} 
of A{* determines a state machine component of the saturated net system A/'**. 

P~eturning to the example, the regional partitions of A/'* (Fig. 3) which de- 
termine the three state machine components shown in Fig. 6 are respectively 
{X1,X2,X3},  {X2,Z, Y2}, and {YI,Y2,Y3} where: 

Z = {so;s3;84;87} 
X1 = {80; s2; s4} 
x2 = {81;s4 
X3 = {83; 85; 8~} 
Y1 = {so;sl;s3} 
Y2 = {s2; s s }  
Y3 = {84; 86; 8r} 

It may be observed that  all these regions are minimal w.r.t, set inclusion in 
T~H.. The particular interest of minimal regions for the net system realization 
of elementary automata is shown by the following proposition and corollaries. 

P r o p o s i t i o n  3.9 Given an automaton .4 = (S, E, T, So), the following proper- 
ties are satisfied by the set T~A of regions of .4: 

1. If  R1 and R2 are disjoint regions then R1 U R2 is a region with 

• (R1 o R~) = ( 'n l  0 "R~) \ ( ( 'n l  n R~') u ('R~ n RI')) 
(R1 u R~)" = (RI" 0 R~') \ (('R~ n R~') u ('R~ n R, ' ) )  
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2. I f  R and R I are regions and R ~ c R then R \ R I is a region. I f  moreover R' 
is minimal then e°(R \ R r) for every event e E R t° which is not incident to 
R (i.e. such that e ¢ *R U R ' ) .  

3. I] R is a region and s E R, then s E R ~ for some minimal region R ~ C R.  
4. I f  R is a region and e an event such that R°e,  then R~°e for some minimal 

region R l C R;  symmetrically if  e is an event such that e*R, then e°R t for 
some minimal region R ~ C R.  

5. Every region is a disjoint union of minimal regions. 

Corol la ry  3.10 A pre-elementary automaton is elementary if and only if its 
set of minimal regions is admissible. 

It may be further observed that the set of minimal regions of a pre-elementary 
automaton ,4 is admissible w.r.t, the separation properties ssP and ESSP if and 
only if it is admissible w.r.t, the separation properties ssP and ESSP ~. In fact, 
let {R1, . . . ,  Rn} be any partition of the set of states of .4 into minimal regions, 
then each instance of the problem ESSP (8, e)  solved by a region R~ such that e ° Ri 
and s E Ri can also be solved by a region Rj such that Rj°e  and s • Rj .  Since 
the set of all partitions of the set of states of .4 into minimal regions induces a 
state machine decomposition of the net system ~ p  Alp defined from the set of 
all minimal regions Rp of .4, one deduces also the following. 

Corol la ry  3.11 Every elementary automaton may be realized by a state ma- 
chine decomposable (and hence contact-~ree) elementary net system. 

An algorithm based on minimal regions has been proposed in [14] for a vari- 
ant problem of realization of automata by net systems which may be stated as 
follows. 

Given a pre-elementary automaton .4, decide whether exists and con- 
struct a (minimal) elementary net system flf such that Af* ~- .4~ for 
some quotient .4~ of .4.  

We recall that .4' = (S', E, T', s~) is a quotient of .4 = (S, E, T, So) if sl ~ s2 in 
.4 if and only if a(Sl) 4 a(s:) in A'  for some surjective map a : S --~ S ~ such that 
S'o = a(so). This problem is similar to the original synthesis problem, up to the 
fact that the states separation property ssP is ignored. Now the events-states 
separation property ESSP ~ is valid in .4 if and only if for every event e the set 
of states {s E S[ s ~}  coincides with the intersection of the minimal regions R 
such that R°e. The algorithm starts from the sets {s E S]s  4}  and increases 
them into minimal regions, which are generated until the validity of ESSP fi c a n  
be decided upon. The net Af is then constructed from a minimal set of minimal 
regions admissible with respect to EssP ~. A variant form of this algorithm has 
been integrated to a software tool for the synthesis of asynchronous circuits [15]. 

It should be noted that the problem of realizing automata by nets up to 
a quotient differs significantly from the problem of realizing automata by nets 
up to behavioural equivalence (equality of the accepted languages). In order to 
make the difference visible, let us focus on finite and deterministic automata. 
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In this context, behavioural equivalence coincides with bisimilarity. Given a fi- 
nite deterministic automaton ,4, with language £: and characteristic equivalence 
- on £:, the problem of realizing .4 up to behavioural equivalence consists in 
constructing an elementary net system A/" such that Af* recognizes £. For the 
problem of realizing .4 up to a quotient, it is set as a further requirement that any 
two equivalent sequences in/ :  lead to the same case when they are fired from the 
initial case of A/'. In orther words, it is asked that =_C-~... The reason why this 
constraint makes a notable difference is that the elementary automata are not 
closed under quotient. This counterfact is illustrated in Fig. 7: the automaton 
shown on the middle is isomorphic to the case graph of the net displayed on the 
left, but its minimized version shown on the right is not elementary (any region 
R such that R°c must include state 3, hence the problem EssP(3, c) cannot be 
solved). 

Fig. 7. elementary 

( a 

automata are not closed under quotient 

3.3 Complexity Results 

Hiraishi proved in [25] that the separation problems ssP(s, s r) and EssP~(s, e) are 
NP-complete in the respective data (A, s, g )  and (A, s, e). Since regions in A are 
closed under complementation, the problem EssP(s, e) is also NP-complete. It 
does not follow therefrom that the synthesis problem for elementary net systems 
is NP-complete; however this is the case. The synthesis problem is obviously in 
NP since the total number of instances of separation problems in an automaton A 
is quadratic in the size of .4, and it can be checked in polynomial time whether a 
non-deterministically chosen subset of states is a region solving a fixed separation 
problem. Now a polynomial reduction of 3-SAT to the synthesis problem of 
elementary net systems was established in [3], showing NP-hardness since 3- 
SAT is NP-complete (see e.g. [23]). Recall that 3-SAT is the problem whether, 
given a finite set of boolean clauses over V, with three litterals per clause, there 
exists some truth assignment for V validating each clause. Each clausal system 
of this form is associated in [3] with an automaton such that the clausal system is 
satisfiable if and only if the automaton is elementary if and only if the separation 
property EssP~ is valid. Therefore, the synthesis problem for elementary net 
systems is NP-complete, and so is the problem of realizing automata by nets 
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up to a quotient. The  problems of realizing automata  by nets up to behavioural 
equivalence, or up to an unfolding (given J[ find Af such tha t  A is isomorphic to 
a quotient of Af*) have unknown complexity. 

4 C u t s e t  R e p r e s e n t a t i o n  o f  F i n i t e  G r a p h s  

We have seen that  the region based synthesis of elementary net systems from 
initialized partial 2-structures (X, E,  _=, x0) is a NP-complete problem. Never- 
theless, this problem is trivial when the labelling equivalence is discrete: in tha t  
case, the partial 2-structure is essentially a state machine with set of places X;  
even better,  this state machine is equivalent to a net system with IXI - 1 places, 
whose case graph is a partial set 2-structure isomorphic to the given partial  
2-structure. There exists a large variety of set-theoretic representations for an 
unlabelled graph (X ,E) ,  all of which using at most I X I -  1 tokens. These rep- 
resentations, based on cuts and cutsets, may be computed by linear algebraic 
methods which are quite standard in applied graph theory. The purpose of this 
section is to review these methods, and thereby shed light on regions in two 
respects. First, we examine the close relationship between regions and cuts (this 
analogy was first pointed out to us by T. Murata).  Second, we indicate the ob- 
stacles to using linear algebraic methods for the region based representation of 
labelled graphs. On account of this analysis, a variant definition of regions is 
proposed in the next section. 

4.1 C u t s  a n d  Cutse t s  

Let G = (X, E)  be a finite, connected and simple directed graph with set of nodes 
X = { x l , . . . , x ~ }  and set of 2-edges E = { e l , . . . , e m } .  So, G is free of loops 
multiple arcs, although a 2-edge e = (xl,  Xk) may have an inverse e -1 = (Xk, xl)  
in E .  A cutset of G is a minimal  set of 2-edges whose removal increases the 
mlmber of connected components by one. A cut of G is a cutset or an edge 
disjoint union of cutsets. Since G is connected, every cut or cutset C _C E 
determines two complementary subsets of nodes p and X \ p, both non empty, 
such that  for every 2-edge e = (xk,  Xl), e E C if and only if xk E p ~=~ XZ ~ p. 
Conversely, every non trivial subset p C X determines a cut between p and 
X \ p, which is a cutset when both p and X \ p are connected. An orienta t ion  
of the cut C results from the choice of one of the two complementary subsets of 
nodes determined by the cut, let p. An oriented cut C may be coded by a vector 
C E ~ ,n  such that  for every 2-edge e~ = ( xk , x l ) ,  C( i )  = 1 if xk ¢ p and xl e p, 
C(i )  = - - l  if xk  E p and xl C p, and C( i )  = O if xk  E p c~ xt E p. 

Let X = { x l , . . .  ,xn} and E = { e l , . . . ,  era}. We will address the problem of 
constructing a variety of sets of properties {Pl,. • •, P,~-I } where Pi C X such that  
the partial 2-structure ({x* t x e X},  {e* l e • E},  ~ )  where x* = {Pil x • p~}, 

X* X* * X* (Xk,Xt)* = ( k, t ) ,  and 5(x~:,x~) = (x~ \ x l ,  I \ x ~ )  is isomorphic to  G viewed 
as a partial  2-structure: G = (X ,  E ,  ida) .  Each family of tokens {Pl, • • •, Pn-  1 } 
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will determine a corresponding set of (oriented) cuts {C1, . . .  Cn-1)  which are 
linearly independent as vectors Ci E j~/m. 

The interesting fact here is that  one can easily construct linear bases of cuts, 
given as sets of fundamental cutsets of G with respect to arbitrary spanning trees. 
Recall that  a spanning tree is a set of edges U C_ E, free of cycles and connecting 
X.  The fundamental cutsets w.r.t. U are the cuts which include exactly one 
branch of U. Each branch of U determines two connected components of U (and 
thus of G), with set of nodes p and X \ p, such that  every other branch of U 
is internal either to p or to X \ p. The fundamental cutsets w.r.t. U may be 
computed by classical methods of linear algebra. These methods are recalled 
below, following the notations of [16]. 

4.2 Comput ing  Cutsets  

The graph G = (X, E)  is characterized up to isomorphism by its incidence 
matrix. We recall that  this matrix A = [aij] is an n x m matrix with entries in 
{ -1 ,0 ,  1}, with aid = 0 if edge ej is not incident to node xi, ai,j = 1 i f x i  is the 
source of e j ,  and aid = - 1  if xi is the target of ej. Since every column contains 
exactly two non zero entries (1 and -1)  every row can be computed from the 
other rows, and the matrix A has the same rank as the matrix A1 obtained by 

[A1] where A l  iS an ( n - 1 )  x m matrix and A2 erasing its last row. Let A -- A2 

is an 1 x m matrix. Actually A1 and A have rank n - 1. Assume w.l.o.g, tha t  
the (n - 1) branches of the spanning tree U are the edges e~ = ej+(m-n+l) for 
j e {1, . . .  ,n  -- 1}. Then A1 = [All A12] where A12 is the (n - 1) x (n - 1) 
matrix corresponding to the edges of the tree (the branches) and All  is the 
(n - 1) x (m - n + 1) matrix corresponding to the other edges (the chords). 

The fundamental cutset Ci of G determined by the edge e~ of the spanning 
tree is given by the i th row of the fundamental cutset matrix Q f  = A;21 • A1. 
This (n - 1) x m matrix has the form [Qtl ,  In - , ]  where Ik is the identity 
matrix of rank k. The i th row of Qf  associated with the fundamental cutset Ci 
is an m vector with entries in {-1, 0,1}. Let pi and X \ p i  be the two connected 
components of G separated by Ci, such that  e} has its source in X \ Pi and its 
target in Pi. Then for every j e {1 , . . . ,  m) ,  C{(j) = 0 if ej is not in Ci, Ci( j)  = 1 
if ej is oriented from X \ Pi to Pi and Ci(j)  = - 1  if ej is oriented from Pi to 
X \ Pi. A complete example is shown in Fig. 8. 

It is worth noting that  the matrix A~-~ can be computed directly from G 
without inverting matrix A12, for it coincides with the path matrix P = ~i,j] 
defined as follows. For each j e {1 , . . . ,  n - 1}, let Hj  be the unique chain (in the 
tree U) connecting xj and the reference node Xn; then for 1 < i , j  < n - 1, let 
Pi j  = 0 if e~ does not belong to Hi,  Pi,j = 1 if e~ belongs t o / / j  and is oriented 
towards the reference node xn, and Pi,j = - 1  if e~. belongs t o / / j  and is oriented 
towards node xj. 
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4.3 C u t s e t  R e p r e s e n t a t i o n  o f  G r a p h s  

The nodes of G may be coded injectively by {0, 1} vectors according to their 
membership to the properties pj determined by the cuts Cj, resulting in an 
n × (n - 1) matrix Sa = [si,j], called the state matrix, such tha t  si,j = 1 if 
xi E pj, and si,j = 0 if xi Cpj .  Let Sa = [X1 ...  X~] ~, where the Xi are column 
vectors. The set {X~[ i < n} of rows of S~, representing nodes xi, together with 
the set {Cil i < n} of rows of Q f, representing fundamental cutsets, provide a 
representation of G. These data  are also sufficient for retrieving the spanning 
tree. Actually, there is exactly one way to assemble the row vectors Ci into a 
matrix of the form Qf = [Qsll I~-1 ]; and an ordered pair of vectors (Xk,X~) 
represents an edge ej = (Xk, xl) if and only if Xl - Xk = Qf( ' , j ) .  

4.4 Var i an t  Representations 

A variant representation of G is given by the pair of matrices P and Qf11- As a 
mat ter  of fact, the reduced incidence matrix A1 -- [All A12 ] may be computed 
by A12 = p - 1  and All  = p - 1 .  Q f11. The path matrix P can in turn be recon- 
structed from Xn and the reduced state matrix S = IX1,... ,  X~-l] ~. Actually, for 
every j < n, Xn = X j  +Pj  where Pj is the jth column of P (coding the cha in / / j  
connecting xj and xn), hence the path matrix P and the reduced state matrix 

( n -  1) times 

S are connected by the identity S t = iX~, . . . ,X~ i - P.  In particular, S = _ p t  
' of U are oriented away from the reference node xn. if all edges ej 

4.5 F u n d a m e n t a l  Cyc les  

It has some importance for the sequel to note that  the information provided by 
the fundamental matrix QI is exactly the same as the information provided by 
the fundamental cycle matrix 1 B f,  defined as follows from the spanning tree 
U. Each chord (i.e. edge in E \ U) determines a cycle in G, consisting of this 
edge and the unique chain in U that  connects its endpoints. This cycle may be 
represented by an m vector Bi with entries in { -1 ,0 ,1}  as follows: Bi( j )  = 0 
if ej is not contained in the cycle, else Bi( j )  = 1 or - 1  depending on whether 
the orientation of ej agrees with, or is opposite to the orientation of ei within 
this cycle. The fundamental cycle matrix B I is the (m - n + 1) × m matrix 
defined by B l ( i , j  ) = Bi( j) .  This matrix is of the form B !  = [Im-~+l BSl~], 
where B f12 = -Q~11 (in particular, a branch belongs to the fundamental cycle 
defined by a chord if and only if the chord belongs to the fundamental cutset 
defined by the branch). Therefore, B I • Q~ = 0, and the vector spaces YB and "gQ 
respectively generated over ~ by the fundamental cycles (rows of By) and by 
the fundamental cutsets (rows of QI) are orthogonal. These two vector spaces, 
which do not depend on the choice of the spanning tree, are indeed orthogonal 
complements of j//,n. 

1 called fundamental circuit matrix in [16] 
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n = 4 ve r t i ces  
m = 5 edges  
r = n - - 1  = 3  r a n k  

~ e '  I ~ c4 

Cs 

IQI = P ' A z  I 

B/12 = -Q~I; ] 

Inc idence  Ma t r i x :  

e l  e2 e3 e4 e5 
s l - - 1  0 0 0 1 

A =  s 2  0 - 1  0 1 - 1  
s3 0 0 1 - 1  0 
s4 1 1 - 1  0 0 

P a t h  Matrix: 

81 82 83 

p = A - Z =  es 1 0 0 
12 e4 1 1 0 

e5 1 1 1 

F u n d a m e n t a l  C u t s e t  Ma t r i x :  

Q! = 

gl  e2 e3 e4 e5 
C s - - I - - i  1 0 0 
C 4 - I - I  0 1 0 
C5 -1  0 0 0 1 

= [ Q / z z  I ~ ]  

S t a t e  Ma t r ix :  

C3C4C~ 
sz 0 0 0 

SQ = s2 1 0 0 
S3 1 1 0 
84 1 1 1 

F u n d a m e n t a l  Cyc le  Ma t r i x :  

q2 0 1 1 1 

Fig. 8. fundamental cutsets and cycles 
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Every non null vector in I)B with entries -1 ,  0, and 1 is a sum of fundamental 
cycles and/or  inverses of fundamental cycles, hence it is either a cycle or an edge 
disjoint union of cycles in vector form. Similarly, every non null vector C in ]2Q 
with entries -1 ,  0, and 1 defines a cut {ej[ C( j )  # 0}, but C may differ by the 
sign of its components from the vector which represents this cut (and also from 
the opposite of this vector). For a counterexample, let C = ( -1 ,  1) where el and 
e~ have the same target and distinct sources. 

4.6 Back  to  set  2-Structures  

We saw that  G may be represented by a set of {0, 1} vectors expressing the 
set of properties of its nodes (xj  6 Pi ¢~ X j ( i )  = 1), plus the set of the 
fundamental cutsets which define these properties (the cutset Ci defining p~ 
is given by the i th row of Q f). A node xj is then identified with the set of 
tokens x~ = {i t X j ( i )  = 1}; similarly, an edge ej = (xk,x~) is identified with 
the ordered pair e~ = (x~, x~). We show that  the resulting partial 2-structure 
G* = ({x*[ x 6 X}, {e*[ e 6 E},--~) is actually isomorphic to the given graph 
G = (X, E,  idE).  It is easily seen that  the above representation is injective on 
nodes, since two different nodes of the spanning tree are always separated by a 
fundamental cutset. In order to prove that  G* ~- G, it suffices therefore to show 
that  5(e~) = 5(e~) entails ej = et. We establish a stronger property, namely: 

L e m m a  4.1 Let ej = (Xk,Xl) be an edge of G, then for  every pair of nodes xp 
and xq, 5(x l ,x ; )  = 5(Xp,X*q) entails that xp = Xk and xl = xq. 

Proof: Assuming the premises, let ~r be a chain connecting xp and Xq in the 
spanning tree U, represented by a vector ~ 6 {-1 ,  0, 1} m by "orienting" the 
chain from xp to Xq. Suppose ~(j) = -1 ,  thus the edge ej is oriented away from 
xq and towards xp in that  chain. Let pj be the property defined by the funda- 
mental cutset which includes ej, then necessarily xp, xl 6 pj  and xq , xk  ~_ pj ,  
hence x~ \ x~ ~ x~ \ xq, contradicting our assumptions. Therefore, if we let l j  
denote the vector with a 1 at position j and 0 elsewhere, the vector ~r - l j  has 
all entries in { -1 ,0 ,  1}. Since QI "~r measures variations of properties along r ,  
the assumption 5(xk , x t ) = 5(xp, Xq) reads as Q I " r  = Q I • l j .  Thus the vector 
7r - l j  lies in );B, and it is either a cycle or a disjoint union of cycles in vector 
form. Since there is no cycle in U, it follows that  ~r - l j  is a cycle, hence xp = xk 
and xq = xt as was to show. I 

Now, any set {p~,.. .  ,Pn--1} of non trivial subsets of X determines a corre- 
sponding 2-structure G* = ({x*[ x 6 X}, {e*[ e 6 E} , -~ ) ,  defined as above by 
setting X]  = {i I xj 6 p~} and (xk ,x l )*  = (x~,x~) .  For 1 < i < n -  1, let C~ 
denote the cut separating the complementary subsets X \ p ~  and p~. We will show 
that  G* -'~ G whenever the corresponding vectors C~,..  ., C~_' t are linearly in- 
dependent. This is for instance the case when p~ = {xi}. Beware of the fact tha t  
G* may be isomorphic to G even though C~ , . . . ,  C~_ 1 are not linearly indepen- 
dent. For an illustration, let p~ -- {x2,x3}, p~ -- {x2,x4} and p~ = {xl,x3} in 
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G = (X, E)  where X = {Xl, x2, x3, x4} and E = {el, e2, e3} with ei = (xl ,  xi+l) ,  
then G* - G but  C~ -t- C~ = 0. Notice tha t  in this representation of G the vectors 
e~, e~, and e~ are not linearly independent: e~ + 2. e~ + e~ = 0 even though there 
is no cycle in G. 

Assuming tha t  C ~ , . . . ,  C~_ 1 are linearly independent, let us prove tha t  G -- 
( X , E ,  idE) and G* = ({x*[ x e X},{e* I e e E),-=~) are isomorphic partial  
2-structures. Let xk ¢ xt and assume for contradiction x~ = x~. Let lr be the 
chain in U connecting the vertices xk and xt. By construction of the cuts C~, 
lr- C~ = 0 for every i <_ n - 1. Since C ~ , . . . ,  C~_ 1 are linearly independent,  they 
span the vector space VQ and 7r is a cycle, thus xk = xl. I t  remains to show tha t  
~(e~) = ~(e~) entails ej = e~. 

L e m m a  4.2 Let ej = (Xk, xt) be an edge of G, then for every pair of nodes xp 
and Xq, 5(xk ,x  t )  = 5(Xp,Xq) entails that xp = xk and xt = Xq. 

Proof: Let 7r be  a chain connecting xp and xq in the spanning tree, represented 
by a vector r 6 { - 1 ,  0 ,1)  m by "orienting" the chain from x n to Xq. Suppose 
7r(j) = - 1 ,  thus the edge ej is in ~r and it is oriented away from xq and towards 
x n in tha t  chain. From the assumption 5(x k, x t ) = 5(x n, Xq) and by construction 
of the cuts C~, it follows tha t  r .  C~ = l j  • C~ for all i < n - 1, where l j  denotes 
the vector with a 1 at position j and 0 elsewhere. Thus (It - l j )  • C~ = 0 for 
all i, and since C ~ , . . . ,  C~_ 1 form a basis of the vector space ]}Q, it follows tha t  
(Tr - l j ) -  Ck = 0 for all k <_ n - 1 and in particular for h = j - (m - n + 1). 
Now the first m - n + 1 entries of the vector lr - l j  are zeros and the last  n - 1 
entries of Ch are zeros but  Ch(j) which is 1. Therefore, I t( j)  -- 1 and we have 
reached a contradiction. Thus the vector ~r-  l j  has all entries in { - 1 ,  0, 1}. Since 
( r  - l j )  • C~ = 0 for all i, the vector lr - l j  lies in ]}B, and it is either a cycle or 
a disjoint union of cycles in vector form. Since there is no cycle in U, it follows 
tha t  7r - l j  is a cycle, hence xp = xk and Xq ---- xt as was to show. | 

We now give an example (see Fig. 9) showing tha t  the computat ion of cuts 
and cutsets cannot  lead directly to a net representation of G = (X, E) .  Let 

X l  x 2  X3 

Pit 1 1 0 
p2[ l  0 1 

{Pl,P2} 

{pl} ~ {p2} 

Fig. 9. elementary net system associated with a basis of cuts 

x = { x l , x 2 , x ~ }  and E = { e l , e 2 , e 3 }  wi th  e l  = ( x l , x 2 ) ,  e2 = ( x l , x ~ )  and 
e3 = (x2,x3). A basis of cuts for G is given by the vectors CI = ( 0 , - 1 , - 1 )  
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and C2 = ( - 1 , 0 , 1 ) ,  inducing respective properties Pl = {xl ,x2} and P2 = 
{xl ,xa} such tha t  x~ = {Pl,p2} and x~ = {Pl) and x~ = {p2). Now let Af -- 
({Pl, P2}, E,  F, x~) be the elementary net system such that  "el = x~ \ x~ = {P2}, 
el" = x~ \ x~  = 0, "e2 = x~ \ x~  = {Pl}, e2" = x~ \ x~ = 0, and "e3 = x~ \ x ~  = 
{Pl}, e3" = x~ \ x~ = (P2}. The case graph of A/" is not isomorphic to the 
initialized partial set 2-structure (X*,E*,=_~,x~), due to the presence of two 
additional transitions x~ [e2 > 0 and x~ [el > 0. 

4.7 Cuts  and Regions  

A non trivial region p of a partial 2-structure (X, E ,  -=) always determines and 
is determined by a cut C of (X, E) ,  which we may therefore call a regional cut. 
If we identify cuts C with the corresponding vectors C : E -~ { -1 ,  0, 1}, then a 
cut is regional if and only if it is compatible with the equivalence -- in the sense 
that  e -- e' ~ C(e) = C(e') for all e, e' E E. In particular, all cuts are regional 
when -_- is the identity relation. 

Let us adapt  the above to transition systems. We saw that  a non trivial region 
R of (S, E,  T) is always determined from a corresponding map 77 : E -+ { - 1 ,  0, 1} 
such that  ~(e) = - 1  if R°e, ~?(e) = 1 if e°R, and ~/(e) = 0 otherwise (~(e) = 
Xn(s ~) - XR(S) when s -5 s'). Let g : T ~ E be the labelling function such that  
~(s -5 s') = e. Then a map ~/ : E -+ { -1 ,  0, 1} determines a region in a pre- 
elementary transition system (S, E,  T) if and only if the map C : T -+ { -1 ,  0, 1} 
defined by C(t) = ~(~(t)) is a cut of the underlying graph (S, T).  

On that  basis, let us t ry  to point out the obstacles to a polynomial synthesis 
of elementary net systems. On one hand, one can compute in polynomial time a 
linear basis for the real vector space ])Q which contains all cuts, but  also elements 
which are not cuts even though all their entries are in { - 1 , 0 ,  1}. On the other 
hand, abstract regions are quotients of cuts, but  it is not possible to derive a 
basis of abstract  regions from a basis of cuts since abstract  regions are not closed 
under summation. A well known recipe for getting rid of the first problem is to 
replace the real field ~ by the boolean field 2 in the definition of the vector 
space )2Q. The second problem will then be overcome by a slight adaptat ion of 
the definition of regions, amounting to embed the elementary nets in a wider 
class of one-safe nets which have actually a polynomial t ime synthesis. 

5 F l i p  F l o p  N e t s  a n d  t h e i r  S y n t h e s i s  

We examine in this section extended regions in automata,  defined as sets of 
states R such that  all transitions with the same label are incident jointly to R, 
possibly inwards for some transitions and outwards for the others, or axe not  
incident to R. A class of one-safe nets based on these regions, called flip flop 
nets and extending elementary nets, has been defined in [39]. We show that  the 
synthesis problem for flip flop nets may be solved in polynomial time, following 
techniques of linear algebra based on cntsets. Pairs of complementary regions 
in an automaton may be identified with vectors 7/: E -+ 2; these maps form a 
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vector space over 2, a basis of which is easily derived from any set of fundamental 
cutsets of the (undirected) graph underlying the automaton.  

5 .1  T h e  V e c t o r  S p a c e  o f  C u t s  

Let A = (S, E,  T, sn) be a loop-free, reachable and reduced finite automaton (not 
necessarily simple), with S = ( s t , . . . ,  sn} and T = { t t , . . . ,  tin}. Let O°(t) = s, 
01(t)  = Y and ~(t) = e denote the respective source, target and label of a 
transition t = s -~ s'. Let A = [aij] be the incidence matr ix of the (undirected) 
graph (S, T).  All definitions and results from section 4 carry to (undirected) 
graphs up to the replacement of _~ by 2, see e.g. [32, 17]. Recall that  a cut is 
a cutset or an edge-disjoint union of cutsets, where a cutset is a minimal set 
of edges whose removal increases the number of connected components by one. 
Cuts and cutsets are now represented as boolean vectors in 2 < T >  ~ 2 m, 2 
and similarly for cycles and for edge-disjoint unions of cycles. The (pointwise) 
sum of two cuts is a cut, and similarly for two edge-disjoint unions of cycles. In 
other words, cuts and edge-disjoint union of cycles form vector spaces over 2, 
let ])Q and ])s. These vector spaces are respectively spanned by the rows of the 
fundamental  cutset matr ix  Qy and by the rows of the fundamental cycle matr ix  
B f ,  jointly computed from any spanning tree by the algorithms described in 
section 4, interpreted over the boolean field. Thus Qf  and By are (n - 1) x m 
and (m - n + 1) × rn matrices with boolean entries such that  By • Q~ = 0. 
Therefore ])@ and )2B form orthogonal complements in the boolean vector space 
2 < T >  ----" 2 m. 

5 .2  T h e  V e c t o r  S p a c e  o f  A b s t r a c t  R e g i o n s  

Our purpose is to transport  the linear algebraic methods from the vector space 
2 < T >  to the vector space 2 < E >  through the labelling function ~ : T -~ E ,  
which maps transitions to their labelling events. 

D e f i n i t i o n  5.1 A cut C = [cj] is a regional cut  i f  ~(t j)  = £(tk) =~ cj = Ck for  
all 1 < j ,  k < m.  A n  abstract region is a map ~ : E -+ 2 such that cj = ~(~(tj)) 
defines a regional cut C = ~ o ~. 

By an abuse of notation, we make no distinction between vectors C E 2 < T >  ----- 
2 m and the corresponding maps C : T -+ 2. We make a similar confusion between 
maps ~ : E ~ 2 and vectors ~ E 2 < E >  -- 2 l, where E = ( e l , . . . , e l } .  Because 
.A is reduced, regional cuts and abstract  regions are in a bijective correspondence. 
Moreover, given any pair of regional cuts C = y o l and C'  = yr o ~, their sum is 
a regional cut C + C r = (~? + ~') o £. Thus abstract regions form a subspace of the 
vector space 2 < E > ~ 2 I. A method for computing a basis of abstract  regions 
is indicated below. 

2 If K is a ring (or a field) and X a set (of generators) we let K < X > denote the 
K-module (or vector space) freely generated by X. 



553 

Since the vector spaces "~Q and ];B are orthogonal complements, 71 is an 
abstract region if and only if 71 o [ • VQ if and only if C = ~/o l is orthogonal 
to all fundamental cycles Bi (rows of BI) .  For any cycle B = [bj], let I I (B)  = 
[Trk] • 2 < E >  be the Parikh image of B given by Irk = ~{b j l  ~(tj) = ek}. 

m Otherwise stated 7rk = ~ j = t  ~j(ek) where ~j(ek) = 1 if e(tj) = ek and bj = 1, 
else 0. Then C . B  = 0 if and only if ~ ' = l ~ ( [ ( t J ) ) ' b J  = 0 if and only if 

~ - l ( r / ( e k )  " ~ - 1  qoj(ek)) = 0 if and only if ~.  I I (B)  = 0. Since I I ( B  + B')  = 
//(/3) + / / ( B ' ) ,  itfollows that  r/is an abstract region if and only if r/is orthogonal 
to the linear subspace of 2 < E >  spanned by the Parikh images H(Bi )  of the 
fundamental cycles Bi. Let l - p be the dimension of the linear space HO2B ). A 
basis of abstract regions { rh , . . . ,  r/p} follows, e.g. by Gauss resolution. 

5.3 Flip Flop Regions and Flip Flop Nets  

Definition 5.2 A flip flop region in A = (S, E , T ,  sn) is a non trivial sub- 
set of states R C S whose characteristic function XR : S -+ 2 satisfies Vi • 
{1, . . .  ,m} XR(Ol(ti)) = XR(O°(ti)) + ~/(£(ti)) for some abstract region ~1. 

Since A is reachable and reduced, abstract regions r /are  in bijective correspon- 
dence with pairs of complementary regions R and S \ R. Flip flop regions, repre- 
sented as vectors XR • 2 < S >  ~ 2 n, form a linear subspace of 2 n, closed under 
the complementation operation XR + 1 = Xs\R. 

The definition of flip flop nets stems from the analysis of the possible crossing 
relations between a flip flop region R and the transitions bearing an identical 
label. All possible cases are covered by four relations: 

R ' e  : V t • T  l ( t ) = e = ~ ( O ° ( t ) • R  A 0 1 ( t ) ¢ R )  
e ' R  : Vt • T [(t) = e ==> (O°(t) ¢ R A 01(t) • R) 
e ± R : V t • T  [ ( t ) = e = v ( O  ° ( t ) • R ¢ ~ O  l(t)  e R )  
e× R : Vt • T e(t) = e ~ (O°(t) • R ¢~ (Ol(t) • R) 

Conversely, any non trivial subset of states R C S satisfying R°e V e ' R  V e±R V 
e×R for all events e • E is a flip flop region, associated with an abstract region 
r /such that  r/(e) = 0 if and only if eAR. It is now patent that  flip flop regions 
are an extension of elementary regions, which must satisfy R°e V e ' R  V e±R. 
Observe that  e°R ~ e×R and R°e ~ eXR. However these three relations play 
incomparable roles in flip flop nets, where they are called respectively input 
(R°e), output (e 'R) ,  and swap (e×R). 

Definition 5.3 A flip flop net is a triple N = (P, E, W )  where P is the set of 
places or conditions, E is the set of events, and W : P × E --~ {input, output, nop, 
swap} is a matrix such that Ve • E 319 • P W(p ,e )  ¢ nop. A case of N is 
a map M : P -+ 2. An event e has concession at M if and only if  Vp • P 
( w ( p ,  e) = inp . t  M(p)  = 1) ^ (W(p,  e) = o . t p . t  M(p)  = 0). The event 
e may then fire, resulting in a transition M[e > M'  where for every condition p: 
W(p ,e )  = hOp =¢, M'(p) = M(p) and W(p ,e )  ~ nop =# M'(.p) = 1 + M(p). 
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Definition 5.4 A flip flop net system is a structure A/" = (P, E, W, Mo), where 
Mo is a case of the underlying flip flop net N = ( P, E, W). The sequential case 
graph of Af is the automaton A/'* = (S, E, T, Mo) where S is the set of cases 
reachable from Mo by sequences of steps M[e > M' and T is the subset o] these 
steps in S x E x S. 

It follows that for every condition p e P, the sets {M E SI M(p) = 1} and 
{M E S I M(p) = 0} are complementary flip flop regions of A f*. So the sets of 
states {sl, Ss, s6} and {s2, s3, s4} are flip flop regions in the example shown in 
Fig. 10. 

a 
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W(p, e): input output swap nop 

pxs~S2o o oSSS4~ss81 
p2 0 1 0 1 0 1 
p3 0 0 1 1 1 0 

Fig. 10. a flip flop net and its sequential case graph 

5.4 Representation Resu l t  

The following result was established in [39]. 

P r o p o s i t i o n  5.5 A finite loop-~ee automaton .4 = (S, E, T, Sn), reachable from 
Sn and reduced, is isomorphic to the sequential case graph of a flip flop net system 
if and only if the following conditions are satisfied for R ranging over the set 
T~FFN (A)  of flip flop regions of ,4: 
SSP: V8, 8' e S 8 ¢ s '  =:~ 3 R  (8 q R ¢$ 8' • R ) ,  
ESSP: V s E S  V e E E  nots-5, ~ S R  (R*e A s C R )  V (e*R A s E R ) .  

A synthesis algorithm follows easily. Let {yl , - . . ,  ~p} be a basis of abstract re- 
gions of ,4, computed from some spanning tree U C_ T. For each state si e S, 
let pi be the chain connecting si and Sn in the spanning tree. An instance 
ssP(si, sj) of the states separation problem can be solved if and only if ~k • 
(H(pi) + II(pi)) ¢ 0 for some k e {1, . . . ,p},  where H(p) e 2 < E >  is the 
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Parikh image of the chain p C 2 < T > .  An instance of ESSP(Si, e) can be solved 
if and only if there exists a linear combination y = ~P=I  ak • Yk, where ak E 2~, 
satisfying T]. [H(pi) + H(pj)]  = 1 for every state sj in which event e is enabled. 
When these conditions are satisfied, a net system Af = (P, E,  W, Mo) such that  
,4 --- Af* may be constructed by assembling the atomic net systems Alp defined 
from conditions p as follows: 

1. for each i n s t a n c e  ssP(si,sj) solved by ~k, let p be the condition such that  
W(p,  e) = swap if rlk(e ) = 1 and W(p,  e) = hop if r/k (e) = 0, with Uo(p) fixed 
arbitrarily to 0 or 1; 

2. for each instance ESSP(si,e) solved by an abstract  region ~ = ~ = 1  ak "Nk, 
let p be the condition such that  W(p, e) = input, Mo(p) = rl" II(pi) ,  and for 
e' 7£ e, W(p, e') ---- swap if  ~ (e ' )  = 1, a n d  W ( p ,  e') = nop if r/(e') = O. 

A minimal system AP such that  .4 ~ AP* may be obtained by eliminating from 
Af redundant  places. The following is proved in [39]. 

P r o p o s i t i o n  5.6 The synthesis problem for flip flop nets may be solved in time 
O([S[ 2 x [E[a), where S and E are the respective sets of states and events of the 
automaton. 

The synthesis algorithm which has been suggested here is a simplified form of 
the synthesis algorithm for Petri  nets proposed in [2] and presented in section 7 
of this survey. The case of Petri nets is significantly more complex, to a limited 
extent because the integer module ~g < E > is more complicated that  the boolean 
vector space 2 < E >, and to a large extent because combinatorial approximation 
techniques are needed for the synthesis of Petri  nets, while they are useless for 
flip flop nets. 

Before tackling the synthesis problem for Petri  nets, we make a detour to 
show tha t  the striking similarity of the representation results for elementary net 
systems and flip flop net systems is not incidental, and does not depend on the 
type of nets. 

6 Regions for Arbitrary Types of Nets  

The automata  A = (S, E,  T, So) considered in this section are always assumed 
to be reachable and deterministic, but  they may not be simple, nor reduced, 
and they are not necessarily finite. The transition systems (S, E,  T)  are always 
assumed to be deterministic, but they are not necessarily connected. Recall tha t  
a morphism of transition systems (a,~) : ( S , E , T )  -+ ( S ' , E ' , T ' )  is a pair of 

maps a : S -+ S' and ~ : E --~ E '  such that  s -~ s' in T entails a(s) "~) a(s') in 
T'; morphisms of automata  are morphisms of the underlying transition systems 
which map the initial state to the initial state. 

The  extension of the concept of regions to arbi trary types of nets stems from 
the following observation. Let TFFN be the transition system given in Fig. 11. 
Solving the synthesis problem for ~4 = (S, E,  T, So) w.r.t, flip flop nets amounts 
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output 
n o p ~ n o p  

input 

Fig. 11. the type TFF N of flip flop nets 

to amalgamate on E a set of atomic net systems Alp = ({p}, E, W, M0), defined 
from morphisms p = (a, r/) : (S, E, T) --+ 7"FF N such that W((a ,  ~), e) = o(e) and 
Mo((a, r/)) = a(so). The resulting net system A/" = ~ p e p  A/p has a case graph 
A/'* isomorphic to A if and only if the family {Afpl p = (a,r/) 6 P} is admissible 
in the sense that the following two separation conditions are satisfied: 
ssP: Vs, s' 6 S s # s' =~ 3(a, rl) 6 P a(s) # ~(s'). 

ESSP: V8 6 S Ve 6 E not (s _5,) ~ 3(a, r/) 6 P not (a(s) ~ ) )  in 7"FF N. 
Thus the concept of regions as sets of states may profitably be replaced by the 
richer concept of regions as morphisms, which is actually the central concept for 
the synthesis of net systems. The two concepts are not strictly equivalent for flip 
flop nets: several morphisms (a, y) : (S, E, T) -+ 7'FFN may actually determine 
the same set of states a-l({1}),  i.e. the same set theoretic region, because the 
component a on states does not determine the component r/ (even though the 
transition system is connected and reduced). 

Our aim is to show that the representation results which have been stated 
so far for elementary nets and for flip flop nets may be established at once for 
all possible types of nets, using the concept of regions as morphisms. 

6.1 T y p e s  of  Ne t s  

For the sake of a uniform presentation, we depart here from the traditional 
definition of nets and adopt a parametric definition covering elementary nets, 
flip flop nets, and Petri nets as particular instances. The parameters of this 
general definition are called types of nets [6]. 

Definit ion 6.1 A type of nets  is a deterministic ~ransition system r = ( LS, LE, r), 
where L S  and L E  are the respective sets of local states and local events, and 
T C_ LS  x L E  × L S  defines the partial action of local events on local states. 

Defini t ion 6.2 A net of type T iS a triple N = ( P , E , W )  where P is a set 
of places, E is a set of events, and W : P x E -+ L E  is the weight matrix. 
A marking is a mapping M : P -~ LS .  A net system o/ type  7 is a structure 
A / =  (P, E, W, Mo) where Mo, the initial marking, is a marking of the underlying 
net N = (P, E, W). 

A net or net system is place simple if all rows of the weight matrix are different; 
it is event simple if all columns of the weight matrix are different. All nets and 
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net systems considered in this section are assumed to be place simple but not 
necessarily event simple. 

A net may be seen as an undirected complete bipartite graph whose edges 
are weighted by local events. As such, nets are of a static nature, but types (of 
nets) define their dynamics: the partial actions of events on markings may be 
inferred from the partial actions of local events on local states, using the weight 
matrix to control products of local events. The following definition extends in 
this way the usual sequential firing rule. 

Def in i t ion  6.3 Given a net N = (P, E, W),  of type r = (LS, LE, r), the (sequen- 
tial) marking graph of N is the transition system (LS P, E, T) with set of transi- 

tions T defined by (M _5~ M') E T if and only if Yp e P (M(p) w ~ )  M'(p)) • v. 
Given a net system Af = (P,E,W,  Mo), the (sequential) marking graph of J~ r is 
the (dual) automaton 2¢'* = (S ,E,Ts ,  Mo) where S is the inductive closure of 
{Mo} w.r.t, forward transitions in T, and Ts -~ T M (S × E × S). 

Thus an event has concession at marking M if and only if for every place p, the 
local event W(p, e) is enabled at the local state M(p) in the transition system 
7 (defining the type of the net). A net system is reduced if every event e has 
concession at some reachable marking and if for every pair of distinct places p 
and p', there exists some reachable marking M such that M(p) • M(p'). The 
net systems which we consider are generally not reduced. We now illustrate the 
above definitions on two classical examples, namely elementary nets and Petri 
nets. 

Let TEN be the transition system shown in Fig. 12. The elementary nets 

output 

nop~nop 
input 

Fig. 12. the type TEN of elementary nets 

(P, E, F) correspond bijectively with nets (P, E, W) of type TEN , with W(p, e) = 
input ¢~ F(p, e) and W(p, e) = output ~=~ F(e,p), and W(p, e) = hop otherwise. 
One may easily verify that the corresponding nets have identical marking graphs. 

Let us now recall the classical definition of Petri nets. 

Definition 6.4 A Petri net is a triple N = ( P, E, F) where P and E are disjoint 
sets of places and events, and F is a function, F : (P × E) U (E × P) --+ ~W. A 
marking of N is a map M : P --~ IN. An event e has concession at M if and only 
if Vp E P F(p, e) <_ M ~ ) .  An event e which has concession at M may fire, 
resulting in a transition M[e> M' where Vp E P M'(p) = M(p) - F(p,e) + 
F(e,p).  A Petri net N is said to be pure ifVp E P Ve E E F(p, e) x F(e,p) = O. 
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Let the type of pure Petri nets be the transition system TppN ---- (~]', ~ ,  T) such 
that n _5, n' if and only if n' = n + z, i.e. T p p N  is the full subgraph of the Cayley 
graph of 2~ induced by the restriction on the subset of nodes in ~ .  Pure Petri 
nets (P, E, F) are linked by a marking graph preserving bijective correspondence 
with nets ( P , E , W )  of type TppN given by W(p,e) = F(e,p) - F(p,e). 

Let the type of Petri nets be the transition system rpN = (~ , /~  X ~, T) such 

that n (P~ n' if and only if n >_ p and n' = (n - p) + q. Petri nets are set 
in bijective correspondence with nets of type T p N  by the relation W(p, e) = 
(F(p,e),F(e,p)).  With this correspondence, the firing rule stated in Def. 6.3 
reads actually as 

M[e> M' ¢~ Vp E P M(p) >_ F(p,e) A M'(p) = M(p) - F(p,e) + F(e,p) 

The above Petri nets are a particular instance of the generalized Petri nets 
studied in [20]. In this paper, Droste and Shortt paxametrize the classical def- 
inition of Petri nets (Def. 6.4), in which ~W is substituted for by the positive 
part G + of a partially ordered abelian group G. These authors further classify 
types of Petri nets over a fixed group G by the set of pairs ((F(p, e), F(e,p)) E 
G + x G + occurring in associated subclasses of nets. For instance, condition-event 
nets axe obtained by restricting nets over • to the pairs ((F(p,e),F(e,p)) E 
{(0, 0), (0, 1), (1, 0), (1, 1)}. Note that all types of nets which we have defined so 
far can similarly be obtained from Cayley graphs (G, G, T) (i.e. g' -5 g" in T 
if and only if g" = g' + g) by eliminating nodes and/or by restricting group 
actions to partially defined group actions. For instance, TEN is the Cayley graph 
of Z/32g restricted on nodes 0 and 1, with hop = 0, output = 1, and input = 2. 
Similarly, T FF N is obtained from the Cayley graph of 2~/2 Z by identifying action 
0 with hop, action 1 with swap, and the partial action 1 defined at node 0 (resp. 
at node 1) with output (resp. with input). Therefore, all nets considered so far 
are reversible in the sense that they have co-deterministic sequential marking 
graphs (MI[e>M and M2[e>M entail M1 = M2). Nevertheless, flip flop nets 
are not Petri nets over a group according to the definition of Droste and Shortt. 
The main reason why we do not stick here to types of nets based on groups is 
that we want to cover also non reversible nets, such as trace nets (see 6.5). 

6.2 Regions  as Morphisms 

The firing rule for nets stated in Def. 6.3 tells us that for every place p in a net of 
type % the pair of maps (ap,~p) defined by ap(M) = M(p) and ~lp(e) = W ~ ,  e) 
is a morphism of transition systems from the marking graph of the net to the type 
T. Therefore, if we forget the internal structure of states in the marking graph, 
identified with any isomorphic transition system (S, E, T), and if we identify a 
place p with its extension (ap, ~/p), we can rediscover the places of the net (and 
also discover implicit places) as morphisms (a, 7) : (S, E, T) -+ T. This motivates 
the following definition of regions for arbitrary types of nets. 
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D e f i n i t i o n  6.5 Given a transition system A = (S, E ,  T)  and a type of nets 
T = (LS, LE ,  T), the set T~r (A) of r-type regions in A is the set of morphisms 
from A to T. 

By an abuse of notation, we extend the above definition to automata  by letting 
7~r (A) = 7~r (A) where A is the transition system underlying the automaton A. 
We now illustrate this definition on elementary nets and on Petri nets. 

An elementary region in A = (S, E,  T) is a morphism (a, ~) : A -+ ~'EN- The 
map 77 classifies events e E E into three families according to their relationship 
with the property R = a - l ({1}) :  all events e such that ~(e) = input take R 
as an input condition and falsify R (s 4 s ' ~  s E R A s' ¢ R), all events e 
such that  r/(e) = output take the falsity of R as a precondition and establish R 
(s -5 s ' ~  s ¢ R A s' E R), and the remaining events such that r/(e) = hop do 
not modify R (s -5 s'=> (s E R ¢=> s' E R)). One recognizes in R = a - l ( {1} )  a 
region according to the original definition of Ehrenfeucht and Rozenberg. 

A pure Petri region in A = (S, E,  T) is a morphism (a, rt) : A -+ T p p N  

(see Fig. 13 for an illustration). Here the map a measures the availability of a 

r - l ( O ~ C  -1-1 1: 

- 1 ( 1 ~  0 -2 

" - l ( ~ ~ a  ~ --2 

a - ' ( 3 ~  +1 

Fig. 13. a pure Petri region as a morphism: A ( ~  TppN 

resource at each state s E S, and the map ~? classifies events e E E according to 
the amount of resource which they produce (when ~?(e) > 0) or consume (when 
~?(e) < 0) at each firing. When A is a finite transition system, the abstract regions 
~? defined in this way are in bijective correspondence with weighted synchronic 
distances in A, measuring the relative degree of freedom of the respective subsets 
of events e such that  ~?(e) < 0, resp. ~(e) > 0 [12]. 

A Petri  region in A = (S, E, T) is a morphism (a, ~) : A -}  T p N .  Here again 
the map a measures the availability of a resource at each state. The map 
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classifies events according to associated pairs y(e) = ('o(e), r/'(e)) where *r/(e) 
measures the amount of resource consumed for triggering e while ~° (e) measures 
the amount of resource produced by e, amounting to a neat variation of resource 
r/°(e) - *r/(e). These Petri regions coincide with the regions which have been 
defined by Mukund [33] (in the larger framework of step transition systems) and 
which have been adapted by Droste and Shortt [20] to Petri nets over partially 
ordered abelian groups. 

6.3 A Galois Connect ion be tween  Automata  and N e t s  

We saw that regions may serve to reverse the production of marking graphs. The 
reversing process may also be applied to arbitrary transition systems, leading to 
the following definitions. 

Def in i t ion  6.6 Given a transition system A = (S, E, T) and a type of nets T, 
the dual of A is the ne tA*= ( ~ ( A ) , E ,  W) with weights defined by W((a,~l),e) = 
rl(e). For any subset T¢ of TC~(A), let A~ denote the subnet of A* with restricted 
set of places ~ .  

Defini t ion 6.7 Given an automaton ,4 composed of a transition system A and 
an initial state So, and a type of nets T, the dual of fit is the net system fit* 
composed of the underlying net A* and of the initial marking Mo defined by 
Mo(a,r/) = a(so) for every (a,O) ETe~(A). For any subset ~ of TC,(A), let fit~ 
denote the subnet system of A* with restricted set of places T¢. 

We will show that the two 0* operators mapping the automaton ,4 to the net 
system fit* and the net system Af to its marking graph Af* form a Galois con- 
nection: .4 < A/'* ¢~ Af < ,4*. The main difficulty is to construct the appropriate 
order relations. One expects in particular A <_ Af~ ¢~ Alp < A* for every region 
p = (ap, ~p) E Ti~(A) where A/'p is the atomic subnet system of fit* with sole place 
p (i.e. A/'p : fit~p}) and A/'p is its marking graph. This particular case will help us 
to find out the order relation on automata. Since A~ is a subnet system of fit*, 
both Alp < A* and fit < Af~ are expected; by definition of regions, if E is the 
set of events of fit then (ap, 1E) is an event preserving morphism from A to Af;. 
Moreover, if there exists an event preserving morphism (a, 1E) : Jl.1 "~ ~42 between 
two automata with set of events E, this morphism is necessarily unique owing 
to the strong properties of determinism and reachability we have assumed from 
all automata; therefore, if there exist morphisms (al, 1E) : A1 -+ A2 and (a2, I E )  : 
A2 -~ A1, then A1 and .42 are identical up to the identity of states (.41 =E -42). 
So let Au t (E)  be the set of (deterministic and reachable) automata with fixed 
set of events E, quotiented by =E, then 

A1 _< A2 if 3a : (a, 1E) : A1 ~ fit2 

is a partial order on Aut (E) ,  such that A _< Af; for every region p ET~(A). 
This partial order is a complete lattice, with greatest lower bounds computed 
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as synchronized products. We remind the reader that the synchronized prod- 
uct AieiAi of a family of automata A~ = (&,E,T~,so,i) indexed by i E I is 
the automaton (S ,E ,T ,  so) with components as follows: so = (s0,~)iez, S is the 
inductive closure of the set {so} w.r.t, the synchronized transition rule 

(s~),e12+(s~),el iff V i E I  (s, 2+s~)ET~ 

and T is the set of occurrences of this rule at states (si)iei E S. By definition of 
marking graphs, the automaton Af* dual to a net system Af = (P, E, W, M0) is 
actually the synchronized product Apev A/'; of the marking graphs of its atomic 
subnet systems. 

Concerning the order relation on net systems, the central assumption that 
Alp < ,4* for every region p of .4 leads to choose something akin to the sub- 
structure ordering: All --~s~b Af2 if A/1 is Af2 restricted on a subset of places. How- 
ever replicated places may occur in a net system Af = (P, E, W, M0), i.e. places 
which the initial marking M0 and the weight function W do not distinguish from 
one another, and we do not care about their degree of multiplicity nor about 
their identities. Let morphisms of net systems with fixed set of events be defined 
as follows: a morphism from HI -- (P1, E, W1, Mo,1) to Af2 = (P2, E, W2, M0,2) 
is a map ~ : P1 -+ P2 such that Mo,t(p) -- Mo,2(p) and Wl(p,e) = W2(~(p),e) 
for all p E P1 and e E E. Two net systems connected by morphisms in both 
directions are henceforth declared equivalent. Let Nets(E) denote the set of 
equivalence classes of net systems with set of events E (replication free nets 
are canonical representatives). One can equip Nets(E) with the partial order 
relation defined as: 

This partial order is a complete lattice, with least upper bounds V~et Af~ of 
families of net systems computed by amalgamation of sets of places. Told in 
another way, if we identify a place p in a net system Af = (P, E, W, M0) with the 
pair (Mo(p),~lp) such that ~ p ( e )  = W(p,e) for e E E then V~eI(P~,E, Wi,Mo4) 
= (U~el P~, E, W, Mo) where W(p, e) = Wi(p, e) and Mo(p) = Mo,i(p) for p E Pi- 
A net system Af with set of places P is now the least upper bound VpeP A/v of 
its atomic subnet systems Hp. In the particular case where Af = A* is dual to 
the automaton ,4, its set of places is the set of regions ~ ( A ) ,  where v is the 
type of H,  hence its atomic subnet systems Alp have the form ,4~v} and we get 
the following. 

Proposition 6.8 Let 7~ C T~r(A) then A~  = (Vpen A~p}). 

The key for the Galois connection between the ordered sets (Ant(E),  <_) and 
(Nets(E), <) is the following proposition, proved in [7] 

Proposition 6.9 Let Af = ({p}, E, W, Mo) be an atomic net system o] type T, 
then A ~ Af* if and only if Mo(p) = a(so) andre  e E W(p,e) = ~(e) for 
some region (a,~?) E T~r(`4), where So is the initial state of the automaton `4. 
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Thus any atomic net system Af such that ,4 < Af* is isomorphic to A;p = A~p} 
for some region p = (a,~) E nr(`4). Since `4* - V{,4~p}l p E 7~(,4)}, it follows 
that Af <_ ,4*. Conversely, by definition of the order relation on net systems, any 
atomic net system Af such that A/" < ,4* is isomorphic to Alp = ,4~p} for some 
region p = (a, 7) E 7~r (,4). Since ,4 <_ Af~ by construction of the order relation 
on automata, it follows that ,4 _< A;*. Altogether, we obtain the following. 

Proposition 6.10 For any atomic net system IV', ,4 < Af* ~:~ Af < ,4*. 

We are ready to establish the expected Galois connection between automata and 
net systems. 

Proposition 6.11 The two O* operators, mapping respectively the automaton 
,4 to the dual net system ,4* and the net system Af to its marking graph Af*, 
constitute a Galois connection between the ordered sets Nets(E)  and Aut(E) :  
,4 < Af* ¢¢, Af <_ A* for A E Aut (E)  and A f e Nets(E).  

Proo]: By Prop. 6.10, A < N* ~=~ A; _< A* if Af is an atomic net system. Now 
for a net system Af = V--p  Alp, where Np is the atomic subnet system of Af 
with the unique place p, J ~  = Apep_ ~fp by definition of marking graphs. Thus 
A <_ Af* if and only if A <_ Af~ for all p e P if and only if Alp <_ A* for all p e P 
(because Alp is a tomic) /f  and only if Af < A*. | 

The relations A1 _< ,42 =~ A~ _< A~ (for A1,,42 e Aut(E))  and All <_ A/'2 =~ 
Af~ _< All* (for All,A;2 E Nets(E))  follow immediately from the Galois con- 
nection. Another property of Galois connections is to produce closure operators 
by conjugated composition of the dual operators. Recall that an operator 0 on 
(X, _<), mapping x to 5, is a closure operator if it is increasing (xl _< x2 =~ 
x--~ <_ ~ ) ,  extensive (x < 5), and idempotent (~ = x). The double dual opera- 
tors 0"* acting respectively on the ordered sets (Aut(E),  <) and (Nets(E),  <_) 
are therefore closure operators. An automaton ,4 equal to its closure ,4** is said 
to be separated with respect to the fixed type of nets T, while a net system Af 
equal to its closure Af** is said to be saturated. Owing to the Galois connec- 
tion, the lattices of separated automata and saturated net systems are dually 
order-isomorphic (i.e. isomorphic up to reversing the order). 

6.4 Representation Results 

By definition, an automaton separated with respect to type T is isomorphic to the 
synchronized product of marking graphs Alp of atomic net systems Alp = A~p} 
derived from T-regions p of A (in formulas: A ~ Apen~(~)A;;). Following [19], 
let us say that a subset of regions T~ C_ T~r (A) is admissible if `4 ~- ApeRAf~. So, 
,4 is separated if and only if T£r (A) is admissible, and of course every superset of 
an admissible set of regions is admissible. The marking graph A/'* of a net system 
A/" is separated because A/'* - Af*** follows from the Galois connection. In fact, 
the extensions (ap, yp) of places p of Af form an admissible set of regions of Af*. 
The following criterion may be used to recognize admissible sets of regions, and 
consequently separated automata. 
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T h e o r e m  6.12 Given an automaton A = (S, E, T, so) and a type of nets T, a 
set of regions T~ C TOT(`4) is admissible if and only if the following separation 
properties are satisfied for all states s, g E S and for every event e E E: 

(SSP) s ~ s '  ~ 3(a,q) • n :  a ( s ) ~ a ( s ' )  
(read: (a, ~}) solves the states separation problem at (s, s') ) 

,(e) 
(ESSP) sT~ ~ 3 ( a , y ) • T ¢ :  a(s)  / ~ w.r.t, r 
(read: (a, 71) solves the event/state separation problem at (s, e))  

When both properties are satisfied, M "~ [+4" ~* where A ~  is the subnet system 
of `4* with restricted set of places TI (also called the net synthesized from T~). 

Proof: Let pip = `4~p} for p e T~, and let pin = A~. Seeing that A ~ 2¢p for 
every region p, A < Ap.en pip = pi~- Accordingly, there exists a morphism of au- 
tomata (a, 1) : `4 -+ ATe. Moreover this morphism is unique. On the other hand, 
every region p = (ap, 7]p) factors into (e, %) o (ap, 1) where ~ acts as the identity 
on the local states in its domain, and (ap, 1) lifts to the unique event preserving 
morphism from `4 to pip. As pi~ is the synchronized product of (Af;)pen, a 
must be the map that sends each state s of `4 to the associated vector a(s) = 
(ap(S))p=(~,,v~)e n (the p-component is computed by evaluating region p at state 
s). Since (a, 1) is the unique morphism of this form from .4 to pi~, and seeing 
that all automata are accessible and deterministic, the assertion .4 ~ pi~ is now 
equivalent to (i) a is an injective map, and (ii) s -~ in `4 whenever a(s)  -~ in 
Af~. Now S S P  is just another form of assertion (i). By definition of the synchro- 
nized product, a(s) Z~ in pi~ entails ap(s) -~ in pip for all p • TO,hence E S S P  
is just another form of assertion (ii). | 

Corollary 6.13 Given an automaton A E Aut(E)  and a type of nets T, .4 ~- 
2~ r* for some net system Af E Nets (E)  if and only if .4 -~ .4** if and only if 
the conditions ssP and EssP are valid in A.  Given an automaton .4 E Aut (E) ,  
a type of nets T, and a net system ]~f E Nets(E) ,  .4 ~ Af* /f and only i f A f  is 
isomorphic to subnet system of .4* determined from some admissible subset of 
regions T¢ C TOT (.4). 

By setting T = TEN , resp. T = TFFN, in the above theorem and corollary, one 
retrieves the results of Ehrenfeucht and Rozenberg (Prop. 2.15) and Desel and 
Reisig (Prop. 3.6), resp. the result of Schmitt (Prop. 5.5). The application of the 
theorem to the types TppN and TpN will be examined in section 7. 

6.5 Some Applications to Safe Nets  

We call safe nets all nets whose markings are defined as subsets of places 
M _C P,  or equivalently as maps M : P ~ {0, 1}. Thus, a type of safe nets 
is a transition system "r = (LS,  LE ,  T) whose set of local states is L S  = {0, 1}. 
The largest type of safe nets, let Tsale, is obtained by including in its transi- 

tions all the defined instances s ~ ](s) of partial functions f : {0, 1} -+ {0,1}. 
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Table I. safe nets 

[ .... II ° I II C / E n e t s  
input 0 y e s  
output 1 y e s  
test=l I yes 
tesl;=O 0 n o  
set_O 0 0 no 

set_l 1 1 no 

nop 0 I yes  
swap 1 0 no 

elementary n e t s  

yes  
yes 
no 
n o  
n o  
no 
yes 
n o  

flip flop ne t s  

yes 
yes 
no 

no 

no 

no 

yes 
y~ 

f t r a c e  n e t s  

yes  
yes 
yes 

yes 

yes 

yes 

yes 
no 

These functions, tabulated in Table 1, form a set LEsale. Various types Tx = 
({0, 1}, LEx ,  TX) follow as induced restrictions of Tsafe on particular subsets of 
local events LEx  C_ LEsale (see again Table 1 for some examples). Each type Tx 
determines corresponding regions in transition systems A -- (S, E ,T) ,  defined 
as morphisms (a, 7) : A ~ TX. These morphisms define in turn set-theoretic 
regions R = a - l ( {1} )  6 "P(S). We restrict our analysis of safe type to types TX 
larger than TEN and such that  the complement of a region a -1 ({1}) is a region. 
This amounts to set on L E x  the constraints {nop, input, output} C L E x  and 
set_O 6 LEx ¢~ set_l 6 LEx. 

We declare equivalent, resp. weakly equivalent, two safe types zx  which de- 
termine an identical family of separated automata,  resp. identical families of 
set-theoretic regions in automata.  With the above constraints, there are four 
classes of weakly equivalent types VX, each of which splitting into two equiva- 
lence classes of types. 

The four possible concepts of set-theoretic regions are determined from five 
forbidding patterns displayed in Fig. 14. Each pat tern represents a pair transi- 

H :  . 

L : . 

HL : ox ox xx xo xe 

e ! 
Fig. 14. five patterns for a pair of transitions with the same label sl --+ Sl and s2 -5 s~ 
where s 6 R if and only if the corresponding node is coloured black 

! 
tions Sl 4 st and s2 _5, s2 with a common label e in a transition system A = 
(S, E,  T)  whose states s are coloured black or white. Let R C_ S be the subset 
of states coloured in black. The four possible concepts of s e t - t h e o r e t i c  regions 
are as follows. 

1. R is an elementary region if and only if the patterns o×,  . x ,  x × ,  xo,  and 
x .  do not occur in A. A safe type r x  induces the elementary regions if and 
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only if L E x  n {swap, set_0, set_l} = 0. This case is met for TEN and for the 
type of C/E-nets,  let TCE N where LECEN ={nop,  input, output, tes t=l}.  

2. R is a flip flop region if and only if the patterns ox,  ox,  xo, xo do not 
occur in A. A safe type TX induces the flip flop regions if and only if L E x  A 
{set_0, set_l} = 0. This case is met for TFF N.  

3. R is a trace region if and only if the patterns o x,  • x, x x do not occur 
in A. Trace regions have been introduced independently for trace nets in 
[4, 5] and for chart nets in [29] where they are called chart regions. A safe 
type Tx induces the trace regions if and only if {set_0, set_l} C_ L E x  and 
swap ¢ L E x .  This case is met for the type of trace nets, let TTR N where 
LETRN -~ {nop, input, output, test=l, test=O, set_O, set_l}. 

4. R is a safe region if and only if the patterns o × and • x do not occur in A. A 
type ~'x induces the safe regions if and only if {swap, set_0, set_l} C_ L E x .  

Safe types may be classified further into pure types and impure types according 
to whether L E x  N {test=0, test--l} is empty or not. One obtains in this way 
8 classes of equivalent types. These classes may be ordered according to the 
inclusion of the associated sets of separated automata. All inclusions are shown 
in Fig. 15 together with representative automata showing they are strict. 

pure 

impure 

elementary trace safe 

r V  

® 

a 

® 

, fl!p flop 

a 

® 

® 

a 

C a 

a 

C a 

Fig. 15. classification of the equivalence classes of safe types 

By specializing Theo. 6.12 to a particular type TX, one obtains an immediate 
characterization of the family of separated automata specific to its equivalence 
class. We have yet implicitly applied this technique to the type TEN of elementary 
nets and to the type TFF N of flip flop nets. Let us focus on the types TCE N (o f  

C/E  nets) and TTR N (of trace nets). 
From Theo. 6.12 applied to TCEN, one retrieves Nielsen and Winskel's char- 

acterization of marking graphs of C / E  nets [35]. Given an asynchronous au- 
tomaton A -- (S, E, II, T, So) with an empty independence relation, the regions 
of ,4 defined in [35] are actually in bijective correspondence with morphisms 
(a, ~) : (S, E,  T)  --} rCEN [1]. We recall that  an asynchronous automaton ac- 
cording to the definition of Shields and Bednarczyk [9, 41] is a deterministic 
automaton ,4 = (S, E, T, so), enriched with a symmetric and irreflexive relation 
of independence II C_ E × E such that  the following conditions are satisfied when- 
ever el lie2: 
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FORWARD DIAMOND PROPERTY: s - ~ s l  A 8~-~s2 :=~ 381 E S s 2 - ~ s  t A sl 2_~s t. 
COMMUTATION PROPERTY: S ~ S l  A sl ~ s  t :~  382 E S s - ~ s 2  A 82~-~s t. 

Following Nielsen and Winskel, let us define asynchronous regions in .4 = 
(S, E, II,T, so) as the morphisms (a,~l) : (S,  E , T )  ~ TCEN such that  Vel, e2 E 
E ellle2 ~ (~/(el) = hOp) V (~/(e2) = hop). This is consistent with the usual 
definition of independence of events in C /E  nets, according to which el lie2 if 
and only if (*el U el °) N (*e2 U e2 °) = 0. Nielsen and Winskel show tha t  the 
asynchronous automata  which are generated from C/E  net systems with this 
definition of independence are exactly those in which the separation properties 
ssP and ESSP are satisfied w.r.t, the asynchronous regions. 

If we apply now Theo. 6.12 to the type TTRN , we retrieve the characterization 
of marking graphs of trace nets established in [5]. Given a trace automaton 
A = (S, E,  H, T, so) with an empty relation of independence, the trace regions 
of ,4 defined in [5] are actually the morphisms (a, ~}) : (S, E,  T) ~ vrRN. We 
recall tha t  a trace automaton according to the definition of Stark [42] is like 
an asynchronous automaton up to the removal of the commutation constraint. 
A typical trace automaton is shown in Fig. 16 together with a generating trace 
net. This trace automaton is not an asynchronous automaton since e.g. the 

a b 

allb 

blic 

allc z 

W(p~ e): £np12t oUtFU~ l ;est lO t e l l t = l  set.O set .1  

Fig.  16. a trace automaton and a generating trace net 

sequence a • c can be fired from state sl ,  but this is not the case with c • a 
although aIlc. The reader may verify that  the separation problem EssP(sl,c) 
cannot be solved with elementary regions nor with asynchronous regions, but 
it is solved by the trace region corresponding to the place z of the trace net 
of Fig. 16. In the general case where the independence relation is not empty, a 
trace region of A = (S, E, II, T, so) is defined as a trace region of the underlying 
automaton compatible with the independence of events in the sense tha t  for 
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any two independent events el and e2 one has (i) ~(el) 6 {input, output} 
~(e2) = nop and (ii) ~(el) 6 {test=l, set_l} ::~ ~(e2) ~ set_0. This is coherent 
with the independence of events in trace nets, defined similarly by el I]e2 if and 
only if for all places p 6 P (i) W(p, el) 6 {input, output} =~ W(p, e2) = hop 
and (ii) W(p, el) 6 {test=l,set_l} =~ W(p, e2) ~ set_0. It is shown in [5] 
that the trace automata which are generated from trace net systems with this 
relation of independence are exactly those in which the separation properties 
ssP and ESSP axe satisfied w.r.t, the trace regions. It is also shown that the finite 
trace automata which can be defined in the so-called simple format of Plotkin's 
Structural Operational Specification rules, with proofs of transitions as events 
and independence of proofs as independence of events, are exactly the finite and 
separated trace automata. 

More will be said on the topic of independence in section 8. 

6.6 Other Applications of Types  

Types may serve alternatively to classify existing families of nets or to explore 
new families of nets. One may study hybrid types forged from existing ones by 
amalgamation, or by disjoint summation. One may study translations between 
classes of nets based on morphisms between their types. Theoretically speaking, 
this amounts to consider nets over a fixed set of events as a category indexed 
over the category of automata (their types). Compilation techniques for nets 
may also be defined on the following principle: let N -- (P, E, W) be a net of 
type r, where ~- is the marking graph of a net Nr ---- (Pr, LE, Wr) of type T', then 
N is equivalent to the net N' = (P ' ,E ' ,W' )  of type T' such that P '  = P × Pr, 
and W' ((p, Pr), e) = Wr (p~, W(p, e)). This amounts to consider nets as functors 
over automata, and composition of functors as compilation of nets. 

7 P o l y n o m i a l  T i m e  A l g o r i t h m s  for  t h e  S y n t h e s i s  o f  P e t r i  

N e t s  

We present in this section the polynomial time algorithm proposed in [2] for the 
synthesis of pure Petri nets from finite automata. This algorithm has been im- 
plemented in the tool SYNET [13]. Next, we give a sketch of the variant algorithm 
for the synthesis of (general) Petri nets proposed in [7]. Finally, we indicate for 
both algorithms degenerated forms allowing to synthesize Petri nets from regular 
languages. 

7.1 The Synthesis  Problem for Pure Petri Nets  

In the sequel, let A = (S, E, T, So) be a loop-free, reachable and reduced fi- 
nite deterministic automaton, and let A denote the underlying transition sys- 
tem (S, E, T). The synthesis problem for pure Petri nets consists in (i) deciding 
whether an automaton .4, given as input, is isomorphic to the marking graph 
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Af* of some net system J~ = (P, E ,  W, M0) of type TppN, and if so (ii) pro- 
ducing as output  a net system A/" such that  ,4 = A/* and no proper subnet 
system of A/" satisfies this property. Recall tha t  rpp]v = ( ~ ,  Z ,  T) with transi- 
tions n 2+ n'E r i f f  n ~ = n + z. On the grounds of Theo. 6.12, this amount  to (i) 
deciding whether all instances of the separation problems in `4 can be solved by 
corresponding regions, and if so (ii) synthesizing the desired net system Af = `4~ 
from a minimai admissible subset of regions 7~, where `4~ = (~ ,  E ,  W, Mo) with 
W ( ( a , ~ ) , e )  = ~?(e) and M0((a,~)) = a(so). Now, there is at  most IS[ 2 - I S I  
possible inputs for the states separation problem: 
ssPA(s, s') : "construct from `4 and s ¢ s' a region (a,~?) s.t. a(s)  ¢ a(s ' )"  
and at most ISI × IEI instances of the event /s ta te  separation problem: 

EssP~t(s,e) : "construct from `4 and (s 7~) a region (a,y)  s.t. (a(s)  ~/-+)". 
Par t  (i) of the problem will therefore be solved in time polynomial (in ISI and 
IEI ) as soon as ssPA(s, s') and ESSPA(s, e) are solved in polynomial time. Par t  
(ii) consists in extracting from a set of regions with size polynomial in IS] and 
]E I a minimal admissible subset and this certainly can be done in polynomial 
time. So, a polynomial algorithm for the synthesis of pure Petri  nets will follow 
if we succeed to construct procedures that  solve in polynomial time ssP~(s,  s t) 
and ESSP~A(8, e) with respect to the type T p p N .  This is the main program of the 
section. The first stage of the program is to study the algebraic properties of the 
set of pure Petri  regions of `4. The second stage of the program is to elaborate 
decision procedures based on these properties. 

7.2 The  Structure  of  Pure  Petri  Reg ions  

Let "~ppN(.A) denote the set of pure Petri  regions of `4, i.e. the set of morphisms 
(a, 7) : A --~ Tpp N. Before investigating the algebraic properties of •PPN(`4) ,  
let us recall some terminology borrowed from algebraic topology (see e.g. [31]). 
In the fixed transition system A = ( S , E , T ) ,  let 0°,01 : T -~ S and l : T -+ E 
denote the respective source, target, and labelling functions given by O°(t) = s, 
O~(t) = s', and e(t) = e for t = s -~ s' e T. A O-chain of A is a vector in the free 
2~-module Co(A) = Z < S >  a . A 1-chain of A is a vector in the free 2~-modute 
C~(A) = Z < T > .  The boundaries of the 1-chains are the 0-chains computed 
by the operator  0 : Cx(A) -~ Co(A) such that  O(Ez~ . t~) = Ez~ . (O~(t~) - O°(tj)). 
The  co-boundaries of the 0-chains are the 1-chains computed by the operator  
0":  Co(A) --~ CI(A) such tha t  O*(~  zi .  s~) = ~'~z,. O*(s,) where O*(s~) = ~ { t j l  
01(t j)  = s~} - ~ { t j l  O°(tj) = si}. 4 A cycle of A is a 1-chain with a null bound- 
ary, and a co-cycle is a 0-chain with a null co-boundary. The cycles of A, resp. the 

3 we recall that the free 2~-module generated by a finite set X = { x i , . . . , x n }  of 
generators is the set of maps c~ from X to Z, viewed as vectors indexed by X with 
entries in Z and represented as formal sums a = ~ i  a~ • x~ where a(xi) = c~i. 

4 the dual linear operators 0 and 0* are associated respectively with - A  and its 
transpose - A  t, where A is the incidence matrix of the underlying graph. This change 
of sign is not technically significant and comes from different usages in the literature 
on graphs: the definition of the incidence matrix of a directed graph that we gave 
corresponds to the one used in [10, 16, 17], whereas Lefschetz [31] and Tutte [40] 
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co-boundaries of A, form submodules 1;s resp. ];Q of CI(A) which are orthogonal 
complements. Linear bases for ];B ~ d  VQ are supplied by the respective sets 
of fundamental cycles and fundamental cutsets of the underlying graph (S, T)  
w.r.t, some spanning tree U C_ T. Thus every cycle may be written as a linear 
combination ~ z i "  Bi of fundamental cycles Bi : T --~ { - 1 , 0 , 1 } ,  and every 
co-boundary may be written as a linear combination ~ zi • Ci of fundamental 
cutsets Ci : T ~ { -1 ,  0, 1}, with integral coefficients zi E 2~. The Parikh images 
of the cycles form in turn a submodule of the free 2~-module Z < E > ,  where the 
Parikh mapping 7r : Z < T >  --+ 2g < E > is the linear transformation given by 
l r ( ~  zi • ti) = ~ zi • ~(ti). In the sequel, the maps fl : E --~ 2~ are represented 
accordingly as formal sums ~/= ~ zi • ei where zi = ~/(ei). For any two vectors 
a = ~ a i  -xi and fl = ~ f l~  -x~ in a finite dimensional free 2g-module 2 g < X > ,  
we let a -  fl denote the scalar product ~ ai  - t3i E ~.  

P r o p o s i t i o n  7.1 (a,~) E 7eppN(A) if and only i f  a .  O(c) = ~1" 7r(c) for  all 
c E C1 (A).  

Proof." By linearity, the condition Vc ~ C1 (A) a .  O(c) = ~.  ~r(c) is equivalent to 
the condition Vt E T a .  O(t) ---- ~/. r( t)  where t is identified with the chain (1.t). 
Now the equation a .  O(t) = y.  ~r(t) is valid if and only if a(O~(t)) - a(O°(t)) = 

~?(~(t)), if and only if a(O°(t)) "(~(~) a(O~(t)) w.r.t, the type r ~ ,  if and only if 
(O', 7) E TJ~PPN(A) by definition of regions. • 

P r o p o s i t i o n  7.2 A map o : E --+ ~ is the second projection of  some region (a,~) 
E T~ppN(A) if  and only if  71. ~r(B)= 0 for  every cycle B E ]2B; the regions 
((r,?7) E T~ppN(A) which project on ~ are then characterized by the condition: 
a(so) + (~" zr(c)) > 0 for  every 1-chain c E CI(A) such that O(c) = s - so for  some 
s E S .  

Proof: From Prop. 7.1, the condition on ~ must hold and whenever it does, 
the scalar product  7/" ~r(c) takes an identical value for all 1-chains c with an 
identical boundary. From the definition of regions, the condition on a(so)  must 
hold because the local states specified for the type of nets Tpp g are the non 
negative integers. Now the two conditions taken together guarantee that  one 
can always complete the data  (a(so), ~) to a pure region by selecting for each 
state s E S a corresponding 1-chain cs such that  0(c,) = s - so and then setting 
a(s) = a(so) + 7" ~r(c,), which is always possible since A is reachable. I 

Let 7~.b.(A) denote the set of maps ~ : E -~ ~g characterized by Prop. 7.2, 
henceforth called abstract regions. It appears from this characterization tha t  the 
abstract  regions of A are in bijective correspondence with the co-boundaries of 
A which are compatible with the kernel of the labelling function g : T -+ E.  
Actually, for every abstract  region 7/: E -+ 2g, the map a = fl o g : T -+ ~ is a 

use the  opposi te  matr ix .  In  the  same manner  what  we t e rm co-boundary,  following 
Lefschetz and Tutte and more generally those authors who identify graphs with 
1-dimensional complexes, are called cocycles in many books on graph theory. 
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co-boundary of A, since for every cycle B, ~ .  B = ~-]~t ~/(g(t)) • B(t)  = ~ e  ~(e) • 
~t( t)=e B( t )  = ~1" 7r(B) = O. Conversely, every co-boundary ~ : T --+ Z such 
tha t  ~(t) -- £(t') =~ ~(t) = t~(t') determines a unique abstract region ~/: E --+ 
such that  e = g(t) ~ ~/(e) = ~(t), since ~ : T --+ E is surjective and ,4 is reduced. 

An abstract  region ~ determines a unique region (a, ~/) such that  a(s)  = 0 
for some state s, called a strict region and given by a(so) = -min{~/ .  r(c)[ 3s E 
S O(c) = s - So}, and an infinite family of non strict regions (a + h, ~/) for h E 
~W\ {0}. Now any instance of the separation problems ssPA(S, s') or ESSPA(s, e) 
solved by (a + h, 7/) is also solved by (a, ~/). For this reason, let us concentrate 
on strict regions, or equivalently on abstract regions. 

The set 7~b,(A) of abstract regions of A is obviously a Z-module. From 
Prop. 7.2, a linear basis for this module may be computed as follows. Let  S = 
{81, . . .  ,8n}, T = { t l , . . .  ,tin}, and E = {e l , . . .  ,ep}. Let U C_ T be a spanning 
tree of the underlying graph G = (S, T),  and let {B1 , . . . ,  Bm-n+l}  be the set of 
fundamental cycles of G w.r . t .U.  Thus {B1 , . . . ,  B,n-n+l}  is a basis for lib and 
T~b.(A) is the kernel of the linear transformation MA : ~ --+ ~,rn-n+l defined 
by the (m - n + 1) x p matrix MA with integral coefficients 

M A ( i , j ) = E { B i ( t k ) l  l < k < m  A £ ( t k ) = e j }  

Let k be the dimension of Ker(MA). The algorithm of von zur Gathen and 
Sieveking (see [38]), given MA as input, produces in time polynomial in m - n +  1 
and p (or ISI= n and [E[= p, because m < n × p follows from determinism of A) 
a basis {~/1,... ,rlk} for ger(MA) = T~b~(A). 

We have in hand all the elements needed for solving problems SSPA(S,  s') 
and E S S P A  (s, e) relatively to the type of pure Petri  nets. The da ta  needed are 
the spanning tree U, or more exactly the application c (.) tha t  maps each state 
s E S to the unique chain c8 from so to s in U, and the basis of abstract regions 
{~,,...,~}. 

For the sake of illustration, let us exhibit these data  for the automaton A 
shown in Fig. 17. Here n = 8, m = 14, and p -- 6. The spanning tree U, indicated 

C,~" "" a 

: a c'. "° • 

Fig. 17. an automaton with one of its spanning trees (in solid lines) 

in solid lines, contains n - 1 = 7 transitions, The module 1:B is generated from 
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the  m - n + 1 = 7 fundamenta l  cycles B i  defined by the  respective chords t i  
indicated in dashed lines, let h = s5 ~ s2, t2 = s3-~  so, ta = s7 4 s4, t4 = 

c I c n c s 

s6 --4 sl, t5 ---- s4 ~ so, t6 ---- s7 --+ s3, and t7 -- s8 2+ sT. For instance,  the  chord tl  
defines the  fundamenta l  cycle 

a r a t 

B1 = (so 2+ sl) + (Sl 2+ s3) + (sa -~ ss) + (s5 -~ s2) - (so --+ s2) 

whose Par ikh  image is r ( B 1 ) =  a + b + c. One can verify t h a t  ~r(B1)= r ( B 2 )  = 
w(B3) ---- a + b +  c, r(B4) ---- 7r(Bs) ---- r(B6) ---- a ' +  b ' +  e', and  r(BT) =0 .  The  
2g-module of  abs t rac t  regions consists of  those vectors  7 : E -+ 2g such tha t :  

~/(a) + r/(b) + ~/(c) = 0 and  ~/(a') + 7/(b') + r/(e') = 0 

I t  is therefore a four dimensional 2g,-module with basis as follows: 

~ h = a - c  ; r / 2 = b - c  ; ~ ? 3 = a ' - c  s and  ~ 4 = b J - c '  

In  this example,  the  spanning tree U is rooted at the  initial s ta te  so of  the  
au tomaton .  Let c$ denote the branch of  U from so to  s and let 7r$ = ~r(c$) be its 
Par ikh  image. Thus,  we have: 

~t 
~so  : 0 ~s~ = a ~Ts2 : Ors3 : a + b 

7rs4 = a '  + b' a '  = a + b + a '  ~rss a + b + a '  = b' b' : 7rs~ A- -f- a 7rs~ A- 

The  corresponding scalar p roducts  ,/~ • r~ are tabula ted  in Table 2 

Tab le  2. states s E S represented by vectors (~/i • ~rs)i indexed by the set of basic 
abstract regions 7i 

r/i • 7rs 

72 

7 4  

71"$0 71"Sl 7r$ 2 7[$ 3 7[*$4 7¢$ 5 T 's  6 71-$7 

7 .3  S o l v i n g  t h e  s e p a r a t i o n  p r o b l e m s  

Let s and s '  be two dist inct  states. F rom Prop.  7.1 and Prop.  7.2, SSPA(8,  8 ' )  has 
a solut ion in TippN (A)  i f f  7" r(c~ - ca,) # 0 for some abs t rac t  region 7 ~ 7~b~ (A) 
i f f  7i • 7r(c~ - c$,) # 0 for some i e {1 , - - - ,k} ,  and the strict  region (ai  , y i )  deter-  
mined f rom the  basic abs t rac t  region ~/i by set t ing ai ( so)  = -min{,l~ - Ir(c$) [ s E S} 
is then  a solution. Therefore,  deciding whether  SSPA(8,  8 t) has a solut ion and  
produc ing  it takes t ime polynomial  in IS[ and  IE[. 

In  our  running  example all instances of  the  separat ion problem SSPA(8  , St) 

can be solved, because  all the  columns of  table  2 are different. 
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e 

Given s' E S and e E E such that  s' 74, let us now consider the separation 
problem EssPct(s', e). From Prop. 7.2, this problem has a solution in TippN(.A) 
iff  there exists a(so) E ~N and rl E TC~,bs(A) such that  

Vs E S a(so) + rl" ¢r(cs) >_ 0 (1) 

~ ( s o )  + n .  ~ ( c , , ) + n ( e )  < 0 (2)  

iff there exists r/E gabs (A) satisfying the condition 

Vs E S 71" (lr(cs,) - ¢C(Cs)) + ~/(e) < 0 (3) 

Whenever I/satisfies condition 3, the strict region (a, ~1) defined from ,/satisfies 
k X actually conditions I and 2 and therefore solves EssP~(s', e). Let '7 = ~ = 1  i "'/~ 

where {Th,. . . ,  ~k} is the basis of abstract regions, and =i E Z.  For every s E S, 
let a [  = 7/i. @(Cs,) - Ir(c,)) + ,/i(e). With these notations, condition 3 may be 

k s rewritten to the system of linear inequations { ~ i = l  a~ • =i < 0l s E S} in the 
variables =i E ~.  Now a system of linear inequations 

M X  < ( -1)  n (4) 

where M is an integral matrix and ( -1 ) "  = < - 1 , . . . , - 1  > (E ~ )  has an 
integral solution iff it has a rational solution. The method of Khachiyan (see 
[38] p.170) may be used to decide upon the feasability of (4) and to compute 
a rational solution, if it exists, in polynomial time. Thus, every instance of the 
problem ESSPA(s r, e) is solved up to a multiplicative factor, or shown unfeasible, 
in time polynomial in IS[ and [E[. In our running example, the system of linear 
inequations which express the separation problem ESSPA (s2, a) is the following: 

, / -  (lrs~ - Irso) + 7/(a) < 0 : Xl + z 3  < 0 
~/- (Irs2 - Irs2) + T/(a) < 0 : x3 < 0 

n -  (~s~ - ~s~ )  + n (a )  < 0 : =1 < 0 
n" (~rs~ - ~s3)  + n (a )  < 0 : x3  - =2 < 0 
n" (~s~ - ~ s , )  + n ( a )  < 0 : z l  - =4 < 0 
~ -  (~s~ - ~ 8 , )  + ¢ (a )  < 0 : - x 2  < 0 
r / -  (Irs2 - Irss) + r/(a) < 0 : - x 4  < 0 
n" (Trs2 -- ~sT) -I- g/(a) < 0 : - -x2  -- =4 < 0 

This system is solvable, and admits in particular the solution Xl ---- X 3  ---- - 1  and 
x2 -- x4 -- 1. Therefore, ~/-- -71 + r/2 - I/3 + ~/4 -- - a  + b - a' + b' satisfies condi- 
tion 3, and (a,~/) solves EssPct(s2,a) with a(so) = 1. The automaton of Fig. 17 
is actually separated by the set of strict regions (cr,,~/) which are indicated in 
Table 3, computed from SYNET. The pure Petri net synthesized from this set of 
admissible regions is shown in Fig. 18. For full precision, it should be said that  
SYNET [13] does not relie on the method of Khachiyan but on the simplex method 
which has cubic complexity in the average (see [38]). A quite different solution to 
the synthesis problem of pure Petri nets from finite automata up to a quotient is 
described in [30]. This solution is based on the investigation of minimal regions. 
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Table 3. values taken on states by strict regions 

~2 

~4 

~3 - ~ 4  

80 81 ...... 82 8 3  84 85 86  8T 

V= 

~v~2 

-1 

x~2"~'q4 -- ~71 --~3 

a ~ V~-3 

:C~4 

Fig. 18. the net synthesized from the admissible set of strict regions given in table 3 

The key observation is the following: let (al,  *?l), (a2, *?2) E T?~ppN(.A) such that  
Vs e S a l ( s )  > a2(s), then (al - a2, 7h - *?2) is a region of A and any instance 
of the separation problems which is solved by (al,  *71) is solved either by (a2, *?2) 
or by (al  - a2, '71 - *?2). Therefore, A is separated if and only if the set of its 
minimal regions is admissible. 

7.4 T h e  Case  o f  G e n e r a l  P e t r i  N e t s  

A polynomial time algorithm for the synthesis of general Petri nets from finite 
automata  was proposed in [7]. This algorithm is a modified form of the algorithm 
just described for pure Petri nets. We indicate below the main adaptations lead- 
ing to the modified algorithm. 

In the sequel, ,4 is a reachable and reduced finite deterministic automaton, 
not necessarily simple. A region of ,4 w.r.t, the type TpN of Petri nets is a 
morphism (a, (**?,*?')) : A --> T p N ,  called a Petri region, where **? and *?" are 
maps from E to PC-. As it was observed in [21], a Petri region is entirely deter- 
mined from a and °7/or alternatively from a(so) ,  °*?, and ~/*. Petri regions and 
pure Petri regions are connected by a pair of maps JJt : 7?~pN(.A) --~ ~ p p N ( . A )  
and  IA  : n P P N ( , A )  --'~ ~r~pN(,A), such that  JA(a, ( '*? ,*? ' ) )  = (a,*? ° - **?) and 
I .a(a,  *?) = (a, (**?, 7/')) where **?(e) = max{0,  -~/(e)} and *?'(e) = max{0,  *?(e)}. 
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owing to this correspondence, an instance of the separation problem SSPA(8, S') 
can be solved in T~pN (`4) if and only if it can be solved in T~pp N (`4). The re- 
spective solutions are actually connected by the maps In  and JA. 

The treatment of the event state separation problem is more delicate. An 
instance of ESSPA(s', e) can be solved in ~'PN(.4) if and o n l y  if there exists 
a(so) E ~N, "7(e) E ~W, and 7 E T~abs(A) such that:  

I. 7(e) -I- "7(e) _> 0 
2. Vs e S a(so) + 7 . Tr(c,) >_ O 
3. vs  e 5 s -~ ~ a(s0) + 7-  ~(c ,)  > "7(e) 
4. a(so) + 7" lr(c',) < °7(e) 

A solution is then given by the Petri region (a, ( '7 ,7"))  defined by "r/(e') = 
m a x { 0 , - 7 ( e ' ) }  for e' ¢ e, and 7"(e') = 7(e') + "7(e') for every e' E E. Set 
x = a(so), y = °~(e), and 7 = ~ xi.Ti where {71,. .- ,  7k} is the basis of Rabs(A) 
and xi E 2~. With  these notations, the above conditions may be rewritten to a 
system of linear inequations in the k + 2 variables x, y and xi (1 _< i _< k), where 
w i ,  = h i "  ~(e,): 

1. y + ~ zi71(e) >_ 0 
2. x + ~ ziwis ~ 0 (one inequation for each s e S) 
3. x - y + ~ ziwis >_ 0 (one inequation for each s E S such that  s -~) 
4. x - y + ~,  ziw~s, <0 

This system, augmented with the constraints x > 0 and y > 0, is homogeneous 
and can therefore be solved or shown unfeasible in polynomial time following 
Khachiyan's method. 

7.5 Synthesizing Bounded Net  Systems up to Language Equivalence 

A net system is termed bounded if its marking graph is finite. Given a reachable 
and reduced finite deterministic automaton A, let £:(A) denote the (prefix closed) 
language of words accepted by .4. We face now the problem of deciding whether 
£:(A) = £:(Af*) for some bounded net system and if so constructing A/'. This 
problem can be decided upon in polynomial time, for both types Tpp N and 
TpN , when A is given in tree-like form. 

Definit ion 7.3 .4 = (S, E, T, so) is a tree-like automaton if there exists a span- 
ning tree U C T rooted at so, with all transitions in U directed away from so, 
such that for every chord s -~ s' q~ U, s' is an ancestor of s in U. 

Suppose £:(A) = £:(Af*), where .4 is tree-like and A/" = ( P , E , W ,  Mo) is a 
bounded net system with type T E {TppN, TpN}. For each place p E P,  let 
(av,Tv) : Af* -+ T denote the associated region of A/'*. From the inclusion 
£:(.4) C_ £:(H'*) and the assumption of boundedness ofAf, a~(Mo) = av(Mo) and 

7p define a region in (a~, 7v) : ,4 --~ T (seeing that  s -~ s 5 in ,4 entails 7p'Tr(u) -- 0 

5 s 4 s for every s E S, where e is the empty word, and s ~3~ s' ~=~ 3s" E S s 2+ s" A 
8 u .~  s I. 
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for T = T p p N ) .  From the relation £:(Af*) = £(A) ,  every instance of the event 
state separation problem ESSPA(s',e) is solved by a region (a~,~]p) E 7~(`4)  
defined as above from some corresponding place p E P.  Conversely, if the condi- 
tion ESSP is valid in `4, then £(`4) = £(Af*) for any net system Af ---- ~pepJ~fp 
assembled from a subset of T-regions of ,4 admissible for EssP. Therefore, in the 
restricted case of tree-like automata,  the synthesis problem for pure or impure 
Petri  nets up to language equivalence can be solved in polynomial t ime [2]. 

Now, every deterministic automaton ,4 = (S, E ,  T, so) may be translated to  
an equivalent tree-like automaton ,4' = (S' ,  E ,  T' ,  (so, ~)) with sets of states and 
transitions defined as follows. 

- S'  is the set of pairs (s, u) E S × £:(A) such that  so -~ s in A and every two 
states of ,4 visited in this path are different; 

- T r C_ S r × E × S ~ is the set of transitions (s,u) -% (s' ,u') such tha t  s -% s' in 
,4 and u' = u .  e or u'  is a prefix of u. 

It  must be noted, however, that  the size of the tree-like automaton `4' constructed 
in this way is exponential in the size of ,4 (so as the number of elementary circuits 
of ,4, which shows that  the case of general automata  cannot be dealt with by 
polynomial algorithms). 

8 R e g i o n s  i n  S t e p  T r a n s i t i o n  S y s t e m s  

We leave now the classical frame of (sequential) transition systems for the more 
expressive frame of step transition systems, defined by Mukund so as to account 
fully for the independence of events in general Petri nets [33]. 

D e f i n i t i o n  8.1 A step transition system (S, M , T )  over an abelian monoid M 
consists of a set of states S and a deterministic transition relation T C S × M × S,  
with distinguished empty steps: s -~ s' iff s = J .  A step automaton .4 is an 
initialized step transition system (S, M , T ,  So) with initial state So E S,  such 
that every state s E S is reachable from So in the underlying transition system 
A = (S, M, T). The step automaton A is finite if the set of transitions T is finite. 
When M = < E > is the free abelian monoid freely generated from set E (the 
elements of M are then finite multisets over E) ,  the step automaton A is said 
to be reduced if its skeleton (S, E,  T M (S × E × S),  So) is a reduced automaton. 

This definition of step transition systems extends slightly Mukund's original 
definition, which was restricted to free abelian monoids. The extension allows to 
accomodate the idea of regions as morphisms to step transition systems which do 

not necessarily present the intermediate state property: s ~ s' ~ 3s" E S s -% s" 

A s" ~ s'. The definition of regions in step transition systems is parametr ic  on 
enriched types of nets defined as follows. 

D e f i n i t i o n  8.2 An enriched type of nets is a (deterministic) step transition 
system r = (LS, LE, T), where L E  is an abelian monoid (LE, +,0).  
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For instance, the enriched type of Petri  nets is just the type TpN = (J~V, £~V X 

~ ,  T), where n (!:~l n '  e T if and only if n > i and n '  = n - i + j ,  enriched 
with the operation of componentwise addition in ZW × zW. As a mat te r  of fact, 
(~W x ZW, +,  (0, 0)) is the free abelian monoid generated from (0,1) and (1, 0). 

Each type of nets determines a specific concurrent firing rule and hence a 
specific construction of concurrent marking graphs. 

Definit ion 8.3 Given a net N = (P, E, W)  with (enriched) type r = (LS, LE, r) ,  
the concurrent marking graph of N is the step transition system (LS  p, < E >, T ) 
with set of transitions T defined by : 

(M ~ M') E T ¢:~ Yx E P (M(x) w(=,~) M'(x)) e r (5) 

where W(x,el  + . . .  + e~) = W(x,el)  + . . .  + W(x,e~). Given a net system Af = 
( P ,E ,W,  Mo ), the concurrent marking graph o la f  is the step automaton Af* = 
( S , < E > , T s ,  Mo) where S is the inductive closure of the singleton set {M0} 
w.r.t, forward transitions in T,  and Ts = T M (S x < E >  x S). 

In order to illustrate this definition, let us inspect the relationship between the 
sequential and concurrent marking graphs of a Petri  net. On the one hand, the 
sequential marking graph is the induced restriction of the concurrent marking 
graph on the subset of atomic steps, i.e. steps a such that  ~7~es a(e) = 1. On the 
other hand, the concurrent marking graph cannot in general be reconstructed 
up to  isomorphism from an arbitrary copy of the sequential marking graph, even 
though some additional informations are provided as in [20] by a binary relation 
of independence on events depending on markings, such that  e [[M e' if and only 
if M[ {e ,e '}>.  The example shown in Fig. 19, borrowed from [27], makes this 
fact clear. Regions may now be introduced, based on the following definition of 

r 

Fig. 19. three nets with an identical sequential marking graph but with different con- 
current marking graphs: the three events a, b, and c are independent at the indicated 
marking in the first net whereas they are pairwise independent but not independent in 
the second net; the case of the third net is more involved: at the indicated marking the 
maximal sets of independent events are {a, c} and {b, c}, but a and b become indepen- 
dent once c has been fired. Thus independence in Petri nets is marking dependent. 

morphisms of step transition systems. 
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Defini t ion 8.4 A morphism of step transition systems from A = (S, M, T) to 
A ~ = (S ' ,M~ ,T  ~) is a pair (a,~), made of a map a:  S - + S '  and a monoid 

morphism 71 : M --+ M', such that s 2+ s' ~ a(s) ~ )  a(s'). The morphisms of step 
automata from .A to ~4 ~ are the morphisms from A to A' that preserve the initial 
state. 

Defini t ion 8.5 Given a step transition system A = (S, M, T) and an enriched 
type of nets T = (LS, LE,  T), the set T~r (A) of T-type (extended) regions of A is 
the set of morphisms of step transition systems from A to T. The set of T-type 
(extended) regions of a step automaton ,4 is the set T~r(A) = T~r(A). 

By specializing this definition to the type TpN, one retrieves exactly the re- 
gions defined by Mukund in step transition systems over a free abelian monoid 
[33]. Special attention may be paid to the class of step transition systems A = 
(S, M, T) derived from asynchronous transition systems (S, E, tl, T') as follows: 
M = < E >  is the free abelian monoid generated by E (the elements of M are 
finite multisets of elements of E), s -~ s' in T if and only if a is a subset of pair- 
wise independent events {e l , . . . ,  en} C E (hence there is no auto-concurrency) 
and there exists in T ~ a sequence of transitions s ~ s l  ~ s2...s~-i ~ s,~ such that 
s' = sn (such sequences exist therefore for all permutations of {e l , . . . ,  en}). For 
this class of step transition systems, the regions (a, 7) : A -~ T p N  which are safe 
in the sense that a(s) E {0, 1}for all s E S are in bijective correspondence with 
the regions defined by Nielsen and Winskel for asynchronous transition systems 
[35]. 

The results about (ordinary) transition systems which have been presented in 
section 6 may be reproduced nearly intact in the richer setting of step transition 
systems over a free abelian monoid. In particular, Def. 6.6 and 6.7 and Prop. 6.11 
may be extended to step transition systems, yielding a Galois connection .4 < 
Af* ¢=~ 2~ r < A* between step automata A = ( S , < E > , T ,  so) and net systems 
A / =  (P, E, W, M0), for any enriched type of nets T. The following counterpart 
to Theo. 6.12 for step transition systems appears in [7]. 

T h e o r e m  8.6 Given a step automaton over a free abelian monoid, let .4 = 
( S , < E > , T ,  so), and an enriched type of nets 7, a subset of extended regions 
T~ C T~r (A) is admissible if and only if the following separation properties are 
satisfied for all states s, s I E S and for every multiset ~ E <E>: 

(SSP) s ~ s  I ~ 3 ( a , 7 / ) E n :  a ( s ) ~ a ( s ' )  
~(~) 

(ESSP) s ~  ~ 3(a,7) E n :  a(s) / >  in T 
When both properties are satisfied, .4 ~- t(A*nj ~*, where A n* is the subnet system 
of A* with restricted set of places T~ (also called the net synthesized from T~). 

Mukund's characterization of Petri net transition systems, established in [33], 
follows directly from Theo. 8.6 applied to the type TpN. Nielsen and Winskel's 
characterization of separated asynchronous automata, established in [35], follows 
therefrom as the subcase met when imposing on regions (a, 7) E 7~ the constraint 
that a(s) e {0, 1} for every state s. 
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An algorithm for synthesizing Petri nets from finite step transition systems, 
based on Theo. 8.6, is proposed in [7]. This algorithm is an adaptation of the ba- 
sic algorithm for pure Petri nets described in section 7. Let .4 = (S, < E > ,  T, so) 
be some finite and reduced step automaton. Seeing that  the intermediate state 
property is always satisfied in the concurrent marking graph of a Petri net, we 
assume this property from ,4. Thus, (s ~-~+a s') • T =r 3s" • S (s -% s") • T A 

(s" ~ s') • T. The import is tha t  we may assume a compact representation for 
,4, given by its skeleton and the set of maximal steps at each state s E S. 
This makes sense since the set of steps of .4 is bounded, from the assumption 
tha t  -4 is finite. As regards the event state separation problem, let us observe 
the following: if a region (a, r/) solves an instance ESSPA(s, a) of this problem, 
where ~ is a failure at s, then (a, rl) solves also every instance ESSP.4(8, fi) such 
tha t  (~ < ft. It  is then sufficient to solve at each state s the instances ESSPA(s, a) 
such that  a is a minimal failure in that  state. From this remark and the assumed 
representation for -4, the following is proved in [7]. 

T h e o r e m  8.7 The synthesis problem for Petri net systems with the step firing 
rule, taking as inputs finite step transition systems, is polynomial in their num- 
bers of states and events, in the size of the largest set of minimal failures in one 
state, and in the size of the largest set of maximal steps enabled in one state. 

Notice that  the minimal failures are not determined at a given state by the 
maximal steps, as shown by the third net on Fig. 19 for which Max.steps(so) = 
{a + c, b + c} and Min_faiIs(so) = {2a, a + b, 2b} whence Min_fails(s) ~ {a + e I 

E Max_steps(s)}. Every step automaton may in fact be transformed to an or- 
dinary automaton by splitting the alphabet of events: the states of the split 
automaton are the pairs < s , a >  where c~ is a step with concession at s, and each 

transition s _5, s' gives rise to the pair of transitions < s , a >  ~ <s,a + e> and 

< s ,a  + e > Q < s ' , a >  for every step fl = a + e with concession at  s. In [1] it is 
shown that  the synthesis of Petri nets from step automata may be reduced to the 
synthesis of pure Petri nets from ordinary automata by splitting events, which 
yields a synthesis algorithm taking time polynomial in the number of higher- 

e+ 
dimensional states. Now if fl EMin_fails(s) is a minimal failure, then < s, a > 7~ 
for any step a and event e such that  fl = a + e, and the problem ESSPA(s, fl) 
is equivalent to the separation problem P, SSPsp,~(~) (< s, a > ,  e +) for the event e + 
at  the higher-dimensional state < s, a >. There are (at most IE] times) more in- 
stances of EssP to be solved in the split automaton since fl can be decomposed 
as fl -- a + e in several ways, but the total number of instances of the problem 
ESSP.A(8, O~) for minimal failure c~ in the step automaton is already exponential 
in the number of events. 

In order to conclude with extended regions (a, rl) where r /maps  steps c~ E 
< E >  to (pairs of) integral weights, let us mention that  such regions have also 
been used to solve different synthesis problems in the setting of generalized trace 
languages [26] and general event structures [27]. 
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9 A d j u n c t i o n s  b e t w e e n  T r a n s i t i o n  S y s t e m s  a n d  N e t s  

In section 6, a Galois connection A < Af* ¢=~ Af < A* between automata  and net 
systems was established. However .4* and Af* are not constructed in a symmet- 
rical way: ~4" has been assembled from morphisms of transition systems from A 
to the type of nets T, but Af* has not been constructed from net morphisms. We 
show in this section that  Af* can equally well be assembled from net morphisms 

: N -~ T I where the places of ~-I encode bijectively the transitions of T. 
Therefore types of nets are schizophrenic objects < r, r '  > living both  in the 

category of transition systems and in the category of nets. Taking advantage of 
this fact, we adapt  a work of Porst and Tholen [36] on concrete dualities induced 
by schizophrenic objects and construct dual adjunctions between transition sys- 
tems and nets for any type of nets. We show in this way that  the region based 
representation theorems for transition systems are a close analogue of the clas- 
sical representation theorems for ordered algebras, which all arise from concrete 
dualities induced by schizophrenic objects based on the two element set 2 -- 
{0, I } .  

For the reader unfamiliar with schizophrenic objects, we review briefly some 
of the classical representation theorems. Birkhoff's duality between finite dis- 
tributive lattices and finite partial orders relies on the schizophrenic object 2, 
viewed as a lattice and as an ordered set where 0 < 1. The dual L* of a dis- 
tributive lattice L is the ordered set of its prime filters x whose characteristic 
functions are the lattice morphisms X~ : L --+ 2. The dual X* of an ordered set 
X is the lattice of its upwards closed subsets l whose characteristic functions 
are the morphisms of ordered sets Xz : X --+ 2. Any ordered set is isomorphic to 
its double dual (X -~ X**) where x C X is identified with x** E X** such tha t  
Xx.* (1) = Xl(X) for any upwards closed subset l C X. Any distributive lattice is 
isomorphic to its double dual (L ~- L**) where I E L is identified with l** E L** 
such that  Xl-* (x) = X= (1) for any prime filter x C L. Thus both units of the dual 
adjunction are morphisms whose underlying maps are the evaluation maps. 

Stone's duality between boolean algebras and the Stone spaces relies similarly 
on the schizophrenic object 2, viewed as a boolean algebra and as a discrete 
topological space. More instructive in the context of this paper is the duality 
between spatial frames and sober spaces (see [28, 18]). Recall that  a frame is a 
complete lattice with the generalized distributivity law (finite meets distribute 
over arbi t rary joins: f A Vi f i  = V~(f A ]i)). For any frame F ,  let p t (F)  be the 
set of points x of F defined as frame morphisms x : F -+ 2. The dual F* of F 
is the topological space (pt(F),  ~7) whose open sets are the sets O! = {x  : F -+ 
21 x ( f )  = 1} for f ranging over F.  Conversely, the dual X* of a topological 
space (X, f2) is the frame of its open sets O E $2, whose characteristic functions 
Xo are the continuous maps from (X, Y2) to the Sierpinski space 2 (with open 
sets {0,1}, {1}, and 0). Frames and topological spaces are connected by a dual 
adjunction F r a m e ( F ,  X*) ~ Top (X ,  F*).  

By restricting this adjunction at both sides on its kernel, one obtains a du- 

ality Top* ~ F rame*  between the subcategory Top* of spatial frames and the 
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subcategory Frame* of sober spaces. So, a frame F is isomorphic to its double 
dual F** if and only if F is a spatial frame. Now, spatial frames are character- 
ized by two conditions very similar to our separation conditions for automata,  
when regions are replaced by morphisms x : F --+ 2. Namely, a frame F is spa- 
tial if and only if the following conditions are satisfied for all f ,  fr E F ,  where 
f<_frc~,f=fAf': 

(i) f ¢ f '  ~ 3x : F--~ 2 : x ( f )  ¢ x ( f )  
(ii) f s( f '  ~ 3x : F --+ 2 : x ( f )  = l h x ( f ' ) = 0  

Condition (i) is the analogue of our state separation condition ssP. Condition 
(iO is the counterpart of our event state separation condition ESSP, when the 
structure of labelled transition system is replaced by the structure of partial 
order. 

The classical dualities recalled above are concerned with points x, properties 
p, and a binary relation of evaluation ev(x)(p) = p(x) valued in the underlying set 
of the schizophrenic object, i.e. {0,1}. When this relation is given a matrix form, 
duality appears as matrix transposition [37]. Now, dualities between transition 
systems and nets fit exactly in the same pattern: the points are the transitions 
s 2+ s ~, the properties are the regions (a, r/), and the evaluation matrix given by 

ev(8 2+ s', (a, rl)) = a(s) "~) a(s') describes the local effect of the transitions on 
the places (a, ~1) of the dual net. The technical development presented in the 
remaining of the section is based on the material contained in [6]. 

9.1 Schizophrenic Objects and Dual Adjunctions 

Definition 9.1 A Set-category (or category over Set) is a pair <C,U> where 
C is a category and U : C ~ Set is a functor called the underlying functor. It  is 
a concrete category if U is faithful. 

In the sequel, the underlying functor is left implicit and we use the uniform 
notation IC[ and I]1 for respectively the underlying set of an object C mad the 
underlying map of an arrow f .  In a Set-category C, a structured source is an 
indexed family of pairs {C~;]~ : X -r  [C~I}, where the Ci's are objects of C and 
the f~'s are maps from a fixed set X to the underlying sets of the Ci's. A lift of 
a structured source is an indexed family ]i : C -+ C~ of arrows of C such that  
I]il = fi,  and hence ICI = X. An initial lift of a structured source is a lift such 
that ,  if gi : C '  -~ Ci is another lift and there exists a map f : IC~I -~ X such 
tha t  Ig~l = f i  o f for all indices, then there exists a unique arrow f : C ~ -+ C 
such that  Ifl = f and gi = fi o ] for all indices. The following definition is an 
adaptation from [36]. 

Definition 9.2 A schizophrenic object between two Set-categories A and B is a 
pair of objects < K.4, K~ >e  1.41 x 1/31 with the same underlying set K = IK~I = IKB[ 
and such that 
1. for every object A in .4, the family {Ks; evA(a) : A(A ,K~)  ~ K}aelAI Of eval- 

uation maps evA(a)(f) = Ill(a) has an initial lift {ca(a) : A* -+ Ks}aelAI 



581 

2. for every object B in B, the family {K~;evB(b) : B(B, KB) --+ K}belBJ has an 
initial lift {eB(b) : B* --+ gA}be]Bi. 

A*, called the dual of A, is therefore an object of the category B whose underlying 
set is the set of A-morphisms from A to the classifying object K~. If  K = {0, 1} 
and A is concrete, then the elements of the underlying set of the dual of A can 
be identified with subsets of the underlying set of A: ]A*[ C_ 2 IAI and ]A**] C_ 2 :IAI . 
In any case, A and A** are linked by an evaluation morphism EVA : A -~ A** 
according to the following statement. 

L e m m a  9.3 Let <K~,  KB > be a schizophrenic object between two Set-categories 
.4 and B. The initial lift {ea(a) : A* -+ Ks}aela[ Of the evaluation maps, viewed 
as a mapping eA : ]A l "+ B(A*,Ks) ,  is the underlying map of an arrow EvA : A 
--+ A**. 

As an initial lift, the dual A* of A is only defined up to an isomorphism. However, 
once an arbi t rary representative A* is fixed for each class of isomorphic objects, 
the operator  ( - ) *  gives rise to a functor according to the following statement.  

L e m m a  9.4 Let < K ~, Ks  > be a schizophrenic object between two Set-categories 
A and B. For every morphism ] : A1 -~ As in A,  the map "composing with 
f "  given by f ° : A ( A 2 , K A )  --~ A(A1,K~):  g ~  g o f  is the underlying map of 
an arrow f* : A~ -~ A~ in 13 such that the functoriality laws (1A)* = 1A* and 
( f  o g)* = g* o f* are satisfied. 

The following proposition tells us that  the two functors ( - ) *  induced from a 
schizophrenic object are in fact dual adjoints. 

P r o p o s i t i o n  9.5 Let < K ~ , K B >  be a schizophrenic object between two Set- 
categories A and I3. The following identities, where f : A -+ B* and g : B -+ A*, 
define a bijective correspondence A(A,  B*) ~- B(B, A*): 

g = f* o EvB and f -- g* o EvA 

i.e. the functors (-)* are adjoint to the right with the evaluations as units. 

In the particular case where .4 and B are concrete categories, the above corre- 
spondence may be presented as matr ix transposition. Actually, in this special 
case, A(A,  B*) ~- SpanK(A, B) ~- B(B, A*) where SpanK(A , B) is the set of matri- 
ces [A[ x [B[ --+ K whose rows, resp. columns, are underlying maps of morphisms 
~a : B -~ Ks (for a E [A D, resp. of morphisms ~b : A -+ K~ (for b E ]B[). In 
such a matrix, the set of rows determines a unique morphism from A to B*, and 
the set of columns ~b determines a unique morphism from B to A*. 

9.2 A p p l i c a t i o n  to  A u t o m a t a  and  N e t s  

Let T r a n s  be the category of deterministic and reduced transition systems 
( S , E , T )  free of isolated states (Vs E S 3t E T : s = O°(t) V s = 01(t)), where 
a morphism (a,7/) : ( S , E , T )  --~ ( S ' , E ' , T ' )  is a pair of maps a : S -4 S' and 
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r I : E --+ E'  such that s 2+ s' (in T) entails a(s) ~ )  a(s') (in T'). Trans  is a con- 
crete category with forgetful functor U : Tra_ns --+ Sets  given by U(S, E, T)  = T 

a n d  s') = (oCs) "(4 
Let T = (LS, LE ,  LT)  be an arbitrary object of Trans,  called the type of 

nets. Let N e t s  be the category of event-simple nets (P, E, W) of type T, thus W : 
P x E ~ L E  has all columns distinct, where a morphism (fl, r/) : (P, E, W) --+ 
(P',  E',  W ' )  is a pair of maps fl : P --r P '  and r/: E' ~ E such that W(p,  rl(e')) = 
W(fl(p), e'). Owing to the assumption of event-simpleness, fl determines r/ in 
any morphism (/3,r/), and Ne t s  is a concrete category with forgetful functor 
U : N e t s  ~ Sets  given by U(P, E,  W)  = P and U(fl, r/) = ~. 

Let T' = (LT, {o}, W) e Ne t s  be the net with the unique event • such that 
W (es L~ es') = ee for every place es L% ~# e LT.  Thus UT' = LT  = UT. Figure 20 
displays the net T~N corresponding to the type TEN of elementary nets. 

® 
% 9 

x = 1 i~t 0 
= 0 *V-~ .~ 1 

z = 1 . ~ 1  
w=O-~O 

n o p ~ n o p  

input 
TEN 

Fig. 20. the schizophrenic object for elementary nets 

Proposition 9.6 The pair (T,T') is a schizophrenic object between the cate- 
gories Trails and Nets ,  inducing a dual adjunetion Trans(A, N*) ~ Nets(N, A*). 

It remains to interpret A* and N* in more familiar terms. For any transition 
system A = ( S , E , T ) ,  the homset Trans(A,T) is the set T~(A) of T-regions 

of A. The evaluation eva(s 4 s')(a, 7) = (a(s) ~ )  a(s')) classifies therefore the 
transitions t = (s 4 s') E T according to their local effect on each region. By 
definition, A* is the net resulting from the initial lift of the family of evalua- 
tion maps eVA (t) for t E T. The following proposition shows that A* coincides 
with the net synthesized from the set of regions 7~r (A) up to the confusion of 
indiscernible events. 

Proposition 9.7 A* is isomorphic to the net ( P , E - , W )  where P = T~(A)  is 
the set of regions of A, - is the equivalence relation on E such that e =- e' when 
rl(e ) = rl(e' ) for every region (a, 0), and W((a, r/), Ce]_-) = r/(e). 

Now, for any net N = (P, E, W), the homset Nets (N,  T') is in bijective corre- 
spondence with the set of transitions of the marking graph of N. In the sample 
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case of elementary nets (see Fig. 21), each morphism (~, ~) : N  --+ 7tEN induces 

the transition f~-l({x, z}) u(et f~-l({y,z}), and conversely, each firing M[e> M ~ 
induces the morphism (~, ~) such that  y(-) = e and for every place p, 

x i f  p E M \ M '  
/~(p) = y i f  p e M ' \ M  

z i f  p E M N M  t 
w if  p C M U M '  

Therefore, the evaluation evN(p)(~,~) ---- ~(p) classifies the places of N ac- 

(~,~) 
[ : = = = = = ~ >  - 

Fig. 21. firings as net morphisms 

® 

® 

cording to the local transition they undergo in each global firing of the net. By 
definition, N* is the transition system resulting from the initial lift of the family 
of evaluation maps eVN (p) for p E P. 

P r o p o s i t i o n  9.8 N* is isomorphic to the marking graph o] N. 

If one now specifies initial states for transition systems, and forward closed sets 
of markings for nets, the dual adjunction Trans(A, N*) -~ Nets(N, A*) may be 
extended to a Galois connection Aut (A, Af*) -~ Netsys(Af, .4") between automata  
and net systems, i.e. to a dual adjunction such that  ,4* -~ A*** for every automa- 
ton A, and Af* ~ Af*** for every net system Af. The details of the construction 
can be found in [6]. By restricting the Galois connection at both sides on its ker- 

op  

nel, one finally obtains a duality Netsys*~Aut* between separated automata  
and saturated net systems. As a consequence, the separated automata  appear 
as a co-reflective subcategory of Netsys  °p. Similar co-reflections between sep- 
arated automata and nets have been established in the literature for various 
categories of automata or concurrent automata,  including elementary automata  
[34], asynchronous automata [35], automata with concurrency relations [20], and 
step automata  [33]. 
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10 Some Applications 

Regions have come to use so far in two areas of application, asynchronous circuits 
and distributed protocols. A computer assisted solution to the state encoding 
problem for asynchronous circuits, based on elementary regions and supported 
by the tool P e t r i f y ,  is described in [15]. A computer assisted solution to the dis- 
tribution of protocols, based on Petri regions and supported by the tool SYNET, 
is described in [13]. Distributed and cooperative systems offer a wide range of 
problems to be solved prior to any successful application. The synthesis of strat- 
ified Petri nets [8], a weaker form of Valk's self-modifying nets [43, 44], may 
for instance be used for analysing cooperative systems in order to identify their 
normal and exceptional modes of operation, and possibly for simplifying the 
control of the transitions between these modes. Another goal of research is to 
derive systems from service specifications while decomposing large specifications 
into pieces. This might become feasible if one could solve the relaxed synthesis 
problem as follows: given a pair of rational languages L and L ~ such that L C_ L ~, 
construct a (possibly not bounded) net system Af such that L _C £:(Af) C_ L I. 

Acknowledgment s .  This work was partly supported by the H.C.M. Network 
Express. 
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