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1 I n t r o d u c t i o n  

A Petri net (PN) model of a dynamic system, i.e., a net system, consists of two 
parts: A net structure, comprising the state variables (places) and their trans- 
formers (transitions) and a marking, that  represents a distributed overall state 
on the structure. The system dynamics or behaviour is given by the evolution 
rules for the marking. This separation allows one to reason on net based models 
at two different levels: structural and behavioural. From the former we may de- 
rive some "fast" conclusions on the possible behaviours of the modelled system. 
Purely behavioural reasonings can be more conclusive, but they may require 
costly computations, or even they may not be feasible. The structural reasoning 
can be regarded as an abstraction of the behavioural one: for instance, instead 
of studying whether a given system, i.e., a net structure with an initial marking, 
has a finite state space, we might investigate whether the state space is f in i te /or  
every possible initial marking; or we could study whether there exists an initial 
marking that guarantees infinite activity rather than deciding this for a given 
one, etc. 

Two intimately related families of techniques have extensively been used for 
structural reasoning: graph theory and linear algebra. In this work we deal with 
both kinds of techniques from a linear algebraic viewpoint, often expressing or 
interpreting in linear algebraic terms some classical graph theory based notions 
(such as those related to siphons and traps). We are interested in giving a general 
framework, conceptually simple and reasonably efficient, rather than presenting 
the most efficient algorithm for each particular property (as an example, liveness 
and boundedness of a free choice system can be decided in polynomial time after 
Corollary 50, but a graph based algorithm [46] performs more efficiently). 

The material is presented mainly in a tutorial style, covering the main devel- 
opments in the field from the seventies and also introducing some new perspec- 
tives or revisiting previous works. In order to improve readability, most proofs 
are given as previous explanations of the results, concepts and results are il- 
lustrated by several examples, additional information is contained in separated 
remarks, and bibliographical remarks have been collected in a final section. 

The basic notions are recalled in Section 2, where also the main notations 
are introduced. (A brief recall to notions and results in linear programming and 
duality theory that  are used throughout the paper is included as an appendix.) 

The starting point for structure theory is the description of the behaviour 
of the system in structural terms, based on the net state equation and other 
structural objects. The presentation and comparison of these concepts forms 
Section 3. 

Section 4 covers the analysis of important  safety properties of net systems 
(e.g., boundedness, mutual exclusion, deadlock-freeness, etc.) through the state 
equation. This method is at the same time more efficient and accurate than the 
classical invariant method, which on the other hand has salient merits for the 
understanding. Special emphasis is given to show the bridge between results in 
the fields of structure theory and linear algebra/convex geometry. For instance, 
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classical results from the invariant method are derived applying duality theory 
to the linear programming formulations based on the state equation. 

A major  limitation of the state equation method to analyse net systems is the 
fact tha t  structural  descriptions of the behaviour, particularly those derived from 
the net state equation, are, in general, relaxations. Owing to this, the analysis 
allows only to semidecide the corresponding properties, i.e., find only necessary 
or sufficient conditions. Section 5 presents several techniques to improve the 
accuracy of structural  descriptions, hence the resolution of structural  methods.  

Another limitation of the state equation method is that  it is best suited to 
analyse safety properties, i.e., existence or non-existence of markings (and firing 
vectors). Other properties, particularly transit ion's liveness, cannot be dealt with 
directly. Nevertheless, some structural results based on the incidence matr ix  and 
the conflict structure of the net are helpful for this analysis, specially in the case 
of some net subclasses, as it is shown in Section 6. 

The paper is concluded with bibliographical remarks in Section 7, to give an 
impression on the development of the field and to point at  related topics that  
have not been exhaustively covered. 

2 Nets  and Net  Systems: Basic Concepts and Notat ion  

2.1 V e c t o r  and  M a t r i x  N o t a t i o n s  

We denote vectors as v = [vi]; vi is the i-th component  of v, alternatively 
written v[i]. For matrices, we have C = [cij] and C[i , j ]  = cij- Most often in 
net theory, vectors and matrices are indexed by the (arbitrarily) ordered sets 
of places and transitions. For instance, if p E P and t E T, C[p, t] denotes the 
entry of C corresponding to row p and column t; if P' C_ P and T '  c_ T we can 
write C [ P ' , T ' ]  to refer to the submatr ix of C corresponding to rows from P '  
and columns from T' ;  the column of C corresponding to transition t E T would 
be C[P, t]. We often describe markings and other rather sparse vectors using a 
bag/formal  sum notation. For instance, a marking that  puts two tokens in Pl 
and one in P3 is denoted 2pl + P3 instead of [2 0 10 --- 0]. 

The transpose of a matrix is denoted by C j-. (The transpose of a vector is 
not defined, i.e., vectors are not considered one-row or one-column matrices.) 
Operations are denoted as usual. For instance, k- C = [k- Cij],  V"  V '  : ~ i  ~1," ~2'z, 
v - C = [v - C[.,i]], and C - v  = [C[i,-].  v]. Relational operators  applied on 
vectors or matrices are interpreted componentwise. For instance, v > v '  means 

! 
that  vi > v i' for every i. The following will be used too: v ~  v '  means that  Vi __2> y, 
for every i and some i exists such that  vi > v~ (not to be confused with v )t v '  
meaning that  v > v '  is false). The support  of a vector v - -  the set of indices of 
non-null elements - -  is denoted by Ilvll. 

We denote 0 and 1 the vectors/matrices with every entry equal to zero and 
one, respectively, I the identity matrix, l i  the vector whose only non null entry 
is i, which takes value one (a characteristic vector), and l s  = ~ i c s  l i  (the 
characteristic vector of S). 
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2.2 Place/Transition Net Systems 

We concentrate here on the formalism of Place/Transition (P/T)  net systems. 
We denote a P I T  net as At" = (P, T, P r e ,  Pos t ) ,  where P and T are the sets of 
places and transitions, and P r e  and P o s t  are the tPI x IT[ sized, natural valued, 
incidence matrices. Post[p,  t] = w means that  there is an arc from t to p with 
weight (or multiplicity) w, and Pre[p,  t] = 0 indicates no arc from p to t. (We 
assume without loss of generality that nets are connected.) 

A marking is a IPI sized, natural valued, vector. A P I T  system is a pair 
$ = (fir, too), where mo is the initial marking. A transition t is enabled at m 
iff m > Pre[P , t ] ;  its occurrence or firing, denoted by m ~)m ~, yields a new 
marking m '  = m + C[P, t], where C = P o s t  - P r e  is called the token flow 
matrix. (In pure nets, i.e., without self-loops, positive and negative entries in C 
completely represent the post- and pre- incidence functions, and then C can be 
properly called the incidence matrix of the pure net.) 

An occurrence sequence from m is a sequence of transitions a = tl -. - tk • • " 
such that  m ~ ' )ml  - ' - m k - l - ~ ' "  ". The set of all the occurrence sequences, or 
language, from mo is denoted by L(Af, mo), and the set of all the reachable 
markings, or teachability set, from mo, is denoted by RS(Af, mo). The reacha- 
bility relation is conventionally represented by a teachability graph RG(Af, too) 
where the nodes are the reachable markings and there is an arc labeled t from 
n o d e m t o m ' i f f m  ~>m'. 

For pre- and postsets we use the conventional dot notation, e.g., °t = {p E 
P I Pre[p , t ]  7~ 0}. A transition t such that  It°t > 1 (resp. I*tl > 1) is called 
a fork (resp. a join). A place p such that ]*pI > 1 (resp. [P*[ > 1) is called an 
collector (resp. a distributor). Distributor places are required to model conflicts. 
The output  transitions of a distributor place are said to be in structural conflict 
relation. The coupled conflict relation is defined as the transitive closure of the 
structural conflict relation. The equivalence class (or coupled conflict set) of 
transition t is denoted by CCS(t) and the quotient set is SCCS. When Pre[P,  t] = 
Pre[P ,  t I] ~ 0, t and t' are in equal conflict (EQ) relation, meaning that they 
are both enabled whenever one is. This is also an equivalence relation on the 
set of transitions. The equivalence class (or equal conflict set) of transition t is 
denoted by EQS(t) and the quotient set is SEQS. 

Weighted (or multiple) arcs permit the abstract modelling of bulk services 
and arrivals. For instance, they appear naturally when the presence of symme- 
tries allows to "decolour" a high level model. If P re [p ,p  °] = w l  we say that  the 
weighting is homogeneous on p (e.g., the weighting of the input places of an equal 
conflict set). If this holds for every place, the weighting of the net is homogeneous. 
A historically and conceptually interesting subclass of P / T  nets with homoge- 
neous weighting are ordinary nets, where every arc weight is one, which lead to 
a straightforward but important generalisation of automata models. Although 
it is possible to simulate/implement weighted P / T  systems by ordinary ones 
preserving the (projected) language (with transformations like the one shown in 
Figure 12 later in the paper), several reasons justify dealing with weighted P / T  
systems directly rather than with their ordinary implementations: the models 
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are more concise, the transformations do not preserve concurrent semantics ap- 
propriately in general, and the ordinary implementations fall typically out of the 
subclasses which enjoy strong analytical results, even in the simplest cases. 

A subset of places O C_ P such tha t  O" C_ "O is called a trap because once it 
becomes marked it remains marked (tokens are "trapped") .  A subset of places 
E C_ P such tha t  " Z  C i2" is called a siphon because once it becomes unmarked 
it remains unmarked (it cannot be "refilled" with tokens). 

By reversing arcs or interchanging places and transitions we get the reverse 
net, Af ~, or the dual net, Af d, of Af. Both transformations together lead to the 
reverse-dual net, H ~d. Sometimes in net theory relations are established between 
a net and its reverse, dual, or reverse-dual, e.g., siphons and traps are reverse 
objects: a siphon of N" is a t rap of Af~ etc. 

IJV" I (P,T,  Vre,  Pos t )  I C I 
Afr (P, T, Post,  Pre) -C 
Af d (T,  P, P o s t ± , P r e  ±) -C ± 

hf rd (T, P, Pre  ±, Post  ±) C ± 

A net Af' is subnet of N" (written Af' c_ Af) when P' C_ P, T' C_ T and its pre- 
and post-incidence matrices are P r e '  = P r e [ P ' , T ' ]  and P o s t '  = P o s t [ P ' ,  T']. 
(In what follows, for the sake of readability, whenever a net or system is defined 
it "inherits" the definition of all the characteristic sets, functions, parameters , . . .  
with names conveniently marked.) Subnets are generated by subsets of places 
and transitions. When a subnet is generated by a subset V of nodes of a single 
kind, it is assumed that  it is generated by V U "V U V ' .  Subnets generated by a 
subset of places (transitions) are called P- (T-) subnets. 

2.3 A n a l y s i s  o f  Log ica l  P r o p e r t i e s  

A major  goal of the mathematical  modelling of systems is to allow their auto- 
matic analysis. In general, verification consists in checking that  a system model 
satisfies its logic specification (e.g., some temporal logic formulae). Here we are 
interested in the verification of some selected properties of "good behaviour" 
that  are often par t  of the specification of systems (specially reactive ones), or 
appear  as precondition for the temporal  analysis or performance evaluation of 
the interpreted model. 

A P / T  system is bounded when every place is bounded, i.e., its token content 
is tess than some bound at every reachable marking (when the bound is one, 
then it is said to be safe). It  is live when every transition is live, i.e., it can ulti- 
mately occur fl'om every reachable marking, and it is deadlock-free when every 
reachable marking enables some transition. A marking is a home state when it 
is reachable from every reachable marking, and a net system is reversible when 
the initial marking (hence every marking) is a home state. Two places are in 
mutual ezclusion when they are never marked simultaneously. Boundedness pre- 
cludes overflows, liveness ensures that  no single action in the system can become 
unattainable,  existence of home states informs on the possibility to return to 
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certain states, and mutual exclusion is required between places that represent 
the use of a common resource or the presence in a critical section. 

Conventionally, analysis methods of PN models are classified as follows: 

- Enumeration Techniques: If the system is bounded, the teachability graph 
can be used as the computational model for a proof system or for decision 
procedures and tools for automatic verification. Two major problems of this 
approach are the size of the state space of a concurrent system, that  can 
be palliated in some cases where not every state needs to be computed, 
and the necessity to repeat the analysis for each initial marking of interest. 
Unbounded systems can be partially analysed using a similar approach. 

- Transformation Techniques: To facilitate the analysis of a large and complex 
system it can be transformed (typically reduced) preserving the properties 
to be analysed. Transformation rules somehow preserve the behaviour while 
they are often supported by structural arguments as simple, and efficient, 
sufficient conditions. 

- Structural Techniques: The basic idea is to obtain useful information about 
the behaviour reasoning on the structure of the net and the initial mark- 
ing. Two crucial advantages of this approach are the deep understanding 
of the system behaviour that is gained, and the possible efficiency of the 
algorithms. Two intimately related families of techniques have extensively 
been used: graph theory and linear algebra/convex geometry. The rest of the 
paper is devoted to describe these techniques in some detail from a linear 
algebraic viewpoint (over the non-negative integers or reals). 

The above groups of techniques are not to be understood as mutually exclu- 
sive, but they should be effectively combined for the analysis in practice. 

General net systems are difficult to analyse. As in all theories, it is a common 
trend in net theory to consider particular subclasses of models by introducing 
appropriate restrictions, either on the behaviour or the structure (or syntax) of 
the model. A possible way of obtaining syntactical subclasses is restricting the in- 
scriptions (e.g., nets with every weight equal to one are ordinary) or the topology, 
usually aiming at limiting the interplay between conflicts and synchronisations. 
The latter can be achieved either by giving a general restriction, typically on 
distributor places and/or  join transitions (e.g., there are no distributors), or by 
giving rules to construct models (e.g., sequential functional entities are synchro- 
nised by some restricted message passing). These restrictions are intended to 
facilitate the analysis (we shall give some examples through the paper) at the 
price of losing some modelling capabilities. The designer must find a compromise 
between modelling power and availability of powerful analysis tools, while one 
of the theoretician's goals is obtaining better results for increasingly larger - -  
and more practical - -  subclasses. 

3 Linear  D e s c r i p t i o n s  a n d  S t r u c t u r a l  O b j e c t s  

The starting point for the structural analysis of P / T  systems by linear algebraic 
techniques is the description of the state space by some system of linear equa- 



315 

tions. In fact, as we shall see, these descriptions are often relaxations with a 
different degree of accuracy. In principle, there is a trade-off  between the accu- 
racy of  the description and the efficiency of  verification algori thms,  but  this is 
not  necessarily the case: in some net  subclasses, relaxations tha t  - -  in general  
- -  are less accurate  than others  describe exactly the s tate  space; it is also worth  
noticing tha t  some linear descriptions tha t  are extensively used are less accura te  
and less efficient than  others (a l though they may have salient merits for the 
unders tanding) .  

3 . 1  T h e  S t a t e  E q u a t i o n  

Recall t ha t  when a transit ion t is enabled at m (m _> P r e [ P ,  t]), the new marking  

reached by its firing ( m - L + m ' )  is m '  = m + C [ P ,  t]. Analogously, a step s (where 
s[t] is the number  of times t occurs  in tha t  step) is enabled when m > P r e  - s, 
and its firing leads to: 

m '  = m + C .  s (1) 

This equat ion resembles the s ta te  equat ion of a discrete-time linear system, 
where m is the current state (vector'), m '  is the next state, and s is the inputs 
vector (there is one input per t ransi t ion).  Differently from general linear systems,  
here the dynamic matrix is identi ty (all the eigenvalues are one, what  corresponds 
to in tegrators  or counters: the s ta te  is memorised in the absence of inputs) and 
not every act ion is possible in a given state because inputs and state variables 
are defined to be non-negative integers. 

Assume tha t  it is known tha t  every marking m is reachable in (at most)  k 
steps f rom m o  (this is true for bounded  systems,  even it is possible to s t ructura l ly  
compute  a finite such k when the net  is structurally bounded). Then we could 
describe exactly the set of reachable markings by the following system of linear 
inequalities (m,  C INIPI,s, E 1NITI): 

mo  >_ P r e - s o  
m l  = t o o + C - s o  

• . .  ( 2 )  

Ink_l  ~ P r e  - sk-~ 
m = Ink_l  -~ -C . sk_  1 

Al though we can easily el iminate the mi  variables by subst i tut ion,  this linear 
descript ion is of  course highly impract ical  due to  the size of k, tha t  moreover  
depends on the initial marking. In wha t  follows, we look for more concise linear 
descriptions - -  a l though we expect  t ha t  they are not exact  descriptions but  only 
more or less accurate  approximat ions.  

If  we integrate Equat ion (t) over a sequence a of inputs (transit ions or steps) 
from the initial state mo  and yielding m,  denoting by a the firing count vector 
of sequence a (a[t] = # ( t , a )  is the number  of times t occurs ill tile sequence) 
we obtain:  

m = m o  + C .  o" (3) 
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Since every reachable marking is obtained by the occurrence of some sequence 
from the initial marking, it is clear that,  for every reachable marking (state) there 
exists some cr E IN IT[ such that  Equation (3) holds. This is why (3) is referred 
to as the net state equation. 

It is straightforward to derive the following linear description of the set of 
reachable markings (notice that  integrality of ~r ensures integrality of m): 

D e f i n i t i o n  1. Let S be a P / T  system. Its linearised teachability set (using the 
state equation) is defined as: 

LRsSE(s)  = {m E IN IPI I ~O" C IN ITI such that  m = mo + C .  o'} 

This description is suitable for the incorporation of the state equation into 
a set of linear constraints, e.g., in the restrictions of an integer programming 
problem, for analysis purposes (see Section 4). 

Remark 2. Although integer programming is NP-complete, some analysis prob- 
lems can be solved efficiently using the state equation over the integers. For 
instance, a sufficient condition for non reachability of a given marking m in S 
is non existence of o" E 711Tl such that  C • a '  = m - too,  which is polynomial 
time [45,76]. Actually, if N" is consistent, i.e., an x > 0 exists such that C - x  = 0, 
this is equivalent to m ~ LRSSE(s), because from a a' E 7/ITI a ~r E IN ITI can 
be obtained as o" = ~r ~ + kx. O 

The inclusion RS(S) C_ LRSSE(,S) may well be proper, since Equation (3) 
does not check whether there is a sequence of intermediate markings such that 
some a E L(S) with firing count vector a is actually fireabte. (In other words, we 
have removed from (2) the inequalities requiring the fireability of the steps, i.e.. 
the non-negativity of the intermediate mi variables, and then we have eliminated 
these variables.) The markings in L R s S E ( s ) -  RS(S) will be called spurious (with 
respect to the state equation). 

Similarly to the reachability graph, we can represent a linearised reachability 
graph (using the state equation), LRGSE(s),  where the nodes are tile markings in 
LRSSE(s) and there is na arc labeled t from node m to m '  iff m t )m'. Figure 1 
shows a P / T  system together with its LRG sE, where the spurious markings are 
shaded. As another example, the marking P2 is spurious in the system shown in 
Figure 2 top-left; it is reached by the "occurrence" of tt + t2 + t3 (notice that 
in every possible "sequence" with this firing count vector some intermediate 
marking variable becomes negative). 

We can further relax the description by dropping integrality constraints, as 
it is typical in the mathematical modelling of systems with large state spaces 
(e.g., population models). This further relaxation introduces more spurious solu- 
tions. For instance, the marking 2p2 is spurious in the system shown in Figure 2 
bottom-left;  it is reached by the "occurrence" of 0.5tl + t2 + t3. On the other 
hand, this relaxation allows to use linear programming instead of integer pro- 
gramming in the verification, leading to polynomial time algorithms. Sometimes 
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only the integrality of firing variables is disregarded, either because other restric- 
tions guarantee the integrality of the marking or because mixed integer linear 
programming is used. As an example, the following linear programming problem 
can be used to analyse teachability of a given marking m (if the problem is 
infeasible, then m is proven unreachable): 

m a x { 0 . o ' l  C - o ' = m - m o A t r _ > > 0 }  (4) 

In summary, we define a second linear description of the set of reachable 
markings: 

De f in i t i on  3. Let S be a P / T  system. Its linearised teachability set (using the 
state equation over the reals) is defined as: 

LRsSE~($) = {m E IN IPI ] 30" ~ 0 such that m = mo + C .  or} 

Remark 4. We have relaxed the description of the state space applying two prin- 
ciples: path integration and continuisation (or fluidisation). These principles can 
also be applied in the reverse order, first continuisation and then path integra- 
tion, leading again to LRS sEta. By disregarding first the integrality of variables. 
we get continuous P / T  net systems [27]. In these models, "fluid tokens" are con- 
tained in "deposits" (the places), the "level" of which (the marking) captures 
the state of the system (as in Forrester diagrams [26]). Transitions me regarded 
as "mixing valves" whose firing (opening) consumes fluid fl'om the input places 
and produces fluid onto the output  places in a given proportion, according to 
the following firing rule: t is enabled in some amount A > 0 at marking m when 
m _> ,~Pre[P, t], and its occurrence leads to the marking m '  = m + AC[P, t]. 
The set of reachable markings of system 8 is denoted by CRS($),  standing for 
continuous teachability set. These nets are interesting in the modelling of certain 
continuous systems, and also as an approximation of systems where there are 
large amounts of (discrete) tokens. When used as an approximation, they nat- 
urally suffer from the presence of spurious solutions. For instance, the marking 
2p2 is spurious in the system shown in Figure 2 top-right; it is reached by the 
"occurrence" of 0.5t2. [~ 
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tl ~ t3 
2 2 

t 2 

2 2 

p,Q 

m =P2  

12 

Fig. 2. Diverse relaxations of the state space applying path integration and continui- 
sation. 

Figure 2 illustrates the relaxations we have discussed so far. Notice that  
the spurious markings induced by the use of LRS sE or CRS are not necessarily 
disjoint: the marking P2 is spurious in the system shown in Figure 2 bottom-right;  
it is reached by the "occurrence" of either tl + t2 or 0.5t2. 

Clearly, the presence of spurious solutions may prevent reaching conclusions 
using analysis techniques based on a relaxed description of the s tate  space. We 
shall give later techniques to remove spurious solutions by adding more infor- 
mation to the state equation after carefully considering the net structure. It  is 
also worth noticing that  some net subclasses enjoy special properties on their 
spurious solutions that  palliate the problem, as we shall illustrate (e.g., see Sub- 
section 3.4) 

3.2 L i n e a r  I n v a r i a n t s  f r o m  t h e  S t a t e  E q u a t i o n  

Since every reachable marking must  satisfy the state equation, it carl be regarded 
as a set of l inear invariant  laws, one per place, containing marking and firing 
variables. The firing variables can be eliminated, by multiplying the equation 
by a suitable vector, in order to obtain linear invariant laws involving marking 
variables only. For instance, if y is such that  y • C = 0 ~-- vector y is called 
a P-flow - -  then, for  every initial marking mo, every reachable marking m 
satisfies: 

y - m = y - m o + y - C - o "  = y - m o = k  

This provides a "token balance law": if the positive and negative parts  of 
y are separated: y = y+ - y_  , where y + , y _  __> 0, then for every reachable 
marking y+-  m = y _ ,  m + k, that  is, the tokens in IlY+ II and HY-II are somehow 
"balanced". Conversely, in net systems where all transitions can fire at least 
once, every linear token conservation law is associated with a P-flow. This can 
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be deduced as follows: Assume y -  m = y .  m o  holds for every reachable marking.  
t t Then I t  must  be shown tha t  y - C = 0. Consider an a rb i t ra ry  t and mt----~m t. 

m~ = m t  + C[P , t ] ,  hence y .  m~ = y .  m t +  y -  C[P,t]. Since y .  m~ = y -  mr ,  it 
follows tha t  y .  C[P,  t] = 0. In summary :  

T h e o r e m  5. Let iV" be a P / T  net. 

1. I f  y - C  = 0 then for every too :  y " m = y . m o  for every m E RS(N' ,  too) .  
2. Let $ = (Af, mo) .  Assume that for every t E T some m t  E RS(S) exists such 

that m t  >_ P r e [ P , t ] .  f l y - m  = y . m o  for every m C RS(S) ,  then y .  C = O. 

The P-flows of a net  Af form a vector space. Using B,  a matr ix  whose rows 
form a basis of P-flows, we obtain a new linear description of the set of reachable 
markings where only marking variables appear:  

D e f i n i t i o n  6. Let S be a P / T  system. Its linearised reachability set (using a 
basis B of P-flows) is defined as: 

L R S P f ( s ) = { m E I N  IP] I B . m = B - m o }  

Token balance laws become specially useful when y > 0 - -  in such case, 
y is called a P-semiflow - -  because, ta ldng into account  tha t  m > 0, from 
y .  m = k we can deduce, for instance, tha t  all the places in Ilyll are bounded.  
The  invariants tha t  we obtain are "token conservation laws": for every reachable 
marking the weighted sum of tokens in tlY]I remains constant .  

Besides the actual  invariant law, a major  interest of  P-semiflows is the de- 
composed view of the model tha t  they provide. The  P-subnet  generated by the 
support  of a P-semiflow is called a conservatwe component of tim net, meaning 
tha t  it is a par t  of the net tha t  conserves its weighted token content.  In the case 
tha t  y > 0 such that  y - C = 0 exists, the whole net  is a conservative compo- 
nent, and it is said tha t  the net is conservative, what  obviously implies tha t  it 
is bounded for every (finite) initial marking. 

The token conservation laws induced by P-semiflows are by far the most  
popular  invariant laws, to tile point  tha t  the classical invariant method considers 
P-semiflows only, which, historically, are very often called P-invariants in the 
literature. Anyhow, it is impor tant  to realise tha t  there are three notions that  
should be differentiated: 

- The P-semiflow (a vector). 
- The token conservation law or marking invariant (an equation).  
- The conservative component  (a net). 

Actually, apar t  fi'om those derived from P-semiflows, there are other  invariant 
laws and components ,  as it shall be shown. 

A P-semiflow y is said to be minimal when the positive y~ are relatively 
prime and no P-semiflow y '  exists such that  [lY'II C IlYlt. In order to prove 
properties,  only minimal P-semiflows need to be considered because every P- 
semiflow can be obtained as a non-negative linear combinat ion - -  possibly with 
rat ional  coefficients - -  of minimal P-semiflows. In a net  A/', the set of  all the 
minimal P-semiflows, called the fundamental set of P-semiflows, is tmique. 
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Remark 7. The supports of two minimal P-semiflows are non comparable, since 
otherwise we would be able to obtain by difference another P-semiflow whose 
support would be contained in one of the former. Therefore, a bound for the 
cardinality of the fundamental set of P-semiflows - -  which is reached in some 
cases although it is generally quite high - -  is the number of possible combinations 
of NPI/2] out of iF[ elements: 

IPI 
[tPtf2] ) 

[] 

Algorithm 8 gives a simple procedure to compute the fundamental set of 
P-semifiows from the incidence matrix of the net. A row cI,[i] memorises the 
coefficients of the positive linear combination of rows of matrix C which generate 
A[i]. In Step 3 of the algorithm, all the rows of A have been made null, so each 
row ~[i] is a P-semifiow: ~I,[i]. C = 0. 

Algor i thm 8 (Computa t ion  of  P-semiflows) 

Inpu t  - The incidence matrix C. 
Ou tpu t  - A matrix ¢I, whose rows are the fundamental set of P-semiflow. 

1. Let A = C and • = I { I is the identity matrix of dimension IP] } 
2. for i = 1 to iT[ do 

2.1 Add to the matrix [,I,[A] all rows which are natural linear combinations 
of pairs of rows of [~[A] and which annul the i-th column of A 

2.2 Eliminate from ['I'IA ] the rows in which the i-th column of A is non-null 
3. Remove from ¢I, all rows whose support is not minimal, and 

divide each other by the g.c.d, of its non-null elements 

During execution of Algorithm 8, the number of rows in [,I,[A] typically 
grows beyond the cardinality of the fundamental set of P-semiflows. To improve 
the efficiency of the algorithm, instead of annulling the columns of A in their 
order, some heuristics for the selection of the column to annul next drastically 
reduce the growth of [OIA]. Moreover, introducing some tests of non minimality 
during the execution of the algorithm - -  including the application of certain 
rank properties, combining net theory with linear algebraic techniques - -  it is 
also possible to discard many rows that cannot lead to a minimal P-semifiow 
before completing the computations (see [57,22]). 

The fundamental set of P-semiflows provides another linear description of 
the set of reachable markings where only marking variables appear. Let ~ be a 
matrix whose rows are the fundamental set of P-semiflows of Af: 
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D e f i n i t i o n  9. Let $ be a P / T  system. Its linearised teachability set (using the 
fundamental set of P-semiflows) is defined as: 

LRSPSf(S) = { m  E IN IPI I ~ "  m = R5. mo}  

The  dual  not ion of P-flows are T-flows (in the sense tha t  the P-flows of Af ~ 
or N "~a are the T-flows of Af). If x is such tha t  C • x = 0: 

m = m o + C - x = m o  

T-flows become specially useful when x >_ 0 - -  in such case, x is called a 
T-semiflow - -  because, in tha t  case they correspond to cyclic sequences. (Note 
tha t  the  firing count  vector of  a cyclic sequence is a T-semiflow, bu t  possibly for 
a given initial marking it is not  possible to fire a sequence whose firing count  
vector  is a given T-semiflow.) The  fundamenta l  set of T-semiflows can be readily 
compu ted  applying Algori thm 8 to C ±. Similarly to P-semiflows, T-semiflows 
provide  an interesting decomposed view of  the model. The  T-subne t  genera ted  
by the suppor t  of a T-semiflow is called a consistent component of the net. Wi th  
an appropr ia te  initial marking, a consistent component  is able to exhibit  a cyclic 
or repeti t ive behaviour.  In the case that  x > 0 such tha t  C .  x = 0 exists, the 
whole net  is a consistent component ,  and it is said tha t  the net  is consistent. 
W h e n  a net is not  consistent it cannot  be lively and boundedly  marked (see 
Propos i t ion  10 and Theorem 45). In fact, historically the name consistent  is due 
to the fact tha t  in a live and bounded  system, the equat ion sys tem C • x = 0 
must  be (algebraically) consistent. 

Generalising flows and semiflows, other  multipliers of C may provide useful 
information.  For instance, a vector y > 0 such that  y - C < 0 indicates tha t  
the weighted token content of the places in Ilyll cannot  be increased (it can be 
decreased if y .  C ~  0). If y > 0 it follows that  tile net is bounded for whichever 
initial marking,  or structurally bounded. Similarly, a vector x _> 0 such that  
C • x _> 0 indicates tha t  the occurrence of a sequence with firing count  vector x 
(if some such sequence was fireable) would not decrease the marking,  so it could 
be repeated  once and again (the marking would be increased at each execution if 
C -  x ~  0). If  x > 0 the net is said to be structurally repetitive. A net  tha t  can be 
lively marked is s t ructural ly repetitive, because there must  be sequences leading 
fi'om a marking  to a greater or equal one (equal in case of boundedness)  involving 
every transit ion,  the firing count  vector of which proves s t ructural  repetit iveness: 

Proposit ion 10. If S is a live P / T  system then A/" is structurally repetitive. If 
$ is also bounded then Af is consistent. 

3.3 Proving Properties Through Linear Invariants 

Let us il lustrate with an example the usability of (minimal) P-semiflows to prove 
propert ies,  and  the decomposed view that  they provide. 

A produc t ion  cell and a P / T  description of its local controller are shown in 
Figure 3 (taken from [82]). The  places "wait_raw", "load", "opl" ,  "wait_dep.", 
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(a) 

(b) 

n ~ l  ~1 air-raw °P2 
tfi aa~ ¢op2 

el a~ ~ t~ ~m [12 
' -y\ \  / 

Fig. 3. A production cell with two machines, one robot, and a store, and a P/T de- 
scription of its behaviour. 

and "deposit" represent the possible states of M A C H  1. The place "R" is marked 
when the robot is available. The places "empty" and "object" contain as many 
tokens as empty slots or parts are available in the temporary buffer, etc. In 
this model actions are associated with places, and transitions represent atomic 
instantaneous changes of state, e.g., M A C H  2 performs its operations while place 
"op2" is marked, and the event of finishing is modelled by the firing of "eop_2". 

The marking linear invariants induced by the minimal P-semiflows of the net 
in Figure 3 are the following: 

m[wait_raw] + re[load] + m[opl ] + m[wait_dep.] + re[deposit] = 1 (5) 

m[op2 ] + m[waitfree] + re[unload] + m[wait_with.] + re[withdrawal] -- 1 (6) 

re[empty] + re[deposit] + re[object] + re[withdrawal] = 8 (7) 

m[R] + re[load] + re[unload] + re[deposit] + re[withdrawal] = 1 (8) 

Since markings are non-negative, the following can be easily stated from the 
previous equations: 

- The marking bound of every place is one, except for "empty" and "object", 
that  is seven. 

- The places in each of the following sets are in (pairwise) marking mutual 
exclusion: 

• {wait_raw, load, opl, wait_dep., deposit} 
• {op2 , wait_free, unload, wait_with., withdrawal} 
• {R, load, unload, deposit, withdrawal} 
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Using the invariants in (5-8), it is also possible to prove that  the net system 
in Figure 3 is deadlock-free. We proceed by contradiction, more precisely we 
try to construct  a marking m that  satisfies (5-8) and in which no transit ion is 
fireable. In such a marking, the places "load", "opl" ,  "deposit", "op2", "unload", 
and "withdrawal" should be unmarked, because these are the only input places 
of their corresponding transitions, so the token conservation laws in (5-8) reduce 
to: 

re[wait_raw] + m[wait_dep.] = 1 (9) 

re[wait_free] + re[wait_with.] = I (10) 

re[empty] + m[object] = 8 (11) 

m[R] -- 1 (12) 

Since the above implies that  "R" should be marked, to prevent the firing of 
tl and tT, the places "wait~aw" and "wait~ree" should be unmarked too. The 
token conservation laws are reduced once more, leading to: 

m[wait_dep.] = 1 (13) 

m[wait_with.] = 1 (14) 

re[empty] + re[object] = 8 (15) 

m[R] = 1 (16) 

Since the above implies that "wait dep." and "wait with." should be marked, 
to prevent the firing of t4 and tg, both "empty" and "object" should be un- 
marked, against  (15), so the net system is proven deadlock-free. The above "ad 
hoc" proof is generalised and fully automatised in Subsection 4.6. 

As an example of the loss of information when non minimal P-semiflows 
are used instead of minimal ones, observe that  summing up (5-8) we obtain a 
P-invariant involving all the places which does not allow to prove any of the prop- 
erties we have deduced from the minimal ones (it allows to prove 10-boundedness 
of the net, though). 

In the example of Figure 3, the only minimal T-semiflow is 1, meaning that  
every cyclic sequence fires all the transitions in the same proportion, so, due to 
boundedness, in the "long run" all the transitions occur the same number of 
times per t ime unit. Therefore, under boundedness, the existence of a unique 
minimal T-semiflow ensures that deadlock-freeness implies liveness, because ev- 
ery infinite behaviour must contain all the transitions, so from our previous proof 
of deadlock-freeness we deduce liveness. 

Finally, in Figure 4, the decomposed view induced by the minimal P-semiflows 
is graphically presented. This view is even useful to derive an implementation. 
For instance, it shows that  the net system in Figure 3 could be made up with 
two sequential processes (for MACH 1 and MACH 2) and three semaphores: 
"object",  "empty" ,  and "R" - -  where "R" is a mutual exclusion semaphore. 
(Having a unique minimal T-semiflow, no T-decomposition exists in this case.) 
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Fig. 4. A decomposed view of the net system in Figure 3. 

3 . 4  C o m p a r i s o n  o f  L i n e a r  D e s c r i p t i o n s  

We announced that  the diverse linear descriptions have different degrees of ac- 
curacy. With respect to those presented so far, it can easily be established that: 

T h e o r e m  11. Let $ be a PIT  system. 

RS(S) C_ LRSSE(s) C LRSSE~(S) C_ LRsPf(s )  C_ LRSPSf(S) 

All the above inclusions may welt be proper. We have already shown some 
examples for the first and second in Subsection 3.1. The P / T  systems in Figure 5 
give examples for the others. 

The vector Pl + P2 + P5 forms a basis of P-flows of the net of Figure 5 (a), 
so every marking c~p3 + Ps, with a > 0, is in LRSPf($). On the other hand, 
since C[p4,T] > C[p5,T] and mo[p4] = too[Psi, m[p4] _> m[ps] in every m e 
LRsSE~(S),  what is false in the case of ~P3 + P5. 

For the net of Figure 5 (b), Pl + P2 is the only minimal P-semiflow, so ev- 
ery marking Pl + ~P3 +/~P4, with c~,/~ > 0, is in LRSPSf(B). Nevertheless, the 
dimension of the space of P-flows is two; the P-flow p3 - p4, that together with 
the minimal P-semiflow forms a basis, shows that markings Pl + o~p3 -4-/3p4 with 
a # /~  are not in LRSPf(8). 
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Fig. 5. Two P / T  systems showing that LRS sea  (~) LRS ef ~) LRS P~f. 

In some cases, the above inclusions reduce to equalities. The interest of the 
following result is tha t  it allows to use only the "more convenient" P-semiflows, 
instead of general P-flows, in the case of conservativeness, and that  it guarantees 
that  P-flows are as accurate as the state equation over the reals in the case of 
consistency: 

P r o p o s i t i o n  12. Let S be a P / T  system. 

1. If A[ is conservative, then LRSPf(s)  = LRSPSf(S). 
2. If N" is consistent, then LRsSEIR(s) = LRSPf(S). 

Proof. For Par t  1, consider a y > 0 such that  y - C = 0. A basis formed by 
P-semi flows only can easily be obtained from a basis of P-flows by adding a 
multiple of y to each P-flow. 

For Par t  2, if m E LRSPf(s) ,  then o" (possibly a '  ~ 0) exists such that  
C . a ' = m - m o .  U s i n g a x > 0 s u c h t h a t C . x = 0 ,  a a = c r ' + k x > 0 c a n b e  
obtained so that  the state equation is satisfied. [] 

In some net subclasses, stronger relations have been found. For instance, in 
live state machines (ordinary nets where every transition has one input and one 
output  place; they are always conservative, and the only minimal P-semiflow 
is 1; liveness is equivalent to strong connectedness and non empty marking) 
RS = LRS Psi. In live marked graphs (ordinary nets where every place has one 
input and one output  place; they are always consistent, and tile only minimal T- 
semiflow is 1; liveness is equivalent to every directed circuit being marked) RS = 
LRS sEN [25,36,62]. In live consistent weighted T-systems (every place has one 
input and one ou tpu t  transition: marked graphs with weights; when consistent, 
they have only one minimal T-semiflow, x, and then liveness is equivalent to 
x being fireable) RS = LRS sE [88], although the inclusion LRS sE C LRS sE~ 
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can be proper because C is not unimodular as in marked graphs. Even in the 
case of weighted T-systems, these relations allow to prove properties more easily. 
For example, the reachability problem (i.e., is m reachable?) in a live consistent 
weighted T-system can be solved in polynomial time proceeding as indicated in 
Remark 2. 

Other subclasses enjoy weaker but still useful properties. We give some ex- 
amples. Structurally persistent systems are those with no distributor places, i.e., 
[p'[ _< 1 for every place p. (These systems, when strongly connected and consis- 
tent, are conservative and have only one minimal T-semiflow, x. In such case, 
liveness and reversibility is equivalent to x being fireable.) In live, bounded, and 
reversible structurally persistent systems the reachable markings are the vec- 
tors in LRS sE from which x is fireable [90]. In live, bounded, and reversible 
(extended) free choice systems (ordinary nets where CCS(t) = EQS(t) for ev- 
ery t; in the sequel, by free choice we always mean extended free choice) the 
reachable markings are the vectors in LRS Psf that mark every trap [30]. In live 
equal conflict systems (for every t, CCS(t) = EQS(t): free choice with weights) 
every two solutions of the state equation have a common successor [92]. This 
implies existence of home states in live and bounded equal conflict systems, and 
the property that  no spurious solution with respect to the state equation is a 
deadlock marking, what allows to analyse liveness using the state equation (see 
Subsection 4.6). 

To conclude, an important  consequence of the comparison is that the state 
equation, even over the reals, provides more information than the P-semiflows, 
even though the state equation leads to more efficient verification techniques 
(remember that  the cardinality of the fundamental set of P-semiflows may grow 
exponentially with [PI). Therefore, in what follows, the state equation is used 
as the basic linear description of the state space. 

3 . 5  T r a p s  a n d  S i p h o n s  

Besides the marking invariants that  can be obtained from the net state equation, 
that  were described in Subsection 3.2, other marking invariants can be formu- 
lated for net systems. In particular, traps and siphons, which are also structural 
objects, lead to new kinds of invariants. Differently from those associated with 
flows, possibly the invariant laws associated with traps and siphons do not hold 
in every marking, but once they become true they remain true for whichever 
future evolution (i.e., they are stable predicates): traps remain marked once they 
become marked, and siphons remain unmarked once they become unmarked. The 
same as in the case of semiflows, invariants, and components, we can distinguish 
three notions (idem for siphons): 

- The trap (a set of places). 
- A trap invariant (a stable predicate). 
- The trap subnet (the P-subnet generated by the trap). 

When a set of places is both a siphon and a trap, e.g., the support of a P-semiflow, 
the P-subnet that  it generates is called a siphon-trap component. Notice, though, 
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tha t  in the case of P-semiflows the P-invariaalt (token conservation law) is more 
informative than the siphon and t rap invariants that  are deduced from the cor- 
responding siphon-trap component.  

Traps and siphons have been extensively used for the structural  analysis of 
(mainly ordinary) net systems (see Bibliographical Remarks). As a mere exam- 
ple, we s tate  the following properties: 

- In an ordinary deadlocked system, the subset of unmarked places is a siphon, 
because otherwise one of its input transitions would be enabled. Owing to 
this property of siphons, they are often called deadlocks, what is somehow 
misleading. 

- Taking into account that  t raps remain marked, if every siphon of an ordinary 
net contains an initially marked t rap,  then the system is deadlock-free. In 
the case of asymmetric choice or simple systems (at most one of the input 
places to a join transition is a distributor place) the condition tha t  every 
siphon contains a marked t rap is sufficient for liveness, and in tile case of 
free choice nets it is also necessary [41]. 

- If  m is a home state of a live system, then every trap must be marked. 
because otherwise once the t rap becomes marked - -  and it will eventually 
do by liveness - -  m cannot be reached any more. In the case of live and 
bounded free choice systems the converse is also true [7]. 

To our discussion, it is specially relevant to point out that  some traps and 
siphons may contain information about  the reachable markings tha t  is not con- 
tained in the state equation. Therefore, they are potentially useful to improve the 
linear description of the state space provided by the state equation, as we shall 
discuss in Section 5. Consider the net in Figure 1. Clearly, 0 = {p~, pz, P5 } is an 
initially marked trap, so it must remain marked (m[pl] + m[p2] + m[p~] >_ 1), 
what allows to conclude that  2p3, 2/)4, and P3 + P4 were spurious solutions to 
the state equation. Regarding siphons, for instance, in every spurious solution 
of the system of Figure 6 the (initially unmarked) siphon ~ = {p~, P2, P:3, Pa, P7 } 
is marked, so taking the siphon invariant into account all the spurious solutions 
are proven non reachable. (Pragmatically, siphon invariants are less useflll, since 
the existence of unmarked siphons in the initial marking is often considered 
undesirable: it implies that  all its output  transitions are dead.) 

Next we describe a linear algebraic method to obtain a 9enerati'a9 family of 
t raps,  i.e., a set such that  every t rap of the net is a union of traps in this set 
(observe that  the union of two traps is a trap,  they are stable under union). 
Notice that  a generating family includes all the minimal traps, i.e., those which 
do not contain any other, but the set of minimal traps may not be generating. 
(The same approach can be applied to compute siphons, using that  a siphon is 
a t rap of the reverse net, or s iphon-trap components.) 

The method is based on the following property, which characterises traps in 
terms of non-negative solutions to a linear system of inequalities: 

T h e o r e m  13. Let N" = (P,T, Pre, Post) be a P / T  net. Define 

N o  = (P,  T ,  P r e ,  P o s t e }  
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Fig. 6. A non live net system and its LRG sE, where every spurious solution marks an 
initially unmarked siphon. 

such that Pos to[p ,  t] = 0 iff Post[p,  t t = O, and Pos to[p ,  t] _> E l / c ' t  Pre[p ' ,  t] 
otherwise. 

A setO C_ P is a trap olaf  i f f y  >_ 0 exists such that IlYll = 0 a n d y . C o  > O. 

Pro@ The inequality y .  Co  >_ 0 means that  in (Afo, mo) the weighted (accord- 
ing to y) token content would never be decreased by the firing of transitions. 
If llyll was not a trap, then the firing of a transition in tlyll ° but  not in "llylJ 
would decrease the token content. On the other hand, by the definition of A/o, 
the firing of any transition puts at least as many tokens in each output  place as 
it removes from the input places, so it is clear that  when O is a trap the vector 
l o  is a suitable y. [] 

Steps 1 and 2 of Algorithm 8 can be used to compute the y vectors, hence 
the sought traps, by simply changing Step 2.2 so that  only rows in which the 
i-th column of A is negative are eliminated. In order to provide a link to the 
well-known notion of P-semiflows, observe that  the non-negative solutions to 
y • C o  >_ 0 are the non-negative solutions to 

where z axe slack variables. Therefore, the vectors [y z] are P-semiflows of a net 

Afo that  is obtained from Afo by adding a source input place to eveI2y.transition. 
As an example, consider the net in Figure 1. A corresponding Afo is shown 

in Figure 7. The support of the P-semiflow of N o  that corresponds to the trap 
{Pl, P2, Ps } is shaded. 

The above chaxacterisation of traps allows to express some trap properties 
in linear algebraic terms. For instance: 

- Initially marked traps remain marked: If m is reachable then the following 
system must be infeasible: 

y - C o  _> O A y  _> 0 A y -  mo > 0 A y - m  = 0 (18) 
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Fig. 7. A Afo corresponding to the net in Figure 1. The support of the P-semiflow 
associated with the trap {pl, p2, p5 } is shaded. 

where IlYll is a trap (according to Theorem 13), that  is initially marked 
(y -  m o >  0) but not marked under m (y .  m = 0) 

- In every home state of a live system every t rap is marked: If m is a home 
state then the following system must be infeasible: 

y - C o _ >  O A y > O A y . m = O  09) 

Notice tha t  not every t rap (or siphon) property can be expressed as a single 
system of linear inequalities. For instance, we cannot express that  when a trap 
becomes marked it remains marked. 

4 A n a l y s i s  o f  P r o p e r t i e s  U s i n g  t h e  S t a t e  E q u a t i o n  

4.1 O v e r v i e w  

As we indicated in Subsection 3.1 the linear description - -  more precisely, re- 
laxation - -  of the state space (and fireable sequences) provided by the state 
equation can be readily used for the analysis: the state equation is incorporated 
in the set of (linear) constraints of a linear (or integer) programming problem, 
where the property to analyse is either part  of the linear constraints or appears  
in tile cost function. We gave in (4) a straightforward application of this method 
to analyse reachability of a given marking. Owing to the possible presence of 
spurious solutions, in general this kind of analysis allows to semidecide only; in 
the case of reachability, for instance, the structural condition is only necessary. 
For other properties, only sufficient conditions are obtained. 

Using this method we can analyse properties stated as existence or non exis- 
tence of markings and /or  firing sequences that  satisfy some restrictions expressed 
in terms of linear inequalities. For existence we obtain necessary conditions, and 
sufficient for non-existence. Also we can compute (bounds for) the maximum of a 
linear function, or semidecide whether it exists. Some examples are submarking 
teachability, boundedness, repetitiveness, implicitness of a place, mutual  exclu- 
sion, or deadlock-freeness: 
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- Is In >_ in= reachable? Existence of in such that  m ~ m=. 
- Is p k-bounded? Non-existence of In such that  m[p] > k. 
- Bound of p? Maximise m[p]. 
- Is t repetitive? Unbounded maximisation of nit]. 
- Is p implicit? Non-existence of In and t where m[p] is the only marking 

variable that  prevents the firing of t, i.e., non-existence of m and t such that  
m [ P  - {p}] _> P r e [ P  - {p}, t] and In[p] < Pre[p ,  t]. 

- Are the places i n / 7  C_ P in pairwise mutual  exclusion? Non-existence of m 
that  marks a pair of them. 

- Deadlock-freeness? Non-existence of In where no transition is enabled. 

In the following subsections we discuss the analysis of some of these properties 
in more detail, and we show how several classical results in structure theory of 
net systems are a rather  direct consequence of this analysis, typically by making 
use of basic results on linear programming and duality theory. 

I t  is quite apparent  from the few examples of properties listed above that  
their expression can be more or less complicated. Formally, they are logic propo- 
sitions where a toms are linear inequalities on marking and firing count variables. 
When these propositions are atomic or linked conjunctively, as it is the case 
of boundedness, repetitiveness, implicitness, or mutual  exclusion between two 
places (Subsections 4.2 to 4.5) their inclusion in the set of linear constraints 
poses no particular problem. 

When they are linked disjunctively, the verification requires checking a num- 
ber of systems of linear inequalities for existence of solutions. The case of mutual 
exclusion is illustrative: For the mutual exclusion between two places, p and p'. 
we check non-existence of m such that  m[p] > 0 and m[p'] > 0; for the pairwise 
mutual exclusion between three places, p, p~, and p ' ,  we must check, in princi- 
ple, non-existence of in such that  m[p] > 0 and m[p ~] > 0, non-existence of m 
such that  m[p] > 0 and m[p ' ]  > 0, and non-existence of In such that  m[p'] > 0 
and m[p ' ]  > 0 (in general, for n places, non-existence of solution to n(n - 1)/2 
systems of linear inequalities). If  the places were known to be safe~ for instance, 
it would suffice to check just one system, because we could express the property 
as non-existence of In such that  In[p] + in[p'] + in[p"] > 1. Subsection 4.6 studies 
the case of deadlock-freeness, and illustrates how this problem with disjunctions 
can be palliated, even overcome in most practical cases. 

Properties discussed so far are sa]ety properties expressed e~s first order logic 
predicates where the domain is defined by only one type of quantifier (either ex- 
istential or universal). One may conceive the analysis of other properties where 
the domain is defined by a combination of quantifiers of both types. However, 
since we can only obtain necessary conditions for existentially quantified predi- 
cates, and sufficient conditions for universally quantified ones, due to the possible 
presence of spurious solutions, as a result we would not even semidecide on such 
properties - -  leaving apar t  the case where one of the quantifications can be 
unrolled because the elements of the definition domain are finite and known a 
priori. Consider reversibility: mo  reachable from every reachable marking, i.e., 
for all in reachable from mo there exists a sequence a leading from In to mo. 
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If  we used the s tate  equation relaxation, we would analyse: 

( V m ) ( 3 0 " ) ( m = m o + C - 0 - ' _ > 0 A m o = m + C . 0 - > 0 A 0 - , 0 - ' > 0 )  (20) 

Validity of the above predicate is neither sufficient for reversibility, because the 
o-'s may not be fireable, nor necessary, because an m invalidating it may be spu- 
rious. Liveness (of a transition) suffers from the very same problem. Of course, 
in net subclasses where these "difficult" properties are equivalent to others that  
can be analysed using the state equation method,  the problem is solved. For 
instance, liveness of bounded strongly connected equal conflict systems is equiv- 
alent to deadlock-freeness [92], and live equal conflict systems do not have spu- 
rious deadlocks, so absence of deadlock markings which are solution to the state 
equation proves liveness (see Remark 35). 

As a last comment,  many of the properties that  we consider here are par- 
ticular - -  but specially relevant - -  cases of general synchronic properties. For 
instance, the synchronic lead of a subset of transitions with respect to another 
accounts for the maximum difference between the (possibly weighted) number 
of firings of the former and the latter. Boundedness of a place is a mat te r  of 
boundedness of the synchronic lead of its input transitions with respect to its 
output  transitions, and mutual exclusion between two safe places is equivalent 
to the synchronic lead of their input transitions with respect to their output  
transitions taking value one. The structural  analysis of synchronic properties, 
which is presented in [83], is a more compact  or abstract  view of the analysis of 
many safety properties that  we describe here. 

4.2 P l a c e  M a r k i n g  B o u n d s  a n d  S t r u c t u r a l  B o u n d e d n e s s  

The marking bound of a place p in a net, system 8 is defined as: 

b[p] = max{m[p] I m E RS(S)} (21) 

When this bound is finite, 
equation, and writing m[p] as 
p as: 

sb[p} = max{lp  - 

the place is said to be bounded. Using the state 
l p  - rn, we define the structural bound of a place 

m I m -  C - o "  = m o A m ,  o" _> 0} (22) 

In principle, Equation (22) is an integer programming problem. If integrality 
constraints (on m and or) are disregarded then (22) is a linear programming 
problem, that  can be solved in polynomial time. 

According to Theorem 11, the marking for which the structural  bound is 
reached could be spurious, so clearly, in general, we have sb[p] > b[p]. There- 
fore, if we were investigating the k-boundedness of p (i.e., is m[p] <_ k?), an 
efficient sufficient condition is sb[p] _< k. We insist that  the condition is only 
sufficient, and even it is possible that  the structural  bound for a bounded place 
does not exist (i.e., the programming problem is unbounded; we note at this 
point that ,  al though the structural bound using integer programming can be 
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more accurate than using linear programming, when this particular linear pro- 
gramming problem is unbounded so it is the integer version - -  see Appendix). 
For instance, place p in the live and safe system of Figure 8 is bounded, but  the 
linear programming problem (22) is unbounded. 

Fig. 8. Place p is bounded but not structurally bounded. 

In the sequel we apply results from duality theory of linear programming. 
Although duality results are available for integer programming, we concentrate 
on linear programming, partly owing to the objective of re-encountering some 
classical results in net theory, and also to the pragmatic reason that  the de- 
rived algorithms are more efficient, actually polynomial time. The dual linear 
programming problem of (22) is: 

s b [ p ] ' = m i n { y - m o  I Y ' C - < 0 A y - >  lp} (23) 

Since (22) has always a feasible solution (m = too, o- = 0), both problems 
(22) and (23) are bounded iff a feasible solution for (23) exists, according to the 
duality and unboundedness theorems. In other words, if y >_ lp exists such that  
y- C _ 0, then p is structurally bounded, i.e., bounded for every initial marking. 
(Moreover, in such case sb[p] = sb[p]'.) 

R e m a r k  14. The linear programming problem (23) performs in polynomial time 
a search for the vector y that  allows to obtain the best structural bound for p 
among all the P-semiflows and other vectors y _> 0 such that  y -  C _< 0. Clearly, 
it gives a more accurate bound than considering the P-semiflows only (besides 
being more efficient!) [] 

By the alternatives theorem, existence of y _> lp such that  y - C < 0 is 
equivalent to non existence of x > 0 such that  C - x >_ lp. Observe that,  if such 
x exists, then we can find a sufficiently large initial marking mo allowing to 
fire once and again a sequence with firing count vector x, what shows that  p is 
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unbounded. Therefore, non existence of x :> 0 such that C .  x > lp is necessary 
for structural boundedness of p. In the example of Figure 8, x = tt + t3 + t5 
disproves structural boundedness of p. Notice that no sequence with such firing 
count vector is fireable under the marking shown in the figure; nevertheless, 
tl t3 t5 becomes fireable with mo = Pl +P5 +P6 +Pg, and p becomes unbounded. 
(Interpreting boundedness as stability of the dynamic system, it can be said 
that non structurally bounded systems which are bounded are only conditionally 
stable, in the sense that  an increment of the initial marking may lead to unstable 
behaviour.) 

In summary: 

Theorem 15. Let Af be a P/ /T net, and p one of its places. The following three 
statements are equivalent: 

1. p is structurally bounded, i.e., bounded for every too- 
2. There exists y >_ lp such that y .  C < O. 
3. There does not exist x >_ 0 such that C - x > lp. 

The above statement, the same as several others in the sequel, contains two 
dual perspectives of a property, one place-based (item 2) and the other transition- 
based (item 3). We remark that  the duality in this kind of net properties is rooted 
on duality theory in linear programming. 

Applying the above characterisation of structmal boundedness of p to every 
place of Af: 

Corollary 16. Let Af  be a P / T  net. The following three statements are equiv- 
alent: 

1. N" is structurally bounded, i.e., every place is bounded for every rno. 
2. There exists y > 0 such that y .  C <_ O. 
3. There does not exist x >_ 0 such that C .  x ~  0. 

Remark 17. It is welt known that nets with inhibitor arcs - -  which is a widely 
used extension of P / T  systems - -  can be simulated with plain P / T  systems using 
the complementary place construction in the case that the inhibiting places are 
bounded. This is particularly true for structurally bounded places, with the 
additional advantage that the transformation can be done for whichever initial 
marking. In the sequel, it goes without saying that all the results can be extended 
to nets with inhibitor arcs in the case of structural boundedness. [3 

4.3 Transition Fireability Bounds and Structural Repetit iveness  

The fireability or repetitiveness bound of a transition t in a net system S is 
defined as: 

r[t] = max{~I t  ] t a C L(S)} (24) 

If this bound is zero, then the transition is dead (or O-live). If tile bound 
takes a finite positive value, the transition can only be fired a finite number of 
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times (it is 1-1ire). When the bound does not exist, transition t is said to be 
repetitive (or 2-live), and this is necessary for tiveness of t. 

Using the state equation, we define the structural repetitiveness bound of a 
transit ion t as: 

s r [ t ] = m a x { l t . o ' ]  m - C - o ' = m 0 A m ,  O ' > O }  (25) 

Clearly, if the transition is repetitive, then (25) is unbounded, since sr[t] _> 
r[t]. (The converse is not true because the er's that  make the problem unbounded 
may not correspond to actually fireable sequences: all the transitions in the nets 
of Figure 2 are structurally repetitive and none of them is repetitive.) 

The  dual linear programming problem of (25) is: 

s r [ t ] ' = m i n { y - m o l  Y ' C < - l t A y - > 0 }  (26) 

Since (25) has always a feasible solution ( m  = mo, o" = 0), it is unbounded 
iff (26) is infeasible, according to the duality and unboundedness theorems. In 
other words, if some y > 0 exists such that  y .  C _< - l t ,  then t is not structurally 
repetitive, i.e., not repetitive for any initial marking. 

By the alternatives theorem, non existence of y > 0 such that  y • C _< - l t  
is equivalent to existence of x > I t  such tha t  C - x _> O. Observe that,  if such 
x exists, then we can find a sufficiently large initial marking mo  allowing to 
fire once and again a sequence with firing count vector x, what shows tha t  t is 
repetitive. Therefore, existence of x > I t  such that  C - x >_ 0 is sufficient for 
s tructural  repetitiveness of t. In summary:  

T h e o r e m  18. Let Af  be a P / T  net, and t one o/ its transitions. The/o l lowing  
three s ta tements  are equivalent: 

1. t is structurally repetitive, i.e., repet i t ive /or  some mo. 
2. There does not exist y > 0 such that y • C < - l t .  
3. There exists x >_ It such that C .  x > O. 

Applying the above characterisation of structural repetitiveness of t to ever), 
transit ion of Af: 

Corollary 19. Let Af be a P / T  net. The/oIlowing three statements are equiv- 
alent: 

1. Af  is structurally repetitive, i.e., every transition is repet i t ive/or  some mo .  
2. There does not exist y > 0 such that y • C ~ O. 
3. There exists x > 0 such that C .  x >_ O. 

Comparing Corollaries 16 and 19 (or Theorems 15 and t8) it is quite apparent  
tha t  structural  boundedness and structural repetitiveness are dual notions: a 
net with incidence matrix C is structurally repetitive iff the reverse dual, with 
incidence matr ix  - C  ±, is structurally bounded. Both properties together are 
equivalent to conservativeness and consistency: Let x > 0 and y > 0 be the 
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vectors such that  C-x  > 0 and y -C  _< 0, respectively. By C . x  _> 0, y . (C -x )  > 0, 
while by y -  C < 0, (y-  C ) - x  <" 0. Therefore y .  C . x  = 0, hence C-  x = 0 and 
y • C = 0. Since (structural) repetitiveness is necessary for (structural) liveness, 
i.e., liveness for some initial marking, see Proposition 10, we can state: 

T h e o r e m  20. Let Af be a P//T net. If AT is structurally live and structurally 
bounded, then (equivalently): 

1. A[ is structurally repetitive and structurally bounded. 
2. AT is conservative and consistent. 

Taking into account Proposition 12: 

C o r o l l a r y  21. Let Af be a PIT  net. If AT is structurally live and structurally 
bounded, then for every m0: 

LRSSEIR(H, too) = LRSPf (J~ r, too) = LRSPSf (.A f, too) 

4.4 Implicit Places and Structurally Implicit Places 

In general, places impose constraints on the firing of their output transitions. 
When they never do, they could be removed without affecting the behaviour 
of the rest of the system. (However, even being redundant, they might still be 
useful - - o n e  such application is developed in Section 5.) 

A place whose removal does not affect the behaviour of the system is called 
an implicit place. Here, by behaviour we understand the interleaving semantics, 
i.e., the sequential observations or language, although the notion of implicit place 
can be directly extended to cope with a step semantics (see Remark 27). 

D e f i n i t i o n  22. Let, & = (P U {p},T, P r e ,  Pos t ,  mo) be a P / T  system. The 
place p is implicit ill' L($) = L((P, T, P re [P ,  T], Post [P,  TI, mo[P] ) )  

In other words, p is never tile unique place that prevents tile firing of a 
transition, i.e., m > Pre[P ,  t} a m[p] >_ Pre[p,  t] for all t E p ' ,  so it produces 
fictitious synchronisations in its output  transitions. For instance, in Figure 9 (a). 
t4 seems to represent a synchronisation, but whenever p3 is marked so it is p, 
so p is implicit. It is worth noticing at this point that, in general, m[p] may 
not be computable from the marking of other places. For instance, the marking 
of p in Figure 9 (a) cannot be deduced from the marking of the other places, 
it depends also on the number of occurrences of tl. When the marking of an 
implicit place can be computed from the marking of other places, we say that 
it is marking implicit. In Figure 9 (b), both Pi and p4 are marking implicit: 
m[p~] = m[p] + m[pa] and m[p4] = m[p] + m[p2]. Therefore, they can be removed 
without affecting the behaviour of the system. The net in Figure 9 (b) shows 
also that ,  naturally, being implicit or not is sometimes a matter  of the initial 
marking. With Pl + p4 -1- 2p as initial marking, p is marking implicit instead of 
pl and P4, and m[p] = m[pl] + m[p4]: the behaviour of the system is that  of 
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(a) (b) 

Fig. 9. Implicit and marking implicit places. Place p is implicit but not marking implicit 
in (a). Places pl and p4 are marking implicit in (b). If we add a token to p in (b), then 
it becomes marking implicit instead. 

two cyclic processes, (tl t2)* and (t3 t4)* that  evolve in parallel independently, 
in spite of the apparent  synchronisation introduced by p. 

Notice tha t  once the initial marking of the rest of the system is fixed, im- 
plicitness of a place is monotonic with respect to its initial marking (i.e., if the 
place is implicit for some initial marking, it is also implicit with a greater one). 

To decide whether a given p is implicit, in principle, we should check that  
no reachable marking exists such that  for some t we have m[P]  _> Pre [P ,  t] and 
m[p] < Pre[p ,  t]. Of course, it is necessary that  p is not the only input place of 
its output  transitions. This syntactical check rapidly tells that ,  for instance, p2 
and P3 cannot be implicit in the net of Figure 9 (b). 

The condition that  no reachable marking exists such that  for some t (actually, 
t e p°) we have re[P] ___ Pre[P,t] and m[p] < Pre[p , t ]  can be expressed conve- 
niently using a "transition selector" s, i.e., the characteristic vector of one transi- 
tion (s _> 0 and 1. s = 1): Place p is implicit in S = (P  U {p}, T, P re ,  Pos t ,  too) 
iff there are no m and s which are solution to: 

m e RS(S) 
m[P] - P re [P ,p*] .  s >_ 0 
m[p] - Pre[p,  p ' ] .  s < 0 

1 . s = l  
s_>0  

(27) 

where re[P] > P r e [ P , p ' ] .  s states that  Ilsll is enabled by P,  and m[p] < 
Pre[p,  p ' ]  • s states that  it is not enabled by p. 

Replacing for the first condition the state equation, as usual, we obtain a 
s tructural  sufficient condition for p implicit, in terms of non existence of solution 
m ,  a ,  and s to: 
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m - C . a = m o  
re[P] - P r e [ P , p ' ]  - s > 0 
m[p] - P re [p ,p ' ]  - s < 0 (28) 

1 - s = 1  
m~cr~s _> 0 

Since m[p] = mo[p] + C [ p , T ] - a ,  the above is equivalent to mo[p] being 
greater than or equal to the optimal value of the following linear programming 
problem: 

max{Pre[p,p°]  - s - C[p,T] • o" I m[P] - C[P, TI-cr = mo[P] 
m [ P ]  - P r e [ P , p ' ]  - s >_ 0 (29 )  
l ' s = l  
m , a , s  > 0} 

The initial marking does not appear in the constraints of the dual problem 
of (29), which is: 

m i n { y . m o + # l  y . C[P,T] <_ C[p,T] 
j - P r e [ P , p  °] + #1 > P re [p ,p  °] (30) 
y >  j_>0}  

Considering j = y does not affect the solution, leading to the following suffi- 
cient condition for p implicit: 

T h e o r e m  23. Let S = (P tO {p}, T, P re ,  Pos t ,  too} be a P I T  system, f f  mo[p] 
is greater than or equal to the optimal value of the following linear programming 
prvblem: 

min{y-  mo[P] + l* I 

t/ten p is implicit. 

y-  C[P, T] _< C[p, T] 
y .  P r e [ P , p  °] + It1 _> Pre [p ,p  °] 
y>_0} 

(31) 

Let us consider the places which can be made implicit for every initial mark- 
ing of the rest of the system (i.e., we are abstracting from the initial marking, 
as for other structural versions of properties). We call such places str'ucturtally 
implicit: 

Def in i t i on  24. Let A/" = (P  tO {p}, T, P re ,  Pos t )  be a P / T  net. The place p is 
structurally implicit iff for every mo[P], a mo[p] exists such that p is implicit in 
S = (P U {p}, T, P r e ,  Pos t ,  mo). 

The linear programming problem in Theorem 23 is feasible iff a y _> 0 exists 
such that C[p, T] _> y -C[P,  T], because the constraint containing # can always 
be satisfied taking a sufficiently large #. When a place fulfills such condition (or 
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its alternative formulation), it becomes implicit with a sufficiently large initial 
marking, at least with that  given by the linear programming problem, so it is 
structurally implicit. (Notice that  it may become implicit also with a smaller 
marking in some cases, see later Remark 39.) 

On the other hand, consider a net Af and a place p for which no y > 0 exists 
such that  C[p,T] > y .  C[P,T].  By the alternatives theorem, a x > 0 exists 
such that  C[P, T] - x > 0 and C~v, T] • x < 0. With a sufficiently large initial 
marking mo[P], a sequence with firing count vector x can be fired repeatedly in 
(Af, too[P]), and this would empty p for whichever mo[p], so p is not structurally 
implicit. 

In summary, a characterisation of structurally implicit places is given by the 
following result: 

T h e o r e m  25. Let A f  = (P  t3 {p}, T, P re ,  Pos t ) .  The place p is structurally im- 
plicit  i ff  (equivalently): 

1. A y >_ 0 exists such that C[p, T] > y - C [ P ,  T] 
2. No x >_ 0 exists such that C[P,T]  • x _> 0 and C~p,T] • x < 0 

Remark  26. Similarly as structural boundedness and structural repetitiveness 
are dual notions, the dual notion of a structural implicit place can be defined. 
The resulting objects are called structural bypass transitions, which have also a 
behavioural interpretation (see [73]). [] 

When C[p,T] = y .  C[P,T]  in Theorem 25.1, the place p is marking struc- 
turally implicit and its marking can be computed from the marking of other 
places: 

m[p] : mob]  + t i p ,  T] .  

= mo[p] + y '  C[P, T]- o" 

= mo[p] + y -  (m[P] - too[P]) (32) 

As an example of (marking) structurally implicit place, consider p with 
C[p,T] = t3 - t5 added to tile net system in Figure 1. The optimal solution 
to the linear programming problem in Theorem 23 is zero, and it is obtained for 
Y = Pl + P2 + P5 and # = -1 .  Therefore, p is (marking) structurally implicit 
(C[p, T] -- y .  C[P, T]), and with mo[p] = 0 it is (marking) implicit - -  as can 
be ea~sily checked. It is interesting to observe in this case that,  once p is added, 
the places Pl, P3, P4, and p are the support of a new P-semiflow, which induces 
the new marking invariant m[pl] + m[p3] + In[p4] + m[p] = 1. This invariant 
reveals, in particular, that p3 and P4 are safe and in mutual exclusion, what 
could not be proven using the state equation of the original net, where 2p3, 2p4, 
and P3 +P4 were spurious marking. The addition of an implicit place, which does 
not  affect the behaviour, may be useful to allow proving properties by structural 
techniques! 

An example of implicit place which is not structurally implicit, effectively 
showing that the structural condition is only sufficient, is p in Figure 8. (In 
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practice, though, specially under liveness and boundedness, implicit places are 
most  often structurally implicit.) 

Remark 2Z A place is concurrent implicit when it preserves not only the transi- 
tion firing sequences but also the step firing sequences. Any concurrent implicit 
place is of course (sequential) implicit, and (sequential) implicit places without 
self-loops are also concurrent implicit - -  notice that  they differ only when a 
transition is enabled several times by the mm'king of the other places while it is 
merely enabled by the implicit place. 

The sufficient condition for a place p to be implicit given by Theorem 23 
can be generalised to cope with concurrent implicit places by substi tuting the 
cost function in (al) by y - mo[P] + a .# ,  where c~ is a positive integer, not 
necessarily one. A sensible choice for a must be greater than or equal to the 
maximum enabling bound of the transitions in p ' ,  where the enabling bound of 
a transition is the maximum number of times tha t  it can occur in a step. A 
structural  enabling bound for a transition t, possibly greater than the actual  
enabling bound, can be computed as: 

seb[t] = max{k I m > k P r e [ P , t ] A m - C . o ' = m o A m ,  o'>_O} (33) 

[] 

4.5 Mutua l  Exclus ion and Concurrency Relat ions  

We consider now the verification of mutual  exclusion between two places, which is 
the basic property to analyse in order to investigate pairwise mutual exclusions, 
as was discussed in Subsection 4.1. 

The problem of pairwise concurrency of transitions is closely related. Even 
it can be transformed into non mutual exclusion between places by splitting tile 
analysed transitions into paths transition -+ place ~ transition. More directly, 
for transitions that  are in pairwise concurrency relation we can find, tbr each 
pair t and t', a marking m such that  m > P re [P ,  t] + Pre[P ,  t']. 

We concentrate on the mutual  exclusion of two places, p and p': 

T h e o r e m  28. Let $ be a P / T  system. 
I f  there is no solution to 

m - C - o ' = m o A I n >  l{v,v, }AO'=>0 (34) 

or (equivalently) there exists solution to 

y - C  __5. 0 A y -  l{p,p,} - y  .1no > 0 A y  _> 0 (35) 

then p and p' are in mutual exclusion. 

Remark 29. As usual, the alternative forrnulation given by (35) is only eqmva- 
lent when considering (34) over the reals. For instance, consider the net on the 
right and top in Figure 2 initially marked with 2p2 instead of pt + P2 (which 
now becomes a spurious solution). While (35) does not allow to prove mutual  
exclusion of Pl and p2, (34) does if it is interpreted over the integers. [] 
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The interpretat ion of (35) is the following: Prom y • m0 < y • l{p,p,} and 
y • C < 0 it follows that  in every reachable marking y • m < y • l{p,p,}, so m > 
l{p,p,} is impossible, what proves mutual  exclusion. (In structurally repetitive 
nets, the condition y - C < 0 can be replaced by y - C = 0, because, according 
to Proposit ion 19, it is never the case that  y .  C:~ 0.) 

The dual formulation of the mutual  exclusion problem given by (35) proceeds 
in the same way as the dual formulation of the boundedness problem, efficiently 
searching for a suitable vector y to prove the property (see Remark 14). An 
additional advantage of this formulation compared to (34) is that  the obtained 
y provides an explanation of the property and may be useful to derive other 
mutual  exclusion relations by the way. As an example, consider again the net 
system in Figure 1 after adding the place p with C[p, T] = t3 - ts, and suppose 
tha t  we are trying to prove the mutual  exclusion between Pl and P4 applying 
(35). A solution y = Pl +/~2 + P4 + P is obtained. The corresponding marking 
invariant, m[pl] + m[p3] + m[p4] + m[pt  = 1, proves not only mutual exclusion 
of Pl and P4, but  also mutual exclusion of any other pair, i.e., it proves at  once 
the pairwise mutual  exclusion of Pl, P3, P4, and p. 

4.6 Deadlock-freeness and Termination Properties 

Proving that  a concurrent system cannot reach a deadlock condition (i.e., no 
activity because every process is waiting for some other to continue) may be dif- 
ficult when the size of the system becomes large and its structure intricate due to 
complex and perhaps subtle interactions. For instance, (flexible) manufacturing 
systems are indeed a characteristic domain where the study of deadlocks is spe- 
cially relevant [3,34,94,95]. The tasking behaviour of Ada programs is another 
example [64]. 

We apply here the state equation method to analyse the absence of deadlocks 
in P / T  models. The approach is conceptually simple but, since the condition for 
a marking to be a deadlock is relatively complex, it still requires a consider- 
able computat ional  effort. We present here several techniques to improve the 
performance,  often reducing the problem to checking a single system of linear 
inequalities for existence of solutions. 

In net terms, a deadlock corresponds to a marking from which no transition 
is fireable. Tha t  t is disabled at m can be expressed: 

V m[p] < Pre[p, t] (36) 
pE°t 

Clearly, every reachable deadlock is a solution to the state equation where 
every transit ion is disabled, what  leads to the following basic general sufficient 
condition for deadlock-freeness: 

Theorem 30. Let ,S be a P I T  system. 
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I f  there is no (integer) solution to 

m - C - o ' =  m o  
re, o" > 0 

V~e-t  m[p] < P r e [ p , t ]  V tE  T 
(37) 

then $ is deadlock-free 

In  general, the disabledness condit ions are not  linear, because they consist  
of  linear inequalities linked disjunctively. Anyway we can rewrite (37) as a set of 
sys tems of  linear inequali t ies/equations,  i.e., as a logic sum of products ,  apply ing  
the distr ibutive proper ty  to the actual  p roduc t  of sums: If  for every mapp ing  
ct : T -+ P tha t  assigns to each t ransi t ion one of its input  places there is no 
solut ion to: 

m - C - e = m o  
m, cr > 0 (38) 

m[a( t ) ]  < P r e [ a ( t ) , t ]  Vt E T 

then 8 is deadlock-flee. 
The  problem now is tha t  we have to check (38) for every mapping a,  so we 

have to check I~tET I*tl linear systems. In general this number  might be large 
if there are many synchronisat ions (join transitions). We aim at reducing this 
number  as much as we can, preserving the decision power, tha t  is, tile set of 
integer solutions to (37). 

Firstly, we can obviously remove from (37) a disabledness condition if there 
is another  disabledness condition tha t  is "weaker". In other  words, if P r e [ P ,  t] < 
P r e [ P ,  t'] for some t and t', the disabledness condition for t '  can be removed 
wi thout  affecting the set, of solutions to (37), even over the reals. 

It is also quite obvious tha t  we can remove from (37) the disabledness condi- 
tions of transit ions tha t  are known to be dead (or O-live, they do not appear  in 
any sequence from too) because whenever all the other  transit ions are disabled, 
we are certainly in a deadlock situation. This does not  affect either the set of 
real solutions to (37). 

Clearly, a sufficient condition for t dead is non-existence of solution to: 

m - C - r r = m o A r y > 0 A m > P r e [ P , t ]  (39) 

Considering (39) over the reals, and applying the alternatives theorem, we 
obta in  an al ternative sufficient condit ion for t dead, in terms of ezistence of 
solution to: 

y . C _ < 0 A y  > 0 A y . ( P r e [ P , t ] - m o )  > 0  (40) 

If  there were a solution y,  it would induce the marking invariant y - m  _< y - m o .  
If some m enabled t, then m > P r e [ P , t ] ,  so y - m  >_ y - P r e [ P , t ]  > y -  too, 
contradict ion.  
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A simpler (and weaker) sufficient condition for t dead is that  there exists 
p E "t such that  sb[p] < Pre[p,  t]. For the application of the following results, 
the knowledge of sb is assumed, so this weaker condition can be applied with 
no extra  computational effort. 

Remark 31. Termination properties can often be rephrased in terms of fireability 
(or quasi-liveness) of an artificial transition that  removes the tokens from the 
desired final state and restores the initial marking (e.g., see [10]). Proving that  
such transition is dead, e.g., using (39) or (40), is sufficient - -  of course not 
necessary - -  to disprove termination. [] 

Although disregarding some transitions applying the above arguments may 
be helpful, typically the more drastic reduction in the number of systems to 
check is produced by the results that  we present in the sequel. They provide 
rules to rewrite the disabledness condition of a transition in a less complex way 
while preserving the set of integer solutions to (37). (Notice that if the systems 
were finally checked disregarding the integrality of variables, these rules might 
diminish the decision power.) 

P r o p o s i t i o n  32. Let t be a transition such that for every p E 7r C_ "t the fol- 
lowing holds: sbLp ] <_ Pre[p,  t]. Replacing in (37) for the disabledness condition 
corresponding to transition t the following (less complex) condition: 

the set of integer solutions is preserved. 

Proof. From m[p] <_ sb[p] for every p E P and m E LRSSE(S), and sb[p] < 
Pre[p , t ]  for every p e r r ,  it follows that  ~, ,e~(m[p] - Pre[p, t])  <_ 0 tbr every 

m E LRSSE($). Since all the addends are non-positive, the "<" holds for the 
sum iff it holds for one of them. [] 

By tile application of this result to a transition t, the number of linear systems 
to be solved is divided by - - I ' t l  what is deduced fi'om the ratio between the ].tl-17Q+t, 
number of input places to the transition and the actual number of them that 
need being considered separately. 

In the particular case where rr = "t, the disabledness condition is reduced 
to a linear inequality. Therefore a single system of linear inequalities is needed 
for structurally safe systems (i.e., those having all places with structural bound 
equal to one), for instance. 

Also when all but one of the input places of a transition are such that their 
structural bound equals to tile weight of the arc, the disabledness condition of 
the transition can be reduced to a linear inequality, applying the following result, 
which generalises Proposition 32: 
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P r o p o s i t i o n  33. Let t be a transition such that "t = 7r U {p'}, where sb[p'] > 0 
and sb[p] _< Pre[p,  t] for every p C re. Replacin9 in (37) for the disabtedness 
condition correspondin9 to transition t the followin 9 (less complez) condition: 

sb[p'] • E m[p] + m[P'] < sb[p'] • E Pre[p, t] + Pre[p', t] 
pC~ pel t  

(41) 

the set of integer solutions is preserved. 

Proof. Let us rewrite first the condition in (37) for t disabled: 

(V m[p] < Pre[p, t]) V (m[p'] < Pre[p',t]) 
pE 

(42) 

It must be shown that (42) ** (41). 
For " ~ " ,  we distinguish two cases for t disabled: 

1. Some p" E rr is such that m[p"] < Pre[p" , t ] ,  so m[p"] _< Pre[p" ,  t] - 1. 
Using also that m[p] _< sb[p] for every p C P,  and that  sb[p I < Pre[p,  t] for 
every p C rr, we get: 

sb[p'] - y~pe.  m[p] + m[p' l = 
sb[p'] - E p e . \ { p " }  rn[p] + sb[p']- m[p"] + m[p'] _< 

sb[p'] " Eve~\O,, ,}  Pre[p, t] + sb[p'].  (Pre[p", t] - 1) + m[p'] = 
sb[p'].  ~ v e .  Pre[p,  t] - (sb[p'] - m[#] )  < 

sb[p'] - 2 r e .  Pre[p, t] < 
sb[p'] - ~-~-pe~ Pre[p,  t] + Pre[t / ,  t] 

2. Now p' is such that m[p'] < Pre[p ' ,  t]. Using that m[p] < sb[p] for every 
p C P, and that ship] <_ Pre[p,  t] for every p ~ rr, the result follows. 

For " ~ " ,  let us rewrite first (41): 

Pre[p ' ,  t] - m[p'] (43) 
Z ( m [ p ]  - Pre[p,  t]) < sb[p'] 
p Err 

Assume contrary: (43) holds and t is enabled. In particular, m[p'] > Pre[p ' ,  t], 
hence }--~.ve,(m[p] - Pre[p, t])  < 0. Since m[p] - Pre[p, t ]  <_ 0 for every p C rr, 
it follows that there exists p E rr such that m[p] - Pre[p,  t] < 0. Thus, t is not 
enabled, against the hypothesis. O 

By the application of this result to a transition t, the number of linear systems 
to be solved is obviously divided by l ' t t .  

Let us illustrate this latter rule. The idea is to describe the set of solutions 
to the state equation for which t is disabled by means of a linear inequality. In 
the ease of Figure 10, the markings for which t is disabled are those ibr which 
m[p] < 3 and those for which m[p'] < 1. Observe that,  taldng into account that  
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mtp'] 

sb(p') 

sb(p) = 3 sb(p') - 5 

P 3 ~ i  p' 

5,m[p] + m[p'] < 5.3 + l 

Fig. 10. Illustration of Proposition 33. 

t disabled 

t enabled 

m[p] 

the solutions to the state equation respect, in particular, the structural bounds, 
all the solutions for which t is disabled are among the integer points in the 
region described by 5 - m[p] + m[p'] < 5 . 3  + 1. Notice that the slope of the 
boundary of such region could be greater than that given by sb[p'], provided 
it is not vertical. (Therefore, in case we finally check non-existence of solutions 
using integer programming, it makes no difference to use any greater value.) 

In summary, up to now, apart from disregarding transitions with a stronger 
or equal precondition than others and dead transitions, we are able to write as 
a linear inequality tile disabledness condition for all transitions t E T that have 
at most  one input place p such that sb[p] > Pre[p,  t]. 

Proposition 32 can also be applied to reduce the munber of terms when 
17r - "t I > 1, and 17rt > 1, although in this case the disabledness condition is not 
reduced to a single term. 

We can still further reduce the number of systems to solve by preapplying 
a transformation to the system that preserves deadlock-freeness (actually, it 
preserves the projected language). The transformation, illustrated in Figure 11, 
can be applied as needed to every place p with homogeneous weighting. After the 
transformation, we have one more transition (t (p} in the figure), title disabledness 
condition of which can be written as a linear inequality because the structural 
bound of p(C) is one. On the other hand, the structural bound of p(l,) is also one, 
thus we have in each transition in p" one input place less with structural bound 
greater than the weight (perhaps only one, or even none, remains, and then the 
disabledness condition for such transition can be written as a linear inequality 
too). 

After the presented results, clearly the state equation based verification of 
deadlock-freeness reduces to checking non-existence of (integer) solution to a 
single linear system of inequalities in the case of structurally bounded P / T  sys- 
tems with homogeneous weighting - -  in particular ordinary and equal conflict 
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Fig. 11. A transformation preserving the projected language (in particular, preserving 
deadlock-freeness). 

systems - -  because the transformation in Figure 11 can be applied as neces- 
sary to enable Propositions 32 or 33. Moreover, since every P / T  system can 
be simulated by another with homogeneous weighting preserving the projected 
language (see Figure 12 for an illustrative example of the kind of transforma- 

Fig. 12. Simulating weights with ordinary nets preserving tile projected language. 

tion used; more compact transformations exist for particular cases), it follows 
that every structurally bounded P / T  system (or merely known to be k-bounded, 
because these can always be made structurally bounded using the complemen- 
tary place construction) can be transformed to require a single linear system of 
inequalities: 

T h e o r e m  34. Let $ be a structurally bounded P / T  system. Then (37) in the 
sufficient condition ]or deadlock-ffeeness given by Theorem 30 can be rewritten 
as a single system of linear inequalities. 

Remark 35. Since live equal conflict systems do not have "killing" spurious so- 
lutions (i.e., spurious deadlocks), existence of a solution guarantees non liveness. 
If no deadlock solution is found the system is proven deadlock-free, what in 
bounded strongly connected equal conflict systems implies liveness. Observe that  
applying the transformation illustrated in Figure 11 to an equal conflict system 
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leads to another equal conflict system. This allows in this class to characterise 
liveness, in the presence of boundedness, through non-existence of integer solu- 
tion to a single system of linear inequalities [92]. [] 

Let us illustrate the application of some of the above techniques to a simple 
example. Consider the system in Figure 13 (a), where all the structural marking 

! 

~2 

(a) (b) 

Fig. 13. Example of deadlock-freeness analysis. 

bounds are three. Tile disabledness condition for t.2 can be disregarded. Transi- 
tion tl has only one input place, so its disabledness condition is linear. Transition 
t4 has only one input place (p3) with structural bound greater than the weight, so 
its disabledness condition can be written linearly applying Proposition aa. The 
structural bounds of both input places of ta are greater than the corresponding 
weights, but we can apply the transformation in Figure 11 to one of them, e.g., 
to p2, see Figure la (b). Now the disabledness conditions of ta and ta can both 
be written linearly. 

Therefore, finally, the analysis can be done using a single linear system. Tha t  
is, if m is a deadlock then the following linear system has a solution: 

m - C - o- = mo A m, a _> 0 (state eq.) 
m[pl] _< 0 (t~) 

3- m[ps] + m[p3] <_ 9 (t4) 
3-m[p7] + m[p4] < 3 (t3) 
3 .  m[p6] + m[p2] <_ 3 (ts) 

Solving (with the simplex algorithm) we obtain, for instance, tile following so- 
lution: m = 3pa + 3p4 + p6, ~r = 3t2, which in this case is actually reachable. 

Remark 36. Notice that  Proposition aa and transformations like that illustrated 
in Figure 11 are intended to express the disabledness of a transition linearly. 
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Therefore, they are not only useful for deadlock-freeness analysis but for every 
analysis that requires checking the disabledness of some transitions. In particular, 
they can be applied to analyse the non fireability of.facts [37]. t~ 

5 Improving the State Equation 

A major limitation of the analysis methods based on the state equation that  
we have described in the previous sections stems from the existence of spurious 

solutions: only necessary or sufficient conditions for the analysed properties are 
obtained. As an example, for the net system in Figure 1, due to the spurious 
solutions, the state equation based analysis does not allow to prove safeness, 
deadlock-freeness, or pairwise mutual exclusion between p2, p3, and P4. This 
limitation motivates the interest of the techniques that we present in this section 
to remove some, ideally all, of the spurious solutions (with respect to LRSSEm). 

In Subsection 3.5 we observed that  traps and siphons induce new invariant 
laws that  add information to the state equation. We concentrate here on traps. 
Assume O is an initially marked trap of S. To fix ideas, consider O = {Pl, P2, p.5 } 
of the net in Figure 1. An initially marked trap induces a trap invariant as an 
inequality, which in the example is: 

m[pl] + m[p2] + m[ps] >_ 1 (44) 

Now assume that we have a P-semiflow y whose support includes 5), which 
induces another marking invariant concerning the places of 5). The P-serniflow 
y = 2pl + P2 + P3 + ])4 A- P5 in the example, induces the marking invariant: 

2m[pl] + m[p2] + m[p3] + in[p4] + m[p5] = 2 (45) 

By subtracting (44) fl'om (45) we obtain another inequality invariant: 

m[pl] + m[p3] + m[p4] < 1 (46) 

By introducing a slack variable, we can transform the latter inequality into an 
equality. The non-negative slack variable can be interpreted as the marking of a 
new place, Po: 

m[pl] + m[p3] + m[p4] + m[po] = 1 (47) 

Observe that the new place is marking (structurally) implicit. In the e.xample, 
and taking into account (45): 

m[po] = 1 - (m[pt] + m[pa] + m[p4]) 

= 1 - (2 - ( m [ p , ]  + m [ p u ]  + m [ p s ] ) )  

= m[pl] + m[p2] + m[ps] - 1 (48) 

The place Po coincides with the place p that  we considered in Subsection 4.4 after 
Theorem 25. Remember that,  when marked initially with the optimum value of 
(31), which is zero in this case, the addition of this place, which is (marking) 
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implicit, removes some spurious solutions. Actually, from (48) it is not difficult to 
see that  the removed solutions are precisely those that  violate the trap invariant 
(44): both perspectives, in terms of trap invariants and marking (structurally) 
implicit places, are "dual" ways of interpreting the same removal of spurious 
solutions from the state equation. 

The above reasoning shows that basic trap invariants, i.e., the information 
that  a set of places must remain marked, can be coded in a marking structurally 
implicit place that  is added to the original net system. The converse is also 
true: when a marking structurally implicit place removes, or cuts, spurious so- 
lutions, the cut can be interpreted in terms of trap invariants, as we show in 
Subsection 5.1. Although not complete, this leads to a procedure to add cut- 
ting implicit places to improve the accuracy of a given state equation, that we 
describe in Subsection 5.2. Making use of the linear algebraic formulation of 
the property that initially marked traps remain marked given in (18), it is also 
possible to improve the state equation by directly adding a generator of trap 
invariants in order to require this property, what is presented in Subsection 5.3. 

5.1 Cutting Implicit Places 

After realising that  structural implicit places can improve the state equation by 
cutting spurious solutions, several questions naturally arise: 

- Which structural implicit places do cut? 
- Which spurious solutions are cut? 
- Is it possible to eliminate in this way any spurious solution? 

We devote this subsection to answering them. 
Let p be a structurally implicit place with mo[p] equal to the optimal value 

of (31), and let y and # be a corresponding optimal solution. It"/~ _> 0, then 

m~o] = mo[P] + C[p,T]-  o- >_ y .  (too[P] + C[P ,T] -  or) = y .  m[P] > 0 (49) 

so the inequality m[p] > 0 becomes redundant in the state equation (m[p] is a 
non-extremal variable in the terminology of convex geometry), hence its addition 
or removal does not affect LRS sE~. (In the particular case of live marked graphs, 
where RS = LRS sE~, every implicit place is of this kind.) On the contrary, when 
# < 0 in every optimal solution, the constraint on non-negativity of m[p] is not 
redundant,  so the state equation with p ires less solutions that the state equation 
without it; since p is implicit, the difference are spurious solutions, precisely those 
where m[p] would have been negative. Taking into account that 

m[p] -- y .  mo[P] + # + C[p, T]-  o" 

= y .  (m[P] - C[P, T]- o') + # + C[p, T].  o" (50) 

we can state that: 
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T h e o r e m  37. Let S be a P//T system. Let p be a structurally implicit place, 
and let mo[p] be the optimal value of (31) corresponding to the optimal solution 
y >_ 0 and it < O. The addition o /p  to $ cuts at least one spurious solution (with 
respect to LRSSEIR), i.e., p is a cutting implicit place, iff there is no solution to 

y ' -  C[P, T] < C[p, T] 
y ' -  P r e [ P , p ' ]  + #'1 > P re [p ,p ' ]  (51) 

y ' '  m0[P] + it' = mo[p] 
yl,itl  > 0 

The spurious solutions that are cut are those that fulfill: 

y -  m[P] + (C[p, T] - y .  C[P, T]) .  o" < - I t  (52) 

In other words, the addition of the cutting implicit place p expresses the 
additionM restriction that in every reachable marking the following holds: 

y .  m[P] _> - i t  - (C[p, T] - y - C [ P , T ] ) -  ~r (53) 

Observe that  ( C [ p , T ] - y . C [ P , T ] )  .a  >_ 0 and that  it depends on a .  For the case 
of a marking structurally implicit place, C[p, T] = y-C[P,  T], and y -m[P]  _> - i t .  
This reminds us a trap invaxiant, where tlyll is the trap and - #  is the minimal 
(weighted) token content. To demonstrate this fact, rewriting C as P o s t  - P r e  
we get: 

y .  Post[P,  T] - y .  P re [P ,  T] = Post[p,  T] - Pre[p,  T] (54) 

Assume without loss of generality that  p is pure, i.e., p" N "p = (3. (If p was 
Hot pure, the same place cancelling the self-loops would be also marking struc- 
turally implicit, possibly with a lesser value of #, i.e., with a "more negative" 
it.) Considering separately p ' ,  "p, and T - (p" U "p), we have: 

y - P o s t [ P , p ' ]  - y -  P r e [ P , p ' ]  = - P r e [ p , p  °] < 0 (55) 

y - P o s t [ P ,  "p] - y .  Pre[P ,  "p] = Post[p,  "p] > 0 (56) 

y - P o s t [ P ,  T - (p" U "p)] - y - P r e [ P ,  T - (p" U "p)] = 0 (57) 

Since y.  P re [P ,  p ']  + i t l  :> Pre[p,  p°], because y, it is a solution to (31), Equation 
(55) becomes: 

y .  Pos t [P ,  p'] _> - i t l  > 0 (58) 

From (56-58), for every transition t we have y - ( P o s t [ P ,  t] - P re [P ,  t]) > 0. It 
follows that  if y -  Pre[P ,  t] # 0, then y - Pos t [P ,  t] # 0, i.e., if t • ttyll ° then 
t • °tlyll, so llyll is effectively a trap. In summary: 

T h e o r e m  38. Let ? be a P//T system. Let p be a marking structurally implicit 
place, and let m0[p] be the optimal value of (31) corresponding to the optimal 
solution y > 0 and # < O. I] p is a cutting implicit place (according to Theo- 
rem 37) then Ilyll is a trap o l a f  such that its weighted token content, defined by 
y - m[P] ,  is never less than - # .  
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In order to further illustrate the !'dual" interpretation of the cut in terms of 
implicit places and traps,  and also to introduce the limitations of this approach, 
consider the example shown in Figure 14, which is a most  spare PN represen- 
tat ion of a prototype distributed mutual exclusion algorithm. Let q = r = 1, to 

w_ ~.9 L9 v. t 2 

(c) 

Fig. 14. A family of P / T  systems where p2 and p4 are in mutual exclusion, and the 
LRG sE for (a) q = r = l ,  (b) q = l , r = 2 ,  and (c) q = r = 2 .  

s ta r t  with. The marking/)2 + P4 is a (spurious) solution to the state equation, 
which prevents proving mutual  exclusion of P2 and P4 using the state equa- 
tion (notice that  the same happens in the net where the self-looped transi- 
tions are splitted, which is merely more cumbersome). The place p: C[p, T] = 
t2 + t4 - t l  - t3,  initially marked with one token, is marking implicit; an optimal  
solution to (31) is y = Pl + P3, # = - 1 .  Its addition cuts the markings where 
y - m = m[pl] + m[p3] < 1 = - # ,  that  is, the markings where the initially 
marked trap {pl,P3} is unmarked. In this case the only spurious marking is cut, 
so mutual  exclusion can be proven using the state equation method in the net 
with the implicit place. 

Let q = 1 and r = 2. Now the markings P2 + P3 + P4 and P2 + 2p4 are 
spurious (and prevent us fi'om proving mutual exclusion the same as before). 
The  place p used above, marked with two tokens, is marking implicit, but does 
not allow to prove mutual exclusion because it does not cut the spurious marking 
p2 + P3 + P4~ Fortunately, a different choice of the weight s of the arcs helps. The 
place p': C[p~, T] = 2t2 + t4 - 2tx - t3, initially marked with two tokens, is marking 
implicit; an optimal solution to (31) is y = 2pl +p3, # = - 2 .  Its addition cuts the 
markings where 2m[pl] + m[pa] < 2, that  is, the markings where the weighted 
token content of the initially marked trap {pl, P3 } is l ess  t h a n  two .  (Again in this 
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case all the spurious markings are cut.) What  is remarkable in this case is the 
fact that  we are removing even spurious markings, namely P2 + P3 + P4, in which 
the t rap is marked (with a weighted token content below a minimum, though). 
We shall come back to this case in Subsection 5.2. 

Finally, let q = r = 2. Although the addition of the place p: C[p, T] = 
t2 + t4 - t l  - t a ,  initially marked with two tokens, cuts the markings where m[pl] + 
m[pa] < 2, the spurious marking p~ +/)2 + P3 + P4 is not cut. Notice that  this 
spurious marking cannot  be cut by any other place because it is a positive linear 
combination of two reachable markings: 2p2 + 2pa and 2pt + 2/)4 (the reachability 
set is not  convex in this case). This example manifests the incompleteness of the 
addition of cutt ing implicit places in order to remove spurious solutions: they 
improve the linear description, but not  always completely. 

R e m a r k  39. The incompleteness of the addition of cutting implicit places refers 
to applying this method alone. It is conceivable that  the net to be analysed carl be 
t ransformed in such a way tha t  the properties under study are preserved and in 
the t ransformed net spurious solutions can be removed by cutting implicit places, 
e.g., with the t ransformation rule shown in Figure 11. For instance, mutual  
exclusion of p2 and P4 of the net system in Figure 14 with q = r = 2 is equivalent 
to mutual  exclusion ofp~ and p4 in the net system in Figure 15 (a). Place p shown 
in (b) with mo[p] = 2 is marking (structurally) implicit and removes the spurious 
solutions where p~ and P4 are simultaneously marked, what allows to conclude 
through state  equation analysis that  P2 and P4 were in mutual exclusion in the 
original system. 

It  is remarkable that  in this case the initial marking o f p  computed from (31) 
is four instead of two, so it is not  the minimal marking that  makes p implicit, 
showing tha t  Theorem 23 is only sufficient for p implicit. [] 

Pl P3 : : ~  ::: 
• ' ; i >  , 

2d--~" 2 . .  2"' f ' -b : ,  
i: ::>:' 

7 : : :  ............... ...... . . . . .  
p" ..... ? : ....... . : , 

P4 

-%:~! j.? 

P2 ¢ "~ 

(a) (b) 

Fig. 15. Mutual exclusion of p2 and p4 of the net system in Figure 14 with q = r = 2 is 
equivalent to mutual exclusion of p.~ and p4 in the net system (a), Adding the implicit 
place p shown in (b) allows to prove mutual exclusion. 
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5.2 I m p r o v i n g  t h e  S t a t e  E q u a t i o n  w i t h  I m p l i c i t  P l ace s  

When faced to a net system the state equation of which is to be improved by 
adding cutting implicit places, a question arises: how can we select the candidate 
places? We outline here some indications to answer this question. 

From the association of cutting implicit places and initially marked traps 
that  are insufficiently marked in some spurious solutions, the following procedure 
naturally comes to mind: 

1. Compute (minimal) initially marked traps. 
2. For each trap 6) a marking structurally implicit place is obtained as C[pe,  T] = 

l e  • C[P, T], that  is, taking y = 1~ in Theorem 25. 
3. Let the initial marking for Po be the optimal value of (31) fixing y = l e .  If 

# < 0 in the optimal solution, then apply Theorem 37 to verify that it cuts 
and to obtain the expression of the achieved cut, and add the place if it cuts. 

The above procedure removes all the spurious solutions that can be proven 
non reachable observing that the non weighted token content of all initially 
marked trap is less than a minimum value, particularly those where the trap 
is unmarked. For instance, to improve the state equation of the net system 
in Figure 1, we would consider the initially marked traps O1 = {Pl,P2,Ps}, 
(92 = {Pl, P3, P5 }, and ~ = {Pl, P2, P3, P4 }, that lead to the corresponding mark- 
ing structurally implicit places shown in Figure 16 (a). Their initial markings, 

/ 

[ o I P(~3 

(a) (b) 

Fig. 16. Adding implicit places to the net system in Figure 1 cuts every spurious 
solution. Some original places become implicit when the cutting implicit places are 
added. 

obtained from (31), are all zero, and all of them cut spurious solutions (we have 
already discussed in detail the case of pe,  ). Actually, in this case, the reader can 
easily check that  every spurious solution is cut. It can also be checked that places 
P2, P3, and p5 are implicit in the net system of Figure 16 (a). Their removal leads 
to the system in Figure 16 (b), which is a live and safe state machine isomorphic 
to the reachability graph. 
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Remark dO. If  a different y is taken in the above procedure to compute  cu t t ing  
implicit  places from given traps, different solutions appear.  For the example in 
Figure 1 and 16, an alternative set of  cu t t ing  implicit places is shown in [23]. [] 

Let us come back to the example of Figure 14 with q = 1 and r = 2. If 
we apply the above procedure, from the initially marked t rap (31 = {Pl, P3} we 
obta in  the marking structurally implicit place P01 : C[pe~] = t2 + t4 - tl - t3. 
The  initial marking,  obtained from (31), is two, corresponding to # = - 1 ,  so the 
addi t ion of Pc1 introduces the new P- invar iant  m[p2] + m[p4] + m[po~ ] = 2, which 
cuts the spurious solution P2 -J- 2p4 but  not  P2 -b P3 q- P4. In principle, it seems 
tha t  the lat ter  spurious solution cannot  be cut  because, as we discussed, the 
ma t t e r  is the weighted token content  of the trap,  not  merely the token content .  
I t  may  be surprising at first sight tha t  it is cut  if the above procedure is applied 
iteratively. A little thought  reveals tha t  this is quite natural ,  since the addit ion of 
new places originates new traps, so new chances for improving. (Of course, only 
t raps  including newly added places are useful now.) Effectively, besides o ther  
traps,  after the addit ion of Po,, 02 = {Pl, Po~ } is an initially marked trap, tha t  
leads to Po2: C[po=] = 2t2 + t4 - 2 t l  - t 3 .  As we saw, when initially marked with 
two tokens, this place removes all the spurious solutions. (In fact, once Po2 is 
added,  Po~ becomes redundant  and can be removed.)  

We can proceed until no spurious solution is removed, i.e., no cut t ing implicit 
place is added,  in an iteration. (Naturally, the procedure  stops after a finite num- 
ber of i terations in structurally bounded  nets, because the number  of possible 
spurious solutions is finite.) We insist tha t  this does not guarantee tha t  every 
spurious solution has been removed. 

Remark di. An alternative way of finding a cut t ing  implicit place, in tile case 
tha t  we are t ry ing to disprove reachabili ty of some (sub)markings that  we suspect  
are spurious, is postulating a monitor place tha t  forbids reaching them, and then 
analysing whether  it is implicit or not.  Consider  again the example of Figure 14 
with q = 1 and r = 2. As we want to prove tha t  P2 and P4 are in mutual  
exclusion, but  the state equation does not  allow us to conclude, we int roduce a 
place tha t  forces the mutual exclusion of P2 and P4, tha t  is a place p such tha t  
2m[p2] + m[p4] -b m[p] = 2 becomes a (new) P-invariant.  As we know, the place 
is p: C[p ,T]  = 2t2 + t4 - 2tt - t3, initially marked with two tokens, which is 
effectively implicit, so we are done. 

This approach  is specially suitable for s t ructura l ly  safe systems, where the 
place tha t  forbids a given (sub)marking in  = 1Hmll is simply p: C[p, T] = - m .  
C [ P , T ] ,  initially marked with Ilmll - 1 - m .  mo[P]  tokens (this is the kind 
of constraints introduced by Patil, see [67]). Actually, since doing so we can 
remove any one precise marking, if the spurious solutions were known, all of them 
could be removed. This implies tha t  for any given structural ly repeti t ive and 
s t ruc tura l ly  safe system a "place completed"  version with the same behaviour  
exists such tha t  RS = LRS Psf. [3 
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5.3 I m p r o v i n g  t h e  S t a t e  E q u a t i o n  w i t h  a G e n e r a t o r  o f  T r a p  
I n v a r i a n t s  

Equation (18) expresses linearly that  initially marked traps remain marked. In 
order to add this condition to the state equation, it must be stated in terms of 
existence of solution, what can be done using the alternatives theorem. Doing so, 
we obtain that initially marked traps are marked under m iff there is a solution 
to: 

Co  • x '  + x 'mo  - a m  < 0 A x' :> 0 A x' > 0 A a :> 0 (59) 

If a solution with (~ = 0 exists, then so does a solution with a > 0. Dividing (59) 
by a we get: 

C o  -x  + x m o  - m < 0 A x  > 0 A x  > 0 (60) 

This condition can be interpreted as a generator of trap invariants. It can be 
added to the state equation leading to the following improved state equation 
(integrality of a can be required for better accuracy, while x and x are rational 
because they originate in the transformation of (18) by the alternatives theorem): 

T h e o r e m  42. Let S be a P I T  system. I f  m C RS($) then it is a solution to: 

m - C . a : m o  
m -  xmo - C e  -x  _> 0 

m , o ' , x  _~ 0 
x > 0  

(61) 

where Co  is as defined in Theorem 13. 

Remark 43. Since in live, bounded, and reversible free choice systems the reach- 
able markings are the vectors in LRS psf that mark every trap [30], Theorem 42 
characterises reachability. [3 

This method has the advantage that no previous computation of traps is 
required. (It can be said that the method based on implicit places is "compiled", 
in the sense that trap invariants obtained in some previous or off-line computa- 
tion are incorporated or coded as part of the - -  transformed - -  net. Following 
the same analogy, the method based on a generator of trap invariants is "inter- 
preted", in the sense that markings that are solution to the state equation but 
violate the trap condition are eliminated on-line.) 

Nevertheless, the gain in efficiency of this method is paid by the loss in 
accuracy compared to the method based on implicit places: onty markings where 
an initially marked trap is unmarked are cut. For instance, the marking p2 + 
p3 + P4 in the net system of Figure 14 with q = 1 and 7" = 2 is still spurious with 
respect to the improved state equation because no trap is unmarked. 

The advantages of both methods can be combined by (iteratively) adding 
cutting implicit places to a given net up to a certain point, and then using the 
improved state equation (i.e., incorporating the generator of trap invariants) 
instead of the plain state equation for the analysis of properties. 
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6 S t r u c t u r a l  L i v e n e s s  a n d  t h e  R a n k  T h e o r e m s  

We have encountered that  the state equation method is best suited to the analysis 
of properties formulated in terms of existence or non-existence of markings (and 
firing vectors), such as marking bounds, mutual exclusion, or even deadlock- 
freeness, for which it provides at  least necessary or sufficient conditions. For other 
properties the s ta tement  of which combines existential and universal quantifiers, 
e.g., liveness: for every reachable marking there exists a reachable successor that  
enables t, the direct application of the state equation method does not allow to 
reach any conclusion. 

Of course, the sufficient condition for deadlock-freeness is useful for liveness 
analysis (deadlock-freeness is necessary for liveness; even in some cases, e.g., 
bounded strongly connected equal conflict systems, it is sufficient). But this is not 
the only way in which the incidence matr ix  of a net can be exploited to facilitate 
the analysis of liveness. In this section we describe in some detail efficient tests - -  
polynomial time - -  that  give necessary conditions for the existence of an initial 
marking that  makes a given net live (and bounded). Such necessary conditions 
are also sufficient in some net subclasses. 

6.1 T h e  R a n k  T h e o r e m :  A G e n e r a l  N e c e s s a r y  C o n d i t i o n  for  
Liveness  and  B o u n d e d n e s s  

A well-known polynomial t ime necessary condition for liveness and boundedness 
of a net system, based solely on purely structural properties, is strong connected- 
ness [77] and consistency (Proposition 10) of the net. (As stated by Theorem 20, 
for structural  boundedness and structural liveness, conservativeness and consis- 
tency are necessary.) 

These conditions are very useful to discard models that  are not correct beik)re 
undertaking a more costly analysis. Unfortunately they are only necessary: there 
are strongly connected and consistent nets that  cannot be lively and boundedly 
marked (see Figure 17). 

We present here an improved - -  and still polynomial time - -  necessary con- 
dition, that  incorporates an upper bound for tile rank of the incidence matrix, 
namely that  it must be less than the number of equal conflict sets of the net. We 
make use of circuit arbiters, which are a particular cla.ss of the regulation nets 
of [47] that  we use to regulate non-trivial equal conflicts. For an equal conflict 
set e E SEQS, its circuit arbiter is defined as follows: 

D e f i n i t i o n  44. Let A/" be a P / T  net, and let e E SEQS such that  [e I > 1. A net 
Ae = (Pe,e, Pre~,Post~) is an (ordinary) circuit arbiter for the equal conflict 
set e iff A~ is an ordinary net such that  P~ N P = ~ and its underlying graph is 
an elementary circuit. 

Some straightforward properties of these arbiters are: being circuits, they 
have the same number of places and transitions, i.e., H;  the set of places of a 



Pl 

356 

t I 

(a) (b) (c) 

Fig.  17. Three conservative and consistent nets with rank(C) = 3. Their (non-trivial) 
equal conflict sets are shaded. The nets (a) and (b) cannot be lively and boundedly 
marked, while (c) is live and bounded with the marking shown. 

circuit arbi ter  in a net  is the suppor t  of a minimal P-semiflow; with every non- 
empty  initial marking,  a circuit arbiter  is live, bounded,  and reversible. Figure 18 
represents a circuit  arbi ter  (shaded places) merged on an equal conflict set. 

Fig.  18. A circuit arbiter (shaded places) merged on an equal conflict set. 

T h e o r e m  45 ( T h e  r a n k  t h e o r e m ) .  If S is a live and bounded P I T  system, 
then Af is strongly connected, consistent, and rank(C)  < ISEQS]. 
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A weaker but more "symmetric" s tatement ,  that  clearly shows tile extension 
of Theorem 20, is: 

C o r o l l a r y  46. I f  Af is a structurally live and structurally bounded P I T  net, 
then Af is conservative, consistent, and rank(C)  < ISEQSI. 

L e m m a  47. Let $ be a P / T  net, and let e E SEQS such that lel > 1. Let Ae be 
a circuit arbiter for e, and let fif' be the net Af merged with the circuit arbiter 
Ae sharing the transitions in e. I f  $ is live and bounded then 

1. A marking m o '  with mor[P] = mo such that B' = (Af ' ,mo ' )  is live and 
bounded exists. 

2. rank(C ' )  = rank(C) + lel - 1 

Proof (of Lemma 47). For Par t  1, boundedness of S and conservativeness of Ae 
guarantee boundedness of 8 r for every m o '  with mot[P] = mo. Since B is live 
and bounded, then the number re = m a x { m i n { # ( e , a )  ] at C L(J~:.m)} I t C 
T A m E RS(S)} is well-defined. This is a bound for the number of firings of 
transitions in e tha t  are required to enable an arbi t rary  transition from an arbi- 
t rary  reachable marking. We put re tokens in each place in Pc, what completes 
the definition of m o '  and now we prove that  $ '  is live. Let m '  E RS(B') and 
t E T. We shall prove that  t can ultimately be enabled from m' .  We claim that  
there exists a marking m "  E RS(Af', m ' )  such that  m"[Pe] = Ino'[Pe]. In that  
case, since (I)  $ is live, (2) m ' [ P ]  C RS(S),  and (3) mo'[Pe] has been defined in 
a way that  it does not interfere when firing a sequence to enable an arbi t rary  t 
from an arbi t rary reachable marking, then we can fire in (Af', m" )  the same se- 
quence that  we could fire in (Af, m"[P]} in order to enable t. To prove the claim, 
let ae = ei,ei2 . . .ei~ E L(Ae,m'[Pe])  be such that  m'[Pe] ~%mo'[/~.], i.e., a 
sequence in the circuit arbiter returning to the initial marking. It is easy to see 
that  a sequence such that  its projection on e is cr~ can be fired ill (A"", m') .  The 
idea is firing transitions not in e, which does not affect the marking of places in 
P~, until e are P-enabled (their input places in P have enough tokens, no mat te r  
how many tokens are there in other places), which will eventually happen thanks 
to liveness of (N', m' [P]) ,  then firing ell which is also P~-enabled according to 
our definition of ae, then firing more transitions not in e until e are P-enabled 
again, then firing e~, which is also Pc-enabled, etc. 

To prove Par t  2, for rank(C ' )  = rank(C) + lel - 1, we shall prove that  t e l -  t 
out of the lel rows corresponding to the places of the circuit arbiter are linearly 
independent. Let us fix a notation for the equal conflict set and the circuit arbiter  
(see Figure 18): 

- e = { e o , e l , . . . , e k , . . . , e H - 1 }  

- Pe  = { C o , C l , . . . , c k , . . . , c l ~ l - 1 }  

- Pre~[ci, e~] = 1 and Poste[c i ,1 ,  c i ] =  1 (otherwise zeros), where (÷ represents 
the sum modulo M. 

It  is clear that  there is one row being a linear combination of the rest, for 
instance C[co,T] = -~pePo\{co} C[p,T],  so we remove it and then we prove 
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tha t  the rows corresponding to places in Pe\{co} are all linearly independent. 
Assume, on the contrary, that  Ck, where 1 < k < tet - 1, is a linear combination 
of the other places (let the other places be denoted by OP = P (J Pe\{Co,Ck }): 

C[Ck, T] = E )~1" C[p, T] = ~.  C[OP, T] (62) 
pEOP 

Thus, the marking increment produced by a sequence a should also be a 
linear combination of the marking increment of the other places: 

Am[ck] = C[ck,T]-o" = /~.C[OP, T ] - o ' =  X.  zSm[OP] (63) 

Clearly, it is possible to fire in $ a sequence a such that # ( e i , a )  = i f  i < 
k t h e n  w else 0, where w is arbitrarily large. In that  case Am[ck] = C[ck, T] • 
(r = w is arbitrarily large, while all the entries in Am[OP] are finite, what 
contradicts (63). [] 

Proo/ (o/ Theorem 35). Only the rank condition needs to be proven. Let A/' be 
the net Af together with circuit arbiters merged to every non-trivial equal conflict 
set. Applying Lemma 47.2 repeatedly after each circuit arbiter is merged, what 
can be done thanks to Lemma 47.1, it follows that: 

ITI - 1 >_ rank(C')  = rank(C) + E (tel - 1) 
eESEQS 

Rearranging the above inequality we obtain a bound for the rank: 

rank(C) _< ]T I -  ~ ( H - 1 ) - 1  
eESEQS 

Since )-~eeSEQS lel = ITI, this bound is ISEQS I - 1, so the result follows. D 

In the example of Figure 17 (a), Theorem 45 allows to decide that the net can- 
not be lively and boundedly marked. Both nets in Figure 17 (b) and (c) "pass" 
the test of Theorem 45, although only the latter can be lively and boundedly 
marked, e.g., with the marking shown. In summary, the rank condition in The- 
orem 45 allows indeed to discriminate some cases but, unfortunately, not all of 
them, that is, it is not sufficient. 

In the next subsection we seek for cases where the sufficiency holds, but 
before let us briefly discuss on the kind of situations leading to non structural 
liveness that  the rank theorem detects. Intuitively, from the proof of Theorem 45, 
it becomes apparent that  the rank condition fails when some individual "choices 
between alternatives" are not independent from the rest of the system (syn- 
chronisations, other choices, etc.). Apart from "flow problems" (i.e., absence of 
consistency), absence of such independence indicates that a wrong decision taken 
in an individual choice may affect the rest of the system (to the point of "killing" 
it). 
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Fig .  19. Two conservat ive and consis tent  nets  where the  rank theorem de tec ts  non 
s t ruc tura l  liveness. The  (non-trivial)  equal conflicts are shaded.  

Let us illustrate these ideas with a couple of simple examples where the rank 
theorem detects non structural liveness. In the net of Figure 19 (a), the only 
minimal T-semiflow is 1, and it is also a basis of T-flows, so rank(C) = 2 = 
ISEQSI. Notice that  the fact that  tl and t2 are together in every T-semiflow - -  
what is due to the synchronisation or join transition t3 - -  means that  in every 
infinite sequence they should be fired in a fixed proportion (one to one in this 
case). Nevertheless, since the choice between tl and t2 is free, the net does not 
prevent that  this proportion is violated. This mismatch between conflicts and 
synchronisations is what the rank theorem detects. Observe that, if we merge 
a circuit arbiter on t~ and t~, say Co flom t2 to t~ and c~ from tl to t2, the 
rank is not increased: one place is clearly a linear combination of the other, say 
C[co, T] = - C [ c l ,  T]; but also cl is a linear combination of other places, namely 
C[c~, T] = C[p~, T] + 2C[pu, T], what reveals the problem. In terms of implicit 
places, both places of the circuit arbiter are structurally implicit, so they can 
be made implicit with a large enough initial marking. Implicitness of the arbiter 
reveals that  the choice is not free. (Remarkably, for m o =  2pl, when the arbiter 
is marked with only one token the system with the arbiter is live. Notice that  in 
such case the arbiter places are 'not implicit, actually the3, aft'cot the behaviour 
avoiding the deadlocks. Increasing the marking of the arbiter places eventually 
makes them implicit, while it destroys liveness - -  liveness is not monotonic.) 

In the net of Figure 19 (b), the minimal T-semiflows are tl + t2 + t3 and 
t4 + t5 + t6, and they are also a basis of T-flows, so rank(C) = 4 = ISEQSI. 
Now the synchronisations (t2 and ts) do not impose a given resolution of each 
conflict to allow infinite activity (the outcomes of each conflict are in different 
minimal T-semiflows), but they impose that  each conflict is solved according to 
the other, what  is again not guaranteed by the net structure where the choices 
are free. The rank theorem detects also this mismatch. If we merge a circuit 
arbiter,  say on tl and t4, it increases the rank. Now the net with the arbiter  has 
a unique minimal T-semiflow, 1, and the second circuit arbiter does not increase 
the rank, in the same way as in the previous example (after merging an arbiter 
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on one conflict, a proportion between the outcomes of the other conflict has been 
fixed). 

6.2 T h e  R a n k  T h e o r e m  for  S o m e  Subc la s ses  

For certain subclasses, the general necessary condition for structural liveness 
(Theorem 45) has been proven to be sufficient too. Loosely speaking, these sub- 
classes have in common that their syntactical constraints leave only conflicts that  
axe essentially "choices between alternatives" (equal conflicts), so representing 
competit ion or resource sharing is very limited when not forbidden. This is par- 
ticularly the case of equal conflict systems (it is also trivially the case of state 
machines or marked graphs): 

T h e o r e m  48. Let Af be an equal conflict net. 
A marking mo  such that $ is live and bounded exists if] A/" is strongly con- 

nected, consistent, and rank(C) = ISEQSI - 1. 

Proo/(Sketch).  The necessity part is the general rank theorem, where rank(C) < 
ISEQSI reduces to rank(C) = ISEQS I - 1 because a live and bounded equal 
conflict net where circuit arbiters have been merged to every equal conflict set 
has a unique minimal T-semiflow. For existence of this T-semifiow, notice that 
the "arbitered" net must be consistent. For unicity, it suffices to show that the 
support  of every T-semiflow is the whole T. Let x be a T-semiflow of the arbitered 
net, and let t C Itxll. All the transitions in CCS(t) are also in llxll because the 
places in the circuit arbiters have only one output  transition. Every output  place 
of the transitions in CCS(t) must have at least one output  transition in IIx]l, so 
we can apply repeatedly the same argument and, by strong connectedness, all 
the transitions are shown to be in Ilxlt. 

The sufficiency part requires a closer investigation of the structural proper- 
ties of the net that  is out of the scope of this work, but  we outline here the proof, 
referring to [92]. Consistency and rank(C) = ISEQSI - 1 imply P-allocatability 
(see [92, Theorem 20]). Strong connectedness and P-allocatability imply conser- 
vativeness (see [92, Theorem 24]), hence boundedness for every initial marking. 
Moreover, strong connectedness and P-allocatability imply that  liveness of the 
whole net is guaranteed by liveness of every P-component (see [92, Theorem 
27.2]). A marking mo such that m0[p] = Pre[p,  t] for every p, where t C p°, is 
sufficient to make every P-component live. [] 

From the proof of the sufficiency part, it follows in particular that live mid 
bounded equal conflict systems are structurally bounded, thus conservative tak- 
ing consistency into account: 

C o r o l l a r y  49. IJ~S = (A/', mo) is a live equal conflict system, then S is bounded 
iff Af is conservative (hence structurally bounded). 

In the case of free choice nets [39], the P-components are strongly connected 
state machine P-subnets. Strongly connected state machines are live iff they 
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are marked,  so in the ordinary case the above s ta tement  can be made stronger, 
part icularly showing the polynomial complexity of the liveness and boundedness 
problem for free choice systems: 

C o r o l l a r y  50. A free choice system S is live and bounded iff Af is strongly 
connected, consistent, and rank(C) = ISEQSI - 1, and no P-semiflow y such 
that y .  mo = 0 exists. 

Remark 51. Some results from the classical free choice theory can be deduced 
easily from the above rank theorem, particularly the duality theorem [39], which 
states tha t  a free choice net is structurally live and structurally bounded iff its 
reverse-dual net (which is also free choice) is. [] 

The  rank based characterisation of structural liveness and boundedness has 
been extended to larger subclasses of nets. In particular, for the class of deter- 
ministically synchronised sequential processes (DSSP) [71,74], that  is intended 
for the modular  modelling of sequential agents that  cooperate through buffers, 
the corresponding result is proven in [71]. 

A DSSP is a net system formed by a collection of sequential agents intercon- 
nected in a restricted way through buffers. The sequential agents a~e live and 
safe state machines. The buffers are places whose outputs are in one sequential 
agent (i.e., buffers are destination private) and that  do not condition the reso- 
lution of the conflicts of their destination (i.e., all the outcomes of a conflict in 
a sequential agent have the same precondition). Under interleaving semantics, 
DSSP are a strict generalisation of equal conflict systems. In other words, pro- 
vided that  only sequential observations are relevant, equal conflict systems can 
be simulated by DSSP. The construction is simple (see Figure 20): add self-loop 

Fig. 20. Simulation of equal conflict systems by DSSP. 

places marked with one token around each equal conflict set of a given equal 
conflict system. These self-loop places (with their adjacent transitions) are the 
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sequential agents, and the original places of the equal conflict system play the 
role of buffers. 

Other results for equal conflict systems have been extended to DSSP (see 
[74]), including the equivalence of liveness and deadlock-freeness (under bound- 
edness and strong connectedness), the existence of home states (under liveness 
and boundedness), or the absence of spurious deadlocks (under liveness and con- 
sistency). Therefore, in particular, it is possible to verify liveness using integer 
programming, the same as in equal conflict systems (the deadlock-freeness con- 
dition can be written as a single system of linear inequalities preserving the class 
membership also in this case using a particular transformation rule). 

Extending the DSSP definition recursively, the class of {SC}*EQS is defined, 
for which also a rank based characterisation of structural liveness and bounded- 
ness holds [72]. 

6.3  A p p l i c a t i o n  o f  t h e  R a n k  T h e o r e m s  for S u b c l a s s e s  to  G e n e r a l  
N e t s  

Given a P / T  net for which the available rank theorems do not allow to decide 
on its structural Iiveness, e.g., the nets in Figure 17 (b,c), it is sometimes pos- 
sible, using certain net transformation rules (e.g., removal of bypass transitions 
or implicit places, other classical reduction rules, equalisation, release, etc.) to 
obtain another net where the corresponding property preservation of the rules 
together with the available results allow to decide. This topic deserves a closer 
investigation that is out of the scope of this work (see [73]), but we illustrate it 
with some examples. 

In the net of Figure 17 (b), transition t3 is a linear combination of t2 and t4: 
C[P, t3] = C[P, t2] + C[P, t4], so the effect of firing t3 is the same as the effect 
of firing t2 and t4. Moreover, "{t2,t4} N {te,t4}" = 0, so t3 can only be fired 
when both t2 and t4 can be fired in one step (t3 is a particular case of bypass 
transition, its occurrence "bypasses" the occurrence of the step t2 + t4 or any of 
its interleavings). Clearly, by removing t3 from Figure 17 (b) we could not destroy 
liveuess, i.e., liveness with t3 ensures liveness without it. But in the net tha t  we 
obtain after removing t3, rank(C) = 3 and SEQS = { {tl }, {t2, tb}, {t,1, t6 }}, so 
Theorem 45 shows that  it cannot be lively and boundedly marked, hence the net 
of Figure 17 (b) is proven not to be structurally live. 

In the net of Figure 17 (c), the path P3 ~ t~ --+/)5 can be substituted by 
a (macro)place P3a. This place is implicit, hence it can be removed. Since the 
resulting net can be proven (structurally) live, so it is the original one - -  actually, 
in this case we need not apply the rank theorem, since the net is simply a state 
machine. 

Similarly, in the conservative and consistent net of Figure 3, where rank(C) = 
9 = ISEQSI-  1 (i.e., the necessary condition for structural liveness holds), place 
R is structurally implicit. Since the removal of R leads to a net where structural 
liveness can be proven, we are done - -  again in this case we need not apply the 
rank theorem, since the net without R is simply a marked graph. 
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A particular t ransformation,  called equalisation, allows to obtain a general 
sufficient condition for structural  liveness and boundedness. Total equalisation 
of a net consists in adding arcs or increasing weights as needed to make every 
coupled conflict set equal without changing C (if we add an arc from p to t 
we must add another  from t to p). Figure 21 shows a net and the net obtained 

{ 

Fig. 21. Total equalisation of a net. 

by total equalisation. The resulting net is equal conflict; if it can be proven 
structurally live and bounded (using Theorem 48), then the original net is proven 
structurally live and bounded too: 

T h e o r e m  52. Let A[ be a P / T  net. 

If N" is strongly connected, consistent, and rank(C) = ISCCSI - 1, then mo 
such that S is live and bounded exists. 

Proof. After total equalisation we obtain an equal conflict net A/" such that  
C '  = C and SEQS' = SCCS' = SCCS. It follows that  N" is strongly connected, 
consistent, and rank(C ' )  = fSEQS ' I -  1, so, by Theorem 48, a marking mo exists 
such that  IN", too) is live and bounded. Since live and bounded equal conflict 
systems are conservative (see Corollary 49), 2V' is conservative too. hence so 
it is A/', and then $ is bounded. Assume ,5 non live. Then t E T and mt  E 
RS(,5) exist such that  t cannot be fired from any m E RS(N ' ,mt ) .  Clearly, 
m t  E LRSSE(N ', mo) ,  thus a marking m l  exists such that  mL E R S ( H ' ,  me) 71 
RS(A/", too) (see Subsection 3.4). Since (A/", too) is live, m ,  E 1RS(N', m l )  exists 
such that  t is enabled. Contradiction, since m2 E RS(N', mr). [] 

In the case of ordinary nets, basically the same argument allows to make use 
of Corollary 50, leading to: 

C o r o l l a r y  53. Let S be an ordinary P / T  system. 
If  Af is strongly connected, consistent, and rank(C) = I S C C S I -  1, and no 

P-semiflow y such that y - m o  = 0 exists, then S is live and bounded. 



364 

The above result(s) allow, for instance, to prove (structural) liveness and 
boundedness of the system (net) in Figure 21. 

In summary, given an arbitrary P / T  net A/" that  is strongly connected and 
consistent (otherwise it cannot be lively and boundedly marked), only when 
ISEQS] - 1 > rank(C) > ISCCSI - 1 a marking mo such that  8 is live and 
bounded exists, what is guaranteed in case rank(C) = ISCCSI- 1. (The inequal- 
ity rank(C) _> ISCCS I - 1 can be deduced as follows: given Af strongly connected 
and consistent, by total equalisation we obtain an equal conflict net A/"1 that  is 
strongly connected and consistent too. Merging arbiters in every equal conflict 
set as in the proof of Theorem 48, the resulting net J~" may have either one 
minimal T-semiflow or none. Being consistent, a basis of T-flows can be made 
up of T-semiflows only - -  dual of Proposition 12.1 - -  so the dimension of the 
space of right annullers of C"  is at most one.) 

7 B i b l i o g r a p h i c a l  R e m a r k s  

Linear algebra has been used in net theory at different net levels (e.g., P /T ,  
or high level) and with different purposes (e.g., logical analysis, performance 
evaluation, controller design, or net synthesis). In logical/correctness analysis - -  
which is the topic of this paper - -  other properties not considered here have also 
been studied (e.g., home states [44], or fairness [84]). For per]ormance evaluation 
and optimization, linear techniques have been applied for the computation of 
performance bounds [78,69,17], for approximation techniques [14], or for initial 
marking optimization [15]. For the design of logic controllers for a plant modelled 
with P / T ,  linear techniques have been applied within the so called supervisory 
control theory [68] (e.g., [38,53,54,40]). The synthesis of P / T  systems from an 
automata  using the theory of regions applies also linear algebraic techniques [2]. 
In the case of high level PN, linear algebraic techniques have been developed 
mainly for the computation of P- (and T-) invariants (most relevant works are 
collected in [43]). 

The use of integer linear algebra for the correctness analysis of PN dates 
back to the seventies [52], where the invariant method is introduced. Other pi- 
oneering works, using linear algebra in the real domain, introduce the notions 
of consistency and conservativeness [70,55]. The alternatives theorem (or Farkas 
lemma) is applied in [59,79] to provide dual perspectives of structural bound- 
edness and repetitiveness, laying a first bridge between net theory and convex 
geometry. Taking into account that  in live marked graphs teachability is linearly 
characterised, and that the incidence matrix of a marked graph is unimodular, 
linear programming can be used for the analysis, as it was firstly done in [36]. 
After realising that the evolution equation of a net system is a state equation in 
control theory sense, [63] tries to lay a bridge between nets and classical linear 
control theories. Despite the great conceptual interest of this bridge, integrality 
and non-negativity constraints, and the existence of spurious solutions, limit its 
strength. 
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The topic was surveyed in both previous Advanced Courses on PN: In [60] 
emphasis is given to boundedness, repetitiveness, and duality, [51] is an intro- 
ductory tutorial on linear algebraic techniques for P / T  nets, and [61] mainly 
overviews the invariant method for high level nets. 

The basic idea in early works was the intensive exploitation of the P- (and 
T-) invariants - -  the so called invariant method - -  focusing on minimality, de- 
composition, and applicability to prove properties. In essence, the idea is to find 
the appropriate invariants to (dis)prove the interesting properties, for what the 
computation of the fimdamental set is important.  A need for this kind of com- 
putations has been encountered - -  and solutions re-discovered --- quite often 
in several disciplines (dating back to Fourier! see [22] for more details). Within 
the PN field, [57] gives a first algorithm to compute the fundamental set of 
semiflows, taking advantage from a rank based property to remove non min- 
imal semiflows before their computation is completed. In order to reduce the 
computational complexity of the algorithm, some heuristics have been proposed 
(e.g., [57,1]). In [22] the interpretation of semiflows as directions of a cone is 
explicited, and the existing algorithms are reviewed, improved, and their per- 
formance is analysed. Taking into account integrality constraints reveals that 
y - C = 0 is an homogeneous linear Diophantine system, and different solu- 
tions are investigated in [48]. Actually, in principle, the state equation comprises 
integrality constraints. If only integer solutions are to be considered to prove 
non-reachability of a given marking, then we should solve it using integer linear 
algebraic methods, e.g., by means of the Smith normal form [45,76]. Integrality 
constraints in linear equation systems can be treated from a modulo-arithmetic 
perspective. By applying this approach to the state equation, modulo-invariants 
are obtained in [32], generalising the notion of P-flows. 

Traps and siphons, which lead to different marking invariants, have been ex- 
tensively used in the structure theory of (mainly ordinary) P /T ,  particularly in 
the case of some net subclasses (e.g., [39,41,10,4,31,5]). Regarding the computa- 
tion of traps and siphons using linear algebraic techniques, the initial at tempts 
try to translate the logic conditions defining the corresponding objects into a. 
set of linear inequalities (e.g. [1,81]). A new line of thinking was opened in [50], 
where the computation of traps and siphons is carried out through the compu- 
tation of semiflows in a transformed net. This approach was used with slight 
improvements in [33]. A similar approach, where only the weighting of the prob- 
lem net is possibly transformed, was introduced in [35]. (A particular instance 
of this method has been presented here.) 

In summary, the classical method consists in computing some structural ob- 
jects (semiflows, traps, etc.) and then using the corresponding invariants in or- 
der to prove properties. The point of view adopted here considers directly the 
state equation, possibly improved, e.g., by taking into account the information 
provided by traps. This method was introduced in [83], where the analysis of 
several synchronic properties of general P / T  systems is carried out through lin- 
ear programming problems based on the state equation, and it was developed 
in detail in [19]. The idea of using implicit places to cut spurious solutions and 
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their relation with trap invariants was presented in [23]. In [87] the method is 
implemented, and it is observed that  the iterative application can remove more 
spurious solutions because the added implicit places lead to new traps. The im- 
provement of the linear description is not only helpful for correctness analysis, 
but also for performance evaluation [16]. Monitor places have been used in order 
to forbid reaching some markings within supervisory control theory [38,93]. The 
observation that they could be used also to remove given spurious solutions, and 
that  this method allows to remove all of them in structurally safe systems appears 
in [21]. The idea of incorporating a generator of trap invariants into the state 
equation appears in [58]. Also in [23] a totally different improvement method 
is introduced, consisting in removing spurious solutions without predecessors, 
for what partial enumeration is required (by the way, this method removes the 
spurious solutions of the example system in Figure 14 with q = r = 2). 

Implicit places were introduced in [6]. Actually, in this seminal work, only 
implicit places the marking equation of which is redundant were considered, 
i.e., # _> 0, and they were called redundant places. It was observed in [81] that  
redundancy (in a convex geometry sense) is not necessary for the place to be 
implicit (in the sense that it does not affect the behaviour), i.e., allowing # < 0. 
Implicit places were revisited in [23], where the structural ones were derived, 
using duality theory, from the linear inequalities expressing the condition that  
the behaviour is not affected. Moreover, a sufficient condition for a place to be 
implicit in terms of a linear programming problem was introduced. Besides their 
interest for reduction techniques and improvement of the state equation, implicit 
places play an important role in implementation techniques. On one hand, the 
addition of implicit places increases the Hamming distance of the code defined 
by marking vectors, what is interesting for fault-tolerant (error detecting and 
correcting) implementations [80,85,86]. On the other hand, since new semiflows 
appear after the addition of implicit places, the possibilities for decomposition 
are increased, what is useful for distributed implementations [81,24]. Tile new 
possibilities for decomposition are also interesting for approximate performance 
evaluation techniques [14,66] and exact performance evaluation [18]. 

Non-existence of solution to the tTI linear systems of equations for t dead 
of the form (40) is essentially the necessary condition for liveness presented in 
[60,49]. In this sense, non-existence of solution to (37) is a greatly more accurate 
necessary condition for liveness. Some techniques to improve the performance of 
verifying non-existence of solution to (37) were presented in [89], and they have 
been recalled and improved here. 

It was early realised that the state equation (or the invariants that can be 
deduced from it) is in general insufficient to analyse liveness or similar prop- 
erties. Quoting from [51]: "Token counting in P-semiflows is by far not subtle 
enough to solve general liveness problems." One way of approaching the prob- 
lem from structure theory is to investigate the conditions under which tile net 
structure allows a live marking, i.e., structural liveness. Presently, the best linear 
conditions are given by the so called rank theorems. The rank theorem for free 
choice systems was conceived from the problem of computability of visit ratios 
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in stochastic fl'ee choice nets in [13]. A proof, based on the Commoner's theorem 
[39], so limited to the free choice case, was published in [28]. in order to extend 
the applicability of the result, the necessity part was developed for general P / T  
nets [20], and the sufficiency part was developed for equal conflict systems [91], 
independently of the classical free choice theory. (Both results, that have been 
recalled here with minor modifications, can be found in [92].) This allowed to 
obtain rank based eharacterisations of structural liveness and boundedness in 
larger subclasses, namely DSSP [71] and {SC}*EQS [72]. The idea of using the 
rank theorem for free choice - -  applying equalisation - -  to obtain a general 
sufficient condition for liveness and boundedness in ordinary P / T  systems (ac- 
tually, to define a subclass, the regular marked nets, that are alwas"s live and 
bounded) appears in [29]. The extension to general P / T  systems is contained in 
[71]. Generalising this approach by means of other transformation rules increases 
the decision power of rank theorems [73]. 
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E l e m e n t s  o f  L i n e a r  P r o g r a m m i n g  a n d  D u a l i t y  T h e o r y  

Many text books cover linear programming (see, for instance, [56,65]). Here we 
recall a few definitions and results that  are used in the paper. 

Any linear programming problem can be written in standard form (possi- 
bly requiring the incorporation of slack variables to transform inequalities into 
equations) as: 

z = m a x { c . x [  A . x = b A x > 0 }  (64) 

where x are the (real valued) variables, c - x is the cost function to optimise, 
and A .  x = b A x > 0 are the linear constraints. The computational complex- 
ity of linear programming problems is polynomial time. They are usually solved 
using the simplex algorithm, which, among other advantages compared to poly- 
nomial algorithms, performs most often in linear time in spite of its worst case 
exponential complexity. 

Depending on the existence of solutions to the linear constraints and the 
value of the objective function, a linear programming problem can be: 

- Non feasible: No solution to the linear constraints. 
- Unbounded: The value of the cost function can be increased arbitrarily. 
- Bounded: There are optimal solutions x that maximise the value of the cost 

function. 

The dual of the primal problem (64) is: 

z ' = m i n { b - y l  Y ' A - > c }  (65) 

Note that  the dual of the primal problem (65) is (64). 
The weak duality theorem states that, if x and y are feasible solutions to 

(64) and (65), respectively, then c • x < b-  y. 
The duality theorem states that ,  if both (64) and (65) are feasible, then both 

are bounded and z = z'. 
The unboundedness theorem states that, if only one of (64) or (65) is feasible, 

then it is unbounded. 
These theorems allow to prove the alternatives theorem (for homogeneous or 

non-homogeneous systems). Two out of the many formulations of this theorem 
are the following: 

- One and only one of tile following systems is feasible: 

A . x  >_ b (66) 

y _> 0 A y - b  > 0 A y - A  = 0 (67) 



373 

One and only one of the following systems is feasible: 

A . x > 0 A x > 0  

y . A ~ 0 A y > 0  

If x is restricted to be integer in (64), then it is an 

(68) 

(69) 

integer programming 
problem, which is NP-complete. (A typical algorithm is branch and bound based 
on linear programming.) In the particular case that  A = [I A'], a property that  
we use is that  boundedness of the integer programming problem is equivalent to 
boundedness of the corresponding linear programming problem wimre integrality 
is disregarded, although the optimal value may not coincide. 


