Petri Nets and Other Models of Concurrency
Mogens Nielsen and Vladimiro Sassone

ABSTRACT. This paper retraces, collects, and summarises contributions of the authors
— in collaboration with others — on the theme of Petri nets and their categorical
relationships to other models of concurrency.

CONTENTS

Introduction

Part1. ON THE BEHAVIOUR OF NETS
1. Petri Nets, Hoare Structures, and Trace Structures
1.1. Elementary net systems
1.2. Trace structures
1.3. A categorical way to relationships
2. Petri Nets, Event Structures, and Domains
2.1. Event structures
2.2. Event structures and domains
2.3. Semiweighted nets
2.4. Unfolding semiweighted nets
3. Petri Nets and Transition Systems
3.1. Transition systems
3.2. Elementary nets and transition systems
4. Petri Nets and Bisimulations
4.1. Labelled models and their relationship
4.2. Path-lifting morphisms
4.3. Pomg-bisimulation for nets

Part 2. ON THE STRUCTURE OF NETS

5. Petri nets as monoids
5.1. Concatenable processes
5.2. Monoidal categories and concatenable processes
5.3. Axiomatising concatenable processes

6. Conclusions and Related Work

Acknowledgements

References

1991 Mathematics Subject Classification. Primary 68Q55, 68Q10, 68Q05.
Key words and phrases. Semantics and Models of Concurrency, Noninterleaving, Petri Nets

588

Introduction

Concurrency theory is based on a number of different formal models of compu-
tation, with Petri nets [66, 67, or just nets, as a prominent example. Other models
include the event structures of Winskel [94], the trace structures of Mazurkiewicz [43],
the asynchronous and the concurrent transition systems of Bednarczyk [4], Shields {83]
and Stark [84], just to name a few. Similarly, concurrency deals with an abundance of
notions for behavioural equivalence, with the bisimulation of Milner [50], trace equiv-
alence of Hoare [30], and pomset equivalence of Pratt [69] as prime examples.

During the past decade, attempts have been made in order to understand the rela-
tionships between the confusingly many different concepts within concurrency theory,
and many of these are based on the language of category theory. Our main goal in this
paper is to survey some of the main ideas behind this categorical approach to concur-
rency, and at the same time to present some particular categorical results for nets.

The first part of our paper is devoted to some categorical results on the behaviour
of nets and their relations with other models, whereas the second part focuses on a
categorical approach to the algebraic structure of net processes. In our presentation we
have chosen to treat (only) three different classes of net systems: the elementary net
systems of Thiagarajan [87], the semiweighted net systems [48), and place/transition
systems [72], but the approaches presented here are, we claim, applicable to any class
of net systems.

Let us start by a few general comments on the role of category theory in our treat-
ment of the behaviour of net systems. Fist of all, how do we relate nets to other models
for concurrency? Any model for concurrency is meant to model the behaviour of dis-
tributed systems at a certain level of abstraction, focusing on certain aspects of the be-
haviour, deliberately abstracting from others. Here, we shall attempt to classify models
according to their ‘level of abstraction’, and in stating and proving such relationships
we shall use the language of category theory — in particular the notion of adjunction.
In many contexts this has proven to be a convenient language succinctly expressing
such relationships, abstracting away from the details of the often very different mathe-
matical formalisms of the individual models. As the reader will see, nets relate nicely to
most of our chosen models, in the sense that one of the models ‘embed’ into the other;
‘embedding’ is formalised here by special adjunctions called coreflections.

As the reader will see, adjunctions and hence coreflections between two categories
of models, Mo and Mj, consists of ways of translating from one model to the other, sat-
isfying certain properties. Formally, an adjunction is expressed in terms of two functors
L: Mg — M; and R: My — My, and a coreflection is a way of saying that Mg embeds
into My — with L telling us how to embed Mg into M1, and R how to project M1 onto
M. This will be our formal way of saying that ‘Mg is an abstract version of M;’.

In Part 1, we shall show examples of such embeddings between our classes of net
systems and those of event structures, trace structures, domains, and transition systems.
These result are part of a greater picture of relationships between models for concur-
rency, see e.g. [97, 80, 79]. We have chosen to present a few results in some detail, at
the expense of the range of models covered.

It is important to notice that all our categories are based on notions of morphisms
which should be thought of as ‘simulations’. This view is supported by the fact that

589

they are all ‘behaviour respecting’, as formalised in concrete theorems. This means
that the existence of a morphism may be seen as a demonstration that one object (im-
plementation) satisfies another (specification), and hence morphisms may also play a
role in formal verification.

Once adjunctions are established between models, one may start comparing and
transferring behavioural concepts from one model to another, formally via the adjoints L
and R. In the final section of Part 1, we shall present on such example based on [35, 63],
introducing a general way of understanding Milner’s seminal notion of bisimulation
[50] across a range of different models, including net systems.

It must be noted that there is more to the categorical view of models than we present
here. For instance, universal constructs like products and coproducts serve as basis for
giving semantics to process algebras. The reader is referred to [97] for more detail.

In Part 2 we restrict attention to the level of single nets in order to analyse the
structure of their spaces of computations, i.e., the algebraic structure of their processes.
Of course, we keep using categorical tools, following an approach that can be said ‘in
the small’, as opposed to the one in Part 1 that — dealing with the totality of nets — is
‘in the large’.

The idea is, given a net N, to describe in abstract terms its concatenable processes,
a notion introduced in [18] to account for sequential composition of processes. The
existence of an operation of concatenation leads easily to a category of concatenable
processes of N, where objects are states (markings) and arrows are (concatenable) pro-
cesses. It turns out that such a category is a symmetric monoidal category whose tensor
product is the parallel composition of processes [18]. The relevance of this result is that
it describes Petri net behaviours as algebras in a remarkable way.

Here we recall some of the results of {77, 18, 45, 75] providing, in particular, a
construction that associates to each net N a symmetric monoidal category P(N) iso-
morphic to the category of concatenable processes of N. Such an approach is com-
pletely abstract, axiomatic, in that it is formulated in terms of universal constructions.
Namely, as we shall see, P(N) is the free symmetric strict monoidal category on the
net N modulo two simple additional axioms. The exposition is based on [77].

Most of the results presented here are based on work by the authors in co-operation
with colleagues. Our main contribution here has been to collect and reformulate existing
results, and to add a few new results as an attempt to obtain a uniform and coherent ex-
position. The results on elementary net systems and their relationships to other models
in Part 1 is based on various works by G. Rozenberg, P.S. Thiagarajan, and G. Winskel
in collaboration with Nielsen. The work on unfolding semiweighted nets and nets as
monoidal categories are due to Sassone in collaboration with M. Meseguer, U. Monta-
nari. And finally, Section 4 on nets and bisimulation is adopted from work A. Joyal,
and G. Winskel and Nielsen.

Part 1. ON THE BEHAVIOUR OF NETS
1. Petri Nets, Hoare Structures, and Trace Structures

We start out be considering some fundamental and simple classes of Petri nets and
their relationships to other models for concurrency. The theory of nets was originally a

590

strong source of inspiration behind the introduction of traces by Mazurkiewicz in [43].
Also, the relationship between traces and nets have been extensively studied, see in
particular the survey papers by Rozenberg and Thiagarajan in [73, 87]. The presentation
here is based on joint work with Rozenberg and Thiagarajan, [S9], in which proofs and
details may be found.

1.1. Elementary net systems. Elementary net systems were introduced by Thia-
garajan [87] as a fundamental class of nets. His definitions were as follows.

DEFINITION. A condition/event net (CE for short) is a triple (B,E,F) where B and E
are disjoint sets of, respectively, conditions and events, F C (B x E)U(E x B), the flow
relation, admits no isolated elements, i.e.,

domain(F)Urange(F) = BUE,
where domain(F) = {x| 3y.(x,y) € F} and range(F) = {y | 3x.(x,y) € F}.

Let N = (B,E,F) be a CE. Then Xy = BUE is the set of elements of N. Let x € Xy.
It will be convenient to use the following notation.

x = {y|(x)€F} (thesetof pre-elements of x)

x* = {y|(xy) €F} (thesetof post-elements of x)

This ‘dot’ notation is extended to subsets of Xy in the obvious way. For e € E we
shall call e the set of pre-conditions of e and we shall call e* the set of post-conditions
of e.

DEFINITION. A CE net is said to be simple if for all x,y € Xy such that *x = ®y and
x* =y°, wehavex =y.

DEFINITION. An elementary net system is a quadruple N = (B, E, F,c;,) where

> (B,E,F) is a simple net called the underlying net of N.
> c¢in C B is the initial case of N.

Thus a simple CE net may be viewed as a directed bipartite graph with no isolated
or confused elements, and an elementary net system is a simple net together with a
‘state’ specified as subset of B-elements.

Presenting an elementary net system as a graph, following standard practise, the
B-elements will be drawn as circles, the E-elements as boxes, the elements of the flow
relation, F, as directed arcs, and the initial case will be indicated by dots (tokens) on its
members. Figure 1 is an example of a net.

As a model for concurrency, B-elements are used to denote the (local) atomic states
(or resources) called conditions and the E-elements are used to denote (local) atomic
changes-of-states called events. The flow relation models the effect on conditions by
an occurrence of an event, in the form of a fixed neighbourhood relation between the
conditions and events of a system.

The dynamics of an elementary net system are simple. A state (usually called a
case) of the system consists of a set of conditions holding concurrently. An event can
occur at a case if all its pre-conditions and none of its post-conditions hold at the case.
When an event occurs each of its pre-conditions ceases to hold and each of its post-
conditions begins to hold. Let us formalise this dynamics of net systems.

er :] es

FIGURE 1

DEFINITION. Let N = (B,E,F) be a net. Then —y C Pow(B) x E x Pow(B) is the
(elementary) transition relation generated by N, and is given by

—v={lkek) kK=" & K-~k=e"}

DEFINITION. Let N = (B, E,F,cy) be an elementary net system.

> Cy, the state space of N, is the least subset of Pow({B) containing c;, such that,
if c € Cy and {c,e,¢') € —>y, then ¢ € Cy. (Note that, whenever possible, we
use N to denote both the net system and its underlying net.)

> CGy = (Cn,—>cy), where —cy = —n N (Cy x E x Cy), is the case graph
associated with N.

The case graph of N describes the dynamics of N by giving, for any possible state,
the diagram of the possible state-transitions.

Basic concepts concerning the behaviour of distributed systems such as causality,
choice, concurrency, and confusion (‘glitch’) can now be cleanly defined — and sepa-
rated from each other — with the help of net systems. The interested reader is referred
to Thiagarajan [87] for details. Here we just bring out a few important behavioural
concepts.

EXAMPLE. Let us illustrate by means of a few small examples how nets can be used
to model concurrency, nondeterminism, and enabling.

(1) Concurrency:

(3] €2

The events e; and e, can occur concurrently, in the sense that they both have concession
and are independent in not having any pre or post conditions in common.

592
(2) Conflict:

e1 €2

o

Either one of events e; and e; can occur, but not both. This shows how nondeterminism
can be represented in a net.

(3) Contact:
e e

The event e3 has concession. The event e; does not — its post condition holds — and it
can only occur after e;. This illustrates contact. In general, there is contact at a marking
M when for some event e

*eCM & EN(M\’)#2.

As a further example, a critical region may be described as the elementary net
system in Figure 2, where the condition in the center represents a kind of semaphore
controlling the access (p’s and v’s events) to critical regions (co and c;) by the two
processes.

A
J

WO ‘? ‘? Wl
pe ? ? pl
co C1
Vo Vi

FIGURE 2

593

1.2. Trace structures. An traditional way to describe the behaviour of a system
is to consider all the admissible sequences of event occurrences, the so-called traces of
the system. Essentially, this amounts to giving a formal language whose alphabet is a
set of events and whose strings represent the potential evolution of the system. Trace
structures, introduced originally by Mazurkiewicz [43] as a model for concurrency,
arose from a simple, yet powerful new idea: equip the alphabet of formal languages
with an extra structure of independence, interpreted as computational independence
between atomic actions. We recall this development starting with the following simpler
notion.

DEFINITION. A Hoare structure is a pair (H,Z) where ¥ is an alphabet (of atomic
actions), and H is a nonempty, prefix closed subset of the monoid Z*.

Actually, such structures are called traces in [30], but we prefer to reserve the word
traces for the structures that will follow. Building on the definition of the transition
relation we may associate an obvious Hoare structure with an elementary net system.

DEFINITION. The set FSy of firing sequences of N = (B,E,F,ci,) is the subset of E*
defined inductively as follows.

> € € FSy and ¢;, [[€) cin, for € the empty sequence;

peFSy and cpfp)c and c-Syc
> .

pe€ FSy and ciy, [pe) ¢

Observe that [) is the natural ‘extension’ of —y t0 {cin} X E* X Cy.
For the elementary net representation of the familiar example of mutual exclusion,
we get the following Hoare structure

{€, wo, w1, wow1, wiwo, wopo, w1 p1, WoW1 D0, - - - }-

One of the essential aspects of nets is that they allow an explicit representation of
the distributed nature of computations. For instance, in the mutual exclusion example
of Figure 2, the independence between actions wp and w is represented, following our
intuitive understanding of the net, by the disjointness of their local effects. However,
as with Hoare structures in general, firing sequences ‘hide’ aspects of the behaviour of
a net system to do with parallel or independent activities. To bring out this deficiency
more clearly, we follow the original way of introducing independence between events
of elementary net systems. In net theory this relation is most often referred to as the
concurrency relation.

DEFINITION. For e; # ¢; € E and ¢ € Cy, say that ¢; and ey can occur concurrently
at ¢ — written c[[{e;,e2}) or, when ¢ can be omitted, also e; co e; — if cfler), c[ez),
and (*e;Uel)N("e2Ue3) = .

Thus e; and e; can occur concurrently at ¢ iff they can occur individually and
their neighbourhoods are disjoint. Conflict is clearly the ‘dual’ notion: e; and ey are
in conflict at ¢ if cle1), cle2), bur not c[{e1,e2}), i.e., at ¢ either e; may occur or
¢; may occur but not both. The choice as to whether e; or e, will occur is assumed
to be resolved by the ‘environment’ of the system. For the system N of Figure 1,
for instance, at the initial case e; and e4 can occur concurrently. Consequently, the

[¢]

\]/ \[]
SN N
[wopo] [wow] [w1p1]
VN NN

[wopoco] [wow1po] [wow1po] [wipic1]

FIGURE 3

firing sequences ejeze4 and eqeje; and e eqe; all represent the same (non-sequential)
stretch of behaviour of N. Also, e; and e3 are in conflict at the initial case. Hence the
firing sequences ejexe4 and ezeges represent two conflicting (alternative) stretches of
behaviour of N.

The idea suggested by Mazurkiewicz [43] is to allow the modelling of such in-
dependent activities of components of system by introducing the extra structure of an
independence relation I on the action alphabet. For nets, following our intuition we
would relate two actions as independent if and only if they involve concurrent events.
Based on an independence alphabet, the behaviour of a system will be modeled in terms
of traces, i.e., of equivalence classes of

= : the least congruence on E* such that epe; ~;ejep whenever egley.

In our running example wow;po ~ wopow: and the equivalence class of wow; pg is
[wow1 po] = {wow1po,wopow1,wiwopo}-

Now, Hoare structures generalise from subsets of X* to subsets of the monoid of
traces, denoted M(Z,1). The prefix ordering of Hoare structures generalise to a prefix
ordering of traces, defined in terms of the following preorder on strings:

s<rt ifandonlyif Ju.sumjt
which induces the following partial order (prefix order) on traces:
Er = 5i/=i,
that is,
[s)Cr[f] ifandonlyif Ju,v.s~rul;vsrt.
In our example [€] C; [wo] Tf [wow1] C; [wopow1), and the initial traces and their prefix
ordering are as shown in Figure 3. Notice that the extra modelling power boils down

to the presence of traces like [wow;] in our example, representing actions wg and wy in
any (unspecified) order, and interpreted as their concurrent or independent occurrences.

We are now ready for our formal definition of trace structures. Conceptually, we
follow [44] where a trace structure is defined to be a prefix closed, proper subset of the
monoid M(Z,I). However, only for technical reasons we prefer in our formal definition
to work with such structures in terms of consistent subsets of Z* — with the traces a
derived notion, as in Proposition 1.1 below.

595

DEFINITION. A trace structure is a triple T = (M, X,I) where (£,1) is an indepen-
dence alphabet, i.e. I CZ x L is irreflexive and symmetric, and M C X* is such that for
allt,t € Z*and a,b € X

consistency: t~if'eM = teM,
prefix closure: taeM = tEM,
properness: tagtbe M&alb = tabeM.
We use the notation M /=y for the traces of T, i.e.,
M/m1={w} | we M}.

We may think of a trace structure as a prefix closed set of traces, in the sense that from
the axioms of consistency and prefix closure above, we get the following.

PROPOSITION 1.1. Given a trace structure T = (M,Z,1) then (M /~,,C;) satisfies
>weM ifandonlyif [wleM/=y
> W EywleM/<y implies [w]eM/=.
As will be expected by now, the information concerning concurrency and conflict-

resolution hidden by Hoare structures may be retrieved by associating with a net a trace
structure with concurrency as the appropriate independence relation.

THEOREM 1.2. Let N = (B, E F,c;,) be an elementary net system and let the indepen-
dence relation associated with N be

I={{e1,e2) |e1,e2 € E& (Pe1Uel) N ("erUe3) = D}
Then nt(N) = (FSn,E,I) is a trace structure.

PROOF. The required properties follow from definition. In particular, n#(N) is
consistent and proper by definition of the (elementary) transition relation. O

For the net system N from Figure 1, Figure 4 shows an initial portion of the asso-
ciated poset of traces.

{616;263} {eleze4,ele§4ez,e4elez} {e3e4e5,§e4ege5}
erey }e‘t,mel} {eseq,eqe3}
0 e)
\{8}/
FIGURE 4

The beauty of the trace semantics is its simplicity. One of the classical results
from concurrency theory is that the trace semantics is ‘consistent’ with an alternative
way of defining the behaviour of net systems in terms of unfoldings into processes (or
occurrence nets). Several results of this type have been shown [9]. The presentation

596

that follows is adapted from [59]. For the sake of convenience we shall assume here
that N is contact-free. In other words, we shall assume,

Vce€Cy.Ve€cE.eCc = e*N(c~\") =2.

As we shall see later, this does not involve any loss of generality, at least for the study
of behavioural issues.

The theoretic development of Petri nets, focusing on the noninterleaving aspects
of concurrency, brought to the foreground various notions of process, e.g. [68, 26, 7,
45, 18]. Generally speaking, these are structures accounting for the causal relationships
which rule the occurrence of events in computations. Thus, ideally, processes are simply
computations in which explicit information about such causal connections is added.
Abstractly, the processes of a net N are ordered sets whose elements are labelled by
events of N. Concretely, in order to describe exactly which sets of events give rise to
processes, one takes a process of N = (B, E,F,c;,) will be a labelled net of the form
N = (B,E,F,r), where (B,E,F) is a restricted kind of a net (viz., finite, conflict-free,
acyclic) called a causal or process net, and the labelling function #: BUE — BUE is
required to connect the structure of N to that of N in a suitable way. For a definition of
a process along these lines see Part 2, or, e.g., [73].

Here we shall define processes with the help of firing sequences. This will enable
us to build up the finite processes of N inductively. For a similar development of the
process notion, see [9].

For each firing sequence p, we will define a process N, = (By, Ep, Fp,T,). In doing
so it will be convenient to keep track of the conditions that hold in N after the run
represented by the firing sequence p. This set of conditions will be encoded as cp.

DEFINITION. LetN be (B,E,F,c;,). Then N, = (B, Ep, Fp,®p) is defined inductively
on the length of p € FSy as follows.
Case p =¢: Then N, = (2,2,9,2) and ce = {(b,9) | b € ci}.
Case p = p'e: Assume that Ny = (By,Ey,Fy,Ry). Then N, = (Bp,Ep,Fy,)
where, for X = {(b,D) |b€ ‘¢ & (b,D) Ecy}and Y = {(b,{(e,X)}) | b€ €},
we have

E, = EyU{(e,X)},

Bp = Bp!UXUY,
F, = FyUXx{(eX)}) U {(eX)}xY),
ny = Mz,Z)€ByUE,.z.

Finally, ¢, = (cyy N X)UY.

It will turn out that N, as defined above is a labelled net. For p = ejezese3 in the
system N of Figure 1 we show N, in Figure 5. For convenience we have displayed 7, by
writing the value of 7, (x) besides the graphical representation of x for eachx € ByUE,.

In order to establish a relationship between the traces of N and its processes it is
necessary to define an ordering relation over the processes of N.

DEFINITION. Let N be (B,E,F,cip).

597

by ?
€1
bs
€2
by
€3
b4

FIGURE 5

?bz

€4

bs

> The set of finite processes of N is Py = {N,, | p € FSy}, for N, as in the previous
definition.
> C C Py x Py is defined by

(Bp,Ep,Fp,np) E (Bp!’Epr7Fpl,1rpl) lf Bp g Bpl &Ep g Epi &Fp g Fpl

Clearly C is a partial ordering relation. The main result relating trace semantics to
processes is the following.

THEOREM 1.3. For N any elementary net system (Py,C) and the ordering of the
traces from nt(N), i.e., (FSy/=1,E1), are isomorphic posets.

PROOF. In [59] it is proved that f: FSy/~; — P given by f([p]) = N, is an iso-
morphism. O

1.3. A categorical way to relationships. In the last section we attempted to show
connections between net systems and other structures. Although it is apparent that nets
a more general, expressive, and powerful model, we lack at this stage a way to make
precise any statement in this sense. Is there a formal way of saying that traces ‘embeds’
into nets, that ‘nets generalise’ them naturally? More generally, how can we relate nets
to the other models? How do we establish relationships between models?

As we discussed in the introduction, we tend to classify models can for concur-
rency according to their ‘level of abstraction’ (see, e.g., [80, 97, 79)), that is, according
to those aspects of the behaviour of distributed systems they focus on and those they
deliberately abstract from. In stating and proving relationships between models viewed
under this perspective, the language of category theory as proven in many contexts to be
very useful, as it is capable of abstracting away from unwanted details of the individual
models and, therefore, of expressing the more essential aspects succinctly and in great
generality. Let us review very briefly a few key steps behind these ideas.

598

First, all the models are introduced as a class of objects, e.g., the class of net sys-
tems or the class of trace structures, equipped with a notion of ‘behaviour-preserving’
(i.e., simulation) morphism, making each model into a category. The role of the mor-
phisms is to make explicit (if and) how each single object relates to all the others. In
particular, as behaviour is preserved, (if and) how it can be simulated. This makes
explicit that central to our objects and, therefore, to the respective categories, is the dy-
namic notion of behaviour. Also, the very notion adopted for ‘simulation’ determines
what aspects of behaviour are important, i.e., what can be ignored by a successful sim-
ulation (the aspects abstracted away) and what instead must be preserved (the aspects
focused on). In other terms, the adopted notion of morphism define the abstraction level
of the model.

From this standpoint, the notion of functor is the first tool category theory makes
available to us in order to check the sanity of our translations from one model to an-
other. Essentially, it requires us to map objects to objects preserving all the existing
relationships, i.e., all the existing simulations. In other words, it requires to map also
behaviours to behaviours.

Tools much more refined than functors are the notions of adjunction and coreflec-
tion, central to many papers on models of concurrency and, in particular, to our pre-
sentation here. Let us briefly comment on their formal definition and the intuitive way
to understand them. Technically, an adjunction between categories Mp and M, con-
sists of ways of mapping from one to the other and back, satisfying certain properties.
Formally, (see [42] for alternative characterisations) we shall express an adjunction in
terms of two functors L: Mo — M (the left adjoint) and R: My — Mg (the right adjoint
of the adjunction) satisfying (see Figure 6):

mo —H RL(mg)

N

FIGURE 6

for each object my of My, there is a morphism u: mg — Ro L{mp) (the

unit at mg) such that for each object m; of M; and each morphism

fo: mp — R(my), then there is a unique morphism fi: L{mg) — my,

such that fo = R(fi)ou.
In other terms, for each mg € Mg, L(myp) is a ‘special’ object of My in the sense that all
the maps from m to objects of the kind R(m;) in My come exactly and unambiguously
from maps from L{mp) to m; in M;. Moreover, all such maps can be factored in the
image of R via u: mg — RobL(mp), a ‘special’ map that mp comes equipped with.
Reading system for object and simulation for morphism, this definition has an evident
significance in computational terms.

599

If alt units of an adjunction are isomorphisms, then the adjunction is called a core-
Aflection. This essentially means that no information is lost moving from Mg to My, as
the identity of objects is retained and recovered back by R. It follows from the defini-
tion that the left adjoint L of a coreflection is always full and faithful, i.e., an embedding.
In other words, we may think of Mg as a coreflective full subcategory of M (the one
identified by the image of L), and of L as the inclusion Mg < M, whereas R tells us
how to project M; back onto Mo.

Paraphrasing this situation in terms of categories of models, behaviours and sim-
ulations, we can say that R selects for each m € My its best possible abstract ‘approx-
imation’ in Mg. That is, an object R(m) € Mg together with a simulation R(m) — m
such that any other R(m') — m factors as R(m') — R(m) — m.

So much for the formal definition. In the following the existence of a coreflection
of Mg into M will be our formal way of saying that ‘M is an abstract version of M;’.

We therefore start by turning our models into a categories by defining appropriate
notions of morphisms. Morphisms of languages are simply functions on their alphabets
which send strings in one language to strings in another.

DEFINITION. A function A: £ — X' extends to strings by defining

M) =M)A.
A morphism of Hoare structures (H,Z) — (H',X') consists of a function A: X — %'
such that Vs € H. A(s) € H'.

We write H for the category of Hoare structures with the above understanding of mor-
phisms, where composition is our usual composition of functions.

Before we continue, let us comment briefly on our choice of morphisms — on
Hoare structures as well as on all other models considered in this paper. In much of
the literature, more liberal notions of morphisms are used, based on partial (rather than
total) functions on the labelling sets. These more general morphisms have the advan-
tage that many useful combinators (e.g., parallel composition) may be expressed as
universal constructions in the corresponding categories of models. Furthermore, they
may be thought of as specifying correctness properties: the ‘correctness’ of the mutual
exclusion example, for instance, follows by the fact that the partial function A from
the alphabet of actions, which is undefined for {wo,w;} and the identity function for
all other action symbols, is a morphism from the Hoare structure of the mutual exclu-
sion example to the Hoare structure consisting of all prefixes of the regular language
(pacove + picivi)*. However, we have chosen here to restrict ourselves to morphisms
based on total functions, purely as an attempt to simplify our presentation technically.

Similarly, morphisms between trace structures are morphisms between the under-
lying languages which preserve independence.

DEFINITION. A morphism of trace structures (M,Z,1) — (M',Z',I') consists of a
function A: £ — X' which
preserves independence: oI implies A(ar) I’ M), forall o, B € Z;
preserves strings: s € M implies X(s) € M, for all strings s.
This, with the usual composition of functions defines T, the category of trace structures.

600

It is easy to see that morphisms of trace structures preserve traces and the ordering
between them.

PROPOSITION 14, Ler A: (MZ,1) — (M’ ¥/, I') be a morphism of trace structures.
If s <1t in the trace structure (M, X, 1) then 7\.(5) <r ?»(t) in (M, Z.I').

Tt follows that A defines a monote function from (M/=1,Cp) to(M' /=p,Cp). Con-
cerning nets, we consider the following definition.

DEFINITION. Let N = (B,E,F,c;,) and N' = (B',E',F', ¢}) be elementary net sys-
tems. A morphism (B,n): N = N’ consists of a relatmn BC Bx B, suchthat B? is a
partial function B' — B, and a function 1: E — E’ such that

Vb, b)eB.bEcn <> b Ecy,, Ble)="nle), B(e’)=n(e"
Thus morphisms on nets preserve initial cases and events when defined. A mor-

phism (B,n): N — N’ expresses how occurrences of events and conditions in N induce
occurrences in N'. Morphisms on nets preserve behaviour.

PROPOSITION 1.5. Let N = (B,E,F,c;,) and N' = (B',E',F',c,) be elementary nets
and (B,n): N = N' a morphism.

> Ifcle) ¢ inN, then fy(c) [n(€) fo(e") in N, for fy(e) = Be)U (¢l ~ Blewn))
> If%e}N%5 =@ in N, then*n(e;)*Nn(e2)* =2 inN'.

PROOF. It is easily seen that *n(e) = B(%) and that n(e)* = B(e*) for all events
e of N. Observe too that because B°” is a partial function, B in addition preserves
intersections and set differences. These observations mean that B(c) [n(e)) p(c’) in N/
follows from the assumption that ¢ [[e) ¢’ in N, and that independence is preserved. [

DEFINITION. Let EN denote the category of elementary net systems and their mor-
phisms under the obvious componentwise composition of morphisms, e.g., the compo-
sition of (Bg,Mo): No — N1 and (B1,m1) : N1 = Nz is (BioBo,niome): No = N2

This choice of morphisms for elementary net systems may not be as obvious and
intuitively clear as the those for the other models we consider. Indeed alternative cat-
egories of net systems have been studied — see, e.g., [93, 45, 12, 48, 97]. Here we
just remark that Proposition 1.5 proves that these morphisms preserve behaviour (and
concurrency), a fact that has been explored by, e.g. [11], where such morphism have
been used to express correctness properties. Also, we note that the derived notion of
isomorphism becomes identity up to names of conditions and events.

THEOREM 1.6. The construction that maps N = (B,E,F,c;,) to the Hoare structure
(FSn,E) extends to a functor nh from EN to H.

THEOREM 1.7. The trace semantics nt extends to a functor nt from EN to T,

However, these functors are not part of any adjunction. Following our discussion
above, one would expect a formal result embedding T in EN, but for this to be the case
it turns out that one needs a more abstract semantics. The reason why nt is too concrete
is that it preserves information about event ‘identities’. As we shall see in the next
section, forgetting these will help yielding a ‘nice’ (read ‘universal’) unfolding of EN
into event structures.

601

2. Petri Nets, Event Structures, and Domains

Consider again the prefix ordering of traces introduced above. What can be said
about their structure and properties? In this section we shall provide a characterisation
of such orderings in terms of a well-known class of Scott domains {81, 6]. Moreover,
in the process of doing so, we shall also show that they arise exactly as the orderings
associated with the dynamics of another well-known model for concurrency: the event
structures, originally introduced in [57].

2.1, Event structures. The prefix ordering of the strings of a Hoare structure —
which is in fact a tree ordering — may also be viewed as a structure over action occur-
rences, where individual occurrences may be either ordered, i.e., following each other
in time in the same computation, or not, i.e., belong to different computations. Event
structures may be seen as a generalisation of such structures, allowing a third relation-
ship between occurrences, that of concurrency, i.e., belonging to the same computation,
but without any causal/temporal ordering.

DEFINITION. Define an event structure to be a structure (E, <,#) consisting of a set
E, of events which are partially ordered by <, the causal dependency relation, and a
binary, symmetric, irreflexive relation # C E x E, the conflict relation, which satisfy for
alle, e, e’ € E

{e' | € <e}isfinite, e#e <e => e#e.

Say two events e, € E are concurrent,and write eco ¢, if =(e < ¢’ ore’ <eore#e).
Write W for #U 1, i.e., the reflexive closure of the conflict relation.

The finiteness assumption restricts attention to discrete processes where an event
occurrence depends only on finitely many previous occurrences. The axiom on the
conflict relation expresses that if two events causally depend on events in conflict then
they too are in conflict.

Guided by our interpretation we can formulate a notion of computation state of an
event structure (E, <,#). Taking a computation state of a process to be represented by
the set x of events which have occurred in the computation, we expect that

dex & e<ed = e€x,

i.e., if an event has occurred then all events on which it causally depends have occurred
too, and also that

Ve, € x. —(e#¢),
i.e., two conflicting events cannot occur together in the same computation.

DEFINITION. Let (E,< #) be an event structure. Its configurations, D(E, <,#), are
those subsets x C E which are

conflict-free: Ve,e' € x. ~(e#¢);
downwards-closed: VYe,e'.¢ <ecx = ¢ €x.

In particular, define |e]| = {¢' € E | ¢’ < e}, which is a configuration, as it is downward-
closed and conflict-free. Write D°(E, <,#) for the set of finite configurations.

602

The important relations associated with an event structure can be recovered from
its finite configurations (or indeed similarly from its configurations).
PROPOSITION 2.1. Let (E, <,#) be an event structure. Then
>e<e ifandonlyif Vxe DYE,<#). cx = ecx;
>e#e ifandonlyif Vx€ DP(E,<,#).e€x = e ¢x;
> ecoe ifandonlyif Ix,x¥ € DY(E,<,#) such that
ecx~xX & ¢ ex~x & xUxX e D'(E, <. #).
Events manifest themselves as atomic jumps from one configuration to another,

and later it will follow that we can regard such jumps as transitions in the case graph
associated with a net system.

DEFINITION. Let (E,<,#) be an event structure and x,x’ be configurations. Write
x—+x ifandonlyif e¢x & ¥ =xU{e}.

PROPOSITION 2.2. Two events ey, e; of an event structure are in the concurrency re-
lation co if and only if there exist configurations x,xy,x1,x' such that

TN
X0 X1
el()\ ¥ /e‘l

Morphisms on event structures are defined as follows [92, 91]:

DEFINITION. Let ES = (E,<,#) and ES' = (E',<',#) be event structures. A mor-
phism from ES to ES’ consists of a function1}: E — E’ on events which satisfies

x€ DES) = n(x)€ DES)
Veg,e1 € x. N{ep) =n(e1) = ep =ey.

A morphism™: ES — ES' between event structures expresses how behaviour in ES
determines behaviour in ES’. The function 1 expresses how the occurrence of events in
ES implies the simultaneous occurrence of events in ES'; the fact that j(e) = ¢’ can be
understood as expressing that the event ¢ is a ‘component’ of the event e and, in this
sense, that the occurrence of e implies the simultaneous occurrence of ¢'. If two distinct
events in ES have the same image in ES’ under 1 then they cannot belong to the same
configuration.

Morphisms of event structures preserve the concurrency relation. This is a simple
consequence of Proposition 2.2, showing how the concurrency relation holding between
events appears as a ‘little square’ of configurations.

PROPOSITION 2.3. Let E be an event structure with concurrency relation co and E'
an event structure with concurrency relation co'. Lety: E — E' be a morphism of event
structures. Then, for any events eg,e; of E,

eocoe; = m(ep) co’ n(ey).

603

Morphisms between event structures can be described more directly in terms of the
causality and conflict relations of the event structure.

PROPOSITION 2.4. A morphism of event structures from (E,<,#) to (E',<'.#) is a
functionn: E — E' such that

> |n(e)] S n(le)),

> nleg) Wnler) => eWen

Let E denote the category of event structures with morphism as described above
and composition named composition of functions.

2.2. Event structures and domains. Let us turn our attention to the class of par-
tial orders corresponding with the orderings of configurations of event structures. The
characterisation given below in terms of special Scott domains has been originally for-
mulated in [87].

In the following, we shall need a few standard definitions from domain theory. For
(D,C) a partial order and X a subset of D, we write as usual | }X for the least upper
bound of X, when it exists.

DEFINITION. Let (D,C) be apartial order. A complete prime of D is an element p € D
such that

pE|JX = IxeX.pCx
for any set X for which | | X exists.

DEFINITION. For (D,C) a partial and dp,d; € D, we say that dy covers dp, in symbols
dy < dj, if and only if dy C d, and, for every d,

dogdgdl = d=dpord =d.

DEFINITION. Let {(D,C) be a partial order. We say that D is

> bounded complete if all subsets X C D which have an upper bound in D have a
least upper bound | | X in D.

& coherent if all subsets X C D which are pairwise bounded (i.e., such that ail
pairs of elements dy,d; € X have upper bounds in D), have least upper bounds
LIX in D. (Note that coherence implies bounded completeness).

> prime algebraic if

x= U{ p C x| pis a complete prime},
for all x € D. If furthermore the sets
{p C q| pis a complete prime}

are always finite when g is a complete prime, then D is said to be finitary.

A prime algebraic domain domain is a bounded complete and prime algebraic partial
order.

THEOREM 2.5. Let (E,<,#) be an event structure. The partial order (D(E,<,#),C),
that we shall indicate simply as D(E,<,#), is a coherent, finitary, prime algebraic
domain whose complete primes are the {|e| | e € E}.

604

PROOF. See [57, 95]. 4

Conversely, any coherent, finitary, prime algebraic domain is associated with the
partial order of configurations of event structures.

THEOREM 2.6. Let (D,C) be a coherent, finitary, prime algebraic domain. Define
Pr(D,C) as the event structure (E, <, #)

E = the complete primes of (D,C)
< = istherestrictionof C w0 E
= {(xy) €E xE|xUydoes not exist in D}

Then {D,C) and D(E, <,#) are isomorphic partial orders.
PROOF. See [57]. O

Actually, the relationship between event structures and coherent, finitary prime al-
gebraic domains is very strong, in that they are equivalent: one can be used to represent
the other. This may be formalised also in terms of a categorical equivalence between
D and a category of coherent, finitary prime algebraic domains equipped with stable
functions as morphisms.

THEOREM 2.7. Let D denote the category of coherent, finitary prime algebraic do-
mains with morphism functions f: (Dy,Co) — (D1,C1) satisfying:

additivity: for all x,y € Dy such that xUy exists, f(xUy) = f(x)U f(»);
stability: for all x,y € Dy such that x\1y exists, f(xNy) = f(x)N f(y);
covering preserving: for all x,y € Dg. if x <o y then f(x) < f(y).

Then D and E are equivalent categories.

PROOF. One can prove that 2 and Pr can be extended to functors that form an
equivalence of categories. See [95]. O

Getting back to trace structures, we may now formulate a functor, which in essence
performs the abstraction from identities of events mentioned previously, and based on
this a universal form of unfolding elementary nets into D (and hence E).

THEOREM 2.8. Given a trace structure T = (M,Z,1) then td(T) = (M/=,C) is a
coherent, finitary prime algebraic domain, and td extends to a functor from Tto D.

PROOF. See [97]. O

The following is the result announced at the end of the previous section.

THEOREM 2.9. tdont is the right adjoint of a coreflection between EN and D.

PROOF. The proof of this is rather involved, but may be found in [61], and for
more general forms of net systems in [97] and [33]. O

605

2.3, Semiweighted nets. Having introduced event structures and used them as a
‘bridge’ across elementary net systems, trace structures and domains, we now set out
to study the relationships between nets and event structures directly, by means of a
so-called unfolding construction.

Such an approach to net systems was devised in [57, 94] for the category safe nets
and extended in [48, 46] to the more generous category of semiweighted nets. Infor-
mally, it consists of a coreflection of event structures into nets to whose right adjoint,
the ‘unfolding’, is obtained by ‘unrolling’ the ‘dynamic’ structure of nets to the ‘static’
structure of event structures. In other words, it amounts to ‘compiling’ transitions to
events, so yielding a fine-grain description of the causal interaction between the com-
ponents of a computation, as such interactions must be resolved to the global, static
relations of causality and conflict of event structures. Under this translation events are
to be thought of as unique occurrences of transitions which bear unique, static causal
links to each other.

The unfolding construction factors via a coreflection through Occ, the category of
occurrence nets {571, so yielding the following global picture, where < is the inclusion
functor, and the lower arrows are left adjoints.

, N CEENIE S
SWNets ' , Occ N , E) y D

Uu(-) £(-) D(-)

In presenting these results, we shall follow closely [48]. Let us start by generalising the
class of nets we consider.

The first generalisation is to pass from condition/event to place/transition nets, i.e.,
to allow markings to be multisets (rather than sets) of places. The state of a net is now
thought as a distribution of resources (‘tokens’) in places. Differently from conditions,
that may simply hold or not, resources may be absent, but also present in multiple
copies.

The flow relation F of elementary nets can be equivalently formalised by a pair
of functions *(.),(.)*: E —» Pow(B) assigning to each event its pre- and post-set of
conditions. In the same way, the structure of a place/transition net can be equivalently
described by generalising F to a multirelation or by a pair of functions assigning pre-
and post-multisets to transitions. Following [45], we choose here this second way.

In the following we shall denote by u(S) the monoid of multisets of S. Recall that
a multiset is a function from S to ® and that the sum g + p» is the multiset ¢ such
that u(s) = 1 (s) + p2(s), for all s € S. Often, we represent u € u(S) as a formal sum
3 u(s;) - s; where only the s; € S such that u(s;) > 0 appear; the empty multiset will be
denoted by 0.

DEFINITION. A place/transition net (PT for short) is a structure
N = (prey,posty: Ty — pu(Sn))

where Sy is a set whose elements are called places, Ty is a set whose elements are called
transitions, prey and posty are functions which assign to each transition, respectively,
a source (or pre-set) and a target (or post-set) multiset of places, For t € Ty, we write
t: u— vto indicate that prey(t) = u and posty(r) = v.

606

A morphism of nets f: Ny —+ N consists of a pair of functions

(ﬁ: TN{) - TN] 7f}7: Au(SN()) - ,U(SNI)))

where the place component f}, is a monoid homomorphism, which respect initial mark-
ing and source and target, i.e., the two diagrams below commute.

prey, posty,
Ty ———— 1(Sny) Ty ———— 1(Snp)
ftl lfp frl jfp
TNI _p;e‘;l‘—) }J(SN;) TM "W #(SN;)

Explicitly, f; and f;, are such that:

prey, o fy = fpoprey,, and posty o fi = fpoposty,
This, with the obvious componentwise composition of morphisms, defines the category
PTNets.

A PT net is thus a graph whose arcs are the transitions and whose nodes are the
multisets on the set of places, i.e., markings of the net. As usual, transitions have
pre- and post-sets, i.e., sources and targets, in which each place has only finitely many
tokens, i.e., finite multiplicity. The same applies to markings. Finally, morphisms of
PT nets are graph morphisms in the precise sense of preserving source and target of
transitions. In addition, they respect the monoidal structure of muitisets, which simply
boils down to saying that f,(0) = 0 and that f, (11 +2) = f»(u1) + fp(u2) for each pair
of multisets g1, 12 € p(Sn,)-

In the following we shall consider the category of those PT nets whose initial
markings and whose post-sets are sets, as opposed to multisets. Since weights are
allowed only on the arcs from places to transitions, they are referred to as semiweighted
nets [48].

DEFINITION. A PT net N is semiweighted (SW for short) is for all t € Ty, posty(t) is
a set. Moreover, we assume the standard constraint that prey(t) # 0. A semiweighted
net systems is a semiweighted net N together with an initial marking uy that is a ser.

A morphism of semiweighted net systems f: Np — Ny is a morphism of the underlying
place/transition nets that, in addition, preserves the initial marking, i.e., fp(un,) = un; -
Semiweighted net systems and their morphisms define the category SWNets.

Notice that disallowing transitions with empty pre-set is a step necessary in any
behavioural construction involving nets, as such transitions are highly degenerated; in
particular, any number of parallel copies of them can fire at any marking.

Starting from the primitive ¢t: # — v — to be read as ¢ performs a computation
consuming the tokens in u and producing the tokens in v — the notion of firing and
state space is extended to PT nets as follows. A finite number of transitions can be
composed in parallel to form a step, which, therefore, is a finite multiset of transitions.
We write [[or) v to denote a step 0. with source u and target v. The set S(IV) of steps of
N is generated by the rules:

u € u(S) t: u—vin N and w in u(S) u oy vand o' [BY V' in S(N)
uflo)u (u+w) [[t) (v+w) in S(N) (u+u) [o+B) (v+V)in S(N)’

607

A finite number of steps from the initial marking can be sequentially composed
thus yielding a step sequence. The set of step sequences, denoted SS(N), is given by:

Uy ﬁ%) V0. s Up H{Xn) vy in S(N) andu;=v;_1,i=1,...,n
un [[ao){[oq)---[[a,,) v in SS(N))
The set R (N) of reachable markings of N is the set of markings which are target
of some step sequence, i.e.,
R(N) = {v| 3(un [oo) - -- [oxn) v) in SS(N)}.

An important class of nets is that of occurrence nets, introduced originally in [57]
by ‘unfolding’ safe nets into a suitable ‘collection’ of their processes (as defined for
elementary net systems in Section 1.2). Occurrence nets are elementary nets with a
nicely stratified structure whose minimal elements constitute the initial marking.

DEFINITION. An occurrence net is an semiweighted net © such that preg(t) is a set
forallt € Ty, and
i) Va € Sg, |"a| < 1,and a € ug if and only if ‘a = 2;
i) < is irreflexive, where < is the transitive closure of the (flow) relation
<'={(a,t) |a € Se,t € To,t €a®}U{(t,a) | a € So,t € To, 1 € *a};
moreover, Vt € To, {t' € To | ' <t} is finite;
iii) the binary ‘conflict’ relation # on Tg U Sg is irreflexive, where
Vi, € To, i #mty <= preg(ti)Npreg(t2) #9 & t1 # 1,
Vx,y € TgUSg, x#y <= I,neTo, h#ntr & 61 Ix & Xy,
and < is the reflexive closure of <.
This defines the category Occ as a full subcategory of SWNets.
Elements x and y of © by are concurrent, x co y, if they are related neither by < nor
by #. For X a set of elements, we write Co(X) to mean that xco y for all x,y € X.
Thanks to the stratified structure of the nets in Occ, for them we can define the

concepts of depth of elements and, consequently, of subnet of depth n. Essentially, this
will allow us to work on such nets by induction.

DEFINITION. Let © be a net in Occ. The depth of elements in Tp U Se is defined
inductively by:

_ 0 if b € ug;
> depth(b) = { depth(t) if*h = {I};

> depth(z) = max{depth(b) | b <t} + 1.
DEFINITION. Given a net © in Occ define its subnet of depth n, ©"), as
> Tow = {t € To | depth(t) <n};
> Sgm = {b € Se | depth(b) < n};
D> preg and postgys are the restrictions of preg and postg t0 Tym);

B Ugn) = UO-

608

Clearly, ©™ is a net in Occ, whenever © is such. For each z < m there exists a mor-
phism ir, ., O — @™ whose components are both set inclusions. In the following
we shall call such net morphisms simply inclusions. Observe that, if {f,g): Go = &
is an inclusion, we obviously have ug, = ug, and, for each 1 € Tg,, preg, (t) = preg, (t)
and postg, (t) = postg, (1).

The sequence of nets 8, n € m, can be seen as a sequence of finite approxima-
tions which, together with the corresponding inclusions, determines © uniquely (up to
isomorphisms). We shall formalise this intuition by means of the categorical notion of
colimit. The following results will allow us to define the unfolding of a net in terms of
finite unfoldings, viz., its subnets of depth n. We first need to show that Occ possesses
the required colimits. Consider the category @ = {0 - 1 — 2 — 3.--} and the class
D of diagrams D: ® — Occ such that D(n — n+1) = in,: D(n) = D(n+ 1) is an
inclusion. For such a class we have the following results. The reader is referred to [42]
for the definition of the categorical concepts involved.

PROPOSITION 2.10. For any D € ‘D, the colimit of D in Occ exists.
PROOF. Consider the net © = (preg,postg: To — 1(Se),ue) where
To=U,Tpm)» Se=UnSpw), e =upq),

pres(t) = pre"D(n:)(t), posts(t) = posti)(nt}(t),

where n; above denotes any n € ® such that t € Tp(y,).
Clearly, © is well-defined, is a net, and belongs to Occ. Then taking for eachn € ®
Un: D(n) — © to be the obvious inclusion, we have that u is the limiting cocone. {1

PROPOSITION 2.11. Given a net © in Occ, let Do: ® — Occ be the functor such that
De(n) = O and Dg(n — n+1) = inyp1: O — O+, Then © = Colim(De).

PROOF. It is enough to observe that the colimit construction for diagrams in 2
in the proof of the previous proposition gives a family y,: D(n) — ©, n € ®, where
Uy O 5 @ is the inclusion of 0 in @. (i

2.4. Unfolding semiweighted nets. We are now ready to define the unfolding of
SW nets in terms of occurrence nets and show that it is a functor from SWNets to Occ
which is right adjoint to the inclusion of Occ in SWNets,

We start by giving the object component of such a functor. To this end, given
a net N, we define a sequence occurrence nets, whose nth element approximates the
unfolding of N up to depth n, i.e., it reflects all the possible behaviours of N up to (step)
sequences of length at most n. Clearly, the unfolding of N will be defined as the colimit
of an appropriate @-diagram built on the sequence of approximating nets.

The purpose of the following inductive definition is to generate all the possible
instances of places and transitions of N by decorating them with their ‘history’. Places
in the approximating nets represent instances of places of N: precisely, they are pairs
(x,b), where b € Sy and x is a set encoding the history of this particular instance of b.
Analogously, the transitions are pairs (B,t) where t € Ty and the set B represents the
history of the instance of ¢.

609

DEFINITION. Let N = (prey,posty: Ty — u{Sn),un) be a net in SWNets. We define
the nets U(N)*) = (pre,,post,: T, — p(Sk), ux), for k € ®, where (cf. Figure 7)

> So={(2,b) |beun};
> Tp = @, and prey and post, with the obvious definitions;
> up = 2805
and for k > 0,
, B= {(xj,b;) | j€J} CSiz1, Co(B), Tjesbj=prey(t) fort €Ty
(B,t) €T, and pre(B,t)=3YB
5 o= (B,t) €Ty, posty(t)=3csb;
({to},bj) [Sk, Vj € f, and pOStk(to) = Zj({to},bj)
> Uy = Zj(ﬁ,bj) =¥ 8o = up.

Therefore U(N)'? consists of the initial marking of N, and, informally speaking,
U(N)™*+1) is obtained, inductively, by generating a new transition for each possible
subset of concurrent places of U(N)(™ whose corresponding multiset of places of N is
the source of some transition ¢ of N; the target of 7 is then decorated with its history and
added to U(N)(+1),

Clearly, we shall take 7I(N) to be the colimit of the sequence of the U(N Y7 n e w.
To do that, we first need to prove the following lemma.

LEMMA 2.12. Forall n € ®, U(N)" is an occurrence net of depth n. Moreover, for
each n € there is an inclusion in,: UN)W = QN+,

PROOF. That U(N)(™ has depth n and that there exists an inclusion from U(N)
to U(N)"*1) is obvious from the definition. We have to show that U(N)™ is an oc-
currence net. For each t € T,,, pre,(t) and post,(t) are multisets where all the elements
have multiplicity one, i.e., sets. The same happens for uy,.

i) For each (x,b) € Sy, *(x,b) = x which is either the empty set or a singleton. So
[*(x,b)| < 1. Moreover, (x,b) € u, if and only if x = @ if and only if *(x,b) = @.
ii) By definition of U(N)™, whenever x <! y <! z, depth(z) = depth(x) + 1. Since
x,z € T, ot x,7 € S, implies that there exists at least one y such that x < y <!
z we have depth(x) < depth(z). So x # z and < is irreflexive. Observe that
this, together with (i), implies that, in each reachable marking, every place has
multiplicity at most one. In fact, since that happens in u,, since each place has
only one pre-event and each transition occurs at most once in any computation,
there is no way to generate multiple tokens in a place. Moreover, {¢' € T, |t <t}
is obviously finite for all r € T;,.
iiiy Recall that x # x if and only if 3¢, € Ty, t # ' and t #,, ¢’ such that < x and
t' < x. So, by (i), x cannot be a place, otherwise we would have backward
branching. This means that there exist b,b' € pre,(x), b # b such that bco V',
i.e., x = (B,t) with not Co(B), that is impossible.

The other conditions of occurrence nets obviously hold. 0

610

DEFINITION. We define U(N) to be the colimit of the diagram D: ® — DecQcc such
that D(n) = U(N)™ and D(n — n+ 1) = in,. By Lemma 2.12 D belongs to 9 and so,
by Proposition 2.10, the colimit exists and is a decorated occurrence net.

73

ﬁf—l
/% E
IltzJL

0 0

FIGURE 7. An SW net N and (part of) its unfolding U(N)

The correspondence between elements of the unfolding and elements of the orig-
inal net is formalised by the folding morphism, which will also be the counit of the
adjunction.

PROPOSITION 2.13. Consider the map €: U(N) — N defined by

> g(Bty=t;

> €,(0) = 0;

> €p(Zi(xi, i) = Zii-

Then, €y is a morphism in SWNets, called the folding of U(N) into N.

PROOF. Since the transitions of U(N) are of the form # = (B,t): Y.B — ¥.C,
where B = {(x}-,bj) ljed}C Suwy C={({w},ct) | keK}, t €Ty, Zjejbj = prey(1),
and Y cx ¢k = posty(t), we immediately obtain

ep(P’eu(N)(BJ)) = prey(&(B,1)),
and analogously for post. Since ugyy = Spesy un(b) - (2,b), we have &,(ugy)) =
Shesy un(b) -b=un.

The next lemma is the final ingredient we need to prove that U(_) is right adjoint

to the inclusion. The missing details can be found in [48].

LEMMA 2.14. Let ©g and ©1 be occurrence nets and let f: 8y — 6 be a morphism.
Then, for each ty € To,, we have Co (preg,(to)) and Co (f»(preg,(10)))-

611

PROOF. Since, by definition of occurrence nets, {#' < ¢} is finite, we have not
Co(preg,(to)) iff 3b,b" € preg,(to) such that b # &'. This would mean that 3,¢' €
Toy, t #1 and t #, ' such that 1 < b and ¢’ < b'. Thus, since t < 19 and ¢’ < 19, we
would have 1 # tp which is impossible since ©p is a occurrence net. Furthermore,
Sp(preg,(t0)) = preg, (f:(f0)), which is the pre-set of a transition of a occurrence net
and so, by the first part of this proposition, Co(fp(preg,(t0)))- d

THEOREM 2.15. The pair (~, U(.)} : Occ — SWNets constitutes an adjunction.

PROOF. Let N be a SW net and U(N) its unfolding. We show that the folding
€: U(N) — N is universal, i.e., for any occurrence net © and any morphismk: @ - N
in SWNets, there exists a unique k: @ — U(N) in Occ such that k =€oh.

N UN) UN) ——— N
VkT amT s.t. h[/
[4 commutes.
0] © o

Consider the diagram in Occ given by Dg(n) = %), the subnet of @ of depth n and
Do(n — n+1) =in,: O — @+, We define a sequence of morphisms of nets
hy,: O U(N), such that for each n, b, = hy1 0 in,. Since © = Colim(Dg), there
is a unique h: © — U(N) such that hou, = h, for each n. At the same time, we show
that

Vnew, kou, =¢€oh,

and that the A, form the unique sequence of morphisms #,,: ©) — U(N) such that this
holds. Thus we have

VYnew, kouy,=¢cohop,

and, by the universal property of the colimit, X = €0 h. To show the uniqueness of A,
let 4’ be such that k = €o#’. Then we have kou, = €o k' oy, But ki, is the unique
morphism for which this happens. Therefore, for each n, h, = #' o 1, and so, again by
the universal property of the colimit, z = #'.

Let us now define h, and therefore h: @ —» U(N), and show that the h,, n € ®,
form the unique sequence of morphisms for which (1) above holds.

depth 0. This is a special case of the inductive step, and we omit it (see [48].)

depth n+1. Let us suppose that we have defined h,: © — U(N) and that it
is a morphism. Suppose that for each m < n, hy, is the unique morphism such that
goh, = kop,. Let h,.q be b, on the elements of depth less or equal to n. Now, we
define A, on the elements of depth n+ 1. Let #; € Tg such that depth(t;) =n+1 and
k(z;) =t. Since preg(t)) is a set of elements of depth less or equal to n, h,(preg(t1)) is
defined. Since hj, is a morphism, by Lemma 2.14, we have Co(h,(preg(t1))). Moreover,
since €o h,, = ko u1,, we have that

prey(t) = k(preg(t1)) = €0 hn(preg(t)) = X jes bj,
for J such that {(x;,b;) | j € J} = ha(preg(t1)).

Therefore to = (hn(preg(t1)),t) = (hnt1(preg(t1)),t) € Tyn). Now, since 41 has to
make the diagram commute, 1 (¢;) must be of the form (B,t) and, since it has to be a

612

morphism, it must be preq((B,)) = LB = hny1(preg(t1)). Therefore hyi1(11) = to.
Observe that there is only one choice for A+ (t;), given k and h,, by inductive hypothe-
sis. Obviously, €0 k,11(t1) =t =k(t1) = ko pp41(t1). Now, let postg(t1) = T;a:. Sup-
pose that k(a;) = 3 ; m;b; Since k(postg(t1)) = posty(k(t1)), we have posty(k(#;)) =
3;,jmibh, with all b, distinct. It follows that m; = 1 and thus in TU(N) we have the
places U; ;{({to},]) }. We define

husi(ai) = £,{({o},6])}

and, as before, conclude that o0 h,11(a;) = 3 bj. = k(a;) = ko pnt1(a;).

Observe that 1 (a;) is completely determined by k and by the conditions of dec-
orated occurrence net morphisms.

Finally, we have to show that ki, is a morphism ©(*+1) — ZI(N). But this task is
really trivial because, by its own construction, k,4 preserves source, target and initial
marking. O

THEOREM 2.16. {—, U(.)} is a coreflection Occ — SWNets.

It is worth observing that when N is a safe net, U(N) is (isomorphic to) the un-
folding of N defined in [37, 94]. In other words, (<, U(_)) restricts to the coreflection
Occ — Safe presented in loc. cit.

Our final step in relating SW nets to event structures and domains is to fill the gap
between occurrence nets and event structures. To this aim, we conclude this section
recalling the definitions of the functors forming the coreflection (A[,E): E — Occ as
studied in [57, 94].

DEFINITION. Let © be an occurrence net. Then, E(®) is the event structure
(T9a j,#) 3

where < and # are the restriction to Tg, the set of transitions of ©, of, respectively, the
flow ordering <@ and the conflict relation #g implicitly defined by ©.

For f: Ng — N1 a morphism in Occ, we take Z(f) to be f;: E(Ng) — E(N1), which
clearly gives a functor £: Occ — E.

Consider now an event structure {E, <,#). As a notation, for a subset A of E, we
write #A to mean that a # a’ for all a # o’ € A Similarly, e < A means that e < ¢ for all
¢ € A. Then, we can define define

N(E, <,#) = (pre,post: E ~ u(MUB),S M),

where
M = {(&,A)|ACE and#A};
B = {(e,A)|e€E, #Aande < A};
pre(e) = {(c,A) e BUM|e€A};
post(e) = {(e,A)€B}.

Then, we have the following.

613

THEOREM 2.17. For each event structure E, N(E) is an occurrence net such that
EN(E) = E. Moreover, N extends to a functor that is left adjoint to ‘E, so yielding a
coreflection whose unit is the identity function E — EN(E) = E.

PROOF. See [95]. g

Although AE(©) and © are not isomorphic in Occ, it is worth observing that they
are ‘behaviourally’ such. In particular, an inspection of the definition will prove that
NE(N) is place-saturated version of N, i.e., that is obtained by adding to N all the
places that it is possible to add without duplicating any or altering the behaviour.

The coreflection between Occ and SWNets can of course be composed with the
coreflection between Occ and E and with the equivalence (a fortiori a coreflection!)
of D and E. The following example shows the structures associated by this chain of
coreflections to a simple, well-known, (non-safe) semiweighted net.

EXAMPLE.

? O O

N U(N)

Observe that the unfolding contains two concurrent copies of ¢. These correspond to the
occurrences of ¢ in two possible ‘causal contexts’, namely ¢ caused by #; and ¢ caused
by #. In the picture below, which shows the event structure and the prime algebraic
domain associated to N, the four events so arising are labelled by the transition they
correspond to.

{tg,tz,t,t}
~ .
{t1,1,1} {t1,12,1}
t t - - o ~
{tlyt} {tlatZ} {t23t}
t ty ™~ {1} -~ ™~ {t2} —
EU(N) ™~ z/

DEUN)

614

3. Petri Nets and Transition Systems

Looking back at the notion of case graph CGy in Section 1.1, we certainly know
that — to a certain extent and with a certain degree of precision — nets can be described
by some sort of transition system. The details, however, are far from trivial and in this
section we set out to study them by presenting a coreflection between elementary net
systems and so-called elementary transition systems due to [59, 60].

Intuitively, this result identifies a category of transition systems which may be seen
as an abstract behavioural characterisation of elementary net systems, formally stated
as a coreflection ‘embedding’ a category of certain transition systems into EN. This
was the first of a series of behavioural characterisation results for nets, in the sense
that several similar coreflections have been shown for more general classes of nets, see
e.g. [97, 53]. We restrict ourselves here to elementary nets, though we believe that the
ideas from [53] generalise smoothly to provide a corresponding result for SWNets.

3.1. Transition systems. Transition systems are a frequently used model of par-
allel processes. They consist of a set of states, with an initial state, together with transi-
tions between states which are labelled to specify the kind of events they represent.

DEFINITION. A transition system is a structure (S,i,L,tran) where
& S is a set of states with initial state i,
> Lis a set of labels,
> tran C S x L x S is the transition relation.

A transition (s,a,s') € tran is often indicated as s — 5.

DEFINITION. Let Ty = (So,io,Lg,trang) and Ty = (S1,i1,L1,tran;) be transition sys-
tems. A morphism f: Ty — T is a pair f = {(G,A) where

> o: Sg — Si, a function between sets of states,

> A: Ly — Ly, a function between sets of labels,
are such that 6(ip) = i1 and (s, 0, s") € trang implies (0(s),A(cr),0(s')) € tran,.

The intention behind the definition of morphism is, as usual in this paper, to guar-
antee that the relevant behavioural notions are preserved. In case of transition systems
this amounts to saying that the effect of a transition s 2 ¢ in Tp is matched in T

by the effect of a corresponding transition o(s) }i(ﬁ o(s'). To complete the definition,
morphism are required to preserve initial states.

Transition system and their morphisms form a category TS in which composition is
defined componentwise — i.¢., composing (6,A): Tp = T; and (¢',1): T} = T3 yields
(6'00,A oL): Ty & T» — and the identity morphism of T is (17, 17,), where 1y is the
identity function on the set X.

The definition below refines the notion of case graph of an elementary net systems
by recasting it in terms of transition systems. In the following, for N = (B, E,F,c;,) an
elementary net system, we shall say that an event e € E is ‘active’ if it has an occurrence
(c,e,c") € —cy.

DEFINITION. Let N = (B,E,F,c;,) an elementary net system. The reachable case
graph associated with N is the transition system TSy = (Cy, Cin, ExN, —>¢y), Where Ey
is the set of active events of N.

615

The reachable case graph, or simply the transition system, associated with the net
system of Figure 1 is presented in Figure 8.

L .Ql

FIGURE 8

With the definition of TS given above, it is quite easy to see that the case graph
construction of elementary net systems extends to a functor from EN to TS (see below).
In order for this functor to be part (left adjoint) of a coreflection, however, we first need
to identify those transition systems that arise as reachable case graphs of elementary
nets. Such transition systems can be characterised in terms of regions by Ehrenfeucht
and Rozenberg [20].

DEFINITION. Let T = (8,i,L,tran) be a transition system. Then r C S is a region of T
if and only if the following two conditions are satisfied for all (so,e,%), (s1,€,11) € tran:

> ifsper&tydr,thens €r&ti ér;
b>ifsogr&merthens; gr&e er.

So, a region is a subset of states, such that for all e € L, all occurrences of an e-
labelled transitions have the same ‘crossing’ relationship with respect to r (leaving or
entering). As an example, consider again the transition system from Figure 8. It is
easy to check, for instance, that the singleton set consisting of the state entered by the
es-labelled transition is a region, whereas the singleton set consisting of the initial state
is not.

It follows trivially that both & and S are regions of T. They are called the trivial
regions, and we use Kr as notation for the set of non-trivial regions of T. Also, fors € §,
we use K to denote the set of non-trivial regions of T containing 5. More precisely

Rs={r|s€randre Rr}.
Yet another crucial notation concerns the set of pre- and post-regions of a label.
Formally, for e € L, we define
the pre-regions of e: ‘e ={r€ Ry | I(s,e,s') €Etran.ser&s' ¢r};
the post-regions of e: ¢° = {r € Rr | I(s,e,s') €tran.s¢ r& s’ € r}.
Some useful properties of regions can now be stated.
PROPOSITION 3.1. Let T = (S,i,L,tran) be a transition system. Then

i) rCSisaregionifandonly if F = S~ ris a region.
it Lete € L. Then ¢® = {F|r € %e}.
iii) Let (s,e,s') € tran. Then Ry~ Ry = °e and Ry \ Rs = ¢€°.

616

Another important property of regions is that they are preserved by inverse mor-
phism.

PROPOSITION 3.2. Let f = (0,A) be a morphism from Ty to Ty. If r is a region of
Ty then 6~ (r) is a region of Ty. Furthermore, for every e € Ly,, we have 6™'(r) € %
(respectively 6~ (r) € €°) if and only if r € °AM(e) (respectively to r € A(e)°).

Using the notion of regions, we may now define the transition systems which arise
as case graphs of elementary nets, following [20].

DEFINITION. A transition system T = (S,i,L,tran) is said to be elementary if it satis-
fies the following conditions:

(Al) Ye€ L. I(s,e,s') € tran, where s # s';

(A2) Vs € S\ {i}. 3s0,51,...,8n+1 € Sand eg,e1,...,e, € L such that

i=50, Spr1=s, and (s;e;,si+1) €tranfor0<i<m

(A3) Ve, €L. =% = e=¢;
(A V5,5’ €8 R=Ry = s=¢;
(AS) VseS.Ve€L. % C R & e’ NR =2 = I(s,e,5) € tran.

We let ETS denote the full subcategory of TS with elementary transition systems as
objects.

Notice that the axioms presented here are a cleaned up version of the axioms pre-
sented in [59], but in this context, the two sets of axioms can be proved to be equivalent.
The two first axioms just state that each label and each state can be reached form the
initial state by a finite number of transitions. The next two enforce certain obvious
regional separation properties, for labels and states respectively. And the final axiom
enforces a relationship between regional properties of labels and the transition relation.

3.2. Elementary nets and transition systems. It turns out that ETS is exactly the
category of case graphs associated with EN, a result which we shall formalise in this
section. For full proofs of the theorems quoted, we refer to [59]

THEOREM 3.3. The construction that maps N = (B,E, F,cy,) to the its reachable case
graph TSy = (Cw, Cin, En,—>cy) extends to a functor nt from EN to ETS.

PROOF. Easy. It follows essentially from Proposition 1.5. a

More importantly, nt is the left adjoint component of a coreflection whose a right
adjoint, tn: ETS — EN, operates on objects as detailed below.

DEFINITION. Let T = (§,i,L,tran) be a transition system. The net structure associ-
ated to T is the net Ny = (Rr,L,Fr,R;), where

> (r,e) € Fr if and only if r € °¢;

> (e,r) € Frif and only if r € €°.

Essentially, this definition ‘reads’ a transition systems as the case graph of some

net. Thus, as expected, the labels of T become events of Nr and the regions become the
conditions, with the pre- and post-sets obviously given by pre- and post-regions.

617

PROPOSITION 3.4. The net structure Ny = (Ry,L, Fr,R;) associated to the transition
system T = (S,i,L,tran) is an elementary net system.

PROOF. Easy. O
As anticipated, Ny is the object part of the right adjoint of nt.

THEOREM 3.5. The construction that maps a transiton system T to its net structure
Nr extends to a functor tn from ETS to EN.

PROOF. A morphism (0,A): Ty — T is mapped to tn(o,A) = (B,A): Ny, = Nr,
where B~1(r;) = 67 1(r). With this definition, the proof essentially follows from
Proposition 3.2. O

THEOREM 3.6. Functors tn and nt form a coreflection ETS — EN with m as left ad-
joint.

PROOF. This proof is rather involved. We refer the interested reader to [59]. O

One interesting part of the construction is that, exactly as in the case of event struc-
tures, mont(N) is a ‘condition-saturated’ version of N, in the formal sense that any
further addition of a condition will change the behaviour (case graph) of the net. As a
consequence, the saturated net will have, for each condition b, a condition representing
the complement of b — formally the set complement F of the region r associated with
b (cf. Proposition 3.1(i)). Hence, as a corollary of this construction, we have that any
elementary net system is behaviourally equivalent to a contact-free system.

4. Petri Nets and Bisimulations

The coreflections that we studied in the previous sections establish a web of for-
mal relationships between nets and other models, enabling us to place nets in a broader
picture of models for concurrency and, often, allowing the translation of concepts to
between models. This section aims at providing an illustration of this point. It is an
exposition of a the categorical approach to bisimulation obtained from spans of open
maps as defined in [35] — to which we refer for the missing proofs — with an additional
treatment of SWNets in the general picture. The open map approach presented here has
also been applied successfully to capture other familiar behavioural equivalences on
nets, e.g., Hoare's trace equivalence {30] and Milner’s weak bisimulation {49, 50], both
of which may be obtained by slightly changing the notion of path extension from the
one presented here [55]. Also, the open morphism approach has been applied suc-
cessfully to different categories of models, e.g., probabilistic systems [55], and timed
systems [34].

Once again, the idea here is to put forward that the categorical view of models for
concurrency provides guidelines for definitions of concepts, like behavioural equiva-
lences, consistent across a range of models. In particular, the notion of bisimulation
derived for nets comes automatically equipped with a number of essential properties.
The categorical approach here contrasts with the more common alternative of searching
for a sensible candidate for bisimulation on nets and, having found one of then checking
it possesses these essential properties.

618

4.1. Labelled models and their relationship. Like most models for concurrency,
nets [65] and asynchronous transition systems [54], or more precisely their labelled
versions, have been used as models for process languages like CCS, [50]. As an il-
lustration, following [65], the (strongly bisimilar) CCS expressions a.nil | b.nil and
a.b.nil + b.a.nil are represented by the following rather different nets.

©O—¢—0 at—O—b F—O

A s

&—{s}-0 op—O—{«} -0

el ‘sl sl

a.nil | b.nil a.b.nil+ b.a.nil

There is a general way of introducing labels to models in such a way that one may
carry over adjunctions between unlabelled models to their labelled counterparts, fol-
lowing [35]. Here we sketch the idea, applicable to the categories of nets and event
structures. We assume a category X of structures each of which possesses a distin-
guished set of events and where morphisms have as a component a function between
sets of events. In any such setting, morphisms may be lifted uniformly to a category X,
with labels.

> The objects of X, consist of structures (X,/) where X is an object of X, and
I: E — Lis a (total) labelling function from £ the events of X to the labelling
set L.

> The morphisms of X, from (X,1) to (X', ') correspond to morphisms f: X — X’
of X of which the event component 1| preserves labels, i.e. ' on = I.

Correspondingly, for a set of labels L, we denote the fibres over L in the labelled
versions of our categories of nets and event structures by ENz, SWNets; and E;, re-
spectively. Similarly the category of transition systems over label set L, with morphisms
having the identity as label component, will be denoted TS;, and its full subcategory
of synchronisation trees — that are precisely the tree-‘shaped’ transition systems —
by S;.

It follows for general reasons [97] (and is easy to see) that the coreflection be-
tween nets and event structures lift to a coreflection between the labelled versions. The
modified adjoints are essentially the adjoints presented in the previous sections, simply
carrying the label parts across from one model to the other. Furthermore, this coreflec-
tion is part of greater collection [97, 80, 79] of which here we are interested in the small

portion shown in the diagram below.
C se N ¢ N(—) R
St = ” SWNetsy,
Y es N EU()

Concerning synchronisation trees, we remark that, as hinted at in Section 2.1, they
can be identified with those labelled event siructures having empty co-relation, i.e.,
those whose every two events are either causally dependent or conflicting. This gives

619

rise to an embedding se: Sy, <+ E; which, actually, admits a coreflection right adjoint
whose action on objects yields the tree of event sequences ordered by prefix.

4.2. Path-lifting morphisms. Following [35], a computation path represents a
particular run or history of a process. For transition systems, a computation path is
traditionally taken to be a finite sequence of transitions. For a labelling set L, define the
category of branches Brany, to be the full subcategory of transition systems, with la-
belling set L, with objects those finite synchronisation trees with exactly one (maximal)
branch; so the objects of Bran; are essentially strings over alphabet L. A computa-
tion path in a transition system T, with labelling set L, can then be represented by a
morphism

p:P—=T

in TS from an object P of Bran,.

How should we represent a computation path of a net or an event structure? To take
into account the explicit concurrency exhibited by an event structure, it is reasonable
to represent a computation path as a morphism from a partial order of labelled events,
that is from a pomset [69]. Observe that pomsets with labels in L can be identified with
special kinds of labelled event structures in E; : those with empty conflictrelation. Then,
define the category of pomsets Pom;, with respect to a labelling set L, to be the full
subcategory of E; whose objects consist exclusively of finite pomsets. A computation
path in an event structure E, with labelling set L, is a morphism

p.:P—E

in E;, from an object P of Pom;.

What about computation paths in nets? The answer is that our embeddings of
event structures into nets allow us to view pomsets as labelled nets! Let us illustrate
the point more concretely. The left adjoint A(_) of the coreflection E;, — SWNets;,
embeds labelled event structures, and so pomsets, in labelled SW nets. This enables
us to identify pomsets P in Pom; with their images A (P) as labelled saturated nets in
SWNets;. Now, we can take a computation path in a net N, with labelling set L, to be
a morphism

p: PN

in SWNets; from a ‘pomset’ P, with labelling set L — where P actually stands for
labelled saturated net in SWNets; corresponding to a pomset. In future, when dis-
cussing nets, we will deliberately confuse pomsets with their image in SWNets; under
the embedding.

Generally, assume a category of models M (this can be any of the categories of
labelled structures we are considering) and a choice of path category, a subcategory
P < M consisting of path objects (these could be branches, or pomsets) together with
morphisms expressing how they can be extended. Define a computation path in an
object X of M to be a morphism

p:P—=+X,

620

in M, where P is an objectin P. A morphism f: X ~+ Y in M takes such a path pin X to
the path fop: P — Y in Y. The morphism f expresses the sense in which Y simulates
X: any computation path in X is matched by the computation path fopinY.

We might demand a stronger condition of a morphism f: X — Y expressed suc-
cinctly in the following path-lifting condition: whenever, for m: P — Q a morphism in
P, a ‘square’

p—2ux
m| b

0——Y

in M commutes, i.e., gom = f o p, meaning the path f o p in Y can be extended via m
to a path g in Y, then there is a morphism p’ such that in the diagram

P——X

m U

Q——Y

the two ‘triangles’ commute, i.e., p'om = p and f o p’ = g, meaning the path p can be
extended via m to a path p’ in X which matches g. When the morphism f satisfies this
condition we shall say it is P-open.

It is easily checked that P-open morphisms include all the identity morphisms (in
fact, all isomorphisms) of M and are closed under composition there; in other words
they form a subcategory of M.

For transition systems, Branz-open morphisms are already familiar.

PROPOSITION 4.1, With respect to a labelling set L, the Bran-open morphisms of
TS, are the ‘zig-zag morphisms’ of [88), the ‘p-morphism’ of [82), the ‘abstraction
homomorphisms’ of [14], and the ‘pure morphisms’ of [5], the ‘transition-preserving
homomorphisms’ of [23], i.e., those label-preserving morphisms (0,1.): T — T on
transition systems over labelling set L with the property that for all reachable states s
of T

ifo(s) 25 in T' then s ~ uin T and 6(u) = 5, for u a state of T.

DEFINITION. Let P be a category in a category of models M. Objects X1,X2 of M are
P-bisimilar iff they are in the equivalence generated by being related by a P-open map.

For the interleaving models of transition systems and synchronisation trees with
path category P taken to be branches, P-bisimulation coincides with Milner’s strong
bisimulation {50, 49].

THEOREM 4.2. Two transition systems (and so synchronisation trees), over the same
labelling set L, are Brany-bisimilar iff they are strongly bisimilar in the sense of [50].

In many cases, including the ones considered here, P-bisimilarity between two
objects have a particularly simple presentation.

621

THEOREM 4.3. If the category M has pullbacks, then M\ and My are P-bisimilar iff
there is a span of P-open morphisms f1, fz:

2N
M M

PROOF. It follows since pullbacks of P-open morphisms are P-open. 0
PROPOSITION 4.4. The categories Sy, Er and Occp have pullbacks.

PROOF. One shows that Occy, has pullbacks. Then, using the facts that right ad-
joints preserve limits, and pullbacks in particular, and that there are coreflections from
categories Sy, and E; to Occy, we obtain pullbacks in any of these as images under the
right adjoints of the puilback in Occy of diagrams transported into Occy, by the left
adjoints. O

We conclude this section presenting a few general facts from {35] about how open
morphisms and bisimilarity are preserved and reflected by functors, especially when
part of a coreflection. For notational simplicity we shall assume the left adjoints of the
coreflections are inclusions. It follows that for the coreflections of Section 4.1, in which
the categories of models share the same choice of path category, open morphisms and
bisimilarity are preserved in both directions of the adjunction.

LEMMA 4.5. Let M be a coreflective subcategory of X with R right adjoint to the in-
clusion function M <> X and P a subcategory of M.

i) A morphism f of M is P-open in M if and only if f is P-open in X.
i) The components of the counit €x : R(X) — X are P-open in X.
iify A morphism f is P-open in X if and only if R(f) is P-open in M.

COROLLARY 4.6. Let M be a coreflective subcategory of X with R right adjoint to the
inclusion functor M — X and P a subcategory of M.

iy My and My are P-bisimilar in M if and only if they are P-bisimilar in X.
iy My and M are P-bisimilar in X if and only if R(M1) and R(M2) are P-bisimilar
in M.

PROOF. (i} Directly from (i) of Lemma 4.5.

(it) ‘only if’: By Lemma 4.5(iii), a span of open morphisms in X has, as image
under R, a span of open morphisms in M. Thus P-bisimilarity of M; and M, in X
implies P-bisimilarity of R(M;) and R(M>) in M.

‘if’: Suppose R{(M;) and R(M3) in M are P-bisimilar in M via a span of open
morphisms fi: M - R(M)), fo: M — R(M>) in M. By Lemma 4.5(i), f, and f, form
a span of open morphisms in X. The components of the counits of the coreflection
£1: R(M1) = M; and &: R(M;) — M are open by Lemma 4.5(ii). Hence the compo-
sitions €; o f) and €; o f; form a span of open morphisms in X showing the P-bisimilarity
of My and M in X. d

622

4.3. Pom-bisimulation for nets. As seen in Lemma 4.1 and Theorem 4.2, for
transition systems the general definition of P-open morphism and P-bisimilarity coin-
cide with familiar notions: the equivalence of strong bisimilarity central to Milner’s
work. Here we explore how the general definitions specialise to the models of event
structures and nets, with nonsequential observations in the form of pomsets. We focus
our attention on SWNets, but the answers provided follow closely those obtained for
other classes of net systems in [63].

We start by characterising Pomz-open morphisms of SWNets;..

PROPOSITION 4.7, The Pomy-open morphisms of SWNetsy, are precisely those which
satisfy the ‘zig-zag’ condition of Proposition 4.1 and which, in addition, reflect consec-
utive independence, i.e., those f: Ny — Ny satisfying:

> f; is total and label preserving;

> whenever f,(1) sV in Ny, for yt reachable, then there exists 1 = v in Ny
such that f,(e) = ¢ and fp(V) =V';

> whenever yu — y and i/ <, y" in Ny, for u reachable, and f;(e) co f;(€') in
N;, then e co € in Ni.

PROOF. Let f: N; = N, be an open morphism in SWNets;. The function f; is to-
tal and label preserving from definition of morphisms in SWNets;, and by considering
linear pomsets, where causal dependency is a total order, it is clear as in Proposition 4.1
that f satisfies the ‘zig-zag’ condition. The only nontrivial part is the reflection of
consecutive independence. Let u be a reachable marking and let

¢
p—ry and g =
be two consecutive transitions in N;. Consider the corresponding transitions

L@ 5 and £00) 5D 100

of N,, and assume that f;(e) and f;(¢') are independent in N;. Assume further that
le)=1(fi(e)) =aand () =1(fi(e)) =4d.
Because u is reachable there is a chain of transitions

€ e en
Cin=Ho—— 1 —> "~ tp =

in Nj from its initial marking c;,. Let [(e;) = a;, and take P to be the linear pomset with
n+ 2 elements, ordered and labelled as indicated in the following pomset

Let p: P — N; be that morphism in SWNets; which maps this chain of transitions to

I T Ny A

623

in Ny. Let Q be the pomset differing from P only in that the a and o' labelled elements
are unordered, i.e., the pomset corresponding to the following graph.

ay a as N a,

Let g: Q — N, be that morphism in SWNets; mapping these transitions to

!
£e) Jo) A '>

> folu) co fp(#")
m f, (e)

o), filea), filen)

fp(wo) Fplun)

in Ny, where the dotted arrows represent the concurrency diamond. Letting m: P — Q
be the obvious morphism of pomsets, we observe the commuting diagram:

p—Lsx
ml lf

But f is open, so we obtain a morphism p’: Q — T such that the two ‘triangles’ com-

mute in the following diagram.
m] / I
Q —Y

Because p’ preserves independence, we see that e and ¢’ are independent in T. So
because f is open it satisfies the ‘zig-zag’ condition and reflects consecutive indepen-
dence.

The proof in the other direction is omitted; we refer to [35] for a similar proof
involving asynchronous transitions systems [4]. O

We now turn to the question of bisimulation. As shown in [35], taking pomsets
as the path category P yields in the case of event structures a reasonable strengthening
of a previously studied equivalence: the history-preserving bisimulation [71, 24]. Its
definition below depends on the simple but important remark that a configuration of
an event structure can be regarded as a pomset, with causal dependency relation and
labelling got by restricting those of the event structure.

DEFINITION. A history-preserving bisimulation between event structures E) and E»
consists of a set # of triples (x1, f,x2), where x; is a configuration of E; and f: x; = x
is an isomorphism of pomsets, such that (@, @, @) € # and, whenever (x1, f,x2) € H,

i) if x; == ¥, in Ey, then 3x, > ¥} in E; and (¥}, f',x5) € H with f C £
ii) if x == X, in E; then 3x1 —— x| in Ey and (¥}, f',x;) € H with f C f".

624

We say a history-preserving bisimulation # is strong if whenever (x, f,y) € H
I) if ¥ C x, for ¥’ a configuration of Ey, then (¥, f',y') € H, for f' C fandy Cy;

II) if y' Cy, fory a configuration of E,, then (¥, f,y') € H, for f C fand ¥’ C x.

THEOREM 4.8. Let Ey,E; be event structures with labelling sets L. The following are
equivalent:

i) Ey and E; are Pomy-bisimilar in E;.
ii) E1 and E are strong history-preserving bisimilar.

PROOF. See [63]. O

Via the coreflection between event structures and Petri nets, from Corollary 4.6 we
can draw characterisations of Pomy -bisimilarity on nets.

THEOREM 4.9. Let Ny and N; be nets with labelling sets L. The following are equiv-
alent.

i) The nets Ny and Ny are Pomy -bisimilar in SWNets;.
i) The unfoldings to event structures EU(Ny) and EU(N,) are strong history-
preserving bisimilar.

So, for general reasons, the notion of bisimilarity for nets agrees with the no-
tion of bisimilarity for the associated case graphs and unfoldings (where it amounts
to strong history-preserving bisimilarity). Results expressing agreements of this kind
would probably be required of any notion of bisimilarity, and, without the help of some
categorical machinery, would seem to require separate proofs. Of course, having char-
acterised Pom-bisimilarity on nets as strong history-preserving bisimilarity of their
unfoldings to event structures, it is possible to produce a characterisation in terms of
nets and their ‘processes’ along the lines of [89].

Many attempts have been made to define bisimilarity for noninterleaving models
like Petri nets, and the idea of parameterising the definition on a notion of observation
has been used in other attempts, e.g., [16]. One of the advantages of Pom,-bisimilarity
is, as shown, e.g., by Theorem 4.9, its robustness across a range of models. Another
issue is the the sensitivity of Pomy-bisimilarity for nets to the particular choice of path
category Pomy, as the notion of Pom; -bisimilarity might in fact seem questionable to
those who view general pomsets as not observable. To answer such a question, let us
define a pomset to be an almost totally ordered multiset if it is of one of the two simple
forms considered in the proof of Proposition 4.7, i.e., allowing at most two (maximal)
elements to be unordered. Note that in the range of subclasses of pomsets considered
in the literature (see [69]), this one is as close to Brang, as one can get! The following
result shows that restricting ourselves to such pomsets does not change the notion of
P-bisimilarity.

COROLLARY 4.10. Let Atomy denote the full subcategory of Pomy, consisting of the
almost totally ordered multisets.

i) A morphism in SWNetsy, is Pomy-open if and only if it is Atom-open.
iy Two nets are Pomy-bisimilar iff they are Atomy -bisimilar.

625

PROOF. Clearly (ii) follows from (i), so we concentrate on a proof of (i).

The ‘only if” part of (i) follows immediately from definition of open maps. By
inspecting the proof of Proposition 4.7, we observe that a morphism in SWNets, is
Pom,-open if it is Atom-open. O

Here, we have illustrated how to introduce bisimilarity for SW nets, using open
maps as in [35). Much of the theory developed since then on this approach to concur-
rency may be transferred to the setting of nets. As examples, we mention the logical
and game theoretic characterisations from [56], and the treatment of higher order mod-
els in [96]. But many questions are still left open.

Part 2. ON THE STRUCTURE OF NETS
5. Petri nets as monoids

A very prominent role in the semantic theory of Petri nets is played by various
notions of process, as, e.g. [68, 26, 7, 45, 18]. This, as we already pointed out in
Section 1.2, is because processes are structures capable of accounting, not only for the
mere occurrence of events in a computation, but also for the causal relationships which
ruled such occurrences. In other terms, processes are noninterleaving structures and, as
such, very suited to describe Petri nets.

A parallel and extremely successful line of research in concurrency, rooted in the
very ideas of denotational semantics, is the one following the algebraic approach. Here
the focus is on structural and compositional aspects of systems and behaviours, and the
leading idea is to describing them by means of a few basic building blocks and a small
number of combinators [30, 49, 29, 50]. The appeal of this approach is that it tends to
devise neat algebraic structures that capture the essential nature of the class of systems
considered.

In this section, we shall focus on a line of research — detailed, e.g., in [45, 18, 47,
77,78, 75, 76] — aimed at recasting Petri net processes in lieu of ideas from process
algebras and categorical algebra. In particular, we shall focus on Petri net concatenable
processes, introduced in [18] to account, as their name indicates, for the issue of process
concatenation. We start by briefly reconsidering the ideas that lead to their definition.
The exposition will follow [77] closely.

5.1. Concatenable processes, Ideally, Petri net processes are simply computa-
tions in which explicit information about cause/effect relationship between event occur-
rences is added. More precisely, as we describe causality by means of partial orderings,
the processes of a net N are ordered sets whose elements are labelled by transitions
of N. In order to describe exactly which multisets of transitions form ‘legal’ processes,
it is very convenient to define a process of N to be a map 1t: ©® — N which maps tran-
sitions to transitions and places to places respecting the ‘bipartite graph structure’ of
nets. Here © is a finite deterministic occurrence net, i.e., roughly speaking, a finite,
conflict-free, 1-safe, acyclic net. The role of = is to ‘label’ the places and the (partially
ordered) transitions of © with places and transitions of N in a way compatible with the
structure of N.

Given this definition, one can assign the correct source and farget states to a process
7. ©® — N by considering the multisets of places of N which are the image via of the

626

places of © with, respectively, empty pre-set and empty post-set (henceforth referred to
as minimal and maximal places of ®). Now, the simple minded attempt to concatenate
a process 7; : ©) = N with source u to a process 1p: ®g — N with target u by gluing
the maximal places of ©p with the minimal places of ©; in a way which preserves the
labellings fails immediately. In fact, if more than one place of u is labelled by a single
place of N, there are many ways to put in one-to-one correspondence the maximal
places of @ and the minimal places of ©; respecting the labels, i.e., there are many
possible concatenations of 1o and w1, each of which gives a possibly different process
of N. In other words, as the above argument shows, process concatenation has to do
with gluing tokens, i.e., instances of places, rather than gluing places.

Therefore, to deal with process concatenation one must disambiguate the identity
of each token in a process. This is exactly the idea of concatenable processes, which are
simply Goltz-Reisig [26] processes in which the minimal and maximal places carrying
the same label are linearly ordered. This yields immediately an operation of concate-
nation, since the ambiguity about the identity of tokens is resolved using the additional
information given by the orderings. Moreover, the existence of concatenation leads
easily to the definition of the category of concatenable processes of V.

It turns out that such a category is a symmetric monoidal category whose tensor
product is the parallel composition of processes [18]. We shall now recall this result,
whose relevance is that it describes net behaviours as algebras in a remarkably ab-
stract and smooth way, showing how to describe the concatenable processes of N as a
symmetric monoidal category P(N) defined axiomatically by means of universal con-
structions. Namely, P(N) is the free symmetric strict monoidal category on the net N
modulo two simple additional axioms [77].

5.2. Monoidal categories and concatenable processes. The notion of monoidal
category dates back to [3] (see [42] for an easy thorough introduction and [21] for
advanced topics). In this paper we shall be concerned only with a particular kind of
symmetric monoidal categories, namely those which are strict monoidal and whose
objects form a free commutative monoid.

A symmetric strict monoidal category (ssme for short) is a structure (C,®,e,7),
where C is a category, e is an object of C, called the unit object, ®: CxC - Cisa
functor, called the tensor product, subject to the following equations

¢y Ro(®@x1c) = ®o(lcx®),
(2) Role,lc) = I,
3 ®o(lc,e) = lc,

where e¢: C — C is the constant functor which associate e and id, respectively to each
object and each morphism of C, (-,) is the pairing of functors induced by the cartesian
product, and y: x; ® X — x2 ® x] is a natural isomorphism, called the symmetry of C,
subject to the following Kelly-MacLane coherence axioms [41, 39]:

4) (1 ®idy) 0 (idr ®Y2) = Yawya
(5 YpxOYry = idxay

Clearly, equation (1) states that the tensor is associative on both objects and arrows,
while (2) and (3) state that e and id, are, respectively, the unit object and the unit arrow

627

,0 S S
o RS

FIGURE 9. A net and one of its two concatenable processes CP: a+b — 2¢

for ®. Concerning the coherence axioms, axiom (5) says that vy, is the inverse of
Yx,y» While (4), the real key of symmetric monoidal categories, links the symmetry at
composed objects to the symmeiry at the components.

As an example easy enough to ponder the above equations, one might think of C
as the category of sets, with ® being the cartesian product, e the singleton set {e}, and
Yxy: X XY =Y x X as the map (x,y) — (y,x).

A symmetry s in a symmetric monoidal category C is any arrow obtained as com-
position and tensor of identities and components of y. We use Sym to denote the
subcategory of the symmetries of C.

A symmetric strict monoidal functor from (C,®,e,7) to (D,®’,€',Y), is a functor
F: C — D which preserves the monoidal structure, i.e., such that

(6) Fle) = ¢,
@) Fx®y) = Fx)&'F(),
(8 F(Yx,y) = YFx,Fy'

Let SSMC be the category of ssmc’s and symmetric strict monoidal functors and
let SSMC® be the full subcategory consisting of the monoidal categories whose objects
form free commutative monoids.

In this section, we consider only PT nets with finite markings, but release all re-
maining restrictions. Let S® denote the submonoid of u(S) consisting of the finite mul-
tisets of S, i.e., the functions S — @ which yield nonzero values at most on finitely many
arguments. Then, define Petri to be the subcategory of PTNets consisting of those N
whose transitions have source and target in S%, and of those f: Ng — N; whose place
components map Sg to Sg,

Recail that $® can be characterised as the free commutative monoid on S. In par-
ticular this means that the place component f, of a morphism f: Ny - Nj in Petri is
determined by assigning a multiset f,(a) € S?}I for each place a € Sy,, and then freely

extending it to the entire S, .

DEFINITION. A process net is a finite, acyclic net © such that for all 1 € Ty, preg(?)
and postg(t) are sets (as opposed to multisets), and for all 19 # 11 € To,

preg(to) Npreg(t) = @ and postg(to) Npostg(t)) =
Given N € Petri, a process of N is a morphism n: ® — N, where © is a process net

and 7 is a net morphism which maps places to places (as opposed to morphisms which
map places to markings).

628

© ©

FIGURE 10. CP of Figure 9 as the parallel composition of two simpler processes

@ ® © < j @ ®

o 11 Seq t = I t
© < © © ©

t

FIGURE 11. Sequential composition (concatenation) of concaten-
able processes

DEFINITION. A concatenable process of N is a triple

(’lt: @ - N, {<a}ﬂESN’ {<<a}aESN)’

where 7 is a process, and <, and &, are linear orderings of, respectively, the set of
minimal and the set of maximal places of © contained in 1:;‘ {a) (cf. Figure 9).

In order to abstract from the details concerning the underlying process nets, con-
catenable processes are considered up to isomorphisms. Formally, two concatenable
processes, say with underlying processes 7tp: @p — N and &y : ©1 = N, are identified
if there exists an isomorphism @: &y — ©; which preserves all the orderings and such
that 1t; o @ = 7g.

Concatenable processes allow the operations of sequential and parallel composi-
tion (see Figures 10 and 11, and consult [18] for further examples). Let CPy and CP;
be concatenable processes of N, and let mp: ©9 — N and %;: ©; — N denote their
underlying processes.

DEFINITION. The parallel composition CPy Par CPy is the concatenable process of N
whose underlying process is the disjoint union of mp and 7y, i.e., Mo +7; : Gp+©; — N,
where + denotes the coproduct in Petri, and whose orderings extend those of CPy
and CP; by making all the places of © precede all the places of ©;.

DEFINITION. The sequential composition, or concatenation, CP = CPy Seq CP; is
defined if and only if the state reached by CPy coincide with the source state of CP;.
In this case, CP is obtained by gluing together mp and m;, identifying injectively each
maximal place of ©p with a minimal place of ©y in the unigue way compatible with the
orderings <, on & and <, on O for all a € Sy.

Next, we recall the construction of the symmetric strict monoidal category P(N).
We start by introducing the vectors of permutations (vperms) of N, which will provide
the symmetry isomorphism of P(N).

629

(@aaaabbb

o BT T o

(@aaaabbb
(aaaac%bbb)

(@90 @aawd) - X No
(@aaaaabbb

FIGURE 12. The monoidal structure of vperms

For u € %, a vperm s u — u is a function which assigns to each a € § a permuta-
tion s(a) € I(u(a)). Given u = n; -a; +...+ny - ay in S5, we shall represent a vperm s
on u as a vector of permutations, (G, - - - ,Og,), Where s(a;) = Og;, whence their name.
One can define the operations of sequential and parallel composition of vperms, so that
they can be organised as the arrows of a ssmc. The details follow (see also Figure 12).

Given the vperms s = (Og, ... ,0q,): # = u and §' = (Op,,... , 0,) : u — u their
sequential composition s;5' . u — u is the vperm

(‘501;6;1 yeee acak3(5’ak)u

where 0; ¢’ is the composition of permutation which we write in the diagrammatic order
from left to right.

Given the vperms s = (Gay,... ,0q,): # > uand s’ = (0y,,... ,0p,) v —» v (where
possibly 0,;, = & for some j), their parallel composition s®s': u+v — u+v is the
vperm

(Cay ® Yy, ... ,0a, OC,),
where
_{ o), if 0 <x<|o]
(c8e)(x) = { o(x= o)) +]o], if o] <x< [o] +|0

Let ybe (1 2) € [1(2) and consider w; = ni -a; + ...+ n-ay, i =1,2,in §%. The
interchange vperm y(uy,uz) is the vperm (g, , ... ,Oq) ¢ U1 + Uz — g + uz where

2 1
x+ns, if 0<x<n;
O'aj(x):{ v ’

ol e 1 14,2
x—nj, 1fnj<x§nj+nj

It is immediate to verify that _;_ is associative. Moreover, for each u € S® the
vperm u = {idg,, ... ,ida,): u — u, where id, ; is the identity permutation, is an identity
for sequential composition. Finally, writing 0 for the empty multiset on §, the (unique)
vperm s: 0 — 0, is a unit for parallel composition.

630

Now, for N a net, let Symy, be the category whose objects are the elements of S¥
and whose arrows are the vperms s: u < u foru € Sﬁ. It is easy to show that Symy
is a ssmc with respect to the given composition and tensor product, with identities and
unit element as explained above, and with the symmetry natural isomorphism given by
the collection Y = {Y(#,v) }uvesymy of the interchange vperms. Observe that, although
Symy is not strictly symmetric, it is so on the objects. More strongly, the objects form
a free commutative monoid, i.e., Symy € SSMC®,

We can now define P(N) as the category which includes Symy as a subcategory
and has as additional arrows those defined by the following rules:

t:u—vinTly
t:u—vin P(N)
o:u—vandp: o — v in P(N) o: u—vandB: v— win P(N)
o®B: u+u - v+ in P(N) o;B: u— win P(N)

plus axioms expressing the fact that P(N) is a ssmc with composition _;_, tensor - ® _
(extending those already defined on vperms) and symmetry isomorphism v, and the
following axioms involving transitions and vperms

t;s=t wheres: u—vinTyands: v vinSymy,

. . ¥
s;t=t wheret: u—vinTyands: u— uin Symy. (%)

In other words, P(N) is built on the category Symy by adding the transitions of N
and freely closing with respect to sequential and parallel composition of arrows, so that
P(N) is made symmetric strict monoidal and axioms (‘¥) hold.

The relevant fact about P(N) is that its arrows represent exactly the concatenable
processes of N, i.e., P(N) represents the noninterleaving behaviour of N, including its
algebraic structure. (See [18] for proof and details.)

THEOREM 5.1. For any net N there exists a one-to-one correspondence between the
arrows of P(N) and the concatenable processes of N such that, for each u,v € SY, the
arrows of type u — v correspond to the processes enabled by u and producing v, and
such that sequential and parallel composition (tensor product) of processes (arrows)
are respected.

Vperms play in this correspondence an absolutely fundamental role: Symy ac-
counts for the families of orderings {<;}aesy and {Ka}gesy, which are the key to
concatenable processes, guaranteeing a correct treatment of sequential composition. In
other words, Symy is an algebraic representation of the ‘threads of causality’ in process
concatenation.

5.3. Axiomatising concatenable processes. Unfortunately, the concrete defini-
tion of vperms weakens considerably the essentially axiomatic character of P(N), as
the laws which rule it remain partly concealed in Symy. The aim of this section is to
provide a fully axiomatic description of the concatenable processes of N obtained by
proving that P(N) is a quotient of the free ssmc on N [77]. The key to this result will
be an axiomatisation of the category of vperms Symy,. We start by showing that we can
associate a free ssmc to each net N.

631

PROPOSITION 5.2. The forgetful functor U: SSMC® — Petri admits a left adjoint
F: Petri — SSMC®,

PROOF. Consider the category F(N) whose objects are the elements of Sy and
whose arrows are generated by the inference rules

ue Sy aand b in Sy t:u—vin Ty
idy: u—uinFN) cgp:at+b-ab+ainF(N) t:u—vinF(N)

o:u—vandB: W vV inF(N) o:au—vandB:v—owinFN)
o®@P: u+u = v+v in F(N) of: u—win F(N)

modulo the axioms expressing that F(N) is a strict monoidal category, namely,
osidy = o=1id,;0, and (0;B);y=0(B;7y),
9 (oep)ey=00PRY), and idy@o=0a=0a®idy,

id, ®id, = idy1,, and (0®o);(BOP) = (0:B)® (o;p'),
the latter whenever the right-hand term is defined, and the following axioms
(10) CabiCha = idavb,
an s (BRa) = (0®PB)ic,y, for o:u—v, Bru' =V,

where ¢, for u,v € Sfe denote any term obtained from ¢, for a,b € Sy by applying
recursively the following rules (compare with axiom (4)):

COu = Cou — idy,
(12) Catuy = (id, ® Cu,v) 5 (Ca,v ®id,),
Cuvya = (Cu,v & ida); (fdv ® cu,a) .

Observe that equation (11), in particular, equalises all the terms obtained from (12)
for fixed u and v. In fact, let c,,, and c , be two such terms and take o and B to be,
respectively, the identities of u and v. Now, since id, ® id, = id,gy = id, @id,,, from (11)
we have that ¢, = c;’v in F(N). Then, we claim that the collection {Cu,v}u,vesg‘i isa
symmetry natural isomorphism which makes F(#) into a ssmc and that, in addition,
F(N) is the free ssmc on N.

In order to show the first claim, observe that the naturality of ¢ is expressed directly
from axiom (11). We need to check that for any u and v we have ¢y, v; ¢y = idygy, Which
follows from (10) by induction on the sum of the sizes of u and v.

As for the second, for C in SSMC®, the net U(C) is obtained by forgetting the
categorical structure of C. The markings and the transitions of U(C) are, respectively,
the objects and the arrows of C with the given sources and targets. Similarly, for F a
symmetric strict monoidal functor in SSMC®, U(F) is the net morphism whose com-
ponents are the restrictions of F to, respectively, arrows and objects. Consider the net
UF(N) and the net morphismn: N — UF(N), where 11, is the identity homomorphism
and 1, is the obvious injection of Ty in Tyz(y). One can then show (cf. [77] for the
details) that 1 is universal, i.e., that for any C in SSMC® and for any net morphism
f: N = U(C), there is a unique symmetric strict monoidal functor F: F(N) — C which

632

FIGURE 13. Some instances of the axioms of permutations

makes the following diagram commute.

N—2 5 UFW)

T

U(C)
O

Thus, establishing the adjunction F - U: Petri = SSMC®, we have identified
F(N), the free ssmcon N, as a category generated, modulo appropriate equations, from
the net N viewed as a graph enriched with formal arrows id,,, which play the role of the
identities, and ¢, for a,b € Sy, which generate all the needed symmetries.

Our aim is to relate F(N) and P(N). As a matter of fact, F(N) is positively more
concrete than P(N) and far from being isomorphic (or equivalent) to it. For example, for
a # bin Sy, we have cgp # idygp in F(N), whilst y(a,b) = id,gy, in P(N). Therefore,
no symmetric monoidal functor @: F(N) — P(N) can be mono. Also, F(N) possesses
no counterpart of axioms (¥). We shall see that these are precisely the differences
between F(N) and P(N). Namely, we shall obtain P(N) as a quotient of F(N) by
enforcing the axioms outlined above. The next proposition, which is the adaptation to
ssmc’s of the usual notion of quotient algebras, provides the tool we shall use for this

purpose.
PROPOSITION 5.3. For C a ssmc, let R be a function which assigns to each pair of

objects a and b of C a binary relation R}, on the homset C(a,b). Then, there exist a
ssmc C/R and a symmetric strict monoidal functor []z : C — C/R such that

i) If f Rap f' then [flx = [f'lxs

633

ii) For each symmetric strict monoidal H: C — D such that H(f) = H(f") when-
ever fRapf', there exists a unique K: C/R — D, which is necessarily symmet-
ric strict monoidal, such that the following diagram commutes.

c— 1 C/R

el

D

PROOF. Take C/R to be the category whose objects are those of C, whose homset
C/R(a,b) is C(a,b) /R4, with composition of arrows given by [g]x o [f]x = [go f]x,
and define [f]x ® [g]lx = [f @ g]=.

Say that R is a congruence if R, is an equivalence for each g and b and if R
respects composition, i.e., whenever fR,,f' then, forall h: @' +aandk: b — b', we
have (ko foh)Ry (ko f oh). Call R a ®-congruence if it is a congruence and it
similarly respects tensor. It is easy to check that, if R is a ®-congruence, then the above
definition makes the quotient category C/R into a ssmc with symmetry isomorphisms
[Yu,v]® and unit object e.

Observe now that, given R as in the hypothesis, it is always possible to find the
least ®-congruence R’ which includes (componentwise) R. Then, take C/R to be C/R’
and [}z to be the obvious projection of C into C/R, which is clearly a symmetric strict
monoidal functor. O

In order to show that P{N) is a monoidal quotient of F(N), we need a more abstract
understanding of the structure of the vperms of P(N). To this aim, we shall make use
of the following lemma, originally proved in {52].

LEMMA 5.4. The symmetric group TI(n) is (isomorphic to) the group G freely gener-
ated from the set {1; | 1 < i < n}, modulo the equations (see also Figure 13)

Tt T = T TiTipa,
a3 wr o= o ifli-j=1,
L o= e,

where e is the unit element of G.

The previous lemma is easily adapted to vperms by translating axioms (13) as
follows.

LEMMA 5.5. The arrows of Symy, are freely generated by composition and tensor from
the vperms Y(a,a): 2-a — 2-a, for a € Sy, modulo the axioms (9) of strict monoidal
categories and the following additional axioms

((ida ®Y(,0)): ((a,0) ®ida))’ = idsa,
(14) Y@,a)* = idza
(idy ®Y(a,)); (V(@,8)®idy) = idrars, if a#bESN,
where f" indicates the composition of f with itself n times.

PROOF. See [77]. O

634

We are now ready to give the promised characterisation of P(N).

PROPOSITION 5.6. P(N) is the monoidal quotient of the free ssmc on N modulo the
axioms

(15) Cop = ldayp, if a,b€ Sy and a#b,
(16) ;8 = 1, if t € Ty and s,s' are symmetries.

PROOF. We prove that P(N) is isomorphic to F(N)/R, where R is the congruence
for ® and ..;. generated from equations (15) and (16).

Since P(N) belongs to SSMC®, it follows from Proposition 5.2 that, corresponding
to the net inclusion morphism N — UP(N), there is a unigue symmetric strict monoidal
functor Q: F(N) — P(N) which is the identity on the places and on the transitions of
N. In particular, Q is such that

Q(cap) = Ya,b), for a,be€ Sy.

For a # b € Sy, since Y(a, b) = idagp, we have that Q(c, p) = Q(idgep). Moreover, since
symmetric monoidal functors map symmetries to symmetries, and since (16) holds
in P(N), we have that Q(s;#;5') = Q(s);1;Q(s') = ¢ = Q(¢) for s and 5 in Symgz(y)
and ¢ € Ty. In other words, Q equalises the pairs (¢, p,idagp) With a # b € Sy and the
pairs (s;¢;5',#) with s and s’ symmetries and ¢ € Ty. Then, in force of Proposition 5.3
applied to Q, there is a (unique) symmetric strict monoidal functor H: F(N)/R — P(N)
which is the identity on the objects and is such that

H{tlx) = ¢, forrtely.

One can then prove that H is an isomorphism by producing its inverse P(N) = F(N)/R
as the functor G which acts identically on the objects and is defined on the arrows by

G(t) = [t]fR) if t €1y,
G(Y(a)a)) = {Ca,a]fRa ifae SN:

extended to identities, composition and tensor as usual: G(id,) = [id,]z, G(o;B) =
G(a); G(B), and G(a.® B) = G(o) ® G(). Notice that it follows from the definition of
P(N) and from Lemma 5.5 that the equations above define G uniquely. O

The merit of this result is to describe the algebraic structure of P(N), and thus
of the concatenable processes of N, in terms of universal constructions, namely the
construction on the free ssmc on Petri and a quotient construction on SSMC®, providing
in this way a completely abstract view of P(N). It may be worth noticing in this context
that (15) is actually a problematic axiom: because of its negative premise, viz., a # b,
it invalidates the freeness of F(N) on Petri. Even worse, F(.)/R and P(_) fail to be
functors from Petri to SSMC. On the other hand, axiom (15) plays very relevant a
role in capturing algebraically the essence of concatenable process, and it cannot be
dispensed with easily. A detailed study of this issue and a possible solution is provided
in [78, 76). In particular, in loc. cit., a functorial and universal construction for net
computations is devised, based on a refinement of the notion of concatenable processes
called strongly concatenable processes.

Resuming our work, we give an alternative form of axiom (16).

635

COROLLARY 5.7. Axiom (16) in Proposition 5.6 can be replaced by the axioms

t(idyRcaa®id,) = 1, if t€Tyandaé€ Sy,
an (idy @ Caa®idy)st £, if t€Tyanda€ Sy.

PROOF. Since (id, ® Y, ,® id,) and all the identities are symmetries, axiom (16)
implies the present ones. It is easy to see that, on the other hand, the axioms above,
together with axiom (15), imply (16).

Lets: u—» u by a symmetry of F(N) and suppose s # id,. By repeated applications
of (12}, together with the functoriality of ® , we obtain the following equality:

§ = (idy, ® cay p, ®idy,)); ... ; (idu, ® gy p, @ idy,)

for some k € . Moreover, by exploiting axiom (15), we can drop every term in which
a; # b;. Thus we have

§ = (idy, ® Cay 0, Qidy,);- .. s (idy, ® Capa, ® idy,)

for some k& < h. Then, by this equation and by repeated applications of axioms (17),
one can prove s;t;s' =1, O

Finally, the next corollary sums up the purely algebraic characterisation of the cat-
egory of concatenable processes that we illustrated here. In particular, it identifies in
algebraic terms the essential components of concatenable processes and the laws which
rule their sequential and parallel composition.

COROLLARY 5.8. The category P(N) of concatenable processes of N is the category
whose objects are the elements of Sf{? and whose arrows are generated by the inference
rules

ue sy ain Sy t:u—vinTy
idy:u—uinP(N) cge:at+a—a+ain®P(N) t:u—vinP(N)

oa:u—=vandB:u -V inP(N) o:u—-vandP:v-+win P(N)
o®@P: u+u v+ inP(N) o B: u— win P(N)

modulo the axioms expressing that P(N) is a strict monoidal category, namely,

o idy = o =idy0o, and (o;P);y=o;(B;Y),
(a®ﬂ)®7=a®(ﬂ®'¥)7 and idy®@ 0= 0= 0®idy,
id,®id, = id,s,, and (ad);(BB)=(:B)®(c;B),

the latter whenever the right-hand term is defined, and the following axioms

Caa;Caa = idgta,
t;(idu@Ca’a®idv) = t, l:fteTN,
(idu®ca,a®idv);t = if t €Ty,

cu;(BRO) = (a®B)icyy, for azu-v, P oV,

636

where ¢, y, foru,v € Sg?, is obtained from c, , by applying recursively the rules:
Cap = idayp, ifa=0o0r b=0 or (a,beSyanda#b),
Cotuy = (ida®cup)(Cap ®idy),
Cyvta — (Cu,v ®idy); (id, ® Cu,a)'

PROOF. Observe that the terms and the axioms above are obtained normalising
those of F(N) with respect to ¢4 5 = idg4p, for a # b € Sy, and then adding axioms (15)
and (17). The claim then follows immediately from Proposition 5.2, Proposition 5.6,
and Corollary 5.7. i

6. Conclusions and Related Work

We have presented some examples of the use of category theory in understanding
the behaviour and structure of Petri nets and their relationships to other models for
concurrency. However, there are many further examples of applications of categorical
ideas in concurrency.

The results on categorical relationships between models is a small part of a general
picture, as illustrated in [80], in which a number of important constructions from con-
currency theory emerges as parts of (coreflective) ‘unfoldings’ and ‘sequentialisations’,
and (reflective) ‘determinizations’. Also, several results in the literature [74, 79, 62]
concern trace structures and other models for concurrency — including the pomsets of
Pratt [69] and the partial words of Grabowsky [28].

We have illustrated how to introduce bisimilarity for Petri nets following a gen-
eral pattern which automatically guarantees consistency with bisimilarity on a number
of related models. From the work on open maps, it was suggested in [35] to study
presheaves as models derived directly from path categories. Intuitively, a presheaf rep-
resents a system by ‘gluing’ together (an abstract set of) computation paths, and the
advantage of this approach is that a number of categorical concepts provide a uniform
notion of model of computation, as an alternative to the often ad hoc, concrete con-
structions adopted in the literature. Formally, given a path category P, the category P
of presheaves over P consists of functors P -+ Set (where Set is the category of sets
with functions) as objects, and natural transformations between them as morphisms.
A presheaf F: PP — Set can be thought of as specifying for each path object P, the
set F(P)} of paths from P. It acts on a morphism m: P — Q in P to give a function
F(m): F(Q) — F(P) saying how Q-paths restrict to P-paths.

Presheaves may thus be looked upon as labelled transition systems, where states
are (abstract representations of) sets of possible runs of the paths in P, labels are path
extensions, and the transitions describe how runs extend each other. Based on this view
of presheaves, [98] provided logical and game-theoretic characterisations of open maps
and their bisimulations on presheaves, which in turn may be specialised to concrete
models like Petri nets via uniform representations as presheaves. Also, i n recent work
by G. Winskel and others, these presheaf models have been used successfully in dealing
with higher-order models in concurrency [96, 15].

We then illustrated how to use categorical tools ‘in the small’, focusing our study at
level of single nets. Building on [45, 18, 77], we described the concatenable processes

637

of a Petri net N in terms of universal constructions, providing in such a way an abstract,
fully axiomatic presentation of their algebraic structure. In particular, Corollary 5.8
provides a term algebra and an equational theory of the concatenable processes of N.
Technically, relying on the characterisation of the concatenable processes of N as the
arrows of the symmetric strict monoidal category P(N), the result was illustrated by
showing (cf. Proposition 5.6) that P(N) is the quotient of the free symmetric strict
monoidal category on N modulo two simple axioms. The proof of this fact makes
an essential use of the axiomatisation of Symy, the category of symmetries of P(N),
provided by Lemma 5.5.

It is worth noticing that lifting these result to the totality of nets is rather prob-
lematic, as the negative premise of axiom (15) — essential from the computational
viewpoint — breaks the freeness of F(N) on Petri and makes P(_) fail to be functor
from Petri to SSMC. The interested reader is referred to [78] for a detailed study of the
problem, and for a suggested solution based on a refined notion of so-called strongly
concatenable processes.

An aspect of Petri nets we did not touch in this paper is their use as a semantic basis
to interpret concurrent languages (see for example [90, 64, 25, 17]), an application that
clearly calls for a ‘process algebra-like’ description of nets and, possibly, for a suitable
abstract characterisation of it. And in fact, the literature is rich of examples of process
algebras over nets, as, e.g., [54, 27, 8, 51, 58] (see also the early [19, 13, 99, 38, 70] on
compositionality issues). Observe that category theory can clearly play an interesting
role in this, as we are called to consider the totality of nets, as in Part 1, focusing this
time — as in Part 2 — on algebraic and compositional aspects. We conclude this paper
explaining the basic ideas underlying the algebra of nets presented in [58], and how it
may be related to the categorical approach we have taken here.

The approach is entirely based on a notion of interface for Petri nets. Informally, an
interface for a net N is a selection of places and transitions of N which specifies what
parts of N are public, i.e., accessible to the environment, and what parts are private
to N. The private places and transitions cannot be accessed and, therefore, they cannot
be used for connecting N with other nets. Net interfaces are built out of two compo-
nents: an ‘input’ interface, consisting of places, and an ‘output’ interface, consisting
of transitions. Intuitively, the input interface provides the buffers in which the tokens
arriving from the environment are gathered, whilst the output interface sends tokens out
to the environment.

Drawing on the experience of developments in concurrency theory, one aims at
defining a minimal set of net combinators expressive enough to form a rudimentary
calculus of nets. This should certainly include operations allowing (forms of) com-
munication and parallel composition (and, to make easier the description of (large)
modular systems, also operations as relabelling and hiding). However, in order to avoid
a chaotic ‘structural’ calculus where everything is permitted, it is obvious that some
restrictions on the allowed connections via places and transitions must be imposed. In-
terfaces readily suggest a reasonable discipline of interaction: connections between nets
should go from outputs to inputs, involving only public components. This formalises
the well-motivated and solid intuition that the only allowed interactions are achieved by
sending and receiving along interfaces, to be thought of as communication channels.

638

The main way of combining nets provided in [58] therefore consists of connecting
the outputs of one net to the inputs of another net and, possibly, vice versa, as schemat-
ically shown by the following picture.

Following the principle of considering as simple operations as possible, this is realised
by two more basic combinators: par(-,.), which puts its two arguments side by side,
and add(_), which augments its argument by a new arc from an interface-transition to
an interface-place. The operation above is then obtained by repeatedly applying add(.)
to par(No,N1).

Observe that add{_) in isolation provides an interesting form of recursion consist-
ing of feeding back outputs to inputs, and represents a bridge to structures of recent
common interest in category theory and in computer science: the traced monoidal cat-
egories 36, 40], i.e., monoidal categories equipped with an feedback operation com-~
pletely analogous to the one discussed above. Algebraic structures based on a central
operation of iteration, or feedback — inspired by flowcharts and program schemata —
have appeared rather early in computer science, see, e.g., [22, 2, 85, 86, 51] and [10],
that offers for a thorough exposition of so-called ‘ireration theory’ and more references.
The advent of traced monoidal categories, though, has recently revived interest in using
such abstract structures in semantics of computation, as e.g., in [1, 37, 31, 32]. Obvi-
ously, the calculus of [58] fits nets into this framework very nicely, although some of
the details still need to be clarified.

Acknowledgements

We would like to thank many colleagues who have been part of developing the
material behind this chapter. In particular, we acknowledge our close collaboration
with A. Joyal, J. Meseguer, U. Montanari, L. Priese, G. Rozenberg, P.S. Thiagarajan,
and G. Winskel on many parts of this work.

References

[1]1 S. ABRAMSKY (1996}, Retracing Some Paths in Process Algebra, in Proceedings of CONCUR 96,
U. Montanari and V. Sassone (Eds.), Lecture Notes in Computer Science 1119, 1~17, Springer-Verlag.

{2] E.S. BAINBRIDGE (1976), Feedback and Generalized Logic. Information and Control 31, 75-96.

[3] J. BENABOU (1963), Categories with Multiplication. Comptes Rendus Académie Science Paris 256,
1887-18go0.

639

[4] M.A. BEDNARCZYK (1987), Categories of Asynchronous Systems. PhD thesis, University of Sussex,
Report 1/88, School of Coguitive and Computing Sciences, University of Sussex.

[5] D. BENSON AND O. BEN-SHACHAR (1988), Bisimulation of Automata. Information and Computa-
tion 79, 60-83, Academic Press.

[6) G.BERRY (1979), Modéles completement adéquats et stables des h-calculs typées. These de Doctorat
d’Etat, Université Paris VII,

[7]1 E. BEST AND R. DEVILLERS (1987), Sequential and Concurrent Behaviour in Petri Net Theory.
Theoretical Computer Science 55, 87-136, Elsevier.

[8] E. BEST, R. DEVILLERS, AND J. HALL (1992), The Petri Box Calculus: a New Causal Algebra
with Muitilabel Communication, in Advances in Petri Nets 92, G. Rozenberg (Ed.), Lecture Notes in
Computer Science 8og, 21-6g, Springer-Verlag.

{91 E. BEST AND C. FERNANDEZ (1988), Non-sequential Processes: A Petri Net View. EATCS Mono-
graphs on Theoretical Computer Science 13, Springer-Verlag.

[10} S.L. BLoOM AND Z. EsIK (1991), fteration Theories: the Equational Logic of Iterative Processes.
EATCS Monographs on Theoretical Computer Science go, Springer-Verlag.

[11] C. BROWN AND D. GURR (1g9g2), Temporal Logic and Categories of Petri Nets, in Proceedings of
ICALP 93, A. Lingas et al. (Eds.), Lecture Notes in Computer Science 700, §70~581, Springer-Verlag.

[12] C. BROWN, D. GURR, AND V. DE PAIVA (1991), A Linear Specification Language for Petri Nets.
Technical Report DAIMI PB-363, Computer Science Dept., University of Aarhus.

{13] J. BRUNO AND 8.M. ALTMAN (1971), A Theory of Asynchronous Control Networks. [EEE Trans-
actions on Computers, Vol. C-20, 629-638, IEEE Press.

[14] 1. CASTELLANI (1985), Bisimulation and Abstraction Homomorphisms, in Proceedings of CAAP 85,
H. Ehrig et al. (Eds.), Lecture Notes in Computer Science 185, 223-238, Springer-Verlag.

[15] G.L. CATTANI, M. FIORE, AND G. WINSKEL (19g8), A Theory of Recursive Domains with Appli-
cations to Concurrency, in Proceedings of the 13th LICS Symposium, IEEE Press. To appear.

{16] P. DEGANO, R. DE NicoLA, AND U. MONTANARI (1987). Observational Equivalences for Concur-
rency Models, in Formal Description of Programming Concepts — Il IFIP, M. Wirsing (Ed), 105-132,
Elsevier.

[17] P. DEGANO, R. DE NICOLA, AND U. MONTANAR! (1988), A Distributed Operational Semantics for
CCS based on Condition/Event Systems. Acta Informatica 26, 59-g1, Springer-Verlag.

[18] P. DEGANO, J. MESEGUER, AND U. MONTANARI (198g), Axiomatizing Net Computations and
Processes, in Proceedings of the 4th LICS Symposium, 175-185, IEEE Press.

{19] J.B. DENNIS (1970), Modular, Asynchronous Control Structures for a High Performance Processor,
in Record of the Project MAC Conference on Concurrent Systems and Parallel Computation, ACM
Press.

[20] A. EHRENFEUCHT AND G. ROZENBERG (1987), On the Structure of Dependence Graphs, in Con-
currency and Nets, K. Voss et al. (Eds.), 141—170, Springer-Verlag.

[21] S. EILENBERG, AND G.M. KELLY (1966), Closed Categories, in Proceedings of the Conference on
Categorical Algebra, S. Eilenberg ef al. (Eds.), 421~562, Springer-Verlag.

[22] C. ELGOT (1975), Monadic Computation and Iterative Algebraic Theories, in Logic Colloquium '73,
H.E. Rose and J.C. Shepherdson (Eds.), 175230, North-Holland.

[23] G. FERRARI, U. MONTANARI, AND M. MOWBRAY (1997), Structured Transition Systems with Para-
metric Observations: Observational Congruences and Minimal Realizations. Mathematical Structures
in Computer Science 77, 241—282, Cambridge University Press.

{24] R.J. vAN GLABBEEK AND U. GOLTZ (1989}, Equivalence Notions for Concurrent Systems and Re-
finement of Actions, in Proceedings of MFCS 89, A. Kreczmar and G. Mirkowska (Eds.), Lecture Notes
in Computer Science 379, 237-248, Springer-Verlag.

[25] R.J. vaN GLABBEEK AND F. VAANDRAGER (1987), Petri Net Models for Algebraic Theories of
Concurrency, in Proceedings of PARLE, J.W. de Bakker et al. (Eds.), Lecture Notes in Computer Science
259, 224242, Springer-Verlag.

f26] U. GOLTZ AND W. REISIG (1983), The Non-Sequential Behaviour of Petri Nets. Information and
Computation 57, 125~147, Academic Press.

271 R. GORRIERI AND U, MONTANARI (1990), Scone: A Simple Calculus of Nets, in Proceedings of
CONCUR 90, J.CM. Baeten and J.W. Klop (Eds.), Lecture Notes in Computer Science 458, 2-31,
Springer-Verlag.

640

[28] J. GRABOWSKY (1981), On partial languages. Annales Societatis Mathematicae Polonae IV.2, 428—
498, North-Holland.

[29] M. HENNESSY (1988), Algebraic Theory of Processes. MIT Press.

[30] C.A.R.HOARE (198s), Communicating Sequential Processes. Prentice Hall,

[311 M. HASEGAWA (2997), Recursion from Cyclic Sharing: Traced Monoidal Categories, in Proceedings
of TLCA 97, Ph. de Groote and J.R. Hindley (Eds.), Lecture Notes in Computer Science 1210, 196—
213, Springer-Verlag.

[32] T.T. HILDEBRANDT, P. PANANGADEN, AND G. WINSKEL (1998), Relational Semantics of Non-
Deterministic Dataflow, in Proceedings of CONCUR 98, D. Sangiorgi and R. de Simone (Eds.), Lecture
Notes in Computer Science, Springer-Verlag. To appear.

[33] P.W. HOOGERS, H.C.M. KLEUJN, AND P.S. THIAGARAJAN (1992), A Trace Semantics for Petri
Nets, in Proceedings of ICALP 92, W. Kuich (Ed.), Lecture Notes in Computer Science 623, 595-604,
Springer-Verlag.

[34] T. HUNE AND M. NIELSEN (1998), Timed Bisimulation and Open Maps, in Proceedings of MFCS
98, 1. Gruska et al. (Bds.), Lecture Notes in Computer Science, Springer-Verlag. To appear.

[35] A.JoyaL, M. NIELSEN, AND G. WINSKEL (1996), Bisimulation from Open Maps. Information and
Computation 12%, 164-185, Academic Press.

[36] A. JOYAL, R. STREET, AND D. VERITY (1996), Traced Monoidal Categories. Mathematical Pro-
ceedings of the Cambridge Philosophical Society 119, 447-468, Cambridge University Press.

[371 P. KaTIS, N. SABADINI, AND R. WALTERS (1997), Bicategories of Processes. Journal of Pure and
Applied Algebra 115, 141-178, North-Holland.

[38] R.M. KELLER (1974), Towards a Theory of Universal Speed-Independent Modules. /EEE Transac-
tions on Computers vol. C-23, 21~33, |EEE Press.

[39] G.M.KELLY (1964), On MacLane’s Conditions for Coherence of Natural Associativities, Commuta-
tivities, etc. Journal of Algebra 1, 397402, Acamedic Press.

[40] G.M. KELLY AND M. LAPLAZA (1980), Coherence for Compact Closed Categories. Journal of Pure
and Applied Algebra 1.9, 193-213, North-Holland.

[41] S. MACLANE (1963), Natural Associativity and Commutativity. Rice University Studies 49, pp. 28—
48, Rice University Press.

{42] S. MACLANE (a971), Categories for the Working Mathematician. Graduate Texts in Mathematics,
Springer-Verlag.

[43] A. MAZURKIEWICZ (1977), Concurrent Program Schemes and their Interpretations. Technical Re-
port DAIMI PB-78, Computer Science Dept., University of Aarhus.

{44] A. MAZURKIEWICZ (1987), Trace theory, in Petri Nets, Applications and Relationship to other
Models of Concurrency, W. Braver et al. (Eds.), Lecture Notes in Computer Science 255, 279~324,
Springer- Verlag.

[45] J. MESEGUER AND U. MONTANARI (1990), Petri Nets are Monoids. Information and Computation
88, 105- 155, Academic Press.

[46] J. MESEGUER, U. MONTANARI, AND V. SASSONE (1g9g2), On the Semantics of Petri Nets, in Pro-
ceedings of CONCUR 92, R. Cleaveland (Ed.), Lecture Notes in Computer Science 630, 286301,
Springer-Verlag.

[47] J. MESEGUER, U. MONTANARI, AND V. SASSONE (1996), Process versus Unfolding Semantics for
Place/Transition Petri Nets. Theoretical Computer Science 153, 171-210, Elsevier.

[48] J. MESEGUER, U. MONTANARI, AND V. SASSONE (1997), On the Semantics of Place/Transition
Petri Nets. Mathematical Structures in Computer Science 7, 359~397, Cambridge University Press.

[49] R. MILNER (1980), A Calculus of Communicating Systems. Lecture Notes in Computer Science g2,
Springer-Verlag.

{50} R. MILNER (198g), Communication and Concurrency. Prentice-Hall.

{51] R. MILNER (1993), Action Calculi or Syntactic Action Structures, in Proceedings of MFCS 93,
A. Borzyszkowski, 8. Sokolowski (Eds.), Lecture Notes in Computer Science 731, 105-121, Springer-
Verlag.

[52] BE.H. MOORE (18¢7), Concerning the abstract group of order k! isomorphic with the symmetric sub-
stitution group on k letters. Proceedings of the London Mathematical Society 28, 357-366, Claredon
Press.

641

[53] M. MUKUND (1992), Petri Nets and Step Transition Systems. International Journal of Foundations
of Computer Science 3, 443- 478, World Scientific.

[54] M. MUKUND AND M. NIELSEN {1g92), Locations and Asynchronous Transition Systems, in Pro-
ceedings of FST & TCS 92, R. Shyamasundar (Ed.), Lecture Notes in Computer Science 852, 328-341,
Springer-Verlag,

[55] M. NIELSEN AND A. CHENG (1995), Observing Behaviour Categorically, in Proceedings of FST &
TCS 95, P.S. Thiagarajan (Ed.), Lecture Notes in Computer Science 1026, 263—278, Springer-Verlag.

[56] M. NIELSEN AND C. CLAUSEN (1995), Games and Logics for a Noninterleaving Bisimulation.
Nordic Journal of Computing 2, 222-250, Publishing Association NJC.

[57] M. NIELSEN, G. PLOTKIN, AND G. WINSKEL (1981), Petri Nets, Event Structures and Domains,
Part 1. Theoretical Computer Science 13, 85—108, Elsevier.

[58] M. NIELSEN, L. PRIESE, AND V. SASSONE (1995), Characterizing Behavioural Congruences for
Petri Nets, in Proceedings of CONCUR 95, 1. Lee and S. Smolka (Eds.), Lecture Notes in Computer
Science 962, 175-18g, Springer-Verlag.

[591 M. NIELSEN, G. ROZENBERG, AND P.S. THIAGARAJAN (1990), Behavioural Notions for Elemen-
tary Net Systems. Distributed Computing 4, 45~57, Springer-Verlag.

[60] M. NIELSEN, G. ROZENBERG, AND P.S. THIAGARAJAN (1992), Elementary Transition Systems.
Theoretical Computer Science 96, 3—-33, Elsevier.

[61] M. NIELSEN, G. ROZENBERG, AND P.S. THIAGARAJAN (1995), Transition Systems, Event Struc-
tures and Unfoldings. Information and Computation 118, 191207, Academic Press,

[62] M. NIELSEN AND G. WINSKEL (1995), Trace Structures and other Models for Concurrency, in The
Book of Traces, V. Diekert and G. Rozenberg (Eds.), 271-306, World Scientific.

[63] M. Nielsen and G. Winskel (1996), Petri Nets and Bisimulation. Theoretical Computer Science 153,
211244, Elsevier.

[64] E.R. OLDEROG (1987), A Petri Net Semantics for CCSP, in Advances in Petri Nets 86, W. Brauer et
al. (Eds.), Lecture Notes in Computer Science 255, 196—223, Springer-Verlag.

[65] E.R. OLDEROG (1991), Nets, Terms and Formulas. Cambridge Tracts in Theoretical Computer Sci-
ence, Cambridge University Press.

{661 C.A. PETRI (1962), Kommunikation mit Automaten. PhD thesis, Institut fiir Instrumentelle Mathe-
matik, Bonn.

[67] C.A. PETRI (1973), Concepts of Net Theory, in Proceedings of MFCS 73, 137-146, Mathematics
Institute of the Slovak Academy of Science.

[68] C.A. PETRI (1977), Non-Sequential Processes. Interner Bericht ISF—77-5, Gesellschaft fiir Mathe-
matik und Datenverarbeitung, Bonn.

[69] V. PRATT (1986), Modelling Concurrency with Partial Orders. International Journal of Parallel Pro-
gramming 15, 33—71, Plenum.

{70} L. PRIESE (1983), Automata and Concurrency. Theoretical Computer Science 25, 221-265, Elsevier.

[71] A. RABINOVITCH AND B. TRAKHTENBROT (1988), Behaviour structures and nets. Fundamenta
Informatica 11, 357-404. North-Holland.

[72] W. REISIG (1985), Petri Nets (an Introduction). EATCS Monographs on Theoretical Computer Sci-
ence 4, Springer-Verlag.

[73] G. ROZENBERG (1987), Behaviour of Elementary Net Systems, in Advances in Petri Nets 86,
W. Brauer et al. (Eds.), Lecture Notes in Computer Science 254, 6094, Springer-Verlag.

[74] B. ROZOY AND P.S. THIAGARAJAN (19g1), Event Structures and Trace Monoids. Theoretical Com-
puter Science g1, 285-313, Elsevier.

[75] V. SASSONE (1995), Axiomatizing Petri Net Concatenable Processes, in Proceedings of FCT 95,
H. Reichel (Bd.), Lecture Notes in Computer Science 962, 414423, Springer-Verlag

[76] V. SASSONE (1g995), On the Category of Petri Net Computations, in Proceedings of TAPSOFT 95,
P. Mosses ef al. (Eds,), Lecture Notes in Computer Science 915, 334348, Springer-Verlag.

[77] V. SASSONE (1996), An Axiomatization of the Algebra of Petri Net Concatenable Processes. Theo-
retical Computer Science 170, 277—296, Elsevier.

[78] V. SASSONE (1998), An Axiomatization of the Category of Petri Net Computations. Mathematical
Structures in Computer Science 8, 117-151, Cambridge University Press.

642

{791 V. SASSONE, M. NIELSEN, AND G. WINSKEL (1993), Deterministic Behavioural Models for Con-
currency, in Proceedings of MFCS 93 A. Borzyszkowski, S. Sokolowski (Eds.), Lecture Notes in Com-
puter Science 711, 682-692, Springer-Verlag.

[80] V. SASSONE, M. NIELSEN, AND G. WINSKEL (1996}, Models for Concurrency: Towards a Classifi-
cation. Theoretical Computer Science 170, 297-348, Elsevier.

{81] D. ScotT (1970), Outline of a Mathematical Theory of Computation, in Proceedings of 4th Annual
Princeton Conference on Information Science and Systems, 169—176, Princeton University Press.

[82] K. SEGERBERG (1968), Decidability of $4.1. Theoria 34,7-20, Gordon and Breach.

[83] M.W. SHIELDS (1985), Concurrent machines. Computer Journal 28, 449-465, Cambridge Univer-
sity Press.

[84] E.W. 8TARK (1989), Concurrent Transition Systems. Theoretical Computer Science 64, 221-269,
Elsevier.

[85] G. STEFANESCU (1987), On Flowchart Theories: Part 1. The Deterministic Case. Journal of Computer
and System Sciences 35, 163—~191, Academic Press. :

[86] G. STEFANESCU (1987), On Flowchart Theories: Part 1. The Nondeterministic Case. Theoretical
Computer Science 52, 307-340, Elsevier.

[87] P.S. THIAGARAJAN (1987), Elementary Net Systems, in Advances in Petri Nets 86, W. Brauer ef al.
(Eds.), Lecture Notes in Computer Science 254, 26—59, Springer-Verlag.

[88] J. VAN BENTHAM (1984), Correspondence Theory, in Handbook of Philosophical Logic vol. 2,
P. Gabbay and F. Guenthner (Eds.), 167-247, Reidel.

[89] W. VOGLER (1991), Deciding History Preserving Bisimilarity. in Proceedings of ICALP 91, J. Leach
Albert et al. (Bds.), Lecture Notes in Computer Science 510, 495-50%, Springer-Verlag.

[90] G. WINSKEL (1982), Event Structure Semantics for CCS and related languages, in Proceedings of the
9th ICALP, M. Nielsen and E.M. Schmidt (Eds.), Lecture Notes in Computer Science 140, 561-576,
Springer-Verlag.

[91] G. WINSKEL (1984), A New Definition of Morphism on Petri Nets, in Proceedings of STACS 84,
M. Fontet and K. Mehlhom (Eds.), Lecture Notes in Computer Science 1686, 140~150, Springer-Verlag.

[92] G. WINSKEL (1984), Categories of Model for Concurrency, in Seminar on Concurrency, S. Brookes
et al. (Eds.), Lecture Notes in Computer Science 197, 246—267, Springer-Verlag.

[93) G. WINSKEL (1987), Petri Nets, Algebras, Morphisms and Compositionality. Information and Com-
putation 72, 197- 238, Academic Press.

[94] G. WINSKEL (1986), Event Structures, in Advances in Petri Nets 86, W. Brauer et al. (Eds.), Lecture
Notes in Computer Science 255, 325-392, Springer-Verlag,

[95] G. WINSKEL (1988), An Introduction to Event Structures, in Linear time, branching time, and partial
order in logics and models for concurrency, J.W. de Bakker er al. (Eds.), Lecture Notes in Computer
Science 354, 365-397, Springer-Verlag.

[96] G. WINSKEL (19g6), A Presheaf Semantics of Value-Passing Processes, in Proceedings of CON-
CUR 96, U. Montanari and V. Sassone (Eds.), Lecture Notes in Computer Science 1119, 98-114,
Springer-Verlag,

[97] G. WINSKEL AND M. NIELSEN (1995), Models for Concurrency, in Handbook of Logic in Computer
Science vol. 4, S. Abramsky et al. (Eds), 1~148, Oxford University Press.

[98] G. WINSKEL AND M. NIELSEN (1997), Presheaves as Transition Systems, in Proceedings of POMIV
96, D. Peled et al. (Eds.), DIMACS Series in Discrete Mathematics and Theoretical Computer Science
29, 129-140, American Mathematical Society Press.

[99] M. YOELI (1973), Petri Nets and Asynchronous Control Networks. Research Report CS-73-07,
Department of Applied Mathematics and Computer Science, University of Waterloo.

BRICS, BASIC RESEARCH IN COMPUTER SCIENCE, DEPT. OF COMPUTER SCIENCE, UNIVERSITY OF
AARHUS, NY MUNKEGADE BLD. 540, DK-8000 ArHUS C, DENMARK
E-mail address: mnielsen@brics.dk

QUEEN MARY AND WESTFIELD COLLEGE, UNIVERSITY OF LONDON, MILE END ROAD, LONDON El
4NS, UK
E-mail address: vs@dcs.qmw.ac.uk

