Petri Nets and Production Systems

Manuel Silva, Enrique Teruel' * | Robert Valette?, Hervé Pingaud?

! DIIS-CPS, Maria de Luna 3, 50015 Zaragoza, Spain
2 LAAS-CNRS, 7 Av. Colonel Roche, 31077 Toulouse Cédex 4, France
LGC-ENSIGC-CNRS, Chemin de la Loge, 31078 Toulouse Cédex, France

«

Abstract. Modern production systems pose a diversity of problems all
along their life cycle which are often treated with particular indepen-
dent formalisms and techniques. Production systems can be viewed as
discrete event, continuous, or hybrid systems. Petri nets are a family
of formalisms which can be used for the modelling, analysis, implemen-
tation, and control of these systems, with the benefit of improving the
communication between stages of the life cycle.

The utilisation of Petri nets in several of these stages is illustrated in
this tutorial paper through a selected set of examples.

1 Introduction

The behaviour of production systems (PS) is often extremely complex, and subtle
or even paradoxical phenomena appear. By PS we refer to systems in both the
manufacturing or the process industries, either to discrete or continuous systems,
and also to hybrid systems, where these two “extreme” views of dynamic systems
are applied to different subsystems.

Among the many diverse problems concerning PS we consider here some
issues in the design and operation from a systems theory perspective (i.e., we
disregard technological aspects that depend on the nature of the production pro-
cess, and concentrate in the interaction of subsystems in an integrated system):

— The design phase {for a new plant or for extensive modifications), starts at
a preliminary stage, when both the basic structure and dimension are deter-
mined, and then comes into more and more details until the implementation
level is reached.

— The operation concerns aspects such as allocation of resources, scheduling,
control, supervision, etc. of a working plant.

The range of problems and solutions encountered is extremely broad. As an
example, in {13], where the performance evaluation (a kind of analysis) of flow
lines (a kind of manufacturing system) is surveyed, the authors devote a section
to review the reviews!

* The work of the first two authors was partially supported by Project TIC-94-0242
of the Spanish CICYT and Contract CHRX-CT94-0452 (MATCH) within the HCM

Programme of the EU.



86

Although formal methods may be initially time consuming and difficult to
apply, they usually improve the understanding of systems, allowing to iden-
tify key parameters and influences, lead to more efficient reasoning, help in the
implementation, etc. Moreover, some formal methods facilitate the dialogue be-
tween the different people involved in the design and operation, specially when
graphical/intuitive representations are provided. The diversity, specificity, and
difficulty of the problems leads to the development of particular formalisms and
techniques for each problem or class of problems, e.g.: Markov chains, queue-
ing networks, or discrete simulation for performance evaluation; mathematical
programming, or MRP for planning; PERT/CPM, or artificial intelligence tech-
niques for scheduling; relay ladder logic diagrams, state diagrams, or algorithmic
state machines for local controllers implementation, etc. Of course each kind of
problems requires an adequate solution but this may appear as a Babel Tower
where the different people at each stage of the design and operation of the PS
can seldom communicate, at least formally.

Petri nets (PN) are a family of formalisms which provides a framework or
working paradigm for PS design and operation. Broadly speaking, a major con-
tribution of PN to the field is to provide a family of formalisms sharing basic
principles in a consistent way. Although for each purpose or degree of detail the
adequate formalism would be chosen from the family, the transformation from
one formalism to another could be sound, if not formal or even automatic. Some
appealing characteristics of PN are:

— Generality, or descriptive power, both w.r.t. PS types and problems.

— Adequacy for dealing with real systems. There is an inevitable modelling
trade-off between fidelity to reality and tractability. If one wants to perform
some analysis to gain insight into the basic structure and relevant parameters
of a system, their influences, the cause of problems, etc. this will sometimes
be paid for by the necessity of making strong assumptions.

— Ease of use. (This is naturally a matter of taste to some extent.)

The application of PN to PS is an active research field where many questions
still remain open. In this tutorial we illustrate the usability of PN models along
the life cycle of PS. By no means we intend to be exhaustive, but just give an im-
pression on the contribution of PN to some classes of problems. We concentrate
on some concepts and give illustrative examples, rather than trying to survey the
contributions reported in the literature. The reader is referred to existing survey
papers or books to gather links to these contributions. Books on or containing
chapters about PN in (diverse aspects of) PS are [54] on performance modelling,
{16] on PN and Grafcet, [20] on modelling, validation, and performance eval-
uation, [57] on control modelling, {19] on performance evaluation and control
implementation, and [35] on modelling and analysis. Some survey papers are
[43,59,42]. A short survey of the utilisation of PN to represent hybrid systems
(systems having a discrete and continuous aspects) can be found in [10].

In Section 2 different types of PS and associated problems are briefly overviewed
to provide a context for the application domain considered here. The adequacy
of PN along the life cycle is discussed in Section 3, making special emphasis on



87

the abstraction levels and different interpretations to cope with the diversity of
systems to be modeled or purposes of the models. In Section 4 the modelling of
PS of different kinds is illustrated through several examples. Sections 5-8 discuss
and illustrate several applications of the PN modelling of PS, from analysing the
logic and temporal behaviour, to controlling and monitoring the operation.

2 Production Systems Classification, and their Control

Production systems perform material transformation processes from raw mate-
rials to finished goods (where raw and finished are relative terms; for instance,
a factory may provide subassemblies to another one, so the “finished” goods
of the former are “raw” materials for the latter). The transformation processes
consume material, energy, equipment, and labour. The control of these processes
involves complex flows of information through the whole system, from the plant
to the highest organisational levels.

2.1 Types of Production Systems, and Associated Problems

The classification of production systems can be done using two key criteria. The
first one is the “intrinsic” nature of the material being transformed. The second
one ig the dynamic of the product trajectories through the plant.

Discrete versus continuous systems When the product is composed of dis-
crete parts, it can be quantified in a discrete manner, by an integer number.
Typically, manufacturing systems, as in car or aeronautics industry, process such
kind of products. Assembly lines, for example, are typical systems where various
parts of some device are assembled. In contrast, if the product is a fluid as it is
mainly the case in process systems, like chemical or food industry, the charac-
terisation becomes more difficult. Usually, two categories of such processes are
distinguished: the continuous processes and the batch ones.

In a batch process, the material is operated by finite quantities (the batches).
At any time, an integer number of batches are in operation at many different
locations in the plant. In this configuration, the process looks like the manu-
facturing system introduced above, i.e., the batch of fluid in a vessel can be
considered as a part. But the complete characterisation of a batch implies real
numbers referring to the amount of material and its operating conditions (tem-
perature, pressure, quality, etc.). During the transport of material between two
equipments, the discrete nature of the product temporarily disappears. The fluid
is continuously transferred through a pipe network from an upstream vessel to
a downstream one, naturally by gravity or using energy given by special device
{pump, compressor, etc.).

In a continuous process, the material continuously flows along the plant with-
out disruption w.r.t. time. Each equipment is dedicated to the same and unique
function during the life cycle of the process. Raw materials are fed and products
are delivered at known flowrates, the plant is generally operated in steady state



88

which means that all the variables describing the units are controlled to be kept
at a constant value during production. There is no discrete representation of
the dynamics of the product in a continuous process. Large capacity production
plants such as petroleum refineries, heavy chemicals, or natural gas processing
units, belong to this kind of processes.

Nevertheless, the distinction between discrete and continuous systems should
not be considered as absolute. For instance, in the production of paper, the ini-
tial stages are rather continuous {e.g., from pulp preparation to obtaining paper
rolls), while others are typically discrete (e.g., cutting and packing the paper
products: sheets, envelopes, etc.). Actually, in any kind of PS the continuous
and the discrete views are present, for instance, in a car factory, many contin-
uous processes are found, like paint preparation and at a very detailed level a
machining operation is indeed a continuous process. On the contrary, it is often
possible to extract a discrete view in continuous processes such as chemical ones
[55). Sometimes the continuous and the discrete operations correspond to two
different stages of the production system, for example a continuous production
of fluid and the discrete packaging operations [48]. They are thus located in two
different shops or even in two different plants. In contrast, in other cases, very
frequent in fine chemical processes and in food industry, the continuous oper-
ations and the discrete ones alternate along the production process. Typically,
sterilisation and cooling are continuous operations, done when the fluid is being
transferred through pipes from one vessel to another and they take place be-
tween reactions and fermentation operations which are discrete ones executed in
the reactors.

Classification with respect to the shop architecture Production plants
are configured depending mainly on the product variety and the production vol-
ume. While uniformity of products and mass production require high efficiency
(which can be achieved by a rigid automation) to reach an economy of scale,
greater variety and lower production volumes require high flexibility to be able
to change the product scenario to react to market changes. In order to concil-
iate the need of flexibility and efficiency, the concept of flexible manufacturing
systems (FMS), involving automated flexible machines, handling, transport, and
storage systems, has arisen. The distinction depending on the product variety
and the production volume is as valid for discrete goods as for continuous ones:
for instance, considering continuous goods, the configuration of an oil refinery
— a typical continuous plant — is quite different from that of a pharmaceutical
laboratory — a typical batch production plant.

Concentrating for the moment in manufacturing systems, we find several
different prototypical kinds of plants:

— Transfer lines: The production process is designed as a sequence of opera-
tions that take similar amounts of time to complete. The material is moved
synchronously from one workstation to the next, and each workstation per-
forms repetitively the same task. The main optimisation problem in transfer



89

lines is balancing, i.e., making all the operation times in different worksta-
tions as similar as possible to reduce idle times and to balance the workload
of the stations.

— Production lines: When some variability is required in the workstations,
e.g., some are operated manually, parts move between them asynchronously.
In this case the system does not need to be fully balanced, and possibly
intermediate storage, or buffers, are introduced to filter out the variations.
The efficiency of these systems is greatly affected by the blocking and starva-
tion phenomena they exhibit. The buffer allocation problem becomes crucial:
large buffers aim to neglect blocking and starvation, but increase the work
in progress, with the consequent economical problems.

— Flow shop: When some products may be processed differently in, or even
by-pass, some stations, or follow alternative paths, e.g., when producing a
unique family of products that differ slightly from one another, the layout
of the plant still reflects clearly the material flow, but not as strictly as
in transfer or production lines. The sequencing problem tries to minimise
inventory and production costs, due to machine and tool changeovers, idle
times, etc., by finding an appropriate sequence of parts (or lots), naturally
counstrained to satisfy the production demand.

— Job shop: When the variety of products is greater, the layout does not re-
flect the material flow, because it may differ from one product to another.
For each product a production route is defined, describing a sequence of
machine operations. In principle, the greater versatility is paid by a lesser
efficiency: flexibility of the stations make them not so efficient, particularly
frequent machine and tool changeovers are required, machines may remain
idle a significant part of the time, in-process inventory tends to increase,
the transportation between stations appears as a new problem to be solved,
etc. The integrated automation of the stations, storage, transportation, and
handling becomes highly demanding, leading to FMS. In order to optimise
the system performance while satisfying the production demands, complex
decision problems must be addressed from the long to the short term.

Actually, manufacturing systems exist along a continuous from mass production
to job shop, and even different types can be found in the same factory. For
instance, in modern car factories, which produce a high variety of versions of
one or more models, transfer lines or highly automated production lines are
found in body making (presses and assembly), trimming is usually organised
in production lines and flow shops, often with manually operated stations, and
some complex subassemblies (engines, wiring, etc.) can be produced in flow or
job shops within the same factory or in a supplier’s one.

For the case of process systems, flexibility can be exploited by the manage-
ment levels only in the case of batch processes. This is not only due to the
possibility of dynamically changing the resource allocations and the trajecto-
ries of products as in the case of FMS. It also comes from the possibility of
choosing the size of the batches in a continuous range of values. Splitting and



90

mixing batches are classical operations that require to deal with material balance
equations in order to correctly model the dynamics of the batch processes.

2.2 Hierarchical Architecture of the Control

The complexity and variety of problems encountered is reflected in a time horizon
driven hierarchy of control problems, which covers a whole set of levels from the
strategic decision one, to the real-time operation one and through the tactical
decision one. In the long term strategic level, problems appear, such as the selec-
tion of the products, the equipment, its configuration, etc. The solution of these
problems affects the design or extensive modification of the plant, under some
assumptions on the long-term evolution of the market and taking into account
the particular strategy of the company. In the medium term, the part types for
immediate processing and their relative ratio, lot sizing, grouping of machines,
allocation of resources, stc. must be fixed to respond to market changes. In the
short term, scheduling of parts and tools, dispatching of the parts, reaction to
disruption, etc. are decisions to be taken in order to satisfy the production plan
issued at a higher level to satisfy the precise demand.

It is quite natural that control architectures reflect this hierarchy. Each con-
trol level takes as input the outcome of its upper level(s), and produces a ref-
erence for its lower level(s). This hierarchical structure implements a “divide
and conquer” approach, where the combinatorial number of possible decisions is
constrained from the upper to the lower level in order to find a solution. On the
other hand, sometimes the upper levels respond to demands issued from lower
levels {e.g., the coordination level asks the scheduler how to solve a conflict found
in the operation). The separation between levels is not uniquely defined, par-
tially depending on the nature of the PS (mass production, jobbing shop) and
on design criteria. Broadly speaking, typical control levels are:

— Planning. The whole plant is considered with an estimated demand (unexe-
cuted demands and an estimation of future ones). Further hierarchical refine-
ments into shorter and shorter time horizons can lead to different planning
levels, the lowest ones taking into account availability of raw materials, due
dates, and available resources.

— Scheduling. Each operation (or group of operations) on each part or product
is considered individually. The problem is to decide at which date a given
operation will be performed. If scheduling operates on an estimated state of
the PS, it must consider some slack times, or precise only the (partial) order
of operations to be carried out when possible (the date is only implicitly and

relatively given).

— Global coordination and real-time monitoring. Its function is to update the
state representation of the PS in real- time, to supervise it and to make
real-time decisions, following the schedule, or fixing it when it was implicit.

— Subsystems coordination and local control perform the actual control of the
physical plant in real-time, measuring its state through sensors and influ-
encing it through actuators.

Some books on PS from a systems theory perspective, are [18,54,33,23].



91

3 The Formal Framework Provided by Petri Nets

In operational formalisms (i.e., describing how the system is meant to work
rather than what the system is meant to do), a system can be viewed as a
collection of objects or entities with some attached attributes, some of them
fized and some of them variable (that define the state), and the relations between
them. In PN, the state of a system is represented in a distributed fashion by the
marking: places are local state variables whose value (or marking), depending
on the chosen abstraction level, ranges from boolean (which is adequate for
local control modelling, for instance), to typed and structured (which may be
adequate for concise system descriptions). The possible state changes are locally
defined by way of transitions and the firing or occurrence rule. In autonomous
PN models, the occurrence rule considers the marking only, so the marking is
properly a description of the state of the system. Nevertheless, since transitions
are associated to events in the system, and these events may occur depending
on “external” considerations, such as the timing, or some signals, implicitly {or
explicitly), the state changes involve more information than the marking, so the
marking is no longer a sufficient description of the state of the system in many
interpreted PN models.

PN models of systems are not as different as they may seem at first sight to
other models that are familiar to control engineers. For instance, in [41] the PN
formalisms are introduced in a way that is close to the state-based description
of sampled continuous systems.

We assume the reader is familiar with basic PN concepts [8,16,20,32,39].
Appealing characteristics of PN include:

— Ability to represent in a natural way concurrency, causality, synchronisation,
resource sharing, conflicts, bulk or lot movements, etc.

— Locality of states and actions, allowing both top-down and bottom- up model
construction, i.e., refinement, modularity, reusability, etc.

— Compactness due to the distributed state representation compared to a cen-
tralised sequential representation.

— Adequacy to represent the essential features of a given system by way of the
selection of an appropriate abstraction level.

— Interpretability. It is possible to associate a wide range of different mean-
ings and/or connections to the external world to the model objects; different
interpretations are appropriate for the different purposes of the model: vali-
dation, performance evaluation, scheduling, control implementation, etc.

— Graphic representation facilitating their use in the documentation and mon-
itoring of the system.

— Formal/precise semantics allowing to undertake rigorous analysis or to auto-
mate the implementation or code generation either for control or simulation.

The different interrelated abstraction levels of PN models, and the different
interpretations that can be associated to a PN model, make them specially
usable along the life cycle (design, preliminary and detailed, implementation, and
operation). They define a space of formalisms adequate for different purposes (see



92

Abstraction
Levels

. ObjPN|
E P1/T, CPN
PIT |

EN

g
5
o

Determin.
Intervals
Fuzzy
Predicates
Thresholds

Autonomous
Stochastic

{

Interpretations

-

Timed Data interpreted

Fig. 1. A pictorial view of the space of PN formalisms.

Figure 1). Broadly speaking, in the abstraction levels axis we have elementary net
systems where local states are boolean (conditions), place/transition net systems
where local state variables are counters and bulk processing is allowed, and
diverse high level formalisms where tokens are distinguishable typed items (i.e.,
attributes are attached to them) and transition enabling in a given mode requires
specific tokens present in the input places. In addition one should consider in this
axis some extensions such as inhibitor arcs or priorities which not only affect
the conciseness but also the expressive power under some circumstances, or some
subclasses which aim at improving the tractability at the price of losing modelling
power. In the interpretation axis we have the non-interpreted or autonomous or
basic PN model, different timed interpretations (stochastic, deterministic, firing
times specified by intervals or fuzzy sets, etc., each one with several possible
corresponding modifications of the firing rule), and data interpreted PN which
add extra firing conditions to the transitions (enabled transitions are fired when
some predicates are true, or when some variables reach some thresholds [51] or
at the occurrence of external signals). Timed interpreted PN are adequate for
performance modelling and scheduling, even for hybrid or batch systems [22,25].
Data interpreted PN models incorporate aspects of the systems that are not
captured by the autonomous or basic PN model, for example, continuous state
variables and differential algebraic equations, or the interaction of the controller
with the plant. They are adequate for real-time control, coordination, diagnosis,
etc.

These interpretations can be seen as different abstractions of the environment
of the model, ranging from total abstraction in the autonomous model (which is
totally non-deterministic in the sense that only logical pre-requisites for firings



93

are given, without information on what/when to fire) to total explicitation in the
models considering the actual signals (which should be totally deterministic). In
between diverse assumptions are made (e.g., describing the time of occurrence
of an enabled transition as a random variable or constraining it to be in some
interval, associating probabilities or fairness constraints to conflicting transitions,
or conditioning occurrences by the result of solving an implicit set of differential
algebraic equations, etc.).

These formalisms can be related to other non PN formalisms which are used
in common application domains. For instance, PN performance models add syn-
chronisations to classical queueing networks, PN scheduling models add resource
constraints and cyclic behaviours to PERT, PN controllers allow to deal with
concurrent systems for which state diagrams are impractical, PN in artificial in-
telligence, compared to classical rule systems, add the ability to handle resources,
etc.

PN models — selecting the appropriate formalism — have been used for
diverse purposes within the field of PS, including:

— Modelling, and documentation of a design, to be used in the communica-
tion between the different people involved (in the design and also in the
subsequent, operation).

— Analysis, involving, for instance, correctness verification of the logical be-
haviour of a controller, performance or performability evaluation of a (part
of the) plant, etc. Optimisation problems can be addressed to improve the
design.

— Simulation when the model is too complex (e.g., high level non autonomous
PN) for formal analysis. Typically after an analysis and optimisation based
on an abstract model (autonomous PN), detailed simulation runs are neces-
sary in order to verify that all the constraints captured by the interpreted
PN are met.

— Control design aiming at, for instance, guaranteeing the desired logic be-
haviour (e.g., imposing a mutual exclusion constraint or avoiding a dead-
lock), or achieving optimum or sub optimum performance during operation
(e.g., real-time scheduling).

— Control implementation. PN models can be regarded as executable specifica-
tions. Diverse approaches to the modelling of the control and techniques for
its programmed implementation, including fault-tolerance issues, are avail-
able.

— Monitoring and supervision. PN models are used as deep models (as opposed
to shallow models) for model based diagnosis of the correct operation of the
system for fault detection and localisation. For instance, watch dogs are
attached to each transition firing in order to detect any deviation between
the actual system behaviour and the model.

The use of a single family of formalisms for such a diverse range of problems is
not only beneficial from the point of view of communication and reutilisation of
results. It has proven to lead also to a synergy, where the concepts and techniques
developed in one area help in the solution of open problems in another one [40].



94

4 Modelling Manufacturing Systems

Model building is mainly a creative, thus difficult to automate, task. Neverthe-
less for a given kind of systems and problems it may prove useful to somehow
limit creativity, either to automatically generate the model from a (graphical
high level) description of the plant layout, machines, material handling, storage
and retrieval systems, work plan, etc. [53,2,58], or to facilitate the subsequent
analysis.

The PN formalisms (low or high level, discrete or continuous, etc.) are ade-
quate to build models of PS. We shall show some examples where some of the
appealing characteristics of PN enumerated in Section 3 are illustrated.

In the first example, the model for a simple manufacturing cell the model is
built by composition (transition merging and removal of implicit places) of the
submodels of the machines, buffer, and the robot. The autonomous model is a
non-ambiguous description of the logical behaviour of the system, and can be
used for correctness analysis. Incorporating the relation with the environment
in terms of signals, this model can be sought as the specification for a logic
controller. On the other hand, if appropriate timing is incorporated, performance
can be evaluated, or scheduling policies can be investigated.

In the second example another simple manufacturing cell is used to illustrate
that a system may exhibit undesired behaviours (namely, deadlock situations),
and how PN theory can be used to analyse such problems and synthesise a
control policy that avoids them.

In some applications within PS, e.g., coordination, monitoring, diagnosis, in-
formation systems modelling, etc., the major issue is expressive power and user-
friendliness, rather than tractability. In such cases high level formalisms may
be preferred, integrating modern software engineering concepts both regarding
methodological and data/knowledge representation aspects, like algebraic spec-
ification and object-orientation. The third example shows a coloured PN model
of a realistic PS (part of a flexible workshop of a car factory), taken from a case
study described, for instance, in [29].

The fourth example illustrates the fact that PN are suitable to capture the
discrete part of hybrid systems such as batch processes. The model is built
by composition, as in the first example, and it can also be considered as the
specification of a controller. This example will also be used to illustrate deadlock
detection, the possibility of attaching data to the tokens, to introduce issues
induced by the hybrid nature of batch systems, and also to give some hints
about the differences between supervisory control and local control.

The fifth example details the issue of hybrid modelling, where the PN model
captures the discrete evolution of the system, while differential and algebraic
equations associated to it describe the continuous aspects, allowing for the inte-
grated simulation of the whole system.

Example 1 A manufacturing cell — see the layout in Figure 2.a — is composed
by three machines (M1, M2, and M3). The work plan is as follows: Raw parts



95

)

®

P10 won dvo spdey ()
Wyt weawm ‘dxa ey
W10 TUORIZMONPEAS  m—
190 2D 1T DR
19T AAcnijoqey [5
w19 wopedo 53

R

®

/

(=) 1803

//

R a¥o]
VEW peYos

QO ®

17313 ‘ONTHOLINGH ’S¥OL¥NIDY OL)

(*o39

» 39 [npeyos

SLAJLNO

‘sI08uU8S WOT})
s3ndut

speudis

®)

Fig. 2. Different interpretations of a PN model of a manufacturing cell, for diverse

purposes.



96

arrive through a conveyor; A raw part is processed by MI to obtain a part of
type “A”, or by M2 to obtain a part of type “B”; In M3 two parts, one of each
type, are assembled to obtain a final product, that leaves the cell; We assume
saturation (i.e., the cell is never starved or blocked); Parts are handled by a
robot (R). We assume that only M1 may fail (operation dependent failures). To
reduce the effect of M1 failures, it deposits the “A” parts in a temporary buffer
(B1, capacity N), without using R for this movement.

The PN model in Figure 2.a is self-explanatory. It models both the plant and
the work plan, from a local coordination viewpoint. (It goes without saying that
operation places could be refined to show the detailed sequence of operations
in each machine, etc.) Notice the correspondence of subnets and subsystems
(M1, M3, M8, B1, and R), and the natural representation of their mutual syn-
chronisations. We have depicted as bars those transitions that represent control
events, while transitions depicted as boxes represent the end of an operation, or
the occurrence of a failure.

While the autonomous model is useful for some analytical purposes, it does
not specify when enabled transitions do occur, or which one is selected in the
case of conflict. If the model is meant as a specification for a logic controller,
these matters need to be fixed, in addition to the outputs that must be emit-
ted. The inputs, that condition the evolution of the controller, may come from
plant sensors (e.g., when R finishes loading M2 it emits a signal loaded M2) or
from other levels in the control hierarchy (e.g., when the scheduler decides —
in view of the state of the system and the production requirements —~ - that M1
should be loaded, it sends sched.M1). The outputs may command the actua-
tors (e.g., START M3 initiates the assembly sequence in M3) or send information
to other levels in the control hierarchy (e.g., REPAIR! raises an alarm to call
the attention of maintenance staff, or an interrupt that activates automatic re-
covery; B1_CONT (m) updates the number of ready “A” parts in the production
database, etc.). The PN model in Figure 2.b captures this information. Following
appropriate conventions in the specification (e.g., those imposed in the defini-
tion of Grafcet [16]), a model similar to this one could be used directly as a logic
controller program.

If the purpose of the model is to evaluate the performance of the manufactur-
ing cell, or to investigate different scheduling policies, then timing information
(e.g., duration of operations, mean time between failures, etc.) can be incorpo-
rated to the model, for instance specifying the delay in the firing of transitions.
Diverse timing specifications are possible (e.g., stochastic, deterministic, time
intervals, etc.), each one best suited for a particular purpose or degree of de-
tail required. In Figure 2.c the delays are specified by their mean times. (For
performance evaluation we assume later that the distribution of time delays cor-
responding to operations and movements is phase-type, namely Erlang-3, while
for scheduling we regard it as deterministic.)

Example 2 The cell in Figure 3 may reach a deadlock situation. In this simple
cell, two machines (M1 and M2), belonging to two production lines, share two



97

M1

Fig. 3. A multirobot cell that possibly deadlocks, and its PN model.

handling robots (R and R2). In each machine, three operations are performed
in sequence (OPij). We can model each operation as a single transition, whose
firing would take some time, or by a path OPijs — OPij — OPije, where
the transitions OPijs and OPije represent the instantaneous events of starting
or ending an operation. Machine M1 requires RI to load the parts and assist
during OP11 and OP12, and requires R2 to assist during OP12 and OP138 and
unload the parts, while M2 requires R2 to load the parts and assist during OP21
and OP22, and requires R1 to assist during OP22 and OP238 and unload the
parts. A deadlock is possible if, from the initial state shown in the PN model,
QP11 and OP21 are performed: after completion, M1 waits for R2 while M2
waits for R1.

Example 3 Coloured PN models exploit the symmetries of a system. The FMS
shown in Figure 4 consists of:

— Several workstations (S1 to Sn). All workstations behave in a similar way:
car bodies to be processed are loaded in table L (input buffer of capacity
one), then transferred to table P (actual processing), and then transferred
to table U for unloading (output buffer of capacity one). For simplicity, we
disregard the nature of the precise operations performed in the station, and
therefore, we represent a model of a generic workstation. A station behaves as
a pipeline with three stages: L, P, and U, which can be active simultaneously,
represented by the corresponding places. The complementary places FL, FP,
and FU represent, when marked, that the respective stage is free. The colour
domain of all these places is {1,...,n} for the stations. A token of colour
¢ in P represents that Si is processing. Transferring a processed part from
table P to table U in Si requires i-tokens in P and FU and puts i- tokens
in U and FP.

— An unidirectional transport system, consisting of several roller tables (T
to Tn). Car bodies input the system in table T! and leave it from T, after



98

Stations

Sn Si S1

Transport

Fig.4. A flexible workshop that processes car bodies in several stations, and its
coloured PN model.

being processed in one station (the one decided by the scheduler). The model
for this transport system consists of two places, T and FT, for the occupied
and free tables, and transitions to represent the input or output of a car
body, a movement to the next table, and the load or unload of a station. The
colour domain of FT is {1,...,n} for the tables, and the colour domain of T
is ({1,...,n},{1,...,n}, {in, out}), where the first field identifies the table,
the second the destination station of the car body, and the third the status
of the car body (in when not yet processed and out when ready to leave the
cell). Notice that, at the firing of transition input, a destination station is
assigned to the incoming car body. In net terms, this means solving a conflict
between the different firing modes of the input transition. This destination
is determined by the scheduler, possibly taking into account the state of
the system and production requirements. That is, the scheduler (placed at
a higher level) controls the behaviour of the coordination model represented
by the coloured PN.

The complete net model is obtained merging the load and unload transitions
of the submodels for the workstations and the transport system. The loading of
Si from Ti is represented by the firing of transition load in mode i: it consumes
a token (4,1, in) from T and an i-token from FL and puts i- tokens in L and FT.
Similarly for the unloading, where the “status” colour of the token deposited
in T is out indicating that the car body in the corresponding table has been
processed.



99

Example 4 Let us consider a simple batch production system. The recipe of
the desired product (the recipes in batch systems are similar to part routes in
discrete systems) is the following one. Firstly, a batch of raw material (fluid) is
charged into a reactor. Then a reaction is executed. Then the batch is transferred
to a buffer, and during this transfer, a cooling is done. It has to be pointed out
that the reaction is a discrete operation and its duration does not depend on
the batch size. In contrast, the transfer from the reactor to the buffer and the
cooling is a continuous operation and its duration is proportional to the batch
size because the flowrate in the cooling device is a constant which cannot be
modified. After a certain stay in the buffer, the batch of product is transferred
(another continuous operation) to a reactor for a second reaction and when this
operation terminates, the batch is transferred out of the plant.

It is assumed that the production system comprises two reactors named R1
and R2 and one buffer. A specific cooling device is available at the input of the
buffer. This plant layout is represented in Figure 5.

input input

R1 R2

output

cooling

Buffer

Fig. 5. A simple batch system layout.

The master recipe describes the sequence of all the operations which have
to be executed in order to obtain the final product from the raw material. It is
therefore similar to a kind of abstract production route [22]. The master recipe
can easily be represented by a PN. This is illustrated by Figure 6.a. The devices
remain unspecified and are just called vessel_ i, vessel.j and vessel k.

Then the shop recipe establishes a mapping between the master recipe and
the available physical devices. Let us assume that the two reactors R1 and R2
are identical and that they can play the roles of vessel_1 and of vessel_k. The
Buffer and its attached cooling device will play the role of vessel.j. The various
states of reactors RI and R2 are represented in Figure 6.b and those of the
device Buffer are represented in Figure 6.c. The model of the shop recipe is



100

batch batch

input output

transfer ) transfer

to vessel_i out of vessel_k

reaction 1 reaction 2

in vessel_i in vessel _k

transfer and

cooling from transfer from

vessel_i vessel_j to

to vessel_j vessel_k
stay in

vessel j &) A master recipe

transfer transfer
to Ri out of Ri
reaction 1 ;l;agion 2
inRi
transfer transfer
Ri to Buffer Buffer to Ri
b) The reactor states

for transfer
Ri to Buffer .
and cooling Buffer to Ri

stay in
Buffer ¢) The buffer states

Fig. 6. Building the model.



101

obtained by the composition (transition merging and removal of implicit places)
of the models in Figures 6.a, 6.b, and 6.c. It is represented in Figure 7.

Basically, the modelling process is the same as in the Example 1. The au-
tonomous PN is useful for analytical purposes, but it is too abstract to capture
essential features of this system, and associating sensors or durations to the
transitions in order to perform simulation or to derive a controller is not so
straightforward. For example, transition input is fired when the decision of load-
ing a new batch in the process is made. It has therefore to be controlled by some
management or supervisory level system. Transition ¢! is fired when enabled.
If there is only one reactor (only one token in place Ri idle) then it is a mere
control event. If there are two idle reactors, then a conflict resolution mecha-
nism has to be implemented, and it is necessary to store the name of the chosen
reactor.

Let us now consider the case of transition ¢2. For simulation purposes it is
required to attach a duration to it. However, if the batch size is not always the
same, the duration is not a constant, and the simple timed PN are not sufficient
to capture this. The use of some high level PN is therefore required. The kind
of events represented by this transition are generally called state events because
in a simulation their firing date can only be computed if some state variables of
the continuous view are known (the size of the batch in this case).

Transition t3 represents at the same time the end of the reaction and the ini-
tiation of the cooling and transfer operation when the buffer is available. Notice
that both events must be modelled by a single transition. Typically, in the case
of a purely discrete system it would be broken down into two more elementary
transitions: one representing the end of operation and the other one the control
event (resource allocation and begining of the next operation). However a batch
system is a dynamic system in which the continuous part evolves spontaneously.
Indeed, it is not possible to wait for the buffer in the reactor because the reaction
would go on and the product quality would decrease. Only the cooling operation
can stop the reaction. It is very different from a machining operation which will
stop anyway, even if the robot necessary to remove the part is not available.

Let us now illustrate the fact that for batch systems the availability of some
resource may be of continuous nature. Indeed, the transformation of the master
recipe into a shop recipe is not always as straightforward as in the preceding
case. For example, the buffer may contain more than one batch. In this case,
as the batches are made up of a fluid, the batches will mix in the buffer. In
addition, due to the continuous nature of the two transfer operations (in and
out the buffer), they can be done simultaneously. In a first approximation, the
condition for starting a transfer from Ri to Buffer is that the remaining capacity
of the buffer is sufficient to store a batch. The condition for initiating a transfer
from Buffer to Ri is that the buffer contains at least one batch of product. If we
assume that the buffer capacity is just sufficient for two batches, then the shop
recipe is now represented by the model in Figure 8.a. A place denoting the fact
that the cooling device is free has to be added.



102

batch batch

input output
transfer transfer
toRi KX~ out of Ri
reaction 1 .realgion 2
in Ri in

R B transfer

Ri to Buffer '
and cooling Buffer to Ri

stay in
Buffer

Fig. 7. The shop recipe.

However, we have already pointed out that the batches were not all of the
same size. Indeed what has to be produced has to meet exactly the demand, and
this not necessarily corresponds to a multiple of the maximal reactor capacity.
As the batches mix in the buffer, the exact constraint for allowing a new batch of
size s with a discharge d; to be loaded in the buffer is that, knowing its current
level V; and its future possible discharge d, to the next reactor, its future level
V(t) will always verify the inequality

Vt V() < Viae V() = Vo + (di — do).t

This issue will be detailed in the next example. We just point out the fact
that if we restrict to a pure discrete model, the set of constraints will be delimited
by two PN models. The net in Figure 8.a describes a set of sufficient constraints
{(possibly too restrictive) and the net (without any continuous variables) in Fig-
ure 8.b a set of necessary constraints (possibly too permissive). Indeed, if the
continuous constraint about V (¢) is taken into account, it is not possible to de-
note it by a place and a token count. A possible solution is to use high level PN
and to attach V'(t), d; and d, as attibutes of the token in place Buffer. The value
of V(t) will be recomputed each time a transition connected to this place is fired
and the values of the parameters d; and d, will be updated. This is why double
arcs {denoting a self loop) are connecting the place Buffer to the transitions t3,
t4, t5 and t6.



103

batch batch
input output
transfer transfer
toRi out of Ri
reaction 1 reaction 2
L inRi
inRi

coolin,

transfer
Buffer to Ri

Say N a) Buffer for 2 batches

transfer
out of Ri

reaction 2
in Ri

transfer transf
Ri to Buffer . anster

and cooling Buffer to Ri

b) Buffer for variable batches

Fig. 8. Another shop recipe.



104

Let b; be the size of the batch of product for reaction 1. The time required
to transfer it to the buffer is Aty = by /d; as the discharge (flowrate) is constant
and equal to d;. The token in place reaction I has b; as an attribute and the
token in place Buffer has V as an attribute. The predicate attached to transition
t8 is the following one (d; and d, are assumed constant):

(V< Viaz) AV + by —dp. Aty < Vings) (1)

Indeed, as it is linear, it is sufficient to test the capacity constraint at the begin-
ning and at the end of the transfer.

No predicate is attached to transition t4/. The arcs connecting it to place
Buffer are just required in order to update the token attribute V. The predicate
attached to transition t§ is (bs is the size of the batch for reaction 2, At, the
duration of the transfer out of the Buffer):

(V>2OAV —by+di. Aty > 0) (2)

Transition t6 just updates V on the token in place Buffer.

If only the discrete constraints (this means the PN structure without the
predicates) are considered, it seems that transition t5 can be fired at any time.
Indeed the continuous nature of the batches and of the volume of Buffer (batch
size by is not necessarily a simple multiple of batch size by} breaks down the recipe
into two sub-recipes, one for reaction 1 and one for reaction 2. Transition t5 has
to be controlled by the management decision level in the same way as transition
input.

It is also possible to use extended PN in which the marking of some places
is a real (and not an integer) to simultaneously represent the discrete part and
the continuous part of the process [15,17,27]. However, restrictions have to be
made on the continuous part of the model, so part of the PN theory is no longer
valid, and new theoretical developments are needed.

Example 5 Let us consider an example detailing the issue of hybrid modelling.
Continuous models of process unit operations in transient state are sets of dif-
ferential and algebraic equations of the following form:

f(XI,X,U,t)ZO (3)
with

— X' is the derivative of the state vector X wrt. time,

— X is the state vector of process variables (real numbers),
— U is the parameters of the process model,

— 1 is time

f is often a non linear and implicit real function of X. Given initial conditions
on X, and the values of the parameters U for the corresponding configuration,
the system (3) can be solved using appropriate numerical methods [14]. The



105

batch batch
input output
transfer transfer
to Ri out of Ri
reaction 1 ?Caﬁﬁlon 2
. inRi in Ri
cooling
devicg
free
Rit ffi transfer
i Buffer to Ri

and cooling

Fig. 9. Less restrictive shop recipe.

=

Fig. 10. Physical vessel layout.



106

parameters U correspond to physical variables which are constant and whose
values are determined by the current configuration of the gystem.

As an example, let us consider the simple case of the process shown in Fig-
ure 10. The vessel S1 is fed with a process fluid at a constant flowrate (Fj,)
when the On/Off valve V1 is opened. Similarly, the material can leave the tank
at constant flowrate (F,,;) when valve V2 is opened.

The mass balance on 51 quantifies the mass hold up (m) of material depend-
ing on the state of the valves V1 and V2.

The balance equation could take one of the three different expressions:

- state 1, V1 is open and V2 is closed, the mass hold up increases:
fl(m,1m) I?z'n: Fout) = m, - Fin =0

~ state 2, V1 and V2 are closed, the mass hold up is constant wrt time:
f2(mlamaFin;Fout) =m'=0

— state 3, V1 is closed and V2 is open, the mass hold up decreases:
f3(ml’m, Fin,Fout) =m'+ Fou =0

In the equations f, fo and f3, m is the only component of the state vector
X and F;, and F,,; are the parameters U.

The state where the tank is loaded and unloaded simultaneously is assumed
forbidden. Processing one batch of material is done by a sequence of three steps.
Initially, the tank is empty. In the first step, the discrete state of the valves is set
to (VI is open and V2 is closed) so that the hold up increases until it reaches a
pre-specified maximal threshold value (max). It means that function f; has to
be integrated during this period until the state event E, is detected. This occurs
when the condition of relation 4 becomes true.

Ey : m(t)—maz =0 (4)

Then, a batch time of 1 unit is needed for the process transformation to be
completed. The function fs is substituted to function f; during this second step
and the mass hold up remains at a constant value. In the third and last step,
valve V1 is closed and V2 is open. Once again, the process model is changed,
function f3 replaces function f5. The mass hold up decreases until a minimum
threshold value {min) is obtained. The time at which this happens is fixed by a
state event E,, as for the first step.

E;, : m{t)—-min=0 (5)

The PN model in Figure 11 is the discrete part of the process model. The
different configurations of the two valves are represented by the places PI to
P38 corresponding respectively to state 1 to 3. When one of the three states is
active, the token in the place can be interpreted as the selection of the right
expression of the mass balance. As a consequence, those places monitor the
continuous part of the process model, they are called I-place, for Interpreted
place. The link between the I-place and the function to be solved is represented
in the figure. In this type of hybrid model, output transitions of I-places are all



107

T1
I fI1=0 e P1
i
i El &> T2
|
i f2=0 &> P2
!
| T3 (9 s1
i
F3=0%—> P3
% E2 & T4

Fig. 11. Petri net repesentation of the vessel configurations.

interpreted. The firing rule is extended to take into account the occurrence of
time or state events. T is a control transition that decides the beginning of a
batch processing, it cannot be fired as long as the vessel 57 is allocated to the
processing of a preceding batch. Transition T2 is fired at the occurrence of event
Ey, whose occurrence is computed during the continuous simulation. Transition
T4 behaves similarly; it is subject to the occurrence of event E,. T3 is only a
timed interpreted transition.

5 Qualitative and Quantitative Analysis

One of the purposes of formal modelling is to enable the analysis of the logical
and temporal behaviour. Correctness analysis aims to assert on logical properties
of the behaviour of a system, while performance analysis aims to estimate with
sufficient accuracy relevant indices on its temporal behaviour. PN models, with
the appropriate interpretations, can be used for both kinds of analysis. Therefore,
a system can be analysed from different perspectives using essentially the same
model, even a synergy arises from the interleaving of both views and techniques
[40].

Independently of their purpose, PN analysis techniques [8,39,32,1] can be
classified as:

—~ Enumerative: the complete state space (reachability graph, embedded Markov
chain, earliest state graph, etc.) is generated.

— Net driven: the net structure is taken into account to assist or facilitate
an enumerative analysis. Some examples are: reduction and decomposition
techniques, exploitation of symmetries, etc.



108

— Net based: only the (interpreted) net structure and the initial state, possibly
as a parameter, are used in the reasoning, avoiding enumeration.

Additionally, PN models are useful to perform simulations to gain insight
on the system behaviour or estimate its performance. Simulation is particularly
useful in the case of batch systems, and in general in the case of hybrid systems
[14]. Indeed, when modelling the batch system in Example 4 we have pointed out
the fact that the discrete view represented by the autonomous PN model! was
not an accurate description of the actual constraints resulting from shared re-
sources. An hybrid or mixed simulation combining the PN model and differential
algebraic equations representing continuous constraints is frequently necessary
in order to have an accurate knowledge of the behaviour of an hybrid system
under a known control policy [51].

In what follows, we do not overview existing analysis or hybrid simulation
techniques, but simply use some of them to analyse the examples from Section 4.

Example 1 Basic reduction rules [20,32] allow to transform the model in Fig-
ure 2.a into a marked graph:

1. Every path start loading — loading — end loading is a macrotransition.
Therefore it can be reduced to a single load transition, preserving the (pro-
jected) language, hence liveness, boundedness, reversibility, etc.

2. After the previous step, place R idle self-loops around the four load transi-
tions, and can be removed preserving the language (i.e., it was an implicit
place).

3. The places working and down in M1 and their connecting transitions form
a macroplace.

The resulting marked graph is strongly connected, so it is bounded, and it does
not contain unmarked circuits, so it is live and reversible. By reversibility, the
reachability graph is strongly connected, and this allows to deduce ergodicity of
the stochastic process with the interpretation given in the example (Figure 2.c),
and the irreducibility of the underlying Markov chain.

0.09

1

07 NHE IR .
4] 2 4 6 8 ¢ 105 104 103 102 101 101
@ Buffer capacity (N) ®) Failure rate (A

Fig. 12. Performance evaluation of the cell in Figure 2 with respect to buffer capacity
and failure rate.



109

Markovian performance analysis can be used to assist in the dimensioning
of B1. With given failure and repair rates for M1, throughput is plotted versus
buffer size in Figure 12.a. Economic considerations (in terms of throughput,
required investment, and work in progress) would allow to optimise the buffer
size. The plots in Figure 12.b show how the effect of the buffer varies depending
on the nature of the failures. Keeping the failure/repair ratio constant:

— Unfrequent failures with long repair times (left side of the plot) make the
throughput insensible w.r.t. the buffer size, because the repair time exceeds
largely the time to empty the buffer.

— On the other extreme, in the case of very frequent slight failures, a relatively
small buffer is able to filter out the high frequency perturbations represented
by the failures.

— When the order of magnitude of repair times are similar to the time re-
quired to empty the buffer, its size is most critical in order to increase the
throughput.

Notice that for the case N = 0 the model in Figure 2 is changed, removing
B1 (M1 becomes essentially identical to M2, except for the presence of failures),
resulting in a more tight coupling of the machines that leads to a significantly
lower throughput.

Example 2 The net system in this example follows a pattern that is frequent
in PS and other domains: several sequential processes share some resources. The
subclass of PN known as S®PR [21] has been investigated to deal with this
kind of systems. Among other results, when the processes are cycles, as in the
example, the existence of deadlock situations is characterised in terms of the
existence of net siphons (also known as structural deadlocks) that are not traps.
In this case, the places P13, P23, R1, and R2 are one such siphon, thus reaching
a deadlock is possible. Later we shall explain how a deadlock avoidance control
policy can be deduced in this case from the above siphon.

Example 3 It is current practice to build simulation models of PS in order to
gain some confidence in the absence of problems. Nevertheless simulation does
not guarantee finding such problems. The availability of a formal model allows
to prove properties in a definite way. In this case, enumeration analysis proves
existence of deadlocks: when all the tables in a given station are occupied and a
car body is waiting in the corresponding table of the transport system to enter
this station, a deadlock is reached.

Example 4 As we have pointed it out, the set of constraints resulting from
the shared resources is not accurately represented by the PN models. The net in
Figure 8.a is too restrictive as it only allows to fill the buffer with a new batch
if at the current time the remaining volume is sufficient. It does not take into
account the fact that, possibly, the buffer is simultaneously being emptied. On



110

the contrary, the net in Figure 8.b is too permissive because it does not take
into account the limitation of the size of the buffer. In addition, some operation
durations depend on the batch size. When the complexity of the model required
for an accurate representation of the system does not allow for a quantitative
analysis by stochastic PN, it is possible to execute simulation runs by means of
high level PN simulators [26,34].

The batch size can be implemented as a token attribute. Operation durations
can be functions involving this attribute and the effective firing of some transi-
tion can depend on extra firing conditions based on predicates involving some
continuous variables representing some continuous state variables. In this exam-
ple, the continuous volume of stuff in the buffer V(¢) would be such a variable
and it will be used in some extra firing conditions for transitions {3 and 5 in the
net in figure 8.b. The continuous variables are updated when some transitions
are fired. For example, variable V() will be updated when transitions 4 or tg
are fired. In this way it is possible to check whether some specific control policy
may provoke an overflow of the buffer or not.

Of course, it is possible to use some stochastic variables in order to take into
account the occurrence of failures and abnormal behaviours of the devices. By a
Monte-Carlo simulation, the buffer overflow probability under some control and
monitoring policy can be derived. It is of the utmost importance for security
analysis or to verify the satisfaction of environmental protection constraints, for
example.

Example 5 The result of a simulation for one batch of material is reported
in Figure 13. The mass hold up is a piecewise linear function defined by three
intervals, one for each step. The token load of the places is also reported in
the lower part of the figure. It is obvious from an analysis of this figure that
the events are the common time points between the two parts of the model.
The simulation is based on a synchronous evolution of the continuous and the
discrete models, that only meet when an event occurs. This event is detected
during the integration of the continuous model (end of the integration horizon),
and its consequence on the continuous function is depicted by the firing of the
corresponding transition.

6 On Manufacturing Systems Control

Controlling an existing PS means constraining its evolution in order to guarantee
the desired logic behaviour or/and to optimise its performance at operation. If
the plant to be controlled is modelled as a PN, the control decides the firing or
not of enabled transitions. Usually, not every transition can be disabled (e.g., a
failure, the completion of an operation, etc.), so transitions can be classified as
controllable or uncontrollable. Controllable points are those at which the decision
maker (e.g., a scheduler) influences the behaviour of the system.

Typicaily, concerning the logic behaviour, it is important to avoid undesirable
or forbidden states, such as deadlocks, or to guarantee certain mutual exclusions,



111

Step2

MPD
M(P2)

M@P3) <

Fig. 13. Mass hold up as a function of time.

while performance control aims to maximise throughput or a more general cost
function (e.g., involving also work in progress, machine utilisations, etc.), by
determining the firing date for transitions (scheduling). PN with an appropriate
timed interpretation are very well suited to the modelling of scheduling problems
in parallel and distributed systems. PN allow to model within a single formalism
the functional, temporal, and resource constraints. These determine the enabled
transitions, and then the scheduling problem is reducing the undeterminism by
deciding when to fire which transitions among the enabled ones. In scheduling
theory [11] it is conventionally assumed that tasks are to be executed only once.
Periodic or cyclic schedules [24] are seldom treated by the theory despite they
abound in practice. PN scheduling techniques allow to face these problems. The
same as for the analysis, enumerative, net-driven, and net-based approaches can
be found in the literature. The computational complexity of scheduling problems
leads in practice to sub-optimal solutions obtained using heuristics, artificial
intelligence techniques, etc.

Usually, the control receives inputs from the plant, besides of emitting signals
to it, so it operates in closed loop (the plant and the control are composed in
parallel, in discrete event systems terminology). The same as PN can be used
to model and analyse a PS, its control can often be represented within the PN
formalism, perhaps incorporating an appropriate interpretation.

In Examples 2 and 4 we give a control policy avoiding the deadlock. In Ex-
ample 3, besides avoiding deadlocks we consider a control policy to improve the
performance. In Example 1 we concentrate on performance control (scheduling)
in a simple case where only the allocation of resources is considered (in general,
other decisions such as product-mix [9], lot size, etc., need to be taken also into
account).



112

OP11
é
o Rl /hp
P12 0P23
X 3
P11 ;OP12 Pe
e O D Ol (e
OP22N
P13 21
E \p22
50P13 RO 1
.
OP21
@ b)

Fig. 14. Adding place Pc to the net model in Figure 3 is a deadlock avoidance control
policy.

Example 2 Emptying the siphon {P18, P23, R1,R2} shall be avoided in or-
der to avoid the deadlock. In [47] a technique is presented to achieve this goal,
which in this case consists in adding a place to the original net, see Pc¢ in Fig-
ure 14.a. This place is obtained by addition of the places in the siphon, thus it
is structurally implicit. With two tokens it would be implicit, but with just one
it forbids the firing of OP11 or OP21 when only a token remains in the siphon,
thus avoiding emptying it.

Notice that the net in Figure 14.a is the parallel composition of the model of
the plant (Figure 3) and the mode! of the control given in Figure 14.b, where the
grey places are not needed, or they can be removed after the composition since
they become implicit. From this latter model, it is apparent that we need only
controlling the firing of OP11s and OP21s, and we only observe the occurrence
of OP1%e and OP2%.

Example 3 In this case, the deadlock can be avoided by making sure that no
more than three car bodies scheduled for the same station are present in the
system at any time. This can be enforced by limiting the number of firings of
input in a given mode w.r.t. the number of firings of output in that mode. This
is implemented by place O (for orders) in Figure 15.a, whose colour domain is
{1,...,n} for the destination stations, marked with three tokens of each colour.

Notice that, if O is marked with two tokens of each colour instead of three,
unnecessary stoppages in the transport system, that would reduce the through-
put, are avoided. These stoppages appear when a car body waits in front of
its destination station because this station is processing and the load table is
occupied. We cannot proceed to load the third car body until processing is com-
pleted, the processed car body is transferred to the table U, and the car body
in table L is transferred to table P. In the meanwhile, other car bodies may be
prevented from advancing to their destination beyond that station.



118

{n.x,out} (n,x,out)

X 1

(b)

output

@

Fig. 15. Adding place O to the net model in Figure 4, with a suitable marking, avoids

deadlocks and stoppages.

Finally, in the above control it was assumed that the scheduler controls tran-
sition input and observes transition output. If it observed the occurrences of
transition unload it would be possible to improve the performance of the control
policy by allowing a limited number of unprocessed orders in the system (see
Figure 15.b).

Example 4 Deadlock avoidance is very important in batch systems. Actually,
a deadlock generally results in the loss of one or several batches of product. A
batch of fluid cannot be removed by hand as a part. In addition the loss of the
batches can have severe consequences for the environment (take for instance the
case of nuclear industry).

Let us consider the simple case of a unique size for the batches and of a buffer
size equal to one batch as represented in Figure 7. Starting from this model, the
problem is now to add a new place (or a new set of places) in order to build
a control avoiding deadlocks. Although the production system is very different
from that of Example 2, the issue of deadlock avoidance is very similar.

Indeed, places Ri idle, Buffer idle, transfer Ro to Buffer, transfer Buffer
to Ri, reaction 2 and transfer out of Ri form a siphon. Therefore, if it is emp-
tied it will remain empty, as it can occur if three batches are simultaneously
introduced (the first one is processed until the buffer and the two others until
reaction 1).



114

batch virtual batch
input resource output

— 18
transfer transfer
to Ri out of Ri

{7

reaction 1 !'ealgiion 2
in Ri n
transfer transfer
Ri to Buffer Buffer to Ri

Fig. 16. The batch process siphon.

Among the transitions connected to the places of the siphon, transition ¢;
is the only one consuming a token, and g is the only one increasing the global
token load of the siphon (one token is consumed in iransfer Buffer to Ri, one is
produced in reaction 2 and one is produced in Buffer idle).

In order to avoid emptying the siphon, transition ¢; must be controlled. Let
us introduce a new place virtual resource and the dotted arcs as represented in
Figure 16. The variations of its token load will exactly be the same as that of
the siphon. Initially, the global token load of the siphon is three. If the initial
token load of place wirtual resource is two, then it can be shown, either using
siphon results [7] or net reduction techniques [20], that the deadlock is avoided.

For planning and scheduling place virtual resource is a new constraint which
prevents the generation of any production plan exhibiting the possibility of a
deadlock.

Example 1 Assume that, after the optimisation of the design that involved
performance evaluation as discussed in Section 5, the capacity of the buffer is
fixed to two. Although the plant parameters are fixed, the actual performance
of the system may vary depending on how it is controlled.

As it was shown in Figure 2.b, which represents the control at a coordination
level, the scheduler controls the evolution by enabling/disabling the transitions
that initiate robot load operations (i.e., these are the controllable transitions).

Figure 17 shows the Gantt charts of two possible scheduling policies assuming
deterministic timing and disregarding failures. In Figure 17.a operations are
scheduled as soon as possible, solving eventual conflicts in the allocation of the



115

, Ready "A" parts in B1

-]

@ Cycle: 10.8 t.u.

. Ready "A" parts in B1

b) Cycle: 9.2 tu.

Fig. 17. Effect of different scheduling policies in the manufacturing cell of Figure 2.

robot by fixed priorities (M2 is prioritary over M1). A periodic regime is quickly
reached, in which:

— The cycle time is 10.8 (i.e., throughput 0.0926 without failures).
— The buffer contains at most one part, so parts are not accumulated to be
used in the event of a failure.

The Gantt chart in Figure 17.b shows the evolution when the scheduler pre-
vents interrupting M1 until it gets blocked, and interrupting M2 and M8 from
then on. This policy fills up the buffer to be prepared for eventual failures and
achieves a cycle time of 9.2 (i.e., throughput 0.1087) in normal operation.

Observe that, in normal operation, the behaviour is cyclic, so the control can
be represented or implemented by a regulation circuit net synchronised with the
control transitions.

7 Implementation Issues

Once a suitable PN model for a controller has been obtained it has to be im-
plemented. Basically an implementation is a physical device which emulates the
behaviour expressed by the model. One advantage of using PN as a specifica-
tion formalism is their independence w.r.t. the precise technology (pneumatic,
electronic, etc.) and techniques (hardwired, microprogrammed, etc.) of the final
implementation. Presently, in PS control, programmed implementations are the
most usual, running on a wide range of computer systems (e.g., industrial PC’s,
programmable logic controllers, etc.).

The (programmed) implementation is affected by the selected PN formalism
(low or high level, different interpretations of the firing rule), the algorithmic ap-
proach (interpreted, where the PN model is a data structure, or compiled, where



116

a program is obtained from the given PN; centralised or parallel/distributed
schemes), and the computer architecture (high or low level programming lan-
guage; single or multi processor).

For the case of local controllers specified by low level PN with input and
output signals (like that shown in Figure 2.b), a usual choice are “token players”
[50,39]: the basic schema is a cyclic program that reads the inputs, computes
the evolution of the marking, and generates the outputs once and again. A
major issue is the efficient computation of enabled transitions. An example of an
efficient technique for this purpose are representing places (see, for instance, [12]).
The idea is to appropriately select one input place per transition (its representing
place). It is always possible (perhaps after some net transformations) to classify
places as either representing or synchronisation places, where each of the former
is the representing place of all its output transitions. The marked representing
places are kept in a list (we assume safeness for simplicity), that is updated
at each transition firing. In each cycle, only the output transitions of marked
representing places are tested for enabledness, eventually checking the marking
of some synchronisation places. A possible selection of representing places for
the net in Figure 2 are all but R idle, slots, ready “A” parts, waiting “A”, and
free “B” (thus, these would be the synchronisation places).

The inherent parallelism captured by a PN model is somehow dismissed in
centralised implementations. Diverse parallel and distributed implementations
have been proposed (see, for instance, [12]). The structure theory of PN allows
to identify certain components in a given net that are useful for distributing or
parallelizing the implementation. Particularly, live and safe state machine com-
ponents lead to cyclic sequential processes that can be directly implemented, for
instance, as Ada tasks. In such case, other places can be represented as global
variables, semaphores, etc. Coming back to the example, we easily identify M1
and M2 as sequential tasks, M3 can be decomposed into two synchronised se-
quential tasks, slots and ready “A” parts are semaphores, and R idle is a mutual
exclusion semaphore.

In the implementation of higher control levels, some convergence has ap-
peared between the fields of PN and artificial intelligence (see, for instance, [30],
[49]). In this sense, transitions play the role of rules while the working mem-
ory can be split into several nodes corresponding to the respective input places.
With respect to classical PN implementations the search for enabled transitions
is carried out by the matching phase in the rule system, which can take ad-
vantage from the partition into local working memories. For the selection phase
transitions can be grouped into conflict sets by inspecting the net structure, and
each one can be provided with a particular resolution strategy.

An important issue when designing a control system is that of safety. Formal
modelling and analysis tools are needed to engineer safe computer-controlled
systems. For this task it is necessary to consider both the control system and
its environment, for which PN are a suitable formalism [28]. When faults can
happen the controller should be able to detect them and even react appropriately
degrading system’s performance as little as possible.



117

Let us concentrate here on the detection and recovery of faults in the con-
troller itself, while detection and recovery of faults in the process is covered in
Section 8. Several techniques have been proposed to produce safe and/or fault-
tolerant PN based controllers. We illustrate next two of these techniques which
are supported by PN theory: the spy/observer schema and application of coding
theory.

error
I observer |—>

A

observation
reports
acknowledgements

7
£ T

Version 2

Fig. 18. Duplication versus observation.

In N-version programming techniques, several versions of the controller are
implemented, and a voting mechan m is introduced [5]. A less expensive schema
is based on the idea of an observer [6] or spy [52], which accepts “normal” be-
haviours seen through some observable, or check, points. Figure 18 duplication
and observation schemes are compared. The observable points are transitions
whose firing is reported to the spy/observer (transitions are classified as observ-
able or non- observable, dually to the classification into controllable and uncon-
trollable). The spy/observer can be modelled as a PN equivalent to the original
one w.r.t. observable transitions (non observable transitions are considered silent
and can be reduced). In the final implementation, the code corresponding to the
spy is merged with the code of the proper controller.

Coming back to Example 1, considering as observable all the synchronisation
transitions in the net (i.e., those corresponding to the initiation of robot oper-
ations, initiation of a transfer from M! to M2, and initiation of an assembly
in M3) the corresponding spy is shown in Figure 19. (Notice that this spy is
obtained applying the same reduction rules that were applied for the analysis.)

For the application of coding theory {31] concepts to fault detection/recovery
we can consider the marking as a word and the set of reachable markings as
a code. Possibly, in a given PN model, the Hamming distance between words
(markings) in the code is not large enough to allow the desired detection/correction.
This distance can be increased by adding appropriate redundancies, so it natu-
rally comes to mind the addition of implicit places [38,45] because they preserve
the behaviour.



118

Fig. 19. A spy for the net in Figure 2.

Py Ps
pz p' p3
® (e
Ps P,
@

Fig. 20. Adding implicit places to increase the Hamming distance.




119

Take for instance the PN model in Figure 20.a. The Hamming distance in
this case is two, which is the distance between the reachable markings p; + p4
and ps; + ps — the marking of ps and ps differ — or between ps + pe and ps + pr
— differring in pg and p;. By adding the implicit places pg and py, as shown in
Figure 20.b, we increase the Hamming distance to four. Notice that, in the new
net, the former markings ps3 + ps and ps + ps become p3 +ps + pg and p3 +ps +ps,
respectively — now they differ in the marking of p4, ps, ps, and pg — and the
former markings p; + ps and ps + p; become py + pg + pe and ps + pr + ps,
respectively — now differring in pg, pr, ps, and ps. While a Hamming distance
of two only guarantees detecting all single errors, a Hamming distance of four
guarantees detecting all triple errors, and correcting all single ones. For example,
we are able to detect that ps + psy + ps + pe is not reachable. Assuming that it
suffers from a single error, we would correct it leading to ps + ps + pg, which is
reachable (notice that it is the only reachable marking at distance one from the
given non reachable one).

A generalisation of this schema, disregarding the enabling constraints of the
added places leads to the notion of test places [45], with improved applicability.

8 Supervision and Monitoring

8.1 Principles
The supervisory control and monitoring function has three main objectives:

— Implementing the provisional production plan which has been generated at
upper management levels. This means that it has to detect the end of the
operations and to start the execution of new operations when the resources
are available and the planned date reached.

— Monitoring the plan execution. This means that if the latest starting date
is reached for some operation (e.g., because the previous operation has not
terminated or because the required resources are still allocated for another
operation) then the violation of the provisional plan is detected. A new plan
has to be elaborated, that is, new starting and ending dates are calculated
taken into consideration the actual state of the production system (constraint
propagation).

— Monitoring the behaviour of the physical system. This means that any failure
in the various devices has to be detected and that recovery procedures have
to be executed in order to avoid a failure of the whole production system
and to guarantee the security and environmental constraints.

A typical architecture of a control system is represented in Figure 21. At the
lower level, continuous controllers, programmable logic controllers (PLCs) and
other control devices are found. Then there is the supervisory and monitoring
level and then the management levels in charge of planning and scheduling. The
supervisory level interacts with the management levels (it receives the provisional
plan and sends reports on the actual production system behaviour) and with the



120

Planning
Scheduling
AN
Sy
Model | Supervisory
Monitoring
N
~
C. Control PLC Other
Physical System

Fig. 21. Architecture of a control and monitoring system.

local control (it sends the commands for allocating the resources and initiating
the operation executions, and it receives end of operation signals).

Typically, the supervisory level is based on a model of the production system
which is emulated in real-time [3,4]. This model is used

— to store the current state of the physical system,

— to check that the received signals are consistent with the current state,

— to evaluate (by simulation) the future behaviour of the system after a deci-
sion,

8.2 Model for supervision and monitoring

When the model is PN based, time intervals are attached to each transition
[36,37,46,56). If the transition corresponds to the beginning of an operation, this
time interval is the interval between the earliest starting date and the latest
starting date as determined by the scheduling. If it corresponds to an end of
operation, then the time interval corresponds to the normal duration of the
activity. Transitions have to be fired within these time interval. If the signal of an
end of operation is received when the corrésponding transition is not enabled, or
before the earliest date of the time interval, this means that the physical system
behaviour differs from that of the model. A fault is detected and a diagnosis has
to be done. An efficient diagnosis requires more information than that included
in the model. Indeed, the model only includes correct (or normal, or nominal)
behaviour whereas a diagnosis requires a model of the behaviour of the system
when some equipment have failed (a model of the possible failures). In addition,
the PN models represent the behaviour of the production system and it is often
important to know the architecture of the system (the fact that some device is
physically next to another one may be important to analyse the way a fault may
propagate).



121

In the case of batch processes, a purely discrete model may be insufficient.
It may be necessary to use PN models in which thresholds are attached to the
transitions [3,4]. These thresholds involve continuous state variables. For instance
in the Example 4, if the model in Figure 8.b is used, it is absolutely necessary
to keep track of the current volume of product in the buffer, V(¢), in order to
check if there is no overflow. It is also necessary to keep track of the batch sizes,
for example as an attribute of the corresponding token, in order to compute
the normal firing dates of transitions such as t2 or ¢/ as the durations of the
operations associated with their input places are proportional to the batch sizes.
(See [4] for more details.)

9 Concluding Remarks

The adequacy of PN to deal with a diversity of problems in the design and
operation of PS (discrete, continuous, or hybrid), including modelling, analy-
gis, control, implementation, and monitoring, has been discussed and illustrated
through several examples.

The formal framework provided by PN, and particularly their representa-
tion of the structure of systems, has proved helpful in the treatment of hard
problems in this and other domains. Moreover, the notion of a family of for-
malisms allows to adapt to particular problems and domains without losing the
possibility of mutual communication and reutilisation of results. A number of
PN computer tools have been developed to assist in the modelling and qualita-
tive or quantitative analysis. Several tool descriptions can be accessed through
http://www.daimi.aau.dk/PetriNets/, the Web page on PN maintained by
DAIMI, Aarhus University.

Despite the great amount of work and achievements, much work remains to
be done to meet industrial requirements.

References

1. M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Mod-
elling with Generalized Stochastic Petri Nets. Wiley, 1995.

2. S. Amar, E. Craye, and J. C. Gentina. A method for hierarchical specification
and prototyping of flexible manufacturing systems. In Proc. IEEE Workshop on
Emerging Technologies and Factory Automation, pages 44-59, Melbourne, Aus-
tralia, 1992.

3. D. Andreu, J.C. Pascal, H. Pingaud, R. Valette. Batch process modelling using
Petri nets. In 1994 IEEE International Conference on Systems, Man and Cyber-
netics, pages 314-319, San Antonio, USA, October 1994.

4. D. Andreu, J.C. Pascal, R. Valette. Events as a Key of a Batch Process Control
System. In CESA’96 IMACS Multiconference, Symposium on Discrete Events and
Manufacturing Systems, pages 297-302, Lille, July 1996.

5. A. Avizenis and J. P. Kelly. Fault tolerance by design diversity: Concepts and
experiments. Computer, 17(8):67-80, 1984.



6.

o

10.

11.

12

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

122

J. M. Ayache, P. Azema, and M. Diaz. Observer, a concept for on line detection for
control errors in concurrent systems. In Proc. 9** IEEE Int. Sypm. Fault-Tolerant
Computing, pages 79-86, Madison, W1, USA, June 1992.

. K. Barkaoui, J. F. Pradat-Peyre. On liveness and controlled siphons in Petri nets.

In Application and Theory of Petri Nets, Lecture Notes in Computer Science 1091,
pages 57-72, Springer, 1996.

. G. W. BRAMS. Réseauz de Petri: Théorie et Pratique. Masson, 1983.

H. Camus, H. Ohl, O. Korbaa, and J. C. Gentina. Cyclic schedules in FMS with
flexibilities in operating sequences. In Silva et al. [44], pages 97-116.

R. Champagnat, P. Esteban, H. Pingaud, R. Valette. Petri net based modelling of
hybrid systems. In JCIMS-NOE ASI’96 Conference, Life cycle approaches to pro-
duction systems, management, control, supervision, pages 53-60, Toulouse, Fraxnce,
1996.

P. Chretienne, E. G. Coffman, J. K. Lengstra, and Z. Liu, editors. Scheduling
Theory and its Applications. Wiley, 1995.

J. M. Colom, M. Silva, and J. L. Villarroel. On software implementation of Petri
nets and colored Petri nets using high-level concurrent languages. In Proc. 7" Eu-
ropean Workshop on Application and Theory of Petri Nets, pages 207241, Oxford,
England, July 1986.

Y. Dallery and S. B. Gershwin. Manufacturing flow line systems: A review of
models and analytical results. Queueing Systems: Theory and Applications, 12:3~
94, 1992.

B. Daubas, A. Pages, H. Pingaud. Combined simulation of hybrid processes. In
1994 IEEE International Conference on Systems, Man and Cybernetics, pages 320-
325, San Antonio, USA, October 1994.

R. David and H. Alla. Continuous Petri Nets. In 8** European Workshop on Ap-
plication and Theory of Petri Nets, pages 275-294, Zaragoza, June 1987.

R. David and H. Alla. Petri Nets and Grafcet. Prentice-Hall, 1992.

I. Demongodin, N. Audry, F. Prunet. Batches Petri Nets. In IEEFE International
Conference on Systems, Man and Cybernetics, pages 607-617, Le Touquet, France,
October 1993.

A. Desrochers, editor. Modeling and Control of Autornated Manufacturing Systems.
IEEE Computer Society Press, 1989.

A. Desrochers and R. Y. Al-Jaar. Applications of Petri Nets in Manufacturing
Systems. IEEE Press, 1994.

F. Dicesare, G. Harhalakis, J. M. Proth, M. Silva, and F. B. Vernadat. Practice of
Petri Nets in Manufacturing. Chapman & Hall, 1993.

J. Ezpeleta, J. M. Colom, and J. Martinez. A Petri net based deadlock prevention
policy for flexible manufacturing systems. IEEE Trans. on Robotics and Automa-
tion, 11(2):173-184, 1995.

H. Genrich, H-M. Hanisch, K. Woellhaf. Verification of recipe-based control pro-
cedures by means of predicate/transition nets. In Application and Theory of Petri
Nets, Lecture Notes in Computer Science 815, pages 278-297, Springer, 1994.

S. B. Gershwin. Manufacturing Systems Engineering. Prentice-Hall, 1994

C. Hanen and A. Munier. Cyclic scheduling problems: An overview. In Chretienne
et al. [11].

H. M. Hanisch. On the use of Petri nets for design, verification and optimization of
control procedures for batch processes. In 1994 IEEE International Conference on
Systems, Man and Cybernetics, pages 326-330, San Antonio, USA, October 1994.



26

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

123

. K. Jensen, et al. Design/CPN, Reference manual, Meta Software and Com-
puter Science Department, University of Aarhus, Denmark 1997. On-line version:
http://www.daimi.aau.dk/designCPN/

J. Le Bail, H. Alla, and R. David. Hybrid Petri Net. In European Control Confer-
ence, p.1472-1477, Grenoble, France, July 1991.

N. G. Leveson and J. L. Stolzy. Safety analysis using Petri nets. JEEE Trans. on
Software Engineering, 13(3):386-397, 1987.

J. Martinez, P. Muro, and M. Silva. Modeling, validation and software implementa-
tion of production systems using high level Petri nets. In M. Silva and T. Murata,
editors, Invited Sessions: Petri Nets and Flezible Manufacturing. IEEE Int. Conf.
on Robotics and Automation, pages 1180-1185, Raleigh, NC, USA, April 1987.

J. Martinez, P. Muro, M. Silva, S. F. Smith, and J. L. Villarroel. Merging artifi-
cial intelligence techniques and Petri nets for real time scheduling and control of
production systems. In R. Huber et al., editors, Artificial Intelligence in Scientific
Computation, pages 307-313. Scientific Publishing Co., 1989.

F. J. McWilliams and N. J. A. Sloan. The Theory of Error-Correcting Codes. Hand-
books in Operations Research and Management Science. North-Holland, 1981.

T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541-580, 1989.

H. T. Papadopoulos, C. Heavey, and J. Browne. Queueing Theory in Manufacturing
Systems Analysis and Design. Chapman & Hall, 1993.

C. Proix, C. Lansade. MissRdP5 Manuel, de reference, IXI, Toulouse, January
1997, (IXI/TLS/mrdp/MdR/D63.E).

J. M. Proth and X. Xie. Petri Nets. A Tool for Design and Menagement of Man-
ufacturing Systems. Wiley, 1996.

A. Sahraoui, M. Courvoisier, R. Valette. Some considerations on monitoring in
distributed real-time control of flexible manufacturing systems. In International
Conference on Industrial Electronics, Control and Instrumentation, IECON 86,
p.805-810, Milwaukee, USA, Sept. 1986.

A. Sahraoui, H. Atabakhche, M. Courvoisier, R. Valette. Joining Petri nets and
knowledge based systems for monitoring puposes. In IEEE International Confer-
ence on Robotics and Automation, p.1160-1165, Raleigh, USA, April 1987.

J. Sifakis. Realization of fault-tolerant systems by coding Petri nets. Design
Automation and Fault-Tolerant Computing, 3(2):93-107, 1979.

M. Silva. Las Redes de Petri: en la Automdtica y la Informdtica. AC, 1985.

M. Silva. Interleaving functional and performance structural analysis of net models.
In Ajmone Marsan (ed.), Application and Theory of Petri Nets 1993, volume 691
of Lecture Notes in Computer Science. Springer, 1993, pages 17-23.

M. Silva and E. Teruel. A systems theory perspective of discrete event dynamic
systems: The Petri net paradigm. In P. Borne, J. C. Gentina, E. Craye, and
S. El Khattabi, editors, Symposium on Discrete Bvents and Manufacturing Sys-
tems. CESA ’96 IMACS Multiconference, pages 1-12, Lille, France, July 1996.

M. Silva and E. Teruel. Petri nets for the design and operation of manufacturing
systems. European Journal of Control, 3(3), 1997.

M. Silva and R. Valette. Petri nets and flexible manufacturing. In G. Rozenberg,
editor, Advances in Petri Nets 1989, volume 424 of Lecture Notes in Computer
Science, pages 374-417. Springer, 1989.

M. Silva, R. Valette, and K. Takahashi, editors. Procs. 1°* Int. Workshop on
Manufacturing and Petri Nets, Osaka, Japan, June 1996.

M. Silva and S. Velilla. Error detection and correction on Petri net models of
discrete event control systems. In Proc. ISCAS 85, pages 921-924, 1985.



46.

47.

48.

49.

50.

51.

52.

83.

54.

55.

56.

57.

58.

59.

124

A K.A. Toguyeni, S. El Khattabi, E. Craye. Functional and/or structural approach
for the supervision of flexible manufacturing systems, In IEEE-SMC CESA’96 Mul-
ticonference, Symposium on Discrete Bvents and Manufacturing Systems, p.716-
721, Lille, France, July 1996.

F. Tricas and J. Martinez. An extension of the liveness theory for concurrent se-
quential processes competing for shared resources. In IEEE Int. Conf. on Systems,
Man, and Cybernetics, pages 41194124, Vancouver, Canada, October 1995.

C. Valentin, P. Ladet. Flow modelling in a class of hybrid (continuous-discrete)
systems. In JEEE International Conference on Systems, Man and Cybernetics, Le
Touquet, France, October 1993.

R. Valette and M. Courvoisier. Petri nets and artificial intelligence. In R. Zurawski
and T. Dillon, editors, Modern Tools for Manufacturing Systems, pages 385-405.
Elsevier, 1993.

R. Valette, M. Courvoisier, J. M. Bigou, and J. Albukerque. A Petri nets based
programmable logic controller. In IFIP 1°° Int. Conf. on Computer Applications
in Production and Engineering, Amsterdam, Holland, April 1983.

R. Valette, H. Pingaud, A. Pagés, D. Andreu, J.C. Pascal. Modelling, simulation
and control of event-driven operations in process systems. In INRIA/IEEE Con-
ference on Emerging Technologies and Factory Automation ETFA’95, p. 119-128
(Vol. 3), Paris, France, Oct. 1995.

S. Velilla and M. Silva. The spy: A mechanism for safe implementation of highly
concurrent systems. In Real Time Programming 1988, 15** IFAC/IFIP Workshop,
pages 95-102, Valencia, Spain, May 1988. Pergamon.

J. L. Villarroel, J. Martinez, and M. Silva. GRAMAN: A graphic system for manu-
facturing system design. In S. Tzafestas, A. Eisinberg, and L. Carotenuto, editors,
IMACS Symp. on System Modelling and Simulation, pages 311-316. Elsevier, 1988.
N. Viswanadham and Y. Narahari. Performance Modeling of Automated Manu-
facturing Systems. Prentice-Hall, 1992.

E.C. Yamalidou, J.C. Kantor. Modeling and optimal control of discrete-event chem-
ical processes using Petri nets. Computers Chem. Engng, Vol.15, No 7, p.503-519,
1991.

E. Zamai, A. Chaillet-Subias, M. Combacau, A. de Bonneval. A hierarchical struc-
ture for control of discrete event systems and monitoring of process failures. Studies
in Informatics and Control, Vol.6, N 1, p. 7-15, 1997.

M. C. Zhou and F. DiCesare. Petri Net Synthesis for Discrete Event Control of
Manufacturing Systems. Kluwer Academic Publishers, 1993.

A. Zimmermann, S. Bode, and G. Hommel. Performance and dependability evalu-
ation of manufacturing systems using Petri nets. In Silva et al. [44], pages 235-250.
R. Zurawski and M. C. Zhou. Special issue on Petri nets in manufacturing. IEEE
Trans. on Industrial Electronics, 41(6), 1994.



