Distributed Versions of Linear Time
Temporal Logic: A Trace Perspective

P. S. Thiagarajan'* and Jesper G. Henriksen?

1 SPIC Mathematical Institute,
92 G.N. Chetty Road, T. Nagar, Chennai 600 017, India
Email: pst@smi.ernet.in

2 BRICS**, Department of Computer Science,
University of Aarhus, Ny Munkegade, 8000 Aarhus C, Denmark
Email: gulmann@brics.dk

1 Introduction

Linear time Temporal Logic (LTL) as proposed by Pnueli [37] has become a well
established tool for specifying the dynamic behaviour of distributed systems. A
basic feature of LTL is that its formulas are interpreted over sequences. Typically,
such a sequence will model a computation of a system; a sequence of states visited
by the system or a sequence of actions executed by the system during the course
of the computation. A system is said to satisfy a specification expressed as an
LTL formula in case every computation of the system is a model of the formula.
A rich theory of LTL is now available using which one can effectively verify
whether a finite state system meets its specification [51]. Indeed, the verfication
task can be automated (for instance using the software packages SPIN [21] and
FormalCheck [2]) to handle large systems of practical interest.

In many applications the computations of a distributed system will constitute
interleavings of the occurrences of causally independent actions. Consequently,
the computations can be naturally grouped together into equivalence classes
where two computations are equated in case they are two different interleavings
of the same partially ordered stretch of behaviour. It turns out that many of the
properties expressed as LTL-formulas happen to have the so called “all-or-none”
property. Either all members of an equivalence class of computations will have
the desired property or none will do (“leads to deadlock” is one such property).
For verifying such properties one has to check the property for just one member
of each equivalence class. This is the insight underlying many of the partial-
order based verification methods [17, 35, 50]. As may be guessed, the importance
of these methods lies in the fact that via these methods the computational
resources required for the verification task can often be dramatically reduced.

It is often the case that the equivalence classes of computations generated by
a distributed system constitute objects called Mazurkiewicz traces. They can be

* This work has been supported by BRICS and IFCPAR Project 1502-1.
** Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

644

canonically represented as restricted labelled partial orders. This opens up an
alternative way of exploiting the non-sequential nature of the computations of a
distributed systems and the attendant partial-order based methods. It consists
of developing linear time temporal logics that can be directly interpreted over
Mazurkiewicz traces. In these logics, every specification is guaranteed to have the
“all-or-none” property and hence can take advantage of the partial-order based
reduction methods during the verification process. The study of these logics also
exposes the richness of the partial-order settings from a logical standpoint and
the complications that can arise as a consequence.

QOur aim here is to present an overview of linear time temporal logics whose
models can be viewed as Mazurkiewicz traces. The presentation is, in principle,
self-contained though previous exposure to temporal logics [12] and automata
over infinite objects [49] will be very helpful. We have provided net-theoretic ex-
amples whenever possible in order to emphasize the broad scope of applicability
of the material.

In the next section we introduce linear time temporal logic and sketch the
automata-theoretic solutions to the satisfiability problem (does a formula have
a model?) and the model checking problem (do all computations of a system
constitute models of a given specification formula?). In Section 3 we introduce
Mazurkiewicz traces viewed as equivalence classes of sequences. This leads to
the precise formualtion of the notion “all-or-none” LTL properties.

Next we introduce a well-understood class of trace languages called prod-
uct languages. The automata that recognize these languages are called product
automata and they incorporate a simple and yet useful method of forming dis-
tributed systems. The system consists of a network of sequential agents, each
with its own alphabet of actions. In the interesting instances the alphabets are
not pair-wise disjoint. One then imposes a synchronization regime under which
the agents are forced to carry out common actions together. After presenting a
theory of product languages and automata, we formulate in Section 5 a simple
version of a trace-based version of LTL called product LTL. The formulas of
this logic have a natural semantics in terms of the computations generated by
a network of sequential agents as introduced in the previous section. Using the
theory of product automata we then provide solutions to the satisfiability and
model checking problems for product LTL.

In Section 6 we introduce the representation of Mazurkiewicz traces as re-
stricted labelled partial orders. We then provide a rapid introduction to the
theory of trace languages and automata that we call asynchronous automata for
recognizing trace languages. In the subsequent section we introduce the logic
TrPTL which is a trace-based logic with much richer possibilities than product
LTL. We then provide solutions to the satisfiability and model checking prob-
lems for TrPTL using asynchronous automata. This is followed by a brief survey
of other trace-based linear time temporal logics available in the literature. Sec-
tion 8 is devoted to considering various expressiveness issues associated with our
temporal logics. We conclude in the final section with remarks about branching
time temporal logics based on traces.

645

2 Linear Time Temporal Logic

In our formulation of linear time temporal logics it will be convenient to treat
actions as first class objects both at the syntactic and semantic levels. As a first
step we shall consider a version of LTL (linear time temporal logic) in which the
next-state modality is indexed by actions.

Through the rest of the paper we fix a finite non-empty alphabet of actions
Y. We let a,b range over X and refer to members of X' as actions. X* is the
set of finite words and X is the set of infinite words generated by X with
w={0,1,2,...}. We set ¥*° = Z* U X“ and denote the null word by . We
let ¢, 0’ range over £“ and 7,7', 7" range over Z*. Finally < is the usual prefix
ordering defined over Z* and for u € X, we let prf(u) be the set of finite
prefixes of u.

Next we fix a finite non-empty set of atomic propositions P = {p;,ps,...}
and let p,q range over P. The set of formulas of LTL(Y) is then given by the
syntax:

LTL(Z) s=p|~ajaVvB]|{a)a]|aUpL.

Through the rest of this section a, 3 will range over LTL(X).

A model of LTL(X) is a pair M = (0, V) where ¢ € £ and V : prf(o) — 2P
is a valuation function. Let M = (o,V) be a model, 7 € prf(o) and o be a
formula. Then M,7 | a will stand for « being satisfied at 7 in M. This notion
is defined inductively in the expected manner.

- MrEpifipeV(r).

- M,7E~aiff M,7}fa

- MrtEavitM,rEaor M,7k(.

— M,7 = {(a)a iff Ta € prf(o) and M, 7a = a.

— M,7 | a U B iff there exists 7’ such that 7' € prf(c) and M,77" = 8.
Moreover for every 7" such that € < 7" < 7/, it is the case that M, 77" = a.

Along with the usual propositional connectives A, D and = we will also use

the propositional constants, T & piV ~p and L <45 ~ T. Some useful
derived modalities are:

~ Oa <25 Vaeg(a)a.

- Oa <& TUa
— O é ~O .

Let M = (0,V) be amodel and 7 € prf(c). Then it is easy to check the following
assertions.

— M,7 E Oaiff M, 7' |= o where 7' € prf(o) is such that |7'| = |7] + 1.
— M,7 = Oaiff there exists a 7/ € Z* with 7' € prf(o) such that M, 77" = a.
— M,7 = Oa iff for each ' € Z*, 77’ € prf(c) implies M, 77" E a.

646

Note that O« is the usual next-state operator of LTL.

We say that a formula o € LTL(XY) is satisfiable iff there exist a model
M = {(0,V) and 7 € prf(o) such that M,7 = a. This logic does not refer
to the past either in the syntax or in the semantics. Hence the formula o is
satisfiable iff there exists a model M such that M,e = a. This is easy to check.
The satisfiability problem for LTL is to develop a decision procedure which will
determine whether a given formula a is satisfiable. We will later in this section
describe such a decision procedure.

We now wish to formulate the model checking problem for LTL(X). A finite-
state program over X is a structure Pr = (S, —, Sin, Vp,) where:

— S is a finite set of states.

— — € 8§ x ¥ x S is a transition relation.

— Sin € S is a set of initial states of the program.

— Vpr : S — 2F assigns a subset of P to each state of the program.

The members of P capture a finite set of basic assertions concerning the pro-
gram which can usually be “read off” by examining the states of Pr and this
is described by Vp,. It will often be the case that the set of initial states is a
singleton.

It is easy to arrange matters so that at each reachable state of the program
at least one transition can be performed. We will assume that this is indeed
the case for all program models we consider in this paper. Further we will say
“program” instead “finite-state program” from now on.

A computation of the program Pr is a pair (o, p) where ¢ € ¥ and p :
prf(c) — S is a map which satisfies:

— p(e) € Sin.
~ p(1) == p(ra) for each 7a € prf(o).

Let (0, p) be a computation of the program Pr. Then this computation canon-
ically induces the model M, , = (0,V,) where V, is given by: V,(r) = Vp.(p(7))
for each r € prf(o).

Let Pr be a program and o be a formula of LTL(X). We say that Pr meets
the specification a — denoted Pr = a — if for every computation (o, p) of Pr,
it is the case that M, e = o where M is the model induced by the computation
(o, p). The model checking problem is to decide for a given program Pr and a
given formula @ whether or not Pr |= a. We will sketch a solution to the model
checking problem later in this section.

Let N = (B, E, F, ¢;) be a finite elementary net system. In other words, it is
an elementary net system in which both B, the set of conditions and E, the set
of events are finite sets. We can associate the program Pry = (S, —, Sin, Vpr)
with AV as follows:

— Y=FEand P=B.
— S is the least subset of 2% and — is the least subset of § x X x S satisfying:
® Cin E S .

647

e Suppose c€ Sande € Esuchthat *¢e Ccande*Nc=0. Thenc € §
and (c,e,c’) € — where ¢/ = (¢~ *e) Ue*.
- Sin - {cin}-
— Vpr(c) = c for every c € S.

Thus the so called case graph — or the sequential configuration graph as
called in the chapter on elementary net systems in this volume — is the un-
derlying transition system of the program. The conditions serve as the atomic
propositions.

For ¢ C B, let o, be the formula A, b. Now consider the specification O~a,
for some ¢ C B. Then Pry [£ O~ . iff ¢ is a reachable state (i.e. ¢ € S) in
N. Next suppose e and €' are two events. Then Pry | OC{(e)T D OO(e)T
captures the fact that in A/, along every computation, if e occurs infinitely often
then so does e’. A rich variety of liveness and safety properties can be expressed
in LTL(ZX). For a substantial collection of examples the reader should see [26].

It turns out that both the satisfiability and model checking problems for
LTL can be solved elegantly using Biichi automata [51]. We start with a brief
introduction to these automata. A Biichi automaton over X is a tuple B =
(Q, —, Qin, F) where:

— @ is a finite non-empty set of states.

— — C @ x X x @ is a transition relation.
- Qin C @ is a set of initial states.

— F C @ is a set of accepting states.

Let o0 € X“. Then a run of B over ¢ is a map p : prf(c) — @ such that:

— ple) € Qin.
— p(t) = p(7a) for each ta € prf(o).

The run p is accepting iff inf(p) N F # @ where inf(p) C Q is given by
g € inf(p) iff p(r) = ¢ for infinitely many r € prf(c). Finally £(B), the language
of w-words accepted by B, is:

L(B) = {o | 3 an accepting run of B over o}.

The languages recognized by Biichi automata are called the w-regular lan-
guages. For an excellent survey of regular languages and automata over infinite
objects, the reader is referred to [49].

It is easy to solve the emptiness problem for Biichi automata; to determine
whether or not the language accepted by a Biichi automaton is empty. This can
be done in time linear in the size of the automaton where the size of a Biichi
automaton is the number of states of the automaton [49)].

We will now show how one can effectively construct for each o € LTL(X), a
Biichi automaton B, such that the language of w-words accepted by B, is non-
empty iff o is satisfiable. This is an action-based version of the elegant solution
presented in [51] for LTL.

648

Through the rest of the section we fix a formula ag. To construct B,, we first
define the (Fischer-Ladner) closure of ag. For convenience we will assume that
the derived next-state modality modality O is included in the syntax of LTL(X).
We take cl{ap) to be the least set of formulas that satisfies:

- ap € cl{ag).

— If ~ B € cl{ap) then B € cl(ap).

— I avp e c(ag) then ¢, 8 € cl(ap).

— If {a)a € cl{og) then a € cl{ag).

— X aU B € cl{ag) then o, 8 € cl{ap). In addition, O(a U 8) € cl(ap).

Now CL(aqg), the closure of ¢y, is defined to be:
CL(ag) = cl{ao) U {~B | B € cl(ao)}.

In what follows ~~ 3 will be identified with 3. Moreover, throughout the section,
all the formulas that we encounter will be assumed to be members of CL(ay).
For convenience, we shall often write CL instead of CL(ayp).

A C CL is called an atom iff it satisfies :

- BeAiff~[¢A.
—avfedifac Aor 8 e A
—aUpeAifffpedora,0(aUp) € A
— If (a)a € Aand (b)) € Athena=0b.

AT (ayp) is the set of atoms and again we shall often write AT instead of AT (ap).
Finally we set Us,, the set of until requirements of ag, to be the given by Uy, =
{aUpB|alUpe CL}. We will often write Uy instead of Uy, -

The Biichi automaton By, (from now on denoted as B) is now defined as
B =(Q,—,Qin, F), where the various components of B are specified as follows.

— @Q = AT x 2% is the set of states.
— The transition relation — C @ x £ x Q is given by (4, z) - (B, y) iff the
following requirements are met:
e For every (a)a € CL, (a)a € A iff a € B and for every O(a) € CL,
Ola)e Aiff « € B.
o if (h)3 € Athenb=a.
eifc #Qtheny={aUB|laUpBeczandf & B}. If z = @ then
y={aUBlaUpeBandp¢B}
— Qin CQisgiven by (A,2) € Qi iff g € A and z = §.
- FCQisgivenby (A,z) e Fifz =40.

It is easy to show that L(B) # @ iff oo is satisfiable. It is also easy to check that
the size of B is at most exponential in the size of ag. As observed earlier the
emptiness problem for a Biichi automaton can be solved in time linear in the
size of the automaton. Thus we arrive at:

Theorem 1. The satisfiability problem for LTL(X) is decidable in exponential
time.

649

Turning now to the model checking problem we first recall that the inter-
section problem for Biichi automata can be easily solved. In other words, let
B1, Bz be two Biichi automata both operating over X. Then one can effectively
construct a Biichi automaton B over the same alphabet such that the language
accepted by B is the intersection of the languages accepted by B; and By. More-
over, the size of B can be assumed to be bounded by 2nins where n, is the size
of By and ny is the size of By [49].

Now let Pr = (5,—,Sin, Vp,) be a program. We associate the Biichi au-
tomaton Bp, = (8,~,Sn,S) over the alphabet X x 2 with Pr where ~ is
given by: (s,(a, R),s') € ~ iff (s,a,8') € — and Vp,.(s) = R.

Let a be a specification. Then we construct the Biichi automaton B..., corre-
sponding to the negation of a. Let By = (Q, =>, Qin, F'). Recall that each state
in @ is of the form (A, z) where A is an atom. We now convert this automaton
into the automaton B = (Q,2,Qin, F) over the alphabet £ x 2¥ by defining
= as: ((4,3),(a,R), (B,y)) € 2 iff ((A,2),0,(B,y)) € => and ANP = R.
Finally, let B be the Biichi automaton which accepts the intersection of the lan-
guages accepted by Bp, and B. It is straightforward to check that Pr k= « iff
the language accepted by B is empty. An easy analysis of the size of B leads to:

Theorem 2. The model checking problem for LTL(Y) is decidable in time
O(|Pr| - 2lo1).

In what follows, automata-theoretic constructions and expressiveness issues
will play a considerable role. These topics can be treated in a simpler fashion
if we eliminate atomic propositions. Most of the material we present can easily
accomodate atomic propositions with some notational overhead. Hence from
now on, we will not — except for some passing remarks — deal with atomic
propositions. To be specific, the syntax of LTL(X) will be assumed to be:

LTL(Z) =T | ~alaVi|{a)a|alUpB.

Notice that a model is now just a member of 2% with the semantics being the
obvious one (7T is always true). The set of models of a formula constitute a
language of infinite words. More precisely, each a induces the language L, given
by:

Ly={o]|o,e E=a}

A program is now just a finite-state transition system Pr = (5, —, Sin) over
Y. Each such program Pr has the language Lp, associated with it. This is just
the language accepted by the Biichi automaton (S, —, S, S). It is also easy
to see that Pr = a iff Lp, C Lo iff Lp, N L.y = 0.

3 Mazurkiewicz Traces and Trace Consistent Properties

Here we wish to introduce the notion of traces from the standpoint of sequences.
This will enable us to define the notion of a trace consistent property. This notion
plays an important role in partial order based reducion methods. As pointed out

650

in the introduction, it also provides the motivation for studying trace based
linear time temporal logics.

A (Mazurkiewicz) trace alphabet is a pair (X, I'), where X, the alphabet, is a
finite set and I C X' x X' is an irreflexive and symmetric independence relation. In
most applications, X' consists of the actions performed by a distributed system
while I captures a static notion of causal independence between actions. The
idea is that contiguous independent actions occur with no causal order between
them. Thus, every sequence of actions from X' corresponds to an interleaved
observation of a partially~-ordered stretch of system behaviour. This leads to a
natural equivalence relation over execution sequences: two sequences are equated
iff they correspond to different interleavings of the same partially-ordered stretch
of behaviour.

For the rest of the section we fix a trace alphabet (X, I) and assume the
terminology developed in the previous section for objects derived from X. We
define D = (X x X} — I to be the dependency relation. Note that D is reflexive
and symmetric. A set p C X is called a D-clique iff p x p C D. The equivalence
relation ~; C 2*° x X* induced by [is given by:

ow~yo iff o] p=d'|pfor every D-clique p.

Here and elsewhere, if A is a finite set, p € A~ and B C A then p|B is the
sequence obtained by erasing from p all occurrences of letters in A — B.

Clearly a1 is an equivalence relation. Notice that if ¢ = Tabo) and ¢' = Thao
with (a,b) € I then o =; ¢’. Thus o and o’ are identified if they differ only in
the order of appearance of a pair of adjacent independent actions. In fact, for
finite words, an alternative way to characterize = is to say that o =~y o' iff
o' can be obtained from o by a finite sequence of permutations of adjacent
independent actions. However the definition of a7 in terms of permutations can
not be directly transported to infinite words, which is why we work with the
definition presented here.

The equivalence classes generated by =~ are called (Mazurkiewicz) traces. A
set of traces is called a trace language. The theory of traces is well developed
and documented—see [6, 7] for basic material as well as a substantial number of
references to related work.

A variety of models of distributed systems naturally have a trace alphabet
associated with them [55]. It also turns out that many interesting properties
of distributed systems respect the equivalence relation induced by these trace
alphabets. This has important consequences for the practical verification of such
properties.

The key notion in this context is that of a trace consistent property. To bring
this out, we start with a trace alphabet (X, I') and recall the remarks concerning
the abolition of atomic propositions at the end of Section 2. Let L C X¥. We
say that L is trace consistent in case o € L and o =~y ¢’ implies ¢’ € L; for every
o,0' € X¥. In other words, either all members of a trace are in L or none of
them are. We say that the formula o in LTL(X') is trace consistent in case L, is

651

trace consistent. It is not hard to see that there is a one-to-one correspondence
between trace languages and trace consistent languages of strings.

Now suppose Pr is a program over X which has a trace alphabet (X, I)
associated with it in some natural manner. Suppose further that Lp,, the lin-
ear time behaviour of Pr, is trace consistent (we will see a number of models
of distributed programs that possess these features in the material to follow).
Now consider a specification a which happens to be trace consistent. Then, as
remarked at the end of Section 2, verifying Pr = « boils down to verifying
Lp, C L,. Instead of checking Lp, C L, we can choose to check L' C L, where
L' is designed to be such that L' C Lp, and for every ¢ € Lp,, [c]NL' # 0. The
key point is, the finite representation of L’ can be often substantially smaller
than the representation of Pr. This is the insight underlying many of the so
called partial-order methods deployed in the model checking world [17, 35, 50].

As pointed out in the introduction this is also the main motivation for con-
sidering the trace-based linear time temporal logics that we will encounter later.
We shall conclude this section with some examples.

Recall the material on elementary net systems introduced in Section 2. Sup-
pose N' = (B, E, F,¢;,) is an elementary net system. Each such system induces
the independence relation I given by:

Iy ={(e1,e2) | ("1 Uel) N (*e2 Ued) = B}

Let e € E and consider the formula OO (e)T. The property captured by this
formula says that (along every computation) the event e occurs infinitely often.
It is easy to see that this is a trace consistent property with respect to the trace
alphabet (E, Iv). Next consider the net system of Figure 1.

Consider the formula g = OO({e)T A (¢')T). Suppose o = {ejesee’}* and
o' = (e1€'eze)”. Then o,¢ |= B and ¢ ~p,, o' but ¢’,e £ B. Thus this property
is not trace consistent with respect to the trace alphabet induced by this net
system.

4 Product Languages and Automata

We will now exhibit a restricted but useful class of distributed behaviours that
we call product behaviours. Such behaviours are generated by a network of
sequential agents that coordinate their activities by performing common actions
together. It will turn out that product behaviours are naturally trace consistent.
They also constitute a clean and yet non-trivial subset of the class of trace
behaviours considered later.

We first study product Biichi automata. We then formulate in Section 5 the
product version of LTL(X). We will then use product Biichi automata to solve
the satisfiability and model checking problems for the product version of LTL(X).
The technical details — which we suppress here — can be found in [47]. The key
notion underlying product behaviours is that of a distributed alphabet. It can
be viewed as an “implementation” of a trace alphabet. As a result, distributed
alphabets play a fundamental role in the automata-theoretic aspects of trace

652

€1

€2 e’

Fig. 1. Example elementary net system

languages [15,58]. This will become more clear when the material in Section 6
is encountered.

A distributed alphabet is a family {Z},},e¢p where P is a finite non-empty set
of agents (also referred to as processes in the sequel) and X, is a finite non-empty
alphabet for each p € P. The idea is that whenever an action from X, occurs,
the agent p must participate in it. Hence the agents can constrain each other’s
behaviour, both directly and indirectly.

Trace alphabets and distributed alphabets are closely related to each other.
Let ¥ = {Z,}pep be a distributed alphabet. Then Zp, the global alphabet
associated with %, is the collection Upep Zp- The distribution of Zp over P can

be described using a location function locs : Xp — 2P defined as follows:
locg(a) = {p|a € Zp}.
This in turn induces the relation Iz C £p x Xp given by:
(a,b) € I iff locg(a) Nlocg(b) = 0.

Clearly I is irreflexive and symmetric and hence (Xp,I3) is a trace alpha-
bet. Thus every distributed alphabet canonically induces a trace alphabet. Two
actions are independent according to X if they are executed by disjoint sets
of processes. Henceforth, we write loc for locg whenever X' is clear from the
context.

Going in the other direction there are, in general, many different ways to
implement a trace alphabet as a distributed alphabet. A standard approach is
to create a separate agent for each maximal D-clique generated by (X, I'). Recall

653

that a D-clique of (X, I) is a non-empty subset p C X such that p x p C D.
Let P be the set of maximal D-cliques of (X, I). This set of processes induces
the distributed alphabet = {Zp}pep where I, = p for every process p. The
alphabet ¥ implements (X,I) in the sense that the canonical trace alphabet
induced by it is exactly (2, I). In other words, p = X and I = I.

For example, consider the trace alphabet (Z,I) where ¥ = {a,b,d} and
I = {(a,b), (b,a)}. The canonical D-clique implementation of (X, I) yields the
distributed alphabet T = {{a,d}, {d,b}}.

Through the rest of the section we fix a distributed alphabet {¥,},cp and
set X = Xp. It will be convenient to assume that P = {1,2,...,K}. Further,
the ith component of a K-tuple z = (z1,%2,...,Zx) will be written as z[i]. In
other words, z[i] = ;.

A product Biichi automaton over £ is a structure A = ({A;}5,, Qin) where
A; = (Q;, —, F;, F?) for each i such that :

— ; is a finite set of i-local states.

— —; C Q; x X; X @; is the transition relation of the ith component.
— F; C Q; is a set of finitary accepting states.

— F¥ C @, is a set of infinitary accepting states.

— Qin € Q1 X Qg X -+ X Qi is a set of global initial states.

We use two types of accepting states for the components in order to be
able to handle both finite and infinite behaviours. Even if one is interested only
in global infinite behaviours, finite behaviours at the component level must be
treated; a component might quit after engaging in a finite number of actions
while a part of the network runs forever. We use global initial states to obtain the
required expressive power. In general, the automaton will not be able to branch
off into different parts of the state space, starting from a single global initial
state. This will be brought out through a simple example after we define the
language behaviour of product automata. The same example will also illustrate
why using the cartesian product of local initial state sets as global initial states
will result in a loss of expressive power. _

Let A = ({A4;}X,, Qin) be a product Biichi automaton over X. From now on
we will say just “product automata”. Also, we shall often suppress the mention
of X. We will also write {A;} instead of {A;}X,. Let A; = (Qi, —4, F}, F¥).
Then we set Qé = Q1 x Q2 X... X @x. When A is clear from the context, we
will write Q¢ instead of Qé. The global transition relation of .4 is denoted as
—> 4 and it is the subset of Qg x X x Qg given by:

q —>4 ¢ iff Vi€ loc(a) : g[i] 2+; ¢'[i] and V i & loc(a) : ¢[i] = ¢'[i].
Let 0 € X*°. A run of A over ¢ is a map p: Prf(c) — Q¢ which satisfies:

- p(e) € Qin-
— Y 7a € prf(a). p(1) 2 4 p(Ta).

654

A simple but useful property of runs is the following. Suppose p is a run of
the product automaton A over o. Further suppose that 7,7’ € Prf(o) such that
T[4 =7'[1 for some i. Then p(7)[i] = p(7')[7].

Let p be a run of the product automaton A over ¢. Then p is accepting iff
for each ¢, the following condition is satisfied:

— If o] is finite then p(7)[i] € F; where 7 € prf(c) such that 7]i =¢]3i.
— If o] i is infinite then p(ra)[é] € F{ for infinitely many 7a € prf(c) with
a€ ;.

If o |4 is finite then clearly there exists 7 € prf(o) such that 74 = o | i. Now
the above property of runs assures us that the notion of an accepting run is

well-defined. In case o | 1 is infinite the acceptance condition can also be phrased
as:

— p(m)[§] € F¥ for infinitely many 7 € prf(o).

This once again follows easily from the definition of a run. We now define £({A),
the language accepted by the product automaton A as,

L(A) = {0 | 3 an accepting run of A over o}.

Now consider the alphabet ({a,d}, {d,b}) and the language L = {ad, bd}.
Figure 2 shows a product automaton over this alphabet which accepts L. It is

q g P P4
Ja Jd lb jd
2 gs D2 s
J¢ J¢
gs P3

A A2

F = {qg3,¢5} F=0=F Fy = {ps,ps}
Qin = {(415p4)7(q4:p1)}

Fig. 2. Product automaton accepting L = {ad, bd}

easy to verify that no product automaton over this alphabet with a single global
initial state can accept L. It is also easy to verify that no product automaton
whose set of initial states is a cartesian product of component initial state sets
can accept this language.

A crucial property of product automata is that they accept ms-consistent
languages.

655

Lemma 3. Let A = ({A;}, Qin) be a product automaton over 5. Then L(A) is
trace consistent.

The class of languages accepted by product automata can now be character-
ized. To this end we define the K-ary operation ® : 257 x2%% x..-x2%% — 2%7
via ®(Ly,...,Lg) = {o | o]i € L; for each i}.

In what follows we will write L = L; ® Ly--- ® Lk to denote the fact
®(L1,...,Lg) = L. We say that L C 2> is a direct product language over X
if 3L; C X foreach i such that L =L, ® Ly ® - - - ® L. Here are two useful
properties of direct product languages. In stating this result and elsewhere we
will say “product language” instead of “product language over X” etc.

Proposition 4.

1. Let L be a direct product language and o € X°°. Then o € L iff for each i
there ezists o; € L such that 6 [i = 0;] 1. L n

2. Let L C X*°. Then L is a direct product language iff L=L1QLs®---Q Lk
where L; = {o1i| o € L} for each i.

As usual, for an alphabet X and L C X*° we say that L is regular iff L0 2™
is a regular subset of £* and L C X is an w-regular subset of Z* as described
in Section 2. We can now define the class of languages accepted by product
automata.

Definition 5.

- R{?(E) is the subset of 2% given by L € R?(i) L=L1@L,® - -®@Lg
with each L; o regular subset of 35°.

- R®(§) is the least subset of 2% which contains R and is closed under
finite unions.

The class R®(X) defined above will be called the regular product languages over
Y. As usual, we shall often write RS instead of R$ (L) and write R® instead
of R®(X). An interesting observation concerning R® is the following:

Proposition 6. R® is closed under boolean operations.

It turns out that R® is precisely the class of languages accepted by product
automata.

Theorem 7 ([47]). Let L C X°. Then L € R® iff there exists a product
automaton A such that L = L(A).

We shall be using product automata to settle the decidability and model
checking problems for the logic LTL® to be introduced in the next section. In
anticipation of this, we shall put down two more results concerning product
automata. While doing so and elsewhere the size of the product automaton A
will be understood to be |Qg]|.

656

Theorem 8. Let A be a product automaton. Then the question L(A) L0 can
be settled in time O(22X - n?) where n is the size of A.

Theorem 9. Let A' and A? be two product automata. Then one can effectively
construct a product automaton A such that L{A) = L{(A)NL(A?) and moreover
n = O(2K -ny -ny) where n is the size of A and ny is the size of A® for £=1,2.

5 A Product Version of LTL

We now wish to design a product version of LTL denoted LTL®(§). The set of
formulas and their locations are given by:

— T is a formula and loc(T) = 0.

— Suppose o and 3 are formulas. Then so are ~ a and a V . Furthermore,
loc(~a) = loc(a) and loc(a V B) = loc(a) U loc(B).

— Suppose a € X; and a is a formula with loc(a) C {i}. Then (a);c is a formula
and loc({a);0) = {i}.

— Suppose « and @ are formulas such that loc(a),loc(8) C {i}. Then al/;f is
a formula. Moreover, loc(al/; 8) = {i}.

We note that each formula in LT_p@(g) is a boolean combination of formulas
taken from the set ;¢ ,. LTLY(X) where, for each i,

LTL®(Z) = {a | @ € LTL®(X) and loc(e) C {i} }.
Stated differently, the syntax of LTL?(E) is given inductively by:

- T e LTLE(Z).

— If o and 8 are in LTL®(X) then ~a and a V § are in LTLE(X).
- faisin LTL?(f) and a € X; then (a);a is in LTL?(}:;).

— If @ and f are in LTL®(E) then 04,4 is in LTLY(Z).

Once again, we have chosen to avoid dealing with atomic propositions for the
sake of convenience. They can be introduced in a local fashion as done in [47].
The decidability result to be presented will go through with minor notational
overheads. _

As before, we will often suppress the mention of X'. We will also often write
7, 71 and 7}’ instead of 7 [4, 7' [¢ and 7" | i, respectively with 7,7/, 7" € X*.

A model is a sequence 0 € X and the semantics of this logic is given, as
before, with 7 € prf(o).

oTkET.

orE~aiffo, 7o

orEavVfiffo,rEaoroTkEpS.

~ 0,7 k= {(a)ia iff there exists 7' € prf(c) such that 0,7’ |= @ and 7{ = Ta.
(recall that 7} = 7' Ji.)

657

— 0,7 = ald; 8 iff there exists 7’ such that 77’ € prf(¢) and o, 77" |= 3. Further,
for every 7" € prf(r’), if e X 7]’ < 7] then 0, 77" = .

As before we derive some useful modalities:
A

- Oia &5 Tlsa
- 0o é} ~O~a.

Let M = ¢ be a model and 7 € pri(c). The following assertions can now easily
be checked.

— 0,7 | O iff there exists 7’ € prf(o) such that 0,7' E a and |7f]| = |n] + 1.
— 0,7 |= Oja iff there exists 7/ with 77/ € prf(o) such that o, 77" |= a.
— 0,7 = O;a iff for each 7/, 77’ € prf(c) implies 0,77 | a.

Note that O;a is the i-local version of the usual next-state operator of LTL.
We will say that a formula o € LTL®(Z) is satisfiable if there exist 0 € X*°
and 7 € prf(o) such that o,7 E a. The language defined by a is given by

Ly ={0€ X% |0,e & a}

We will show the satisfiability problem for LTL®(§') is solvable in determin-
istic exponential time. This will be achieved by effectively constructing a product
automaton A, for each a € LTL®(Z) such that the language accepted by A, is
non-empty iff « is satisfiable. OQur construction is a generalization of the one for
LTL in Section 2. The solution to the satisfiability problem will at once lead to
a solution to the model checking problem for programs modelled as a product
of sequential agents. N

Through the rest of the section we fix a formula ap € LTL®(X). As before
we will for convenience assume that the derived local next-state modality O;
is included in the syntax of LTL®. In order to construct A,, we first define
the (Fischer-Ladner) closure of ag. As a first step let cl{ap) be the least set of
formulas satisfying:

- ap € cl(ap).

— ~a € cl{og) implies a € cl{ag).

— aV p € cl(ag) implies o, B € cl{ap).

— {aY;a € cl{cg) implies a € cl{ap).

~ ol;3 € cl(ag) implies a, B € cl(ag). In addition, O;(all;B) € cl{ayg).

We will now take the closure of ag to be CL{ap) = cl(ag) U {~a | a € cl(ag)}.
From now on we shall identify ~~a with a. Set CL;{ag) = CL(ap) NLTLY for
each ¢. We will often write C'L instead of CL{ap) and CL; instead of CL;(ay).
All formulas considered from now on will be assumed to belong to CL unless
otherwise stated.

An i-type atom is a subset A C CL; which satisfies:

658
- TeA
aceAiff ~a g A
avVpBeAifae Aor fe A
~ol;fecAifffeAor a,Oi(aL{,:ﬂ)eA.

The set of i-type atoms is denoted AT;. We next define, for each @ € CL(ayp)
and (A1,...,4Ax) € ATy x ... x ATk, the predicate Member{(a, (4;,...,4k)).
For convenience this predicate will be denoted as @ € (41,..., Ak) and is given
inductively by:

— Let @ € CL;. Then a € (Ay,...,Ak) iff a € A4;.

— Let a = ~f. Then a € (A;,...,Ag) if B & (A1,...,AK).

— Let @ = 8V~ Then a € (A1,...,Ax) if 8 € (4y,...,Ag) or v €
(A1,...,AK).

Finally, we set U; = {allif | alliB € CL;(ao)} for each i. The product
automaton A, associated with aq is now defined to be Ay, = ({Ai}, Qin)
where, for each i, A; = (Q;, —, Fi, F{*) is specified as follows:

— Q; = AT; x {off,on} x 2Us
- —; C Qi x Z; x Q; is given by, (4,z,u) —; (B,y,v) iff the following
conditions are met.
1. 2 = on and for all (a);a € CL;(ap), (a)ia € A iff @ € B and for all
O;a € CL;(ag), O;a € A iff a € B. Moreover, if (b);3 € A then b= a.
2. f u # 0 then v = {alfi | i} € v and § € B}. f u = § then
v = {alif} | alhi3 € B and 8 ¢ B}.
— F; C Q; is given by: (A4,z,u) € F; iff = off and for all {a);a € CL;{(ap),
(a)io € A and for all O;a € CL;(ag), Oia ¢ A.
— F¥ C Q; is given by: (4,z,u) € F¥ iff u=0.
- Qin g Ql XQZX'--XQK is given by: ((Alyxlyul)w-'7(AK7$KsuK)) € Qin
iff ag € (As,...,Ak) and u; = @ for every i.

i

i

It is not difficult to now establish the next result by an application of Theo-
rem 8.

Theorem 10. g is satisfiable iff L(Aq,) # 0. Hence the satisfiability problem
for LTL® is decidable in exponential time.

We now turn to the model checking problem for LTL®. A product program
(over X) is a structure Pr = ({Pr;}X |, QF") where, for each i, Pr; = (Q:, —;)
with Q; a finite set and —; C Q; x X; x ;. Since we have agreed to drop
atomic propositions there is no need for (local) interpretations for the atomic
propositions. Let us further assume for convenience that QF" is a singleton
with g;, as its sole member and with g;,[¢] = ¢}, for each i. With each such
program we can associate the product automaton Ap, = ({A;}X,, {¢in}) where
-Ai = (Qi) ——)i:Qi, Qz) for each .

Now let Pr be a product program and ag be & formula of LTL®. As in
the case for LTL, we say that Pr meets the specification ag — again denoted
Pr=op — iff 0,¢€ = ap for every o € L(Ap,). Once again, using Theorem 9 it
is not difficult to prove the following.

659

Theorem 11. The model checking problem for LTL® is decidable in time O(|Pr|
2laoly,

We wish to observe that each product program can be represented as a X-
labelled 1-safe net system. To see this let Pr = ({P?’i}f{:p {gin}) be a product
program. Let’s assume without loss of generality that the family of local states
{Q:} is pairwise disjoint. We set @ = | J;cp Q: and define an a-state to be a map
. : loc{a) — @ which satisfies ¢, (¢) € @ for each 7 in loc(a). (A more elaborate
development of these notions will appear in the next section). An a-event is a
pair of a-states (g,,q,) which satisfies g, (i) —; ¢’ (i) for each i in loc(a). We let
E, be the set of a-events. We can now define the Y-labelled 1-safe net system
representing Pr to be N = (B, E, F, cin, ¢) where:

- B=Q

- E= Uaéz Ea

— Let ¢; € Q; and e = (¢a,q,) € E,. Then (g;,e) € F iff i € loc(a) and
¢o (1) = ¢;. Similarly (e,¢;) € F iff ¢ € loc(a) and ¢, (1) = g¢;.

— Let e € E. Then ¢{e) = a iff e is an a-event.

On the other hand each 1l-safe net system which is covered by a set of S-
components can be viewed as a (deterministic) product program; the alphabet
of each component is its set of events. If necessary, S-complementation can be
performed to ensure that the system is covered by a set of S-components. We
do not wish to enter into details here. Instead we show on Figure 3 an example
of a 1-safe net system composed out of three components.

S O o

ez ey e el eh

es es Ej eq eq

Pry Pry Pra

Fig. 3. 1-safe net with three components

660

Let Pr denote the associated product program over the distributed alphabet
{{e1,€2,e3},{es,es},{€},€5,e4}}. Then it is easy to check that

Pr h DlolT D D303T.

This property says that along every computation, if the first component executes
infinitely often then so does the third component. The point to note is that the
first component and the third component do not have any common events and
hence there is no direct communication between them. Nevertheless through
the power of the boolean connectives alone the logic can make assertions about
the way components that are ”far apart” are required to influence each other’s
behaviour.

6 Trace Languages and Automata

Traces have many equivalent representations. Here we shall view them as re-
stricted X-labelled partial orders. Abusing terminology we shall call these objects
also traces. We will then argue that these objects are in a rather precise sense
the same as the objects called traces defined in Section 3 in terms of equivalence
classes of sequences.

Let T be a X-labelled poset. In other words, (E,<)isaposetand A\: E = ¥
is a labelling function. For Y C E we define Y = {z |Jy € Y : z < y} and
+Y={z|3yeY: y<z} Incase Y = {y} is a singleton we shall write Jy
(1 y) instead of L{y} (1 {y}). We also let < be the relation: z <y iff z < y and
forallze B,z <z <yimpliesz =2z or z =y.

A trace (over (X,1)) is a Z-labelled poset T = (E, <, A) satisfying:

(T1) Vec E. Je is a finite set
(T2) Ve,e' € E. e<cé€ implies A(e) D A(e').
(T3) Ve, € E. Me) D A(¢') impliese<e' ore' <e.

We shall refer to members of E as events. The trace T = (E, <,)) is said to
be finite if E is a finite set. Otherwise it is an infinite trace. Note that E is always
a countable set. T is said to be non-empty in case E # §. We let TRf*(X,I) be
the set of finite traces and T R¥ (X, I') be the set of infinite traces over (X, I) and
set TR(Z,I) = TRI"™(Z,I)UTR“(X,I). Often we will write TR/™ instead of
TR/™(5, 1) etc. As before, a subset of traces Ly, C TR will be called a trace
language.

Let T = (E, <, A) be a trace. The finite prefixes of T, to be called configu-
rations, will play a crucial role in what follows. A configuration of T is a finite
subset ¢ C E such that ¢ = | ¢. We let Cr be the set of configurations of T and let
¢, ¢, " range over Cr. Note that @, the empty set, is a configuration and } e is a
configuration for every e € E. Finally, the transition relation —r C Crx ZxCp
is given by: ¢ —1 ¢ iff there exists ¢ € E such that A(e) = a and e ¢ ¢ and
¢ = cU {e}. It is easy to see that if ¢ —+7 ¢’ and ¢ ~7 ¢ then ¢’ = ¢".

Note that we have now introduced two different notions of traces; one in
terms of equivalence classes of strings as in Section 3 and the other in terms

661

of X-labelled partial orders as in this section. We now sketch briefly the con-
structions that show that /=~y and TR(X,I) represent the same class of
objects. We shall construct representation maps str : X*°/ my— TR(X,I) and
trs : TR(X,I) — X*°/ m~; and state some results which show that these maps
are “inverses” of each other. We shall not prove these results. The details can be
easily obtained using the constructions developed in [55] for relating traces and
event structures.

Henceforth, we will not distinguish between isomorphic elements in TR(X, I}.
In other words, whenever we write T' = T” for traces T = (E,<,A) and T' =
(E',<',\'), we mean that there is a label-preserving isomorphism between T
and T".

Recall that for ¢ € X, [o] stands for the az;-equivalence class containing
o. We now define str : > — TR(X,I). Let 0 € X*°. Then str(o) = (E, <, A)
where:

— E = {ra | ra € prf{0)}. Recall that 7 € X* and a € X. Thus E =
prf(o) — {&}, where € is the null string.

— < C E x E is the least partial order which satisfies: For all 7a,7'b € E, if
ra < 7'b and (a,b) € D then 1a < 7'b.

~ For ra € E, A(ra) = a.

The map str induces a natural map str’ from 2/ ~y to TR(X,) defined by
str'([o]) = str(o). One can show that if 0,0’ € X, then o ~; o' iff str(o) =
str(o’). This observation guarantees that str’ is well-defined. In fact, henceforth
we shall write str to denote both str and str'.

Next, let T'= (E, <,A) € TR(X,I). Then o € X is a linearization of T iff
there exists a map p : prf(o) — Cr, such that the following conditions are met:

— ple) =0.
— Vra € prf(o) with 7 € Z*, p(1) 237 p(ra).
— Ve € E 371 € pri(o). € € p(7).

The function p will be called a run map of the linearization o. Note that the
run map of a linearization is unique. In what follows, we shall let lin(7") to be
the set of linearizations of the trace T'.

We can now define the map trs : TR(X,I) — X°°/ =y as: trs(T) = lin(T).
One can now show that for every o € 2, trs(str(c)) = [o] and for every T €
TR(X,I), str(trs(T)) = T'. This justify our claim that Y°°/ ~; and TR{X,I)
are indeed two equivalent ways of talking about the same class of objects.

We note that every trace consistent subset L of X°° defines a trace language
Lr, given by Ly, = {str(s) | ¢ € L} which has the property trs(Lz,) = L. In
this sense every product language defines a trace language. We say that a trace
language L, is regular iff trs(Lr,) is a regular subset of Y. As we will see
later not every (regular) trace language is a (regular) product language. Hence in
order to recognize regular trace languages one will have to use strengthened ver-
sions of product automata. Such automata called asynchronous automata were
formulated by Zielonka for recognizing regular languages of finite traces. These

662

were then generalized for handling infinite traces by Gastin and Petit [15]. We
will use a combination of these two types of automata for solving the satisfi-
ability and model checking problems for the trace-based temporal logic called
TrPTL to be considered in the next section.

Let X' be a distributed alphabet with P as the associated set of agents. In
an asynchronous automaton, each process p € P is equipped with a finite non-
empty set of local p-states, denoted Sp. It will be convenient to develop some
notations for talking about “more global” states before defining these automata.

First we set S = {J,cp Sp and call S the set of local states. We let P,Q
range over non-empty subsets of P and let p,q range over P. A (J-state is a
map s : @ — S such that s(q) € S, for every ¢ € Q. We let Sg denote the set
Q-states. We call Sp the set of global states.

We use a to abbreviate loc(a) when talking about states (recall that loc(a) =
{p|a € Xy }). Thus an a-state is just a loc(a)-state and S, denotes the set of
all loc(a)-states.

A distributed transition system TS over ¥ is a structure {Sp}, {—a}:Sin)
where

— Sp is a finite non-empty set of p-states for each process p.
— Forae X, —, C S, xS, is a transition relation between a-states.
— Sin C Sp is a set of initial global states.

The idea is that an a-move by T'S involves only the local states of the agents
which participate in the execution a. This is reflected in the global transition
relation —rs C Sp x £ x Sp which is defined as follows: Suppose s and s’
are two global states and s, and s/, are the two corresponding a-states. In other
words, s,(1) = s(i) and s, (i) = s'(i) for each ¢ in loc(a). Then

s —s7g 8 iff (s4,8,) € —, and s(j) = s'(j) for every j ¢ loc(a).

From the definition of —7g, it is clear that actions which are executed by
disjoint sets of agents are processed independently by T'S.

An asynchronous automaton over X' is then a distributed transition system
equipped with a set of global accepting states. More precisely, it is a structure
A= ({Sp}, {4}, Sin, F) where

— F C Sp is a set of accepting global states.

A trace run of A over the finite trace T = (E,<,A) is amap p: Cr — Sp
such that p() € S;, and for every (c,a,c') € — 1, p(c) —315 p(c'). We say
that p is an accepting run whenever p(E) € F. The language of finite traces
accepted by A is given by

Lr-(A) = { T € TR’™ | 3 an accepting run of A over T }.

In the present setting Zielonka’s fundamental result can now be formulated
as

663

Theorem 12 ([58]). L C TR/"(X, 1) is regqular iff L = Lr.(A) for some
asynchronous automaton A over some 5 where ¥ is a distributed alphabet whose
induced trace alphabet is (X, I). Further, one may assume A to be deterministic

and one may assume X to be the distributed alphabet induced by the mazimal
D-cliques of (X,1).

This result has been generalized to the set of w-regular trace languages by
Gastin and Petit [15] in terms of asynchronous automata with Biichi acceptance
conditions. Since we will treat both finite and infinite traces on an equal footing
we will present a class of automata capable of accepting both finite and infi-
nite traces. Hence our automata are essentially distributed transition systems
augmented with both finite and infinite accepting states.

An asynchronous Biichi automaton over X is a structure

= ({Sp}, {—a}, Sin, {(FpiF;l)}%

where:

= ({Sp}, {2}, Sin) is a distributed transition system.
— F, C S, is a set of local finitary accepting states of process p.
— Fy C 5, is a set of local infinitary accepting states of process p.

For convenience we will from now on denote this class of automata just “asyn-
chronous automata”.

To define acceptance we must now compute Inf,(p), the set of p-states that
are encountered infinitely often along p. When incorporating both finite and
infinite behaviour in this richer domain we have to take care in defining the
set of infinitely occuring states of process p. The obvious definition, namely
Inf,(p) = {sp | p(c)(p) = s, for infinitely many ¢ € Cr}, will not work. The
complication arises because some processes may make only finitely many moves,
even though the overall trace consists of an infinite number of events.

For instance, consider the distributed alphabet Zy = {{a}, {6}}. In the cor-
responding distributed transition system, there are two processes p and ¢ which
execute a’s and b’s completely independently. Consider the trace T = (E, <, A)
where |E,| = 1 and E, is infinite — i.e., all the infinite words in trs(T") contain
one a and infinitely many b’s. Let s, be the state of p after executing a. Then,
there will be infinitely many configurations whose p-state is s,, even though p
only moves a finite number of times.

Continuing with the same example, consider another infinite trace T’ =
(E', <!, N') over the same alphabet where both E, and E; are infinite. Once
again, let s, be the local state of p after reading one a. Further, let us suppose
that after reading the second a, p never returns to the state s,. It will still be the
case that there are infinitely many configurations whose p-state is s,: consider
the configurations ¢g,c1, ¢, ... where ¢; is the finite configuration after one a
and j b’s have occurred.

So, we have to define Inf,(p) so as to detect whether or not process p is
making progress. The appropriate formulation is as follows:

664

Case 1 E, is finite: Inf,(p) = {sp}, where p(lE;) = s and s, = s(p).
Case 2 E, is an infinite set:
Inf,(p) = {sp | for infinitely many e € E,, sc(p) = 8, where p(le) = s.}.

A trace run of an asynchronous automaton over the (possibly infinite) trace
T = (E,<,A) € TR is now defined in the obvious way. A run p of A over the
{(possibly infinite) trace T = (E, <,A) is accepting iff for each process p the
following conditions are met:

— If E, is finite then Inf,(p) N F, # 0.
— If E, is infinite then Inf,(p) N Fy # 0.

We then have the following characterization extending Theorem 12.

Theorem 13. A trace language L C TR(Z,I) is regular iff L = Ly.(A) for an
asynchronous automaton over X where X' is a distributed alphabet whose induced
trace alphabet is (X, 1).

It should be noted however that deterministic automata no longer suffice for
accepting all regular languages.
We say that A is in standard form if

— For each p, F, N Fy = 0.
— For each (s,,t,) € —, and p € loc(a) we have that s,(p) € Fy.

Thus, A is in standard form if the p-states in F, are all “dead” and disjoint from
Fy. It is easy to convert every asynchronous automaton into standard form. All
our asynchronous automata will be in standard form.

We conclude with a result concerning the emptiness problem for asynchronous
automata.

Proposition 14 ([30]). Let A be an asynchronous automaton in standard form.
The emptiness problem is decidable in time O(n2P!), where n is the largest of
the local state spaces, Sp.

We have defined here the languages defined by asynchronous automata in
terms of traces. We note that these automata can be viewed — and this is
the conventional approach — as automata running over X-sequences. Using the
global transition relations of these automata one can easily define the string
languages accepted by these automata. These languages will be naturally trace
consistent w.r.t. the trace alphabets induced by the associated distributed alpha-
bets. The resulting trace languages will be precisely the trace languages accepted
by these automata according to the definitions we have provided here.

7 TrPTL

We present here the linear time temporal logic over traces called TYPTL. This
is the first such logic patterned after PTL (i.e. LTL) formulated for traces. For
a detailed treatment of this logic the reader is referred to [44,45].

665

As before, it will be notationally convenient to deal with distributed al-
phabets in which the names of the processes are positive integers. Through
this section and the next, we fix a distributed alphabet ¥ = {Zi}icp with
P ={1,2,...,K} and K > 1. We let i,j and k range over P. As before, let
P, (@ range over non-empty subsets of P. The trace alphabet induced by s
denoted (X, I'). We assume the terminology and notations developed in the pre-
vious sections. In particular, when dealing with a P-indexed family {X;}icp we
will often write just {X;}.

The logic TrPTL is parameterized by the class of distributed alphabets. Hav-
ing fixed X' we shall often almost always write TrPTL to mean TrPTL(X), the
logic associated with Y. In order to better illustrate the main features of the
logic we will first include atomic propositions. They will be dropped once we re-
turn to considering the technical aspects of the logic. We fix a finite non-empty
set of atomic propositions P with p,q ranging over P. Then éTrPTL(£ the set

of formulas of TrPTL(L), is defined inductively via:

— For p € P and i € P, p(i) is a formula (which is to be read “p at ¢”).
— If a and § are formulas, so are ~« and a V §.

— If a is a formula and a € Z; then (a);a is a formula.

— If a and B are formulas so is olf; 3.

Throughout this section, we denote @TYPTL(5 as just &. In the semantics of
the logic, which will be based on infinite traces, the i-view of a configuration will
play a crucial role. Let T € TR* with T = (E, <, A). Recall that E; = {e|e€ E
and A(e) € X;}. Let ¢ € C7 and ¢ € P. Then |(c) is the i-view of ¢ and it is
defined as:

o) = Uen Ey).

We note that |i(c) is also a configuration. It is the “best” configuration that
the agent i is aware of at c. We say that [*(c) is an i-local configuration. Let
Ci = {l*(c) | ¢ € Cr} be the set of i-local configurations. For @ C P and
c € Cr, we let [9(c) denote the set |J{{¢(c) | i € Q}. Once again, |%(c) is a
configuration. It represents the collective knowledge of the processes in ¢ about
the configuration c.

The following basic properties of traces follow directly from the definitions.

Proposition 15. Let T = (E,<,A) be an infinite trace. The following state-
ments hold.

1. Let <; = <N (E; x E;). Then (E;, <;) is a linear order isomorphic to w if
E; is infinite and isomorphic to a finite initial segment of w if E; is finite.

2. (C%,C) is a linear order. In fact (Ci — {0}, C) is isomorphic to (E;, <;).

3. Suppose |i(c) # @ where c € Cr. Then there ezists e € E; such that |*(c) =
de. In fact e is the <;-mazimum event in (cN E;).

4. Suppose Q C Q' C P and ¢ € Cr. Then |9(c) =499 (c)). In particular,
for a single process i, |} (c) =J*({*(c)).

666

We can now present the semantics of TYPTL. A model is a pair M =
(T,{Vi}icp) where T = (E,<,\) € TR” and V; : C&. — 2F is a valuation
function which assigns a set of atomic propositions to i-local configurations for
each process i. Let ¢ € Cr and a € é. Then M, c = o denotes that « is satisfied
at cin M and it is defined inductively as follows:

= M, c=pli) for p € P iff p € Vi({(c)).

- M, cE~aiff M,cl-a.

- M,cEavBiff Mickaor M,cEp.

— M, c = (a);a iff there exists e € E; — ¢ such that A(e) = a and M, le = a.
Moreover, forevery e' € E;, ' <eiff e’ €c.

— M,c | old;f iff there exists ¢ € Cr such that ¢ C ¢/ and M, () k= 8.
Moreover, for every ¢’ € Cr, if }i(c) C {i(c") C {¥(¢) then M, | (c") = a.

Thus TrPTL is an action based multi-agent version of LTL. Indeed both in
terms of its syntax and semantics, LTL(X) corresponds to the case where there
is only one agent. The semantics of TrPTL when specialized down to this case
yields the previous LTL(X) semantics.

Returning to TrPTL, the assertion p(i) says that the i-view of ¢ satisfies the
atomic proposition p. Observe that we could well have p(i) satisfied at ¢ but
not p(j) (with ¢ # j). It is interesting to note that all atomic assertions (that
we know of) concerning distributed behaviours are local in nature. Indeed, it is
well-known that global atomic propositions will at once lead to an undecidable
logic in the current setting [25, 36].

Suppose M = (T,{Vi}) is a model and ¢ —+7 ¢’ with j ¢ loc(a). Then
M,c = p(j) iff M,c¢' = p(j). In this sense the valuation functions are local.
There are, of course, a number of equivalent ways of formulating this idea which
we will not get into here.

The assertion (a);« says that the agent i will next participate in an a-event.
Moreover, at the resulting i-view, the assertion a will hold. The assertion ol/;3
says that there is a future i-view (including the present i-view) at which g will
hold and for all the intermediate i-views (if any) starting from the current i-view,
the assertion a will hold.

Before considering examples of TrPTL specifications, we will introduce some
notation. We let a, § with or without subscripts range over . Abusing notation,
we will use loc to denote the map which associates a set of locations with each
formula.

- loc(p(7)) = loc({a)ia) = loc(ald;B) = {i}.
- loc{~a) = loc(a).
— loc(a v 8) = loc(a) Uloc(B).

In what follows, #* = {a | loc(a) = {i}} is the set of i-type formulas. We
note that unlike LTL®, a TrPTL formula of the form {a);a could have j € loc(a)
with j # 4. A similar remark applies to the indexed until-operators.

A basic observation concerning the semantics of TrPTL can be phrased as
follows:

667

Proposition 16. Let M = (T,{V;}) be a model, ¢ € Cr and a a formula such
that loc(a) C Q. Then M, c = o iff M, %(c) E a.

A corollary to this result is that in case a € ¢° then M, ¢ = a if and only if
M, li(c) | a. As a result, the formulas in #* can be used in exactly the same
manner as one would use LTL® to express properties of the agent i. Boolean
combinations of such local assertions can be used to capture various interaction
patterns between the agents implied by the logical connectives as well as the
coordination enforced by the distributed alphabet J;. For writing specifications,
apart from the usual derived connectives that we already introduced in Section 2
for LTL, the following operators are also available:

-TE p1(1) V ~p1(1) denotes the constant “True”, where P = {p1,p2,...}.
We useA 4 = ~T to denote “False”.
— &y <= TU;a is a local version of the ¢ modality of LTL.

- Do & ~<; ~a is a local version of the O modality of LTL.

~Let X C % and X = %; — X. Then ali¥ 8 <& (a A A cxlaliL)UiB. In
other words o/ 3 is fulfilled using (at most) actions taken from X. We set
oXa <2 TUXa and DX o <& ~OX ~a.

~ afi) & alfia (or equivalently 1lia). a(i) is to be read as “a at ¢”. If
M = (T,{V;}) is a model and ¢ € Cr then M, c | a(i) iff M,{*(c) = a. It
could of course be the case that loc(a) # {i}.

A simple but important observation is that every formula is a boolean com-
bination of formulas taken from {J;cp ¢*. In TYPTL we can say that a specific
global configuration is reachable from the initial configuration. Let {a;}:cp be
a family with a; € & for each i. Then we can define a derived connective
Ofay, az,...,ak) which has the following semantics at the empty configura-
tion. Let M = (T,{V;}) be a model. Then M,{ E Clar,ag,. .., o) iff there
exists ¢ € Cp such that M,ck= a1 Aag A--- Aak.

To define this derived connective set X} = X and, for 1 < ¢ < K, set
2= —uU{Z;|1<j<i}. Then O(oy,a,...,ak) is the formula:

0P (o) A OF2an A O3 (az A+ 0K ag)) -+).

The idea is that the sequence of actions leading up to the required configu-
ration can be reordered so that one first performs all the actions in XYy, then all
the actions in Xy — X1 etc. Hence, if now is an atomic proposition, the formula
O (now(1), now(2), ..., now(K)) is satisfied at the empty configuration iff there
is a reachable configuration at which all the agents assert now.

Dually, safety properties that hold at the initial configuration can also be
expressed. For example, let crt; be the atomic assertion declaring that the agent
i is currently in its critical section. Then it is possible to write a formula ¢,
which asserts that at all reachable configurations at most one agent is in its crit-
ical section, thereby guaranteeing that the system satisfies the mutual exclusion
property. We omit the details of how to specify ¢, .

668

On the other hand, it seems difficult to express nested global and safety
properties in TrPTL. It is also the case that due to the local nature of the
modalities, information about the past sneaks into the semantics even though
there are no explicit past operators in the logic.

A formula « is said to be root-satisfiable iff there exists a model M such that
M, a. On the other hand, « is said to be satisfiable iff there exists a model
M = (T,{V:}) and ¢ € Cr such that M,c |= a. It turns out that these two
notions are not equivalent. Consider the distributed alphabet Xy = {Zy, 22}
with ©) = {a,d} and ¥y = {b,d}. Then it is not difficult to verify that the
formula p(2)(1) A Oy ~ p(2) is satisfiable but not root-satisfiable. (Recall that
p(2)(1) abbreviates LU;p(2)). One can however transform every formula a into
a formula o' such that o is satisfiable iff o/ is root satisfiable.

This follows from the observation that every a can be expressed as a boolean
combination of formulas taken from the set J;. $°. Hence the given formula a
can be assumed to be of the form a = V7., (aj1 Aajz A---Aajk) where aj; € &
foreach j € {1,2,...,m} and each i € P. Now convert « to the formula o’ where
o' = V7L, Oaji, a4, a;jk). (Recall the derived modality O(a1,az, ..., ak)
introduced earlier.) From the semantics of O(ay,ag,...,ak) it follows that a is
satisfiable iff @’ is root-satisfiable.

Hence, in principle, it suffices to consider only root-satisfiability in develop-
ing a decision procedure for TrPTL. There is of course a blow-up involved in
converting satisfiable formulas to root-satisfiable formulas. If one wants to avoid
this blow-up then the decision procedure for checking root-satisfiability can be
suitably modified to yield a direct decision procedure for checking satisfiability
as done in [44]. In any case, it is root satisfiability which is of importance from
the standpoint of model checking. Hence here we shall only develop a procedure
for deciding if a given formula of TrPTL is root-satisfiable.

As a first step we augment the syntax of our logic by one more construct.

— If a is a formula, so is O;c. In the model M = (T, {V;}), at the configuration
c € Cp, M,c = O iff M,c = {(a);o for some a € X;. We also define
loc(0;0) = {i}.

Secondly, we will from now on drop the atomic propositions and instead work
with the constant T and its negation L as done earlier. The semantic definitions
are assumed to be suitably modified.

Thus O;a = V¢ 5, (a)i is a valid formula and O; is expressible in the former
syntax. It will be however more efficient to admit O; as a first class modality as
we did in Section 2.

Fix a formula ap. Our aim is to effectively associate an asynchronous au-
tomaton Aa, with ag such that og is root-satisfiable iff Lr,(Aq,) # 0. Since the
emptiness problem for asynchronous automata is decidable (Proposition 14), this
will yield the desired decision procedure. Let cl{ag) be the least set of formulas
containing o which satisfies:

668

— ~a € cl{og) implies a € c{ag).

— aV € cl{ag) implies o, 5 € cl{ap).

~ {a);a € cl{ag) implies o € cl{ap).

— Oa € cl(ap) implies a € cl(ayg).

—~ allif € cl{ap) implies @, 8 € cl(ag). In addition, O;(alf;8) € cl(ap).

We then define CL{ag) to be the set el{ag) U {~F| B € cl(ao)}-

Thus CL{ag), sometimes called the Fisher-Ladner closure of ag, is closed
under negation with the convention that ~~ g is identified with 8. Moreover,
throughout the remainder of the section all formulas that we encounter will be
assumed to be members of CL(ag). From now we shall write CL instead of
CL(ao).

A C CL is called an i-type atom iff it satisfies:

- T €A

a€ Aiff ~a ¢ A.

avfeAifaec Aor fe A
alfife At B € Aor (a€ Aand O;(clhi8) € A).
If (a);c, (b):;3 € A; then a = b.

{

|

}

{

AT; denotes the set of i-type atoms. We now need to define the notion of
a formula in C'L being a member of a collection of atoms. Let ¢ € CL and
{Ai}ieq be a family of atoms with loc(a) C @ and A; € AT; for each ¢ € Q.
We’ll define the predicate Member(a,{4;}icq), which for convenience will be
denoted by a € {A;}ico. It is defined inductively as:

— If loc(a) = {j} then a € {A;}icq iff @ € A;.
—Ifa=~pthenae€ {Ai}ieQ iff g ¢ {Ai}iEQ-
-Hfa=0 Va then oy Vag € {Ai}iGQ ifa € {A,’}geQ or & € {Ai}iEQ-

The construction of the asynchronous automaton A,, is guided by the con-
struction developed for LTL in Section 2. However in the much richer setting
of traces it turns out that one must make crucial use of the latest information
that the agents have about each other when defining the transitions of A,,.
It has been shown by Mukund and Sohoni [29] that this information can be
kept track of by a deterministic asynchronous automaton whose size depends
only on X. (Actually the automaton described in [29] operates over finite traces
but it is a trivial task to convert it into an asynchronous automaton having
the desired properties). To bring out the relevant properties of this automaton,
let T € TRY with T = (E,<,A). For each subset @ of processes, the func-
tion latestr,g : Cr x P = @Q is given by latestr g{c,j) = £ iff £ is the least
member of) (under the usual ordering over the integers) with the property
P{(e)) € (¥ c)) for every ¢ € Q. In other words, among the agents in @,
¢ has the best information about j at ¢, with ties being broken by the usual
ordering over integers.

Theorem 17 ([29]). There ezists an effectively constructible deterministic asyn
chronous automaton Ar = ({I;}, {=>a}, Lin, {(Fi, F¥)}) such that:

670
1. Lr.(Ar)=TRY

2. For each Q = {i1,42,...,in}, there evists an effectively computable function
gossipg : Iy, X Iy X -+ x I, x P — Q such that for every T € TR, every
¢ € Cr and every j € P, latestr,g(c,j) = gossipg(v(i1),...,7(in),5) where
pr(€) =+ and p, is the unique (accepting) run of Ar over T.

Henceforth, we refer fo Ar as the gossip automaton. Each process in the gossip
automaton has 20(K*106 K) Jocal states, where K = |P|. Moreover the function
gossipg can be computed in time which is polynomial in the size of K.

Each i-state of the automaton A,, will consist of an i-type atom together
with an appropriate i-state of the gossip automaton. Two additional components
will be used to check for liveness requirements. One component will take values
from the set N; = {0,1,2,...,|U;|} where U; = {alfiB | old;3 € CL}. This
component will be used to ensure that all “until” requirements are met. The
other component will take values from the set {on,off}. This will be used to
detect when an agent has quit.

The automaton Ay, can now be defined as:

Aao = ({Sz}, {"“*a}, Sim {(-Fu F;w)})a

where:

— Foreach i, S; = AT; x It x N;x {on,off}. Recall that I is the set of i-states of
the gossip automaton and N; = {0,1,2,...,|U;|} with U; = {alli8 | aldiB €
CL}.

— Let sq,8, € S, with s,(i) = (A4i, 7, ni,v;) and s, (i) = (AL~} n},v}) for
each ¢ € loc(a). Then (s,, s}) € —, iff the following conditions are met.

® (Va,7,) € =>4 (recall that {=>,} is the family of transition relations
of the gossip automaton) where 7,,7, € I, such that v,(3) = v; and
v, (1) = ~yi for each i € loc(a).

* Vi,j € loc(a), A; = Aj.

o Vi € loc(a) V(a),a € CL (a);a € A; iff a € Al

e Vi€ locla) VO,a € CL. Qiac Aiff a € Al

o Vi € loc{a)V(b);0 € CL. If (b);3 € A; then b= a.

o Suppose j ¢ loc(a) and 8 € CL with loc(8) = {j}. Further sup-
pose that loc(a) = {i1,i2,...,in}. Then B € A iff § € A, where
l= gOSS'Ploc(a) (711 » Yigs ooy Via ’.7)

e Let i € loc(a), U; = {alu Br,aolliBa, . .., anUiBn, }. Then u} and u; are
related to each other via:

o = (ui+1) mod (n;+1),if u; = 0 or By, € A; or ay,U;By; & A;
L K77 otherwise

e For each ¢ € loc(a), v; = on. Moreover, if v] = off then (a);a & A; for
every i € loc(a) and every (a);a € CL.

— Let s € Sp with s(i) = (Ai,vs,ui,v;) for every i. Then s € S;,, iff ap €
{Ai}iep and v € I, where v € I'p satisfies (i) = +; for every i. Further-
more, u; = 0 for every 4. Finally, for every ¢, v; = off implies that (a);c & A4;
for every (a);a € CL.

671

— For each i, F C S; is given by F¥ = {(Ai, 1, u4,v;) | u; = 0 and v; = on}
and F; C S; is given by F; = {(A;, v, us,v;) | vy = off}.

This construction is an optimized version of the original construction for
TrPTL presented in [44,45]. Note that A, is indeed in standard form. Argu-
ments similar to those presented in [44,45] lead to the next set of results.

Theorem 18.

1. ayp is root-satisfiable iff L1, (Any) # 0.

2. The number of local states of Aa, is bounded by 20(max(n,m?logm)) 4 ore
n = |ag| and m is the number of agents mentioned in ay. Clearly, m < n.
It follows that the root-satisfiability problem (and in fact the satisfiability
problem) for TrPTL is solvable in time 20(max(n,m? log m).m)

The number of local states of each process in A,, is determined by two
quantities: the length of ap and the size of the gossip automaton Ar. As far as
the size of A is concerned, it is easy to verify that we need to consider only
those agents in P that are mentioned in loc{ag), rather than all agents in the
system.

The model checking problem for TrPTL can be phrased as follows. A finite
state distributed program Pr over Y is an asynchronous automaton Ap, =
({SF}, {==Pr}, 8P, {(SF, SF™)}) modelling the state space of Pr.

Viewing a formula oy as a specification, we say that Pr meets the specification
ag — denoted Pr k= ap — if for every T € TR, if Ap, has a run over T then
T, @ ? ag.

The model checking problem for TrPTL can be solved by “intersecting” the
program automaton .Ap, with the formula automaton A..., to yield an automa-
ton A such that Lr.(A) = Lp.(Apr) N Ly (Ava,). As before, Ly .(A) = 0 iff
Pr F:: ag.

It turns out that this model checking problem has time complexity
O(Ap.| - 90(max(n,m* log m)'m)) where | Ap,| is the size of the global state space
of the asynchronous automaton modelling the behaviour of the given program
Pr and, as before, n = |ap| and m is the number of agents mentioned in ap,
where g is the specification formula.

We now take a brief look at some related agent-based linear time temporal
logies over traces. The first one is the sublogic of TrPTL denoted which consists
of the so called connected formulas of TrPTL. We define 5381, (from now on
written as $°°") to be the least subset of & satisfying the following conditions:

— T € $°® and as before Loc(T) = §

- If o, 8 € ®°°", so are ~a and a V 8.

— If @ € $°° and a € Z; such that loc{a) C loc(a) then {a);a € $°°".

~ If @, € $°°" with loc(a) = loc(B) = {i} then alf;8 € $°°". Actually one
need only demand that loc(a), loc(8) C N{loc(a) | @ € X} but this leads to
notational complications that we wish to avoid here.

— If o € °°" and loc(a) = {i} then O;a € $°°". (Once again one needs to just
demand that a C N{loc(a) | a € X;}.)

672

Connected formulas were first identified by Niebert and used by Huhn [22].
They have also been independently identified by Ramanujam [38]. Thanks to
the syntactic restrictions imposed on the next state and until formulas, past
information is not allowed to creep in. Indeed one can prove the following:

Proposition 19. Let a € $°°". Then « is satisfiable iff a is root-satisfiable.

Yet another pleasing feature of TrPTL®°" is that the gossip automaton can
be eliminated in the construction of the automaton A,, whenever g € ¢°°*. In
fact one can prove the following.

Theorem 20. The satisfiability problem for TYPTLS" is solvable in time
20(laol)

Once again, a suitably modified statement can be made about the associated
model checking problem. At present we do not know whether or not TrPTL is
strictly more expressive than TrPTL®", but it is clear that LTL® is a strict
sublogic of TrPTL . We shall deal with the relative strengths of these logics
in the next section. Two of the four logics considered by Ramanujam [38] in a
closely related setting turn out to be LTL® and TrPTL". We conjecture that
the other two logics are also expressible within TrPTL.

Katz and Peled introduced the logic ISTL [24] whose semantics has a trace-
theoretic flavour. In a subsequent paper by Peled and Pnueli [34] on ISTL, the
connection to traces was made more directly. Indeed this is one of the first in-
stances of the explicit use of traces in a temporal logical setting that we know
of. However, it has branching time modalities which permit quantification over
the so called observations of a trace. ISTL uses global atomic propositions rather
than local atomic propositions. Penczek has also studied a number of temporal
logics (including a version of ISTL) with branching time modalities and global
atomic propositions [36]. His logics are interpreted directly over the space of
configurations of a trace resulting in a variety of axiomatizations and undecid-
ability results. We feel that local atomic propositions (as used in TYPTL) are
crucial for obtaining tractable partial order based temporal logics. Niebert has
considered several p-calculus versions of TrPTL [31, 32] and has obtained various
decidability results using a variant of asynchronous Biichi automata.

The temporal logic of causality (TLC) proposed by Alur, Peled and Penczek
is basically a temporal logic over traces [1]. The concurrent structures used in [1]
as frames for TLC can be easily represented as traces over an appropriately cho-
sen trace alphabet. The interesting feature of TLC is that its branching time
modalities are interpreted over causal paths. In a trace (E, <, A), the sequence
eger -+ € E™ is a causal path if eg < e; < ez---. This logic admits an essen-
tially exponential time decision procedure for checking satisfiablity in terms of
a variant of Biichi automata called Street automata.

673

8 Expressiveness Issues

Our aim here is to discuss some expressiveness issues concerning trace-based
linear time temporal logics. To set the stage we first quickly review the classical
case of sequences.

The monadic second-order theory of infinite sequences over X is denoted
MSO(X). Its vocabulary consists of a family of unary predicates {R,}acx, One
for each a € T; a binary predicate <; a binary predicate €; a countable supply of
individual variables Var = {z,y, 2, ...}; a countable supply of set variables (i.e.
monadic predicate variables) SVar = {X,Y, Z,...}. The formulas of MSO(X)
are then built up by:

— Rg(z), z <y and = € X are atomic formulas.
— If ¢ and ¢' are formulas then so are ~¢, ¢V ¢', ()¢ and (FX)¢.

A structure for MSO(Z') is a w-sequence ¢ € 2*. Let 7 be an interpretation
of the variables with Z : Var — w and 7 : SVar — 2“. Then the notion of o
being a model of ¢ under the interpretation Z, denoted o =1 ¢, is defined in the
expected manner. In particular, o =z R,(z) iff 0(Z(z)) = a (note that 0 € Z¥
isviewed as ¢ 1 w — X); 0 |z ¢ < y iff T(z) < Z(y) (here < is the usual
ordering over w); ¢ |Fz ¢ € X iff Z(z) € Z(X).

As usual, a sentence is a formula with no free variables. Each sentence ¢
defines an w-language, denoted Ly, where:

Ly ={o |0 [¢}.

We say that L C X¢ is MSO(X)-definable iff there exists a sentence ¢ € MSO(X)
such that L = Ly. A celebrated result of Biichi [4] shows that the class of lan-
guages expressible by sentences in MSO(X') coincides with the class of languages
recognized by Biichi automata over . This class is the w-regular languages over
X,

The first-order theory of infinite sequences over X is denoted FO(X) and is
obtained from MSO(ZX) by abolishing the monadic second-order quantifications
from the logic. The semantics and notions of first-order definability are carried
over in the obvious manner.

A fundamental result in the theory of temporal logic is Kamp’s Theorem [23]
which was later strengthened in [14] to establish that LTL(X) is expressively
equivalent to the FO{X). The surprise here being that LTL(X) admits only a
bounded number of operators {one unary and one binary as we have formu-
lated it) whereas infinitely many operators of increasing arities can be defined in
FO(ZX). Secondly, as we saw in Section 2, the satisfiability problem for LTL(X)
can be solved in deterministic exponential time. The satisfiability problem for
FO(ZX) on the other hand, even when the sentences are interpreted over finite
words, is known to be non-elementary hard [43]. It is quite easy to see that
FO(X) — and hence LTL(X) — is strictly less expressive than MSO(X) in
the sense that there is a language which is MSO(X)-definable but not FO(X}-
definable. (Indeed this is the sense in which we shall compare the expressive

674

power of various logics in what follows.) For instance, as pointed out by Wolper
in a state-based setting [56], the language L C {a,b}“ given by “a is executed at
every even position” is not definable in this logic. On the other hand, it is easy
to come up with a formula of MSO(X) defining L.

The expressive power of LTL can be extended to obtain the expressive power
of MSO while still guaranteeing an exponential time decidable satisfiability prob-
lem as demonstrated first in [57]. Here we sketch how the regular programs over
X’ can be used to achieve this goal [19].

The syntax of regular programs over X is given by:

Prg(X) u=a|m +m | mo;m | 7°.

With each program we associate a set of finite words via the map || - || :
Prg(X) —s 2%". This map is defined in the standard fashion:

= |lal} = {a}.
= |lmo + m1|| = [|mol| U ||m1]].
= |lmo; m |l = {7071 | 70 € ||mo|| and 71 € ||m1||}.

=7l = Ujen, ||7%]|, where
o ||7°]| = {e} and '
o ||7**Y| = {rom1 | 70 € ||7]] and 71 € ||#f||} for every i € w.

The set of formulas of DLTL(X) is given by the following syntax.
DLTL(X) u=T | ~alaVvp|alU"8, =€ Prg(X)

A model is a w-sequence o € E¥. For 7 € prf{c) we define 0,7 | « just as
we did for LTL(X) in the case of the first three clauses. As for the last one,

— 0,7 = a U™ B iff there exists 7/ € ||x|| such that 77’ € prf(¢) and o, 77" | 8.
Moreover, for every 7"/ such that € X 7" < 7', it is the case that 0, 77" | a.

Thus DLTL(X) adds to LTL(Y) by strengthening the until-operator. To
satisfy a U™ 3, one must satisfy a U along some finite stretch of behaviour which
is required to be in the (linear time) behaviour of the program w. We associate
with a formula a of DLTL(J) the w-language L, in the obvious manner.

A useful derived operator of DLTL is:

- (M & TUa.

By replacing the until-modality of DLTL with the above derived operator we ob-
tain the sublogic DLTL™ (X, which is essentially Propositional Dynamic Logic [13]
equipped with a linear time semantics. It turns out that DLTL(X) and DLTL™(X)
both have the same expressive power as MSO(X).

Theorem 21. Let L C X*. Then the following statements are equivalent.

1. L is w-regular (i.e. definable in MSO(ZX)).
2. L is DLTL(X)-definable.
3. L is DLTL™(X)-definable.

675

Both the satisfiablity and model checking problems for DLTL(X) are decid-
able with the same time complexity as for LTL{X").

Let (£,I) be trace alphabet. Then MSO(X, I), the monadic second-order
theory of infinite traces (over X,I), has the same syntax as MSO(X"). The struc-
tures are elements of TRY(Z,I). Let T € TRY(X,I) with T = (E,<,) and
let Z: X — E be an interpretation. Then T}::MSOR (z) iff M(Z(z)) = a and

T EYS© ¢ < y iff Z(z) < Z(y). Hence, the essential difference is that the binary
predicate symbols is now interpreted as the causal partial order of the trace. The
remaining semantic definitions go along the expected lines. Each sentence ¢ (i.e.,
a formula with no free occurrences of variables) defines the w-trace language

L, ={T|T M ¢}.

We say that L C TR¥ is MSO-definable iff there exists a sentence ¢ in MSO{X, I)
such that L = L. It is known that MSO-definable languages are precisely the
regular trace languages; i.e. those recognized by asynchronous automata [11].

FO(X,I), the first-order theory of traces, is defined in the obvious way.
Clearly it will be strictly weaker than MSO(X,I). For more information the
reader is referred to [7]. Naturally both these theories can be made to handle
finite traces as well. N

Through the rest of this section we fix a distributed alphabet X and let (X,)
be the induced trace alphabet. By MSO(Z) we shall mean the theory MSO(X, I)
and similarly for FO(X), the first-order fragment of MSO(X). In what follows
we shall often supress the mention of & as well as the induced (5, I).

We first consider the logic LTL®. Recall that product languages are trace
consistent and hence they induce trace languages via the map str. The resulting
trace languages will be called product trace languages. As might be expected,
the regular product trace languages are the ones obtained from regular product
languages via the map str. It is easy to show that not every (regular) trace lan-
guage is a product trace language [47]. It is also easy to see that LTL®-definable
trace languages constitute a strict subclass of regular product trace languages.
It has been shown that a product version of DLTL denoted DLTL® captures
exactly the class of regular product trace languages [20]. We also claim that it
is an easy exercise to formulate a product version of MSO(X) and show that it
captures exactly the regular product trace languages. Let us denote this Broduct
version of MSO(Z) as MSO®(Z) and its first-order fragment as FO®(X). It is
easy to show — using Kamp’s theorem — that LTL®(X) has exactly the same
expressive power as FO®(Z).

We also know that LTL® is strictly weaker than TrPTL. First note that each
formula (say a of TrPTL) defines a trace language L, via :

Le={T|T,0a).

Hence we can compare the relative expressive powers of LTL® and TrPTL. It is
known that ([30,47}):

676

LTL® ¢ TrPTL® C TYPTL.

It is still open whether TrPTL°" is equal to TrPTL in expressive power.

It is not difficult to show that TrPTL is no more expressive than the first-
order theory of traces but it is not known whether the converse also holds. It
would be nice to have a linear time temporal logic over traces patterned after
LTL which has the same expressive power as the first-order theory of traces. The
motivation is provided by the next result [11}:

Proposition 22. Let L C X¥. Then the following statements are equivalent.

1. L is trace consistent and LTL(X)-definable.
2. {str(o) | o € L} is FO(X, I)-definable.

Egged on by this result, recently a different kind of trace-based linear time
temporal logic called LTrL has been proposed [48]. This logic works directly
with a trace alphabet (i.e. it is not based on agents). It is interpreted over the
configurations of a trace and its syntax is given by:

LTTIL(Z,) u=T | ~a|aVB|{a)a|aUB| {a™)T.

Thus the syntax is very close to LTL except for the addition of a very restricted
past-operator. In fact, just a constant number of past-operators are present in
the logic; one for each action.

A model of LTYL(X, I} is a trace T = (E, <, A). Let ¢ € Cr be a configuration
of T. Then T, ¢ = a will stand for « being satisfied at ¢ in 7. This notion is
defined inductively as follows:

—T,ck=T.

- T,c t ~a and T, c = a Vv 3 are defined in the expected manner.

— T,c k= {(a)a iff there exists ¢’ € Cr with ¢ ——7 ¢’ with T,¢ E a.

—T,e = a U § il there exists ¢ € Cr with ¢ C ¢ such that 7,¢ = 8.
Moreover, for every ¢ € Cr, ¢ C ¢” C ¢’ implies T, ¢" |= a.

— T,c k= {a71)a iff there exists ¢’ € Cr with ¢’ Zyre.

The major result concerning LTrL is the following:

Theorem 23 ([48]). Let L C TR¥(X,I). Then the following statements are
equivalent.

1. L is FO(X,I)-definable.
2. L is LIYL(X, I'})-definable.

Thus — except for the addition of the restricted past-operators — LTrL is
a generalization of Kamp’s Theorem to the much richer setting of traces. Meyer
and Petit have shown that the past-operators can be eliminated without loss of
expressive power when the logic is interpreted over finite traces [28]. A similar
result for infinite traces is not known at present. Unfortunately this logic does

677

not have a matching time complexity in relation to LTL. Recently Walukiewicz
has shown that the satisfiability problem for LTrL is non-elementary hard [53].
A related result concerns the logic TLPO formulated by Ebinger [10]. This is
also a linear time temporal logic interpreted over traces but with full-fledged
past-operators. TLPO is claimed to be expressively complete when interpreted
over finite traces but nothing is known about the complexity of the satisfiability
problem nor about its expressive power in relation to infinite traces.

At present we do not know much about the relationship between TLC and
the logics we have mentioned so far, except that it is strictly weaker than the
monadic second-order theory of traces.

In an interesting recent development Niebert [32] has formulated a fixed
point based linear time temporal logic for traces in the setting of distributed
alphabets. This logic is denoted as vTrPTL. It is equal in expressive power
to the monadic second-order theory of traces and it has decision procedure of
essentially exponential time complexity. However, the formulas of this logic are
required to satisfy what appears to be awkward syntactic restrictions and it is
not clear how one could express global properties of interest in this formalism.

MSO = vTrPTL
TLC FO = LTrL
TrPTL MSO® = DLTL®

TrPTLe®

!

FO® = LTL®

Fig. 4. Relative expressive power of the logics

The relative strengths of the various linear time temporal logics over traces
mentioned in this section are displayed in Figure 4. A dotted (solid) arrow from
A to B indicates that B is at least as expressive as (strictly more expressive
than) A. Squiggled lines denote that the logics are incomparable to each other.

To conclude this section, a lot is known about linear time temporal logics
for traces but at present we still do not have — unlike the case of sequences
— pleasing counterparts to the first-order and monadic second-order theories of
traces.

678

9 Conclusion

In this paper we have attempted an overview of linear time temporal logics inter-
preted over traces. We have mainly concentrated on the satisfiability and model
checking problems as well as expressiveness issues. The problem of axiomatizing
these logics seems to be a non-trivial task. Some partial results may be found
in {39]. In [34] the authors present proof rules for the logic ISTL with a trace
semantics together with a relative expressive completeness result. Reisig has also
developed a kit of proof rules for a version of UNITY logic [40,41]. The models
of this logic are the non-sequential processes of a net system and the proof rules
are mainly designed to help reason about distributed algorithms modelled using
net systems.

At present not much is known about corresponding logics in a branching
time setting. Most of the attempts in this direction have lead to logics whose
satisfiablity problems are undecidable [5,25, 36]. It is however the case that the
model checking problem often remains tractable [5,36]. We do not know at
present whether the properties expressible in such logics have any type of “all-
or-none” flavour and if so whether one can develop some reduction techniques
for verifying such properties. Some preliminary attempts in this direction have
been made in [16, 54].

References

1. Alur, R., Peled, D., Penczek, W.: Model checking of causality properties. Proceed-
ings of the 10th Annual IEEE Symposium on Logic in Computer Science, IEEE
Computer Society Press (1995) 90-100

2. Bell Labs Design Automation: FormalCheck!™. Further information can be ob-
tained at http://www.bell-labs.com/formalcheck/

3. Bracho, F., Droste, M., Kuske, D.: Representation of computations in concurrent
automata by dependence orders. Theoretical Computer Science 174(1-2) (1997)
67-96

4. Biichi, J. R.: On a decision method in restricted second order arithmetic. Pro-
ceedings of the International Congress on Logic, Methodology and Philosophy of
Science, Stanford University Press (1960) 1-11

5. Cheng, A.: Petri nets, traces, and local model checking. Proceedings of the 4th In-
ternational Conference on Algebraic Methodology and Software Technology, Lec-
ture Notes in Computer Science 936, Springer-Verlag (1995) 322-337

6. Diekert, V.: Combinatorics of traces. Lecture Notes in Computer Science 454,
Springer-Verlag (1990) .

7. Diekert, V., Rozenberg, G. (eds.): The book of traces. World Scientific (1995)

8. Droste, M.: Recognizable languages in concurrency monoids. Theoretical Computer
Science 150(1) (1995) 77-109

9. Droste, M., Gastin, P.: Asynchronous cellular automata for pomsets without auto-
concurrency. Proceedings of the 7th International Conference on Concurrency The-
ory, Lecture Notes in Computer Science 1119, Springer-Verlag (1996) 627-638

10. Ebinger, W.: Charakterisierung von sprachklassen unendlicher spuren durch
logiken. Dissertation, Institut fiir Informatik, Universitat Stuttgart (1994)

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

679

Ebinger, W., Muscholl, A.: Logical definability on infinite traces. Theoretical Com-
puter Science 154(1) (1996) 67-84

Emerson, A. E.: Temporal and modal logic. In Handbook of Theoretical Com-
puter Science, volume B: Formal Models and Semantics, Elsevier Science Publish-
ers (1990) 996-1072

Fischer, M. J., Ladner, R. E.: Propositional dynamic logic of regular programs.
Journal of Computer and System Sciences 18(2) (1979) 194-211

Gabbay, A., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fair-
ness. Proceedings of the Tth Annual Symposium on Principles of Programming
Languages, ACM (1980) 163-173

Gastin, P., Petit, A.: Asynchronous cellular automata for infinite traces. Proceed-
ings of the 19th International Colloquium on Automata, Languages and Program-
ming. Lecture Notes in Computer Science 623, Springer-Verlag (1992) 583-594
Gerth, R., Kuiper, R., Peled, D., Penczek, W.: A partial-order approach to branch-
ing time model checking. Proceedings of the 3rd Israeli Symposium on Theory of
Computing and Systems, IEEE Computer Society Press (1995) 130-139
Godefroid, P.: Partial-order methods for the verification of concurrent systems.
Lecture Notes in Computer Science 1032, Springer-Verlag (1996)

Gerth, R., Peled, D., Vardi, M., Wolper, P.: Simple on-the-fly automatic verifi-
cation of linear time temporal logic. Proceedings of the 15th IFIP WG 6.1 In-
ternational Workshop on Protocol Specification, Testing, and Verification, North-
Holland (1995)

Henriksen, J. G., Thiagarajan, P. S.: Dynamic linear time temporal logic. Journal
of Pure and Applied Logic, Elsevier (to appear)

Henriksen, J. G., Thiagarajan, P. S.: A product version of dynamic linear time
temporal logic. Proceedings of the 8th International Conference on Concurrency
Theory, Lecture Notes in Computer Science 1243, Springer-Verlag (1997) 45-58
Holzmann, G. J.: An overview of the SPIN model checker. In “On-the-fly Model
Checking Tutorial”, BRICS Autumn School on Verification, Note NS-96-6, BRICS,
Department of Computer Science, University of Aarhus (1996)

Huhn, M.: On semantic and logical refinement of actions. Technical Report, Institut
fur Informatik, Universitét Hildesheim, Germany (1996)

Kamp, H. R.: Tense logic and the theory of linear order. Ph.D. thesis, University
of California (1968)

Katz, S., Peled, D.: Interleaving set temporal logic. Theoretical Computer Science
73(3) (1992) 21-43

Lodaya, K., Parikh, R., Ramanujam, R., Thiagarajan, P. S.: A logical study of
distributed transition systems. Information and Computation 119(1) (1995) 91-
118

Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems
(specification), Springer-Verlag (1991)

Mazurkiewicz, A.: Concurrent program schemes and their interpretations. Techni-
cal report DAIMI PB-78, Department of Computer Science, University of Aarhus,
Denmark (1977)

Meyer, R., Petit, A.: Expressive completeness of LTrL on finite traces: an alge-
braic proof. Proceedings of the 15th Annual Symposium on Theoretical Aspects
of Computer Science 1373, Lecture Notes in Computer Science, Springer-Verlag
(1998) 533-543

Mukund, M., Sohoni, M.: Keeping track of the latest gossip in a distributed system.
Distributed Computing 10(3) (1997) 117-127

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

680

Mukund, M., Thiagarajan, P. S.: Linear time temporal logics over Mazurkiewicz
traces. Proceedings of the 21st International Symposium on Mathematical Foun-
dations of Computer Science, Lecture Notes in Computer Science 1113, Springer-
Verlag (1996) 62-92

Niebert, P.: A v-calculus with local views for systems of sequential agents. Pro-
ceedings of the 20th International Symposium on Mathematical Foundations of
Computer Science, Lecture Notes in Computer Science 969, Springer-Verlag (1995)
563-573

Niebert, P.: A temporal logic for the specification and validation of distributed
behaviour. Ph.D. thesis, University of Hildesheim (1997)

Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains,
part I. Theoretical Computer Science 13(1) (1981) 85-108

Peled, D., Pnueli, A.: Proving partial order properties. Theoretical Computer Sci-
ence 126(2) (1994) 143-182

Peled, D.: Partial order reduction: model checking using representatives. Proceed-
ings of the 21st International Symposium on Mathematical Foundations of Com-
puter Science, Lecture Notes in Computer Science 1113, Springer-Verlag (1996)
93-112

Penczek, W.: Temporal logics for trace systems: on automated verification. Inter-
national Journal of the Foundations of Computer Science 4(1) (1993) 31-68
Pnueli, A.: The temporal logic of programs. Proceedings of the 18th Annual Sym-
posium on Foundations of Computer Science, IEEE Computer Society Press {1977)
46-57

Ramanujam, R.: Locally linear time temporal logic. Proceedings of the 11th Annual
IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press
(1996) 118-127

Ramanujam, R.: Rules for trace consistent reasoning. Proceedings of the 3rd
Asian Computing Science Conference, Lecture Notes in Computer Science 1345,
Springer-Verlag (1997) 57-71

Reisig, W.: Temporal logic and causality in concurrent systems. Proceedings of
CONCURRENCY’88, Lecture Notes in Computer Science 335, Springer-Verlag
(1988) 121-139

Reisig, W.: Petri net models for distributed algorithms. In Computer Science Today
— Recent Trends and Developments, Lecture Notes in Computer Science 1000,
Springer-Verlag (1995) 441-454

Sistla, A. P., Clarke, E.: The complexity of propositional linear temporal logics.
Journal of the ACM 32(3) (1985) 733-749

Stockmeyer, L. J.: The complexity of decision problems in automata theory and
logic. Ph.D. thesis, MIT, Cambridge, Massachusetts (1974)

Thiagarajan, P. S.: A trace based extension of linear time temporal logic. Proceed-
ings of the 9th Annual IEEE Symposium on Logic in Computer Science, IEEE
Computer Society Press (1994) 438-447

Thiagarajan, P. S.: TrPTL: a trace based extension of linear time temporal logic.
Technical report TCS-93-6, School of Mathematics, SPIC Science Foundation,
Madras (1993) :

Thiagarajan, P. S.: A trace consistent subset of PTL. Proceedings of the 6th Inter-
national Conference on Concurrency Theory, Lecture Notes in Computer Science
962, Springer-Verlag (1995) 438-452

Thiagarajan, P. S.: PTL over product state spaces. Technical report TCS-95-4,
School of Mathematics, SPIC Science Foundation, Madras (1995)

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

681

Thiagarajan, P. S., Walukiewicz, I.: An expressively complete linear time temporal
logic for Mazurkiewicz traces. Proceedings of the 12th Annual IEEE Symposium
on Logic in Computer Science, IEEE Computer Society Press (1997) 183-194
Thomas, W.: Automata on infinite objects. In Handbook of Theoretical Com-
puter Science, volume B: Formal Models and Semantics, Elsevier Science Publish-
ers (1990) 133-191

Valmari, A.: A stubborn attack on state explosion. Formal Methods in Systems
Design 1 (1992) 285-313

Vardi, M. Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. Proceedings of the 1st Annual IEEE Symposium on Logic in Computer
Science, IEEE Computer Society Press (1986) 332-345

Vardi, M. Y.: An automata-theoretic approach to linear time temporal logic. In
Logics for Concurrency - Structure vs. Automata, Lecture Notes in Computer
Science 1043, Springer-Verlag (1996) 238-266

Walukiewicz, I.: Difficult configurations — on the complexity of LTrL (extended
abstract). Proceedings of the 25th International Colloquium on Automata, Lan-
guages and Programming. Lecture Notes in Computer Science, Springer-Verlag (to
appear)

Willems, B., Wolper, P.: Partial-order methods for model checking: from linear
time to branching time. Proceedings of the 11th Annual IEEE Symposium on
Logic in Computer Science, IEEE Computer Society Press (1996) 294-303
Winskel, G., Nielsen, M.: Models for concurrency. In Handbook of Logic and the
Foundations of Computer Science, volume 4, Oxford University Press (1995) 1-148
Wolper, P.: Temporal logic can be more expressive. Proceedings of the 22nd Annual
IEEE Symposium on Foundations of Computer Science, IEEE Computer Society
Press (1981) 340-348

Wolper, P., Vardi, M. Y., Sistla, A. P.: Reasoning about infinite computation paths.
Proceedings of the 24th Annual IEEE Symposium on Foundations of Computer
Science, IEEE Computer Society Press (1983) 185-194.

Zielonka, W.: Notes on finite asynchronous automata. R.A.LLR.O. Informatique
Théorique et Applications 21 (1987) 99-135

