Theory of Regions

Eric Badouel and Philippe Darondeau

Irisa, Campus de Beaulieu, F-35042 Rennes Cedex, France
E-mail : {Eric.Badouel,Philippe.Darondeau }Qirisa.fr

Abstract. The synthesis problem for nets consists in deciding whether
a given graph is isomorphic to the marking graph of some net and then
constructing it. This problem has been solved in the literature for vari-
ous types of nets ranging from elementary nets to Petri nets. The general
principle for the synthesis is to inspect regions of graphs representing ex-
tensions of places of the likely generating nets. We follow in this survey
the gradual development of the theory of regions from its foundation
by Ehrenfeucht and Rozenberg, with a particular insistence on the ab-
stract meaning of the theory, which is a general product decomposition
of graphs into atomic components determined by a parameter called a
type of nets, and on the derivation of efficient algorithms for net synthesis
based on linear algebra.

Table of Contents:

W o~ S Wt R W N

[u—
(=

1

Terminology of Graphs

Regional Representation of Partial 2-Structures

The Synthesis of Elementary Net Systems

Cutset Representation of Finite Graphs

Flip-Flop Nets and their Synthesis

Regions for Arbitrary Types of Nets

Polynomial Time Algorithms for the Synthesis of Petri Nets
Regions in Step Transition Systems

Dual Adjunctions between Transition Systems and Nets

Some Applications

Terminology of Graphs

Since the terminology on graph theory varies a lot from one author to the other,
we found it necessary to begin by defining the terminology used in this document.

1.1 Graphs

A graph G = (X,E) is a collection X of vertices or nodes together with a
collection E of edges. The graph is said to be finite if it has finitely many vertices

530

and edges. Each edge has either one endpoint: end(e) = {z} in which case e is
termed a loop at vertex z, or two endpoints: end(e) = {z,y} in which case e is
termed a link between vertices x and y. A graph is simple if it is loop-free: each
edge is a link, and has no multiple edge: end(e1) = end(ez) = e; = e3. Therefore
an edge of a simple graph may be identified with the pair of its endpoints. The
incidence matriz of a graph G is a matrix A with elements 0 and 1, where each
row corresponds to a vertex, each column corresponds to an edge, and A(z,e)
is 1 if and only if z is an endpoint of e. A chain of length n > 1 with endpoints
{Z1,Tn+1} is a finite sequence (z1,€1,%2,...,%n, €n, Tnt1) Of vertices and edges
such that end(e;) = {zi, ziy1} for all 1 < ¢ < n. We say that the chain connects
its endpoints. For convenience, we consider that every vertex is conmnected to
itself by an empty chain. The connected component of a vertex is the set of
vertices connected to this vertex by some chain; the graph is connected if it has
only one connected component. A non empty chain is said to be simple if all
edges are distinct, a chain is said to be elementary if all the vertices but possibly
the endpoints are pairwise distinct. A cycle is a simple chain whose endpoints
coincide: T3 = Tny1- A free is a graph with no cycle or alternatively a graph
in which any two vertices are connected by a unique chain. G' = (X', E') is a
subgraph of G = (X, E) if X' C X, E' C E, and the mappings that send an
edge e € E’ to its endpoints in G’ and in G coincide. G’ spans G if X' = X; a
spanning tree of G is a subgraph which is a tree spanning G.

1.2 Directed Graphs

An orientation of an edge e is an ordered pair of vertices (x, y) such that end(e) =
{z,y}, thus a loop at = has only one possible orientation: (z,z), while a link
between z and y has two possible orientations: (x,y) and (y,z). We let e : (z,y)
denote the assignement of the orientation (z,y) to the edge e; the vertices z =
8°(e) and y = O'(e) are respectively called the source and target of edge e. An
oriented edge is sometimes called an arc. A directed graph is a graph whose edges
are given an orientation. A directed graph is simple if it is loop-free and has no
multiple arc in the sense that two edges with the same endpoints are necessarily
given opposite orientations: (e; : (z,y) A ez :(x,y)) = e1 = ez. Therefore an
edge of a simple directed graph may be identified with the ordered pair of its
endpoints, and in that case we write e = (z,y) when 8%(e) = z and 8*(e) = y.
Notice that the underlying graph of a simple oriented graph may not be simple
as we can find two edges with the same endpoints but with opposite orientations.
A subgraph of a directed graph G is a subgraph of the underlying graph with
the orientations of edges inherited from G. The notions of chain, cycle, tree,
spanning subgraph and spanning tree do not depend on the orientation of edges;
therefore a chain (cycle, tree, ...) of a directed graph is a chain (cycle, tree,
...} of the underlying graph. The specific notions that take the orientation into
account are the following. A path of length n > 1 from z; t0 Z,41 is a finite
sequence (Z1,€1,Z2, .. ., Zn, €n, Tnt1) Of vertices and edges such that 8%(e;) = z;
and 8'(e;) = zi41 for all 1 < i < n. For convenience, we consider that there
exists an empty path from any vertex to itself. A non empty path is said to

531

be simple if all edges are distinct. A path is said to be elementary if all the
vertices but possibly the endpoints are distinct. A circuit is a simple path whose
endpoints coincide: z; = z,11. Thus paths and circuits are respectively chains
and cycles of the underlying graph whose edges have compatible orientations.
The incidence matriz of a directed graph is the matrix A: X x E - {-1;0;1}
1 if %)==
given by A(z,e) = {—1 if 8'e)==x.
0 otherwise

2 Regional Representation of Partial 2-Structures

The theory of regions was founded by Ehrenfeucht and Rozenberg in [22] with the
aim to obtain a set-theoretic representation of directed graphs (X, E), enriched
with an equivalence = on edges. The resulting structures (X, E,=) are termed
partial 2-structures. The representation problem for partial 2-structures consists
in attaching properties p to nodes z so that the Kripke structure so obtained may
be abstracted without loss of information to the data {z*| z € X} and {e*| e €
E}, where a node is encoded by the set z* = {p| z }= p} of properties it satisfies
and an edge by the pair e* = (z* \ y*,y* \ =*) where x and y are the respective
source and target of e. The main difficulty is to reconstruct the equivalence
relation =, and this cannot be done unless the considered properties are altered
uniformly when passing along every edge in each equivalence class. These specific
properties, seen as sets of nodes when identified with their extensions {z | = |= p},
are called regions in [22]. The presentation of regions in partial 2-structures given
below is directly inspired from [22], where the proofs of the results may be found.
The algorithmic aspects of elementary net synthesis will be examined in the next
section.

2.1 Partial 2-Structures and their Regions

Definition 2.1 A partial 2-structure is a triple G = (X, E,=) where X is a
finite non empty set of nodes, E C Ey(X) = {(z1,%2) € X X X| 21 # x2} is a
set of 2-edges over X, and = is an equivalence relation on E. When E = FE3(X)
is the whole set of 2-edges over X, G is called a 2-structure.

Partial 2-structures may be viewed as equivalence classes of labelled simple di-
rected graphs, where two graphs are equivalent if their labelling functions have
the same kernel. Of particular interest are the partial set 2-structures defined as
follows.

Definition 2.2 A partial set 2-structure of a finite set B is a partial 2-structure
G = (X, E,=;) where X C P(B) and =; is the kernel of the function 6((M, M"))
= (M\M',M'\M) for M,M' € X. Let 525(B) denote the (full) set 2-structure
of B; i.e. when X = P(B) and E = E»(X).

532

Thus in particular, any partial set 2-structure G of B is a substructure of
525(B). In notation, G < S25(B) where (X;,E;,=1) < (X9, By, =) if X; C
X3, By C E; and =, is the restriction of =2 on E; x E;. The representation
problem for partial 2-structures may be stated as follows.

Which partial 2-structures are isomorphic to substructures of S25(B)
for some finite set B (of tokens)?

The best way to grasp this problem is to examine the extents Rj of representation
tokens b € B in the structure S2S5(B) itself, let R, = {M € P(B)| b€ M}. So,
b € M if and only if M € R,. The following may be observed.

1. For every pair of equivalent 2-edges (M1, M{) and (M3, M3), and for every
b€ B,be M\ M| entails b € M, \ M} and symmetrically b € M{ \ My
entails b € M, \ M,. This can also be expressed as follows:

— (M1 € Ry AMj{ & Ry) = (M3 € Ry A M} & Rp);

— (M1 € Ry AMj € Ry) = (My € Ry N M3 € Ryp).
Thus, all the 2-edges in an equivalence class are incident to Ry outwards, or
they are incident to R, inwards, or they are not incident to Rp.

2. VM;, M, € P(B) M; # M,=(3b€ BM; € Ry & M, ¢ Ry).

3. For every pair of inequivalent 2-edges (My, M{) and (M, M3), there exists
some token b € B such that one 2-edge is incident to R; and the other is
not, or one 2-edge is incident to R, inwards and the other is incident to R,
outwards.

These properties are also valid for substructures (X, E, =s) of S25(B), where
Ry is the set {M € X|be M}.

Definition 2.3 A region in a partial 2-structure G = (X, E,=) is a subset of
nodes R C X such that for every pair of equivalent 2-edges (z1,2]) and (z2,15)
inE: (z1 € RAzi{ ¢ R) = (z2 € RAzhL ¢ R), and (x1 ¢ RAZ} € R) = (x2 &
RAZYy € R). Let R denote the set of (non trivial) regions of G, and forz € X,
let Rg(z) = {R € Rg| z € R}.

It is worth noting that the complement X \ R of a region R is a region. In
particular X and § are regions (the trivial regions). Now the non trivial regions
may serve as representation tokens for states, that is nodes, and at the same
time for events, that is classes of equivalent 2-edges. One obtains in this way
regional versions of partial 2-structures defined as follows.

Definition 2.4 Given a partial 2-structure G = (X, E, =), the regional version
of G is the partial set 2-structure regv(G) = (X', E',=5) with components X' =
{Rg(z)| z € X} and E' = {(Ra(z),Ra(z"))| (z,2') € E}.

In this construction, illustrated in Fig. 1, a node z is mapped to the set Rg(z)
of the regions which include z. It appears from Fig. 1, where equivalent edges
bear a common label, that the map regv is not an equivalence of partial 2-
structures . The following theorem states when regv maps a partial 2-structure
isomorphically to a partial set 2-structure (the regional representation of the
latter).

533

({Rz}, {Ra}

Rg = {1,2,3,4}

Ro=2¢

Ry = {1,2} — —
By = {3,4} ({R1},{R1}) ({R1},{RB1})
Ry ={113}

Ry ={2,4}

Fig. 1. a partial 2-structure and its regional version

Theorem 2.5 A partial 2-structure G = (X, E, =) is isomorphic to a substruc-
ture of some set 2-structure if and only if G = regv(G) (with Rg(-) as the
isomorphism) if and only if the following two axioms of separation are satisfied:

1. STATES SEPARATION: V1,22 € X 1 # 22 > JRe€Rg(z1 E Rz &
R).

2. EVENTS SEPARATION: for all (z1,%)), (%2, 7)) € E with (z1,2}) # (z2,75)
there exists some region R € Rg such that either (z1,x]) is incident to
R outwards and (z3,zh) is not or (x,,zh) is incident to R outwards and
(z1,2}) is not.

There may exist nodes z;, T2, r3 and z4 such that (z1,z3) € E, §(z},z3) =
8(z3%,;), and (z3,z4) ¢ E. Therefore regv(G) is not characterized by the sets
{z*| z € X} and {e*| e € E}. In order to reduce the mismatch, one should
impose the additional axiom: ¥(z1,72) € E V3,24 € X §(Ra(z1), Ra(xg)) =
8(Rg(zs), Ra(z4)) = (z3,z4) € E. Further on this way, one can even impose
one or two stronger axioms:

FORWARD CLOSURE: V(7;,22) € E Vz3z € X (Ra(z1) \ Ra(z2) C Ralzs) A
Ra(z3)NRa(z2)\Ra(z1) = 0) = 24 € X (23,24) € E A S(Ra(z1), Ra(z2)) =
6(Rg(x3), Ra(z4))-

BACKWARD CLOSURE: V(z;,72) € E Vzgs € X (Ra(z2)\ Ra(z1) C Ra(zs) A
RG(.’E4)HRG(I1)\RG($2) = 0) = drz € X (Z‘g,IL‘4) e EA 5(RG(I1),RG(.’L‘2)) =
6(Ra(z3), Ra(z4))-

Partial 2-structures may be considered too general from a practical point of view,
and one may prefer focusing on reachable partial 2-structures, such that all nodes
can be reached by paths with a common origin. A familiar example of reachable
partial set 2-structures is the class of sequential case graphs of elementary net
systems.

Definition 2.6 An elementary net is a directed bipartite graph N = (P, E, F)
such that dom(F) Uran(F) = PU E. Elements of P, respectively E, are called
conditions (or places), resp. events. Let z € *y and y € z° be alternative
notations of (z,y) € F. A case (or marking) of N is a subset of conditions
M € P(P). An event e has concession in case M (noted Mle>) if and only
if ("e,e*) = 8(M,M’) for some case M’ (thus uniquely defined). The event e

534

may then fire at M, resulting in the step M[e>M’. Thus, M[e> if and only if
‘e CMAMNe* =0, and then Mle>M' where M' = (M \ *e) Ue®.

Anetispureif Ve e PUE 2*N*z=1§;itis simpleif Vo, y e PUE (z* =
¥* A *z = *y) = z = y. The elementary nets considered from now on are
assumed to be pure and simple.

Definition 2.7 An elementary net system is a structure N = (P, E, F, M)
where N = (P,E,F) is the underlying net and My (in P(P)) is the initial
case. The sequential case graph of N is the partial set 2-structure scg(N) =
(X', E',=5) where X' C P(P) is the smallest set of cases reachable from My by
sequences of steps Mle>M' and E' is the set of corresponding pairs (M, M').

Lemma 2.8 A partial set 2-structure G = (X, E,=s) is the sequential case
graph of an elementary net system if and only if it is reachable and the following
property is satisfied: ¥(z1,22) € E Viz € X (zy\z2Cx23 A 23Nz \ 21 =
0) = 3zq € X ((z3,24) € E A 8(21,22) = §(23,74))-

From Theo. 2.5 and Lem. 2.8, one obtains the following.

Corollary 2.9 A partial 2-structure G = (X, E,=) is isomorphic to the se-
quential case graph of an elementary net system if and only if it is reachable and
satisfies the axioms of states separation, events separation, and forward closure.

The elementary net system in the above corollary is essentially the set of the
ordered symmetric differences 6(Rq(z), Re(y)) for 2-edges (z,y) € E. The rep-
resentation problem for partial 2-structures set at the beginning of the section
has in fact been given the solution #* = Rq(z). The places of the net are the
regions r € R(G), the events are the equivalence classes of edges, and the flow
relation is such that: F'([e]=,r) & r € Rg(y) \ Ra(z) for some (z,y) € E; and
F(r,[elz) © r € Rg(z) \ Ra(y) for some (z,y) € E. The initial case of the
net system is defined as Rg(xo) for some zo € X such that every node of G is
reachable from zg.

2.2 Elementary Automata

The second part of the section paves the way for the algorithmic analysis of
the region based correspondence between reachable graphs and elementary net
systems. With this objective in mind, we recast the results obtained so far into
the framework of transition systems, and illustrate the modified correspondence
on a complete example.

Definition 2.10 A (labelled) transition system is a triple A = (S, E,T) with a
set of states S, a set of events E, and a set of transitions T C S x E x 8. Let
s = &' be an equivalent notation for (s,e,s') € T. An event e is enabled at state
s (noted s) if s 3 s’ for some s'. An event e is co-enabled at s' (noted 5 s')
if s ¢ for some s. An automaton is a structure A = (S, E, T, so) consisting of
an underlying transition system A = (S, E,T) and an initial state so € S.

535

A partial 2-structure G = (X, E, =) may be identified with the transition system
(X,E/ =,T) where g 2 if and only if (z,z') = e. This transition system is
loopfree: s 5 &' = s # ', has no multiple arc: s 3 s' As 3 s’ = e; = ey, and it is
reduced: Ve € E 3s,8' € S s s'. The sequential case graphs of the reduced
net systems defined hereafter fall in this subclass of transition systems.

Definition 2.11 An elementary net system N = (P,E,F, M) is reduced if
every event e € E has concession at some case M reachable from My, and for
every two distinct conditions p,p’ € P there exists some case M reachable from
My such that p € M & p' € M. The dual of a reduced elementary net system
N is the automaton N* = (S, E, T, My) where S is the set of cases reachable
from My by sequences of steps M[e>M' and T is the set of the corresponding
transitions (M,e, M').

Thus N* is essentially the image of scg(N) through the map which sends the
equivalence class of 2-edges {(M, M')| 6(M,M') = (*e,e*)} to the event e. Since
N is simple and reduced, this map is one to one and onto. By construction,
N* is reachable from My, deterministicc M 5 M' A M 5 M" = M' = M", and
co-deterministic: M' 5 M A M" 5 M = M’ = M". The definition of regions
may be carried to automata in the following form.

Definition 2.12 A region in an automaton A = (S,E,T,sq), or in the un-
derlying transition system (S,E,T), is a subset of states R C S such that
siERAs2§ R=>s3€RAss &R
sigRAs2€ R=>33¢RAs4€ER
Let R4 denote the set of (non trivial) regions of A, and for s € S let R 4(s) =
{R€Rua|se€R}.

Ve € EVs1,52,83,84 €85 81 = 82 Ass = 84 =

Thus, R is a region if and only if the label e of a transition suffices to determine
whether the transition is incident to R inwards (R is then termed an output
region for e, noted e*R), or it is incident to R outwards (R is then termed an
input region for e, noted R*e), or it is not incident to R (it is internal to R or
external to R). In particular, if A is reachable and reduced, the non trivial regions
of A may be represented as maps ng : E = {-1,0,1} such that ng(e) = 1 if
e’ R, nr(e) = —1 if R%e, and ngr(e) = 0 otherwise; the characteristic function of
R, let xg : S = {0,1} where xgr(s) =1 & s € R, is then the unique map such
that s 5 s' = nr(e) = xr(s') — xr(s).

It is easily seen that for every condition p of a net system N, the set of the
reachable cases M that contain p is a region of N*. This region, denoted by p*
and called the extension of p, is such that e*p* < e € *p and p**e & e € p°.
Reversing the process which leads from net systems to sequential case graphs,
let us recast the definition of regional versions in terms of nets and net systems.

Definition 2.13 Given an automaton A = (S, E, T, so), the dual of A is the
(reduced) elementary net system A* = (R4, (E/~) \ {€}, F, s§) where: ~ is the
equivalence on E induced by regions, let

e1~ex s (VRERA ei®Re es*R A Re; & R'ey);

536

€ 18 the equivalence class of the events which are inputless and outputless i.e.
which are internal or external to all regions, if such events exist; F is the flow
relation such that F([e]~,R) < e*R and F(R,[e].) & R'e; and s; = {R €
Ral so € R}.

The net system A* is also called the saturated net version of A (for reasons ex-
plained in the sequel). The counterpart of Cor. 2.9 for automata is the following.

Theorem 2.14 An automaton A = (S, E,T, so) is isomorphic to the dual N*
of an elementary net system if and only if A = A** if and only if A is simple (it
has neither loop nor multiple arc), reduced, reachable and it satisfies the following
properties of separation:

SSP (States Separation Property):

Vs,s’ €S s#s=>3JRecRy (s€R& s ¢R)

ESP (Events Separation Property):
Ve, €E e#e =>3IReRs (R'e A not{R*%e')) V (e*R A not(e'*R))

EsSP (Events-States Separation Property):
VeeE Vs€S not(s>) =3IReRa(ReAs¢R) V (R A s€R)

An automaton satisfying these conditions is termed an elementary automaton.

Observe that every event in an elementary automaton has input regions and
output regions (from SsP), hence the map sending e to [e]~ is a bijection between
E and (E/ ~)\ {e} (from ESP). The isomorphism from 4 to A** (the sequential
case graph of the saturated net version of .4) maps e to [e]. and s to s* =
{R € R4| s € R}. This isomorphism applies in particular to sequential case
graphs, whence N'* 2 N*** for every elementary net system. However, N' =
(P, E, F, My) is generally not isomorphic to its double dual A**. In fact, every
condition p of A induces a corresponding region p* of N* which includes the
reachable cases in which condition p holds, and N is isomorphic to the full subnet
system of A** with set of events E/.., (= E) and set of places {p*| p € P}. Thus,
whenever N"* = N*, N is isomorphic to a subnet system of N'** which is for that
reason termed the saturated version of N. Now, for an elementary automaton
A, A= A entails that 4* &= A, hence A* is always a saturated net system.
The aim of the next section is to optimize the synthesis process by looking at
admissible subnets A of A* such that A = N*.

Before tackling the synthesis problem, we proceed to simplifying the pre-
sentation of elementary automata, and retrieve the usual presentation given in
[11, 19, 34].

Proposition 2.15 Let automaton A be simple, reduced and reachable, then A
is elementary if and only if the separation properties SSP and ESSP are satisfied.

537

Proof: Let A = (S,E,T,sp), and assume for contradiction e # ¢’ and VR €
Ra (R%e¢ & R*¢') A (e'R © €'*R). We show that s 5 s’ entails s LA

contradicting the assumption that A is simple. Assume s < s’ and not s -e-;, then
by Essp: IR € R4 (R’ A s¢ R) V (¢'*R A s € R) and the contradiction of

s 5 &' follows from the definition of regions. Let s” € S such that s < 5", then
Ra(s") =Rals)*eUe* =Ra(s)*eUe* = R4(s') and s’ = s" follows from
ESP. []
For complete proofs of the results which have been stated in this subsection, the
reader is referred to [19] where partial 2-structures are by-passed.

As an illustration, let us consider the elementary net system and the case
graph given in Fig. 2. In Fig. 3 are displayed some of the non trivial regions of

so = {z1;2z591}
s1 = {=z2;y1}
s2 = {z1;¥2}
sa = {z3;2z; 11}
84 = {z1;2;ya}
85 = {z3;y2}
s¢ = {r2;y3}
s7 = {23;2;y3}

Fig. 2. an elementary net system and its case graph

this automaton. The missing items can be obtained by symmetry. Each drawing

R0,

Fig. 8. some regions of the case graph of the elementary net system of Fig. 2 and their
associated atomic net systems

represents a region R consisting of black states. The flow relations for the region
R and for its complement =R = S\ R are also represented pictorially; finally one
token indicates which of these complementary regions contains the initial state.

538

We end up with the elementary net system of Fig. 4, which is the original net
of Fig. 2 enriched with additional places (indicated by dashed lines) but with
unchanged behaviour. The original net system is embedded into its saturated

-X; p-‘yl
5 -
e S
2 1
') ’ »
+ .]

\
\
\
\
\
"X:©

Fig. 4. the embedding of the elementary net system of Fig. 2 into its double dual

version by the map that sends a place z to its extension in the state graph i.e.
the set of markings {M € S|z € M}.

3 The Synthesis of Elementary Net Systems

All automata considered in this section are assumed to be pre-elementary, i.e.
simple, reachable and reduced. The synthesis problem of elementary net systems
[19] is as follows:

Given a finite automaton A = (S, E,T, 30), decide whether A = N* for
some elementary net system N with the same set of events E, and if so,
construct N

Since the set R 4 of all the regions of A is finite, we already know from Prop. 2.15
that this problem can be decided in exponential time by simultaneously explor-
ing R4, for checking satisfaction of the separation properties ESP and ESSP,
and constructing N’ = A*. The aim of this section is to improve on this brute
force solution. We review first Desel and Reisig’s study of admissible sets of re-
gions and their techniques for eliminating redundant regions. Next we account
for Bernardinello’s results on the synthesis of state machine decomposable net
systems, based on the crucial remark that the minimal regions of an automaton
form an admissible set, and for subsequent work by Cortadella et al. on the re-
alization of automata by elementary nets up to some quotient of automata. We
finally report the results obtained on the complexity of the synthesis problem in
[25, 3].

539

3.1 Admissible sets of regions

In an elementary net system N = (P, E, F, M), each condition p € P determines
an atomic subnet system of N, let N, = ({p}, E, Fp, Mo) where F, is the
restriction of F' and My p(p) = Mo(p). If we do not care about the isolated
events in NV, these atomic subnet systems are elementary and N is just their sum
Epe pNp, where nets are glued together on events e € E. This decomposition
may be used to isolate the contribution of each condition p € P to the global
structure of the sequential case graph A*. This automaton may be seen as a
deterministic recognizer of finite sequences, in which every state (i.e. case) is
accepting. An automaton of this type is characterized up to isomorphism by
the language £ it accepts plus the equivalence = on £ which identifies these
sequences that lead to a common (accepting) state. Now in the case of N*, £
and = are the intersections for p ranging over P of the respective languages and
equivalences characteristic of ./V;;" : L = NpepLy and == Npep =p. Thus the role
of each condition p is twofold: on the one hand, p cuts off sequences u - e such
that u € £ but u-e ¢ £,, and on the other hand p separates pairs of words
u,v € £ such that u #, v.

Returning to the synthesis problem, let us now clarify the relationship be-
tween automata and atomic net systems. Let A = (S, E,T,s0) be a finite
deterministic automaton, with language £ and equivalence =, and let NV, =
({p}, E, F,, My p) be an atomic net system, inducing a dual automaton N} with

P
language £, and equivalence =,. The automaton N has two states, @ and {p},

one of which is My p, and it has transitions 0 = {p} if Fp(e,p), {p} = 0 if Fp(p, €),
and otherwise § > § and {p} = {p}. Suppose £ C L, and =C=,,. Let R, be the
subset of states s € S such that so % s in A and Mo, = {p} in N for some
sequence of events u € E*. Then R, is a region of A, so € R, & My, = {p},
and for every e € E: Ry%e & Fy(p,e) and e*R, & Fy(e,p). Conversely, for
any region R, of A, the elementary net system A, defined by the above rela-
tions induces a dual automaton N; such that £ C £, and =C=,. Moreover,
R, separates two distinct states s’ and s” such that so % s’ and so = s” in A if
and only if u %, v, and R, separates a state s such that so = s from an event
e such that not(s =) if and only if u - e € £,. Therefore, given a net system
N = (P,E,F,Mp) = 3 cpNp, the dual automaton N* is isomorphic to the
automaton A if and only if £ = NpepLp and == Npep =p, if and only if for all
p € P, N, is an atomic net system defined from some corresponding region R,
in A and the following properties are satisfied:

SSP:Vu,ve L uFEv=>IpeP u#,v,

ESSP:Vu€e L Ve€cE u-edL=>TpeP u-e¢L,,

if and only if the family of regions {R,| p € P} is admissible according to the
following definition.

Definition 3.1 Given an automaton A = (S, E, T, so), a subset of regions { Rp|
p € P} C R4 is admissible if and only if it includes witnesses for the satisfaction
of every instance of the following separation problems where e € E and s,s',s" €
S are such that s’ # s" and not(s 5):

540

ssp(s’,s"): JpeP s eR,&s5"¢R,,
ESSP(s,e): JIpEP (Ry,e A s¢R,) V ('R, A s€Ry).

It is easily seen that problem ssp(s’,s”) cannot be solved positively in a non-
deterministic automaton A where s % s’ and s -5 s" for s’ # s". One rediscovers
in this way a basic result established in [19].

Theorem 3.2 An automaton A = (S, E, T, so) is isomorphic to N* for N =
(P,E,F, My) if and only if for every p € P, the atomic subnet system Np of N
may be defined from some corresponding region R, of A, and the set of regions
{R,| p € P} is admissible.

In view of Def. 3.1 and Theo. 3.2, the synthesis problem for A = (S, E,T, s¢)
may be solved by considering at most |S| x (|S| + |E|) regions of .A. Nevertheless,
this does not indicate how to select these regions from R 4. The purpose is
to construct a subset of regions R C R4 as small as possible such that R
is admissible if and only if the whole set of regions R 4 is admissible. Some
structural rules are proposed in [19] for the stepwise elimination of redundant
regions, starting from R 4.

Definition 3.3 Let R C R be a set of regions. A region R € R is redundant
in R if the following assertions are equivalent: (i) R is admissible (ii) R \ {R}
is admissible.

Proposition 3.4 Let A = (S,E,T,s5) and R € R C Ra. In each of the fol-
lowing cases R is redundant in R.

1. S\REeR,

2. 3R1,R2,R3, R4 € R R=RiNRy A S\R=R30R4,

3. 3Ry, R2,R3,Rs € R R=R;UR; AN S\R=R3gURy,

4.3R,Re€R R=RNRy AN VYs€R VYecE Vé€ES\R 53¢ =
s'¢ Ry UR;.

Once a reduced set of regions R has been obtained from R 4, one can check
directly from Def. 3.1 whether it is admissible, proving that A is elementary, and
then extract from R a minimal subset {R,| p € P} such that A = (3= p Np)*. It
is worth noting that there exists in general no least admissible set of regions. This
fact is illustrated in Fig. 5 by the so-called “four seasons” example reproduced
from [19]. The “four seasons” automaton may be realized by two minimal subnet
systems of the dual saturated net system: one has four conditions and is contact-
free while the other one has three conditions but is not contact-free.

Definition 3.5 An elementary net system N = (P, E, F, M) is contact-free if
e C M = Mne®* =0 for every event e and for every reachable case M.

Thus, the subclass of elementary net systems which are contact-free and reduced
coincides with the subclass of the reduced and one-safe Petri nets. Now, every
saturated net system N = (P, E, F, Mp) is contact-free: every condition p € P
induces two complementary regions R, and R, in A'*, and since /' = A/** there

541

Fig. 5. the four seasons example: the automaton (on the left), the saturated net system
(on the middle} and two elementary net systems corresponding to minimal sets of
regions (on the right)

should exist some condition p € P such that Ry = -E;. Therefore, every elemen-
tary automaton may be realized by a one-safe Petri net. The following adaptation
of Theo. 3.2, based on the use of complementary regions, is established in [19]

Proposition 3.6 An automaton A = (S, E,T,so) is isomorphic to N* for a
contact-free net system N' = (P,E,F,My) = 3 cpNp if and only if every
atomic subnet system N, of N may be defined from a corresponding region R, €
R 4 and the following properties of separation are satisfied:

ssp: Vs, €S s#s =>3IpeEP seR, o5 ER,

ESSP!: Ve€ E Vs€S not(s3) =3IpeP R,¢ A s¢R,.

3.2 Minimal Regions

Among the admissible sets of regions of an elementary automaton, the set of
minimal regions plays a distinguished role because it leads naturally, as shown
in [11], to a state machine decomposable (and hence contact-free) net system
realizing the automaton.

Definition 3.7 An elementary net system N = (P, E, F, My) is a state machine
if its initial case is a singleton and every event has one precondition and one
postcondition. A state machine component of N = (P, E, F, My) is a state ma-
chine N' = (P', E', F', M} such that P' C P, E' = {e € E|(*e Ue*) N P' # 0},
F'=FnN(E'xP'UP'x E'"), and My = MyNP'. A state machine decomposition
of N = (P,E, F, My) is a family of state machines, let N; = (P;, E;, F;, My ;),
such that P = U;P;, E = U;E;, F = U;F;, and My = U; M ;.

A state machine is nothing else than a reachable automaton, as can be seen from
Fig. 6 where the elementary net system given in Fig. 2 is decomposed into three
state machine components. The respective state machine components model se-
quential processes which are synchronized on their common events. In this ex-
ample, the synchronization prevents the leftmost and rightmost processes from

Fig. 6. three state machine components of the net system of Fig. 2

entering simultaneously the critical section figured by the mutually exclusive con-
ditions z5 and y,. Each state machine component A; of a net system N = 3, N;
may be seen as a sequential observer of N'*, projecting cases of A’ on observable
conditions p € P;. By definition of state machine components, each case of A
projects to one and exactly one condition p € P;, hence each case of N belongs
to exactly one region R, of N* such that p € P,.

Proposition 3.8 Every state machine component N; = (P;, E;, F;, My ;) of an
elementary net system N = 5, N; determines a regional partition {R,| p € P;}
of the sequential case graph N*. Conversely, every regional partition {R,| p € P}
of N* determines a state machine component of the saturated net system N**.

Returning to the example, the regional partitions of N* (Fig. 3) which de-
termine the three state machine components shown in Fig. 6 are respectively
{le X23 X3}) {X2) Za Y'Z}’ and {Y'l) }’2) Y'3} where:

Z = {so0;33;84; 87}
X1 = {s0;92; 84}
Xz = {81;86}

X3 = {33;95; 87}

Y = {30;31;83}
Yz = {82;85}

Y3 = {s4; 86; 37}

It may be observed that all these regions are minimal w.r.t. set inclusion in
Rar+. The particular interest of minimal regions for the net system realization
of elementary automata is shown by the following proposition and corollaries.

Proposition 3.9 Given an automaton A = (S, E, T, sp), the following proper-
ties are satisfied by the set R 4 of regions of A:

1. If Ry and Ry are disjoint regions then Ry U R; is a region with

.(Rl U Rz) = (.Rl U 'Rz) \ ((‘Rl N Rz') U ('R2 N Rl'))
(RiURy)* =(Ri*UR*)\ ((*RiNR*)U(*R: N R*)).

543

2. If R and R’ are regions and R' C R then R\ R’ is a region. If moreover R’
1s minitnal then e*(R\ R) for every event e € R'* which is not incident to
R (i.e. such thate ¢ *RUR").

3. If R is a region and s € R, then s € R' for some minimal region R' C R.

4. If R is a region and e an event such that R"e, then R'*e for some minimal
region R’ C R; symmetrically if e is an event such that e*R, then e*R’ for
some minimal region R C R.

5. Every region is a disjoint union of minimal regions.

Corollary 3.10 A pre-elementary automaton is elementary if and only if its
set of minimal regions is admissible.

It may be further observed that the set of minimal regions of a pre-elementary
automaton A is admissible w.r.t. the separation properties ssp and EsSSP if and
only if it is admissible w.r.t. the separation properties sSP and Essp¥. In fact,
let {R1,...,R,} be any partition of the set of states of A into minimal regions,
then each instance of the problem ESSP(s, e) solved by a region R; such that e®* R;
and s € R; can also be solved by a region R; such that R;%e and s € R;. Since
the set of all partitions of the set of states of 4 into minimal regions induces a
state machine decomposition of the net system }> N, defined from the set of
all minimal regions R, of A, one deduces also the following.

Corollary 3.11 Every elementary automaton may be realized by a state ma-
chine decomposable {and hence contact-free} elementary net system.

An algorithm based on minimal regions has been proposed in [14] for a vari-
ant problem of realization of automata by net systems which may be stated as
follows.

Given a pre-elementary automaton A, decide whether exists and con-
struct a (minimal) elementary net system N such that N* = A’ for
some quotient A’ of A.

We recall that A’ = (S', E,T’,s}) is a quotient of A = (S, E, T, so) if s1 = 52 in
A if and only if o(s1) = o(s2) in A’ for some surjective map o : S = 5’ such that
sy = 0(sp). This problem is similar to the original synthesis problem, up to the
fact that the states separation property ssP is ignored. Now the events-states
separation property ESSP! is valid in A if and only if for every event e the set
of states {s € S| s ©} coincides with the intersection of the minimal regions R
such that R*e. The algorithm starts from the sets {s € S| s 3} and increases
them into minimal regions, which are generated until the validity of ESSP! can
be decided upon. The net N is then constructed from a minimal set of minimal
regions admissible with respect to ESsP*. A variant form of this algorithm has
been integrated to a software tool for the synthesis of asynchronous circuits [15].

It should be noted that the problem of realizing automata by nets up to
a quotient differs significantly from the problem of realizing automata by nets
up to behavioural equivalence (equality of the accepted languages). In order to
make the difference visible, let us focus on finite and deterministic automata.

544

In this context, behavioural equivalence coincides with bisimilarity. Given a fi-
nite deterministic automaton A, with language £ and characteristic equivalence
= on L, the problem of realizing A up to behavioural equivalence consists in
constructing an elementary net system A such that N'* recognizes L. For the
problem of realizing A up to a quotient, it is set as a further requirement that any
two equivalent sequences in £ lead to the same case when they are fired from the
initial case of N. In orther words, it is asked that =C=j/.. The reason why this
constraint makes a notable difference is that the elementary automata are not
closed under quotient. This counterfact is illustrated in Fig. 7: the automaton
shown on the middle is isomorphic to the case graph of the net displayed on the
left, but its minimized version shown on the right is not elementary (any region
R such that R*c must include state 3, hence the problem ESSP(3,c) cannot be
solved).

Fig. 7. elementary automata are not closed under quotient

3.3 Complexity Results

Hiraishi proved in [25] that the separation problems SSP(s, s') and ESsP!(s, e) are
NP-complete in the respective data (A, s,s') and (A, s, e). Since regions in A are
closed under complementation, the problem ESSP(s,e) is also NP-complete. It
does not follow therefrom that the synthesis problem for elementary net systems
is NP-complete; however this is the case. The synthesis problem is obviously in
NP since the total number of instances of separation problems in an automaton A
is quadratic in the size of A, and it can be checked in polynomial time whether a
non-deterministically chosen subset of states is a region solving a fixed separation
problem. Now a polynomial reduction of 3-SAT to the synthesis problem of
elementary net systems was established in [3], showing NP-hardness since 3-
SAT is NP-complete (see e.g. [23]). Recall that 3-SAT is the problem whether,
given a finite set of boolean clauses over V, with three litterals per clause, there
exists some truth assignment for V validating each clause. Each clausal system
of this form is associated in {3] with an automaton such that the clausal system is
satisfiable if and only if the automaton is elementary if and only if the separation
property ESsp* is valid. Therefore, the synthesis problem for elementary net
systems is NP-complete, and so is the problem of realizing automata by nets

545

up to a quotient. The problems of realizing automata by nets up to behavioural
equivalence, or up to an unfolding (given A find A such that 4 is isomorphic to
a quotient of A™*) have unknown complexity.

4 Cutset Representation of Finite Graphs

We have seen that the region based synthesis of elementary net systems from
initialized partial 2-structures (X, E,=,2¢) is a NP-complete problem. Never-
theless, this problem is trivial when the labelling equivalence is discrete: in that
case, the partial 2-structure is essentially a state machine with set of places X;
even better, this state machine is equivalent to a net system with |X|— 1 places,
whose case graph is a partial set 2-structure isomorphic to the given partial
2-structure. There exists a large variety of set-theoretic representations for an
unlabelled graph (X, E), all of which using at most |X| — 1 tokens. These rep-
resentations, based on cuts and cutsets, may be computed by linear algebraic
methods which are quite standard in applied graph theory. The purpose of this
section is to review these methods, and thereby shed light on regions in two
respects. First, we examine the close relationship between regions and cuts (this
analogy was first pointed out to us by T. Murata). Second, we indicate the ob-
stacles to using linear algebraic methods for the region based representation of
labelled graphs. On account of this analysis, a variant definition of regions is
proposed in the next section.

4.1 Cuts and Cutsets

Let G = (X, E) be a finite, connected and simple directed graph with set of nodes
X = {z1,...,2,} and set of 2-edges E = {e1,...,en}. So, G is free of loops
multiple arcs, although a 2-edge e = (z;, xx) may have an inverse e ™! = (zy, z;)
in E. A cutset of G is a minimal set of 2-edges whose removal increases the
number of connected components by one. A cut of G is a cutset or an edge
disjoint union of cutsets. Since G is connected, every cut or cutset C C E
determines two complementary subsets of nodes p and X \ p, both non empty,
such that for every 2-edge e = (z, %), e € C if and only if z, € p & ;1 € p.
Conversely, every non trivial subset p € X determines a cut between p and
X \ p, which is a cutset when both p and X \ p are connected. An orientation
of the cut C results from the choice of one of the two complementary subsets of
nodes determined by the cut, let p. An oriented cut C may be coded by a vector
C € R™ such that for every 2-edge e; = (zx,x;), C(i) = 1if 2 € p and z; € p,
Cl)=~1lifzyepandz; €p,and C({) =0if 5, Ep & z; € p.

Let X = {z1,...,z,} and E = {ey,..., e, }. We will address the problem of
constructing a variety of sets of properties {p1, ..., pn—1} where p; C X such that
the partial 2-structure ({z*| z € X}, {e*| e € E},=;) where * = {p;| = € p:},
(zk,z1)* = (z},7}), and 8(z}, z7) = (=} \ 7, z} \ z}) is isomorphic to G viewed
as a partial 2-structure: G = (X, E,idg). Each family of tokens {p1,...,pn—1}

546

will determine a corresponding set of (oriented) cuts {Ci,...Cpn_1} which are
linearly independent as vectors C; € R™.

The interesting fact here is that one can easily construct linear bases of cuts,
given as sets of fundamental cutsets of G with respect to arbitrary spanning trees.
Recall that a spanning tree is a set of edges U C E, free of cycles and connecting
X. The fundamental cutsets w.r.t. U are the cuts which include exactly one
branch of U. Each branch of U determines two connected components of U {and
thus of G), with set of nodes p and X \ p, such that every other branch of U
is internal either to p or to X \ p. The fundamental cutsets w.r.t. U may be
computed by classical methods of linear algebra. These methods are recalled
below, following the notations of [16].

4.2 Computing Cutsets

The graph G = (X, E) is characterized up to isomorphism by its incidence
matrix. We recall that this matrix A = [a;;] is an n X m matrix with entries in
{-1,0,1}, with a; ; = 0 if edge e; is not incident to node =;, a;; = 1 if z; is the
source of e;, and a; ; = —1 if z; is the target of e;. Since every column contains
exactly two non zero entries (1 and —1) every row can be computed from the
other rows, and the matrix A has the same rank as the matrix A; obtained by
erasing its last row. Let A = [j; where A; is an (n — 1) x m matrix and A,
is an 1 X m matrix. Actually A; and A have rank n — 1. Assume w.l.o.g. that
the (n — 1) branches of the spanning tree U are the edges €; = €;4(m-n+1) for
j € {1,...,n—1}. Then A; = [An Aiz] where A;3 is the (n — 1) x (n — 1)
matrix corresponding to the edges of the tree (the branches) and Ay is the
(n — 1) x (m — n + 1) matrix corresponding to the other edges (the chords).

The fundamental cutset C; of G determined by the edge e} of the spanning
tree is given by the it* row of the fundamental cutset matriz Q; = ALy - A;.
This (n — 1) x m matrix has the form [Qs1 In_;] where I} is the identity
matrix of rank k. The i** row of Q; associated with the fundamental cutset C;
is an m vector with entries in {-1,0,1}. Let p; and X \ p; be the two connected
components of G separated by C;, such that e} has its source in X \ p; and its
target in p;. Then for every j € {1,...,m}, Ci(j) = 0if ¢; isnot in C;, C;(j) = 1
if e; is oriented from X \ p; to p; and C;(j) = —1 if e; is oriented from p; to
X \ pi- A complete example is shown in Fig. 8.

It is worth noting that the matrix A7, can be computed directly from G
without inverting matrix A;s, for it coincides with the path matrix P = [ps,5]
defined as follows. For each j € {1,...,n—1}, let IT; be the unique chain (in the
tree U) connecting z; and the reference node ,; then for 1 < 4,5 <n —1, let
pi,; = 0 if €} does not belong to IT;, p; ; = 1 if e; belongs to II; and is oriented
towards the reference node z,, and p; ; = —1 if €] belongs to II; and is oriented
towards node z;.

547

4.3 Cutset Representation of Graphs

The nodes of G may be coded injectively by {0,1} vectors according to their
membership to the properties p; determined by the cuts C;, resulting in an
n X (n — 1) matrix S, = [s;;], called the state matriz, such that s;; = 1 if
z; € p;, and s;; =0 if z; & p;. Let S, = [X1 --- Xal]f, where the X; are column
vectors. The set {X}| ¢ < n} of rows of S,, representing nodes z;, together with
the set {C;| i < n} of rows of Qy, representing fundamental cutsets, provide a
representation of G. These data are also sufficient for retrieving the spanning
tree. Actually, there is exactly one way to assemble the row vectors C into a
matrix of the form Q; = [Qs11 In-1]; and an ordered pair of vectors (X, X1)
represents an edge e; = (z, ;) if and only if X; — X = Qf(:, 7).

4.4 Variant Representations

A variant representation of G is given by the pair of matrices P and QJf11. As a
matter of fact, the reduced incidence matrix A; = [411 A41;] may be computed
by Ajp = P~! and Ay; = P71-Qy1y. The path matrix P can in turn be recon-
structed from X, and the reduced state matrix S = [Xi, ..., Xn—1]*. Actually, for
every j < n, X, = X+ P; where P; is the j** column of P (coding the chain II;
connecting z; and z,), hence the path matrix P and the reduced state matrix
{(n—1} times

S are connected by the identity S* = [X.,,...,Xx] - P. In particular, § = —P*
if all edges e} of U are oriented away from the reference node z,.

4.5 Fundamental Cycles

It has some importance for the sequel to note that the information provided by
the fundamental matrix @y is exactly the same as the information provided by
the fundamental cycle matriz ' By, defined as follows from the spanning tree
U. Each chord (i.e. edge in E \ U) determines a cycle in G, consisting of this
edge and the unique chain in U that connects its endpoints. This cycle may be
represented by an m vector B; with entries in {—1,0,1} as follows: B;(j) =0
if e; is not contained in the cycle, else B;(j) = 1 or —1 depending on whether
the orientation of e; agrees with, or is opposite to the orientation of e; within
this cycle. The fundamental cycle matrix By is the (m — n + 1) x m matrix
defined by By(i,j) = Bi(j). This matrix is of the form By = [In—n41 Bpi2],
where Bz = —Q%,; (in particular, a branch belongs to the fundamental cycle
defined by a chord if and only if the chord belongs to the fundamental cutset
defined by the branch). Therefore, By ‘Q} = 0, and the vector spaces Vp and Vg
respectively generated over IR by the fundamental cycles (rows of By) and by
the fundamental cutsets (rows of ;) are orthogonal. These two vector spaces,
which do not depend on the choice of the spanning tree, are indeed orthogonal
complements of R™.

! called fundamental circuit matriz in [16]

548

Incidence Matrix:

e; ea]es eq ep
sij—1 0] 0 0 1 -411!4412
A=|s2] 0~-1] 0 1 ~1]=
ssf 0 0] 1-1 0O Az
g4l 1 1]-1 0 O
n=4 vertices Path Matrix:
m=2>5 edges
r=mn-1z= 3 rank 81 82 83
_ a-1_les|[1 0 O
pP= Au Tlesil 1 0
Cs esll 1 1

' Bjiya = “Qtfu

Fundamental Cutset Matrix:

€3 €£21eg €4 €5
[Gs[-1 =11 0 ©0|
Qs =|gy|-1 -1{0 1 0| [Qf” I”]
Csi-1 0l0 0 1
State Matrix:
Cs Ca Cs
8110 0 O
8. =s2]1 0 0
sgi1l 1 O
841 1 1
Fundamental Cycle Matrix:
€1 e2les es €5
By=lo:|1 0]1 1 1]= [Im—v Bfl?}
g2{0 1{1 1 O

Fig. 8. fundamental cutsets and cycles

549

Every non null vector in Vg with entries —1, 0, and 1 is a sum of fundamental
cycles and/or inverses of fundamental cycles, hence it is either a cycle or an edge
disjoint union of cycles in vector form. Similarly, every non null vector C in Vg
with entries —1, 0, and 1 defines a cut {e;| C(j) # 0}, but C' may differ by the
sign of its components from the vector which represents this cut (and also from
the opposite of this vector). For a counterexample, let C = (~1,1) where e; and
e> have the same target and distinct sources.

4.6 Back to set 2-Structures

We saw that G' may be represented by a set of {0,1} vectors expressing the
set of properties of its nodes (z; € p; & X;(i) = 1), plus the set of the
fundamental cutsets which define these properties (the cutset C; defining p;
is given by the i*" row of Q). A node z; is then identified with the set of
tokens z§ = {i| X;(i) = 1}; similarly, an edge e; = (z&,;) is identified with
the ordered pair e; = (z}, ;). We show that the resulting partial 2-structure
G* = ({z*| z € X}, {e*| e € E},=s) is actually isomorphic to the given graph
G = (X, E,idg). It is easily seen that the above representation is injective on
nodes, since two different nodes of the spanning tree are always separated by a
fundamental cutset. In order to prove that G* = G, it suffices therefore to show
that d(e}) = d(e;) entails e; = e;. We establish a stronger property, namely:

Lemma 4.1 Let e; = (zx,z;) be an edge of G, then for every pair of nodes z,
and x4, 8(z},z7) = 0(z,, ;) entails that z, =z and) = z4.

Proof: Assuming the premises, let 7 be a chain connecting z, and z; in the
spanning tree U, represented by a vector 7 € {—1,0,1}™ by “orienting” the
chain from z, to z,. Suppose 7(j) = —1, thus the edge e; is oriented away from
zq and towards zp in that chain. Let p; be the property defined by the funda-
mental cutset which includes e;, then necessarily z,,z; € p; and z4,%x € pj,
hence z; \ z} # 7 \ z}, contradicting our assumptions. Therefore, if we let 1;
denote the vector with a 1 at position j and 0 elsewhere, the vector 7 — 1; has
all entries in {—1,0,1}. Since Qy - m measures variations of properties along ,
the assumption é(z,z;) = d(z}, ;) reads as Qy - m = Qy - 1;. Thus the vector
m — 1; lies in Vp, and it is either a cycle or a disjoint union of cycles in vector
form. Since there is no cycle in U, it follows that 7 — 1, is a cycle, hence z, = z¢
and z, = 7; as was to show. |

Now, any set {p},...,p,,_;} of non trivial subsets of X determines a corre-
sponding 2-structure G* = ({z*| ¢ € X}, {e*| e € E},=s), defined as above by
setting X¥ = {i| z; € p;} and (zx,z1)* = (z},3{). For 1 <4 <n-—1,let
denocte the cut separating the complementary subsets X \ p} and p}. We will show

that G* = G whenever the corresponding vectors Ci,...,C)_, are linearly in-
dependent. This is for instance the case when p| = {z;}. Beware of the fact that
G* may be isomorphic to G even though Cj,...,C}_, are not linearly indepen-

dent. For an illustration, let py = {z2,z3}, py = {z2,24} and p; = {z1,23} in

550

G = (X, E) where X = {z1,%3,23,24} and E = {ey, €2, €3} with e; = (z1, Zi11),
then G* = G but Cj+Cj = 0. Notice that in this representation of G the vectors
e}, e%, and e} are not linearly independent: e} +2-e5 + €3 = 0 even though there
is no cycle in G.

Assuming that C,...,C!, _; are linearly independent, let us prove that G =
(X,E,idg) and G* = ({z*| = € X},{e*| e € E},=5) are isomorphic partial
2-structures. Let zx # z; and assume for contradiction zj = zj. Let = be the
chain in U connecting the vertices zy and z;. By construction of the cuts Cj,
7-C! =0 for every i < n—1. Since Cj,...,C},_; are linearly independent, they
span the vector space Vg and 7 is a cycle, thus z; = z;. It remains to show that
d(e}) = d(e;) entails e; =e;.

Lemma 4.2 Let e; = (zk,21) be an edge of G, then for every pair of nodes =,
and z4, 8(z}, xf) = 0(x;, ;) entails that z, = 25 and 1 = 4.

Proof: Let 7 be a chain connecting z, and z, in the spanning tree, represented
by a vector 7 € {~1,0,1}™ by “orienting” the chain from z, to z4. Suppose
7(j) = —1, thus the edge e; is in 7 and it is oriented away from z, and towards
z, in that chain. From the assumption é(z},z}) = 8(z},z;) and by construction
of the cuts C, it follows that = - C} = 1; - C} for all i < n — 1, where 1; denotes
the vector with a 1 at position j and 0 elsewhere. Thus (7 — 1;) - C] = 0 for
all 4, and since C},...,C" _, form a basis of the vector space Vg, it follows that
(m—1;)-Cy=0forallk <n-1 and in particular for h = j— (m - n+1).
Now the first m — n + 1 entries of the vector m — 1; are zeros and the last n — 1
entries of Cj, are zeros but Cp(j) which is 1. Therefore, 7(j) = 1 and we have
reached a contradiction. Thus the vector 7 —1; has all entries in {—1,0,1}. Since
(m —1;) - Ci = 0 for all i, the vector w — 1; lies in Vp, and it is either a cycle or
a disjoint union of cycles in vector form. Since there is no cycle in U, it follows
that = — 1; is a cycle, hence z, = z and r4 = z; as was to show. |

We now give an example (see Fig. 9) showing that the computation of cuts
and cutsets cannot lead directly to a net representation of G = (X, E). Let

{p1,p2}
e £
@ 1 T3 T3 / Y
2 mio: ™ OL R A NGP2
(2) (=3) ' \
” @/‘

Fig. 9. clementary net system associated with a basis of cuts

X = {z1,%2,73} and E = {e1,e3,e3} with e, = (1,22), €2 = (z1,23) and
es = (x3,23). A basis of cuts for G is given by the vectors C; = (0,-1, -1)

551

and C; = (-1,0,1), inducing respective properties p; = {z1,22} and p; =
{z1,z3} such that 2% = {p1,p2} and x5 = {;} and z} = {p2}. Now let N =
({p1,p2}, E, F, z}) be the elementary net system such that *e; = z} \ 25 = {p2},
er* = a3\ @i =0, ‘s =23 \ 2} = {p1}, &2° = 23 \ &} = 0, and *e5 = 5 \ 7} =
{p1}, es* = x5 \ x5 = {p2}. The case graph of N is not isomorphic to the
initialized partial set 2-structure (X*, E* =;,27), due to the presence of two
additional transitions z}[es > @ and z}[e; > 0.

4.7 Cuts and Regions

A non trivial region p of a partial 2-structure {X, E, =) always determines and
is determined by a cut C of (X, E), which we may therefore call a regional cut.
If we identify cuts C with the corresponding vectors C : E = {—1,0, 1}, then a
cut is regional if and only if it is compatible with the equivalence = in the sense
that e = ' = C(e) = C(¢') for all e,e’ € E. In particular, all cuts are regional
when = is the identity relation.

Let us adapt the above to transition systems. We saw that a non trivial region
Rof (S, E,T) is always determined from a corresponding map n : E = {—1,0,1}
such that n(e) = —1 if R, n(e) = 1 if e*R, and n(e) = 0 otherwise (n(e) =
xr(8') — xr(s) when s 5 s'). Let £: T — E be the labelling function such that
(s> 5s') = e Then amap n: E — {-1,0,1} determines a region in a pre-
elementary transition system (S, E, T) if and only if the map C : T — {-1,0,1}
defined by C(t) = n(£(t)) is a cut of the underlying graph (S,T).

On that basis, let us try to point out the obstacles to a polynomial synthesis
of elementary net systems. On one hand, one can compute in polynomial time a
linear basis for the real vector space Vg which contains all cuts, but also elements
which are not cuts even though all their entries are in {—1,0,1}. On the other
hand, abstract regions are quotients of cuts, but it is not possible to derive a
basis of abstract regions from a basis of cuts since abstract regions are not closed
under summation. A well known recipe for getting rid of the first problem is to
replace the real field IR by the boolean field 2 in the definition of the vector
space V. The second problem will then be overcome by a slight adaptation of
the definition of regions, amounting to embed the elementary nets in a wider
class of one-safe nets which have actually a polynomial time synthesis.

5 Flip Flop Nets and their Synthesis

We examine in this section extended regions in automata, defined as sets of
states R such that all transitions with the same label are incident jointly to R,
possibly inwards for some transitions and outwards for the others, or are not
incident to R. A class of one-safe nets based on these regions, called flip flop
nets and extending elementary nets, has been defined in [39]. We show that the
synthesis problem for flip flop nets may be solved in polynomial time, following
techniques of linear algebra based on cutsets. Pairs of complementary regions
in an automaton may be identified with vectors 57 : E — 2; these maps form a

552

vector space over 2, a basis of which is easily derived from any set of fundamental
cutsets of the (undirected) graph underlying the automaton.

5.1 The Vector Space of Cuis

Let A= (S, E,T,s,) be aloop-free, reachable and reduced finite automaton (not
necessarily simple), with § = {s1,...,5,} and T = {t1,...,tm}. Let 8°(¢) = s,
8'(t) = s' and £(t) = e denote the respective source, target and label of a
transition t = s 5 s’. Let A = [a; ;] be the incidence matrix of the (undirected)
graph (S,T). All definitions and results from section 4 carry to (undirected)
graphs up to the replacement of R by 2, see e.g. [32, 17]. Recall that a cut is
a cutset or an edge-disjoint union of cutsets, where a cutset is a minimal set
of edges whose removal increases the number of connected components by one.
Cuts and cutsets are now represented as boolean vectors in 2 <T> = 2™, 2
and similarly for cycles and for edge-disjoint unions of cycles. The (pointwise)
sum of two cuts is a cut, and similarly for two edge-disjoint unions of cycles. In
other words, cuts and edge-disjoint union of cycles form vector spaces over 2,
let Vg and Vp. These vector spaces are respectively spanned by the rows of the
fundamental cutset matrix ¢y and by the rows of the fundamental cycle matrix
By, jointly computed from any spanning tree by the algorithms described in
section 4, interpreted over the boolean field. Thus Q; and By are (n — 1) x m
and (m — n + 1) X m matrices with boolean entries such that By - Q% = 0.
Therefore Vg and Vp form orthogonal complements in the boolean vector space
2<T> 2™,

5.2 The Vector Space of Abstract Regions

Qur purpose is to transport the linear algebraic methods from the vector space
2 <T> to the vector space 2 <E> through the labelling function £ : T — E,
which maps transitions to their labelling events.

Definition 5.1 A cut C = [¢;] is a regional cut if £(t;) = £(tx) = ¢; = ¢ for
all 1 < j,k < m. An abstract region is a map n: E — 2 such that c; = n(£(t;))
defines a regional cut C =no k.

By an abuse of notation, we make no distinction between vectors C € 2 <T> =
2™ and the corresponding maps C : T' —+ 2. We make a similar confusion between
maps 7 : E — 2 and vectors 7 € 2 <E> = 2!, where E = {ey,...,¢;}. Because
A is reduced, regional cuts and abstract regions are in a bijective correspondence.
Moreover, given any pair of regional cuts C =nof and €' = 7 o {, their sum is
aregional cut C+ C’ = (n+1n') o £. Thus abstract regions form a subspace of the
vector space 2 <E> = 2!, A method for computing a basis of abstract regions
is indicated below.

2If K is a ring (or a field) and X a set (of generators) we let K <X > denote the
K-module (or vector space) freely generated by X.

553

Since the vector spaces Vg and Vp are orthogonal complements, 7 is an
abstract region if and only if no £ € Vg if and only if C = n o £ is orthogonal
to all fundamental cycles B; (rows of By). For any cycle B = [b;], let II(B) =
[rk] € 2 <E> be the Parikh image of B given by mx = > {b;] £(t;) = ex}.
Otherwise stated 7z = E;’_"__l wj(exr) where p;(ex) = 1if £(t;) = e and b; = 1,
else 0. Then C - B = 0 if and only if 357%; n(£(¢;)) - b; = 0 if and only if
Si1(nler) - 7y @j(ex)) = 0 if and only if - [I(B) = 0. Since II(B + B') =
II(B)+II(B'), it follows that 7 is an abstract region if and only if n is orthogonal
to the linear subspace of 2 < E> spanned by the Parikh images II(B;) of the
fundamental cycles B;. Let I — p be the dimension of the linear space II(Vp). A
basis of abstract regions {n1,...,n,} follows, e.g. by Gauss resolution.

5.3 Flip Flop Regions and Flip Flop Nets

Definition 5.2 A flip flop region in A = (S,E,T,s,) is a non trivial sub-
set of states R C S whose characteristic function xg : S — 2 satisfies Vi €
{1,...,m} xgr(8(¢:)) = xr(0°(t:)) + n(L(t;)) for some abstract region 7.

Since A is reachable and reduced, abstract regions 7 are in bijective correspon-
dence with pairs of complementary regions R and S\ R. Flip flop regions, repre-
sented as vectors yg € 2 <S> = 2", form a linear subspace of 27, closed under
the complementation operation xg + 1 = xs\R-

The definition of flip flop nets stems from the analysis of the possible crossing
relations between a flip flop region R and the transitions bearing an identical
label. All possible cases are covered by four relations:

R'e :VteT ((t)=e= (0°(t)e R A O (t) ¢ R)
e®R:VteT t)=e=>(0°(t)¢ R A O'(t)€R)
e*R:VteT {(t)=e= (8°(t)c R J'(t) €R)
eXR:VteT) =e= (8°(t) € Re 8'(t) ¢ R)

Conversely, any non trivial subset of states R C S satisfying R*e¢ V e*’R V et R V
e* R for all events e € F is a flip flop region, associated with an abstract region
n such that n(e) = 0 if and only if e' R. It is now patent that flip flop regions
are an extension of elementary regions, which must satisfy R*e V e*R V el R.
Observe that e*R = ¢*R and R*ec = e* R. However these three relations play
incomparable roles in flip flop nets, where they are called respectively input
(R*e), output {€*R), and swap (e* R).

Definition 5.3 A flip flop net is a triple N = (P, E,W) where P is the set of
places or conditions, F is the set of events, and W : P x E — {input, output, nop,
swap} is a matriz such thatVe € E 3p € P W(p,e) # nop. A case of N is
amap M : P — 2. An event e has concession at M if and only if Vp € P
(W(p,e) = input = M(p) = 1) A (W(p,e) = output = M(p) = 0). The event
e may then fire, resulting in a transition M[e> M' where for every condition p:
W (p,e) = nop = M'(p) = M(p) and W (p,e) # nop = M'(p) =1+ M(p).

554

Definition 5.4 A flip flop net system is a structure N = (P, E, W, Myp), where
My is a case of the underlying flip flop net N = (P, E,W). The sequential case
graph of N is the automaton N* = (S,E,T, My) where S is the set of cases
reachable from My by sequences of steps Mle>M' and T is the subset of these
steps in S x E x S.

It follows that for every condition p € P, the sets {M € S| M(p) = 1} and
{M € S| M(p) = 0} are complementary flip flop regions of N*. So the sets of
states {s1,55,56¢} and {sz, 83,54} are flip flop regions in the example shown in
Fig. 10.

SR

W(p,e): inputoutput swap nop

Fig. 10. a flip flop net and its sequential case graph

5.4 Representation Result
The following result was established in [39].

Proposition 5.5 A finite loop-free automaton A = (S, E, T, s,), reachable from
s, and reduced, is isomorphic to the sequential case graph of a flip flop net system
if and only if the following conditions are satisfied for R ranging over the set
Rrrn(A) of flip flop regions of A:

Ssp: Vs, €S s#s =>3dR (s€e Re s ¢R).

ESSP: Vs€S Ve€cE nots> =3R (R’¢eAs¢€R)V (R A s€R).

A synthesis algorithm follows easily. Let {m,...,n,} be a basis of abstract re-
gions of A, computed from some spanning tree U C T. For each state s; € S,
let p; be the chain connecting s; and s, in the spanning tree. An instance
SSP(s;,s;) of the states separation problem can be solved if and only if 7 -
(I1(p;) + II(p;)) # O for some k € {1,...,p}, where II(p) € 2<E> is the

555

Parikh image of the chain p € 2 <T>. An instance of ESSP(s;,€) can be solved
if and only if there exists a linear combination n = 3_%_, ax - 7%, where oy, € Z,
satisfying 17 - [II(p;) + II(p;)] = 1 for every state s; in which event e is enabled.
When these conditions are satisfied, a net system N = (P, E, W, Mp) such that
A = N* may be constructed by assembling the atomic net systems N, defined
from conditions p as follows:

1. for each instance SSP(s;, s;) solved by n;, let p be the condition such that
W (p,e) = swap if nr(e) = 1 and W (p, e) = nop if n(e) = 0, with Mo(p) fixed
arbitrarily to 0 or 1;

2. for each instance ESSP(s;,e) solved by an abstract region n = Y 7_, ax - 7,
let p be the condition such that W (p, e) = input, Mo(p) = n- II(p;), and for
e #e, W(p,e') =swap if n(e’) = 1, and W(p,e') = nop if n(e’) = 0.

A minimal system N’ such that A4 = N’* may be obtained by eliminating from
N redundant places. The following is proved in [39].

Proposition 5.6 The synthesis problem for flip flop nets may be solved in time
O(|S)? x |E|?), where S and E are the respective sets of states and events of the
automaton.

The synthesis algorithm which has been suggested here is a simplified form of
the synthesis algorithm for Petri nets proposed in [2] and presented in section 7
of this survey. The case of Petri nets is significantly more complex, to a limited
extent because the integer module Z < E> is more complicated that the boolean
vector space 2 < E>, and to a large extent because combinatorial approximation
techniques are needed for the synthesis of Petri nets, while they are useless for
flip flop nets.

Before tackling the synthesis problem for Petri nets, we make a detour to
show that the striking similarity of the representation results for elementary net
systems and flip flop net systems is not incidental, and does not depend on the
type of nets.

6 Regions for Arbitrary Types of Nets

The automata A = (S, E, T, s¢) considered in this section are always assumed
to be reachable and deterministic, but they may not be simple, nor reduced,
and they are not necessarily finite. The transition systems (S, E,T') are always
assumed to be deterministic, but they are not necessarily connected. Recall that
a morphism of transition systems (o,7) : (S,E,T) — (S',E',T") is a pair of
maps 0 : S — S’ and 5 : E - E' such that s 5 s’ in T entails o(s) %y o(s') in
T'; morphisms of automata are morphisms of the underlying transition systems
which map the initial state to the initial state.

The extension of the concept of regions to arbitrary types of nets stems from
the following observation. Let 7ppN be the transition system given in Fig. 11.
Solving the synthesis problem for A = (S, E, T', sp) w.r.t. flip flop nets amounts

swap

input

Fig. 11. the type mppn of flip flop nets

to amalgamate on E a set of atomic net systems N, = ({p}, E, W, M), defined
from morphisms p = (a,7) : (S, E,T) = rppn such that W((o,7),e) = n(e) and
Mo((o,m)) = o(so). The resulting net system N = 3 p N, has a case graph
N* isomorphic to A if and only if the family {N;| p = (0,7) € P} is admissible
in the sense that the following two separation conditions are satisfied:
SsP: Vs, s’ €S s#8 = Ho,p) € P os) #o(s).
ESSP:Vs€ S Ve€ E not(sS)= 3(o,n) € P not (o(s) "S)) in TFFN.
Thus the concept of regions as sets of states may profitably be replaced by the
richer concept of regions as morphisms, which is actually the central concept for
the synthesis of net systems. The two concepts are not strictly equivalent for flip
flop nets: several morphisms (o,7) : (S, E,T) — 7ypn may actually determine
the same set of states 0~1({1}), i.e. the same set theoretic region, because the
component ¢ on states does not determine the component 5 {(even though the
transition system is connected and reduced).

Qur aim is to show that the representation results which have been stated
so far for elementary nets and for flip flop nets may be established at once for
all possible types of nets, using the concept of regions as morphisms.

6.1 Types of Nets

For the sake of a uniform presentation, we depart here from the traditional
definition of nets and adopt a parametric definition covering elementary nets,
flip flop nets, and Petri nets as particular instances. The parameters of this
general definition are called types of nets [6].

Definition 6.1 A type of nets is a deterministic transition system r = (LS, LE, 1),
where LS and LE are the respective sets of local states and local events, and
7 C LS x LE x LS defines the partial action of local events on local states.

Definition 6.2 A net of type T is a triple N = (P,E,W) where P is a set
of places, E is a set of events, and W : P x E — LE is the weight matriz.
A marking is a mapping M : P — LS. A net system of type T is a structure
N = (P, E,W, Mp) where My, the initial marking, is a marking of the underlying
net N = (P, E,W).

A net or net system is place simple if all rows of the weight matrix are different;
it is event simple if all columns of the weight matrix are different. All nets and

557

net systems considered in this section are assumed to be place simple but not
necessarily event simple.

A net may be seen as an undirected complete bipartite graph whose edges
are weighted by local events. As such, nets are of a static nature, but types (of
nets) define their dynamics: the partial actions of events on markings may be
inferred from the partial actions of local events on local states, using the weight
matrix to control products of local events. The following definition extends in
this way the usual sequential firing rule.

Definition 6.3 Given a net N = (P,E,W), of type v = (LS, LE, 7), the (sequen-
tial) marking graph of N is the transition system (LS®, E,T) with set of transi-
tions T defined by (M < M) € T if and only if ¥p € P (M(p) "2 M'(p)) € 7.
Given a net system N = (P,E,W, My), the (sequential) marking graph of N is
the (dual) automaton N* = (S, E,Ts, Mp) where S is the inductive closure of
{Mo} w.r.t. forward transitions in T, and Ts = T (S x E x S).

Thus an event has concession at marking M if and only if for every place p, the
local event W (p, e) is enabled at the local state M (p) in the transition system
7 (defining the type of the net). A net system is reduced if every event e has
concession at some reachable marking and if for every pair of distinct places p
and p', there exists some reachable marking M such that M(p) # M(p'). The
net systems which we consider are generally not reduced. We now illustrate the
above definitions on two classical examples, namely elementary nets and Petri
nets.

Let 7gx be the transition system shown in Fig. 12. The elementary nets

output

nop .o o nop

input

Fig. 12. the type e~ of elementary nets

(P, E, F) correspond bijectively with nets (P, E, W) of type rgn, with W(p, e) =

input <& F(p,e) and W(p,e) = output & F(e,p), and W(p, e) = nop otherwise.

One may easily verify that the corresponding nets have identical marking graphs.
Let us now recall the classical definition of Petri nets.

Definition 6.4 A Petri net is a triple N = (P, E, F) where P and E are disjoint
sets of places and events, and F is a function, F: (P x E)U(ExP)—> IN. A
marking of N is a map M : P — IN. An event e has concession at M if and only
ifVp € P F(p,e) < M(p). An event e which has concession at M may fire,
resulting in a transition M[e> M’ where Vp € P M'(p) = M(p) — F(p,e) +
F(e,p). A Petri net N is said to be pure if Vp € PVe € E F(p,e)x F(e,p) = 0.

558

Let the type of pure Petri nets be the transition system 7ppy = (INV, Z,T) such
that n 5 »' if and only if n' = n+ 2, i.e. Tppn is the full subgraph of the Cayley
graph of Z induced by the restriction on the subset of nodes in IN. Pure Petri
nets (P, E, F) are linked by a marking graph preserving bijective correspondence
with nets (P, E,W) of type Tppn given by W(p,e) = F(e,p) — F(p,e).

Let the type of Petri nets be the transition system 7ex = (IV, N x IN, T) such
that n 2% n’ if and only if n > p and n' = (n — p) + ¢. Petri nets are set
in bijective correspondence with nets of type 7py by the relation W{(p,e) =
(F(p,e), F(e,p)). With this correspondence, the firing rule stated in Def. 6.3
reads actually as

Mle>M' « Vpe P M(p)> F(p,e) A M'(p) = M(p) — F(p,e) + F(e,p)

The above Petri nets are a particular instance of the generalized Petri nets
studied in [20]. In this paper, Droste and Shortt parametrize the classical def-
inition of Petri nets (Def. 6.4), in which IV is substituted for by the positive
part Gt of a partially ordered abelian group G. These authors further classify
types of Petri nets over a fixed group G by the set of pairs ((F(p,e), F(e,p)) €
G* x Gt occurring in associated subclasses of nets. For instance, condition-event
nets are obtained by restricting nets over Z to the pairs ((F(p,e), F(e,p)) €
{(0,0),(0,1), (1,0),(1,1)}. Note that all types of nets which we have defined so
far can similarly be obtained from Cayley graphs (G,G,T) (ie. ¢ 3¢’ in T
if and only if ¢” = ¢’ + g) by eliminating nodes and/or by restricting group
actions to partially defined group actions. For instance, 7y is the Cayley graph
of Z/3 7 restricted on nodes 0 and 1, with nop = 0, output =1, and input = 2.
Similarly, 7ppn is obtained from the Cayley graph of Z/4 7 by identifying action
0 with nop, action 1 with swap, and the partial action 1 defined at node 0 (resp.
at node 1) with output (resp. with input). Therefore, all nets considered so far
are reversible in the sense that they have co-deterministic sequential marking
graphs (Mije>M and Myle>M entail M; = M;). Nevertheless, flip flop nets
are not Petri nets over a group according to the definition of Droste and Shortt.
The main reason why we do not stick here to types of nets based on groups is
that we want to cover also non reversible nets, such as trace nets (see 6.5).

6.2 Regions as Morphisms

The firing rule for nets stated in Def. 6.3 tells us that for every place p in a net of
type 7, the pair of maps (oy,7p) defined by g,(M) = M(p) and n,(e) = W(p,e)
is a morphism of transition systems from the marking graph of the net to the type
7. Therefore, if we forget the internal structure of states in the marking graph,
identified with any isomorphic transition system (S, %, T), and if we identify a
place p with its extension (op,7),), we can rediscover the places of the net (and
also discover implicit places) as morphisms (o,7) : (S, E,T) — 7. This motivates
the following definition of regions for arbitrary types of nets.

559

Definition 6.5 Given a transition system A = (S,E,T) and a type of nets
T = {LS,LE,T), the set R (A) of T-type regions in A is the set of morphisms
from A to 7.

By an abuse of notation, we extend the above definition to automata by letting
R.(A) = R,(A) where A is the transition system underlying the automaton A.
We now illustrate this definition on elementary nets and on Petri nets.

An elementary region in A = (S, E,T) is a morphism (o,n) : A - 7e~n. The
map 7 classifies events e € F into three families according to their relationship
with the property R = o0~1({1}): all events e such that 7{e) = input take R
as an input condition and falsify R (s 3 s'=> s € R A s’ ¢ R), all events e
such that n(e) = output take the falsity of R as a precondition and establish R
(s5s=>s¢R A s €R), and the remaining events such that n(e) = nop do
not modify R (s > s'= (s € R & s' € R)). One recognizes in R = 0~'({1}) a
region according to the original definition of Ehrenfeucht and Rozenberg.

A pure Petri region in A = (S,E,T) is a morphism (o,7) : A = TppN
(see Fig. 13 for an illustration). Here the map o measures the availability of a

Fig. 18. a pure Petri region as a morphism: 4 o TPPN

resource at each state s € S, and the map 7 classifies events e € E according to
the amount of resource which they produce (when n(e) > 0) or consume (when
n(e) < 0) at each firing. When A is a finite transition system, the abstract regions
n defined in this way are in bijective correspondence with weighted synchronic
distances in A, measuring the relative degree of freedom of the respective subsets
of events e such that n(e) < 0, resp. n(e) > 0 {12].

A Petri region in A = (S, E,T) is a morphism (0,7) : A = 7py. Here again
the map o measures the availability of a resource at each state. The map 7

560

classifies events according to associated pairs n{e) = (*n(e),n*(e}) where *n(e)
measures the amount of resource consumed for triggering e while 7*(e) measures
the amount of resource produced by e, amounting to a neat variation of resource
n*(e) — *n(e). These Petri regions coincide with the regions which have been
defined by Mukund [33] (in the larger framework of step transition systems) and
which have been adapted by Droste and Shortt [20] to Petri nets over partially
ordered abelian groups.

6.3 A Galois Connection between Automata and Nets

We saw that regions may serve to reverse the production of marking graphs. The
reversing process may also be applied to arbitrary transition systems, leading to
the following definitions.

Definition 6.6 Given a transition system A = (S, E,T) and a type of nets 7,
the dual of A is the net A* = (R-(A), E,W) with weights defined by W ((o,n),e) =
n(e). For any subset R of R-(A), let A% denote the subnet of A* with restricted
set of places R.

Definition 6.7 Given an automaton A composed of a transition system A and
an initial state sg, and a type of nets 7, the dual of A is the net system A*
composed of the underlying net A* and of the initial marking Mg defined by
Mo(o,n) = o(sp) for every (o,m) €R,(A). For any subset R of R-(A), let A,
denote the subnet system of A* with restricted set of places R.

We will show that the two ()* operators mapping the automaton A to the net
system A* and the net system A to its marking graph N'* form a Galois con-
nection: A < N* & N < A*. The main difficulty is to construct the appropriate
order relations. One expects in particular A < N & N, < A* for every region
p = (0p,7p) € R-(A) where N, is the atomic subnet system of A* with sole place
p (i.e. Np = A7) and A is its marking graph. This particular case will help us
to find out the order relation on automata. Since A, is a subnet system of A*,
both A, < A* and A < N are expected; by definition of regions, if E is the
set of events of A then (0,,1£) is an event preserving morphism from A to N
Moreover, if there exists an event preserving morphism (o, 1g) : A1 — A; between
two automata with set of events E, this morphism is necessarily unique owing
to the strong properties of determinism and reachability we have assumed from
all automata; therefore, if there exist morphisms (o1,1z) : A1 — A2 and (o2,1E) :
Az = A;, then A; and Aj are identical up to the identity of states (4; =g As).
So let Aut(E) be the set of {(deterministic and reachable) automata with fixed
set of events E, quotiented by =g, then

.A1$.A2 if do: (0‘,1E): A1—>A2

is a partial order on Aut(E), such that A < N for every region p €R.(A).
This partial order is a complete lattice, with greatest lower bounds computed

561

as synchronized products. We remind the reader that the synchronized prod-
uct A;.;Ai of a family of automata A; = (S;, E,Ti,50;:) indexed by 1 € I is
the automaton (S, E, T, sg) with components as follows: so = (s0,:)icr, S is the
inductive closure of the set {so} w.r.t. the synchronized transition rule

(sidier > (sh)ier f Viel (si>sl)eT;

and T is the set of occurrences of this rule at states (si)ics € S. By definition of
marking graphs, the automaton N* dual to a net system N = (P, E, W, M) is
actually the synchronized product A ., A of the marking graphs of its atomic
subnet systems.

Concerning the order relation on net systems, the central assumption that
N, < A* for every region p of A leads to choose something akin to the sub-
structure ordering: N <. N2 if M; is N; restricted on a subset of places. How-
ever replicated places may occur in a net system N = (P, E, W, My), i.e. places
which the initial marking My and the weight function W do not distinguish from
one another, and we do not care about their degree of multiplicity nor about
their identities. Let morphisms of net systems with fixed set of events be defined
as follows: a morphism from N; = (Py, E,W;, Mo,1) to No = (P2, E,Ws, My,2)
is a map B : P, = P, such that My 1(p) = Mo 2(p) and Wi(p,e) = Wa(B(p),)
for all p € P, and e € E. Two net systems connected by morphisms in both
directions are henceforth declared equivalent. Let Nets(E) denote the set of
equivalence classes of net systems with set of events E (replication free nets
are canonical representatives). One can equip Nets(F) with the partial order
relation defined as:

Nl SNz iff 3[3:/\/1 ——)Nz

This partial order is a complete lattice, with least upper bounds V/, ., N of
families of net systems computed by amalgamation of sets of places. Told in
another way, if we identify a place p in a net system N = (P, E, W, Mp) with the
pair (Mo(p),np) such that ny(e) = W(p,e) for e € E then \, (P, E,W;, Mo,:)
= (Uie; Pi B, W, Mo) where W(p,e) = Wi(p,e) and Mo(p) = My i(p) for p € P;.
A net system N with set of places P is now the least upper bound Vp6 pNp of
its atomic subnet systems Nj. In the particular case where N’ = A* is dual to
the automaton A, its set of places is the set of regions R.(A), where 7 is the
type of N, hence its atomic subnet systems N, have the form Azp} and we get
the following,.

Proposition 6.8 Let R C R, (A) then A% = (V,er Aly)-

The key for the Galois connection between the ordered sets (Aut(E), <) and
(Nets(E), <) is the following proposition, proved in [7]

Proposition 6.9 Let N = ({p}, E, W, M) be an atomic net system of type T,
then A < N* if and only if Mo(p) = o(so) and Ve € E W (p,e) = n(e) for
some region (0,7) € R.(A), where so is the initial state of the automaton A.

562

Thus any atomic net system N such that A < N* is isomorphic to N, = A4 .
for some region p = (0, 1) € R+(A). Since A* = \/{A7,,| p € R-(A)}, it follows
that N < A*. Conversely, by definition of the order re atlon on net systems, any
atomic net system A such that A/ < 4* is isomorphic to M, = .A (v} for some
region p = (0,7) € R,(A). Since A < N by construction of the order relation
on automata, it follows that A < N*. Altogether, we obtain the following,.

Proposition 6.10 For any atomic net system N, A< N* & N < A*.

We are ready to establish the expected Galois connection between automata and
net systems.

Proposition 6.11 The two ()* operators, mapping respectively the automaton
A to the dual net system A* and the net system N to its marking graph N*,
constitute a Galois connection between the ordered sets Nets(E) and Aut(E):
ASN* & N < A* for A € Aut(E) and N € Nets(E).

Proof: By Prop. 6.10, A< N* & N < A* if N is an atomic net system. Now
for a net system N =\/ P Np, where A, is the atomic subnet system of N
with the unique place p, = A peP. N; by definition of marking graphs. Thus
AL N* if and only if AS Ny for allpe P if and only if N\, < A* forallpe P
(because N, is atomic) if and only if N < A*. |

The relations A; < Ay = A} < Af (for A, A2 € Aut(E)) and M < N =
N3 < N} (for M, Ny € Nets(E)) follow immediately from the Galois con-
nection. Another property of Galois connections is to produce closure operators
by conjugated composition of the dual operators. Recall that an operator () on
(X, <), mapping z to T, is a closure operator if it is increasing (z1 < z3 =
71 < ¥3), extensive (z < Z), and idempotent (T = z). The double dual opera-
tors ()** acting respectively on the ordered sets (Aut(E), <) and (Nets(E), <)
are therefore closure operators. An automaton A equal to its closure A** is said
to be separated with respect to the fixed type of nets 7, while a net system N
equal to its closure N** is said to be saturated. Owing to the Galois connec-
tion, the lattices of separated automata and saturated net systems are dually
order-isomorphic (i.e. isomorphic up to reversing the order).

6.4 Representation Results

By definition, an automaton separated with respect to type 7 is isomorphic to the
synchronized product of marking graphs A of atomic net systems N = A7,
derived from T-regions p of A (in formulas: A = A ., ,,N;). Following [19],

let us say that a subset of regions R C R, (A) is admissible if A = A o Ny So,

A is separated if and only if R, (A) is admissible, and of course every superset of
an admissible set of regions is admissible. The marking graph A™* of a net system
N is separated because N'* = A*** follows from the Galois connection. In fact,
the extensions (o,,7,) of places p of N form an admissible set of regions of A™*.
The following criterion may be used to recognize admissible sets of regions, and
consequently separated automata.

563

Theorem 6.12 Gliven an automaton A = (S, E,T,so) and a type of nets 7, a
set of regions R C R.(A) is admaissible if and only if the following separation
properties are satisfied for all stotes s,s' € S and for every evente € E:

(SSP) s#s = F(o,n) € R: o(s) #a(s')

(read: (o,m) solves the states separation problem at (s,s'))

e n(e)
(ESSP) s = 3o, eR: o(s) /> wrt 1
(read: (o,7) solves the event/state separation problem at (s,e))
When both properties are satisfied, A = (A%)*, where A% is the subnet system
of A* with restricted set of places R (also called the net synthesized from R).

Proof: Let N, = Al for p € R, and let Ng = Aj. Seeing that A < N for
every region p, A < A cr Ny = N Accordingly, there exists a morphism of au-
tomata (o,1) : A — N3. Moreover this morphism is unique. On the other hand,
every region p = (0,,7,) factors into (¢,71,) o (0p, 1) where ¢ acts as the identity
on the local states in its domain, and {0y, 1) lifts to the unique event preserving
morphism from A to A}. As N} is the synchronized product of (N;)per, 0
must be the map that sends each state s of A to the associated vector o(s) =
(05(8))p=(cp,n,)er (the p-component is computed by evaluating region p at state
s). Since (o, 1) is the unique morphism of this form from A to N7, and seeing
that all automata are accessible and deterministic, the assertion 4 = N is now
equivalent to (i) o is an injective map, and (i) s - in A whenever o(s) > in
N} . Now SSP is just another form of assertion (i). By definition of the synchro-
nized product, o(s) < in N3 entails o,(s) = in A} for all p € R,hence ESSP
is just another form of assertion (%).]

Corollary 6.13 Given an automaton A € Aut(E) and a type of nets 7, A =
N* for some net system N € Nets(E) if and only if A = A** if and only if
the conditions SSP and ESSP are valid in A. Given an automaton A € Aut(E),
a type of nets 7, and a net system N € Nets(E), A = N* if and only if N is
isomorphic to subnet system of A* determined from some admissible subset of
regions R C R, (A).

By setting 7 == TEN, T€8p. T = TrrnN, in the above theorem and corollary, one
retrieves the results of Ehrenfeucht and Rozenberg (Prop. 2.15) and Desel and
Reisig (Prop. 3.6), resp. the result of Schmitt (Prop. 5.5). The application of the
theorem to the types 7ppy and 7pn will be examined in section 7.

6.5 Some Applications to Safe Nets

We call safe nets all nets whose markings are defined as subsets of places
M C P, or equivalently as maps M : P — {0,1}. Thus, a type of safe nets
is a transition system 7 = (LS, LE, 7) whose set of local states is LS = {0,1}.
The largest type of safe nets, let 7547, is obtained by including in its transi-

tions all the defined instances s & f(s) of partial functions f : {0,1} — {0,1}.

564

Table 1. safe nets

0|1 C/E nets | elementary nets | flip flop nets | trace nets
input - 0 yes yes yes yes
output 1 - yes yes yes yes
test=1 - 1 yes no no yes
test=0 0 - no no no yes
set 0 0 0 no no no yes
set 1 1 1 no no no yes
nop 0 1 yes yes yes yes
swvap 1 0 no no yes no

These functions, tabulated in Table 1, form a set LEy,¢.. Various types 7x =
({0,1}, LEx, 7x) follow as induced restrictions of 75, on particular subsets of
local events LEx C LE,q¢. (see again Table 1 for some examples). Each type 7x
determines corresponding regions in transition systems A = (S, E,T), defined
as morphisms (¢,7) : A = 7x. These morphisms define in turn set-theoretic
regions R = o~ 1({1}) € P(S). We restrict our analysis of safe type to types 7x
larger than 7 and such that the complement of a region o= ({1}) is a region.
This amounts to set on LEx the constraints {nop, input,output} C LEx and
set 0 € LEx < set.1 € LEy.

We declare equivalent, resp. weakly equivalent, two safe types Tx which de-
termine an identical family of separated automata, resp. identical families of
set-theoretic regions in automata. With the above constraints, there are four
classes of weakly equivalent types rx, each of which splitting into two equiva-
lence classes of types.

The four possible concepts of set-theoretic regions are determined from five
forbidding patterns displayed in Fig. 14. Each pattern represents a pair transi-

HESIRSIRNERRERS!

HL: ox X X X Xo Xe

Fig. 14. five patterns for a pair of transitions with the same label s; > s} and s2 = s}
where s € R if and only if the corresponding node is coloured black

tions s; = i and s; = s, with a common label e in a transition system A =
(S, E,T) whose states s are coloured black or white. Let R C S be the subset
of states coloured in black. The four possible concepts of set-theoretic regions
are as follows.

1. R is an elementary region if and only if the patterns ox, X, XX, xo, and
x e do not occur in A. A safe type Tx induces the elementary regions if and

565

only if LEx N {swap,set_0,set_1} = (. This case is met for 7y and for the
type of C/E-nets, let Tcgn where LEcgN = {nop, input, output, test=1},

2. R is a flip flop region if and only if the patterns oX, #x, xo, xe do not
occur in A. A safe type Tx induces the flip flop regions if and only if LEx N
{set_0,set_1} = . This case is met for 7rpn.

3. R is a trace region if and ouly if the patterns ox, ex, xx do not occur
in A. Trace regions have been introduced independently for trace nets in
[4, 5] and for chart nets in [29] where they are called chart regions. A safe
type 7x induces the trace regions if and only if {set0,set.1} C LEx and
svap ¢ LEx. This case is met for the type of trace nets, let 7rry where
LErgrN = {nop, input, output, test=1, test=0, set_0,set_1}.

4. Ris a safe region if and only if the patterns ox and ex do not occurin 4. A
type 7x induces the safe regions if and only if {swap,set_0,set_1} C LEx.

Safe types may be classified further into pure types and impure types according
to whether LEx N {test=0, test=1} is empty or not. One obtains in this way
8 classes of equivalent types. These classes may be ordered according to the
inclusion of the associated sets of separated automata. All inclusions are shown
in Fig. 15 together with representative automata showing they are strict.

elementary flip flop trace safe
a a =
pure Zoe }V) l@)
®© ® ® ®
c c a
. c c a a
impure | O See B\ /b b\ /b
® ® ®

Fig. 15. classification of the equivalence classes of safe types

By specializing Theo. 6.12 to a particular type 7x, one obtains an immediate
characterization of the family of separated automata specific to its equivalence
class. We have yet implicitly applied this technique to the type 7gn of elementary
nets and to the type Trrn of flip flop nets. Let us focus on the types 7cgn (of
C/E nets) and trpn (of trace nets).

From Theo. 6.12 applied to Tcen, one retrieves Nielsen and Winskel’s char-
acterization of marking graphs of C/E nets {35]. Given an asynchronous au-
tomaton A = (S, E, ||, T, s¢) with an empty independence relation, the regions
of A defined in [35] are actually in bijective correspondence with morphisms
(o,m) : (S,E,T) - 1cgn [1]. We recall that an asynchronous automaton ac-
cording to the definition of Shields and Bednarczyk [9, 41] is a deterministic
automaton A = (S, E, T, so), enriched with a symmetric and irreflexive relation
of independence || C E x E such that the following conditions are satisfied when-
ever ey ||es:

566

FORWARD DIAMOND PROPERTY: s 351 A B35 =>35 €8 5235 A 51 34,
COMMUTATION PROPERTY: s 351 A 81 3¢ = 350,65 5335, A 523 4.

Following Nielsen and Winskel, let us define asynchronous regions in A =
(S, E,||,T, so) as the morphisms (a,7) : (S, E,T) — 7cgn such that Ve, e; €
E eilles = (n(e1) = nop) V (n{ez) = nop). This is consistent with the usual
definition of independence of events in C/E nets, according to which e, |ley if
and only if (®e; Uer®) N (*e2 U e2®) = 0. Nielsen and Winskel show that the
asynchronous automata which are generated from C/E net systems with this
definition of independence are exactly those in which the separation properties
sSP and ESSP are satisfied w.r.t. the asynchronous regions.

If we apply now Theo. 6.12 to the type TrrN, we retrieve the characterization
of marking graphs of trace nets established in [5]. Given a trace automaton
A = (S,E,||,T, so) with an empty relation of independence, the trace regions
of A defined in [5] are actually the morphisms (o,7) : (S,E,T) = rrrn. We
recall that a trace automaton according to the definition of Stark [42] is like
an asynchronous automaton up to the removal of the commutation constraint.
A typical trace automaton is shown in Fig. 16 together with a generating trace
net. This trace automaton is not an asynchronous automaton since e.g. the

i

ajlb
bjc

alc

A A A A

Wp, e): input output teste0 tests1 set.D set.l nop

Fig. 16. a trace automaton and a generating trace net

sequence a - ¢ can be fired from state s;, but this is not the case with ¢-a
although allc. The reader may verify that the separation problem ESSP(si,c)
cannot be solved with elementary regions nor with asynchronous regions, but
it is solved by the trace region corresponding to the place z of the trace net
of Fig. 16. In the general case where the independence relation is not empty, a
trace region of A = (S, E, ||, T, so) is defined as a trace region of the underlying
automaton compatible with the independence of events in the sense that for

567

any two independent events e; and ez one has (i) n(e;) € {input,output} =
n(e2) = nop and (i) n(e1) € {test=1,set.1} = n(es) # set_0. This is coherent
with the independence of events in trace nets, defined similarly by e;|les if and
only if for all places p € P (i) W(p,e1) € {input,output} = W{p,e3) = nop
and (%) W(p,e1) € {test=1,set.1} = W(p,e2) # set 0. It is shown in [5]
that the trace automata which are generated from trace net systems with this
relation of independence are exactly those in which the separation properties
sSSP and ESSP are satisfied w.r.t. the trace regions. It is also shown that the finite
trace automata which can be defined in the so-called simple format of Plotkin’s
Structural Operational Specification rules, with proofs of transitions as events
and independence of proofs as independence of events, are exactly the finite and
separated trace automata.
More will be said on the topic of independence in section 8.

6.6 Other Applications of Types

Types may serve alternatively to classify existing families of nets or to explore
new families of nets. One may study hybrid types forged from existing ones by
amalgamation, or by disjoint summation. One may study translations between
classes of nets based on morphisms between their types. Theoretically speaking,
this amounts to consider nets over a fixed set of events as a category indexed
over the category of automata (their types). Compilation techniques for nets
may also be defined on the following principle: let N = (P,E,W) be a net of
type T, where 7 is the marking graph of anet N, = (P, LE,W,) of type 7/, then
N is equivalent to the net N’ = (P’ E',W’') of type v’ such that P’ = P x P,
and W'((p,p-), e) = W:(p;, W(p,e)). This amounts to consider nets as functors
over automata, and composition of functors as compilation of nets.

7 Polynomial Time Algorithms for the Synthesis of Petri
Nets

We present in this section the polynomial time algorithm proposed in {2] for the
synthesis of pure Petri nets from finite automata. This algorithm has been im-
plemented in the tool SYNET [13]. Next, we give a sketch of the variant algorithm
for the synthesis of (general) Petri nets proposed in [7]. Finally, we indicate for
both algorithms degenerated forms allowing to synthesize Petri nets from regular
languages.

7.1 The Synthesis Problem for Pure Petri Nets

In the sequel, let A = (S,E,T,sq) be a loop-free, reachable and reduced fi-
nite deterministic automaton, and let 4 denote the underlying transition sys-
tem (S, E,T). The synthesis problem for pure Petri nets consists in (i) deciding
whether an automaton A, given as input, is isomorphic to the marking graph

568

N* of some net system N = (P,E,W, M) of type Tppy, and if so (i) pro-
ducing as output a net system A such that 4 = N™* and no proper subnet
system of N satisfies this property. Recall that Tppy = (IN, Z,7) with transi-
tions n 5 n'€ 7 iff n’ = n+ 2. On the grounds of Theo. 6.12, this amount to (3)
deciding whether all instances of the separation problems in A can be solved by
corresponding regions, and if so (ii) synthesizing the desired net system N’ = A%
from a minimal admissible subset of regions R, where A% = (R, E, W, M,) with
W((o,n),e) = n(e) and Mp((0,n)) = o(so). Now, there is at most |S|* — |S|
possible inputs for the states separation problem:

SSP 4(s,8') : “construct from A and s # s' a region (0,n) s.t. o(s) # o(s')”

and at most |S| x |E| instances of the event /state separation problem

ESSP A(s, €) : “construct from A and (s %)) a region (o,1) s.t. (o(s) H)”

Part (i) of the problem will therefore be solved in time polynomial (in |S| and
|E]) as soon as SSP 4(s, s') and ESSP 4(s, e) are solved in polynomial time. Part
(ii) consists in extracting from a set of regions with size polynomial in |S| and
|E| a minimal admissible subset and this certainly can be done in polynomial
time. So, a polynomial algorithm for the synthesis of pure Petri nets will follow
if we succeed to construct procedures that solve in polynomial time SSP4(s, s’)
and ESSP4(s, e) with respect to the type rppn. This is the main program of the
section. The first stage of the program is to study the algebraic properties of the
set of pure Petri regions of .A. The second stage of the program is to elaborate
decision procedures based on these properties.

7.2 The Structure of Pure Petri Regions

Let Rppn(A) denote the set of pure Petri regions of A, i.e. the set of morphisms
(o,m) : A — TppN. Before investigating the algebraic properties of Rppn(A),
let us recall some terminology borrowed from algebraic topology (see e.g. [31)).
In the fixed transition system A = (S,E,T), let 8°,8' :T—> S and £: T E
denote the respective source, target, and labelling functions given by 8°(t) = s,
(t)=s,and Lt)=efort = s> s €T. A O-chain of A is a vector in the free
Z-module Co(A) = Z<S> 2. A I-chain of A is a vector in the free Z-module
Ci{4) = Z <T>. The boundaries of the 1-chains are the 0-chains computed
by the operator 8 : C1(4) — Co(A) such that 8(Zz; - t;) = Tz; - (al(t:j) - 30(353')).
The co-boundaries of the O-chains are the 1-chains computed by the operator
8" : Co(A) = C1(A) such that 8" (X 2z - 8:) = Y zi - 8"(s:;) where 8*(s;) = > {t;|
O (t;) = s} - o{t;1 8°(t;) = s:}. * A cycle of A is a 1-chain with a null bound-
ary, and a co-cycle is a 0-chain with a null co-boundary. The cycles of A, resp. the

% we recall that the free Z-module generated by a finite set X = {z1,...,Zn} of
generators is the set of maps « from X to Z, viewed as vectors indexed by X with
entries in Z and represented as formal sums a =) . a; - z; where a(z:) = ai.

% the dual linear operators J and J* are associated respectively with —A and its
transpose —A?, where A is the incidence matrix of the underlying graph. This change
of sign is not technically significant and comes from different usages in the literature
on graphs: the definition of the incidence matrix of a directed graph that we gave
corresponds to the one used in [10, 16, 17], whereas Lefschetz [31] and Tutte [40]

569

co-boundaries of A, form submodules Vg resp. Vg of C1(A) which are orthogonal
complements. Linear bases for Vp and Vp are supplied by the respective sets
of fundamental cycles and fundamental cutsets of the underlying graph (S,T)
w.r.t. some spanning tree U C 7. Thus every cycle may be written as a linear
combination Y z; - B; of fundamental cycles B; : T — {-1,0,1}, and every
co-boundary may be written as a linear combination) z; - C; of fundamental
cutsets C; : T' — {—1,0, 1}, with integral coefficients z; € Z. The Parikh images
of the cycles form in turn a submodule of the free Z-module Z < E>, where the
Parikh mapping « : Z<T> — Z <E> is the linear transformation given by
73z - ti) = 3 2 - £(t;). In the sequel, the maps n : E — Z are represented
accordingly as formal sums 17 =) z; - ¢; where z; = n(e;). For any two vectors
a=>Y a;-z; and f =) fi-=z; in a finite dimensional free Z-module Z <X >,
we let a - B denote the scalar product Y a; - f; € Z.

Proposition 7.1 (0,17) € Rppn(4) if and only if o -9(c) = n-n(c) for all
ceCy (A)

Proof: By linearity, the condition Yc € C1(4) o 8(c) =75 n(c) is equivalent to
the condition Vt € T o -8(t) = - n(t) where ¢ is identified with the chain (1.t).
Now the equation ¢ - 8(t) = 7 x(t) is valid if and only if ¢(8*(t)) - 0(8°(t)) =
(&), if and only if o(8°(t)) "X 0(8'(t)) w.r.t. the type rrpw, if and only if
{o,m) € Rrepn{4A) by definition of regions.]

Proposition 7.2 A mapn: E = Z is the second projection of some region {o,1)
€ Reen(A) if and only if n-w(B) =0 for every cycle B € Vg, the regions
(0,m) € Rppn(A) which project on 7 are then characterized by the condition:
o(so) + (- m(c)) > 0 for every 1-chain c € C1(A) such that 8(c) = s — so for some
s€S.

Proof: From Prop. 7.1, the condition on 1 must hold and whenever it does,
the scalar product 5- n{c) takes an identical value for all 1-chains ¢ with an
identical boundary. From the definition of regions, the condition on o(s¢) must
hold because the local states specified for the type of nets Tppy are the non
negative integers. Now the two conditions taken together guarantee that one
can always complete the data (o(sp),7) to a pure region by selecting for each
state s € S a corresponding 1-chain ¢, such that 8(c.) = s — sp and then setting
o(s) = a(so) + 7 - m(cs), which is always possible since A is reachable. []

Let R...{A) denote the set of maps nn : E — Z characterized by Prop. 7.2,
henceforth called abstract regions. It appears from this characterization that the
abstract regions of A are in bijective correspondence with the co-boundaries of
A which are compatible with the kernel of the labelling function £ : T — E.
Actually, for every abstract regionn: E — Z,themapk =nof:T — Zisa

use the opposite matrix. In the same manner what we term co-boundary, following
Lefschetz and Tutte and more generally those authors who identify graphs with
1-dimensional complexes, are called cocycles in many books on graph theory.

570

co-boundary of A, since for every cycle B, k- B =3, n({(t)) - B(t) = >, n(e) -
Zi(t):e B(t) = n-#(B) = 0. Conversely, every co-boundary « : T = Z such
that £(t) = £(t') = k(t) = x{t') determines a unique abstract regionn: E = Z
such that e = £(t) = n(e) = k(t), since £ : T — FE is surjective and A is reduced.

An abstract region n determines a unique region {(o,n) such that o(s) = 0
for some state s, called a strict region and given by o(sg) = —min{n-7(c)| 3s €
S 98(c) = s—sp}, and an infinite family of non strict regions (¢ + h,n) for h €
IN\ {0}. Now any instance of the separation problems SSP 4(s, s’) or ESSP4(s,€)
solved by (o + h,n) is also solved by {(o,7). For this reason, let us concentrate
on strict regions, or equivalently on abstract regions.

The set R...(A) of abstract regions of A is obviously a Z-module. From
Prop. 7.2, a linear basis for this module may be computed as follows. Let S =
{s1,---»82}, T = {t1,...,tm}, and E = {e1,...,€p}. Let U C T be a spanning
tree of the underlying graph G = (S, T), and let {By, ..., Bm—n+1} be the set of
fundamental cycles of G w.r.t. U. Thus {Bi,...,Bn_n+1} is a basis for Vp and
R.b.(A) is the kernel of the linear transformation My : Z° — Z™ " defined
by the (m — n + 1) x p matrix M4 with integral coefficients

Mg(i,5) = Z{Bi(te)] 1<k<m A L) =e;}

Let k be the dimension of Ker(M4). The algorithm of von zur Gathen and
Sieveking (see [38]), given M4 as input, produces in time polynomial inm—-n+1
and p (or |S|= n and |E|= p, because m < n x p follows from determinism of A)
a basis {m,...,m} for Ker(Ma) = Raps(A).

We have in hand all the elements needed for solving problems SSP4(s,s’)
and ESSP,(s,e) relatively to the type of pure Petri nets. The data needed are
the spanning tree U, or more exactly the application c () that maps each state
s € S to the unique chain ¢, from s to s in U, and the basis of abstract regions
{?71:' .. ,ﬂk}-

For the sake of illustration, let us exhibit these data for the automaton A
shown in Fig. 17. Here n = 8, m = 14, and p = 6. The spanning tree U, indicated

Fig. 17. an automaton with one of its spanning trees (in solid lines)

in solid lines, contains n — 1 = 7 transitions, The module Vg is generated from

571

the m — n + 1 = 7 fundamental cycles B; defined by the respective chords ¢;
indicated in dashed lines, let ¢ = s5 - 52, t2 = 83 — 80, ta = 87 — 84, t4 =

’ ’ !
865 81, ts = 84 80, te = 571> 83, and t7 = sg > s7. For instance, the chord t;
defines the fundamental cycle

B; = (s 5 31) + (81 A 83) + (33 i; 85) + (85 5 32) - (SQ i,) $2)

whose Parikh image is #(B1) = a +b+c. One can verify that n(Bi1)= n(Ba) =
n(B3) = a+b+c, 7(Bs) = n(Bs) = n(Bs) = o’ +b +¢, and n(Br) =0. The
Z-module of abstract regions consists of those vectors n: F — Z such that:

n(a) +n(d) +n(c) =0 and n(a’) +nd) +n(c)=0
It is therefore a four dimensional Z-module with basis as follows:
m=a—c;p=b-c;m=ad—-c and =¥ - ¢

In this example, the spanning tree U is rooted at the initial state so of the
automaton. Let ¢, denote the branch of U from sp to s and let m, = n(cs) be its
Parikh image. Thus, we have:

Moo =0 Ts, = Q Moy = @ wsy =a+b
e, =@ +bV my,=a+b+a wy,=d +b+a 7w, =a+bta +V

The corresponding scalar products 7; - 74 are tabulated in Table 2

Table 2. states s € S represented by vectors (1; - m,); indexed by the set of basic
abstract regions ;

[miome T omeg | mey | ey | oy | Tag | g I
m 0 1 0 1 0 1 1 1
7j2 0 0 0 1 0 1 0 1
s 0 0 1 0 1 1 1 1
4 0 0 0 0 1 0 1 1

7.3 Solving the separation problems

Let s and s’ be two distinct states. From Prop. 7.1 and Prop. 7.2, SSP 4(s, ') has
a solution in Rppn(A4) iff - 7(es — cor) # 0 for some abstract region 7 € Rap:(4)
iff mi-w(cs —cy) # 0 for some i € {1,---,k}, and the strict region (o; , 7;) deter-
mined from the basic abstract region #; by setting 0;(so) = —min{n; - n(c;) | s € 5}
is then a solution. Therefore, deciding whether ssP.4(s,s’) has a solution and
producing it takes time polynomial in |S| and |E|.

In our running example all instances of the separation problem SsP4(s,s’)
can be solved, because all the columns of table 2 are different.

572

€
Given s’ € S and e € E such that s’ /4, let us now consider the separation
problem ESSP 4(s’, e). From Prop. 7.2, this problem has a solution in Rppy{A)
iff there exists o(se) € IV and 1 € R,p5{4) such that

Vs€S oa(sp)+n-m(cs) >0 1)

o(s0) +n-m(ce) +n(e) <O (2)
iff there exists n € Raps(A) satisfying the condition

Vse S - (mlcy) —m(cs)) +n(e) <O 3

Whenever 7 satisfies condition 3, the strict region (0,7) defined from 5 satisfies
actually conditions 1 and 2 and therefore solves ESSP 4(s',¢). Let n = Z:;l T
where {n1,...,7:} is the basis of abstract regions, and z; € Z. For every s € S,
let af = ;- (m(cs) — m(cs)) + ni(e). With these notations, condition 3 may be
rewritten to the system of linear inequations {Zf=1 af -z; < 0] s €S} in the
variables z; € Z. Now a system of linear inequations

MX < (-1)" (4)

where M is an integral matrix and (-1)" =< -1,...,—-1 > (€ Z") has an
integral solution iff it has a rational solution. The method of Khachiyan (see
[38] p.170) may be used to decide upon the feasability of (4) and to compute
a rational solution, if it exists, in polynomial time. Thus, every instance of the
problem ESSP 4(s’, e) is solved up to a multiplicative factor, or shown unfeasible,
in time polynomial in |S| and |E|. In our running example, the system of linear
inequations which express the separation problem ESSP 4(s2,a) is the following:

N- (s, —Teg) +m(a) <0: z1+23<0
n-(msy, — s,) +1(a) <0: z3<0
n-(msy —7s,) +1{a) <0: z1 <0
N (g —Tsg) +71(a) <0: z3—-22<0
N {Tsy — s,) +1{a) <0: z—24 <0
- (msy — mes) +m{a) <O: —z2 <0
N - (Tsy — Tse) +m{a) <0: —z4 <0
N (Tsy —Ts,) +1(a) <0: —z3 —24 <0
This system is solvable, and admits in particular the solution z; = z3 = —1 and

Zo = x4 = 1. Therefore, n = —m + 12 — 73 + 14 = ~a+b—a’ + ' satisfies condi-
tion 3, and (o, 7) solves ESSP 4(s2,a) with o(sp) = 1. The automaton of Fig. 17
is actually separated by the set of strict regions (oy,,7) which are indicated in
Table 3, computed from SYNET. The pure Petri net synthesized from this set of
admissible regions is shown in Fig. 18. For full precision, it should be said that
SYNET [13] does not relie on the method of Khachiyan but on the simplex method
which has cubic complexity in the average (see [38]). A quite different solution to
the synthesis problem of pure Petri nets from finite automata up to a quotient is
described in [30]. This solution is based on the investigation of minimal regions.

573

Table 3. values taken on states by strict regions

an(s) H S0
-m 1
2 0
—73 1
4 0
0

0

1

h—n2
73 — M4
N2 +n4— 11— 73

OO OO D
- Do = o|®
L

Tng

Fig. 18. the net synthesized from the admissible set of strict regions given in table 3

The key observation is the following: let (o1,), (02,1m2) € Rppn(A) such that
Vs €S 01(8) > as(s), then (01 —02,m1 — 12) is a region of .4 and any instance
of the separation problems which is solved by (1,71) is solved either by (o2,72)
or by (o7 — 02,m — n2). Therefore, A is separated if and only if the set of its
minimal regions is admissible.

7.4 The Case of General Petri Nets

A polynomial time algorithm for the synthesis of general Petri nets from finite
automata was proposed in [7]. This algorithm is a modified form of the algorithm
just described for pure Petri nets. We indicate below the main adaptations lead-
ing to the modified algorithm.

In the sequel, A is a reachable and reduced finite deterministic automaton,
not necessarily simple. A region of A w.r.t. the type 7py of Petri nets is a
morphism (o, (*7,7°)) : A = 7pN, called a Petri region, where *n and 7* are
maps from E to IN. As it was observed in [21], a Petri region is entirely deter-
mined from ¢ and *7y or alternatively from o(sg), *7, and n*. Petri regions and
pure Petri regions are connected by a pair of maps J4 : Rpn(A4) = Rppn(A)
and IA : RPPN(A) — RPN(A)r such that JA(U’ (.??) "?')) = (0‘, 77. - '77) and
I4(o,n) = (0,(*n,n")) where *n(e) = max{0, —n(e)} and n°(e) = max{0, n(e)}.

574

Owing to this correspondence, an instance of the separation problem ssp 4(s, s')
can be solved in Rpy(A) if and only if it can be solved in Rppn(A). The re-
spective solutions are actually connected by the maps I4 and J 4.

The treatment of the event state separation problem is more delicate. An
instance of ESSP4(s’,e) can be solved in Rpn(A) if and only if there exists
o(sp) € IN, *n{e) € N, and 7 € R,p5(A) such that:

L. n(e) +*n(e) >0

2.VseS o(sg)+n-7m(cs) >0

3.Vs€S s = 0(so)+7-7(cs) > *nle)
4. o(so) +1-7(c,) < *nle)

A solution is then given by the Petri region (o, (*n,n*)) defined by *n(e) =
max{0, —n(e')} for ¢’ # e, and n*(e') = n(e') + *n(e') for every ¢’ € E. Set
z=0(s0),y = *n(e), and 5 =3 z;-n; where {n1,...,7} is the basis of R,s:(4)
and x; € Z. With these notations, the above conditions may be rewritten to a
system of linear inequations in the k - 2 variables z,y and z; (1 <i < k), where
Wis = 1; - W(Cs):

Loy+3 ziml(e) 20

2. 24 Y zw;; >0 (one inequation for each s € S)

3. z—y+ 3 zw, >0 (one inequation for each s € S such that s)
4 z—y+ 3 ziwiy <0

This system, augmented with the constraints > 0 and y > 0, is homogeneous
and can therefore be solved or shown unfeasible in polynomial time following
Khachiyan’s method.

7.5 Synthesizing Bounded Net Systems up to Language Equivalence

A net system is termed bounded if its marking graph is finite. Given a reachable
and reduced finite deterministic automaton A, let £(.A) denote the (prefix closed)
language of words accepted by .A. We face now the problem of deciding whether
L(A) = L(N*) for some bounded net system and if so constructing N. This
problem can be decided upon in polynomial time, for both types 7ppy and
TpN, when A is given in tree-like form.

Definition 7.3 A = (S, E, T, so) is o tree-like automaton if there exists a span-
ning tree U C T rooted at so, with all transitions in U directed away from sy,
such that for every chord s 5 s' ¢ U, s' is an ancestor of s in U.

Suppose L(A) = L(N*), where A is tree-like and N = (P,E,W,Mp) is a
bounded net system with type 7 € {rppn,Tpn}. For each place p € P, let
(0p,mp) : N* — T denote the associated region of A*. From the inclusion
L(A) C L(N*) and the assumption of boundedness of N, 5,(Mp) = a,(Mp) and
7, define a region in (0, 7p) : A — 7 (seeing that s % 5% in Aentails 7p,-7(u) =0

5 55 s for every s € S, where ¢ is the empty word, and s =5 &' & 3" € S s s" A

€
"5 4.

575

for 7 = 7ppn). From the relation L(V*) = L(A), every instance of the event
state separation problem ESSP4(s’,e) is solved by a region (o,,7) € R (A)
defined as above from some corresponding place p € P. Conversely, if the condi-
tion ESSP is valid in A, then £(A) = L(N*) for any net system N = 3> p Ny
assembled from a subset of 7-regions of .4 admissible for ESsp. Therefore, in the
restricted case of tree-like automata, the synthesis problem for pure or impure
Petri nets up to language equivalence can be solved in polynomial time [2].

Now, every deterministic automaton A = (S, E, T, sg) may be translated to
an equivalent tree-like automaton A’ = (S', E,T’, (sg,€)) with sets of states and
transitions defined as follows.

— &' is the set of pairs (s,u) € S x £(A) such that so = s in A and every two
states of A visited in this path are different;

— T'C 8" x E x S'is the set of transitions (s,u) = (s',') such that s = s’ in
A and v = u-e or u is a prefix of u.

It must be noted, however, that the size of the tree-like automaton A’ constructed
in this way is ezponential in the size of A (so as the number of elementary circuits
of A, which shows that the case of general automata cannot be dealt with by
polynomial algorithms).

8 Regions in Step Transition Systems

We leave now the classical frame of (sequential) transition systems for the more
expressive frame of step transition systems, defined by Mukund so as to account
fully for the independence of events in general Petri nets [33].

Definition 8.1 A step transition system (S, M,T) over an abelian monoid M
consists of a set of states S and a deterministic transition relation T € SXM XS,
with distinguished empty steps: s > s' iff s = &'. A step automaton A is an
initialized step transition system (S, M,T,so) with initial state so € S, such
that every state s € S is reachable from sy in the underlying transition system
A= (S, M,T). The step automaton A is finite if the set of transitions T is finite.
When M = < E> is the free abelian monoid freely generated from set E (the
elements of M are then finite multisets over E), the step automaton A is said
to be reduced if its skeleton (S, E,T N (S x E x S), so) is a reduced automaton.

This definition of step transition systems extends slightly Mukund’s original
definition, which was restricted to free abelian monoids. The extension allows to
accomodate the idea of regions as morphisms to step transition systems which do

not necessarily present the intermediate state property: s M3 cSsDs"

A ¢ B o', The definition of regions in step transition systems is parametric on

enriched types of nets defined as follows.

Definition 8.2 An enriched type of nets is a (deterministic] step transition
system t = (LS,LE,T), where LE is an abelian monoid (LE,+,0).

576

For instance, the enriched type of Petri nets is just the type rpny = (IV,IN X

IN,7), where n ——J n' € rif and only if n > i and ' = n — i + j, enriched
with the operation of componentwise addition in IV x IN. As a matter of fact,
(IN x IN,+,(0,0)) is the free abelian monoid generated from (0,1) and (1,0).

Each type of nets determines a specific concurrent firing rule and hence a
specific construction of concurrent marking graphs.

Definition 8.3 Given a net N = (P, E,W) with (enriched) type r = (LS, LE,7),
the concurrent marking graph of N is the step transition system (LST,<E>,T)
with set of transitions T defined by :

(M3 M)eT & VeeP (M(z) " M(z))er (5)
where W(z,e1 +-- +en) = W(z,e1)+--- + W{x,e,). Given a net system N =
(P, E,W, My), the concurrent marking graph of N is the step automaton N* =
(S,<E>,Ts, My} where S is the inductive closure of the singleton set {My}
w.r.t. forward transitions in T, and Ts = TN (S x <E> x §).

In order to illustrate this definition, let us inspect the relationship between the
sequential and concurrent marking graphs of a Petri net. On the one hand, the
sequential marking graph is the induced restriction of the concurrent marking
graph on the subset of atomic steps, i.e. steps « such that T .ce ale) = 1. On the
other hand, the concurrent marking graph cannot in general be reconstructed
up to isomorphism from an arbitrary copy of the sequential marking graph, even
though some additional informations are provided as in [20] by a binary relation
of independence on events depending on markings, such that e||s €’ if and only
if M[{e,e'}>. The example shown in Fig. 19, borrowed from [27], makes this
fact clear. Regions may now be introduced, based on the following definition of

Fig. 19. three nets with an identical sequential marking graph but with different con-
current marking graphs: the three events a, b, and ¢ are independent at the indicated
marking in the first net whereas they are pairwise independent but not independent in
the second net; the case of the third net is more involved: at the indicated marking the
maximal sets of independent events are {a,c} and {b, c}, but a and b become indepen-
dent once ¢ has been fired. Thus independence in Petri nets is marking dependent.

morphisms of step transition systems.

577

Definition 8.4 A morphism of step transition systems from A = (S,M,T) to
A = (8, M',T') is a pair (0,9), made of a map o: S— S5 and o monoid
morphism n: M — M’, such that s 3 §' = o(s) "’ o(s'). The morphisms of step
automata from A to A’ are the morphisms from A to A’ that preserve the initial
state.

Definition 8.5 Given a step transition system A = (S, M,T) and an enriched
type of nets T = (LS, LE,), the set R, (A) of T-type (extended) regions of A is
the set of morphisms of step transition systems from A to 7. The set of T-type
(extended) regions of a step automaton A is the set R, (A) = R.(4).

By specializing this definition to the type Tpy, one retrieves exactly the re-
gions defined by Mukund in step transition systems over a free abelian monoid
[33]. Special attention may be paid to the class of step transition systems A =
(S, M, T) derived from asynchronous transition systems (S, E, ||,T") as follows:
M = < E> is the free abelian monoid generated by E (the elements of M are
finite multisets of elements of E), s % s’ in T if and only if a is a subset of pair-
wise independent events {ej,...,e,} C E (hence there is no auto-concurrency)
and there exists in 7" a sequence of transitions s 3s; 3 s2...8,-1 =3 s, such that
s’ = s, (such sequences exist therefore for all permutations of {e;,...,e,}). For
this class of step transition systems, the regions (g,7) : A = 7pn which are safe
in the sense that o(s) € {0,1}or all s € S are in bijective correspondence with
the regions defined by Nielsen and Winskel for asynchronous transition systems
[35].

The results about {(ordinary) transition systems which have been presented in
section 6 may be reproduced nearly intact in the richer setting of step transition
systems over a free abelian monoid. In particular, Def. 6.6 and 6.7 and Prop. 6.11
may be extended to step transition systems, yielding a Galois connection A <
N* & N < A* between step automata A = (S,<E>,T,sp) and net systems
N = (P, E,W, M), for any enriched type of nets 7. The following counterpart
to Theo. 6.12 for step transition systems appears in [7].

Theorem 8.6 Given a step automaton over a free abelian monoid, let A =
(S,<E>,T,s0), and an enriched type of nets 7, a subset of extended regions
R C R, (A) is admissible if and only if the following separation properties are
satisfied for all states s,s' € S and for every multiset o € <E>:

(SSP) s#s = 3 o,n) €R: o(s) #a(s)

[n(a)
(ESSP) s4 = Io,n)€R: o(s) /> inT
When both properties are satisfied, A & (A%)*, where A% is the subnet system
of A* with restricted set of places R (also called the net synthesized from R).

Mukund’s characterization of Petri net transition systems, established in [33],
follows directly from Theo. 8.6 applied to the type 7pn. Nielsen and Winskel’s
characterization of separated asynchronous automata, established in [35], follows
therefrom as the subcase met when imposing on regions (o,7) € R the constraint
that o(s) € {0,1} for every state s.

578

An algorithm for synthesizing Petri nets from finite step transition systems,
based on Theo. 8.6, is proposed in {7]. This algorithm is an adaptation of the ba-
sic algorithm for pure Petri nets described in section 7. Let A = (S, <E>,T, so)
be some finite and reduced step automaton. Seeing that the intermediate state
property is always satisfied in the concurrent marking graph of a Petri net, we
assume this property from A. Thus, (s HeT = 3"€S (s35)eT A
(s" 4 §') € T. The import is that we may assume a compact representation for
A, given by its skeleton and the set of maximal steps at each state s € S.
This makes sense since the set of steps of A is bounded, from the assumption
that A is finite. As regards the event state separation problem, let us observe
the following: if a region (o,n) solves an instance ESSP4(s,) of this problem,
where « is a failure at s, then (o,7) solves also every instance ESSP 4(s, 3) such
that a < 8. It is then sufficient to solve at each state s the instances ESSP4(s,)
such that « is a minimal failure in that state. From this remark and the assumed
representation for A, the following is proved in [7].

Theorem 8.7 The synthesis problem for Petri net systems with the step firing
rule, taking as inputs finite step transition systems, is polynomsial in their num-
bers of states and events, in the size of the largest set of minimal failures in one
state, and in the size of the largest set of mazimal steps enabled in one state.

Notice that the minimal failures are not determined at a given state by the
maximal steps, as shown by the third net on Fig. 19 for which Maz_steps(sg) =
{a++c,b+c} and Min_fails(so) = {2a,a + b,2b} whence Min_fails(s) {a +e|
a € Maz_steps(s)}. Every step automaton may in fact be transformed to an or-
dinary automaton by splitting the alphabet of events: the states of the split
automaton are the pairs <s,a> where « is a step with concession at s, and each

transition s % s' gives rise to the pair of transitions <s,a>% <s,a+e> and

<s,a+e>% <4, a> for every step f = a + e with concession at s. In [1] it is
shown that the synthesis of Petri nets from step automata may be reduced to the
synthesis of pure Petri nets from ordinary automata by splitting events, which
yields a synthesis algorithm taking time polynomial in the number of higher-

et
dimensional states. Now if 3 € Min_fails(s) is a minimal failure, then <s,a> 4
for any step a and event e such that 8 = a + e, and the problem ESSP4(s, 3)
is equivalent to the separation problem ESSPg, . 4)(<s, >, e*) for the event et
at the higher-dimensional state <s,a>. There are (at most |E| times) more in-
stances of ESSP to be solved in the split automaton since # can be decomposed
as B = «a + e in several ways, but the total number of instances of the problem
ESSP (s,) for minimal failure « in the step automaton is already exponential
in the number of events.

In order to conclude with extended regions (o,n) where 1 maps steps « €
< E> to (pairs of) integral weights, let us mention that such regions have also
been used to solve different synthesis problems in the setting of generalized trace
languages [26] and general event structures [27].

579

9 Adjunctions between Transition Systems and Nets

In section 6, a Galois connection A < N* & N < A* between automata and net
systems was established. However A* and A'* are not constructed in a symmet-
rical way: A* has been asgembled from morphisms of transition systems from A
to the type of nets 7, but A™* has not been constructed from net morphisms. We
show in this section that N'* can equally well be assembled from net morphisms
@ : N = 7' where the places of 7’ encode bijectively the transitions of 7.

Therefore types of nets are schizophrenic objects <7,7'> living both in the
category of transition systems and in the category of nets. Taking advantage of
this fact, we adapt a work of Porst and Tholen [36] on concrete dualities induced
by schizophrenic objects and construct dual adjunctions between transition sys-
tems and nets for any type of nets. We show in this way that the region based
representation theorems for transition systems are a close analogue of the clas-
sical representation theorems for ordered algebras, which all arise from concrete
dualities induced by schizophrenic objects based on the two element set 2 =
{0,1}.

For the reader unfamiliar with schizophrenic objects, we review briefly some
of the classical representation theorems. Birkhoff’s duality between finite dis-
tributive lattices and finite partial orders relies on the schizophrenic object 2,
viewed as a lattice and as an ordered set where 0 < 1. The dual L* of a dis-
tributive lattice L is the ordered set of its prime filters = whose characteristic
functions are the lattice morphisms x. : L — 2. The dual X* of an ordered set
X is the lattice of its upwards closed subsets | whose characteristic functions
are the morphisms of ordered sets x; : X — 2. Any ordered set is isomorphic to
its double dual (X = X**) where z € X is identified with z** € X** such that
xz++ (1) = x1(z) for any upwards closed subset ! C X. Any distributive lattice is
isomorphic to its double dual (L 2 L**} where ! € L is identified with I** € L**
such that xp-« (£) = x,({) for any prime filter z C L. Thus both units of the dual
adjunction are morphisms whose underlying maps are the evaluation maps.

Stone’s duality between boolean algebras and the Stone spaces relies similarly
on the schizophrenic object 2, viewed as a boolean algebra and as a discrete
topological space. More instructive in the context of this paper is the duality
between spatial frames and sober spaces (see {28, 18]). Recall that a frame is a
complete lattice with the generalized distributivity law (finite meets distribute
over arbitrary joins: f AV, fi = V,;(f A f;)). For any frame F', let pt(F’) be the
set of points z of F defined as frame morphisms z : F — 2. The dual F* of F
is the topological space (pt(F), {2) whose open sets are the sets Oy = {z : F —
2| z(f) = 1} for f ranging over F. Conversely, the dual X* of a topological
space (X, £2) is the frame of its open sets O € (2, whose characteristic functions
xo are the continuous maps from (X, 2) to the Sierpinski space 2 (with open
sets {0,1}, {1}, and @). Frames and topological spaces are connected by a dual
adjunction Frame(F, X*) = Top(X, F*).

By restricting this adjunction at both sides on its kernel, one obtains a du-

op
ality Top™ = Frame™ between the subcategory Top* of spatial frames and the
gory

580

subcategory Frame® of sober spaces. So, a frame F' is isomorphic to its double
dual F** if and only if F is a spatial frame. Now, spatial frames are character-
ized by two conditions very similar to our separation conditions for automata,
when regions are replaced by morphisms z : F — 2. Namely, a frame F is spa-
tial if and only if the following conditions are satisfied for all f, f' € F, where

ffef=fnf:

() F#F=>3:F->2: z(f) #z(f)
(i) F£f=>:Fa2:2(f)=1Az(f)=0

Condition (3) is the analogue of our state separation condition ssp. Condition
(1) is the counterpart of our event state separation condition ESSP, when the
structure of labelled transition system is replaced by the structure of partial
order.

The classical dualities recalled above are concerned with points z, properties
p, and a binary relation of evaluation ev(z)(p) = p(z) valued in the underlying set
of the schizophrenic object, i.e. {0,1}. When this relation is given a matrix form,
duality appears as matrix transposition [37]. Now, dualities between transition
systems and nets fit exactly in the same pattern: the points are the transitions
s 5 ¢, the properties are the regions (0,n), and the evaluation matrix given by

ev(s > §',(0,n)) = a(s) g o{s') describes the local effect of the transitions on
the places (o,7) of the dual net. The technical development presented in the
remaining of the section is based on the material contained in [6].

9.1 Schizophrenic Objects and Dual Adjunctions

Definition 9.1 A Set-category (or category over Set) is a pair <C,U> where
C is a category and U : C — Set is a functor called the underlying functor. It is
a concrete category if U is faithful.

In the sequel, the underlying functor is left implicit and we use the uniform
notation |C| and |f| for respectively the underlying set of an object C and the
underlying map of an arrow f. In a Set-category C, a structured source is an
indexed family of pairs {Ci; fi : X — |C;|}, where the C;’s are objects of C and
the f;’s are maps from a fixed set X to the underlying sets of the Ci’s. A lift of
a structured source is an indexed family f; : C — C; of arrows of C such that
|fi| = fi, and hence |C| = X. An initial lift of a structured source is a lift such
that, if g; : C' — C; is another lift and there exists a map f : |C'| = X such
that |g;| = fi o f for all indices, then there exists a unique arrow f:¢=cC
such that |f| = f and g; = f; o f for all indices. The following definition is an
adaptation from [36].

Definition 9.2 A schizophrenic object between two Set-categories A and B is a
pair of objects < K4, Kg >€ | Al x |B| with the same underlying set K = |[K.4| = |Kg|
and such that
1. for every object A in A, the family {Ks;eva(a) : A(A,Ka) = K}oeia) of eval-
uation maps evala)(f) = |fl(a) has an initial lift {ea{a): A = Ks}lacja

581

2. for every object B in B, the family {K.4;evn(b): B(B,Ks) = K}seip has an
initial hft {EB(b) : B* — KA}b€|B| .

A*, called the dual of A, is therefore an object of the category B whose underlying
set is the set of A-morphisms from A to the classifying object K. If K = {0,1}
and A is concrete, then the elements of the underlying set of the dual of 4 can
be identified with subsets of the underlying set of A: |4*| C 2!4! and |4**| C 22",
In any case, A and A** are linked by an evaluation morphism Fuy : 4 - A**

according to the following statement.

Lemma 9.3 Let <K, Kg> be a schizophrenic object between two Set-categories
A and B. The initial lift {ea(a): A* = Ks}oeia) of the evaluation maps, viewed
as a mapping ea : |A] = B(A*, Kg), is the underlying map of an arrow Evs: A
— A*.

As an initial lift, the dual A* of A is only defined up to an isomorphism. However,
once an arbitrary representative A* is fixed for each class of isomorphic objects,
the operator (—)* gives rise to a functor according to the following statement.

Lemma 9.4 Let <Ka, Kgs > be a schizophrenic object between two Set-categories
A and B. For every morphism f:A; - A in A, the map “composing with
7 given by f°: A(A2,K4) = A(A1,K4): g gof is the underlying map of
an arrow f*: A5 — A} in B such that the functoriality laws (14)* = 14« and
(fog) =g o f* are satisfied.

The following proposition tells us that the two functors (—)* induced from a
schizophrenic object are in fact dual adjoints.

Proposition 9.5 Let <K.,Ks> be a schizophrenic object between two Set-
categories A and B. The following identities, where f : A~ B* and g: B — A",
define a bijective correspondence A(A, B*) = B(B, A*):

g= f*oFEvg and f = g* o Evga

i.e. the functors (—)* are adjoint to the right with the evaluations as units.

In the particular case where A and B are concrete categories, the above corre-
spondence may be presented as matrix transposition. Actually, in this special
case, A(A, B*) = Span, (4, B) = B(B, A*) where Span, (4, B) is the set of matri-
ces |A| x |B| — K whose rows, resp. columns, are underlying maps of morphisms
@Yo : B =+ Kg (for a € |A|), resp. of morphisms ¢® : A — K, (for b € |B|). In
such a matrix, the set of rows determines a unique morphism from A to B*, and
the set of columns ¢® determines a unique morphism from B to A*.

9.2 Application to Automata and Nets

Let Trans be the category of deterministic and reduced transition systems
(S, E,T) free of isolated states (Vs € S 3t € T : s = 8°(t) V s = 8'(t)), where
a morphism (¢,7) : (S,E,T) — (S',E',T") is a pair of maps 0 : § — S’ and

582

n: E — E' such that s 3 s’ (in T') entails o(s) g o(s') (in T'). Trans is a con-
crete category with forgetful functor U : Trans — Sets givenby U(S,E,T) =T
and U(o,n)(s = &') = (o(s) ¥ o(s")).

Let 7 = (LS,LE,LT) be an arbitrary object of Trans, called the type of
nets. Let Nets be the category of event-simple nets (P, E, W) of type 7, thus W :
P x E — LE has all columns distinct, where a morphism (8,7) : (P,E, W) —
(P, E'\W")isapairof maps 8 : P - P’ and : E' — E such that W{p,n(e')) =
W(B(p),e"). Owing to the assumption of event-simpleness, § determines 7 in
any morphism (3,7), and Nets is a concrete category with forgetful functor
U : Nets — Sets given by U(P, E,W) = P and U{(8,7n) = 8.

Let 7/ = (LT, {#},W) € Nets be the net with the unique event e such that
W (ts %5 ¢5') = fe for every place ¢s 5 ¢s' € LT. Thus Ur' = LT = Ur. Figure 20
displays the net 15, corresponding to the type 7gn of elementary nets.

U U output
®

@ e =150 -
y=00‘m.—p;n1].nput
TEN z=1=1 TEN
w=0230

Fig. 20. the schizophrenic object for elementary nets

Proposition 9.6 The pair (r,7') is a schizophrenic object between the cate-
gories Trans and Nets, inducing a dual adjunction Trans(A, N*) = Nets(N, A™).

It remains to interpret A* and N* in more familiar terms. For any transition
system A = (S,E,T), the homset Trans(A4,r) is the set R,(A) of T-regions
of A. The evaluation eva(s < s')(o,n) = (o(s) % o(s')) classifies therefore the
transitions t = (s 5 §’) € T according to their local effect on each region. By
definition, A* is the net resulting from the initial lift of the family of evalua-
tion maps eva(t) for ¢ € T. The following proposition shows that A* coincides
with the net synthesized from the set of regions R,(A) up to the confusion of
indiscernible events.

Proposition 9.7 A* is isomorphic to the net (P,E=,W) where P = R, (A) is
the set of regions of A, = is the equivalence relation on E such that e = ' when
n(e) = n(e') for every region (0,n), and W((o,n), [e]z) = nle).

Now, for any net N = (P, E,W), the homset Nets(NV,7') is in bijective corre-
spondence with the set of transitions of the marking graph of N. In the sample

583

case of elementary nets (see Fig. 21), each morphism (8,7) : N — 75 induces

the transition A~ *({z, 2}) e B8 *({y, z}), and conversely, each firing M{e> M’
induces the morphism (8, 7) such that 7(e) = e and for every place p,

z if peM\M

_Jy if peM'\M
Blp) = z if peMnM
w if pgMUM

Therefore, the evaluation eun(p)(8,m) = B(p) classifies the places of N ac-

/]
@ @
B.m)

Llo ® Ve |1
=TT

Fig. 21. firings as net morphisms

cording to the local transition they undergo in each global firing of the net. By
definition, N* is the transition system resulting from the initial lift of the family
of evaluation maps evy{p) for p € P.

Proposition 9.8 N* is isomorphic to the marking graph of N.

If one now specifies initial states for transition systems, and forward closed sets
of markings for nets, the dual adjunction Trans(4, N*) 2 Nets(NV, A*) may be
extended to a Galois connection Aut(A4, N*) = Netsys(N, A*) between automata
and net systems, i.e. to a dual adjunction such that A* = A4*** for every automa-
ton A, and N* = A*** for every net system A. The details of the construction
can be found in [6]. By restricting the Galois connection at both sides on its ker-

nel, one finally obtains a duality Netsys‘gAut* between separated automata
and saturated net systems. As a consequence, the separated automata appear
as a co-reflective subcategory of Netsys®®. Similar co-reflections between sep-
arated automata and nets have been established in the literature for various
categories of automata or concurrent automata, including elementary antomata
[34], asynchronous automata [35], automata with concurrency relations [20], and
step automata [33].

584

10 Some Applications

Regions have come to use so far in two areas of application, asynchronous circuits
and distributed protocols. A computer assisted solution to the state encoding
problem for asynchronous circuits, based on elementary regions and supported
by the tool Petrify, is described in [15]. A computer assisted solution to the dis-
tribution of protocols, based on Petri regions and supported by the tool SYNET,
is described in [13]. Distributed and cooperative systems offer a wide range of
problems to be solved prior to any successful application. The synthesis of strat-
ified Petri nets [8], a weaker form of Valk’s self-modifying nets [43, 44], may
for instance be used for analysing cooperative systems in order to identify their
normal and exceptional modes of operation, and possibly for simplifying the
control of the transitions between these modes. Another goal of research is to
derive systems from service specifications while decomposing large specifications
into pieces. This might become feasible if one could solve the relaxed synthesis
problem as follows: given a pair of rational languages L and L' such that L C L',
construct a (possibly not bounded) net system N such that L C L(N) C L'.

Acknowledgments. This work was partly supported by the H.C.M. Network
Express.

References

[1] BADOUEL, E., Splitting of Actions, Higher-Dimensional Automata and Net Synthe-
sis. Inria Research Report No 3013 (1996).

[2] Bapousr, E., BERNARDINELLO, L. and DARONDEAU, PH., Polynomial algorithms
for the synthesis of bounded nets, Proceedings Caap 95, Lecture Notes in Computer
Science 915 (1995) 647-679.

[3] BADOUEL, E., BERNARDINELLO, L. and DARONDEAU, PH., The synthesis problem
for elementary net systems is NP-complete, Inria Research Report 2558 (1995). To
appear in Theoretical Computer Science.

[4] BADOUEL, E., and DARONDEAU, PH., Trace Nets. REX workshop, Beekbergen “Se-
mantics: Foundation and Applications”, Springer-Verlag Lecture Notes in Computer
Science, vol. 666 (1993) 21-50.

[5] BaDougL, E., and DaRoNDEAU, PH., Trace nets and process automate, Acta In-
formatica 32 (1995) 647-679.

[6] BApOUEL, E., and DARONDEAU, PH., Dualities between Nets and Automata in-
duced by Schizophrenic Objects, 6" International Conference on Category Theory
and Computer Science, Cambridge, Lecture Notes in Computer Science, vol. 953
(1995) 24-43.

[7] BADOUEL, E., and DARONDEAU, PH., On the Synthesis of General Petri Nets. Inria
Research Report No 3025 (1996).

{8] BabousL, E., and DARONDEAU, PH., Stratified Petri Nets. Inria Research Report
No 3128 (1997).

[9] BeEDNARCZYK, M. A., Categories of Asynchronous Systems. Ph. D. Thesis, Univer-
sity of Sussex (1988).

585

[10] BERGE, C., Graphes et hypergraphes. Dunod, Paris (1970). English translation:
Graphs and Hypergraphs, North Holland, Amsterdam (1973).

[11] BERNARDINELLO, L., Synthesis of Net Systems. Application and Theory of Petri
Nets, Lecture Notes in Computer Science 691 (1993) 89-105.

[12] BERNARDINELLO, L., DE MicHELIS, G., PETRUNI, K., and VIGNA, S., On the
Synchronic Structure of Transitions Systems. In “Structures in Concurrency Theory”,
J. Desel ed., Springer-Verlag (1996) 11-31.

[13] CaiLLAuD, B., SYNET : un outil de synthése de réseaur de Petri bornés, applica-
tions Irisa Research Report no 1101 (1997).

[14] CortaDELLA, J., KISHINEVSKY, M., LAvAGNO, L., and YAKOVLEV, A., Synthe-
sizing Petri Nets from State-Based Models. Proceedings of ICCAD'95 (1995) 164-171.

[15] CorraDELLA, J., KISHINEVSKY, M., KONDRATYEV, A., Lavagno, L., and
YAKOVLEV, A., Complete state encoding based on the theory of regions. Proceedings
of the 2nd International Workshop on Advanced Research in Asynchronous Circuits
and Systems (1996) 36-47.

[16] Cuen, W.K., Applied Graph Theory. North-Holland (1971).

[17] CHrisTOFIDES, N., Graph Theory - An Algorithmic Approach. Academic Press
{1975).

[18] Davey, B.A., and PRIESTLEY, H.A., Introduction to Lattices and Order. Cam-
bridge University Press, (1990).

[19] DEsEL, J., and RE1siG, W., The Synthesis Problem of Petri Nets. Acta Informatica
vol. 33 (1996) 297-315.

[20] DrOSTE, M., and SHORTT, R.M., Petri Nets and Automata with Concurrency
Relations ~ an Adjunction. in "Semantics of Programming Languages and Model
Theory”, M. Droste and Y. Gurevich eds(1993) 69-87.

[21] DrosTE, M., and SHORTT, R.M., From Petri Nets to Automate with Concurrency.
Draft communicated to the authors.

[22] EvRENFEUCHT, A., and ROZENBERG, G., Partial 2-structures ; Part 1: Basic
Notions and the Representation Problem, and Part II : State Spaces of Concurrent
Systems, Acta Informatica, vol 27 (1990).

[23] GAREY, M.R., and JounsoN, D.S., Computer and Iniractability. A guide to the
theory of NP-Completeness. W.H. Freeman and Company (1979).

[24] GONDRAN, M., and MINOUX, M., Graphes et algorithmes. Eyrolles, Paris (1979).
English translation by Steven Vajda: Graphs and Algorithms, John Wiley (1984).
[25] HiraisHI, K., Some complexity resulis on transition systems and elementary net

systems. Theoretical Computer Science 135 (1994) 361-376.

{26] Hoogers, P.W., KLEUN, H.C.M., and THIAGARAJAN, P.S., A Trace Semantics
for Petri Nets. Lecture Notes in Computer Science vol. 623 (1992} 595-604.

[27) HoocGEers, P.W., KLEUN, H.C.M., and THIAGARAJAN, P.S., An Event Structure
Semantics for General Petri Nets. Theoretical Computer Science, volume 153 (1996)
129-170.

[28] JounsTONE, P.T., Stone Spaces. Cambridge University Press, (1982).

[29] KISHINEVSKY, M., CORTADELLA, J., KONDRATYEV, A., LAvAGNO, L., TAUBIN,
A., and YAKOVLEV, A., Place Chart Nets and their Synthesis. Technical Report 96-
2-003 Department of Computer Hardware, University of Aizu (1996).

[30] KisHINEVSKY, M., CORTADELLA, J., KONDRATYEV, A., LAvAGNO, L., and
YAKOVLEV, A., Synthesis of General Petri Nets. Technical Report 96-2-004, De-
partment of Computer Hardware, University of Aizu (1996).

[31] LeFscuETZ, S., Applications of Algebraic Topology. Applied Mathematical Sci-
ence 16, Spinger-Verlag (1975).

586

[32] Ly, C.L., Introduction to Combinatorial Mathematics. Mac Graw Hill (1968).

[33] MukunD, M., Petri Nets and Step Transition Systems. International Journal of
Foundation of Computer Science, vol 3, n° 4 (1992) 443-478.

[34] NieLsen, M., ROZENBERG, G., and THIAGARAJAN, P.S., Elementary Transition
Systems. Theoretical Computer Science, vol. 96 {1992} 3-33.

[35] NIELSEN, M., and WINSKEL, G., Models for Concurrency, Handbook of Logic for
Computer Science, vol. 4, Oxford University Press (1995).

[36] PorstT, H.-E., and THOLEN, W., Concrete Dualities. In “Category Theory at
Work”, H. Herrlich, and H.-E. Porst (eds.), Heldermann Verlag Berlin (1991) 111-
136.

{37] PratT, V.R., The Stone Gamut: A Coordinatization of Mathematics, Proceedings
of the 10®* Symposium on Logics in Computer Science, IEEE Computer Society (1995)
444-454.

[38] SCHRUVER, A., Theory of Linear and Integer Programming. John Wiley (1986).

[39] Scuwmrrr, V., Flip-Flop Nets, Proceedings of Stacs 96, Lecture Notes in Computer
Science vol. 1046 (1996) 517-528.

[40] TuTTE, W.T., Graph Theory. Encyclopedia of Mathematics and its Application
vol. 21, Addison-Wesley (1984).

[41] SHIELDS, M.W., Concurrent machines, The Computer Journal, vol. 28 (1985)
449-465.

[42] STARK, E.W., Connections between a Concrete and an Abstract Model of Con-
current Systems. 5th Mathematical Foundation of Programming Semantics {1989)
53-79.

[43] VALK, R., Self-Modifying Nets, a Natural Eztension of Petri Nets. Proceedings of
Icalp’78, Lecture Notes in Computer Science vol. 62 (1978) 464-476.

[44] VALK, R., Generalizations of Petri Nets. Proceedings of MFCs’81, Lecture Notes
in Computer Science vol. 118 (1981) 140-155.

