
Distributed Algorithms for Networks of Agents

W. Reisig, E. Kindler, T. Vesper, H. VSlzer, and R. Walter

Humboldt - Universit~it zu Berlin

Abstract A new kind of algorithms, called distributed algorithms, has
emerged during the last decade, aimed at efficiently solving problems that
occur whenever distributed computing systems are to be made applicable
to real-world problems.
Distributed computing systems are frequently organized as networks of
agents, with each agent asynchronously interacting with some of its
neighboring agents. Algorithms running on such networks are called dis-
tributed.
A network algorithm is a schema, intended to run on any network in a
whole class of networks. Such an algorithm can be modeled as a high-level
Petri net schema. Each interpretation of the schema yields an algorithm
for a concrete network.
This paper suggests a variety of Petri net models of network algorithms,
formally represents their most decisive properties, and proves their va-
lidity. To this end, well-known techniques such as place invariants and
traps are adjusted to Petri net schemata, and new techniques to prove
progress properties are suggested.

Introduct ion

The paradigm of computing is shifting away from centralized one agent systems
towards decentral networks o/agents. Each agent may exchange messages with
neighboring agents in the network.

Agents may jointly solve any kind of problems, frequently initiated by one
of the agents. In most cases, all but the initiator agent are running identical
algorithms. Each agent is usually aware of its neighboring agents only; thus no
agent controls the entire network. An algorithm of this kind will be called a
network algorithm in the following.

A network algorithm is not intended to run on just one fixed network. Rather,
a network algorithm is a schema of algorithms, which run on any network in a
whole class of networks, such-as the connected networks, the ring- or tree-shaped
networks, etc.

A Petri net model of a network algorithm must reflect this aspect. Conse-
quently, a network algorithm will be modeled by Petri net schema. A Petri net
schema in particular includes symbols to denote sets and functions. Any instan-
tiation of those functions turns the schema into a concrete high-level Petri net,
representing an algorithm on a concrete network.

This contribution assumes basic knowledge of high-level Petri nets. Some few,
fairly obvious new concepts will be employed, introduced in an intuitive way by

332

help of the considered case studies. This applies likewise to verification tech-
niques: We employ well established algebraic place invariants as well as newly
designed weighted traps and pick-up rules for progress properties. The consid-
ered case studies will clarify when and how they are to be used. In fact, choice
and order of the case studies are governed by increasingly involved analysis tech-
niques.

1 C o n s e n s u s i n N e t w o r k s

1.1 The problem

A consensus algorithm organizes consensus about some contract or agreement
among the agents of a network. This is not trivial in case all agents are homoge-
neous, each agent can exchange messages with some neighbors only and there is
no other communication medium available, e.g., a broker or mediator who could
communicate with each agent.

An algorithm will be constructed in the following, to solve this problem for
any network of agents. The central activity of each agent is broadcast and receipt
of messages, containing proposals for a joint contract. Each agent u is assigned
a fixed set of other agents which u is to communicate with. Upon receiving
a message, an agent returns a receipt to its sender. The algorithm does not
guarantee that consensus will ever be reached. But consensus will turn out to
be stable: Once reached, it remains.

1.2 The algorithm

Figure 1.1 shows a Petri net schema representation, ~1.1, of the consensus algo-
rithm.

U and M are symbols, to be instantiated by a set and a relation, as the text
in the figure's lower par t explains. U represents the set of agents, and M the
relation of neighborhood, with M(x) = {yl(x,y) E M} denoting the set of sites
which u is to send messages to. Notice that M is not required to be symmetric.
As a general rule, a message is always represented as a pair (receiver, sender).
The equations in tim text of Fig. 1.1 hence specify r(x) and ~(x) as the set of
all messages to be received or to be sent, respectively, by x.

Initially, each agent is pending and each request is completed. In this situ-
ation, an agent u may send each of its neighbors v a message (transition a in
mode x = u). Upon receiving a message (u, v) from v, a pending agent u returns
a receipt, (v,u), to the message's sender v (transition b in mode x = u, y = v).
A pending agent u may turn agreed, provided all its messages are completed
(transition d in mode x = u). Finally, upon receiving a message, an agreed agent
u turns pending (transition c in mode x = u).

Obviously, at any time, an agent is either pending or agreed, and a message
is either completed or initiated. The algorithm does not guarantee that the sites
eventually all will agree. However, the algorithm guarantees stability: If all sites
do agree, no site will return to pending; the algorithm terminates in this case.

333

d

pending ~ agreed

so_~ site fc_tt r, Y :site --+ set of messages

so_~ message = site x site va__zr x, y : site

const U : set of sites r(x) = {x} x M(x)

const M : set of messages T(x) = M(x) x{x}

Figure 1.1. Basic algorithm for distributed consensus

1.3 Algebraic place invariants
Here we are interested in techniques to prove the above-mentioned stability of
the consensus algorithm. Of course, it is not possible to just inspect all reachable
states with all agents agreed, because the net Z l l is just a schema for in fact
infinitely many models. Hence we look for techniques that can be applied to
the syntactical representation of ~1.1 and would allow to express and prove
properties tha t hold in all models. One technique of this kind are the well-
known algebraic place invariants. In fact, they support proof of stability, but
they are not sufficient. In addition, symbolic traps will be used.

Both, place invariants and symbolic traps, employ syntactical terms which
at any concrete interpretation represent linear functions. For technical details,
we refer to the Appendix. Figure 1.2 shows the matrix, initial state and two
place invariants of the atgorithra of Z1.1. Shorthands for places, as introduced
in Fig. 1.2, will be applied throughout this chapter.

As usual, the arc inscriptions are taken as matr ix entries, with the minus
symbol representing arcs from places to transitions, and ~- - T = 0 for all terms ~-
(the term 0 is usually skipped). Each invariant entry is a term, including at most
one variable; for convenience, the name of the corresponding place serves this
purpose. In Fig. 1.2, the terms are the corresponding variables, up to the t e r m /) .
This term, with variable D ranging over relations, denotes {(v, u)t(u, v) E D},
i.e. inverts the pairs at D. The product of a matr ix entry ~- with an invariant
entry a is gained by substitution of ~- into each occurrence of the unique variable
in a. For example, - r (x) . C = -r(x) , and ~ (x) . /) = (~(x)). The inner product

334

.Uhl I a b c d s o i l i 2

A X M B --X

c -rCx) (y,x) (y,~)
D I ?(x) - (x ,y) - (x , y)

A: pending agents C: acknowledged messages
B: agreed agents D: initiated messages

Figure 1.2. Matrix, initial state so, and two place invaxiants, il and i2, to the consensus
algorithm,/21.1

of the column a with i2 then is a. i2 = - r (x) . C + ~(x) . [~ = - r (x) + (~(x)) =
- r (x) + r(x) = O, because (v, u) E r(u) iff (u,v) e ~(u), according to Fig. 1.1.
Likewise, b. i2 -- (y, x) . C - (x, y) . b -- (y, x) - (x, y) = (y, x) - (y, x) = 0. The
product of each matr ix column with each of il and i2 evaluate to 0, hence both
il and i2 axe in fact place invariants of Z~I.1. Furthermore, so • i l = U- A = U,
hence for each reachable state s holds s(A) + s(B) = U; this will for short be
written

A + B = U . (1)

Likewise holds: So • i2 = M • C = M, hence the equation

C + b = M (2)

holds at each reachable state.

1.4 S y m b o l i c traps

A further property will be required, that follows from an initialized symbolic trap
of ~1.1. A t rap consists of a set P of places and expressions I p for each p E P ,
such that p is the only variable of I p, and for each transition occurrence t holds:
If t removes the set qo of tokens from P and adds the set ql of tokens to P , then

U IP(q°) C_ U IP(ql)" (3)
PEP pEP

For obvious reasons, P is called the domain, and the expressions I p are called
the weight functions of the trap. For example, P = {A, C}, I A = r(A), and
I v = C form a t rap of E: Transitions a and b retain the token load on I (A) O C,
transition c adds tokens; d is the only nontrivial transition, d removes x from
A and r(x) from C, hence d removes r(x) from both r(A) and C, but d returns
r(x) to C, hence d meets requirement (3).

The initial value of a t rap is the union of the weighted tokens that initially
occur in its domain. For example, the initial value of the above described trap

335

of ~1.1, with domain {A,C} and weight functions I A and I c, is I A (so(A)) U
I v (so(C)) = IA(u) U IV(O) = r(U) 0 0 = M. The initial value V of a t rap with
domain P = { P l , - . . , Pn} and weight functions IF1, . . . , I P~ yields the inequality

I P1 (s0(Pl)) + - . . + I P~ (so(pn)) >_ V, (4)

which holds for each reachable state.
For the above example we obtain this way that

r(A) + C > M (5)

holds at each reachable state of El.1.

1.5 Proving stability

Stability of ~1.1, as informally described at the end of Sect. 1.2, can now formally
be represented by the formula

B = U - ~ A = O A D = O , (6)

claimed to hold at each reachable state: A = 0AD = 0 implies tha t no transition
is enabled. With A = 0, transitions a, b, and d are not enabled. D = 0 likewise
implies that c is not enabled. Hence, in fact A = 0 A D = 0 implies stability.

The above equations (1) and (2) together with the inequality (5) suffice to
prove (6): Equation (1) implies r(A) + r(B) = r(U); hence, with r(U) = M
following from the specifications of ~1,1, we obtain

r(A) + r(B) = M. (7)

Subtraction of (5) from the sum of (2) and (7) yields

r(B) + D <_ M. (8)

Furthermore, B = U -+ r(B) = M, and r(B) = M - + / 5 = 0 (by (8)), and
b = 0 -+ D = 0. Transitivity of implication now yields

B = U -~ D = O. (9)

Furthermore, B = U -~ A = O follows from (1), hence (6).
This proof shows stability for each network N of agents and each reachable

state of N. It is exclusively based on the syntactical units of Fig. 1.1, and on
theorems about Petri net schemata.

2 P h a s e S y n c h r o n i z a t i o n

2.1 T h e p r o b l e m

Network algorithms work frequently in rounds or phases: Each agent eventually
returns to its initial state, thus entering its next phase.

3 3 6

A synchronization mechanism is occasionally required, that guarantees syn-
chronized execution of phases: No agent begins its (k + 1)st phase unless all
agents have completed their k-th phase. Stated differently, whenever two agents
are busy at the same time, they are executing the same phase.

It is not entirely trivial to organize this kind of behavior in a network of
agents that can exchange messages with some neighbors only, lacking any global
agent such as a mediator, who could communicate with each agent.

A phase synchronization algorithm will be presented in the following, to
run on any connected, acyclic network (undirected tree). Figure 2.1 shows an
example. Its leaves are a, c,g, h,j , k. Adding or deleting an arc without adding

j h

...... b ~ d e / / f ~k--J
c ~ ~ g

Figure 2.1.

or deleting nodes would make the network cyclic or unconnected, respectively.

2.2 The algorithm

Figure 2.2 shows the phase synchronization algorithm, E2a. Each agent alter-
nates between the states busy and pending. The agent's round number increases
by 1 upon reaching busy.

Whenever changing its actual state, an agent consumes and produces mes-
sages from and for neighboring agents, respectively. A message is represented as
(receiver, sender). (The multiset notation f(x) - (x, y) denotes conventionally
~(x) \ {(x,y)} and is defined only if (x,y) E ~(x).)

All agents are initially busy in their 0-th round, and no message is available.
For an agent u, occurrence of transition a in a mode x -- u and i = 0 furthermore
requires the set ~(u)\ {(u, v)} of messages, for some v E W(u). With no messages
for u available, this set must be empty, hence ~(u) = {(u,v)}, hence v must
be the only neighbor of u. This, in fact, applies to the leaves of the network,
viz. a, c, g, h, j, k in Fig. 2.1. Occurrence of transition a for some agent u yields
a message (v, u) to u's unique neighbor, v. Some of the inner agents may then
enable a (in Fig. 2.1, these agents are b and f). All agents are eventually pending
and two messages, formed (u, v) and (v, u) of neighboring agents u and v are
available. In Fig. 2.1, u and v may be d and e, respectively. But any other
neighboring agents may likewise play this role. For example, agent h in Fig. 2.1
may remain busy until all other agents are pending. This situation retains one
message, (h, f) . Move of h to pending then adds the message (f, h).

Messages formed (u, v) and (v, u) start the wave back to busy. The partial
order of occurrences of transition a is now reversed for transition b: The last

337

busy

pending

sort site

sort message = site x site

const U: set of sites

const W : set of (sites x sites)

r, 7: site ~ set of messages

x, y : site

var i : nat

W = W -1

x , y e U - ~ x W * y

W~ = U

xoW x I ... XnW Xn+ 1/x

xi_ 1 ~ xi+ 1 for i=1 n

Xo:~ X n

r(x) = W(x) x {x}

~'(x) = r (x) -1

Figure 2.2. Phase synchronization

agents having reached pending will be the first ones to go busy in the next
round. The last agents to go busy again are the leaves.

A "lazy" site u may still be pending with a message (u, v) in round i, while
its "diligent" neighbor v, in its (i + 1)st round has sent a further message to u.
Hence two messages ibrmed (u, v) may coincidentalty be at place messages. This
does not perfectly meet the formalism of the Appendix, which disallows more
than one copy of a token. To fix this problem, either include the round number
as a further component to each message, or canonically extend the formal model
to cover multiple occurrences of tokens, as suggested in e.g. [Weber et al 98].

2.3 P r o p e r t i e s t o b e p r o v e n

Two properties are to be proven. Firstly, two busy agents are in the same round.
As a shorthand, for a place p and a token a, the t e rm p.a denotes at a given
s tate tha t there is at least one copy of the token a at the place p. Hence we have
to show tha t the formula

busy.(u,n) A busy.(v,m) -+ n = m (10)

holds at each reachable state of ~U2.2. In the framework of tempora l logic, this is
a typical safety property, stating that "never something bad happens".

The second property to be proven states tha t each agent will eventually reach

each round. More formally: For each interleaved run So L~ sl L~ . . . of Z2.2 holds:

338

If at state Sw holds busy.(u, n) then there exists an index j >_ w such that at
s tate sj holds busy.(u, n + 1). We denote this by

b u s y . (u , n) ~ , b u s y . (u , n + 1), (11)

adapting notational conventions from temporal logic, particularly from [Chandy,
Misra 88]. There, ~+ is called leads-to.

This kind of properties has rarely been considered in the framework of Petri
nets. In temporal logic, (11) is a typical liveness property, stating that "even-
tuaUy something good will happen". In particular, this kind of liveness proper-
ties is entirely different from well-established reachability, which just claims the
chance to reach a distinguished state. Liveness, to the contrary, states that a
distinguished (kind of) state will inevitably be reached in each run (we always
assume maximal runs; i.e. runs which are infinite or terminate with no transition
enabled).

2 . 4 P l a c e i n v a r i a n t s

As a matter of convenience we employ shorthands of pairs and triples:
(a,b)l = (a,b,c)l = a,
(a, b, c)1,2 = (a, c, b)l,3 ---- (b, a, c)2,1 = (a, b),
(a, b) = (b, ~)
which lift canonically to (binary or ternary) relations.

Figure 2.3 shows three place invariants to the phase synchronization algo-
rithm, Z2.2. il is quite obvious, whereas i2 and i3 are more involved.

A

B

C

a b
- (x , i) (x , i+ l) i

-~(=) ~(=)
+(=,y) -(~,=)
+(y,=) -(~,y)

(=, y,/) -(=, y, i)

8O
u x {0}

il i2
AI

Cl r(Cl) -{- r(Cl)
-2C1,2 - 2C2,1

/3
a(A) -&(A)

- B

0(Cl,3) - #(cl,3)

A:busy
B:messages
C:pending

~(u, n):= 2n. r(u)
~(u, n):= 2n. e(u)
~(~, n):= (2n + 1). r(~)
/~(~, ~):= (2n + 1)- ~(~)

Figure 2.3. Matrix, initial state, and four place invariants to ~U2.2

339

~2.2 has three important place invariants. Two of them are quite intuitive.
First of all, A1 + C1 = U, which for each u E U implies

Al.u + Cl .u = 1 . (12)

Hence each site is always either busy or pending. Furthermore, il implies

Ic, I = Ic1al, (13)

hence each site u has always a unique round number, and if pending, it is pending
with a unique site v.

The place invariant B + B + r(C1) + ~(C1) = 2(C1,2 + C2,1) relates pending
neighbors to their mutual messages. For each pair (u, v) of neighboring sites this
implies

B.(u ,v) + B. (v ,u) + r(C1).(u,v) + r(C1).(v ,u) (14)
= 2. C1,2.(u,v) + 2" C1,2.(v,¢t).

Furthermore, -~C1 .u A C1 .v implies r (C1). (% u) = C1,2. (u, v) = 0 A r (C1). (u, v) =
Cla . (v ,u) = 1, hence, by (14), B.(u ,v) + B . (v ,u) = 1, hence with (12),

Al .u A ~Al.V -+ B.(u, v) V B.(v, u) . (15)

Tile place invariant above furthermore implies

IBI + IBI = 2tC1,2 + 6'2,1t - t r (C i) I - I~(C1)t . (16)

The third place invariant is ~(A) + N + fl(C1,3) = ~(A) + B + fl(Cl,a), which
implies for all u, v E U:

a(A) . (u , v) + B.(v, u) + fi(Cl,a).(u, v) = a(A) . (v , u) + B.(u, v) + fl(V,,3).(v, u) .
(17)

This invariant links all places of ~2.2.

2.5 Busy neighbors don't exchange messages

In case two neighboring sites u and v are both busy, there is no message available
from u to v or from v to u. In terms of Z2.2 this reads for all u E U and v C W(u):

Al.U A Al .v -+ B . (u ,v) = B.(v ,u) = 0 . (18)

Upon proving (18), assume a state s with s ~ AI.uAA1 .v. Then at s holds A1 .u =
Al .v = 1, hence C1.u = Cl.v = 0 (by (12)), hence C1,2.(u,v) = C1,2.(v,u) = 0
(by (13)), hence the proposition, by (14). []

340

2.6 A property of neighboring pending sites

A neighbor v of a pending site u is pending with u, or u is pending with v. In
terms of E2.2, for u E U and v E W(u),

Cl .u -~ C1,2.(u, v) V C1,2.(v, u) . (19)

Proof of (19) assumes a state s with s ~ C1 .u = 1. Then at s holds for all w E
W(u) : r(C1).(u,w) = 1, hence particularly r(C1).(u,v) = 1, hence C1,2.(u,v)+
Cz,2.(v, u) > 1, by (14), hence the proposition. []

2.7 A site is pending with a b u s y neighbor

A pending site v with a busy neighbor u is pending with u. (Hence, with (13),
at most one neighbor of a pending site is busy). In terms of E2.2, for u E U and
v e w(u) ,

AI.u A Cl.V --+ C1,2.(v, u) • (20)

Proof of (20) combines two properties of 2~2.2: First, Cl.v implies C1,2.(u,v) v
C1,2.(v,u) by (19). Second, Al .u implies -,Cl.u by (12), hence -,C1,2.(u,v). []

2.8 Three pending neighbors f o r m a sequence

Assume a site v, pending with w. Then each other pending neighbor u of v is
pending with v. In Z2.2 this reads for v E U and u,w E W(v):

Cl.u A C1,2.(v,w) ~ C1,2.(u,v) • (21)

Proof of (21) combines two properties of E2.2: First, C1 .u implies (31,2. (u, v)V
Cz,2.(v, u) by (19). Second, C1,2.(v, w) implies -,C1,2.(v, u), by (12). []

2.9 B u s y neighbors are in the same round

If two neighbors u and v are both busy, they operate in the same round. In Z2.2
this reads for u • U, v • W(u), and n , m • N:

A.(u,n) A A. (v ,m) --+ n = m . (22)

To prove (22), let s be a reachable state of Z2.2 with s ~ Al .u A Al.v. Then
at s holds Cl.u = CI.V = 0 by (12), hence ~(C1,3).(u,v) = fl(C1,3).(v,u) = O.
Furthermore, B.(u, v) = B.(v, u) = 0, by (18). Combining both properties, (17)
yields a(A).(u, v) = a(A).(v, u). Then for ~ach n E N, A.(u, n) --+ A.(v, n). Then
(22) follows with (12). []

341

2.10 A property of chains

Given u 0 , . . . , u n E U, the sequence U o . . . u n is a chain if ui-1 E W(ui) for
i = 1 , . . . , n , and u i -1 ~ ui+l for i = 1 , . . . , n - 1.

Assume a chain uo .. • un, s tar t ing with a busy site, u0, followed by a pending
site, Ul. Then all follower sites u 2 , . . . , un are pending. In $2.2 this reads

Al.Uo A C l .u l -~ Cl .u i for all i = 1 , . . . , n . (23)

To prove (23), let s be a reachable s ta te with s ~ Al.uo A C1 .Ul. T h e n at s holds
C1,2.(Ul, u0) by (20). Then

--nC1,2. (tL1, ~2) (24)

by (12). Now, contradic t ing (23), assume an index 1 < i < n with s ~ -'161.u i.
Let j be the smallest of those indices. Then at. s holds Al .u j by (12), hence
C1,2.(uj-1, uj), by (20). Then C1,2.(ui-1, ui) for i = 2 , . . . , n by i tera ted appli-
cat ion of (21). Then in par t icular C1,2.(Ul,U2), which contradicts (24). []

2 .11 P r o o f o f t h e s t a t e p r o p e r t y (10)

We are now prepared to prove (10) as follows:
Let s be a reachable s tate with s ~ A.(u,n) A A. (v ,m) . Then there exists a

chain U o . . . u ~ in U with u0 = u and un = v. Then s ~ Al .u i for i = 0 , . . . , n ,
by (23) and (12). Then at s holds A.(ui ,n) for i = 0 , . . . , n by i terat ion of (22).
Hence n = m.

2 .12 P e n d i n g s i t e s h a v e p e n d i n g m e s s a g e s

Here we s tar t p roof of the liveness p roper ty (11). First , we observe pending
messages in case all sites are pending:

Cl.U --+ [BI > 0 . (25)

P r o o f of (25) is based on the observat ion tha t an undirec ted tree with n nodes
has n - 1 arcs. Hence, in Z2.2,

Ir(U)T -- In(U)[= 21U 1 - 2 . (26)

Then Ct.U ---> IBt + tBI = 2tC1,2 + C2,11 - I,'(c1)1 - t~(c1)l (by (16)) = 4lU I -

2(21u i - 2) (by (26)) = 4.

2 .13 .~2.2 is d e a d l o c k f r ee

Each reachable s tate of Z2.2 enables at least one action. (27)

342

Proof. Let s be a reachable state of Z2.2. 1st case: s ~ Al.u for at least one
u E U. Then there exists a chain Uo.. . un, n > 0, of sites with s ~ Al.Ui for all
i = 0 , . . . , n, and -~A.v for all v E W (u n) - un-1. Hence for all such v holds s
B. (v ,u) V B . (u ,v) , by (15). Now we distinguish two cases: Firstly, s ~ B . (u ,v)
for all v E W (u n) - un-1. Then s enables a(un, un-1, k), where s ~ A.(un, k).
Otherwise, there exists some v • r(un) - un-1 with s ~ B.(v, u). Furthermore,
s ~ C . (v ,u ,k) for some k • N (with (12)). Then s enables b(v ,u ,k) . 2nd case:
There is no u • U with s ~ Al.u. Then s ~ C1.U (with (12)). Then IBI > 0,
by (25). Hence there exist u ,v • U with s ~ B. (u ,v) . Then s ~ C . (u ,v , k) for
some k • N, by (14). Then s enables b(u, v, k). []

2.14 The weight funct ion ~/

A function "y(u,v) will be considered, which for neighbors u and v yields an
integer value 7(u, v) at any given state s. Values 7(ui-1, ui) remain in a limited
interval for all chains u o . . . un, and occurrences of transitions increase those
values. For u, v E U, let

7(u ,v) := B. (v ,u) + ZneN(2n. A.(u ,n) + (2n + 1). C1,3.(u,n)) •
(28)

Then (27) implies

7(u,v) = 7(v, u) . (29)

Furthermore, for neighbors w of u, C1,2.(u, w) = r(C1).(u, w); hence
B.(w, u) < 2 (by (14)), hence

]7(u,v) - 7(u,w)[_< 2 (30)

again by (14). Then for each sequence u0 . . . uk of sites, (29) and (30) imply

[7(u0,ui) -~/(uk-i ,Uk)[<_ 2 (k - 1) . (31)

2.15 P r o o f of the l iveness property (11)

Inspection of ~2.2 yields for each step r - ~ s with t = a(u ,v , i) or t = b(u,v,i):

If 7(u, v) = n at state r, then ~(u, v) > n at state s . (32)

Property (27) implies at least one pair (u, v) of neighbors with infinitely
many occurrences of a(u ,v , i) and b(u,v, i) . Then in the set of all reachable
states, 7(u, v) is not limited, by (32). This applies to all neighbors u, v, by (31).
Hence A. (u ,n) ~ A . (u ,n + 1).

343

3 Leader Elect ion and Spanning Trees

3.1 A leader e lect ion algorithm

The sites of a network are frequently supposed to elect one site as their leader.
In case the leader site crashes, a new leader must be elected. The sites are given
unique names to this end (e.g., integer numbers) and a total order is assumed
on those names.

(~ x , y)

updating

sort site var x, y, z : site

sort state : site x site x,y • U --~ x W * y

const U : set of sites W 1 u W 2 = U

const V,W : set of states V = {(u,u) l u • U}

_< : totaJ order on U M(x,y) = W(x) x {y}

fct M : state --~ set of states

Figure 3.1. Basic leader election

Figure 3.1 gives a distributed algorithm for the election of a leader in any
connected network. Initially, each site is pending and assumes its own name as a
candidate for the leader. In later states, a pending site holds a better candidate,
i.e., one with a larger name. Generally, a pending site u together with its actual
candidate v is represented as a state (u,v). Upon pending with v, u informs
each neighbor in W(u) about v by action a(u,v) and then becomes updating.
An updating site u with its actual leader candidate v may receive a message
(u, w). In case the newly suggested candidate, w, does not exceed v, the site u
remains updating with v (action b(u, v, w)). Otherwise u goes pending with the
new candidate w (action c(u, v, w)) and continues as described above.

A message (w, v) E M(u, v) takes the form of a state, with u informing the
site w about v as a candidate for the leader. There may occur multiple copies of
identical messages (as in case of communication protocols). This can easily be
fixed, by extending each message with its sender.

Given a connected network with a finite set U of sites and a total order <
on U, the algorithm terminates with updating all pairs (u, w), where u E U and
w is the maximal element of U.

344

Two neighbors u0, ul of a site w may both be pending with the same candi-
date, v. Concurrent occurrences of a(uo, v) and a(ul, v) then yield two identical
messages (w, v). This does not perfectly meet the formalism of the Appendix,
which disallows more than one copy of a token. To fix this problem, either in-
clude the sender as a further component to each message, or canonically extend
the formal model to cover multiple occurrences of tokens, as suggested in e.g.
[Weber et al 98].

3 . 2 P r o p e r t y t o b e p r o v e n

The crucial proper ty to be proven is a typical liveness proper ty (in the tempo-
ral logic framework, c.f. Sect. 2.3): Each run terminates with each agent being
in]ormed about the leader's number. Using the leads-to operator already used
in (11), the initial s tate s~ of E3.1, the maximal agent max and the formula

7r = updat ing.U x {max} A pending = 0 A messages = 0 (33)

we have to show

sea l ~ 7r. (34)

As explained in Sect. 2.3, (34) states that in each interleaved run so ~ sl ~2~ . . . ,
each occurrence sk of sE is followed by a s tate sk+i at which r holds.

Proof of (34) can considerably be eased by help of concurrent runs. This
notion will be considered in the following.

3 . 3 C o n c u r r e n t r u n s

In its essence, a concurrent run consists of the transition occurrences of an in-
terleaved run, partially ordered by their causal dependencies. As an example,
Fig. 3.2 shows a network of three agents, U = {1, 2, 3}. Arrows indicate the

1 ~ = 3

Figure 3.2.

neighboring relation. Representing each occurrence of a with valuation x -- u
and y = v by auv and each occurrence of b or c with valuation x = u, y = v
and z = w by buvw and cuvw, respectively, one of the interleaved runs of the
instantiat ion of ~3.z by the above network is

all-a22-a33-cl13-b221-b331-a13-
b132-c223-a23-b133-b233-b333.

(35)

345

It describes the initial occurrences of transition a for all three agents, followed
by agent l ' s adoption of the better candidate, 3, and the other two agents'
deletion of agent 1 as a candidate for the leader. Then agent 1 suggests 3 as a
better candidate, adopted by 2, and deleted by 3.

Figure 3.3 shows the corresponding concurrent run. Its elements are ordered

all f =.c113 ,a13 %b132 , b 1 3 3

a33 ~- b331 , b333

Figure 3.3.

from left to right, with left the earlier and right the later transition occurrences.
The upper, middle and lower horizontal lines show the "lifeline" of the agents
1, 2 and 3, respectively. The remaining arcs denote causal precedence due to
messages.

Different interleaved runs may correspond to the same concurrent run; each
total extension of the partial order of a concurrent run is an interleaved run, and
every interleaved run can this way be obtained from a concurrent run.

As a further step, to ease construction of concurrent runs and to support
formal reasoning, it is worthwhile to include the corresponding local states in
between each neighboring transition occurrences, as well as before the minimal
and behind the maximal elements. Figure 3.4 shows the respective extension
of the concurrent run in Fig. 3.3. For a place p, puv denotes a local state, with
token (u, v) at p. Shorthands for places, as introduced in Fig. 3.4, will be applied
in the rest of this chapter.

Unordered local states may arise together in an interleaved run. Even more,
each maximal set of pairwise unordered local states constitutes a global state of
the corresponding interleaved runs.

3.4 P r o g r e s s on c o n c u r r e n t r u n s

Here we consider liveness properties that are based on concurrent runs. In anal-
ogy to the leads-to operator of Sect. 2.3, a formula

p ~-+ q (36)

(p causes q) states for each concurrent run K: I f p holds at a global state So of K
then there exists a state sl, reachable from So in K, where q holds. Stated differ-
ently, (36) holds in a concurrent run K iff there exists at least one interleaving
of K (as defined in Sect. 3.3), at which p ~+ q holds.

346

C12

A 1 1 - ~ a l l ~ 1 1 - - - ~ c 1 1 3 - ~ A 1 3 ,.

. . _/_ A _ _ _ " -
A22 a~z~' -~ ' : , ' - - -= , , b221-=- B22

/ C 3 1

A33-~ a33---~ B 3 3 - ~ b331--b B33

A : pending
B : updating
C : messages

a13 = B13---~b132. = B13 * b133 = B13

~ C223 - ~ A23- -" a22 - -~ B23 - ~ b233 - - ~ B23

• b333 • B33

Figure 3.4.

To complete the definition, p ¢-~ q is said to hold in a system Z iff p ~-~ q
holds for each concurrent run of Z.

As a first example, assume any instantiation of U and W in Fig. 3.1 (which
then fixes V and M). Then a token (u, w) at pending enables the transition a in
mode x = u and y = w. There exists no other transition tha t could engage the
token; hence a(u, w) will occur. With shorthands of Fig. 3.4 this is written

A.(u, w) a(~v) B1At. (37)

Replacing the causes operator '-~ by the leads-to operator ~t would (37) render
valid in Z3.1. But (37) can be embedded into a context. Assume a global s tate s
in a concurrent run K where A.(u, w) A B1.U \ {u} holds. Again, s enables
a(u,w), among many other transitions, but in K we consider occurrence of
a(u, w), obtaining

A.(u,w) ~ B1.U. (38)
^B1.U \

B1.U\ {u} is the context of (38). Replacing "-~ by ~-~ in (38) in general invalidates
the formula in E3.1, as there may be an interleaving with a transition tha t
invalidates B1 .U \ {u} before a(u, w) would occur.

As a second example, let s be a global s tate such tha t B1.U A C = N ~ 0
holds at s, with shorthands B and C as in Fig. 3.4 and some set N C_ M(U)
of messages. N ¢ 0 implies some u, wo E U with C.(u, wo), and B1.U implies
some v E U with B.(u,v). With the valuation x = u, y = v and z = w, the state
s enables b(u,v, wo) or c(u,v, wo). There may be some other message (u,w)

347

in C which u engages in (instead of engaging in w0). But it is guaranteed tha t
b(u, v, to) or c(u, v, w) will occur, for some w • U. This is graphically represented
as

B1.U

'0~'~ ' ~ C c N

C,"
B~.U (39)
C = N ¢ ~

A.(u,w)
B 1U\{u}

3.5 Fundamental state properties

An obvious place invariant implies that each site is either pending or updating:

A1 + B1 = U. (40)

Furthermore, a site v, already knowing the leader, is related to its neigh-
bors by a property derived from a trap. To this end, assume a state s and
two neighboring sites u,v • U, and s ~ B.(u, max). s has been reached
by occurrence of a(u, max). This action also produced C.(v, max). With s
considered as (a new) initial state, an initialized trap yields the inequality
A.(u, max) + C.(v, max) + d.(v, max) + B.(v, max) > 1. Together with (40) this
yields the valid propositional formula

B.(u, max) V C.(v, max) V A.(v, max) V B.(v ,max) . (41)

Intuitively formulated, each neighbor of a site already updating with the leader
is also aware of the leader, or a corresponding message is pending.

3.6 A fundamental progress property

A weight function f will be required, that assigns each state (u, v) its "better"
candidates. So, for all u, v E U let

f (~ , v) = {(~,w) I w • u A w > v}. (42)

Obviously, f(u, v) = ¢ if v = max.
Now, let us consider a state in which all sites are updating (i.e. B1.U), f (B) =

M for some M ~ ~ and C = N for some set of messages N. In such a state
some site not yet knowing the leader will eventually find a bet ter candidate or
will consume one of its pending messages. Thus, eventually a state in which all
sites are updating and (C C Nt A f (B) = M) V f (B) C M will be reached. This
is verified by the proof graph of Fig. 3.5. The proof graph's nodes are justified
as follows:

348

Let ¢p :=B 1.U A

B2"max b(u,v,w))5) q~

CcN

f(B) = M

1) ~ ~ 2) ~ ' ' - 3) c a(u,w)

C = N C = N ~ O B 1.U\{u}

f(B) = M ~ E~ fiB) = M B2.max

A.(U,W)

W > V

; 4)¢p ; 6)¢p

f(B) c M ((C c N Af(B) = M)

vf(B) c M)

Figure 3.5. Proof graph for 223.1

node 1: B2.max, f (B) ~ 0 and the graph's connectedness imply
neighboring sites u and w, B.(u, max), and B.(v,i) with
i < max. Then C.(u, max) by (41) and (40).

node 2: C ~ 0 implies some C.(u,w), and ~o implies some B.(u,v).
This enables the occurrence of b(u, v, w) or c(u, v, w).

node 3: by the occurrence rule.
nodes 4 and 5: propositional logic.

3.7 Proof of (34)

The proof graph in Fig. 3.5 shows

9o ¢--4 ~o
C = N ((C c N A f (B) = M).
f (B) = M ~ 0 vf(B) c M)

(43)

C may shrink finitely often only, hence finitely many iterations of (43) yield

C = N f (B) C M .
f (B) = M ~ 0

(44)

A remaining message is cleared by

C = N C c N
/ (B) = 0 / (B) = 0

(45)

as C.(u, v) A f (B) = ~ implies C.(u, v) A B.(u, max), hence enables b(u, v,max).
The following proof graph now proves (34):

349

1) s Z C a(V),,) 2) B . V

, /
) 3) ko C) 4)~p C

C = N f(B) = E~

f(B) = M ;~ 0

-%
) 5) (p

C = O

f(B) = 0

) 6) C = 0

B.U x {max}

A = ~

Its nodes are justified as follows:

node 1: by the occurrence of a(v, v) for each v E V.
node 2: propositional reasoning.
node 3: finitely many iterations of (44).
node 4: finitely many iterations of (45).
node 5: by definition of ~o and] .

3.8 A variant o f the algorithm

The above algorithm terminates with each site holding the leader's name. As
a variant, each site will now be informed about its distance to the leader and
about a distinguished neighbor closer to the leader. A site then may effectively
communicate with the leader along its distinguished neighbor. The respective
paths to distinguished neighbors form a minimal spanning tree in the underlying
network. Figure 3.6 gives the algorithm.

(~ x , Y , O

updating

so~ site va_.!r i, j : nat

so___~ state = site x site × (nat w {o)}) vat" x, y, z : site

const l , r : s i t e x,y e U ~ x W * y

const U : set of sites W t L) W 2 = U

const V : set of states r E U

const W : set of (sites x sites) _L ~ U

< : total order on U V = ((u,J,w) I u e U \ {r}}

fc t N : site x nat ~ set of states N(x,y,i) = W(x) x {y} x {i}

Figure 3.6. Shortest distance to a root

Initially, the leader r is pending with itself as a path to the leader candi-
date, and distance 0 to the leader. All other sites are initially updating with the

350

unspecified leader candidate _L and infinite distance. In later phases, a pending
token (u, v, n) indicates that there is a path of length n from u along v to the
leader. A pending site u forwards its actual distance n to all its neighbors (by ac-
tion a(u, v, n)) and then turns updating. An updating token (u, v, n) may receive
a message (u, w, m). In case the reported distance m of w to the leader would not
improve the actual distance n, the site u remains with distance n along neighbor
v (action b(u, v, w, n, m), with ordered set (x, y, z, i, j) of variables). Otherwise u
goes pending with distance m + 1 along neighbor w (action c(u, v, w, n, m), with
ordered set (x, y, z, i, j) of variables).

This algorithm can be generalized to a set R C U of leaders in the obvious
way: Initially, pending carries {(r , r ,0) I r e R} and updating {(u,J.,w) I u e
U \ R}. The algorithm then terminates with updating triples (u, v, n), where n is
the minimal distance to a leader and v the name of a neighbor closer to a leader.

4 L o a d B a l a n c e o n R i n g s

A service site is intended to execute tasks, provided by the site's environment.
At any reachable state a service site has its actual workload, i.e., a set of tasks
still to be executed. The workload increases or decreases due to interaction with
the environment.

Now assume a set of service sites, each one autonomously interacting with its
environment. Their individual workload may be heavy or low in a given state,
and it is worthwhile to balance them: A site with heavy workload may send some
tasks to sites with less heavy workload. The overall workload in a set of service
sites is balanced whenever the cardinality of the workload of two sites differs at
most by one.

A distributed algorithm is constructed in the following, organizing load bal-
ancing in a set of service sites. The communication lines among sites are assumed
to form a ring. Each agent u alternately sends a workload message to its right
neighbor, r (u) , and a task message to its left neighbor, l(u). A workload mes-
sage of u informs r(u) about the cardinality of the actual workload of u. A task
message of u depends on the previous workload message of l(u): If this message
reports less tasks than u has, the next task message of u transfers one of u's
tasks to l(u). Otherwise, the next task message of u transfers no task to l(u).
Intuitively formulated, a site u forwards a task to l(u) whenever the workload
of u exceeds the workload of l(u).

4.1 A distributed load balance algorithm

Figure 4.1 shows a load balance algorithm with fixed workload: The overall
number of tasks remains constant. Each state of a site u is represented as a pair
(u, n), with n the cardinality of u's actual workload. The task tra.nsfered from u
to l(u) by a task message (l(u), 1), is not represented itself.

With the ordered set (x, i , j) of variables, action in]orm right describes
communication with right neighbors: A site u with n tasks with action

351

inform r igh t (u ,n ,m) receives a task message (u ,m) (with m = 0 or m = 1)
from r(u) , updates its actual workload, n, and returns a corresponding work-
load message (r(u), n + m) back to r(u) , indicating tha t u has now n + m tasks.
With the same ordered set of variables, actions send left no task and send left

upc
me
(

receive inform
state I right from right

(x,j) =, I (X,I+J~ = / , e ' ~ (X,I) - r ' ~ ' ~ (r(x) , i)

,,° 'x."t t
ge t , ~ t a t e 3 state (

(z (x),~) ~ (x,l)

we kload
m~ 5sage

)

sort site
sort alloc = site x nat

const U : set of sites
coast V : set of alloc
!qt l , r : site -> site

v ~ i , j : nat
va___r x ,y : site
V x e U 3 l i e n a t : (x , i) e V
V x V y 3 n e nat: y = rn(x)

(r(x)) = x

Figure 4.1. Distributed load balance

one task describe communication with left neighbors: A site u with n tasks re-
ceives a workload message (u ,m) from l(u), compares n and m, and returns a
task with action send left one task(u, n, m) in case its actual workload, n, ex-
ceeds l(u)'s reported workload, m. Technically, this is denoted by the inscription
i > j , which denotes tha t transition send left one task may only occur in a mode
where the value assigned to i exceeds the value assigned to j . Otherwise, u sends
a task message with send left no task(u, n, m), t o / (u) , containing no task.

Initially, each site u informs r(u) about its actual workload.

4.2 Decisive properties of the algorithm

The above algorithm never terminates; each run is infinite. The overall workload
is eventually balanced, as described above. Two cases may be distinguished,
depending on the overall workload w := ~vey2v and the number IUI of sites:

In case w is a multiple of IUI, a state will be reached where transit ion send left
one task remains inactive forever, and state1, state2, and state3 together contain
the tokens (u, n) with u E U and n = TU[' • Otherwise a state will be reached where

352

for all tokens (u, n) and (v, m) in state1, state2, and state3 holds Irn-nl < 1, and
this remains valid forever. The algorithm behaves quite regularly: With initially
V at state1, it evolves exactly one concurrent run. This run is strictly organized
in rounds: All sites concurrently execute action inform right and produce a
workload message for their respective right neighbor. Then all sites concurrently
execute send left no task or send left one task, thus producing a task message
for their respective left neighbor. Finally, receive from right completes a round.

4 .3 P r o p e r t i e s to b e p r o v e n

Figure 4.2 is a redrawn version of the distributed load balance algorithm. We
have to show that the overall workload remains constant, eventually is balanced,
and henceforth remains balanced.

d A a
r (x,j) ~ " l (x,i+j) = Q (x,i) = r " ' - I (r(x),i) -,,

) L (x., (
(l (x),0) (x , i - 1) ~ ~ / (x ' i) ~ ' ' " -- (x,j) ..,

\ ./
(z (x), l) ~ . (x,j)

c

D

sort site var i, j : nat
sort alloc = sitex nat YM x,y : site

V X E U 3 1 i E nat:(x, i)e V
¢0nst U : set of sites V x V y 3 n E nat :y=rn(x)
(;0nst V : set of alloc I (r(x)) = x
fct l , r : site --) site

Figure 4.2. Renamed distributed load balance

A formal representation of those properties in terms of Ea.2 can be based on
the following functions. For any place p E {A, B, C, E} and any site u E U, let

O n iff -~pl.u
a(p, u) := iff p.(u, n) '

a(u) := Zpe{A,B,C,E} a(p, u), and
(46)

:=

353

These functions describe the workload of site u at place p, the entire workload
of u and the overall workload in the system, respectively. The initial overall
workload is k iff a~4. 2 ~ a -- k. A balanced state meets the predicate

balanced := u ,v e U --4 In(u) - a(v)l _< 1. (47)

So we have to show the state proper ty

Z4.2 ~ a = k (48)

and the progress proper ty

Z4.2 ~ a~ ~4 balanced. (49)

Furthermore, we have to show that all states reachable from a balanced s tate
t

are balanced, i.e., for each step r - 4 s,

balanced(r) --4 balanced(s). (50)

4.4 Place invariants

We have two quite obvious place invariants. First, each site is always in one of
the three states of Z4.1 (together with its token toad): A1 + B1 + C1 = U (with
U = V1 according to the specification of Fig. 4.2). Hence in part icular for each
u E U holds

Al. l (u) + Bl . l (u) + Cl.l(u) = 1. (51)

Second, each site is either in the quiet state1 or has sent a workload message to
its right neighbor (i.e., is the left neighbor of the first component of a workload
message), or is to receive an update message: A1 + r(D1) + E1 = U. Hence for
each u E U follows Al. l (u) + r(D1).l(u) + El . l (u) = 1, which in turn yields

Al. l (u) + Dl .u + El . l (u) = 1. (52)

4.5 Further propert ies of the a lgor i thm

Here we observe and exploit a particular kind of regular behavior of Z4.1, tha t in
a stronger version has been the essence of the phase synchronization algorithm,
E2.2. In each sequential run of Z2.2, each reachable s tate is eventually followed
by a s tate where all sites are busy. A similar, weaker property holds in Z4.1: In
each concurrent run, each reachable state is eventually followed by a s tate where
all sites are in their local s tate state 1. This means that in ~ . 2 holds the formula
true ~4 "AA1.U. Generally, a formula p is a ground formula of a system net Z
iff true ~-4 p holds at Z.

Two basic properties are required in the following: the ground formula A1.U,
and an upper bound for the workload of the sender of a workload message. To
s tar t with, we first show:

A1.U is a ground formula. (53)

354

Upon proving (53), observe that all steps starting at A1.U are shaped

A1 a(~) A1.U - u A BI.u A Dl.r(u), for some u • U and n • N. Then (53)
follows from Theorem 18.2 and the following proof graph:

1) A1.U - u A Bl.u A Dl.r(u) ¢-+
2) B1 .U A D1.U ~-~
3) C1 .U A E1.U ~-~
4) A1.U.

Its nodes are justified as follows:

1) by occurrence of a(v, n) for all (v, n) E V, v ~ u
2) by occurrence of b(v, n, m) or c(v, n, m) for all v E U
3) by occurrence of d(v, n, m) for all v • U.

Second, we show that a workload message tops its sender's token load:

D.(u,n) -~ a(l(u)) <_ n. (54)

(54) is obviously true at the initial state because D = 0. Inductively assume a

step r - ~ s with r ~ (54). Upon proving s ~ (54) two cases are distinguished:

i. Assume r ~ Dl.u and s ~ D.(u,n). Then t = a(l(u),n) (by the structure of
the net). Then s ~ B.(l(u), n) (by the occurrence rule). Hence s ~ Bl. /(u) ,
hence s ~ -~Al.l(u) A -~Cl.l(u), by (51). Furthermore, the assumption of
s ~ D.(u, n) implies s ~ Dl.u, hence s ~ -~El.l(u) (by (52)). Both argu-
ments together imply a(l(u)) < a(B.l(u)). Then s ~ B.(l(u),n) implies the
proposition.

ii. Assume r ~ a(l(u)) <_ n and s ~: a(l(u)) < n. Then t = c(u,n,m), for
some n ,m e N (by the structure of the net). Then s ~ El.(l(u),n) (by the
occurrence rule). Then s ~ -~Dl.(u, n) (by (52)), hence the proposition.

4.6 A d e c r e a s i n g we igh t

A weight function T on states will be employed, defined for each state s of E4.2
b y r (s) = n i f f s

E eua(u) = n. (55)

It will turn out tha t no step increases T. Furthermore, T decreases upon occur-
rence of c(u,n,m), provided m -t- 1 is smaller than n.

First we show that c does not increase T: Let r s be a step. Then

r (r) r(8). (56)

In order to show (56), observe that at r holds (*) B.(u, n) as well as (**) D.(u, m),
due to the occurrence rule. Furthermore, with r ~ a(l(u)) = a A a(u) = b, at r

355

holds b _> n by (*), n > m by inscr ipt ion of t rans i t ion c, and m >_ a(l (u)) , by
(**) and (54); hence (***) (a - b + 1) <_ 0. Now,

T(S) = T(r) -- a 2 -- 52 + (a + 1) 2 -t- (b - 1) 2 (by the s t ruc tu re of c(u, n, m))

= v(r) - a 2 - b 2 + a 2 + 2 a + 1 + b 2 - 2 b + 1

= + 2 (a - b + 1)

< v(r) , by (***), hence (56).

c(u,n,m))
(56) can be s t r eng thened in case a(u) > a(l (u)) + 1: Let r s be a s tep
of $4.2 with a(u) > a(l(u)) + 1. T h e n

> (57)

P r o o f of (57) is a slight var iant of the above p roof g raph of (56): b > a + 1 now
implies (a - b + 1) < 0. Then the last two lines read r (r) + 2(a - b + 1) < T(r).

General iz ing (56), no s tep a t all increases T: Let r - ~ s be a s tep of ~4.2. T h e n

~(r) > ~(s). (58)

To prove (58), observe t ha t T(r) ~ T(S) implies t = c(u, n, m) for some u E U
and n, m E N, by definit ion of ~- and a , and the s t ruc tu re of Z4.2. Then (58)
follows f rom (56).

4 .7 D e s c e n t s

A descent of length k consists of a sequence u , / (u) , / 2 (u) , . . . , Ik+l(u) of sites,
wi th token loads decreasing by 1 f rom u to l(u) and by any n u m b e r f rom lk(u)
to I k+l (u), and identical token load o f / (u) , . . . , Ik(u). More precisely, for any site
u E U and any s ta te s, the descent of u at s amoun t s to k (wri t ten: 5(u) = k)
iff there exists some n E N with

a(u) = n + 1,
a (l i (u)) = n (i = 1 , . . . , k) , (59)
0 " (/ n + l (u)) ~ n -- 1.

Figure 4.3 outl ines examples .
In general , there m a y exist s ta tes s wi th undefined descent 5(u). Even more ,

obviously holds for all s ta tes s of ~4.2:

s is ba lanced iff no site has a descent a t s. (60)

In the sequel we will show tha t large descents reduce to small ones and small
descents reduce the weight ~-. Each large descent reduces to a smal ler one, as
exemplif ied in Fig. 4.3.

n l . v A 5(u) = k A k > 2 ~+ A1.U A 5(l(u)) = k - 2. (61)

This proposi t ion follows f rom the following proof graph:

356

before , I I I I [1
U

r, R! a~r I I =2
I I , ~<.o)~=2

U

Figure 4.3. Reduction of a large descent

1) A1.UAS(u) = k A k > 2 - - +
2) A1.U A A.(u, n + 1) A A.(li(u), n) (i = 1 , . . . , k) h A.(l k+l (u), n - j) ~-+
3) B1.U A D1.U A B . (u ,n + 1) A B.(l i (u) ,n) (i = 1 , . . . , k) A D.(u,n) A

D.(l i (u) ,n) (i = 1 , . . . , k - 1) A D . (i ~ (u) , n - j)
4) C1.UAE1.UAC.(I i(u) , n) (i = 1 , . . . , k - 1) AC.(I k (u), n - j) AE.(l(u) , 1) A

E.(Z~(~),0) (i = 2 , . . . ,k)
5) A1.U A A . (l (u) , n + l)AA . (l i (u) ,n) (i = 2 , . . . , k - 1) AA. (lk (u) ,n - 1) -~
6) AI.U A 5(l(u)) = k - 2.

Its nodes are justified as follows:

node 1: there exist n, j > 1 with the described properties, according to (59)
node 2: by occurrence of {a(v ,m) I v e U A A . (v ,m)}
node 3: by occurrence of c(u ,n ÷ 1,n), b(l i(u) ,n,n) for i = 1 , . . . , k - 1,

c (l l : (u) , n , n - j) , and b(v ,m,m') or c (v ,m ,m ') for all v ~ li(u) (i =

0 , . . . , k)
node 4: by occurrence of { d (v , m , m ') I v E U A C.(v ,m) A E . (v ,m ') }
node 5: by (59).

Each descent of length 0 reduces the weight v, as outlined in Fig. 4.4.

before ~ n = 2 o(u) z + o(l (u)) 2 = 10
S(u) = 0

U

alter no descent o(u~ + o(l (u)~ = 8

Figure 4.4. Descent of length 0

357

Formally,

A 1 . U A S (u) = 0AT---- rn ~ T < m. (62)

This proposition follows from the following proof graph:

1) A 1 . U A S (u) = 0 A T = m
2) A . (u , n + 1) A A . (l (u) , n - j) A T = m '--4

c(u,n+l,n--j)
3) B . (u , n + l) A D . (u , n - j) A ' r <_ m '-+
4) r < m .

Its nodes are justified as follows:

node 1: there exist n, j _> 1 with the described properties, according to (59)
node 2: by occurrence of a(u, n + 1) and a(l(u), n - j)
node 3: by (56).

Each descent of length 1 likewise reduces the weight ~-, as outlined in Fig. 4.5.

before ~ [~ n = 2 (~(u)2 + o(l (u)) ~
5(u) = 1 + o'([2(u))2 = 14

u

o(@ + o(z (u)f after no descent
+ o(/2(u))2= 12

u

Figure 4.5. Descent of length 1

Formally,

A1.UA(~(u) = 1 A T - - - - I n L e T < : m . (63)

This proposition follows from the following proof graph:

1) A 1 . U A S (u) = I A T = m - - +
2) A I . U A A . (u , n + 1) A A . (l (u) , n) A A.(12(u) ,n - j) A T = m "--+
3) B . (u , n + 1) A D . (u , n) A B . (l (u) , n) A D . (l (u) , n - j) A T < m
4) B . (u , n + 1) A D . (u , n) A B . (l (u) , n) A D . (l (u) , n - j) A T <_ m A a(u) =

~(l(~)) + Ac('(~)~ ~-j)

5) B.(~, ~ + 1) A D.(u, ~) A ~ < m A o(~) = oq(~)) + 2~ (~ '~ '~)
6) ~ ' < m .

Its nodes are justified as follows:

358

node 1: there exist n, j > 1 with the described properties, according to (59)
node 2: by occurrence of a(u , n + 1), a (l (u) , n) , and a(12(u) , n - 1)
node 3: by (51), and (52)
node 4: by the occurrence rule
node 5: by the occurrence rule, and (57).

The weight r is reducible as long as there exists a descent:

T = m ~+ r < m V Vu E U : 5(u) is undefined. (64)

• This proposition follows from the following proof graph:
1) T = m ~--~
2) A1.U A r < m -+ 3) Vu e U : (i(u) undefined

$
4) A 1 . U A T < m A 3 u E U , k E N w i t h S (u) = k ' - +
5) A 1 . U A r _ < m A 3 u e U w i t h S (u) _ < l
6) T < m - ~
7) T < m Y Vu E U : J(u) undefined (

Its nodes are justified as follows:

node 1: by (53) and (58)
node 2: propositional logic
node 3: propositional logic
node 4: by [kj fold application of (61)
node 5: by (62) if ~(u) = 0, and by (63) if ~(u) = 1
node 6: propositional logic•

4.8 Proof of the essential properties

To show (48), let r -~ s be any step of ~V'4.2, and assume ar = k. Then a8 = k
follows due to the structure of E4.2. Finally, (48) follows by induction on the
length of interleaved runs of 224.2.

To prove (50), first consider the case of t = c (u , n , m) for some u E U and
n , m E N. Then at r holds B . (u , n) A D . (u , m) A n > m . Furthermore, a (u) > n
by (46) and m >_ a (l (u)) , by (54). Hence a (u) = n and a (l (u)) = n - 1, as r
is balanced. Then at s holds a (u) = n - 1 and a (l (u)) = n . The workload a (v)

remains unchanged for all v ¢ u. Hence s is balanced, too.
All actions t not involving c do not touch a (u) for any u E U, hence the

proposition.
Proof of (49) requires

aE ~-+ balanced (65)

proven by the following proof graph:

359

a E -~t T m m c-+ T = n l <: m "--+ "r m r~2 ~ n l ¢'~ " " ¢"'~ "r m r~m -= O

Vu e U : ~(u) is undefined

$
balanced

which is justified as follows: The first implication states that T has some value,
m, at the initial s tate a~ . All other nodes in the upper line are justified by (64).
The last implication holds by (60).

In order to show (49), let w be an interleaved run of ~4.2. Then there exists a
concurrent run K of ~:a.2, including all actions of w. K has a reachable, balanced
state, s, (by (65)). Then w has a reachable state, s ' , such tha t all actions of K ,
occurring before s, are actions of w, occurring before s t. Then Z4.2 ~ s ~-~ s '
and s ' is balanced by (50), hence the proposition.

5 The Echo Algor i thm

5.1 T h e p r o b l e m

Given a finite, connected network with a particular initiator site, the echo algo-
r i thm organizes acknowledged broadcast of the initiator 's message throughout
the entire network to all sites: The initiator will terminate only after all other
sites are informed.

Figure 5.1 shows one round of messages, sent by the initiator i to all its
neighbors. Messages and receipts are jointly represented in one place. The cen-
tral idea of the echo algorithm is now covered in the step from Z~.I to Zs.~:
Upon receiving the initiator 's message, a neighbor of the initiator forwards the
message to all its neighbors except for the initiator, and remains pending until
receiving messages from all those neighbors. Each site is eventually addressed
in this schema. Each uninformed site u E U receives in general more than one
message, hence u selects one occurrence mode (u, v) of action c. In this case, v
is called the p a r e n t s i t e of u. The pairs (u, v) with v the parent site of u, form
a s p a n n i n g t ree in the underlying network: For each site u E U there exists a
unique sequence u0. • • u,~ of sites with u0 = u, u,~ = i and ui the parent site of
u~-i (i = 1 , . . . , n) . A site u is a l e a f of the spanning tree if no neighbor of u
elects u as its parent node.

For each pending leaf (u, v), the place m e s s a g e s eventually holds all messages
M(u) - (u, v), hence the leaf becomes i n f o r m e d by occurrence of d in mode (u, v).
The leaves are the first to become (concurrently) i n f o r m e d . Then all sites are
consecutively i n f o r m e d , causally ordered along the spanning tree. Finally, the
initiator 's transit ion b is enabled, and the w a i t i n g initiator turns t e r m i n a t e d .

5.2 P r o p e r t i e s to b e p r o v e n

Figure 5.3 provides a redrawn version of the Echo Algorithm of Fig. 5.2. It has

360

start a waiting b terminated
Q i , i i _ f'-"~ i J'---I i

(x,y) - k ~ - J (x,y) - I I x
uninformed c pending d informed

so_rtd site W = W - 1

SO_.~ message = site x site x,y e U u {i} --> x W y

const i : site W 1 = U w {i}

const U : set of sites i ~ U

const W : set of (sites x sites) M(x) = W(x) x {x}

fct M, M : site ~ set of messages M(x) = M(x) - 1

va_.Er x,y : site

Figure 5.1. The initiator informs its neighbors

start a waiting b terminated
Q i d i i i

(x,y _

(x,y) - I I x = ~ - - . .)
uninformed c pending d informed

sort site W = W- 1

sort message = site × site x,y e U u {i} --> x W y

const i : site W 1 = U ~J {i}

const U : set of sites i ~ U

const W : set of (sites x sites) M(x) = W(x) x {x}

fc t M, M : site --> set of messages M(x) = M(x) - t

va_!r x,y : site

Figure 5.2. The echo algorithm

361

A

Q

Q
E

a B b C
i d , i L ~ i

(x,y) ~ (y,x)

x - G
e F d G

sort site W = W - 1

sort message = site x site x,y e U w {i} ~ x W y

censt i : site W 1 = U u {i/

const U : set of sites i ~ U

const W : set of (sites x sites) M(x) = W(x) x {x}
fct M, M : site ~ set of messages M(x) = M(x)- 1

v ar x,y : site

Figure 5.3. Redrawn echo algorithm Z5.1

two decisive properties: Firstly, the initiator terminates only if all other sites
have been informed before. In Fig. 5.3, this reads

C.i --+ G.U. (66)

Secondly, the initiator will eventually terminate, i.e.,

sE~ 3 ~ C.i. (67)

Both (66) and (67) will be verified in the sequel.
There is no straight-forward place invariant or trap that would prove (66).

Nor is there an intuitively convincing proof graph for (67). Rather, one has to
argue inductively along a spanning tree that yields at place F.

5 . 3 T h r e e p l a c e i n v a r i a n t s

Figure 5.3 has three important place invariants, as given in Fig. 5.4. Two of
them are intuitively quite obvious, representing the "life lines" of the initiator i
and of all other sites, respectively.

The equation of/1 is A + B + C = i. This implies

A.i + B . i + C.i = 1, (68)

hence the initiator is always either at its start or is waiting, or is terminated.
The equation furthermore implies

362

A
B
C
D

E
F
G

I . sv

a

- i
i

M(i)

b c d

- i
i

--MCi) M(x) --M(x)
-(~,~) +(~,y)
-(y,x) +(y,x)

- x U
(~,y) -(~,y)

x
i

L e t F = F -1 a n d U ' = U U { I }

i A
B
C

E
F1
6
U

I3
M(A)

~(c)
D

M(E)
F + ~

M(U')

Figure 5.4. Matrix, initial state, and three place invariants of .~'5.3

Vx E U : A.x + B .x + C.x = 0, (69)

hence no non-initiator site ever finds at A, B, or C.
Correspondingly, the equation o f /2 is E + F1 + G = U. This implies

Vx E U : E .x + FI.x + G.x = 1, (70)

hence each non-initiator is always either uninformed or pending or informed.
The equation furthermore implies

Vx ¢. U : E .x + F1 .x + G.x = O, (71)

hence the initiator never finds on E, F , or G.
/3, finally, represents the potential messages of the system. Its equation is

M (A) + M (C) + D + M (E) + F + F + M(G) = M(U') , implying for each
message (y ,x) e M(U') the property M (A) . (y , x) +-M(C) . (y ,x) + D.(y ,x) +
M(E) . (y , x) + F. (y, x) + F . (y , x) +M(G) . (y , x) = M.(y, x), which in turn reduces
to

Vx E U' Vy E W(x) : (72)
A.x + C.y + D.(y, x) + E .x + F.(y, x) + F.(x, y) + G.y = 1.

Hence for each message (y, x) holds: Its sender x is still starting or uninformed,
or the message has already been sent but not received yet, or one of y and x
has received the message from x to y, respectively, or the message's receiver y is
terminated or informed.

5.4 T h e p e n d i n g site's r o o t e d tree

A further state property will be required, stating that the tokens on F always
form a tree with root i. This will be formulated with the help of the following
notation:

A sequence uo . . . un of sites ui E U' is a sequence of F at a state
(73)

s i f f s ~ F.(u~-I,U~) for i = 1 , . . . , n .

363

For each reachable s tate s we will now prove the following two properties:

For each F1 .u there is a unique sequence u 0 . . . un of F with u0 = u (74)
and us = i,

and

the elements of each sequence of F are pairwise different. (75)

Both propert ies now are together shown by induction on the reachability of
states:
Both (74) and (75) hold initially, as s~5.3 ~ F = 0. Now, let r be a reachable

state, let r --~ s be a step of some transit ion t, and inductively assume (74) and
(75) for r.

The case of t = a or t = b implies r (F) = s(F) , hence the step r - - ~ s retains
both (74) and (75) for s. For t = c or t = d let re(x) = u and re(y) = v.

The case of t = c goes as follows: Enabledness of c(m) at r now for r im-
plies D.(u, v) and E.u. Then r ~ Fl.v, according to the following sequence of
implications:

1. * 2. : 3. , 4. ~ 5 .
D.(u,v) D.(u,v) ~E.v ~E.v ~ . v

E.u E.u E.u -G .v
v e W(u) v e W(u)

Its nodes are justified as follows:

node 1: (71);
node 2: (72) with x = v, y = u;
node 3: (72) with x = u, y = v;
node 4: (70),

Now, r ~ F1 .v and the inductive assumption of (74) imply a unique sequence
v . . . i of F at s ta te r. Then u v . . . i is a sequence of F at s tate s, because s (F) =
r (F) + (u , v). Together with (70), this implies (74) for s. Furthermore, r ~ u ¢ F1
(by (70)) and u # i by (69), hence (75) for s.

Correspondingly, enabledness of d(m) at r now for r implies D . M (u) - (u, v)
and F.(u, v). Then r ~ F2.u according to the following sequence of implications:

1. , 2. * 3. ~" 4. * 5. * 6.
n.-M(u) n.-M(u) F n (-M(u) E A (M(u) F N M (u) = 0 -,Fu.u
-(u, v) - (u, v) - (u, v)) = 0 - (v , u)) = O
F.(u, v) -~F.(v, u) -~F.(v, u) -~F.(v, u)

Its nodes 1 and 2 are justified by (72), nodes 3, 4, and 5 by propert ies of M.
With r ~ -~F2.u, for each sequence u 0 . . . u s of F, u l , . . . , u s # u. This

implies (74) for the s tate s, because s (F) = r (F) - (u, v). (75) is then trivial,
because s(F) C r(F).

364

5.5 P r o o f o f t h e s t a t e p r o p e r t y (66)

(66) is indirectly proven in three steps:

i. Assume F ~ $. Then there exists some w E U' with F.(w,i), by (74). Then
-~C.i by (72).

ii. For all u E U' we show
E . u -+ -~C.i (*)

by induction on the distance of u to i: For u = i, (*) holds trivially, as
-~E.i by (71). Inductively assume (*), let v e W(u), and assume E.v. Then
u e W(v), hence -,G.u, by (72). Then Fl .u or E.u, by (70). The case of F l .u
implies F # 0, hence -~C.i by (i). The case of E.u implies -~C.i by inductive
assumption.

iii. C.i -~ E = F = 0, by (i) and (ii). Then (66) follows from (70).

5.6 P r o g r e s s f r o m uninformed t o pending

Here we show that each uninformed site u E U will eventually go pending. In
terms of ~5.3 this reads:

(76)
Let U = V U W , V ~ 0, W ~ 0. Then
E . V ^ F I . W ~ V v e v (E . V - v ^ F 1 . W + v).

This property holds due to the following proof graph:

1) E . V A F 1 . W A V ~ O A W ~O--~
2) E . V A F 1 . W A e x . v ~ VAex. w E W U { i } with D.(v,w) "-4
3) E . V - v A F 1 . W +v

Its nodes are justified as follows:

node 1: Connectedness of U' implies some neighbors v, w such that E.v, and
Fl.W or w = i. Furthermore,

i. Fl.w implies w e U by (71), hence -~A.w by (69). w = i and
W ~ 0 imply some F.(u,i) by (74), hence -,A.i by (72).

ii. E.v implies v e U by (71), then -,C.v by (69).
iii. Fl .w implies -~E.w by (70) and w = i implies -~E.w by (71).
iv. E.v implies -~Fl.v by (74), hence "~F.(v, w).
v. Let u o . . . u n be a sequence of F with Uo = w and un = i,

according to (74). The case of n = 1 implies ul = i ~ v, hence
-~F.(w, v). Otherwise, Fl.Ul. Then E.v implies ul ~ v by (72).
Hence -~F. (w, v).

vi. E.v implies -~G.v by (70).
Now (i), . . . ,(vi), and (72) imply D.(v,w).

node 2: by the occurrence of c(v, w).

365

5 . 7 P r o g r e s s f r o m pending t o i n f o r m e d

Here we show that each pending site will eventually be informed. In terms of
~ . 3 this reads:

Let U = V U W with V ~ 0. Then
F I . V A G . W ~ V v e v (F l . Y - v h G . W + v). (77)

This property holds due to the following proof graph:

1) F t . V A G . W A V U W = U A V ¢ O - +
2) ex. v E V e x , w E U :

F I . V ^ C . W ^ V u W = U - (v , w))

3) ex. v e Vex . w E U with F1.V - w A G . W + v.

Its nodes are justified as follows:

node i: Let u 0 . . . u , be a maximal sequence of F. This exists due to (74) and
(75). In case u1 is the only neighbor of u0, D . (M (u o) - (Uo,Ul)) =
D.((uo, u l) _ - (uo, ul)) = D.O which holds trivially. Otherwise, let
(uo, v) E M(uo) - (uo, ul). Then the following six properties hold:

i. (74) implies some F. (w , i) , hence ~A. i by (72), hence -~A.v in
case i -- v. Otherwise, v E U, hence -~A.v by (69).

ii. u0 E U by construction, hence ~C.uo by (69).
iii. E = ~ by (70) and V U W = U, hence -~E.v.
iv. Maximality of uo . . . un implies ~F.(v , uo).
v. F . (uo ,u l) implies ~F. (uo ,v) as the path from u0 to i is unique

by (74).
vi. Fl.U0 implies ~G.uo.
Now (i),... ,(vi), and (72) imply D.(uo, v). ']:his argument applies to
all (u0, v) E M(uo) - (Uo, Ul), hence D . M (u o) - (uo, Ul).

node 2: by the occurrence of d(v, w).

5.8 P r o o f of t h e l iveness p r o p e r t y (67)

(67) is now proven with the help of the proof graph of Fig. 5.5. Its nodes are
justified as follows:

node 1:
node 2:
node 3:
node 4:
node 5:
node 6:

definition of s ~ 3
by the occurrence rule
by the occurrence of c(u, i) with u C M (i)
IVI-fold application of (76)
IUI-fold application of (77)
we distinguish three cases:

i. u e M (i) implies u ~ i, hence -~A.u by (69)
ii. G.U implies E = F = ~ by (70) and (71). Hence - E . u , ~F.(i , u),

and ~F.(u, i).
iii. i ¢ U implies -~G.i by (71).

366

1) sz5.3 ; a i
2) E=UAA. i
3) E=U^D.M(i) C c(u,i))
4) E.V A F1.WAW~ O ^ V u W = U
5) F1.U c)

6) G.UI_ 1

7) D,M(i)
8) D.M(i) A B.i C b(i) >
9) C.i (

Figure 5.5. A proof graph for s~5 s ~ C.i

Now, (i), (ii), and (iii) with (72) imply D.(i, u) V C.i. This argument
applies to all (i, u) • M(i), hence D.-M(i) V C.i.

node 7: -~C.i by (72); -~A.i because ss5. s ~ -~D.M(i), the only initial step
is sJcs.s -~ B. i , and {B. i , C.i} is a trap, initialized after this step.
Hence the proposition by (68).

node 8: by the occurrence rule.

Appendix

6 The Concept of System Nets

The conceptual idea of system nets is quite simple: Each place of a system net
E represents a set of local states and each transition of ~7 represents a set of
actions. The sets assigned to the places form the underlying universe:

6.1 Defini t ion Let ~ be a net. A universe A of S fixes for each place p E PE
a set Ap, the domain ofp in .4.

An actual state fixes for each place a subset of its domain. Some atgo-
rithmshave reachable states with multiple occurrences of elements. Formally, an
actual state then fixes a multiset. For the sake of simplicity we stick to proper
subsets in the following. The canonical generalization to multisets is given in
[Weber et al 98]. An action correspondingly fixes the degree of change caused by
its occurrence:

6.2 Defini t ion Let ~ be a net with a universe ,4.

i. A state a of Z assigns to each place p • Pr, a set a(p) C A p .
ii. Let t • T z . An action m of t assigns to each adjacent arc f = (19, t) or

f = (t,p) a set re(f) C_ Ap.

367

Enabledness and effect of actions, and the notion of steps, are defined as
follows:

6.3 D e f i n i t i o n Let ~ be a net with some universe .A, let a be a state, let t E T£,
and let m be an action of t.

i. m is enabled at a iff for each place p E *t, m(p, t) C_ a(p) and for each place
p E t °, (m(t ,p) \ re(p, t)) C_ Av \ aO).

ii. The state eft(a, m), defined for each place p E PE by

f a(p) \ re(p, t)
~ a(p) U ra(t,p)

eft(a, m)(p) := / (a(p) \ re(p, t)) U m(t, p)

ta(p)

iff p E °t \ t °,

iff p E t" \ "t,

i f fp E t*M' t ,

otherwise,

is the effect of the occurrence of m on a.
iii. Assume m is enabled at a. Then the triple (a , m , e f t (a , m)) is called a step

of t in Z , and usually written a - ~ eft(a, m) .

Steps may be described concisely by means of a canonical extension of actions:

6.4 P r o p o s i t i o n Let Z be a system net, let t E T~, and let a-T+b be a step of
t. Extend m by re(r, s) := ~ for all pairs (r, s) of net elements which form no
arc of the net. Then for all places p E P~, b(p) = (a(p) \ m(p, t)) U m(t ,p) .

A net with a domain for each place and a set of actions for each transit ion
is fur thermore equipped with an initial state:

6.5 D e f i n i t i o n A net Z is a system net iff

i. For each place p E P~, a set Ap is assumed (i.e., a universe of S) ,
ii. for each transition t E TE, a set of actions of t is assumed,

iii. a state a z is distinguished, called the initial s tate of Z.

7 I n t e r l e a v e d a n d C o n c u r r e n t R u n s

Interleaved runs of system nets can be defined canonically as sequences of steps.

7.1 D e f i n i t i o n Let Z be a system net and let ao := a~ .

i. For i = 1 , . . . ,n assume steps ai-1 rn~ ai of Z such that no action is
enabled at an. They form a finite interleaved run w of Z , written ao ml>
al m2>.., m% an. Each i E {0, . . . ,n} is an index of w.

ii. For i = 1, 2 , . . . assume steps ai-1 m~ ai of ~ . They form an infinite inter-

leaved run w of Z , sometimes outlined ao ml> al ,~2> Each i E N is an
index of w.

368

Reachable steps, states and actions are defined as follows:

7.2 D e f i n i t i o n Let ~U be a system net.

i. A step a - ~ b of E is reachable in Z iff there exists a finite interleaved run
i n i n)

a~ ml)al m2~a2--+...--~an-1)an with an-1 an -~ a--~b.
ii. A state a of Z is reachable in ~ if] a = a~ or there exists a reachable step

formed b - ~ a.
iii. An action m is reachable in Z if] there exists a reachable step formed a-T~ b.

Concurrent runs are now defined in two stages: Firstly, each action m is
assigned an action net, representing the action's details in terms of an inscribed
net. In a second step, those nets are "glued together", forming a concurrent run.

7.3 D e f i n i t i o n A state of a system net Z is contact free iff for each t E T~
and each action m o f t holds: if for each place p E "t, m(p, t) C a(p), then for
each place p e t °, (m(t ,p) \ m(p, t)) C_ Ap \ a(p).

In the following we stick to system nets where each reachable s ta te is contact
free.

7.4 Def in i t ion Let Z be a system net, let t E T~, let m be an action of t,
and let N be an injectively labeled net with TN = (e}. Furthermore, assume
l(e) = (t ,m) , l('e) = {(p,a) I P E " t , anda e m(p , t)} , l(e') = {(p,a) I P E
t ° , and a E m(t ,p)} . Then N is an action net of 2Y (for m).

7.5 D e f i n i t i o n A net K is called an occurrence net iff

i. for each p E PK, t "Pl <- 1 and I P" J <- 1,
ii. for each t E TK, I°tl _> 1 and It" l -> 1,

iii. the transitive closure F + of FK, frequently written <K, is irreflexive (i.e.,
x l F K x 2 F K . . . Fgxn implies xl # xn),

iv. for each x E K , {y I Y <K x} is finite.

7.6 D e f i n i t i o n Let Z be a system net and let K be an element labeled occur-
rence net. K is a concurrent run of E iff

i. in each concurrent state a of K , different elements of a are differently labeled,
ii. for each t E TK, (*tUt °, {t},*t x{t} U {t} x t °) is an action net of E

iii. l({p E Palp ° = 0}) enables no action of ~ .

8 S t r u c t u r e s a n d T e r m s

System nets have been represented in Sections 1-5 by means of sorted terms. Such
terms ground on structures. This section provides the formal basis for structures
and terms.

We first recall some basic notions on constants and functions:

369

8.1 D e f i n i t i o n Let A t , . . . ,Ak be sets.

i. Let a E Ai for some 1 < i < k. Then a is called a constant in the sets
A 1 , . . . , Ak and Ai is called a sort of a.

ii. For i = 1 , . . . ,n + 1 let Bi E {A1, . . . ,Ak}, and let f : B1 x . . . x B,~
Bn+l be a function. Then f is called a function over the sets A 1 , . . . ,Ak .
The sets B 1 , . . . , Bn are the argument sorts and Bn+l is the target sort of
f . The n + 1-tuple (B1, . . . ,Bn+l) is the arity of f and is usually written
B1 X . . . X Bn -+ Bn+l.

A structure is just a collection of constants and functions over some sets:

8.2 D e f i n i t i o n Let A 1 , . . . , Ak be sets, let a l , . . . ,al be constants in A 1 , . . . ,Ak
and let f l , . . . , fm be]unctions over A 1 , . . . , Ak. Then

,4 = (A I , . . . , A k ; a l , . . . , a t ; f 1 , . . . ,fro) (78)

is a structure. A 1 , . . . ,Ak are the carrier sets, a l , . . . ,at the constants, and
f l , . . . , f m the functions of A.

The composition of functions of a s tructure can be described intuitively by
means of terms. To this end, each constant a of a s tructure A is represented
by a constant symbol a and likewise each function f of ,4 by a function symbol
f . (This choice of symbols is just a mat te r of convenience and convention. Any
other choice of symbols would do the same job). Furthermore, terms include
variables:

8.3 D e f i n i t i o n Let A = (A1, . . . , A k ; a l , . . . , al; f l , . . . , fm) be a structure.

i. Let X 1 , . . . , X k be pairwise disjoint sets of symbols. For x E X i , call Ai
the sort of x (i = 1 , . . . ,k) . Then X = X1 U . . . U Xk is a set of A-sorted
variables.

ii. Let X be a set of M-sorted variables. For all B C {A1, . . . , Ak} we define the
sets T B (X) o / t e rm s of sort B over X inductively as follows:
(a) X i C_ TA,
(b) for all 1 < i < l, if B is the sort of ai then ai E T B (X) .
(c) For all 1 < i ~ m, if B1 × . . . × Bn -+ B is the arity of f i and if

t j E TB~(X) (j = 1 , . . . ,n) then f (t l , . . . , tn) e T B (X) .
iii. The set T A (X) := TA1 (X) U . . . U TAx (X) is called the set of A-terms over

X .

In the following we always assume some (arbitrarily chosen, but) fixed order
on variables. Generally we use the following notation:

A set M is said to be ordered if a unique tuple (m l , . . . ,ink) of pairwise
different elements rni is assumed such tha t M = { m l , . . . ,ink}. We write M =
(m l , . . . , mk) in this case.

Each te rm u over an ordered set of sorted variables describes a unique func-
tion, v a P , the valuation of u:

370

8.4 D e f i n i t i o n Let ,4 be a structure and let X = (x t , . . . ,xn) be an ordered set
of.A-sorted variables. For i = 1 , . . . ,n let Bi be the sort of xi and le tu E T B(X)
for any sort B of "A. Then B1 x . . . × B,~ is the set of arguments for X and the
valuation of u in .4 is a function val u : B1 × . . . × Bn ~ B, which is inductively
defined over the structure of u:

ai if u = xi for t < i < n,
a if u = a for some constant a of "A,

val (al,... ,an) = f(val '(al, a n) , . . .
/~ u = f (u l , . . . , uk) for some]unction
f of 'A and terms Ul , . . . ,Uk E T A(X) .

8.5 D e f i n i t i o n Let ,4 be a structure.

i. The set TA(O) consists of the .A-ground terms and is usually written TA.
ii. For each u E T A of sort B , val u is the unique function val ~' : O -~ B, i.e.,

val u indicates a unique element in B . This element will be denoted val u.

9 A T e r m R e p r e s e n t a t i o n o f S y s t e m N e t s

Based on structures and terms as introduced in the previous section, a represen-
tat ion of system nets is suggested in the following, as used in Sections 1-5. The
representation of a transition's actions is the essential concept. To this end, each
transition t is assigned its set Mt of occurrence modes. Each occurrence mode
then defines an action. A typical example was

A

I g(x'y) (79)

B ~ (~ J ' ~ t

Assume the variable x is of sort M, y of sort N and x ordered before y. Then
M x N is the set of occurrence modes of t. Each pair (m, n) E M x N defines an
action ~ of t, gained by substituting m and n for x and y in the adjacent terms.
Hence ~'-d(A,t) = { m , f (m) } , ~-d(B, t) = {(re, n)} and ~-d(t ,C) = {g(m,n)} .

The syntactical representation of term-based system nets reads as follows:

9.1 D e f i n i t i o n Let E be a net and let ,4 be a structure. Assume

i. each place p e PE is assigned a carrier set Ap of "A and a set aE(p) C_ TAp
of ground terms,

ii. each transition t E T~ is assigned an ordered set X t of.A-sorted variables,
iii. each arc f = (t,p) or f -- (p, t) adjacent to a transition t is assigned a set

f C TAp(Xt) of.Ap-terms over Xt .

Then E is called term inscribed over "A.

371

In graphical representations, the places p mad the arcs (r, s) are inscribed
by aE (/9) and F$, respectively. Occurrence modes and actions of a transit ion are
defined as follows:

9.2 D e f i n i t i o n Let ~ be a term inscribed net and let t E TE be a transition.

i. Let (x l , . . . , xn) be the ordered set of variables of t and let Mi be the sort of
xi (i = 1 , . . . , n). Then Mt := M1 × . . . × Mn is the set of occurrence modes
o f t .

ii. Let m E Mr. For each adjacent are f -- (p,t) or f = (t,p) and different
u , v E f assume valU(m) ~ valV(m). Then Cn is an action of t, defined by
~n(f) = {vale(m) l u E] } .

The action ~ discussed above is in fact an action of the transit ion (79). A
term-inscribed net obviously represents a system net:

9.3 D e f i n i t i o n Let ~ be a net that is term-inscribed over a structure .4 such
that for all p E P2 and all different u, v E aE(p), val u ~ val v. Then the system
net of Z consists of

- the universe A ,
- for all t E T~, the actions of t as defined in Def. 9.2(ii),
- the initial state a, defined for each place p E P2 by

a(p) := {val ~ t u E a~(p)}.

1 0 S e t - V a l u e d T e r m s

The formalism of Sect. 9 is adequate for many system nets. But there exist more
general system nets requiring set-valued terms. In order to specify this issue more
precisely, assume a system net Z with a transition t E T~, an action m of t, and
a place p E " t U t " with domain A. Then ~ (p , t) or Cn(t,p) is a subset of A, with
each single t e rm u E p--t or u E t-p contributing a single element, valU(rrt) E A.
Now we suggest single terms v tha t contribute a subset valV(m) C A. More
precisely, set-valued constant symbols, set-valued function symbols, and set-valued
variables will be used.

For the sake of uniform management of all cases, the evaluation valU(m) of
te rms u wilt be slightly adjusted, yielding a set setval~(m) in any case:

10.1 D e f i n i t i o n Let Z be a term inscribed net over a structure A .

i. Let p E P~ and let u E a2(p). Then

= ~ if the sort of u is Ap

372

ii. Let f = (p, t) E F~ or f = (t,p) e F s , let u E f , and let m be an argument
of Xt . Then

[{val~(m) } if the sort of u is Ap
setvalU(m)

(valU(m) if the sort of u is 7) (Ap).

The actions of a term inscribed net with both element-valued and set-valued
terms is now defined as follows:

10.2 D e f i n i t i o n Let S, be a term inscribed net, let t E TE, and let m E Mt
such that for each adjacent arc f = (19, t) or f = (t,p) and different u, v E
we have setvalU(m) n setvalV(m) = O. Then ~n is an action of t, defined by
m (f) = U~e7 setvalU(m) •

10.3 P r o p o s i t i o n Let ~ be a term inscribed net, let t E T~, let m be an action
of t, and let a be a state of Z . For all (r, s) ~. F£ let Vg := 0.

i. m is enabled at a iff, for each p E PE, Uue~setval~(m) c_ a(p) and
(Uu~i~ setval~(m) \ U u e ~ setvalU(m)) f) a(p) = 0.

ii. Let a --~ b be a step of E. Then for each p E PE, b(p) = (a(p) \
Uueb7 setvalU(m)) u Uuevp setvalU(m) •

The system net of a term-inscribed net with both element-valued and set-
valued terms is defined as a conservative extension of the corresponding notion
in Sect. 9.3 for element-valued terms:

10.4 D e f i n i t i o n Let Z be a net that is term-inscribed over a structure A, such
that for all p E P~ and all different u, v E as(p) holds setval u O setval v = 0.
Then the system net of E consists of

- the universe of A,
- for all t E TE, the actions of t as defined in Def. 10.2,
- the initial state a, defined for each place p E P~ by a(p) := UueaE(p) setval~-

We are now prepared to define schemata for system nets: a system schema
is a term-inscribed net with the underlying structure not entirely fixed. Thus,
a system schema represents a set of system nets. A representation of a system
schema declares some sorts (domains) and some constants, functions, and vari-
ables over s tandard sorts, declared sorts, cartesian products, or powersets of
sorts. We furthermore assume standard sorts such as the natural numbers nat
or the t ru th values bool, together with the usual operations. Some additional
requirements may focus the intended interpretations.

The distributed algorithms of Chapters 1-5 are all represented as system
schemata. This is crucial, as each distributed algorithm is to run on any network
out of a class of networks. Each interpretation of the involved symbols then yields
one concrete network.

373

11 First-Order State Properties

Propert ies of system nets and system schemata are represented in a logical frame-
work. Terms as introduced in Sect. 9 (there used as arc inscriptions) will serve
in a first-order logic, with places of system nets as predicate symbols.

We s tar t with the syntax of formulas over a s tructure `4.

11.1 D e f i n i t i o n Let .4 be a structure, let X be a set of .4-sorted variables, and
let P be any set of symbols. Then the set Yr(A, X , P) of state formulas over A,
X , and P is the smallest set of symbol chains such that for all t • T A (X) and
all p, q • P,

i. p.t, p = t, and p C_ q E jz(`4, X , P)
ii. if f , g e ~ (A , X , P) then f A g C ~ (A , X, P) and - , f C Y (A , X , P) .

In the sequel we employ the conventional propositional symbols V and -%
and for any set Q = {q l , . . . , qn} the shorthands V Q for ql v . . . v qn, and A Q
or just Q for ql A . . . A q~. Furthermore, we write A . u l , . . . , u~ as a shor thand
for A.Ul A . . . A A.un.

Each system schema ~ is assigned its set of s tate formulas. Those formulas
are constructed from the structure of Z, with the places of Z serving as predicate
symbols. The token load s(p) of place p at a s tate s, as well as the inscriptions
in f of an arc f , are terms that may occur in state formulas.

11.2 D e f i n i t i o n Let ,4 be a structure, let X be an A-sorted set of variables,
and let Z be a net, term-inscribed over ,4 and X .

i. Each f E Yr(A, X, Ps) is a state formula of Z.
ii. For each state s of ~ , the state formula ~ of Z is defined by ~ := Apes P A

Ap~t~ ~P.

Such formulas are interpreted as follows:

11.3 D e f i n i t i o n Let ~ be a net, let f be a state formula of Z , let v be an
aryument for its variables, and let s be a state of Z .

i. s, v ~ f is inductively defined over the structure of f . To this end, let u C
T A(X) , p, q E P r and g, h E Jz(A, X , P).

- s ,v ~ p . t iffsetvalU(v) C s(p), and
s, v ~ p = t i f f setval~(v) = s(p).

- s ,v ~ p C q i f fs(p) C_ s(q).
- s , v ~ g A h i f fs , v ~ g ands , v ~ h .
- s , v ~ - ~ g i f f n o t s , v ~ g .

ii. s ~ f iff, for all arguments u of X , s, u ~ f .
iii. ~ ~ f iff, for all reachable states s of S , s ~ f .

Apparently, for each state a, a ~ &.

374

1 2 M u l t i s e t s a n d L i n e a r F u n c t i o n s

State properties can frequently be proven by means of equations and inequalities,
which in turn can be derived from the static s tructure of a given system net.
Each place of the net will serve as a variable, ranging over the subsets of the
places' domains.

Each structure .4 canonically induces multisets of its carrier sets and linear
extensions of its functions. Intuitively, a multiset B over a set A assigns to each
a E A a multiplicity of occurrences of a. As a special case, a conventional subset
of a sticks to the multiplicities 0 and 1. For technical convenience we allow
negative multiplicities, too, but proper multisets have no negative entry.

12.1 D e f i n i t i o n Let A be a set.

i. Any function M : A --~ Z is called a multiset over A. Let A M denote the set
of all multisets over A.

ii. Let M E A m and z E Z. Then z M E A ~n is defined for each a E A by
z U (a) := z . M(a) .

iii. Let L , M E A M. Then L + M E A M is defined for each a E A by (L +
i) (a) := L(a) + M(a) .

iv. A multiset M E A M is proper iff M(a) >_ 0 for all a E A.

Sets can be embedded canonically into multisets.

12.2 D e f i n i t i o n Let A be a set, let a E A and B C A. I r A is obvious from the
context, a m and B m denote multisets over A, defined by a m (x) = 1 if x = a and
am(x) = 0 otherwise; and Bin(x) = 1 if x E B and Bin(x) = O, otherwise.

By abuse of notat ion we usually write just A instead of Am.
There is a canonically defined scalar product and a sum of functions over

multisets:

12.3 D e f i n i t i o n Let A and B be sets.

i. Any function ~ : A M -~ B M is called a multiset function from A to B.
ii. Let ~ : A m -+ B M be a multiset function and let z E Z. Then z ~ : A m -¢

B M is defined for each M E A M by z~o(M) := z . (~o(M)).
iii. Let ~, ¢ : A M -¢ B M be two multiset functions. Then ~ + ¢ : A M -+ B M is

defined for each M E A M by (~ + ¢) (M) := ~ (M) + ¢ (M) .
iv. OAB denotes the zero-valuating multiset function from A to B , i.e.,

OAB (M) = OB for each M E A M. The index A B is skipped whenever it
can be assumed from the context.

Each function f : A -+ B and each set-valued function g : A -~ B M of a
s tructure .A can be extended canonically to a multiset function g : A M -~ BM:

12.4 D e f i n i t i o n Let A and B be sets and let f : A ~ B or f : A ~ B M be a
function. Then the multiset function] : A m --} B M is defined for each M E A m
and each b e B bU](m)(b) = Ea i-l(b)i(a).

375

By abuse of notation we write ~ instead of] whenever the context excludes
confusion. The induced functions f are linear:

12.5 L e m m a Let A and B be sets, let f : A --+ B be a function, let L, M E
9YC(A), and let z E Z. Then for the multiset extension of f , f (L + M) = I (L) +
] (M) , and] (z . M) = z .] (M) .

13 P lace Weights , S y s t e m Equat ions ,
and S y s t e m Inequal i t i e s

State properties are essentially based on weighted sets of tokens, formally given
by multiset valued mappings on the places' domains.

13.1 D e f i n i t i o n Let G be a system net over a universe A, let p E PE, and let
B be any multiset. Then a mapping I : Mp -+ B is a place weight o f p . I is
natural if B = N.

Place weights are frequently extended to set-valued arguments and then ap-
plied to the token load s(p) of the token at place p in a global state, s. In this
case, a multiset I(s(p)) is called a weighted token load o/p.

Place weights can be used to describe invariant properties of system nets by
help of equations that hold in all reachable states:

13.2 D e f i n i t i o n Let Z be a system net over a universe ,4, let B be any multiset
and let P = {P l , . . . ,Pn} C_ Pz~. For j = 1 , . . . , k , let IJ : ~4pi ~ B be a place
weight o/ pj.

i. { i i , . . . , ik} is a ~U-invariance with value B i/ /or each reachable state s of
Z,

I i (S (p l)) -F " " q- I k (s (p k)) = B .

ii. A Z-invariance { I1 , . . . , I k } is frequently written as a symbolic equation

I1(pl) + . . . + zk(p~) = B

and this equation is said to hold in Z.

In a G-equation 11 (Pl) + " " + Ik(pk) = B, the value of B is apparently equal
to I I (s~(p l)) + . . . + Ik(s~(pk)) , with s~ the initial state of G.

As a technical example, in the term inscribed representation of a system net
Z ,

dom

A B f_~ f, g : dom --) dom

t v__,E x : dom

let {u ,v} be the domain of both A and B, and for x E {u,v} let IA(x) =
f (x) + g(x) and IB(x) = x. Then { I A , I B} is a G-invariance with value U =
f (u) + g(u) + f (v) + g(v), symbolically written

3 7 6

A a _f--.,~ x fix)
x

f(x)
x l f :- x

b f(x) B
d

dom va t x : dom
const U, V : set of dom f(U) = V
fct f : dom ---> (tom

Figure 13.1. f (A) + B >_ V is a valid inequality

f (A) + g(A) + B = U. (81)

One of the reachable states is s, with s(A) = u and s(B) = f (v) +g(v). Then in
fact IA(s(A)) + IB(s(B)) = IA(u) q- IB(f(V)) + IB(g(v)) = U.

Intuitively formulated, according to this invariance, the element u is at A, or
both f (u) and g(u) are at B. The corresponding property for v holds accordingly
in S .

As a further example, in ~ =
a i f(x)

x I g(x)
I

~ Q B

= Q C

sort dom

,:;on$t u. v : dora
f, g. f -1 g -1 : dom_> dora

var x : dora
f " l(f(x)) = x
g - l(g(x)) = x

(s2)

let again {u, v} be the domain of all places A, B, and C, and for x E {u, v}
let IA(x) = x, IB(x) = f - l (x) and IV(x) = g - l (x) . Then { I A , I B , I c } is a Z-
invariance with value u + v, symbolically written A + f -1 (B) + g-1 (C) = u + v.
One of the reachable states is s, with s(A) -- u, s(B) -- f (v) and s(C) = 0.
Then in fact IA(s(A)) + IB(s(B)) + IC(s(C)) = Ia(u) + I B (f (v)) + IV(O) =
u + f - l (f (V)) = U + V.

13.3 Def in i t i on Let S be a system net over a universe .A, let B be any multiset,
and let P = {P l , . . . ,Pk} C_ Pc . For j = 1 , . . . , k let ld : Apt -+ B be a place
weight of p.

{ i 1 , . . . , i k } yields a S-socket with value B if for each reachable state s of
E ,

11(8(/91)) q - ' ' " -}- Ik(8(pk)) > B.

A S-socket { i 1 , . . . , i k} is frequently written as a symbolic inequality

I1(pl) + . . . + Ik(pk) > B,

and this inequality is said to hold in Z.

377

Figure 13.1 provides a typical example.
In X'13.1 let I A and I B be place weights of A and B, respectively, with

IA(x) = f (x) for each x E U and IS (y) = y for each y E V. Then { I A , I B} is a
E-socket with value V. As a symbolic inequality it reads f (A) + B > V.

14 Place Invariants of System Nets

We are now seeking a technique to prove Z-invariances without explicitly visiting
all reachable states. To this end we construct place invariants: a set of place
weights is a place invariant if each occurrence mode m of each transition t yields a
balanced weighted effect to the places involved, i.e., the weighted set of removed
tokens is equal to the weighted set of augmented tokens; formally, for place
weights I 1 , . . . , I k of places p l , . . . ,Pk,

I I (m(t , p l)) + . . . + I k (m (t , pk)) = I I (m (p l , t)) + -. .+Ik (m(pk , t)) . (84)

A more concise representation of (84) is gained by a slightly different per-
spective on transitions and their actions: Each arc fl = (p, t) or ~ = (t ,p) defines
a mapping /~ that assigns each action m of t the corresponding subset m(fl)
of Ap. Furthermore, this subset is canonically conceived as a multiset, i.e., an
element of A~ :

14.1 D e f i n i t i o n Let Z be a system over a structure .4. Let t E T~ be a tran-
sition with L/It its set of actions and let fl = (t, p) or fl = (p, t) be an arc of ~ .

The,, the function fl : M~ -+ A ~ is defined by fl(m) = m(fl).

The function fl is canonically extended to /~(m) = 0 if fl is no arc. For
example, in

A ~ ~ x ~_tu:uS°rt U,V,W

f(x,~L) ~ c c o ~ v : v
t g(x,y) fct f, g : U ×V -~ W

va_[r x : U
B var y : V

(85)

the set of actions of t is U x V. Then each action (u, v) yields

At (u , v) = {u}, Bt (u , v) = {v}, tC(u ,v) = { f (u , v) , g (u , v) } , and (86)
tA(u, v) = tB(u , v) = Ct(u, v) = ~.

t p - p) is a multiset valued function that assigns each occurrence mode m
of t its effect on p, i.e., the tokens removed from p or augmented to p upon t 's
occurrence in mode m.

Each place weight I p : Ap -+ B of a place p can canonically be extended to
the set valued arguments I v : A ~ --~ B w~, by Def. 12.4. This function in turn

can be composed with tp - /~t , yielding a function I p o (~ - / ~) : Mt -+ B ~ .
A set of place weights is a place invariant if the sum of weighted effects of

all involved places reduces to the zero function {3. The value of a place invariant
is derived from the net's initial state:

378

14.2 Defini t ion Let 27 be a sys t em net and let p l , . . . , Pk E PE. For j = 1 , . . . , k
let J~ be a place weight of p j . Then I = {i1 , . . . , i k} is a place invariant of Z i f
for each transit ion t E T~ ,

I 1 o (~Pl - p i t) + . . " + I k o (t"pk -- Pkkt) = O.

The mul t ise t I I (s E (p l)) + . . . + I k (s E (p k)) is the value of I.

A place invariant provides in fact a valid Z-equation:

14.3 T h e o r e m Let E be a sys tem net, l e t p l , . . . ,Pk E P £ , and for j = 1 , . . . , k ,
let IJ be a place weight o] Z . Let { I 1 , . . . , I k } be a place invariant o f 27 and let
U be its value. Then the equation

II(pl) + . . - + Ik (pk) = U

holds in 27.

Place invariants can be mimicked symbolically in term-inscribed represen-
tations of system nets. To this end, the functions tp, pt , tp - pt, and I p will
be represented symbolically. The composition I p o (tp - pt) of functions I p and
(tp -/~t) then is symbolically executable as substitution of terms.

Definition 9.1 assigns each arc f~ = (t,p) or/~ = (p, t) of a term-inscribed net
27 a set ~ C TAp(X~) of Ap-terms over Xt. For each u E -~, pal ~ (as defined in
Def. 8.4) is a mapping from Mt to Ap. This mapping can be extended canonically
to pal u : M t ~ A ~ . Mappings of this kind can be summed up, giving rise to

the mapping/~: M t -~ . A ~ of Def. 14.1, defined by ~(m) := pal ul (m) + . . . +

pal u~ (m), with X t = {u l , . . . , uk}. Hence ~ can be represented symbolically as

= Ul + . . . + uk (87)

in this case.
The multiset extension I p : ,4~ ~ B of a place weight I : A n --¢ B can

be represented as a term with one variable, ranging over A~ . For the sake of
convenience we always choose the variable p, hence the corresponding term is
an element of TB({p}).

The composed function IPo(~o-l~) : M, -+ B is now symbolically represented
by the multiset term

= I~[~ - y / p] (88)

which is gained from I p by replacing each occurrence of the variable p in I p by
the term t p - p t . Hence T is a term in Ts(X,), and its valuation pal r is equal to
z,' o (5 - pt).

15 T r a p s o f S y s t e m N e t s

We are now seeking a technique to prove E-sockets without visiting all reachable
states. To this end we construct initialized traps for system nets, in analogy to
initialized traps of elementary system nets.

379

Informally stated, a t rap of a system net is a set { i 1 , . . . , i k} of weights of
places P l , - - - ,Pk such that for each element b of a given set B, each transition
tha t removes at least one token with weight b from those places returns at least
one token with weight b to those places. This gives rise to an inequality of the
form

I I (p l) + - - - + Ik(pk) k B. (89)

Traps are essentially a mat ter of plain sets (whereas place invariants are
based on multisets). For an arc (p, t) and an occurrence mode rn of t, re(p, t) is
a plain set according to Def. 6.2. Then I (m(p, t)) := {I(u) I u • re(p, t)} is a
set, for any place weight I. Therefore, the definition of traps goes with set union
(not with multiset addition).

15.1 D e f i n i t i o n Let Z be a system net and let p l , . . . ,Pk • BE. For j =
1 , . . . , k , let I j be a place weight of pj. Then I = { [1 , . . . , i k} is a t rap of
Z if for each transition t • T z and each occurrence mode m,

I I (m(p l , t)) U . . . U Ik(m(pk, t)) C I i (m(t , pl)) U . . . U Ik (m(t ,pk)) .

The set I I (s z (p l)) U . . . U Ik(sz (pk)) is the initialization o / I .

• An initialized trap in fact provides a valid Z-inequality:

15.2 T h e o r e m Let Z be a system net, l e t p l , . . . , p k E Pz , and f o r j = 1 , . . . , k ,
let I j be a place weight of ~ . Let {/1 . . . , i k} be a trap o/ ~ with initialization
B. Then the inequality

I i (p l) U . . . U Ik(pk) > B

holds in E .

Proof of traps can be mimicked symbolically in term-inscribed system nets.
To this end, place weights I , and functions/3 assigned to arcs/3, are represented
symbolically as described in Sect. 14. The function I o/3 can then be represented
symbolically by the multiset term

~- = Ip[~/p] (90)

in analogy to (88) of Sect. 14. Union of functions then can be expressed by set
union of singleton sets {~-}. Each valuation of the variable p in ~- by some m E Ap

then describes the item Ip o ~(m) = IP(~(m)).

16 P r o g r e s s o n I n t e r l e a v e d R u n s

A progress property p ~-~ q (p leads to q) is constructed from two state properties
p and q. p ~-~ q holds in an interleaved run w if each p-state of w is followed by
a q-state, p ~+ q holds in a system net Z if p ~+ q holds in each of its interleaved
runs. Technically, leads-to formulas are constructed from state formulas:

380

16.1 D e f i n i t i o n Let ,4 be a structure, let X be a set of A-sorted variables, let
P be a set of symbols, and let p, q E Yr(¢4, X, P) be state formulas. Then the
symbol sequence p ~+ q (p leads to q) is a first-order leads-to formula.

Leads-to formulas are interpreted over interleaved runs and over system nets:

16.2 D e f i n i t i o n Let E be a net that is term-inscribed over a structure A and
a set X of variables. Let p, q E JC(A, X , P~) and let w be an interleaved run of
E .

i. For an argument u of X let w ~ (p ~ q)(u) iff]or each p(u)-state with
index i, there exists a q(u)-state with index j >_ i.

ii. p ~-~ q is said to hold in w (written w ~ p ~ q) iff for each argument u of
X , w ~ (p ~-~ q)(u).

iii. p ~+ q is said to hold in Z (written E ~ p ~ q) iff w ~ p ~ q for each
interleaved run w of ~ .

16.3 D e f i n i t i o n Let E be a system net and let s be a state of Z .

i. s is progress prone iff s enables at least one action.
ii. Let t E TE and let m be an action of t. s prevents m iff there exists some

place p of E , such that ~ ~ ~ --+ -~m(p, t).
iii. Let t E TE and let m be an action of t. m E s* if for some place p of E ,

s(p) M re(p, t) # O.
iv. A set M of actions of some transitions of Z is a change set of s if M # O

and s prevents each m E s" \ M .

The following theorem describes the most general case for picking up leads-to
formulas from the static s t ructure of a system net: Each change set of a progress
prone s ta te s yields a leads-to formula:

16.4 T h e o r e m Let ~ be a system net, let s be a progress prone state, and let
M be a change set of s. Then

s V
m E M

17 Progress of Concurrent Runs

17.1 D e f i n i t i o n Let .4 be a structure, let X be a set of .4-sorted variables, let
P be a set of symbols, and let p, q E Jr(A, X, P) be state formulas. Then the
symbol sequence p ~+ q ('~ causes q") is a first-order causes formula.

Causes formulas are interpreted over concurrent runs and over system nets:

17.2 D e f i n i t i o n Let Z be a net that is term-inscribed over a structure ,4 and a
set X of variables. Let p, q E jr (A, X , P~) and let K be a concurrent run of ~ .

381

i. For an argument u of X , let K ~ (p ,-+ q) (u) iff to eafh reachable p(u)-state
C of K there exists a q(u)-state D o] K that is reachable from C.

ii. p "--+ q is said to hold in K (written K ~ p ~ q) iff]or each argument u o]
X , g ~ (p ~ q)(u).

iii. p ~ q is said to hold in 22 (written 22 ~ p ~ q) iff K ~ p ,-4 q for each
concurrent run K of Z .

As an example, A.{u ,v} "-+ B . { u , v } holds in

b 0
I f(x)

..h~ x B l " ~ Q
al (91)

Io : G
D

17.3 L e m m a Let Z be a system net that is term-inscribed over a structure ~4
and let p, q E Jc(Jl, X , P~).

i. Z ~ p c - + p .
ii. I f Z ~ p~-~ q and Z ~ qc-+ r then Z ~ p~+ r.

iii. I f Z ~ pc-~ r and Z ~ q ~-~ r then Z ~ (p V q) ~-~ r.
iv. I f Z ~ p ~ t q then Z ~ pc-+ q.
v. I f q includes no logical operator and 22 ~ p ¢-+ q then Z ~ p F-~ q.

A rule to pick up causes properties from a system net is now derived, in an
entirely semantical framework.

We start with some properties and notations of states of system nets.

17.4 D e f i n i t i o n Let 22 be a system net and let r, s be two states of ~ .

i. The state rUs of Z is defined for each place p E PE by (rUs) (p) := r(p)Us(p).
ii. Let r C_ s iff for each place p C Pr , r(p) C s(p).

iii. r is disjoint with s iff for each p • P z , r(p) V) s(p) = O.
iv. For an action m of some transition t, let "m be a state of ~ , defined for

each place p • P~, by "re(p) = re(p, t). For a set M of actions, let " M be
the state defined for each p • P~ by "M(p) = U{m(p) t m • M}.

Change sets of system nets, as defined in Def. 16.3 for interleaved progress,
can likewise be used for concurrent progress properties:

17.5 T h e o r e m Let ~ be a system net and let r, s be states of Z . Assume s is
progress prone, and let U = V U W be a change set of s, with "V C_ s and r
disjoint with "V. Then 22 ~ r U s ¢-~ (r U Vuey eff(s,u)) v (Vuew eff(r U s ,u)) .

Many applications of this theorem deal with the special case of W = ~, i.e.,
"U C s and r disjoint with s:

17.6 C o r o l l a r y Let 22 be a system net, let s be a progress prone state of ~ ,
and let U be a change set ors with *U C s. Furthermore, let r be a state that is
disjoint with s. Then ~ ~ r U s ~ r U (VueV e f (s , u)).

382

18 Ground Formulas and Rounds

18.1 De f in i t i on Let 2 be a system net and let p be a state formula of 2 . Then
p is a ground formula of E if Z ~ true ~ p.

18.2 T h e o r e m Let 2 be a system net and let s be a state of 2 . Then s is a
ground formula of 2 iff 2 ~ a~ ~ s and for each element u of some change
set U holds: Z ~ eft(s, u) ~ s.

18.3 T h e o r e m Let 2 be a system and let p be a ground formula of 2 . Let
s be a state of 2 with 2 ~ s --~ -~p, and let U be a change set o f s . Then
S ~ s ~ V~,eu eft(s, u).

References

[Agha 86] G. A. Agha: A Model of Concurrent Computation in Distributed Systems.
MIT Press, Cambridge, MA (1986)

[Alpern, Schneider 85] Bowen Alpern, Fred B. Schneider: Defining Liveness. Informa-
tion Processing Letters 21, pp. 181-185 (1985)

[Ben-Ari 90] M. Ben-Ari: Principles of Concurrent and Distributed Programming. In-
ternational Series in Computer Science. Prentice Hall, Englewood Cliffs, N. J.,
(1990)

[Barbosa 96] V. Barbosa: An Introduction to Distributed Algorithms. MIT Press, Cam-
bridge, MA (1996)

[Berry, Boudol 82] G. Berry, G. Boudol: The chemical abstract machine. TCS, (1982)
[Ban~tre, Coutant, le Metayer 88] J.-P. Ban~tre, A. Coutant, D. le Metayer: A Parallel

Machine for Multiset Transformation and its Programming Style. Future Genera-
tions Computer Systems 4, pp. 133-144 (1988)

[Burns, Esparza 96] G. Burns, J. Esparza: Trapping mutual exclusion in the box cal-
culus. Theoretical Computer Science. Special Volume on Petri Nets 153, (1 2),
(January 1996)

[Bennett 73] C. H. Bennett: Logical Reversibility of Computation. IBM Journal of Re-
search and Development 6, pp. 525-532 (1973)

[Best 96] Eike Best: Semantics of Sequential and Parallel Programs International Series
in Computer Science. Prentice Hall, Englewood Cliffs, N. J. , (1996)

[Best, Fernandez 88] Eike Best, C~sar Fernandez: Nonsequential Processes. volume 13
of EATCS Monographs on Theoretical Computer Science, Springer-Verlag, Berlin,
(1988)

[Brown, Gouda, Wu 89] G. M. Brown, M. G. Gouda, C. Wu: Token systems that self-
stabilize. IEEE Transaction on Computers 38(6), pp. 845-852 (1989)

[Burnes, Pachl 89] J. E. Burnes, J. Pachl: Uniform self-stabilizing rings. ACM Trans-
actions on Programming Languages and Systems 11(2), pp. 330-344 (April 1989)

[Broy 87] Manfred Broy: Semantics of Finite and Infinite Networks of Concurrent
Communicating Agents. Distributed Computing 2, pp. 13-31 (1987)

[Chang 82] E. J. H. Chang: Echo algorithms: Depth parallel operations on general
graphs. IEEE Transactions on Software Engineering SE-8(4), pp. 391-401 (1982)

[Chandy, Misra 84] K. M. Chandy, J. Misra: The drinking philosophers problem. ACM
Transactions on Programming Languages and Systems 6(4), pp. 632-646 (October
1984)

383

[Chandy, Misra 88] K. M. Cha~ady, J. Misra: Parallel Program Design: A foundation.
Addison-Wesley, MA (1988)

[Desel 97] J. Desel: How distributed algorithms play the token game. In: C. Freksa,
M. Jantzen, R. Valk (eds.): Foundations of Computer Science, Vol 1337 LNCS
Lecture Notes in Computer Science, pp. 297-306 Springer-Verlag, Berlin (1997)

[Dijkstra 71] Edsger W. Dijkstra: Hierarchical ordering of sequential processes. Acta
Informatica 1, pp. 115-138 (1971)

[Dijkstra 74] E. W. Dijkstra: Self-stabilizing systems in spite of distributed control.
Communications of the ACM 17(11), pp. 643-644 (1974)

[Dijkstra 75] E. W. Dijkstra: Guarded commands, nondeterminaney, and formal
derivation of programs. Comm. ACM 18(8), pp. 453-457 (1975)

[Dijkstra 78] E. W. Dijkstra: Finding the correctness proof of a concurrent program.
Proc. Koninklijke Nederlandse Akademie van Wetenschappen 81(2), pp. 207-215
(1978)

[Desel, Kindler 98] J. Desel, E. Kindler: Proving correctness of distributed algorithms
using high-level Petri nets - a case study. In: 1998 International Conference on
Application of Concurrency to System Design, pp. 177-186 Fukushima, Japan,
(March 1998) IEEE Computer Society Press.

[Desel, Kindler, Vesper, Walter 95] J. Desel, E. Kindler, T. Vesper, R. Walter: A sim-
plified proof for a self-stabilizing protocol: A game of cards. Information Processing
Letters 54, pp. 327-328 (1995)

[Desel, Kindler, Walter 94] J. Desel, E. Kindler, R. Walter: A game of tokens: A proof
contest. Petri Net Newsletter 47, pp. 3-4 (October 1994)

[Dijkstra, Scholten 80] E. W. Dijkstra, C. S. Scholten: Termination Detection for Dif-
fusing Computations. Inf. Proc. Letters 4,pp. 1-4 (1980)

[Finn 79] S. G. Finn: Resynch procedures and a fail safe network protocol. IEEE ~ans-
actions on Communications, COM 27, pp. 840-845 (1979)

[Fredkin, Toffoli 82] Edward Fredkin, Tommaso Toffoli: Conservative Logic. Interna-
tional Journal of Theoretical Physics, Vol. 21, Nos. 3/4, pp. 219-253 (1982)

[Gandy 80] R. Gandy: Church's Thesis and Principles for Mechanisms. In: J. Bar-
wise et al (eds.): "The Kleene Symposium", North-Holland, Amsterdamm, pp. 123-
148 (1980)

[Gehrke, Plaxton, Rajaraman 97] J. E. Gehrke, C. G. Ptaxton, R. Rajaraman: Rapid
convergence of a local load balancing algorithm for asynchronous rings. In:
M. Mavronicolas, P. Tsigas (eds.): "Distributed Algorithms, WDAG', Vol. 1320
of: LNCS Lecture Notes in Computer Science, pp. 81-95 Springer-Verlag (Septem-
ber 1997)

[Harel 87] David Harel: Statecharts: A visual formalism for computer systems. Science
of Computer Programming 8, No. 3, pp. 231-274 (1987)

[Jensen 92] K. Jensen: Coloured Petri Nets, Vol. 1 of: EATCS Monographs on Theo-
retical Computer Science. Springer-Verlag (1992)

[Kindler 95] Ekkart Kindler: Modularer Entwurf verteilter Systeme mit Petrinetzen.
PhD thesis, Technische Unviversit~it Mfinchen (1995)

[Kindler, Reisig, VSlzer, Walter 97] E. Kindler, W. Reisig, H. VSlzer, R. Walter: Petri
net based verification of distributed algorithms: An example. Formal Aspects of
Computing 9, pp. 409-424 (1997)

[Kindler, Walter 95] E. Kindler, R. Walter: Message passing mutex. In: J. Desel (ed.):
Structures in Concurrency Theory, Workshops in Computing, pp. 205-219 (May
1995) Springer-Verlag

384

[Lamport 86] Leslie Lamport: The Mutual Exclusion Problem: Part I - A Theory of
Interprocess Communication. Journal of the ACM, Vol. 33, No. 2, pp. 313-326
(1986)

[Lynch 96] N. A. Lynch: Distributed Algorithms. Morgan Kaufmann Publishers, San
Francisco, Calif. (1996)

[Mattern 89] Friedemann Mattern: Verteilte Basisalgorithmen. Informatik-
Fachberichte 226, Springer-Verlag (1989)

[Milner 89] Robin Milner: Communication and Concurrency. International Series in
Computer Science. Prentice Hall, Englewood Cliffs, N. J. (1989)

[Misra 91] J. Misra: Phase synchronisation. Information Processing Letters 38,
pp. 101-105 (1991)

[Manna, Pnueli 92] Zohar Manna, Amir Pnueli: The Temporal Logic of Reactive and
Concurrent Systems. Springer-Verlag (1992)

[Manna, Pnueli 95] Zohar Manna, Amir Pnueli: Temporal Verification of Reactive Sys-
tems. Springer-Verlag, Berlin (1995)

[Naimi, Trehel, Arnold 96] M. Naimi, M. Trehel, A. Arnold: A log(n) distributed mu-
tual exclusion algorithm based on path reversal. Journal of Parallel and Distributed
Computing 34, No. 1, p. 13 (1996)

[Owicki, Lamport 82] Susan Owicki, Leslie Lamport: Proving liveness properties of
concurrent programs. ACM Transact. on Programming Languages and Systems 4,
pp. 455-495 (1982)

[Peterson 81] G. L. Peterson: Myths about the mutual exclusion problem. Information
Processing Letters 12, No. 3, pp.l15-116 (June 1981)

[Peng, Makki 96] W. Peng, K. Makki: Petri nets and self-stabilization of communica-
tion protocols. Informatica 20, pp. 113-123 (1996)

[Raynal 88] M. Raynal: Distributed Algorithms and Protocols. Wiley Series in parallel
computing. J. Wiley and Sons (1988)

[Raymond 89] K. Raymond: A tree-based algorithm for distributed mutual exclusion.
ACM Transactions on Computer Systems 7, No. 1, pp. 61-77 (February 1989)

[Reisig 85] Wolfgang Reisig: Petri nets. Vol. 4 of: EATCS Monographs on Theoretical
Computer Science. Springer-Verlag, Berlin (1985)

[Reisig 95] Wolfgang Reisig: Petri net models of distributed algorithms. In: Jan
van Leeuwen (ed.): Computer Science Today. Recent Trends and Developments,
Vol. 1000 of: LNCS Lecture Notes on Computer Science, pp. 441-454. Springer-
Verlag, Berlin (1995)

[Reisig 96a] W. Reisig: Interleaved progress, concurrent progress, and local progress. In:
D. A. Peled, V. R. Pratt, G. J. Holzmann (eds.): Partial Order Methods in Verifi-
cation, Vol. 29, pp. 24-26 DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, American Mathematical Society (1996)

[Reisig 96b] W. Reisig: Modeling and verification of distributed algorithms. In: U. Mon-
tanari, V. Sassone (eds.): CONCUR 96: Concurrency Theory, vol. 1119 of: LNCS
Lecture Notes in Computer Science, pp. 79-95 Springer-Verlag (1996)

[Reisig 98] W. Reisig: Elements of Distributed Algorithms. Springer-Verlag (1998)
[Raynal, Helary 90] M. Raynal, J. -M. Helary: Synchronization and Control of Distrib-

uted Systems and Programs. Wiley Series in parallel computing. J. Wiley and Sons
(1990)

[Reisig, Kindler 97] W. Reisig, E. Kindler: Verification of distributed algorithms with
algebraic Petri nets. In: C. Freksa, M. Jantzen, R. Valk (eds.): Foundations of
Computer Science. Potential, Theory, Cognition, LNCS 1337, pp. 261-270 Springer-
Verlag (1997)

385

[Rozenberg 86] G. Rozenberg: Behaviour of elementary net systems. In: W. Brauer,
W. Reisig, G. Rozenberg (eds.): Petri Nets: Central Models and Their Properties,
LNCS 254, pp. 60-94 Springer-Verlag (1986)

[Schneider 97] F. B. Schneider: On Concurrent Programming. Springer (1997)
[Segall 83] A. Segall: Distributed network protocols. IEEE Transactions on Information

Theory, IT 29, No. 1, pp. 23-35 (1983)
[Shavit, Francez 86] N. Shavit, N. Francez: A new approach to detection of locally in-

dicative stability. In: L. Kott (ed.): Proceedings of the 13th ICALP, LNCS 226,
pp. 344-358 Springer-Verlag (1986)

[Tel 91] G. Tel: Topics in Distributed Algorithms. Cambridge International Series on
Parallel Computation, 1, Cambridge University Press, Cambridge, U. K. (1991)

[Tel 94] G. Tel: Introduction to Distributed Algorithms. Cambridge University Press,
Cambridge, U. K. (1994)

[VSlzer 97] H. VSlzer: Verifying fault tolerance of distributed algorithms formally: An
example. In: 1998 International Conference on Application of Concurrency to Sys-
tem Design, ~kushima, Japan, (March 1998) IEEE Computer Society Press.

[Valk 86] Riidiger Valk: Infinite Behaviour and Fairness. In: W. Brauer, W. Reisig,
G. Rozenberg (eds.) Petri Nets: Central Models and Their Properties LNCS 254,
pp. 377-396 Springer-Verlag(1986)

[Walter 95] R. Walter: PetrinetzmodeUe verteilter Atgorithmen. PhD thesis, Humboldt-
Universit£t zu Berlin, Institut ffir Informatik. Edition ~%rsal, vol.2 Bertz Verlag
Berlin (1995)

[Walter 97] R. Walter: The asynchronous stack revisited: Rounds set the twilight reel-
ing. In: C. Freksa, M. Jantzen, R. Valk (eds.) Foundations of Computer Science,
LNCS 1337, pp. 307-312 Springer-Verlag (1997)

[Weber et al 98] M. Weber, R. Walter, H. VSlzer, T. Vesper, W. Reisig, S. Peuker,
E. Kindler, J. Freiheit, J. Desel: DAWN: Petrinetzmodelle zur Verifikation verteilter
Algorithmen. Informatik-Bericht 88, Humboldt-Universit£t zu Berlin (1998)

