
The State Explosion Problem 

Antti Valmari 

Tampere University of Technology, Software Systems Laboratory, 
PO Box 553, FIN-33101 Tampere, FINLAND, 

email: ava~cs.tut.fi 

Abst rac t .  State space methods are one of the most important approach- 
es to computer-aided analysis and verification of the behaviour of con- 
current systems. In their basic form, they consist of enumerating and 
analysing the set of the states the system can ever reach. Unfortunately, 
the number of states of even a relatively small system is often far greater 
than can be handled in a realistic computer. The goal of this article is to 
analyse this state explosion problem from several perspectives. Many ad- 
vanced state space methods alleviate the problem by using a subset or an 
abstraction of the set of states. Unfortunately, their use tends to restrict 
the set of analysis or verification questions that can be answered, mak- 
ing it impossible to discuss the methods without some taxonomy of the 
questions. Therefore, the article contains a lengthy discussion on alter- 
native ways of stating analysis and verification questions, and algorithms 
for answering them. After that, many advanced state space methods are 
briefly described. The state explosion problem is investigated also from 
the computational complexity point of view. 

1 I n t r o d u c t i o n  

There are two main approaches to checking that a concurrent system is correct 
with respect to a formal specification: theorem proving and state space methods. 

Theorem proving is based on formulating the correctness claim as a mathe- 
matical theorem. The theorem is then proven either manually or with the help 
of a theorem proving tool. The proof usually uses several invariants and variant 
functions or bound functions. An invariant states a property that all states that  
the system can reach must have. Invariants are used for showing that  the sys- 
tem does only correct or "acceptable" things. A variant states an upper limit to 
the number of times that  something can happen before something else happens. 
Variants are used to show that a system makes progress, and eventually does 
the things it should do. Because verification of concurrent systems by theorem 
proving is a major  paradigm, the amount of literature on it is huge and cannot 
be surveyed here. As a starting point for reading one can use the textbooks and 
surveys [10, 19, 29, 56, 60], for instance. 

Because manual proving of theorems takes time, requires highly skilled per- 
sonnel, and is prone to human errors, several more or less automatic theorem 
prover tools have been developed. Although such a tool is sometimes able to 
prove the correctness of an invariant or variant fully automatically, it is more 
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common that lots of human assistance is needed. Furthermore, the invariants and 
variants must almost always be provided by the user. Theorem-proving-based 
verification is thus very seldom fully automatic. In practice, theorem prover tools 
can be used only by specially trained personnel, and the construction of a proof 
may take lots of time, even weeks. 

Another problem with theorem proving is that it is geared towards proving 
correctness. As a consequence, it is not particularly good in providing debugging 
information, that is, information on the nature and location of errors. Basically, 
an error manifests itself by causing all proof attempts to fail. The error can 
often be traced by locating the invariant or variant that could not be proven, 
and analysing where attempts to prove it fail. This is, however, an indirect and 
sometimes unpleasant way of debugging. A related problem is that theorem 
proving is clumsy in the analysis of system behaviour. That is, it is not good 
in answering questions of the type "how does the system behave" instead of 
"is it certain that the system behaves so-and-so". These features make theorem 
proving somewhat ill-suited to development work, such as experimenting with 
new system design ideas, and fixing an incorrect design. 

The other side of the coin is that theorem proving is very generally applicable. 
For instance, unbounded data types (such as the ordinary integers) can often 
be handled without particular difficulties. To give another example, theorem 
proving techniques work well with systems whose process structure evolves, that 
is, where new processes are added and old processes aborted during an execution 
of the system. 

State space methods aim at more automatic analysis and verification of the 
behaviour of systems. In their basic form, they are based on constructing a 
structure that consists of all states that a system can reach, and all transitions 
that the system can make between those states. This structure is often called 
the state space. The construction of state spaces can be fully automated. Fur- 
thermore, practical algorithms are known for answering various verification and 
analysis questions, given the state space of a system. No invariants or variants 
need be provided by the user. Therefore, at best, the "only" task that the user 
of a state space method has to be able to accomplish is to formulate an analysis 
or verification question and start a tool. As a consequence, state space methods 
can be used by less trained personnel than theorem proving. When state space 
methods apply, they are also usually fast to use. 

Many state space methods are capable of producing good debugging infor- 
mation if the system proves incorrect. Furthermore, if a system cannot be fully 
investigated for some reason, state space methods are often able to give partial 
answers. Although an incomplete analysis cannot prove the correctness of a cor- 
rect system, it can point out an error in an incorrect system. These properties 
make state space methods good for experimenting and as an advanced form of 
testing. Another advantage of state space methods is that they are flexible: a 
large set of analysis and verification questions of many different kinds can be 
answered from a single state space. This is different from, say, place invariants 
and structure theory [73, 17] of Petri nets, that can answer only certain kinds of 
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questions (although sometimes very efficiently). State space methods also sup- 
port the analysis of behaviour well. 

State space methods are thus free from most of the problems of theorem 
proving, and sound like an almost ideal behavioural analysis and verification 
technique. Unfortunately, they suffer from one problem that  is so big and funda- 
mental that  it has led many to believe that  state space methods will never work 
well enough for large-scale practical use: state explosion. The number of states 
of almost any system of interest is huge. To get an appreciation of how serious 
the state explosion problem is, it suffices to investigate the number of states of 
some rather trivial systems: 

- The system consisting o fn  non-interacting processes, each with k local states, 
has k n states. 

- The classic dining philosophers system with n 4-state philosophers (Figure 1 
left) has 3 n - 1 states. 

- A simple token ring protocol described in [38] (Figure 1 right) has 9n2 '~-2 
states, where n is the number of stations. 
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Fig.  1. The dining philosophers system (left) and the Graf-Steffen token ring 
(right) as high-level nets. 

These examples reveal a common pattern: in a family of similar systems of 
different size, the number of states tends to grow exponentially in the parameter 
that  describes the size ("n" in the above examples). More generally, intuitively 
speaking, the size of a state space of a system tends to grow exponentially in 
the number of its processes and variables, where the base of the exponentiation 
depends on the number of local states a process has and the number of values a 
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variable may store, and on some kind of "tightness" of the connection between 
the components of systems (that is, the extent to which the local states of com- 
ponents are determined by the local states of other components). In the above 
examples, the bases are small because the systems are simple and rather tightly 
coupled. In many practical analysis or verification tasks the situation is much 
worse. 

At first sight, the state explosion problem looks so formidable that it seems 
to make state space methods useless for analysis and verification of systems in 
practice. However, the great advantages of state space methods have motivated 
researchers to try to find ways of alleviating the problem. During the last decade, 
many methods have been suggested that reduce the number of states that need 
to be constructed for answering certain verification or analysis questions. Such 
enhanced state space methods increase substantially the size of systems that can 
be analysed or verified, while preserving most of the advantages of state space 
methods. The goal of this article is to discuss many issues arising in attempts 
to cure the state explosion problem, and to briefly introduce several enhanced 
state space methods. 

Unfortunately, most state space reduction techniques sacrifice one or another 
of the advantages of state space methods. Most often, an advanced state space 
method can answer only certain kinds of analysis or verification questions with- 
out losing its ability to reduce the number of states. In some cases the algorithm 
for constructing the reduced state space takes advantage of details of the par- 
ticular verification question, and may run simultaneously and interact with the 
algorithm that answers the question. As a consequence, advanced state space 
methods cannot be properly discussed without first making a classification of 
different kinds of analysis and verification questions, and investigating a bit the 
algorithms with which they can be solved. 

The next section introduces many commonly used concepts that relate to 
state spaces, system behaviour, and the abstractions used for extracting the lat- 
ter from the former. After that, the structure of typical analysis and verification 
problems is examined in Section 3. Section 4 is devoted to a discussion of various 
kinds of analysis and verification questions, and state space algorithms for an- 
swering them. Then the state explosion problem is analysed from the complexity 
theory point of view in Section 5. Some strategies to state space reduction are 
discussed in Section 6, and many individual reduction techniques in Section 7. 
The conclusions are in Section 8. 

2 B a s i c  C o n c e p t s  

2.1 S ta te  Spaces and  Execut ions  

To capture those aspects of state spaces that are used by the state space methods 
discussed later, we define a state space as the tuple (S, T, A, SI), where 

- S is a set of states. 
- T is a set of structural transitions. 
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- A is a set of semantic transitions or edges. I t  satisfies A C S x T x S. 
- SI is a set of initial states. It  has the properties S I C  S and Sx 7 ~ t~. 

"States" are simply (a subset of) the global states of the system under anal- 
ysis. Often, but  not always, only those states are included tha t  the system can 
reach during an execution that  starts  in an initial state. In the case of Petri  
nets, s tates are called markings, and they are usually denoted with the letter M 
(perhaps with extensions, like M ~, Mi+l) .  

"Structural  transitions" are entities whose execution causes the system under 
analysis to change its state. They may  be, for instance, a tomic s ta tements  in 
a concurrent p rogramming  language, or Petri net transitions. They are thus 
present in the program or system under analysis. 

"Semantic transitions", on the other hand, model actual changes of s tate  by 
the system. They relate to the behaviour of the system, not the system itself. 
They can be called occurrences of structural transitions. Formally, a semantic 
transit ion is a triple (s, t ,  s ~) consisting of a start state s E S, structural transi- 
tion t E T, and end state s ~ E S. As we will see below, sometimes the middle 
component  t is omit ted  or replaced by a more abstract  transition label. To help 
reading, specific notat ion is often used for saying that  a triple is a semantic  
transition, such as M[t )M ~ in the case of Petri nets, and s -~ s I or s -a--+ s ~ in 

process algebras. In other words, s - t - - ~ s  I ~=~ ( s , t , s  t) E A. 
"Initial states" are the states the system may  be in when its execution starts.  

I t  is cus tomary to define only one initial state. Petri  nets, for instance, are typi- 
cally defined with one initial marking, which we will denote with MI.  However, 
the possibility of more than one initial state is sometimes important .  For in- 
stance, one might  want to show tha t  a system is correct independently of the 
initial value of some variable. Then one can use a set of initial states, consisting 
of one initial s ta te  for each possible value of the variable. 

A state space with many  initial states can be transformed to a state space 
with one initial s tate by adding a new state s,ew, declaring it as the initial 
state, and adding the semantic transition (snew, t, s) for every transition (Sl, t, s) 
that  starts  in any initial state Sl. If there is an initial state that  has no incoming 
transitions, it can be used instead of s,ew. I t  is intuitively easy to accept tha t  this 
t ransformation does not change the "behaviour" of the state space, and it is also 
mathemat ica l ly  true for almost all precise notions of "behaviour" or "behavioural  
property" in this article (home state properties are an exception). Although this 
description was at  the level of the global s tate space, this construction produces 
the desired result also when applied to each individual component  of the system. 
Therefore, it is often implementable in a verification model in practice. 

A state  space is finite if and only if S and T are finite - -  then also A and 
SI are finite. For talking about the computat ional  complexity of state space 
algori thms it is handy to define the size of a finite state space as ISI + ITt + IA]. 
In all but  exceptional cases IS[ + IT[ + IAI = O(IAI),  and the presence of IS I and 
[T[ in the measure of size simplifies the t rea tment  of the exceptional cases. The 
s tate  space is finitely branching if and only if each state has a finite number  of 
output  edges; that  is, for every s E S, the set ({s} x T x S) N A is finite. 
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The notion of the "universe" U of "syntactically possible states" is often 
useful when discussing the construction of state spaces from a description of the 
system in some modelling formalism, such as Petri nets or a parallel p rogramming 
language. In such a description, the (global) s tate of the system is a combination 
of the local states of its components,  values in its variables, etc. The universe 
is simply the set of all such combinations. It  is common tha t  it contains many  
states tha t  the system cannot reach. The set S of the states of a s tate  space is 
always a subset of  U. 

Sequences of semantic transitions are often abbreviated,  and the structural  
transitions tha t  label them can be omitted:  

so - t l - +  81 - t 2 - +  . . . .  tn--~ sn means tha t  so - Q - ~  81, sl  -t2--~ s2, • • . ,  and 
8 n -  1 - - ~ n - - ~  8n  . 

8 0 - t i t 2 . .  "tn-+ sn claims tha t  there are states sl ,  s 2 , . . . ,  sn-1 such that  
s o - t l " ~  sl - t2 -+ . . . .  tn-+ sn. By choosing n = 0 we see tha t  s -~- -~  s holds 
for every s E S, where e denotes the empty  sequence. 

s --+ s I says that  there is some t E T such that  s - t - +  g .  
8 --~* s I holds if and only if there is a (possibly empty)  sequence t i t 2 . . . t n  of 

structural  transitions such that  s - t i t 2 . . .  tn-~ s I. 

Structural  transitions are not needed by all state space methods.  If  they are 
absent, then a s tate  space is defined as the triple (S, A, SI),  where A C S × S 
and 0 ¢ S I C  S. A semantic transition (s, s j) E A may then be written as 
s ~ 8 j, and sequences of  zero or more semantic transitions as s --~* s ~. 

A structural  transit ion t is enabled in a state s, if and only if there is a s ta te  
s ~ such tha t  (s, t, s ~) E A. This is often writ ten in process algebras as 8 - t - ~ ,  and 
in Petri nets as M[t~. If  s - t - -+ s I, then it is said tha t  $ may  occur in s yielding 
s ~. We say tha t  a s tate  is a deadlock if no structural transit ion is enabled in it. 

A structural  transition t is deterministic if and only if the state result- 
ing from its occurrence in any given state is unique, tha t  is, Vs, s l ,  s2 E S : 
(s - t - -+ sl A s - t - -~  s~ =~ sl = 8~). If  determinism is not guaranteed, then struc- 
tural  transitions are said to be nondeterministic. For example,  place/ t ransi t ion 
net ( that  is, "ordinary" Petri net) transitions are deterministic, but  transit ion 
labels in process algebras are nondeterministic. 

When modelling a system at a low level of abstraction, it is usually possible 
to get rid of any nondeterministic structural  transition t by replacing it with a 
set of deterministic structural  transitions, which together represent exactly the 
possible outcomes of the occurrences of t. At higher levels of  abstract ion this is 
not always possible. For instance, assume tha t  a communicat ion protocol may  
reply ok or error to a transmission request. At a detailed level of abstraction, the 
choice between ok and error is determined by a loss or no loss of a message in a 
channel. I f  we look at the service provided by the protocol ( that  is, how its users 
see it), the transitions corresponding to the operation of the channel are not 
shown, so the choice between ok and error looks nondeterministic. Because many  
advanced state space methods rely on these kinds of abstractions, we cannot 
avoid nondeterministic transitions in the sequel. 
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An execution of a system is a finite or infinite sequence (so, t 1, sl,  t2, • •., tn, sn) 
or ( s o , t l , s l , t 2 , . . . )  such that  so E SI and so- t l - -~  sl -t2--+ . . . .  tn-+ sn (or 
so - t l - -+  sl -t2--+ "- ' ) .  A finite execution may  be incomplete in the sense tha t  
it may  end in a state with enabled structural transitions. Thus every prefix of 
an execution that  ends with a state (instead of a transition) is an execution. In 
particular,  a single s tate  s is an execution if and only if s E Sx. An execution 
is deadlocking, if and only if it is finite and its last s ta te  is a deadlock state. 
An execution is complete, if and only if it is infinite or deadlocking. The  set of 
executions of a system is the same as the set of all prefixes of the complete ex- 
ecutions of the system. We denote the set of  complete executions of  the system 
in question by CEx. 

We can talk about  executions that  start at some given state s. The definitions 
are otherwise the same as above, but  the requirement so E SI is replaced by 
S O ~ S .  

A state s '  is reachable from the state s, if and only if it is the last s tate of 
some finite execution start ing at s, tha t  is, s -4" s ' .  The set of Petri  net markings  
reachable f rom the marking M is denoted by [M). A semantic transit ion is 
reachable from s, if and only if its s tar t  s tate is - -  then also its end state is. 
A s ta te  or semantic transition is reachable, if and only if it is reachable f rom 
some initial state. By the reachable part of a state space (S, T, A, Sy) we mean 
the tuple ( S ' , T , A ' , S I ) ,  where S'  is the set of reachable states and A'  is the 
set of reachable semantic transitions. Most state space tools construct only the 
reachable par t  of the s tate  space, 1 and it is intuitively clear tha t  the "behaviour" 
of  a system depends only on it. Indeed, all formal definitions of behavioural  
properties in this article take only the reachable part  into account. 

A state space represents an interleaving semantics of a system. Tha t  is, it does 
not model the possibility tha t  two or more structural transitions occur simulta-  
neously. Semantic structures where this possibility is modelled are often called 
true concurrency models. An obvious way of extending state spaces to a true con- 
currency model would be to add semantic transitions labelled by nonempty  sets 
of  simultaneously occurring structural  transitions. The corresponding semantics 
is often called step semantics. 

Opinions differ as to whether interleaving or true concurrency semantics 
should be used in verification. I f  the property in question is inherently truly 
concurrent, then, of course, interleaving models are not appropriate.  On the 
other hand, deadlocks, livelocks, formulae in typical tempora l  logics - -  perhaps 
most  of the properties tha t  people want to analyse or verify - -  are insensitive 
to the difference between interleaving and truly concurrent models. 2 

I Not all, though. Symbolic model checking with BDDs is one exception. 
2 This is one of the statements that loses its validity in weird enough situations. Con- 

sider a parallel composition of infinitely many non-interacting processes that make 
one step each and then terminate. In a truly concurrent model the system as a whole 
can terminate, but not in the interleaving model, because in it only finitely many 
transitions can be executed in a fmite time. 
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Truly concurrent models are sometimes suggested as a way of avoiding state 
explosion. Step semantics does not seem promising in this respect, because it 
does not affect the number of states and increases the number of semantic tran- 
sitions. However, it is not the only possible truly concurrent semantics of sys- 
tems. Indeed, we will see in Section 7.2 that  states can be reduced with another 
truly concurrent semantic model, namely the unfoldings of Petri nets. Interest- 
ingly, concurrency can also be taken advantage of when constructing a reduced 
interleaving state space, as will be explained in Section 7.4. 

2 .2  A b s t r a c t i o n s  o f  S t a t e s  a n d  T r a n s i t i o n s  

It is often reasonable to define the correctness of a system at a higher level of 
abstraction than the system itself. (As a matter  of fact, this is what the fa- 
mous software engineering principle of keeping "what" and "how" apart from 
each other recommends.) Instead of formulating correctness claims and analysis 
questions in terms of the details of individual states and structural transitions, 
more abstract notions may be defined that capture those properties of states 
and structural transitions that  are relevant for the user of the system. For in- 
stance, it is more pleasant to require "processes 1 and 2 should not be in their 
critical sections simultaneously" than "processes 1 and 2 should not be in line 7 
simultaneously". 

At first sight this kind of abstraction might seem a minor user-friendliness 
issue, but it is actually crucial for many advanced state space methods. This 
is because they are based on throwing away information on those aspects of 
system behaviour that  are not relevant for the specification or analysis questions. 
Without  abstraction, an analysis question can potentially refer to just anything, 
leaving the state space method little or no room for obtaining reduction. In the 
presence of the abstraction, one can stipulate that  the question may refer to the 
system only with the abstract concepts, and the state space method can take 
advantage of this fact. (This is an example of "information hiding", another 
famous principle in software engineering.) 

For the purpose of discussing typical abstraction mechanisms, we employ 
two sets of "observables", /7 and 57, together with a special symbol "v". The 
intention is that  the properties of the system may be referred to only with these 
observables. 

/7 is a set of (atomic) propositions. Propositions refer to the properties of in- 
dividual states. More formally, a proposition ~ is a function from S to the 

set {False, True} of truth values. Examples: Critical2 ¢ ~  "Process 2 is in its 

critical section", AB_empty ~ "There are no messages in the channel AB", 

pl_is_good ~>, M(pl) >_ M(p2). 
57 is a set of observable transition labels, also called observable or visible actions. 

The set 57 is often called the alphabet. Transition labels are, in essence, user- 
oriented names of individual (structural or semantic) transitions or groups 
of them. Examples: "press_start_button', "send_message(12345)". 
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v is a special unobservable or invisible action. It is used to label those transitions 
that  the specification should not talk about,  because they are intended to 
model implementat ion details and be internal to the system. The formula 
r ~ / ~  is assumed to hold. 

The values of the observables on a given state space (S, T, A, SI) are deter- 
mined by the following two evaluation functions. 

El'/ : S ~-~ 2 x/ assigns to each s E S the set gu(s )  C _ / / o f  propositions tha t  hold 
in s. Tha t  is, ~(s) = True (i.e. ~ holds in s, often written as s ~ 9) if and 
only if ~ E £I/(s) .  

g~: : T  ~-+ £7 tA {r} gives new names to structural transitions. Several different 
structural transitions may  have the same name. The structural transitions 
whose occurrences are intended to be unobservable are given the name r ,  
tha t  is, $~ (t) = r.  

One might  ask for the reason of having both structural transitions T, and 
labels of transitions ~ U  {r}. The two play a different role. Structural  transitions 
come from the formalism used for describing the system - -  they tell something 
about  how the system has been put together. Transition labels, on the other 
hand, reflect the meaning of a semantic transition at some higher level of ab- 
straction, or from the point of view of the user of the system. It  is common tha t  
an operation is modelled with more than one structural transition, especially if 
the system description formalism is not rich. 

For instance, the assignment of zero tokens to a place/ transi t ion net place 
with capacity n in one transition occurrence requires n +  1 alternative transitions, 
one for each possible number  of tokens before the assignment. This is because 
a place/ t ransi t ion net transition can change the number  of tokens only by a 
constant value, and the operation requires n + 1 different changes to be possible. 
However, all the alternative transitions model the same operation, so it is good 
if they can be given a common name such as "reset_x'.  

Another reason for having the two levels is tha t  some advanced verification 
methods can take advantage of the low-level information provided by structural  
transitions, while answering verification questions stated in terms of transit ion 
labels. The CSP-preserving stubborn set method in Section 7.4 is an example.  
It  uses E to determine whether the swapping of successive transition occur- 
rences affects the property that  is being verified, and T to find out whether both  
orderings will lead to the same future states. 

If  transition labels are needed but structural  transitions are not, then it is 
cus tomary to replace T in the definition of state spaces b y / ~  or Z U  {v}, yielding 
(S, ~,  Z~, SI). Then A C S x  ( Z U { r } )  x S, and g~ becomes the identity function 
and is discarded. This is the usual case with process algebras, for instance. 

The functions £/I and g~: can be extended to executions in a natural  way: 

- ((80, t l ,  81, t 2 , . . . ,  t . ,  8 . ) )  = E . ( 8 1 ) , . . . ,  E . ( s . ) ) ,  
- ((so, t l ,  s l ,  t 2 , . . . ,  tn,  s . ) )  = and 
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- s . ) )  = 
E . ( . . ) ) .  

Stuttering.  An important  issue arising with E-abstracted executions is that  of 
stuttering. Stuttering means that  a semantic transition in an execution has no 
observable effect. Let ~ = (so, t 1, sl,  t 2 , . . . ,  tn, Sn) be a finite or infinite execution. 
When H is used stuttering means that  ,~n(si+l) - £H(si)  for some i, and with 
~U that  C~(t~) = v for some i. 

The  exact number of transitions a concurrent system takes to accomplish 
some task is usually considered irrelevant in verification. For instance, we do not 
usually care whether it took 5 or 10 internal transitions for a protocol to deliver 
a message. Therefore, executions that  differ only in the amount of stuttering 
are usually considered equivalent in verification, with the exception that infinite 
stuttering (that is, g~(s j )  - gjT(Si) or £~( t j )  = v for every j > i) is commonly 
distinguished from finite stuttering. 

A property is stuttering-insensitive if and only if its t ruth value never changes 
when finite stuttering is added to or removed from a system. Most properties 
we want to verify are stuttering-insensitive. When verifying such properties, if 
~11(~) = ( P o , P 1 , . . . , P ~ )  is finite, we could remove all Pi that  satisfy Pi = 
P i - t  without modifying verification results. From an infinite (P0, P1 , . . . )  we can 
remove all Pi such that  Pi = Pi-1 and there is j > i such that  Pi ¢ Pj. Similarly, 
we could remove all r-symbols from ~£(~), as long as we do not remove any 
infinite suffix consisting only of vs. 

State-based and action-based f o r m a l i s m s .  In many formalisms, one can 
refer to the properties of a system only with the elements o f / / .  Because S is 
not used, structural transitions cannot be referred to, and semantic transitions 
can be referred to only indirectly, as changes of state. Such formalisms can 
be called state-based. Most (but not all) temporal  logics are in this category. In 
action-based formalisms H is not used but  ~ is. Most, if not all, process algebras 
are action-based. So are also some temporal logics, most notably those that  have 
been intended to be used in connection with process algebras. 

It would be possible to use b o t h / / a n d  £7 in the same abstraction formalism, 
but  such formalisms seem to be rare. One reason for this is that  in many cases, in- 
formation about states is redundant if information about actions (i.e. transition 
labels) is available, and vice versa. Let s -t--+ s t. State information can be en- 
coded into actions by replacing ~ (t) with the pair (£~ (t), £jz(s ' )) ,  and storing 
C/r(si) separately for each initial state si .  This approach has, unfortunately, a 
problem: it is not clear which pairs could take the role of the invisible action, 
because the set Cn(s ')  may be important  in the pair (v, £n(s ' ) ) .  Furthermore, 
this idea is difficult to implement at the level of the modelling formalism (such 
as Petri nets), because the global state is needed for computing E~ (s~). 

These problems can be solved by using the triples (E~(t ) ,Po, ,Po~)  where 
Po, = En(s ' )  - Erl(S) and Po~ = ,~n(s) - E1r(s') as the new transition labels. 
The idea is that  Pon and Poa describe the change in the E/r-abstracted state 
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caused by the occurrence of t, so the triple (r, 0, 0) can be used as the invisible 
action. Furthermore, the information that  Po, and Poff contain is local in the 
sense that  it can be computed based on knowledge of the neighbourhood of t. It 
is worth noticing that  if originally all transitions are labelled with r ,  then this 
mapping transforms state stuttering (i.e. repetition of the same gu-abstracted 
state) into action stuttering (i.e. occurrence of the invisible action), and vice 
versa. 

Similarly, action information can be encoded into states by adding the label of 
the most recently executed transition into each state. This may divide the state 
to several copies, one for each possible input transition label, but  this is usually 
pretty harmless. If insensitivity to stuttering is desired, then one may store the 
most recent observable transition label together with a bit that  alternates its 
value each time a transition with an observable label occurs. The purpose of the 
bit is to make it possible to distinguish repeated occurrences of the same visible 
action. Repetition of the same visible action is not stuttering and should not be 
ignored in verification. For instance, if a protocol may execute, in a row, two 
receive(msg)-actions with the same message msg, then we would probably want 
to know it, because it may be a sign of erroneous duplication of a message. Also 
this mapping makes state-based and action-based stuttering match each other. 

The above encodings of state information to transitions and transition in- 
formation to states are important,  because they allow the use of state-based 
methods for action-based verification tasks and vice versa. For instance, the 
stubborn set methods (Section 7.4) are inherently action-based because they 
rely on analysing relations between structural transitions, but thanks to the 
above mapping they can be applied to state-based linear temporal  logic. 

2.3 Linear and Branching Time 

Let us assume that  we have decided to use an abstraction mechanism consisting 
o f / / a n d  £n, Z and £~, or both. The mechanism specifies what we can say about 
the properties of individual states and transitions. Another important  question 
is: What  do we want to be able to say about their relations over time? 

L i n e a r  t i m e .  One popular answer is that  it suffices to look separately at each 
complete execution of the system or, more precisely, what can be seen of it 
through the abstraction mechanism. In other words, "~ ~ ~o" (what it means for 
an execution ~ to satisfy a property ~0) is defined as £/7(~) ~ T or g~(~) ~ T or 
gz/+~(~) ~ T, and the system has the property ~ if and only if ~ ~ ~ for every 

E CEx. Any property whose validity is defined in this way is a linear-time 
property. 

For instance, as we will soon demonstrate,  reachability of a deadlock, and 
4-boundedness of a Petri net place p (that is, VM e [MI) : M(p) < 4) are linear- 
t ime properties. So is the property that  at any instant of time, the sequence 
of messages that  have been output  from an alleged fifo queue is a prefix of the 
input sequence; and the property that  the length of the output  sequence will 
eventually be at least the same as the present length of the input sequence. 
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Reachability of a deadlock can be checked (in the mathematical,  not necessar- 

ily computational, sense) by including the proposition is_deadlock ~ Vt E T : 
",M[t} i n / / ,  going through all abstracted states in the sequences in £17(CEx) = 
{ ~n(~) t ~ • CEx }, and checking whether is_deadlock holds in any of them. 
The same principle applies to 4-boundedness. To analyse the properties of the 
fifo, one may include in ,U the actions input(x) and output(x) for every possi- 
ble message type x. Then the "prefix" property can be checked by searching 
E~(CEx) = { Ez(~) t ~ • VEx } for a prefix of an abstracted execution that  
violates the property. Finally, the "length" property is violated if and only if 
E~(CEx) contains an abstracted complete execution with a finite number of 
output  messages that  is smaller than the number of input messages (the latter 
may be infinite). 

As an example of a property that,  making reasonable assumptions about the 
abstraction (we will return to this at the end of this section), is not linear-time 
we may take "liveness" of structural transitions in the Petri net sense of the 
word. A structural transition t • T is Petri-net-live, if and only if VM • [M1) : 
BM' • [M) : M'[t} (or, in the CTL logic that  will be introduced in Section 4.3, 
AG EF "t is enabled"). 

Figure 2 shows a Petri net and its state space abstracted such that  /-/ = 
{t_enab}, where t_enab holds in exactly those states where t is enabled. The 
transition t is not Petri-net-live, but if the dashed transition is removed from 
the net, then t becomes Petri-net-live. The set EI~(CEx) of complete abstracted 
executions of the net consists of the sequences (P0, P1, P2, . . . ) ,  where P~ = 
whenever / = 0 or i is odd, and each of the remaining P~ is either {t_enab} or 0. 
The same set is obtained if the dashed transition is removed. So we see that  the 
removal of the dashed transition does not affect the linear-time properties of the 
net with respect to the abs t rac t ion/ / ,  although it affects the Petri-net-liveness 
of t. Therefore, Petri-net-liveness of t cannot be reasoned from EI~(CEx), and 
Petri-net-liveness is not a linear-time property. 

It is worth noticing that  the fact that  / / r e fe r s  to the marking of only one 
place (namely the input place of t) was not important in the above example. 
The example remains valid for e v e r y / / t h a t  contains t_enab and does not refer 
to M (pl). 

B r a n c h i n g  t i m e .  On the other hand, Petri-net-liveness can be determined 
if t_enab E /-/ and all execution trees of the system are known. Just like the 
definition of an execution, the definition of an execution tree requires that  one 
initial state sl E $I is chosen as the starting point. Consider the part of the state 
space that  consists of the states and semantic transitions that  are reachable from 
st .  An execution tree is an unfolding of that  part into a tree. It represents all 
executions that  start at Sl, and it also records all the positions where any two 
executions separate from each other. 

An execution tree of the state space (S, T , / 1  SI) with the start  state s1 E Sx 
may be defined formally as the rooted edge-labelled graph (V, E,  sl) such that  

- V is the set of finite executions (so, t l ,  .--,  tn, sn} of the system where so = si 
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Fig.  2. A Petri-net-liveness example. 

- E = { ( ( s ; , . . . ,  s ) , t ,  ( ~ ; , . . . ,  s , t ,  ~')) I ( s , , . . . ,  s) e V ^ (s,t ,  ~') e Z } 

Although the nodes of the execution tree are defined above as executions and 
thus each node contains complete information of its history, one should consider 
nodes as anonymous and void of any information other than that  provided by 
Er/. Unifying nodes with their histories is just a mathematical  trick that  ensures 
that  the result is a tree. The edges of an execution tree may be defined also as 

E = { ( ( s ; , . . . ,  s), e~(t), (~; , . . . ,  s,t, s')) I ( s , , . . . ,  ~) e ,  ^ (s, t, ~') e ~ } 
if structurM transitions are abstracted with £7, or 

E : { ( ( s I , . . . , s ~ , ( s , , . . . , s , t , s ' } )  I ( s , , . . . , s ~  e V A 3t e T :  ( s , t , s ' )  e A } 
if structural transitions are abstracted away totally. 

Any property whose validity is defined on E-abstracted execution trees is a 
branching-time property. We may call a branching-time property proper if it is 
not also a linear-time property. Thus Petri-net-liveness is a proper branching- 
time property. 

Even the set of branching-time properties does not cover all properties of 
interest. Consider the net in Figure 3, and assume that  /-/ = {pl, p2, p3, p4}, 

where pi ~ M(pi) = 1. A marking MH is a home marking if and only if it 
is reachable from all reachable markings, that  is, VM E [/1/It): MH e [M), or 
AG EF "the marking is MH". The example net does not have home markings. 
However, if P5 and its adjacent arc are removed, then M(p4) = 1 A M(pl) = 
M(p2) = M(p3) = 0 becomes a home marking. 

On the other hand, because we assumed that  p5 ~ H, the £H+E-abstracted 
execution trees of the net with and without Pc are the same. As a consequence, 
under this abstraction the property "MH is a home marking" is not a branching- 
time property. Tha t  it was possible to describe it with the above CTL formula 
is because the formula implicitly refers to p5 in "the marking is MH". 
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Fig.  3. A home marking example. 

In the above examples we assumed that  an abstraction mechanism was used 
that  prevented us from reading the marking of one place of the net. This was 
necessary, because if no abstraction mechanism is used, then the distinction be- 
tween linear-time, branching-time and even more general state space properties 
disappears in a certain theoretical sense. Namely, then we would have access to 
the properties of the states and transitions in full detail, and could reconstruct 
the reachable part  of the state space from the set of complete executions by 
merging all occurrences of the same state. As a consequence, any state space 
property that  does not depend on unreachable states could be checked from the 
set of complete executions. In the presence of an abstraction mechanism this 
trick does not work, because then we cannot be sure that  sl and s2 are the same 
state even if we know that  £ / / (s l )  = gH(s2). 

2.4 Safety, Liveness, and Fairness 

In the verification of sequential programs the distinction between partial cor- 
rectness and termination has proven useful. Partial correctness means that  the 
program does not ever do anything illegM such as deliver incorrect results or 
crash. Partial  correctness requirements depend on the task of the program, and 
are often formulated in some programming logic. The requirement of termina- 
tion is the same for all programs, and it is simple to state: the program should 
not run forever. Partial  correctness is proven with weakest preconditions, loop in- 
variants, etc., while proofs of termination are usually based on bound or variant 
functions whose values decrease as the program continues execution but  cannot 
decrease without limit. Thus the techniques used for stating and proving termi- 
nation are very different from the techniques used for stating and proving partial 
correctness. 

A similar distinction has been made in the world of concurrent systems be- 
tween safety and liveness (or progress) properties [55]. Safety plays the role of 
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partial correctness and liveness that  of termination. Since concurrent programs 
are usually not intended to terminate, liveness consists of a set of requirements of 
the kind "these things should eventually happen".  Unlike termination, liveness 
properties are system-specific and often difficult to formulate. 

Linear-time safety properties can be defined as those properties of E-ab- 
stracted executions that  have finite counterexamples. If a prefix of an execution 
matches any one of the counterexamples, then the execution violates the prop- 
erty, no mat ter  how it continues. A system has a safety property, if and only if all 
its executions have it. The "prefix" property of a fifo queue and 4-boundedness 
of a Petri net place (Section 2.3) are safety properties. Namely, to demonstrate 
tha t  either one of them does not hold, it suffices to give an example of a finite, 
perhaps incomplete execution in which a message is output  that  has not been 
input, or the place contains at some point more than four tokens. Also the prop- 
erty "the program will not terminate" is a safety property, if we assume that  £/z 

contains the proposition stopped ¢ ~  Vt E T : -~(s -t--+ ). 

The precise meanings of the terms "liveness" and "progress" vary. In this arti- 
cle we roughly follow [2, 59] and define linear-time liveness properties as the prop- 
erties such that  E-abstractions of only complete executions qualify as counterex- 
amples. Furthermore, if the complete execution is finite and its E-abstraction 
is (P0, al, P1, a2, . . . ,  an, Pn), then also its infinite completion should be a coun- 
terexample, where the completion is (Po, al, P1, a2, . . . ,  an, P,~, v, P~, 7", Pn, . . . )  
(that is, the last abstracted state is repeated forever with invisible transitions 
in between). This extra condition ensures that  no property is simultaneously a 
safety and liveness property. 

For instance, the property "the program will eventually terminate" is a live- 
ness property, because to demonstrate that  it does not hold, an infinite, and thus 
complete, execution is needed. If we have observed the execution of a system only 
a finite t ime and the system has not terminated, we cannot claim that  the ex- 
ecution violates any liveness property, because it is possible that  the execution 
continues in a way that  makes the property valid. The "length" property of fifo 
queues is a liveness property. This is because if n messages have been input to 
the queue and tess than n have been output ,  it is possible tha t  the remaining 
messages will come out if we wait long enough. 

The definition of safety can be naturally applied to branching t ime by re- 
placing "execution trees" for "executions". Because an execution tree may be si- 
multaneously infinite and incomplete, it is not immediately clear how branching- 
t ime liveness should be defined. For instance, a counterexample for the Petri- 
net-liveness of a transition t has to contain a complete branch where t is never 
enabled, but  other branches of the tree may be discarded. 

If a linear-time safety property does not hold, then there is a finite execution 
that  works as a counterexample. A state space tool can print that  execution, 
and the user can use it to trace the reason of the error. If a linear-time liveness 
property does not hold, then counterexamples are usually infinite. An infinite 
execution cannot be printed in full, but  almost always a counterexample can 
be made to consist of a finite prefix followed by an infinitely repeating finite 
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cycle, and the prefix and the cycle can be printed. Counterexamples for proper 
branching-time properties are more complicated. Let us again use Petri-net- 
liveness as an example. It is easy to print an execution that  leads to a state 
after which t cannot any more become enabled, but it is not clear what the tool 
should print to show that  t indeed stays disabled from that  state on. 

Safety properties are easier to handle in verification than liveness properties 
in at least two ways. First, there are verification approaches and algorithms that  
work for safety properties, but not for liveness properties. We will see examples 
of this in Section 7. Second, validity of a liveness property tends to depend 
on subtle assumptions about the scheduling policy of the system and liveness 
properties of its components, while safety properties are totally insensitive to 
them. For instance, a mutual exclusion algorithm cannot guarantee that  each 
customer that  has requested for the shared resource will eventually get it, unless 
it is assumed that  each customer who gets the resource will eventually release it. 
(The usefulness of Petri-net-liveness in verification is increased by the fact that  
although it fulfills to some extent similar verification needs as liveness properties, 
it does not depend on fairness assumptions.) 

Fairness is a particular type of assumption that  is very often needed for 
ensuring liveness. Numerous different notions of fairness have been defined (see 
the book [28], for instance). Perhaps the following two from [59] are the most well 
known. Weak fairness (also known as justice) towards a structural transition t 
promises that  if t is enabled in every state from some point on, then it will 
eventually occur. The definition rules out executions where, after some state, t 
never occurs although it is always ready to occur. Thus weak fairness is suitable 
for modelling assumptions such that  each process of a system gets processor 
time. 

Strong fairness (or compassion) requires that  if t is enabled infinitely many 
times, then it should also occur infinitely many times. With strong fairness one 
can specify, for instance, that  a server does not systematically disfavour any one 
of its clients. 

3 S t r u c t u r e  o f  t h e  A n a l y s i s  o r  V e r i f i c a t i o n  P r o b l e m  

State space methods are good both in the verification, analysis, validation and 
error detection of the behaviour of systems. In this article, these terms have the 
following meanings. 

Ver i f i ca t ion  is the act of proving or checking that  a formal system has a for- 
mally stated property. In the strictest interpretation of the word, the goal 
is just  to find rigorous evidence to the claim that  the system is correct in 
the sense of having the property. If the system is not correct, then it suffices 
that  a verification technique fails either by not terminating or by giving a 
failure report that  leaves the correctness question unanswered. This kind of 
a verification technique may be called one-sided - -  it can answer "yes, the 
system is correct" and perhaps also "cannot say", but it cannot answer "no, 
it is incorrect". 
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In a more permissive interpretation, a verification technique may also 
give the answer "incorrect" and, better still, give some debugging informa- 
tion, such as an example of an execution that  violates the specification. A 
verification technique that,  given enough time and memory, is guaranteed 
to eventually terminate with the answer "yes" or "no" is a verification al- 
gorithm. A one-sided verification algorithm will eventually terminate and 
answer "yes" or "cannot say". 

A n a l y s i s  means finding answers to formal questions about the behaviour of a 
system. Analysis differs from verification in that  

- the question is not necessarily a "yes"/"no" question, and 
- even if it is, the answer "yes" is not given priority over "no". 

An analysis algorithm is guaranteed to eventually terminate with a correct 
answer (other than "cannot say"), unless it runs out of computer  resources. 
Examples of analysis questions: "What  is the maximum number of messages 
simultaneously in this queue?", "Give me a list of those Petri net places that  
have more than one token in some reachable marking." 

V a l i d a t i o n  is the process of obtaining confidence that  a system behaves as 
intended. The behaviour of the system is compared to the expectations of 
the human being who is validating the system. Validation is thus always 
inherently informal. 

Verification does not guarantee that  a system behaves as we want, be- 
cause we might have made an error when formulating the correctness criteria 
(not to mention the problem that  the object of verification is never the real 
system, but only a formal model of it, that  may or may not represent the 
system accurately enough). Formal analysis or verification may, however, be 
used as a means of validation. Knowing that  a system does not deadlock 
and that  its input and output  are related in a certain way may increase our 
reliance on it quite a lot. Some other, widely used forms of validation are 
ordinary testing and reviews of program code. 

E r r o r  d e t e c t i o n  is, in a sense, opposite to verification and validation: its pur- 
pose is to find errors. In most cases the goal of making a flawless system 
is beyond reach. Therefore, the less ambitious goal of finding as many of 
the remaining errors as possible within reasonable t ime and costs is taken. 
Ordinary testing is widely used for this purpose. Analysis and verification 
algorithms are also useful, because they are powerful in detecting errors, and 
they tend to find different errors than testing. 

With this atti tude, the failure of one individual analysis or verification 
run because of state explosion is a pity, but  not a catastrophe - -  the search 
for errors may be continued with another, perhaps simpler analysis question. 
The verification system is successful if it reveals errors, even if it falls far short 
of full coverage of the state space. Furthermore, the capability of finding 
errors is more important  than the ability of proving correctness when trying 
to convince engineers of the benefits of verification algorithms and tools. An 
engineer does not necessarily know what verification means and is perhaps 
not much impressed when told "I verified your design and it is correct", but  
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pointing out an error that  the engineer was not aware of gives the engineer 
concrete evidence of the power and usefulness of state space techniques. 

To some extent, the difference between verification and analysis is a mat ter  of 
taste, or point of view. For instance, a verification algorithm (in the above sense) 
is also an analysis algorithm, and the production of debugging information can 
be thought of as analysis. One practical difference in the use of these terms is 
that  in analysis, one does most of the thinking after running the tool, while in 
verification most of the thinking is done before running the tool. Formulating 
a reasonable correctness claim for verification takes a lot of effort, whereas the 
answer can be interpreted easily, especially if it happens to be "yes". In analysis, 
on the other hand, a question may be thrown in just  to see what happens, and 
interpreting the answer may take quite some time. 

A typical framework for computer-aided analysis or verification has the fol- 
lowing four components: 

1. A f o r m a l i s m  fo r  m o d e l l i n g  t h e  s y s t e m .  It may be, for instance, a par- 
allel programming language, some class of Petri nets, a process-algebraic 
language, or a formalism consisting of finite-state automata  communicating 
via first-in-first-out queues. In the sequel we will call it modelling formalism. 

2. A f o r m a l i s m  fo r  s t a t i n g  ana lys i s  q u e s t i o n s  o r  p r o p e r t i e s  f o r  ver i f i -  
c a t i on .  We will call the former query formalism and the latter specification 
formalism. Examples are state space query languages and temporal  logics. A 
specification or query formalism may also contain aspects that  are related to 
the modelling formalism, such as, in the case of Petri nets, fact transitions 3 
and lists of places that  are expected to be bounded. A query formalism may 
be rudimentary, and may reside in part  or in full in the names and options of 
the commands used for invoking analysis tools. A document in a specification 
formalism is a specification. 

3. A f o r m a l  m e a n i n g  fo r  t h e  r e l a t i o n  " t h e  s y s t e m  has  t h e  p r o p e r t i e s " .  
The system is given in a modelling formalism, and "the properties" mean 
either the specification, or the results of an analysis. This relation is known 
as satisfies in the remainder of this article. In the case of temporal  logics 
the satisfies-relation is usually the "is-a-model-off-relation denoted by " ~ " .  
With process algebras it is commonly some process equivalence or preorder. 
A Petri net satisfies a fact transition if and only if the fact transition is 
disabled in all reachable markings. 

4. A n  a l g o r i t h m  fo r  c h e c k i n g  w h e t h e r  a g iven  s y s t e m  sat isf ies  a g i v e n  
spec i f i ca t i on .  Even if we restrict ourselves to state-space-based algorithms, 
the algorithm and its computational complexity depend heavily on the spec- 
ification formalism. Sections 6 and 7 are devoted to a discussion of various 
ways of organising a verification algorithm, and of techniques that  can be 
used to avoid or alleviate the effects of state explosion. 

3 In Petri net terminology, a fact transition is a structural transition that is never 
expected to be enabled. Thus the negation of its enabling condition is expected to 
always hold, to be a persistent fact. 
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Some major  specification formalisms and the corresponding satisfies-relations 
and algorithms will be discussed in Section 4. 

4 S p e c i f i c a t i o n  a n d  Q u e r y  F o r m a l i s m s  

4.1 Statistics at the Level o f  Modell ing Formalism 

Many state space tools can produce various statistics on the state space that  are 
formulated in the terminology of the modelling formalism. A Petri net tool, for 
instance, may generate lists of deadlock markings, maximum numbers of tokens 
in each place, transitions that  never occur, transitions that are not Petri-net-live, 
etc. To get the lists, the user needs not do more than tell the tool to print them. 
On the other hand, after the lists have been printed, the user has to think a lot 
to check whether the results are acceptable and the system is working correctly. 
So this approach is more oriented towards analysis than verification. 

Because a typicM state space contains vast amounts of information, lists 
of the above kind may be rather long. Therefore, and also to facilitate more 
detailed investigation of the state space, some state space tools allow the user 
to make various queries on the state space. For instance, the user may ask for 
a list of markings where a certain transition is enabled. Advanced state space 
query languages allow the user to talk about the properties of a marking in great 
detail, investigate the immediate predecessor and successor markings of a given 
marking, pose questions about the reachability relation, etc. 

State space statistics can usually be produced and queries of this kind an- 
swered efficiently with rather simple algorithms. The properties that  can be 
checked with a typical state space query language concentrate on linear-time 
safety properties. Home markings, questions about the reachability relation, 
etc. allow the analysis of some other types of properties, but these facilities 
tend to be somewhat ad-hoc and clumsy. This observation has an explanation: 
we will see in Section 4.3 that  it is very unlikely that  simple, efficient verification 
algorithms exist for a certain powerful specification formalism that  is capable of 
expressing liveness and branching-time properties (namely CTL*).  A formalism 
for specifying a wide range of properties has thus to be chosen carefully, in order 
to make it expressive enough without making it too expensive to use. 

Another problem with statistics and queries that  are at the level of the mod- 
elling formalism is that  they are sometimes not "semantic" enough. They do not 
use a terminology that  is relevant for the system, but the terminology of the 
modelling formalism. For instance, a tool can produce a list of halted states, but 
cannot divide them into illegal deadlock and legal termination states unless the 
notion of "legal" is somehow explained to the tool. Furthermore, sometimes the 
statistics answer a slightly wrong question. As an example we will discuss home 
states. 

As was defined in Section 2.3, a home state is a state that  is reachable from 
all reachable states of the system. If a system has a home state, then it has some 
mode of operation that  it can always enter but never exit. The existence of a 
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home state is usually a good sign, because it reveals that  the system cannot 
do anything irrevocable after an initialisation stage; whatever is the service it 
provides in and around the home state, it can and will provide it forever. It is, 
however, possible that  the home state belongs to a livelock or even deadlock, 
in which case the intended service is provided in the "initialisation stage", if at 
all. This is not possible if all initial states are home states, which is, therefore, 
considered as a particularly good sign. Home states are a special case of the 
analysis of strongly connected components of the state space. 

Consider any Petri net that  has a home state. Let us add to it the isolated net 
fragment that  is shown on the left in Figure 4. This addition has absolutely no 
effect on the behaviour of the rest of the net. The only thing it does is to introduce 
exactly one extra semantic transition that  is chosen from two possibilities, may 
take place at any instant of time, and occurs only once. Therefore, making the 
usual assumption that  stuttering is insignificant, the addition does not affect the 
correctness of the net. However, after the addition the net has no home states. 
So we see that  home states are "fragile" in the sense that  a modification that  
is totally irrelevant for the correct functioning of the net can make a significant 
change to its home state properties. 

F ig .  4. Two isolated net fragments. 

From the point of view of this article, comprehensive statistics and versatile 
query languages have yet another drawback. Namely, they do not go together 
well with techniques for alleviating state explosion. Many state space reduction 
methods are based on throwing some information away. To obtain correct results, 
a method should preserve those pieces of information that  may be needed for 
producing the answers. When comprehensive statistics are produced or versatile 
query languages are used, the method should preserve lots of information from 
all over the net and all over its state space. As a consequence, good reduction 
results cannot be obtained. 

On the other hand, the user seldom needs all that  information. If we restrict 
ourselves to certain parts of the net by, say, letting the analysis questions only 
refer to certain places and transitions, then the reduction methods can throw 
away information on the uninteresting places and transitions and yield better  
results. This can be clone with the abstraction mechanisms of Section 2.2. 
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4.2 Instrumenting the Model 

Software modules are often tested in a test bed that  sends them input, and 
receives and checks their output. The same idea can be applied to verification. For 
instance, a high-level Petri net verification model of a communication protocol 
may be augmented with the net fragment in Figure 5. As long as the protocol 
works correctly, the test bed keeps on sending it new messages for transmission. 
If  the protocol ever delivers a wrong message, then t3 occurs, and if it duplicates 
a message, then t4 may occur. If it fails to deliver a message then the system 
either deadlocks or livelocks depending on whether the protocol part stops. 

<y',\ 

[ ~  Theprotocol  1 

Fig.  5. A protocol test bed. 

Deadlock and the occurrence of t3 or t4 can be easily checked from typical 
state space statistics of the kind in Section 4.1. If the initial states of the system 
as a whole are home states, then it is certain that  the protocol cannot enter a 
livelock that  it could not exit. On the other hand, the absence of home states 
does not necessarily mean that  the protocol is incorrect in this respect. 

The absence of livelocks that  the protocol can exit cannot be verified with 
home states, occurrence checks and Petri-net-liveness checks. To see this, it suf- 
fices to take a net without such livelocks and add to it the net fragment on the 
right in Figure 4. (If we consider tha t  this addition should not cause a livelock 
because the added transition cannot prevent the rest of the net from making 
progress, then this example demonstrates the need for fairness assumptions.) 

O n - t h e - f l y  ve r i f i ca t ion  o f  l i n e a r - t i m e  sa fe ty  p r o p e r t i e s .  In the above 
example, t3 and t4 were used as fact transitions, that  is, Petri net transitions 
which are never expected to be enabled. Because the enabling condition of a fact 
transition may refer to several places all over the net, and because one can add 
extra places to keep track of useful information, fact transitions offer a rather 
versatile way of specifying verification questions. 
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It is actually easy to see that  fact transitions can be used to check any linear- 
t ime property whose counterexamples can be expressed as a regular language 
over T or 27U{T}. For every such property there is a finite automaton that  accepts 
exactly the finite sequences of transition occurrences that  violate the property. 
This autonlaton can be easily built from Petri net places and transitions and 
connected to the system with transition fusion. 4 The arrival of a token to a place 
that  corresponds to an acceptance state of the automaton can be detected with 
a fact transition. 

If the properties of interest are stuttering-insensitive, then r-transit ions of 
the system need not be fused with any transitions of the automaton.  This is 
important  for some advanced state space methods, such as the compositional 
analysis of Section 7.3. 

There is an alternative way of connecting the test automaton to the system 
that  is handy for state-based specifications, and used especially with the Biichi 
au tomata  that  are described later in this section (Section 4.2). In it, the test 
automaton makes its first transition according to what elements o f / / a r e  valid 
in the initial state of the system. Then, for each semantic transition (s,t ,  s I) of 
the system, the test automaton makes a transition according to what elements of 
/7 are valid in # .  (A more formal definition will be given when Biichi au tomata  
are discussed in more detail.) This way of connection requires support from the 
state space construction tool, as it cannot be implemented in typical modelling 
formalisms. 

Can fact transitions and finite test au tomata  express all linear-time safety 
properties? There is a classic simple argument from set theory that  answers 
"no, no formalism can". Let Z = {a, b}. Consider any X C {0, 1, 2 , . . .} ,  and 
let ~ x  be the property "the number of a-transitions before the first b-transition 
is in X" .  The number of such properties is clearly uncountable. On the other 
hand, any object or property we ever specify in any formalism must have a 
finite description in that formalism (although the object itself may be infinite), 
otherwise we cannot write the specification in full. A finite description is a finite 
string of characters, and there are only countably many of them. Therefore, there 
are much more properties than specifications. 

Because of the above, it is more meaningful to ask whether all those linear- 
t ime safety properties can be specified with fact transitions and finite test au- 
tomata  that  can with some other given formalism. The answer is obviously "yes" 
for all process-algebraic semantics of Section 4.4 provided that  the specification 
LTS is finite, because the automata-theoretic complement of the specification 
LTS can be used as the test automaton. The answer is also "yes" for all the 
linear-time safety properties that  can be expressed in the temporal  logics of Sec- 
tion 4.3, assuming either that the modelling formalism allows the encoding of 

4 Transi t ionf~sion means that all transitions t s  in the system and tA in the automaton 
such that £z( ts)  = gz(tA) are replaced by transitions tSA, one for each possible 
(ts, tA)-pair. The input and output arcs of ts and tA are copied to tSA with their 
possible arc inscriptions, and the guard of $SA is the conjunction of the guards of ts 
and t A. 
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atomic propositions on states into ~ in the sense of Section 2.2, or tha t  the au- 
t oma ton  is connected to the system with the alternative state-based mechanism 
discussed above. So we see that  fact transitions and finite test au toma ta  are ac- 
tual ly quite expressive (although they have also limitations, as will be discussed 
below). 

A larger set of properties is obtained if the test au tomaton  is allowed to 
be unbounded - -  any Turing machine, for instance. However, al though many  
modelling formalisms allow the implementat ion of infinite-state au tomata ,  such 
a u t o m a t a  tend to cause serious problems to verification algorithms and tools. 

The  fact that  fact transitions allow the verification of any property whose 
counterexamples can be expressed as a regular language over T or Z does not 
imply  that  this is always practical, or compatible  with an advanced verification 
method one plans to use, or sufficient for verifying even simple properties s tated 
in terms o f /1 .  Representing the condition "no structural transit ion is enabled" 
as the disjunction of the enabling conditions of a set of fact transitions is possible 
in the case of Petri nets where each place may store at most  one token at any 
instant  of time, but it may  be awkward and require an exponential number  of 
fact transitions. With  ordinary Petri nets it is not even possible, because it would 
make it possible to implement a transition that  is enabled exactly when a certain 
place is empty.  This, in turn, would make it possible to simulate two-counter 
machines, but that  is impossible, because two-counter machines can simulate 
Turing machines, and ordinary Petri nets cannot. If  an advanced verification 
method relies on the assumption that  the model has a certain special property 
- -  that  it is a free-choice Petri net, for instance - -  then it may be tha t  the 
addition of the fact transition destroys this property, making it impossible to 
use the method.  

When a fact transition becomes enabled it is known that  the system is not 
correct. A state space tool may then immediately stop and print a message. This  
may  save lots of analysis time. Such use of fact transitions is a rudimentary  form 
of on-the-fly verification, a powerful idea tha t  we wilt investigate in more detail 
in Section 6. 

O n - t h e - f l y  l i v e l o c k  d e t e c t i o n .  Fact transitions can be used only for linear- 
t ime safety properties. We mentioned earlier tha t  livelocks that  the protocol 
can exit cannot be checked with them. In general, a livelock corresponds to an 
infinite execution tha t  produces no useful result. 

In the protocol example,  it is reasonable to expect tha t  for each message 
given for transmission, the protocol computes only a finite amount  of t ime. As 
a consequence, every infinite execution of the system should have an infinite 
number  of transmission requests, that  is, occurrences of t l .  This is an example  
of a general technique for specifying absence of livelocks: a set of progress tran- 
sitions is specified, and a livelock is reported if and only if the system has an 
infinite execution that  contains only a finite number  of occurrences of progress 
transitions. If  the state space is finite, then a livelock of this kind corresponds 
to a cycle where no edge is labelled by a progress transition. 
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Instead of progress transitions, it is possible to define progress states as the 
states that  satisfy some condition, and interpret livelocks as cycles which do 
not contain progress states. Such a cycle is called non-progress cycle in [43]. In 
the protocol test bed example, one can define that  progress states are those 
where pp is marked. At first it might seem that  this technique would lose those 
livelocks where the protocol is not transmitting a message, because then pp is 
continuously marked. This is not the case, however, because in such a situation t l  
is enabled, and the state space tool will investigate also the sequence consisting 
of the livelock preceded by an occurrence of Q. In this execution pp is empty, so 
the livelock is detected. 

We see from this example that  a test bed need not necessarily be determinis- 
tic: it suffices that  at least one nondeterministic alternative leads to the detection 
of the error, and no alternative gives a false alarm. A deterministic test bed is, 
however, often better  than a nondeterministic one in that  with it, the state space 
tool will report an error immediately when enough of the behaviour of the system 
has been investigated. When a nondeterministic test bed is being used, it may 
be that  an alternative that  does not give an alarm is investigated first. Then it is 
possible that  erroneous behaviour and after it many more states are investigated 
before an error-detecting branch of the test bed is finally chosen and the error 
is detected. 

In the action-based case it is natural to declare all transitions with a visible 
label as progress transitions. Then livelocks correspond to £~-abstracted infi- 
nite executions that  end up with an infinite sequence of r-transitions. It is not 
necessarily the case that  all such executions are errors. If the error executions 
are taken and all r-transitions are removed from them, a language consisting 
of finite strings and representing some stuttering-insensitive liveness property is 
obtained. If that  language is regular, it can be represented as a finite automaton.  

In [87] that  automaton was connected to the system with transition fusion 
just  like above with safety properties. Non-progress cycles were reported if and 
only if the automaton was in an acceptance state. Thus progress transitions 
(visible transitions) were used simultaneously with progress states (global states 
where the automaton is not in an acceptance state) for efficient on-the-fly detec- 
tion of a large set of livelock errors. We may call finite au tomata  that  are used 
in this way livelock detection automata. They are particularly useful for certain 
process-algebraic verification tasks (Section 4.4). 

Cycles of a finite directed graph can be detected easily and efficiently with 
the ordinary depth-first search. If the first search does not cover the graph in 
full, then a new search is initiated in some ignored vertex and so on, until all 
vertices have been investigated. Following the colour encoding in [15], let us call 
a vertex gray if the search has entered it but  not yet backtracked from it. The 
graph has a cycle if and only if the search ever encounters an edge from the 
current vertex to a grey vertex. Non-progress cycles can be found from a finite 
state space by first removing all edges that  correspond to occurrences of progress 
transitions or are adjacent to progress states, and then seeking for cycles. 

It is also possible to integrate the detection of non-progress cycles with the 
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construction of the s tate  space by processing states and their output  (semantic) 
transitions in a certain order, as was explained in [87]. The basic idea is to 
investigate progress transitions or semantic transitions tha t  s tar t  in a progress 
s tate  only when there are no other uninvestigated semantic transitions, and 
investigate all other semantic transitions in depth-first order. This  yields an 
on-the-fly algorithm for detecting livelocks. ~ 

Progress transitions or states can also be used in the presence of certain 
fairness assumptions. For instance, we may  want to check that  the protocol 
always eventually delivers the correct message, assuming tha t  the channel loses 
only a finite number  of messages in a row. This can be done by declaring both  
t2 and tioss as progress transitions, where tmoss is the transition tha t  corresponds 
to loss of messages in the channel. Then a non-progress cycle corresponds to an 
execution where the last message is not delivered, al though only a finite number  
of messages is lost. The remaining executions either contain an infinite number  
of deliveries, or violate the fairness assumption. 

O n - t h e - f l y  e r r o r  d e t e c t i o n  w i t h  Bi lch i  a u t o m a t a  a n d  t e s t e r  p r o c e s s e s .  
With  progress transitions or states, an error is declared if an infinite execu- 
tion contains only a finite number of them. There is an alternative, even more 
versatile way of detecting errors: states that  are visited or transitions that  oc- 
cur an infinite number  of times in an erroneous execution. A Biichi automaton 
B = (Q, ~ ,  A, ql, F)  is otherwise like a finite au tomaton  (thus A C Q x Z x Q, 
ql • Q and F C Q), but the notion of "acceptance" has been defined in a dif- 
ferent way. Namely, B accepts an infinite string ala2a3. . ,  of elements of ~ if 
and only if there is an infinite sequence qoqlq2"'" of states such that  q0 -- ql, 
(qi-l ,ai ,qi)  • A for i >_ 1, and qi • F for infinitely many  values o f i .  

A Biichi au tomaton  B is usually connected to the system such that  the al- 
phabet  of B is 2 ~7, tha t  is, the set of all subsets of the set of a tomic propositions. 
Initially and immediately after each semantic transition of the system, B makes 
a transit ion according to the propositions tha t  hold in the system state. More 
formally, the joint s tate space of a state space (S, T, A, St)  and the Bfichi au- 
tomaton  (Q, 2 n ,  AB, qz, F)  has 

- { (st ,q) I sI • St A (qI,£ll(sI),q) e An } as its initial states, and 

- the rule (s, q) - t -+  (s', q') ~ (s, t, s') • A A (q, gll(S'), q') • A s  determines 
the set of transitions. 6 

5 Also [43] describes an algorithm for the task, but it is based on investigating each 
state twice. The algorithm in [87] does it only once, and is thus usually more efficient. 
"Usually", because the two algorithms differ in the order in which the state space 
is investigated, making it possible for the [43] algorithm to detect an error earlier in 
some cases. 

8 The connection may be defined also such that B determines its move according to s 
instead of s'. Then the initial states would be { (sl, qz) I s1 e $I }. This formulation 
does not, however, work appropriately in the presence of deadlock states. 
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Because 2 t /m igh t  be big and not all propositions P E / - / a r e  always relevant, 
the transitions of B may be labelled also by two sets Pon C / 7  and Poa C/jr .  The  
transition (q, Pon, Po~, q~) is then an abbreviation of the set of the transitions 
(q, p,  ql) such that  P.n C P and P.a N P = ~. Tha t  is, B may make the transition 
(q, Po,, P.a, q~), if and only if at least the propositions in Pon evaluate to True and 
at least the propositions in Po~ evaluate to False in the system state according 
to which B chooses its transition. 

Because a Biichi automaton expects an infinite input string, deadlock states 
have to be handled as a special case. The usual assumption is to add a v- 
transition from the deadlock state to itself, or simulate such a transition in the 
state space construction tool or the algorithm that  checks whether the automaton 
accepts. We saw a similar trick already in Section 2.4 when defining liveness 
properties. 

With this approach, the detection of an error corresponds to acceptance by 
the Biichi automaton.  This acceptance can be checked by seeking for a strongly 
connected component in the state space where in at least one of the states the 
local state of the Biichi automaton is an acceptance state. The cost of doing this 
is proportional to the size of the joint state space of the system and the Biichi 
automaton which, in turn, is in the worst case proportional to the product  of the 
size of the system state space and the size of the Biichi automaton.  The checking 
of a state space against a Biichi automaton is thus inexpensive. 

There is also a nice and efficient algorithm for detecting Biichi acceptance on 
the fly [16]. It is based on investigating the state space in depth-first order, and 
starting a second search on already investigated states each t ime the primary 
search is about to backtrack from a Biichi acceptance state. 

A Biichi automaton may be connected to the system also with other meth- 
ods, such as transition fusion. The automaton may be connected to all or just  
visible transitions. In the latter case only stuttering-insensitive properties can be 
checked. On the other hand, fusion with all transitions is bad for some important  
methods of alleviating state explosion. 

Fusion with only visible transitions makes it possible that  an execution is in- 
finite, but  the Biichi automaton does not participate it from some point on. This 
raises a question: if the Biichi automaton stops in an acceptance state, should 
the corresponding execution be declared as erroneous? It may be reasonable to 
do so. On the other hand, this is exactly the situation for which we introduced 
livelock detection automata  above. Therefore, it may also be reasonable to let 
the Biichi automaton ignore all executions where it stops, and handle them with 
a separate livelock detection automaton. 

Of course, the same automaton may have acceptance states of both kinds, 
and even more. In [87] the use of four kinds of acceptance states was suggested. 
An error is declared if 

- the automaton ever reaches a reject state, 
- the system stops while the automaton is in a deadlock monitor state, 
- the system livelocks while the automaton is in a livelock monitor state, or 
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- the automaton passes infinitely many times through an infinite trace monitor 
state. 

So these automata  combine the acceptance states of Biichi automata,  livelock 
detection automata,  and the finite au tomata  that  were used above for on-the-fly 
verification of safety properties, and treat  deadlocks as a special case. They  were 
called tester processes in [87] because of their intended application in process- 
algebraic verification (Section 4.4). 

It is easy to add error detection by reject and deadlock monitor states to 
any state space construction algorithm, including the above-mentioned on-the- 
fly algorithms for detecting non-progress cycles and Biichi acceptance. Thus 
the first, the second, and one of the latter two kinds of errors can be detected 
during the same construction of the state space. Unfortunately, the on-the-fly 
algorithms for non-progress cycles and B/ichi acceptance require the construction 
of the state space in different order, and are thus difficult to combine. On the 
other hand, we will see in Section 4.4 that  the combination of the first three 
kinds of acceptance states suits well for process-algebraic verification. 

It  is known that  everything that  can be specified in the linear temporal  logic 
of Section 4.3 can be checked with Biichi automata.  (Actually, Biichi au tomata  
are strictly more expressive than the logic.) One may therefore ask: what need 
is there for reject and livelock monitor states? In the case of reject states the 
answer lies in the fact that  with them, errors are found much earlier than with 
the above on-the-fly algorithm for Biichi acceptance. The situation with livelock 
monitor states is less straightforward, but there is a heuristic argument that  
suggests that  also then B/ichi acceptance tends to be significantly slower. It is 
as follows. 

The above on-the-fly algorithm for Biichi acceptance is based on a depth- 
first search, and finds errors when backtracking. Thus an error cannot be found 
before some branch of the depth-first search tree has been constructed in full. On 
the other hand, the above on-the-fly algorithm for non-progress cycle detection 
detects an error immediately when it has constructed all states and semantic 
transitions of a non-progress cycle. Furthermore, because it disfavours progress 
states and transitions, it will complete any non-progress cycle rather soon after 
finding a state in it. One has to notice, however, that  this reasoning does not take 
into account all factors that  affect the relative speeds of the algorithms. Deeper 
theoretical analysis or experimental results would be needed for checking whether 
non-progress cycle detection really is faster in practice, but for the t ime being 
none is available. 

The theoretical properties of Biichi and many other types of au tomata  on 
infinite objects are surveyed in [80]. 

4.3 T e m p o r a l  Logics  

Temporal logics are ordinary logics augmented with operators for specifying tem- 
poral relationships. The temporal logics used in the verification of systems are 
usually state-based, but  also action-based logics have been suggested, especially 
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in connection with process algebras. Temporal logics are often very expressive, 
but specifications written in them tend to be somewhat cryptic. 

The syntax of a typical temporal logic consists of the following components 
(we restrict ourselves to propositional temporal logics, that is, logics without 
variable symbols and the quantifiers "V", "3"): 

- atomic propositions, 
- ordinary propositional operators, and 
- temporal operators. 

The set of atomic propositions of a state-based logic is what we called 17 
in Section 2.2. It is the link that connects the logic to the application domain. 
From the point of view of the log ic / / i s  just some abstract set whose content is 
not important. From the point of view of a user of a temporal logic verification 
tool the contents o f / / a r e  important, because they specify the elementary terms 
in which the user can talk about the properties of the system. This makes it 
reasonable to divide a temporal logic verification tool into two parts: 

- A modelling-formalism-dependent part that gives the user versatile facilities 
for writing expressions that describe the properties of individual states, such 
as -~M[Q) A M(p2) > M(pa). 

- A temporal part that treats the expressions of the above part as atomic 
propositions, and analyses the temporal relations of states. 

The ordinary propositional operators are and "A", or "V", not "-~", implies 
"=~", etc. They have their usual meanings. 

The first temporal operators that we will discuss, namely the path operators, 
talk about the properties of infinite sequences ~ = (P0, P1, P2,...) of subsets of 
/7. In a typical application, the sequence e is the En-abstraction of a complete 
execution of the system in question. If the execution is finite, it is completed 
to infinite by letting its last state repeat forever. The most important path 
operators and their meanings are: 

If ~ e / 7 ,  then (P0, P1, P2, . . . )  ~ 9 if and only if 9 E P0 (i.e. ~ holds in P0). 
(P0, P1, P2,..-) ~ rl~ if and only if (Pi, Pi+l, Pi+2,...) ~ 9 for every i > 0. 

"o9" thus means that 9 holds continuously from now on, and is pronounced 
"always ~" or "henceforth 9". 

(P0, P1, P2,. . .)  ~ O9 if and only if (Pi, PI+I, Pi+2,...) ~ ~ for at least one 
i >_ O. "0~" thus means that ~ holds now or will hold at least once in the 
future, and is pronounced "eventually ~" or "sometimes ~". The formula 
O9 ~=~ -~D-~9 holds. 

(P0, P1, P2,-- .) ~ 9 U ¢ if and only if there is i _> 0 such that 
(Pi, Pi+l, Pi+2,...) ~ ¢, and (Pj, Pj+I, Pj+2,...) ~ ~ for every j such that 
0 < j < i. "~ U ¢" is pronounced "~ until ¢" and means that ¢ will 
eventually hold, and 9 holds until then. The formula O~ ~:~ True/% ~ holds. 
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(P0, P1, P2 , . . . )  ~ O ~  if and only if (P1, P2, Pz , . . . )  ~ 9. "O~"  thus means that  
9 will hold in the next state. The use of this operator in specification is often 
discouraged, because, unlike with "D", "~" and "//",  with it one can specify 
properties tha t  are sensitive to stuttering. However, "O" is important  for 
the development of temporal  logic verification algorithms, because formulas 
such as ~ / / ¢  ¢e~ ¢ V ~ A 0 ( 9 / / ¢ )  use it and have proven useful in that  
work. 

Many other path operators have been defined in the literature, such as "weak 
until" that  is equivalent to ( g U  ¢) V t3~, "-,~" or "leads to" C3(~ ~ ~ ¢ ) ,  and 
operators that  refer to the past instead of the future. 

The infinite repetition of the last state of a finite complete execution guaran- 
tees that  O ~  has a well-defined meaning also in the last state of the execution. 
The meanings of "t3", "<>" and "//" are not affected by it. Terminating exe- 
cutions were extended to infinite also in the definition of liveness properties in 
Section 2.4, and of acceptance of Biichi au tomata  in Section 4.2. 

The extension has the consequence that  unless /7 contains enough informa- 
tion for characterising deadlock states, the temporal logics in this section do 
not suffice for distinguishing between a deadlock and livelock. At first this might 
seem a deficiency, but  it is actually in harmony with the "philosophy" of abstrac- 
tion: all that  matters  is when and how the £n-abstracted state may change, and 
if it does not change from some point on, it is not important  whether the system 
has terminated or is running an endless invisible loop. 

LTL.  So far we have defined what it means for a complete execution to satisfy a 
temporal  logic formula. Now we need to define it for a system. The simplest way 
to do that  is to say that  a system satisfies a formula built of the above operators, 
if and only if all of its complete executions satisfy it. With  this definition, the 
logic consisting of the above operators can be only used to specify properties 
that  are linear-time in the sense of Section 2.3. Correspondingly, it is called 
(propositional) linear temporal logic, and often abbreviated as "LTL". 

LTL has been studied extensively in numerous articles, and the textbooks 
[59, 60]. The sublogic of LTL where the use of "O" is forbidden is denoted 
by LTL_x in this article. With it, only stuttering-insensitive properties can be 
specified. 

If 9 is an LTL formula and o" is an infinite sequence of subsets of H ,  then cr 
satisfies either 9 or -~9. However, the same is not true for systems: it is possible 
that  neither 9 nor - ~  holds in a given system. This is because the system may 
have one execution that  satisfies ~ thus violating - ~ ,  and another one that  
violates 9. This induces a natural preorder relation between systems for any 
fixed H: Sys 1 implements or is more deterministic than Sys2, if and only if 

~ Sys 2 implies 9 ~ SYSl for every LTL-formula ~ whose atomic propositions 
are f rom/7 .  

A model checking algorithm inputs a state space and a temporal  logic for- 
mula ~ and checks whether 9 is a true statement about the state space. LTL 
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has a model checking algorithm whose worst-case time consumption is linear in 
the size of the state space, and exponential in the length of the formula [57]. 
It is thus feasible for short LTL formulae, but may run very long with long 
formulae. Fortunately, the time consumption of the algorithm depends on what 
operators and how are used in the formula, so not every long formula causes the 
algorithm to slow down. Furthermore, the LTL formulae needed in verification 
are often rather short. It is very unlikely that a worst-case polynomial time LTL 
model checking algorithm could ever be found, because the LTL model checking 
problem is known to be PSPACE-complete [78]. 

The above-mentioned model checking algorithm is not particularly popular 
in automatic verification as such, but its basic techniques have been used in an 
alternative, more popular approach. Namely, every LTL formula can be com- 
piled to a Biichi automaton that accepts exactly the executions described by 
the formula. One advanced practical algorithm for this was given in [32]. As was 
told in Section 4.2, Biichi automata can be efficiently and even on the fly used 
for verifying that no execution has the property described by the automaton. 
Therefore, the validity of any LTL formula ~ can be checked by constructing 
a B/ichi automaton for - ~  and checking the system with it. This technique is 
called the automata-theoretic approach to model checking [97], and it suits well 
both ordinary and on-the-fly verification. 

Unfortunately, the PSPACE-hardness of LTL model checking must manifest 
itself somewhere also in the automata-theoretic approach: the size of a B/ichi 
automaton may be exponential compared to the size of the LTL formula from 
which it was constructed. 

Assume that ~_enab denotes that the structural transition t is enabled, and 
t_occ that it has just occurred. Weak fairness towards t can be expressed with 
the LTL formula •[3t_enab =~ El<)t_occ, and strong fairness with oOt_enab :=~ 
oOt_occ. As a consequence, a fairness assumption could be taken into account 
in the verification of the LTL formula ~ by expressing the assumption with an 
LTL formula 7, and checking the validity of 7 =~ 9- However, because fairness 
assumptions are very common, special techniques for handling them have been 
developed and integrated to LTL model checking algorithms. 

CTL a n d  CTL*.  Another possibility of extending the logic to apply to systems 
relies on the following two new operators. They say whether a formula should 
be valid in one or all possible executions that start at a given state s: 

s ~ A~, if and only if ~ holds in all paths of the state space that start at s. 
s ~ E~, if and only if ~ holds in at least one path of the state space that starts 

at s. 

The system satisfies a formula, if and only if all of its initial states satisfy it. 
Because the validity of A- and E-formulae has been defined for every in- 

dividual state of the state space, it is meaningful to apply path operators on 
formulae built with A and E. In this way one gets formulae like A [] E O t_enab, 
which says that in all possible futures, there is always a future where eventually 
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t_enab holds. If t_enab means that t is enabled, then this formula expresses the 
Petri-net-liveness of t. In this context the operators "[:]", "0",  "U" and "0"  are 
usually written as "G", "F", "U" and "X", respectively. Thus the above formula 
is more commonly written as A G E F t_enab. 

This logic was developed by Emerson and Halpern [20] on the basis of LTL 
and the earlier CTL logic of Clarke and Emerson [11], and it is known as CTL* 
("CTL" stands for computation tree logic). The validity of CTL*-formulae could 
also be defined on execution trees instead of state spaces, but that  would not 
change the meaning of the logic. Properties expressible with CTL* are thus 
branching-time in the sense of Section 2.3. Any LTL formula p can be repre- 
sented as the CTL* formula Ap, so CTL* is an extension of LTL. As a conse- 
quence, also CTL* model checking is PSPACE-hard. It is not harder, though, 
as was proven in [21]. 

The older logic CTL is a restriction of CTL*. It has a fast model checking 
algorithm [11]. In CTL, every path operator must be immediately preceded by A 
or E. Thus AGE Ft_enab is a valid CTL formula (and more commonly written as 
AG EFt_enab), but  E(p U G¢) is not. CTL has become very popular in automatic  
verification. Although not all LTL formulae can be expressed in CTL, CTL seems 
to have enough expressive power for many verification tasks, and its efficient 
model checking algorithm is definitely an advantage. Like with LTL, the use of 
the next state operator is sometimes forbidden, yielding the logics CTL_x  and 
CTL*x.  

The basic idea of the CTL model checking algorithm can be illustrated with 
the case of the AU operator; the remaining operators can be handled with similar 
methods. Let us say that  a state is p-marked, if and only if the algorithm has 
found out tha t  p holds in it. Consider a formula of the form 8 = A(p U ~b). 
The algorithm is first run recursively to p-mark every state where p holds, 
and similarly with ¢. Then every C-marked state is marked with 8. Finally the 
following is repeated as long as possible: if there is a state s tha t  is p-marked 
but  not ~-marked, and each of its immediate successor states is P-marked, then s 
is marked with 8. This last stage can be implemented efficiently with a suitable 
backwards search. 

In order to compare CTL* and CTL*x  to the branching-time process-al- 
gebraic semantic models discussed in Section 4.4, we define two equivalence no- 
tions between the state spaces Sys 1 = ($1, A1, Szl) and Sys 2 = ($2, A2, Sx2) [7]: 

. Sys 1 and Sys~ are II-bisimilar if and only if there is a relation ",-/' C $1 x $2 
such that  the following hold for every sl ,  s t E $1 and s2, st E $2 (the prefix 
"II" was added to the name of the relation to avoid confusion with the 
"strong bisimilarity" relation in Section 4.4): 

- If Sl ~ s2 and 7r E / / ,  then Sl ~ r if and only if s2 ~ r .  
- If sl E Sxl, then there is s E Sz2 such that  Sl ,-~ s. 
- If s2 E Sx2, then there is s E $I1 such that  s ,,, s2. 
- If 81 ~'~ 82 and (81, S t )  E Z~I, 

then there is s such that  s t ,,~ s and (s2, s) E A~. 
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- If sl ~ s2 and (s2, s~) E A2, 
then there is s such that  s ,-, s~ and (sl,  s) E At .  

2. The complete executions (sl,0, s1,1, Sl,2, . . . )  and (su,o, s2 j ,  su,2,. . .)  stutter- 
simulate each other according to the relation "_~" C_ $1 × $2, if and only if 
(Sl,0, s1,1, s i ,2 , . . . )  has a parti t ion Bl,0, Bt,1, B1,2, • • • and (s2,0, s2,1, s2,2,. . .)  
has a parti t ion B2,0, B2,1, B2,2,. . .  such that  for every i > 0 the following 
hold: 0 < IBl,il < co, 0 < IB2jI < oc, and VSl E Bl,i :Vs2 E B~,i : sl ~- s~. 
The state spaces Sys 1 and Sys 2 are stuttering equivalent if and only if there 
is a relation "~_" C $1 x $2 such that  the following hold for every Sl E $1 
and s~ E S~: 

- If s1 -~ s2 and ~r E H,  then Sl ~ ~r if and only if s2 ~ r .  
- If sl E Sxl, then there is s E $I2 such that  sl -~ s. 
- If s2 E $I2, then there is s E SI1 such that  s _~ s2. 
- If Sl "~ su, then for every complete execution of Sys 1 that  starts at sl 

there is a complete execution of Sys 2 starting at s2 such that  the two 
executions stutter-simulate each other according to "_~". 

- If sl ~ s~., then for every complete execution of Sys 2 that  starts at s2 
there is a complete execution of Sys I starting at sl such that  the two 
executions stutter-simulate each other according to "~_". 

It is relatively easy to see that  if Sys 1 and Sys~ are H-bisimilar and Sys 1 
satisfies a CTL* formula ~, then also Sys 2 ~ ~. This was proven in [7] together 
with a reverse result where CTL (without the "*") suffices: ff Sys 1 and Sys 2 are 
finite and satisfy the same CTL formulae, then they are / / -b is imi lar .  A similar 
pair of results holds for stuttering equivalence, CTL*_x, and CTL_x.  

The article [19] is an excellent survey on various temporal  logics and their 
theoretical properties, including model checking. 

4 .4  P r o c e s s - A l g e b r a i c  S e m a n t i c s  

A process algebra, such as the Calculus of Communicating Systems (CCS) [65] 
and Communicating Sequential Processes (CSP) [6, 42, 75] consists of a language 
for specifying systems, and a theory of the behaviour of the systems specified in 
that  language. Most (or perhaps all) process algebras are action-based. Instead 
of structural transitions, emphasis is put  on actions that  are £r-abstract ions  
(Section 2.2) of structural transitions. Correspondingly, in the context of process 
algebras, state spaces are usually defined as (S, ~,  A, SI), where ~U does not 
contain the invisible action symbol r ,  and A C_ S x ( E O { r ) )  × S. Such structures 
are called labelled transition systems, abbreviated LTS. Occurrences of actions 
(i.e. semantic transitions) are sometimes called events. 

P r o c e s s  c o m p o s i t i o n  o p e r a t o r s .  The language of a process algebra is a 
"modelling formalism" in the sense of Section 3. It practically always contains 
some operators for parallel composition of processes and for hiding of actions. 
(The CCS language does not have a separate hiding operator, but  its parallel 
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composition is capable of hiding.) Communication between parallel processes is 
synchronous, like Ada rendez-vous. The meanings of operators are usually de- 
fined in terms of expressions of the language, and their details vary, but the basic 
ideas can be illustrated with state-space-level definitions. 

The following definition corresponds to a popular version of parallel com- 
position. Let L; = (S1,~'1, A1, S / l )  and L2 = ($2, $2, A2, Sty) be LTSs. Their 
parallel composition L1 IlL2 is the LTS (S, S,  A, Sx) such that  

- S = S l  x S 2  

- 22 = 221U  £:'2 

- ((sl, s~), a, (s~, s~)) e A if and only if either 

• a, e a ¢ 222, and 4 = 
• a • 221, s~ = sl,  and (s2,a,s~) E A2, or 
° (81, a, S~) E At,  (s2, a, s~) e A2, and a ~- v. 

- & = & l  x & 2  

Since r is never a member of Z,  this definition implies that  a component 
of a parallel composition can do its r-transitions independently of and without 
affecting the state of the other component, and this is the only way in which 
r-transitions can be executed. The same holds for transitions that  are labelled 
with a visible action that  is not in the alphabet of the other component, because 
(s, a, s ~) E A implies a E 22 or a = r. If a visible action is in the alphabet of 
both components, then a corresponding transition must be executed by both 
components simultaneously. This parallel composition is essentially the same 
thing as the transition fusion of Section 4.2. 

This definition extends easily to more than two components. Alternative 
definitions of parallel composition may specify the synchronisation of visible 
actions in a different way, but it is probably universal that r-transitions do not 
synchronise. A parallel composition computed according to the above definition 
contains usually many unreachable states. Since their presence is most of the 
time either insignificant or harmful, the definition of parallel composition is often 
formulated in such a way that  unreachable states and their adjacent semantic 
transitions are not generated or are removed from the result. This is not an 
important  issue, however, because, with reasonable notions of "behaviour", the 
removal of unreachable states does not affect the behaviour of the system. 

The hiding operator converts visible actions into r. A popular version of it 
can be defined as h i d e  A in (S, 22, A, St) = (S, 22', Zl', SI), where A is some set 
of actions, and 

- 22~ = 2 2 -  A, and 
- A ' =  I ( s , a , s ' ) t ( s , a , s ' ) E A  A aq~A } 

U (s , r , s ' )  9 a E A : ( s , a , s ' ) E A } .  

S t r o n g  b i s imi la r i ty .  As was mentioned above, a theory of the behaviour of 
systems is an essential component of a process algebra. Because the theory of 
CCS was originally presented in the context of the CCS language and similarly 
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for CSP, it is common to associate each theory to a particular language. This is 
not necessary, however, and we can and will discuss the theories of behaviour at 
the level of state spaces in the sequel. 

To jump  from a language to state spaces it suffices that  an operational se- 
mantics for process-algebraic expressions is defined which, given any well-defined 
expression in the language, produces a labelled transition system that  represents 
the behaviour of the object described by the expression. For a reason that  will 
be described later in this section, there is significant freedom in the choice of 
the technical details of this semantics. For instance, even if it is intuitively clear 
that  the system has only a finite number of states, there is no compelling reason 
to require that  the corresponding LTS must be finite. 

Behavioural equivalence is a central notion in process-algebraic theories of be- 
haviour. Behavioural equivalences can be divided to two categories according to 
how they treat  r-transitions. In the first category r is handled in the same way as 
all visible actions. This category contains only one important  equivalence: strong 
bisimilarity [66]. The LTSs L1 = ($1, ,U, ,51, Sxl) and L2 = ($2, Z,  ,52, SI2) 
tha t  have the same alphabet are (strongly) bisimilar, denoted in this article by 
L1 ~-,b L2, if and only if there is a relation ",~" C S1 x $2 such that  the following 
hold for every sl ,s '  1 E $1, s2,s'2 6 $2, and a 6 Z:U {r}: 

- If sl 6 S n ,  then there is s E SI2 such that  sl "~ s. 
- If s2 6 $I~, then there is s 6 SI1 such that s ,-~ s2. 
- If sl ~ s2 and (s l ,a ,  st) E A1, 

then there is s such that  s t --~ s and (s2,a,s) 6 A2. 
- If sl ,,~ s~ and (s2, a, st) 6 A2, 

then there is s such that  s --~ s~ and (sl, a, s) E A1. 

The relation ",-~" is called a strong bisimulation. The basic idea of this defi- 
nition is that  if the LTSs are in strongly bisimilar states and one of them makes 
a transition, the other can simulate it with a transition of its own such that  
the labels of the transitions are the same, and after both transitions the sys- 
tems are again in strongly bisimilar states. Since it is assumed that  every initial 
state of eazh LTS is simulated by some initial state of the other LTSs, a sim- 
ple induction argument reveals that  each system can simulate everything the 
other does. It is difficult to think of any property of LTSs that  could reason- 
ably be called "behaviourar '  and that  would hold in one and not in the other 
of two strongly bisimilar LTSs. (Two strongly bisimilar LTSs can have different 
numbers of states, for instance, but the number of states can hardly be called 
"behaviourar '  .) 

Two strongly bisimilar systems thus have "the same behaviour" in a very 
strong sense. Indeed, strong bisimilarity is the strongest equivalence that  is in 
common use in process algebras. It is useful for technical purposes, such as 
abstracting away from irrelevant details of the mapping that  associates to each 
process-algebraic expression the LTS that  represents its behaviour. It is needed 
because it is common that  two process-algebraic expressions that ,  according 
to our intuition, have obviously the same behaviour are nevertheless formally 
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different because of syntactic details, and cannot thus be unified outright. For 
instance, according to the above definition, L1]]L2 is not the same as L21[Lt, 
because their states list their components in opposite order. 

The Lotos specification language [44, 4] provides another, more fundamental  
example. Its operational semantics is defined in such a way that  a cyclic process 
"remembers" the number of times the cycle has been executed. As a consequence, 
the state after the cycle is formally different from the state before the cycle 
although intuitively it is "the same state", and the resulting LTS is not a cycle 
but  an infinite chain. However, the chain can be folded into a cycle on the basis 
that  the start  states of each round are strongly bisimilar. Strong bisimilarity 
gives a sound mathematical  notion for unifying s t a t e s /  

Algorithms for strong bisimilarity. We may say that  two states sl and s: of 
an LTS L = (S, ~ ,  A, SI) are strongly bisimilar, ff and only if there is a strong 
bisimulation relation between (S, ~ ,  A, {sl }) and (S, Z,  A, {s2}). Let [[s]] denote 
the set of states that  are strongly bisimilar with s, and let Lmi, = (S I, E,  A I, S~), 
where S' = {[[s]]] s e S } ,  S i = { [ [ s J ] l s  e St }, and ([[s]], a, [[s']]) • A' if 
and only if there is s" E [[s']] such that  (s, a, s") • A (this definition of A' 
is independent of the choices of the states s that  span the sets [[s]]). Then 
L -----,b Lmi.. 

Furthermore, it is possible to show that  if L is finite, then Lmi, is minimal 
( that  is, has the smallest possible number of states and transitions) among the 
LTSs that  are strongly bisimilar to L, and all LTSs that are strongly bisimilar 
to L and have as few states as  Lmi, are the same a s  Lmi .  except for the names 
of states. A similar result holds also when L is infinite, although then one has 
to be careful with what is meant by "minimal". 

There is a very efficient algorithm that  constructs Lmin from any given finite 
LTS [26]. It resembles the classic "block splitting" algorithm for the minimisa- 
tion of deterministic finite automata.  It can also be used for checking strong 
bisimilarity of two finite LTSs simply by minimising their disjoint union. The 
LTSs are strongly bisimilar, if and only if each block that  contains an initial 
state of one of them also contains an initial state of the other. 

Strong bisimilarity is almost the same as the H-bisimilarity of Section 4.3. 
The only difference is that  now the labels of matching transitions are compared 
instead of the sets of propositions that  hold in matching states. This difference 
can be easily taken into account in the minimisation of an LTS with block split- 
ting. As a consequence, algorithms for strong bisimilarity can be taken advantage 
of in the verification of CTL* formulae. 

A b s t r a c t  p r o c e s s  equ iva l ences .  The second category of behavioural equiva- 
lences consists of those where most information about r-transitions is abstracted 
away in one way or another. We will call them abstract process equivalences. It 

7 Mathematicians often use isomorphism for these kinds of tasks. Isomorphism is a 
strictly stronger notion than strong bisimilarity. It is too strong for the above Lotos 
example, because it does not unify a cycle with the infinite chain that is its unfolding. 
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is often desirable to preserve some information on the indirect consequences of 
r-transitions. However, opinions differ regarding how much and what kind of 
information should be preserved, which has led to the development of many 
different equivalences. Furthermore, the desire of making equivalences to have 
certain mathematical  properties that  are useful either for theory development 
(such as unique minimal solutions to recursive equations) or for applications has 
further increased the number of equivalences that  have been presented in the 
literature. The survey [95] lists 155. In this article we can mention only some. 
Fortunately, many of the others are small variations of what we will present. 

An important  requirement, especially from the point of view of advanced 
verification methods, is that  the equivalence should be a congruence with respect 
to parallel composition, hiding, and whatever other process operators are used. 
This means that  if " _ "  denotes the equivalence, then L1 -~ L2 should guarantee 
that  h i d e  A in L1 - h i d e  A in L2, L11[L ~- L2IIL, LIIL1 ~- L[IL2, and similarly 
for the other operators, where LI,  L2 and L are arbitrary LTSs. The congruence 
property guarantees that  any LTS that  is a component of a bigger system can 
freely be replaced by an equivalent LTS, and the behaviour of the bigger system 
does not change. Although the congruence property seems a natural  one, it is 
difficult to obtain, and many otherwise nice equivalences lack it. 

Trace semantics  and verification w i t h  a p r o c e s s  e q u i v a l e n c e .  The sim- 
plest widely used abstract process equivalence is trace equivalence. In process al- 
gebras, a trace is the sequence of visible actions obtained from a finite execution 
by removing all states and all r-symbols. In other words, it is the C~:-abstraction 
of a finite execution with all stuttering removed. (Process-algebraic traces have 
thus nothing to do with Mazurkiewicz traces [61].) 

The set of traces of an LTS (which we will denote with Tr(L)) is called its 
trace semantics, and two LTSs that  have a common alphabet are trace equivalent 
(written as L1 ~t ,  L2 in the sequel) if and only if they have the same trace 
semantics. Trace preorder "~tr" is defined by L1 ___tr L2 if and only if Tr(L1) C_ 
Tr(L2).s Trace equivalence is a congruence with respect to most, or perhaps all, 
process operators that  have been suggested in the literature. 

Trace semantics can be used in the verification of a system Sys in at least 
three different ways. For the sake of examples, let us assume that  Sys is a model 
of a communication protocol implementation that  consists of a protocol sender 
process and a protocol receiver process connected to each other via a bidirec- 
tional channel, such that  all actions are hidden except those with which the 
protocol sender inputs transmission requests from and reports success or failure 
to the sending client, and those with which the protocol receiver delivers ar- 
rived messages to the receiving client. Assume further that  Spec is a single LTS 
that  models the service that  the protocol is supposed to provide to the clients. 
We presume that  Spec has the same alphabet as Sys; if necessary, the hiding 
operator is first used to convert the extra actions in either alphabet to 7-. 

s This direction of "~_" seems to be more common in the literature, although also the 
opposite direction has supporters. 
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1. One can compare whether Sys ~-t, Spec. If not, then Sys either has an 
illegal sequence of communication with the clients of the protocol (such as 
the delivery of a wrong message), or it lacks some desired sequence (for 
instance, fails to deliver a message). If yes, then Sys provides exactly the 
required service as far as one can say on the basis of the trace semantics. 

2. One can compare whether Sys ~_tr Spec. It is common that  a specification 
does not define a system in full, but only states minimal requirements that  
the system must satisfy. In the case of a protocol, Spec may allow the protocol 
sender to give up and report failure to the sending client, if it does not 
receive an acknowledgement from the protocol receiver within a specified 
time. However, if the channel and protocol receiver are reliable and fast 
enough, then the acknowledgement is never lost or delayed, and Sys never 
reports failure. In that  case Sys lacks some traces that  Spec has, but  for 
a very acceptable reason. In this kind of a situation the requirement that  
Sys "~t, Spec is too stringent, but Sys ~_t, Spec works well (except that  for 
many applications, it is not stringent enough, but  other process equivalences 
that  are described later in this section will solve this problem). 

3. One can construct a small LTS that  is trace-equivalent to Sys and investigate 
its properties, for example, with model checking tools. Of course, one should 
investigate only those properties ~ that  trace equivalence preserves in the 
sense that  if LI ~ ~ and LI -~tr L2, then L2 ~ ~. 

In the terminology of Section 3, Spec is the "specification". As a consequence, 
the "specification formalism" is the formalism in which Spec was written, that  
is, a process-algebraic language or LTSs. It may very well be the same formalism 
in which Sys was written! The "satisfies" relation that  says what it means for 
the system to satisfy its specification is "~tr in the first case above, and _~tr in 
the second case. 

Let ~ be any stuttering-insensitive linear-time safety property over ~ .  Let 
L~ be an LTS whose finite executions are exactly those which do not violate 
~. The LTS L~ is not necessarily finite, but  it exists, at least in a theoretical 
sense. Now, an LTS L has the property ~, which we may write as L ~ 9, if and 
only if L _~tr L~. We see that  preorder checking is conceptually close to model 
checking. This fact has useful consequences in automatic verification: thanks to 
it, similar techniques can be used for model checking and preorder checking in 
many cases. 

Because trace semantics is defined on the basis of finite executions, it pre- 
serves only stuttering-insensitive linear-time safety properties. On the other 
hand, as the following simple argument shows, it preserves all of them. If L 
violates a stuttering-insensitive linear-time safety property ~, then it has a fi- 
nite execution ~ that  acts as a counterexample. Let ~r be the trace corresponding 
to that  execution. If L ~ "~tr L, then also L ~ has a finite execution that  has ~r as 
its trace; call it ~ .  The executions ~ and ~ differ only in the amount  of finite 
stuttering. Thus also ~ is a valid counterexample to ~o, because ~ is stuttering- 
insensitive. So L ~ violates 9- This argument is valid also for state-based proper- 
ties, if the transformation in Section 2.2 is used for encoding state information 
into actions. 
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In Section 4.2 we pointed out tha t  no formalism can specify all safety prop- 
erties, because there are uncountably many of them. This might seem to be 
in contradiction with the above claim that  trace semantics preserves all safety 
properties, because trace semantics was used above in specification by describing 
an LTS Spec and requiring that  Sys "~tr Spec or Sys 3tr Spec. There is no con- 
tradiction, however, because trace semantics was not used as the specification 
formalism but  as an abstract mathematical  concept that  serves as the "satisfies" 
relation. The specification formalism is the formalism used for describing Spec, 
and it allows only countably many specifications to be written. 

Algorithms for trace semantics. Every finite LTS L can be interpreted as a finite 
automaton in the classic automata-theoretic sense - -  we only need to specify 
which states are accepting. If we declare that all states are accepting, then Tr(L) 
is the same as the language accepted by the automaton.  As a consequence, classic 
algorithms can be used for determinising LTSs, and minimising deterministic 
LTSs and comparing the languages they accept. Unfortunately, these algorithms 
consume exponential time (and space) in the worst case, because the minimal 
deterministic finite automaton that  accepts the same language as a given finite 
automaton may be exponentially larger than the latter. 

Tha t  Sys 3tr Spec holds can be checked on the fly as follows. First Spec 
is determinised yielding DSpec. Then the LTS SysllDSpec is computed. If the 
result has at least one state where Sys is ready to execute a visible action that  
DSpec is not ready to execute, then Sys 3tr Spec does not hold, otherwise it 
does. 

Instead of comparing the next possible actions of Sys and DSpec in each 
joint  state, the errors can also be detected with the machinery of tester pro- 
cesses in Section 4.2. It suffices to add one extra reject state sR, and extra 
transitions (s, a, sR) to DSpec for those s E SDSpec and a E S such that  DSpec 
has no a-transition out of s. Then violations against Sys 3tr Spec are detected 
as SysllDSpec reaching any state of the form (s, sR). This algorithm consumes 
exponential t ime and memory in the size of Spec, but only linear t ime in the size 
of Sys. If Spec is deterministic, then this algorithm is linear in the sizes of both 
of its arguments. 

It is known well that  the problem of checking whether a finite automaton ,4 = 
(Q, ~,  A, qx, F) accepts all strings in Z* is PSPACE-complete (see e.g., [1, 30]). 
Consider the LTS L = (S, S~, A ~, Sx) that  is obtained from .4 by choosing a new 
state s,ew ~ Q and a new action ~ ~ A and letting S = Qu{s,ew}, Z I = z u { ~ } ,  
A I = A U { (8,~,8new) I s e F } U { (Snew,a, Snew) ] a e 2J' }, and $1 = {ql}- 
The automaton .4 accepts all strings in ,U* if and only if Tr(L) = Z ~* . Thus the 
question "are all finite strings over the alphabet of a given LTS traces of that  
LTS" is PSPACE-hard. 

The problem "does Sys _tr Spec hold" is in PSPACE, because an execution 
of Sys can be guessed that  produces a trace that  is not in Tr(Spec), and 

"~ ~ Tr(Spec)" can be verified by maintaining the set of all the states where 
Spec could be when simulating the trace. Polynomial space does not necessarily 
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suffice for storing the trace, but it need not be stored, if simulation is interleaved 
with the guessing of the execution. 

From the above results we can reason that the problems "does Sys ~-tr Spec 
hold" and "does Sys 3tr Spec hold" are PSPACE-complete, even if Sys is re- 
placed by the one-state LTS All~ that has a transition from that state to itself 
for every member of Z. Namely, the question "does All~ ~tr Spec hold" is the 
same as "is Tr(Spec) = ~*". Therefore, checking "Sys 3_tr Spec" is PSPACE- 
complete in the size of Spec. On the other hand, the above algorithm checks it 
in time that is linear in the size of Sys. Indeed, the question "does Sys 3_tr All~ 
hold" is computationally very easy: its answer is always "yes". 

In conclusion, we can check Sys 3tr Spec inexpensively in terms of the size 
of Sys, but expensively in the size of Spec. It is common that Sys, representing 
the implementation, consists of several parallel processes and has a huge state 
space, while Spec consists of only one process and has a small state space. This 
is fortunate, because it means that expensive operations are done to small and 
inexpensive operations to big objects. This observation generalises to the veri- 
fication of linear-time properties in many formalisms: we already saw a similar 
situation with LTL (Section 4.3), and we will soon see it again with certain other 
linear-time abstract process semantics. If we wanted to verify Sys ~-tr Spec or 
Spec 3tr Sys, then we would have to do expensive operations also to Sys, leading 
soon to the exhaustion of computational resources. This suggests that we can 
attack the state explosion problem much better if we prefer "___"-type notions of 
"system satisfies specification" over "~"-type. 

Another operation used frequently in process-algebraic verification is LTS 
reduction. It means the construction of an LTS that is equivalent to the input 
LTS, but as small as the algorithm can produce. If the result is the smallest 
possible equivalent LTS, then this operation is known as minimisation of the 
LTS. Unfortunately, as the counterexample in Figure 6 shows, trace semantics 
does not guarantee the existence of a unique minimal equivalent LTS. Even the 
problem of finding some equivMent LTS with the smallest possible number of 
states is PSPACE-hard, because its solution can obviously be easily used to solve 
"does Sys ~-tr All~ hold". (It is also in PSPACE because it can be solved by 
constructing LTSs of increasing size until an equivalent one is found.) 

a ~ ~ a  b a ~ ~ b  

Fig. 6. Two non-isomorphic trace-equivalent minimal LTSs. 

Fortunately, various heuristics can be used for trace-equivalence-preserving 
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LTS reduction. Examples include minimisation with respect to weak bisimilarity, 
and the construction of the minimal equivalent deterministic LTS with rejection 
of the result if it is not smaller than the input LTS. These kinds of techniques 
have proven to work reasonably well in practice. 

Refusa l s ,  f a i lu res  a n d  d ive rgence .  Because trace semantics does not pre- 
serve any liveness properties, other semantics have been developed. Unlike in 
temporal logics, in process algebras it is common (but not ubiquitous) to distin- 
guish between deadlock and livelock. This is partly due to a reason illustrated 
by the following example. If L is ready to do an a-transition and only it, a is not 
in the alphabet of either L1 or L2, and L1 is in deadlock and L2 in livelock, then 
LIIL1 is guaranteed to eventually do an a-transition, but LHL~ is not. In terms of 
a single-processor multi-process computer system, the system running L I ILl will 
eventually execute L because L1 is not executable, but the system running L IlL2 
might spend all processor time on L2 unless we make some fairness assumption 
about the scheduling policy. So we see that  although we cannot detect directly 
whether an LTS has deadlocked or livelocked, we can find it out by putting the 
LTS into a suitable context. 

A livelock corresponds to an infinite execution that  has only a finite number 
of visible transitions. The removal of all r-symbols from the E£-abstraction of 
the execution yields a finite sequence. That  sequence is called a divergence trace. 
We will denote the set of the divergence traces of an LTS L with Divtr(L). 

To obtain a congruence that handles deadlocks properly, a more general no- 
tion of refusal has been defined in process algebras. The need for more generality 
can be illustrated with the following example. Consider two LTSs L1 and L2, 
both of which have {a, b} as their alphabet. It may be that  in some situation, L1 
is ready to execute an a-transition but not any b-transition, while Ls is ready 
for b but not a. Then LIlILs is in deadlock, although neither process would be 
in deadlock ff it were alone. 

Let L - ( S ,E ,A ,S I )  be an LTS, A C_ ,U, and s E S. We say that  s is 
stable, or L is stable in s, if and only if ~(s - r - +  ), that  is, s has no outgoing 
r-transitions. Furthermore, s refuses A, or L refuses A in s, if and only if s 
is stable and has no outgoing transitions labelled with an element of A. 9 This 
definition has the consequence that  LII1Ls deadlocks in (sl,  ss) if and only if sl 
and s2 are stable, and there are sets A1 and As such that  A1 U A2 = ~1 U Zs 
and Li refuses Ai in si for i E {1, 2}. I t  is worth noticing that  ff a belongs to 
both 571 and 57s, then it suffices that  a is in one of A1 and As; that  is, one of 
the LTSs is not ready for a. 

A stable failure of an LTS L = (S, 57, A, sl) is any pair (~r, A) such that  L 
has a stable state s that  refuses A, and a finite execution that  ends at s and has 
a as the corresponding trace. The set  of the stable failures of L is denoted by 
Sfail(L). The set of traces that  lead to a deadlock is { ~ 1 (~, ,U) e Sfail(L) }, 
and we have the identity Tr(L) = Divtr(L) U { ~ [ (~, q)) e Sfail(L) }. 

9 Not all authors require the stability of s in this definition. 
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Finally, consider an infinite execution that  contains an infinite number of 
occurrences of visible transitions. The result of the removal of all v-symbols 
from its E~-abstraction is an infinite sequence of elements of 52, and it is called 
an infinite trace. The notation Inftr(L) denotes the set of the infinite traces of 
L. Let Trw(L) = {w e ~ I Vc r < w :c r  e Tr(L) }, that  is, Trw(L) is the set of 
those infinite sequences of elements of 52 whose every proper prefix is a trace of 
L. It  is clear tha t  Inftr(L) C Trw(L). If L is finite, then also Trw(L) C Inftr(L). 

Because Tr(L), Divtr(L) and Inftr(L) are defined on the basis of executions, 
they are linear-time notions. The set Sfail(L) can be thought of as having some 
branching-time aspect, because its elements talk about all possible next visible 
actions after a particular execution. However, whether or not a state refuses a set 
of actions can be thought of as a property of the state, and thus a member o f / / .  
In this interpretation, the property "L has the stable failure (~, A)" is clearly a 
linear-time property. Therefore, we will classify as linear-time all abstract process 
semantics that  are only built from Tr(L), Sfail(L), Divtr(n) and Inftr(L). 

F a i l u r e - b a s e d  s e m a n t i c  m o d e l s .  The most well-established linear-time ab- 
stract process semantics that  preserves some liveness properties is certainly the 
standard failures-divergences model of CSP [6, 42, 75]. Because of reasons that  
at least part ly depend on the mathematical  approach used in the development 
of the theory of CSP, this semantics uses different notions of failures and diver- 
gences from what we defined above. 

Let CSPdivtr(L) = {~ e ~* I 3p : p < ~A p e Divtr(L) }. That  is, 
a CSP-divergence trace of L is any divergence trace of L continued with any 
finite sequence of actions. CSP-failures of L are all stable failures of L, and 
all pairs (cr, A) where o" is a CSP-divergence trace of L and A C_ 52. Tha t  is, 
CSPfail(L) = Sfail(L) U (CSPdivtr(n) × 2~).  The CSP-semantics of n is the 
pair (CSPfail(L), CSPdivtr(L)), and CSP-preorder and CSP-equivalence of two 
LTSs that  have the same alphabet are defined as 

L1 2]_¢Sp L2 ¢ ~  
CSPfail(L1) C CSPfail(L2) A CSPdivtr(L1) C CSPdivtr(L2), and 

L1 -~csP L2 ¢ ~  L1 3csp L2 A L2 _3csp L1. 

The CSP-semantics of L has the property that  if c~ is a divergence trace, 
then c~p is a CSP-divergence trace and (~rp, A) is a CSP-failure, for every p E Z* 
and A C 52. This implies that  CSP-semantics does not preserve any information 
about  the behaviour of the system after it has executed or. This property of 
CSP-semantics is called catastrophic divergence. Any system C that  has ~ as 
a divergence trace has CSPdivtr(C) = ,U* and CSPfail(C) = ~* × 2 ~, and is 
called chaos. The catastrophic divergence property makes CSP-semantics useless 
for analysing the behaviour of a system after a divergence trace. Despite this, 
CSP-semantics has been very successful both in terms of theory development and 
practical use. The textbook [75] is a thorough treatment of the CSP language, 
semantic theory of CSP, and automatic verification in the context of CSP. 
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The catastrophic divergence problem has motivated researchers to develop 
alternative semantic models based on some kinds of failures and/or divergence 
traces. Among them, the Chaos-Free Failures Divergences (CFFD) semantics 
[94] is interesting because of its special relation to LTL_x (Section 4.3). It is 
the triple (Sfail(L), Divtr(L), Inftr(L)). (Originally it had also a fourth initial 
stability component. It was needed for ensuring the congruence property in the 
presence of the so-called choice process composition operator.) CFFD-preorder 
and -equivalence are defined just like the corresponding CSP notions. If the 
LTSs are finite, then the sets of infinite traces need not be compared, because 
then Inftr(L) = Tr~v(L) and Trw(L) is uniquely determined by Sfail(L) and 
Divtr( L ). 

CFFD-equivalence implies CSP-equivalence, trace equivalence and the NDFD- 
equivalence mentioned below in the sense that if L1 "~cF~o L2, then L1 -~csp L2, 
L1 "~tr L2 and L1 ~NOFO L2. Furthermore, NDFD-equivMence implies CSP- and 
trace equivalences. 

Assume that / /  is encoded into 27 as was discussed in Section 2.2. Then 
CFFD-equivalence is the weakest possible (that is, makes least distinctions be- 
tween systems) congruence that (1) preserves the validity of formulae written 
in LTL_x, and (2) distinguishes between deadlock and livelock. Furthermore, a 
slight modification of CFFD-equivalence called nondivergent failures divergences 
(NDFD, it takes into account only those stable failures (a, A) where ~ is not a 
divergence trace) equivMence is the weakest congruence that has the property 
(1). These facts were proven in [47], and elaborated a bit further in [89]. Due 
to them, CFFD- and NDFD-semantics provide a means for applying process- 
algebraic verification methods to the verification of LTL-x formulae. 

CFFD- and NDFD-equivalences do, however, suffer from a problem that to 
some extent restricts their applicability to the verification of liveness properties 
in general and LTL_x formulae in particular: they do not handle fairness assump- 
tions in a satisfactory way. As was mentioned in Section 4.3, fairness assumptions 
can be encoded in the formula whose validity is being verified. However, doing 
that leads to a big 52, and that is bad for process-algebraic methods of allevi- 
ating state explosion. This problem is not a deficiency of only the CFFD- and 
NDFD-equivalences, but is present in most or all abstract process semantics that 
are both congruences and strong enough for handling liveness properties. Some 
ways of working around it have been found [71, 92], but more work needs to be 
done in this field. 

Algorithms for failure-based semantics. Most complexity results concerning trace 
semantics generalise relatively easily to CSP-, CFFD- and NDFD-semantics. For 
instance, the LTSs in Figure 6 are CSP-, CFFD- and NDFD-equivalent, thus also 
these equivalences fail to have unique minimal LTSs. 

The paper [14] shows how algorithms for strong bisimilarity can be used for 
failure-based semantic models by first transforming the LTSs into acceptance 
graphs that are based on the acceptance trees of [41]. Acceptance graphs are, in 
essence, deterministic LTSs augmented with a special representation for refusal 
and divergence information. Acceptance graphs were applied in a slightly differ- 



471 

ent way in [93], where algorithms for LTS equivalence comparison and reduction 
according to CFFD semantics were developed. The results of [93] can be adapted 
to CSP- and NDFD-semantics. 

The tester processes presented towards the end of Section 4.2 can be used 
for checking CFFD-preorder, and even without infinite trace monitor states [87]. 
The basic idea is that  illegal traces are caught with reject states, illegal stable 
failures with deadlock monitor states, and illegal divergence traces with livelock 
monitor states. Illegal infinite traces need not be worried of, because the presence 
of such a trace in a finite LTS implies the presence of an illegal stable failure 
or illegal divergence trace. Reject states are not absolutely necessary because 
every illegal trace can be detected as an illegal deadlock or illegal divergence 
trace. Reject states are, however, very easy to implement efficiently in a state 
space tool, and they detect an error immediately when the error trace has been 
executed, while deadlock and livelock monitor states require continuation to a 
deadlock or livelock. Reject states thus improve efficiency. 

There is an algorithm that,  given an LTS Spec, produces a tester process 
that  checks Sys __CFFD Spec. It is based on the construction of the DSpec with 
an extra reject state sR that  was defined in "Algorithms for trace semantics", 
the taking of "mirror images" of refusal sets as has been described in [5], and 
the marking of those states as deadlock and livelock monitor states which corre- 
spond to traces after which Spec cannot deadlock or livelock, respectively. The 
algorithm consumes exponential time and space in the worst case, both because 
the number of states may grow exponentially, and because the handling of re- 
fusal sets may be expensive with pathological inputs. In practice, however, the 
algorithm often runs reasonably fast. This approach can be adapted to NDFD- 
and CSP-preorders with small changes. Like with trace semantics, the use of 
tester processes is inexpensive in the size of Sys. 

Another on-the-fly method for checking CSP-preorder was described in [74, 
75]. It also relies on constructing DSpec, but from then on it works differently 
from the previous one. It augments DSpec with an acceptance-tree-type repre- 
sentation of refusal and divergence information, making it possible to compare 
on the fly each state of Sys directly with the corresponding state in DSpec. (The 
"corresponding state" is the unique state of DSpec that  is reached with the same 
trace as with which the state of Sys was reached.) Again, small changes suffice 
to apply this algorithm to CFFD- and NDFD-preorders. 

B r a n c h i n g - t i m e  a b s t r a c t  s e m a n t i c s .  Weak bisimilarity or observation equiv- 
alence [65] is certainly the most well known abstract branching-time semantic 
model in process algebras. Its definition resembles that of strong bisimilarity, but 
has the difference that  when simulating a transition, the simulating LTS may do 
any number of transitions (including zero) as long as the resulting sequence of 
the visible actions is the same in both sides. 

Let s -r*--+i  s' denote that  s' can be reached from s with zero or more r-  
transitions in the LTS in question. The LTSs L1 = (S1,Z,~I ,SI t )  and L2 = 
($2, E, A2, SI2) are weakly bisimitar, denoted here L1 ~-wb L2, if and only if 
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there is 
and a • 

a relation ",,2' C St x $2 such that  for every sl,  s~ • $1, s2, s~ • $2, 
£:: 

- If sl • $I1, then there is s • $I2 such that  st ~ s. 
- If s2 • Sx2, then there is s • Sxt such that  s ,-~ s~. 
- If st ,~ s2 and (st, r, st) • At,  

then there is s such that  s2 - r * - + 2  s and s t ,,~ s. 
- If 81 ' ~  8 2 and (s2, r, s~) • A2, 

then there is s such that  st - r*--+t  s and s ,-, s~. 
- If sl ,-~ s2 and (sl,a,s'l) • At ,  then there are s, s' and s" such that  

s2-r*--+2s t, (s', a, s') • A2, s"--r*--+~ s, and s t ,-, s. 
- If Sl ,~ s2 and (s2,a,s'2) • A2, then there are s, s' and s" such that  

Sl -r*--+ t s r, (s', a, s') • At, s" - r*- -~ l  s, and s ,-~ s~. 

The definition allows the simulation of a local v-loop (that  is, a transition 
of the form (s, r, s)) by no transition at all. As a consequence, weak bisimilarity 
does not distinguish deadlock from livelock. If this is considered a deficiency, 
an extra requirement may be added saying that  if sl "~ s2, then sl - r ~ ' - + l  ¢:~ 
s~ - r ~ - - ~ ,  where s - r ~ - +  means that  there is an infinite execution that  starts in 
s and contains only v-transitions. This modification of weak bisimilarity implies 
CFFD-equivalence (excluding the "initial stability" component).  Its theory and 
algorithms were investigated in [18]. 

Assume that  an LTS L -- (S, E,  A, S/)  is converted to Sat(L) = (S, E, A', $I) 
such that  A' -- z5 U SCl U Sc2, where Sat and Sc stand for "saturate" and 
"shortcut",  Scl = { (s,a,s') [ (s ¢ s 'Va ¢ r ) A 3 s l , s 2  : s-r*--+sl A(sl,a, s2) • 
A A s2 --r*--~ s }, and Sc2 - { (s, r, s) [ s • S }. Clearly L' -----wb L. What  is more, 
L1 ~--wb L2 ¢:~ Sat(L1) ~--,b Sat(L2). The computation of Sat(L) is essentially 
the problem of computing the transitive closure of a relation. It can be solved 
in cubic t ime (even faster, but  the significance of the known faster algorithms is 
mostly theoretical). 

In this way minimisation and comparison of LTSs according to weak bisimi- 
larity can be converted to the related problems with strong bisimilarity, which, 
as we have seen, have very efficient algorithms. This approach is from [48], and 
yields cubic equivalence checking and minimisation algorithms for weak bisim- 
ilarity. Unfortunately, the number of semantic transitions in a saturated LTS 
tends to be high, so this approach consumes a lot of memory. This can be avoided 
by simulating the "-v*--~"-relat ion as needed instead of storing it in an explicit 
form, but  then the algorithm becomes slower. 

It is clear that  weak bisimilarity does not preserve the validity of all C T L - x -  
formulae, because it discards livelock information. However, as the following 
example demonstrates, weak bisimilarity does not even preserve the validity 
of all those CTL_x properties that do not depend on livelocks. The LTSs in 
Figure 7 are weakly bisimilar, but the formula EG(-~a A (EFa V -~EFfl)) holds 
only in the rightmost one. 

In Section 4.3 a stuttering equivalence was defined that  preserves the validity 
of CTL*x-formulae.  It requires that  each state of an execution at one side is 
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Fig.  7. Weak bisimilarity does not preserve CTL. 

simulated by one or more states at the opposite side. Therefore, according to 
it, the execution where the rightmost LTS in Figure 7 jumps to the bot tom left 
state without visiting the bot tom middle state cannot be stutter-simulated by 
the leftmost LTS, because this execution has no state that  could be the pair of 
the bot tom middle state. 

Branching bisimilarity [96] is a process-algebraic equivalence that  is between 
weak bisimilarity and stuttering equivalence. Branching bisimilarity implies weak 
bisimilarity, and differentiates the LTSs in Figure 7 from each other. It, too, dis- 
cards livelock information, and therefore fails to preserve the validity of C T L - x  
formulae. It can be modified to preserve CTL_x,  but then it becomes essentially 
the same as stuttering equivalence. One attractive feature of branching bisimi- 
larity is that  its algorithms are similar to the algorithms for weak bisimilarity, 
but  need tess memory, because the saturation of LTSs is not needed. 

The article [90] is a tutorial on the basic ideas of process-algebraic semantic 
models and automatic verification with them. 

5 T h e  C o m p l e x i t y  o f  V e r i f i c a t i o n  

5.1 C o m p l e x i t y  in  T e r m s  o f  t h e  S t a t e  S p a c e  

In the previous section we mentioned the computational complexity of some 
verification tasks as a function of the size of the state space IS] and the size of 
the property or specification I~1: 

- The checking of various individual properties, such as the absence of dead- 
locks, 4-boundedness of a Petri net place and Petri-net-liveness of a transition 
are linear in [S[. 

- LTL and CTL* model checking are linear in IS[ and PSPACE-complete 

in I~1. 
- CTL model checking is linear in ISl and I~1. 
- Minimisation with respect to trace, CSP-, CFFD- and NDFD-semantics is 

not well-defined, because there is no unique minimum. Finding some equiv- 
alent LTS with a minimal number of states is PSPACE-complete. 

- Trace, CSP-, CFFD- and NDFD-equivalence checking are PSPACE-com- 
ptete. 



474 

- Trace, CSP-, CFFD- and NDFD-preorder checking are linear in the alleged 
smaller LTS, and PSPACE-complete in the other argument. 

- An LTS can be minimised with respect to weak or branching bisimilarity in 
0(1313 ) time. 

- Equivalence according to weak or branching bisimilarity can be checked in 
O(IStt 3 + IS21 s) time. 

Excluding CTL* model checking, the above results suggest a general ten- 
dency: verification tasks related to linear-time properties tend to be PSPACE- 
complete, whereas similar tasks for branching time can be performed in low-order 
polynomial time. This may feel counterintuitive, because branching time seems 
more complicated than linear time and, for instance, weak bisimilarity implies 
trace equivalence. The case of LTL vs. CTL has an easy explanation: CTL re- 
stricts seriously what one can say about the properties of individual executions, 
and when those restrictions are removed (yielding CTL*), model checking be- 
comes PSPACE-hard again. In the case of weak bisimilarity vs. trace semantics 
the explanation lies in the fact that checking equivalence under two different se- 
mantics is two distinct problems that do not necessarily have much in common, 
even if one of the equivalences implies the other. We will now illustrate this with 
an example. 

Consider the following seven different equivalences, each of which implies 
the next: identity (($1, $1, A1, Sxl) = ($2, $2, A2, S~2) if and only if S~ = $2, 
$1 = ~U2, A1 = / /2 ,  and $I1 = Sx2), isomorphism, strong bisimilarity, branching 
bisimilarity, weak bisimilarity, trace equivalence, and the "universal" equivalence 
that says that all LTSs are equivalent. Identity is easy: it can be checked in linear 
time on the average by inputting the LTSs into a hash table, and in worst-case 
linear time by replacing the hash table with the (impractical) data structure in 
exercise 12.1-4 of [15]. Isomorphism is clearly in NP, but has not been proven 
NP-complete - -  as a matter of fact, it is a strong candidate for a problem that 
is not solvable in polynomial time but is not NP-hard either [30]. It is thus 
rather complex. Strong bisimilarity, despite of its resemblance to isomorphism, 
can be checked in low-order polynomial time. Known algorithms for branching 
bisimilarity take some more time and weak bisimilarity still some more, but 
they are still within cubic time. Trace equivalence is PSPACE-complete and thus 
(apparently) the hardest in this list. On the other hand, the universal equivalence 

" e s "  is the easiest of all: the algorithm pr in t  y solves it in constant time. 
We see that the strength of an equivalence and the complexity of its equiv- 

alence checking have low correlation. The fact that branching-time semantic 
models have fast equivalence checking algorithms seems thus coincidental. In- 
tuitively, their low complexity compared to equivalence checking in linear-time 
models is due to the fact that branching-time tasks rely on local information, 
while linear-time verification requires simultaneous information about all possi- 
ble executions that have the same E-abstraction. 

We will see in Section 5.3 that there is, however, a sense in which the weakness 
of an equivalence is beneficial regarding the cost of verification. 
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5.2 C o m p l e x i t y  in  T e r m s  o f  t h e  M o d e l l i n g  F o r m a l i s m  

In the previous section we discussed the complexity of verification as a function 
of the size of the state space of the system. In reality, the system is usually not 
originally given as a state space, but as a program in some concurrent program- 
ming language, Petri net, parallel composition of LTSs, etc. This representation 
is typically much, much smaller than the state space - -  after all, that  is what the 
state explosion problem is about. As a consequence, the complexity of a problem 
as a function of the size of the state space does not give complete picture of the 
cost of verification. 

Numerous results exist about the complexity of the verification of some prop- 
erty from a system represented in some formalism. One can derive more with 
the following technique. (More detail can be found in [89], for instance.) 

A linear bounded automaton is a nondeterministic single-tape ~Ihring machine 
whose use of the tape is restricted as follows. The input string is surrounded by 
two endmarkers that  the machine cannot write over or bypass. The tape alphabet 
may be much larger than that  used in the input string, and the machine is allowed 
to write over the input. Therefore, the machine can use the part of the tape that  
originally contains the input also as working storage. As a consequence, the 
working storage of the machine is linear in the size of the input string (while 
with the ordinary nondeterministic 2ktring machine it is unbounded). 

The question whether a given linear bounded automaton accepts a given 
string is PSPACE-complete ([30], p. 265). A linear bounded automaton is ba- 
sically a finite automaton that  has access to a fixed amount of memory that  it 
can address only by jumping from a memory cell to the next or previous cell. 
Given a typical formalism that  is intended for modelling concurrent systems, it 
is usually relatively easy to design a system that simulates an arbitrary linear 
bounded automaton with an arbitrary input, and whose size is polynomial in 
the size of the description of the automaton and input. The simulator can be 
made such that  when the automaton reaches an acceptance state, the simulator 
does something that  it otherwise cannot do, such as stops or executes a certain 
transition. Checking the ability of doing "that something" is thus PSPACE-hard 
for the formalism in question. In this way it is possible to show that  the detection 
of deadlocks, checking whether a given structural transition may ever become 
enabled, and so on are PSPACE-hard for Petri nets, parallel labelled transition 
systems, and so on. 

To prove that  something is PSPACE-complete instead of just  PSPACE-hard,  
it suffices to additionally show that  an execution leading to a deadlock, ending 
up with the occurrence of a given structural transition, etc. can be simulated 
using at most a polynomial amount of space as a function of the size of the de- 
scription of the system. Because of the famous result by Savitch that  PSPACE 
= NPSPACE ([76], [30] p. 176, [1] p. 395), the simulator needs not "know" what 
step it should take next if there are many choices; we may assume that  it can 
always "guess" it. However, when making proofs of this kind, one has to remem- 
ber that  polynomial space does not usually suffice for storing the guesses or the 
simulated sequence, so the sequence can be used only once in the proof. 
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The detection of deadlocks, checking whether a given structural transition 
may ever become enabled, and so on are indeed PSPACE-complete for parallel 
labelled transition systems and many other formalisms. The result is not valid 
for ordinary Petri nets because polynomial space does not suffice for storing the 
marking, as the number of tokens in a place may grow very high. It becomes 
valid if a fixed upper bound to the number of tokens is enforced for each place. 

We can make the conclusion from the above that  an interesting verification 
problem for an interesting modelling formalism can be easier than PSPACE-hard 
only in exceptional cases. Excluding those exceptional cases (and ignoring the 
very unlikely possibility that  PSPACE = P), every  verification algorithm for an 
interesting task must have bad worst-case performance. Thus each verification 
method must contain at least one potentially expensive step. With ordinary state 
spaces, this step is obviously the construction of the state space. The same holds 
for most advanced methods discussed in Section 7. We will see in Section 7.2 that  
there are methods that can sometimes pack full state space information into a 
very small representation, but with them the problem of extracting eventual 
answers from the packed state space tends to be complicated. 

Fortunately, the above complexity results apply only to the worst case. They 
do not prevent a verification method from being reasonably efficient in a large 
set of practical cases. They do, however, imply that  for each method there are 
systems with which the method becomes very slow (unless PSPACE = P). 

5.3 H o w  M u c h  I n f o r m a t i o n  to  P r e s e r v e ?  

An advanced state space method can reduce the size of the state space either 
by throwing some information away, or by representing the information in a 
denser form. Throwing information away implies that  some verification questions 
cannot any more be answered. In theory, packing the information more densely 
does not rule out the ability to answer any verification question. In practice, 
both the above complexity results and experience with advanced state space 
methods suggest that  if the packed representation is significantly denser than the 
ordinary state space, then extracting the answers to certain verification questions 
becomes so difficult that  it becomes a bottleneck. It is thus reasonable to accept 
the idea that  state explosion cannot be significantly alleviated without losing 
some analysis capability. 

Consider two sets /'1 and F2 of analysis questions such that  /"1 c_C_ F2 and 
F1 ¢ F2. Any method that  is capable of answering all questions in/"2 can be 
used also f o r / I .  Furthermore, there may be advanced methods that  are legal for 
P1, but fail to answer correctly some verification question in E~ - /"1 .  Therefore, 
at least in principle, F1 allows the use of at least the same and may allow more 
tools for attacking the state explosion problem than /~2. Therefore, the more  
in format ion  we are will ing to give away, the more we can do to avoid s tate  

explosion. 
As an example of the above principle, we will now explain how the fact tha t  

some equivalence (say, trace equivalence) preserves strictly less information than 
some other (weak bisimilarity, for instance) can be used to reduce the cost of 
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verification, although equivalence checking and minimisation are expensive for 
trace equivalence and cheap for weak bisimilarity. To compare the uses of two 
different equivalences in the same verification task it is necessary to assume that  
both equivalences apply to that task, that  is, they preserve the property 9 in 
question. For instance, if 9 is any linear-time safety property that  is stated in 
terms of ~ ,  then both trace equivalence and weak bisimilarity preserve it. In 
such a situation the equivalences are just tools in the verification of 9, not goals 
in themselves. 

As will be discussed in more detail in Section 7.3, equivalences can be used 
to avoid the construction of the full state space of the system, and produce a 
smaller but  equivalent state space instead. Because any two weakly bisimilar 
state spaces are also trace-equivalent but the opposite does not hold, trace se- 
mantics allows the production of smaller state spaces than weak bisimilarity. 
Computing the smallest possible trace-equivalent state space is expensive, but  it 
is not necessary in this kind of an application. It is perfectly legal to first run the 
inexpensive algorithm that produces the unique minimal weakly bisimilar state 
space, and then apply some inexpensive trace-equivalence-preserving heuristics 
to reduce the result further still, and perhaps minimise again with respect to 
weak bisimilarity. In this way a state space is constructed that  is never bigger 
and may be much smaller than the smallest weakly bisimilar state space, but  is 
still valid for the verification of any linear-time safety property 9. 

5.4 H o w  M u c h  M e m o r y  is R e a l l y  N e e d e d ?  

Consider the problem of detecting deadlocks from an ordinary Petri net that  has 
the property that  no place ever contains more than one token. This problem can 
be easily solved by constructing the state space, if enough time and memory is 
available. The number of the reachable states of the net may be exponential, so 
this method uses exponential space and consequently also exponential t ime in 
the worst case. Even so, unless the net belongs to some special subclass, state 
spaces are the most practical deadlock detection method known today. We saw 
above, however, that  deadlock detection is PSPACE-complete for this type of 
Petri nets. Deadlocks can thus be detected in polynomialspace, at least in theory. 
Why are polynomial space deadlock detection algorithms not used in practice? 

The result that  deadlocks can be detected in polynomial space relies on a 
theorem by Savitch ([76], [30] p. 176, [1] p. 370). From the proof that  Savitch gave 
to his theorem, it is possible to derive the following polynomial space algorithm 
"is_reachable(M1, M2, k)" for checking whether M2 is reachable from M1 in at 
most k steps. 

If k = 0 the algorithm returns True if M1 = M2, and False otherwise. If 
k = 1 the algorithm returns True if there is a structural transition t such that  
M1 It) M2, and False otherwise. For bigger values of k, the algorithm constructs 
and tests one at a time every possible marking M that  assigns to each place 

L~J) either 0 or 1 tokens. A marking is tested by calling "is_reachable(M1, M, k ,, 
k ,, and "is_.reachable(M, M2, [~]) • If both calls return True, then it is known that  

there is a path from M1 to M2 that  goes through M, so the algorithm returns 



478 

True. If either call returns False, the test of M fails, and the algorithm proceeds 
to the next value of M. If the test fails for all values of M, then the algorithm 
returns False. This is correct, because if there were a path from M1 to M2 whose 
length is at most k, then the middlemost marking of the path would make both 
"is.xeachable(M1, M, ~ " [yJ) and "is_reachable(M, M2, k ,, [y]) to return True. 

Let the number of the places in the net be n. The net has at most 2" reachable 
markings, because we assumed that M(p) < 1 for every place p and reachable 
marking M. Therefore, if Ms is reachable from M1, it is reachable via a path 
whose length is less than 2 n. As a consequence, teachability of a deadlock can 
be checked by letting M1 scan through all initial markings and Ms through 
all markings, and by calling "is_reachable(M1, M2, 2")" for each Ms that is a 
deadlock. Each such call creates a tree of recursive calls of "is_reachable" whose 
height is at most n + 1. Each invocation of "is_reachable(M1, Ms, k)" consumes 
only O(n) bits of memory, because each of M, M1, M2 and k fits n +  1 bits. Thus 
the total memory consumption is 0(n2), which is low-order polynomial in n. 

The memory consumption of the above algorithm is actually quite reason- 
able. Even a straightforward non-optimised stack-based (instead of recursive) 
implementation survives with 4n + 2 bits of memory per recursion level. If, for 
instance, n = 1000, then roughly 4 000 000 bits or 500 kilobytes of memory 
suffices for checking the reachability of a deadlock. 

On the other hand, the time consumption of the above algorithm is woeful. 
If no marking is reachable from another, then the bottom level of recursion is 
called 2 '~2 times. That is 21 000 000 or roughly 10300 000 times for n = 1000. The 
estimated age of the universe is only about 1027 nanoseconds. 

The reason why the above algorithm consumes so little space and so much 
time is that it throws away almost all subresults it has computed, and recom- 
putes them again and again. Significant savings in time may be obtained by 
storing the subresults and fetching them from the store as needed instead of re- 
computing them. But that would require exponential memory. This observation 
is valid for PSPACE-complete problems in general: although they can be solved 
in polynomial space in theory, in practice exponential space is used because it 
is much faster. 

In conclusion, it is in theory possible to solve interesting verification tasks 
in relatively small memory. However, the known algorithms that do that con- 
sume unimaginable amounts of time. The possibilities of making a big enough 
improvement to the speed of the algorithms while keeping the memory con- 
sumption polynomial seem minuscule. On the other hand, a much, much faster 
algorithm is obtained, one that is often fast enough in practice, if one is willing 
to use much more memory and store intermediate results in it. This is exactly 
what the state space methods do. 

6 Reduction Strategies 

An advanced verification algorithm that tries to alleviate state explosion may be 
organised in many different ways. In this section we discuss the most important 
of them. 
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T r a n s p a r e n t  construct ion-t ime reduction.  Perhaps the easiest way of con- 
necting a state explosion alleviation method to verification with state spaces is 
transparent construction-time reduction. In it, instead of the full s tate space, a 
reduced state space is constructed tha t  gives the same answers to a predefined 
class of verification questions as the full s tate space would give. Specifications 
may be checked and analysis questions may be answered with the same algo- 
r i thms and tools as with full state spaces. 

In order to avoid incorrect answers, the user has to know what  properties 
the reduced state space has preserved, or the analysis tool must  refuse to answer 
illegal questions. The latter may be implemented by adding to the state space 
some information on what properties it preserves. 

The basic s tubborn set method that  preserves deadlocks and non-termination 
(Section 7.4) is an example of t ransparent  construction-time reduction. So is 
also the composit ional LTS construction method tha t  is commonly used in the 
verification of process-algebraic equivalences between systems (Section 7.3). 

Guided construct ion-t ime reduction.  Guided construction-time reduction 
is an elaboration of transparent  construction-time reduction, where information 
about  the analysis or verification question or special knowledge on the system 
is used for guiding the construction of the reduced state space. The abstraction 
mechanisms of Section 2.2 are one simple way of doing this: the set H or Z is 
specified before the construction of the reduced s tate  space, the state space re- 
duction algori thm uses knowledge of that  set to decide where it may  reduce, and 
only the elements in the set can be used as basic components in the verification 
questions. When the user wants to ask a question that  refers to details tha t  are 
not present in H or Z,  a new state space has to be constructed. 

For instance, the LTL_x and CTL*_x-preserving s tubborn set methods (Sec- 
tion 7.4) work in this way. Also compositional LTS construction falls into this 
category when it is used as an aid in the verification of individual properties 
(such as mutual  exclusion) instead of checking process equivalence. 

If  the user specifies a small H or ET, then the state space can answer only a 
small set of verification questions. On the other hand, if H or Z is made larger, 
then also the state space becomes larger and may soon exceed the capacity of 
the verification tools. The user is thus in a trade-off situation. 

The  user may  have special knowledge of the system that  is useful in allevi- 
ating s tate  explosion. For instance, the user may know tha t  a correct token-ring 
system contains at most  one token at any instant of time. Because an incorrect 
system does not necessarily have this property, one has to be careful when taking 
advantage of this kind of information in verification in order to avoid circular 
reasoning. In Sections 7.1 and 7.3 we will see examples of how this can be done 
(the elimination of remnant  variable values with un in i t i a l i se - s t a t ement s ,  and 
the interface processes of Graf  and Steffen). 
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P r e p r o c e s s i n g  t h e  m o d e l .  State explosion can be alleviated also by modifying 
the system description before starting the construction of the state space, or by 
taking the needs of state space methods into account already when modelling 
the system. For instance, it is customary to use in a verification model as few 
variables as possible and to restrict their types to as small as possible. It is also 
customary to make the degree of atomicity of transitions as coarse as possible. 

The correctness of abstractions of this kind is in the responsibility of the 
author of the verification model. It is also possible to apply sound theories and 
automatic  tools for preprocessing the model such that  it is guaranteed that  the 
answers to certain verification questions are not changed. This is the topic of 
Section 7.1. 

P a c k e d  s t a t e  s p a c e s .  A packed state space is a nonstandard, dense way of 
storing the state space or a part  of it. The packed state space may contain full or 
incomplete information on the interleaved (or even true concurrency) behaviour 
of the system. 

The analysis algorithms and tools have to be modified to work on packed 
state spaces instead of ordinary ones. Because the information on states and 
semantic transitions is to some extent implicit in a packed state space, extract- 
ing an answer to a verification question is sometimes hard. This leads to slow 
and complicated algorithms for certain verification questions. As a consequence, 
methods based on packed state spaces tend to work well only for certain types 
of analysis questions, even if no information is lost in the packing. Fortunately, 
the most important  types of packed state spaces support well quite large types 
of analysis questions. 

The symmetry method, the unfolding method, and BDDs are examples of 
packed state space methods that  preserve full information. Petri net coverabil- 
ity graphs preserve incomplete information, and allow the verification of only 
a restricted class of properties. Also Holzmann's supertrace algorithm throws 
information away. It allows the handling of a rather large set of properties, but 
gives only approximate answers. It is thus not a verification method but a valida- 
tion and error detection method. All these methods are described in Section 7.2. 

The construction of an ordinary state space is based on the execution of 
individual structural transitions in individual states, that  is, the construction 
of semantic transitions one at a time. With packed state spaces this scheme 
has to be modified to at least some extent, because the processing of semantic 
transitions one by one would lead to a total amount  of work of the order of the 
size of the full state space, which would largely destroy the benefits of packing. 
With the symmetry, coverability graph and supertrace methods, the construction 
of semantic transitions does not differ much from the construction of ordinary 
state spaces (except that  semantic transitions are not stored when supertrace is 
used). On the other hand, when the set of reachable states is represented with a 
BDD, semantic transitions are handled with an entirely different technique that 
will be discussed in Section 7.2. 

A packed state space that  preserves full information on the behaviour of 
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a system must  rely on some regularity in the behaviour, otherwise the packed 
representation could not be essentially smaller than an explicit representation. 
The  symmet ry  method,  for instance, relies on the assumption tha t  the system 
consists of several components  that  are identical except the name or index of the 
component .  Therefore, intuitively speaking, the storing of many  behaviours can 
be replaced by a remark that  says that  those behaviours are the same as certain 
stored behaviours except the naming of entities. 

The regularity on which a packed s tate  space relies needs not be well-specified. 
For example,  the type of regularity that  BDDs rely on is very difficult to char- 
acterise. 

O n - t h e - f l y  v e r i f i c a t i o n .  In on-the-fly verification the algorithm tha t  checks 
the validity of a property is integrated to the algorithm that  constructs the 
s tate  space. The  construction of the state space is stopped immediately  when 
an error against the property is found. The state space is usually thrown away" 
when the algorithm has finished. We have seen several on-the-fly algori thms and 
techniques already in Sections 4.2, 4.3 and 4.4. 

To appreciate the importance of on-the-fly verification, let us consider the 
introduction of an error to an originally correct system. In some cases the error 
makes the s tate  space of the system smaller - -  this happens, for example,  if it 
causes the system to deadlock right at the start .  I t  is more common,  however, 
that  the error greatly increases the size of the state space. This is because a cor- 
rect system almost  always obeys some state invariant that  significantly restricts 
the number  of states that  it can reach, and is violated by the broken system. 

For instance, the alternating bit values of messages in a fifo channel of the 
well-known alternating bit protocol are not arbitrary, but  they can change in at 
most  one point within the fifo. If  the capacity of the channel is k and the actual 
contents of the message are not modelled, arbi t rary values of the al ternating bits 
allow 2 0 + 21 + . . .  + 2 k = 2 k+l - 1 different contents of the channel, whereas 
only 1 +  2 • 1 + 2 • 2 + . . .  + 2 • k = k 2 + k + 1 value combinations satisfy the 
invariant. Once the broken system has entered a state that  violates the invariant, 
usually nothing stops it f rom slowly corrupting the state more and more, and 
thus eventually reaching a great number  of states that  are disallowed by the 
invariant. 

It  is obvious that  stopping when an error is found does not speed up the 
verification of a correct system. On the other hand, we argued above that  an 
incorrect system tends to have a much larger state space than the corresponding 
correct system. I f  the validity of the above invariant is monitored on the fly 
with a method tha t  detects violations without delay, then analysis is s topped at 
the latest when one more state has been constructed than what the invariant 
permits.  On-the-fly verification thus tends to reduce the number of states of the 
erroneous system back to roughly the same level with the correct system. This  
is of  great help when testing design ideas during system development.  

According to the above reasoning, the ability of an on-the-fly method  to keep 
the state space small depends on how soon the method detects the error after 



482 

all states of an erroneous execution have been constructed. Because of this, we 
recommended in Section 4.2 the use of reject states and livelock monitor states 
for checking linear-time safety properties and livelocks, even if they could be 
checked also with Biichi automata (or infinite trace monitor states). 

On-the-fly verification may reduce the number of states in also another way, 
by avoiding the construction of those parts of the state space that are not relevant 
for the property. This may be thought of as an instance of guided construction- 
t ime reduction, and it reduces states also when analysing a correct system. For 
the sake of an example, consider a tester process (Section 4.2) that  is connected 
to the system with transition fusion. Assume that  the alphabet of the system 
is ~ = {a, b, c}, and the property to be checked is "if the first visible action 

is a, then the next one is b". The 3-state t e s t e r ~  (the black state is 
a reject state) suffices for checking the property. Due to transition fusion, the 
tester prevents the system from executing b or c as the first visible action, thus 
pruning a potentially big part of the state space. 

On-the-fly verification can often be combined to advanced state space meth- 
ods of other kinds, and some advanced methods (most notably Holzmann's su- 
pertrace, Section 7.2) actually require the use of on-the-fly verification. However, 
the addition of extra components to the system that  is required by most on-the- 
fly methods sometimes more or less destroys the ability of an advanced state 
space method to reduce states. 

For instance, the addition of a B/ichi automaton by synchronising with ev- 
ery structural transition of the system makes stubborn-set-type methods (Sec- 
tion 7.4) and process-algebraic compositionality (Section 7.3) more or less use- 
less, because that  requires the making of every transition visible, and (signifi- 
cant) reduction is obtained only from invisible transitions. This problem can be 
avoided by using an automaton that  represents a stuttering-insensitive property, 
and either connecting it to only visible transitions (then one has to be careful 
with infinite stuttering, because the automaton does not even see stuttering), or 
synchronising it to each state and using a method that  preserves the property 
without getting guidance from the automaton. 

The lesson to be learnt here is that  although it is often technically possible 
to use more than one advanced verification paradigm or method simultaneously, 
it may lead to bad results if done without good enough understanding of the 
situation. 

7 A d v a n c e d  S t a t e  S p a c e  M e t h o d s  

Many different methods for coping with state explosion have been suggested in 
the literature, and the field is still evolving rapidly. In this section the basic ideas 
of a dozen or so methods are described. The discussion concentrates on methods 
and ideas whose importance has already been proven by practical use, influence 
on ongoing research, or some other way. Unfortunately, it would have required 
too much effort to carefully assess the merits of all the numerous approaches 
suggested in the literature. It is thus possible that  some important ideas may 
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be missing from this section. Stubborn-set- type methods are presented in more 
detail  than  other methods because there was a wish that  this article would also 
serve as a s tubborn set tutorial.  

7.1 P r e p r o c e s s i n g  M e t h o d s  

Every experienced user of state space tools knows that  the way in which the 
system is modelled for the tool may  have a great effect on the size of the state 
space. Some of the tricks that  (assuming sufficient tool support)  the modeller 
of the system can use to alleviate state explosion without affecting verification 
results are discussed in this section. 

E l i m i n a t i o n  o f  r e m n a n t  v a r i a b l e  va lues .  The state of a system is deter- 
mined by the history of the system, and usually most  of the s tate  information 
affects the future behaviour of the system. With some systems it is, however, 
possible that  some variable may contain several different values due to different 
histories, but all values lead to the same possible future behaviours. We might 
then say that  the variable contains a remnant value. 

A good example of remnant  values can be found from within a communicat ion 
protocol with a bounded number of retransmissions. The protocol sender process 
contains a counter for keeping track of transmission a t tempts .  After the sender 
has received an acknowledgement, the counter will not be touched until the 
sender receives a new transmission request from the sending client. Then it resets 
the counter to zero. Thus the value of the retransmission counter is unnecessary 
between the reception of the acknowledgement and the start  of the transmission 
of a new message. 

Although remnant  values do not affect future behaviour, they contribute to 
the global state of the system, and thus increase the number  of reachable states. 
This effect can be prevented by adding to the verification model of the system 
s ta tements  that  reset the variable to a specified value immediately  after the value 
of the variable becomes unnecessary. 

I f  the reset s ta tements  are added manually, there is the risk that  a variable 
is reset although its value is not unnecessary, which may lead to incorrect ver- 
ification results. Fortunately, this risk can be avoided if the input language of 
the verification tool contains the following feature. In addition to the "normal" 
values, the type of each variable should contain a special value undefined, and 
there should be a s ta tement  un in i t i a l i s e (v )  that  assigns undefined to the vari- 
able v. Each a t t empt  to use the value of v when it is undefined is immediately  
reported by the verification tool as a run-time error (like division by zero). Thus 
the modeller can add un in i t i a l i se - s t a t ement s  wherever the value of the variable 
is believed to be remnant ,  and the tool reveals if it was not remnant  after all. 

Coarsening o f  a t o m i c i t y .  The sizes of atomic actions have a great effect on 
the size of the state space of a system. As a consequence, system modellers often 
try to make the actions as large as possible. Unfortunately, careless coarsening 
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of atomicity often removes important  behavioural errors that  we would like to 
find with verification algorithms. A widely used way of avoiding this problem is 
to adhere to the following "critical reference" rule. 

Let us say that  a reference to a variable (or any other block of memory) that  
is shared by two or more parallel processes is critical, if and only if some other 
process can write to that  variable (that is, change its value), or the reference is a 
writing reference and some other process has access to the variable. If a sequence 
of statements contains at most one critical reference, may be blocked only at the 
beginning, and does not contain a potentially non-terminating loop, then the 
sequence may be collapsed to one atomic action without affecting the answer to 
almost any verification question. There are special cases where this rule can be 
made more liberal. For instance, if only one process can write "to an unbounded 
fifo and no process can test the emptiness of the fifo, then the writing reference 
needs not be considered critical. 

The coarsening of atomicity often requires support from the modelling lan- 
guage. For instance, the Promela modelling language of the Spin tool contains 
an " a t o m i c "  statement with which an arbitrarily long sequence of successive 
transitions can be glued into one atomic transition [43]. If such a sequence is de- 
terministic, then coarsening may be implemented in a state space construction 
tool by executing the whole sequence as one semantic transition. If the sequence 
contains a nondeterministic choice, then it may simplify the implementation to 
store the state where the choice is made. In this "intermediate" state no other 
transitions than those that  belong to the process in question are investigated. 

A simple technique that  facilitates both the implementation of the above in- 
termediate states and some other modelling tricks is to assign priorities to struc- 
tural transitions. A low-priority transition may occur only if no higher-priority 
transition is enabled. An example of other uses of priorities is the modelling of 
the assumption that  a timer does not  occur prematurely, tha t  is, while some 
other processing is still going on. This is achieved be giving the expiration of the 
timer lower priority than anything else. 

The stubborn-set-type methods of Section 7.4 have a similar but usually 
much stronger effect than the coarsening of atomicity. Coarsening is thus more 
or less unnecessary when those methods are used. Coarsening is, however, much 
easier to implement, and, unlike stubborn-set-type methods, can be used with 
almost any verification question. Only questions that  refer to states in the middle 
of a coarsened action or are sensitive to the disappearance of such states cannot 
be answered when actions are coarsened. 

S y s t e m  t r a n s f o r m a t i o n s .  The effect of the elimination of remnant variable 
values and coarsening of atomicity may to some extent be obtained by applying 
suitable transformations to the system model before the construction of the 
state space. Examples of such transformations of Petri nets are given in [40]. 
Unfortunately, system transformations tend to either preserve only a restricted 
set of behavioural properties, or contain complicated conditions on their use. An 
example of good use of net reductions is contained in [77]. 
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System transformations work at the structural level. They cannot thus take 
advantage of situations where, for instance, a variable contains a remnant value 
(Section 7.1) but this fact cannot be seen by investigating the structure of the 
system. Process-algebraic equivalence-preserving reductions of state spaces (Sec- 
tion 7.3) can almost always do the same as system transformations and much 
more. Their  use, however, requires that  the state space of a suitably chosen part  
of the system is first constructed. Sometimes such a part cannot be identified, 
or has too big a state space. In such a situation process-algebraic reductions do 
not make system transformations unnecessary. 

D a t a - i n d e p e n d e n c e .  Many systems are data-independent in the sense that  
they just  move data  around without looking at it or modifying it. Most obvious 
examples of this are communication protocols and cache memories. In such a 
case it is clearly unnecessary for verification to model the data  in full detail. 
However, if the model contains only one data  value, then errors such as the 
swapping of messages in a protocol cannot be detected. This raises the question: 
what is the minimum (or at least a sufficient) number of data  values for detecting 
all behavioural errors of a given data-independent system? 

This question is usually answered with relatively simple manual reasoning. 
For instance, two different values suffice for detecting the swapping of two suc- 
cessive messages in a data-independent protocol. To see this, assume that  the 
protocol may swap the nth and (n + 1)th message in a sequence of m messages, 
where m may be infinite or any finite integer greater than n. (We have to give n 
and m this much freedom, unless we know that  the possibility of swapping two 
messages does not depend on the total length of the sequence and the location 
of the swapping within it.) 

Because of data-independence, the swapping may occur also in the sequence 
that  consists of n messages of type ml and then m - n (or infinitely many, if 
m = oo) messages of type m2. In that case the output  of the protocol contains at 
least one instance of m2 being immediately followed by ml.  On the other hand, 
such an output  is impossible for the given input sequence if the protocol never 
swaps messages. 

Swapping may thus be detected by adding to the system a data  source process 
that  gives the protocol an arbitrary sequence of the above kind, and a tester 
process that  checks the output  of the protocol. Only two values of messages are 
needed. State explosion is further reduced by the fact that  the two values are 
not sent in arbitrary combinations. The error is detected on-the-fly which, as 
was discussed in Section 6, also helps to alleviate state explosion. 

The theory of data-independence was carefully investigated in [99]. Recently, 
several theorems giving sufficient numbers of data  values in CSP-type preorder 
verification were developed by Ranko Lazid; these results are summarised in [75]. 
A theory that  allows the postponing of the instantiation of data  values in process- 
algebraic compositional verification (Section 7.3) until doing it causes less state 
explosion was developed in [51]. 
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F u r t h e r  r e m a r k s  on m o d e l l i n g  a sys tem for verif icat ion.  The size of a 
state space of a system is at worst proportional to the product of the numbers of 
different locM states and values that  its component processes and variables may 
have. For simplicity, we will discuss only the values of variables in the sequel. 
This does not imply loss of generality, because the set of local states of a process 
can be thought of as a variable whose value specifies the current local state. 

The more a variable v contains "arbitrary" information that  does not depend 
on the values of other variables, the bigger is the contribution of v to the size 
of the state space. In particular, if the value of v can be uniquely determined 
from the values of the other variables, then v is harmless from the point of view 
of state explosion. (Due to this, tester processes used in on-the-fly verification 
like in Section 4.2 do not usually increase the size of the state space very much.) 
Therefore, it is not essential to keep the number of variables small; what is 
essential is to ensure that  the variables do not store arbitrary information. 

It is common that  a system contains more than one variable of some data  
type, and that  the values of those variables may be partially unrelated. For 
instance, one of the variables may contain the value that  is currently being 
processed, while another contains the previously processed value as a remnant 
value. In such a situation, making the data  type grow affects the size of the state 
space more than linearly. Because of this, it is often important  for state space 
methods to keep data  types very small. This also explains why elimination of 
remnant  values sometimes helps a lot in fighting state explosion. 

The power of coarsening of atomic actions has a similar explanation. Coarsen- 
ing reduces the extent to which component processes may proceed independently 
of each other and without affecting non-local variable values. It thus reduces sig- 
nificantly the amount of arbitrary information in component processes. 

Many systems contain one or more parameters which may assume different 
values. Examples of such parameters are the number of philosophers in the dining 
philosophers system, and the window size, maximum number of retransmissions 
and queue capacities in a sliding window protocol. Strictly speaking, such "sys- 
tems" are actually infinite families of similar systems of different size. Most state 
space methods require tha t  all such parameters are given a constant value, and 
usually the values must be small to avoid state explosion. Fortunately, it seems 
that  the majori ty of design errors manifest themselves already with small values 
of parameters. Therefore, verification with small parameter values can be used 
as an error detection and validation method for systems with large parameter 
values. 

7.2 M e t h o d s  Based  on  Packed State  Spaces 

H o l z m a n n ' s  supertrace .  Most modelling formMisms Mlow the representation 
of the state of the system as a bit vector of fixed length, at least if integers, 
queues, etc. are replaced with bounded data  types such as 8-bit integers and 
queues of fixed capacity. A bit vector of length k has 2 k different value combina- 
tions. These combinations comprise a "universe" U of all "syntactically possible" 
states, of which the set S of reachable states is a subset. It is common that  only 
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a small f ragment  of syntactically possible states are reachable. Consider the n 
dining philosophers system in Figure 1. The state of a philosopher can be en- 
coded to two bits, and the state of a fork to one bit. This makes a total  of 3n 
bits and thus 23n = 8 n value combinations. However, only 3" - 1 of them are 
reachable. We can say tha t  S is usually sparse. 

The most  memory-efficient way of storing an entirely arbi trary subset X of 
a set U = {ul, u s , . . . ,  un} of n elements is a bit vector of length n, where the 
value of the ith bit tells whether ui E X.  To avoid confusion with bit vectors 
tha t  represent states, we will use the te rm bitset of a bit vector tha t  stores a set. 
With  sparse sets, the bitset approach leads to the storing of numerous "no" bits, 
making the explicit enumeration of all elements of X as the keys of the records 
of  some da ta  structure (such as a linked list, hash table, or binary tree) much 
more memory-efficient. For instance, the state of the 10 philosophers system fits 
30 bits or 4 bytes. If  we assume that  the da ta  structure requires two additional 
4-byte pointers per record, the total  amount  of memory  becomes 59 048 states 
× 12 bytes /s ta te  ~ 700 kilobytes. The bitset representation requires 230/8 = 
128 megabytes.  

Because of this, the majori ty  of traditional state space tools store states in 
explicit form. The use of bitsets is possible only if the state can be encoded to a 
number  of bits that  is at most  the base 2 logari thm of the amount  of available 
memory  in bits. 

The classic state space construction algorithm needs to store two sets of 
states: the states Found that  have been found so far, and its subset Incomplete 
consisting of those states that  have been found but not yet fully processed. When 
the algorithm is run, Found keeps on growing until it contains all reachable 
states, while Incomplete alternates between growing and shrinking. It  is rather 
common that  the size of Incomplete stays small compared to the set of reachable 
states. Thus the bottleneck is the storing of Found. 

The basic idea of Holzmann's  supertrace algorithm [43] is to replace Found 
with an approximation that  is obtained by artificially mapping  the set U of all 
syntactically possible states to a small enough set H,  and store the approxima- 
tion as a bitset H[].  The mapping is implemented as a hash function h : U ~-+ H 
tha t  takes the original representation of a state s as a long bit vector and pro- 
duces a short enough bit vector h(s). The test s E Found is replaced by the test  
H[h(s)] = t.  

Because IHI < IV] (and Ig l  < <  IVl), the risk of two different reachable states 
mapping  to the same element of H (hash collisions, in other words) cannot  be 
eliminated. As a consequence, every now and then the supertrace algori thm 
treats  a newly found state as an old state and fails to add it to Incomplete. This 
causes the algorithm to ignore the output  transitions of some or many  states, 
and leave a part  of the s tate  space uninvestigated. Supertrace is thus not a 
verification algorithm, but  a validation and error detection algorithm. 

The bitset approximation of Found is not particularly useful after super- 
trace has terminated,  because it is neither a lower (an unreachable s tate  may  
hash to a marked bit) nor an upper (supertrace did not investigate all reachable 
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states) approximation of the set of reachable states. It is difficult to think of any 
way how supertrace could store reasonable additional information on the sets of 
states and semantic transitions that  it has investigated without increasing the 
memory requirements at least by an order of magnitude. Therefore, with super- 
trace, errors must be detected on the fly. Fortunately, as we saw in Section 4.2, 
violations against linear-time safety properties, linear-time livelock properties 
and even arbitrary LTL properties can be detected on-the-fly. Supertrace has 
thus wide applicability. 

Perhaps the most important  advantage of supertrace is that it can be used 
almost independently of the size of the state space of the system in question and 
the amount of available memory. Supertrace never investigates more states than 
fits the bitset. This also sets an upper limit to the time consumption of super- 
trace. If the bitset is small, hash collisions start to occur early in the analysis, 
and only a small fraction of the state space is investigated. If more memory is 
given, the bitset may be made larger, leading to the investigation of a bigger 
part  of the state space. 

In this way supertrace almost always gives an answer within the resources 
given to it, and the quality of the answer improves if the resources are increased. 
Furthermore, set membership can be tested and a new element added very effi- 
ciently with bitsets, so supertrace uses the resources given to it in an exception- 
ally efficient way. It may, however, run out of memory, because the set Incomplete 
is stored in the ordinary way, and its maximum size may be difficult to predict 
in advance. 

Supertrace is thus not a verification technique, but it is a very pragmatic 
validation and error detection technique. In addition, it is easy to implement. 

P e t r i  n e t  c o v e r a b i l i t y  g r a p h s .  A marking M ~ of a place~transition net covers 
a marking M, denoted by M ~ _> M, if and only if M~(p) >_ M(p)  for every place 
p. The notation M ~ > M means that  M ~ _> M and M ~ ~ M. If M ~ covers M 
and U [t) U l ,  then there is a marking U l  such that  U '  [t) i l  and M~ covers 
M1. As a mat ter  of fact, M~ - M1 = M ~ - M, where Mx - My denotes the 
function from places to integers such that ( i x  - My)(p)  = M~(p) - My(p)  for 
every place p. This fact implies that  if Mo [tit2 . . . t n )  M1 and M1 _> M0, then 
i l  [ t i t 2 . . . t n )  M2 [ t i t2 . . .  tn) M3 [tlt2 . . . tn) "" ", where i k  = Mo + k ( U l  - Mo).  
If, furthermore, M0 E [Mz) and p is a place such that  M1 (p) > M0 (p), then the 
number of tokens in p may grow without limit, and [MI) is infinite. 

On the other hand, if a place/transition net has a finite number of places 
and transitions but an infinite number of reachable markings, then it can be 
proven to have an infinite execution with infinitely many different markings. 
Furthermore, any such execution has a marking M0 and a later marking M1 
such that  M1 > M0. 

Let us use the term w-marking of any function from the set of places to 
{0, 1, 2 , . . .}  U {w}, where w is a special symbol that  denotes unboundedness. 
The notion of covering can be extended to w-markings by defining that i < w 
(and thus i < w) for every integer i. An w-marking Mo~ denotes a set [[M~]] of 



489 

ordinary markings such that  

- for every place p and every M E [[M~]], if M~(p) # ca, then M(p) = Mo~(p); 
and 

- for every ordinary marking M such that  M < Mo~, [[Mo~]] contains an ordi- 
nary marking M ~ such that M < M I. 

The set denoted by an ca-marking M~ that  contains no ca-symbols is thus 
{Mo~}. If M~ contains ca-symbols, [[Mo~]] is not uniquely defined, but it is cer- 
tainly infinite. If M and M I are ordinary markings, then M < M~ ¢~ 3M I E 
[[Mo~]] : M _< MC 

What  it means for a transition to be enabled in an ca-marking, and what is 
the result of its occurrence are defined like with place/transit ion nets, except 
that  a place marked with ca always contains enough tokens, and is marked with 
co also after the transition occurrence. This implies that  if M~ contains at least 
one c0-symbol, then M~ [t) M" represents an infinite number of occurrences of t 
from a marking in [[M~]] to a marking in [[M']]. 

A coverability graph of a place/transition net is constructed like the ordinary 
state space with the following exception. Each time it is found out that  a newly 
constructed c0-marking (remember that  also ordinary markings are ca-markings) 
M '  covers and is reachable from an older ca-marking M, M ~ is replaced by the 
unique w-marking M~ such that M E [[M~]], M '  E [[M~]], and M~ contains 
as few ca-symbols as possible. The details of when and to which ca-markings 
M'  is compared may vary, and it is also possible to replace M0~ for M instead 
of or in addition to M' .  To guarantee termination it suffices that  each newly 
constructed M'  is compared to each ca-marking in the path along which M'  was 
found. Figure 8 shows an example of a Petri net and its coverability graph. 

t 2t 4 ~ 

) 

) 

t3 t 

Fig.  8. A coverability graph example. 

Coverability graphs can be easily used to detect unbounded places of a 
place/transit ion net. Because the set represented by an ca-marking is not uniquely 
defined, coverability graphs cannot be used for checking the reachability of a 
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marking. For instance, if the weight of the arc from tl  to p~ were changed to 
2 in Figure 8, then the coverability graph would not change, but the marking 
110 would become unreachable. This implies that  there are simple state-based 
properties that  cannot be verified from coverability graphs. On the other hand, 
coverability graphs can be used for checking reachability of a state where a tran- 
sition is enabled. As was discussed in Section 4.2, this suffices for checking a 
large set of action-based linear-time safety properties. 

Regarding liveness properties, the example net cannot execute t3 a n  infinite 
number of times. However, if a new arc were drawn from ta to P2, then t3 would 
become infinitely executable without any change in the coverability graph. Thus 
coverability graphs throw away essential information regarding the verification 
of liveness properties. 

Coverability graphs are a technique for handling infinite state spaces. They 
are of no help if the state space is known to be finite. A coverability graph of 
a Petri net with a finite number of reachable markings is the same as its state 
space. 

With coverability graphs it is possible to answer many questions that  are 
undecidable for Turing machines, such as the possibility of non-termination. 
This implies that  place/transition nets are computationally strictly weaker than 
Turing machines, and that  the coverability graph construction cannot be fully 
transformed to Turing-strong formalisms such as automata that  communicate 
through unbounded fifo-queues. On the other hand, the ideas of coverability 
graphs could perhaps be of use also with fifo systems. They provide an incomplete 
test for detecting that  the state space is infinite, and allow some reasoning from 
an infinite state space. Because of undecidability, the coverability graph of a fifo 
system will every now and then be infinite and thus impossible to construct, 
but state spaces that  are too big to be constructed have always been a part of 
everyday life with state space methods. 

More information on coverability graphs can be found in many books on the 
theory or analysis of Petri nets. The usual definition of coverability graphs is 
somewhat liberal, making it possible to obtain different coverability graphs from 
the same Petri net. The article [27] defines and analyses minimal coverability 
graphs and shows how they can be constructed. The minimal coverability graph 
of a Petri net is unique. 

The  s y m m e t r y  m e t h o d .  Many systems exhibit symmetry in one form or 
another. For instance, a system may contain several identical components that  
are coupled to each other and the rest of the system in a regular way. Consider a 
system with the syntactically possible states U and the state space (S, T, A, $I). 
The notion of symmetry may be formalised with the aid of a set of bijections 
f : (UUT) ~+ (UUT) that  have for every states s and s' and structural transition 
t the properties that  f ( s )  E U, f ( t )  E T and s - t - +  s' ¢~ f ( s )  - f ( t ) - -+ f ( s ) ' .  
Furthermore, if s E Sz, then also f ( s )  E SI and vice versa. We may call such 
bijections symmetry bijections. 

It is clear that  the identity function Id : (U U T)  ~-~ (U U T)  : Id(x) = x 
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is a symmetry  bijection. Furthermore, if f and g are symmetry bijections, then 
so are also the inverse f - 1  of f and the function composition g o f defined by 
(g o f ) ( x )  = g( f (x ) ) .  Let B be a nonempty set of symmetry  bijections, and 
assume that  B* is the set of all symmetry  bijections that  can be constructed 
from the elements of B by repeated application of the inverse and/or  function 
composition operations. For instance, in the case of a token-ring protocol, if B 
contMns only one element and that  element is the rotation of the ring one step 
to the right, then B* is the set of all rotations of the protocol. If B consists of 
all possible ways of swapping two clients in a star-shaped client-server system 
with one server and many clients, then B* is the set of all permutations of the 
client processes. 

The pair (B*, o) is a mathematical  group, and the relation s ~ s' ~ 3 f  E 
B* : s' = f (s )  is an equivalence. Let us denote its equivalence classes with [[s]]. 
Tha t  is, [[s]] = { f ( s )  I f e B* }. It follows from the above definitions that  if 
any state in [[s]] is reachable, then every state in [[s]] is reachable. Then we may 
say that [[s]] is reachable. 

The basic idea of the reduction of state spaces with symmetries is to store 
only one state from each reachable [[s]]. We may call that  state the represen- 
tatwe for [[s]]. If s has been stored and s - t - +  s', then an edge is stored that  
starts from s, is labelled with t, and ends in the state sr that  represents [[s']]. 
(Some versions of the symmetry method store as an additional label of the edge 
the symmetry  bijection h or h -1 such that  s~ = h(J) . )  It may or may not be 
the case that  sr = s ~. This means that for every reachable semantic transition 
(s, t, s'), the symmetry method stores the semantic transition (f(s) ,  f ( t ) ,  g(s ')) ,  
where f and g are some symmetry bijections. Furthermore, if (s, t, s ~) is an edge 
in the symmetry  state space, then there is a symmetry  bijection g such that  
( f (s) ,  f ( t ) ,  f (g(s ' ) ) )  is a reachable semantic transition for every symmetry  bi- 
jection f .  Therefore, assuming that  the set of symmetry bijections is known, the 
symmetry  method preserves full information on the reachable part of the state 
space. 

We pointed out in Section 5.3 that even if a packed state space preserves full 
information on the behaviour, it is not guaranteed that  answers to verification 
questions can be extracted efficiently enough. Fortunately, if each [[s]] is finite 
(which is certainly the case if the ordinary state space of the system is finite), 
then the symmetry  method can be used to verify all LTL properties with the on- 
the-fly techniques in Section 4.2. In order to not break the symmetry  and thus 
invalidate the symmetry method, one has to add to the system the necessary 
number of symmetric copies of the fact transition, Biichi automaton,  or tester 
process with which the property is represented. Then errors can be detected 
with reject states, deadlock monitor states, livelock monitor states and Bilchi 
acceptance states (or infinite trace monitor states) exactly like with ordinary 
state spaces. We will now show that  this is the case with B/ichi acceptance; the 
other forms of error detection can be handled similarly (and do not need the 
finiteness assumption in the case of reject and deadlock monitor states). 

Consider an infinite execution s o - t l - +  sl - t 2 -+  . . -  that  goes infinitely 
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many times through some Biichi acceptance state sB. The symmetry  state 
space contains the path fo(So) - fo(t l)-+ f l (s l )  - f l ( t2)-+ ..., where f0, f l ,  
. . .  are some symmetry bijections. This path contains infinitely many occur- 
rences of elements of [[SB]]. Because [[sB]] is finite, at least one element in it 
occurs infinitely many times, and the path fo (so) - fo(t l )-+ f l  (sl) - f l  (t2)-+ .. .  
is Bfichi-accepted. If, on the other hand, the symmetry  state space contains 
a path so - t i - +  sl - t 2 -+  - ' .  where some Biichi acceptance state SB occurs 
infinitely many times, then fo(so)- fo( t i ) -+ f l ( s l ) -£ ( t .2 ) -+ ...  is an exe- 
cution for at least some symmetry  bijections f0, f I ,  . . . .  Due to the same 
reason as above, some s E [[SB]] occurs infinitely many times in tha t  execu- 
tion. Let f be the symmetry bijection that  maps s to its corresponding accep- 
tance state in the Biichi automaton that represents the original property. Then 
f(fo(so)) - f ( fo(Q))-+ f ( f l ( s l ) ) - f ( f l ( t ? . ) ) - +  . . .  is an execution that  violates 
the property. 

Efficient verification of proper branching-time properties with the symmetry 
method is possible, but less straightforward. The problem can be illustrated with 

the net ~ ,  where x may get the values 0, 1, 2 and 3. If f (x )  = 
(x -b 1) mod 4, then the occurrence mode z = 1 of the rightmost transition is 
Petri-net-live, but it is not if f (x )  - (x + 2) mod 4. However, in both cases the 
symmetry  state space has the structure ~ .  To decide Petri-net-liveness it 
is thus necessary to look at the actual symmetry bijections in addition to the 
structure of the symmetry state space, making verification more difficult. 

The state space reduction power of the symmetry  method depends crucially 
on the set of symmetry bijections that  is used. The application of rotation sym- 
metry  to a ring-like system of n components can divide the number of states 
by at most n, which is usually not sufficient for curing state explosion. On the 
other hand, the symmetry  consisting of all permutations can give much better  
reduction results. 

The addition of (all symmetric copies of) a Biichi automaton or tester process 
to a system increases the amount  of information that  is stored of each symmetric 
component.  States that  would be symmetric without the extra information may 
become asymmetric in the presence of the extra information. Because of this 
effect, on-the-fly verification with symmetries does not always work well. This 
effect can be fought against when designing the automaton by paying careful 
attention to the amount  and nature of the information that  it stores. 

The construction of symmetry state spaces and their use in the verification 
of Patti  nets has been discussed in [46]. The symmetry  method was applied 
to CTL* model checking in [12, 22], of which [12] used also BDDs. The use of 
symmetries when model checking with Biichi automata  in the presence of fair- 
ness assumptions was investigated in [23, 39]. The combination of the symmetry 
method with the stubborn set method (Section 7.4) was investigated in [84, 53] 
with a small number of case studies, and was found to be better than either 
method alone. 
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T h e  u n f o l d i n g  m e t h o d .  Consider an ordinary Petri net AF that  has the prop- 
erty that  M(p) _< 1 for every place p in every reachable marking M. Let MI 
be an initial marking of A/*. The unfolding of Af from Mz is a (usually infinite) 
unmarked acyclic Petri net U that  represents the truly concurrent behaviour of 
A/" in a certain way. Each place b o f / / cor responds  to some place ]b(b) (b "folded 
back") of AF, and similarly for transitions. The unfolding of AF is obtained as 
follows. 

To start  with, a place b / is added to U for each place Pi of X that  is marked in 
MI, and, naturally, fb(b/z) is chosen to be Pi. We will call these places the initial 
places of U. Then new places and transitions are added according to the following 
rule as long as possible. Let t be a transition of A/', and let the numbers of input 
and output  places of t be denoted by k and h. If bl, . . . ,  bk a r e  places of /4  such 
that  they are concurrent in the sense explained soon, and fb (b l ) , . . .  ,fb(bk) are 
exactly the input places of t, then a new transition e and new places b~, . . . ,  b~ 
are added, and arcs are drawn from each bi to e and from e to each b~., provided 
that  such a transition and places have not Mready been added. The function ]b is 

b l  * " ° ,  I extended to the uewly added elements such that = t and 
is the set of the output  places of t. 

In the unfolding, a place can never have more than one input transition. 
Furthermore, every place is reachable from at least one initiM place. Let bl and 
b2 be two different places of/4.  They are causally related, if and only if there 
is a path from one of them to the other. They are in conflict, if and only if /4 
has a place b such that  b ~ bz, b ~ b2, and there is a path from b to bl and 
another path from b to b~ such that  the paths have nothing else in common than 
b. Finally, the places bl, . . . ,  bk of/4 are concurrent, if and only if no two of them 
are causally related or in conflict. It follows from the construction of/4 that no 
two of its places can simultaneously be causally related and in conflict. 

Let J~'[I be the marking of/4,  where each initial place contains exactly one 
token, and the remaining places contain no tokens. Consider the set of markings 
tha t /4  can reach starting from A, tI .  If 2vt E [A, t l )  is the marking where exactly 
the places bl, . . . ,  bn are marked, then we let fb(Ad) denote the marking of A/ 
where exactly fb(b l ) , . . . , fb (bn)  are marked. For instance, fb(Adx) = MI (that  
is, the initial marking of AF). The construction o f /4  guarantees that  if A,t E 
[2vii), then fb(Ad) is a reachable marking of Af. If, furthermore, A4 [e) A,I', then 

fb(M'). 
In the reverse direction, if M is a reachable marking of A/, t h e n / 4  has a 

reachable marking M such that fb(,~4) = M. If, furthermore, M [t) M' ,  then 
/4 has a transition e and a marking .t~4' such that A,t [e) Ad', fb(e) = t and 
fb(A,t t) = M'. (To see that  this holds it is helpful to first notice that  the property 
"all simultaneously marked places are concurrent" is an invariant property of/4 
with the initial marking A,Q.) T h u s / 4  contains complete information on the 
reachable part  of the state space of A/'. 

The unfolding g/ is  usually infinite and cannot be constructed as such. How- 
ever, if AZ is finite, then/4  has at least one finite prefix that  represents all reach- 
able states of A/. An algorithm for constructing one such prefix was presented 
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in [62]. Its result - -  let us call it the finite unfolding and denote it wi th/2 ~" - -  
may be much smaller than the state space of Af. Some properties of Af can be 
checked easily from//~", such as the reachability of a state where a certain transi- 
tion is enabled. Unfortunately, the checking of many seemingly simple properties 
from//tin is quite hard, as the following example from [62] demonstrates. 

Let ~ = ~ A .-.  A ~n be a Boolean formula in 3-conjunctive normal form 
(that is, each ~j is a disjunction of three different literals, where a literal is either 
a variable symbol or a negated variable symbol). Let the variables that  occur in 

be v l , . . . ,  Vm. We will now construct a Petri net Af~ from 9. For each variable 
vi the net contains two transitions t/~ and t/-r and three places p/I, p/~ and pi T. 
There is an arc from p/Z to t[, from t~ to pi ~, from pl I to ti T, and from tit to p/-r. 
For each conjunct ~j = lj,1 Vii,2 V/j,3 there are two transitions tJ' and t~ ° and a 
place p~. The place p~ has input arcs from both t~ and tT ,  and an output  arc 

has an input arc from p[ if and only if to t T .  Finally, for each k E {1, 2, 3}, tj  
lj,k = vi, and p/-r if and only if lj,k = -~vi (here "-~" indeed goes together with 
"T"). The places p/ are initiMly marked, and the other places are not. 

The unfolding of Aft, is the same as A/'~ without the initial marking, except 
that  each p~?-t~°-pair is replaced by an infinite linear chain of places and tran- 
sitions. By cutting these chains after the second place, a finite unfolding//~" is 
obtained that  represents all reachable markings of Aft. It can thus be constructed 
from ~ in polynomial time. 

Consider any marking where for each i, either piE or piT is marked, and the 
remaining places are empty. This marking is clearly reachable from the initial 
marking of Aft. If that  marking corresponds to an assignment of truth values to 
v l , . . . ,  Vm that makes ~ false, then at least one ~j is false, and t~ is enabled. 
Otherwise all ~j are true, and Af~ is in a deadlock. It is clear that  in all other 
reachable markings some ti x or some t ~  is enabled. Therefore, Af~ may deadlock 
if and only if ~ is satisfiable. As a consequence, detecting deadlock from Aft, 
and thus also from//~", is NP-hard. So the existence of a worst-case polynomial 
time algorithm for deadlock detection from the finite unfolding is very unlikely. 

On the other hand, it is trivial to check reachabitity of a deadlock from the 
state space of a system in linear time - -  linear in the size of the state space. In 
the case of Af~ (and many other systems, for that  matter),  linear in the size of 
the state space is exponential in the size of the system, because the state space 
clearly has an exponential number of states. So we see that  the detection of 
deadlocks (most likely) contains an exponential step both with unfoldings and 
with state spaces, it is just that with unfoldings this step is after and with state 
spaces during the construction of the object that  represents the behaviour of 
the system. As a matter  of fact, making the very likely assumption that  NP 
PSPACE, every deadlock detection method must contain a step that  cannot be 
performed in (even nondeterministic) polynomial time. 

The difficulty of finding a deadlock from the finite unfolding is thus a con- 
sequence of the facts that  finding a deadlock is hard with any method, and, 
for a significant class of systems, the unfolding is small and can be constructed 
in polynomial time. We can interpret this by saying that  the finite unfolding is 
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an "intermediate" representation of behaviour that is between a Petri net and 
its state space. Because it is sometimes much smaller than the state space, and 
not everything is hard to check from it, it provides answers to some questions 
on some systems with much less time and memory than state spaces do. There 
are, however, many systems for which the finite unfolding is of exponential size. 
This is the case at least when an exponential number of transition occurrences is 
needed before a certain transition becomes enabled. A binary counter is a simple 
example. 

For the practical use of unfoldings, it is important to distinguish properties 
that  can be checked easily and efficiently enough. Although deadlock detection 
is hard in the worst case, [62] presents a heuristic algorithm that  works often 
well. An alternative algorithm that  uses integer linear-algebraic techniques was 
given in [64]. 

An algorithm for checking the validity of formulae in a certain simple tem- 
poral logic from the finite unfolding was developed in [24]. The logic consists 
of atomic propositions of the form "M(p) = 1", the Boolean connectives "A" 
and "--,", and the CTL operator "EP' (from which "V" and "AG" can be con- 
structed). The publication [24] also distinguishes a non-trivial class of Petri nets 
for which the finite unfolding is always small and constructible in polynomial 
time, yielding polynomial time verification algorithms for formulae of the above 
logic that  are in a certain form. (Of course, the binary counter cannot be mod- 
elled with such Petri nets, and the conversion of an arbitrary formula to the 
required form may increase its length exponentially.) 

The original algorithm [62] for constructing a finite unfolding may produce 
an unnecessarily large result if the Petri net contains lots of conflicts, leading 
sometimes to finite unfoldings that are significantly bigger than the correspond- 
ing state spaces. An improved algorithm that avoids this problem was presented 
in [25]. 

B i n a r y  dec i s ion  d i a g r a m s .  An (ordered) binary decision diagram or (O)BDD 
[8] is a data  structure for representing a set of bit vectors of equal length or, 
equivalently, a Boolean formula. It is a directed acyclic graph whose each vertex 
has either zero or exactly two successor vertices. Vertices with no output edges 
are labelled by "F" or "T". Each of the remaining vertices is labelled by a 
variable, and its output edges are labelled by "0" and "1". Exactly one vertex, 
the root, has no incoming edge. Figure 9 shows a BDD that represents the set 
{00tl ,  0111, 1011, 1100, 1101, 1110, t111}, or the formula (vl A v2) V (v3 A v4). A 
vector vlv2vzv4 is in the set if and only if the corresponding path from the root 
down through the BDD ends with "T", where the "corresponding" path is the 
one where the output edge from each node v~ is selected according to the value 
of vi. 

BDDs are usually made as small as possible by merging any two nodes that  
are roots of isomorphic sub-BDDs, and removing all nodes whose both output  
edges lead to isomorphic sub-BDDs. This can be done very efficiently by work- 
ing bottom-up. The ordering in which the variables occur in a BDD is fixed. 
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Fig.  9. A BDD example: (vl A v2) V (v3 A v4). 

This has the consequence that each set has a unique fully reduced BDD rep- 
resentation and, furthermore, basic set operations including union, intersection, 
complementation, and equivalence test can be done efficiently with fully reduced 
BDDs. On the other hand, the size of a BDD (that  is, the number of nodes in 
it) may depend crucially on the ordering of the variables, and it is difficult to 
know in advance whether a particular ordering would be good. 

Several BDDs over the same set of variables and with the same ordering of 
those variables can be represented efficiently in one data  structure by sharing 
identical sub-BDDs. This is useful in algorithms that  manipulate BDDs. 

With BDDs, it is natural to think of each structural transition t as defining 
a relation in S x S or, if the structural transitions are deterministic, a partial 
function S ~-~ S. This relation can be represented as a Boolean formula Rt(s, s ~) 
where s and s ~ are the state before and after the occurrence of t. In these terms, 
the enabling condition of t is 3s t : Rt(s, g). The set of all structural transitions 

corresponds to the formula R(s, s') ~ VteT Rt(s, s'). 
Assuming that  the formula S(s) describes some set of states, the formula 

3s' : S(s') A R(s', s) describes the set of those states that  are reachable from 
the present set with one transition occurrence. A formula representing the set 
of all reachable states may be constructed by starting with a formula S(s) that  
represents the set of initial states, and repeating the operation S(s) :-- S(s) V 
3s' : S(s') A R(s', s) until S(s) does not change any more. (Alternatively, one 
can restrict the application of R(s ~, s) to those reachable s ~ to which it has not 
yet been applied, or those that  the previous application of R(s ~, s) produced.) 
All these formulae can be represented with BDDs, and the operations needed in 
this approach can be performed efficiently in the sizes of the BDDs. 

When the set S(s) of reachable states is obtained, one can check whether it 
contains a forbidden state by describing forbidden states with a formula F(s), 
computing S(s)hF(s), and checking whether the result is False. Other properties 
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may be checked with more complicated algorithms, such as the algorithm for 
Petri net liveness in [67]. Perhaps the most important  such algorithm is the 
symbolic model checking algorithm for CTL, LTL, weak bisimilarity and some 
other properties described in [9]. In it, the construction of the BDD proceeds 
backwards guided by the formula that  is being checked. A BDD representing the 
set G(s) of syntactically possible states that  satisfy the formula is obtained as a 
result. One can then compute I(s) A -,G(s) where I(s) models the set of initial 
states to verify that  the system satisfies the formula. 

As was mentioned in Section 6, to obtain a small BDD it is necessary that  
the set of the reachable states of a system is regular in some informal and not 
well understood sense. (In the case of symbolic model checking it is the set of 
syntactically possible states that satisfy the formula that must be regular.) On 
the other hand, the total number of states is seldom an important  factor of the 
BDD size. As a consequence, intermediate BDDs may be much larger than the 
final BDD in the above algorithm for constructing a BDD for the set of reachable 
states. For instance, [67] contains case studies where the biggest BDD has more 
than ten times as many nodes as the final BDD. Furthermore, systems exist 
which have no small BDDs. A combinatorial multiplier circuit is an often cited 
example. This problem has been attacked by developing variants of BDDs. 

It is unclear whether it is useful to combine BDDs to other state space re- 
duction methods. Most methods discussed in this article aim at reducing the 
number of states, but the number of states is not important  with BDDs. On the 
other hand, the simultaneous use of another method may well pay off, if it makes 
the set of states more regular in the above informal sense. For instance, [3] con- 
tains a successful example of the combination of BDDs to a stubborn-set-type 
method. 

BDDs have found lots of use especially in circuit design, as can be seen from 
the survey [63]. 

7.3 M e t h o d s  B a s e d  o n  P r o c e s s - A l g e b r a i c  C o m p o s i t i o n a l i t y  

C o m p o s i t i o n a l  LTS c o n s t r u c t i o n .  The goal of compositional LTS construc- 
tion is to construct a reduced state space that  is equivalent to the full state 
space in the sense of some process equivalence. The method is usually applied to 
process-algebraic verification of the kind in Section 4.4, but  it can also be used 
for state-based verification. 

The method can be illustrated with the example in Figure 10. The ordinary 
LTS of the example system can be computed according to the process-algebraic 
expression 

e = h i d e  v, x ,  vin(Pllle211e311e4). 

Due to the properties of hiding and parallel composition, the expression 

hide  w, x in  (h ide  u, v in(P1 t 1/:'3) I I h i d e  V in(P2il/ '4)) 
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produces the same result (excluding the names of states). Let ___ be a process 
equivalence that  is a congruence with respect to "hide" and "[1". If Red is an 
algorithm that  reduces an LTS but preserves _~, then P ~ Pred, where 

Fred = h i d e  w, z in(Red(hide u, v in(P1 [[P3))[] Red(hide y in(P2][P4))). 

Thus Pred can be used for verifying all the properties that  are preserved by ~_. 
On the other hand, the LTS Pred may be much smaller than the LTS P. (Suitable 
equivalences _~and reduction algorithms Red were discussed in Section 4.4). 

e 

u v lY 

Fig.  10. A system consisting of four processes. 

Compositional LTS construction can be applied hierarchically. For instance, 
if P1 consists of several processes, then a compositionally constructed reduced 
LTS of it can be used in its place. Even if P1 is a single process, it may be 
worthwhile to replace it by its reduced LTS. 

Compositionality is inherent in process-algebraic theories, so it is difficult to 
give anyone credit of inventing compositional LTS construction. An early article 
where its use was explicitly suggested in a modern form is [58]. The article [90] 
is a tutorial on compositional LTS construction. 

Compositional LTS construction is most often used for the verification of 
action-based properties of systems with synchronous interprocess communica- 
tion, but it can be used also for state-based properties and with shared-variable 
communication. Shared variables can be handled by thinking of them as pro- 
cesses in their own right. Statements that read, test or modify the values of a 
shared variable are interpreted as actions that  synchronise with the variable. 
When all processes that  touch a shared variable have been added to the system, 
a special initialisation operator is used to give the variable its initial value and 
hide it from the interface of the (sub)system. This trick was applied to Petri net 
places in [88]. 

State-based properties can be handled by encoding state properties into ac- 
tion names as was described in Section 2.2. It is also possible to proceed as 
follows [88, 89]. Consider a state-based temporal logic formula ~ such that  its 
atomic propositions refer to the local states of processes P1 , . . . ,  Pn, but not to 
the local states of processes Q1, . . . ,  Qm. Then the validity of ~o on PII[ . . .  IIPn [[ 
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Qtl] . . .  {{Qm can be checked by compositionally constructing a reduced LTS Qred 
of Q t [ [ - . .  [[Q,,, and checking the validity of ~ on PI [ [ - - .  I IPn [[ Qred- Of course, 
the equivalence tha t  is preserved by the reduction must  preserve the temporal  
logic in which ~ was written. NDFD-equivalence preserves L T L - x  and branching 
bisimilaxity has a variant that  preserves C T L - x  and even CTL*-x. 

T h e  i n t e r f a c e  p r o c e s s e s  o f  G r a f  a n d  S te f f en .  The ability of composit ional  
LTS construction to save effort relies on the assumption tha t  the intermediate 
LTSs are smaller than the full LTS of the whole system. This is not always the 
case. A typical example is a token-ring protocol where one token circulates in a 
ring consisting of n processes. To keep the example simple to discuss, we assume 
tha t  a process without a token can be in one and the process with the token 
in two different states. Then the system as a whole has only 2n different states. 
The  number  of states is that  small, because the system maintains the proper ty  
that  there is only one token in the ring. Any process that  is not in the possession 
of the token is willing to input the token, but  in all but one case the previous 
process in the ring does not have the token and is thus unable to give it. 

Consider then an open-ended segment of the token ring consisting of k < n 
processes. The input actions of the first process of the segment are now connected 
to nowhere. Therefore, if the first process does not have a token, then it can input 
one even if some other process in the segment has a token. As a consequence, 
the segment may contain up to k tokens, and may be in 3 k different states. Even 
for relatively small values of k, 3 k is much bigger than 2n. 

The problem in this example is that  a subsystem that  is isolated from its 
proper context may  exhibit lots of "spurious" behaviour tha t  it does not have 
when it is a part  of the system as a whole. This problem was pointed out in [38], 
and essentially the following solution was suggested. The fact that  the full system 
allows the segment to contain only one token at a t ime is modelled by augmenting 
the segment with an extra process I that  monitors the input and output  of 
the segment, and lets the segment contain at most  one token at a time. Tha t  
process might  be called an interface process, because it monitors  and restricts 
the interface of the subsystem. The process I allows the segment to input a token 
even if it already contains one, but then the input action leads to a specially 
marked "cut" state where no actions are possible. This restricts the number  of 
states of the segment to 2k + 2 - -  one state with no tokens, 2k states with one 
token and the special cut state with two tokens. Whenever the segment contains 
at  most  one token, I does not prevent any actions of the segment. 

An LTS L of the system as a whole is constructed compositionally in the usual 
way, except tha t  wherever needed, subsystems are augmented with suitable in- 
terface processes, and the special cut states are treated during LTS reduction 
as equivalent to each other and different from all other states. In L, inputt ing 
a second token should be impossible and the cut states should thus have disap- 
peared. I f  this did not happen,  then the user knows tha t  some I was incorrect, 
and L is not valid for verifying the system. If  the cut states did disappear,  then 
the interface processes have no effect on the behaviour of the complete system, 
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and L is equivalent to what would have been obtained without them. 
Instead of cut states, [38] developed and used a theory of "undefinedness" 

predicates. The theory allows the merging of any states whose St-components 
are the same during the computation of the parallel composition of a subsystem 
Si and its interface process Ii. 

The use of compositional LTS construction in this example is clearly an 
overkill, because the system as a whole has so few states. The purpose of the 
example was only to illustrate the spurious behaviour problem, and the use of 
interface processes for avoiding it. In [38] the token ring in Figure 1 was used as 
an example. It has 9n2 ~-2 states, but if all actions except move tkn are hidden 
and the full LTS is reduced preserving weak bisimilarity, then the result contains 
only n states. Any attempt to use the ordinary compositional LTS method leads 
to LTSs that are bigger than the full LTS, but the biggest LTS encountered with 
interface processes has (according to the numerical experiments in [38]) only 
4n + 4 states. 

The interface processes resemble on-the-fly verification in that they allow the 
user to give the verification algorithm information about the expected (not nec- 
essarily real) behaviour of the system that helps to keep the number of states 
small. The user cannot fool the algorithm to give wrong answers by giving in- 
correct information, because verification results are obtained only if cut states 
disappear and the information has thus proven correct. 

Behavioura l  fixed points  and  ne twork  invariants .  Sometimes process- 
algebraic compositionality makes it possible to verify an infinite family of similar 
systems of increasing size. The dining philosophers system provides a simple ex- 
ample. It was observed in [93] that when a CFFD-semantics-preserving reduced 
LTS was constructed for it with the compositional approach, the open-ended 
segment PF4 with four philosophers and forks where only the interface actions 
at the ends are visible is CFFD-equivalent to the segment PF3 consisting of 
three philosophers and forks. By adding k philosophers and forks to PF4 and 
similarly to PFs we get the result that PFk+4 ~--CFFD PFk+s, which implies that 
PFI ~"~'CFFD PF3 for any i >_ 3. 

The system of n dining philosophers can be composed of one philosopher and 
fork that are connected to both ends of PFn-1. As a consequence, the analysis 
results obtained from the four-philosopher system are valid also for all larger 
philosopher systems, provided that the analysis questions refer only to the state 
of one philosopher and to the fork on her left side (the fork that he takes first). 
However, that suffices for detecting deadlock and starvation in the philosopher 
system. 

The situation where the behaviour of a system does not change when more 
components are added to it may be called a behaviouval fixed point. The stronger 
a behavioural equivalence is, the less likely it is to yield a behavioural fixed point 
in a given system. One would thus expect behavioural fixed points to be found 
more often with trace, CFFD- and CSP-equivalences than with weak bisimilarity. 

The behavioural fixed point method can also be used for the verification 



501 

of systems with integer parameters  that  represent some upper bounds, as was 
demonstra ted in [92]. The max imum number of transmission a t t empts  tha t  a 
sender process of a communicat ion protocol will make before giving up is an 
example of such an upper bound. The basic idea is to model a counter tha t  
counts towards the upper  bound as a stack of processes tha t  may  be added to 
the system one by one, thus increasing the upper bound. If  a behavioural fixed 
point is found when the bound is k, then the system is independent of the value 
of the bound provided that  it is at least k. This method was also used in [92] to 
model  a certain fairness assumption by letting the counter count the number  of 
t imes a certain unfavourable action (namely the loss of a message in a channel) 
has been chosen in a row instead of a favourable action. 

Other methods that  make it possible to verify an infinite family of systems 
of similar structure include [13, 54, 100]. 

7.4  M e t h o d s  B a s e d  o n  C o m m u t a t i v i t y  

I n t r o d u c t i o n  t o  s t u b b o r n - s e t - t y p e  m e t h o d s .  The total  effect of a set of 
concurrent actions is independent of the order in which the actions occur. As is 
obvious f rom the trivial "n non-interacting k-state processes" example of Sec- 
tion 1, the fact that  the ordinary state space contains all possible orderings of 
concurrent actions is a major  source of state explosion. 

This observation has led many  researchers to develop advanced state space 
methods where only some of the orderings are investigated, ideally only one 
ordering for each set of concurrent actions. In these methods,  at each s tate  
tha t  has been added to the reduced state space, only a subset of the semantic 
transitions out of that  state are investigated. In other words, only a subset of 
structural  transitions is used when constructing output  edges for the state. The 
subset is chosen such that  the occurrences of the remaining structural  transitions 
can be postponed, or perhaps ignored altogether, without modifying the answers 
to the verification questions at hand. 

Although the above idea is naturM, a number  of problems arise when trying 
to turn it into a working verification method.  We will illustrate them with the 
aid of Figure 11. 

- An enabled structural transition t may be in conflict with another struc- 
tural transition t I that  is disabled at the moment  ("conflict" means, roughly 
speaking, that  they are not concurrent even when both of them are enabled). 
This  is the situation, for instance, with t~ and t3 of the example net in the 
marking M2,4,7 where exactly P2, P4 and P7 are marked.  Executions where t I 
becomes enabled and occurs (perhaps disabling t) before the occurrence of 
t should not be ignored. Therefore, t ~ must  somehow be taken into account 
in that  s tate although it is disabled. 

- Sometimes only one of two concurrent actions is taken in an execution tha t  
is relevant for verification. This happens, for instance, if we want to check 
the reachability of the above-mentioned marking M2,4,7. Namely, initially t l  
and t4 are concurrent, but only t l  should occur to reach M2,4,7. The method 
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must thus be able to favour one transition over another if that  is important 
for the verification question. 

- Some verification tasks require that  the ordering of concurrent actions is 
partially preserved. For instance, to preserve the set of the process-algebraic 
traces of a system, the ordering of all transitions t such that  $~(t) ~ r must 
be preserved. 

- The transitions that  will be investigated in a state must be chosen reasonably 
efficiently, and the choice cannot rely on information on states that  have not 
yet been investigated. For instance, it is obvious for a human who knows the 
net well that  in M2,4,7 it suffices to investigate t4 alone but it is not sufficient 
to investigate t2 alone, although both are enabled. An algorithm is needed 
for this kind of an analysis. 

- The ignorance problem: If the investigation of some structural transition is 
postponed in each state of a cycle, then there is the risk that  the transi- 
tion is postponed forever. As an extreme example, if only t¢ is investigated 
in the initial marking of the example net, then no other markings will be 
constructed, mad most of the behaviour of the net will be ignored. 

P4 

~p3 ~ t5 p6 

Fig.  11. A stubborn set example. 

Different verification tasks require different answers to these problems, and 
different researchers have fine-tuned the details in different ways. This has led 
to the development of several methods under the names stubborn sets (since 
1988 [81, 82]), persistent sets (since 1990 [33], although the term "persistent" 
is slightly more recent) and ample sets (since 1993 [68], but the idea was used 
in manual verification already in [49]). The persistent set approach is explained 
in detail in [34], and ample sets in [70]. These methods are so similar that  it 
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would perhaps be a good idea to think of them as variants of the same method.  
In this article we call them stubborn-set-type methods. We use mostly the basic 
technical definitions in [72, 98], because they both cover or generalise most of 
the definitions in the literature, and are intuitively reasonably clear. 

Stubborn-set-type methods are often classified as partial-order methods, but 
in the opinion of the present author that  is somewhat misleading. "Partial or- 
der" refers to the truly concurrent semantics known as Mazuvkiewicz traces [61], 
in which the ordering of actions is, indeed, partial. It would be tempting to 
think of stubborn-set-type methods as at tempting to construct one linearisation 
of each Mazurkiewicz trace of the system, taking advantage of the symmetric 
independency relation in the theory of Mazurkiewicz traces. 

In reality, however, the methods construct representatives for executions of 
the system, where a representative is not necessarily a member of the same 
Mazurkiewicz trace as an execution that  it represents. The construction of rep- 
resentatives is based on an asymmetric relation that  is more liberal than the 
independency relation. Furthermore, a Mazurkiewicz trace that  is not relevant 
for the verification question at hand may be left without representatives. We will 
return to this issue after presenting the basic stubborn set method. 

Basic s t u b b o r n  set  method.  A set T~ C T of structural transitions is dynam- 
ically stubborn at state so, if and only if the following hold: 

D1 I f t  E Ts, t l , . . . , t , ~  ~ T~, so - t i t2 . . . t ,~--~s~,  and sn -t--+ s ' ,  then there is s~ 
! 

such that  so -t--+ s~ and s~ - t i t 2 . . . t n - - +  sn. 
D2 There is at least one transition tk E T~ such that  if t l , . . . , t ,  ~ T~ and 

so - t i t 2  • ". tn-~ s , ,  then sn -tk-'+. The transition tk is called a key transition 
of Ts at s. 

By letting n = 0 in D2 we see that  a key transition is enabled. A set of 
structural transitions is strongly dynamically stubborn at state s, if and only 
if it is dynamically stubborn at s, and all of its enabled transitions are key 
transitions, that  is, they qualify as the tk in D2. Strongly dynamically stubborn 
sets are an important  subclass of dynamically stubborn sets, because most (but 
not all) known algorithms for stubborn set construction produce them, and some 
analysis algorithms require them. 

Because a dynamically stubborn set must contain a key transition, deadlock 
states have no dynamically stubborn sets. (A deadlock state is a state with no 
enabled structural transitions.) If s is not a deadlock state, then the set T of 
all structural transitions is dynamically stubborn and even strongly dynamically 
stubborn at s. 

Let Ts : S ~-~ 2 T be a function that  assigns to each non-deadlock state s a 
dynamically stubborn set T,(s). The basic stubborn set method starts with the 
initial states, and constructs for each state s that  has been found so far only 
those output  edges and immediate successor states that  are obtained by firing 
the enabled structural transitions in T,(s). 



504 

Let sd be a deadlock state and s any state in the reduced state space con- 
structed with the basic stubborn set method. If s - t i t 2 . .  "tn'-+ Sd, then D2 
implies that  at least one of tl ,  t~ , . . . ,  tn must belong to Ts(s), because otherwise 
all key transitions of Ts(s) would be enabled at Sd. Let i be as small as possible 
such that  ti E Ts(s). D1 implies that  there is # such that  s -ti--+ # ,  and sa is 
reachable from # with n - 1 steps, namely by firing t l ,  . . . ,  t i -1,  ti+l,  • . . ,  tn. 
If s is an initial state, then by repeating this argument in # and so on a total  
of n times we see that  the reduced state space contains sa. We have shown the 
hardest part  of the following theorem: 

A reduced state space that  has been constructed with the basic stubborn set 
method (that  is, for each state s in it, Ts(s) satisfies D1 and D2) contains 
all deadlock states of the system that  are reachable from the initial states. 
Furthermore, all deadlock states of the reduced state space are deadlock 
states of the system. 

If the transitions are deterministic, then the following can be proven from 
D1 and D2: 

D3 If Ts is dynamically stubborn at s, t l , t 2 , . . ,  q~ Ts, t~ is a key transition of Ts 
at s, and s - t i t 2  ...--~, then there is # such that  s - t k - -~#  and # - t x t 2  ...--4. 

From D1, D2 and D3 it is not difficult to prove that  if the system has an 
infinite execution, then also its reduced state space obtained with the basic stub- 
born set method contains an infinite execution. Therefore, the basic stubborn 
set method can be used for checking whether a system with deterministic transi- 
tions may fail to terminate. The result can be applied Mso when transitions are 
not deterministic by first showing that  the stubborn sets that  are used satisfy 
D3. 

A reduced state space that has been constructed with the basic stubborn 
set method contains an infinite execution if and only if the full state space 
contains an infinite execution, provided that  either all structural transitions 
of the system are deterministic, or Ts(s) satisfies D3 in each state s of the 
reduced state space. 

On alternative definitions of stubborn sets. Several different definitions of stub- 
born (or ample or persistent) sets of different strength have appeared in the 
literature. We say that  a definition of stubborn sets is weaker than another def- 
inition, if every set that  is stubborn according to the latter is stubborn also 
according to the former, but not necessarily vice versa. 

The weaker a definition of stubborn sets is, the more sets it classifies as stub- 
born, and the better are the chances that  a stubborn set with very few enabled 
transitions may be found. As a consequence, weak definitions of stubborn sets 
have more potential for good reduction results than strictly stronger definitions. 
This has motivated researchers to try to find as weak definitions as possible 
without making the theory too complicated [36, 50, 72, 81, 83]. The conditions 
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D1 to D3 (essentially from [72]) were chosen for this article, because they are 
simple and among the weakest that  have appeared in the literature. 

As an example of the above,, consider the situation where a process is ready to 
read from a non-empty fifo queue that  other processes can access only by writing 
to it. Assume that  the process has no alternative actions to the reading. Let tread 
be the structural transition that corresponds to the reading. The conditions D1 
to D3 classify the set {tread} as dynamically stubborn (and even strongly). On the 
other hand, writing to and reading from a fifo are not independent in the "classic" 
sense used, for instance, in the theory of Mazurkiewicz traces, because sometimes 
the writing transition enables the reading transition. Therefore, { t r ,  d} could not 
be stubborn according to the classic notion of independency. This problem does 
not affect D1 to D3, because we applied them in a state where tread is known to 
be enabled. 

As a consequence, a theory of stubborn sets based on the classic notion of 
independency would yield worse reduction results than the theory presented in 
this article. So the theory of Mazurkiewicz traces is not an optimal starting 
point for the development of stubborn-set-type methods, although it provides 
good background intuition. 

Unlike an ample set [70] or persistent set [34], a stubborn set may contain 
disabled transitions. Disabled transitions might seem unnecessary, because they 
do not contribute to the set of output  edges of a state. However, their presence 
simplifies the formulation of both the conditions V and L2 that  will be pre- 
sented later, and the notion of static stubborn sets that  is useful for developing 
stubborn set construction algorithms. It was shown in [98] that  if transitions are 
deterministic, then the non-empty persistent sets of [34] correspond precisely to 
the sets of enabled transitions of strongly dynamically stubborn sets. 

S t a t i c  d e f i n i t i o n s  o f  s t u b b o r n  se ts .  To implement the basic stubborn set 
method,  it is necessary to design an algorithm that ,  given a non-deadlock state, 
produces the enabled transitions in a dynamically stubborn set of transitions. 
The set of all structural transitions is stubborn at every non-deadlock state, 
but  it should be returned only as a last resort, because it will not yield any 
reduction of the number of output  edges of the state. The definition of dynamical 
stubbornness does not directly lead to an algorithm, because it refers to states 
that  are in the future of s and are thus not yet available. 

To solve this problem, a static notion of a stubborn set of structural transi- 
tions has been defined. (Historically, stubborn sets were defined before dynam- 
ically stubborn sets.) This notion depends on the formalism used for modelling 
the system, and can be given several different definitions even for the same for- 
malism, depending on how much effort one is willing to put into the analysis of 
the dependencies between transitions. What  is important  is that  one must be 
able to prove for the chosen notion of stubborn sets that  each stubborn set is 
also a dynamically stubborn set. A definition of "stubborn sets" is thus nothing 
but a static sufficient condition for a set being dynamically stubborn. Further- 
more, if transitions are not deterministic and one wants to use stubborn sets for 
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the detection of failure of termination, then one should show also that  the sets 
satisfy D3. 

In the case of ordinary Petri nets, the following is a possible simple definition 
of stubborn sets: l° 

- If  t E Ts and -~M[t), then there is p E et such that  
M(p) < W(p,t) and .p  C Ts. 

- If t e Ts and M[t), then (or) .  C_ Ts or - ( . t )  C_ Ts. 
- Ts contains a transition tk such that  M[t~) and (- tk) .  C Ts. 

This definition can be converted to a more restricted definition that  allows 
only strongly dynamically stubborn sets simply by removing "or o(ot) C_ T,". 

Also the following, more complicated definition from [83] (with a small im- 
provement from [98]) implies D1 and D2. It represents a more careful analysis of 
the dependencies between transitions. It is implied by the above simple defini: 
tion but  is not equivalent. Therefore, it accepts more sets as stubborn. So it can 
yield smaller stubborn sets than the above simple definition and thus produce 
better  reduction results. 

- I f t  E T~ and "~M[t), then there is p e o t  such that  M(p) < W(p,t) and 
{ t '  I W(v,t') < W(t',p) A W(v,t ') < M(p) } C Ts. 

- If t E Ts and M[t), then for every p E or, either 
{ t '  t min(W(t ,  p), W(t', p)) < min(W(p,  t), W(p, t ')) } C Ts, or 
{ t' [ min(W(t,p),W(p,t '))  < min(W(p,t) ,W(t ' ,p)) } C Ts. 

- T, contains a transition tk such that  M[tk) and for every p E otk 
{ t' I W(t',p) < min(W(p, tk), W(p,t')) } C Ts. 

A strong version is obtained by replacing everything after and including the 
"or" with "Ts contains a transition tk such that  M[tk)." 

The following is an example of a definition of stubborn sets with nonde- 
terministic transitions, stated in the language of labelled transition systems 
(Section 4.4). It applies to the state (s l , . . . , sn)  of L = L I I I ' " I ] L n ,  where 
Li = (Si, ~i ,  Ai, S/i) for 1 < i < n, and "si-a--~ s~" denotes tha t  (8i, a, s~) E Ai. 
It produces only strongly dynamically stubborn sets, and guarantees also D3. 
To simplify the presentation of the definition, it is assumed that  each r-act ion is 
subscribed by the index of the component process tha t  executes it. The stubborn 
set T~ is a subset of £:U {r l , . . . , r ,~} .  

- If a E T, and - ~ ( s - a - + ) ,  then there is 1 < i < n such that  a E ~ U {ri}, 
-~(si -a--+ , ), and { b ] s, -b--+ , } C T,. 

- If a E Ts and s - a - + ,  then for every 1 < i < n, either a ~ Zi U {ri}, or 
{ b l } c r,. 

10 "ex" denotes the set of the input places or transitions of the transition or place x, 
"xe" is the similar notion for output, and "ex" and "x." are extended to sets by 
taking the union of the results for each member of the set. W(p, t) and W(t,p) are 
the numbers of tokens that the transition t consumes from and produces for the 
place p when it occurs. 
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- There is ak E T, such that  s -ak--+.  

As was emphasised above, each of the above definitions is static in the sense 
that ,  unlike the earlier definition of dynamical ly s tubborn sets, it refers to only 
one state. Given a s tate  and a set of transitions, it is possible (and easy) to check 
whether the set satisfies the definition in the state. 

When constructing a reduced state space with stubborn-set- type methods,  
it is necessary at each state to construct a "good" s tubborn set, given only the 
state. I t  is not known what s tubborn set would be the best regarding reduction 
results. For instance, [82] contains an example showing that  always choosing the 
s tubborn set with the smMlest number of enabled transitions does not necessarily 
produce the smallest reduced state space. Even so, it is easy to believe tha t  
t rying to keep the number  of enabled transitions small is a reasonable heuristics. 
In particular,  if the set of enabled transitions in T~I is a proper subset of the 
set of enabled transitions in T~2, then Tsl is preferable, because with it the basic 
s tubborn set method cannot produce a bigger but may produce a smaller reduced 
state space than with T,~. 

Algorithms for constructing stubborn se t s .  Each of the above static defi- 
nitions of s tubborn sets can be thought of as consisting of a requirement of the 
form "T~ must  contain a transition tk with a certain property k", and of condi- 
tions of the form "if t E T~, then all transitions in either f l (s , t )  or f2(s, t) or 
. . .  or fk (s, t) must  be in T~", where f l ,  . . . ,  fk are functions of the s tate  and t. 
If  we are ready to give up some of the generality of the above definitions, we can 
introduce a more or less arbitrary rule for choosing one of the fl, given s and t. 
Then the above conditions span a binary relation between transitions tha t  we 

will denote with "~.~": tl ~.~ t2 ~ t2 E fi(s, t l) .  
For instance, in the ease of the first of the above definitions, we may  choose 

def 
t l  ~-~ t2 ~ otl N ot2 ~ 0 when M[tl), and t l  "-~ t2 -'. "~. t~ E .p(M, tt) when 
-~M[t~), where p(M,t) is the smallest-numbered input place of t according to 
some fixed numbering of places such tha t  M(p(M,t))  < W(p(M, t ) , t ) .  

The closure algorithm. The above notions lead to a simple sufficient graph- 
theoretic condition for s tubborn sets: if a set is closed under "~.~" and it contains 
a transit ion that  has the property k, then it is stubborn. Therefore, a s tubborn 
set may  be constructed by picking a transition tk that  satisfies k, and then 
performing a graph search (such as the depth-first search) in the graph (T, ~ )  
s tar t ing at tk. 

This  algorithm is easy to implement  and reasonably fast: it consumes O(IT I + 
l~.~l) t ime (but see the comment  on speed below). The size of "-.~" depends on 
the modelling formalism. In the case of Petri nets it is at most  c21Tl, where c is 
the m a x i m u m  number  of input or output  places or transitions of a transit ion or 
place. I t  can be reduced to 2clT I by letting also the places act as vertices of the 
graph, yielding O(clTI) worst-case time. 

Unfortunately, the quality of the s tubborn sets this algorithm produces de- 
pends a lot on the choices of the s tar t  transitions. 
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The strong component algorithm. A better  stubborn set is obtained by searching 
from (T,-.-*) for a maximal strongly connected component such that  it contains a 
transition that  satisfies k, and no other maximal strongly connected component 
reachable from it contains such a transition [81]. The stubborn set consists of 
the transitions in that component and all components reachable from it. 

If the fi are chosen such that  each enabled transition automatically satisfies 
k, then this reduces to a search for a maximal strongly connected component 
tha t  contains an enabled transition but  its descendants do not (and then the 
resulting sets are strongly dynamically stubborn).  For instance, with the above 
simple definition this means that  if t is enabled, ( . t ) .  is used and not . ( . t ) .  

In this application, it is better to search for the component with Tarjan's  al- 
gorithm [79, 1] than with the more modern one described in [15]. This is because 
the former can be easily adapted to stop when a suitable component has been 
found even if most of (T,-.~) has not been touched, whereas the latter requires 
tha t  (T,.~) is searched completely through at least once. The former algorithm 
has thus much better best-case performance than the latter. Also this s tubborn 
set construction algorithm consumes O(IT [ + 1~--1) or O(clT[) t ime in the worst 
c a s e .  

Instead of stopping immediately when the first suitable component has been 
found, the algorithm can be continued until it has found all suitable components. 
Then the one resulting in the smallest number of enabled transitions in the 
stubborn set may be chosen. 

The deletion algorithm. The need to choose artificially one of the above-men- 
tioned functions fi can be avoided by spending more time in the construction of 
stubborn sets as follows [82]. One can take the different fi into account by replac- 
ing (T,-.~) by a more complicated graph containing "and"- and "or"-vertices. 
For instance, in the case of the above simple definition of stubborn sets for Petri 
nets, a disabled transition t corresponds to an or-vertex such that  t -.~ p for every 
p such that  M(p) < W(p,t), and each such p corresponds to an and-vertex such 
that  p --~ t ~ for each t ~ E -p. 

The algorithm starts with the full graph, and performs "removal searches". 
Each removal search starts by removing an enabled transition. When any vertex 
of the graph is removed, also those of its immediate "-.~"-predecessor vertices 
are removed that  either are and-vertices, or are or-vertices and have lost all of 
their immediate "---*'-successors. If the graph does not any more correspond to a 
stubborn set after a removal search, then the effects of the search are cancelled. 
Removal searches are continued as tong as possible. The worst-case t ime con- 
sumption of this algorithm is O(IT[[--~I). With the above Petri net definitions 
this makes O(c[T[2). 

The time spent in constructing a stubborn set is an important  factor in the 
t ime taken by the stubborn set method, because a stubborn set is constructed in 
every state that  is investigated. Although all of the above algorithms have good 
asymptotic performance, they require a lot of analysis of "..~". 
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In particular, the above definitions of stubborn sets of Petri nets may cause 
the algorithms to investigate long chains consisting of a disabled transition, its 
empty input place, a disabled input transition of that place, and so on. The 
above process-algebraic definition is better in this respect, because it causes the 
analysis to jump directly to the location where the control of the process is at 
the moment,  instead of stepping one disabled transition at a time. It can be 
further improved by precomputing information on the reachability between the 
states of the same component LTS, and not making the jump if the start  point 
of the jump  is not reachable from the end point of the jump.  

It  may  sometimes be more efficient to use simple heuristics for constructing 
a s tubborn set rapidly, and use the set of all transitions when the heuristics 
fail. This may lead to worse stubborn sets and a bigger reduced state space, 
but  may  pay back in time consumption if the heuristics are fast enough. For 
instance, in [34] an algorithm is investigated that,  in essence, computes the set 
of transitions that  are reachable from an enabled transition with "~.*", until 
either the set is ready, or a disabled transition is encountered. In the latter case, 
the algorithm gives up and returns the set of all transitions. 

When the stubborn set method is combined to packed state space methods 
such as the symmetry  method, the problem of constructing good stubborn sets 
fast enough becomes more challenging. For instance, stubborn sets for a coloured 
Petri net may be constructed by first unfolding the net to an ordinary Petri net 
and then using the above methods, but one would not like to do this, because the 
ordinary Petri net may be much bigger than the original co]oured Petri net. Un- 
fortunately, in [53] it is shown that unfolding or something equally expensive is 
sometimes unavoidable in the construction of "good" stubborn sets for coloured 
Petri nets. It is, however, possible to find "good" stubborn sets in t ime that  is 
proportional to the size of the coloured Petri net, if the net is given additional 
structure [53]. 

Another result of this kind is the definition of stubborn sets in [51]. It works 
for parallel labelled transition systems that  are extended with symbolic data. 

S t u b b o r n  se t  m e t h o d s  fo r  s a f e ty  p r o p e r t i e s .  Because of the above-men- 
tioned "ignorance" problem, the basic stubborn set method is not good for check- 
ing other properties than those that  directly relate to the termination of the 
system. The addition of the following assumption makes the basic stubborn set 
method capable of analysing various safety properties. 

For every state s in the reduced state space and every t E T, if s - t - + ,  
then there is an execution so - t l - +  sl - t 2 -+  . . . .  in-+ sn such that  so = s, 
t E T~(s~), and ti is a key transition of T~(si_l) for 1 < i < u. 

We say that  a structural transition t is ignored at s in the reduced state 
space, if a violation of S occurs with s and t. Ignoring a structural transition 
resembles being weakly unfair to it, but is not the same thing. Weak fairness 
states a requirement for all futures, whereas t is not ignored if there is at least 
one future of a particular kind. 
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I f  the conditions D1, D2 and S hold in a reduced state space, then the follow- 
ing claims hold [83]. They make it possible to check a number  of safety properties 
from a reduced state space. The last three of the claims are corollaries of the 
first one. By a terminal component we mean a maximal  strongly connected com- 
ponent such tha t  each edge tha t  starts  in the component  also ends in it. 

- I f  s - t l t 2  . . .  tn-"Y s ~ is a finite execution that  starts  at a s tate  s tha t  is in the 
reduced state space, then there are structural transitions tn+l,  • •., tn+~ (k >_ 
0) and a state s" such that  s t- tn+l . . .  tn+k--+s', and the reduced state space 
contains the execution s -t~r(1)tTr(2)" "t~r(n+k)- '+ S tl for some permuta t ion  
t~(z), t,K2), • • •, trK,+k ) of tz, t2 , . . . ,  tn+k. 

- A structural  transition t labels an edge in the reduced s tate  space if and only 
if t labels an edge in the full state space. 

- A structural transition t is Petri-net-live (Section 2.3) if and only if t is 
Petri-net-live in the reduced state space. 

- If  the full s tate space is finite and contains a terminal  component  C,  then the 
reduced s tate  space contains a terminal  component  Cred such tha t  Cred C_ C, 
and a structural  transition t occurs in Crea if and only if it occurs in C.  In the 
reverse direction, each terminal component  Cred of the reduced state space 
is a subset of some terminal component  C of the full s tate space such that  t 
occurs in Cred if and only if it occurs in C. 

The second of the above results makes it possible to verify various linear- 
t ime safety properties with the fact transition technique and tester processes 
described in Section 4.2. In this approach it is impor tant  tha t  the tester process 
synchronises only with a subset of the transitions of the system. This is because 
the addition of the tester introduces new dependencies between the transitions 
it synchronises with. I f  the tester is synchronised with every transition, then it is 
a lmost  always the case that  the s tubborn set must  contain all enabled transitions, 
leading to no reduction in the size of the state space. 

A strong stubborn set algorithm for ensuring the condition S. In the case of 
strongly s tubborn sets, the condition S reduces to "if s is in the reduced state 
space and s- t -+,  then t is investigated in at least one of the states tha t  are reach- 
able from s in the reduced state space". This observation leads to an efficient 
algorithm for ensuring tha t  S holds [83]. In it, the reduced state space is con- 
structed in depth-first order. Tar jan 's  algorithm is used during the construction 
to recognise terminal  components of  the state space. 

Assume tha t  a terminal component  has jus t  been completed, and the con- 
struction of the reduced s tate  space is just  about  to backtrack from a s tate  s in 
the component  to a state outside the component  (or is about  to terminate,  if 
s has no predecessor states in the depth-first search tree). We will say that  the 
structural  transit ion t is ignored in the component, if it is enabled in s but  occurs 
nowhere in the component.  The algorithm checks tha t  no structural  transit ion 
is ignored in the component.  I f  this does not hold, the s tubborn set T,(s) tha t  
was used in s is extended such that  at least one structural  transition that  was 
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ignored in the component is included into the extended set, and the extended 
set is stubborn. 

From the point of view of the depth-first search discipline and Tarjan's  algo- 
rithm, the extension of T~(s) adds new output  edges to s, and does that  exactly 
when the original output  edges have been scanned through. Because the depth- 
first search has not yet made any actions after investigating the original output  
edges of s, from its point of view the newly added output  edges could have 
been there all the time. Therefore, the extension of T~(s) does not confuse the 
depth-first search discipline or Tarjan's algorithm. 

One possibility of computing the extension of Ts(s) is to compute a new 
stubborn set that  contains a transition that  is ignored in the component.  This is 
correct, because it is easy to check from D1 to D3 that  the union of two stubborn 
sets is stubborn. If both the original T~(s) and its extension are constructed with 
the closure or strong component algorithm using the same relation "-.~", then 
the construction of the extension needs not enter the original stubborn set. 

More details of this algorithm are given in [83]. 

Preserving process-algebraic traces. The above algorithm makes it possible to 
check on the fly whether L1 ~_tr L2 with the tester processes described in Sec- 
tion 4.2. It is, however, sometimes beneficial to have an algorithm that  preserves 
process-algebraic traces and is transparent in the sense of Section 6. This is the 
case, for instance, if the LTS is intended to be used as a component in the 
compositional LTS construction method of Section 7.3. This goal is obtained by 
stating an additional requirement for the stubborn sets Ts(s) that  are used in 
the states s of the reduced state space: 

V If T~(s) contains a structural transition t such that  s -t--+ and E~(t) ~ v, 
then Ts(s) contains all those structural transitions t '  such that  S~(t ' )  ¢ r 
(even if t '  is disabled). 

The condition is labelled "V" because it talks about the handling of visi- 
ble transitions, that  is, those structural transitions whose E~-abstraction is not 
r .  It ensures that  when the stubborn set method produces a representative for 
an execution, it does not change the relative ordering of visible transitions. As- 
suming that  D1, D2, S and V are satisfied, then the reduced state space is 
trace-equivalent with the full state space. 

There are at least two practical ways of implementing V. The more com- 
plicated one consists of first trying to find a stubborn set which contains no 
enabled visible transitions with, for instance, the strong component algorithm. 
If that  fails, then the closure algorithm is applied to every visible transition and 
the union of the results is taken. The simpler way consists of just adding to "-,~" 
an edge from tl  to t2 for every enabled visible tl  and visible t2 before a t tempting 
to construct a stubborn set. 

If all transitions are visible, then V forces the reduced state space to be the 
same as the full state space. Therefore, no reduction is obtained unless there are 
invisible transitions. 
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The above-mentioned on-the-fly method of checking "~_tr" with tester pro- 
cesses does not need the condition V. Therefore, it might seem to allow for bet ter  
s tubborn sets. Sometimes it indeed does that ,  but  perhaps not as often as one 
might think, because the addition of the tester process to the system introduces 
new dependencies between transitions. In particular, if the tester process is syn- 
chronised only with the visible actions and it never refuses any visible actions, 
then each state st of the tester process has for every a E ~ an output  edge tha t  is 
labelled with a. In most (but not all) cases this implies that  if one output  action 
of st is taken into the stubborn set, then all of them must be taken, which is 
equivalent to the extension of '%*" described above. If the tester is synchronised 
with all actions instead of just  visible ones, then the situation is even worse, 
because then almost all actions become dependent of each other. 

It is essential for V that  a stubborn set may contain disabled transitions. 
Instead of V, [70] uses the strictly stronger condition V' that  either Ts(s) con- 
tains no enabled visible transitions, or Ts(s) = T. This condition leads to worse 
reduction results than V, but  is easier to implement. 

Other ways of handling safety properties. An alternative approach to the ver- 
ification of safety properties that is based on a transformation of the system 
description was presented in [37]. Safety properties can be analysed also with 
the CFFD-, LTL_x-, and branching-time-preserving stubborn set methods that  
are described below. 

S t u b b o r n  se t  m e t h o d s  fo r  l lveness  p r o p e r t i e s .  The above stubborn set 
methods for safety properties suffice for the verification of various properties 
whose validity depend on finite executions. However, they do not suffice for prop- 
erties that  depend on infinite executions, as the example in Figure 12 demon- 
strates. In the example, a and b are visible actions, and r l ,  r2 and r3 are invisible. 
If  the dashed edges are removed, the resulting reduced state space satisfies D1, 
D2, D3, S and V. However, according to it it is guaranteed that  if a is executed, 
then also b wilt be executed, although this is not true in the full state space. 

a la 

b ',b 

Fig.  12. Safety-preserving stubborn set methods do not suffice for liveness. 
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The following two conditions make the s tubborn set method capable of han- 
dling various l inear-t ime tiveness properties. They replace the condition S. 

L1 I f  s is a state in the reduced s tate  space such that  there is t E T such tha t  
£ ~ ( t )  = r and s - t--+ in the full state space, then T, ( s )  has a key transit ion 
tk such that  £ z ( t k )  = r .  

L2 If  so - t l - +  sl -t2--+ . . .  is an infinite execution in the reduced state space 
start ing at any state so, then for each tv such that  gz( tv)  ¢ r ,  there is i > 0 
such that  tv E Ts(s l ) .  (This implies that  there are actually infinitely many  
such i.) 

Regarding the execution M x - v l  a r ~ - +  of the system in Figure 12, L2 ensures 
tha t  a is investigated after rl  (the infinite execution in L2 is M1 -Vlr~--+ ). L1 
ensures that  r3 is investigated after a. 

The following theorem is slightly strengthened from a similar one in [86]: 

- If  s is a s tate  in a reduced state space that  satisfies the conditions D1, D2, 
D3, V, L1 and L2, and if s - t i t 2  • • .-+ is an infinite execution tha t  starts  at 

I ! s, then the reduced state space contains an infinite execution s - t i t 2 . . . - +  

such tha t  ~ ' = 

- I f  s is a state in a reduced state space tha t  satisfies the conditions D1, D2 
and V, and i f  s - t i t 2  .-.t,~--+sd is a finite execution tha t  starts  at s and ends 
in a deadlock state, then the reduced state space contains a finite execution 

• g ~ ( t l t  2 . . t ' n ) = g ~ ( t l t 2 . . . t n ) , a n d t l t ~ " ' t  h i s  ' ' .t'~--+s~ such that  ' ' .  ~ ' ' s - t i t  2 . 

a permuta t ion  of t i t2  • •. tn .  

The condition L1 can be implemented by first constructing a s tubborn set 
without worrying about  L1, and then extending L1 to contain an invisible key 
transit ion if necessary• The closure and strong component  algorithms are handy 
for comput ing the extension• If  the condition V is replaced by the stronger 
condition V' mentioned above, then L1 holds automatical ly and needs not  be 
worried of. 

With  finite state spaces, L2 is equivalent to the condition that  for each visible 
transit ion tv, each cycle of the state space must  contain at least one state s such 
tha t  Ts(s)  contains tv. Perhaps surprisingly, tv needs not be enabled in s; it 
suffices that  it affects the construction of the s tubborn set. This condition is 
difficult to implement  in its full generality. It is, however, easily implementable,  
if we do not mind using the same s for each tv. Then cycles that  violate it can be 
recognised with the non-progress cycle detection algori thm that  was explained 
in Section 4.2. The s tubborn set of the current s tate is extended with the "~.z"- 
closure of visible transitions if necessary. More detail can be found in [85, 86]• 

Another possibility is to construct the reduced s tate  space in depth-first 
order, and extend the s tubborn set each t ime the current s tate has an output  
edge to any state in the depth-first stack [68, 70]. (Only the edges in the reduced 
state space are taken into account in this test.) This algorithm is much simpler 
than the previous one, but extends s tubborn sets more often. 
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Like with V and V ~, it is possible to simplify the implementation of L2 at the 
cost of less reduction by requiring that  Ts(s) = T in the states s whose stubborn 
sets are extended [68, 70]. We will call this condition L2q 

Stubborn set methods for LTL_x.  The above theorem yields a transparent con- 
struction-time reduction method that  preserves the validity of LTL_x-formulae 
(or stuttering-insensitive LTL formulae). Le t /7  be the set of atomic propositions 
that  appear in the formulae. We say that  a structural transition t affects a 
proposition P E / / i f  and only if the reachable part of the state space contains 
states s and # such that  s -t--+ #,  and either s ~ P and # ~ -~P, or s ~ -~P 
and g ~ P.  That  is, t affects P if and only if some occurrence of t changes the 
t ruth value of P.  

Let Tzr be a set of structural transitions such that  it contains at least those 
transitions that  affect any P E H. The set TH is allowed to be larger than the 
precise set of transitions that affect members of H, because the precise set may 
be difficult to find, and the use of a larger set does not sacrifice correctness 
(although it may lead to worse reduction results). The theorem that  underlies 
the LTL_x-preserving stubborn set method is as follows: 

If all transitions in Tt/ are treated as visible and a reduced state space is 
constructed such that  the conditions D1, D2, D3, V, L1 and L2 are satisfied, 
then the truth value of any LTL_x-formula whose atomic propositions belong 
t o / / i s  the same in the reduced and full state spaces. 

Due to the condition V, the l a r g e r / /  is, the larger wilt the reduced state 
space usually be. If~o is of the form ~01A.- -h ~ok, then this effect may be fought 
against by verifying each ~oi separately. Then more than one reduced state space 
is constructed. However, with some luck each ~oi uses a smaller set of visible 
transitions and leads to a much smaller reduced state space than 9, so significant 
savings in total effort are possible (but not guaranteed). Unfortunately, this 
technique does not yield correct results for formulae of the form ~01 V ~o2. 

A more general technique for distributing the set of visible transitions was 
suggested in [68]. That  paper assumed that  the underlying model of computation 
is fair in a certain particular sense; we will return to this assumption a bit later. 
The LTL_x-formula ~o in question is converted into a form B(~ol , . . . ,  ~ok), where 
B ( x l , . . . ,  z/,) represents some Boolean combination of z l , . . . ,  Zk, and each ~0~ is 
as small as possible. For instance, D(~A ~¢)  can be converted to (09) A (DOe). 

In this technique, only one reduced state space is constructed. Even so, in- 
stead of one set of visible transitions, each subformula has its own set, and the 
condition V is applied to each set separately. If t l  only affects atomic proposi- 
tions in ~ol and t~ only those in ~o2 and both tl and t2 are enabled, then the 
original condition V insists that  if t l  is in the stubborn set, then also t2 must 
be. On the other hand, this requirement disappears when V is applied to each 
subformula separately. This leads to smaller stubborn sets and better reduction 
results. 

If  V is applied to each subformula separately, then the proper t reatment 
of the condition L1 becomes complicated. This problem did not arise in [68], 
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because the fairness assumption in it made L1 unnecessary. On the other hand, 
the assumption rejects the execution Mx -vlav~--+ of the system in Figure 12 
as unfair, so we are not Mways willing to make it. The thesis [98] solves this 
problem by showing how both V and L1 can be distributed to subformulae, so 
that  the fairness assumption of [68] is not any more needed. 

Handling fairness assumptions. The correctness of a system with respect to an 
LTL_x-formula that expresses some liveness property often depends on some 
fairness assumptions (Section 2.4) about the system. As the following exam- 
pies illustrate, customary fairness assumptions are not easy to handle with the 
LTL_x-preserving stubborn set method, because the method may choose an 
unfair representative to a fair execution that  violates a property. 

Consider the alleged property O(M(ps)  = 1) of the net on the left in Fig- 
ure 13, when strong fairness towards t~ is assumed. In the situation where exactly 
P2 and P3 are marked, a typical implementation of the LTL_x-preserving stub- 
born set method would fire t3 and only it, because {t3} is then stubborn, but  no 
set not containing t3 is stubborn. The situation is symmetric when exactly pl 
and P4 are marked. As a consequence, in each infinite execution in the reduced 
state space, ts is enabled infinitely often. They are thus unfair and do not qualify 
as counterexamples to ~(M(ps) = 1). So the reduced state space would lead to 
the conclusion that  ~(M(ps) = 1) holds. On the other hand, the full state space 
contains the fair counterexample MI -(tlt2t3t4)°~--+ • 

t2 t4 tl  t~ 

Fig.  13. Two fairness examples. 

The net on the right in the figure exemplifies a similar problem with weak 
fairness. Let the formula be O(M(p3) = 1), and assume weak fairness towards 
t2- The LTL_x-preserving stubborn set method may choose {tl} as the s tubborn 
set used in the initial marking. Unfortunately, if it does that,  then it looses the 
only fair counterexample to the formula. 

This problem can be avoided by representing the fairness assumptions as a 
part of the formula to be verified in the form "(fair1 A . . .  A fairn) =¢, property". 
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Then the ordinary LTL_x-preserving stubborn set method is guaranteed to treat 
the fairness assumptions correctly, because they need no special treatment. This 
technique has, however, the problem that  with it, very many transitions must be 
visible, which leads to bad reduction results. Fortunately, "(fair1 A . . .  Afairn) =~ 
property" is a Boolean combination of "fair1", . . . ,  "fair~", and "property", so the 
above-mentioned techniques of [68, 98] can be used to alleviate the problem. 

Another possibility is to use fairness assumptions that  are insensitive to the 
difference between a sequence and its representative chosen by the stubborn- 
set-type method. With this goal in mind, in [68, 70] the following atypical but 
natural fairness assumption was suggested. Furthermore, the LTL_x-preserving 
stubborn set method was proven correct when it and L2 ~ are assumed and the 
classic notion of "dependency" is used, even if the conditions L1 and D3 are 
dropped: 

[68, 70]-fairness If a structural transition t is enabled continuously from some 
state on in an execution, then some transition that  is dependent on ¢ - -  
perhaps t i t s e l f -  occurs in the execution somewhere after that  state. This 
is required from every t E T. 

Stubborn set methods for failure-based process semantics. A reduced state space 
that  is constructed according to the LTL_x-preserving stubborn set method - -  
that  is, obeying D1, D2, D3, V, L1 and L2 - -  is CFFD-equivalent (and thus 
also CSP- and NDFD-equivalent) with the full state space, assuming that  all 
transitions t such that  g,v(t) ¢ r are treated as visible by the conditions V, L1 
and L2. Therefore, the LTL_x-preserving stubborn set method can also be used 
as a method of computing reduced parallel compositions when any of these three 
semantics is used. 

When using the method, it is useful to notice that  if the system is of the 
form 

h i d e  al . . . .  , ak in(LtiI--- NLn), 
then the transitions of LIlI- . -HLn labelled with al or . . .  or ak need not be 
considered visible by V, L1 and L2, because they are invisible at the system 
level, although they are visible from the point of view of an individual Li. 

The use of stubborn sets is beneficial even if the resulting state space will 
be further reduced with some process-algebraic LTS reduction algorithm. This 
is because the stubborn set method reduces the risk of the parallel composition 
being so big that  it cannot be constructed or processed by the LTS reduction 
Mgorithm. 

Worth mentioning is the fact that if a reduced state space obeys D1, D2, V 
and L1, then it contains all the stable states and all the stable failures of the 
originM state space. Furthermore, if it obeys D1, D2, D3, V and L1, then it is 
CSP-equivalent with the full state space. In other words, L2 is not needed to 
preserve the CSP-semantics of a state space. This is an interesting consequence 
of the fact that,  as was explained in Section 4.4, divergence is "catastrophic" in 
the CSP-semantics. 

Stubborn set methods for process algebras were surveyed in [91]. 
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On-the-fly methods. The use of automata-theoretic on-the-fly verification meth- 
ods simultaneously with stubborn-set-type methods was discussed already in 
connection with safety-property-preserving stubborn set methods. Those B/ichi 
au tomata  that  are connected to the system with the state synchronisation tech- 
nique and do not restrict the transitions of the system (Section 4.2) are invisible 
to the stubborn set method. Therefore, Biichi automata  can be used simulta- 
neously with the LTL_x-preserving stubborn set method. This idea has been 
developed further in [69]. 

An alternative approach is to connect the Biichi automaton (or tester process, 
Section 4.2) with transition fusion to only the visible transitions of the system. 
The automaton is now allowed to restrict the behaviour of the system. This idea 
was investigated in [87]. 

When verifying an LTL_x-formula, it is often the case that  an atomic propo- 
sition becomes irrelevant for the formula at some point of an execution. This is 
the case, for instance, with the formula D(P ~ o-~Q): when a state s such that  
P E ,~n(s) has been seen, P does not mat ter  any more, but  the only interest- 
ing thing is whether Q may become true. An advanced on-the-fly method that  
exploits this fact was developed in [52]. 

A s t u b b o r n  set  m e t h o d  for  b r a n c h i n g  t i m e  p r o p e r t i e s .  A stubborn- 
set-type method that  preserves the validity of CTL*x-formulae was presented 
in [31], and adapted to nondeterministic structural transitions in [91]. To pre- 
serve the validity of CTL*x-formulae, it is important  that  the points in time 
when decisions between different futures are made are located correctly with 
respect to each other and relative to Ez/-abstracted states. This is exemplified 
by Figure 14 and the CTL-formula EF(a A (EFfl) A (EG-~fl)). The formula holds 
in the net in the figure. The transitions t2 and t3 are invisible with respect to 
it, so the LTL_x-preserving stubborn set method would allow to choose {t2, t3} 
as the stubborn set that  is used in the initial marking. Tha t  would, however, 
lead to a reduced state space where the formula does not hold, because in it the 
choice between t2 and t3 occurs too early. 

Fig.  14. A branching time example. 

Because of the above problem, the CTL*x-preserving stubborn set method 
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is based on the following, rather strong condition: 

B If s is a state in the reduced state space, then the stubborn set Ts(s )  ei- 
ther contains only one enabled structural transition, and that  transition is 
invisible; or it contains all enabled structural transitions. 

The following theorem expresses the correctness of the CTL*x-preserving stub- 
born set method: 

If all structural transitions are deterministic, all structural transitions in Tzz 
are treated as visible, and a reduced state space is constructed such that  
the conditions D1, D2, S, and B are satisfied, then the t ru th  value of any 
CTL*x-formula  whose atomic propositions belong to H is the same in the 
reduced and full state spaces. 

The construction of stubborn sets that satisfy D1, D2 and B is simple, because 
only the set of all structural transitions and the sets containing exactly one 
enabled structural transition need be taken into account. One may first scan 
through all enabled invisible structural transitions with the hope of  finding one 
that ,  together with a suitable set of disabled structural transitions, satisfies D1 
and D2. If that  fails, then all structural transitions are taken. 

Also the implementation of S is easy in this context, because states that  do 
not have all enabled structural transitions in their stubborn sets have exactly 
one successor state. Such states may be constructed in a linear sequence. S is 
violated whenever the sequence enters any of its states anew. Then an arbitrary 
state of the sequence can be picked, and its output  edges re-examined using this 
t ime the set of all transitions. 

A l l o w i n g  n o n d e t e r m i n i s t i c  t rans i t ions .  The condition B does not suffice with 
nondeterministic structural transitions, because it does not rule out the possi- 
bility that  the same transition may occur in two different ways leading to two 
different futures. In [91] a stronger condition was suggested that  is based on 
the notion of s u p e r - d e t e r m i n i s m .  We use the labelled transition system notation 
(Section 4.4) for explaining it, because nondeterministic transitions (or actions) 
are frequently used with them. 

An action a E 27 is super-deterministic in the state so, if and only if the 
existence of an execution S o - a l - +  . . . .  an'-+ sn where a l , . . . ,  an 5k a implies 

and for every such that  #o -al----~ - a n +  s n , the existence of states s0 , . . .  , s n - . .  
0 < i < n: sl - a - - ~  s~ and if sl - a - - ~  s ' ,  then s" = s~. Less formally, a super- 
deterministic action is enabled, can yield only one result when it occurs even 
if other actions are executed before it, the execution of other actions cannot 
disable it, and its execution commutes with the execution of the other actions. 

NB If s is a state in the reduced state space, then the stubborn set T~(s) either 
contains only one enabled structural transition, and that  transition is invisi- 
ble and super-deterministic; or it contains all enabled structural transitions. 
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The condition NB implies D1 and D2. Therefore, the CTL*×-preserving stub- 
born set method can be formulated as follows in the presence of nondeterministic 
transitions: 

If all structural transitions in T// are treated as visible, and a reduced state 
space is constructed such that  the conditions S and NB are satisfied, then 
the t ru th  value of any CTL*x-formula  whose atomic propositions belong to 
/ - / is  the same in the reduced and full state spaces. 

If  an LTS is constructed with the CTL*x-preserving stubborn set method,  then 
it is branching bisimilar and thus also weakly bisimilar with the ordinary LTS 
of the system, assuming that all transitions t such that  E~ (t) ¢ r are treated as 
visible. 

The following sufficient condition for super-determinism [91] can be used in 
implementing the CTL*x-preserving stubborn set method in the presence of 
nondeterministic transitions. Let L I I [ . . .  [[Ln be a parallel composition of LTSs, 
and ( s l , . . . ,  s , )  its state. Assume that  ( s l , . . . ,  sn) - a - ~ .  If for each 1 < i < n, 
either a ~ Zi U {ri}, or the local state si has only one output  transition in the 
LTS Li, then a is super-deterministic in ( s l , . . . ,  sn). In other words, a is super- 
deterministic in (Sl . . . . .  s , ) ,  if each Li that  is interested in a-actions is ready to 
do only one transition, and that  transition is labelled with a. 

On the strength of the CTL ~-x-preserving method. Stubborn set methods demon- 
strate nicely the principle that the more information one is willing to give away, 
the more powerful state space reduction methods are available. In this section 
we started with a method that is valid only for the verification of termination- 
related properties, and ended up with a method for full CTL*_.× and branching 
bisimilarity. Each time when we moved from a method to the next, we added 
one or more new restrictions on the construction of stubborn sets. 

Although the relative strengths of the conditions underlying the methods are 
not always formally comparable, it is intuitively clear that  B and NB prevent 
the use of a small stubborn set much more often than D3, V, L1 and L2, so 
the ability of the CTL*_x-preserving method of reducing state spaces is smMler 
than that  of the other methods. On the other hand, it is easy to produce a fast 
implementation for the CTL*x-preserving method without losing much of its 
generality, whereas the a t tempt  to exploit the full power of the safety-property- 
preserving and LTL_x-preserving methods leads to complicated and significantly 
slower Mgorithms. It is not known how significant the difference between the 
reduction power of the CTL*_-×- and LTL_x-preserving methods is in practice. 

There are two important  stuttering-insensitive branching-time specification 
formMisms that  are strictly less powerful than CTL*--× and branching bisimi- 
larity, namely CTL_x  and weak bisimilarity. It would be interesting to find a 
stubborn-set-type method that  would preserve one of these, and would improve 
reduction results by not preserving CTL*_× and branching bisimilarity. Unfortu- 
nately, the example in Figure 14 is valid also for CTL_x and weak bisimilarity, 
so the chances of finding such a method seem small. 
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Sleep sets. Sleep sets were first presented in [33], and perhaps the best source on 
them is [34]. Their theory has not been developed as far as that of stubborn sets. 
While stubborn-set-type methods save effort by postponing the investigation 
of structural transitions to future states, sleep sets avoid the investigation of 
transitions that have been investigated in the past states. 

Assume that tl and t2 are enabled and independent of each other in some 
state s, and neither of them has been put to sleep in the sense described below. 
Unlike stubborn-set-type methods, the sleep set method investigates both tl and 
t2 at s. Assume that tl is investigated before t2. Then, when investigating t2, 
tl  is put to sleep. Sleeping transitions will not be taken into account in future 
states until they are woken up. A sleeping transitions is woken up for certain 
reasons, such as the occurrence of a transition that is dependent on it. 

As such, the sleep set method does not reduce the number of reachable states, 
it reduces only the number of edges. However, it can be used simultaneously with 
stubborn-set-type methods, and the combination gives better reduction results 
(in terms of reachable states) than the stubborn-set-type methods alone. 

As was pointed out in [35], sleep sets can also be used to improve the state 
space caching method of [45]. The basic idea of state space caching is simply 
to start throwing reachable states away from the memory of the state space 
construction tool when the memory fills up. If a state has more than one input 
edge, as is very common in the presence of concurrency, and if it is thrown away 
before investigating all of its input edges, then it and at least a subset of its 
successor states will be constructed more than once. This is bearable if the full 
state space is not much bigger than what fits the memory, but leads to dramatic 
decrease of the performance of the algorithm if the full state space is big enough. 
Sleep sets reduce the number of times a state is entered, and therefore reduce the 
number of times a state is re-constructed. An impressive example of the power 
of sleep sets in this application is given in [34]. 

8 C o n c l u s i o n s  

Many different techniques based on widely diverse principles have been suggested 
for alleviating the state explosion problem. In this article we have discussed a 
number of them. None of today's techniques solves the state explosion prob- 
lem once and for all, and, because of the results regarding the computational 
complexity of typical verification tasks, it is unlikely that a perfect solution will 
be found in the near future. Even so, today's techniques facilitate the analysis, 
validation and verification of much bigger systems than ordinary state space 
construction. Although they are not strong and easy enough to be routinely 
used in all production of concurrent software and hardware, they can help a lot 
in finding serious design flaws in systems, and the proving of the correctness of 
various critical details. 

An advanced state space method practically always restricts the set of prop- 
erties that can be analysed or verified. This implies that the user of the method 
has to have at least some idea of the analysis questions before starting the tool. 
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If, during the analysis, new questions become relevant, it may be that  a new 
reduced state space has to be constructed to answer them. This is a drawback 
compared to the use of full state spaces, where the same state space can be used 
for answering all analysis questions, even if the user invents new questions after 
obtaining the answers to the original ones. On the other hand, when the full 
state space of the system is too big to be constructed, it is better to get answers 
one at a t ime than to get no answers at all. 

Because many advanced state space methods work well only with certain 
kinds of analysis questions, the user of the methods has to decide what kinds of 
questions will be asked. The smaller set of question types the user is happy with, 
the more methods are available for alleviating state explosion. Some arguments 
in favour of and against certain question types are given in the following. 

Sensitivity to stuttering. Stuttering is usually not a problem for methods based 
on packed state spaces (perhaps excluding the unfolding method).  In contrast, 
methods that  are based on commutativi ty (Section 7.4) or process-algebraic com- 
positionality (Section 7.3) are valid only for stuttering-insensitive properties. 

Because the level of atomicity is often artificial to some extent, and because 
knowledge of how many actions of a parallel, independent process were scheduled 
between two actions of an interesting process in a one-processor machine is 
unimportant ,  many researchers consider stuttering as irrelevant in the context 
of concurrent systems. 

Linear vs. branching time. Excluding CTL* and CTL*x,  the most common 
branching-time specification and query formalisms have fast algorithms for the 
last step of the verification of a property. With linear-time formalisms the al- 
gorithms for the last step tend to take exponential t ime in the length of the 
description of the property in the worst case (with the exception of preorder 
checking against a deterministic process-algebraic specification). 

One may argue, however, that  the bad worst-case performance of linear-time 
model and preorder checking is not an important  problem, because the descrip- 
tion of the property is often small, at least compared to the size of the system. 
Furthermore, linear-time formalisms allow the use of more powerful state space 
reduction methods than branching-time formalisms. For instance, we pointed out 
in Section 5.3 that  labelled transition systems can be reduced more with failure- 
based semantic models than with weak bisimilarity. To give another example, 
the CTL*x-preserving stubborn set method allows the use of a non-trivial stub- 
born set (that is, one that does not contain all enabled transitions) much less 
often than the LTL_x-preserving method. Finally, it is difficult to think what a 
branching-time version of Holzmann's supertrace (Section 7.2) might look like. 

As a consequence, although linear-time formalisms lose in the checking of the 
property from the reduced state space, they may win a lot during the construc- 
tion of the reduced state space. It is thus difficult to say which approach is faster 
in practice. This question was analysed in more detail in [89]. 

Linear-time formalisms have also the advantage that  if a property does not 
hold, then a counterexample that  the user can easily simulate and analyse can 
be provided. 
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The verification of linear-time liveness properties needs often that  fairness 
assumptions are made and taken into account. Fairness assumptions are prob- 
lematic to certain advanced state space methods, including the process-algebraic 
compositional LTS construction in Section 7.3 and the LTL_x-preserving stub- 
born set method in Section 7.4. Petri-net-liveness, or more generally the CTL 
"AG EF", gives to some extent similar information as linear-time liveness, al- 
though they are not precisely the same: linear-time liveness guarantees that ,  
say, a structural transition t will occur in the future, whereas Petri-net-liveness 
only promises that  the future occurrence of t is possible and cannot be made 
impossible. 

Petri-net-liveness may, therefore, fall a bit short from what the user wants. 
It does not, however, need fairness assumptions; we saw in Section 7.4 that  it 
is preserved by the safety-property-preserving stubborn set method; and it is 
within the scope of the unfolding method in Section 7.2. It is thus a particularly 
interesting branching-time operator from the point of view of alleviating state 
explosion. 

State- vs. action-based. In many cases it is easy to switch from a state-based 
specification to an action-based one or vice versa with the mappings of Sec- 
tion 2.2. In those cases the choice between a state- or action-based formalism 
does not have much significance from the point of view of advanced verification 
methods. 

There are, however, situations where advanced verification methods clearly 
favour one approach over the other. For instance, we saw in Section 7.2 that  
checking whether a certain transition can ever occur is easy for the unfolding 
method, but  checking the reachability of a state with a certain property is dif- 
ficult, unless the property can be handily encoded as the enabling condition of 
one or few transitions. It  seems that  the majori ty of advanced state space meth- 
ods either handle arbitrary atomic propositions over states without difficulties 
(for instance, binary decision diagrams and Holzmann's supertrace), or require 
that  the properties are ultimately stated in terms of actions (for instance, visible 
transitions in the stubborn-set-type methods). In the former case actions can be 
talked about  by describing their enabling condition and the change of state they 
cause. It thus seems that  action-based formalisms allow the use of more state 
space methods. 

Action-based approaches often provide automatic insensitivity to stuttering. 
For instance, if a Biichi automaton is connected to the system with fusion with 
visible transitions instead of synchronisation to every state, then the automaton 
does not see stuttering. The acceptance condition of the automaton must then 
be modified so that  executions where the automaton makes only a finite number 
of transitions are handled properly. This is not a big problem, because something 
similar has to be done in any case with executions that  lead to deadlock states. 
We saw in Section 4.2 that  the action-based approach allows faster on-the-fly 
detection of errors by facilitating the use of four different kinds of acceptance 
states for different types of erroneous executions. 
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We star ted this article by comparing state space methods to theorem proving. 
The  goal of that  was to highlight the advantages and disadvantages of s tate  
space methods.  Despite the development of advanced s tate  space methods,  the- 
orem proving is still much stronger in certain tasks, such as the proving of 
parameterised results. Sometimes best results are obtained by combining s ta te  
space methods and theorem proving, for instance, by using a model checker as a 
sub-tool of  a theorem prover, or debugging a system with state space methods  
and fixed parameter  values, but conducting the final correctness proof with a 
theorem prover and symbolic parameters.  

A c k n o w l e d g e m e n t  Numerous researchers have contributed to this article by 
developing the original ideas, and communicat ing them to me through their 
books, papers, talks and discussions. I am afraid that  here and there I was 
unable to trace the true source of an idea, and was unable to give the original 
inventor the recognition that  (s)he deserves - -  please accept my apologies. Jaco 
Geldenhuys and Ilkka Kokkarinen helped me to reduce the number  of errors in 
this article. 
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