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Abstract A new kind of algorithms, called distributed algorithms, has
emerged during the last decade, aimed at efficiently solving problems that
occur whenever distributed computing systems are to be made applicable
to real-world problems.

Distributed computing systems are frequently organized as networks of
agents, with each agent asynchronously interacting with some of its
neighboring agents. Algorithms running on such networks are called dis-
tributed.

A network algorithm is a schema, intended to run on any network in a
whole class of networks. Such an algorithm can be modeled as a high-level
Petri net schema. Each interpretation of the schema yields an algorithm
for a concrete network.

This paper suggests a variety of Petri net models of network algorithms,
formally represents their most decisive properties, and proves their va-
lidity. To this end, well-known techniques such as place invariants and
traps are adjusted to Petri net schemata, and new techniques to prove
progress properties are suggested.

Introduction

The paradigm of computing is shifting away from centralized one agent systems
towards decentral networks of agents. Each agent may exchange messages with
neighboring agents in the network.

Agents may jointly solve any kind of problems, frequently initiated by one
of the agents. In most cases, all but the initiator agent are running identical
algorithms. Each agent is usually aware of its neighboring agents only; thus no
agent controls the entire network. An algorithm of this kind will be called a
network algorithm in the following.

A network algorithm is not intended to run on just one fixed network. Rather,
a network algorithm is a schema of algorithms, which run on any network in a
whole class of networks, such-as the connected networks, the ring- or tree-shaped
networks, etc.

A Petri net model of a network algorithm must reflect this aspect. Conse-
quently, a network algorithm will be modeled by Petri net schema. A Petri net
schema in particular includes symbols to denote sets and functions. Any instan-
tiation of those functions turns the schema into a concrete high-level Petri net,
representing an algorithm on a concrete network.

This contribution assumes basic knowledge of high-level Petri nets. Some few,
fairly obvious new concepts will be employed, introduced in an intuitive way by
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help of the considered case studies. This applies likewise to verification tech-
niques: We employ well established algebraic place invariants as well as newly
designed weighted traps and pick-up rules for progress properties. The consid-
ered case studies will clarify when and how they are to be used. In fact, choice
and order of the case studies are governed by increasingly involved analysis tech-
niques.

1 Consensus in Networks

1.1 The problem

A consensus algorithm organizes consensus about some contract or agreement
among the agents of a network. This is not trivial in case all agents are homoge-
neous, each agent can exchange messages with some neighbors only and there is
no other communication medium available, e.g., a broker or mediator who could
communicate with each agent.

An algorithm will be constructed in the following, to solve this problem for
any network of agents. The central activity of each agent is broadcast and receipt
of messages, containing proposals for a joint contract. Each agent u is assigned
a fixed set of other agents which w is to communicate with. Upon receiving
a message, an agent returns a receipt to its sender. The algorithm does not
guarantee that consensus will ever be reached. But consensus will turn out to
be stable: Once reached, it remains.

1.2 The algorithm

Figure 1.1 shows a Petri net schema representation, X 1, of the consensus algo-
rithm.

U and M are symbols, to be instantiated by a set and a relation, as the text
in the figure’s lower part explains. U represents the set of agents, and M the
relation of neighborhood, with M(z) = {y|(z,y) € M} denoting the set of sites
which u is to send messages to. Notice that M is not required to be symmetric.
As a general rule, a message is always represented as a pair (receiver, sender).
The equations in the text of Fig. 1.1 hence specify r{z) and 7{z) as the set of
all messages to be received or to be sent, respectively, by z.

Initially, each agent is pending and each request is completed. In this situ-
ation, an agent u may send each of its neighbors v a message (transition a in
mode z = u). Upon receiving a message (u, v) from v, a pending agent u returns
a receipt, (v,u), to the message’s sender v (transition b in mode z = u, y = v).
A pending agent u may turn agreed, provided all its messages are completed
(transition d in mode z = u). Finally, upon receiving a message, an agreed agent
u turns pending (transition ¢ in mode z = u).

Obviously, at any time, an agent is either pending or agreed, and a message
is either completed or initiated. The algorithm does not guarantee that the sites
eventually all will agree. However, the algorithm guarantees stability: If all sites
do agree, no site will return to pending; the algorithm terminates in this case.



initiated requests

sort site fct 1, T:site — set of messages
sort message = site x site var X, y:site
const U:setofsites {x) = {x} x M(x)
const M: set of messages T(x) = M(x) x{x}

Figure 1.1. Basic algorithm for distributed consensus

1.3 Algebraic place invariants

Here we are interested in techniques to prove the above-mentioned stability of
the consensus algorithm. Of course, it is not possible to just inspect all reachable
states with all agents agreed, because the net 2; ; is just a schema for in fact
infinitely many models. Hence we look for techniques that can be applied to
the syntactical representation of X;; and would allow to express and prove
properties that hold in all models. One technique of this kind are the well-
known algebraic place invariants. In fact, they support proof of stability, but
they are not sufficient. In addition, symbolic traps will be used.

Both, place invariants and symbolic traps, employ syntactical terms which
at any concrete interpretation represent linear functions. For technical details,
we refer to the Appendix. Figure 1.2 shows the matrix, initial state and two
place invariants of the algorithm of X ;. Shorthands for places, as introduced
in Fig. 1.2, will be applied throughout this chapter.

As usual, the arc inscriptions are taken as matrix entries, with the minus
symbol representing arcs from places to transitions, and 7 —7 = 0 for all terms 7
(the term 0 is usually skipped). Each invariant entry is a term, including at most
one variable; for convenience, the name of the corresponding place serves this
purpose. In Fig. 1.2, the terms are the corresponding variables, up to the term D.
This term, with variable D ranging over relations, denotes {{v,u)|(u,v) € D},
i.e. inverts the pairs at D. The product of a matrix entry 7 with an invariant
entry o is gained by substitution of 7 into each occurrence of the unique variable
in . For example, —r(z) - C = ~r(z), and 7(z) - D = (7(z)). The inner product
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21.1‘ a b c d ‘Soli]liz
A z —z{UJA
B -z B
C |-r@) W) (o) (M| |C
D F({L') —(w,y) -(:c,y) D
A: pending agents C': acknowledged messages
B: agreed agents D: initiated messages

Figure 1.2. Matrix, initial state so, and two place invariants, 41 and iz, to the consensus
algorithm, X ;

of the column @ with is then is g - iy = —r(z) - C + 7(z) - D = —r(z) + (7(z)) =
—r(z) + r(z) = 0, because (v,u) € r(u) iff (u,v) € 7(u), according to Fig. 1.1.
Likewise, b-42 = (y,2) -C — (2,9) - D = (y,2) - (z,9) = (y,%) — (y,%) = 0. The
product of each matrix column with each of i1 and iy evaluate to 0, hence both
i1 and 43 are in fact place invariants of X} ;. Furthermore, 50 -4; =U - A = U,
hence for each reachable state s holds s(A4) + s(B) = U; this will for short be
written

A+B=U. 1
Likewise holds: s¢ - i3 = M - C = M, hence the equation
C+D=M 2)

holds at each reachable state.

1.4 Symbolic traps

A further property will be required, that follows from an initialized symbolic trap
of X.1. A trap consists of a set P of places and expressions I? for each p € P,
such that p is the only variable of I?, and for each transition occurrence ¢ holds:
If t removes the set gp of tokens from P and adds the set ¢; of tokens to P, then

U (o) € | (a0 3

peP peP

For obvious reasons, P is called the domain, and the expressions I? are called
the weight functions of the trap. For example, P = {4,C}, I4 = r(A), and
I€ = C form a trap of £: Transitions a and b retain the token load on I(4)UC,
transition ¢ adds tokens; d is the only nontrivial transition. d removes = from
A and r(z) from C, hence d removes r(z) from both r(A4) and C, but d returns
r(z) to C, hence d meets requirement (3).

The initial value of a trap is the union of the weighted tokens that initially
occur in its domain. For example, the initial value of the above described trap
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of $1.1, with domain {A,C} and weight functions I and I€, is I (so(A)) U
I€ (50(C)) = I*(U)UIC(B) = r(U) U@ = M. The initial value V of a trap with
domain P = {P,,..., P,} and weight functions I™,..., I" yields the inequality

I (so(p;1)) + -+ I (s0(pn)) 2V, (4)

which holds for each reachable state.
For the above example we obtain this way that

rA)+C>M (5)

holds at each reachable state of X ;.

1.5 Proving stability

Stability of Y 1, as informally described at the end of Sect. 1.2, can now formally
be represented by the formula

B=U-A=0AD=0, (6)

claimed to hold at each reachable state: A = §A D = @ implies that no transition
is enabled. With A = 0, transitions a, b, and d are not enabled. D = @ likewise
implies that c is not enabled. Hence, in fact A = § A D = § implies stability.

The above equations (1) and {2) together with the inequality (5) suffice to
prove (6): Equation (1) implies r(A4) + r(B) = r(U); hence, with »(U) = M
following from the specifications of X 1, we obtain

r(A) +r(B) = M. (7
Subtraction of (5) from the sum of (2) and (7) yields
r(B)+D < M. (8)

Furthermore, B = U — r(B) = M, and r(B) = M — D = § (by (8)), and
D =0 = D = 0. Transitivity of implication now yields

B=U—=D=0. (9)

Furthermore, B = U — A = {§} follows from (1), hence (6).

This proof shows stability for each network N of agents and each reachable
state of N. It is exclusively based on the syntactical units of Fig. 1.1, and on
theorems about Petri net schemata.

2 Phase Synchronization

2.1 The problem

Network algorithms work frequently in rounds or phases: Each agent eventually
returns to its initial state, thus entering its next phase.
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A synchronization mechanism is occasionally required, that guarantees syn-
chronized execution of phases: No agent begins its (k + 1)st phase unless all
agents have completed their k-th phase. Stated differently, whenever two agents
are busy at the same time, they are executing the same phase.

It is not entirely trivial to organize this kind of behavior in a network of
agents that can exchange messages with some neighbors only, lacking any global
agent such as a mediator, who could communicate with each agent.

A phase synchronization algorithm will be presented in the following, to
run on any connected, acyclic network (undirected tree). Figure 2.1 shows an
example. Its leaves are a,c,g,h, j, k. Adding or deleting an arc without adding

b\\d
c/

a

e/f/j
~ \k

g

Figure 2.1.

or deleting nodes would make the network cyclic or unconnected, respectively.

2.2 The algorithm

Figure 2.2 shows the phase synchronization algorithm, %5 5. Each agent alter-
nates between the states busy and pending. The agent’s round number increases
by 1 upon reaching busy.

Whenever changing its actual state, an agent consumes and produces mes-
sages from and for neighboring agents, respectively. A message is represented as
(receiver, sender). (The multiset notation #(z) — (z,y) denotes conventionally
#(z) \ {(z,y)} and is defined only if (z,y) € 7(z).)

All agents are initially busy in their 0-th round, and no message is available.
For an agent u, occurrence of transition ¢ in a mode z = u and i = 0 furthermore
requires the set 7(u)\ {(u,v)} of messages, for some v € W (u). With no messages
for u available, this set must be empty, hence F(u) = {(u,v)}, hence v must
be the only neighbor of u. This, in fact, applies to the leaves of the network,
viz. a,¢, ¢, h, j, k in Fig. 2.1. Occurrence of transition a for some agent u yields
a message (v,u) to u’s unique neighbor, v. Some of the inner agents may then
enable a (in Fig. 2.1, these agents are b and f). All agents are eventually pending
and two messages, formed (u,v) and (v,u) of neighboring agents v and v are
available. In Fig. 2.1, v and v may be d and e, respectively. But any other
neighboring agents may likewise play this role. For example, agent h in Fig. 2.1
may remain busy until all other agents are pending. This situation retains one
message, (h, f). Move of h to pending then adds the message (f, h).

Messages formed (u,v) and (v,u) start the wave back to busy. The partial
order of occurrences of transition a is now reversed for transition b: The last
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messages  (y,x)

pending
sot site w=w-!
sot message = site x site xye U-ox W*y
const U: set of sites W;=U
const W : set of (sites x sites) XgW X4 oo XgW Xy 1 A
fct 1, 7:site — set of messages Xin1# Xy fori=1,..,n
var X, V:site — Xg# Xp
var i:nat r{x) = W) x {x}

) = r{x)y~!
Figure 2.2. Phase synchronization

agents having reached pending will be the first ones to go busy in the next
round. The last agents to go busy again are the leaves.

A “lazy” site u may still be pending with a message (u,v) in round 7, while
its “diligent” neighbor v, in its (i + 1)st round has sent a further message to u.
Hence two messages formed (v, v) may coincidentally be at place messages. This
does not perfectly meet the formalism of the Appendix, which disallows more
than one copy of a token. To fix this problem, either include the round number
as a further component to each message, or canonically extend the formal model
to cover multiple occurrences of tokens, as suggested in e.g. [Weber et al 98].

2.3 Properties to be proven

Two properties are to be proven. Firstly, two busy agents are in the same round.
As a shorthand, for a place p and a token a, the term p.o denotes at a given
state that there is at least one copy of the token a at the place p. Hence we have
to show that the formula

busy.(u,n) A busy.(v,m) - n=m (10)

holds at each reachable state of X5 5. In the framework of temporal logic, this is
a typical safety property, stating that “never something bad happens”.
The second property to be proven states that each agent will eventually reach

each round. More formally: For each interleaved run sq 128 51 B of 225.9 holds:
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If at state s, holds busy.(u,n) then there exists an index j > w such that at
state s; holds busy.(u,n + 1). We denote this by

busy.(u,n) v busy.(u,n + 1), (11

adapting notational conventions from temporal logic, particularly from [Chandy,
Misra 88). There, > is called leads-to.

This kind of properties has rarely been considered in the framework of Petri
nets. In temporal logic, (11) is a typical liveness property, stating that “even-
tually something good will happen”. In particular, this kind of liveness proper-
ties is entirely different from well-established reachability, which just claims the
chance to reach a distinguished state. Liveness, to the contrary, states that a
distinguished (kind of) state will inevitably be reached in each run (we always
assume mazimal runs; i.e. runs which are infinite or terminate with no transition
enabled).

2.4 Place invariants

As a matter of convenience we employ shorthands of pairs and triples:
(ayb)l = (G, b7 C)l =4a,
(a,b,¢)1,2 = (a,¢,b)1,3 = (b,a,¢)2,1 = (a,b),
(a" b) = (b, a)
which lift canonically to (binary or ternary) relations.
Figure 2.3 shows three place invariants to the phase synchronization algo-
rithm, X 5. i is quite obvious, whereas i, and i3 are more involved.

a b S0 %1 {92 13
Al—(z,1) (z,i+ DU x {0}|A: a{A) — a(A)
B|-7(zx) r(z) B+B B - B

+z,y) —(y,2)

+(y,z) —(z,9)

Cl(z,y,9) ~(=,7) Ci[r(C1) + #(C1) |B(C13) — B(Ch3)
“201,2 - 202,1
: alu,n)=2nr(u)
g.'lr)l::s};ages a(u,n):= 2n - 7(u)
Cpending Bu,n):= (2n +1) - r(u)

Blu,n):= (2n + 1) - #(u)

Figure 2.3. Matrix, initial state, and four place invariants to Xs.2



339

X9.2 has three important place invariants. Two of them are quite intuitive.
First of all, A; + Cy = U, which for each u € U implies

Aru+Cirau=1. (12)
Hence each site is always either busy or pending. Furthermore, 7; implies
[C1] = |C1zl, (13)

hence each site u has always a unique round number, and if pending, it is pending
with a unique site v.

The place invariant B + B +r(C;) +7(C;) = 2(C1,2 + Ca1) relates pending
neighbors to their mutual messages. For each pair (u,v) of neighboring sites this
implies

B.(u,v) + B.(v,u) + 7(C1).(u,v) + r(C1).(v,u)

:2-01’2.(’(1,’1))+2'CL2.(U,U). (14)

Furthermore, ~C;.uACy.v implies r{Cy).(v,u) = C; 2.(u,v) = 0Ar(Cy).(u,v) =
Cy,2-(v,u) = 1, hence, by (14), B.(u,v) + B.(v,u) = 1, hence with (12),

Ay uA—A;v = Bu,v)VB.(v,u) . (15)
The place invariant above furthermore implies
|B| +|B| = 2|C1,2 + Ca| = [r(C)| = [F(C1)] (16)

The third place invariant is a(A) + B + 3(C1.3) = @(A) + B + B(C1 3), which
implies for all u,v € U:

o(A).(u,v) + B.(v,u) + 8(Ci 3).(u,v) = a(4).{v,u) + B.(u,v) + [J‘(Clyg).(v,zl,l)'r).

This invariant links all places of 3y 5.

2.5 Busy neighbors don’t exchange messages

In case two neighboring sites v and v are both busy, there is no message available
from u to v or from v to u. In terms of X, 5 this readsfor all u € U and v € W (u):

AiuA Ay v — B.u,v)=B(v,u)=0 . (18)
Upon proving (18), assume a state s with s = A;.uAA;.v. Then at s holds 4y .u =

Aiv = 1, hence Ci.u = Ci.v =0 (by (12)), hence Cy2.(v,v) = Ci2.(v,u) =0
{(by (13)), hence the proposition, by (14). O
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2.6 A property of neighboring pending sites

A neighbor v of a pending site u is pending with u, or v is pending with v. In
terms of X5, for u € U and v € W(u),

Ciu—» 01’2.(11,,’!1) \ 01,2.(’1),’11,) . (19)
Proof of (19) assumes a state s with s = C1.u = 1. Then at s holds for all w €
W(u) : r(C1).(u,w) = 1, hence particularly r(Ci).(u,v) = 1, hence Cy 2.(u,v) +
C1,2.(v,u) > 1, by (14), hence the proposition. a
2.7 A site is pending with a busy neighbor
A pending site v with a busy neighbor u is pending with u. (Hence, with (13),
at most one neighbor of a pending site is busy). In terms of X5 5, for u € U and
v € W(u),
AtuACrv— Cia.(v,u) . (20)
Proof of (20) combines two properties of Xy 9: First, C1.v implies Cj 2.(u,v) V
Ci,2.(v,u) by (19). Second, A;.u implies =Cj.u by (12), hence ~Ci 5.(u,v). 0O

2.8 Three pending neighbors form a sequence

Assume a site v, pending with w. Then each other pending neighbor u of v is
pending with v. In X5 2 this reads for v € U and u,w € W(v):

Ci.uACyg.(v,w) = Cyo.{u,v) . (21)

Proof of (21) combines two properties of Xy o: First, C.u implies Cy 2.(u,v)V

C1,2-(v,u) by (19). Second, C1 ;.(v, w) implies —Cj 3.(v,u), by (12). a
2.9 Busy neighbors are in the same round

If two neighbors u and v are both busy, they operate in the same round. In X 5
this reads for u € U, v € W{(u), and n,m € N:

A(u,n)ANA(v,m) 92 n=m . (22)

To prove (22), let s be a reachable state of Xy 5 with s = A;.u A A;.v. Then
at s holds C;.u = Ci.v = 0 by (12), hence B(C; 3).(u,v) = B{Ci3).(v,u) = 0.
Furthermore, B.(u,v) = B.(v,u) = 0, by (18). Combining both properties, (17)
yields a(A).(u,v) = a(A).(v,u). Then for ~ach n € N, A.(u,n) = A.(v,n). Then
(22) follows with (12). |
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2.10 A property of chains

Given uo,...,u, € U, the sequence wp...u, is a chain if u;; € W(y;) for
i=1,...,n,and u;1 Fupp fori=1,...,n—-1.

Asgsume a chain ug . . . uy, starting with a busy site, ug, followed by a pending
site, u1. Then all follower sites us,...,u, are pending. In X 5 this reads

AtuwgACrauy = Ciau; foralli=1,...,n . (23)

To prove (23), let s be a reachable state with s |= A;.ug A Cy.u;. Then at s holds
01,2.(11,1,11,0) by (20) Then

ﬂCm.(ul, U2) (24)

by (12). Now, contradicting (23), assume an index 1 <4 < n with s E ~C}.u;.
Let j be the smallest of those indices. Then at s holds A;.u; by (12), hence
C1,2-(uj—1,u;), by (20). Then Ci 2.(u;-1,u;) for i = 2,...,n by iterated appli-
cation of (21). Then in particular Cy .{u1,u2), which contradicts (24). O

2.11 Proof of the state property (10)

We are now prepared to prove (10) as follows:

Let s be a reachable state with s = A.(u,n) A A.(v,m). Then there exists a
chain ug...u, in U with up = v and u,, = v. Then s F Ay, for i =0,...,n,
by (23) and (12). Then at s holds A.(u;,n) for i = 0,...,n by iteration of (22).
Hence n =m.

2.12 Pending sites have pending messages

Here we start proof of the liveness property (11). First, we observe pending
messages in case all sites are pending:

CL.U —|B| >0 . (25)

Proof of (25) is based on the observation that an undirected tree with n nodes
has n — 1 arcs. Hence, in X5 5,

Ir@)l = [F(U)| =2|U| -2 . (26)

Then C,.U = |B| + |B| = 2|C12 + C21| — |r(C1)| = [F(C1)| (by (16)) = 4|U]| —
2(2|U| - 2) (by (26)) = 4.

2.13 35, is deadlock free

Each reachable state of X5 ; enables at least one action. 27
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Proof. Let s be a reachable state of Xy 5. 1st case: s k= A;.u for at least one
u € U. Then there exists a chain ug ... u,, n > 0, of sites with s = A;.u; for all
i=0,...,n, and ~A.v for all v € W(uy,) — tn—1. Hence for all such v holds s =
B.(v,u) V B.(u,v), by (15). Now we distinguish two cases: Firstly, s = B.(u,v)
for all v € W(up) — tn-1. Then s enables a(u,,u,—1,k), where s = A.(u,, k).
Otherwise, there exists some v € 7(uy,) — up—1 with s | B.(v,u). Furthermore,
s = C.(v,u, k) for some k € N (with (12)). Then s enables b(v,u, k). 2nd case:
There is no u € U with s = A;.u. Then s | C1.U (with (12)). Then |B| > 0,
by (25). Hence there exist u,v € U with s = B.(u,v). Then s  C.(u,v,k) for
some k € N, by (14). Then s enables b(u, v, k). o

2.14 The weight function v

A function y(u,v) will be considered, which for neighbors u and v yields an
integer value v{u,v) at any given state s. Values y(u;—1,u;) remain in a limited
interval for all chains up...u,, and occurrences of transitions increase those
values. For u,v € U, let

- y(u,v) = B.(v,u) + Tpen(2n- A(u,n) + 20+ 1) - Cr3.(u,n)) .

(28)
Then (27) implies
Y(u,v) =v(v,u) . (29)
Furthermore, for neighbors w of u, C; 2.(u, w) = r(C1).(u, w); hence
B.(w,u) < 2 (by (14)), hence
[y (u,v) = v(u, w)| <2 (30)

again by (14). Then for each sequence ug ... u; of sites, (29) and (30) imply

‘7(“0,“'1) - V(uk—lvukn < 2(’6 - 1) . (31)

2.15 Proof of the liveness property (11)

Inspection of X5 ; yields for each step riss with t = a(u,v,1) or t = b(u,v,1):

If v(u,v) = n at state r, then y(u,v) > n at state s . (32)

Property (27) implies at least one pair (u,v) of neighbors with infinitely
many occurrences of a{u,v,7) and b(u,v,7). Then in the set of all reachable
states, v(u,v) is not limited, by (32). This applies to all neighbors u, v, by (31).
Hence A.{(u,n) ~— A.(u,n+1).
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3 Leader Election and Spanning Trees

3.1 A leader election algorithm

The sites of a network are frequently supposed to elect one site as their leader.
In case the leader site crashes, a new leader must be elected. The sites are given
unique names to this end (e.g., integer numbers) and a total order is assumed
on those names.

pending

sort  site var X, y,z:site
sort state : site x site xy e U-—o xW*y
const U : set of sites Wiu Wo=U
const V,W : set of states V={uulue U}

< :total orderon U Mx,y} = W(x) x{y}

fct M state — set of states

Figure 3.1. Basic leader election

Figure 3.1 gives a distributed algorithm for the election of a leader in any
connected network. Initially, each site is pending and assumes its own name as a
candidate for the leader. In later states, a pending site holds a better candidate,
i.e., one with a larger name. Generally, a pending site u together with its actual
candidate v is represented as a state (u,v). Upon pending with v, u informs
each neighbor in W(u) about v by action a(u,v) and then becomes updating.
An wupdating site u with its actual leader candidate v may receive a message
(u,w). In case the newly suggested candidate, w, does not exceed v, the site u
remains updating with v (action b(u, v, w)). Otherwise u goes pending with the
new candidate w (action c{u,v,w)) and continues as described above.

A message (w,v) € M{(u,v) takes the form of a state, with u informing the
site w about v as a candidate for the leader. There may occur multiple copies of
identical messages (as in case of communication protocols). This can easily be
fixed, by extending each message with its sender.

Given a connected network with a finite set U of sites and a total order <
on U, the algorithm terminates with updating all pairs (u,w), where u € U and
w is the maximal element of U.
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Two neighbors ug,u;1 of a site w may both be pending with the same candi-
date, v. Concurrent occurrences of a(ug,v) and a(u;,v) then yield two identical
messages {(w,v). This does not perfectly meet the formalism of the Appendix,
which disallows more than one copy of a token. To fix this problem, either in-
clude the sender as a further component to each message, or canonically extend
the formal model to cover multiple occurrences of tokens, as suggested in e.g.
[Weber et al 98].

3.2 Property to be proven

The crucial property to be proven is a typical liveness property (in the tempo-
ral logic framework, c.f. Sect. 2.3): Each run terminates with each agent being
informed about the leader’s number. Using the leads-to operator already used
in (11), the initial state sx of X5, the maximal agent maz and the formula

7 = updating.U x {max} A pending = § A messages = § (33)
we have to show

S5y, P T. (34)

As explained in Sect. 2.3, (34) states that in each interleaved run so Bl .,
each occurrence s; of sy is followed by a state sg4; at which = holds.

Proof of (34) can considerably be eased by help of concurrent runs. This
notion will be considered in the following.

3.3 Concurrent runs

In its essence, a concurrent run consists of the transition occurrences of an in-
terleaved run, partially ordered by their causal dependencies. As an example,
Fig. 3.2 shows a network of three agents, U = {1,2,3}. Arrows indicate the

Figure 3.2.

neighboring relation. Representing each occurrence of o with valuation £ = u
and y = v by auv and each occurrence of b or ¢ with valuation z = u,y = v
and z = w by buvw and cuvw, respectively, one of the interleaved runs of the
instantiation of Y3 1 by the above network is

all-a22-a33-c113-b221-b331-al3-

b132-c223-223-b133-b233-b333. (35)
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It describes the initial occurrences of transition a for all three agents, followed
by agent 1’s adoption of the better candidate, 3, and the other two agents’
deletion of agent 1 as a candidate for the leader. Then agent 1 suggests 3 as a
better candidate, adopted by 2, and deleted by 3.

Figure 3.3 shows the corresponding concurrent run. Its elements are ordered

a11 %(m 13 al3 \b132 b133
a22 b221 223 a23 b233
. < N
a33 » b331 b333
Figure 3.3.

from left to right, with left the earlier and right the later transition occurrences.
The upper, middle and lower horizontal lines show the “lifeline” of the agents
1,2 and 3, respectively. The remaining arcs denote causal precedence due to
messages.

Different interleaved runs may correspond to the same concurrent run; each
total extension of the partial order of a concurrent run is an interleaved run, and
every interleaved run can this way be obtained from a concurrent run.

As a further step, to ease construction of concurrent runs and to support
formal reasoning, it is worthwhile to include the corresponding local states in
between each neighboring transition occurrences, as well as before the minimal
and behind the maximal elements. Figure 3.4 shows the respective extension
of the concurrent run in Fig. 3.3. For a place p, puv denotes a local state, with
token (u,v) at p. Shorthands for places, as introduced in Fig. 3.4, will be applied
in the rest of this chapter.

Unordered local states may arise together in an interleaved run. Even more,
each maximal set of pairwise unordered local states constitutes a global state of
the corresponding interleaved runs.

3.4 Progress on concurrent runs

Here we consider liveness properties that are based on concurrent runs. In anal-
ogy to the leads-to operator of Sect. 2.3, a formula

p—rq (36)

(p causes q) states for each concurrent run K: If p holds at a global state sq of K
then there exists a state s1, reachable from sy in K, where ¢ holds. Stated differ-
ently, (36) holds in a concurrent run K iff there exists at least one interleaving
of K (as defined in Sect. 3.3), at which p — ¢ holds.
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ci2

Att—>ait—/B11—¢113— A13—> a13—> B13— b132— B13—— h133—> B13
ci3
c23 C13
c21

A22-» a2 B22—» h221— B22 C223— A23— a22— B23~+ b233— B23

C31 C33

oz
N N\

A33- a33— B33—» b331— B33 b333 B33

A : pending
B : updating
C : messages

Figure 3.4.

To complete the definition, p <+ ¢ is said to hold in a system X iff p — ¢
holds for each concurrent run of X.

As a first example, assume any instantiation of U and W in Fig, 3.1 (which
then fixes V and M). Then a token (u,w) at pending enables the transition a in
mode z = u and y = w. There exists no other transition that could engage the
token; hence a(u,w) will occur. With shorthands of Fig. 3.4 this is written

a{u,v)

A(u,w) = Bj.u. (37)

Replacing the causes operator < by the leads-to operator — would (37) render
valid in X5 ;. But (37) can be embedded into a contezt. Assume a global state s
in a concurrent run K where A.(u,w) A B1.U \ {u} holds. Again, s enables
a(u,w), among many other transitions, but in K we consider occurrence of
a(u,w), obtaining
ef{u,w)
A(u,w) — B.U. (38)
AB, .U\ {u}

B; .U\ {u} is the contezt of (38). Replacing — by + in (38) in general invalidates
the formula in X5, as there may be an interleaving with a transition that
invalidates B;.U \ {u} before a(u,w) would occur.

As a second example, let s be a global state such that B1.UAC = N # 0
holds at s, with shorthands B and C as in Fig. 3.4 and some set N C M(U)
of messages. N # () implies some u,wp € U with C.(u,wp), and B,.U implies
some v € U with B.(u,v). With the valuation ¢ = u, y = v and 2 = w, the state
s enables b(u,v,w,) or c(u,v,wp). There may be some other message (u,w)
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in C which u engages in (instead of engaging in wp). But it is guaranteed that
b{u, v, w) or ¢(u,v,w) will occur, for some w € U. This is graphically represented
as

ByU
\\s“ CcN
o
ByU (39)
C=N=O2
o
%,
&
A.(uw)
B,U\{u}

3.5 Fundamental state properties

An obvious place invariant implies that each site is either pending or updating:
A +B; =U. (40)

Furthermore, a site v, already knowing the leader, is related to its neigh-
bors by a property derived from a trap. To this end, assume a state s and
two neighboring sites u,v € U, and s | B.(u,max). s has been reached
by occurrence of a{u,max}. This action also produced C.(v,max). With s
considered as (a new) initial state, an initialized trap yields the inequality
A.(u,max) + C.(v,max) + A.(v,max) + B.(v,max) > 1. Together with (40) this
yields the valid propositional formula

B.(u,max) V C.(v,max) V A.(v,max) V B.(v, max). (41)

Intuitively formulated, each neighbor of a site already updating with the leader
is also aware of the leader, or a corresponding message is pending.

3.6 A fundamental progress property

A weight function f will be required, that assigns each state (u,v) its “better”
candidates. So, for all u,v € U let

Fflu,v) ={(u,w)|weUAw >uv}. (42)

Obviously, f(u,v) = § if v = max.

Now, let us consider a state in which all sites are updating (i.e. B;.U), f(B) =
M for some M # 0 and C = N for some set of messages N. In such a state
some site not yet knowing the leader will eventually find a better candidate or
will consume one of its pending messages. Thus, eventually a state in which all
sites are updating and (C C Ny A f(B) = M)V f(B) C M will be reached. This
is verified by the proof graph of Fig. 3.5. The proof graph’s nodes are justified
as follows:
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Let ¢ =By.U A

By.max blu,v,w) 5 o
CcN
f(B) =M
1) > 2y CAUNW. g cEUM) L 4, g0
C=N C=N#@ By.UNu) fB) cM  {{C <N Ai{B) =M)
f(B) =M = @ (8) =M Bo.max viB) M)
A.(u,w)
wW>v
Figure 3.5. Proof graph for X3,
node 1: B;.max, f(B) # @ and the graph’s connectedness imply
neighboring sites v and w, B.(u,max), and B.(v,i) with
i < max. Then C.(u, max) by (41) and (40).
node 2: C # 0 implies some C.{u,w), and ¢ implies some B.(u,v).
This enables the occurrence of b(u, v, w) or ¢(u,v,w).
node 3: by the occurrence rule.

nodes 4 and 5: propositional logic.

3.7 Proof of (34)
The proof graph in Fig. 3.5 shows

'Z = ©
C=N ((CCcNAf(B)y=M). (43)
f(By=M#0 Vf(B) C M)
C may shrink finitely often only, hence finitely many iterations of (43) yield
¥ = @
C=N f(Byc M. (44)
fB)=M#£0
A remaining message is cleared by
v = @
C=N CcN , (45)

f(B)=10 f(B)=0

as C.(u,v) A f(B) = @ implies C.(u,v) A B.(u, max), hence enables b(u, v, max).
The following proof graph now proves (34):
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sy V) | 2BV , 30 C L 49 C , 5) @ , 6)C=0
C=N fB) = @ C=0 B.U x {max}
f(B) =M = @& f(B) = @ A=2

Its nodes are justified as follows:

node 1: by the occurrence of a(v,v) for each v € V.
node 2: propositional reasoning.

node 3: finitely many iterations of (44).

node 4: finitely many iterations of (45).

node 5: by definition of ¢ and f.

3.8 A variant of the algorithm

The above algorithm terminates with each site holding the leader’s name. As
a variant, each site will now be informed about its distance to the leader and
about a distinguished neighbor closer to the leader. A site then may effectively
communicate with the leader along its distinguished neighbor. The respective
paths to distinguished neighbors form a minimal spanning tree in the underlying
network. Figure 3.6 gives the algorithm.

pending

sort  site var i, }:nat
sort  state = site x site x (nat U {0}) var Xy, z:site
const L, r:site Xy € U—axW*y
const U : set of sites Wiu Wo=U
const V:setof states re U
const W : set of (sites x sites) le U
£ : total order on U V={ulw)tu e U\{}}
fct  N:site x nat — set of states NGy, = W) x {y} x {i}

Figure 3.6. Shortest distance to a root

Initially, the leader r is pending with itself as a path to the leader candi-
date, and distance 0 to the leader. All other sites are initially updating with the
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unspecified leader candidate L and infinite distance. In later phases, a pending
token (u,v,n) indicates that there is a path of length n from u along v to the
leader. A pending site u forwards its actual distance n to all its neighbors (by ac-
tion a(u,v,n)) and then turns updating. An updating token (u,v,n) may receive
a message (u,w,m). In case the reported distance m of w to the leader would not
improve the actual distance n, the site u remains with distance n along neighbor
v (action b(u, v, w,n,m), with ordered set (,y, z,1, j) of variables). Otherwise u
goes pending with distance m + 1 along neighbor w (action ¢(u,v,w,n,m), with
ordered set (z,y, 2,1, j) of variables).

This algorithm can be generalized to a set R C U of leaders in the obvious
way: Initially, pending carries {(r,7,0) | r € R} and updating {{u,L,w) | u €
U\ R}. The algorithm then terminates with updating triples (u,v,n), where n is
the minimal distance to a leader and v the name of a neighbor closer to a leader.

4 Load Balance on Rings

A service site is intended to execute tasks, provided by the site’s environment.
At any reachable state a service site has its actual workload, i.e., a set of tasks
still to be executed. The workload increases or decreases due to interaction with
the environment.

Now assume a set of service sites, each one autonomously interacting with its
environment. Their individual workload may be heavy or low in a given state,
and it is worthwhile to balance them: A site with heavy workload may send some
tasks to sites with less heavy workload. The overall workload in a set of service
sites is balanced whenever the cardinality of the workload of two sites differs at
most by one.

A distributed algorithm is constructed in the following, organizing load bal-
ancing in a set of service sites. The communication lines among sites are assumed
to form a ring. Each agent u alternately sends a workload message to its right
neighbor, r(u), and a task message to its left neighbor, {(u). A workload mes-
sage of u informs r(u) about the cardinality of the actual workload of u. A task
message of u depends on the previous workload message of I(u): If this message
reports less tasks than u has, the next task message of u transfers one of u’s
tasks to I(u). Otherwise, the next task message of u transfers no task to I(u).
Intuitively formulated, a site u forwards a task to [(u) whenever the workload
of u exceeds the workload of I(u).

4.1 A distributed load balance algorithm

Figure 4.1 shows a load balance algorithm with fixed workload: The overall
number of tasks remains constant. Each state of a site u is represented as a pair
(u,n), with n the cardinality of u’s actual workload. The task transfered from v
to I(u) by a task message (I(u), 1), is not represented itself.

With the ordered set (z,%,7) of variables, action inform right describes
communication with right neighbors: A site u with n tasks with action
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inform right(u,n, m) receives a task message (u,m) (with m = 0 or m = 1)
from r{u), updates its actual workload, n, and returns a corresponding work-
load message (r(u),n +m) back to r(u), indicating that v has now n + m tasks.
With the same ordered set of variables, actions send left no task and send left

receive inform

from ight satel Jﬂﬂ.l (0,0}

(x.i) workload
message

i)

igj
L"""‘-}Véleft no task

(I (x).1) o e ()
L=1" send left one task

sort site var i,j:nat
S0 alloc = sitex nat var xy:site

¥V xe U3iyie nat: (xi)e V
const U : set of sites VxVy3Ine naty=r(x)
const V:setof alloc L (r(x)) =x
fet 1, r:site — site

Figure 4.1. Distributed load balance

one task describe communication with left neighbors: A site u with n tasks re-
ceives a workload message (u,m) from [(u), compares n and m, and returns a
task with action send left one task(u,n,m) in case its actual workload, n, ex-
ceeds I(u)’s reported workload, m. Technically, this is denoted by the inscription
i > j, which denotes that transition send left one task may only occur in a mode
where the value assigned to 7 exceeds the value assigned to j. Otherwise, u sends
a task message with send left no task(u,n,m), to [{u), containing no task.
Initially, each site u informs r(u) about its actual workload.

4.2 Decisive properties of the algorithm

The above algorithm never terminates; each run is infinite. The overall workload
is eventually balanced, as described above. Two cases may be distinguished,
depending on the overall workload w := Zyev,v and the number |U] of sites:
In case w is a multiple of |U|, a state will be reached where transition send left
one task remains inactive forever, and statel, state2, and stated together contain
the tokens (u,n) withu € U and n = !%T Otherwise a state will be reached where
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for all tokens (u,n) and (v, m) in statel, state2, and stated holds jm—n| < 1, and
this remains valid forever. The algorithm behaves quite regularly: With initially
V at statel, it evolves exactly one concurrent run, This run is strictly organized
in rounds: All sites concurrently execute action inform right and produce a
workload message for their respective right neighbor. Then all sites concurrently
execute send left no task or send left one task, thus producing a task message
for their respective left neighbor. Finally, receive from right completes a round.

4.3 Properties to be proven

Figure 4.2 is a redrawn version of the distributed load balance algorithm. We
have to show that the overall workload remains constant, eventually is balanced,
and henceforth remains balanced.

o) — (x4 i) (1)

{xi)

{1 (x),0) (x,i-1)

(L 1) e o)
c
sort  site var i, j:nat
sort  alloc = sitex nat var xy:site
VvV x e UJqie nat: (xi)e V
const U : set of sites Vx ¥y 3 ne naty=rh(x)
const V:setofalloc L{rp) =x

fot L, r:site > site

Figure 4.2. Renamed distributed load balance

A formal representation of those properties in terms of Z4 o can be based on
the following functions. For any place p € {4, B,C, E} and any site u € U, let

0 iff ~-p1-U
n iff p.(u,n)’

o(p,u) := {
o(u) := Lpeqa,B,0,8}y 0(p,u), and (46)

o= Zyev o(u).
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These functions describe the workioad of site u at place p, the entire workload
of u and the overall workload in the system, respectively. The initial overall
workload is & iff ay, , = 0 = k. A balanced state meets the predicate

balanced :=u,v € U = |o(u) —o(v}| < 1. 4n
So we have to show the state property
ZioEo=k (48)
and the progress property
Y42 E ap > balanced. (49)

Furthermore, we have to show that all states reachable from a balanced state
are balanced, i.e., for each step r 4 s,

balanced(r) — balanced(s). (50)

4.4 Place invariants

We have two quite obvious place invariants. First, each site is always in one of
the three states of 541 (together with its token load): A; + By + Cy = U (with
U = V; according to the specification of Fig. 4.2). Hence in particular for each
u € U holds

Ay l(u) + Brl(u) + Cr.l(u) = 1. (51)

Second, each site is either in the quiet state! or has sent a workload message to
its right neighbor (i.e., is the left neighbor of the first component of a workload
message), or is to receive an update message: A; + r(D1) + Ey = U. Hence for
each u € U follows Ay .l(u) + r(D1).l(u) + E1.l(u) = 1, which in turn yields

Arl(u) + D1u+ By l(u) = 1. (52)

4.5 Further properties of the algorithm

Here we observe and exploit a particular kind of regular behavior of X4 1, that in
a stronger version has been the essence of the phase synchronization algorithm,
X5.9. In each sequential run of X5 5, each reachable state is eventually followed
by a state where all sites are busy. A similar, weaker property holds in Y4 1: In
each concurrent run, each reachable state is eventually followed by a state where
all sites are in their local state state 1. This means that in X4 2 holds the formula
true — ”AA,.U. Generally, a formula p is a ground formula of a system net X
iff true < p holds at X.

Two basic properties are required in the following: the ground formula A,.U,
and an upper bound for the workload of the sender of a workload message. To
start with, we first show:

AU is a ground formula. (53)
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Upon proving (53), observe that all steps starting at A;.U are shaped

Ay olw) AU — w A By.w A Dy.r(u), for some u € U and n € N. Then (53)
follows from Theorem 18.2 and the following proof graph:

1) A1.U ~uAByuADyr(u) =
2) BLUAD,.U <

3) CiUANELU —

4 AU

Its nodes are justified as follows:

1) by occurrence of a(v,n) for all (v,n) e Vv £ u
2} by occurrence of b{v,n,m) or c(v,n,m) forallv e U
3) by occurrence of d(v,n,m) for all v € U.

Second, we show that a workload message tops its sender’s token load:
D.(u,n) = o(l(u)) < n. (54)

(54) is obviously true at the initial state because D = §. Inductively assume a
step r <+ s with r k= (54). Upon proving s = (54) two cases are distinguished:

i. Assume r }£ Dy.u and s = D.(u,n). Then t = a(l(u),n) (by the structure of
the net). Then s |= B.(I(u),n) (by the occurrence rule). Hence s |= B;.l(u),
hence s = —A;.l(u) A ~C1.l{u), by (51). Furthermore, the assumption of
s | D.(u,n) implies s |= D;.u, hence s = —Ey.l{u) (by (52)). Both argu-
ments together imply o(l(u)) < o(B.l(u)). Then s = B.(l(u),n) implies the
proposition.

ii. Assume r = o(l{u)) < n and s ¢ o(l(u)) < n. Then t = c(u,n,m), for
some n,m € N (by the structure of the net). Then s = Ey.(l{u),n} (by the
occurrence rule). Then s = —D;.(u,n) (by (52)), hence the proposition.

4.6 A decreasing weight

A weight function 7 on states will be employed, defined for each state s of Xy 2
by 7(s) =niff s |=

Suevo(u)? =n. (55)

It will turn out that no step increases 7. Furthermore, 7 decreases upon occur-
rence of c{u,n,m), provided m + 1 is smaller than n.

First we show that ¢ does not increase 7: Let r °“ii‘-¥") s be a step. Then
T(r) > 7(s). (56)

In order to show (56), observe that at r holds *) B.(u,n) as well as **) D.(u,m),
due to the occurrence rule. Furthermore, with r = o(l(u)) =aAo(u) =b, at r
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holds b > n by ), n > m by inscription of transition ¢, and m > o(l(u)), by
(*) and (54); hence ***) (@ — b+ 1) < 0. Now,
7(s) = 7(r) — a® = b% + (@ + 1) + (b — 1)? (by the structure of c(u,n,m))
=7(r)—a® - +a®’+2a+ 1+ -2b+1
=7(r)+2(a-b+1)
< 7(r), by ***), hence (56).

c{u,n,m)

(56) can be strengthened in case o(u) > o(l(u)) + 1: Let r ———> s be a step
of X4, with o(u) > o(l{u)) + 1. Then

7(r) > 7(s). (57)
Proof of (57) is a slight variant of the above proof graph of (56): b > a + 1 now

implies {a — b+ 1) < 0. Then the last two lines read 7(r) + 2(a — b+ 1) < 7(r}).
Generalizing (56), no step at all increases 7: Let 7 Lsbea step of 24.5. Then

7(r) > 7(s). (58)

To prove (58), observe that 7(r) # 7(s) implies ¢ = ¢(u,n,m) for some u € U
and n,m € N, by definition of 7 and o, and the structure of X4 . Then (58)
follows from (56).

4.7 Descents

A descent of length k consists of a sequence u,l(u),?(u),..., ¥ (u) of sites,
with token loads decreasing by 1 from u to [(x) and by any number from I*(u)
to ¥+ (), and identical token load of I(u), ..., [*¥(u). More precisely, for any site
u € U and any state s, the descent of u at s amounts to k {written: 6(u) = k)
iff there exists some n € N with

g(u) =n+1,
olt(w))=n @G=1,...,k), (59)
o™ (u)) <n-1.

Figure 4.3 outlines examples.
In general, there may exist states s with undefined descent é{u). Even more,
obviously holds for all states s of 2y 5:

s is balanced iff no site has a descent at s. {60)

In the sequel we will show that large descents reduce to small ones and small
descents reduce the weight 7. Each large descent reduces to a smaller one, as
exemplified in Fig. 4.3.

AUN@) =kAk>2o AU AS(IW) =k - 2. (61)

This proposition follows from the following proof graph:
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before I n=2
S(u)=4

after

n=2
S(1u)=2
Figure 4.3. Reduction of a large descent

1) ALUAS@w) = kAk> 2

2) AJ.UAA(u,n+ 1) AA(P(u),n) G=1,...,k) ANA.(*(u),n - j) —

3) BL.UADy.UA B.(u,n+ 1) A B.(li{u),n) (i = 1,...,k) A D.(u,n) A
D.(l(w)n) (i =1,...,k—1) AD.(¥u),n -~ j) =

4) CLUAELUNC.(Iiu),n) G = 1,..., k—1) AC.(* (), n— ) AE-((u), 1)A
E(i),0) (i=2,... k) <

5) A UNA. (), n+ DAA (L (uw),n) (i=2,...,k—1) ANA(¥(u),n-1) =

6) ALUAS(I(w) =k - 2.

Its nodes are justified as follows:

node 1: there exist n,j > 1 with the described properties, according to (59)

node 2: by occurrence of {a(v,m) | v € U A A.(v,m)}

node 3: by occurrence of c(u,n + 1,n), b(l’(u),n,n) for i = 1,...,k — 1,
c(l*(w),n,n — j), and b(v,m,m') or c(v,m,m') for all v # I*(u) (i =
0,...,k)

node 4: by occurrence of {d(v,m,m') |v € UAC.(v,m)A E.(v,m')}

node 5: by (59).

Each descent of length 0 reduces the weight 7, as outlined in Fig. 4.4.

o(uf + oL (U)F = 10

before l n=2
8(u)=0

after no descent o(v.ﬁ +o(l (ur))2 =8

Figure 4.4. Descent of length 0
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Formally,
AUAu)=0AT=m 1T <m. (62)
This proposition follows from the following proof graph:

1) AUA6u)=0AT=m>
2) Alu,n+ DAA({u),n~jIAT=m=
3) B.lun+1)AD.(u,n—j)AT< m )
4) T <m.
Its nodes are justified as follows:

node 1: there exist n,j > 1 with the described properties, according to (59)
node 2: by occurrence of a(u,n + 1) and a(l(u),n — j)
node 3: by (56).

Each descent of length 1 likewise reduces the weight 7, as outlined in Fig. 4.5.

—
before n=2 o(uf + o(l (W
{ 8(0) = 1 + o(lRW)P=14

u
after no descent o(u)z; 0(; )
+ ol (u)) =12

Figure 4.5. Descent of length 1

Formally,
A UANSu)=1AT=m< T <m. (63)
This proposition follows from the following proof graph:

1) AAUAS(u)=1AT=m—>

2) AL UANA(uyn+ 1) AA(w),n) A AP (u),n = AT =m <

3) B.(u,n+ 1) AD.{u,n) AB.(l(u),n) AD.(l(u),n - jIAT <m

4) B{u,n+ 1) A D.(u,n) AB.(l(u),n) AD(l(u),n - AT <mAo(u) =
o(l(w) + /\c(l(u)ig’nﬁj)

5) B{u,n+ 1) AD.(u,n) AT <mAa(u)=oc(l(u) + g eyt

6) T <m.

Its nodes are justified as follows:
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node 1: there exist n, j > 1 with the described properties, according to (59)
node 2: by occurrence of a(u,n + 1), a(l(u),n), and a(i?(u),n — 1)

node 3: by (51), and (52)

node 4: by the occurrence rule

node 5: by the occurrence rule, and (57).

The weight 7 is reducible as long as there exists a descent:
T=m=7<mVVu€U:é(u) is undefined. (64)
. This proposition follows from the following proof graph:

)r=mw=
2) AZUAT<m - 3)Vu €U : é(u) undefined
4

4) AUAT<mAJu€eUkeNwith é(u)=k—
5) A UAT<mATueU with §(u) <1<

6) T<m—

7) 7 <mVVu € U: §(u) undefined

Its nodes are justified as follows:

node 1: by (53) and (58)

node 2: propositional logic

node 3: propositional logic

node 4: by | £| fold application of (61)

node 5: by (62) if 6(u) = 0, and by (63) if 6(u) =1
node 6: propositional logic.

4.8 Proof of the essential properties

To show (48), let r 4 5 be any step of Xy 5, and assume o, = k. Then o, = k
follows due to the structure of Xy ;. Finally, (48) follows by induction on the
length of interleaved runs of Xy .

To prove (50}, first consider the case of t = c(u,n,m) for some u € U and
n,m € N. Then at r holds B.(u,n) A D.{u,m) An > m. Furthermore, o(u) > n
by (46) and m > o(l{u)), by (54). Hence o(u) = n and o({{u)) = n -1, as r
is balanced. Then at s holds o{u) = n — 1 and o(l{u}) = n. The workload o(v)
remains unchanged for all v # u. Hence s is balanced, too.

All actions ¢ not involving ¢ do not touch o(u) for any u € U, hence the
proposition.

Proof of (49) requires

ax < balanced (65)

proven by the following proof graph:
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Ay P T=M+T=n1<MSPT=N2 <Ny - ST=Nyp =0

& { ) oS
Yu € U : §(u) is undefined
i
balanced

which is justified as follows: The first implication states that 7 has some value,
m, at the initial state ax. All other nodes in the upper line are justified by (64).
The last implication holds by (60).

In order to show (49), let w be an interleaved run of X4 5. Then there exists a
concurrent run K of X4 5, including all actions of w. K has a reachable, balanced
state, s, (by (65)). Then w has a reachable state, s', such that all actions of K,
occurring before s, are actions of w, occurring before s'. Then Zy2 = 5 > &'
and s’ is balanced by (50), hence the proposition.

5 The Echo Algorithm

5.1 The problem

Given a finite, connected network with a particular initiator site, the echo algo-
rithm organizes acknowledged broadcast of the initiator’s message throughout
the entire network to all sites: The initiator will terminate only after all other
sites are informed.

Figure 5.1 shows one round of messages, sent by the initiator ¢ to all its
neighbors. Messages and receipts are jointly represented in one place. The cen-
tral idea of the echo algorithm is now covered in the step from Fg5 i to Ysa:
Upon receiving the initiator’s message, a neighbor of the initiator forwards the
message to all its neighbors except for the initiator, and remains pending until
receiving messages from all those neighbors. Each site is eventually addressed
in this schema. Each uninformed site u € U receives in general more than one
message, hence u selects one occurrence mode {u,v) of action ¢. In this case, v
is called the parent site of u. The pairs (u,v) with v the parent site of u, form
a spanning tree in the underlying network: For each site u € U there exists a
unique sequence ug . . . U, of sites with ug = u, u,, = ¢ and u; the parent site of
u;—1 {E =1,...,n). A site u is a leaf of the spanning tree if no neighbor of u
elects u as its parent node.

For each pending leaf (u,v), the place messages eventually holds all messages
M (u)—(u,v), hence the leaf becomes informed by occurrence of d in mode (u, v).
The leaves are the first to become (concurrently) informed. Then all sites are
consecutively informed, causally ordered along the spanning tree. Finally, the
initiator’s transition b is enabled, and the waiting initiator turns terminated.

5.2 Properties to be proven

Figure 5.3 provides a redrawn version of the Echo Algorithm of Fig. 5.2. It has
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start . a ) waiting terminated

x Y ~ (xy)

uninformed c pending d informed
sort  site w=w-1

sort message = site x site xy e Uufi) » xW*y
const i:site Wi=U Ui}

const U :setof sites iel

const W :setof (sites x sites) M(x) =W(x) x {x}

fet M, M : site — set of messages M(x) =Mpo-?

var X,y : site

Figure 5.1. The initiator informs its neighbors

start . a waiting terminated

- © ) P )
uninformed c pending informed
sort  site w=w-1
sort message = site x site xy elU ufi} - xw*y
const i:site Wy=U Ui}
const U :setof sites ieV
const W : setof (sites x sites) Mi{x) =W(x) x{x}
fct M, M : site — set of messages Mx) =M~
var X,y : site

Figure 5.2. The echo algorithm



sot  site w=w-1

sort message = site x site xy e Uul} - xw*y
const i:site Wy;=U uli}

const U :setof sites el

const W :setof (sites x sites) M(x) =W(x) x {x}

fct M, M : site — set of messages Mix) =Mt

var X,y : site

Figure 5.3. Redrawn echo algorithm X5 ;

two decisive properties: Firstly, the initiator terminates only if all other sites
have been informed before. In Fig. 5.3, this reads

Ci— G.U. (66)
Secondly, the initiator will eventually terminate, i.e.,
Sy 4+ Cla. (67)

Both (66) and (67) will be verified in the sequel.

There is no straight-forward place invariant or trap that would prove (66).
Nor is there an intuitively convincing proof graph for {(67). Rather, one has to
argue inductively along a spanning tree that yields at place F'.

5.3 Three place invariants

Figure 5.3 has three important place invariants, as given in Fig. 5.4. Two of
them are intuitively quite obvious, representing the “life lines” of the initiator ¢
and of all other sites, respectively.

The equation of I; is A + B + C' = ¢. This implies

Ai+Bi+Ci=1, (68)

hence the initiator is always either at its start or is waiting, or is terminated.
The equation furthermore implies
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a b c d spih Iy I3
A | =i i A M(h)
B ] -1 B
c i c M(c)
D M@ -M@E) M(z) -M(z) D
_(xay) +(II}, y)
~-(y,2) +(y,7)
E -~z Ul E M(E)
F (m,y) —(m,y) Fi F+F
G z ¢ M(G)
I sy i U MU)

Let F=F!and U' = U U {I}

Figure 5.4. Matrix, initial state, and three place invariants of T 3

VeeU:Az+Bz+Cz=0, (69)

hence no non-initiator site ever finds at A, B, or C.
Correspondingly, the equation of I, is E + Fy + G = U. This implies

VeeU:Ex+Fz+Gz =1, (70)

hence each non-initiator is always either uninformed or pending or informed.
The equation furthermore implies

VegU:Ex+Fle+Gz=0, (71)

hence the initiator never finds on E, F, or G.
I, finally, represents the potential messages of the system. Its equation is
M(A) + M(C)+ D + M(E) + F + F + M(G) = M(U'), implying for each
message (y,z) € M(U') the property M(A).(y,z) + M(C).(y,z) + D.(y,z) +
M(E).(y,z)+F.(y,z)+F.(y,z)+ M(G).(y,x) = M.(y, ), which in turn reduces
to
VzelU' VyeW(z):
Az +Cy+D.(y,z)+Ex+ F(y,z)+ F.(z,y) + Gy = 1.

Hence for each message (y, z) holds: Its sender z is still starting or uninformed,
or the message has already been sent but not received yet, or one of y and z
has received the message from z to y, respectively, or the message’s receiver y is
terminated or informed.

(72)

5.4 The pending site’s rooted tree

A further state property will be required, stating that the tokens on F always
form a tree with root 4. This will be formulated with the help of the following
notation:

A sequence ug . ..u, of sites u; € U' is a sequence of F' at a state

siff s = Fu(ui—1,u;) fori=1,...,n, (73)
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For each reachable state s we will now prove the following two properties:

For each F}.u there is a unique sequence ug . . . U, of F with ug = u

and u, =1, (74)
and
the elements of each sequence of F are pairwise different. (75)

Both properties now are together shown by induction on the reachability of
states:
Both (74) and (75) hold initially, as sy, , = F' = §. Now, let r be a reachable
state, let 7 — s be a step of some transition ¢, and inductively assume (74) and
(75) for r.

The case of t = a or ¢t = b implies r(F) = s(F), hence the step 7 - s retains
both (74) and (75) for s. For t = c or ¢t = d let m(z) = u and m(y) = v.

The case of t = ¢ goes as follows: Enabledness of ¢(m) at r now for r im-
plies D.{u,v) and E.u. Then r |= Fj.v, according to the following sequence of
implications:

1. ——> 2, —> 3. —» 4. — 5,
D.(u,v) D.(u,vy -Ew -EvFuw
Eu Eu Eu -Guw
v € Wiu)ve W(u)

Its nodes are justified as follows:

node 1: (71);
node 2: (72) with z = v, y = u;
node 3: (72) with z = u, y = v;
node 4: (70).

Now, 7 |= F}.v and the inductive assumption of (74) imply a unique sequence
v...1 of F at state . Then uv...7is a sequence of F' at state s, because s(F) =
7(F)+(u,v). Together with (70), this implies (74) for s. Furthermore, r = u € Fy
{(by (70)) and u # 7 by {69), hence (75) for s.

Correspondingly, enabledness of d(m) at r now for r implies D.M (u) — (u,v)
and F.{u,v). Then r |= Fy.u according to the following sequence of implications:

1. 2. 3. 4. 3. 6.
DM(u) DM(u) FNn(M(u) FN(M@u) FOM(@u)=0-F.u
—=(u,v) —(u,v) —(u,v) =0-(v,u)) =0
F(u,v) =F.(v,u) -F.(v,u) -F.(v,u)

Its nodes 1 and 2 are justified by (72), nodes 3, 4, and 5 by properties of M.

With r |= —F2.u, for each sequence ug...un of F, ug,...,un # u. This
implies (74) for the state s, because s(F) = r(F) — (u,v). (75) is then trivial,
because s(F) C r(F).
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5.5 Proof of the state property (66)
(66) is indirectly proven in three steps:

i. Assume F # (. Then there exists some w € U’ with F.(w,1), by (74). Then
-C.i by (72).
ii. For all u € U’ we show
Eu— -Ci *

by induction on the distance of u to i: For u = 4, (*) holds trivially, as
-E.i by (71). Inductively assume (*), let v € W(u), and assume E.v. Then
u € W(v), hence -G .u, by (72). Then F;.u or E.u, by (70). The case of Fy.u
implies F # @, hence —~C.i by (i). The case of E.u implies ~C.i by inductive
assumption,

iii. Ci— E=F =49, by (i) and (ii). Then (66) follows from (70).

5.6 Progress from uninformed to pending

Here we show that each uninformed site u € U will eventually go pending. In
terms of Xy 3 this reads:

Let U=V UW,V #0, W # 0. Then

EVARW oV oy (BEV —vAFLW +v). (76)

This property holds due to the following proof graph:

1) EVARWAVAOAW #£0—
2) EVAF,.WAex.veV Aex. w € WU {i} with D.(v,w) —
3) EV—-vAFR.W+v

Its nodes are justified as follows:

node 1: Connectedness of U’ implies some neighbors v, w such that E.v, and
Fy.w or w = ¢. Furthermore,
i. Fy.w implies w € U by (71), hence ~A.w by (69). w = i and
W # 0 imply some F.(u,i) by (74), hence —A.i by (72).
ii. E.vimplies v € U by (71), then -C.v by (69).
iii. Fj.w implies ~E.w by (70) and w = ¢ implies ~E.w by (71).
iv. E.v implies ~F;.v by (74), hence -~ F.(v,w).
v. Let ug...u, be a sequence of F with ug = w and u, = 4,
according to (74). The case of n = 1 implies u; = % # v, hence
-F.(w,v). Otherwise, Fy.u;. Then E.v implies u; # v by (72).
Hence —F.(w,v).
vi. E.v implies ~G.v by (70).
Now (i),...,{vi), and (72) imply D.(v,w).
node 2: by the occurrence of ¢(v, w).
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5.7 Progress from pending to informed

Here we show that each pending site will eventually be informed. In terms of
253 this reads:

Let U=V UW with V # 0. Then
FVAGW 9V v(Fi.V —vAGW +).

This property holds due to the following proof graph:

1) AVAGWAVUW =UAV #0-
2 ex.veVexwel:

FRVAGWAVUW =UAD.(M@) - (v,w)) =
S exveVexweUwith RV ~-wAGW +o.

(77)

Its nodes are justified as follows:

node 1: Let ug .. .u, be a maximal sequence of F'. This exists due to (74) and
(75). In case u; is the only neighbor of ug, D.(M(up) — (uo,u1)) =
D.((uo,u1) — (ug,u1)) = D.§ which holds trivially. Otherwise, let
(uo,v) € M{ug) — (uo,u;). Then the following six properties hold:
i. (74) implies some F.(w,1), hence —A.f by (72}, hence =A.w in
case i = v. Otherwise, v € U, hence -A.v by (69).
ii. up € U by construction, hence -C.up by (69).
iii. £E=0by (70) and VUW = U, hence ~E.v.
iv. Maximality of ug . ..u, implies - F.(v,up).
v. F.(ug,u1) implies = F.(ug,v) as the path from uo to ¢ is unique
by (74).
vi. F}.ug implies -G.ug.
Now (i),...,(vi), and (72) imply D.(ug,v). This argument applies to
all (ug,v) € M(ug) — (uo,u1), hence D.M (ug) — (ug,u1).
node 2: by the occurrence of d(v,w).

5.8 Proof of the liveness property (67)

{67) is now proven with the help of the proof graph of Fig. 5.5. Its nodes are
justified as follows:

node 1: definition of sg,
node 2: by the occurrence rule
node 3: by the occurrence of c{u, i) with u € M (%)
node 4: |V|-fold application of (76)
node 5: |U|-fold application of (77)
node 6: we distinguish three cases:
i. u € M(¢) implies u # ¢, hence —~A.u by (69)
ii. G.U implies E = F = § by (70) and (71). Hence ~E.u, ~F.(i,u),
and —F.(u,1).
iii. ¢ € U implies =G.i by (71).
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Veyeq —

2E=UrAic 3D,

3)E=UADMj) cSU) |
HEVAFWAW= GAVUW=U
SFU

6)G.U

7) D.M() ——

8) DN() A Bic 20 |
9)Ci <

Figure 5.5. A proof graph for sg, , — C.i

Now, (i), (ii), and (iii) with (72) imply D.(i,u) V C'4i. This argument
applies to all (i,u) € M(i), hence D.M(i) v Ci.

node 7: =C.i by (72); ~A.i because sy, , = —D.M(i), the only initial step
is 85, , — B.i, and {B.,C.4} is a trap, initialized after this step.
Hence the proposition by (68).

node 8: by the occurrence rule.

Appendix
6 The Concept of System Nets

The conceptual idea of system nets is quite simple: Each place of a system net
X represents a set of local states and each transition of X' represents a set of
actions. The sets assigned to the places form the underlying universe:

6.1 Definition Let X be a net. A universe A of X fizes for each place p € Py
o set Ap, the domain of p in A.

An actual state fixes for each place a subset of its domain. Some algo-
rithmshave reachable states with multiple occurrences of elements. Formally, an
actual state then fixes a multiset. For the sake of simplicity we stick to proper
subsets in the following. The canonical generalization to multisets is given in
[Weber et al 98]. An action correspondingly fixes the degree of change caused by
its occurrence:

6.2 Definition Let X be a net with a universe A.

i. A state a of X' assigns to each place p € Py a set a(p) C Ap.
it. Let t € Ts. An action m of t assigns to each adjacent arc f = (p,t) or
f=(tp) asetm(f) CA.
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Enabledness and effect of actions, and the notion of steps, are defined as
follows:

6.3 Definition Let X be a net with some universe A, let a be a state, lett € Ty,
and let m be an action of t.

i. m is enabled at a iff for each place p € *t, m(p,t) C a(p) and for each place

p€t®, (m(t,p) \m(p,t)) C Ap \ a(p).
it. The state eff(a,m), defined for each place p € Ps; by

a(p) \ m(p. 1) Fpest\e,

. Jalp)um(t,p) iffpeto\*t,

*B@mE) = () \mp, ) Um(t,p) iffpetnct,
a(p) otherwise,

1s the effect of the occurrence of m on a.
iii. Assume m is enabled at a. Then the triple (a,m,eff(a,m)) is called a step

of t in X, and usually written a > eff (a,m).
Steps may be described concisely by means of a canonical extension of actions:

6.4 Proposition Let T be a system net, let t € Tx, and let a "> b be a step of
t. Extend m by m(r,s) := @ for all pairs (r,s) of net elements which form no
arc of the net. Then for all places p € Px, b(p) = (a(p) \ m(p,t)) Um(t,p).

A net with a domain for each place and a set of actions for each transition
is furthermore equipped with an initial state:

6.5 Definition A net X is a system net iff

i. For each place p € Py, a set Ay is assumed (i.e., a universe of ),
1. for each transition t € Tx, a set of actions of t is assumed,
i1i. a state ayx is distinguished, called the initial state of X.

7 Interleaved and Concurrent Runs

Interleaved runs of system nets can be defined canonically as sequences of steps.

7.1 Definition Let X be a system net and let gy := ax.

i. Fori = 1,...,n assume steps a;—1 BULY of X such that no action is
enabled at a,. They form a finite interleaved run w of X, written ag —
ma Map, . . .
a3 —>...—a,. Bach i€ {0,...,n} is an index of w.
ii. Fori=1,2,... assume steps a;—1 —>a; of X. They form an infinite inter-
leaved run w of X, sometimes outlined ag a2 ... Each i€ N is an

index of w.
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Reachable steps, states and actions are defined as follows:

7.2 Definition Let 2 be a system net.

i. A step a—>b of ¥ is reachable in X iff there exists a finite interleaved run
ax a1 LB ag— ... 2 an-1 —2ap With Gn_1 —an = a—b.
1. A state a of X is reachable in X iff a = ay or there exists a reachable step
formed b a.
ii. An action m is reachable in X iff there exists a reachable step formed a—>b.

Concurrent runs are now defined in two stages: Firstly, each action m is
assigned an action net, representing the action’s details in terms of an inscribed
net. In a second step, those nets are “glued together”, forming a concurrent run.

7.8 Definition A state of a system mnet X is contact free iff for each t € T's;
and each action m of t holds: if for each place p € *t, m{(p,t) C a(p), then for
each place p € t*, (m(t,p) \ m(p,t)) C 4, \ a(p).

In the following we stick to system nets where each reachable state is contact
free.

7.4 Definition Let X be a system net, let t € Tx, let m be an action of ¢t,
and let N be an injectively labeled net with Ty = {e}. Furthermore, assume
(e) = (t,m), I(*¢) = {(p,a) | p € *t, anda € m(p, 1)}, Ue*) = {(p,0) | p €
t*, and a € m(t,p)}. Then N is an action net of X' (for m).

7.5 Definition A net K is called an occurrence net iff

i. for eachp€ Py, |°p|<land|p*| <1,
it. foreacht € T, |*t| > 1 and |t*| > 1,
4. the transitive closure Fk" of Fx, frequently written <, is irreflezive (i.e.,
21 FxxoFk ... Fgx, tmplies 11 # z,,),
. for eachz € K, {y |y <k z} is finite.

7.6 Definition Let X be a system net and let K be an element labeled occur-
rence net. K is a concurrent run of X iff

i. in each concurrent state a of K, different elements of a are differently labeled,
ii. for each t € Tk, (*tUt®, {t},*t x{t} U {t} x t*) is an action net of X
iii. I({p € Px|p® = 0}) enables no action of X.

8 Structures and Terms

System nets have been represented in Sections 1-5 by means of sorted terms. Such
terms ground on structures. This section provides the formal basis for structures
and terms.

We first recall some basic notions on constants and functions:
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8.1 Definition Let A;,..., Ay be sets.

i. Let a € A; for some 1 < 1 < k. Then a is called a constant in the sets
Ajy,...,A; and A; is called a sort of a.

i. Fori=1,...,n+1let B € {A,... ,Ar}, and let f : By x ...x B, =
Bpt1 be a function. Then f is called o function over the sets Ay,..., Ak.
The sets By,... , By, are the argument sorts and B, is the target sort of
f. The n+ 1-tuple (Ba,... ,Bnt1) is the arity of f and is usually written
By x ...x By - Bpy1.

A structure is just a collection of constants and functions over some sets:

8.2 Definition Let Ay,..., Ay be sets, letay, ... ,a; be constants in A, ..., Ag
and let fi,..., fn be functions over Ay,...,Ax. Then

A= (A1,..., Agsay,... e f1y ooy fm) (78)

i$ a structure. A;,...,Ar are the carrier sets, ai,...,a; the constants, and
fi,-.., fm the functions of A.

The composition of functions of a structure can be described intuitively by
means of terms. To this end, each constant ¢ of a structure A is represented
by a constant symbol a and likewise each function f of A by a function symbol
£. (This choice of symbols is just a matter of convenience and convention. Any
other choice of symbols would do the same job). Furthermore, terms include
variables:

8.3 Definition Let A = (A;y,... ,Ag;a1,... a1 f1,... , fm) be a structure.

1. Let Xq,..., Xy be pairwise disjoint sets of symbols. For z € X;, call A;
thesort of z (i = 1,... k). Then X = X1 U ... U Xy is a set of A-sorted
variables.

ii. Let X be a set of A-sorted variables. For all B € {A,, ..., A;} we define the
sets Tg(X) of terms of sort B over X inductively as follows:

(a) X; CTa,
(b) for all 1 < i <1, if B is the sort of a; then a; € Tp(X).
(¢) For all 1 < i < m, if By x ... x B, — B is the arity of f; and if
t; €T, (X) (=1,...,n) then £(t1,... ,t,) € Tp(X).
wi. The set To(X) := T4, (X}U...UT4, (X) is colled the set of A-terms over
X.

In the following we always assume some (arbitrarily chosen, but) fixed order
on variables. Generally we use the following notation:

A set M is said to be ordered if a unique tuple (mg,...,m) of pairwise
different elements m; is assumed such that M = {my,... ,m;}. We write M =
(mq,...,myg) in this case.

Fach term u over an ordered set of sorted variables describes a unique func-
tion, val®, the valuation of u:
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8.4 Definition Let A be a structure and let X = (z1,... ,2y,) be an ordered set
of A-sorted variables. Fori =1,...  n let B; be the sort of z; and let u € Tp(X)
for any sort B of A. Then By x ... x B, is the set of arguments for X and the
valuation of u in A is a function val® : By X ... %X B, — B, which is inductively
defined over the structure of u:

a; fu=uz; for1 <i<n,
a if u=a for some constant a of A,
val®(ay,... ,an) = { f(val¥(ay,... ,a,),... ,val%(a1,... ,ay))
if u=£f{uy,...,up) for some function
f of A and terms uy, ... ,ux € Ta(X).

8.5 Definition Let A be a structure.

i. The set TA(D) consists of the A-ground terms and is usually written T 4.
ii. For each u € T4 of sort B, val® is the unique function val* : § — B, i.e.,
val® indicates a unique element in B. This element will be denoted val®.

9 A Term Representation of System Nets

Based on structures and terms as introduced in the previous section, a represen-
tation of system nets is suggested in the following, as used in Sections 1-5. The
representation of a transition’s actions is the essential concept. To this end, each
transition t is assigned its set M; of occurrence modes. Each occurrence mode
then defines an action. A typical example was

g(x.y) C (79)

Assume the variable z is of sort M, y of sort N and z ordered before y. Then
M x N is the set of occurrence modes of ¢. Each pair (m,n) € M x N defines an
action mn of ¢, gained by substituting m and n for x and y in the adjacent terms.
Hence (4, t) = {m, f(m)}, mn(B,t) = {(m,n)} and mn(t,C) = {g(m,n}}.

The syntactical representation of term-based system nets reads as follows:

9.1 Definition Let X be a net and let A be a structure. Assume

i. each place p € Py is assigned a carrier set A, of A and a set ax(p) C Ty,
of ground terms,
#. each transition t € T is assigned an ordered set X, of A-sorted variables,
iii. each arc f = (t,p) or f = (p,t) adjacent to a transition t is assigned a set
fc T, (X:) of Ap-terms over X;.

Then X is called term inscribed over A.
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In graphical representations, the places p and the arcs (r,s) are inscribed
by as(p) and 78, respectively. Occurrence modes and actions of a transition are
defined as follows:

9.2 Definition Let X be a term inscribed net and let t € T, be a transition.

i. Let {z1,...,2zy) be the ordered set of variables of t and let M; be the sort of
z; (i=1,...,n). Then My := My x ...x My is the set of occurrence modes
of t.

ii. Let m € M,. For each adjacent arc f = (p,t) or f = (t,p) and different
u,v € f assume val®(m) # val’(m). Then M is an action of t, defined by

m(f) = {val*(m) | u € f}.

The action mn discussed above is in fact an action of the transition (79). A
term-inscribed net obviously represents a system net:

9.3 Definition Let X be a net that is term-inscribed over a structure A such
that for all p € Ps and all different u,v € ag(p), val® # val”. Then the system
net of X consists of

— the universe A,
— for all t € Tz, the actions of t as defined in Def. 9.2(ii),
~ the initial state a, defined for each place p € Px by

a{p) := {val* | u € ax(p)}.

10 Set-Valued Terms

The formalism of Sect. 9 is adequate for many system nets. But there exist more
general system nets requiring set-valued terms. In order to specify this issue more
precisely, assume a system net X' with a transition ¢t € Ty, an action m of ¢, and
a place p € *tUt* with domain A. Then m{p,t) or M(t,p) is a subset of A, with
each single term u € pf or u € fp contributing a single element, val®(m) € A.
Now we suggest single terms v that contribute a subset val”(m) C A. More
precisely, set-valued constant symbols, set-valued function symbols, and set-valued
variables will be used.

For the sake of uniform management of all cases, the evaluation val*(m) of
terms u will be slightly adjusted, yielding a set setval“(m) in any case:

10.1 Definition Let X be a term inscribed net over a structure A.

i. Let p € Py and let u € ax(p). Then

u {val“} if the sort of u is A,
setval” = . )
val® if the sort of u is P(A,).
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i. Let f = (p,t) € Fy or f = (t,p) € Fy, let u € f, and let m be an argument
of X;. Then

u {val*(m)} if the sort of u is A,
tval =
setval®(m) {val“(m) if the sort of u is P(Ap).

The actions of a term inscribed net with both element-valued and set-valued
terms is now defined as follows:

10.2 Definition Let ¥ be a term inscribed net, let t € T, and let m € My
such that for each adjacent arc f = (p,t) or f = (t,p) and different u,v € f
we have setval“(m) N setval®(m) = @. Then ™M is an action of t, defined by

M(f) = Uye7 setval®(m).

10.3 Proposition Let X' be a term inscribed net, let t € Tx, let m be an action
of t, and let a be a state of X. For all (r,s) € Fx let 73 := 0.

i. m is enabled ot a iff, for each p € Py, Uue-p—tsetval"’(m) C a(p) and
(Uuep setval®(m) \ Uyegz setval“(m)) Na(p) = 0.

i. Let a = b be a step of £. Then for each p € Px, b(p) = (a(p) \
Uuest setval“(m)) U U, ez setval®(m).

The system net of a term-inscribed net with both element-valued and set-
valued terms is defined as a conservative extension of the corresponding notion
in Sect. 9.3 for element-valued terms:

10.4 Definition Let X be a net that is term-inscribed over a structure A, such
that for all p € Px and all different u,v € ax(p) holds setval® N setval® = §.
Then the system net of X consists of

~ the universe of A,
— for all t € Tx, the actions of t as defined in Def. 10.2,
~ the initial state a, defined for each place p € Ps; by a(p) := Uue‘w(p) setval”.

We are now prepared to define schemata for system nets: a system schema
is a term-inscribed net with the underlying structure not entirely fixed. Thus,
a system schema represents a set of system nets. A representation of a system
schema declares some sorts (domains) and some constants, functions, and vari-
ables over standard sorts, declared sorts, cartesian products, or powersets of
sorts. We furthermore assume standard sorts such as the natural numbers nat
or the truth values bool, together with the usual operations. Some additional
requirements may focus the intended interpretations.

The distributed algorithms of Chapters 1-5 are all represented as system
schemata. This is crucial, as each distributed algorithm is to run on any network
out of a class of networks. Each interpretation of the involved symbols then yields
one concrete network.
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11 First-Order State Properties

Properties of system nets and system schemata are represented in a logical frame-
work. Terms as introduced in Sect. 9 (there used as arc inscriptions) will serve
in a first-order logic, with places of system nets as predicate symbols.

We start with the syntax of formulas over a structure A.

11.1 Definition Let A be a structure, let X be a set of A-sorted variables, and
let P be any set of symbols. Then the set F(A, X, P) of state formulas over A,
X, and P is the smallest set of symbol chains such that for all t € T4(X) and
allp,q e P,

i. pt,p=t, and pCqe€ F(A4 X,P)
. if f.ge F(A X, P) then fAge F(A, X,P) and ~f € F(A, X, P).

In the sequel we employ the conventional propositional symbols V and -3,
and for any set @ = {q1,...,¢n} the shorthands \/ Q for ¢; V...V g,, and A Q
or just @ for ¢4 A ... A ¢,. Furthermore, we write A.us,...,u, as a shorthand
for Aui A ... AN Ay,

Each system schema X' is assigned its set of state formulas. Those formulas
are constructed from the structure of 2/, with the places of X serving as predicate
symbols. The token load s(p) of place p at a state s, as well as the inscriptions
in f of an arc f, are terms that may occur in state formulas.

11.2 Definition Let A be a structure, let X be an A-sorted set of variables,
and let X be a net, term-inscribed over A and X .

1. Each f € F(A, X, Px) is a state formula of 2.
ii. For each state s of X, the state formula § of X' is defined by § := A

/\pgs -p-

pes P

Such formulas are interpreted as follows:

11.3 Definition Let X be a net, let f be a state formula of X, let v be an
argument for its variables, and let s be o state of X.

i. 5,v = f is inductively defined over the structure of f. To this end, let u €
TA(X), p,q € Ps; and g,h € F(A, X, P).
5,0 k= p.t iff setval*(v) C s(p), and
s,v = p =1t iff setval*(v) = s(p).
- s, = pCaqiff s(p) Cs(g)-
~s5,vEgAR iffs,vl=g and s,v = h.
s, v =g iff not s,vl=g.
ii. s }:: f iff, for all arguments u of X, s,u |= f.
it5. X = f iff, for all reachable states s of ¥, s = f.

Apparently, for each state a, a = 4.
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12 Multisets and Linear Functions

State properties can frequently be proven by means of equations and inequalities,
which in turn can be derived from the static structure of a given system net.
Each place of the net will serve as a variable, ranging over the subsets of the
places’ domains,

Each structure 4 canonically induces multisets of its carrier sets and linear
extensions of its functions. Intuitively, a multiset B over a set A assigns to each
a € A a multiplicity of occurrences of a. As a special case, a conventional subset
of a sticks to the multiplicities 0 and 1. For technical convenience we allow
negative multiplicities, too, but proper multisets have no negative entry.

12.1 Definition Let A be a set.

i. Any function M : A — 7 is called a multiset over A. Let A™ denote the set
of all multisets over A.
i. Let M € A™ and z € Z. Then zM € A™ is defined for each a € A by
zM(a) = z - M{a).
i, Let L,M € A™. Then L + M € A™ is defined for each a € A by (L +
M)(a) := L(a) + M(a).
. A multiset M € A™ is proper iff M(a) > 0 for alla € A.

Sets can be embedded canonically into multisets.

12.2 Definition Let A be a set, leta € A and B C A. If A is obvious from the
context, a™ and B™ denote multisets over A, defined by a™(z) =1ifz =a and
a™(z) = 0 otherwise; and B™(z) =1 if £ € B and B™(z) = 0, otherwise.

By abuse of notation we usually write just A instead of A™.
There is a canonically defined scalar product and a sum of functions over
multisets:

12.3 Definition Let A and B be sets.

i. Any function ¢ : A™ - B™ is called o multiset function from A to B.

#. Let ¢ : AT — B™ be a multiset function and let z € Z. Then zp : A™ —
B™ is defined for each M € A™ by zp(M) := z - (p(M)).

iit. Let ,v : A™ — B be two multiset functions. Then ¢ + 1 : A% — B™ s
defined for each M € A™ by (¢ + ) (M) := (M) + ¥(M).

w. QOup denotes the zero-valuating multiset function from A to B, i.e.,
Oap (M) = Qp for each M € A™. The index AB is skipped whenever it
can be assumed from the context.

Each function f : A — B and each set-valued function g : A = B™ of a
structure A can be extended canonically to a multiset function g : A™ — B

12.4 Definition Let A and B be sets and let f: A— B or f: A — B™ be a
function. Then the multiset function f : A™ — B™ is defined for each M € A™
and each b € B by f(m)(b) = Locs-15)M(a).
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By abuse of notation we write f instead of f whenever the context excludes
confusion. The induced functions f are linear:

12.5 Lemma Let A and B be sets, let f : A — B be a function, let L,M €
M(A), and lfat z € 7. Then for the multiset extension of f, f(L+ M) = f(L)+
(M), and f(z- M) = z- f(M).

13 Place Weights, System Equations,
and System Inequalities

State properties are essentially based on weighted sets of tokens, formally given
by multiset valued mappings on the places’ domains.

13.1 Definition Let X be a system net over a universe A, let p € Px, and let
B be any multiset. Then a mapping I : A, — B is a place weight of p. I is
natural if B =N.

Place weights are frequently extended to set-valued arguments and then ap-
plied to the token load s(p) of the token at place p in a global state, s. In this
case, a multiset 7{s(p)) is called a weighted token load of p.

Place weights can be used to describe invariant properties of system nets by
help of equations that hold in all reachable states:

13.2 Definition Let X be a sysiem net over a universe .A, let B be any multiset
and let P = {p1,...,pn} C Py. For j =1,...,k, let I’ : Ay, = B be a place
weight of p;.

i. {I',...,I*} is a X-invariance with value B if for each reachable state s of
z,
I's(p1)) + - - + I*(s(px)) = B-

. A X-invariance {I',...,I*} is frequently written as a symbolic equation
'py)+--+I¥(p) = B
and this equation is said to hold in 2.

In a X-equation I*(py) + - -+ I*¥(px) = B, the value of B is apparently equal
to I'(sx(p1)) + -+ + I*(ss(px)), with sy the initial state of X.

As a technical example, in the term inscribed representation of a system net
z,

sort dom
X (%) const u,v:dom 80
A @ = o) s @@L ft  fg:dom - dom (80)
t var x :dom

let {u,v} be the domain of both A and B, and for v € {u,v} let I4(z) =
f(z) + g(z) and IB(z) = z. Then {I4,IB} is a T-invariance with value U =
f(u) + g(u) + f(v) + g(v), symbolically written
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sort dom var x:dom
const U, V: setof dom U=V
fct  f:dom — dom

Figure 13.1. f(A) + B > V is a valid inequality

f(A)+g9(A)+B=U. (81)

One of the reachable states is s, with s(A) = v and $(B) = f(v) + ¢g(v). Then in
fact I4(s(A)) + IB(s(B)) = I*(u) + IB(f(v)) + IB(g(v)) = U.

Intuitively formulated, according to this invariance, the element u is at A, or
both f(u) and g(u) are at B. The corresponding property for v holds accordingly
in 2.

As a further example, in ' =

a 1(x
X 8 sort dom
const u, v:dom
A it fgft g=':dom—dom (82)
X var x:dom
g(x) c = 1{{x)) = x
b 9-1(g(x) =x

let again {u,v} be the domain of all places A, B, and C, and for z € {u,v}
let I4(z) = z, IP(z) = f~(z) and I°(z) = g~'(z). Then {I4,1%,I} is a =-
invariance with value u + v, symbolically written A+ f~1(B) + ¢~ (C) = u +v.
One of the reachable states is s, with s(4) = u, s(B) = f(v) and s(C) = 0.
Then in fact I4(s(A)) + IB(s(B)) + I°(s(C)) = I*(u) + IB(f(v)) + I(0) =
u+ fH{f(W)) = u+w.
13.3 Definition Let Y be a system net over a universe A, let B be any multiset,
and let P = {py,...,ps} C Pg. For j = 1,...,k let I : A,, - B be a place
weight of p.

{I%,...,I*} yields a X-socket with value B if for each reachable state s of
Z,

'(s(p1)) + -+ I*(s(ps)) > B.

A X-socket {I',... I*} is frequently written as a symbolic inequality

I'p1) +-+-+ I*(p) > B,
and this inequality is said to hold in X.
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Figure 13.1 provides a typical example.

In X3, let 74 and IB be place weights of A and B, respectively, with
I4(z) = f(z) for each z € U and IB(y) =y for each y € V. Then {I4,IF} is a
X-socket with value V. As a symbolic inequality it reads f(A) + B > V.

14 Place Invariants of System Nets

We are now seeking a technique to prove L-invariances without explicitly visiting
all reachable states. To this end we construct place invariants: a set of place
weights is a place invariant if each occurrence mode m of each transition ¢ yields a
balanced weighted effect to the places involved, i.e., the weighted set of removed
tokens is equal to the weighted set of augmented tokens; formally, for place
weights I', ..., I* of places p1,..., D,

I'Nm(t,p))+- - +I5(m(t, pi)) = I'(m(py, 8)) +- -+ I*(m(px, 1)) (84)

A more concise representation of (84) is gained by a slightly different per-
spective on transitions and their actions: Each arc 8 = (p,t) or 8 = (¢, p) defines
a mapping E that assigns each action m of ¢t the corresponding subset m(5)
of Ap. Furthermore, this subset is canonically conceived as a multiset, i.e., an
element, of AJ*:

14.1 Definition Let X be a system over a structure A. Let t € T be a tran-
sition with My its set of actions and let B = (t,p) or B = (p,t) be an arc of X.

Then the function B : My — Am is defined by B(m) = m(B).

The function 8 is canonically extended to B(m) = @ if 8 is no arc. For
example, in

sort U, V,W

constu:U

constv:V (85)
fet f,g:UxV -5 W

var x:U

var y:V

the set of actions of t is U x V. Then each action (u,v) yields

At(u,v) = {u}, Bt(u,v) = {v}, tC(u,v) = {f(u,v),9(u,v)}, and
tA(u,v) = tB(u,v) = Ct(u,v) = 0

tp — pt is a multiset valued function that assigns each occurrence mode m
of ¢ its effect on p, i.e., the tokens removed from p or augmented to p upon #’s
occurrence in mode m.

Each place weight I? : A, — B of a place p can canonically be extended to
the set valued arguments I? : Agﬂ —+ B™ by Def. 12.4. This function in turn
can be composed with £p — pt, yielding a function I? o (ip — pt) : M; — B™.

A set of place weights is a place invariant if the sum of weighted effects of
all involved places reduces to the zero function @. The wvalue of a place invariant
is derived from the net’s initial state:

(86)
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14.2 Definition Let X be a system net andletp,,...,px € Px. Forj=1,...,k
let I/ be a place weight of pj. Then I = {I',...,I*} is a place invariant of X if
for each transition t € Ty,

I'o(fpr —pit) + -+ I* o (ipx — pat) =
The multiset I'(ss(p1)) + -+ - + I*(ss(px)) is the value of I.
A place invariant provides in fact a valid Z-equation:

14.3 Theorem Let X be a system net, letpy,...,pr € Py, and forj =1,...,k,
let I’ be a place weight of X. Let {I',..., I*} be a place invariant of £ and let
U be its value. Then the equation

Ip) +- +18p) =U
holds in X.

Place invariants can be mimicked symbolically in term-inscribed represen-
tations of system nets. To this end, the functions tp, pt tp — pt, and IP will
be represented symbolically. The composition I? o (¢p — pt) of functions I? and
(tp — pt) then is symbolically executable as substitution of terms.

Definition 9.1 assigns each arc 8 = (t,p) or 8 = (p,t) of a term-inscribed net
X aset B C Ta,(Xe) of Ap-terms over X;. For each u € B, val* (as defined in
Def. 8.4) is a mapping from M; to A,. This mapping can be extended canonically
to val® : M; — Af,”. Mappings of this kind can be summed up, giving rise to

the mapping 8 : M; — A?,” of Def. 14.1, defined by B(m) := val*1(m) + --- +

val®s(m), with X; = {u,...,us}. Hence B can be represented symbolically as
B+ tu (87)
in this case.

The multiset extension I? : A2 — B of a place weight I : A, — B can
be represented as a term with one variable, ranging over A;'i”. For the sake of
convenience we always choose the variable p, hence the corresponding term is
an element of T({p}).

The composed function I? o(tp—pt) M; — B is now symbolically represented
by the multiset term

r = I7[ip - pt/p) (85)

which is gained from I? by replacing each occurrence of the variable p in I? by
the term tp — pt. Hence 7 is a term in Tp(X}), and its valuation val” is equal to

I? o (tp — pt).

15 Traps of System Nets

We are now seeking a technique to prove X-sockets without visiting all reachable
states. To this end we construct initialized traps for system nets, in analogy to
initialized traps of elementary system nets.
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Informally stated, a trap of a system net is a set {I',...,I*} of weights of
places pq,...,pr such that for each element b of a given set B, each transition
that removes at least one token with weight b from those places returns at least
one token with weight b to those places. This gives rise to an inequality of the
form

Fp) +--+I*(p) > B. (89)

Traps are essentially a matter of plain sets (whereas place invariants are
based on multisets). For an arc {p,?} and an occurrence mode m of ¢, m(p,t) is
a plain set according to Def. 6.2. Then I(m(p,t)) := {I(u) | v € m(p,t)} is a
set, for any place weight I. Therefore, the definition of traps goes with set union
(not with multiset addition).

15.1 Definition Let X' be a system net and let py,...,px € Px. For j =
1,...,k, let I’ be a place weight of p;. Then I = {I',...,I*} is a trap of
X if for each transition t € T, and each occurrence mode m,

I'm(py, 1)) U - U T*(m(px,t)) € I'(m(t,p1)) U - U I*(m(t, pi)).-
The set I'(ss(p1))U--- U I¥(sx(px)) is the initialization of I.
. An initialized trap in fact provides a valid Z-inequality:

15.2 Theorem Let X be a system net, let py,...,pr € Py, and forj =1,...,k,
let I be a place weight of 5. Let {I*,...,I*} be a trap of X with initialization
B. Then the inequality

INp)u--UT*(px) > B
holds in 2.

Proof of traps can be mimicked symbolically in term-inscribed system nets.
To this end, place weights I, and functions 3 assigned to arcs 3, are represented
symbolically as described in Sect. 14. The function I o can then be represented
symbolically by the multiset term

7 = I?[B/p] (90)
in analogy to (88) of Sect. 14. Union of functions then can be expressed by set
union of singleton sets {7}. Each valuation of the variable p in 7 by some m € A,
then describes the item IP o B(m) = I?(B(m))}.

16 Progress on Interleaved Runs

A progress property p — ¢ (p leads to g) is constructed from two state properties
p and q. p — q holds in an interleaved run w if each p-state of w is followed by
a g-state. p — ¢ holds in a system net X' if p — ¢ holds in each of its interleaved
runs. Technically, leads-to formulas are constructed from state formulas:



380

16.1 Definition Let A be a structure, let X be a set of A-sorted variables, let
P be a set of symbols, and let p,q € F(A, X, P) be state formulas. Then the
symbol sequence p — g (p leads to q) is o first-order leads-to formula.

Leads-to formulas are interpreted over interleaved runs and over system nets:

16.2 Definition Let X be a net that is term-inscribed over a structure A and
a set X of variables. Let p,q € F(A, X, Px) and let w be an interleaved run of
z.

i. For an argument u of X let w = (p — q)(u) iff for each p(u)-state with
index 1, there exists a g(u)-state with index j > i.
it. prr g is said to hold in w (written w = p — ¢} iff for each argument u of
X, wk (- q)(u).
iii. p =+ q is said to hold in X (written ' Epw— q) iff w = p — q for each
interleaved run w of X.

16.3 Definition Let X be o system net and let s be a state of 2.

i. s is progress prone iff s enables at least one action.
1. Let t € T and let m be an action of t. s prevents m iff there exists some
place p of X, such that X k= § = —-m(p,t).
iti. Let t € T and let m be an action of t. m € s* if for some place p of X,
s(p) Nm(p,t) # 0.
iv. A set M of actions of some transitions of X is a change set of s if M # 0
and s prevents each m € s*\M.

The following theorem describes the most general case for picking up leads-to
formulas from the static structure of a system net: Each change set of a progress
prone state s yields a leads-to formula:

16.4 Theorem Let X be a system net, let s be a progress prone state, and let
M be a change set of s. Then

YZiEsm \/ eff(s,m).

meM

17 Progress of Concurrent Runs

17.1 Definition Let A be a structure, let X be a set of A-sorted variables, let
P be a set of symbols, and let p,g € F(A, X, P) be state formulas. Then the
symbol sequence p > q (“p causes q”} is a first-order causes formula.

Causes formulas are interpreted over concurrent runs and over system nets:

17.2 Definition Let X be a net that is term-inscribed over a structure A and a
set X of variables. Let p,q € F{A, X, Ps) and let K be a concurrent run of X.
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i. For an argument u of X, let K |= (p <+ q)(u) iff to eagh reachable p(u)-state
C of K there ezists a q(u)-state D of K that is reachable from C.
#. p <> q is said to hold in K (written K |= p <> g¢) iff for each argument u of
X, Kk (p— q)(u).
iti. p < q is said to hold in X (written X = p — q) iff K = p < q for each
concurrent run K of 2.

As an example, A.{u,v} < B.{u,v} holds in

(91)

17.3 Lemma Let X be a system net that is term-inscribed over a structure A
and let p,q € F(A, X, Pg).

i. ZEperp.

i IflEpoqand X =g then Y =p—r.
i [ X EporadXiEqgeyrthen L= (pVg) —r.

w If X Ep—qthen X Ep—q.

v. If q includes no logical operator and X = p <> q then X = p— q.

A rule to pick up causes properties from a system net is now derived, in an

entirely semantical framework.
We start with some properties and notations of states of system nets.

17.4 Definition Let X be a system net and let v, s be two states of X.

i. The state rUs of 5 is defined for each place p € Py by (rUs)(p) := r(p)Us(p).
ii. Let r C s iff for each place p € Px, r(p) C s(p).
iti. r is disjoint with s iff for each p € Ps, r(p) N s{p} = 0.
w. For an action m of some transition t, let *m be a state of X, defined for
each place p € Psx; by *m(p) = m(p,t). For a set M of actions, let *M be
the state defined for each p € Py by *M(p) = J{m(p) | m € M}.

Change sets of system nets, as defined in Def. 16.3 for interleaved progress,
can likewise be used for concurrent progress properties:

17.5 Theorem Let X be a system net and let r,s be states of . Assume s is
progress prone, and let U = VU W be o change set of s, with *V C s and r
disjoint with *V. Then ¥ =rUs <= (rUV oy eff(s,u)) V (V,ew eff(r Us,u)).

Many applications of this theorem deal with the special case of W = §, i.e.,

*U C s and r disjoint with s:

17.6 Corollary Let X be a system net, let s be a progress prone state of X,
and let U be a change set of s with *U C s. Furthermore, let r be a state that is

disjoint with s. Then K =rUs — r U (V oy eff(s,u)).
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18 Ground Formulas and Rounds

18.1 Definition Let X be a system net and let p be a state formula of . Then
p is a ground formula of X if ¥ |= true «— p.

18.2 Theorem Let X be a system net and let s be a state of X. Then s is a

ground formule of X iff ¥ = ax — s and for each element u of some change
set U holds: X |= eff (s,u) — s.

18.3 Theorem Let X be a system and let p be a ground formula of X. Let
s be a state of X with X = 8 — —p, and let U be a change set of s. Then

sV cpef(s,u).
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