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Abstract  

This paper discusses issues that arise when process algebras and Petri nets are 
linked; in particular, operators, compositionality, recursion, refinement and equiva- 
lences. It uses the box algebra in order to show how Petri nets can be manipulated 
algebraically. Also, the paper shows how other process algebras such as CCS, 
COSY and CSP can be treated in the same way, how Petri net semantics of con- 
current programming languages can be given, and how Petri net methods can be 
applied to the verification of concurrent algorithms. 

1 Introduction 

One of  the main aims of  the Petri net theory is to model concurrent systems and to allow 
to reason about them formally. The question of  realising such systems is not primarily 
addressed, although it is clearly desirable that a system modelled by a net should also 
be realisable. One of  the main aims of  concurrent programming languages is to express 
parallel programs and distributed algorithms, and thus to construct concurrent systems. 
The question of  reasoning about them remains in the background, although it is clearly 
desirable that the properties of  such systems should be amenable to rigorous analysis. 
Process algebras are akin to Petri nets in that they provide formal means o f  reasoning 
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about concurrent systems, and also akin to concurrent programming languages in that 
they provide syntactic means for constructing concurrent systems. 

The authors of this tutorial paper are working on the hypothesis that there is some 
benefit to be gained from a serious attempt to discover just how closely these different 
means of describing and analysing concurrent systems are linked. Thus, it was not our 
plan to write three isolated or loosely related manuscripts combined into a single article. 
Nevertheless, the three subthemes of this paper are, by themselves, so large and well 
investigated that any attempt to cover the relevant material exhaustively would result in 
an utter failure. 

Therefore, we have decided to concentrate mainly on one class of objects for each of the 
themes: one class of nets, safe place/transition nets, one process algebra, PBC (Petri 
Box Calculus), and one class of concurrent programs, shared variable programs. We 
intend to focus on what could be seen as the fundamental similarities and differences 
between them. While discussing these, we will gain insight which might be used in or- 
der to describe similarities and differences between other classes of nets, other process 
algebras, and other types of programming languages. At the same time, we aim to em- 
phasise some of the central concepts relating to each of the three classes of concurrent 
systems description techniques. 

The paper is structured as follows. In section 2, we discuss informally the syntax and 
semantics of process algebras. In particular, we focus on possible ways of defining 
'parallel composition', which is a useful (and widely used) operator for the description 
of parallel systems, and on iteration (or recursion), which is indispensable in order to 
describe repetitive behaviour. We concentrate on motivating the particular operators 
that can be found in PBC, but we do not claim that these are the only possible choices 
and, to reinforce this view, we discuss alternatives. Later, in section 5.4, we also show 
that there is a way of encapsulating the various PBC operators by viewing them as 
incarnations of a more abstract meta-operator. 

In section 3, we discuss two of the basic ingredients of process algebra theory: opera- 
tional semantics and equivalence notions. Again, we discuss these notions specifically 
for PBC. However, if the reader is interested in other process algebras (and we will point 
out some books and other readily available material for them), they may well still ben- 
efit from this discussion, because operational semantics and behavioural equivalence 
appear there too, in one form or another. One of the points we will also investigate is 
the relationship between structure and behaviour; how these two notions are sharply dis- 
tinguished in Petri net theory, but less so in process algebras; and how this discrepancy 
can be resolved by means of structural identities. 

After reading section 3, the reader will be equipped with a syntax and an operational 
semantics for PBC. From section 4 onwards, we turn to the formal Petri net semantics 
of PBC - again, in lieu of other process algebras. That is, PBC with the very same 
syntax as in the previous section will now be provided with a translation into the chosen 
class of Petri nets. We will formulate requirements for this translation (mainly that 
it be compositional), and show that generalised transition refinement is adequate for 
this purpose. The second part of section 4 provides an explicit translation from PBC 
expressions to nets. 

At this point, the syntax and two semantics of PBC are available, namely the opera- 



tional semantics and Petri net semantics (the latter is sometimes called a denotational 
semantics). Section 5 develops the theory that is necessary for showing that the two are 
actually equivalent. In the course of developing this (incidentally, very strong) equiv- 
alence result, we will find it convenient to generalise the concept of process algebra 
syntax in such a way that not only the expressions of the algebra, but also its operators, 
are describable by Petri nets from the chosen class. In other words, sequential compo- 
sition, choice composition, parallel composition, and a whole (infinite) class of other 
operators, will be describable by certain characteristic Petri nets, and for all of  them, 
the equivalence result can be shown to hold. Moreover, it turns out that all the rules of 
operational semantics can be viewed as instantiations of a general meta-rule. 

Having thus obtained a very tight relationship between the process algebra and the 
class of Petri nets under consideration, in section 6 we turn to the realm of concurrent 
programming languages. The language we consider there is so simple that its semantics 
(in terms of the process algebra, and hence also the chosen class of nets) can be defined 
in a few lines, yet it is also sufficiently expressive to allow some basic nontrivial parallel 
algorithms to be formulated in a precise way. Beside the semantics of this language, 
we describe three mutual exclusion algorithms, and show that Petri net methods can be 
used effectively (and also fully automatically, using a computer-aided verification tool) 
to yield the correctness proofs of such algorithms. 

To keep the paper (approximately) within the page limits given to us, some material has 
had to be omitted. First of all, we have omitted all proofs of the claims we make. The 
interested reader may turn to [28], and in particular to [8], in order to find the proofs. 
Secondly, we have omitted the treatment of recursion, as far as its Petri net semantics 
is concerned; this is much more complicated than its operational semantics, which will 
be described in section 3.2.7. Readers interested in the Petri net semantics of recursion 
will find it both in a tutorial paper [10] and in a paper describing the full theory [28]. 
Thirdly, we have neglected a whole body of net theoretical results pertaining to the 
structural well-behavedness of nets which correspond to process algebraic expressions. 
The interested reader can find such theory in [16]. 

2 The Basic Petri Box Calculus 

We discuss a process algebra whose name - Petri Box Calculus (PBC) - arises from 
its original [6, 7] Petri net semantics. The PBC combines a number of features taken 
from other existing process algebras, notably COSY [26], CCS [31, 32], SCCS [32], 
(T)CSP [25] and ACP [1]. But there are also some differences with each of these 
process algebras since PBC has been designed with two specific objectives in mind: to 
support a compositional Petri net semantics, together with an equivalent- more syntax- 
oriented - structured operational semantics (SOS) [39], and to provide a sound, and 
as flexible as possible, basis for a compositional semantics of high level concurrent 
specification and programming languages with full data and control features. 

The aim of this section is to acquaint the reader with the main points and topics that 
would need to be discussed when such a process algebra is constructed. Since Milner's 
CCS can be viewed as directly inspiring the design of PBC, we start with it. 



2.1 Informal introduction to CCS 

A process algebra is usually constructed from a set of basic processes and a set of 
operators, each operator having a fixed arity indicating the number of its operands. For 
instance, the standard basic CCS corresponds to the following syntax: 

Ec¢.~::=nilla.EccslX.EccslEccs+EccslEcc.~lEcc.,lEcc.,[f]lEccs\alX. (1) 
This syntax contains a single basic process nil, an infinite family of unary prefix opera- 
tors parameterised by action names a, together with the silent prefixing unary operator 
x, two binary infix operators (the choice, +,  and the composition, I ), and two infinite 
families of unary postfix operators (the restrictions \a ,  also parameterised by action 
names, and the relabellings [f], parameterised by functions f acting on action names). 
Variables X may also be considered as basic processes, but they are associated with 

defining expressions of the form X ~ Eccs. In this way, variables support different lev- 
els of abstraction within a CCS specification, as well as recursion. 
Every process has an associated set of behaviours. It is one of the objectives of formal 
semantics to make this notion precise. Here, however, we will only describe informally 
the semantics of CCS expressions. 
The basic process nil 'does nothing', a.Eccs does a and thereafter behaves like Eccs. 
X.Eccs does x and thereafter behaves like Eccs. The difference is that x is an internal 
('silent') action while a is not. Eccs +Fccs behaves either like Eccs or like Fees. Ecc.~ I Fccs 
behaves like both Eccs and Fees, together with some further (synchronisation) activities. 
Eccs[f] behaves like Eccs, except that function f is applied to all actions. Eccs\a behaves 
like Eccs, except that the action a may not be executed. Finally, X behaves like the 
process Eccs in its defining equation X -~ Eccs (and the truly recursive case arises when 
X re-occurs, directly or indirectly, within Eccs). Consider, for instance, the CCS expres- 
sion E0 = a.(b.nil) which can 'make an a-move', thereafter 'make a b-move', and then 
terminate. This is formalised in CCS as the sequence 

a.(b.nil) a > b.nil b ~ nil . 

E 0 El E2 

The example exhibits an important feature of the CCS treatment of expressions and their 
behaviours. E0, El and E2 are all different CCS expressions with different structure. In 
other words, the original expression has changed its structure through a behaviour. In 
CCS, and indeed several other process algebras, the structure and behaviour of process 
expressions are intertwined in this way. 

2.2 Informal introduction to Petri nets 

The graph of a Petri net N describes the structure of a system the net is supposed to 
represent. The behaviour of this system is defined with respect to a given starting 
marking (state) of the graph, which is usually called the initial marking. A marking 
M of N is a function from the set of places of N into the set of natural numbers N = 
{0, 1,2, . . .}.  A transition t is called enabled by M if all input places of t carry one or 
more token. If an enabled transition occurs, then this is tantamount to the following 
change of marking: a token is subtracted from each input place of t ;  a token is added to 

each output place of t ;  and no other places are affected. We use the notation M ._L+ M ~ 



(or (N,M) t ) (N,M~), to emphasize N) in order to express thatM enables t and M ~ 
arises out of M according to the rule just described; M ~ is then said to be reachable from 
M in one step, and the reflexive and transitive closure of this relation gives the general 
reachability relation. A marking is called safe if it returns 0 or 1 for every place, and a 
marked net is called safe if every marking reachable from the initial marking is safe. 

Figure 1 shows an unmarked Petri net, N, and two marked Petri nets, (N,M0) and 
(N,MI). Note that the underlying net itself is the same in all cases, only the markings 
are different. Note also that the unmarked net on the left could as well be interpreted as 
a marked net, namely as the net which has the 'empty '  marking assigning the number 0 
to all places. 

Sl a s2 b s3 

N (N,Mo) (N,MI) 

Figure 1: A Petri net with an empty and two nonempty markings. 

Formally, the net N of Figure 1 would be described as a triple (S, T, W) where S is the 
set of its places, S--{sl, s2, s3}, T is the set of its transitions, T={a ,  b}, and W assigns a 
number (in this case, only 0 or 1 ) to pairs (s, t) and (t, s), where sES and tET, depending 
on whether or not an arrow leads from s to t or from t to s, respectively. We have, for 
instance, W (s l, a) = 1, W (s i, b) =0, W (a, s j )--0, and so on (1 stands for 'arrow', 0 stands 
for 'no arrow'). The marking Mo shown in the middle of the figure would be described 
as a function with Mo(sl)= 1, Mo(s2)=0 and Mo(s3)=0, and the marking MI shown on 
the right of  the figure as a function with MI (s~)=0, Ml (s2)=l and Mi (s3)=0. Note 
that Mo enables transition a. This transition may, hence, occur, and if it does, then the 
resulting marking is MI. Thus, (N,Mo) " > (N,M1). 

Clearly, N describes a sequence between the two transitions a and b, and it is therefore 
related to the CCS expression a.(b.nil) discussed earlier. But which of the three nets 
should correspond to the semantics of a.(b.nil)? The answer is clear: the middle one. 
And the reason is that it is only this net, rather than any of the other two, that has the 
same behaviour as a.(b.nil). The net N by itself has no behaviour, and in the marked 
net (N,MI), b can occur as the first action, but not a as required by a.(b.nil). Note 
what happens when the action a is executed in either model. In terms of CCS, the 
expression a. (b.nil) is transformed into the expression b.nil. In terms of nets, the marked 
net (N,Mo) is transformed into the marked net (N,MI), with the same underlying net 
N. If  we were to define a Petri net corresponding to the expression b.nil, however, then 
we would not, of course, think of taking the net (N,MI); rather, the obvious choice 
would be a marked net with two places and one transition b, i.e., (N,Mj) after deleting 
sl and a. 

This example shows that the ways of generating behaviour in net theory and in CCS do 
not directly correspond to each other. In the latter, the structure of an expression may 
change, while in the former, only markings change but the structure of a net remains the 
same through any behaviours. The difference is a fundamental one, and stems from the 
underlying ideas of modelling systems. In net theory, when transition a has occurred, 
we may still recover its presence from the static structure of the system, even though 
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it may never again be executed; there is thus a sharp distinction between the static and 
the dynamic aspects of a system. In CCS, when action a has occurred, as in the above 
context, then we may safely forget about it, precisely because it may never be executed, 
and hence we may safely change the structure of the expression; there is thus a very 
close relation between the static and dynamic aspects of expressions. 

2.3 Structure and behaviour of PBC expressions 

Because, in PBC, we wish to have a smooth Petri net semantics, we will devise a be- 
havioural semantics for it which respects the division between static and dynamic as- 
pects that can be found in Petri net theory. The basic idea will be to introduce into 
the syntax of expressions something that models markings. Thus, we will define ex- 
pressions 'without markings' (called 'static expressions') and expressions 'with mark- 
ings' (called 'dynamic expressions'): static expressions correspond to unmarked nets, 
while dynamic expressions correspond to marked nets. Unless stated otherwise, we 
will always use E and F to denote static expressions, and G and H to denote dynamic 
expressions. 
As an example, consider the static PBC expression E = a;b. It corresponds to the 
unmarked net N on the left-hand side of Figure 1. Making expressions dynamic consists 
of overbarring or underbarring (parts of) them. For instance, consider the dynamic PBC 
expression E = a;b. By definition, it corresponds to the same net as E, but with a 
marking that lets E be executed from its start, i.e., to the 'initial marking' of E. The 
net corresponding to E is the marked net (N, M0) shown in the middle of figure 1. Next 
consider the - syntactically legal and meaningful - dynamic PBC expression G = a; b. 
By definition, it corresponds to the same underlying expression E, but in a state in 
which its first action a has just been executed, i.e., it shows the instant at which the 
final state of a has just been produced. Thus, G corresponds to the marked net (N, Ml) 
shown on the right-hand side of Figure 1. 
This syntactic device of overbarring and underbarring introduces what could, at first 
glance, be seen as a difficulty. For consider the same expression E in a state in which its 
second part, b, is just about to be executed: G ~ = a;b, which is again syntactically legal. 
Which marked net should this dynamic expression correspond to? There is only one 
possible reasonable answer to this question, namely the right-hand side net, (N, Ml), of 
Figure 1. Thus, in general, we may have a many-to-one relationship between dynamic 
expressions and marked nets. Let us use the symbol - in order to relate dynamic 
expressions which are not necessarily syntactically equal, but are in a relationship such 
as G and G ~ in the example. Then G _= G ~ can be viewed as expressing that 'the state in 
which the first component of a sequence is terminated is the same as the state in which 
the second component may begin to be executed'. Note that E = a; b also has a dynamic 
expression which is equivalent but not syntactically equal, namely H = ~; b. E = H can 
be viewed intuitively as expressing that 'the initial state of a sequence equals the initial 
state of its first component'. 
We do not see this many-to-one relationship as merely incidental, to be overcome, per- 
haps, by a better syntactic device than that of overbarring and underbarring subexpres- 
sions. Instead, we view it as evidence of a fundamental difference between Petri nets 
and process algebras: expressions of the latter come with in-built structure, while Petri 



nets do not. For instance, E = a; b is immediately recognised as a sequence of a and 
b. In the example of Figure 1, one may also recognise the structure to be a sequence. 
However, this is due to the simplicity of the net. For an arbitrary bipartite graph it is 
far from obvious how it may be seen as constructed from smaller parts, while it is al- 
ways clear, for any well-formed expression in any process algebra, how it is made up 
from subexpressions. The fact that an expression of a process algebra always reveals its 
syntactic structure, has to be viewed as a great advantage which has some highly desir- 
able consequences. For example, it is often possible to argue 'by syntactic induction'; 
one may build proof systems 'by syntactic definition' around such an algebra; and the 
availability of operators for the modular construction of systems is usually appreciated 
by practitioners. On the other hand, one of the disadvantages of such a syntactic view 
is that some effort has to be invested into the definition of the behaviour of expressions. 
While this can usually be done inductively, it is still necessary to go through all oper- 
ators one by one and to define their semantics individually. Sometimes, this leads to 
ad-hoc (and very disparate) definitions. A non-structured model such a Petri nets has a 
clear advantage in this respect; its behaviour (with respect to a marking) is defined by a 
single rule, namely the transition rule, which covers all cases. 
In this spectrum, the PBC attempts to cover a middle position. PBC expressions, 
whether they are static or dynamic, still come with an in-built structure. This has the 
desirable consequences mentioned above (such as the potential for inductive reason- 
ing). On the other hand, the behavioural rules of (dynamic) PBC expressions are, in 
fact, the Petri net transition rule in disguise; we will make this point clear later. The 
necessity to consider equivalences such as = can be viewed as being the price that has 
to be paid for being able to combine advantages of both Petri nets and process algebras 
in the context presently considered. However, if it is indeed a price, then we are willing 
to pay it, because when the analysis of the = equivalence is carried through in detail 
(and we will do this in section 5), it turns out that one gains sufficient conditions for 
nets to be operators. This is a good result to have, of course, because it separates the 
desirable objects (or, at least, a large class of desirable objects) from the rest. Some 
such operators are discussed in the next sections. 

2.4 Sequential composition 

Instead of, as in CCS, expressing sequential behaviour by so-called 'prefixing', a.F, 
we may also use, as in PBC, a true sequential operator, E;F, meaning that E is to be 
executed before F. The main difference is that in CCS, E, the first part of a sequen- 
tial composition, may only have the special shape E = a. The full sequence can be 
simulated in CCS by a combination of prefixing, parallel operator and synchronisation. 
One reason for allowing full sequential composition is that in a majority of imperative 
languages, this is one of the basic operations (and it is usually denoted by the semi- 
colon) allowing one to put in sequence any two subprograms. A second reason is that 
the semantics of the full sequential composition is no more complicated, in PBC, than 
the semantics of the prefixing. 
The nil process is no longer necessary in PBC, and thus it will be dropped. To see this, 
we compare the CCS way of deriving the behaviour of the CCS expression a.(b.nil) and 
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the PBC way of deriving the behaviour of the dynamic PBC expression a;b: 

In CCS: a.(b.nil) a > b.nil b ) nil. 

InPBC: a;---b=_a;b a> a_;b=_a;-b b> a;b-a;__bb. 
Note that in both cases, the occurrence sequence ab is derived, but that the PBC way of 
deriving this behaviour is more symmetric while the CCS way is shorter. In CCS, the 
fact that 'execution has ended' is expressed by the derivation of nil, while in the PBC it 
is expressed by the derivation of an expression which is completely underbarred, such 
as a;_._bb. In general, i fE  is an arbitrary static expression, and if we call E 'the initial state 
of E' ,  then we might as well - and will, in fact - call E 'the final (or terminal) state 
of E' .  The reader must be warned, however, that this terminology is slightly deceptive, 
for there may be expressions E for which no behaviour leads from E to E. This may 
happen either if from E a deadlock can be entered, or if from E an infinite loop can be 
entered, from which it is impossible to escape. Thus, when E is called a 'final state', 
this does not imply that this state is reachable; in the same way nil may be unreachable 
in CCS. 
The raison d'etre for the CCS process constant nil can be thus appreciated: it provides 
a syntactic way of describing final states. Given the CCS way of describing sequential 
behaviour by removing the prefixes of an expression as they get executed, there has to 
be a syntactic 'something' to describe the rest of the expression, once the last action 
is executed. From the above discussion, it may already be guessed that the Petri net 
semantics of nil ('what is the net - if any - corresponding to nil'?) is not obvious. In 
the literature, discussion about this question can be found [21, 43]. 

2 . 5  S y n c h r o n i s a t i o n  

As CCS, the PBC model is based upon the idea that in a distributed environment all 
complex interactions can be decomposed into primitive binary interactions. Let us first 
recall the meaning of the CCS synchronisation. Suppose that two people A and B wish 
to communicate by exchanging a handshake. In CCS, one could represent the action of 
'A extending his hand towards B' by some symbol, say a; the action of 'B extending her 
hand towards A' by another symbol denoted by a (the 'conjugate' l of a); and the fact 
that A and B are standing face to face by the symbol I, yielding the CCS expression 
a la  (more exactly (a.nil) I (a.nil), but we may ignore nil here for simplicity). 
The CCS expression a has only one possible activity: an execution of a, which repre- 
sents the fact that A extends his hand towards B. Similarly, the CCS expression a has 
only one possible activity: B extends her hand towards A. The expression a I a, however, 
by CCS definition, has the following possible activities: (i) A may extend his hand and 
withdraw it, leaving B with the same possibility; (ii) B may extend her hand and with- 
draw it, then A does the same; and (iii) both of them extend their hands which results 
in an actual handshake. More formally, using existing Petri net semantics of CCS ex- 
pressions (e.g., in [21, 43]), these three possible activities could be represented in Petri 
net terms as shown in figure 2. The actual handshake - that is, the transition labelled 

! In CCS, conjugation is usually denoted by overbarring; we use hatting instead, because overbarring is 
reserved for dynamic expressions, as explained in the previous sections. 



x - removes the possibility of further shaking of hands between A and B. The special 
CCS symbol ~ is interpreted as an internal or silent action. In terms of the example, it 
indicates that the actual handshake is 'known' only to the two'people involved, namely 
A and B, and has no external repercussions. 

a l- 

( 

1 a 

Figure 2: Activities of a (left), ~ (middle) and a I a (right). 

Let us clarify at this point some terminology that is borrowed from net theory and is not 
standard in CCS. We will call the carriers of activity transitions and the entities such as 
a and a in the above example actions. Thus, the CCS expression a has one transition 
which also corresponds to the action a. Similarly, the expression a has one transition 
corresponding to a. However, the expression a I h" has three transitions although only 
two actions occur in it. It may be said that executing a transition corresponds to an 
actual activity, normally changing the state of the system, while an action is the way in 
which this transition is perceived from outside, i.e., the interpretation of the activity; in 
the Petri net theory this is often formalised through a labelling of transitions by actions. 
A similar observation can be made for CCS expressions such as a. (a.nil). In the Petri net 
of this expression, there would be two transitions, even though the expression contains 
only one single action (which can be executed twice). 

Now consider the question of how one could describe a handshake between three people 
A, B and C. In terms of Petri nets, such an activity could be modelled, quite similarly as 
before, by a three-way transition such as H in figure 3. A moment's reflection shows that 
a 3-way synchronisation transition like this cannot directly be modelled using the 2-way 
handshake mechanism of CCS; the reason is precisely that "c cannot be synchronised 
with any other action (there is nothing like~ in CCS). While one might try to simulate 
the 3-way-handshake using a series of binary handshakes, PBC proposes instead to 
extend the CCS framework so that a 3-way (and, in general, n-way) synchronisation 
could be expressed. One possibility, which is akin to the ACP approach [ 1 ], might be to 
generalise the conjugation operation to a function or a relation that allows the grouping 
of more than just two actions; however, PBC takes a different approach, which is still 
based on considering primitive synchronisations to be binary in nature. This works 
through the usage of structured actions, which we will describe next. Although one 
might think that 3-way handshakes occur rarely in practice, we will argue later that n- 
way synchronisations make perfect sense in the modelling of programming languages, 
as does the particular way of describing them in PBC. 

To understand the PBC way of describing multiway synchronisations, it is perhaps easi- 
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before synchronisation after 3-way synchronisation 

Figure 3: Handshake between three people. 

est to interpret a CCS pair of conjugate actions (a, ~ in the original way [31 ] as denoting 
two links between two agents that fit together. In this view, a denotes a communication 
capability in search of a matching a and, similarly, ~ denotes a communication capabil- 
ity in search of a matching a. Once the communication takes place, i.e., a pair of a and 
is matched, this becomes a private synchronisation link between two agents with no fur- 
ther externally visible communication capability. The PBC model extends this idea in 
the sense that the result of a synchronisation does not have to be completely internal or 
'silent', but instead, may contain further communication capabilities that may be linked 
with other activities. This generalisation is achieved by allowing a transition to corre- 
spond to a whole (finite) set of communication capabilities, such as for instance, 0, {a}, 
{a}, {a, b}, {a, b}, or even {a, ~, b}. For instance, an activity {~} may be synchronised 
with activity {a, b} using the conjugate pair (a, ~ .  This results in a synchronised activ- 
ity which is not silent but rather, still has the communication capability {b}, as the pair 
( a ,~  is internalised but b remains untouched; formally: ({a}U{a, b})\{a,a} = {b}. 
For instance, figure 4 describes a 3-way handshake in terms of the (Petri net view of 
the) PBC (all possible synchronisations are shown there). 

In the figure, a denotes 'A shakes hand with B', a denotes 'B shakes hand with A', 
denotes 'B shakes hand with C' and b denotes 'C shakes hand with B'. Then, by the fact 
that B performs a and b simultaneously (expressed by the fact that {a,b} occurs as the 
label of a single transition), the resulting activity 123 (in figure 4) describes a simulta- 
neous handshake between all three people. Transition 12 describes the handshake only 
between A and B (with label {b} and capability to link with C) and transition 23 de- 
scribes the handshake only between B and C (with label {~} and capability to link with 
A). Transition 123 can also be thought of either as a 2-way synchronisation between 1 
and 23, or as a 2-way synchronisation between 12 and 3. 

At this point, we need some basic definitions concerning multisets. A multiset over a set 
A is a function m : A --+ N. A multiset m is finite if its support, i.e., {aEA I m(a)>0}, is 
finite. For a finite multiset m, its cardinality is defined as the number Iml - d~ ,aEa  re(a). 
The operations of sum and (nonnegative) difference on multisets over A are defined as 
follows: for aEA, 

Sum: (ml+m2)(a) = ml(a)+m2(a ) 
Difference: (ml-m2)(a) = max(ml(a)-m2(a),0) .  
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// 

{a} E-] 

A 

after synchronisation 

B 

) ~,) 

C 

before synchronisation 

Figure 4: Three-way handshake in terms of PBC. 



12 

Note that if mi and m2 are finite then so are ml+m 2 and ml-m2.  Multiset inclusion, 
talC_m2, is defined by ml(a)_<m2(a), for all aEA. In the examples, we will write, 
e.g., {a,a,b} for the multiset defined by re(a) = 2,re(b) = 1, and re(c) = 0 for all 
c E a\{a, b}. The set of finite multisets over A is denoted by mult(A). 
Returning to the main discussion, let us consider the two PBC expressions {a, b} and 
{a, b}. According to the PBC approach, two transitions, say 1 and 2, corresponding, 
respectively, to these expressions can be synchronised using the conjugate pair (a, ~). 
However, what synchronisation capability should the resulting transition 12 still pos- 
sess? There are only two meaningful answers: either the set {b} or the multiset {b, b}. 
The PBC model chooses the second alternative, and the next^example shows the reason 
why. Consider a 'system with four people', {a, b}, {~, b}, {b} and {b}, and four tran- 
sitions, say 1, 2, 3 and 4, corresponding to them. According to the rules of the game, 
transition 1 can be synchronised with transition 3 over (b, b), yielding a transition 13 
with capability {a}. Similarly, 2 can be synchronised with 4 yielding a transition 24 
with capability {~}. These two transitions can be further synchronised using ( a , ~  
yielding a transition (13)(24) with capability 0, that is, a silent transition. No multi- 
sets are involved. Now suppose that we use first (a, a-] in order to synchronise. Then 
transitions 1 and 2 can be synchronised to yield a transition 12. If this transition has 
only the capability {b} then no further synchronisation involving (b,b)-pairs will yield 
the four-way synchronisation obtained previously. If, however, the transition 12 has 
the capability {b, b} then one of these b's can be used to synchronise with transition 
3, the other to synchronise with transition 4, and the four-way silent synchronisation 
can be obtained in one of the following ways as well: ((12)3)4 or ((12)4)3, where the 
bracketing delineates (as it did previously) the individual binary CCS-like synchroni- 
sations. Since it is highly desirable that the order of the synchronisations is irrelevant, 
this explains why it is preferable to use multisets of communication capabilities instead 
of simple sets. 
To summarise, PBC assumes given a set ApBc of primitive actions or action particles. 
These will be ranged over by a, b , . . .  , as in the above examples. Moreover, it is as- 
sumed that on ApBc there is defined a conjugation function ̂ :  ApBc --+ AI, BC with the 
properties of involution (~ = a) and discrimination (a # a). This is the same basic 
setup as in CCS. However, unlike CCS, PBC allows as the label of a transition any 
finite multiset over ApBC. That is, the set of labels (or, for the more process alge- 
braically inclined, elementary expressions, or, to emphasize the fact that more than one 
action may be combined in a single transition, the set of multiactions) is defined as 
LabpB c = mult(ApBc). 
This specialises to the basic CCS framework as follows: the CCS expressions a and 
correspond to the PBC expressions {a} and {~}, respectively, and the CCS expression 
x corresponds to the PBC expression 0. No PBC action expression ot with lot[ > 1 has a 
direct CCS equivalent. 

2.6 Separating synchronisation from composition 

Some of the CCS operators (nil, +,  a. and ~., often called 'dynamic connectives' in 
CCS terminology - -  but we will rename them as 'control (flow) connectives', in order 
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to avoid confusion with dynamic PBC expressions) essentially act on the way the ac- 
tions of the various components are organised in time with respect to each other, without 
depending on the shape of the components, i.e., they are only concerned with the con- 
trol flow. Other ones ( \a  and [f], often called 'static connectives' in CCS terminology 

- -  but we will again rename them as '(communication) interface connectives') do de- 
pend on the identity of the actions performed by the argument (modifying or selectively 
removing them). The CCS composition operator I is special because it both performs 
a parallel composition of its arguments (control flow aspect) and adds synchronisations 
of conjugate pairs. While this is not necessarily harmful, it is valid to ask whether it 
would perhaps be semantically simpler to separate the control flow and the interface 
aspects of the last operator. 
Another observation is that CCS parallel composition performs the synchronisat~n for 
all possible conjugate pairs. For instance, the CCS expression a. (a.(b.nil)) 18.(8.(b.nil)) 
creates five synchronisations (three of them being actually executable); thesyntax of 
CCS does not allow one to express synchronisation using only the pair (b,b) but not 
the pair (a ,~ .  For reasons that will become clear in section 2.8 and later in section 6, it 
may be desirable to be able to say precisely which action names are being used for syn- 
chronisation. An obvious refinement of the CCS operator would be to allow selective 
parallel compositions as in TCSP [25]: the operator l a would denote that only (a,~) 
pairs may be used for synchronisation. However, in this case it is difficult to obtain 
some desirable algebraic laws such as associativit~of parallel composition. Consider, 
for instance, ({b}l~{aJ) lh{b} and {b}la({aJlb{b}). The first expression specifies a 
silent synchronisation between the first and the third transitions while the second ex- 
pression specifies no such synchronisation. While it is of course possible to live with 
a restricted form of associativity, PBC proposes a different approach in order to obtain 
useful associativity properties. The approach consists of divorcing the synchronisa- 
tion operator altogether from parallel composition and regarding synchronisation as a 
unary communication instead of binary control flow operator, denoted by E sy a where 
aEApBc. What is gained by adopting this point of view is a reduction in the number of 
operators (otherwise I a and I b would have to be regarded as different), a general set of 
rules and a simple parallel operator. The non-associativity expected for expressions of 
the kind considered above then arises from the non-distributivity of the synchronisation 
operator over the parallel composition. 
Considering synchronisation as a unary operator which is separate from the parallel 
composition makes it very similar to the restriction operator \ of CCS, but playing 
an opposite role: while synchronisation adds, restriction removes certain transitions. 
Algebraically, the two operators have some interesting laws in common. In terms of 
the Petri net semantics of PBC, it will be seen that the distinction between control 
flow and communication interface operators manifests itself in a very simple way: the 
latter (relabelling, synchronisation, restriction and scoping) modify transitions, while 
the former (sequence, choice, parallel composition and iteration) modify places. 

2.7 Other operators 

Most of the remaining operators of the basic PBC are akin to their counterparts in 
CCS. The class of control flow connectives, which includes sequential composition and 
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parallel composition, also includes alternative composition (often called 'choice', for 
short) and iteration. Moreover, PBC also allows the expression of recursion. The class 
of communication interface connectives, which includes synchronisation, also includes 
basic relabeiling, restriction and scoping. 
The choice between two expressions E and F, denoted by E 0 F, specifies behaviour 
which is, in essence, the union of the behaviours of E and F. That is, any behaviour 
which is a behaviour of E or F is an acceptable behaviour of E 0 F, and no other is. 
Thus the choice operator, as its counterpart in CCS, allows one to choose nondetermin- 
istically between two possible sets of behaviours. The only difference with the corre- 
sponding CCS operator, +,  will be syntactic; the PBC notation following the syntactic 
convention, 0 ,  of Dijkstra's guarded commands [18]. 
The iteration operator of the basic PBC obeys the syntax [E • F • E~], where E is the 
initialisation (which may be executed once, at the beginning), F is the body (whose 
execution may be repeated arbitrarily many times, after initialisation), and E ~ is the 
termination (which may be executed at most once, at termination). Recursion allows 
recursion variables to be defined via equations. For example, X d~ a;X specifies the 
behaviour of X to be an indefinite succession of the executions of a. Recursion in PBC 
is more general than its counterpart in CCS, due to the possibility of unguardedness. 
Basic relabelling (simply called 'relabeiling' in CCS) is defined with respect to a func- 
tion f which consistently renames action particles; Elf]  has all the behaviours of E, 
except that their constituents are relabelled according to f .  This operation is theoret- 
ically relevant only with regard to recursion where it adds the possibility of using an 
infinite number of action particles, 2 and because, as we will show in due course, it is 
the simplest version of a very general mechanism which we will call 'relabelling', of 
which all the communication interface operations mentioned so far are special cases. 
Restriction is also, as synchronisation, defined with respect to an action particle a. For 
example, E rs a, by definition, has all the behaviours of E except those that involve a 
or a. Using restriction, we may give a simple example of an expression whose terminal 
state is not reachable from the initial state. Consider F = ({a} rs a). Then F is not 
reachable from ff  because, by the definition of restriction, the latter can make no move 
at all. However, both {a} rs a and {a} rs a are well defined dynamic PBC expressions. 
Scoping, [a : El, is a derived operator which consists of synchronisation followed by 
restriction (on the same action particle), i.e., [a : E] = (E sy a) rs a; its importance is 
in describing blocks in a programming language, as we will sketch in the next section, 
and more fully in section 6. 

2.8 Modelling concurrent programming languages 

After motivating and describing the muitiaction feature of PBC and giving informal 
definitions of its basic operators, we now discuss one of their applications. Recall 
that it was our second motivation (besides the wish to have a close relationship with 
Petri nets) for PBC to be able to give a flexible semantics to concurrent programming 
languages. In this section, we discuss this problem informally. Consider, for example, 

2As for the equation X ~ {O};X[addone], where addone is a relabelling function adding 1 to each action 
particle k E N. This behaviour generates the sequence {0}{ 1 }{2}{3} .... 
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the following fragment of a concurrent program: 

. . .  beginvarx:  {0, 1}; I[x:=x~ 1] II [x:=y] end . . .  

where y is assumed to be declared with type {0, 1 } in some outer block, ~ denotes the 
addition modulo 2, tl denotes 'shared variable parallelism' (as variable x occurs on both 
sides of  the II), and [ . . . ]  delineate atomic actions. Consider constructing an appropri- 
ate, and also as small as possible, Petri net describing this block. The construction of 
this net should also be compositional, that is, it should be composed from nets derived 
for its three constituents, the declaration varx : {0, 1 } and the two atomic assignments, 
[x:=x ~ 1] and ~x:=y], and itself be composable, i.e., usable in further compositions 
with similar constituents coming, for example, from outer blocks. 
Using the basic PBC and its Petri net semantics, this problem can be solved in the 
following way. We will allow some action particles to be indexed terms of the form 
Xvw and .fvw where v, w 6 {0, 1 }. Each such term denotes the change of the value of the 
program variable x from v to w, or the test of the value o fx  if v=w. Using such action 
particles, the following could be a reasonable translation of the two assignments into 
PBC expressions: 

[x:=x~l]  ~ {x0,}0{x,0} 
(2) 

[x:=y] ~ {xoo,Yoo}O{xlO,YOO}O{xOl,Yll}O{xll,Yll}. 
The PBC expression on the right-hand side of the first line expresses that 'either x could 
be 0, and then it is turned into 1, or x could be I, and then it is turned into 0 ' ,  which 
clearly is the semantics of [x : :x@l]  i f x  is a variable of  type {0, 1}. Note that, as 
opposed to the multiactions in the first line, the two-element multiactions in the second 
line refer to both x and y, and thus are non-singletons, because [x:=y] involves both 
variables. Each multiaction on the second line should be interpreted as denoting two 
simultaneously executable accesses to the variables, either to check (y) or to change 
the value (x). For instance, the multiaction {xl0,Y0o} denotes the value of y being 
checked to be 0 and, simultaneously, the value of x being changed from 1 to 0. The 
expressions for [x :=x® 1] and [ x : : y ]  given in (2) have corresponding Petri nets with 
respectively two and four transitions labelled by the corresponding multiactions, as 
shown in figure 5. 
Let us now consider the net corresponding to the declaration var  x : {0, 1 }. It will 
involve transitions of the form ,rvw for all possible values v, w C {0, 1 }, where Svw is the 
conjugate of Xvw. Like Xvw, .~vw also denotes the change of value of x from v to w. We 
use the conjugates here because this ensures that the net of the variable(s) can be put in 
parallel with the net of the atomic action(s), and both nets can be synchronised. Such a 
synchronisation is needed in order to describe a block. 
What was just described is the principal use of conjugation in the PBC semantics of  
programming languages; we will always assume that the command part of a block 
uses 'unhatted' action symbols, while the declaration part uses their 'hatted' (conju- 
gated) versions in order to describe accesses to variables. Eventually, a block will be 
described by putting command part and declaration part in parallel and then synchro- 
nising and restricting (hence scoping) over all variables that are local to it. This will 
leave only non-local accesses to be still visible in the communication interface, i.e., in 
the transitions. 
The net describing var  x : {0, 1 } is shown - in slightly abbreviated form - in figure 6. 



16 

Petri net translation of ~x:=x@ 1] (x binary) 

I(~'Y°°~I l(xl°'Y°°~l ~"Y")I ltx'l'Y"~l 

Petri net translation of [x:=y]l (both x and y binary) 

Figure 5: Petri net representation of [x :=x~ l ]  and [x:=y]. 
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Here it is arbitrarily assumed that the current value ofx  is 1, and thus the net contains a 
token on the corresponding place. 

Figure 6: (Part of the) Petri net representing a binary variable x. 

In order to describe the block structure of the program (with x being a local and y being 
a global variable of the block), the net o fva rx :  {0, 1 } needs to be synchronised with the 
nets of [x:=x® 11 and [x:=y] selectively. That is, a transition labelled 210 coming from 
the declaration o f x  is synchronised with a transition labelled {Xl0,Y0o} coming from 
the action [x:=y] using and consuming the conjugate pair (21o,xlo) but retaining yoo (in 
fact, as we have seen, this is built into the definition of synchronisation). The resulting 
transition has the label {Y00}. After that, all the 2uv and xuv action particles are wiped 
out by applying the PBC restriction operator, since variables are not known outside their 
declaring block. The corresponding net after synchronisation and restriction is shown 
in figure 7, 

The transitions labelled {Yvv} can then be synchronised with transitions labelled {.9vv} 
coming t?om the declaration of y in an outer block, using and consuming conjugate 
pairs (yvv,~vv) and yielding transitions labelled by 0, after a 3-way synchronisation. 
During the above translation process, we thus have seen an effective application of the 
multiway synchronisation mechanism. 

3 Syntax and Operational Semantics 

3.1 Basic PBC syntax 

By definition, a (basic) static PBC expression is a word generated by the syntax 

E::=o~IXtEI IE tEDEtE;EI[E*E*E]IE[ f ] tEsyaIErsaI[a:E  ] (3) 

possibly with parentheses, used - if needed - to resolve ambiguities. In (3), c~ is an 
element of I-abeBc = mult(ApBc) (cf. Section 2.5 where the set ApBC and the multiset 
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X : =  

[x :=x~ l ]  

va rx :  {0,1} 

Figure 7: Petri net representation of a small program fragment. 

LabpBc were first used); X is a member of a set X of predefined recursion variables, 3 
ranged over by X, Y, Z, . . .  ; a is an element of ApB¢; and f is a relabellingfunction from 
ApB¢ to ApB¢ that p~reserves conjugates, that is, by definition, for any action particle 

b E Apac, f(b) = f(b). 

An expression of the form a is called a basic action or multiaction. The PBC operators 
fall into two categories. The binary operators ; (sequence), I'l (choice) and II (disjoint 
parallelism), and the ternary operator [ • • ] (loop with initialisation and termination) 
will be called the control Oqow) connectives. The unary operators [f] (basic relabelling), 
sy a (synchronisation), rs a (restriction) and [a : ] (scoping) will be called (communi- 
cation) interface operators or (generalised) relabelling operators. The finite PBC is 
obtained by excluding the iteration and recursion operators. The following expressions 
of the finite PBC will serve as our running examples: 

E 0 = 0  El =a;(bDc) E2 = ((a;b)Dc)rsc (4) 
E3 = (allb)rs b E4 = ((all{a,a})lla)sya. 

To avoid excessive bracketing, we will often use the convention of replacing a single- 
ton (multi)set such as {a} by its only element, in this case a. For instance, (a;b) 13 c 
simplifies the expression ({a}; {b}) 0 {c). This will be done only in example expres- 
sions, in the corresponding nets, and when referring to such examples, but never if the 
simplification might give rise to a confusion. 

Let E be a static expression, a E ApB¢, and f be a relabelling function from ApBc to 

3Not to be confused with program variables. 
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ApBc, as before. A dynamic PBC expression is a word generated by the syntax 

G ::= E I E _ I C l I C l C O e l e O C l C ; E l e ; C I [ C , e , E ] I  
[ ~ , c , ~ ]  I [ ~ , ~ , c ]  I c [ f ]  I c sy a I c r s  a I [a : c]  (5) 

possibly with parentheses. Note that an expression such as G; H is not a syntactically 
valid dynamic expression. The clause G;E means that the first part of the sequence is 
currently active (which includes its initial state and its final state), while the second part 
is currently dormant. The other clause, E; G, means that the second part of the sequence 
is currently active, while the first part is dormant. A similar remark holds for the choice 
composition r] and for iteration [**]; we require syntactically that only one of the parts 
of a choice or iteration expression is active. By contrast, concurrent composition I] is 
allowed - and even required - to satisfy the property that both of its parts are active in 
a dynamic expression. 
Let E be any static expression of the basic PBC. Then E is the dynamic expression 
which is associated with E in a canonical way, in the sense that E describes the ini- 
tial state of E. Henceforth, whenever we speak of 'the behaviour of  E ' ,  we mean the 
behaviour that is generated by E, the initial state of E. In the following, we will char- 
acterise the behaviour exhibited by the example expressions Eo-E4 defined above, by 
which we will mean the behaviour generated by their initial dynamic counterparts, E0- 
E4. 
E0 (more precisely, the dynamic expression E0) can do a 'silent' 0-move and terminate. 
Et can do an a-move, followed either by a b-move or by a c-move (and terminate). 
E2 can make an a-move followed by a b-move and terminate, but cannot make a c- 
move. E 3 can make an a-move but it cannot make a b-move, nor can it terminate. 
The last expression, E4, can make the same moves as the expression (aII{~',a})IIa and, 
in addition, three synchronisations: an a-move synchronising the left and the middle 
components of the parallel composition; an ~-move synchronising the middle and the 
right-hand side components; and a silent move synchronising all three components (and 
terminate). 
To express recursion, PBC - -  as other process algebras --- uses syntactic (or hierarchi- 
cal) variables, forming the set .X'. Such variables can appear on the left-hand sides as 
well as on the right-hand sides of recursive equations at any position where a multiac- 

tion tx is also allowed. For instance, X --Jr {a};X introduces a variable X together with 
a defining equation in which X occurs on the right-hand side, i.e., it is a true recursion. 

Recursion may result from more complex structures, such as in the expression X ~ YIIZ 
where Y and Z are defined thus: 

Y ~ {a,b};Z and Z ~ {a,a}•(Y;Z). 
The latter is a (recursive) system of equations as we have three equations, one for each 
of X, Y and Z. There will be exactly one defining equation per recursion variable. A 
system of equations can be turned into an expression of the basic PBC by choosing 
any of the equations - typically the first one - and decreeing that the behaviour of the 
corresponding variable is the behaviour of the expression; in the above example, X 
would determine the behaviour of the expression. 
We deal with recursion in its most general (possibly non-guarded) form, i.e., we do 
not introduce any syntactic restrictions on the position of variables in an expression. 
They may occur at the beginning, at the end, or in the middle of an expression, or 
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even everywhere at once (such as, for instance, X in the defining equation X ~- X 0 X). 
Equations may always be rewritten (using fresh variables) to avoid complex right-hand 
sides. Consider, for instance, the defining equation Y ~ {a}; ({b} 0 Y). This equation 
may be rewritten as the system: Y ~ {a}; Y+, Y+ ~ {b} [1Y. 

3.2 S t r u c t u r e d  operational semantics 

Structured operational semantics (SOS, [39]) is a well established approach to defining 
the set of possible moves of a dynamic expression - or, more technically speaking, 
an operational semantics - of a process algebra. SOS consists of a set of axioms and 
derivation rules from which evolutionary behaviours of (dynamic) expressions can be 
derived. 
Let exp and exp ~ be two dynamic expressions of a process algebra (recall that in CCS, 
all expressions are dynamic objects, while in PBC, there exists a dedicated syntax for 
them). The possible evolutions leading from exp to exp ~ are given in the form of triples 

action 
evol = exp > exp ~. (6) 

The intended meaning is that, when started in a state described by exp, action may be 
performed, and after that, a state described by exp ~ is reached. The SOS axioms specify 
a set of basic evolutions (of the kind shown above), while the derivation rules take the 
form 

evoll , . . .  , evoln cond 
evol 

meaning that if the evolutions eVOl l , . . . ,  evoln (the premises)  are already derived and the 
condition cond (on the parameters of the evolutions evoli) is satisfied, then the evolution 
evol (the conclusion) may be derived; if cond is missing, it means no extra condition is 
required. Typically, the evoli's give evolutions of subterms of a larger expression whose 
evolution is described by evol, i.e., the rule has the form 

actionl actionn 
expl > expel , . . . ,  exPn ) exp,, cond (7) 

action 
op(expl,. . .  , expn ) ) op(exp~,..., exlJn) 

where op is one of the operators of the process algebra, and action is typically deter- 
mined by some transformation applied to the individual evolutions actioni. Axioms may 
be viewed as derivation rules without premises. The compositionality of the semantics 
arises from the fact that the derivation rules relate the behaviour of an expression to the 

behaviours of its components. For instance, CCS has an axiom a .E  _.E_> E which means 
that by performing action a, expression a.E  is transformed into expression E, and a 
derivation rule 

E a> E I F ~ F ~ 
' > ( 8 )  

E l F  x> E~IF  ~ 

(often called the 'x-rule') which means that if two conjugate actions are concurrently 
executable, then they are executable together as a silent action. 
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Let us now have a closer look at, and adapt, the rule schema for the purposes of PBC. 
We must consider multiactions, such as 0, {a}, {~}, {~, b}, or {a,a,  b}. In addition, 
the close relationship with Petri nets, and the separation of concurrent composition and 
synchronisation allows us to tune the SOS semantics in such a way that it describes 
not just behaviour, but concurrent behaviour. That is, what has been called an 'action' 
above, will now be formalised as a step of multiactions, i.e., a finite multiset of finite 
multisets of action particles, 1", as follows: 

1 ~ E M L a b  = r n u l t ( L a b p B c )  = m u l t ( r n u l t ( A p s c ) ) .  

We shall use F, A, . . .  to range over steps. For the dynamic PBC expressions, we thus 

aim at axiomatising a relation G ..r" H meaning that G can execute a step F (i.e., 
execute simultaneously, or concurrently, all the multiactions forming the step) and yield 
H. Note that the empty step F = 0 is allowed; it denotes 'no action', and thus, we would 

expect to have G 0 ) G in general. The empty step should not be confused with the 
singleton step F = {0} consisting only of the silent action 0; in general, we do not have 

G ~ G. More generally, we shall be interested in the step sequence semantics, i.e., in 
derivations of the form 

FIF2 .,. Fn 
G ~ H  

where FI F2. . .  F,, is a sequence of steps, implying that there are derivations 

G rl)Gj rz)G2 "'" Gn-I r%H. 

In this respect, the empty step F = 0 will act as the neutral element in step sequences 
so that, for instance, the two derivations 

0FI00F20 FI F2 
G ) H and G ) H 

will be equivalent. Moreover, we shall consider the following relation between two 
dynamic expressions: 

G-= H tee G °~, H. (9) 

Any dynamic expressions related by = will be called structurally equivalent. The fol- 
lowing set of general inaction rules captures the main properties of empty steps, and 
hence also of the =-relation: 

0 
0 G ) H  

IN1 G ) G IN2 

OF 
G ) H  

ILN IRN 

0 
H ~G 

FO 
G >H 

F F 
G ) H  G >H 

The rule IN I (INaction rule 1) implies the reflexivity of the relation - ,  and IN2 implies 
its symmetry. The next two rules, ILN (Inaction is Left Neutral) and IRN (Inaction 

is Right Neutral), imply the transitivity of the relation (since in particular, G 00 H 

implies G o ~ H). Thus, = is indeed an equivalence relation. 
Beside the various semantical operators of PBC, we shall also use a syntactical one: if 
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G is a dynamic expression, LGJ will denote its underlying static expression, obtained 
from G by dropping all its overbars and underbars. For instance, [ (a; b)] = (a; b). 

3.2.1 Equivalence notions 

The question of whether formal descriptions of  two concurrent system can be regarded 
as behaviourally equivalent is recurring in one guise or another throughout the liter- 
ature. For instance, in order to be able to say that a binary operator is commutative 
or associative, one needs to state that various expressions constructed from it are be- 
haviourally equivalent. However, various equivalence notions may be considered for 
the purpose. As this discussion is independent of the actual definition of action in (6), 
we may conduct it in advance. 
A first candidate for such an equivalence notion could be the =-relation, as it is an 
equivalence, and a behavioural one in a strong sense since, due to ILN and IRN, if 

r~r2...rn 
G ~ -- G ) H = H'  

then the following are satisfied: 

Fl F2... Fn FI F2... Fn FI F2... Fn 
G I ) H G ) H ~ G ~ ) H ~. 

However, this relation is too strong for our purposes since it is not necessarily the case 
that two dynamic expressions that correspond to the same Petri net are =-equivalent. In 
particular, a; (b; c) ~ (a; b); c, since the underlying expressions are not exactly the same, 
while (as it will occur) G = H ::¢, [GJ = [HJ; however, their Petri net translations will 
be isomorphic, and their equivalence is what is required for the sequential composition 
to be associative. 
On the other hand, it would not be enough to only require that the step sequences be 
the same for the two expressions under consideration. Indeed, if we denote by stop a 

hierarchical variable with the defining equation stop ~ stop, so that s-f0-'ff is only ever 

able to perform the looping empty move stop 0_~ s - ~ ,  then a-~ and (a;a) I-I (a;stop) 
will lead to the same nonempty move sequences {{a}} and {{a}}{{a}}; but it would 
be inappropriate to consider that the two expressions are equivalent since the latter may 
be blocked after the first execution of a (if the second branch of the choice is followed), 
while this may not happen for the former. Similarly, a; (b I-1 c) is not equivalent to 
(a; b) l-1 (a; c). Hence, it is necessary to take into account the branching structure of the 
sequences of moves. 
A common way to represent branching structures is to use (labelled) transition systems. 
A transition system is usually defined as a quadruple ts = (V, L, A, Fin ) which consists 
of a set V of states; a set L of arc labels; a set A C V × L x V of arcs; 4 and an initial state 
vin. Being essentially 'model independent', transition systems are often the preferred 
tool to compare various semantics. For if we associate a transition system both to an 
SOS-semantics of a (static or dynamic) PBC expression and to an associated (unmarked 
or marked) Petri net, it will be possible to state that the two semantics are equivalent, 
through equivalences defined at the transition system level. 

4 In the literature these are called transitions (hence the name: transition system); however, we shall reserve 
this term to mean a component of a Petri net. 
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A first attempt to associate a labelled transition system with a dynamic expression G 
could be to consider the tuple ([G),MLab,A,G) where the set of states [(7) is the 

smallest set of expressions containing G such that i fH  E [G) and H r ~ j then J E [G), 
and the arcs are given by: 

A = { ( n , r , J ) l n E  [C) A v E m u a b A H  r j} .  

Another possibility would be to replace, in the previous transition system, the set [G) 
by the set of its =-equivalence classes (and the initial state G by its ---class), since 
two =-equivalent expressions have the same behaviours and correspond to two views 
of the same system. However neither of these two definitions would faithfully capture 
the full complexity of the intended behaviours. Indeed, one could reach the conclusion 
that the two expressions stop and stop are equivalent, since they only allow empty 
moves. But it would not be advisable to do so since stop;a and stop;a are certainly 
not equivalent; the latter allows one to perform an a-move while the former only allows 
empty moves. What we really need is not only a behavioural equivalence, but more 
exactly a behavioural congruence, i.e., an equivalence, say ,-,, which is preserved by 
every operator op of the algebra: 

c ,  ~ , . . . ,  C,, ~ H,,  o p ( C , , . . . , C , , )  ~ o p ( H i , . . . , H , , ) .  

The example above shows that, in order to achieve this, it is necessary to distinguish the 
terminal expressions (and the --equivalent ones) from the non-terminal ones. But this 
is not enough, since a and b are both terminal expressions allowing empty moves only, 
but the looping constructs [c * a * c] and [c • b* c] are certainly not equivalent: the latter 
allows one to perform a series of b-moves (terminated by a c-move), while the former 
only allows a series of a-moves (terminated by a c-move). Hence, it is also necessary 
to take into account the fact that some constructs of the PBC algebra connect terminal 
(sub-)expressions to the corresponding initial ones. And, by a symmetric argument, it is 
desirable to distinguish the initial expressions and to take into account the fact that the 
looping constructs also connect initial (sub-)expressions to the corresponding terminal 
ones. 

All these features may be captured by the following device: when constructing the 
labelled transition system associated with an expression (but only for that purpose), we 
shall artificially augment the action set by two special elements, redo and skip, and add 
two rules 

{skip} {redo} _ 
E > E and E > E. 

That is, the initial and terminal expressions will be behaviouraily distinguished from 
other ones in that they will allow skip/redo moves. Then, with each dynamic expression 
G we shall associate the labelled transition system IbtsG = ( [G)s,, MLab,r,A, G) where 
MLabsr = malt(Lab) U {{skip}, {redo}} is the set of augmented move labels, 

F~ F2... F~ 
[G),,= {HI3r , , r 'E , . . . , r ,  EMLab,r: O > H}  

is the set of dynamic expressions reachable from G using the augmented rules, and the 
arcs are given by: 

A = {(/-/ ,r ,J)  1/-/E [G),, A r E  MLab,, A H __~r j} .  
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We shall also associate with G a reduced labelled transition system 

Ibts~ c = ( { [H I -  [ H E [G)$, }, MLab,r,A, [G]-) 
where [H]_- denotes the equivalence class of  a dynamic expression H with respect to 
the - -equivalence,  and the set of  arcs is given by: 

.~ = {([H]=,F,[J]__-)IHE [G), ,  ^ FEMLab , ,  ^ H  r j } .  

Moreover, with each static expression E, we shall associate the following two labelled 
transition system: IbtsE = Ibts:E and Ibts~/c = Ibts~ tc. 
The strongest notion of behavioural equivalence usually defined for labelled transition 
systems is isomorphism. Two labelled transition systems, (V, L, A, vin ) and (W, E, A I, d/n ) 
are isomorphic if there is a bijection iso : V --+ V' such that iso(vin) = ~n and 

a '  = {(iso(v), l, iso(w)) 1 (v, t, w) ~ A}. 

But such an isomorphism is uselessly restrictive since, for instance, the equation X 
allb would 'artificially' increase the - - c l a s s  of  allb and hence add an extra node to 
the transition system Ibtsa-~-g, but it would not affect the expression b i]a; yet we would 

expect these two expressions to be equivalent. This leads to the definition that two 
expressions G and H (being both either static or dynamic) are lbts-isomorphic, G "~ H, 
if Ibts~ c and Ibts~ c are isomorphic transition systems. 
But isomorphism is not the only way to obtain interesting congruences. We shall also 
examine what in CCS terminology is called strong equivalence. 5 Two labelled transition 
systems, (V, L, A, Vin ) and (V', L ~, A ~, ~in), are strongly equivalent if there exists a relation 
Q c V × V', itselfcalled,a strong bisimulation, such that (Vin , ~in) ~ Q, and if (v, v t) E Q 
then 

- I f  (v, I, w) E A then, for some w' E V', (v', l, w ~) E A' and (w, w ~) E Q. 

- I f  (v ~, l, w ~) E A' then, for some w E V, (v, l, w) E A and (w, w I) E Q. 

Two expressions G and H (being both either static or dynamic) will be strongly equiv- 
alent, G ~ H, if so are Ibtsa and IbtsH. Here, we used Ibts instead of  lbts rac since 
IbtsG and IbtsH are strongly equivalent if and only if Ibts~ c and lbts~ c are strongly 
equivalent. It may also be observed that - C ~ C ~ ,  i.e., for all expressions G and H, 

G - H  ~ G~-H ~ G ~ H ,  

and that the inclusions are strict. The reader will also be able to check that - ,  ~ and 
are indeed congruences for the various PBC operators, when we shall define the 

evolution rules for them in the later part of  this section. This is in contrast to step 
equivalence (sometimes called 's tep trace equivalence'): call G and H step equivalent 
if  the step sequences generated by them are the same. For instance, 

G =  (arqb) and H =  [c:cll({?,a}flb)] 
are step equivalent, 6 but G;d and H;d are not, since G;d can generate a step sequence 
{b}{d} which cannot be generated by H;d. Thus, in a sequential context, G and H may 
not be freely exchanged for one another. 

5Weak equivalences and congruences, obtained by treating the silent {O}-moves as a new kind of empty 
moves, may also be defined, but we shall not treat them here. 

6The reader may need to wait until section 3.2.5 in order to fully appreciate this example. 
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We now will specify the structured operational semantics, according to the general 
scheme just described, for the various kinds of (dynamic) PBC expressions. We will go 
through the basic PBC constants and operators one by one in the order given in the syn- 
tax, except that we treat the two infinite operators (iteration and recursion) last. Each 
time, we will give inaction rules and derivation rules, as appropriate. We finally stress 
that no derivation considered below involves the two special actions, skip and redo. 

3.2.2 Elementary actions 

The operational semantics of ot E ApBc is given by the following action rule: 

{~} 1 AR ~ > g 

This rule specifies that ct corresponds to an atomic transition (i.e., a transition in the 
Petri net sense). For instance, we may derive the following evolutions for the first 
example expression E0 = 0r starting from its initial dynamic version: 

- - ~  0 (IN1) and 0 {0}> __0 (AR). 

Notice the difference between the first derivation (inaction) and the second derivation 
(silent action). The former maintains the initial state of E0 while the latter transforms 
the initial state of E0 into its terminal state and denotes an actual execution of a silent 
transition. 

3.2.3 Parallel composition, choice, and sequential composition 

The operational semantics of parallel composition is driven by three rules : 

IPAR1 EIIF o> EItF 

G - ~  G' , H .....a > H'  
PAR F+A 

GItH > G'IIH' 

IPAR2 E_IIE 0 EIIF 

These rules combine two inaction rules (IPAR 1 and IPAR2) with one context, or deriva- 
tion, rule (PAR) in which F+A denotes the multiset sum of F and A. The PAR rule 
should be interpreted as follows. I fG  can make a F step to become G ~, and H can make 
a A step to become H',  then we can infer that GItH can make a F+A step (thus perform- 
ing concurrently all the components of both F and A) to become G'IIH'. We call it a 
'context rule ,  becau. ~, its general shape is such that, from the moves of subexpressions 
of the expression under consideration, a move of the whole expression may be deduced. 
These moves may be actual 'actions' involving the rule of the previous section, but they 
also may be inactions. Thus it would be slightly misleading to call PAR an 'action rule'. 

The inaction rule EIIF 0 ) ~t lT should not be interpreted as denoting anything actually 
happening in the step sequence sense. Rather, it describes two different views of the 
same system; the difference between E[]F and E[]F is that the first specifies an initial 
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state of EIIF while the second specifies the parallel composition of two separate ini- 
tial states, respectively, of E and F, and the inaction rule says that the two views are 
equivalent. By the inaction rule IN2, it follows that we also have the symmetric rule 

~11~ 9 ~ Eli F. The reason we have given rule IPAR1, instead of its symmetric coun- 
terpart, is that in the derivation of behaviour, we will usually use IPAR1, rather than its 
reverse. A similar remark holds for IPAR2. It can be shown that GI1H ~ HIIG, as well 
as GII(HIIJ) ~ (GIIH)IIJ, where G, n and J are such that all the expressions are valid 
PBC expressions, static or dynamic (the same assumption will be made in the formula- 
tion of other properties of PBC operators). We interpret these as properties signifying 
that II is commutative and associative. 

The other control operators of the basic PBC (choice composition, sequential com- 
position and iteration) follow the pattern used in the case of parallel composition; their 
operational semantics consists of a number of inaction rules combined with one or more 
derivation rules. The rules for the choice composition are: 

IC1L EOF °>-EOF IC1R EOF ° > E O F  

G r" ~ G I H a > H I 
CL CR 

GOF r > G t 0 F  EOH P~EOH' 

IC2L EOF ,,,,,,,°~ EOF IC2R EOF O~ E~F. 

The next set of rules describes the operational semantics of sequential composition: 

G r~G' 
ISI E ; F  0 ~ ; F  SL 

G;F r Gt;F 
IS2 E ; F  0 > E ; T  

H A~H' 
IS3 E ;F  0 ~ E ; F  SR a 

-- E;H ~ E;H' 

Choice is commutative, G 0 H ~ H 0 G, and associative, G 0 (H I] J) ~ (G 0 H) 0 J. It 
is also idempotent: E 0 E ~ E, G 0 [GJ ~ G and tx 0 ct ~ ix. Sequential composition 
is associative, G; (H;J) ~ (G;H);J. 

3.2.4 Multiway synchronisation 

We will describe three possible ways of defining the synchronisation operator seman- 
tically, depending on the amount of new behaviour added. First, we have the scheme 
discussed informally in section 2.5: 
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ISY1 

SY1 

E s y a  O>Esya 

G r> GI 

G sy a r > G° sy a 

(¢x+ {a}} + {13+ {~}} + r 
SY2 G s y a  ~ G t s y a  

{ a + p } + r  
G sy a ) G ° sy a 

ISY2 E s y a  0 > E s y a  

SYI states that G sy a can mimic all the steps of  G. The second derivation rule, SY2, 
states that if G sy a can make a move to G ~ sy a involving two multiactions, one con- 
taining a and the other containing ~, then G sy a can also make a move in which these 
two actions are combined into a single one, less the synchronising pair, also leading to 
G ~ sy a. If conjugate pairs are suitably distributed, this rule can be applied repeatedly 
in a single derivation. These rules generalise the CCS rules for parallel composition in 
the following sense: SYI is the same rule as its CCS counterpart, and SY2 generalises 
the 'x-rule' (8). Synchronisation is commutative, G sy a sy b ~ G sy b sy a, idempotent, 
G sy a sy a ~ G sy a, and insensitive to conjugation, G sy a ~ G sy a. 

The rules given previously prohibit what might be called silent auto-synchronisation. 
To see this, consider the PBC expression {a,~} sy a. The step {0} is not allowed 
for the corresponding initial dynamic expression {a,a} sy a, because SY1-SY2 only 
describe handshake communication between distinct sub-expressions. The following 
is a modification making silent auto-synchronisation possible without destroying the 
scheme for incremental multiway synchronisation: 

ISY1, SY1, SY2, ISY2] and 

{ct+ {a,a}} + F  
G sy a ~ G ~ sy a 

SY3 
{c,} + r 

G sy a -+ G r sy a 

The new rule SY3 allows additional steps to be made by a synchronised expression. In 
particular, the derivation 

{a, a} sy a {0}) {a, a} sy a 

is now possible. Moreover, since we can combine the rules SYI, SY2 and SY3, we 
may effectively realise what could be called multilink-synchronisations, i.e., synchroni- 
sations combining more than one conjugate link between two partners; e.g., 

({a,a}ll{ff, a}) sy a ~ ({a,a}ii{a,a))  sy a 

holds by SYI, SY2 and SY3 (but not by SYI and SY2 alone). It can be shown that 
the commutativity, idempotence and insensitivity to conjugation of the synchronisation 
operator is preserved by the addition of the rule SY3. We finally consider the following 
rules: 
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(~}+(~}+r 
G ) G' 

ISY1, SY1, SY3, ISY21 and SY4 
{c~+13}+r 

G ) G' 

The SY4 rule can be applied to arbitrary (dynamic) expressions, not just synchronised 
ones; it means that two (or more, through its repeated use) concurrent actions may 
always be combined in a single one, offering simultaneously what they both offered 
separately. For instance, with SY4 we may infer 

a ilb {{"'~} allb. 
If we add the rules ISYI, SYI, SY3 and ISY2 to SY4, we obtain the usual synchronisa- 
tions together with auto-synchronisations and muitilink-synchronisations, without the 
need for SY2. The last synchronisation rule is the strongest possible synchronisation, 
since it allows arbitrary concurrent actions to be combined into a single one; it has been 
presented here as the last, 'maximal', in the series of generalisations of the standard 
CCS rule. Again, the commutativity, idempotence and insensitivity to conjugation of 
synchronisation is preserved by the addition of rule SY4. 

3.2.5 Basic relabelling, restriction and scoping 

Let f be a function f :  ApBc --+ Apac satisfying f(a) = f(a) for all a E Apa¢, i.e., f is 
conjugate-preserving. We lift f to a function from Labpac to Labpac (also denoted by 
f )  by the formula f(o~) = ~aeApBc C~(a). {f(a)} where the sum (~) and the multipli- 
cation by a natural number (-) have their usual meanings in the multiset domain. After 
that we lift f to mult(LabpBc), in a similar way: f (F )  = ~-~ELabpac F(°0" {f(tx)}. For 
the basic relabelling, we then define the following operational semantics: 

IR1 E ~ ]  0> ~[f]  IR2 Elf] 0) ELf] 

G r G ~ 
RR 

G[/] f(~ G' If] 

One can show that G[f] [g] ~ Gig of]  and G[ia~ ~ G, where id is the identity relabelling. 
As in CCS, the restriction of a PBC expression E with respect to an action particle a is 
defined as the expression, E rs a, such that all the actions of E are allowed, except those 
containing a or ~: 

0 o 
IRS I E rs a ) E rs a IRS2 E_ rs a > E rs a 

RS 
G r>G '  

F> G ~ G rs a rs a 
r E mult(mult(ApBc\{a,a})) 

Restriction is commutative, G rs a rs b ~ G rs b rs a, idempotent, G rs a rs a -~ G rs a, 
and insensitive to conjugation, G rs a ~  G rs a. 
The scoping of a PBC expression E with respect to a primitive action a, denoted by 
[a : El, is a derived operator defined as [a : E] = (E sy a) rs a. Its semantics thus follows 
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from that o f  restriction and synchronisation. Scoping satisfies the same properties as 
synchronisation and restriction, i.e., it is commutative, idempotent and insensitive to 
conjugation. 

~.2.6 lt,~.-~t;.,n 

The iteration ol a PBC expression F with an mmalisat ion E and a termination E ~ is 
a new expression denoted syntactically by [E * F • E~]. Intuitively, it specifies the ex- 
ecution of  E, followed (if E does not deadlock before reaching its end and does not 
enter an infinite loop) by an arbitrary number of  executions of  F (including zero and 
infinitely many times), followed possibly (if none of the executions of  F deadlocks or 
loops indefinitely, and F is not executed indefinitely) by the execution of E ~. The rea- 
son for providing the loop with nonempty initialisation and termination actions will be 
discussed later. It also corresponds to common programming pr~,"" ~,~r example. 
consider the loop 

[ i :=0 ] ;  do  [A[i]=0] --+ [ t : = i + l ]  ov 

which specifies a linearly ascending search . . . . . . .  , , .zcxo e l e m e n t  o I  me array A. I hc 
loop has an explicit initialisation [ i :=0]  and an implicit termination, namely the test 
for nonzero, [ - , (A[i]=0)] .  Hence it corresponds to the following expression: 

[ [ i  := O] * ([A[i] = 01:[i := i +  1]) • ~A[i] 7£ O] ]. 
Formally, the operational semantics of  the iteration with initinli~ation and termination 
is defined as follows: 

I ITI  [E*F*E']  o> [ E * F * E ' ]  G - - ~ G '  
ITI 

IIT2a [E_E*F*E'] O > [ E , F , E , ]  [ G , F * E ' ] - ~ [ G ' , F , E ' ]  

G - - ~ G  I 
IITZb [ E * F , E ' ]  o , ~ [ E , T , E , ]  IT2 

[E , G ,  E'] --r-r [E ,G '  , E'] 

IIT2c [ E * F * E ' ]  o> [ E , F , ~ - T ]  G - - ~ G '  
IT3 

IIT3 [E * F * U] ° ) [E * F , E'] [E * F * G] --~+ [ E * F * G'] 

The part that effects the repetition is IIT2b; if this rule was omitted then [E • F * E'] 
would be equivalent to (E; (F;EI)) .  

7For instance, this may be defined by introducing an extra variable, denoted by ".", so that 6"[.] is simply 
an expression with (possibly) this extra variable; then C[expr] is obtained by replacing each "." by expr. 
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3.2.7 Recursion 

The operational semantics for a variable X with a defining equation X ~ E is given by 
the inaction rule: 

IREC C[X] o> C[E] 

where C[.] is a valid PBC syntactic context 7, such that C[X] (and so C[E] as well) is a 
valid static or dynamic PBC expression. IREC is called the recursion unfolding rule. 

It does not have any derivation rules because, by unfolding, the body E can replace X 
and, depending on the structure of E, other rules (if any) can be applied. For instance, 
[E .  F ,  E'] ~ (E;X), where X J~ (E' 1-] (F;X)). 

We may now explain why we decided to base the ~-equivalence on Ibts 'ac instead 
of Ibts. Assume that X = {X} and that the defining equation for the only variable is 

X ~---' allb. Then lbtsa~ h and Ibts~l~ are isomorphic transition systems, yet lbtsa- ~ and 
Ibtsh- ~ are not since the former has eight nodes and the latter six. 

3.3 Extens ions  

3.3.1 Generalised iterations 

The loop [E • F • E ~] could be considered as being mainly characterised by its looping 
part, F, while its initialisation, E, and termination, E e, might be seen as being marginal 
by comparison. In this section, we consider what happens if either of them, or both, are 
omitted. Consider the following alternative looping constructs: 

[E* F) (initialisation E, iteration F, no termination) 
(F * E r] (iteration F, termination E ~, no initialisation) 
(F) (iteration F only). 

These variants of the loop form a hierarchy: [E * F) could be seen as the same as 
E; (F), the second expression (F • E I] as the same as (F); E e, and the ternary expression 
[E • F ,  E ~] as the same as E; ( F ,  E'] or [E * F);E' or E; (F);E ~. 

Modifying the underlying mechanism of the operational rules for the standard iteration, 
the operational semantics of the alternative loop constructs might be defined by first 
extending the set of dynamic expressions with: [G,  E), [E ,  G), (G * E], ( E ,  G] and 
(G), and then adding the following derivation rules: 



31 

IITll [E*F) o [E*F) 

IITl2a [ i f ,F)  o [ E , F )  

IITl2b [ E , F )  O ) [ E , F )  

IITI3 [E ,F )  o [E ,F )  

IIT21 (E , F] o ( E , F ]  

IIT22a (E_,F] o ~ ( ~ , F ]  

IIT22b ( E , F ]  O)(E,F--] 

IIT23 (E,/7] - ~  (E ,  F] 

IIT31 (E) o (~) 

IIT32 (E) o~ (~) 

IIT33 (E> 0> <E> 

G r )G '  
IWl 1 [a,F> r [C',F> 

G r~G' 
IT12 

[E,G) r [E*G') 

G r~G' 
IT21 

<G,F] r>(G,,e] 

G r.~ G' 
IT22 

(E,G]  r <E*G'] 

IT31 
G --[+ G' 

<G> r <G'> 

While these rules seem to be derived in a natural way from those given for the ternary 
iteration operator, they exhibit a surprising (and highly unwanted) behaviour when com- 
bined with the choice operator. The following derivations are allowed by IIT2 I-IIT23 
and IT21 : 

(a ,b ]Oc  o (.,b]Oc <a,b]Oc 
2+ o (f i*b]0c '~ (a*b]Oc ..... ~ (a*b]Oc 

0 ( a , b ] 0 e  {{c}} ( a*b ]0c  0 (a*b]Oc. 

That is, it is possible to start performing the loop (by executing one or more a's) and 
afterwards leave it (without performing the terminal b) and enter the other branch of 
the choice. A similar example can be given when such loops are nested inside enclos- 
ing loops (even if the outer loop is a 'safe' one). In section 4, we shall see that this 
corresponds to a very specific feature of the Petri net translation, too. This scenario is 
impossible in the SOS style which is more oriented towards CCS, rather than towards 
Petri nets, and in which the distinction between the dynamic and static expressions is 
not made (as discussed in section 2.3). A similarly undesired behaviour may be ob- 
served of the first generalised loop construct: 

0 {{c} 1 0 0 [a,b> 0 c > [a,b> O'd [a,b) 0 c ) [a,b) 0 c ~ [a,b> f1 c 

[a,b>l]c [a, >Dc {{h}f [a,b>nc. 
Here it is possible to start performing the right branch of the choice and afterward still 
enter the loop, without performing the initial a. Again, this does not correspond to the 
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kind of behaviour one would expect from a choice structure. The operational semantics 
of the last generalised loop (E) turns out to be the simplest one, but this simplicity 
is offset by a combination of the problematic features exhibited by the two previous 
constructs. 

The above examples provide justification for the decision to include - in the standard 
PBC - only the least general iteration operator, which is completely safe when com- 
bined in any way with other operators, in whichever semantics. Other loop operators 
will be used only when it is 'safe'. For instance, ( F .  E t] will be used only when it is 
front-guarded with respect to the enclosing choices and loops. See section 6 for such a 
use, and [8] for a fuller discussion of various forms of guardedness. 

3.3.2 Data expressions 

In order to model data variables in a programming language, we shall introduce another 
generalised iteration. For example, the net corresponding to the declaration varx : 
{0, 1 }, part of which is shown in figure 6, involves transitions of the form ~vw for all 
possible values v, w E {0, 1 }. In the formal treatment, instead of introducing another 
family of operators modelling data, we shall simply add a new family of basic processes. 
Let us assume that VAR is a set of program variables ranged over by x, y, z , . . .  and that 
the token domain of a variable z is the set Dz ~ {•}. The D z can be thought of as the data 
domain proper (i.e., the type): it is the set introduced by its declaration. The elements 
of Dz will be called values and ranged over by u, v, . . .  T h e .  will be interpreted as an 
'undefined value'. 

For each program variable z, the set of action particles ApBc contains all symbols zkt 
and Zkt such that k, l E Dz ~ {o}. Moreover, zkt and zkt are conjugate action particles, 

i.e., ~ / =  ~'kl and Zkl : Zkl. The behaviour of variable z will be represented by a loop- 
like basic process expression obeying the syntax [z0]. Intuitively, it is composed of an 
initialisation part, a core looping part (but with more comp:ex behaviour than that of 
the previously defined loop) and a termination part. The intended semantics is that such 
an expression can first execute Zou, for any value u in Dz, then a sequence of zero or 
more executions of zuv, where u, v E Dz, and terminate (possibly) by an execution of an 
Zu.. Each such execution is carried out under a restriction that, if zku and Zvl are two 
consecutively executed actions, then u = v. 

For the basic expression [z0] we shall use the following set of rules, which resemble 
those introduced for the iteration operator: 

DAT1 [z0] 

DAT2 

DAT3 [z-'~u)] 

{{z.u)) 
> 

{{zuv)) 
> 

{{z,,.)} 
> [z(.)] 

In the above, [z~u)] is a basic dynamic ex ~ression which represents the fact that the 
program variable z presently has the value u. We illustrate the use of the DAT set of 
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rules using a binary variable z, i.e., one with D z = {0, 1}: 

{{z.o}} {{zoo}} 
[z0] ), [z--~] (DAT1) > [z~] (DAT2) 

{{zll}} {{z~.}} 
> [z-'~] (DAT2) > [z0] (DAT3) 

Notice how in this derivation the expression changes according to the value being prop- 
agated; moreover, at the end, the same expression is obtained as that at the start (except 
for the overbar and underbar, respectively). The full behaviour of a program variable 
z may then be modelled by ([z0] I'1 {z..}), in order to represent, through Zoo, moreover 
the fact that the variable may be destroyed before any true access to it is performed. 

3.3.3 General ised operators  

We extend the three binary control flow operators by allowing a variable number of 
arguments indexed by some nonempty countable indexing set 1: 

[lietEi , D iclEi , ;iEIEi. (10) 

Such a notation is motivated by the associativity of the corresponding binary opera- 
tors. For the indexed sequence operator, I must be a finite or infinite sequence; tbr 
the indexed choice and parallel composition operators, I need not be ordered since the 
corresponding binary operators are also commutative. When I is finite, the expressions 
in (10) are equivalent 8 to standard expressions; for instance, [[ie{O,l,2}Ei is equivalent 
to EOlI(EI IIE2). When I is infinite, we can provide equivalent definitions in terms of a 
system of recursive equations. If we assume that I is the set of natural numbers then 
the three constructs in (10) are equivalent to the variable X0 which is evaluated in the 
context of an infinite set ofrecursive equations, for every i > O, defined by, respectively, 

Xi ~ Eil]Xi+l,Xi ~ Ei ~Xi+l andXi ~ Ei;Xi+l. 
As suggested by the properties of commutativity and idempotence of the synchroni- 
sation, restriction and scoping operators, one may introduce operators such as E sy A, 
E rs A and [A : El, where A C ApBc is a set of action particles. The idea here is to 
apply the corresponding unary operations for all the action particles in A, in any order 
(due to commutativity) and without worrying about repetitions (idempotence leads to 
the observation that considering multisets instead of sets of action particles would add 
nothing in that respect). For finite sets A, this simply may be a way of compacting the 
notation, but with infinite sets the expressiveness of the model is strictly increased. 

3.3.4 Extended PBC syntax  

Having introduced the basic PBC and discussed a number of its possible extensions, we 
will now give the syntax for an extended version of the basic PBC, which incorporates 
some of the extensions that we have mentioned: 

E ::= a I X I E I I E I E D E I E ; E I [ E . E . E ] I [ z 0 ]  [ (11) 
E~] l E s y a t  E rsa I [a :E]  I E s y a  [ErsA  I [A : E], 

where A C_ Ap~c and z is a program variable. The meaning of the remaining items is the 
same as in (3). The dynamic (extended) PBC expressions are defined by the following 

8 In the sense of the ~--relation, here and later in this paragraph. 
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syntax, where E is a static PBC expression given by (11): 

G ::-- -~Ie__IGIIGIGUEIEGGIG;EIE;GI 
[G*E*E] I [E*G*E] I [E*E*G] I [~(~)] I 
G[f] I Gsy a I G rsa I[a:  G] I Gsya  I G rsA I [A :G], 

where A C ApBc, z is a program variable, and u E Dz. 

(12) 

4 Petri  Net  Semant ics  

Petri nets have long been provided with various (coherent) behavioural semantics (e.g., 
[34, 40]), in particular concurrent semantics such as trace semantics [29], step semantics 
[20], process semantics [5, 23], and partial word semantics [24, 42, 45]. Hence, a 
natural idea to get a fully fledged (concurrent) semantics for a process algebra is to 
associate a net to each expression of the algebra. This technique has already been 
exploited for various existing process algebras [! 1, 13, 21, 22, 35, 43], but in many 
cases only fragments of the theory have been successfully translated. Here we shall 
describe how to do the job not only in all generality, but also fully compositionally, 
due to the careful choice of the operators of the PBC and very general mechanisms 
introduced to combine nets. Indeed, in order to get a compositional way of translating 
(dynamic as well as static) PBC expressions into nets we need to define for them at 
least the same operators as for the process algebra. Then the translation will simply be 
a homomorphism. The present section shows how to do this for the recursion-free PBC. 
Our approach to compositionality will be based on transition refinement, i.e., each op- 
erator on nets, o17, will be based on a finite net ~op whose transitions tl,t2,... ,tn are 
refined by the corresponding nets El,I]2, . . .  ,Z;n in the process of forming a new net 
op(El, g2 , . . . ,  Z,,) = ~ot,(Y.l, E2, . . . ,  En). To carry this out, we need to be able to dis- 
tinguish those (labelled) nets that are easily composable with one another, from the rest 
which are not. These considerations will be contained in sections 4.1 and 4.2 of the 
present section, and they will immediately be applied to the basic PBC, in section 4.3. 

4.1 Labelled nets and boxes 

We delineate several classes of labelled Petri nets whose interfaces are expressed by la- 
bellings of places and transitions, collectively called boxes because they can be viewed 
as nets with an interface. There are two main classes of boxes which we will be inter- 
ested in, viz. plain boxes and operator boxes. 
Plain boxes - defined in section 4.1.4 - are the basic semantical objects of interest. 
They form the class of elements of our Petri net domain upon which various operators 
are defined, just as expressions form the domain of a process algebra upon which pro- 
cess algebraic operators are defined. When giving the Petri net semantics of a process 
algebra (such as PBC or CCS), we will associate a plain box with every expression. 
Operator boxes -  defined in section 4.2.1 - are patterns (or functions) defining the ways 
of constructing new plain boxes out of given ones. When translating a process algebra 
into Petri nets, we aim at associating a specific operator box with every operator of the 
process algebra. It is one of the characteristic features of our approach that the same 
type of nets - boxes - serve to describe two seemingly very different objects, namely 
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the elements and the operators of the semantical domain. However, this is very similar 
to viewing constants as nullary functions (in logics, for instance). 
We introduce the kind of nets we shall need using a simple example. A possible model 
for the dynamic expression ~;(~11=) might look like the net depicted in figure 8. Note 
that this net is safe under the marking shown there. 

3 

S2 S4 

Figure 8: Net of ~; 

Clearly, the action name o~ cannot be used to identify the transitions, since there are 
three of them, all corresponding to the same action ~. As a result, to model static or dy- 
namic expressions we need to employ Petri nets with transitions being labelled by action 
names. For Petri nets defining net operators, we shall also use transition labelling, but 
with labels corresponding to general relabellings, in order to allow combining together 
transitions coming from the composed nets. And, since action names may be treated as 
a special kind of (constant) relabellings, the latter may be used in full generality. 
In the above net, moreover, three different kinds of places can be identified. The place 
so is special in the sense that it contains the token corresponding to the expression in 
its initial state. And, by symmetry, the places s3 and s4, when holding one token each, 
characterise the terminal state of the expressions. The two remaining places, sl and s2, 
may be considered as internal and contributing to intermediate markings corresponding 
to intermediate dynamic expressions. The different role of the places may be captured 
by a suitable labelling mechanism, with three possible values corresponding to the three 
kinds of places. 

4.1.1 Actions and relabellings 

We assume a set Lab of actions to be given. At this point Lab is an arbitrary set, but 
later we shall consider Lab to be the structured set LabpBc of actions used in the PBC 
expressions. The intuition behind an element ~ E Lab is that o~ expresses some interface 
activity. The notation 'Lab'  has been chosen for the action set because actions will 
serve as transition labels. When executing a transition, or a set of concurrently enabled 
transitions, we shall then be able to consider the corresponding action or (multiset of) 
actions. A relabelling p is a relation 

p C_ (mult(Lab)) x Lab (13) 

such that (0,co) E p if and only if p = {(0,o~)}. The intuition behind a pair (F,c~) 
belonging to p is that it specifies some interface change which can be applied to a (finite) 
group of transitions whose labels match the argument, i.e., the multiset of actions F. 
Since F, being a multiset, is an unordered object, the order of the transitions in such a 
group does not matter, and we immediately obtain a kind of simple commutativity of 
the operation described by p. 
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Three specific relabellings are of particular interest. A constant relabelling, Pa = 
{(0,a)},  where a is an action in Lab, can be identified with a itself, so that we may 
consider the set of actions lab  to be embedded in the set of all relabellings. If a rela- 
belling is not constant, then it will be called transformational; in that case, the empty 
set will not be in its domain, in order not to create an action out of  nothing. 
The restriction Pt.,t,' = {({a}, or)[ o~ E Lab'} only keeps the actions belonging to some 
set Lab ~ C Lab. 
The identity relabelling, Pid = {({Or}, (X) [ (X E Lab} captures the 'keep things as they 
are' interface (non)change; it is a special restriction: Pid = PLab. 

4.1.2 Labelled nets 

In this paper, by a (marked) labelled net we will mean a tuple 

Z- -  (S,T,W,X,M) (14) 

such that: S and T are disjoint sets of respectively places and transitions; W is a weight 
function from the set (Sx T) U (T ×S) to the set of natural numbers N; ~, is a labelling 
function for places and transitions such that ~,(s) E {e, i, x}, for every place sES, and ~,(t) 
is a relabelling p of the form (l 3), for every transition tET; and M is a marking, i.e., a 
mapping assigning a natural number to each place s E S. This generalises the net model 
we considered in section 2.2. We adopt the standard rules about representing nets as 
directed graphs, viz. places are represented as circles, transitions as rectangles, the flow 
relation generated by W is indicated by arcs annotated with the corresponding weights, 
and markings are shown by placing tokens within circles. As usual, the zero weight arcs 
will be omitted and the unit weight arcs (or unitary arcs) will be left as plain arcs, i.e., 
unannotated. To avoid ambiguity, we will sometime decorate the various components 
of Z with the index Z; thus, Tx denotes the set of transitions of Z, etc. A net isfinite if 
both S and T are finite sets. 

so to si tl s2 t2 s3 

Figure 9: A labelled net, ,To. 

Figure 9 shows the graph of a labelled net Zo = (So, To, Wo, Xo, Mo) defined thus: 

So = {so,sl,s2,s3} and To = {to, tl,t2} 

Wo = ((TSUST) × {I}) U (((So × To)\ST) × {0}) U (((To×So)\TS) × {0}) 

where TS = {(to,sl), (tl,S2), (t2,s3)} and ST = {(so,to), (Sl,tl), (s3,t2)} 

= { (so, e), (sl, i), (s2, ×), (s3, e), (to, 13), (t2, a) } 

Mo = {(so, l)}.  
We adopt finite step sequence semantics for a labelled net Z = (S, T, W, ~., M), in order 
to capture the potential concurrency in the behaviour of the system modelled by Z. A 
finite multiset of transitions U, called a step, is enabled by X if for every place s E S, 

M(s) > Z(U(t ) .W(s , t ) ) .  
tEu 
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We denote this by Z [U) ,  or by M [U) if the underlying net is understood. An enabled 
step U can be executed leading to a follower marking M ~ defined, for every place s E S, 
by 

M'(s) = M(s) + ~,(U(t). (W(t,s)-W(s,t))). 
tEu 

We will denote this by M [U) M ~ or Z [U) O, where O is the labelled net (S, T, W, ~,, Mr). 
Transition labelling may be extended to steps, through the formula 

~,(U) = ~ (U(t). {~,(t)}) E muir(Lab).  
tEu 

A net exhibits auto-concurrency if some follower marking enables a step which is not 
a set.Notice that the label of  a step may need to be a multiset rather than a set, even 
if the net exhibits no auto-concurrency, since different concurrent transitions may have 
the same label (as in figure 8). Although we use the same term 's tep '  to refer to both a 
finite set of  transitions here, and a finite multiset of  actions in section 3, it will always 
be clear from the context which one is meant. The notation for action based steps will 
be Z [F)lab O, etc. 
Afinite step sequence of Z is a finite (possibly empty) sequence o = Ut . . .U t  of  finite 
multisets of  transitions for which there are labelled nets Y-,o . . . .  , Xk such that 2: = ,v,o and 
for every 1 < i < k, Ei-1 [U/) 5: i. Depending on the context, this shall be denoted by one 
of the following notations: 

X[Ct) Zk , M:c[~J) M z , IgkE [Y.) or M~:,E [Mlc). 

Moreover, the marking Mzk will be called reachable from M~:, and Zk derivable from 
Y.. The empty step will always be enabled, but it can be ignored when one considers 
a step sequence. The only difference is that here the empty step only relates a net to 
itself; i.e., Z [0) 19 ¢:~ Z = 19 ¢¢. Z [e) 19, where ~: denotes the empty sequence. 
Consider the marked labelled net Z0 shown in figure 9. There, transitions to and 12 are 
enabled concurrently and, hence, {to, t2} is an enabled step. After this step has been ex- 
ecuted, transitions tl and t2 are enabled concurrently and, hence, {to, t2}{ti, t2} is a step 
sequence of  the net from its shown marking. A step does not need to be maximal. Thus, 
for instance, {to} is also a step of  Y-,0, and {to} {tl } {t2} {t2 } and {to, t2} {tl } {t2} are step 
sequences. In terms of  labelled steps, the step sequence {to,t2}{tl){t2} corresponds 
to {ct, ct){[~}{ot}. Notice that different step sequences may correspond to the same la- 
belled step sequence. For example, both {to}{t2){tl) and {t2){to}{tI} correspond to 

If  the labelling of  a place s in a labelled net Z is e then s is an entry place, if i then s is 
an internal place, and i f x  then s is an exit place. By convention, °Z, Y.° and ~: denote 
respectively the entry, exit and internal places of  Z. For every place (transition) x, we 
use °x to denote is pre-set, i.e., the set of  all transitions (places) y such that there is an 
arc from y to x, that is, W (y,x) > 0. The post-set x ° is defined in a similar way. The pre- 
and post-set notation extends in the usual way to sets R of  places and transitions, e.g., 
°R = U{*r I r E R}. In what follows, all nets are assumed to be T-restricted, i.e., the 
pre- and post-sets of  each transition are nonempty. No assumption of that kind is made 
for places. For the labelled net of  figure 9 we have °Zo = {so, s3}, Z~ = {s2}, *so = 0, 
s~ = {to} and {so,s1}" = {to, tl} = *{sl,s2}. 
The labelled net Z is simple if W always returns 0 or 1, and pure if for all transitions t E 
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T, "t N t ° = 0. If E is not pure then there are s E S and t E T such that (W (s, t). W(t, s)) > 
0. In such a case, the pair {s,t} will be called a side-loop, and s a side-condition of t .  
Thus, being pure amounts to side-loop freeness, or side-condition freeness. The net in 
figure 9 is finite and simple, but is not pure as it contains a side-loop, {s3,tz}. 
The marking M of 5. is safe if for all sES, M(s)E{0, 1}. A safe marking can and will 
often be identified with the set of places to which it assigns 1. A safe marking is clean 
if it is not a proper superset of °]~ nor 5.0, i.e., if °5. C M or 5.0 C_ M implies °5. = M 
or E ° = M, respectively. The marking of the net in figure 9 is both safe and clean. It 
would cease to be clean if we added a token to it, even if this new token would be put 
on one of the entry places (because a clean marking must also be safe). A marked net is 
called safe (clean) if all its reachable markings are safe (resp., clean), k-bounded if no 
reachable marking puts more than k tokens on any place (so that 1-boundedness is the 
same as safeness), and bounded if there is some k such that it is k-bounded. 
A symmetric (and, by T-restrictedness, irreflexive), not necessarily transitive, relation 
inds is defined on the transition set of a labelled net 5., by 

inds = {(t,u) E T x  T l(° tUt ' )N(°uUu °) =0 } .  

This relation is called the independence relation, because two distinct transitions be- 
longing to ind,: have no impact on their respective environments. If they are both 
enabled individually, then they are enabled simultaneously. Conversely, if 5. is safe, 
it can be shown that, whenever two transitions occur in the same step, then they are 
independent. 
We will use three explicit ways of modifying the marking of 5. = (S, T, W, ~,,Mz). We 
define [EJ as (S, T, W, ~,, 0); typically, this operation is used when Ms :~ 0, since it 
corresponds to erasing all the tokens. Moreover, we define ~ and __Z as, respectively, 
(S, T, W, ~,, °E) and (S, T, W, ~,, 5.°). These operations are typically applied if Ms = 0, 
and they correspond to placing one token on each entry place (respectively, one token 
on each exit place). We will call °E the entry mark~ ,  and 5.° the exit marking of E; 
note that both are safe and clean. Note also that [.], (.) and (.)  are syntactic operations 
having nothing to do with derivability (reachability) in the sense of the step sequence 
semantics defined above. 

4.1.3 Equivalence notions 

As for PBC expressions, various behavioural equivalence or congruence notions may 
be defined for labelled nets. It may first be observed that the whole set of step sequences 
may be specified by defining the full reachability graph of a net, whose nodes are all 
the reachable markings (or equivalently, the reachable marked nets) and whose arcs are 
labelled with steps which transform one marking into another. For example, figure 10 
represents the full teachability graph of the labelled net Y.~ shown in figure 9; the empty 
steps are left implicit; and the circled dot indicates the initial node, M~.  The arc labels 
may be transition steps (as in figure 10) or labelled steps. Any finite path in this graph 
starting at the initial node specifies a legal step sequence of the marked net 5.o, and vice 
versa. 
Using the reachability graph to represent the overall behaviour of a labelled net E, leads 
to the same kind of difficulties as encountered in section 3.2.1 when we discussed the 
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{to, t2} {t~,t2} 

( ~  {to} ~ {'1} ~ 

{t2} {t2} {t2} 

Figure 10: Full reachability graph of Y-,o (figure 9). 
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Figure 11 : Reachability graph isomorphism is not preserved by choice. 
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operational semantics of PBC expressions. Tb:,t is, the isomorphism of reachability 
graphs is not preserved by, e.g., choice composition of nets (even if we consider transi- 
tion labels), as illustrated in figure 11. We address this problem by introducing a device 
similar to that applied in the case of PBC expressions. Recall that the idea there was to 
augment the behaviour with two auxiliary moves, skip and redo, which could transform 
an expression in the initial state into an expression in the terminal state, and vice versa. 
In the case of the labelled net Y., we achieve a similar effect by adding to it (artificially) 
two fresh transitions, skip and redo, so that 'skip = redo" = °~, skip" = 'redo = E °, 
~,(skip) = skip and ~.(redo) = redo. Moreover, we assume that all the arcs adjacent to 
the skip and redo transitions are unitary, redo,skip ~ Lab, and °E -7/: 0 :fi E °. The latter 
condition is needed to ensure that the two new transitions are T-restricted. Denote the 
net E augmented with skip and redo by gsr. Then the labelled transition system gener- 
ated by E is defined as Ibts~: = (V,L,A,vo) where V = {O I ®st E lest) } is the set of 
states, v0 = E is the initial state, L = mutt(Lab U {redo, skip}) is the set of arc labels, 
and the arcs are given by: 

a = { ( o , r , v )  l o , , ~  [~.s,) A O ,  [r) , ,bvs,}.  

In other words, Ibtsz is the labelled reachability graph of Esr with all the references 
to skip and redo in the nodes (but not on the arcs) of the graph erased. The labelled 
transition system generated by an unmarked labelled net E, corresponding to a marked 
net with the empty marking, is defined as Ibtsz = Ibts~. 

Figure 12 shows how augmenting labelled nets with the redo and skip transitions allows 
one to discriminate between the nets ~ and O depicted in figure 11. Thus, skip and redo 
allow for distinguishing the entry and exit states from the other ones, and for modelling 
the fact that if a net is left (through the exit state), it may later be possible to re-enter it 
(through the entry state). 

~ A  
~ V  

v -  

: A  

e 

d 
0 

l w -  

Ibtsz Ibtso Ibtsog v 

Figure 12: Discriminating Ibts's. 

Two labelled nets, ~ and O, will be called lbts-isomorphic, denoted g -~ O, if Ibtsg and 
Ibtso are isomorphic transition systems, and strongly equivalent, denoted t: ,~ O, if 
Ibts:: and Ibtso are strongly equivalent transition systems. Notice that there is no need 
to consider an lbts-isomorphism up to the empty moves, as in section 3.2.1, since here 
E [0) g' iff E = ~'. Figure 13 shows an example of strongly equivalent (but not lbts- 
isomorphic) nets. Note that adding or dropping dead transitions (i.e., transitions which 
may never occur in the augmented net) preserves ~-equivalence and ~,-equivalence. 

What we have done above is not the only way of  defining relevant equivalence no- 
tions in the domain of labelled nets. In particular, because Ibts-isomorphism and strong 
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Figure 13: Two strongly equivalent labelled nets. 

equivalence are essentially behaviourat, it may be difficult to check if two nets are so 
related. Since we are working now with nets, it is also possible to define equivalence 
notions based on the structure of nets rather than on their behaviour (of course, a struc- 
tural equivalence should imply a behavioural one). But, again, there are different ways 
to do so. 
The strongest structural equivalence, other than equality, is net isomorphism. Two la- 
belled nets, Z and O, are isomorphic, denoted E iso O, if their graphs are isomorphic, 
i.e., if there is a bijective sort-preserving mapping iso : Sz U T~- --+ So U To such that for 
every x 6 SzU Tz, Xe(iso(x)) = Xz(x), for every s 6 Sz, Me(iso(s)) = Mz(s), and for 
all s 6 Sz and t ~ Try, Wo(iso(s),iso(t) ) = Wz(s,t) and Wo(iso(t),iso(s) ) = Wr,(t,s). 
Weaker equivalences are obtained by allowing nets differ only by duplicating places and 
transitions. Two places s and s t duplicate each other in a labelled net E if~z(s) = ~,m(s~), 
Mz(s) = Mz(s'), and for every transition t, Wz(s, t) = Wz(s', t) and Wz(t, s) = Wy~(t, d); 
then, in any evolution of the net, the two places behave in an identical way and do 
not add anything with respect to each other. Similarly, two transitions t and t' du- 
plicate each other if ~,z(t) = ~,z(t'), and for every place s, Wz(s,t) = Wm(s,t') and 
W~(t,s) = Wm(t~,s); then, in any evolution of the net, the two transitions lead to the 
same labelled steps and do not add anything with respect to each other. Clearly, the 
duplicating relation is an equivalence between the places and between the transitions, 
and it is possible to replace in the net the place/transition set by the set of their equiva- 
lence classes, thus obtaining a net with essentially the same behaviour. More precisely, 
two labelled nets, Z and ®, will be called place-duplicating (transition-duplicating, or 
node-duplicating, respectively), denoted Z isos O (E isor ® or E isosr O, respectively), 
if they lead to isomorphic nets when their places (transitions or nodes, respectively) are 
replaced by their duplicating equivalence class. It is a straightforward observation that 
in the domain of labelled nets, 

iso C isos C isosT C = C 

and iso C isoT C isosT C ~ C ~ . 

The four notions of structural equivalence are illustrated in figure 14. In particular, we 
have El isor Z2 isosr Z3 isos El, but Z4 is not equivalent to any of other three nets. 
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Figure 14: Four labelled nets and their Ibts's. 

4.1.4 Boxes and (static or dynamic) plain boxes 

A box is a labelled net E such that there is at least one entry and at least one exit place 
(E is ex-restricted) and, moreover, the entry places are free from incoming arcs and 
the exit places are free from outgoing arcs (Y~ is ex-directed), that is, if °Y~ ~ 0 ~: ~° 
and °(°Z) = 0 = (Z°) °. We require Z to be ex-restricted to ensure that the operation of 
net refinement is well defined. We will see later that, and how, the theory depends on 
this assumption, cf. section 4.2.4. This property ensures, moreover, that Ibts~; is well 
defined for a box ~. The reason for demanding ex-directedness is more subtle and is 
motivated by our intention to obtain certain behavioural properties of compositionally 
defined boxes. We return to this issue after discussing net refinement, in section 4.2.4. 
Note that the labelled net Z0 in figure 9 is not a box since it is not ex-directed. 
A box Z is, by definition, plain if for each transition t E T~, the label ~,~(t) is a constant 
relabelling. Hence, by our convention, every transition label in a plain box is an action 
in Lab. 
We now define some important behavioural properties of plain boxes. A plain box Z will 
be called static if its marking ME is empty and all the markings reachable from its entry 
marking °Y. are safe and clean. Static boxes are our analogue of static expressions (i.e., 
expressions without under- or over-barring). The safeness and cleanness conditions 
delineate the class of nets which we will be considering. Later, we will show that 
all boxes that will be constructed for process algebraic expressions (or for concurrent 
programs, for that matter) will automatically satisfy these properties. 
A plain box Y~ is dynamic if its marking Mz is nonempty, [~] is a static box, and all 
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the markings reachable from Mz are safe and clean. Dynamic boxes correspond to 
dynamic expressions, i.e., expressions for which active subexpressions are indicated by 
overbarring and underbarring. Note that if Z is a static box and O is derivable from 

then O is a dynamic box; in particular, ~ itself is a dynamic box. However, in this 
definition, it is not required that M~ can be reached from °E. 
Typically, we shall be interested in dynamic boxes ~ which are reachable from 1~, but 
when combining reachable dynamic boxes together, it may sometimes happen that the 
result is not reachable, much in the same way as some syntactically valid dynamic ex- 
pressions may not be reached from their corresponding initial expression (for instance, 
(a;b) rs a is not reachable from (a;b) rs a ). 
When a box E is started from a nonempty marking (in particular, °E, because of ex-re- 
strictedness), its reachable markings are always nonempty (because of T-restrictedness). 
On the other hand, the empty marking of a box has no successor markings except it- 
self (reachable by the empty step sequence). Thus, the distinction between static and 
dynamic boxes is invariant over behaviour. Moreover, it may be noticed that the no- 
tions of being static or dynamic, and their invariance over behaviour, do not rely on 
ex-directedness; hence they may be extended to boxes augmented with the redo/skip 
transitions. 
Within the set of dynamic boxes we further distinguish two special classes, called entry 
and exit bores, which comprise all dynamic boxes E such that Mz is, respectively, °E 
and E °. Note that the sets of static boxes, entry boxes and exit boxes, are in bijection 
with each other: the functions associating with a static box E the entry box ~ and the 
exit box _E are bijections from the set of static boxes to the set of entry boxes and to 
the set of exit boxes, respectively. The set of dynamic boxes is much larger: it properly 
contains the set of entry boxes and the set of exit boxes, but is disjoint with the set of 
static boxes. 
The families of plain static, dynamic, entry and exit boxes will, respectively, be denoted 
by Box s, Box d, Box e and Box x, and the whole family of plain boxes will be denoted by 
Box. 

Proposition 4.1 Let E be a dynamic box and U be a step enabled by E. Then every 
net derivable from E is a dynamic box; U is a set of mutually independent transitions, 
U × U C ind~ U idr~; and all the arcs adjacent to the transitions in U are unitary, i.e., 
W~((U × S~) U (S~: x U)) C_ {0, l }. a 

Proposition 4.2 A box E is dynamic (static) if and only if so is Est. 1:3 

Two behavioural conditions were imposed on the markings M reachable from the entry 
marking, M C [°E), of a static box E. First, we require M to be safe in order to ensure 
that the semantics of the boxes is as simple as possible and, in particular, that the nets 
we consider do not allow auto-concurrency, and that one can directly use a partial order 
semantics of Petri nets in the style of Mazurkiewicz [29], as described in [28]. The 
second condition, that M is a clean marking, is a consequence of the first condition and 
our wish to use iterative constructs in the algebra of nets. Moreover, it may be observed 
that when a box is augmented with the two redo/skip transitions, cleanness implies that 
if a redo is performed, then we get the entry marking °E and the net remains safe (and 
clean); on the other hand, if ~ were not clean, ,~, would not be safe either (nor clean). 
Although static boxes are our primary interest, we also need to be able to represent 
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intermediate markings by dynamic boxes. The latter, more generally, will allow us 
to exhibit a very close relationship between the operational and Petri net semantics of 
process expressions. 

4.2 Net refinement 

The basis for providing plain boxes with an algebraic structure, and hence for defining 
a compositional denotational semantics of static and dynamic PBC expressions, will be 
a general simultaneous refinement and relabelling meta-operator (net refinement, for 
short). It captures a mechanism by which transition refinement and interface changf 
defined by relabellings are combined. Both operations are defined for an arbitrary sin" 
pie box i'2 which serves as a pattern for gluing together a tuple of plain boxes E (one 
plain box for every transition in ~)  along their entry and exit interfaces. The relabellings 
annotating the transitions off2 specify the interface changes to which the boxes in ,~ are 
subjected. 

4.2.1 Operator boxes 

An operator box is a simple finite box 12 whose relabellings are transformational, i.e., 
non-constant. We will assume that Tf~ = {Vl,.. . ,  vn} is an arbitrary but fixed ordering 
of the transitions off~. Let ~, = (~v,,---, Evn) be a tuple of plain boxes; for every v E Tl2, 
Y-,v = (Sv, Tv, Wv, ~,Mv). We will refer to Y, as an l'2-tuple, and treat it as a vector of plain 
boxes. We shall not require that the boxes in ,~, be distinct. 
As the transitions of an operator box are meant to be refined, i.e., replaced, by full 
systems represented by the boxes ~v, it seems reasonable to consider that their exe- 
cution may take some (arbitrarily long) time or, indeed, may last indefinitely (if the 
subsystem represented by ]~v deadlocks or works endlessly). This may be captured 
by a special kind of extended markings. A complex marking of an operator box if2 
is a pair (M, Q) composed of a standard marking M of ~ and a finite multiset Q of 
('engaged') transitions of ~.  M may be considered as the real part, and Q as the 
imaginary part of the complex marking. A standard marking M may then ! - identi- 
fied with the complex marking (M,0). The enabling and execution rules are extended 
thus. Let U, V and W C_ Q be finite multisets of transitions. Then we will denote 
(M, Q) [U + V + + w - )  (M', Q') if, for every s E S, 

M(s) > ~, W(s,t).(U(t)+V(t)) 
tEU+V 

M'(s) = M(s)-  ~. W(s,t).(U(t)+V(t))+ ~ W(t,s).(U(t)WW(t)) 
tEU+V tEU+W 

and, furthermore, Q~ = Q + V - w. The notions of safeness, n-boundedness, cleanness, 
etc, extend to the case of complex markings. For instance, (M, Q) is safe if for every s 
in S, 

M(s) + ~ a(t).max(W(s,t),W(t,s)) < 1. 
t~Q 

implying (from the T-restrictedness) that Q must be a set of independent transitions, 
with unitary adjacent arcs, and for all s E " QU Q °. M(s) = O. 
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The composition operation specified by fl ,  provided with a safe complex marking 
(M, Q) (or, in general, any complex marking such that Q is a set), will be applicable 
to every ~- tup le  Z, as defined above, such that Y.v is static whenever v g Q, and dy- 
namic otherwise. 

4.2.2 Place and transition names of operator and plain boxes 

As far as net refinement as such is concerned, the names (identities) of  newly con- 
structed transitions and places are irrelevant, provided that we always choose them 
fresh. However, in our approach to solving recursive definitions on boxes (see [ 10]), it 
is the names of  places and transitions which play a crucial role since we use them to 
define the inclusion order on the domain of  labelled nets. A key to our construction of  
recursive nets is the use of  labelled trees as place and transition names. 9 
First of  all, we shall assume that there are two disjoint infinite sets of  place and transition 
names, Proot and Troot. Each name 11 E Proot UTroot (or a pair (t, o0, where t is a name in 
q-root and tx is a label in Lab) can be viewed as a special tree with a single root labelled 
with r 1 (or (t,tx)) which is also a leaf. Moreover, we shall allow trees as transition and 
place names, and use a linear notation to express those trees. To this end, the expression 
x<15, where x is a single root tree labelled with x (x is a name 1t or a pair (t, ct)) and 5 
is a multiset of  trees, is a new tree where the trees of  the multiset are appended (with 
their multiplicity) to the root. Moreover, if S = {p} is a singleton multiset then x<lS 

will simply be denoted by x<~p, and if ,5 is the empty multiset then x<35 = x. 

We shall further assume that in every operator box, all places and transitions are simply 
names (i.e., single root trees) from respectively Proot and Troot. For the plain boxes, the 
trees used as names may be more complex. Each transition tree is a finite tree labelled 
with elements of  Troot (at the leaves) and Troot × / a  b (elsewhere), and each place tree is 
a possibly infinite (in depth) tree labelled with names from Proot and Troot, which has 
the form: 

tl <lt2 <L..<]t,,<ls<15, 

where t l , . . . ,  tn E Troot (n > 0) are transition names and s E Proot is a place name (so that 
no confusion will be possible between transition-trees and place-trees: the latter always 
have a label from Proot and the former never). We comprise all these trees (including the 
basic ones consisting only of  a root as special cases) in our sets of  allowed transition and 
place names, denoted respectively by Ttree and Ptree. The definition of net refinement 
will be done in such a way that, provided all names occurring in ~ are single root trees, 
and all names occurring in ~'. are in the sets of  allowed names, then all names in f~(,~) 
belong there, too. 

4.2.3 Formal definition of net refinement f2(,~.) 

Under the assumptions made earlier about the operator box £~ and the ~- tup le  of  plain 
boxes ~, the result of  a simultaneous substitution of  the boxes E for the transitions in £~ 
is a labelled net f~(,~) whose components are defined below. 

9We define such labelled trees up to isomorphism. 
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The set of places of fl(~,) is defined as the (disjoint) union 

Sfa(~) = O ST~.w u U SP~.w 
vETo sESt) 

= IJ {v<~iliE$v} U U {s<~({v<~xv}vE.~+{w<~ew}~e.)l 
vETo sES a 

xv E E* A ew E * Y w }. 
If s is an isolated place, i.e., *s = s* = 0, then, by the definition of the tree appending 
operation, SPS,,~, = {s}. Notice that the multiset of trees in the definition of a place 

p = s < ( { v < x v } v E . , + { w < e ~ } w ~ . )  ~ S ~ ,  (15) 
is in fact a set since in case there is a side-loop between s and v = w then xv ~ ew 
because xv is an exit place and ew is an entry place of ~v. 
The marking of a place p in f~(~) is defined in the following way: 

My(i) i f p  = v<li E STnVew 

Mfl(~:)(p) = M~(s)+ ~, Mv(xv)+ ~, Mw(ew) i f p  E SPS~ew is as in (15). (16) 
vE* s wEs ° 

Note that if s E Sf~ is an isolated place then Mf~(~)(s) - M~(s). 
The set of transitions of f2(,~) is defined as the union 

Y~(~)- U T ~ , , -  U {(v,c~)<RlREm.lt(Yv)A(~(R),~) E T~a(v)}. (17) 
vET u vET~ 

The multiset R in (v,~) <R will never be empty since no pair in ~.~(v) has the empty 
multiset as its left argument. 
The label of a place or transitions x in ~(~)  is defined in the following way: 

i if x E ST.e w 

~.n(~)(x) = ~ ( s )  if x E S~ew 

if x= (v, cx)<lR E T~t,,,. 
For a place p and transition u = (v, o 0 <~R in f2(~,), the weight function is given by: 

{ ~, Wv(i, t).R(t) if p = v<i E STrew 
tER 

Wa(t)(p,u)= ~, Wv(ev,t).R(t) i f p E S P ~ e ,  is as in (15) and v E s ° (18) 
tER 
0 otherwise, 

Y~ Wv(t,i).R(t) if p = v,Oi E S T ~ ,  
tER 

Wf~($)(u,p)= ~, Wv(t,xv).R(t) ifpESPS~,w i s a s i n ( 1 5 ) a n d v E ° s  (19) 
tER 
0 otherwise. 

$ 
For p belonging to SPne w, we have taken into account the fact that in a box (in this 
case, in E,) the entry places have no incoming arcs and exit places have no outgoing 
arcs; otherwise, we would have also introduced terms of the form Wr~(xv,t). R(t) in 
Wry(i:) (p, u), and W~ (t, ev). R(t) in Wt~(~;) (u, p)). Note that the trees created as place and 

transition names of f~(,~) obey the constraints formulated in section 4.2.2. Figure 15 
shows an example of net refinement, together with all the newly created place and 
transition (tree) names. Using the linear notation to express tree names we have, for 
example, Pl = 1 <l{Vl <14,v2<18}, P2 = vl,06, P3 = 2<lVl <17, tl = (vl,8)<3{t,u} and 
t 2 : (Vl,l~)<]u. 
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1 

Vl ~ V2 
2 3 

f~ 

4 

6 

5 
~P 

03. 

7 

El 

8 
() 

wE~ 

9 

~2 

An operator box with Pl = {({o~, [3}, 8), ({[~}, [5)} and Pz = {({7), ~)}, and two plain 
boxes. 

tl 

P2 

i p3 

P4 

~ t3 

~P5 

The result of net refinement. 

1 1 

!! 2 
Pl P2 P3 P4 P5 

(v~, ~) (vx, 13) (~2, ~) 

In lw 
tl t2 t3 

Place and transition trees in the refined net f~(Zl, Y-,2). 

Figure 15: An example of net refinement. 
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4.2.4 Some remarks on net refinement 

One might ask why we allow multisets of transitions to be combined, and not only sets, 
since all combinations of true multisets will lead to arc weights greater than 1, and 
hence, in the safe context, to dead transitions which could be dropped. The answer is 
twofold. 
First, our aim is to develop the model in such a way that it will not need a major re- 
design if we wanted to extend it, say, by allowing other initial markings (for instance, 

a net corresponding to a generalised dynamic expression E could have two tokens in 
each of the entry places). Then our argument about some of the transitions being dead 
would no longer hold, and it seems reasonable to define the refinement in a fully general 
way, while possibly dropping the dead transitions afterwards, when it is convenient or 
desirable for other reasons. 
Another, more subtle, argument arises in the context of the structural equivalence iSOT 
considered in section 4.1.3. With it, the two nets El and E2 in figure 16 are equiva- 
lent, since they only differ by 'duplicate' transitions and hence will always have the 
same behaviour, i.e., more precisely, have isomorphic (labelled) box transition systems. 
However, their synchronisations through the rule using sets rather than multisets (and 
the standard PBC synchronisation explained in section 3.2.4) would not produce nets 
which are equivalent with respect to the same kind of equivalence: the synchronisation 
of El with respect to a has the same structure as El itself (since no new transition is 
created), while the synchronisation of E2 gives rise to a new (non-duplicate) transition. 
This problem does not occur when one adopts the multiset rule. Hence we shall use the 
multiset based refinement, despite the fact that it may introduce dead transitions in our 
safe framework. 

() 

t! 

Zl ~2 ]~2 synchronised 

Figure 16: Problem with sets w.r.t, multisets for grouping transitions. 

At this point, it is not certain that, if we start from static boxes, the result of a refinement 
will be a static box. And indeed, it will turn out that some extra conditions need to be 
introduced. However, the mechanism we have described is compositional since the 
definition is based on, and respects, the structure of the components. 

Proposition 4.3 The net l~(E) defined in section 4.2.3 is a plain box. • 4.3 

It may also be observed that the result is unmarked if and only if so are f~ and each 



49 

Zv. The T-restrictedness and ex-restrictedness are closely related by the refinement 
operation. To see it more clearly, let us consider the example shown in figure 17. 

Vl v2 

tl 

t2 

Figure 17: The connection between T-restrictedness and ex-restrictedness. 

While ~ and ~2 are well formed, Zt has no exit place and hence is not ex-restricted. The 
result of the refinement, f2(~;), where ~; = (El, E2), is not T-restricted since the place 2 
off2 does not give rise to any place in the refined net (all the places with a root labelled 
2 should have a leaf labelled by an exit place of El, and there are none). It may also be 
noticed that, while all the original nets are safe, the result is not even bounded, even if 
we start from the empty marking. This shows the importance of the T-restrictedness and 
ex-restrictedness properties in order to maintain a desirable behaviour of the constructed 
nets. 
It may also be asked why, while we tried to be as general as possible in defining the 
refinement mechanism, we decided to only consider simple nets for the operator box 
f2. This is due to the fact that since, at the end, we shall develop theory only for safe 
nets, operator boxes with arc weights greater than 1 are not really interesting - while 
the mechanism may indeed be extended to the non-simple case. A fuller discussion of 
this point can be found in [8]. 
Finally, we remark that the notion of refinement defined above works even if the box 
has side-conditions, and that net isomorphism is preserved through net refinement. 

4.3 The Petri net semantics of PBC 

We now apply the ge :rat net refinement operation to the translation of the PBC expres- 
sions presented in sections 2 and 3 into boxes. The translation, represented formally by 
a mapping boxpBc, will be purely syntactic at this point; later, in section 5, we shall 
argue that the translation indeed yields static and dynamic boxes, with the same be- 
haviour as that specified by the operational semantics in section 3. The translation will 
be given explicitly for the static and dynamic basic expressions, and homomorphically 
(i.e., compositionally) for the remaining ones. To begin with, the translation for the 
initial and terminal dynamic expressions is given using the translation for the corre- 
sponding static expressions, by bOXpBc(E ) = boxpBc(E ) and boxpBc(E ) = boxpBc(E ), 
i.e., by simply putting a single token in each entry place, and a single token in each exit 
place, respectively. Moreover, with each PBC operator OP of arity n we shall associate 
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an operator box I2op with n transitions, and define, for the various combinations of 
static and dynamic PBC expressions: 

boxpBc (Oe(H~,.. . ,  H,)) = f~oe(boxvBc (tt l) , . . . ,  boxpBc (ft,)) 
where the Hi's are static and dynamic expressions such that O P ( H I , . . . ,  11,) conforms 
to the syntax given in sections 3.1 and 3.3.4. 

4.3.1 The elementary actions 

The translation rule for the basic PBC expressions (x E LabpBc is boxaBc((x) = basea, 
where basea is the static box shown in figure 1 8. 

e~ t~ xc~ 

base~ 
Figure 18: Static box for the basic expression (x. 

It may be observed that, when using the labelled version of step sequence semantics, 
we have bOXpBC(ff )[O)lab boxpBc(~) and boxpBc(~ ) [{(X})la b bOXpBC((X), similarly as 

in the SOS semantics, where ~ e > ~ by IN! and ~ {a)> ~ by the action rule. This 
example gives some flavour of the anticipated consistency result. 

4.3.2 Parallel composition, choice, and sequential composition 

The operator box associated with the parallel composition of PBC is given in figure 19. 

f211 

Figure 19: Operator box for parallel composition. 

Here as elsewhere, we use descriptive names such as e~ for the entry place of the first 
component of the parallel composition. This operator box will create two separate 
copies of the operands Zl and Z2 which are refined into v~ and ~ ,  respectively. By em- 
ploying the tree device used in net refinement, this is allowed even ifZt  and Z2 are the 
same net. Note that we have boxpBc(allb ) = boxpBc(~ll~) in the sense of labelled net 

equality, not only net isomorphism, and the inaction rule IPAR1 gives allb o > ~llb- We 
shall see later that this is not a coincidence, but an instance of a more general fact: as al- 
ready explained, the inaction rules should not be interpreted as denoting anything actu- 
ally happening in the semantic sense, but rather as describing two different views of  the 

same system, and the arrow 0 > as denoting a change from one point of view to another. 
Finally, one can show that parallel composition is commutative, (~:11o) iso (OilY), and 
associative, (Zll(Oll'e)) iso ((~:llO)ll'e). Note that we write ~11o instead of f211(Z, O), 
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etc. This notational convention will be used also in the case of other PBC operators and 
operator boxes. 

ta B 
ell  " ~  x0  

Figure 20: Operator box for choice composition. 

The operator box associated with the choice operator of PBC is given in figure 20. Note 
that we have boxpBc(a 0 b) = boxp~c(~ i-1 b), and that this corresponds to the inaction 

rule ICIL, a 0 b 0 ) B 0 b. This is further illustrated in figure 21. The rule says that 
the initial marking of a choice expression can be interpreted as the initial marking of its 
left constituent (as well as of its right constituent). In general, choice is commutative, 
(E 0 ®)iso (® ~ Z), and associative, (Z 0 (19 0 ~))iso ((Z 0 19) 0 qJ). 

boxpBc(a 0 b) 

. . . . . . . . . . .  I I ' -  . . . . . . . . . .  

L -  . . . . . . . . . .  I L . . . . . . . . . .  t 

bOxpBc(a~b) 

Figure 21 : Two different views of the same system (with respect to 0 ). 

Notice that the two rules E I-1F 0 > E[] F and E 0 F e t E 0 F exclude the net ~ 

shown in figure 22 from being an adequate operator box for the choice composition. 
The reason is that in ~ (basea, baseb), the marking after an execution of the a-labelled 

transition cannot be interpreted as the same as the marking after an execution of the b- 
labelled transition, and that neither is equal to the exit marking. But, by the inaction 
rules IC2L and IC2R, it is required that the branches of a choice construct re-join after 
the initial branching. 
The operator box associated with the sequential operator of PBC is shown in figure 23. 
It is perhaps instructive to examine the Petri net corresponding to (a; b) 0 a, shown in 
figure 24. By the operational semantics, this expression can execute the step sequence 
{{a}}{{b}}. The same sequence is also possible in the Petri net, by executing the 
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transl, of a I] b transl, of a I-] b transl, of a ['] b 

Figure 22: f ~  is not a good operator box for choice composition. 

~O v ! ~  -? v; 
e Did ' ' l D i d  × 

e; i; x; 

Figure 23: Operator box for sequential composition. 

upper a-labelled transition first, and then the b-labelled transition. As before, the ac- 

tual changes of marking take place only in the non---~ derivation steps, and all the 

0 ~ derivations correspond to different interpretations of the same system. Sequential 
composition is associative, (E; (0;  ~ ) )  iso ((Y~; ®); ~) .  

Figure 24: The box corresponding to (a; b) I] a. 

4.3.3 Synchronisation 

The different variants of the SOS semantics for the synchronisation of the PBC expres- 
sions (see section 3.2.4) are captured by various relabellings. We will only describe the 
standard PBC synchronisation in detail. Its operator box has a two-place, one-transition 
structure (see figure 25), where p sy a is the smallest relabelling which contains Pid and 
such that, if (1-',o~+{a}) E Psya and (A, 13+{a}) E Psya, then (F+A,O~+I3) E Psy,, as 
well. 
The net semantics of standard synchronisation may be compared with the operational 
semantics of the same operator, where all the semantic effect is contained in the deriva- 
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Vsya 

a 

esya Xsya 

Figure 25: Operator box for standard synchronisation. 

tion rules, while the --equivalences (i.e., 0-derivations) are of the most basic format. 
This observation is general. Control flow operators (such as parallel composition and 
sequential composition) tend to have simple context rules and more complex --rules, 
and also simple transition relabellings (namely, the identity relabelling) but more com- 
plex operator boxes. On the other hand, communication interface operators (such as 
synchronisation, basic relabelling and restriction) tend to have more complex context 
rules, simple ---rules, not so simple transition relabellings, but very simple operator 
boxes. 
We illustrate this synchronisation operator in figure 26, giving the translation for the 
expression (alia) sy a. The left-hand and right-hand transitions are present because 
({ {a}}, {a}) and ({{a}}, {a}) belong to PiJ C_ p ,y a, while the middle transition is there 
due to the last clause in the definition of p sy, given above. The translation is correct 
with respect to the SOS semantics, because only the pairs ({{a}}, {a}), ({{a}}, {a}) 
and ({{a}, {a}},0) in p sy, are relevant, as only they can be matched by the labels of 
some multiset of transitions of boxpsc(alla--'). 

Figure 26: The box of ({a}ll{a}) sy a. 

An alternative characterisation of p sy, is given by the following formula: 
n 

Psya : Did I.J {( ~ {0~i}, ~ o~i- - (n- - l ) . {a ,a})  I 
i=l i=l 

i= 1 i= 1 i= 1 
Moreover, ((Z sy a) sy b)iso ((X sy b) sy a) and ((Z sy a) sy a)isoT (E sy a) iso (Z sy a). 
Idempotence needs iSOT instead of iso, since a double application of the synchronisation 
operation will add twice the same (i.e., duplicating) groups of synchronised transitions. 
The relabelling 9,y a, while corresponding to the smallest binary multiway extension 
of CCS synchronisation (as discussed in section 2.5), exhibits at the same time some 
problems. Even if we start from a finite net, the result of the synchronisation may be 
infinite; for instance, in the case of the net modelling the expression {a, a, b} sy a. The 
next result provides a characterisation of all such cases. 
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Theorem 4.4 Let :E be a box with finitely many transitions. Then I: sy a has infinitely 
many transitions if and only if one of the following holds: 

- There are distinct transitions u and win ~:such thatL(u)(a) > 1 and X(w)(a~ > 1. 

- There is a transition v in ~such that X(v)(a) > 0 and X(v)(a) > 0. I:::] 

To model, in addition, the rule SY3, we simply change the relabelling of the opera- 
tor box ~sya fTom Psya to Psy'a, where Psy'a is the smallest relabelling containing 
Psya and such that, if (F,(x+ {a,~}) E Psy'a then also (F,(~) E Psy'a- The resulting 
synchronisation satisfies similar laws as the previous one. The treatment of the step- 
synchronisation, as described by the additional SOS rule SY4, is more delicate; the 
interested reader is referred to [8]. 

4.3.4 Basic relabelling, restriction a n d  s c o p i n g  

For the basic relabelling, all the semantic effect of the operator box (see figure 27) is 
contained in the relabelling p[f] annotating the only transition, vly ]. Assuming that f is 
a conjugate-preserving function f :  Ar, Bc -'4 Apac, extended to Lab = Labpac, p[f] is 
the relation containing all pairs of the form ({ct},f(a)),  for o~ E Labpac. One can show 
that (ELf]) [g] isor Z[g o f] and F[Pid] iSO Y. 

vtf] 

f2[I] 
eiy] xij.] 

Figure 27: Operator box for basic relabelling. 

The net semantics of a restricted expression is almost self-explanatory; the net of E rs a 
is simply the net of E where all transitions whose labels carry at least one a or at least 
one ff are erased. This corresponds to the operator box shown in figure 28, where 
P r s a  ----- Pmult(ApBc\{a,~'}) is the restriction on the (multi-)labels without a or a. 

Vrsa 

ersa Xrsa 

Figure 28: Operator box for restriction. 

Notice that this may create boxes without any transition. Boxes whose transition sets 
and sets of internal places are empty will be called stop-boxes (see figure 29). 

® ® 
Figure 29: The simplest stop-box. 

We have that ((Z rs a) rs b) iso ((Y. rs b) rs a) and ((Z rs a) rs a) iso (Z rs a) iso (Z rs a-"). 
By combining the two previous operators, we obtain the operator box for scoping shown 
in figure 30, where P[a'] = P ,ya rl { ( r , a )  l a(a) = 0 = a(a)}. 
Then [a: [b: ~:]] iso [b~ [a: Z]] as well as [a: [a: t:]] isor [a: Z] iso [~: E]. 
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4.3.5 Iteration 

e[,:] x[,:l 

Figure 30: Operator box for scoping. 

The treatment of the iteration operator [E,  F ,  E ~] deserves special attention. One pos- 
sibility would be to associate with it the operator box 1"~**] shown in figure 31. 

V2, 2 [**] 

Figure 3 i : Operator box for iteration (2-bounded version). 

Here, v~]] corresponds to E, @2,] corresponds to F, and v[2,~] corresponds to E'. How- 
ever, this operator does not preserve the safeness of the static and dynamic boxes, as it 
can be demonstrated by taking the PBC expression [a .  (blla) * a], whose translation is 
shown in figure 32. It may be observed that, if we start from the entry marking, after the 
execution of q and t2, the place s2f will receive two tokens. The net is thus 2-bounded, 
but not safe, as desired. On the level of executions, the sequential, as well as the step, 
behaviour of the net is as expected but if we look more closely at the partial order se- 
mantics it occurs that unwanted dependencies may appear. Thus the operator ~**] is 
not fully satisfactory in general, and we should search for another one. 

A careful analysis of the reasons of this phenomenon (see [15, 16, 8]) shows that the 
situation is never worse than that exhibited by the example in figure 32, i.e., the boxes 
obtained for the PBC expressions with the operator f~**] are always 2-bounded. Thus, 

for instance, [a * (cllblla) , a] is 2-bounded as well, even though the middle part is a 3- 
way parallel composition. Moreover, the 2-boundedness is 'free of auto-concurrency', 
in the sense that each transition always has at least one safe pre-place and at least one 
safe post-place. And, finally, the origin of non-safeness can be traced to the fact that the 

~**] has a side-loop (involving i~**] and V[2~]]) and that the operand replacing operator 

v~,~] has disjoint, independently starting and terminating subnets, like that modelling 

blla. If we do not want to abandon the modelling of general parallel composition, the 
only way to guarantee safeness is to get rid of the side-condition. The idea we shall 

2 which leads to the exploit is to perform an untblding of the loop of the operator ~[**] 
operator box f~[**] shown in figure 33. 
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t2 ts 

Figure 32: The net box2Bc([a*(blla)*a]). 

[**1 i~,*1 [*,1 

e[,.} x[,,] 

Figure 33: Operator box for iteration (the safe version). 
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The translation for the static PBC expression [E,  F * E ~] will be given by 

bOXpBc([E * F * E ' ] )  = 
c~(,,] (boxpsc (g), boxpBc (F), boxasc (E'), boxvBc (g), boxvsc (F), boxpBc (E')), 

where the ordering of the transitions of ,[**] is v~°,], qo,], qo,], v~,l,], v~,t,], ql,]. It may 

be noticed that one of the transitions vl°,] and vl,l,] is not strictly necessary for obtaining 
the desired behaviour, but we keep both just to maintain the symmetry of the operator 
box. Strictly speaking, the operator D.I**] has the arity of 6, but we turned it into a 
ternary one by restricting the allowable combinations of its operands. The situation is 
slightly more complex for the translation of the dynamic iterative expressions. There 
are two different possible translations for [E,  G ,  Eq, namely, with F = [GJ: 

~t* *](b°xpBc (E), bOxpBc (G), boxpBc (E'), boxI, BC (E), boxpBc (F), boxpBc (E')), 

~[**] (boxpBc (E), boxpac (F), bOXpBC (E'), boxpBc(E), boxpBc (G), bOxpBc(E')). 
They are ~-equivalent (by a symmetry argument), but not exactly the same. However, 
this is more acceptable than nonsafcness, and we shall disregard this (small) ambiguity 
choosing arbitrarily between the two possibilities. 

4.3.6 Data expressions 

Since the loop-like data expressions are considered as basic processes in PBC, we shall 
need to provide for them an explicit translation. The translation relies on the value 
domain Dz of a program variable z, and we first give a simple example of translating a 
binary variable b in figure 34. 

V'b '° eb V'b '1 

1 

O,o 
V b 

v°° 

rob, 1 

Xb 1,. 
v b 

v~, ,l 

Figure 34: Static box representing a binary variable b. 

The general translation proceeds thus. Given a program variable z with the data domain 
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Dz, we define boxpBc([Z0] ) = (Sz, Tz, Wz, ~,z, 0) where the places and transitions are Sz = 
{ez,Xz} tO { ~  I u E Dz} and Tz = {Vz , v~ ''° I u E Dz} U {v~ 'v I u, v E Dz}, the weight 
function returns 1 for the pairs in the set 

/,/9 Ig tV V U ~O +O { (ez,Vz'U), (Vz'",s~), (S z ,Vz ) , (~  ,Sz), ( S z , ~ ) ,  ( 4  ,Xz)lu, vEOz}  
and 0 otherwise; the label function is defined, for all values u, v E Dz, by: 

~,z(ez) = e ~,z(xz) = x ~z(s'~) = i 
O,lg Zz(vz ) = { z . . )  = { z . . )  = 

The translation for [z-~u)] is boxpBc([z0] ) with a single token in the place s~. Note that if 
D z is infinite, then so is its data box. 

4.3.7 Generalised operators 

The operator boxes for the generalised control flow operators (section 3.3.3) are very 
straightforward if the index sets are finite, but less so otherwise. We omit the discussion 
at this point; the reader is referred to [8]. 

4.3.8 Generalised iterations 

In this section we turn to the (binary and unary) generalisations of the ternary iteration 
operator discussed in section 3.3.1. Let us first examine how the problems identified 
previously are rendered in the Petri net framework. A possible translation for the oper- 
ator [E • F) would be to use a net operator such as that shown in figure 35. 

V2,2 
[,) 

[+) 

Figure 35: Operator box for binary generalised iteration (2-bounded version). 

Besides the potential problems due to the side loop which have already been mentioned, 
this net does not satisfy the ex-directedness constraint required of all the boxes, since 
there is an arc leaving the (unique) exit place. However, one could ask at this point if 
this constraint is really necessary; so let us have a further look at the reasons why it has 
been imposed. 
The definition given for the net refinement operation can easily be adapted to work 
perfectly well with non-ex-directed operators and operands. But if we consider the be- 
haviour we intuitively expect from the resulting nets, there is a problem. Let us consider, 
for instance, the box we would obtain for ([a • b) 11 c), as illustrated in figure 36. 
It may be noticed that, from the entry marking, an evolution {{c}}{{b}} is allowed, 
which corresponds to the SOS semantics already considered for this operator, but not to 
what may be expected from a choice, since the loop is entered 'from the end' after hav- 
ing chosen the other branch of the alternative. The ex-directedness has been explicitly 
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Figure 36: The net box2Bc([a, b) 0 a). 

introduced in order to avoid this behaviour in the case of the choice operator. However, 
if it is ascertained that a loop does not occur terminally in an enclosing choice, or in an 
enclosing loop, then this particular problem also disappears, and ex-directedness is no 
longer required, v~,> x~,) 

el,) 

f2[,> 

Figure 37: Operator box for binary generalised iteration (safe version). 

If we try to get rid of the side condition using the same kind of untblding as that used to 
go from f~[**]2 to ~2[**] directly, not only does the problem of non-ex-directedness persist, 
but also another one emerges, as shown in figure 37. In this net, the exit marking 
(with a token in each of the exit places) may never be reached, which certainly does 
not correspond to the expectations. Thus one of the exit places should be turned into 
an internal one. Since the graph is symmetrical, let us consider the case where x~,> 

becomes internal. Then the symmetry is broken and, if we first perform vl, ), afterwards 
it will be necessary to perform an odd number of executions of the looping part in order 
to be able to reach the exit marking (an even number would be necessary if we first 
chose v~,}). This is hardly acceptable either since we do not know in advance the parity 
of the required executions of the looping part. 

The reader will easily verify that similar (but not identical) problems occur for the direct 
translation of the (,]-operator. 

A common solution to these problems is to 'unwind the loop once'. In our context, 
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this solution has the following form. Unwinding [E • F> once means that the case of 
executing 'E and then zero times F '  is separated from the case of executing 'E and then 
at least once F ' ,  i.e., 

[E*F)  ~ (EO[E,F,F]). 
Similarly, unwinding <F,  E ~] once means that the case of executing 'zero times F and 
then E ~' is separated from the case of executing 'at least once F and then E ~', i.e., 

(F*E ' ]  ~ (E'O[F*E',E']). 
Note, however, that, e.g., [ a ,  b> is not equivalent to (a 0 [a * b * b]) under any of the 
congruences we have defined (beware of the apparently innocent-looking redo/skip 
transitions), while the two expressions are step equivalent. As we have already seen, 
this is indicative of the fact that in sufficiently ill-behaved environments, they cannot be 
exchanged for one another. 
The last version of iteration, i.e., the unary ()-operator, leads to an additional problem. 
Its most immediate translation would lead to the operator box shown in figure 38. For 
this box, the labelling is not legal, since it uses a place which should be both an entry 
and an exit one. While such a generalisation works in some examples, we have chosen 
not to pursue it in this paper, because many of the results depend strongly on the fact 
that a place cannot be both an entry place and an exit place. The loop (F) is often 
modelled by adding a silent action where it creates no behavioural problem, e.g., by the 
loop (F • 0] (but neither by [0 • F) nor by [0,  F ,  0]). 
Summarising, the above discussion reassures us that the decision not to incorporate the 
generalised iteration operators into the standard theory was a justified one, unless their 
usage is constrained so as not to cause the kind of problems we have discussed. 

Figure 38: Operator box for unary generalised iteration (2-bounded version). 

5 The Box Algebra 

We still have to discuss the issue of consistency between the operational and denota- 
tional semantics developed for PBC in the previous sections. Instead of pursuing this 
specific goal, we shall develop a general framework to define process algebras with two 
consistent semantics, of which PBC and other process algebras will be special cases. 

5.1 SOS-operator boxes 

Our aim here is to find a class of operator boxes that could be applied to static and 
dynamic boxes - -  the base plain boxes considered in the preceding sections - -  in such 
a way that SOS rules could also be formulated in the domain of nets. We will define a 



61 

class of  operator boxes satisfying this property, called sos-operator boxes, by imposing 
three conditions on a generic operator box ~ = (S, T, W, k, 0) which we take to be a 
candidate sos-operator box. 
To simplify the argument, but without losing its generality, we assume that only the 
identity relabelling Pid is used to annotate the transitions in f~. Another point arises 
from the observation that here a concrete net operator f~ is aimed at modelling a corre- 
sponding syntactic operator opta, much in the same way as the net operator ~ ;  was used 
to model sequential composition. But, whereas f~ might in principle be marked, we 
have no means to specify explicitly the marking of  a symbol representing a net opera- 
tor, as it is a mere lexical construct or sign. However, from the static or dynamic nature 
of  the various operands, it is possible to associate a marking to an expression, but it will 
be a purely imaginary one. Hence ~ and, indeed, all the operator boxes considered in 
this section will have purely imaginary markings which will simply be left implicit. 
The three defining conditions for f~ to be an sos-operator box, (C 1)-(C3) below, will all 
be derived by applying f~ to a suitably chosen tuple of  static boxes ~), and then consid- 
ering some properties that the composition f~(~)) ought to satisfy. The first requirement 
is formulated thus. 
Requirement 1: Operations on static boxes should not lead outside the semantic domain 
of  static boxes. To analyse its consequences, consider an ~- tup le  of  very simple static 
boxes ®v = ~ where v C T and otv -¢ ~w for v ~ w. An easy observation 

is that, due to the simple form of  the refining nets, we can think of  ~(~))  as though it 
were ~ with each transition v being labelled by ~v. And so the first requirement implies 
that ~(6)) ,  and thus f~ itself, should be a static box, i.e., all the markings reachable from 
°~ ,  the entry marking o f f L  should be safe and clean: (CI) f~ is a static box. 

Another consequence of the first requirement is that no transition w C T that can be 
enabled at a marking reachable from the entry marking °f~ is allowed to have a side 
condition. This can be demonstrated using an argument similar to that used in the 

, )  

discussion of  the operator f2[**] in section 4.3.5 to show that such a side condition can 

lead to a non-safe marking after performing a suitable net refinement. Indeed, let us 

replace, in the above ff2-tuple (~ of  static boxes, ®w by O~w = ~ leaving 

other ®~,'s unchanged. Then, in f~(~3), there will be four places of  the same kind as 
places sl~, sl2, s21 and s22 in figure 32, such that at some marking reachable from 
°(~(~)))  it will be possible to execute the transition w<~tw and the resulting marking 
will have two tokens in one of  these places. In the definition of  an sos-operator box we 
shall use a slightly stronger, l° but simpler (structural) condition: (C2) ~ is pure. 

The second requirement is directly motivated by our wish to obtain SOS rules for com- 
positionally defined nets. 

Requirement 2: A net obtainedas a result of  an evolution of  a net composed from other 
nets, should itself be a composition of  nets related to the original ones. We interpret 

this as saying that no matter how ~(~))  evolves, the resulting net Z should be derivable 

l°lf we required, as it would seem natural, that no transition off~ is dead from °f~, this would no longer be 
a strengthening. However, we will refrain from introducing this additional condition for reasons that will be 
explained later, when we discuss the example in figure 39. 
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as a composition 5". = £)(~)') where [~)'J - [~)J. This leads to a perhaps unexpected 
property of the complex markings reachable from the entry marking of t). For suppose 
that t )  is a safe operator box and (M, Q) is a complex marking reachable from °t). Then, 

M " " from the safeness assumption made about ~ ,  M and Q are sets and I"t ( Q u Q ) = 
O. Consider yet another t)-tuple of simple static boxes obtained from the previously 
used ~) by replacing, for every w E Q, the Ow u _ by 0 w -  @ , ~  
leaving other Ov's unchanged. Notice that t)(~)) can now be thought of as f~ with every 
transition v E T \ Q being labelled by o~v, and every transition w E Q being split into the 
'beginning of w' and 'end of w', both transitions being labelled by (xw and 'joined' by 
a single place Pw. 
It should be clear that t)(~)) is a safe net which can evolve into the net E whose (safe) 
marking is M U {Pw t w E Q}. From what we have already said, we should be able to 
represent E as ~((9') where [~YJ = [~)]. Then, from the definition of net refinement 
and safeness of ]E, it follows that for every v E T \ Q, O~ is Ov or Ov or __O v, and for 
every w E Q, OIw " " Is O w with exactly one token inside the place Pw. And, crucially, M is 
the disjoint union of the pre-sets of transitions v such that O~ = Ov and the post-sets of 
transitions v such that O~v = Or. In other words, the 'real' part of the complex marking 
(M, Q) can be factorised onto pre- and post-sets of some transitions in T. 
Following the above observation, we shall say that a pair p = (Pe,Px) of sets of transi- 
tions of ~ is afactorisation of a set of places M C_ S if M is the disjoint union of the 
sets °v, for all v E Pe, and the sets v °, for all v E Px. Then a quadruple of sets of transi- 
tions o f ~ , / z  = (/Je,Pd,Px,/a.,) is afactorisation of a complex safe marking (M, Q) o f t )  
if  pd = Q, Ps = T \ (Pe Olad Opx), and (lae,px) is a factorisation of M. ~ itself will be 
calledfactorisable if for every safe complex marking (M, Q) reachable tl from the entry 
marking of t), there is at least one factorisation. And the third, and final, condition we 
will need is that: (C3) t) isfactorisable. 
To summarise, in this section, we shall only consider operators fulfilling the conditions 
(CI), (C2) and (C3), i.e., simple pure static (hence safe and clean) factorisable operator 
boxes, called henceforth sos-operator boxes. 

( )  

Vl v2 

l 

v 3 v4 

X 

) 

v~[ 3v2 

v3E 

Figure 39: An sos-operator box with a necessary dead transition; and a non-factorisable 
(but finite, pure and static) box. All transitions are labelled by Pid. 

A factorisation of a marking (M, Q) is essentially a way of representing its real part, M, 
as the disjoint union of the pre-sets of a set of transitions, pe, and the post-sets of another 

I I This includes the exit marking (f~o, 0) which is considered reachable through the skip transition. 
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set of transitions,/Zx. Intuitively,/Ze are transitions which can be executed at (M, Q), and 
btx are transitions which have just been executed. However, the latter part of such an 
interpretation may be somewhat misleading since it may happen that although (M, Q) 
is a reachable marking and v E lax, neither (M \ v °, Q 13 {v}) nor ((M \ v °) U °v, Q) are 
reachable from the entry marking of i'~; it may even happen that v is a dead transition, 
whose sole role is to force the factorisability of ft. This is illustrated in figure 39 where 
the operator on the left hand side is factorisable, the transition v2 is dead from the entry 
marking, and if we drop this dead (hence supposedly useless) transition the operator 
becomes non-factorisable since after the execution of vl and v3, leading to the marking 
({i,x},0), the internal place i may no longer be factored out. It may easily be checked 
that all PBC operator boxes introduced in section 4.3.5 are factorisable. However, not 
all pure static boxes are factorisable, as illustrated on the right hand side of figure 39. 
For in the marking obtained from the entry marking after the execution of vl and v3, the 
left token can be factored out using v3 and the right token can be factored out using v2, 
but the middle token is orphaned. 
To define the domain of application of an sos-operator box ~,  we first extend the notion 
of a factorisation to tuples of static and dynamic boxes ,E; thefactorisation of ,E is ~u = 
(/~e,/~d,/ax,/J.,.) where, for 5 E {e,x,s},la~ = {v l Y~v E BoxS}, and/ad : {v [Zv E Boxd\ 
(Box e U Box'r)}. The domain of application of .Q, denoted by dornn, is then the set 
comprising every ~-tuple of static and dynamic boxes '£ whose factorisation belongs 
to factn where factn is the set of all the factorisations of all the complex markings 
reachable from the entry marking of ~2, including the exit marking, as well as the only 
factorisation (0, 0, 0, Tn) of the empty marking of fL 
Figure 40 shows an sos-operator box f~re which will serve as a running example in 
this section. Clearly, f2re satisfies (CI) and (C2). It is also factorisable which can be 
checked by inspecting all the complex markings reachable from the entry marking. E.g.: 
(°~re, 0) = ({s~, s2}, 0) has a unique factorisation, ({vl, v2}, 0, 0, {v3}), and the reach- 
able complex marking ({sl }, {v2}) has a unique factorisation ({vl }, {v2}, 0, {v3}). In 
all, fact~% e comprises 13 factorisations. Figure 40 shows also an ~re'tuple of boxes, 
~ : (lf'~, Y~2, Yv3) whose factorisation, ({vl }, {v2}, 0, {v3}), belongs to factn~,, hence 

is a tuple in the domain of application of the sos-operator box ~re. The box ~e(Y) 
is also shown in figure 40. 

5.2 Structured operational semantics of boxes 

Let ~ be an sos-operator box and ,E be an ~-tuple in its domain. To formalise the 
operational semantics of the compositionally defined box ~(Z),  we use the notation 

( n :  F.,) U ) ( n :  ~)) (20) 

to mean that the boxes E can individually make moves which, when combined, yield 
step U and lead to boxes ~). 
By definition, this will be the case whenever U is a set of transitions of ~('£) and, for 
every transition v in ~,  U NT~e W = {(v, CXl )<~UI, • •., (v, Ctk)<lUk } is a set 12 of transitions 

t2 Note that the notation T~e w was introduced in (17). 
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Figure 40: Boxes of the running example (p = P i d \ { ( { a } , a ) ,  ({b}, b)} U {({a,b},f)}). 
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such that 

Yv [ Ul + . .  "+ Uk ) Or. (21) 

For example, the boxes in figure 40 admit a move for ,~ = ~', (9 = (--Y-vl ,--Yv2,'I'v3) and 
Vl U = {wl,w3}, which follows from: U n T , , w  = {w~} = {(vl , f )<{ t l i ,h2}} ,  

v 2 v3 UnT.,. [ { t l l , t l2})  Ov,. Tv 2 [{t22)) Or2 U n T . . .  = {w3} = {(v2,d)<{t22}}. = 0, ~ ,  
and Tv3 [0) Or3. 
It can be shown that the multisets Ui in (21) are always sets of mutually independent 
transitions of Zv, and that allowing U to be a multiset rather than a set would not add 

w any new moves (20) since T,e w tqT,e w = 0 for v :fi w, and all the boxes in ,~ are safe. 
Notice that the definition of the operational semantics does not involve the redo and 
skip transitions, which are not involved in net refinement but added afterwards. Instead 
of expressing the evolution in terms of transitions, it is possible to express it in terms 
of actions, through the labelling function ~.~(~:) which returns multisets rather than sets 
since different transitions may have the same label.What now follows is the first part of 
the SOS rule for compositionally defined boxes. 

Theorem 5.1 Let ,~ be a tuple in the domain of an sos-operator box ~2. If 1~ and U are 
as in (20), then 6 E domn and ~2(~:) [U> f~(6). [] 

The converse does not in general hold true, however. For consider the tuple of boxes 
6 = (--Yvl ,-Y~E,'G3) - Then Mare(6) = {P3,P4,P7} and so f~re(6) [{w4}), yet no move 

(20) is possible for f~ = f~re, ,~ = 6) and a non-empty U. This is so because, when com- 
posing the nets, the tokens contributed by Y--v~ and -Yv2 are inserted into the composed 
net in such a way thatthey could have been contributed by the third box as welt. More 
precisely, we have f2(O) = f~(W), where Cp = ([Tv, J, ['fv2J, ~v3) and: 

{W4} 
(~re : ~-l'J) ) (~-~re : ~ )  fo r  A-- ( [ Y , , J ,  [T,2J,_~v3 ) 

Thus the markings in a tuple of boxes ,~ may need to be rearranged before attempting 
to derive a move which is admitted by the composition f2(,~). Such a rearrangement is 
formalised using a similarity relation - ~  on f~-tuples of boxes.13 

Let f~ be an sos-operator box and ~, and ~) be f~-tuples o f  static and dynamic boxes 
whose factorisations are respectively p and 1<. Then Z _----~ t9 i fp  and ~c are factorisations 
of the same complex marking o f ~ ,  [,~j = [g)J and Zv = Ov, for every v E Pd= *Cal. It 
is clear that --fa is an equivalence relation. One can further strengthen this by showing 
that it is closed in the domain of ~,  and that it relates tuples which yield the same boxes 
through refinement, i.e., if E E domta and ,~ - ~  ~), then ~) E domf~ and ~(~,) = ~(~)). 
Moreover, if ,~, 6 E domf~, ['ZJ = [6J and ~(E) = f~(6), then ~ ----ta 6.  For example, 

(Z~|, "~2' "~V3 ) ~"re (['~V, j, [rv~j, Y,'3)" 
We now can formulate the second half of the SOS rule for boxes. Together with the- 
orem 5.1, it means that for the class of sos-operator boxes, the standard step sequence 
semantics of compositionally defined nets obeys a variant of the SOS rule introduced 
originally for process algebras. 

t3Note that the situation we just discussed is a mirror image of the re-distribution of over- and underbars 
used in the inaction rules of the operational semantics of PBC. 
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Theorem 5.2 Let if' be an ~-tuple in the domain of an sos-operator box D such that 
D(~)  [U) E. Then there are ~, and ~) in dorn~ such that '£ --a ~ ,  £~((9) = ~: and (20) 
holds. [] 
Various important consequences may be derived from theorems 5.1 and 5.2. In par- 
ticular, they imply that Requirements 1 and 2 are satisfied. That is, D(~,) is a static or 

dynamic box, and i f~  is a net derivable from D(~), then there is a tuple ~) in the domain 
of D such that ~ = D(~)). As a summary, the SOS rule for boxes can be presented in 
the following way: 

u >(a:@) 

n(,t) [u) z 
The algebra of nets used by PBC can be accommodated in the meta-scheme presented 
above since PBC operator boxes are all sos-operator boxes. 

5.3 A process algebra and its semantics 

We now introduce a general algebra of process expressions, called the box algebra. 
The box algebra is a meta-model parameterised by two non-empty, disjoint, possibly 
infinite, sets of Petri nets: a set ConstBox of static and dynamic (possibly infinite) plain 
boxes, and a set OpBox of sos-operator boxes. The only assumption about the sos- 
operator boxes in OpBox and the static boxes in ConstBox is that they have disjoint 
sets of single root trees as their places and transitions. We then consider an algebra of 
process expressions over the signature Const s U Const d u {('~, (._..))} u {opf~ I D E OpBox} 

where Const s and Const d are fixed sets of static and dynamic constants which will be 
modelled through the boxes in ConstBox, (.) and (.) are two unary operators, and each 
opt ~ is a connective of the algebra indexed by an sos-operator box taken from the set 
OpBox. Moreover, there are two distinct disjoint subsets of Const d, denoted by Const e 
and Const x, and respectively called the entry and exit constants. We will also use a fixed 
set Vat of process variables. Although we use the symbols (.) and (.) to denote both 
mappings on boxes and process algebra connectives, it will always be clear from the 
context what is the intended interpretation. 
We shall make use of four classes of process expressions corresponding to previously 
introduced classes of plain boxes: the entry, dynamic, exit and static expressions, de- 
noted respectively by Expr e, Expr d, Expr x and Expr s. Collectively, we will refer to them 
as the box expressions. We will also use a counterpart of the notion of the factorisation 
of a tuple of boxes. For an sos-operator box D and an D-tuple of box expressions/), the 
factorisation of/3 is p = d(l~e, Pd, Px,Ps) where Pa = { v I Dv E Expr~}, for ~i E {e, x, s}, 
and Pd = {v I Dv E Expr \ (Expr e U ExprX)}. The syntax for the box expressions is 
given by: 

Expr s E ::-- c I x I opa( ) 

Expr e F ::= c' I E I opa(P) 

Expr" G ::= c' I I opa(( ) 
Expr d H ::= c d I F I G I opQ(H) 

(22) 
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where c a E Const 8, for ~i E {e,x, s}, and c d E Const d \ (Const e U ConstX) are constants; 
X E Var is a process variable; n E OpBox is an sos-operator box; and E, F, G and H are 
n- tuples  of box expressions. These tuples have to satisfy some conditions determined 
by the domain o f  application of the net operator induced by n .  More precisely, the 
factorisations of E, F and G are respectively factorisations of the complex empty, entry 
and exit markings of n ,  and the factorisation of/~ is a factorisation of a complex mark- 
ing reachable from the entry marking of ~ different from °C2 and n °. The definition of 
the syntax is completed by assuming that, for every process variable X E Vat, there is a 

unique defining equation, X ~ opn(L ), where n E OpBox is an sos-operator box and 
is an ~- tuple  of process variables and static constants. Expressions not involving any 
connective opn nor a process variable, will be referred to asflat. 
As in the case of boxes, it is convenient to have a notation for turning a box expression 
D into a correspondi__ng static expression [D] which is obtained from D by removing all 
the occurrences of (.) and (.), and replacing every occurrence of each dynamic constant 

c by a (fixed) corresponding static constant [cJ. The operators (.), (.) and [.J can be 
applied elementwise to sets as well as tuples of expressions. The same will be true of 
the mapping box and relation : defined later on. 
We will continue to use the boxes depicted in figure 40 in order to construct a sim- 
ple yet illustrative algebra of process expressions. The Do It Yourself(DIY) algebra is 
based on two sets of boxes, ConstBox = {qbl,¢~t)ll, (I)12) U {1~2, qb21, (I)22, qb23} U {(1)3} 
and OpBox = {nre}, where [*ijJ = qbi = [)cviJ (for all i and j), M.tt  = {qll,ql4}, 
M.~2 = {ql3,ql2} and M.2 k = {q2k} (for k = 1,2,3). The constants of the DIY al- 
gebra correspond to the boxes in ConstBox: Const e = {c21 }, Const s = {ci,c2,c3}, 
Const x =  {c23} and Constd ----- {C11,Cl2,C21,C22,C23}. Moreover, [cijJ = ci, for every 
dynamic constant Cij. The syntax of the DIY algebra is obtained by instantiating (22) 
with concrete constants and operator introduced above. For example, the syntax for the 
static and entry expressions is given respectively by E ::= cl I c2 I c3 IX ] ophir(E, E, E) 
and F : : :  c21 I-Elopn~(F,F,E). 

5.3.1 Denotational semantics 

The denotational semantics of the box algebra is given in the form of a mapping box 
from box expressions to boxes, defined by induction on the structure of expressions. 
Constant expressions are mapped onto constant boxes of corresponding types, i.e., for 
every constant c and 8 E {e,d,x, s}, c E Const ~ ¢:~ box(c) E Box~M ConstBox. It is also 
assumed that, for every dynamic constant c, the underlying box is the same as for the 
corresponding static constant, i.e., [box(c)J = box([cJ), and that for every (non-entry 
and non-exit) dynamic box Z reachable from an initially marked constant box there is a 
corresponding dynamic constant c, i.e., box(c) = X. 

With each defining equation X ~ opn(L), we associate an equation on boxes X ~ n(A) 
where Av = Lv if Lv is a process variable (treated here as a box variable), and Av = 
box(Lv) if Lv is a static constant. This creates a system of equations on boxes of the 
following form (one equation for every variable X in Var): 

x "-'- nx(;Xx). (23) 
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On the right-hand side, fix is an sos-operator box with the empty marking, and ~-x is 
an f~x-tuple whose elements are either recursion variables or plain boxes with empty 
markings. Now, given a mapping sol : Vat --+ Box s assigning a static box to every vari- 
able in Var, we will denote by Ax [sol] the ~x-tuple obtained from ,~x by replacing each 
variable Y by sol(Y). Then, a solution of the system of equations (23) is an assignment 
sol such that, for every variable X E Vat, 

sol(X) = f~x(Ax[sol]) (where '= '  denotes equality on nets). 

It turns out that the system of net equations (23) always has at least one solution and that 
all solutions have the same behaviour since the corresponding static boxes have INs- 
isomorphic transition systems. All the solutions can be obtained as limits of successive 
approximations starting from stop-boxes (see [6, 28]); such a result is possible due to 
the special way in which the names of the places and transitions were constructed in the 
definition of net refinement. In particular, one can define an inclusion order relation on 
boxes based on the concrete place and transition tree names. Then it can be shown that 
there is always the maximal solution of (23) for whom a closed form can be found in 
[6, 161. 
We then fix any solution sol : Vat --+ Box s of the recursive system (23) (for instance, the 
maximal one) and define, for every process variable X, box(X) = sol(X). 
The definition of box is completed by considering all the remaining static and dy- 
namic expressions. For every box expression opn(/3 ) and every static expression E, 
box(opf~(/3)) = f~(box(/3)), box(E) = box(E) and box(E) = box(E). The semantical 
mapping always returns a box consistent with the type of a box expression it was ap- 
plied to; hence we have captured syntactically the property of being a static, dynamic, 
entry or exit box. 

Theorem 5.3 For every box expression D, box(D) is a static or dynamic box. More- 
over, for every 15 E {e,d,x,s}, D E Expr a ¢* box(D) E Box a. ra 

In the case of the DIY algebra, we define the box mapping by setting, for every static 
constant ci, box(c/) = Oi, and for every dynamic constant cij, box(cij) = Oij. Other 
than that, we follow the general definitions. E.g., the box in figure 40 can be derived 
thus: box (opnr~ (~i-, c22, c3)) : I'~r, (box (c-i), box(c22), box(c3)) = f~re ( box(c, ), 022,03) 

= are ( ~1-1,022,  0 3 )  = are ('l~Vl , "l['v 2 , ~l"v3) = are (?). 

5.3.2 Structural similarity relation on expressions 

To facilitate the introduction of the inaction rule we define a structural similarity re- 
lation on box expressions, =. It provides a partial structural identification of the box 
expressions with the same denotationai semantics, as it is defined as the least equiva- 
lence relation on box expressions such that the following hold. 

• For all fiat expressions D and H satisfying box(D) = box(H), 
and all equations X ~ opn(L), 

t D = H  X - op,(L).  I (24) 



69 

For every sos-operator box D in OpBox and all factorisations la and ~: of  respec- 
tively *D and D°: 

where/~, J a n d / 4  are D-tuples of  expressions such that, for every v E Tf~, D~ = H'--~ 
if v E lae and D~ = Hv otherwise; and Jv = Hv if v E 1¢x and Jv = Hv otherwise. 

For every sos-operator box D in OpBox, for every complex marking reachable 
from the entry marking of D, different from °D and f~°, and for every pair of  
different factorisations la and r o f  that marking, 

I op.(/3) - op.(/4) ] (26) 
where /3  and H are f~-tuples of  expressions for which there is an D-tuple of  
expressions C such that, for every v E Tf~, D~ = C-~ if v E ]-/e, D~ = C~ if v E lax 

and Dv = C~ otherwise; and Hv = C~ if v E K~, Hv = Cv if v E ~¢~ and Hv = C~ 
otherwise. 

For all static expressions E and F, for every sos-operator box f~ in OpBox, and 
for all D-tuples of  expressions/3 and/4  with factorisations in fact~: 

E -  F E - -  F [ ) - -  ffl 
(27) 

E -- F E -- F opf~(/3) ~ opf~(/t) 

The tuple t~ used in the formulation of (26) intuitively corresponds to the ' common '  
part o f / 3  and /~. The structural similarity relation is closed in the domain of  box 
expressions 14 and preserves the types of  expressions it relates. 

T he o re m 5.4 Let D and H be box expressions such that D -- H. Then box(D) = 
box(H) and, for every 8 E {e, d, x, s}, D E Expr a ¢¢~ H E Expr a. 121 

Thus - is a sound equivalence notion from the point of  view of the denotational seman- 
tics of  box expressions. It is also complete in the sense that box(D) = box(H) implies 
D -- H provided that LDj = [HJ. The latter condition cannot be left out and, in terms 
of the DIY algebra, a counterexample is provided by the expressions D = X and H = Y, 

where X and Y are variables defined by X ~ D~e(Cl, cl, X) and Y ~' = ~'~re(Cl, Cl,  Y). 

The DIY algebra gives rise to five specific rules for the structural equivalence relation 
(we omit here their symmetric, hence redundant, counterparts). The first two are de- 
rived from (24): ~~ -- c2t and c2 - c23. The third and fourth are derived from (25): 

opf~re (E, if, G) ~ opf~, (E, F, G) and opf~, (E, F, G) - opf~r~ (E, F, G). Finally, there is a 

single instance of (26): opf~,(E_,_F, G) -- opf~,(E,  F, G). An application of these rules 

14That is, whenever a box expression can match one side of a rule, then it is also guaranteed that the other 
side is a box expression too. Thus the rules can be thought of as well formed term rewriting rules. Similar 
comment applies to the rules of the structured operational semantics. 
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is illustrated by the following derivation tree: 

OP~r e (Cl, C23, C3) -~ opii)r e (Cl, C2, C"3) 

op.re(Cl,C23,C3 ) ~ OP~re(Cl,C2,C3 ) OP~re(Cl,C2,C3 ) :---- OP~re(Cl, C2,C'3) 

~:~ - cl c23 -- C2 c3 - ca" 

5.3.3 Operational semantics 

The derivation system we shall define has moves of the form D r > H, where D and H 
are expressions and F is a finite multiset of labels. Formally, we define a ternary relation 

; which is the least relation comprising all the triples (D, F, H), where D and H are 
box expressions and r E mult(Lab U {skip, redo}), such that the following hold (note 

that we write D r ) H instead of (D, F, H) E---+). 

• For every static expression E: 

t ~  {skip} {redo} 
>_E E >~. 

• For all box expressions D, J and H: 

D - H  D o j r>H D r,,}j O,~H 

D . - ~ H  D r )H  D,,r>H 

(28) 

(29) 

• For every flat expression D and a non-empty step of transitions U enabled by 
box(D), there is a flat expression H such that box(D) [U) box(H), ~,x(D)(U) = F 
and: 

[D r n.J (30) 

• For every £3 E OpBox, and all £)-tuples/) and / t  of expressions: 

Vv E T~: Dv ~ My 

> op.(#) 

i i e (31) 

Notice that the only way to generate a skip or redo is through applying the rules (28), 

and possibly the rules (29) afterwards; thus, for example, i fD r ) H and skip E F then 

F = {skip}. Notice also that D =~ ; H if and only if D - H. A crucial property of the 
operational semantics is that it transforms a box expression into another box expression, 
and the move generated is a valid step for the corresponding boxes, and vice versa. 



71 

Theorem 5.5 Let D be a box expression. If D --S-r H then H is a box expression such 
that (box(O))sr [F)l,~ (box(H)),,. Conversely, if (box(O))~ [F)tab ~ then there is a 

box expression H such that box(H) = 1~ and D r)  H. El 

In the DIY algebra, the operational semantics of flat expressions is given by: Vi" {a}; 
el2 C'~ {b}) {a,b) ...{.a}) {b})__ {c}) {c}) , Cll , ~ , C._l.I, ell c...!, c12 Cl , c'2 c22, c21 c22 , 

,,,{d~ (e~ _ 
C22 {d_~} C2, C22 C23 and ~'~ c3. The inference rule for the only operator box 
can be formulated in the following way: 

k. {a,b} + FI F2 F3 
Dt ) Ht , D2 ~ H2 , D3 )//3 

a , b ~ F i  
k. {f} + F i  --I- F2 -I- r3 

o p ~  (DI, D2, D3) > opf~, (HI,//2, H3) 
An application of these rules is shown below (where opt2, ~ is denoted by op): 

{c,f} 
op(Cl,C2,C3) ~ op(c.._LI,C22,C3 ) 

0 m - -  op(Cl,C2,C3)--~op(cl,C2,C3) 

Cl 

{c, f}  
0 0 ( ~ , ~ , c 3 )  ~ 0p(cl,c22,c3) 

{a,b} 0 
c_j ~ ~-~ c22 c3 ~ ~3 

The consistency between the denotational and operational semantics of box expressions 
will be expressed by making a statement about the transition systems they generate (see 
also sections 3.2.1 and 4.1.3). With each static or dynamic expression D, we associate 
two transition systems, the labelled transition system tbtsD and the reduced labelled 
transition system Ibtsff c. Both are defined as in section 3, with obvious modifications 
required by a more general framework. We then can state a fundamental result that the 
operational and denotational semantics of a box expression capture the same behaviour, 
in the strongest sense of this word. 

Theorem 5.6 For every box expression D, Ibtsff c and Ibtsbox(O) are isomorphic transi- 
tion systems. [] 

Moreover, the mapping iso = {(v, box(H)) [ v is a node in Ibtsff c and H E v} is an iso- 
morphism for tbtsff c and Ibt%ox(D). One can also show that Ibtso and Ibtsff c are 
strongly equivalent transition systems. 
In the DIY algebra, the last theorem can be illustrated by taking the expression (again, 
op denotes opf~e) D = op(~q, c22, c3) and the corresponding box shown in figure 40. 
Figure 41 depicts Ibts~/c and tbt%ox(O). The nodes of tbts~ c are: 

V0 = {Op(C-T, C22,C3)}, VI = {OO(Cl,C2,C3), Op(-~,-~,C3),Op(-C-y, C21,C3)}, 
V 2 = {op (Cl,__ C'2, C3), op(c_[, C21, C3)}, V3 = {Op(Cl, C22, C3)}, 
V 4 : {Op(~', C23 , C3), Op(CT, C2, C3)}, V5 : {op(cI ,  C2, C3), OP(£.__I.I, ¢23, C3),op(cI, ¢2,~')} 
and v6 = {op(cl, c2, c3), op(cl, c2, c3) }. 
The nodes of Ibt%ox(O) are such that: M~ = {P],P2,P6}, Mz, = {Pl,Pz, Ps}, M ~  = 
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VI 
~ A  

V5 
(e} 

redo v6 

skip 

v0 

,c} 

Zt 

skip 

{a} ~ (It 

Z5 [(et 

redo ~ ~-_ 

Figure 41: Two isomorphic transition systems, Ibts~ c and Ibtsbox(D). 

{P3,P4, P5}, MZ 3 = {P3,P4,P6}, MX4 = {Pl,P2, P7}, g z  5 = {P3,P4,P7} and M~ = 
{PS). 
We now return to the factorisability property. Consider again the non-factorisable op- 
erator box shown on the right of figure 39. To see that this operator does not have a 
complete operational semantics in the style outlined above, try defining a quaternary 
operator op(El ,E2,Ea,E4) from it, with four arguments (where Ej - E4 are supposed 
to describe the same flow of control as vl - v4 of the operator) and the following set of 
equations: 

op(EI ,E2,E3,E4) 
op( EI , "-~2, E3, E4 ) 
op(El ,E2,E3,E4) 
op(EI,E2,E3,E4) 
op(EI ,E2,E3,E4) 

- o p ( E l , e E , E 3 , e 4 ) ,  

- -  op(EI,EE,E3,E4), 
-=  op(E~,E2,E3, E4), 
=_ op(EI,E2,E_!3,-~4), 
- o p ( E ~ , E : , E 3 , E 4 ) .  

At first sight, the equations seem to describe the control flow within the operator box. 
However, if we consider the expression E = op( a ,  (b; if) ,  (c; d ) ,  d ) then the box cor- 
responding to the expression E can execute the sequence of labels, abcffd, which can- 
not be derived using the above set of equations (essentially, the third equation cannot 
be applied in this case). 

5.4 PBC, CCS, TCSP and COSY 

The syntax of static and dynamic PBC expressions was given in sections 3.1 and 3.3.4. 
It is not difficult to see that the syntax conforms to that of the general box algebra in 
(22), after making some natural simplifications and adjustments, such as changing the 
mode of application of the operators. The only operator which requires some care is it- 
eration, which strictly speaking is a 6-ary operator; however, due to its fully symmetric 
form one can treat it as though it were a ternary operator, both in the syntax definition 
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and later, in the definitions of the rules of the operational semantics. Notice that all the 
operators modelling the various constructs of PBC are sos-operator boxes, and that the 
set of constants comprises all the basic actions and the expressions used in the mod- 
elling of data variables; in particular, Const s = kabpBc U {[z0] [ z is a data variable}. 
The semantical mapping from the PBC expressions to boxes, boxpBc, has been defined 
following the generic definition introduced in this section. The equation system used in 
section 3 to define the structural equivalence on PBC expressions is an instance of that 
defined for the general box algebra, with some notational modifications and simplifica- 
tions. In particular, INI and IN2 follow from -- being an equivalence relation; ILN and 
IRN follow from (29); AR, DATI, DAT2 and DAT3 follow from (30); IPARI, IC1L, 
IPAR2 and IC2L follow from (25); IS2, IIT2a, IIT2b and IIT2c follow from (26); PAR, 
CL, CR, SL,SR, SYI, SY2, IT1, IT2 and IT3 follow from (31); and IREC follows from 
(24) and (27). Hence we may conclude that the operational and denotational seman- 
tics defined for the PBC algebra in the previous sections are consistent, in the sense of 
theorem 5.6. 
In the rest of this section we shall outline how CCS [31, 32], TCSP [25] and COSY 
[26] could be treated within the general compositionality framework provided by the 
box algebra. In what follows, by a simple operator we will mean a two-place one- 
transition operator box as shown in section 4.3.4. We will denote such an operator box 
by f2:p, where p is the relabelling of its only transition. 
To model CCS we assume that Lab = ActU {'~} is the set of CCS labels and 6: Act -~ 
Act is a bijection on Act satisfyinga = a and ff ¢ a, for all a E Act. We then define five 
simple operators: ~:restr(A), f~:relab(h), ~2:left, ~:right and f~:syn( CCS),where A is 

a set of labels and h is a mapping on labels h " Lab --+ Lab commuting with (.), defined 
by the relabellings: restr(A) = {({a},a) [ a E (Lab \A)} ,  relab(h) = {({a}, h(a)) I a E 
Lab}, left = {({a},a L) l a E Lab}, right= {({a},a R) [a e Lab} and 

syn(CCS) = {({aL,a~},Z) l a E Act} u {({aL},a), ({aR},a) la e Lab}. 
Note that it is assumed that Lab is extended by the labels a L and a R, for a E Lab, but 
neither a L nor a R are allowed in the syntax of CCS expressions; they are a mere artifact 
used to model correctly the semantics of CCS. The translation OOccs from CCS processes 
into box algebra expressions, using the CCS syntax (1), is given by qJccs(nil) = stop 
and: 

~ccs(E\a) 

*ccs(~.E) 
*ccs (E + F) 

,ccs(e[h]) 
*ccs(EI F) 

= opa:,e~,,,~(~,a~)(*ccs(g)) 
= opn;(base,~,*ccs(E)) 

= oP~ o ((~Ccs(E),OCcs(F)) 
= oPa:,e~.h(h)(*ccs(E)) 

= opf~:syn(CCS)(oP~ll(oPf~:left((~Ccs(E)),opt~:right(*Ccs(F)))). 
TCSP and COSY employ synchronisation mechanisms different from those used in 
CCS and PBC. We shall briefly explain how concurrent composition and synchronisa- 
tion used in these two models could be treated. 
The concurrent composition in TCSP is a binary operator, EIIAF, where A C Lab is a 
set of actions on which [[a enforces synchronisation. The resulting process can execute 
an action a E A if it can be executed simultaneously by the two component processes; 
this simultaneous execution is denoted by a. The actions outside A can be executed 
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autonomously by the two component processes. Such a synchronisation discipline can 
be modelled similarly as in CCS. This time, however, we do not assume that the set 
of labels, I.ab, has any special properties. The relevant fragment of the transformation 
¢~rcse from TCSP expressions to box algebra expressions is modelled thus: 

t~rCse(EI]AF ) = opfl:TCSP(a)(op~ I (oP~:left(t~TCSp(E) ), opfl:right(ddTCSp(F) ) ) ) 

where [2:TCSP(A) is a simple operator with the relabelling defined thus: 

rCSP(A) = {({aL,ae},a)  t a E A} U {({aL},a), {aR},a) l a E (Lab \a)}. 
As before, we assume that the set of labels is temporarily extended by a L and a R, for 
a E Lab, which are not in the TCSP syntax. 
The concurrent composition in COSY is based on a multi-way synchronisation. Con- 
sider a path program 

prog = program path1 ... pathn endprogram 

Here, prog can execute a if it is executed simultaneously in all the paths pathi in which a 
occurs. To model such a synchronisation mechanism, we first extend I'~ll to n-ary (n > 1 
is finite) parallel composition operator boxes, t '~, in the obvious way (see section 4.3.7). 

Let A C_ Lab be the set of labels occurring in program prog and, for every a E A, let ix(a) 
be the set of all the indices i such that a occurs in the path pathi. Let Index = { (a, ix(a)) I 
a E A}. Define a simple operator ~:COSY(Index) with the relabelling being given by: 

COSY(Index) = U { ( {ai l i E ix(a) },a) } 
aEA 

and n simple operators, ~2:ixi, each with the relabelling/xi = { ({a}, a i) I a E Lab}. Then 
the relevant fragment of the transformation dPcosr from COSY programs to box algebra 
expressions is: 

~cosr(prog) = 
opf~:COSr(lndex ) ( 0 PD.t, ~ (op~q:/x I (t~COSY (pathl)), . . . ,  opf~:ix n (t~COS r (pathn)))). 

6 Concurrent Programming Languages 

In this section, we discuss the use of process algebras in giving the semantics of concur- 
rent programming languages. We define an example language, called EL, and use PBC 
as a semantic domain for EL. This also induces, by the Petri net semantics of PBC, a 
consistent Petri net semantics of EL. EL will be a shared data language, meaning that it 
is possible to express concurrent processes operating on a common set of variables. Al- 
ternatively, EL can be viewed as an extension of Dijkstra's guarded command language 
[181. 
In section 6.1, we describe the syntax of EL. In section 6.2, we give its semantics in 
terms of PBC and thus, implicitly, in terms of Petri nets. More precisely, we define a 
mapping which associates with every EL program a PBC expression (and thus a net). 
One of the characteristic properties of this mapping is that it is compositional, i.e., it 
has the homomorphism property, by mapping operators of the programming language 
to operations on PBC expressions (and thus on nets). Section 6.3, finally, contains some 
discussion on possible applications. 
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6.1 Syntax of EL 

The syntax of EL is specified in table 1. It is assumed that Set (the type of the variable 
x declared) denotes an arbitrary set, BExpr denotes a Boolean expression and Expr 
denotes an expression. We assume all the usual context restrictions, such as that if x 
and Expr occur in an assignment x:=Expr, then the type of Expr must be the same as 
that ofx. The intuitivemeaning of the brackets [ . . . ]  is that they enclose atomic actions; 
thus, for instance, V(x), with a semaphore variable x, can be encoded as [x:=x+ 1], and 
P(x) can be encoded as if [ (x>0) ; ( x : - x -  1) ] ft. The syntactic entity GC is called a 
'guarded command',  and the Boolean expression in its first part is called its 'guard'.  
Note that choices i f . . .  fi and loops do . . .  od may not start directly with other loops, 
since an inner loop is always guarded by a Boolean expression. As the reader will 
recall from sections 3.3.1 and 4.3.8, this excludes some undesirable semantic situations 
relating to generalised loops, and thus we may use an appropriate generalised loop 
construct of PBC to give the semantics of EL. 

Program ::= Block 

Block ::= begin Body end 
Body ::= Decl;Body I Corn 

Decl ::= va r  x : Set 

Com : : :  Block I Actl  Com;Com I ComllCom I 
i f G C ~  . . .  • G C  fi I doGC[~ ... ~ G C  od  

Act ::= [x::Expr] 

GC : : =  GC;Com t ~BExpr] I [BExpr;x:=Expr]. 

Table 1: Syntax of EL. 

6.2 Semantics of EL 

Let P be an EL program fragment, which could be a program, a block, a body, a dec- 
laration, a command, etc. We will now define a mapping pbcEL associating a PBC 
expression pbcEL(P ), and thus a box, boxpac(pbcEL(P)), with P. We proceed by in- 
duction on the syntax of EL. 

6.2.1 Programs,  blocks and declarations 

The main idea in describing a block - due to Milner [31, 32] - is to juxtapose (in 
parallel) the nets for its declarations and the net for its body, followed by termination 
action(s), to synchronise all matching data / command transitions, and then to restrict 
them in order to make local variables invisible outside the block. An example has 
already been described in section 2.8. 
Assume that Decl equals v a r x  : Set. Then, by definition, Dx = Set is the value domain 
of x. Moreover, we abbreviate: 

~(Decl) = { xkt I k,l E Sett.J {*} } and x(Decl) : [7 k~Setu{o} xk° 
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The set ~(Decl) is the set of all action particles that pertain to the declaration of x; this 
set is used for scoping. The expression x(Decl) is a generalised choice (cf. section 3.3.3) 
of all action particles that would lead to the termination of the variable; this is used for 
termination of the block in which the declaration occurs. We define the semantics of 
blocks (and hence EL programs) as follows: 

pbcet.(begin Body end) = pbceL(Body) 
pbcEL(Decl;Body ) = [5(Decl) : (pbcet.(Decl)ll(pbcet.(Body);x(Decl) ) ] 
pbCEL(varx:Set ) = ([~()] 17 {:~,,}). 

Note that we have used both the generalised operator [A : E] (section 3.3.3) and the data 
expression constant (section 3.3.2). 

6.2.2 Command connectives 

The semantics of the command connectives is defined in the following way: 

pbc eL ( Coml ; Com2 ) 

pbc eL ( Coml Il Com2 ) 
pbC EL ( if GC 1 [7 . . .  [-I  GCm fi) 

pbceL(doGC l 1-1 . . .  [1 GCmod) 

pbC EL ( GC; Corn) 

= pbCEL(COml); pbCEL(COm2) 

= pbCEL(C°ml)llPbCEL(C°m2) 
= pbceL(GCl) [1 . . .  D pbceL(GCm) 

= ((pbceL(CC ) 13 . . .  0 pbceL(CCm))  
* ObCEL([-~BIA...A-qBm]) ] 

= pbCEL(GC ) ; pbCEL(COm). 
In the fourth case, it is assumed that each Bj denotes the guard of GCj (1 <_j<m). Note 
that it is safe to use there a generalised loop operator without explicit initialisation, since 
choice alternatives as well as inner loops are always guarded by their initial Boolean 
expression. Moreover, since parallel composition is also guarded (i.e., no loop body 
can immediately start with a parallel composition), there is no potential 'nonsafeness' 
problem, i.e., we may safely (in two senses of the word) use the operator box f2~.], 

which is defined as the symmetrical counterp~t of f2~,), shown in figure 35. 

6.2.3 Actions and guarded commands 

We still need to define the translations pbCeL([BExpr]), pbcet.([BExpr; x:=Expr]), 
and pbcEz([x:=Expr]), to complete the definitions of pbcet.(GC ) and pbceL(Act ). All 
definitions follow the same pattern. Instead of giving them in general, we only show 
some examples and refer the reader to [9] for the general case. Assume that variables x 
and y are declared by var x,y : {0, 1 }; then we have the following translations. As the 
reader may recall, Xkl is supposed to denote the change of the value of x from k to l. 
Hence, the following should be self-explanatory: 

pbCEL([X:=I--y]) = ({XoI,YoO}N{XlI,Yoo}[']{XoO,YlI}13{Xlo,YlI}) 
pbcez([y=O;x:=l--y]) = ({x01,Y00}[1 {Xll,Y00}) 

pbcE/.([y=0]) = ( {Y0o})- 
From the general theory presented in the previous sections, it follows that, for any 
EL program fragment P, pbceL(P ) is a PBC expression and boxpBc(pbceL(P)) is a 
static box (possibly up to ex-directedness, which may be transgressed in rare innocuous 
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cases). Moreover, if P is a properly formed program (i.e., all variables are declared in 
outer blocks), then all transitions of boxpac(pbceL(P)) have label 0. 
In [9], it is shown how a more powerful concurrent language can be treated in a similar 
way, and also how high-level Petri nets [27] (rather than place/transition-nets) can be 
used as the target domain of the semantic function; however, this is beyond the scope 
of the present paper. 

6.3 Proofs  o f  distr ibuted a lgor i thms 

The main purpose of a concurrent programming language such as EL is to express 
parallel programs and distributed algorithms. It is still acknowledged to be a difficult 
problem, in general, to state and prove the correctness of such programs and/or algo- 
rithms formally. An important goal of compositional translations such as that defined 
by the mapping bOXpBc(pbCEL (.)) is to create a usable framework for making Petri net 
specific methods readily available - perhaps in addition to other methods - in order to 
solve this problem. 
We may contrast expressing a distributed algorithm first in a programming language 
and then, by a standard translation, as a net, with an approach (exemplified by [41]) of 
'massaging' an algorithm until it can be expressed as succinctly as possible by a net, 
independently of how it was expressed in the first place. Both approaches allow net the- 
oretic means to be applied in proofs of correctness, and they both have their advantages 
and disadvantages. For instance, the second one often creates nets which are very well 
adapted to the algorithm, while the succinctness of the nets created by the first one is oc- 
casionally limited by the programming language. On the other hand, the first approach 
can be automatised more easily and allows the application of complementary methods 
such as the Owicki-Gries method [36] (which is known to be relatively complete) in 
addition to net theoretical methods [3]. 
In the remainder of this section we discuss briefly some (automatised) net-based cor- 
rectness proofs of three different mutual exclusion algorithms: Peterson's algorithm 
[38], Dekker's algorithm [17] and Morris's algorithm [33]. 

6.3.1 Peterson's mutual exclusion algorithm 

Figure 42 shows two parallel EL processes implementing Peterson's mutual exclusion 
protocol. It is claimed that it is not possible for both processes to execute their respec- 
tive critical sections concurrently; other claims are that there are neither deadlocks nor 
starvation, in the sense that if one of the processes has succeeded in executing ai or bl, 
the other cannot prevent it from entering its critical section. 
The translation of this EL program (using the initial value hold = 1) into a box, as 
defined in section 6.2, is exemplified - in slightly simplified form - in figure 43. For 
instance, transition ul corresponds to al,  transitions u2 and u3 correspond to a2, tran- 
sitions u4 and u5 correspond to a 3, and transition u6 corresponds to a4. Transitions vj 
correspond to bi in a similar way. 
A Petri net based analysis of this algorithm employs four basic lemmata of the theory 
of Petri nets, namely: (1) The number o f  tokens on an S-invariant is constant over tran- 
sition occurrences; (2) A trap with at least one token can never be completely emptied 
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var in l , i n2 :  {0, 1} (init 0); hold: {1,2}; 

do [true;in~ := 1]; al 
[hold := 1]; a2 
if[in2=0] D[(hola~ 1)] fi; a 3 
CritSct I ; 
[in 1 := O] a 4 

od 

do 

od 

[true;in2 := 1]; bi 
[hold := 2]; b2 
if[in|=O] [q [(hold~ 2)]  fi; b3 
CritSct 2; 
[/n 2 := 0] b4 

Figure 42: Peterson's algorithm with two processes. 

u6 

in l = 0 in2 = 0 

v6 

Figure 43: Translation of  Peterson's algorithm into a net 
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of  tokens; (3) The occurrence vector of  a sequence reproducing a marking is a semi- 
positive T-invariant, and conversely, if  a sequence is such that its occurrence vector is 
a T-invariant, then it reproduces the marking; and (4) In a boundedfinite net, i f  there is 
some infinite occurrence, then there is an integer-valued semipositive T-invariant whose 
support (i.e., the transitions it assigns a nonzero number) equals the set of  transitions 
occurring infinitely often in that occurrence. These lemmata can be found in, e.g., [ 14]. 
Safety analysis: the critical section property is satisfied. A detailed 'by-hand' veri- 
fication of this fact is contained in [3]. We outline it here as follows. The net shown in 
Figure 43 is decomposable into five S-components, two for the sequential components 
and three for the variables hold, inl and in2. This automatically yields five S-invariants 
which are initially marked with one token each. The net has more S-invariants than 
those, however; e.g., {inl=O, P2,P3, P4} and {in2=O, q2,q3,q4}. The places P4 and q4 
represent the critical sections. To prove the property of mutual exclusion, it has to be 
shown that M(p4)=0 V M(q4)=O for every reachable marking M. The S-invariants of 
the net alone lack the power to prove this property, because if the twelve side condition 
arrows in figure 43 are omitted, then the set of S-invariants remains the same, but mutual 
exclusion is violated in the reduced net (for instance, by the sequence ulu3u4vt v3v4). 
Relationships between the two components of the program may enter the proof by the 
trap method which was first described in [2] (see also [3, 7, 12, 41]). Two relevant 
traps are {in1:0,  P2, hold= 1, q3} and {in2=0, q2, hold=2, P3}- Both carry at least one 
token initially, and by the second property cited above, none of them can be emptied of 
tokens. 
Suppose now that some marking M is reachable from the initial marking Mo such that 
a token is on P4 and another token is on q4. Using the first property mentioned above 
and the above set of S-invariants, it follows that M(inl = 0 )  = M(p3) : M(p2) = 0 and 
M(ine=O) = M(q3) : M(q2) = 0. It then follows that at least one of the two traps is 
unmarked at M, which yields a contradiction. 
An easy proof of deadlock-freeness is left to the reader. 
Progress analysis: the program is conditionally starvation-free. In order to demon- 
strate this, it needs to be shown that there is no infinite execution which, from a certain 
point on, continues to have a token on place P2: 

= M o t l M l t 2 M 2 . . . M j _ l t j M j t j + l  ... 
J 

I = Mj-,(p2) = ,uj(e,.) . . . .  
We may do this net-theoretically by using a method which was introduced in [12]. It 
consists of enumerating all T-invariants and showing, from the existence of the above in- 
finite execution and the third and fourth properties, the existence of a certain T-invariant 
not in this set, which leads to a contradiction; the full argument is given in [3]. 
Automatic verification of the mutual exclusion property. The program shown in 
figure 43 can be fed (after a syntactic translation into the tool's input language) into 
the PEP partial order based model-checker [4, 37]. This model-checker translates any 
such program automatically into a net, calculates the McMillan finite prefix of that net 
[30] and executes Esparza's model-checker [ 19] with a given input formula of temporal 
logic. In this case, the formula to be checked is ~(~(p4Aq4)).  On a SUN Ultra-l/140 
with normal load, the execution times shown in table 2 were measured. Note that for 
any given program and net, the prefix has to be constructed only once, so that only the 
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third line is relevant for any given formula (except the first one to be checked). 

Task 
Calculating the net 
Building the finite prefix 
Checking the formula 

Peterson (2 processes) 
0.07 seconds 
0.01 seconds 
0.02 seconds 

Dekker (2) 
0.05 seconds 
0.05 seconds 
0.01 seconds 

Morris (3) 
0.04 seconds 
1.19 seconds 
0.12 seconds 

Table 2: Execution times for automatic verification by PEP [37]. 

6.3.2 Dekker's and Morris's mutual exclusion algorithms 

Figure 44 shows Dekker's algorithm for mutual exclusion; the variables inl and inz 
are defined as var inl, in2 : {true, false} init false, variable hold is defined as var hold : 
{ 1,2} with an arbitrary initial value, and the component c2 arises from cl by exchanging 
all 1 's with 2's (also in the indices). 

c I : do [ true]  ; [inl := true] ; 
do [in2] ; if [hold : 2] ; 

od 

0 [holds 2] 
fi 

od; 
CritSct !; 
[hold := 2]; 
[inl := false] 

[inl := false]; 
if[hold = 1] fi; 
[inl := true] 

Figure 44: Dekker's algorithm Cdekker = Cl 1]C2. 

Morris's algorithm (shown in figure 45) uses the declaration 
vara ,  b: {0, 1} (init 1); m: {0, 1} (init 0); na, nm: N (init 0). 

Ci : P(b); [na := na+ 11; V(b); 
P(a); Into : -  nm+ 1]; 

P(b); [na := n a -  1]; 
if [na = 0]; V(b); V(m) ~ [na ~ 0];V(b); V(a) fi; 

P(m); [nm := nm- 1]; 
CritSct; 
if Into = 0] ; V(a) ~ [nm 7~ 0]; V(m) ti 

Figure 45: Morris's algorithm Cmorris "--  C I I I ' ' "  Ilc.. 

Table 2 shows the execution times of automatic Petri net based verification of the mutual 
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exclusion property for Dekker's algorithm with two processes and Morris's algorithm 
with three processes (and a correspondingly adapted temporal logic formula). 'By- 
hand' verification of Dekker's and Morris's algorithms using Petri net methods can be 
found in [12] and [44], respectively. The reader is also referred to the article by W. 
Reisig in this volume. 
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