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Abstract .  Modern production systems pose a diversity of problems all 
along their life cycle which are often treated with particular indepen- 
dent formalisms and techniques. Production systems can be viewed as 
discrete event, continuous, or hybrid systems. Petri nets are a family 
of formalisms which can be used for the modelling, analysis, implemen- 
tation, and control of these systems, with the benefit of improving the 
communication between stages of the life cycle. 
The utilisation of Petri nets in several of these stages is illustrated in 
this tutorial paper through a selected set of examples. 

1 I n t r o d u c t i o n  

The behaviour of production systems (PS) is often extremely complex, and subtle 
or even paradoxical phenomena appear.  By PS we refer to systems in both  the 
manufacturing or the process industries, either to discrete or continuous systems, 
and also to hybrid systems, where these two "extreme" views of dynamic systems 
are applied to different subsystems. 

Among the many diverse problems concerning PS we consider here some 
issues in the design and operation from a systems theory perspective (i.e., we 
disregard technological aspects that  depend on the nature  of the product ion pro- 
cess, and concentrate in the interaction of subsystems in an integrated system): 

- The design phase (for a new plant or for extensive modifications), s tar ts  at  
a preliminary stage, when both the basic s tructure and dimension are deter- 
mined, and then comes into more and more details until the implementat ion 
level is reached. 

- The operation concerns aspects such as allocation of resources, scheduling, 
control, supervision, etc. of a working plant. 

The range of problems and solutions encountered is extremely broad. As an 
example, in [13], where the performance evaluation (a kind of analysis) of flow 
lines (a kind of manufacturing system) is surveyed, the authors devote a section 
to review the reviews! 

* The work of the first two authors was partially supported by Project TIC-94-0242 
of the Spanish CICYT and Contract CHRX-CT94-0452 (MATCH) within the HCM 
Programme of the EU. 
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Although formal methods may be initially time consuming and difficult to 
apply, they usually improve the understanding of systems, allowing to iden- 
tify key parameters and influences, lead to more efficient reasoning, help in the 
implementation, etc. Moreover, some formal methods facilitate the dialogue be- 
tween the different people involved in the design and operation, specially when 
graphical/intuitive representations are provided. The diversity, specificity, and 
difficulty of the problems leads to the development of particular formalisms and 
techniques for each problem or class of problems, e.g.: Markov chains, queue- 
ing networks, or discrete simulation for performance evaluation; mathematical 
programming, or MRP for planning; PERT/CPM, or artificial intelligence tech- 
niques for scheduling; relay ladder logic diagrams, state diagrams, or algorithmic 
state machines for local controllers implementation, etc. Of course each kind of 
problems requires an adequate solution but this may appear as a Babel Tower 
where the different people at each stage of the design and operation of the PS 
can seldom communicate, at least formally. 

Petri nets (PN) are a family of formalisms which provides a framework or 
working paradigm for PS design and operation. Broadly speaking, a major con- 
tribution of PN to the field is to provide a family of formalisms sharing basic 
principles in a consistent way. Although for each purpose or degree of detail the 
adequate formalism would be chosen from the family, the transformation from 
one formalism to another could be sound, if not formal or even automatic. Some 
appealing characteristics of PN are: 

- Generality, or descriptive power, both w.r.t. PS types and problems. 
- Adequacy for dealing with real systems. There is an inevitable modelling 

trade-off between fidelity to reality and tractability. If  one wants to perform 
some analysis to gain insight into the basic structure and relevant parameters 
of a system, their influences, the cause of problems, etc. this will sometimes 
be paid for by the necessity of making strong assumptions. 

- Ease of use. (This is naturally a matter of taste to some extent.) 

The application of PN to PS is an active research field where many questions 
still remain open. In this tutorial we illustrate the usability of PN models along 
the life cycle of PS. By no means we intend to be exhaustive, but just give an im- 
pression on the contribution of PN to some classes of problems. We concentrate 
on some concepts and give illustrative examples, rather than trying to survey the 
contributions reported in the literature. The reader is referred to existing survey 
papers or books to gather links to these contributions. Books on or containing 
chapters about PN in (diverse aspects of) PS are [54] on performance modelling, 
[16] on PN and Grafcet, [20] on modelling, validation, and performance eval- 
uation, [57] on control modelling, [19] on performance evaluation and control 
implementation, and [35] on modelling and analysis. Some survey papers are 
[43,59,42]. A short survey of the utilisation of PN to represent hybrid systems 
(systems having a discrete and continuous aspects) can be found in [10]. 

In Section 2 different types of PS and associated problems are briefly overviewed 
to provide a context for the application domain considered here. The adequacy 
of PN along the life cycle is discussed in Section 3, making special emphasis on 
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the abstraction levels and different interpretations to cope with the diversity of 
systems to be modeled or purposes of the models. In Section 4 the modelling of 
PS of different kinds is illustrated through several examples. Sections 5-8 discuss 
and illustrate several applications of the PN modelling of PS, from analysing the 
logic and temporal behaviour, to controlling and monitoring the operation. 

2 Product ion  Systems Classification, and their Control  

Production systems perform material transformation processes from raw mate- 
rials to finished goods (where raw and finished are relative terms; for instance, 
a factory may provide subassemblies to another one, so the "finished" goods 
of the former are "raw" materials for the latter). The transformation processes 
consume material, energy, equipment, and labour. The control of these processes 
involves complex flows of information through the whole system, from the plant 
to the highest organisational levels. 

2.1 Types  of  P r o d u c t i o n  Systems,  and Associated Prob lems  

The classification of production systems can be done using two key criteria. The 
first one is the "intrinsic" nature of the material being transformed. The second 
one is the dynamic of the product trajectories through the plant. 

Discrete  versus cont inuous  sys tems  When the product is composed of dis- 
crete parts, it can be quantified in a discrete manner, by an integer number. 
Typically, manufacturing systems, as in car or aeronautics industry, process such 
kind of products. Assembly lines, for example, are typical systems where various 
parts of some device are assembled. In contrast, if the product is a fluid as it is 
mainly the case in process systems, like chemical or food industry, the charac- 
terisation becomes more difficult. Usually, two categories of such processes are 
distinguished: the continuous processes and the batch ones. 

In a batch process, the material is operated by finite quantities (the batches). 
At any time, an integer number of batches are in operation at marly different 
locations in the plant. In this configuration, the process looks like the manu- 
facturing system introduced above, i.e., the batch of fluid in a vessel can be 
considered as a part. But the complete characterisation of a batch implies real 
numbers referring to the amount of material and its operating conditions (tem- 
perature, pressure, quality, etc.). During the transport of material between two 
equipments, the discrete nature of the product temporarily disappears. The fluid 
is continuously transferred through a pipe network from an upstream vessel to 
a downstream one, naturally by gravity or using energy given by special device 
(pump, compressor, etc.). 

In a continuous process, the material continuously flows along the plant with- 
out disruption w.r.t, time. Each equipment is dedicated to the same and unique 
function during the life cycle of the process. Raw materials are fed and products 
are delivered at known flowrates, the plant is generally operated in steady state 
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which means that all the variables describing the units are controlled to be kept 
at a constant value during production. There is no discrete representation of 
the dynamics of the product in a continuous process. Large capacity production 
plants such as petroleum refineries, heavy chemicals, or natural gas processing 
units, belong to this kind of processes. 

Nevertheless, the distinction between discrete and continuous systems should 
not be considered as absolute. For instance, in the production of paper, the ini- 
tial stages are rather continuous (e.g., from pulp preparation to obtaining paper 
rolls), while others are typically discrete (e.g., cutting and packing the paper 
products: sheets, envelopes, etc.). Actually, in any kind of PS the continuous 
and the discrete views are present, for instance, in a car factory, many contin- 
uous processes are found, like paint preparation and at a very detailed level a 
machining operation is indeed a continuous process. On the contrary, it is often 
possible to extract a discrete view in continuous processes such as chemical ones 
[55]. Sometimes the continuous and the discrete operations correspond to two 
different stages of the production system, for example a continuous production 
of fluid and the discrete packaging operations [48]. They are thus located in two 
different shops or even in two different plants. In contrast, in other cases, very 
frequent in fine chemical processes and in food industry, the continuous oper- 
ations and the discrete ones alternate along the production process. Typically, 
sterilisation and cooling are continuous operations, done when the fluid is being 
transferred through pipes from one vessel to another and they take place be- 
tween reactions and fermentation operations which are discrete ones executed in 
the reactors. 

Classification with respect to the shop architecture Production plants 
are configured depending mainly on the product variety and the production vol- 
ume. While uniformity of products and mass production require high efficiency 
(which can be achieved by a rigid automation) to reach an economy of scale, 
greater variety and lower production volumes require high flexibility to be able 
to change the product scenario to react to market changes. In order to concil- 
iate the need of flexibility and efficiency, the concept of flexible manufacturing 
systems (FMS), involving automated flexible machines, handling, transport, and 
storage systems, has arisen. The distinction depending on the product variety 
and the production volume is as valid for discrete goods as for continuous ones: 
for instance, considering continuous goods, the configuration of an oil refinery 
- -  a typical continuous plant - -  is quite different from that of a pharmaceutical 
laboratory - -  a typical batch production plant. 

Concentrating for the moment in manufacturing systems, we find several 
different prototypical kinds of plants: 

Transfer lines: The production process is designed as a sequence of opera- 
tions that take similar amounts of time to complete. The material is moved 
synchronously from one workstation to the next, and each workstation per- 
forms repetitively the same task. The main optimisation problem in transfer 
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lines is balancing, i.e., making all the operation times in different worksta- 
tions as similar as possible to reduce idle times and to balance the workload 
of the stations. 

- Production lines: When some variability is required in the workstations, 
e.g., some are operated manually, parts move between them asynchronously. 
In this case the system does not need to be fully balanced, and possibly 
intermediate storage, or buffers, are introduced to filter out the variations. 
The efficiency of these systems is greatly affected by the blocking and starva- 
tion phenomena they exhibit. The buffer allocation problem becomes crucial: 
large buffers aim to neglect blocking and starvation, but increase the work 
in progress, with the consequent economical problems. 

- Flow shop: When some products may be processed differently in, or even 
by-pass, some stations, or follow alternative paths, e.g., when producing a 
unique family of products that differ slightly from one another, the layout 
of the plant still reflects clearly the material flow, but not as strictly as 
in transfer or production lines. The sequencing problem tries to minimise 
inventory and production costs, due to machine and tool changeovers, idle 
times, etc., by finding an appropriate sequence of parts (or lots), naturally 
constrained to satisfy the production demand. 

- Job shop: When the variety of products is greater, the layout does not re- 
flect the material flow, because it may differ from one product to another. 
For each product a production route is defined, describing a sequence of 
machine operations. In principle, the greater versatility is paid by a lesser 
efficiency: flexibility of the stations make them not so efficient, particularly 
frequent machine and tool changeovers are required, machines may remain 
idle a significant part of the time, in-process inventory tends to increase, 
the transportation between stations appears as a new problem to be solved, 
etc. The integrated automation of the stations, storage, transportation, and 
handling becomes highly demanding, leading to FMS. In order to optimise 
the system performance while satisfying the production demands, complex 
decision problems must be addressed from the long to the short term. 

Actually, manufacturing systems exist along a continuous from mass production 
to job shop, and even different types can be found in the same factory. For 
instance, in modern car factories, which produce a high variety of versions of 
one or more models, transfer lines or highly automated production lines are 
found in body making, (presses and assembly), trimming is usually organised 
in production lines and flow shops, often with manually operated stations, and 
some complex subassemblies (engines, wiring, etc.) can be produced in flow or 
job shops within the same factory or in a supplier's one. 

For the case of process systems, flexibility can be exploited by the manage- 
ment levels only in the case of batch processes. This is not only due to the 
possibility of dynamically changing the resource allocations and the trajecto- 
ries of products as in the case of FMS. It also comes from the possibility of 
choosing the size of the batches in a continuous range of values. Splitting and 
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mixing batches are classical operations that require to deal with material balance 
equations in order to correctly model the dynamics of the batch processes. 

2.2 Hierarchical  Archi tec ture  o f  t h e  Contro l  

The complexity and variety of problems encountered is reflected in a time horizon 
driven hierarchy of control problems, which covers a whole set of levels from the 
strategic decision one, to the real-time operation one and through the tactical 
decision one. In the long term strategic level, problems appear, such as the selec- 
tion of the products, the equipment, its configuration, etc. The solution of these 
problems affects the design or extensive modification of the plant, under some 
assumptions on the long-term evolution of the market and taking into account 
the particular strategy of the company. In the medium term, the part types for 
immediate processing and their relative ratio, lot sizing, grouping of machines, 
allocation of resources, etc. must be fixed to respond to market changes. In the 
short term, scheduling of parts and tools, dispatching of the parts, reaction to 
disruption, etc. are decisions to be taken in order to satisfy the production plan 
issued at a higher level to satisfy the precise demand. 

It is quite natural that control architectures reflect this hierarchy. Each con- 
trol level takes as input the outcome of its upper level(s), and produces a ref- 
erence for its lower level(s). This hierarchical structure implements a "divide 
and conquer" approach, where the combinatorial number of possible decisions is 
constrained from the upper to the lower level in order to find a solution. On the 
other hand, sometimes the upper levels respond to demands issued from lower 
levels (e.g., the coordination level asks the scheduler how to solve a conflict found 
in the operation). The separation between levels is not uniquely defined, par- 
tially depending on the nature of the PS (mass production, jobbing shop) and 
on design criteria. Broadly speaking, typical control levels are: 

- Planning. The whole plant is considered with an estimated demand (unexe- 
cuted demands and an estimation of future ones). Further hierarchical refine- 
ments into shorter and shorter time horizons can lead to different planning 
levels, the lowest ones taking into account availability of raw materials, due 
dates, and available resources. 

- Scheduling. Each operation (or group of operations) on each part or product 
is considered individuaily. The problem is to decide at which date a given 
operation will be performed. If scheduling operates on an estimated state of 
the PS, it must consider some slack times, or precise only the (partial) order 
of operations to be carried out when possible (the date is only implicitly and 
relatively given). 

- Global coordination and real-time monitoring. Its function is to update the 
state representation of the PS in real- time, to supervise it and to make 
real-time decisions, following the schedule, or fixing it when it was implicit. 

- Subsystems coordination and local control perform the actual control of the 
physical plant in real-time, measuring its state through sensors and influ- 
encing it through actuators. 

Some books on PS from a systems theory perspective, are [18,54,33,23]. 
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3 T h e  F o r m a l  F r a m e w o r k  P r o v i d e d  b y  P e t r i  N e t s  

In operational formalisms (i.e., describing how the system is meant to work 
rather than what the system is meant to do), a system can be viewed as a 
collection of objects or entities with some attached attributes, some of them 
fixed and some of them variable (that define the state), and the relations between 
them. In PN, the state of a system is represented in a distributed fashion by the 
mating: places are local state variables whose value (or marking), depending 
on the chosen abstraction level, ranges from boolean (which is adequate for 
local control modelling, for instance), to typed and structured (which may be 
adequate for concise system descriptions). The possible state changes are locally 
defined by way of transitions and the firing or occurrence rule. In autonomous 
PN models, the occurrence rule considers the marking only, so the marking is 
properly a description of the state of the system. Nevertheless, since transitions 
are associated to events in the system, and these events may occur depending 
on "external" considerations, such as the timing, or some signals, implicitly (or 
explicitly), the state changes involve more information than the marking, so the 
marking is no longer a sufficient description of the state of the system in marly 
interpreted PN models. 

PN models of systems are not as different as they may seem at first sight to 
other models that  are familiar to control engineers. For instance, in [41] the PN 
formalisms are introduced in a way that  is close to the state-based description 
of sampled continuous systems. 

We assume the reader is familiar with basic PN concepts [8,16,20,32,39]. 
Appealing characteristics of PN include: 

- Ability to represent in a natural way concurrency, causality, synchronisation, 
resource sharing, conflicts, bulk or lot movements, etc. 

- Locality of states and actions, allowing both top-down and bot tom- up model 
construction, i.e., refinement, modularity, reusability, etc. 

- Compactness due to the distributed state representation compared to a cen- 
tralised sequential representation. 

- Adequacy to represent the essential features of a given system by way of the 
selection of an appropriate abstraction level. 

- Interpretability. It is possible to associate a wide range of different mean- 
ings and/or connections to the external world to the model objects; different 
interpretations are appropriate for the different purposes of the model: vali- 
dation, performance evaluation, scheduling, control implementation, etc. 

- Graphic representation facilitating their use in the documentation and mon- 
itoring of the system. 

- Formal/precise semantics allowing to undertake rigorous analysis or to auto- 
mate the implementation or code generation either for control or simulation. 

The different interrelated abstraction levels of PN models, and the different 
'interpretations that can be associated to a PN model, make them specially 
usable along the life cycle (design, preliminary and detailed, implementation, and 
operation). They define a space of formalisms adequate for different purposes (see 
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Fig. 1. A pictorial view of the space of PN formalisms. 

Figure 1). Broadly speaking, in the abstraction levels axis we have elementary net 
systems where local states are boolean (conditions), place/transition net systems 
where local state variables are counters and bulk processing is allowed, and 
diverse high level formalisms where tokens are distinguishable typed items (i.e:, 
attributes are attached to them) and transition enabling in a given mode requires 
specific tokens present in the input places. In addition one should consider in this 
axis some extensions such as inhibitor arcs or priorities which not only affect 
the conciseness but also the expressive power under some circumstances, or some 
subclasses which aim at improving the tractability at the price of losing modelling 
power. In the interpretation axis we have the non-interpreted or autonomous or 
basic PN model, different timed interpretations (stochastic, deterministic, firing 
times specified by intervals or fuzzy sets, etc., each one with several possible 
corresponding modifications of the firing rule), and data interpreted PN which 
add extra firing conditions to the transitions (enabled transitions are fired when 
some predicates are true, or when some variables reach some thresholds [51] or 
at the occurrence of external signals). Timed interpreted PN are adequate for 
performance modelling and scheduling, even for hybrid or batch systems [22,25]. 
Data interpreted PN models incorporate aspects of the systems that are not 
captured by the autonomous or basic PN model, for example, continuous state 
variables and differential algebraic equations, or the interaction of the controller 
with the plant. They are adequate for real-time control, coordination, diagnosis, 
etc. 

These interpretations can be seen as different abstractions of the environment 
of the model, ranging from total abstraction in the autonomous model (which is 
totally non-deterministic in the sense that only logical pre-requisites for firings 
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are given, without information on what/when to fire) to total explicitation in the 
models considering the actual signals (which should be totally deterministic). In 
between diverse assumptions are made (e.g., describing the time of occurrence 
of an enabled transition as a random variable or constraining it to be in some 
interval, associating probabilities or fairness constraints to conflicting transitions, 
or conditioning occurrences by the result of solving an implicit set of differential 
algebraic equations, etc.). 

These formalisms can be related to other non PN formalisms which are used 
in common application domains. For instance, PN performance models add sym 
chronisations to classical queueing networks, PN scheduling models add resource 
constraints and cyclic behaviours to PERT, PN controllers allow to deal with 
concurrent systems for which state diagrams are impractical, PN in artificial in- 
telligence, compared to classical rule systems, add the ability to handle resources, 
etc. 

PN models - -  selecting the appropriate formalism - -  have been used for 
diverse purposes within the field of PS, including: 

- M o d e l l i n g ,  and d o c u m e n t a t i o n  of a design, to be used in the communica- 
tion between the different people involved (in the design and also in the 
subsequent operation). 

- A n a l y s i s ,  involving, for instance, correctness verification of the logical be- 
haviour of a controller, performance or performability evaluation of a (part 
of the) plant, etc. Optimisation problems can be addressed to improve the 
design. 

- S i m u l a t i o n  when the model is too complex (e.g., high level non autonomous 
PN) for formal analysis. Typically after an analysis and optimisation based 
on an abstract model (autonomous PN), detailed simulation runs are neces- 
sary in order to verify that all the constraints captured by the interpreted 
PN are met. 

- C o n t r o l  de s ign  aiming at, for instance, guaranteeing the desired logic be- 
haviour (e.g., imposing a mutual exclusion constraint or avoiding a dead- 
lock), or achieving optimum or sub optimum performance during operation 
(e.g., real-time scheduling). 

- C o n t r o l  i m p l e m e n t a t i o n .  PN models can be regarded as executable specifica- 
tions. Diverse approaches to the modelling of the control and techniques for 
its programmed implementation, including fanlt-toterance issues, are avail- 
able. 

- M o n i t o r i n g  a n d  s u p e r v i s i o n .  PN models are used as deep models (as opposed 
to shallow models) for model based diagnosis of the correct operation of the 
system for fault detection and localisation. For instance, watch dogs are 
attached to each transition firing in order to detect any deviation between 
the actual system behaviour and the model. 

The use of a single family of formalisms for such a diverse range of problems is 
not only beneficial from the point of view of communication and reutilisation of 
results. It has proven to lead also to a synergy, where the concepts and techniques 
developed in one area help in the solution of open problems in another one [40]. 
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4 M o d e l l i n g  M a n u f a c t u r i n g  S y s t e m s  

Model building is mainly a creative, thus difficult to automate, task. Neverthe- 
less for a given kind of systems and problems it may prove useful to somehow 
limit creativity, either to automatically generate the model from a (graphical 
high level) description of the plant layout, machines, material handling, storage 
and retrieval systems, work plan, etc. [53,2,58], or to facilitate the subsequent 
analysis. 

The PN formalisms (low or high level, discrete or continuous, etc.) are ade- 
quate to build models of PS. We shall show some examples where some of the 
appealing characteristics of PN enumerated in Section 3 are illustrated. 

In the first example, the model for a simple manufacturing cell the model is 
built by composition (transition merging and removal of implicit places) of the 
submodels of the machines, buffer, and the robot. The autonomous model is a 
non-ambiguous description of the logical behaviour of the system, and can be 
used for correctness analysis. Incorporating the relation with the environment 
in terms of signals, this model can be sought as the specification for a logic 
controller. On the other hand, if appropriate timing is incorporated, performance 
can be evaluated, or scheduling policies can be investigated. 

In the second example another simple manufacturing cell is used to illustrate 
that a system may exhibit undesired behaviours (namely, deadlock situations), 
and how PN theory can be used to analyse such problems and synthesise a 
control policy that avoids them. 

In some applications within PS, e.g., coordination, monitoring, diagnosis, in- 
formation systems modelling, etc., the major issue is expressive power and user- 
friendliness, rather than tractability. In such cases high level formalisms may 
be preferred, integrating modern software engineering concepts both regarding 
methodological and data/knowledge representation aspects, like algebraic spec- 
ification and object-orientation. The third example shows a coloured PN model 
of a realistic PS (part of a flexible workshop of a car factory), taken from a case 
study described, for instance, in [29]. 

The fourth example illustrates the fact that PN are suitable to capture the 
discrete part of hybrid systems such as batch processes. The model is built 
by composition, as in the first example, and it can also be considered as the 
specification of a controller. This example will also be used to illustrate deadlock 
detection, the possibility of attaching data to the tokens, to introduce issues 
induced by the hybrid nature of batch systems, and also to give some hints 
about the differences between supervisory control and local control. 

The fifth example details the issue of hybrid modelling, where the PN model 
captures the discrete evolution of the system, while differential and algebraic 
equations associated to it describe the continuous aspects, allowing for the inte- 
grated simulation of the whole system. 

Example  1 A manufacturing cell - -  see the layout in Figure 2.a - -  is composed 
by three machines (MI, M2, and M3). The work plan is as follows: Raw parts 
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Fig .  2. Different interpretations of a PN model of a manufacturing cell, for diverse 
purposes. 
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arrive through a conveyor; A raw part is processed by M1 to obtain a part of 
type "A", or by M2 to obtain a part of type "B"; In M3 two parts, one of each 
type, are assembled to obtain a final product, that  leaves the cell; We assume 
saturation (i.e., the cell is never starved or blocked); Parts are handled by a 
robot (R). We assume that  only M1 may fail (operation dependent failures). To 
reduce the effect of M1 failures, it deposits the "A" parts in a temporary buffer 
(B1, capacity N), without using R for this movement. 

The PN model in Figure 2.a is self-explanatory. It models both the plant and 
the work plan, from a local coordination viewpoint. (It goes without saying that  
operation places could be refined to show the detailed sequence of operations 
in each machine, etc.) Notice the correspondence of subnets and subsystems 
(M1, M3, M3, B1, and R), and the natural representation of their mutual syn- 
chronisations. We have depicted as bars those transitions tha t  represent control 
events, while transitions depicted as boxes represent the end of an operation, or 
the occurrence of a failure. 

While the autonomous model is useful for some analytical purposes, it does 
not specify when enabled transitions do occur, or which one is selected in the 
case of conflict. If the model is meant as a specification for a logic controller, 
these matters need to be fixed, in addition to the outputs that  must be emit- 
ted. The inputs, that  condition the evolution of the controller, may come from 
plant sensors (e.g., when R finishes loading MP it emits a signal loaded_g2) or 
from other levels in the control hierarchy (e.g., when the scheduler decides - -  
in view of the state of the system and the production requirements - - that  M1 
should be loaded, it sends sched_Ml). The outputs may command the actua- 
tors (e.g., START.hI3 initiates the assembly sequence in M3) or send information 
to other levels in the control hierarchy (e.g., REPAIR! raises an alarm to call 
the attention of maintenance staff, or an interrupt that  activates automatic re- 
covery; BI_CONT(m) updates the number of ready "A" parts in the production 
database, etc.). The PN model in Figure 2.b captures this information. Following 
appropriate conventions in the specification (e.g., those imposed in the defini- 
tion of Grafcet [16]), a model similar to this one could be used directly as a logic 
controller program. 

If the purpose of the model is to evaluate the performance of the manufactur- 
ing cell, or to investigate different scheduling policies, then timing information 
(e.g., duration of operations, mean time between failures, etc.) can be incorpo- 
rated to the model, for instance specifying the delay in the firing of transitions. 
Diverse timing specifications are possible (e.g., stochastic, deterministic, time 
intervals, etc.), each one best suited for a particular purpose or degree of de- 
tail required. In Figure 2.c the delays are specified by their mean times. (For 
performance evaluation we assume later that  the distribution of time delays cor- 
responding to operations and movements is phase-type, namely Erlang-3, while 
for scheduling we regard it as deterministic.) 

E x a m p l e  2 The cell in Figure 3 may reach a deadlock situation. In this simple 
cell, two machines (M1 and M2), belonging to two production lines, share two 
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Fig. 3. A multirobot cell that possibly deadlocks, and its PN model. 

handling robots (R1 and R2). In each machine, three operations are performed 
in sequence (OPij). We can model each operation as a single transition, whose 
firing would take some time, or by a path OPijs ~ OPij -----+ OPije, where 
the transitions OPijs and OPije represent the instantaneous events of starting 
or ending an operation. Machine M1 requires R1 to load the parts and assist 
during 0Pl l  and 0P12, and requires R2 to assist during 0P12 and 0P13 and 
unload the parts, while M2 requires R2 to load the parts and assist during 0P21 
and 0P22, and requires R1 to assist during 0P22 and 0P23 and unload the 
parts. A deadlock is possible if, from the initial state shown in the PN model, 
0Pl l  and 0P21 are performed: after completion, M1 waits for R2 while M2 
waits for R1. 

Example  3 Coloured PN models exploit the symmetries of a system. The FMS 
shown in Figure 4 consists of: 

- Several workstations ($1 to Sn). All workstations behave in a similar way: 
car bodies to be processed are loaded in table L (input buffer of capacity 
one), then transferred to table P (actual processing), and then transferred 
to table U for unloading (output buffer of capacity one). For simplicity, we 
disregard the nature of the precise operations performed in the station, and 
therefore, we represent a model of a generic workstation. A station behaves as 
a pipeline with three stages: L, P, and U, which can be active simultaneously, 
represented by the corresponding places. The complementary places FL, FP, 
and FU represent, when marked, that the respective stage is free. The colour 
domain of all these places is {1,. . .  ,n} for the stations. A token of colour 
i in P represents that Si is processing. Transferring a processed part from 
table P to table U in Si requires/-tokens in P and FU and puts i- tokens 
in U and FP. 

- An unidirectional transport system, consisting of several roller tables (T1 
to Tn). Car bodies input the system in table T1 and leave it from Tn, after 
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Fig. 4. A flexible workshop that processes car bodies in several stations, and its 
coloured PN model. 

being processed in one station (the one decided by the scheduler). The model 
for this transport system consists of two places, T and FT, for the occupied 
and free tables, and transitions to represent the input or output of a car 
body, a movement to the next table, and the load or unload of a station. The 
colour domain of F T  is {1, . . . ,  n} for the tables, and the colour domain of T 
is ({1,. . .  ,n}, {1, . . .  ,n}, {in, out}), where the first field identifies the table, 
the second the destination station of the car body, and the third the status 
of the car body (in when not yet processed and out when ready to leave the 
cell). Notice that, at the firing of transition input, a destination station is 
assigned to the incoming car body. In net terms, this means solving a conflict 
between the different firing modes of the input transition. This destination 
is determined by the scheduler, possibly taking into account the state of 
the system and production requirements. That is, the scheduler (placed at 
a higher level) controls the behaviour of the coordination model represented 
by the coloured PN. 

The complete net model is obtained merging the load and unload transitions 
of the submodels for the workstations and the transport system. The loading of 
Si from Ti is represented by the firing of transition load in mode i: it consumes 
a token (i,i, in) from T and an/-token from FL and puts i- tokens in L and FT. 
Similarly for the unloading, where the "status" colour of the token deposited 
in T is out indicating that the car body in the corresponding table has been 
processed. 
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Example  4 Let us consider a simple batch production system. The recipe of 
the desired product (the recipes in batch systems are similar to part routes in 
discrete systems) is the following one. Firstly, a batch of raw material (fluid) is 
charged into a reactor. Then a reaction is executed. Then the batch is transferred 
to a buffer, and during this transfer, a cooling is done. It has to be pointed out 
that the reaction is a discrete operation and its duration does not depend on 
the batch size. In contrast, the transfer from the reactor to the buffer and the 
cooling is a continuous operation and its duration is proportional to the batch 
size because the flowrate in the cooling device is a constant which cannot be 
modified. After a certain stay in the buffer, the batch of product is transferred 
(another continuous operation) to a reactor for a second reaction and when this 
operation terminates, the batch is transferred out of the plant. 

It is assumed that the production system comprises two reactors named R1 
and R2 and one buffer. A specific cooling device is available at the input of the 
buffer. This plant layout is represented in Figure 5. 

in )ut  input 

~ output 

cooling 

~ Buffer 

Fig. 5. A simple batch system layout. 

The master recipe describes the sequence of all the operations which have 
to be executed in order to obtain the final product from the raw material. It is 
therefore similar to a kind of abstract production route [22]. The master recipe 
can easily be represented by a PN. This is illustrated by Figure 6.a. The devices 
remain unspecified and are just called vessel_i, vessel_j and vessel_k. 

Then the shop recipe establishes a mapping between the master recipe and 
the available physical devices. Let us assume that the two reactors R1 and R2 
are identical and that they can play the roles of vessel_i and of vessel_k. The 
Buffer and its attached cooling device will play the role of vessel_j. The various 
states of reactors R1 and R2 are represented in Figure 6.b and those of the 
device Buffer are represented in Figure 6.c. The model of the shop recipe is 
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obtained by the composition (transition merging and removal of implicit places) 
of the models in Figures 6.a, 6.b, and 6.c. I t  is represented in Figure 7. 

Basically, the modelling process is the same as in the Example  1. The au- 
tonomous PN is useful for analytical purposes, but it is too abs t rac t  to capture  
essential features of this system, and associating sensors or durations to the 
transitions in order to perform simulation or to derive a controller is not so 
straightforward. For example, transition input is fired when the decision of load- 
ing a new batch in the process is made. I t  has therefore to be controlled by some 
management  or supervisory level system. Transition t l  is fired when enabled. 
If  there is only one reactor (only one token in place Ri idle) then it is a mere 
control event. If there are two idle reactors, then a conflict resolution mecha- 
nism has to be implemented, and it is necessary to store the name of the chosen 
reactor.  

Let us now consider the case of transition t2. For simulation purposes it is 
required to at tach a duration to it. However, if the batch size is not always the 
same, the duration is not a constant, and the simple t imed PN are not sufficient 
to capture this. The use of some high level PN is therefore required. The kind 
of events represented by this transition are generally called state events because 
in a simulation their firing date can only be computed if some state  variables of 
the continuous view are known (the size of the batch in this case). 

Transition t3 represents at the same time the end of the reaction and the ini- 
tiation of the cooling and transfer operation when the buffer is available. Notice 
that  both  events must be modelled by a single transition. Typically, in the case 
of a purely discrete system it would be broken down into two more elementary 
transitions: one representing the end of operation and the other one the control 
event (resource allocation and begining of the next operation).  However a batch 
system is a dynamic system in which the continuous par t  evolves spontaneously. 
Indeed, it is not possible to wait for the buffer in the reactor because the reaction 
would go on and the product  quality would decrease. Only the cooling operat ion 
can stop the reaction. It  is very different from a machining operat ion which will 
stop anyway, even if the robot necessary to remove the par t  is not available. 

Let us now illustrate the fact that  for batch systems the availability of some 
resource may be of continuous nature. Indeed, the t ransformat ion of the master 
recipe into a shop recipe is not always as straightforward as in the preceding 
case. For example, the buffer may contain more than  one batch. In this case, 
as the batches are made up of a fluid, the batches will mix in the buffer. In 
addition, due to the continuous nature  of the two transfer operations (in and 
out the buffer), they can be done simultaneously. In a first approximation,  the 
condition for start ing a transfer from Ri to Buffer is tha t  the remaining capacity 
of the buffer is sufficient to store a batch. The condition for initiating a transfer 
from Buffer to Ri is that  the buffer contains at least one batch of product.  If we 
assume tha t  the buffer capacity is just sufficient for two batches, then the shop 
recipe is now represented by the model in Figure 8.a. A place denoting the fact 
tha t  the cooling device is free has to be added. 
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Fig. 7. The shop recipe. 

However, we have already pointed out that  the batches were not all of the 
same size. Indeed what has to be produced has to meet exactly the demand, and 
this not necessarily corresponds to a multiple of the maximal reactor capacity. 
As the batches mix in the buffer, the exact constraint for allowing a new batch of 
size s with a discharge di to be loaded in the buffer is that ,  knowing its current 
level V0 and its future possible discharge do to the next reactor, its future level 
V(t) will always verify the inequality 

v t  v ( t )  <_ Vr.o. V( t )  = Vo + (d, - do).t 

This issue will be detailed in the next example. We just point out the fact 
that  if we restrict to a pure discrete model, the set of constraints will be delimited 
by two PN models. The net in Figure 8.a describes a set of sufficient constraints 
(possibly too restrictive) and the net (without any continuous variables) in Fig- 
ure 8.b a set of necessary constraints (possibly too permissive). Indeed, if the 
continuous constraint about V(t) is taken into account, it is not possible to de- 
note it by a place and a token count. A possible solution is to use high level PN 
and to attach V(t), di and do as attibutes of the token in place Buffer. The value 
of V(t) will be recomputed each time a transition connected to this place is fired 
and the values of the parameters di and do will be updated. This is why double 
arcs (denoting a self loop) are connecting the place Buffer to the transitions t3, 
t~, t5 and t6. 
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Fig. 8. Another shop recipe. 



104 

Let bl be the size of the batch of product for reaction 1. The time required 
to transfer it to the buffer is At1 = bl/di as the discharge (flowrate) is constant 
and equal to di. The token in place reaction 1 has bl as an attribute and the 
token in place Buffer has V as an attribute. The predicate attached to transition 
t3 is the following one (d~ and do are assumed constant): 

(V <_ Vma=) A (V + bl - do.Atl <_ Vma=) (1) 

Indeed, as it is linear, it is sufficient to test the capacity constraint at the begin- 
ning and at  the end of the transfer. 

No predicate is attached to transition t4. The arcs connecting it to place 
Buffer are just required in order to update the token attr ibute V. The predicate 
attached to transition t5 is (b2 is the size of the batch for reaction 2, At2 the 
duration of the transfer out of the Buffer): 

(V > O) A (V - b2 + di.At2 > O) (2) 

Transition t6 just updates V on the token in place Buffer. 
If only the discrete constraints (this means the PN structure without the 

predicates) are considered, it seems that  transition t5 can be fired at any time. 
Indeed the continuous nature of the batches and of the volume of Buffer (batch 
size bl is not necessarily a simple multiple of batch size b~) breaks down the recipe 
into two sub-recipes, one for reaction 1 and one for reaction 2. Transition t5 has 
to be controlled by the management decision level in the same way as transition 
input. 

It is also possible to use extended PN in which the marking of some places 
is a real (and not an integer) to simultaneously represent the discrete part and 
the continuous part of the process [15,17,27]. However, restrictions have to be 
made on the continuous part of the model, so part of the PN theory is no longer 
valid, and new theoretical developments are needed. 

E x a m p l e  5 Let us consider an example detailing the issue of hybrid modelling. 
Continuous models of process unit operations in transient state are sets of dif- 
ferential and algebraic equations of the following form: 

f ( x ' ,  x ,  u, t) = o (3) 

with 

- X '  is the derivative of the state vector X wrt. time, 
- X is the state vector of process variables (real numbers), 
- U is the parameters of the process model, 
- t is time 

] is often a non linear and implicit real function of X. Given initial conditions 
on X, and the values of the parameters U for the corresponding configuration, 
the system (3) can be solved using appropriate numerical methods [14]. The 
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parameters U correspond to physical variables which are constant and whose 
values are determined by the current configuration of the system. 

As an example, let us consider the simple case of the process shown in Fig- 
ure 10. The vessel $1 is fed with a process fluid at a constant flowrate (Fin) 
when the On/Off valve V1 is opened. Similarly, the material can leave the tank 
at constant flowrate (Fou~) when valve V2 is opened. 

The mass balance on $1 quantifies the mass hold up (m) of material depend- 
ing on the state of the valves V1 and 172. 

The balance equation could take one of the three different expressions: 

- state 1, V1 is open and V2 is closed, the mass hold up increases: 
f l ( m ' , m ,  Fin, Fou~) = m '  - Fin = 0 

- state 2, 111 and V2 are closed, the mass hold up is constant wrt time: 
f 2 ( m ' , m ,  Fi,~,Fou~) = m '  = 0 

- state 3, V1 is closed and V2 is open, the mass hold up decreases: 
f 3 ( m ' , m ,  Fin,Fot,~) = m '  + Fou~ = 0 

In the equations ]1, f2 and f3, m is the only component of the state vector 
X and Fin and Fou~ are the parameters U. 

The state where the tank is loaded and unloaded simultaneously is assumed 
forbidden. Processing one batch of material is done by a sequence of three steps. 
Initially, the tank is empty. In the first step, the discrete state of the valves is set 
to ( V1 is open and 172 is closed) so that the hold up increases until it reaches a 
pre-specified maximal threshold value (max). It means that function f l  has to 
be integrated during this period until the state event Ea is detected. This occurs 
when the condition of relation 4 becomes true. 

E1 : rn(t) - m a x  = 0 (4) 

Then, a batch time of 1 unit is needed for the process transformation to be 
completed. The function f2 is substituted to function f l  during this second step 
and the mass hold up remains at a constant value. In the third and last step, 
valve V1 is closed and V2 is open. Once again, the process model is changed, 
function f3 replaces function f2. The mass hold up decreases until a minimum 
threshold value (min) is obtained. The time at which this happens is fixed by a 
state event E2, as for the first step. 

: r e ( t )  - r a i n  = 0 (5) 

The PN model in Figure 11 is the discrete part of the process model. The 
different configurations of the two valves are represented by the places P1 to 
P 3  corresponding respectively to state 1 to 3. When one of the three states is 
active, the token in the place can be interpreted as the selection of the right 
expression of the mass balance. As a consequence, those places monitor the 
continuous part of the process model, they are called I-place, for Interpreted 
place. The link between the I-place and the function to be solved is represented 
in the figure. In this type of hybrid model, output transitions of I-places are all 
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Fig. 11. Petri net repesentation of the vessel configurations. 

interpreted. The firing rule is extended to take into account the occurrence of 
time or state events. T1 is a control transition that  decides the beginning of a 
batch processing, it cannot be fired as tong as the vessel $1 is allocated to the 
processing of a preceding batch. Transition T2 is fired at the occurrence of event 
El ,  whose occurrence is computed during the continuous simulation. Transition 
T4 behaves similarly; it is subject to the occurrence of event E~. T3 is only a 
t imed interpreted transition. 

5 Qualitative and Quantitative Analysis 

One of the purposes of formal modelling is to enable the analysis of the logical 
and temporal  behaviour. Correctness analysis aims to assert on logical properties 
of the behaviour of a system, while performance analysis aims to estimate with 
sufficient accuracy relevant indices on its temporal  behaviour. PN models, with 
the appropriate interpretations, can be used for both kinds of analysis. Therefore, 
a system can be analysed from different perspectives using essentially the same 
model, even a synergy arises from the interleaving of both views and techniques 
[4O]. 

Independently of their purpose, PN analysis techniques [8,39,32,1] can be 
classified as: 

- Enumerative: the complete state space (reachability graph, embedded Markov 
chain, earliest state graph, etc.) is generated. 

- Net driven: the net structure is taken into account to assist or facilitate 
an enumerative analysis. Some examples are: reduction and decomposition 
techniques, exploitation of symmetries, etc. 
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- Net based: only the (interpreted) net structure and the initial state, possibly 
as a parameter, are used in the reasoning, avoiding enumeration. 

Additionally, PN models are useful to perform simulations to gain insight 
on the system behaviour or estimate its performance. Simulation is particularly 
useful in the case of batch systems, and in general in the case of hybrid systems 
[14]. Indeed, when modelling the batch system in Example 4 we have pointed out 
the fact that the discrete view represented by the autonomous PN model was 
not an accurate description of the actual constraints resulting from shared re- 
sources. An hybrid or mixed simulation combining the PN model and differential 
algebraic equations representing continuous constraints is frequently necessary 
in order to have an accurate knowledge of the behaviour of an hybrid system 
under a known control policy [51]. 

In what follows, we do not overview existing analysis or hybrid simulation 
techniques, but simply use some of them to analyse the examples from Section 4. 

Example  1 Basic reduction rules [20,32] allow to transform the model in Fig- 
ure 2.a into a marked graph: 

1. Every path start loading ~ loading ~ end loading is a macrotransition. 
Therefore it can be reduced to a single toad transition preserving the (pro- 
jected) language, hence liveness, boundedness, reversibility, etc. 

2. After the previous step, place R idle self-loops around the four load transi- 
tions, and can be removed preserving the language (i.e., it was an implicit 
place). 

3. The places working and down in M1 and their connecting transitions form 
a macroplace. 

The resulting marked graph is strongly connected, so it is bounded, and it does 
not contain unmarked circuits, so it is live and reversible. By reversibility, the 
reachability graph is strongly connected, and this allows to deduce ergodicity of 
the stochastic process with the interpretation given in the example (Figure 2.c), 
and the irreducibility of the underlying Markov chain. 
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Fig. 12. Performance evaluation of the cell in Figure 2 with respect to buffer capacity 
and failure rate. 
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Markovian performance analysis can be used to assist in the dimensioning 
of B1. With given failure and repair rates for M1, throughput  is plotted versus 
buffer size in Figure 12.a. Economic considerations (in terms of throughput ,  
required investment, and work in progress) would allow to optimise the buffer 
size. The plots in Figure 12.b show how the effect of the buffer varies depending 
on the nature of the failures. Keeping the failure/repair ratio constant: 

- Unfrequent failures with long repair times (left side of the plot) make the 
throughput  insensible w.r.t, the buffer size, because the repair t ime exceeds 
largely the t ime to empty the buffer. 

- On the other extreme, in the case of very frequent slight failures, a relatively 
small buffer is able to filter out the high frequency perturbat ions represented 
by the failures. 

- When the order of magnitude of repair times are similar to the time re- 
quired to empty the buffer, its size is most critical in order to increase the 
throughput.  

Notice that  for the case N = 0 the model in Figure 2 is changed, removing 
B1 (M1 becomes essentially identical to M2, except for the presence of failures), 
resulting in a more tight coupling of the machines that  leads to a significantly 
lower throughput.  

E x a m p l e  2 The net system in this example follows a pat tern  tha t  is frequent 
in PS and other domains: several sequential processes share some resources. The 
subclass of PN known as SapR [21] has been investigated to deal with this 
kind of systems. Among other results, when the processes are cycles, as in the 
example, the existence of deadlock situations is characterised in terms of the 
existence of net siphons (also known as structural deadlocks) that  are not traps. 
In this case, the places P13, P23, R1, and R2 are one such siphon, thus reaching 
a deadlock is possible. Later we shall explain how a deadlock avoidance control 
policy can be deduced in this case from the above siphon. 

E x a m p l e  3 It is current practice to build simulation models of PS in order to 
gain some confidence in the absence of problems. Nevertheless simulation does 
not guarantee finding such problems. The availability of a formal model allows 
to prove properties in a definite way. In this case, enumeration analysis proves 
existence of deadlocks: when all the tables in a given station are occupied and a 
car body is waiting in the corresponding table of the t ransport  system to enter 
this station, a deadlock is reached. 

E x a m p l e  4 As we have pointed it out, the set of constraints resulting from 
the shared resources is not accurately represented by the PN models. The net in 
Figure 8.a is too restrictive as it only allows to fill the buffer with a new batch 
if at the current time the remaining volume is sufficient. It does not take into 
account the fact that ,  possibly, the buffer is simultaneously being emptied. On 



110 

the contrary, the net in Figure 8.b is too permissive because it does not take 
into account the limitation of the size of the buffer. In addition, some operation 
durations depend on the batch size. When the complexity of the model required 
for an accurate representation of the system does not allow for a quantitative 
analysis by stochastic PN, it is possible to execute simulation runs by means of 
high level PN simulators [26,34]. 

The batch size can be implemented as a token attribute. Operation durations 
can be functions involving this attribute and the effective firing of some transi- 
tion can depend on extra firing conditions based on predicates involving some 
continuous variables representing some continuous state variables. In this exam- 
ple, the continuous volume of stuff in the buffer V(t) would be such a variable 
and it will be used in some extra firing conditions for transitions t3 and t6 in the 
net in figure 8.b. The continuous variables are updated when some transitions 
are fired. For example, variable V(t) will be updated when transitions ta or t6 
are fired. In this way it is possible to check whether some specific control policy 
may provoke an overflow of the buffer or not. 

Of course, it is possible to use some stochastic variables in order to take into 
account the occurrence of failures and abnormal behaviours of the devices. By a 
Monte-Carlo simulation, the buffer overflow probability under some control and 
monitoring policy can be derived. It is of the utmost importance for security 
analysis or to verify the satisfaction of environmental protection constraints, for 
example. 

Example  5 The result of a simulation for one batch of material is reported 
in Figure 13. The mass hold up is a piecewise linear function defined by three 
intervals, one for each step. The token load of the places is also reported in 
the lower part of the figure. It is obvious from an analysis of this figure that 
the events are the common time points between the two parts of the model. 
The simulation is based on a synchronous evolution of the continuous and the 
discrete models, that only meet when an event occurs. This event is detected 
during the integration of the continuous model (end of the integration horizon), 
and its consequence on the continuous function is depicted by the firing of the 
corresponding transition. 

6 O n  M a n u f a c t u r i n g  S y s t e m s  C o n t r o l  

Controlling an existing PS means constraining its evolution in order to guarantee 
the desired logic behaviour or/and to optimise its performance at operation. If 
the plant to be controlled is modelled as a PN, the control decides the firing or 
not of enabled transitions. Usually, not every transition can be disabled (e.g., a 
failure, the completion of an operation, etc.), so transitions can be classified as 
controllable or uncontrollable. Controllable points are those at which the decision 
maker (e.g., a scheduler) influences the behaviour of the system. 

Typically, concerning the logic behaviour, it is important to avoid undesirable 
or forbidden states, such as deadlocks, or to guarantee certain mutual exclusions, 
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Fig. 13. Mass hold up as a function of time. 

while performance control aims to maximise throughput or a more general cost 
function (e.g., involving also work in progress, machine utilisations, etc.), by 
determining the firing date for transitions (scheduling). PN with an appropriate 
timed interpretation are very well suited to the modelling of scheduling problems 
in parallel and distributed systems. PN allow to model within a single formalism 
the functional, temporal, and resource constraints. These determine the enabled 
transitions, and then the scheduling problem is reducing the undeterminism by 
deciding when to fire which transitions among the enabled ones. In scheduling 
theory [11] it is conventionally assumed that tasks are to be executed only once. 
Periodic or cyclic schedules [24] are seldom treated by the theory despite they 
abound in practice. PN scheduling techniques allow to face these problems. The 
same as for the analysis, enumerative, net-driven, and net-based approaches can 
be found in the literature. The computational complexity of scheduling problems 
leads in practice to sub-optimal solutions obtained using heuristics, artificial 
intelligence techniques, etc. 

Usually, the control receives inputs from the plant, besides of emitting signals 
to it, so it operates in closed loop (the plant and the control are composed in 
parallel, in discrete event systems terminology). The same as PN can be used 
to model and analyse a PS, its control can often be represented within the PN 
formalism, perhaps incorporating an appropriate interpretation. 

In Examples 2 and 4 we give a control policy avoiding the deadlock. In Ex- 
ample 3, besides avoiding deadlocks we consider a control policy to improve the 
performance. In Example 1 we concentrate on performance control (scheduling) 
in a simple case where only the allocation of resources is considered (in general, 
other decisions such as product-mix [9], lot size, etc., need to be taken also into 
account). 
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Fig. 14. Adding place Pc to the net model in Figure 3 is a deadlock avoidance control 
policy. 

Example  2 Emptying the siphon {P13, P23, RI, RP} shall be avoided in or- 
der to avoid the deadlock. In [47] a technique is presented to achieve this goal, 
which in this case consists in adding a place to the original net, see Pc in Fig- 
ure 14.a. This place is obtained by addition of the places in the siphon, thus it 
is structurally implicit. With two tokens it would be implicit, but with just one 
it forbids the firing of 0Pll  or OPP1 when only a token remains in the siphon, 
thus avoiding emptying it. 

Notice that the net in Figure 14.a is the parallel composition of the model of 
the plant (Figure 3) and the model of the control given in Figure 14.b, where the 
grey places are not needed, or they can be removed after the composition since 
they become implicit. From this latter model, it is apparent that we need only 
controlling the firing of OPlls and OP21s, and we only observe the occurrence 
of OP12e and OP22e. 

Example  3 In this case, the deadlock can be avoided by making sure that no 
more than three car bodies scheduled for the same station are present in the 
system at any time. This can be enforced by limiting the number of firings of 
input in a given mode w.r.t, the number of firings of output in that mode. This 
is implemented by place O (for orders) in Figure 15.a, whose colour domain is 
{1, . . . ,  n} for the destination stations, marked with three tokens of each colour. 

Notice that, if O is marked with two tokens of each colour instead of three, 
unnecessary stoppages in the transport system, that would reduce the through- 
put, are avoided. These stoppages appear when a car body waits in front of 
its destination station because this station is processing and the load table is 
occupied. We cannot proceed to load the third car body until processing is com- 
pleted, the processed car body is transferred to the table U, and the car body 
in table L is transferred to table P. In the meanwhile, other car bodies may be 
prevented from advancing to their destination beyond that station. 
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Fig. 15. Adding place O to the net model in Figure 4, with a suitable marking, avoids 
u~adlu~ and stoppages. 

Finally, in the above control it was assumed tha t  the scheduler controls tran- 
sition input and observes transition output. If it observed the occurrences of 
transition unload it would be possible to improve the performance of the control 
policy by allowing a limited number of unprocessed orders in the system (see 
Figure 15.b). 

E x a m p l e  4 Deadlock avoidance is very impor tant  in batch systems. Actually, 
a deadlock generally results in the loss of one or several batches of product.  A 
batch of fluid cannot be removed by hand as a part .  In addition the loss of the 
batches can have severe consequences for the environment (take for instance the 
case of nuclear industry). 

Let us consider the simple case of a unique size for the batches and of a buffer 
size equal to one batch as represented in Figure 7. Start ing from this model, the 
problem is now to add a new place (or a new set of places) in order to build 
a control avoiding deadlocks. Although the product ion system is very different 
from tha t  of Example  2, the issue of deadlock avoidance is very similar. 

Indeed, places Ri idle, Buffer idle, transfer Ro to Buffer, transfer Buffer 
to Ri, reaction 2 and transfer out of Ri form a siphon. Therefore, if it is emp- 
tied it will remain empty, as it can occur if three batches are simultaneously 
introduced (the first one is processed until the buffer and the two others until 
reaction 1). 
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Fig. 16. The batch process siphon. 

Among the transitions connected to the places of the siphon, transition tl 
is the only one consuming a token, and t6 is the only one increasing the global 
token load of the siphon (one token is consumed in transfer Buffer to Ri, one is 
produced in reaction 2 and one is produced in Buffer idle). 

In order to avoid emptying the siphon, transition tl must be controlled. Let 
us introduce a new place virtual resource and the dotted arcs as represented in 
Figure 16. The variations of its token load will exactly be the same as that of 
the siphon. Initially, the global token load of the siphon is three. If the initial 
token load of place virtual resource is two, then it can be shown, either using 
siphon results [7] or net reduction techniques [20], that the deadlock is avoided. 

For planning and scheduling place virtual resource is a new constraint which 
prevents the generation of any production plan exhibiting the possibility of a 
deadlock. 

Example  1 Assume that, after the optimisation of the design that involved 
performance evaluation as discussed in Section 5, the capacity of the buffer is 
fixed to two. Although the plant parameters are fixed, the actual performance 
of the system may vary depending on how it is controlled. 

As it was shown in Figure 2.b, which represents the control at a coordination 
level, the scheduler controls the evolution by enabling/disabling the transitions 
that initiate robot load operations (i.e., these are the controllable transitions). 

Figure 17 shows the Gantt charts of two possible scheduling policies assuming 
deterministic timing and disregarding failures. In Figure 17.a operations are 
scheduled as soon as possible, solving eventual conflicts in the allocation of the 
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F ig .  17. Effect of different scheduling policies in the manufacturing cell of Figure 2. 

robot by fixed priorities (M2 is prioritary over M1). A periodic regime is quickly 
reached, in which: 

- The cycle time is 10.8 (i.e., throughput 0.0926 without failures). 
- The buffer contains at most one part, so parts are not accumulated to be 

used in the event of a failure. 

The Gantt chart in Figure 17.b shows the evolution when the scheduler pre- 
vents interrupting M1 until it gets blocked, and interrupting M2 and M3 from 
then on. This policy fills up the buffer to be prepared for eventual failures and 
achieves a cycle time of 9.2 (i.e., throughput 0.1087) in normal operation. 

Observe that, in normal operation, the behaviour is cyclic, so the control can 
be represented or implemented by a regulation circuit net synchronised with the 
control transitions. 

7 I m p l e m e n t a t i o n  I s s u e s  

Once a suitable PN model for a controller has been obtained it has to be im- 
plemented. Basically an implementation is a physical device which emulates the 
behaviour expressed by the model. One advantage of using PN as a specifica- 
tion formalism is their independence w.r.t, the precise technology (pneumatic, 
electronic, etc.) and techniques (hardwired, microprogrammed, etc.) of the final 
implementation. Presently, in PS control, programmed implementations are the 
most usual, running on a wide range of computer systems (e.g., industrial PC's, 
programmable logic controllers, etc.). 

The (programmed) implementation is affected by the selected PN formalism 
(low or high level, different interpretations of the firing rule), the algorithmic ap- 
proach (interpreted, where the PN model is a data structure, or compiled, where 
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a program is obtained from the given PN; centralised or parallel/distributed 
schemes), and the computer architecture (high or low level programming lan- 
guage; single or multi processor). 

For the case of local controllers specified by low level PN with input and 
output signals (like that shown in Figure 2.b), a usual choice are "token players" 
[50,39]: the basic schema is a cyclic program that reads the inputs, computes 
the evolution of the marking, and generates the outputs once and again. A 
major issue is the efficient computation of enabled transitions. An example of an 
efficient technique for this purpose are representing places (see, for instance, [12]). 
The idea is to appropriately select one input place per transition (its representing 
place). It is always possible (perhaps after some net transformations) to classify 
places as either representing or synchronisation places, where each of the former 
is the representing place of all its output transitions. The marked representing 
places are kept in a list (we assume safeness for simplicity), that is updated 
at each transition firing. In each cycle, only the output transitions of marked 
representing places are tested for enabledness, eventually checking the marking 
of some synchronisation places. A possible selection of representing places for 
the net in Figure 2 are all but R idle, slots, ready "A"parts, waiting "A", and 
free "B" (thus, these would be the synchronisation places). 

The inherent parallelism captured by a PN model is somehow dismissed in 
centralised implementations. Diverse parallel and distributed implementations 
have been proposed (see, for instance, [12]). The structure theory of PN allows 
to identify certain components in a given net that are useful for distributing or 
parallelizing the implementation. Particularly, live and safe state machine com- 
ponents lead to cyclic sequential processes that can be directly implemented, for 
instance, as Ada tasks. In such case, other places can be represented as global 
variables, semaphores, etc. Coming back to the example, we easily identify M1 
and M2 as sequential tasks, M3 can be decomposed into two synchronised se- 
quential tasks, slots and ready "A" parts are semaphores, and R idle is a mutual 
exclusion semaphore. 

In the implementation of higher control levels, some convergence has ap- 
peared between the fields of PN and artificial intelligence (see, for instance, [30], 
[49]). In this sense, transitions play the role of rules while the working mem- 
ory can be split into several nodes corresponding to the respective input places. 
With respect to classical PN implementations the search for enabled transitions 
is carried out by the matching phase in the rule system, which can take ad- 
vantage from the partition into local working memories. For the selection phase 
transitions can be grouped into conflict sets by inspecting the net structure, and 
each one can be provided with a particular resolution strategy. 

An important issue when designing a control system is that of sa]ety. Formal 
modelling and analysis tools are needed to engineer safe computer-controlled 
systems. For this task it is necessary to consider both the control system and 
its environment, for which PN are a suitable formalism [28]. When faults can 
happen the controller should be able to detect them and even react appropriately 
degrading system's performance as little as possible. 
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Let us concentrate here on the detection and recovery of faults in the con- 
troller itself, while detection and recovery of faults in the process is covered in 
Section 8. Several techniques have been proposed to produce safe and /o r  fault- 
tolerant PN based controllers. We illustrate next two of these techniques which 
are supported by PN theory: the spy/observer schema and application of coding 
theory. 

Version 2 

elTOr 

Fig. 18. Duplication versus observation. 

In N-version programming techniques, several versions of the controller are 
implemented, and a voting mechan"m is introduced [5]. A less expensive schema 
is based on the idea of an observer [6] or spy [52], which accepts "normal" be- 
haviours seen through some observable, or check, points. Figure 18 duplication 
and observation schemes are compared. The observable points are transitions 
whose firing is reported to the spy/observer (transitions are classified as observ- 
able or non- observable, dually to the classification into controllable and uncon- 
trollable). The spy/observer can be modelled as a PN equivalent to the original 
one w.r.t, observable transitions (non observable transitions are considered silent 
and can be reduced). In the final implementation, the code corresponding to the 
spy is merged with the code of the proper controller. 

Coming back to Example 1, considering as observable all the synchronisation 
transitions in the net (i.e., those corresponding to the initiation of robot oper- 
ations, initiation of a transfer fl'om M1 to M2, and initiation of an assembly 
in M3) the corresponding spy is shown in Figure 19. (Notice tha t  this spy is 
obtained applying the same reduction rules tha t  were applied for the analysis.) 

For the application of coding theory [31] concepts to fault detect ion/recovery 
we can consider the marking as a word and the set of reachable markings as 
a code. Possibly, in a given PN model, the Hamming distance between words 
(markings) in the code is not large enough to allow the desired detection/correction.  
This distance can be increased by adding appropriate redundancies, so it natu- 
rally comes to mind the addition of implicit places [38,45] because they preserve 
the behaviour. 
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Fig.  19. A spy for the net in Figure 2. 

3 

118 

(b) 

Fig. 20. Adding implicit places to increase the Hamming distance. 
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Take for instance the PN model in Figure 20.a. The Hamming distance in 
this case is two, which is the distance between the reachable markings P3 + P4 
and P3 + P5 - -  the marking of p4 and P5 differ - -  or between P2 + P6 and P2 + P7 
- -  differring in P6 and p~. By adding the implicit places Ps and Pg, as shown in 
Figure 20.b, we increase the Hamming distance to four. Notice that ,  in the new 
net, the former markings P3 +P4 and P3 +P5 become P3 +P4 +P9 and p~ +P5 +Ps,  
respectively - -  now they differ in the marking of P4, Ps, Ps, and P9 - -  and the 
former markings P2 + P6 and P2 + P7 become P2 + P6 + P9 and P2 -}- PT + Ps, 
respectively - -  now differring in P6, PT, P8, and Pg. While a Hamming distance 
of two only guarantees detecting all single errors, a Hamming distance of four 
guarantees detecting all triple errors, and correcting all single ones. For example, 
we are able to detect that  P3 -b pt  + p5 + P9 is not reachable. Assuming that  it 
suffers from a single error, we would correct it leading to P3 + P4 + Pg, which is 
reachable (notice that  it is the only reachable marking at distance one from the 
given non reachable one). 

A generalisation of this schema, disregarding the enabling constraints of the 
added places leads to the notion of test places [45], with improved applicability. 

8 S u p e r v i s i o n  a n d  M o n i t o r i n g  

8.1 P r i n c i p l e s  

The supervisory control and monitoring function has three main objectives: 

- Implementing the provisional production plan which has been generated at 
upper management levels. This means that  it has to detect the end of the 
operations and to start  the execution of new operations when the resources 
are available and the planned date reached. 

- Monitoring the plan execution. This means that  if the latest starting date 
is reached for some operation (e.g., because the previous operation has not 
terminated or because the required resources are still allocated for another 
operation) then the violation of the provisional plan is detected. A new plan 
has to be elaborated, that  is, new starting and ending dates are calculated 
taken into consideration the actual state of the production system (constraint 
propagation). 

- Monitoring the behaviour of the physical system. This means that  any failure 
in the various devices has to be detected and that  recovery procedures have 
to be executed in order to avoid a failure of the whole production system 
and to guarantee the security and environmental constraints. 

A typical architecture of a control system is represented in Figure 21. At the 
lower level, continuous controllers, programmable logic controllers (PLCs) and 
other control devices are found. Then there is the supervisory and monitoring 
level and then the management levels in charge of planning and scheduling. The 
supervisory level interacts with the management levels (it receives the provisional 
plan and sends reports on the actual production system behaviour) and with the 
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Fig. 21. Architecture of a control and monitoring system. 

local control (it sends the commands for allocating the resources and initiating 
the operation executions, and it receives end of operation signals). 

Typically, the supervisory level is based on a model of the production system 
which is emulated in real-time [3,4]. This model is used 

- to store the current state of the physical system, 
- to check that the received signals are consistent with the current state, 
- to evaluate (by simulation) the future behaviour of the system after a deci- 

sion. 

8.2 M o d e l  for superv is ion  and  moni to r ing  

When the model is PN based, time intervals are attached to each transition 
[36,37,46,56]. If the transition corresponds to the beginning of an operation, this 
time interval is the interval between the earliest starting date and the latest 
starting date as determined by the scheduling. If it corresponds to an end of 
operation, then the time interval corresponds to the normal duration of the 
activity. Transitions have to be fired within these time interval. If the signal of an 
end of operation is received when the corresponding transition is not enabled, or 
before the earliest date of the time interval, this means that the physical system 
behaviour differs from that of the model. A fault is detected and a diagnosis has 
to be done. An efficient diagnosis requires more information than that included 
in the model. Indeed, the model only includes correct (or normal, or nominal) 
behaviour whereas a diagnosis requires a model of the behaviour of the system 
when some equipment have failed (a model of the possible failures). In addition, 
the PN models represent the behaviour of the production system and it is often 
important to know the architecture of the system (the fact that some device is 
physically next to another one may be important to analyse the way a fault may 
propagate). 
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In the case of batch processes, a purely discrete model may be insufficient. 
It may be necessary to use PN models in which thresholds axe attached to the 
transitions [3,4]. These thresholds involve continuous state variables. For instance 
in the Example 4, if the model in Figure 8.b is used, it is absolutely necessary 
to keep track of the current volume of product in the buffer, V(t), in order to 
check if there is no overflow. It is also necessary to keep track of the batch sizes, 
for example as an attribute of the corresponding token, in order to compute 
the normal firing dates of transitions such as t2 or t4 as the durations of the 
operations associated with their input places are proportional to the batch sizes. 
(See [4] for more details.) 

9 Concluding Remarks 

The adequacy of PN to deal with a diversity of problems in the design and 
operation of PS (discrete, continuous, or hybrid), including modelling, analy- 
sis, control, implementation, and monitoring, has been discussed and illustrated 
through several examples. 

The formal framework provided by PN, and particularly their representa- 
tion of the structure of systems, has proved helpful in the treatment of hard 
problems in this and other domains. Moreover, the notion of a family of for- 
malisms allows to adapt to particular problems and domains without losing the 
possibility of mutual communication and reutilisation of results. A number of 
PN computer tools have been developed to assist in the modelling and qualita- 
tive or quantitative analysis. Several tool descriptions can be accessed through 
http://www.daimi, aau.dk/PetriNets/, the Web page on PN maintained by 
DAIMI, Aarhus University. 

Despite the great amount of work and achievements, much work remains to 
be done to meet industrial requirements. 
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