
Distr ibuted Versions of Linear Time
Temporal Logic: A Trace Perspect ive

P. S. Thiagarajan 1. and Jesper G. Henriksen 2

1 SPIC Mathematical Institute,
92 G.N. Chetty Road, T. Nagar, Chennai 600 017, India

Emaih pst@smi, ernet, in

2 BRICS,,, Department of Computer Science,
University of Aarhus, Ny Munkegade, 8000 Aarhus C, Denmark

Emaih gulmann©brics, dk

1 I n t r o d u c t i o n

Linear time Temporal Logic (LTL) as proposed by Pnueli [37] has become a well
established tool for specifying the dynamic behaviour of distributed systems. A
basic feature of LTL is that its formulas are interpreted over sequences. Typically,
such a sequence will model a computation of a system; a sequence of states visited
by the system or a sequence of actions executed by the system during the course
of the computation. A system is said to satisfy a specification expressed as an
LTL formula in case every computation of the system is a model of the formula.
A rich theory of LTL is now available using which one can effectively verify
whether a finite state system meets its specification [51]. Indeed, the verfication
task can be automated (for instance using the software packages SPIN [21] and
FormalCheck [2]) to handle large systems of practical interest.

In many applications the computations of a distributed system will constitute
interleavings of the occurrences of causally independent actions. Consequently,
the computations can be naturally grouped together into equivalence classes
where two computations are equated in case they are two different interleavings
of the same partially ordered stretch of behaviour. It turns out that many of the
properties expressed as LTL-formulas happen to have the so called "all-or-none"
property. Either all members of an equivalence class of computations will have
the desired property or none will do ("leads to deadlock" is one such property).
For verifying such properties one has to check the property for just one member
of each equivalence class. This is the insight underlying many of the partial-
order based verification methods [17, 35, 50]. As may be guessed, the importance
of these methods lies in the fact that via these methods the computational
resources required for the verification task can often be dramatically reduced.

It is often the case that the equivalence classes of computations generated by
a distributed system constitute objects called Mazurkiewicz traces. They can be

* This work has been supported by BRICS and IFCPAR Project 1502-1.
** Basic Research in Computer Science,

Centre of the Danish National Research Foundation.

644

canonically represented as restricted labelled partial orders. This opens up an
alternative way of exploiting the non-sequential nature of the computations of a
distributed systems and the attendant partial-order based methods. It consists
of developing linear time temporal logics that can be directly interpreted over
Mazurkiewicz traces. In these logics, every specification is guaranteed to have the
"all-or-none" property and hence can take advantage of the partial-order based
reduction methods during the verification process. The study of these logics also
exposes the richness of the partial-order settings from a logical standpoint and
the complications that can arise as a consequence.

Our aim here is to present an overview of linear time temporal logics whose
models can be viewed as Mazurkiewicz traces. The presentation is, in principle,
self-contained though previous exposure to temporal logics [12] and automata
over infinite objects [49] will be very helpful. We have provided net-theoretic ex-
amples whenever possible in order to emphasize the broad scope of applicability
of the material.

In the next section we introduce linear time temporal logic and sketch the
automata-theoretic solutions to the satisfiability problem (does a formula have
a model?) and the model checking problem (do all computations of a system
constitute models of a given specification formula?). In Section 3 we introduce
Mazurkiewicz traces viewed as equivalence classes of sequences. This leads to
the precise formualtion of the notion "all-or-none" LTL properties.

Next we introduce a well-understood class of trace languages called prod-
uct languages. The automata that recognize these languages are called product
automata and they incorporate a simple and yet useful method of forming dis-
tributed systems. The system consists Of a network of sequential agents, each
with its own alphabet of actions. In the interesting instances the alphabets are
not pair-wise disjoint. One then imposes a synchronization regime under which
the agents are forced to carry out common actions together. After presenting a
theory of product languages and automata, we formulate in Section 5 a simple
version of a trace-based version of LTL called product LTL. The formulas of
this logic have a natural semantics in terms of the computations generated by
a network of sequential agents as introduced in the previous section. Using the
theory of product automata we then provide solutions to the satisfiability and
model checking problems for product LTL.

In Section 6 we introduce the representation of Mazurkiewicz traces as re-
stricted labelled partial orders. We then provide a rapid introduction to the
theory of trace languages and automata that we call asynchronous automata for
recognizing trace languages. In the subsequent section we introduce the logic
TrPTL which is a trace-based logic with much richer possibilities than product
LTL. We then provide solutions to the satisfiability and model checking prob-
lems for TrPTL using asynchronous automata. This is followed by a brief survey
of other trace-based linear time temporal logics available in the literature. Sec-
tion 8 is devoted to considering various expressiveness issues associated with our
temporal logics. We conclude in the final section with remarks about branching
time temporal logics based on traces.

645

2 L i n e a r T i m e T e m p o r a l L o g i c

In our formulation of linear t ime temporal logics it will be convenient to t rea t
actions as first class objects both at the syntactic and semantic levels. As a first
step we shall consider a version of LTL (linear t ime temporal logic) in which the
next-s tate modali ty is indexed by actions.

Through the rest of the paper we fix a finite non-empty a lphabet of actions
Z . We let a, b range over Z and refer to members of E as actions. Z* is the
set of finite words and Z ~ is the set of infinite words generated by Z with
w = {0, 1, 2 , . . .} . We set Z ~ = Z* U 2? ~ and denote the null word by ~. We
let a, a t range over Z ~ and r, r t, r " range over Z*. Finally ~_ is the usual prefix
ordering defined over Z* and for u E Z °°, we let prf(u) be the set of finite
prefixes of u.

Next we fix a finite non-empty set of atomic propositions P = {Pl ,P2, . . .}
and let p, q range over P. The set of formulas of LTL(Z) is then given by the
syntax:

LTL(Z) ::= p f ,-~a 1 a V #~ I (a)a] a U/3.

Through the rest of this section a,/3 will range over LTL(Z) .
A model of LTL(Z) is a pair M = (a, V) where a E Z ~ and V : p r f (a) --~ 2 P

is a valuation function. Let M = (a, V) be a model, r E pr f (a) and a be a
formula. Then M, r ~ a will stand for a being satisfied at V in M. This notion
is defined inductively in the expected manner.

- M , r ~ p i f f p E V (r) .

- M , r ~ . . ~ a i f f M , r ~ a .

- M , r ~ a V l 3 i f f M , r ~ a o r M , r ~ / 3 .
- M , T ~ (a)a iff ra E prf(a) and M, ra ~ a.
- M, r ~ a U /3 iff there exists r ' such tha t Tr' E prf(a) and M, Tr t ~ /3.

Moreover for every T" such tha t ~ ~_ T" -~ r t, it is the case tha t M, r r " ~ a.

Along with the usual propositional connectives A, D and -- we will also use

the propositional constants, T ~ plV ~ Pl and i ~ ~ T. Some useful
derived modalities are:

- - Oc~ ~ m u a .

- E]Ol < = ~ ~-, 0 ~ 0~.

Let M = (a, V) be a model and r E prf(a) . Then it is easy to check the following
assertions.

- M , T ~ Oa iff M,T ' ~ a where T' E prf(a) is such tha t IT'] = IT I + 1.
-- M, r ~ O a iff there exists a T' 6 Z* with rT' e prf(a) such that M, TT ! ~ Ol,
- M , r ~ Oa iff for each r ~ E X*, r r t E prf(a) implies M, TT t ~ a.

646

Note that Oc~ is the usual next-state operator of LTL.
We say that a formula a E LTL(X) is satisfiable iff there exist a model

M = (a ,V) and T e prf(a) such that M , r ~ ~. This logic does not refer
to the past either in the syntax or in the semantics. Hence the formula a is
satisfiable iff there exists a model M such that M, 6 ~ a. This is easy to check.
The satisfiability problem for LTL is to develop a decision procedure which will
determine whether a given formula ~ is satisfiable. We will later in this section
describe such a decision procedure.

We now wish to formulate the model checking problem for LTL(E) . A f n i t e -
state program over E is a structure P r = (S, ----~, Si,~, Vp~) where:

- S is a finite set of states.
- > C_ S × E × S is a transition relation.
- S/n c_ S is a set of initial states of the program.
- Vpr : S -+ 2 P assigns a subset of P to each state of the program.

The members of P capture a finite set of basic assertions concerning the pro-
gram which can usually be "read off" by examining the states of P r and this
is described by Vp~. It will often be the case that the set of initial states is a
singleton.

It is easy to arrange matters so that at each reachable state of the program
at least one transition can be performed. We will assume that this is indeed
the case for all program models we consider in this paper. Further we will say
"program" instead "finite-state program" from now on.

A computation of the program P r is a pair (a, p) where a E ~ and p :
prf(a) -~ S is a map which satisfies:

- p(~) ~ S~,,.

- p(r) - - ~ p(Ta) for each Ta E prf(a).

Let (a, p) be a computation of the program Pr. Then this computation canon-
ically induces the model M~,p = (a, Vp) where Vp is given by: Vp(r) = Vp~(p(T))
for each T e prf(a).

Let P r be a program and c~ be a formula of LTL(~) . We say that P r meets
the specification ~ - - denoted P r ~ a - - if for every computation (a, p) of Pr ,
it is the case that M, ~ ~ a where M is the model induced by the computation
(a, p). The model checking problem is to decide for a given program P r and a
given formula a whether or not P r ~ a. We will sketch a solution to the model
checking problem later in this section.

Let Af = (B, E, F, cin) be a finite elementary net system. In other words, it is
an elementary net system in which both B, the set of conditions and E, the set
of events are finite sets. We can associate the program P r N = (S, ---4, S~n, Vp~)
with Af as follows:

- ~ = E a n d P = B .
- S is the least subset of 2 s and ~ is the least subset of S x E: × S satisfying:

• cin E S.

647

• S u p p o s e c E S a n d e E E s u c h t h a t * e C _ C _ c a n d e ° M c = 0 . T h e n c t E S
and (c, e, c') E > where c' = (c - °e) U e °.

-

- Vp. (e) = e for every c E S.

Thus the so called case graph - - or the sequential configuration graph as
called in the chapter on elementary net systems in this volume - - is the un-
derlying transit ion system of the program. The conditions serve as the atomic
propositions.

For e C B, let ac be the formula Abec b. Now consider the specification [] ,-~ac
for some c C_ B. Then Pr~v ~= [] ,.~ ac iff c is a reachable s tate (i.e. c E S) in
.M. Next suppose e and e J are two events. Then Pr• ~ • © (e) T D • O (e J) T
captures the fact tha t in Af, along every computat ion, if e occurs infinitely often
then so does e'. A rich variety of liveness and safety properties can be expressed
in LTL(2~). For a substantial collection of examples the reader should see [26].

It turns out tha t both the satisfiability and model checking problems for
LTL can be solved elegantly using Bfichi au tomata [51]. We s tar t with a brief
introduction to these automata . A Biichi automaton over 27 is a tuple /3 =
(Q, >, Q~,~, F) where:

- Q is a finite non-empty set of states.
- - - ~ c_ Q x 2~ × Q is a transition relation.
- Qin c_ Q is a set of initial states.
- F C_ Q is a set of accepting states.

Let a E Z ~. Then a run of B over a is a map p : prf (a) - -+ Q such that:

- e Qi .

- p(r) ~ p(Ta) for each Ta E prf(a) .

The run p is accepting iff inf(p) M F ~ ¢ where inf(p) C Q is given by
q E inf(p) iff p(7-) = q for infinitely many T E prf(a) . Finally L:(B), the language
of w-words accepted by B, is:

E(B) = {a I B an accepting run of B over a}.

The languages recognized by Bfichi au tomata are called the o J-regular lan-
guages. For an excellent survey of regular languages and au toma ta over infinite
objects, the reader is referred to [49].

It is easy to solve the emptiness problem for Bfichi au tomata ; to determine
whether or not the language accepted by a Biichi au tomaton is empty. This can
be done in t ime linear in the size of the au tomaton where the size of a Bfichi
au tomaton is the number of states of the automaton [49].

We will now show how one can effectively construct for each a E LTL(5~), a
Bfichi au tomaton B~ such that the language of w-words accepted by B~ is non-
empty iff a is satisfiable. This is an action-based version of the elegant solution
presented in [51] for LTL.

648

Through the rest of the section we fix a formula ao. To construct B~ o we first
define the (Fischer-Ladner) closure of a0. For convenience we will assume that
the derived next-state modality modality O is included in the syntax of LTL(E) .
We take d (ao) to be the least set of formulas that satisfies:

- a o e d (a o) .

- If ,~fl E cl(ao) then fl 6 cl(ao).
- If a V fl 6 cl(ao) then a, fl 6 cl(ao).
- If (a)a 6 cl(ao) then a E cl(ao).
- If a U fl 6 cl(ao) then a, fl 6 cl(ao). In addition, O(c~ U fl) 6 cl(ao).

Now CL(ao), the closure of a0, is defined to be:

CL(ao) = cl(ao) U {,~fl I/~ 6 el(a0)}.

In what follows ,~,~ fl will be identified with ft. Moreover, throughout the section,
all the formulas that we encounter will be assumed to be members of CL(ao).
For convenience, we shall often write CL instead of CL(ao).

A C_ CL is called an atom iff it satisfies :

- f l E A i f f , , , f l f d A .
- a V f l E A i f f a E A o r f l E A .
- a U f l E A i f f f l E A o r a , O (a U f l) 6 A .

- If (a)a 6 A and (b)fl 6 A then a = b.

AT(ao) is the set of atoms and again we shall often write AT instead of AT(ao).
Finally we set U~,o, the set of until requirements of ao, to be the given by U~ o =
{a U fi [a U fl 6 CL}. We will often write U0 instead of U~ o-

The Btichi automaton B~, o (from now on denoted as B) is now defined as
B = (Q, - - G Qi,~, F) , where the various components of B are specified as follows.

- Q = A T x 2 vo is the set of states.
- The transition relation > C Q x Z x Q is given by (A, x) --%, (B, y) iff the

following requirements are met:
• For every (a)a E CL, (a)a 6 A iff a 6 B and for every O(a) E CL,

O(a) 6 A iff a e B.
• if (b)fl 6 A then b = a.
• i f x # ~ t h e n y = {a U fl I a U fl 6 x a n d f l • B}. I f x = 0 t h e n

y = {a U f l l a V f l 6 B and fl CB} .
- Qin _c Q is given by (A, x) 6 Qin iff a0 6 A and x = 9.
- F _C Q is given by (A, x) 6 F iff x = 0.

It is easy to show that £(B) # 0 iff a0 is satisfiable. It is also easy to check that
the size of B is at most exponential in the size of ao. As observed earlier the
emptiness problem for a Biichi automaton can be solved in time linear in the
size of the automaton. Thus we arrive at:

T h e o r e m 1. The satisfiability problem)or LTL(E) is decidable in exponential
time.

649

Turning now to the model checking problem we first recall tha t the inter-
section problem for Biichi automata can be easily solved. In other words, let
•1, B2 be two Bfichi automata both operating over E. Then one can effectively
construct a Biichi automaton B over the same alphabet such that the language
accepted by B is the intersection of the languages accepted by/31 and B2. More-
over, the size of B can be assumed to be bounded by 2nln2 where nl is the size
of B, and n2 is the size of B~ [49].

Now let P r = (S, >,Si,~,Vpr) be a program. We associate the Biichi au-
tomaton I3pr = (S,',z,Sin, S) over the alphabet 5: × 2 P with Pr where -,z is
given by: (s, (a, R), s') E -,-* iff (s, a, s') e ----+ and Vp~(s) = R.

Let a be a specification. Then we construct the Biichi automaton B~~ corre-
sponding to the negation of a. Let B~~ = (Q, ~ , Qi,~, F) . Recall that each state
in Q is of the form (A, x) where A is an atom. We now convert this automaton
into the automaton B = (Q,~ ,QI~ ,F) over the alphabet Z × 2 P by defining
~} as: ((A, x), (a, R), (B, y)) E ~ iff ((A, x), a, (B, y)) ~ ==> and A O P = R.
Finally, let /3 be the Biichi automaton which accepts the intersection of the lan-
guages accepted by Bpr and/3. It is straightforward to check that Pr ~ a iff
the language accepted by B is empty. An easy analysis of the size of/3 leads to:

T h e o r e m 2. The model checking problem for LTL(E) is decidable in time
O(IPrl . 21~t).

In what follows, automata-theoretic constructions and expressiveness issues
will play a considerable role. These topics can be treated in a simpler fashion
if we eliminate atomic propositions. Most of the material we present can easily
accomodate atomic propositions with some notational overhead. Hence from
now on, we will not - - except for some passing remarks - - deal with atomic
propositions. To be specific, the syntax of LTL(5:) will be assumed to be:

LTL(5:) ::= T [~ a I a V 13 t (a)a [a U 13.

Notice that a model is now just a member of 5:~ with the semantics being the
obvious one (T is always true). The set of models of a formula constitute a
language of infinite words. More precisely, each a induces the language L,~ given
by:

L~ = {a l a,~ ~ a}.

A program is now just a finite-state transition system Pr = (S, ----~, Sin) over
5:. Each such program Pr has the language Lvr associated with it. This is just
the language accepted by the Bfichi automaton (S, ~,Sin, S). It is also easy
to see that Pr ~ a iff Lpr C_ La iff Lp~ n L~a = 0.

3 M a z u r k i e w i c z T r a c e s a n d T r a c e C o n s i s t e n t P r o p e r t i e s

Here we wish to introduce the notion of traces from the standpoint of sequences.
This will enable us to define the notion of a trace consistent property. This notion
plays an important role in partial order based reducion methods. As pointed out

650

in the introduction, it also provides the motivation for studying trace based
linear time temporal logics.

A (Mazurkiewicz) trace alphabet is a pair (E, I) , where ~ , the alphabet, is a
finite set and I C_ Z x ~ is an irrefiexive and symmetric independence relation. In
most applications, Z consists of the actions performed by a distributed system
while I captures a static notion of causal independence between actions. The
idea is tha t contiguous independent actions occur with no causal order between
them. Thus, every sequence of actions from E corresponds to an interleaved
observation of a partially-ordered stretch of system behaviour. This leads to a
natural equivalence relation over execution sequences: two sequences are equated
if[they correspond to different interleavings of the same partially-ordered stretch
of behaviour.

For the rest of the section we fix a trace alphabet (~ , I) and assume the
terminology developed in the previous section for objects derived from Z. We
define D = (E x Z) - I to be the dependency relation. Note that D is reflexive
and symmetric. A set p C Z is called a D-clique iff p x p c D. The equivalence
relation ~,I C_ Z °o × ~V, oo induced by I is given by:

a ~ I a ' iff a r P = or' r P for every D-clique p.

Here and elsewhere, if A is a finite set, p E A °° and B C_ A then p rB is the
sequence obtained by erasing from p all occurrences of letters in A - B.

Clearly ~ i is an equivalence relation. Notice that i f a = Tabal and a' = Tbaal
with (a, b) E I then a ~ I a ' . Thus a and a ' are identified if they differ only in
the order of appearance of a pair of adjacent independent actions. In fact, for
finite words, an alternative way to characterize ~ i is to say that a ~ I a ~ iff
~* can be obtained from a by a finite sequence of permutations of adjacent
independent actions. However the definition of ~ I in terms of permutations can
not be directly t ransported to infinite words, which is why we work with the
definition presented here.

The equivalence classes generated by ~ I are called (Mazurkiewicz) traces. A
set of traces is called a trace language. The theory of traces is well developed
and documented--see [6, 7] for basic material as well as a substantial number of
references to related work.

A variety of models of distributed systems naturally have a trace alphabet
associated with them [55]. It also turns out that many interesting properties
of distributed systems respect the equivalence relation induced by these trace
alphabets. This has important consequences for the practical verification of such
properties.

The key notion in this context is that of a trace consistent property. To bring
this out, we start with a trace alphabet (E, I) and recall the remarks concerning
the abolition of atomic propositions at the end of Section 2. Let L C_ Z ~. We
say that L is trace consistent in case a 6 L and a ~ I a ' implies a ' E L; for every
a, a ' E Z ~. In other words, either all members of a trace are in L or none of
them are. We say that the formula a in LTL(Z) is t raceconsis tent in case L~ is

651

trace consistent. It is not hard to see that there is a one-to-one correspondence
between trace languages and trace consistent languages of strings.

Now suppose Pr is a program over E which has a trace alphabet (~, I)
associated with it in some natural manner. Suppose further that Lpr, the lin-
ear time behaviour of Pr, is trace consistent (we will see a number of models
of distributed programs that possess these features in the material to follow).
Now consider a specification c~ which happens to be trace consistent. Then, as
remarked at the end of Section 2, verifying Pr ~ (~ boils down to verifying
Lpr C L~. Instead of checking Lp~ C_ La we can choose to check L' C_ L~ where
L ~ is designed to be such that L' C_ Lpr and for every a E Lpr, [a]NL t ~ 0. The
key point is, the finite representation of L t can be often substantially smaller
than the representation of Pr. This is the insight underlying many of the so
called partial-order methods deployed in the model checking world [17, 35, 50].

As pointed out in the introduction this is also the main motivation for con-
sidering the trace-based linear time temporal logics that we will encounter later.
We shall conclude this section with some examples.

Recall the material on elementary net systems introduced in Section 2. Sup-
pose Af = (B, E, F, C~n) is an elementary net system. Each such system induces
the independence relation I x given by:

= t u n u =

Let e C E and consider the formula E]O(e)T. The property captured by this
formula says that (along every computation) the event e occurs infinitely often.
It is easy to see that this is a trace consistent property with respect to the trace
alphabet (E, Ix) . Next consider the net system of Figure 1.

Consider the formula/3 = OO((e)T A (e')T). Suppose a = (ele2ee') ~ and
a' = (ele'e2e) ~. Then a,e ~/3 and a "~I1¢ a' but a ' ,c ~ ~. Thus this property
is not trace consistent with respect to the trace alphabet induced by this net
system.

4 P r o d u c t L a n g u a g e s a n d A u t o m a t a

We will now exhibit a restricted but useful class of distributed behaviours that
we call product behaviours. Such behaviours are generated by a network of
sequential agents that coordinate their activities by performing common actions
together. It will turn out that product behaviours are naturally trace consistent.
They also constitute a clean and yet non-trivial subset of the class of trace
behaviours considered later.

We first study product Biichi automata. We then formulate in Section 5 the
product version of LTL(,U). We will then use product Bfichi automata to solve
the satisfiability and model checking problems for the product version of LTL(X).
The technical details - - which we suppress here - - can be found in [47]. The key
notion underlying product behaviours is that of a distributed alphabet. It can
be viewed as an "implementation" of a trace alphabet. As a result, distributed
alphabets play a fundamental role in the automata-theoretic aspects of trace

e l

652

Fig. 1. Example elementary net system

languages [15, 58]. This will become more clear when the material in Section 6
is encountered.

A distributed alphabet is a family {~Up}vep where :P is a finite non-empty set
of agents (also referred to as processes in the sequel) and Zp is a finite non-empty
alphabet for each p 6 P. The idea is that whenever an action from Zp occurs,
the agent p must participate in it. Hence the agents can constrain each other's
behaviour, both directly and indirectly.

Trace alphabets and distributed alphabets are closely related to each other.
Let ~ = {~Up}pep be a distributed alphabet. Then Ep, the global alphabet
associated with Z, is the collection [.Jvep Zp. The distribution of Zp over 7) can
be described using a location function loc 2 : ,Up -+ 2 p defined as follows:

loc2(a) = {v l a e

This in turn induces the relation 12 C_ Zp x Zp given by:

(a, b) 6 12 iff loc2(a) A loc2(b) = 0.

Clearly 12 is irrefiexive and symmetric and hence (Zp, I~) is a trace alpha-
bet. Thus every distributed alphabet canonically induces a trace alphabet. Two
actions are independent according to Z if they are executed by disjoint sets
of processes. Henceforth, we write loc for loc2 whenever ~ is clear from the
context.

Going in the other direction there are, in general, many different ways to
implement a trace alphabet as a distributed alphabet. A standard approach is
to create a separate agent for each maximal D-clique generated by (Z, I). Recall

653

that a D-clique of (Z, I) is a non-empty subset p C_ S such that p × p C_ D.
Let :P be the set of maximal D-cliques of (Z, I). This set of processes induces

the distributed alphabet ~ = {Zp}peT, where Sp = p for every process p. The

alphabet ~ implements (Z, I) in the sense that the canonical trace alphabet
induced by it is exactly (Z, I) . In other words, S p = S and I2 = I.

For example, consider the trace alphabet (Z, I) where Z = { a , b , d } and
I = {(a, b), (b, a)}. The canonical D-clique implementation of (Z, I) yields the

distributed alphabet Z = {{a,d}, {d, b)}.
Through the rest of the section we fix a distributed alphabet {Sp}pep and

set Z = S p . It will be convenient to assume that P = { 1 , 2 , . . . , K } . Further,
the ith component of a K-tuple x = (x l , x 2 , . . . , x g) will be writ ten as x[i]. In
other words, x[i] -- xi.

A product Biichi automaton over ~ is a structure A = g ({.4~}~=1 , Q ~) where
.Ai = (Qi, ~i, Fi, F~) for each i such that :

- Qi is a finite set of/-local states.
- ---+i C Qi × ~i × Qi is the transition relation of the i th component.
- F~ C Qi is a set of finitary accepting states.
- F~ C Q~ is a set of infinitary accepting states.
- Q~n c Q1 x Q2 x . . . × QK is a set of global initial states.

We use two types of accepting states for the components in order to be
able to handle both finite and infinite behaviours. Even if one is interested only
in global infinite behaviours, finite behaviours at the component level must be
treated; a component might quit after engaging in a finite number of actions
while a part of the network runs forever. We use global initial states to obtain the
required expressive power. In general, the automaton will not be able to branch
off into different parts of the state space, starting from a single global initial
state. This will be brought out through a simple example after we define the
language behaviour of product automata. The same example will also illustrate
why using the cartesian product of local initial state sets as global initial states
will result in a loss of expressive power.

Let A = K ({Ai}i=l, Qin) be a product Biichi automaton over Z. From now on
we will say just "product automata". Also, we shall often suppress the mention
of Z. We will also write {A~} instead of K {Ai}~=l. Let Ai = (Qi, "~ i ,F i ,F~) .
Then we set QG A = Q1 × Q2 × . . . x Q/~. When A is clear from the context, we
will write QG instead of QG A. The global transition relation of A is denoted as

~A and it is the subset of Qa x S × Qa given by:

q ~)A q' iffV i e loc(a) : q[i] ~ ~i q'[i] and V i ~ loc(a) : q[i] = q'[i].

Let a E Z ~ . A run of A over a is a map p : Pr f (a) ~ Qa which satisfies:

- p (c) e O ~ n .

- y Ta E prf(a), p(r) ~)A p(ra) .

654

A simple but useful p rope r ty of runs is the following. Suppose p is a run of
the p roduc t a u t o m a t o n ,4 over a . Fur ther suppose t h a t r , ~-~ E P r f (a) such t h a t
T [i = r ' [i for some i. T h e n p(r)[i] = p(T')[i].

Let p be a run of the p roduc t a u t o m a t o n .4 over a. T h e n p is accepting iff
for each i, the following condit ion is satisfied:

- If a [i is finite then p(T)[i] E Fi where T E p r f (a) such t h a t r r i = a r i.
- I f a [i is infinite then p(~'a)[i] E F~ for infinitely m a n y r a e p r f (a) wi th

a E Z ~ .

If a [i is finite then clearly there exists T E p r f (a) such t h a t r [i = a [i. Now
the above p rope r ty of runs assures us t h a t the not ion of an accept ing run is
well-defined. In case a [i is infinite the accep tance condi t ion can also be ph ra sed
as :

- p(r)[i] e F ~ for infinitely m a n y T e p r f (a) .

Th is once again follows easily f rom the definition of a run. We now define £ (A) ,
the language accepted by the product automaton ,4 as,

£(,4) = {a I 3 an accept ing run of ,4 over a} .

Now consider the a lphabe t ({a ,d} , {d,b}) and the language L = {ad, bd}.
Figure 2 shows a p roduc t a u t o m a t o n over this a lphabe t which accepts L. I t is

ql q4 Pl

t o 1
q2 q5 P2

q3 P3

,41 .42

F1 -- {q3,qs} F1 = 0 = / ~ F2 -- {pa,ps}

Q~={(ql ,p4) , (q4,pl)}

p4

P~

Fig. 2. Product automaton accepting L = {ad, bd}

easy to verify t h a t no produc t a u t o m a t o n over this a lphabe t wi th a single global
initial s t a te can accept L. I t is also easy to verify t ha t no p roduc t a u t o m a t o n
whose set of initial s ta tes is a car tes ian p roduc t of componen t initial s t a te sets
can accept this language.

A crucial p rope r ty of p roduc t a u t o m a t a is t h a t they accept ~ -cons i s t en t
languages.

655

L e m m a 3. Let ,A = ({Ai}, Qi~) be a product automaton over 2 . Then £ (A) is
trace consistent.

The class of languages accepted by product automata can now be character-
ized. To this end we define the K-ary operation ® : 2 EC x 2 s F ×.-- × 2 ~ -+ 2 ~
via ® (L t , . . . , L K) = {a I a l i e Li for each i}.

In what follows we will write L = L1 ® L 2 " " ® LK to denote the fact
® (L 1 , . . . , LK) = L. We say that L C_ Z °~ is a direct product language over
iff 3 Li C Z ~ for each i such that L = L1 ® L2 ® . . . ® LK. Here are two useful
properties of direct product languages. In stating this result and elsewhere we
will say "product language" instead of "product language over ~ " etc.

Proposi t ion 4.

1. Let L be a direct product language and a E Zoo. Then a E L iff for each i
there exists a~ E L such that a r i = a~ [i.

2. Let L C Z °°. Then L is a direct product language iff L = L1 @ L2 ® " " ® LK
where Li = { a I i I a E L} for each i.

As usual, for an alphabet Z and L _C Zoo we say that L is regular iff L N Z*
is a regular subset of Z* and L C_ Z ~ is an w-regular subset of ,U ~ as described
in Section 2. We can now define the class of languages accepted by product
automata.

Definition 5.

- Tt~o(~) is the subset of 2 E~ given by L e 7¢~o(~) i f fL = n l ® L 2 ® " "®LK
with each L~ a regular subset of Z ~ .

- T¢®(~) is the least subset of 2 ~ which contains Tt@o and is closed under
finite unions.

The class 7~ ® (~) defined above will be called the regular product languages over

~ . As usual, we shall often write TO0 ~ instead of T¢0@(~) and write 7~ ® instead
of T~ ® (2) . An interesting observation concerning T¢ ® is the following:

P r o p o s i t i o n 6. 7¢ ® is closed under boolean operations.

It turns out that ~® is precisely the class of languages accepted by product
automata.

T h e o r e m 7 ([47]). Let L C Z ~ . Then L C Tt ® iff there exists a product
automaton A such that L = £ (A) .

We shall be using product automata to settle the decidability and model
checking problems for the logic LTL ® to be introduced in the next section. In
anticipation of this, we shall put down two more results concerning product
automata. While doing so and elsewhere the size of the product automaton ,4
will be understood to be IQGI.

656

T h e o r e m 8. Let A be a product automaton. Then the question ~(`4) ~ 0 can
be settled in time O(22K • n 2) where n is the size of `4.

T h e o r e m 9. Let `41 and ,42 be two product automata. Then one can effectively
construct a product automaton ,4 such that ~.(,4) = ~(,41)fqf.(,42) and moreover
n = O(2 g . nl • n2) where n is the size of A and nt is the size of .A t for e = 1, 2.

5 A P r o d u c t V e r s i o n o f L T L

We now wish to design a product version of LTL denoted LTL®(~). The set of
formulas and their locations are given by:

- T is a formula and loc(T) = 0.
- Suppose a and ~ are formulas. Then so are ~ a and a V f~. Furthermore,

loc(-~ e) = loc(a) and loc(a V ~) = loc(a) U loc(B).
- Suppose a E ~i and a is a formula with loc(a) C_ {i}. Then (a)ia is a formula

and loc((a)ia) = {i}.
- Suppose a and ~ are formulas such that loc(a), loc(f~) C_ {i}. Then a/~if~ is

a formula. Moreover, loc(a/4i~) = {i}.

We note that each formula in LTL®(~) is a boolean combination of formulas

taken from the set UieLoc LTL~(~) where, for each i,

LTL~(~) = {a la e LTL®(~) and loc(a) C_ {i} }.

Stated differently, the syntax of LTL~(,~) is given inductively by:

-- T e LTL/@(~).
- If a and/~ are in LTL~(~) then ,~a and a V ~ are in LTL~(~) .
- If a is in LTL/@(~) and a e ~i then (a)ia is in LTL~(~) .
- If a and/~ are in LTL/@(~) then aUi~ is in LTL/@(~).

Once again, we have chosen to avoid dealing with atomic propositions for the
sake of convenience. They can be introduced in a local fashion as done in [47].
The decidability result to be presented will go through with minor notational
overheads.

As before, we will often suppress the mention of ~. We will also often write
T~, T~ and T~' instead of T [i , T' [i and r" [i, respectively with T, T', T" E ~*.

A model is a sequence a E Z c¢ and the semantics of this logic is given, as
before, with T E prf(a).

-- o','r ~ T .

- a , r ~ ~ a i f f a , r g = a .
- a, r D a v ~ i f f a , r ~ a o r a , r D l 3 .
- a, r ~ (a}ia iff there exists r ' E prf(a) such that a, r ' D a and r ' = ria.

(recall that r~ = r ' [i.)

657

- a, T ~ aL/it3 iff there exists T' such that T7' E prf(a) and a, ~-~-' ~ ft. Further,
for every v" E prf(v') , if ~ ___ 7[' -~ ~-~ then a, "rT" ~ a.

As before we derive some useful modalities:

- O i a VoeE ,

_ r"lio ~ ~ ~ O i ~ o ~ .

Let M = a be a model and T E prf(a). The following assertions can now easily
be checked.

- a, 7 ~ O~a iff there exists ~-' E prf((7) such that a, "r' ~ a and 17[1 = ITil + 1.
- a, T ~ <>~a iff there exists r ~ with "r71 E prf(a) such that a, v # ~ a.
- a,T ~ [:]ia i fffor each "#, TT' E prf(a) implies a, Tr ~ ~ a.

Note that O~a is the/- local version of the usual next-state operator of LTL.
We will say that a formula a E LTL®(~) is satisfiable if there exist a E Z ~

and T E prf(a) such that a, T ~ a. The language defined by a is given by

L ~ : { a E E ° ~ l a , ¢ b a }.

We will show the satisfiability problem for LTL ® (~) is solvable in determin-
istic exponential time. This will be achieved by effectively constructing a product
automaton .An for each a E LTL®(~) such that the language accepted by A~ is
non-empty iff a is satisfiable. Our construction is a generalization of the one for
LTL in Section 2. The solution to the satisfiability problem will at once lead to
a solution to the model checking problem for programs modelled as a product
of sequential agents.

Through the rest of the section we fix a formula a0 E LTL®(~). As before
we will for convenience assume that the derived local next-state modali ty O4
is included in the syntax of LTL ®. In order to construct .A~ o we first define
the (Fischer-Ladner) closure of a0. As a first step let cl(ao) be the least set of
formulas satisfying:

- a o E cl(ao).
- ,~a E cl(ao) implies a E cl(ao).
- a V/3 E cl(ao) implies a, 13 E cl(ao).
- (a)ia E cl(ao) implies a E cl(ao).
- allil3 E cl(ao) implies a,13 E cl(ao). In addition, Oi(aLt~t3) E cl(ao).

We will now take the closure of a0 to be CL(ao) = cl(ao) U {,,,a 1 a E cl(ao)}.
From now on we shall identify -~,-,a with a. Set CLi(ao) = CL(ao)M LTL~ for
each i. We will often write CL instead of CL(ao) and CLi instead of CL~(ao).
All formulas considered from now on will be assumed to belong to CL unless
otherwise stated.

An i-type atom is a subset A C_ CLi which satisfies:

658

- T E A .

- a e A i f f , . , a ~ . A .
- a V t 3 E A i f f a E A o r f l E A .
- a/lift E A iff/3 E A or a, Oi(aLt~fl) E A.

The set o f / - t y p e atoms is denoted ATI. We next define, for each a E CL(ao)
and (A1,. . . ,An) E AT1 x . . . x ATK, the predicate Member(a, (AI , . . . ,AK)).
For convenience this predicate will be denoted as a E (A1, . . . , AK) and is given
inductively by:

- Let a e CLI. Then a E (A 1 , . . . , A n) iff a e Ai.
- Let a = ,~fl. Then a E (A1, . . . ,AK) ifffl ~ (A1,. . . ,AK).
- Let a = f l V % Then a E (A1, . . . ,AK) iff fl E (A1 , . . . ,AK) or ~/ E

(A1,. . . ,AK).

Finally, we set Ui = {aL/i~ 1 aUifl E CLi(ao)} for each i. The product
automaton Aa o associated with a0 is now defined to be A~ o = ({Ai}, Qi ,)
where, for each i, Ai = (Qi, ---+i, F~, F~) is specified as follows:

- Q i = A T i x {off, on} x 2 u~
- - - * i C_ Qi x 2~i x Qi is given by, (A,x,u) '~i (B,y,v) iff the following

conditions are met.
1. x = on and for all (a)ia E CLi(ao), (a)ia E A iff a E B and for all

Oia E CLi(ao), Oia E A iff a E B. Moreover, if (b)ifl e A then b = a.
2. If u # 0 then v = {aL/ifl [aL/ifl E u and fl ~ B}. If u = 0 then

v = {aLlifl] a//d3 E B and fl ~ B}.
- Fi C_ Qi is given by: (A,x,u) E Fi iff x = off and for all (a)ia e CLi(ao),

(a)ia ~ A and for all Oia e CLi(ao), Oia ~ A.
- F~ C_ Qi is given by: (A, x, u) E F~ iff u = 0.
- Qin c Qt x Q2 x . . . x QK is given by: ((A t , x t , u t) , . . . , (AK,xK,UK)) E Qin

iff a0 E (A t , . . . , AK) and ui = 0 for every i.

It is not difficult to now establish the next result by an application of Theo-
rem 8.

T h e o r e m 10. ao is satisfiable iff £(A~o) # O. Hence the satisfiability problem
for LTL ® is decidable in exponential time.

We now turn to the model checking problem for LTL ®. A product program
(over ~) is a structure Pr = ({Pri}~=t, P~ Qin) where, for each i, Pri = (Qi, - -+i)
with Q~ a finite set and ~i C Qi x Zi x Qi. Since we have agreed to drop
atomic propositions there is no need for (local) interpretations for the atomic
propositions. Let us further assume for convenience that Qi~* is a singleton
with qi. as its sole member and with qin[i] = q~,~ for each i. With each such
program we can associate the product automaton ~4p~ K ---- ({AI}i__-- t, {qin}) where
Ai = (Qi,)i, Qi, Qi) for each i.

Now let Pr be a product program and a0 be a formula of LTL ®. As in
the case for LTL, we say that Pr meets the specification ao - - again denoted
Pr ~ ao - - iff a, ¢ ~ a0 for every a E £(,4p~). Once again, using Theorem 9 it
is not difficult to prove the following.

659

T h e o r e m 11. The 'model checking problem for LTL ® is decidable in time O(IPr I
2t~ol).

We wish to observe that each product program can be represented as a Z -
labelled 1-safe net system. To see this let Pr = ({Pri}K=l, {qi.}) be a product
program. Let 's assume without loss of generality that the family of local states
{Qi} is pairwise disjoint. We set Q = Uiep Qi and define an a-s tate to be a map
q~ : loc(a) -+ Q which satisfies qa(i) E Q~ for each i in loc(a). (A more elaborate
development of these notions will appear in the next section). An a-event is a
pair of a-states (q~, q~) which satisfies q~(i) -?-+i q~(i) for each i in loc(a). We let
E , be the set of a-events. We carl now define the Z-labelled 1-safe net system
representing Pr to be Af = (B, E, F, c~n, ¢) where:

- B = Q
- E = U ~ e E E~
- Let qi E Qi and e = (qa,q~) E E~. Then (qi,e) E F iff i E loc(a) and

q~(i) = qi. Similarly (e, qi) E F i f f i E loc(a) and q~(i) = q~.
- Let e E E. Then ¢(e) = a iff e is an a-event.

On the other hand each 1-safe net system which is covered by a set of S-
components can be viewed as a (deterministic) product program; the a lphabet
of each component is its set of events. If necessary, S-complementat ion can be
performed to ensure tha t the system is covered by a set of S-components . We
do not wish to enter into details here. Instead we show on Figure 3 an example
of a 1-safe net system composed out of three components.

e3[e3

J

Prl Pr~ Pr3

F i g . 3 . 1-safe net with three components

660

Let Pr denote the associated product program over the distributed alphabet
{{el, e2, e3}, {e3, e4}, {e~, e~, e4}}. Then it is easy to check that

P r ~ D101T D D303T.

This property says that along every computation, if the first component executes
infinitely often then so does the third component. The point to note is that the
first component and the third component do not have any common events and
hence there is no direct communication between them. Nevertheless through
the power of the boolean connectives alone the logic can make assertions about
the way components that are "far apart" are required to influence each other 's
behaviour.

6 T r a c e L a n g u a g e s a n d A u t o m a t a

Traces have many equivalent representations. Here we shall view them as re-
stricted Z-labelled partial orders. Abusing terminology we shall call these objects
also traces. We will then argue that these objects are in a rather precise sense
the same as the objects called traces defined in Section 3 in terms of equivalence
classes of sequences.

Let T be a Z-labelled poset. In other words, (E, <) is a poset and A : E --+ Z
is a labelling function. For Y C E we define SY = {x I 3y E Y : x < y} and

Y = {x [3y E Y : y _< x}. In case Y = {y} is a singleton we shall write Sy
($ y) instead of ${y} ($ {y}). We also let < be the relation: x < y iff x < y and
for all z E E, x < z < y implies x = z or z = y.

A trace (over (~ , I)) is a Z-labelled poset T = (E, <, A) satisfying:

(T1) Ve E E. ~e is a finite set
(T2) Ve, e' e E. e < e' implies A(e) D A(e').
(T3) Ve, e' E E. A(e) D A(e') implies e _< e' or e' _< e.

We shall refer to members of E as events. The trace T = (E, ~, A) is said to
be finite if E is a finite set. Otherwise it is an infinite trace. Note that E is always
a countable set. T is said to be non-empty in case E ¢ 0. We let TRIin(~, I) be
the set of finite traces and TRY(Z, I) be the set of infinite traces over (Z, I) and
set T R(Z, I) = T Rfin(Z, I) U TRY(Z, I). Often we will write T R Iin instead of
TRIin(Z, I) etc. As before, a subset of traces LTr C_ TR will be called a trace
language.

Let T = (E, _<, A) be a trace. The finite prefixes of T, to be called configu-
rations, will play a crucial role in what follows. A configuration of T is a finite
subset c C_ E such that c = $c. We let CT be the set of configurations o f T and let
c, c', c" range over CT. Note that 0, the empty set, is a configuration and $ e is a
configuration for every e E E. Finally, the transition relation ~ T C CT X Z X CT
is given by: c >r c' iff there exists e E E such that A(e) = a and e ~ c and
c' = cU {e}. It is easy to see that i f c a) T e I and c - ~ T Ctt then c' = c ' .

Note that we have now introduced two different notions of traces; one in
terms of equivalence classes of strings as in Section 3 and the other in terms

661

of Z-labelled partial orders as in this section. We now sketch briefly the con-
structions tha t show that Zoo/,~l and T R (Z , I) represent the same class of
objects. We shall construct representation maps str : Z o o / ~ I - ~ T R (Z , I) and
trs : T R (Z , I) --~ Z ° ° / ~ z and state some results which show tha t these maps
are "inverses" of each other. We shall not prove these results. The details can be
easily obtained using the constructions developed in [55] for relating traces and
event structures.

Henceforth, we will not distinguish between isomorphic elements in T R (Z , I).
In other words, whenever we write T = T ~ for traces T = (E, <, ~) and T ~ =
(E ~, < ' , A~), we mean that there is a label-preserving isomorphism between T
and Tq

Recall tha t for a E ~7oo, [a] stands for the ~z-equivalence class containing
a. We now define str : Z °O -+ TR(E , I). Let a E 57oo. Then str(a) = (E, <, ~)
where:

- E = {Ta I Ta E prf(a)}. Recall that ~- E 57" and a E Z. Thus E =
pr f (a) - {s}, where ~ is the null string.

- < C_ E × E is the least partial order which satisfies: For all Ta, T~b E E, if
Ta '< ~"b and (a, b) E D then Ta < T'b.

-- For Ta E E, A(Ta) = a.

The map str induces a natural map std from Z ° ° / ~ I to T R (Z , I) defined by
str'([a]) = str(a). One can show that if a,a' E Eoo, then a ~ I a ' iff str(a) =
str(a~). This observation guarantees tha t std is well-defined. In fact, henceforth
we shall write str to denote both str and std.

Next, let T = (E, <, A) E T R (Z , I) . Then a E 57oo is a linearization of T i f f
there exists a map p : prf (a) --+ CT, such that the following conditions are met:

- p (~) = ~.
- Vva E prf (a) with T E ,U*, p(T) --~T p(Ta).
-- Ve E E B7 E prf(a) , e E p(T).

The function p wilt be called a run map of the linearization a. Note tha t the
run map of a linearization is unique. In what follows, we shall let l in(T) to be
the set of linearizations of the trace T.

We can now define the map trs : T R (Z , I) -+ Z ° ° / ~ I as: trs(T) = lin(T).
One can now show that for every a E Zoo, trs(str(a)) = [a] and for every T E
T R (Z , I) , str(trs(T)) = T. This justify our claim tha t Zoo/ ~z and T R (Z , I)
are indeed two equivalent ways of talking about the same class of objects.

We note that every trace consistent subset L of 57oo defines a trace language
LTr given by LTr = {str(cr) I a e L} which has the proper ty trs(LTr) ----- L. In
this sense every product language defines a trace language. We say tha t a t race
language LTr is regular iff trS(LTr) is a regular subset of Zoo. As we will see
later not every (regular) trace language is a (regular) product language. Hence in
order to recognize regular trace languages one will have to use strengthened ver-
sions of product au tomata . Such au toma ta called asynchronous a u t o m a t a were
formulated by Zielonka for recognizing regular languages of finite traces. These

6 6 2

were then generalized for handling infinite traces by Gastin and Petit [15]. We
will use a combination of these two types of automata for solving the satisfi-
ability and model checking problems for the trace-based temporal logic called
TrPTL to be considered in the next section.

Let ~ be a distributed alphabet with P as the associated set of agents. In
an asynchronous automaton, each process p 6 7 ~ is equipped with a finite non-
empty set of local p-states, denoted Sp. It will be convenient to develop some
notations for talking about "more global" states before defining these automata.

First we set S = Uve~ Sp and call S the set of local states. We let P, Q
range over non-empty subsets of P and let p, q range over P. A Q-state is a
map s : Q ~ S such that s(q) 6 Sq for every q 6 Q. We let SQ denote the set
Q-states. We call S~, the set of global states.

We use a to abbreviate loc(a) when talking about states (recall that loc(a) =
{ P I a 6 27p }). Thus an a-state is just a loc(a)-state and Sa denotes the set of
all loc(a)-states.

A distributed transition system T S over ~ is a structure ({Sp}, { ~ } , Sin)
where

- Sp is a finite non-empty set of p-states for each process p.
- For a 6 27, ---~a C Sa x S~ is a transition relation between a-states.
- Sin C_ S~ is a set of initial global states.

The idea is that an a-move by T S involves only the local states of the agents
which participate in the execution a. This is reflected in the global transition
relation)TS c_C_ S~ x 27 x Sp which is defined as follows: Suppose s and s'

I are two global states and s~ and s~ are the two corresponding a-states. In other
words, 8a(i) = s(i) and s t (i) = s'(i) for each i in loc(a). Then

8 j s a)TS S' iff (S~, a) 6 ;a and s(j) = s ' (j) for every j ¢ loc(a).

From the definition of ;TS, it is clear that actions which are executed by
disjoint sets of agents are processed independently by TS .

An asynchronous automaton over 57 is then a distributed transition system
equipped with a set of global accepting states. More precisely, it is a structure
,4 = ({Sv}, {---+~}, Sin, F) where

- F c_ $7, is a set of accepting global states.

A trace run of ,4 over the finite trace T = (E, <, A) is a map p : g r ~ S~
such that p(0) 6 Sin and for every (c,a,c') 6 ~T, p(c) ~ T S p(c'). We say
that p is an accepting run whenever p(E) 6 F. The language of finite traces
accepted by ,4 is given by

~-'Tr(,4) = { T 6 T R fin [3 an accepting run of ,4 over T }.

In the present setting Zielonka's fundamental result can now be formulated
a s

663

T h e o r e m 12 ([58]). L C_ T R f ~ n (Z , I) is regular iff L = LT~(.A) for some
asynchronous automaton A over some ~ where ~ is a distributed alphabet whose
induced trace alphabet is (Z, I) . Further, one may assume ~4 to be deterministic
and one may assume ~ to be the distributed alphabet induced by the maximal
D-cliques of (Z,, I) .

This result has been generalized to the set of w-regular trace languages by
Gastin and Peti t [15] in terms of asynchronous automata with Bfichi acceptance
conditions. Since we will treat both finite and infinite traces on an equal footing
we will present a class of automata capable of accepting both finite and infi-
nite traces. Hence our automata are essentially distributed transition systems
augmented with both finite and infinite accepting states.

An asynchronous Biichi automaton over Z is a structure

A = ({Sv}, {----~}, Sin, {(Fp, F~)}),

where:

- ({Sp}, {--+a}, S~n) is a distributed transition system.
- Fp C_ Sp is a set of local finitary accepting states of process p.
- F~ C_ Sp is a set of local infinitary accepting states of process p.

For convenience we will from now on denote this class of au tomata just "asyn-
chronous automata" .

To define acceptance we must now compute Infp(p), the set of p-states that
are encountered infinitely often along p. When incorporating both finite and
infinite behaviour in this richer domain we have to take care in defining the
set of infinitely occuring states of process p. The obvious definition, namely
Infp(p) = {Sp I p(c)(p) = sp for infinitely many c e CT}, will not work. The
complication arises because some processes may make only finitely many moves,
even though the overall trace consists of an infinite number of events.

For instance, consider the distributed alphabet 20 = {{a}, {b}}. In the cor-
responding distributed transition system, there are two processes p and q which
execute a's and b's completely independently. Consider the trace T = (E, <,)~)
where IEp] = 1 and Eq is infinite - - i.e., all the infinite words in trs(T) contain
one a and infinitely many b's. Let Sp be the state of p after executing a. Then,
there will be infinitely many configurations whose p-state is sp, even though p
only moves a finite number of times.

Continuing with the same example, consider another infinite trace T ' =
(E' , < ' , ~') over the same alphabet where both Ep and Eq are infinite. Once
again, let sp be the local state of p after reading one a. Further, let us suppose
that after reading the second a, p never returns to the state sp. It will still be the
case that there are infinitely many configurations whose p-state is sp: consider
the configurations Co, cl, c2 , . . , where cj is the finite configuration after one a
and j b's have occurred.

So, we have to define Infp(p) so as to detect whether or not process p is
making progress. The appropriate formulation is as follows:

664

Case 1 Ep is finite: Infp(p) = {sp}, where p(J, Ev) = s and sp = s(p).
Case 2 Ep is an infinite set:

Infp(p) = {sp If or infinitely many e E Ep,se(p) = sp, where p($e) = Se}.

A trace run of an asynchronous automaton over the (possibly infinite) trace
T = (E, <_, ~) E T R is now defined in the obvious way. A run p of A over the
(possibly infinite) trace T = (E, ~,A) is accepting iff for each process p the
following conditions are met:

- If Ep is finite then Infv(p) A Fp # 0.
- If Ep is infinite then Infp(p) N Fp ¢ 0.

We then have the following characterization extending Theorem 12.

T h e o r e m 13. A trace language L C_ T R (Z , I) is regular iff L = LT~(A)]or an
asynchronous automaton over ~ where ~ is a distributed alphabet whose induced
trace alphabet is (Z , I) .

It should be noted however that deterministic automata no longer suffice for
accepting all regular languages.

We say that ,4 is in standard form if

- For each p, Fp A F~ = 0.
- For each (Sa,ta) E ~a and p E loc(a) we have that sa(p) ¢ Fp.

Thus, Jt is in standard form if the p-states in Fp are all "dead" and disjoint from
F~. It is easy to convert every asynchronous automaton into standard form. All
our asynchronous automata will be in standard form.

We conclude with a result concerning the emptiness problem for asynchronous
automata.

P ropos i t ion 14 ([30]). Let .4 be an asynchronous automaton in standard form.
The emptiness problem is decidable in time O(n21Pl), where n is the largest of
the local state spaces, Sp.

We have defined here the languages defined by asynchronous automata in
terms of traces. We note that these automata can be viewed - - and this is
the conventional approach - - as automata running over Z-sequences. Using the
global transition relations of these automata one can easily define the string
languages accepted by these automata. These languages will be naturally trace
consistent w.r.t, the trace alphabets induced by the associated distributed alpha-
bets. The resulting trace languages will be precisely the trace languages accepted
by these automata according to the definitions we have provided here.

7 T r P T L

We present here the linear time temporal logic over traces called TrPTL. This
is the first such logic patterned after PTL (i.e. LTL) formulated for traces. For
a detailed treatment of this logic the reader is referred to [44, 45].

665

As before, it will be notationally convenient to deal with distributed al-
phabets in which the names of the processes are posi t iveintegers. Through
this section and the next, we fix a distributed alphabet Z = {Zi}ie~, with
7) = (1 , 2 , . . . , K } and K _> 1. We let i , j and k range over 7). As before, let
P, Q range over non-empty subsets of 7). The trace alphabet induced by ,~ is
denoted (Z, I) . We assume the terminology and notations developed in the pre-
vious sections. In particular, when dealing with a 7)-indexed family {Xi}~e~ we
will often write just {Xi}.

The logic T rPTL is parameterized by the class of distributed alphabets_ Hav-
ing fixed Z we shall often almost always write T rPTL to mean T r P T L (Z) , the

logic associated with ~ . In order to bet ter illustrate the main features of the
logic we will first include atomic propositions. They will be dropped once we re-
turn to considering the technical aspects of the logic. We fix a finite non-empty
set of atomic propositions P with p, q ranging over P. Then #TrPTL(~)' the set

of formulas of T r P T L (~) , is defined inductively via:

- For p E P and i E 7), p(i) is a formula (which is to be read "p at i").
- If c~ and ~ are formulas, so are ~ a and a V/3.
- If a is a formula and a E Zi then (a)ia is a formula.
- If c~ and ~ are formulas so is cdli~.

Throughout this section, we denote ~TrPTL(~) 3.S jUSt ~. In the semantics of
the logic, which will be based on infinite traces, the/-view of a configuration will
play a crucial role. Let T E T R ~ with T = (E, <, £). Recall that Ei = (e f e E E
and £(e) E Zi}. Let c E CT and i E 7). Then $1(c) is the /-view of e and it is
defined as:

,L~(e) = $(cn Ei).

We note tha t $i(e) is also a configuration. It is the "best" configuration that
the agent i is aware of at c. We say that $i(c) is an i-local configuration. Let
C~ = ($i(c) t c E CT} be the set of / - local configurations. For Q c 7) and
e E CT, we let SQ(c) denote the set U{$i(c) I i E Q}. Once again, SQ(c) is a
configuration. It represents the collective knowledge of the processes in Q about
the configuration e.

The following basic properties of traces follow directly from the definitions.

P r o p o s i t i o n 15. Let T = (E, <, A) be an infinite trace. The following state-
ments hold.

1. Let <~ = < M (Ei × El). Then (Ei, <_i) is a linear order isomorphic to w if
El is infinite and isomorphic to a finite initial segment of w if Ei is finite.

2. (C~, C_) is a linear order. In fact (C~ - {0}, C) is isomorphic to (Ei, <_i).
3. Suppose $i(c) ~ 0 where c E CT. Then there exists e E E i such that $i(e) =

~ . In fact e is the <_i-maximum event in (e M Ei).
4. Suppose Q c_ Q' c_c - 7) and c E CT. Then SQ(c) =$q($Q' (c)). In particular,

for a single process i, $1(e) =¢(¢(e)).

666

We can now present the semantics of TrPTL. A model is a pair M =
(T, {Vi)iev) where T = (E, _<,A) E TR" and Vi : C~ ~ 2 P is a valuation
function which assigns a set of atomic propositions to / - loca l configurations for
each process i. Let e E CT and a E ~. Then M, c ~ a denotes that a is satisfied
at c in M and it is defined inductively as follows:

- M, c ~ p(i) for p E P iff p E Vi($i(c)).
- M , c ~ . , a i f f M , c~ :a .
- M , c ~ a V / 3 i f f M , c ~ a o r M , c ~ f l .
- M, c ~ (a)ia iff there exists e E E i - c such that A(e) = a and M, Se ~ a.

Moreover, for every e I E E i , d < e iff e ~ E c.
- M,c ~ aHi/3 iff there exists c' E CT such that c C_ c' and M,$i (d) ~ /3 .

Moreover, for every c" E CT, if $i(c) C_ $i(d') C $i(d) then M, $i(c") ~ a.

Thus T rPTL is an action based multi-agent version of LTL. Indeed both in
terms of its syntax and semantics, LTL(~) corresponds to the case where there
is only one agent. The semantics of T rPTL when specialized down to this case
yields the previous LTL(E) semantics.

Returning to TrPTL, the assertion p(i) says that the / -v iew of c satisfies the
atomic proposition p. Observe that we could well have p(i) satisfied at c but
not p(j) (with i # j) . It is interesting to note that all atomic assertions (that
we know of) concerning distributed behaviours are local in nature. Indeed, it is
well-known that global atomic propositions will at once lead to an undecidable
logic in the current setting [25, 36].

Suppose M = (T, {Vi}) is a model and c "-~T C' with j ~ loc(a). Then
M, c ~ p(j) iff M, d ~ p(j). In this sense the valuation functions are local.
There are, of course, a number of equivalent ways of formulating this idea which
we will not get into here.

The assertion (a) ia says that the agent i will next participate in an a-event.
Moreover, at the resulting/-view, the assertion a will hold. The assertion aHi/3
says that there is a future i-view (including the present/-view) at which/3 will
hold and for all the intermediate/-views (if any) starting from the current/-view,
the assertion a will hold.

Before considering examples of T r P T L specifications, we will introduce some
notation. We let a,/3 with or without subscripts range over #. Abusing notation,
we will use loc to denote the map which associates a set of locations with each
formula.

- loc(p(i)) = loc((a)ia) = loc(aL/i/3) = {i}.
- l o c (~ a) = t o c (a) .

- l o e (a V/3) = l o e (a) U loc(/3) .

In what follows, #i = {a [lot(a) = {i}} is the set o f / - t y p e formulas. We
note that unlike LTL ®, a T rPTL formula of the form (a)ia could have j E loe(a)
with j # i. A similar remark applies to the indexed until-operators.

A basic observation concerning the semantics of T r P T L can be phrased as
follows:

667

P r o p o s i t i o n 16. Let M = (T, {Vi}) be a model, c E CT and a a formula such
that loc(a) g Q. Then M, c ~ a iff M, SQ (c) ~ a.

A corollary to this result is tha t in case a E ~i then M, c ~ a if and only if
M,$i(c) ~ a. As a result, the formulas in ~ can be used in exactly the same
manner as one would use LTL ® to express properties of the agent i. Boolean
combinations of such local assertions can be used to capture various interaction
patterns between the agents implied by the logicM connectives as well as the
coordination enforced by the distributed alphabet ~. For writing specifications,
apart from the usual derived connectives that we already introduced in Section 2
for LTL, the following operators are also available:

- T ¢=~ Pl (1) V " P l (1) denotes the constant "True", where P = {Pl,P2,...}.
We use _1_ = ~ T to denote "False".

- <>~a ¢ ~ TL/ia is a local version of the O modality of LTL.

- Oia ~ ~'(>i -~a is a local version of the O modality of LTL.

- Let X C_ Z~ and X = Z~ - X. Then a/~X/3 ¢ ~ (a A Aaex[a]~±)U~/3. In
other words aL/X/~ is fulfilled using (at most) actions taken from X. We set

- a(i) ¢ ~ aLtia (or equivalently 3.lAia). a(i) is to be read as "a at i". If
U = (T, {~}) is a model and c E gT then U , c ~ a(i) iff U ,$ i (c) ~ a. It
could of course be the case that loc(a) # {i}.

A simple but important observation is that every formula is a boolean com-
bination of formulas taken from U~e~ qhi. In T rPTL we can say that a specific
global configuration is reachable from the initial configuration. Let {ai}iEP be
a family with a ¢ E qh~ for each i. Then we can define a derived connective
<>(al,a2,... ,aK) which has the following semantics at the empty configura-
tion. Let M = (T, {P~}) be a model. Then M, @ ~ O(al , a 2 , . . . , ak) iff there
exists c E CT such that M, c ~ a l A a2 A -.. A ag.

To define this derived connective set ~ = E1 and, for 1 < i < K, set
Z~ = Zi - U { Z j l l _< j < i}. Then ~)(al,a2,. . . ,aK) is the formula:

The idea is that the sequence of actions leading up to the required configu-
ration can be reordered so that one first performs all the actions in Z1, then all
the actions in Z2 - Z~ etc. Hence, if now is an atomic proposition, the formula
O(now(1), now(2) , . . . , now(K)) is satisfied at the empty configuration iff there
is a reachable configuration at which all the agents assert now.

Dually, safety properties that hold at the initial configuration can also be
expressed. For example, let crt~ be the atomic assertion declaring that the agent
i is currently in its critical section. Then it is possible to write a formula ~u~
which asserts that at all reachable configurations at most one agent is in its crit-
ical section, thereby guaranteeing that the system satisfies the mutual exclusion
property. We omit the details of how to specify ~ .

668

On the other hand, it seems difficult to express nested global and safety
properties in TrPTL. It is also the case that due to the local nature of the
modalities, information about the past sneaks into the semantics even though
there are no explicit past operators in the logic.

A formula a is said to be root-satisfiable iff there exists a model M such that
M, ~ ~ a. On the other hand, a is said to be satisfiable iff there exists a model
M = (T, {V/}) and c • CT such that M,c ~ a. It turns out that these two
notions are not equivalent. Consider the distributed alphabet ~0 = {El , 572}
with 571 = {a, d} and 572 = {b, d}. Then it is not difficult to verify that the
formula p(2)(1) A 02 ,-, p(2) is satisfiable but not root-satisfiable. (Recall that
p(2)(1) abbreviates A_/41p(2)). One can however transform every formula a into
a formula a r such that a is satisfiable iff a ~ is root satisfiable.

This follows from the observation that every a can be expressed as a boolean
combination of formulas taken from the set Uiep ~i. Hence the given formula a
can be assumed to be of the form a = \]jm=l(ajl A a j 2 A " "AOljg) where aji E ~i
for each j E {1, 2 , . . . , m} and each i • 7 ~. Now convert a to the formula a ~ where
a ' -- Vjm_l ~ (a j l , aj2," " ' , ajK). (Recall the derived modality O(a l , a 2 , . . . , O~g)
introduced earlier.) From the semantics of ~ (a l , a2 , . . . , aK) it follows that a is
satisfiable iff a * is root-satisfiable.

Hence, in principle, it suffices to consider only root-satisfiability in develop-
ing a decision procedure for TrPTL. There is of course a blow-up involved in
converting satisfiable formulas to root-satisfiable formulas. If one wants to avoid
this blow-up then the decision procedure for checking root-satisfiability can be
suitably modified to yield a direct decision procedure for checking satisfiability
as done in [44]. In any case, it is root satisfiability which is of importance from
the standpoint of model checking. Hence here we shall only develop a procedure
for deciding if a given formula of T rPTL is root-satisfiable.

As a first step we augment the syntax of our logic by one more construct.

- I r a is a formula, so is Oia. In the model M = (T, {Vi}), at the configuration
C E CT, M, c ~ Oia iff M,c ~ (a)ia for some a E Si . We also define
loc(O a) = {i}.

Secondly, we will from now on drop the atomic propositions and instead work
with the constant T and its negation J_ as done earlier. The semantic definitions
are assumed to be suitably modified.

Thus Oia - Vae~, (a)ia is a valid formula and Oi is expressible in the former
syntax. It will be however more efficient to admit Oi as a first class modality as
we did in Section 2.

Fix a formula ao. Our aim is to effectively associate an asynchronous au-
tomaton ,4a o with a0 such that a0 is root-satisfiable iff LTr(A~o) ~ 9. Since the
emptiness problem for asynchronous automata is decidable (Proposition 14), this
will yield the desired decision procedure. Let c/(a0) be the least set of formulas
containing ao which satisfies:

669

- ,,~a e d (ao) implies a e d (a o) .

- a V/3 E cl(ao) implies a,/3 E d(ao).
- (a)ia E cl(ao) implies a E cl(ao).
- Oia E cl(ao) implies a E cI(ao).
- ah/i~3 E cl(ao) implies a,f~ E cl(a0). In addition, Oi(al4i3) E cl(ao).

We then define CL(ao) to be the set. cl(ao) U { ~ [/ 3 E c/(ao)}.
Thus CL(ao), sometimes called the Fisher-Ladner closure of a0, is closed

under negation with the convention that ,,~,-~/3 is identified with/3. Moreover,
throughout the remainder of the section all formulas that we encounter will be
assumed to be members of CL(ao). From now we shall write CL instead of
CL(ao).

A C_ CL is called an i-type atom iff it satisfies:

- T E A .
- a E A i f f ~ a g A .
- a V / ~ E A i f f a e A o r / 3 e A .
- aUi/3 E A iff/3 E A or (a E A and Oi(abli/3) E A).
- If (a)ia, (b)i~ E Ai then a = b.

ATi denotes the set o f / - t ype atoms. We now need to define the notion of
a formula in CL being a member of a collection of atoms. Let a E CL and
{Ai}ieQ be a family of atoms with loc(a) C_ Q and A i e ATi for each i E Q.
We'll define the predicate Member(a,{Ai}ieQ), which for convenience will be
denoted by a E {Ai}ieQ. It is defined inductively as:

- If loc(a) = {j} then a E {Ai}ieQ iff a E Aj.
- If a = ~-/3 then a E {Ai}iEQ iff/3 ¢~ {A~}ieQ.
- If a = a l V a2 then o~ 1 V a 2 E {Ai}iEQ iff al E {Ai}iEQ or a2 E {Ai}ieQ-

The construction of the asynchronous automaton .A~ 0 is guided by the con-
struction developed for LTL in Section 2. However in the much richer setting
of traces it turns out that one must make cruciM use of the latest information
that the agents have about each other when defining the transitions of A~ 0.
It has been shown by Mukund and Sohoni [29] that this information can be
kept track of by a deterministic asynchronous automaton whose size depends
only on ~. (Actually the automaton described in [29] operates over finite traces
but it is a trivial task to convert it into an asynchronous automaton having
the desired properties). To bring out the relevant properties of this automaton,
let T E T R ~ with T = (E, <,A). For each subset Q of processes, the func-
tion [atestT,Q : CT X ~ ~ Q is given by latestT,Q(c,j) = ~ iff l is the least
member of Q (under the usual ordering over the integers) with the property
SJ($q(c)) C_ SJ($l(c)) for every q E Q. In other words, among the agents in Q,
I has the best information about j at c, with ties being broken by the usual
ordering over integers.

T h e o r e m 17 ([29]). There exists an effectively constructible deterministic asyn
chronous automaton ~4£ = ({Fi}, {::=~}, F~ , {(F~, F~')}) such that:

670

L L T , (A r) = T ~ .

2. For each Q = { i l , i 2 , . . . , in}, there exists an effectively computable]unction
gossipQ : Fi~ x Fi2 x . . . x Fi, x P -+ Q such that for every T • TFD', every
C • CT and every j • 7) , latestT, Q(c,j) = gossipQ(~/(il),... ,~/(in),j) where
Pr (c) = 7 and Pr is the unique (accepting) run of A r over T.

Henceforth, we refer to A r as the gossip automaton. Each process in the gossip
automaton has 2 °(K21°gK) local states, where K = IPl- Moreover the function
gossipQ can be computed in time which is polynomial in the size of K.

Each/ -s ta te of the automaton Aa 0 will consist of an / - t ype atom together
with an appropriate/-state of the gossip automaton. Two additional components
will be used to check for liveness requirements. One component will take values
from the set Ni = {0,1 ,2 , . . . , lUl l} where U~ = {aL/ifl I abli~ • CL} . This
component will be used to ensure that all "until" requirements are met. The
other component will take values from the set {on,off}. This will be used to
detect when an agent has quit.

The automaton A~o can now be defined as:

A.0 = ({s,}, {(F,,

where:

- For each i, Si = ATi ×Fi ×N~× {on,off}. Recall that Fi is the set of i-states of
the gossip automaton and Ni = {0, 1 , 2 , . . . , tUil} with Ui = {a/4ifl 1 a/4i~ e
CL}.

! - Let sa,s a E Sa with sa(i) = (Ai,Ti,ni,v~) and s~(i) = (A~,Ti,nl,v~)' ' for
8 t each i • Ioc(a). Then (a, s~) • - - -~ iff the following conditions are met.

• (%, 7'a) • ==~a (recall that { ~ } is the family of transition relations
of the gossip automaton) where %,7'a • Fa such that %(i) = 7~ and
7'~(i) = ~/~ for each i • loc(a).

• Vi, j • loc(a), A~ = A}.
Vi • loc(a) V(a)ia e CL. (a)ia e Ai iff a • A~.

• Vi • loc(a) VO~a • CL. Oia • A iff a • A~.
• Vi • loc(a)V(b)ifl • CL. If (b)i~ • Ai then b = a.
• Suppose j ¢ loc(a) and Z e CL with loc(~) = {j}. Further sup-

pose that loc(a) = { i l , i2 , . . . , iN} . Then fl • A~ iff fl • At where
g = gossiPloc(a) (7i,, q%, • • •, q'i,, j) .

• Let i • loc(a), Ui = {alLt iZl ,a2t~p2, . . . ,an, LtlZm}. Then u~ and ul are
related to each other via:

, r (u i+l) mod (n i+l) , if ui = 0 or flu, E Ai or au, L/~u, !i~ Ai
u~ = ~ ul, otherwise

• For each i E loc(a), vi = on. Moreover, if v~ = off then (a)~a ¢. A~ for
every i e loc(a) and every (a)~a e CL.

- Let s E S~, with s(i) = (Ai,~i,u~,vl) for every i. Then s e Sin iff ao e
{Ai}~e~ and ~/e Fin where 7 E Fp satisfies q,(i) = 7i for every i. Further-
more, ui = 0 for every i. Finally, for every i, vi = off implies tha t (a)ia ¢ A~
for every (a)ia E CL.

671

- For each i, F~ C_ Si is given by F~ = {(Ai,Ti,ui,vi) I ui = 0 and vi = on}
and Fi C_ Si is given by Fi = {(Ai,"/i,ui,vi) I vi = of[}.

This construction is an optimized version of the original construction for
T r P T L presented in [44, 45]. Note that ¢4~ o is indeed in s tandard form. Argu-
ments similar to those presented in [44, 45] lead to the next set of results.

T h e o r e m 1 8 .

1. ao is root-satisfiable iff LTr(A~o) 7 £ O.
2. The number of local states of Aao is bounded by 2 O(max(n,m21°gm)) where

n = lc~ol and m is the number of agents mentioned in ao. Clearly, m < n.
It follows that the root-satisfiability problem (and in fact the satisfiability
problem) for TrPTL is solvable in time 2 °(m~x('~,'~21°gm)'m).

The number of local states of each process in ~4~ o is determined by two
quantities: the length of c~0 and the size of the gossip automaton A t . As far as
the size of A r is concerned, it is easy to verify that we need to consider only
those agents in P that are mentioned in loc(c~o), rather than all agents in the
system.

The model checking problem for T rPTL can be phrased as follows. A finite
state distributed program Pr over ~ is an asynchronous automaton ,4pr =
(~ s Pr ~ .f ====:~ Pr l. .~ Pr ~[(s P r S Pr ~ ~ ~ modelling the state space of Pr.

t ~ J ~ t - - a l , ~ ' i n , t \ z , *] J J

Viewing a formula s0 as a specification, we say that Pr meets the specification
ao - - denoted P r ~ C~o - - if for every T E T R "~, if Ap~ has a run over T then
T, 0 ~ ao.

The model checking problem for T rPTL can be solved by "intersecting" the
program automaton ~4p~ with the formula automaton .4~~ 0 to yield an automa-
ton .4 such that LT~(A) = LT~(Mp~) M LT~(.4~c~o). As before, LT~(¢4) = ~ iff
Pr ~ ao.

It turns out that this model checking problem has time complexity
O(tAP~t" 20(m~x(n'm2 log m).m)) where IAp~I is the size of the global state space
of the asynchronous automaton modelling the behaviour of the given program
Pr and, as before, n = la0I and m is the number of agents mentioned in s0,
where s0 is the specification formula.

We now take a brief look at some related agent-based linear time temporal
logics over traces. The first one is the sublogic of TrPTL denoted which consists

con (from now on of the so called connected formulas of TrPTL. We define OTrPTL
written as ~ o ,) to be the least subset of • satisfying the following conditions:

- T E 4 ~¢°n and as before Loc(T) = ~}
- I f a , f l E o~on, so are ,,~a and a V f l .
- If a E ¢~o~ and a E Si such that loc(a) C_ loc(a) then (a)ia E ~o~.
- If a , fi E ~¢on with loc(c 0 = loc(¢~) = {i} then ~Aifl E ~¢o~. Actually one

need only demand that loc(c~), loc(/~) C ~{loc(a) I a E Si} but this leads to
notational complications that we wish to avoid here.

- If a E ~¢o, and loc(a) = {i} then Oia E ~°~. (Once again one needs to just
demand that a C_ ~{loc(a) I a E Si}.)

672

Connected formulas were first identified by Niebert and used by Huhn [22].
They have also been independently identified by Ran'lanujam [38]. Thanks to
the syntactic restrictions imposed on the next state and until formulas, past
information is not allowed to creep in. Indeed one can prove the following:

P r o p o s i t i o n 19. Let (~ E ~con. Then (~ is satisfiable i~ ~ is root-satisfiable.

Yet another pleasing feature of TrPTL c°n is that the gossip automaton can
be eliminated in the construction of the automaton Aa 0 whenever a0 E ~¢on. In
fact one can prove the following.

T h e o r e m 20. The satisfiability problem /or TrPTL ¢°n is solvable in time
2o(1~ol).

Once again, a suitably modified statement can be made about the associated
model checking problem. At present we do not know whether or not TrPTL is
strictly more expressive than TrPTL ¢°", but it is clear that LTL ® is a strict
sublogic of TrPTL c°n. We shall deal with the relative strengths of these logics
in the next section. Two of the four logics considered by Ramanujam [38] in a
closely related setting turn out to be LTL ® and TrPTL ¢°". We conjecture that
the other two logics are also expressible within TrPTL.

Katz and Peled introduced the logic ISTL [24] whose semantics has a trace-
theoretic flavour. In a subsequent paper by Peled and Pnueli [34] on ISTL, the
connection to traces was made more directly. Indeed this is one of the first in-
stances of the explicit use of traces in a temporal logical setting that we know
of. However, it has branching time modalities which permit quantification over
the so called observations of a trace. ISTL uses global atomic propositions rather
than local atomic propositions. Penczek has also studied a number of temporal
logics (including a version of ISTL) with branching time modalities and global
atomic propositions [36]. His logics are interpreted directly over the space of
configurations of a trace resulting in a variety of axiomatizations and undecid-
ability results. We feel that local atomic propositions (as used in TrPTL) are
crucial for obtaining tractable partial order based temporal logics. Niebert has
considered several/z-calculus versions of TrPTL [31, 32] and has obtained various
decidability results using a variant of asynchronous Biichi automata.

The temporal logic of causality (TLC) proposed by Alur, Peled and Penczek
is basically a temporal logic over traces [1]. The concurrent structures used in [1]
as frames for TLC can be easily represented as traces over an appropriately cho-
sen trace alphabet. The interesting feature of TLC is that its branching time
modalities are interpreted over causal paths. In a trace (E, _<, A), the sequence
eoel .- . E E ~ is a causal path if e0 < el < e2. . . . This logic admits an essen-
tially exponential time decision procedure for checking satisfiablity in terms of
a variant of Biichi automata called Street automata.

673

8 E x p r e s s i v e n e s s I s s u e s

Our aim here is to discuss some expressiveness issues concerning trace-based
linear time temporal logics. To set the stage we first quickly review the classical
case of sequences.

The monadic second-order theory of infinite sequences over Z is denoted
MSO(Z). Its vocabulary consists of a family of unary predicates {Ra}ae~, one
for each a E Z; a binary predicate <; a binary predicate E; a countable supply of
individual variables Vat = {x, y, z , . . . } ; a countable supply of set variables (i.e.
monadic predicate variables) SVar = {X, Y, Z , . . . } . The formulas of MSO(Z)
are then built up by:

- Ra(x), x < y and x E X are atomic formulas.
- If ¢ and ¢1 are formulas then so are ~ ¢ , ¢ V ¢', (3x)¢ and (3X)¢.

A structure for MSO(Z) is a w-sequence a E Z ~. Let Z be an interpretation
of the variables with Z : Vat ~ w and I : SVar ~ 2% Then the notion of a
being a model of ¢ under the interpretation Z, denoted a ~ z ¢, is defined in the
expected manner. In particular, a ~ z Ra(x) iff a(I (x)) = a (note that a E Z ~̀
is viewed as a : w) Z); a ~ z x < y iff Z(x) <_ l (y) (here < is the usual
ordering over w); a ~ z x E X iff E(x) E I (X) .

As usual, a sentence is a formula with no free variables. Each sentence ¢
defines an w-language, denoted L¢, where:

L¢ = {a l a ~ ¢}.

We say that L C_ Z ~ is MSO(Z)-definable iff there exists a sentence ¢ E MSO(E)
such that L = L¢. A celebrated result of Biichi [4] shows that the class of lan-
guages expressible by sentences in MSO(Z) coincides with the class of languages
recognized by Bfichi automata over Z. This class is the w-regular languages over
Z .

The first-order theory of infinite sequences over Z is denoted FO(Z) and is
obtained from MSO(Z) by abolishing the monadic second-order quantifications
from the logic. The semantics and notions of first-order definability are carried
over in the obvious manner.

A fundamental result in the theory of temporal logic is Kamp's Theorem [23]
which was later strengthened in [14] to establish that LTL(~) is expressively
equivalent to the FO(E) . The surprise here being that LTL(~) admits only a
bounded number of operators (one unary and one binary as we have formu-
lated it) whereas infinitely many operators of increasing arities can be defined in
FO(Z) . Secondly, as we saw in Section 2, the satisfiability problem for LTL(Z)
can be solved in deterministic exponential time. The satisfiability problem for
FO(~7) on the other hand, even when the sentences are interpreted over finite
words, is known to be non-elementary hard [43]. It is quite easy to see that
FO(~) - - and hence LTL(Z) - - is strictly less expressive than MSO(Z) in
the sense that there is a language which is MSO(Z)-definable but not FO(Z) -
definable. (Indeed this is the sense in which we shall compare the expressive

674

power of various logics in what follows.) For instance, as pointed out by Wolper
in a state-based setting [56], the language L C_ {a, b} ~ given by "a is executed at
every even position" is not definable in this logic. On the other hand, it is easy
to come up with a formula of MSO(22) defining L.

The expressive power of LTL can be extended to obtain the expressive power
of MSO while still guaranteeing an exponential time decidable satisfiability prob-
lem as demonstrated first in [57]. Here we sketch how the regular programs over

can be used to achieve this goal [19].
The syntax of regular programs over 22 is given by:

Prg(22) ::= a I -o + - , 1-0;-~ I~*-

With each program we associate a set of finite words via the map I1" II :
Prg(22) ---+ 2 E*. This map is defined in the standard fashion:

- Ilalt = { a } .
- II~o + ~'~11 = II~'oll U I1~'~11.
- I1~'o;~',11 = {7-on 17-o e II~roll and 7-1 E I1~'~11}"
- I lrr*ll = Uie, , , I1~"11, w h e r e

• I1~°tl = { c } a n d
• I1-~+'11 = {7-on 17-0 e 1t'11 and 7-, 6 11~11} for every i 6 w.

The set of formulas of DLTL(22) is given by the following syntax.

DLTL(22) ::= T I ,-,,:, I ~ v Z I a u ' % ~ e Prg(22)

A model is a w-sequence a E 22~. For 7- E prf(a) we define a, 7- ~ c~ just as
we did for LTL(22) in the case of the first three clauses. As for the last one,

- a,T ~ a U~I~ iff there exists T' E I1=11 such that TT' ~ prf(a) and a, TT' ~ 1~.
Moreover, for every T" such that ~ "4 T" -4 T', it is the case tha t ¢7, T T I1 ~ Oz.

Thus DLTL(22) adds to LTL(22) by strengthening the until-operator. To
satisfy c~ U~I~, one must satisfy a U/~ along some finite stretch of behaviour which
is required to be in the (linear time) behaviour of the program 7r. We associate
with a formula c~ of DLTL(22) the w-language La in the obvious manner.

A useful derived operator of DLTL is:

- (l r) e ,',~'.'. T / ~ a .

By replacing the until-modality of DLTL with the above derived operator we ob-
tain the sublogic DLTL- (22), which is essentially Propositional Dynamic Logic [13]
equipped with a linear time semantics. It turns out that DLTL(22) and DLTL- (22)
both have the same expressive power as MSO(Z).

T h e o r e m 21. Let L C_ 22~. Then the following statements are equivalent.

1. L is w-regular (i.e. definable in MSO(22)).
2. L is DLTL(22)-definable.
3. L is DLTL-(Z)-definable.

675

Both the satisfiablity and model checking problems for DLTL(Z) are decid-
able with the same time complexity as for LTL(Z:).

Let (E:,I) be trace alphabet. Then MSO(Z, I) , the monadic second-order
theory of infinite traces (over ~, I), has the same syntax as MSO(S:). The struc-
tures are elements of TRY(Z, I). Let T E TRY(Z, I) with T = (E, <,)~) and
let 2: : X -+ E be an interpretation. Then T~MS°R~(x) iff)~(I(x)) = a and
T ~MSO x < y iff I (x) _< Z(y). Hence, the essential difference is that the binary
predicate symbols is now interpreted as the causal partial order of the trace. The
remaining semantic definitions go along the expected lines. Each sentence ~ (i.e.,
a formula with no free occurrences of variables) defines the w-trace language

L~ = { T I T ~MSO ~fl}.

We say that L C_ TR ~ is MSO-definable iff there exists a sentence ~ in MSO(Z, I)
such that L = L~. It is known that MSO-definable languages are precisely the
regular trace languages; i.e. those recognized by asynchronous automata [11].

FO(5~,I), the first-order theory of traces, is defined in the obvious way.
Clearly it will be strictly weaker than MSO(Z, I). For more information the
reader is referred to [7]. Naturally both these theories can be made to handle
finite traces as well.

Through the rest of this section we fix a distributed alphabet Z and let (Z, I)
be the induced trace alphabet. By MSO(~) we shall mean the theory MSO(Z', I)
and similarly for FO(Z), the first-order fragment of MSO(~). In what follows
we shall often supress the mention of ~ as well as the induced (5~, I).

We first consider the logic LTL ®. Recall that product languages are trace
consistent and hence they induce trace languages via the map str. The resulting
trace languages will be called product trace languages. As might be expected,
the regular product trace languages are the ones obtained from regular product
languages via the map str. It is easy to show that not every (regular) trace lan-
guage is a product trace language [47]. It is also easy to see that LTL®-definable
trace languages constitute a strict subclass of regular product trace languages.
It has been shown that a product version of DLTL denoted DLTL ® captures
exactly the class of regular product trace languages [20]. We also claim that it
is an easy exercise to formulate a product version of MSO(Z) and show that it
captures exactly ~le regular product trace languages. Let us denote this ~roduct
version of MSO(Z') as MSO®(Z) and its first-order fragment as FO®(Z). It is
easy to show - - using Kamp's theorem - - that LTL®(5~) has exactly the same
expressive power as FO ® (~).

We also know that LTL ® is strictly weaker than TrPTL. First note that each
formula (say c~ of TrPTL) defines a trace language L~ via :

L a = { T I T , O~a} .

Hence we can compare the relative expressive powers of LTL ® and TrPTL. It is
known that ([30, 47]):

676

LTL ® C TrPTL c°n C TrPTL.

It is still open whether TrPTL ¢°n is equal to TrPTL in expressive power.
It is not difficult to show that TrPTL is no more expressive than the first-

order theory of traces but it is not known whether the converse also holds. It
would be nice to have a linear time temporal logic over traces patterned after
LTL which has the same expressive power as the first-order theory of traces. The
motivation is provided by the next result [11]:

P r o p o s i t i o n 22. Let L C E ~. Then the following statements are equivalent.

1. L is trace consistent and LTL(S)-definable.
2. {str(a) l a E L} is FO(~, I)-definabte.

Egged on by this result, recently a different kind of trace-based linear time
temporal logic called LTrL has been proposed [48]. This logic works directly
with a trace alphabet (i.e. it is not based on agents). It is interpreted over the
configurations of a trace and its syntax is given by:

LTrL(Z, I) ::= T] .~a l a V f l t (a) a l a V fl] (a - i)T .

Thus the syntax is very close to LTL except for the addition of a very restricted
past-operator. In fact, just a constant number of past-operators are present in
the logic; one for each action.

A model of LTrL(Z, I) is a trace T = (E, 5, A). Let c E CT be a configuration
of T. Then T, c ~ a will stand for a being satisfied at c in T. This notion is
defined inductively as follows:

- T , c ~ T .
- T, c ~ ~ a and T, c ~ a V fl are defined in the expected manner.
- T, c ~ (a)a iff there exists d E CT with c --~T e I with T, d ~ a.
- T, c ~ a U fl iff there exists d E CT with c C_ c' such tha t T, c' ~ ft.

Moreover, for every d I E CT, c C_ c" C d implies T, c" ~ a.
- T ,c ~ (a-l>a iffthere exists c' E CT with d a) T C.

The major result concerning LTrL is the following:

T h e o r e m 23 ([48]). Let L C_ T R Y (Z , I). Then the following statements are
equivalent.

1. L is FO(~, I)-definable.
2. L is LTrL(E,I)-definable.

Thus - - except for the addition of the restricted past-operators - - LTrL is
a generalization of Kamp's Theorem to the much richer setting of traces. Meyer
and Petit have shown that the past-operators can be eliminated without loss of
expressive power when the logic is interpreted over f n i t e traces [28]. A similar
result for infinite traces is not known at present. Unfortunately this logic does

677

not have a matching time complexity in relation to LTL. Recently Walukiewicz
has shown that the satisfiability problem for LTrL is non-elementary hard [53].
A related result concerns the logic TLPO formulated by Ebinger [10]. This is
also a linear time temporal logic interpreted over traces but with full-fledged
past-operators. TLPO is claimed to be expressively complete when interpreted
over f inite traces but nothing is known about the complexity of the satisfiability
problem nor about its expressive power in relation to infinite traces.

At present we do not know much about the relationship between TLC and
the logics we have mentioned so far, except that it is strictly weaker than the
monadic second-order theory of traces.

In an interesting recent development Niebert [32] has formulated a fixed
point based linear time temporal logic for traces in the setting of distributed
alphabets. This logic is denoted as vTrPTL. It is equal in expressive power
to the monadic second-order theory of traces and it has decision procedure of
essentially exponential time complexity. However, the formulas of this logic are
required to satisfy what appears to be awkward syntactic restrictions and it is
not clear how one could express global properties of interest in this formalism.

TLC

MSO = vTrPTL

FO L

TrPTL ~ MSO ® = DLTL ®

~ r P ~ L ~ ° ~

T
FO ® = LTL ®

Fig. 4. Relative expressive power of the logics

The relative strengths of the various linear time temporal logics over traces
mentioned in this section are displayed in Figure 4. A dotted (solid) arrow from
A to B indicates that B is at least as expressive as (strictly more expressive
than) A. Squiggled lines denote that the logics are incomparable to each other.

To conclude this section, a lot is known about linear time temporal logics
for traces but at present we still do not have - - unlike the case of sequences
- - pleasing counterparts to the first-order and monadic second-order theories of
traces.

678

9 Conclusion

In this paper we have at tempted an overview of linear time temporal logics inter-
preted over traces. We have mainly concentrated on the satisfiability and model
checking problems as well as expressiveness issues. The problem of axiomatizing
these logics seems to be a non-trivial task. Some partial results may be found
in [39]. In [34] the authors present proof rules for the logic ISTL with a trace
semantics together with a relative expressive completeness result. Reisig has also
developed a kit of proof rules for a version of UNITY logic [40, 41]. The models
of this logic are the non-sequential processes of a net system and the proof rules
are mainly designed to help reason about distributed algorithms modelled using
net systems.

At present not much is known about corresponding logics in a branching
t ime setting. Most of the at tempts in this direction have lead to logics whose
satisfiablity problems are undecidable [5, 25, 36]. It is however the case that the
model checking problem often remains tractable [5,36]. We do not know at
present whether the properties expressible in such logics have any type of "all-
or-none" flavour and if so whether one can develop some reduction techniques
for verifying such properties. Some preliminary at tempts in this direction have
been made in [16, 54].

References

1. Alur, R., Peled, D., Penczek, W.: Model checking of causality properties. Proceed-
ings of the 10th Annual IEEE Symposium on Logic in Computer Science, IEEE
Computer Society Press (1995) 90-100

2. Bell Labs Design Automation: FormalCheck tm. Fhrther information can be ob-
tained at http://www .be l l - l abs . com/formalcheck/

3. Bracho, F., Droste, M., Kuske, D.: Representation of computations in concurrent
automata by dependence orders. Theoretical Computer Science 174(1-2) (1997)
67-96

4. Biichi, J. R.: On a decision method in restricted second order arithmetic. Pro-
ceedings of the International Congress on Logic, Methodology and Philosophy of
Science, Stanford University Press (1960) 1-11

5. Cheng, A.: Petri nets, traces, and local model checking. Proceedings of the 4th In-
ternational Conference on Algebraic Methodology and Software Technology, Lec-
ture Notes in Computer Science 936, Springer-Verlag (1995) 322-337

6. Diekert, V.: Combinatorics of traces. Lecture Notes in Computer Science 454,
Springer-Verlag (1990)

7. Diekert, V., Rozenberg, G. (eds.): The book of traces. World Scientific (1995)
8. Droste, M.: Recognizable languages in concurrency monoids. Theoretical Computer

Science 150(1) (1995) 77-109
9. Droste, M., Gastin, P.: Asynchronous cellular automata for pomsets without auto-

concurrency. Proceedings of the 7th International Conference on Concurrency The-
ory, Lecture Notes in Computer Science 1119, Springer-Verlag (1996) 627-638

10. Ebinger, W.: Charakterisierung von sprachklassen unendlicher spuren durch
logiken. Dissertation, Institut fiir Informatik, Universitiit Stuttgart (1994)

679

11. Ebinger, W., Muscholl, A.: Logical definability on infinite traces. Theoretical Com-
puter Science 154(1) (1996) 67-84

12. Emerson, A. E.: Temporal and modal logic. In Handbook of Theoretical Com-
puter Science, volume B: Formal Models and Semantics, Elsevier Science Publish-
ers (1990) 996-1072

13. Fischer, M. J., Ladner, R. E.: Propositional dynamic logic of regular programs.
Journal of Computer and System Sciences 18(2) (1979) 194-211

14. Gabbay, A., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fair-
ness. Proceedings of the 7th Annual Symposium on Principles of Programming
Languages, ACM (1980) 163-173

15. Gastin, P., Petit, A.: Asynchronous cellular automata for infinite traces. Proceed-
ings of the 19th International Colloquium on Automata, Languages and Program-
ming. Lecture Notes in Computer Science 623, Springer-Verlag (1992) 583-594

16. Gerth, R., Kuiper, R., Peled, D., Penczek, W.: A partial-order approach to branch-
ing time model checking. Proceedings of the 3rd Israeli Symposium on Theory of
Computing and Systems, IEEE Computer Society Press (1995) 130-139

17. Godefroid, P.: Partial-order methods for the verification of concurrent systems.
Lecture Notes in Computer Science 1032, Springer-Verlag (1996)

18. Gerth, R., Peled, D., Vardi, M., Wolper, P.: Simple on-the-fly automatic verifi-
cation of linear time temporal logic. Proceedings of the 15th IFIP WG 6.1 In-
ternational Workshop on Protocol Specification, Testing, and Verification, North-
Holland (1995)

19. Henriksen, J. G., Thiagarajan, P. S.: Dynamic linear time temporal logic. Journal
of Pure and Applied Logic, Elsevier (to appear)

20. Henriksen, J. G., Thiagarajan, P. S.: A product version of dynamic linear time
temporal logic. Proceedings of the 8th International Conference on Concurrency
Theory, Lecture Notes in Computer Science 1243, Springer-Verlag (1997) 45-58

21. Holzmann, G. J.: An overview of the SPIN model checker. In "On-the-fly Model
Checking Tutorial", BRICS Autumn School on Verification, Note NS-96-6, BRICS,
Department of Computer Science, University of Aarhus (1996)

22. Huhn, M.: On semantic and logical refinement of actions. Technical Report, Institut
fiir Informatik, Universit~t Hildesheim, Germany (1996)

23. Kamp, H. R.: Tense logic and the theory of linear order. Ph.D. thesis, University
of California (1968)

24. Katz, S., Peled, D.: Interleaving set temporal logic. Theoretical Computer Science
73(3) (1992) 21-43

25. Lodaya, K , Parikh, R., Ramanujam, R., Thiagarajan, P. S.: A logical study of
distributed transition systems. Information and Computation 119(1) (1995) 91-
118

26. Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems
(specification), Springer-Verlag (1991)

27. Mazurkiewicz, A.: Concurrent program schemes and their interpretations. Techni-
cal report DAIMI PB-78, Department of Computer Science, University of Aarhus,
Denmark (1977)

28. Meyer, R., Petit, A.: Expressive completeness of LTrL on finite traces: an alge-
braic proof. Proceedings of the 15th Annual Symposium on Theoretical Aspects
of Computer Science 1373, Lecture Notes in Computer Science, Springer-Verlag
(1998) 533-543

29. Mukund, M., Sohoni, M.: Keeping track of the latest gossip in a distributed system.
Distributed Computing 10(3) (1997) 117-127

680

30. Mukund, M., Thiagarajan, P. S.: Linear time temporal logics over Mazurkiewicz
traces. Proceedings of the 21st International Symposium on Mathematical Foun-
dations of Computer Science, Lecture Notes in Computer Science 1113, Springer-
Verlag (1996) 62-92

31. Niebert, P.: A v-calculus with local views for systems of sequential agents. Pro-
ceedings of the 20th International Symposium on Mathematical Foundations of
Computer Science, Lecture Notes in Computer Science 969, Springer-Verlag (1995)
563-573

32. Niebert, P.: A temporal logic for the specification and validation of distributed
behaviour. Ph.D. thesis, University of Hildesheim (1997)

33. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains,
part I. Theoretical Computer Science 13(1) (1981) 85-108

34. Peled, D., Pnueli, A.: Proving partial order properties. Theoretical Computer Sci-
ence 126(2) (1994) 143-182

35. Peled, D.: Partial order reduction: model checking using representatives. Proceed-
ings of the 21st International Symposium on Mathematical Foundations of Com-
puter Science, Lecture Notes in Computer Science 1113, Springer-Verlag (1996)
93-112

36. Penczek, W.: Temporal logics for trace systems: on automated verification. Inter-
national Journal of the Foundations of Computer Science 4(1) (1993) 31-68

37. Pnueli, A.: The temporal logic of programs. Proceedings of the 18th Annual Sym-
posium on Foundations of Computer Science, IEEE Computer Society Press (1977)
46-57

38. Ramanujam, R.: Locally linear time temporal logic. Proceedings of the l l t h Annual
IEEE Symposium on Logic in Computer Science, IEEE Computer Society Press
(1996) 118-127

39. Ramanujam, R.: Rules for trace consistent reasoning. Proceedings of the 3rd
Asian Computing Science Conference, Lecture Notes in Computer Science 1345,
Springer-Verlag (1997) 57-71

40. Reisig, W.: Temporal logic and causality in concurrent systems. Proceedings of
CONCURRENCY'88, Lecture Notes in Computer Science 335, Springer-Verlag
(1988) 121-139

41. Reisig, W.: Petri net models for distributed algorithms. In Computer Science Today
- - Recent Trends and Developments, Lecture Notes in Computer Science 1000,
Springer-Verlag (1995) 441-454

42. Sistla, A. P., Clarke, E.: The complexity of propositional linear temporal logics.
Journal of the ACM 32(3) (1985) 733-749

43. Stockmeyer, L. J.: The complexity of decision problems in automata theory and
logic. Ph.D. thesis, MIT, Cambridge, Massachusetts (1974)

44. Thiagarajan, P. S.: A trace based extension of linear time temporal logic. Proceed-
ings of the 9th Annual IEEE Symposium on Logic in Computer Science, IEEE
Computer Society Press (1994) 438-447

45. Thiagarajan, P. S.: TrPTL: a trace based extension of linear time temporal logic.
Technical report TCS-93-6, School of Mathematics, SPIC Science Foundation,
Madras (1993)

46. Thiagarajan, P. S.: A trace consistent subset of PTL. Proceedings of the 6th Inter-
national Conference on Concurrency Theory, Lecture Notes in Computer Science
962, Springer-Verlag (1995) 438-452

47. Thiagarajan, P. S.: PTL over product state spaces. Technical report TCS-95-4,
School of Mathematics, SPIC Science Foundation, Madras (1995)

681

48. Thiagarajan, P. S., Walukiewicz, I.: An expressively complete linear time temporal
logic for Mazurkiewicz traces. Proceedings of the 12th Annual IEEE Symposium
on Logic in Computer Science, IEEE Computer Society Press (1997) 183-194

49. Thomas, W.: Automata on infinite objects. In Handbook of Theoretical Com-
puter Science, volume B: Formal Models and Semantics, Elsevier Science Publish-
ers (1990) 133-191

50. Valmari, A.: A stubborn attack on state explosion. Formal Methods in Systems
Design 1 (1992) 285-313

51. Vardi, M. Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. Proceedings of the 1st Annual IEEE Symposium on Logic in Computer
Science, IEEE Computer Society Press (1986) 332-345

52. Vardi, M. Y.: An automata-theoretic approach to linear time temporal logic. In
Logics for Concurrency - Structure vs. Automata, Lecture Notes in Computer
Science 1043, Springer-Verlag (1996) 238-266

53. Walukiewicz, I.: Difficult configurations - - on the complexity of LTrL (extended
abstract). Proceedings of the 25th International Colloquium on Automata, Lan-
guages and Programming. Lecture Notes in Computer Science, Springer-Verlag (to
appear)

54. Willems, B., Wolper, P.: Partial-order methods for model checking: from linear
time to branching time. Proceedings of the 11th Annual IEEE Symposium on
Logic in Computer Science, IEEE Computer Society Press (1996) 294-303

55. Winskel, G., Nielsen, M.: Models for concurrency. In Handbook of Logic and the
Foundations of Computer Science, volume 4, Oxford University Press (1995) 1-148

56. Wolper, P.: Temporal logic can be more expressive. Proceedings of the 22nd Annual
IEEE Symposium on Foundations of Computer Science, IEEE Computer Society
Press (1981) 340-348

57. Wolper, P., Vardi, M. Y., Sistla, A. P.: Reasoning about infinite computation paths.
Proceedings of the 24th Annual IEEE Symposium on Foundations of Computer
Science, IEEE Computer Society Press (1983) 185-194.

58. Zielonka, W.: Notes on finite asynchronous automata. R.A.I.R.O. Informatique
Thdorique et Applications 21 (1987) 99-135

