Petri Nets and Digital Hardware Design

Alexandre V. Yakovlev and Albert M. Koelmans

Department of Computing Science
University of Newcastle upon Tyne, NE1 7RU, England

Abstract. Petri nets are a powerful language for describing processes
in digital hardware, and particularly asynchronous or self-timed circuits.
Self-timed circuits are designed to operate without the use of a global
clock signal. Applications for such circuits are likely to increase during
the next decade, due to problems with on-chip event coordination as
VLSI technology approaches a density of one hundred million transistors
per chip. Designing such circuits without help of formal tools does not
seem to be possible. We present an overview of the methods for specifi-
cation, verification and synthesis of asynchronous circuits with the aid of
Petri nets. We present a number of design examples which are used to il-
lustrate the authors’ belief that Petri nets could become widely accepted
by digital system designers as a design method.

1 Introduction

1.1 Role of hardware in modern systems

Modern computers, telecommunication systems, items of consumer electronics,
and many other examples of systems controlled by a “silicon brain”, have com-
plex, multilayered architectures, implemented partly in hardware and partly in
software. The hardware and software parts used to be clearly separated both in
the tasks they had to perform and in the way they were designed, implemented
and tested. This situation is now changing rapidly. Software design technologies
have moved into the abstractions of object-orientation and distribution, and
hardware design methodologies are following. Consider for instance the world of
consumer electronics. The challenges posed by these applications are enormous.
Such systems must for example be able to perform a billion operations per sec-
ond to cope with video applications. To allow this, many of their functions must
be embedded in hardware. Making them as cheap as possible means designing
and fabricating them in a short time, say with a concept-to-manufacture cycle
of less than one year.

1.2 Role of hardware design tools

With the advent of submicron VLSI technology, which will soon enable hundreds
of millions of transistors to be placed on a single chip, hardware design is facing
new challenges [113, 143]. To cope with this complexity, and with the need to
produce new VLSI designs efficiently, designers must be provided with adequate
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development techniques and tools. What is needed is a well-integrated design
system that combines simulation, synthesis, verification and testing capabilities.
Such an environment must allow examination of the behaviour of a whole system,
redesign of some of its parts, and reconfiguration of other parts if necessary.
It must perform all of these tasks efficiently and without loss of accuracy. At
present, the electronics industry often lacks feedback in the design process. It is
often realised that previous design decisions were wrong at a point in the design
cycle when it is too late or too costly to change anything. The designer should be
able to model the system at most levels of detail before commiting to a particular
design route. An important issue is that of the reusability of design components.
While in software design the notion of a reusable component is hardly new, the
circuit designer has always been faced with the problem that circuit details are
heavily dependent on the details of a particular silicon technology. It is therefore
crucial for design methods to support the necessary modularity and technology
independence.

1.3 Role of modelling language

Design methods and tools require appropriate modelling and specification tech-
niques. These techniques must be formal and rigorous, but also easy to compre-
hend. In the past, logic designers used to draw logic gate diagrams directly from
semi-formal specifications, defined by timing diagrams. The only way to prove
that the circuit performed correctly was to observe its behaviour with a logic
analyser. Today, the specification may not necessarily be defined at the level of
signal waveforms. It may be presented in a much more abstract form, similar
to a software specification. It is the designer’s responsibility to refine the orig-
inal specification in such a way that functional equivalence is preserved. Those
refinements may differ in speed (say, degree of parallelism between individual
component actions) and implementation cost (e.g., the number of gates or lay-
out area). These factors should be allowed to influence the design process, and
the modelling language must account for such non-functional design qualities.

1.4 Why Petri Nets

Why are Petri nets a good formalism to assist the designer and support hardware
design tools? The language of Finite State Machines {(FSM) has also been used
by digital designers. Unlike timing waveforms, FSMs allow formal specification
of and reasoning about hardware. Many existing software tools support the syn-
thesis, verification and tfesting of systems using FSM representations [114]. So,
why are FSMs not sufficient, and for what type of hardware are Petri nets more
appropriate?

Why not Finiie State Machines? The main characteristic of the FSM-based ap-
proach is that the system defined as an FSM is sequential. For a given input signal
and a particular state, the system may move to another state and produce an
output signal. While the system is performing a state transition, its inputs are
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assumed to be stable. The process of changing state is seen as an atomic ac-
tion. Even if the FSM representation allows modelling of non-sequential effects
such as races, which are caused by concurrent transitions of state vector compo-
nents, the model still uses the notion of a global state, and any concurrent signal
transitions are modelled as a set of possible interleavings of state transitions.

The FSM approach suggests the notion of an FSM composition for the mod-
elling of large systems. Corresponding verification techniques and tools are es-
sentially based on the theory of FSM products, which usually leads to a com-
binatorial state explosion. In order to bridle the complexity of the composition,
the FSM approach must avoid the explicit construction of a product FSM, but
then it faces the problem of adequate interpretation of concurrency, parallellism,
and synchronisation between transitions in the different FSMs.

Petri nets can act as FSMs if the modelled system is totally sequential. How-
ever, if there is an explicit need to model concurrency without showing it in its
interleaving form, even for the purposes of a more compact representation, Petri
nets are adequate for doing so.

What are the advaniages of Peiri Nets? The area of hardware design has tra-
ditionally been a fertile application area for research in concurrency and Petri
nets using new ideas in modelling and verification [51, 86, 72, 73]. Similarly, the
theory and practice of digital system design has always recognised Petri nets
as a powerful and easy-to-comprehend modelling tool [66, 93]. In this paper,
when we talk about the use of Petri nets and other models of concurrency in
hardware design, we assume almost everywhere asynchronous circuit design®.
The reasons for this are twofold. Firstly, any synchronous circuit, i.e. a circuit
operating under the control of a global clock signal, can be considered as a spe-
cial case of an asynchronous system, where the clock signal is just an additional
event-generating component. The second reason is due to a crucial similarity
between asynchronous hardware and Petri nets. The paradigms of asynchrony
and concurrency are intrinsic to the behaviour of both. It would be very diffi-
cult to talk about concurrency in the presence of a clock signal used as a global
event scheduler. Thus, it would probably be less inferesting to apply Petri net
modelling techniques to the analysis of clocked circuits.

1.5 Historical Review

We present here a brief historical outline of the relationship between Petri nets
and hardware design developed in the last four decades.

1950°s and 1960°s: Foundations. The earliest work was done by D.E. Muller
on the theory of asynchronous circuits. The notions of concurrency, conflicts,

convergence etc. were developed by hardware researchers a few years before
they learned about the net formalism proposed by C.A. Petri. The theory of

! This paper also presents {Section 7) & brief overview of existing techniques for the
synthesis of synchronous controllers from Petri nets.
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speed-independent circuits presented by D.E. Muller and W.C. Bartky [85, 76]
introduced ideas of feasible sequences, final equivalence classes, confluence, semi-
modularity and distributivity. Muller’s work was based on the “state-transition”
modelling paradigm with its interleaving semantics, because it was mostly an
analysis-oriented investigation. However, it gave rise to new ideas in synthe-
sis, too. For example, the language of change charts [36, 119], apparently the
first “condition-event” approach to circuit specification, was formally related to
Muller’s state-based circuit classification [76]. The 1960’s were therefore the time
when the idea of expressing concurrency in its natural form was fostered amongst
digital design theoreticians fairly independently from the first work on net the-
ory. Eventually, the elegance and simplicity of a net form was duly appreciated
by circuit designers. For example, C. Molnar and his colleagues began o use
Petri nets, with signal names annotating net transitions, to specify the interface
behaviour of a circuit. At the same time, work of R.M. Karp and R.E. Miller
[50] on parallel program schemata established a very important link between a
formal model of concurrency and its interpretation {(which could be arbitrary,
e.g. that of an asynchronous logic network).

1970°s: Towards Parallel Computations. When research into Petri nets grew in
the 1970’s, it quickly became the choice formalism for research into data flow
computers and distributed architectures. Several illuminating structural meth-
ods for logic synthesis with Petri nets [79, 97, 34] and related formalisms, such
as parallel flow graphs [26], were developed. These methods originated from the
seminal MAC project at M.1.T. led by J.B. Dennis. Almost simultaneously, Petri
nets gave rise to an alternative structural approach, developed at the Aerospace
Research Centre in Toulouse [15]. Such structural techniques are now usually ref-
ered to as methods of direct translation of a (behavioural) specification into the
circuit implementation, so as to differentiate them from the logic synthesis meth-
ods developed later. Work by J.R. Jump and P.S. Thiagarajan [48, 49] played
an important role in bridging the idea of interfacing speed-independent circuits
and the notion of composition in a class of labelled marked graphs. Another
good example is work of M. Yoeli [142]. In parallel, new techniques for design-
ing asynchronous control structures, very much in the style of Petri net based
methods, had emerged [10]. Structural methods were studied and enhanced with
additional modelling constructs and circuit components in the USSR-based work
on aperiodic automata [2, 127}, led by V.V. Varshavsky. In the UK, work on an
asynchronous computer [83] and a design language called MUDL at Manchester
University stimulated the use of Petri net models [52]. An interesting method for
modelling and analysis of switching circuits with Petri nets was proposed in Ger-
many [37]. Timed Petri nets were developed and applied [100] for the purpose of
performance analysis. Despite their elegance and formal clarity, these methods
were not very efficient from the point of view of system size and performance.
They also completely relied on the designer’s experience if model optimisation
was required. They were not supported by software tools for the exploration of
large state spaces and the solving of complex optimisation tasks.
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1980°s: First progress in VLSI design. The first book on very large scale inte-
grated (VLSI) systems design, written by C. Mead and L. Conway, appeared in
1980 and quickly became a bible on such design. Notably it included a special
chapter on self-timed circuits, written by Ch. Seitz [105], which prophesied the
increasing role of asynchronous systems in future generations of hardware, and
called for models and methods to make their design efficient. It was an inspiring
call for Petri net users. At the same time, the 1980’s saw Petri nets gradually
evolving into an independent computer science subject. One of the most re-
markable lines of research, into the semantics of concurrency [45, 89], led to the
exploration of similarities and differences between Petri nets and logic circuits.
For example, the notion of atomicity in transition firing and conflict resolution
in Petri nets was a high level abstraction of physical effects in circuits. This
generated a number of theoretical problems affecting the use of Petri nets for
the verification and synthesis of asynchronous circuits {120]. By the end of the
1980’s, which saw enormous progress of VLSI technologies and the emergence of
powerful software for logic synthesis and verification, Petri nets had attracted
attention as a potential practical tool for hardware design. The first work on Sig-
nal Transition Graphs, both in the USSR [104, 63] and the USA [20, 18, 19], laid
a foundation for their long-term exploitation in VLSI design. Initial attempts to
design asynchronous designs with timing constraints specified in Petri net models
were also made in [104]. The design-oriented links between Petri nets and self-
time circuits were demonstrated in one of the most comprehensive monographs
on asynchronous design [127].

1980’s: Towards powerful design tools. In the 1990’s, strengthened both descrip-
tively (high-level nets) and analytically (new semantics and related verification
methods), Petri nets are being used ever more widely. For instance, high-level
nets have already helped to tackle the modelling and verification of very com-
plex hardware [115]. Signal Transition Graphs and their close relative, Change
Diagrams [55], have uncovered numerous problems relating to the synthesis of
asynchronous circuits under bounded and unbounded delays and their hazard-
free implementation. These problems required new methods and algorithms for
checking various properties of interpreted Petri nets and their respective state
graphs, such as consistency and completeness of state assignment, and mono-
tonicity of boolean covers. In pursuit of efficient analysis and synthesis proce-
dures, new methods were developed, such as structural analysis [94], symbolic
traversal [96], and partial order (unfoldings) [75, 74]. Analysis of Petri net mod-
els with time annotation, a traditionally challenging area of research, has found
its application in the analysis and synthesis of hardware designs with timing
constraints [44, 87). The problem of producing hardware implementable event-
based specifications has been greatly assisted by the progress in the theory of
regions and Petri net synthesis from transition systems [31, 30, 27, 90, 23].
This overview underlines the importance of the long-term relationship be-
tween Petri nets and hardware design, and its benefits for bridging the gap
between computer science and electronic engineering. Some of the techniques,
especially those concerned with modular synthesis of circuits by means of syntax-
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direct translation from Petri nets, are only familiar to a limited audience. Recent
research has focused on the logic synthesis approach, under the assumption that
this is where the real power of Petri nets and Signal Transition Graphs lies.
Other approaches, such as Communicating Processes and Process Algebras, are
often seen as better suited to design at higher level of abstraction, and hence are
predominant in the area of syntax-directed synthesis. Such a subdivision of the
“spheres of influence” is in our opinion unfair, and restricts the genuine potential
of Petri nets.

The remainder of this tutorial is organised as follows. Section 2 presents a
general introduction to the principles underlying asynchronous circuits. Section
3 introduces design transformations, which are used as a first step towards the
synthesis of the final circuit. Section 4 gives an overview of the abstract design
stage. In section 5, logic synthesis is discussed in detail. Finally, in sections 6
and 7, we briefly discuss software tools and synchronous design strategies.

2 Asynchronous Circuits

This section presents an introduction to the principles of circuits designed to
operate without a clock signal. Such circuits or systems, traditionally called
asynchronous, are also called self-timed [105] or self-clocking 2 This section will
firstly present an informal overview of what an asynchronous circuit is. Then,
a number of advantages of such circuits over their clocked counterparts will
be examined. This will be followed by reasons why the main focus should be
on control logic rather than datapath logic. We will conclude this section with
a classification of asynchronous design stages and a presentation of examples.
This section is therefore mostly addressed to readers with a limited background
in digital design.

2.1 What is an asynchronous circuit?

An asynchronous circuit can be regarded as a hardwired version of a parallel
distributed program [4, 16], in which statements or actions are activated if their
preconditions are true. However, unlike parallel programs, which normally ex-
ist on top of some run-time mechanism, asynchronous circuits do not need an
underlying mechanism. Their “statements” are their own physical components,
such as logic gates, memory latches, or complex hierarchical modules. These
components have inputs and outputs which are connected by means of wires.
The role of the data exchanged between them is played by switching events thai
occur on the interconnection signals. The conditions that activate these modules
are coused by similar events on their inputs. These conditions are evaluated by

2 We hope that the reader, particularly the reader without a special hardware back-
ground, will appreciate the difference between this interpretation of “synchronous
versus asynchronous” and the one often used in referring to different types of inter-
action between system components. For instance, in the area of real-time systems, the
term “synchronous” is usually connected with the “rendez-vous” type of interaction.
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the components in much the same way as the above-mentioned preconditions in
parallel programs.

Physical level. Although we talk about “parallel programs” of the lowest possible
level, this level is still a logical abstraction. Systems built from logic gates are
themselves models of the real hardware, which behaves according to the laws of
physics! Strictly speaking, in order to fully investigate the dynamic behaviour
of switching processes in hardware, one should refer to the physical models of
the circuits [105]. This can be done by means of systems of differential equations
that describe a circuit as a dynamical system [9, 38]. It is convenient to sacrifice
some modelling accuracy because of the complexity of the analogue models.
These grow enormously with the size of the circuit, which makes analysis of
systems consisting of more than a few gates infeasible.

Fortunately, in most cases it is possible to apply a discrete-event abstrac-
tion mechanism to asynchronous hardware. We only consider systems at the
discrete level, with signals encoded as Boolean variables and switching events
as transitions from logical 0 to logical 1 and vice versa, called up and down
transitions, respectively. There is of course a class of behaviours, traditionally
seen as anomalous phenomena in digital hardware, which is referred to when
the above-mentioned assumptions cannot be guaranieed. Examples of such phe-
nomena are hazards and metastability. Calling them “anomalous” is not really
fair because they are “necessary elements” of concurrency in electronic systems.
They can be approximated in discrete terms but only under certain assumptions
(see e.g. [12, 137]). However, given the discrete nature of Petri nets, this body of
research falls outside the scope of this tutorial. The interested reader may refer
to [69, 17]).

Logical level. At the logical level, the behaviour of an asynchronous circuit can
be characterised by sequences of up and down transitions on the inputs and
outputs of its components. The order between these transitions is not prescribed
by any global scheduler or clock, and is determined by the local causal relation-
ships between transitions. Such an order cannot be total, due to the locality of
dependence between signals, and hence should be considered as partial. When
a component is ready to switch its outputs, it does so without any additional
enabling factor. By contrast, in synchronous devices switching can only take
place when the enabling signal from the clock arrives. Designing a circuit with
the ability to act completely on the basis of causal relations between switching
events is the essential principle of self-timed design. In many ways, this behaviour
resembles that of a Petri net.

Figure 1(a) illustrates the principles involved in the design of a simple asyn-
chronous circuit. The circuit performs the calculation out = (a+b)*(z+y). The
major part of the circuit, the data path, consists of two adders and a multiplier.
In addition, there is a conirol element called C, the Muller C-element, that con-
trols the operation of the data path. In order to allow control of the data path,
the adders and the multiplier have an extra input called ‘req’ (for request) and
an extra output called ‘ack’ (for acknowledgement). A logic block is triggered
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when the appropriate signal arrives on the ‘req’ input. Once the operation is
completed, the ‘ack’ signal is asserted. Since adders have variable completion
times, which depend on the values on the input signals and the length of the
carry path they generate, the Muller C-element is used to trigger the multiplier
only when both adders have completed. Figure 1(b) and 1(c) show the Petri
nets for the data path and control logic, respectively. Figure 2 shows an nMos
circuit implementation for the C-element. Its functionality is described by the
following Boolean equation: OUT = ab + (a + b)out, where OUT is the new
value of the output, while out denotes its previous value, arriving as a feedback
at the input. In this circuit, the two cross coupled transistors T1 and T2 form
a memory element (a latch). The output of the circuit assumes the value of the
inputs when both inputs are equal. The latch preserves the output when one of
the inputs changes. So, the output of the circuit changes only when both inputs
have changed.
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ack]

req2 ——= req3 i 2Ck 3
a —»| + %
b — out
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\@ @/ ackl ack2

+ out rea?

(b) (©)

Fig. 1. (a) example circuit (b) data path Petri net (c) control Petri net

Speed-independent and delay-insensitive circuits. Note that self-timed circuits
such as the C-element are generally much more robust to variations of delays
in their components, gates and wires, than synchronous circuits. The ability to
preserve the same partial ordering in their behaviour regardless of component
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Fig. 2. Circuit implementation of the C-element

delays and variable completion times in the data path is an essential feature
of self-timed circuits, making them indeed similar to Petri nets. Depending on
the level of delay insensitivity of their behaviour, asynchronous circuits are of-
ten subdivided into classes. The most well-known historically is the class of
speed-independent circuits. Their behaviour is insensitive to variable delays at
the outputs of logic gates, although they can be sensitive to variations in the
delays of the interconnections between gates. In other words, speed-independent
circuits are hazard-free under the unbounded gate delay model. A hazard is an
anomalous behaviour of the circuit, i.e. a deviation from its normal functioning.
A more restricted subclass of circuits, whose behaviour is independent of boih
gate and wire delays, is called the class of delay-insensitive circuits. A less re-
stricted class of circuits, which operate with some delay assumptions, is called
the class of asynchronous bounded-delay circuits. Synthesis and verification of
these classes has attracted most of the research in the last decade. Other tax-
onomies of asynchronous circuit design, such as classes of delay models, different
switching semantics, types of causality and their relationship with Petri nets,
may be found in [137, 132].

A synchronous implementation of the example circuit of Figure 1 would leave
out the C-element and the ‘req’ and ‘ack’ signals. Whenever new input values
would arrive, the adders would generate new outputs, typically at different times.
This in turn would lead to gliiches on the output of the multiplier, as it would be
presented with new input values in rapid succession. The circuit designer would
have to ensure that the clock signal of the overall circuit was slow enough to en-
sure that all glitches had disappeared at the start of the next clock cycle. So, in
a synchronous implementation, the clock signal would have to take into account
the worst possible delay through the adders, even though the input patterns that
would generate such delays would occur rarely. The circuit would thus be idle
for significant periods of time. The glitches in the circuit would consume power,
which would be wasted. The clock signal itself would use typically half of the
power consumed by the entire chip. By contrast, the asynchronous implementa-
tion would run at average speed, since it would continue as soon as the adders
had completed. Power consumption would be only a fraction of the synchronous
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implementation since there are no spurious glitches and no clock.
Let us discuss the arguments in favour of the design of hardware using the
priciples of self-timing in more detail.

2.2 Why go asynchronous?

It should be quite clear from the above simple example that implementing the
idea of synchronisation between two independent operands with the aid of a
clock signal is less natural than with a self-timed two-input C-latch. There are
a number of arguments in favour of asynchronous circuits:

— Performance. In clocked circuits, the logic is designed to operate in stages.
Latches are used to hold input and output data between stages. Data transfer
between stages takes place under the control of the clock signal. The period of
the clock must be set to the worst case delay in these stages. In asynchronous
circuits, modules propagate their switching conditions by themselves. As a
result, their activity is limited by actual, not worst case, delays.

— Power efficiency. A clocked chip dissipates power even when it does no useful
work, simply because the clock beats away and generates enable signals to all
parts of the circuit. Typically, the clock will consume half of the total power
requirements of a chip. Gating the clock from the idle parts of the logic, e.g.
by means of a special “sleep-mode” conirol signal, alleviates the problem, but
cannot solve it radically. An asynchronous chip achieves near-zero standby
power in the idle state.

— Clock skew. Reliable clock distribution is a big problem in complex VLSI
chips because of the clock skew effect. It is caused by variations in wiring
delays to different parts of the chip. It is assumed that the clock signal fires
off the different stages of the chip simultaneously. However, as chips get
more complex and logic gates reduce in size, the ratio between gate delays
and wire delays changes so that the latter begin to affect significantly the
operation of the circuit. Asynchronous circuits need not deal with clock skew
problems, and although they can also be subject to the bigger effect of wire
delays, those problems are solved at a much more local level.

— Metastability. All synchronous chips interact with the outside world, e.g. via
interrupt signals. This interaction is inherently asynchronous. A synchroni-
sation failure may occur when an unstable asynchronous signal is sampled by
a clock pulse into a memory latch. Due to the dynamic properties of an elec-
tronic device that contains internal feedback, the latch may, with nonzero
probability, hang in a metastable (somewhere in between logical 0 and 1)
state for a theoretically indefinite period of time. Although in practice this
time is always bounded, it is much longer than the clock period. As a resuit,
the metastable state may cause an unpredictable interpretation in the ad-
jacent logic when the next clock pulse arrives. Self-timed circuits wait until
metastability resolves. Even though in some (e.g. real-time) applications this
may still cause failures, their probabilty is very much lower than in clocked
systems, which must trade-off reliability against speed.
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— Modularity. Different parts of a digital system are usually designed sepa-
rately. These different parts tend to have different timing constraints. Com-
bining them into a single synchronous circuit can be very difficult, and may
result in a complete redesign of the entire system. By contrast, asynchronous
designs can be much more easily combined into a single circuit. The only re-
quirement is to make sure that the functional and causal interfaces between
the modules are well defined. Since such interfaces are often based on delay-
independent handshake protocols (cf. the ‘req’ and ‘ack’ pairs in Figure 1),
self-timed designs can be much more independent of the implementation
technology, and thus support the idea of hardware component re-use.

— Electromagnetic compatibility (EMC). The clock signal is a major cause of
electromagnetic radiation emissions, which are widely regarded as a health
hazard or a source of interference, and are becoming subject to strict legis-
lation in many countries. EMC problems are caused by radiation from the
metal tracks that connect the clocked chip to the power supply and target
devices, and from the fact that on-chip switching activity tends to be concen-
trated towards the end of the clock cycle. These strong emissions, thus being
at the harmonics of the clock frequency, may severely affect radio equipment.
This is why it is sometimes not allowed to use portable computers on aircraft.
Asynchronous circuits emit much less radiation than synchronous ones.

2.3 Why control logic?

It is quite customary in hardware design to separate the design of control logic
from that of detapath logic. The control logic implements the control flow of
the algorithm of the problem specification, while the datapath logic deals with
the operational part of the algorithm. In many ways, such a distinction is not
absolute. It is perfectly acceptable to consider an application where the datapath
may have its own elements of control flow. Some hardware design examples, e.g.
an asynchronous bus or ring interface adapter [135, 70, 136, a tree arbiter [35,
138] or a modulo-n counter {29, 131], can be control-flow dominated, with a fairly
simple datapath logic. Their control would be usually specified by a combination
of partially ordered sets of events. Other examples, such as an asynchronous
register bank or a parallel n-bit arithmetic-logic unit [98, 53, 71, 88], would have
a fairly simple control behaviour but may be quite complex from the functional
point of view.

2.4 Role of Petri nets

For obvious reasons, Petri nets have traditionally been used to aid the design
of control logic. Hence the focus of our discussion will be the control flow. In
order to design an asynchronous datapath unit, the designer counld follow exist-
ing structural methods outlined elsewhere [127, 42]. Additionally, the designer
would need to specify the protocols between the datapath and the control, us-
ing Petri nets. Another reason why control circuits are our main concern here
is that their design is particularly difficult. They are behaviourally much more
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diverse than datapaths, and hence the use of structural approaches is rather
limited. Virtually every new algorithm requires the design of a new controller.
This puts tremendous demands on the effectiveness of the tools for verification
and synthesis. Compared {o other “asynchronous process” languages, Petri nets
are in a very advantageous position, because of their ability to represent the
paradigms of causality, concurrency, deterministic and non-deterministic choice
at any level of granularity and abstraction [137]. They also allow specification of
hierarchy and compositionality. For example, when designing an asynchronous
FIFO buffer, the move from a fairly abstract level of specification, in terms of
actions “put a data item” and “get a data item”, to a much lower level, in terms
of signal transition events, can be done quite comfortably through changing the
basic Petri net notation. Support from existing theory is provided by (i) the
composition of labelled Petri nets, (ii) the signalling refinement of the event
annotation, and (iil) the use of observational equivalence. Since Petri nets have
a clear link with the state-transition notation [90], they provide a semantically
rigorous bridge between other description languages and existing asynchronous
circuit synthesis tools [23].

2.5 Asynchronous design: abstraction levels and design stages

The overall design flow in a Petri net based system for designing asynchronous
circuits is shown in Figure 3. Such a design normally distinguishes between two
levels of abstraction and modelling, which are applied during the corresponding
design stages. The higher level is associated with the abstract design of the
control flow. This level deals primarily with behavioural descriptions; the notion
of the system structure comes only from the datapath and the way it is referenced
in the specification of the control flow. The internal structure of the control path
is usually determined by the siructure of the behavioural specification of the
control flow, its level of compositionality, and the specific interpretation of the
abstract actions in terms of the lower level design.

The lower level design stage, called logic design, is focused on the transfor-
mation of the abstract model of the control flow into the asynchronous control
circuit, i.e. into an interconnected set of circuit elements (gates). This transfor-
mation consists of two major parts:

— the signalling refinement of the abstract behavioural model into its binary
signal “equivalent”; this is based on the definition of an actual interface
between the control logic and datapath, as well as interface between the
abstract components of the control flow in terms of the lower level protocols
for up and down transitions of binary signals.

— the circuit implementation of the signal-refined behaviour; this part may
proceed either as a direct syntax-based translation of the behavioural model
or using some logical synthesis techniques; the latter often give a more ef-
ficient (in terms of silicon area and performance) implementation than the
direct translation methods.
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Fig. 3. Design flow of Petri net design system.

To give an initial flavour of the use of Petri nets as a modelling tool at
the above-mentioned levels of abstraction, let us consider two relatively simple
examples.

2.6 Design examples

Asynchronous processor. At the higher design level the behaviour is defined
in terms of an asynchronous process that can be represented by a labelled Petri
net. The transitions of such a net can be labelled with the names of relatively
abstract operations on datapath or control components. For example, let us
consider a high-level design model of an asynchronous processor shown in Fig. 4.
At the top abstraction level, the behaviour of a processor consists of two actions,
Instruction Fetching (IF) and Instruction Execution (IE), which alternate and
are therefore performed sequentially.

We can now refine these actions into subactions according to our ideas about
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the processor architecture. Thus, the IF action can be seen as a process, i.e. a
Petri net fragment, consisting of the following subactions: incrementing a Pro-
gram Counter (PC), loading a Memory Address Register with the new address
for memory reading (MAR_1), and reading the new instruction word from Mem-
ory (Mem). The IE action can be refined into a process (another Petri net frag-
ment) involving other subactions: loading an Instruction Register (IR), decoding,
activating and executing the fetched instruction for two possible instruction for-
mats, a one word instruction (1WdInst and IWdEx) and a two word instruction
(2WdInst and 1WdEx). The part of the process concerned with two word in-
struction execution requires two memory cycles. As can be observed from the
analysis of this Petri net, the initial sequential operation between IF and IE has
been refined into a model which allows concurrency between actions with smaller
granularity. For example, the PC action can be executed concurrently with in-
struction reading, decoding and execution. Another paradigm appearing at this
level is that of choice between two types of instruction execution. The refined
model can be subjected to verification (e.g. for absence of deadlocks or undesir-
able conflicts between actions) and/or performance analysis (e.g., estimation of
the degree of concurrency between transitions, evaluating critical paths, simu-
lation). The process of refining the design can be continued until the designer
realises that the abstract behavioural model satisfies the desired functional and
quantitative requirements. The result of this design stage is a specification of the
control flow in such a form that its actions, i.e. transitions in the labelled Petri
net model, can be easily mapped onto the primitive operations of the datapath
units. This part of the design process is described in detail in [107].

I IE —Instrumon -------------------------------- PC = Program Counter Update
| ¢ MAR_r=Memory Address
Register, loading for Read

: Execution

Mem = Memory Read

IR = Instruction Register Load

: { 1Wdlnst = One Word Instruction

i PC Decoding

: i 2Wdlnst = Two Word Instruction
Decoding

1WdEx = One Word Instruction
Execution

JWdEx | 2WdEx = One Word Instruction
: Execution

Fig. 4. Petri net example: a high level behavioural model of an asynchronous processor.

VME bus adapter. The second example presents a Petri net model for a logic
design level specification. The transitions of such a net will be labelled with the
names of binary signal transitions. The example is a simplified version of a hard-
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ware adapter which interfaces the VMEbus with a “slave” device, e.g. a memory
chip. Such interfaces are typically described directly at the logic design level,
by means of timing diagrams, as shown in Figure 5. Informally, the adapter’s
function is to synchronise two handshake (request-acknowledgement) protocols,
one at the VMEbus link and other at the link with the device. The first hand-
shake involves bus data strobe signals DSR (read operation) or DSW (write
operation) and acknowledgement DTACK. The second handshake involves the
local data strobe command LDS and local acknowledgement LDTACK. The pro-
cess of synchronisation includes an additional signal, DEN, to control data bus
buffers. The order of the signal transitions is established in the corresponding
timing diagrams by means of arrows. The solid arrows stand for causality con-
ditions to be implemented by the adapter circuit. The dashed arrows designate
causal relations implemented by the environment, through the above-mentioned
handshakes.

DSR = data strobe read
DSW = data strobe write
DSR DEN
1 vMEbus | DTACK = data acknowledgement
DSW —2-  glave [-= LDS DEN = data buffer enable

DTACK-e—{ Interface le— LDTACK LDS = local data strobe
LDTACK = local data acknowledgement

Data Read Operation: Data Write Operation:

L I — DSW | KA

DTACK ) #\?\?\F prack | [ A
DEN| [ / DEN
ws| N\ LDS
LDTACK _ ‘f— = J'w  LDTACK B

i

g

Fig. 5. VME bus adapter example: timing diagrams.

The above behavioural specification can be converted into the Petri net shown
in Figure 6. Each transition is labelled with the name of a signal followed by
either + or —, depending on whether this is a rising or falling edge. Such a net is
called a Signal Transition Graph (STG). The notation used for depicting STGs is
essentially a short-hand Petri net notation, where a place with a single input and
single output transition is simply replaced by an arc. Note also that transitions
are simply represented by their label.

This net, or STG, combines both Read and Write operations into a single
model. This is due to the ability of Petri nets to model choice using places with
several incident output transitions (e.g. place incident to transitions DSR+ and
DSW-). The STG also captures potential concurrency by allowing some transi-
tions to fire independently. For example, the release of signal DTACK followed
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DSR+—~ LDS+ —o» LDTACK+ — DEN+ — DTACK+ —3> DSR- —> DEN-

LDTACK- -«— LDS- DTACK-

DSW+ —»- DEN+ —im- LDS+ 2= LDTACK+ — DTACK+ 2= DSW- «w DEN-

Fig. 6. VME bus adapter example: Signal Transition Graph.

by the assertion of a new strobe signal, DSR or DSW, can be done concurrently
with the release of signals in the device handshake, LDS and LDTACK. The
completion of the latter is synchronised only at the point where the new acti-
vation of signal LDS is required. We recommend that the reader traverse the
firing sequences of the net and compare them with the original timing diagram
model. This Signal Transition Graph can be implemented in logic using synthe-
sis tools such as SIS or Petrify (see Section 6). The solution, which involves an
additional state signal csc0, inserted by Petrify for the purpose of appropriate
state encoding (see Section 5.4), is shown in Figure 7.

DSW
DEN
LDS
L.DTACK
q
cscO
DSR ] [———
-
DTACK
(]

Logic equations (csc0 is additional state signal):

DEN = DSW + LDTACK * ¢scO

DTACK = DEN * (DSW’ + LDTACK * csc0)
LDS = csc0 * (DEN * DSW + DSR + LDS)
¢sc0 = LDTACK’ + cscQ * (DSR + DSW)

Fig. 7. VME bus adapter example: logic implementation obtained by an antomatic
synthesis tool.

The process of constructing Signal Transition Graphs for this kind of hard-
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ware and synthesis of their logic implementations, is described in more detail
in [135].

3 Overview of design transformations

In this section we briefly outline the major ideas underlying the overall two stage
design process. This outline presents the main design steps involved in applying
model transformations. We will use a very simple example which appeals purely
to the reader’s intuition, and does not require formal knowledge. We then proceed
to a more detailed examination of these design steps with the help of formal
models.

3.1 Transformations for Abstract Design

The basic idea behind model transformations in abstract design is depicted in
Figure 8. Here, the initial requirement is that two actions 3 a and b can proceed
in parallel but only once, i.e. for @ (or b) to occur again it must wait for the
completion of b (a). The circuit semantics of the model, used in a subsequent
refinement, assumes that actions a and b are started by the designed control
circuit. This means that these actions can be refined into so-called active hand-
shakes [123]. In such a handshake the first transition (e.g., a rising edge) is pro-
duced on the output request signal, and it is acknowledged by the environment
of the circuit with a transition on the acknowledgement wire.

We consider here two possible threads of abstract design. One, called compo-
sittonal design, corresponds to the original idea of control flow being captured
in the form of causality constraints between individual actions. It then proceeds
through transformation of this knowledge into the form of a labelled Petri net
model via steps (1.1) and (1.2). The other thread, called synthesis from state-
based specification, assumes that the original description is given in an FSM-like
form, by a transition system. This model is used as a source for synthesis of
a labelled Petri net by means of the theory of regions; these transformations
are shown as (1.3) and (1.4). Note that both threads are complementary; we
may allow for the application of both at different levels. Indeed, the first one
is essentially based on a compositional approach, and is probably more natural
to be used at a higher level. Thus, the target labelled Petri net model can be
built as a parallel composition of labelled Petri nets for smaller scale control
elements. These simpler elements can themselves be built using either transfor-
mation thread. Let us look at these threads in more detail.

Compositional approach (Section 4.8). Transformation (1.1) involves the
construction of a labelled Petri net model of the control flow from the initial
capture of causality constraints. In this example we have two such constraints,
which are specified as characteristic predicates on the numbers of occurrences

3 Unless specified otherwise, the terms “action” and “event” are equivalent.
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Fig. 8. Model transformations for abstract design.

of events a and b in execution traces (denoted by the symbol #). The first
constraint, #& < #a + 1, says that the number of occurrences of event b in
any execution trace cannot exceed that of ¢ plus 1. The second condition is
symmetrical. Each such constraint can be conveniently captured by a single place
labelled Peiri net primitive. These primitives are composed together by means
of merging the transitions corresponding to the same event label. This merge
reflects the lowest level at which the parallel composition of nets via transition
synchronisation is applied.

Transformation (1.2) illustrates the process of decomposing the labelled Petri
net model into a set of nets each of which has a simpler behaviour than the ini-
tially obtained net (in step (1.1)). This decomposition is again based on the idea
of a parallel composition of labelled nets with synchronisation on transitions
with the same label. In our example, the initial net model, whose reachability
set consists of three states {cf. states in the transition system used for the second
thread) can be decomposed into two nets, each of which has only two states. The
nets consist of two transitions each. One of those two transitions in each net is
labelled with the same name, d. Thus their parallel composition exploits syn-
chronisation on this label. Furthermore, the original net is behaviourally 2-safe
(each place can keep two tokens in some markings), whereas the simpler nets are
1-safe. The notion of 1-safeness is important for the application of some logic de-
sign procedures. Note that transformation (1.2) may be based on intuitive ideas
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about the control logic siructure. For example, each simple net is implemented
by its own control logic unit; these units can interact through a handshake port
implementing the common transition. Thus, since we do not generally apply any
kind of correctness-by-construction principle to this decomposition, and rely on
the intuition of the designer, we should assume thai the resulting net needs
to be verified against the original one. We will show that this verification can
be based on the notion of observational equivalence [77] between labelled Petri
nets. This notion fits well with the concept of conformance tests between the
implementation and specification models.

Synthesis from state-based description (Section 4.4). Let us consider the
second thread. Transformation (1.3) is applied to a Transition System * which
does not satisfy a semi-elementarity condition, defined in Section 4.4. This is a
necessary and sufficient condition for applying further transformations (1.4). To
satisfy this condition, we insert at stage (1.3) additional events into the model.
These events can be regarded as dummy (sometimes also called “silent”[77])
actions. In the same way as labelled Petri nets, the correctness of this trans-
formation will be taken in the sense of observational equivalence between the
original and the resultant Transition Systems, which is sufficiently powerful for
the purpose of asynchronous design. Both notions (for Transition Systems and
Labelled Petri nets) are formally defined below. In our example, an auxiliary
event d helps satisfy the semi-elementarity conditions. The new Transition Sys-
tem is observationally equivalent to the original one with respect to the set of
events {a, b}. The reader may note the similarity between the idea of introducing
dummy events and that of new transitions with shared labels in the composi-
tional approach (transformation (1.2)).

Transformation (1.4) is based on the notion of regions in a Transition Sys-
tem [90], which are sets of states corresponding to places in the synthesised 1-safe
Petri net. If the Transition System satisfies the condition of semi-elementarity,
the synthesised net generates a reachability graph which is isomorphic to the
Transition System. Thus, due to the property of transformation (1.3), the Petri
net should be observationally equivalent to the original description. Note that
the event labels of transitions in the original Transition System are used as the
unique labels of the events.

3.2 Transformations for Logic Design

The logic design transformations shown in Figure 9 use a labelled Petri net for
each control logic unit. Note that each such net may be only a part of the overall
net model — due to the compositional approach.

* The term “Transition System” is used as a synonym to “State Graph”. Only if it
may cause confusion, we will apply the latter term in a more specific sense than the
former. Namely, a2 State Graph is a Transition System which has a binary encod-
ing. This follows the terminological tradition established in the asynchronous design
community.
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Fig. 9. Model transformations for logic design.

Action refinement (Section 5.2)., Transformation (2.1) is an action refine-
ment. It is, however, different from the insertion of dummies in (1.3), since it
involves associating an original event name with a set of events. Furthermore, it
is performed at the Petri net level. In order to cast it into the notion of obser-
vational equivalence, we need to establish a mapping between the set of refined
actions and the original actions. For every original action such a mapping should
select a critical event from the refined set while other events must be regarded
as silent actions. The idea of such refinements for labelled Petri nets has been
defined in [133, 134]. The refinement can be done in two ways that lead to circuit
implementations (2.2) and (2.3). Note that for the example shown in Figure 9
those implementations produce the same result, which is of course not true in
general; an alternative implementation, (2.3}, is shown in Figure 10.

Direct translation (Section 5.3). The (2.2) label is assigned to the imple-
mentation type in which the circuit is obtained by direct, syntax-based, con-
version of Petri net fragments into corresponding macromodules in the style
of [118] or [97]. The class of 1-safe simple [86] Petri nets is sufficient to perform
such a conversion [97]. The net, called a two-phase STG in Figure 9, is obtained
from the original net in the (2.1) transformation stage by means of: (i) expand-
ing abstract events into pairs of handshake signals (handshake ezpansion) in a
two-phase protocol (also known as a Non-Return-to-Zero, NRZ, protocol®) [118],
and (i) for resolving conflicts with output signal non-persistency, by inserting

5 In such a protocol, both the rising and the falling edges of a signal have equal
significance from the semantical point of view.
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semaphore actions which are implemented with arbitration elements [25]. In our
example, the circuit semantics of events @ and b in the original model is such
that they correspond to two active handshakes. Therefore, they are refined into
two pairs of signal transitions (ar ~, ak ~) (respectively, (br ~, bk ~)), meaning a
request to execute action a (b) and an acknowledgement of its completion. The
fact that the request part is leading in those handshakes (since they are both
active) is reflected in the relative position of the tokens, i.e. before ar~ and br ~.,
(Note also that the input transitions are underlined in the STGs of Figure 9.)

Logic synthesis from STGs (Section 5.4). The (2.3) stage is concerned with
synthesis of a logic gate implementation, which is called a four-phase implemen-
tation because it is synthesised from an STG in which signals are refined accord-
ing to a four-phase protocol (also known as a Return-to-Zero, RZ, protocol®).
Similar to (2.2), the (2.3) implementation also requires from the (2.1) refinement
that abstract events are expanded into handshakes, and that explicit arbitration
actions [25] are inserted. Unlike (2.2), the actual derivation of logic is performed
by means of logic synthesis from the STG. This is done with the aid of software
tools such as SIS or Petrify [114, 22], which themselves access the logic minimi-
sation package Espresso [8]. In the example, we refine both handshakes into an
STG for its four-phase logic synthesis, in a way that is not much different from
two-phase signalling. The purpose of this is to benefit from the existence of the
auxiliary event d, which can itself be interpreted as an extra state signal, and
refined into a pair of transitions d+ and d—. These are used to help solving the
Complete State Coding problem, which is a necessary condition for obtaining
logic equations for the output signals. Alternatively, by refining only the a and
b handshakes, we could completely rely on a synthesis tool, which could solve
both the state coding and logic synthesis issues. This is illustrated in Figure 10,
where three additional state signals (csc0,cscl and csc2) have been added for
Complete State Coding.

1-safe Petri net Fowphase STG_ | STG-based Logic

Action-Signal ety ke Implementation
® © TR e

(handshake) /
oG HY Poee \ Y| Synmesis | Amies0

Refinement } | br = tesc1® (fescOesc2)
A A AW /_hk_ e B .
[P d‘é- il e cscl = bk + csc1*(loscecse2)
L4 @n bl e csc2 wak + cae2¥(lesc140k)

Fig. 10. Alternative four-phase STG refinement.

¢ Here, the process control semantics of the rising and falling edges of a signal is
different. Only the rising edge can be significant, say, to indicate that data is valid,
while the other edge simply carries out a “resetting” function.
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4 Abstract Design

4.1 Modelling foundations

In this section we introduce the major modelling principles that support asyn-
chronous design with Petri nets. As has already been noted, the main description
language for behaviour design is that of labelled Petri nets. The simple processor
design example (Section 2.6) shows that the designer can simply use Petri nets
to capture the control flow. In other words, Petri nets appear as an immediate
syntactic form for a certain semantical knowledge. However, Petri nets repre-
sent concurrency in its true form (i.e. by defining a partial order of actions),
and this could be a problem for a logic designer, who is traditionally inclined
to think in a sequential manner. Furthermore, the designer should be allowed
to represent the behaviour partially, by defining a set of separate views which
must be combined by means of a behavioural composition to produce the overall
description. These views can even be regarded as “external” observations of the
system’s functioning that the designer wishes to realise. An often more natural
way to capture the control flow behaviour is to characterise a set of ezecution
sequences or iraces of actions produced by the system at the interface with its
environment. A convenient approach for representing trace sets in a finite form
is to use characteristic predicates defined on some quantitative metrics on traces,
for example the number of occurences of actions in traces. A Petri net model can
be constructed directly from such predicates, where each predicate can be rep-
resented by a simple net fragment and composition of nets. We do not intend to
consider all types of net composition [6] here, and just illustrate the above idea
using the parallel composition of nets via labelled transition synchronisation.

Another way to capture the control flow behaviour sequentially is to use
state-transition graphs (i.e. FSMs), or transition systems. Therefore, one of the
important tasks in providing the designer with tools for behavioural design is
to develop a method of extracting a Petri net model from a state-transition
specification. We rely on the recently developed theory of regions [31, 30, 90, 84,
5]. This theory provides an important link between certain subsets of states in
the transition system and places in the Petri net. It thereby makes it possible
to synthesise Petri nets from state graphs [23].

We first define two modelling ingredients that will be used to discuss possible
design approaches. These are Transition Systems (TSs) and Labelled Petri Nets
(LPNs), as well as the notion of observational equivalence for TSs and LPNs,
based on weak bisimulation. The latter seems to be sufficient for most hardware
design purposes, involving both verification and synthesis aspects. We will then
outline the two main approaches for constructing behavioural specifications of
control logic in labelled Petri nets. The first approach is based on the synthesis
of Petri nets from simple fragments based on parallel composition. The second
approach is associated with the synthesis of Petri nets from Transition Systems.
We illustrate our ideas with two hardware design examples, a k-place buffer and
a counterflow pipeline processor control unit.
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4.2 Principal Models

Transition Systems and their behavioural equivalence. A convenient way
of capturing the interleaving semantics of a control behaviour in finite form is by
means of a state-transition representation. This kind of model is often preferred
by hardware designers.

Transition systems. A iransition system (TS) is a quadruple TS = (S, E, T, sin),
where S is a non-empty set of states, F is a set (alphabet) of events, T' C SxEx S
is the transition relation, and s;, is the initial state.

A TS is represented by a directed graph in which every arc connecting a
pair of states is labelled with a name of an event. Such a labelled arc is called
a transition 7. One state is marked as the initial state. We assume that any TS
satisfies the following basic conditions [90, 23]:

Al. For every (s,e,s') € T,s # &, i.e., no transition may begin and end in the
same state.

A2. For every e € E there are s, s’ such that (s,e,s’) € T, i.e. every event must
have some occurrence.

A3. For every s € S — {s;,} there are (s;,€;,8i41) € T, for1 =90,1,...,n, such
that 8¢ = sin and 8,41 = s, i.e. every state is reachable from the initial
state.

Two TS’s TS = (51, E1, T1, Sin1) and TS = (S2, E3, T3, sin2) are isomorphic
iff there exist a pair (hs,hg) of total bijective mappings: hs : Sy — Sz, hg :
E; — E; such that (s,e,s') € Ty < (hs(s), hu(e), hs(s')) € Ta.

We say that s’ is reachable from s by a (possibly empty) sequence o € E*
of events €;,2 = 0,1,...,n if there is a (possibly empty) sequence of transitions
(8i,€iy 9i41) € T, 30 = s and 8,41 = s'. This is denoted by s —— s’. The sequence
o is then called feasible in state s. A special case of such a sequence is a feasible
event in state s, i.e. s — &' iff (s,e,5') € T.

With the notion of feasible sequences we can now easily define the interleav-
ing semantics generated by a T'S = (S, E, T, 8i») which is the set of feasible
sequences, called iraces in s;,; let us call it the trace set of T'S and denote it by
X(TS). Note that Z(T'S) is a prefix-closed set of sequences.

The projection of a sequence of events o € E* feasible in s € S on an event
alphabet E' is an event sequence o’ € (EN E')* obtained from o by deleting all
symbols which are not in E’. Let E’' be an alphabet of observable events. We
then say that a sequence of events o’ is observably feasible in s € S iff o' is the
projection of a sequence o € E* on E’ and o is feasible in s. This is denoted

by s LA Again, a special case is s LI , which means that there exists a

sequence of events o € E* feasible in s and exactly one of these events is Iabeled
with e.

7 Note the difference between the usage of term “transition” in Transition Systems
and Petri Nets.
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Behavioural equivalence. Consider two TS’s T'S; = (Sy, F1, Ti, 8in1) and T'S; =
(S2, E2, T, 8in2). A weak bisimulation with respect to an event alphabet F is a
binary relation ~#gC S; x S such that (s;, s;) €xg implies, for all e € E, that:

— (i) 8, — & implies that there exist s5,s, € S, such that s £, and

() 1 1 P )92 y 2 2
(s1,82) €~p, and

— (i) sz —— s, implies that there exist 35,5} € Sy, such that s, .5 and
(3’1: 3,2) €.

The above TS’s T'S; and T'S; are called observationally equivalent (or weakly
bisimilar) with respect to their initial states and an event alphabet F iff there
is a weak bisimulation ~g and (8in1, Sin2) E~E.

This definition of bisimulation is quite similar to the original one from [77],
and will be identical to it if we allow for sets E1\ E and E2\ E to consist of a single
event, called the silent action. Such a restriction would justify transformation
(1.3). For transformation (2.1), the above definition is slightly more convenient.

An example of a TS transformation which preserves observational equivalence
with respect to the original set of actions {a, b} was shown in Figure 8, step (1.3).
The initial states of the TS’s are both labelled with s1.

Labelled Petri Nets

Labelled Peiri nets. The aim of abstract synthesis is to generate a labelled Petri
net. We assume that the reader is familiar with the basic terminology of Petri
nets [86]. We present a brief outline of the most relevant definitions.

A Petri net (PN) is quadruple N = (P, E, F,myp), where P is a finite set of
places, E is finite set of transitions (or events), F C (P x T)U (T x P)is a flow
relation, and mg : P — {0,1,...} is the instial marking. A PN is represented as
a directed graph consisting of two types of vertices, circles for places and bars
(or boxes) for transitions, and arcs, leading from circles to bars and from bars
to circles, to show the flow relation. The initial marking is usually depicted by
means of black dots put into places according to the number prescribed by the
function mg. Note that we allow a shorthand notation to be used for Petri nets.
Two transitions can be connected by an arc directly — this arc would stand
for a place with exactly one input and one output arc in a standard form. The
“overloaded” arc thus becomes a carrier of tokens.

An event is enabled in a marking rn if all its input places are marked under
m. An enabled event may fire, producing a new marking (this marking is said
to be directly reachable from the previous one) with one token less in each input
place and an extra token in each output place of the transition. The set of all
markings reachable from the initial marking is called the Reachability Set. The
graph whose vertices are the markings and whose arcs correspond to the direct
reachability relation is called the Reachability Graph (RG) of the net. The RG
ofa PN N = (P,E,F,mp) is a TS RG(N) = (Sw, E,Ty,mo), in which the
set of states Sy is formed by all markings reachable from myg, the set of events
coincides with the set of events of N, the set of transitions T is formed by the
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transitions between markings (m, e, m') whenever e can fire under m € Sy, and
the initial state is identified with the initial marking.

A labelled PN (LPN) is a PN in which every event e € E is labelled with a
symbol from an alphabet A, thus giving rise to a labelling funciion A : E — A.
Hence a labelled PN is a triplet LN = (N, A4, A). In the case of unique labelling,
i.e., if A is bijective, each event in the net can be uniquely identified by its
label. In such a case we can use the label as the event’s name. In this paper, we
mostly work with uniquely labelled events (with the possible exception of dummy
events, unless we need to distinguish them). In addition to the TS RG(N), the
reachability graph of the underlying net N, a labelled PN LN produces another
TS RG(LN) = (S~, A, Tn,mp), which is graphically the same TS as RG(N),
but whose transitions are labelled with names from alphabet A. We call such
a reachability graph the labelled reachability graph of a labelled PN LN. It
is obvious that if A is a total unique labelling, then RG(N) and RG(LN) are
isomorphic.

Basic properties of Petri nets. A PN is called k-bounded if no more than k tokens
can appear in a place. If such a finite k exists, the net is simply called bounded.
A 1-bounded PN is also called I-safe, or simply safe. A PN is called pure if no
(place, transition) pair is connected by mutually opposite arcs (bi-directional
arcs are often used to represent such self-loops in PNs). A PN is called (strongly)
live with respect to an event e if from any reachable marking m; it is possible
to reach a marking m; under which e is enabled. A PN is called live if it is live
with respect to all events. A PN is called persistent with respect to an event e
if for any reachable marking m; under which this event is enabled we cannot
reach another marking m; by firing another event ¢’ and e is not enabled under
my. A PN is called persistent if it is persistent with respect to all events.

The property of 1-safeness is crucial for the synthesis of a PN from a TS (a
theory for synthesis of bounded PNs now also exists [3]) and for the conversion
of a PN to a two-phase circuit. The property of liveness is not particularly crit-
ical for conversions but it helps to keep track of the effectiveness of all events
and signals in the circuit, i.e., that they are not redundant in the modelled
operational modes. Finally, persistency, especially persistency with respect to
events modelling output signals of the circuit (see Section 5.1), is important be-
cause non-persistent events must be implemented by special arbitration elements
(which contain analogue devices) to avoid hazards.

Observational equivalence and structural refinements. Two PNs N; and N are
called observationally equivalent with respect to a set of events E iff their RGs
RG(N;) and RG(N3) are observationally equivalent with respect to E and their
initial markings. Similarly, two LPNs LN and LN, are observationally equivalent
if their labelled RGs RG(LN,) and RG(LN;) are observationally equivalent with
respect to alphabet A and their initial markings.

Examples of model transformations at the Petri net level which preserve ob-
servational equivalence with respect to the set of original events, are shown in
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Figure 11. These transformations are purely syntactic, that is, they are insensi-
tive to the semantics of the modelled system. We omit here any formal proofs
of equivalence, as the reader can easily find such proofs in the literature (e.g.
[86]). Note that the insertion of a dummy action d1 between a pair of original
events a and b shown in Figure 11 (c) can sometimes be done without splitting
the place p between a and b. This can be important when we want to preserve
the fact that some condition, associated with such a place p, must be preserved
true between the firings of a and b (see e.g. [130]).

(a) ®) ©

(?)X‘ ...... . \?/ ?><? - j)]\
o /d\O a b

@ ©

Fig. 11. Petri net structural refinements preserving observational equivalence.

PNs and LPNs inherit the trace-based interleaving semantics of their corre-
sponding RGs seen as TSs.

Composition of labelled Peiri Nets. There exist many different forms of paral-
lel composition of Petri nets, unlabelled or labelled ones. They are sometimes
called parallel composition with synchronisation on transitions [72]. In this paper
we define just one specific type of LPN composition, analogous to [101], which
appears to be useful for asynchronous hardware design.

For an LPN (P, E, F,mq, A, )\), for any a € A, E(a) = {e | e € E : A(t) = a}
and F(a) = {f | f € F: (f = (e,p) VF = (p,e)) A Ae) = a}. They are
naturally generalised to sets: E(A) = |J,c4 E(a) and F(A) = |, 4 F(a). Also,
E° ={e| e € E: Me) = undefined} and F° = {(p,e),(e,p)| (p,€),(e,p) € F:
A(e) = undefined}.

Let two abstract behaviours be defined by two LPNs:

N1=(P1, E1,F1,mlo, A1, A1) and N2 = (P2, B2, F2,m2,, A2, A1).

The parallel composition of these nets, denoted as N1 || N2, is an LPN

(P, E, F,mg, A, X) obtained in the following way:
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1. P=Pl1UP2.

2. E = E1(A1\ A2) U E2(A2\ A1) U E12U E1° U E2°, where E12 = E1(A1N
42) x E2(A1 N A2).

3. F = F1{A1\A2)UF2(A2\A1)UF12UF1°UF?2°, where F12 = {(e, p), (p, )| e =
(el,e2) € F12,p€ P : (p,el) € F1V (el,p) € F1V (p,e2) € F2V (e2,p) €

F2).
4. mg = mlgUm2p.
5. A = A1U A2.

6. for each e:
M(e): e E1(Al)\ A2)
A2(e): ee E2(A2\ A1)
Al(el): e=(el,e2) € E12
undefined : otherwise

Me) =

Note that the most difficult part in this definition is the case of merging the
transitions in N1 and N2 which have non-surjective (multiple) labelling with
the same label. This requires to produce a cartesian product of such transitions,
to allow for all possible means of their synchronisation. Figure 12 shows how
the single transition labelled a in the first LPN needs to be “split” into two in
the composition net, since it should be able to synchronise with any of the two
transitions named a in the second net.

p3
a ol a +—(@)—d a a
6
5{;9 I %y** %)P =
5 p4 p ps pé
b
¢ = )2 " prd g

Fig. 12. Composition of labelled Petri nets.

Since we completely identify the labels with the same name in the two LPNs,
it is natural to assume that the || operator is symmetric, i.e. N1 || N2 = N2 ||
N1, whereby in the above construction we should have £12 = E21 and F12 =
F21. 1t is easy to prove that the || operator is associative, i.e. (N1|| N2) || N3 =
N1|| (N2} N3).

Some interesting properties of the trace languages of LPN compeositions can
be found in [101]. Combined with the notions of synchronisation of trace struc-
tures, taken for example from [124], one can derive important links between
characteristic properties of synchronised trace structures and the correspond-
ing compositions of LPNs [133]. For example, the conjunction of characteristic
predicates describing some causality conditions between events is equivalent to
the parallel composition of the corresponding LPNs (cf. transformation (1.1) in
Figure 8).
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We can use these results to semantically justify the “forceful” imposition of
idempotence onto the || operator. Thus, despite the formal definition of ||, we
assume that N || N = N. This pragmatic measure helps us to avoid unneces-
sary splitting of transitions if two identical nets are composed using the above
construction.

Using LPNs to construct process descriptions from simpler ones offers an im-
portant advantage: the use of LPN algebra, based on the work of Mazurkiewicz [72]
for unlabelled Petri nets. Mazurkiewicz algebra consists of Petri nets produced
by parallel composition of Petri nets, with as zero element the empty Petri net
NO = (0,0,0,0) and as generator set the set of all one place nets. A Petri net
N(p, E1, E2,k) = {{p}, E1U E2,(E1 x {p}) U (B2 x {p}), {(p, k)}) is called a
one place net. It contains only one place p and two sets of transitions. Its initial
marking has k tokens in p (k > 0).

We extend this approach by defining the empty LPN N0 = (0,9,0,0,0,0) and
one place LPNs N(p, E1, E2,k, A, A) in the obvious way. The algebra of LPNs
can thus be constructed using our parallel composition || operator.

We are now ready to discuss the two main approaches to abstract design.

4.3 Compositional approach to abstract design

The design of a control circuit begins with the definition of its external behaviour
in abstract terms. We need to decompose this behaviour into an interconnection
of simpler sub-modules, that collectively implement the same function. The be-
haviour of such a structural composition must be defined much more formally
than can be done with hardware description languages such as VHDL or Verilog,
because we do not want to rely on simulation to assess its correctness. Thus, we
define the circuit as a discriminator® D, which can be viewed as a black box with
a set of “pins” labelled by symbolic names of ports or events (e.g., read, write,
strobe, acknowledge, ...) that can occur on the border between the circuit and
its environment. At this level we neglect issues such as encoding of operations
with signal levels or transttions on wires. Using such pins we can structurally in-
terconnect D with other discriminators, and thus build discriminators of a higher
abstraction level. An interconnection of such discriminators can communicate by
performing shared actions on a hypothetical underlying medium.

How to construct LPN specifications for discriminators?

FIFO buffer ezample. A k-place buffer, denoted as BU Fi(a, b), can be used to
model a FIFO storage of finite capacity. Here, event a has the following meaning:
‘a data item enters the FIFO through the input port’, and event b means that
‘a data item is retrieved from the FIFO through the output port’. Its behavior
is defined by the following characteristic predicate: for every trace t defined on

8 The use of this term reflects the natural ability of a control component to “discrimi-
nate” between signal transitions on its terminals during the operation, according to
some prescribed strategy.
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events a and b (i.e., for every arbitrary finite sequence of symbols a and b):
0 < (t#a — t#b) < k, in which t#a (or simply #a when t is clear from the
context) denotes the number of occurrences of symbol a in trace t. Note that,
since BU Fi(a,b) does not define the order in which items are retrieved from
the FIFO, it would be more appropriate to use the more general term “buffer”
here. In fact, this first part of the specification just ensures that we don’t require
too many resources from the underlying data path. The latter can be described
as follows. Let d(p;) denote the i-th data value in the ordered sequence passing
through the port p. The buffer realizes the FIFO discipline if d(ao) = d(bo) and
for all > 0: d(a;) = d(b;) implies d(a;41) = d(biy1).

The predicate form of specification is convenient for logical reasoning, but
may not always be intuitive to the designer. The use of a graphical capture
mechanism, such as a labelled Petri net, often helps to define the internal causal
relationship between the events on the discriminator boundary. This is equivalent
to replacing an abstract requirement that states “every pis followed by a ¢” with
a behavioural specification where every occurrence of p causes, through some
physical connection, an occurrence of g. The set of traces of a given discriminator
can hence be viewed as generated by a labeled Petri net (LPN), rather than
defined by a predicate.

Following the above-mentioned Mazurkiewicz approach [72], LPN specifica-
tions of discriminators can be created by parallel composition of elementary
fragments, describing the basic paradigms of sequential behaviour (causality, se-
lection, ..., see Figure 13) which are common to most high-level specification
formalisms (e.g., gnarded commands or CSP [70]).

General Causality Requirement Predicate:

A=({al, ..., am}; B ={bl,....bn}

n . m .
al | bl For every trace on A U B: Zi_,#b" Zi.,#a‘ =<k
an | bn General Primitive al . am
LPN component:
Specific causality cases: bl bn
Simple Causality  2-delayed causality Simple OR-causality Simple Selection
a al
a a2 a
b b b bl b2
#b=<#a #b=c#a+2 #b =< #al +#a2 #b1 + #b2 =< 2

Fig. 13. Primitive LPN components.
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The LPN construction process for our k-place buffer uses the fact that its
characteristic predicate defined above can be composed from two primitive causal-
ity requirements joined by conjunction: (#b — #a < 0) and (#a— #b< k). If
we apply parallel composition to the two one place LPNs corresponding to these
two causality constraints joined by conjunction, we will have the LPN model for
the k-place buffer, as shown in Figure 14.

a = "Put a value"; b = "Get a value”
a | k-place b

buffer _ { Forevery execution trace:
BUF () ‘< #a>= #b &#a<=#b+k>
Labelled Petri Net:
#a>=#b #a<=#b+k O<=#a-#b<=k
b b a

o] | e

o

Fig. 14. Constructing an LPN for a k-place buffer.

The table shown in Figure 15 contains some typical discriminators along with
their symbolic names and LPNs.

name symbol labelled Petri net
k-place a b
buffer BUF_k(a,b) -<8>—
multi-channel al bl ak bk
k-place buffer MBUF_k(A,B) e
a ) bl bk
k-channel SEL_k(a,B) )
selector O
k-chfmnel MUX _k(A,b) al_@b
multiplexer
b3 k

dered (R L)
el OSEL k@B) | 2 P
k-channel o
selector O

Fig. 15. Typical discriminators and their LPNs,

The question now arises: what if an LPN for a given discriminator is too
complex to be directly synthesised into logic?
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How to decompose LPN specifications for diseriminators? Abstract syn-
thesis is essentially a process of decomposing complex discriminators into simpler
ones. The interconnection of elementary discriminators corresponds to the paral-
lel composition of their LPNs. The complexity of a discriminator can be measured
in terms of the number of states its LPN model generates. The reason for using
such a metric, despite the fact that the LPN of a decomposed discriminator can
be descriptively very simple, is that the logic synthesis stage essentially draws
upon the State Graph representation. Hence this parameter is a rather crude
estimate of both the final area/delay cost of the implementation, and of the
complexity the logic synthesis process.

FIFO buffer decomposition. We can decompose the behavior of a FIFO buffer
in (at least) two possible ways, as shown Figures 16(a) and (b). The first one
is a pipeline of buffers of lower capacity, connected in series. Each sub-buffer
must have its own storage, and therefore every data item must travel across all
sub-buffers before leaving the module.

The second decomposition is a parallel interconnection of k buffers of capacity
1, which together correspond to a multi-channel buffer of capacity k. Two ad-
ditional submodules, ordered selector and multiplexer, are used for ordering the
input and output flow to and from these elementary buffers. Both organisations
satisfy the FIFO discipline.

.............

cemm—————

OMUX b
a,0)

[}
| H a
a—|—| BUF, @95~ BUF, | (b I——f—" 2o OSEL,
= ! @0
[}
1]

LBURED

B
&

()

Fig. 16. Buffer decomposition: series (pipeline) and parallel.

Both these solutions have some good properties because of their regularity,
and the generic structure of the buffer control circuit. The second solution has
an advantage over the first in terms of speed. Although they both have the same
throughput, it is easy to see that the propagation delay for one data item is
proportional to the buffer length in the first case.

Although superior in speed, the second solution has a disadvantage in terms
of silicon area, which can be crucial if we consider buffers with large capacity.
The area of a first-cut implementation of the control circuitry for both these
solutions is linear in k, but the second one has a large multiplicative factor. We
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can improve the size of the control by making its largest component logarithmic
in k, by using a counter as part of the buffer control circuit. The LPN models
for the solution with a counter (a modulo-k Up/Down counter), which also uses
a dual-port memory and an arbiter, can be found in [134].

An LPN description of a discriminator corresponding to a modulo-k Up/Down
counter is shown in Figure 17(a). The LPN model of the environment for such a
counter is shown in Figure 17(b). Note that the LPN for a modulo-k counter uses
(k — 1)-bounded places as well as (k — 1)-weighted arcs, corresponding to a flow
relation in which k& — 1 tokens are involved in the enabling and firing conditions.
In other words, if a (k — 1)-weighted arc connects a place with a transition, the
latter is enabled only when the former has at least & — 1 tokens, and when the
transition is fired it removes k — 1 tokens from such a place. Thus, the model
of a modulo-k counter reflects the fact that such a counter counts up (action
inc) from the zero state for k — 1 UP commands arriving in excess of DOWN
commands, and then resets back to zero when the counter is FULL. It is easy to
to see that in the latter case the counter produces an event (action inc’) which
can be used to generate a carry signal fo the next stage if the counter was part
of a cascaded counting circuit. Similar behaviour is produced for the DOWN
commands (with actions dec and dec’, respectively).

CNT CNT’ inc
ff N
U — L, p
L Modulok | :22, inc
Up/Down R
Downl  counter : 3i§ doc?
Down
dec:

(a) (b)

Fig. 17. (a) Labelled Petri net of a modulo-k Up/Down counter; (b) LPN model of the

environment.

Hierarchical decomposition of a modulo-k counter into modulo-2 and modulo-
k/2 counters is shown in Figure 18. It depicts corresponding structural images
of the discriminators for such counters and, additionally, a pair of two-input
multuplexers. The interconnections between the labelled pins correspond to the
synchronised transitions in their LPNs.

Verification of LPN compositions. The process of decomposing the initial LPN
specification into a set of LPNs for simpler discriminators does not guarantee
correctness by construction. Such a compositional design must be verified [133].
There exist a number of techniques and algorithms for the verification of con-
formance between a specification and an implementation, most of them defined
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Fig. 18, Hierarchical decomposition of a modulo-k counter.

within the general framework of a labelled transition system, and hence appli-
cable to Petri nets. These techniques are not particularly specific to hardware
design. Some have been applied to Petri net models of communication protocols
or asynchonous circuits, and they work for different equivalence notions such as
trace equivalence [28, 74] and bisimulation [33]. It is also worth mentioning the
applicability of bisimulation concepts to Petri nets [91].

4.4 Synthesis of Labelled Petri nets from Transition Systems

Our approach to abstract design is based on the synthesis of an LPN model of a
control circuit from its original description in the form of a Transition System.
The theory of regions [31, 30, 27, 84, 5] provides ideas for this kind of synthesis.
The implementation and applications of this theory have been presented in [23).
Petrify (see Section 6.3) performs such synthesis automatically. Here we outline
important aspects of this approach, and illustrate it with a simple yet realistic
application.

Counterflow pipeline conirol ezample. Let us consider the problem of synthe-
sising an asynchronous control circuit for a stage of the Sproull Counterflow
pipeline processor (CFPP) [116]. This problem was proposed as an exercise in
applying formal techniques to asynchronous circuit design [81].

For a complete description of the CFPP architecture we refer to [116]. Here,
we would like to ignore the details of instruction execution, and concentrate on
the issue of the behavioural specification of control in a basic stage of the CFPP.

The overall organisation of control in a CFPP is as follows. There are two
mutually synchronised pipelines, one for instructions and one for results, where
the results are used by instructions and may be produced or updated by them.
These pipelines allow instructions and results to propagate in opposite directions.
Each operates as an ordinary pipeline with data items passing between any pair
of adjacent stages if one of the stages is empty and the preceding stages holds
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a data item. The role of data items is played by instructions, in the instruction
pipe, and by results, in the result pipe.

Figure 19 shows the state diagram of a pipeline stage control proposed by
Charles Molnar. The states have the following meaning:

: Empty. Neither instruction nor result is present.

: Instruction. Only an instruction is present.

: Result. Only a result is present.

Full. Both instruction and result have arrived.

Complete. The CFPP execution rules [116] have been enforced, and both
instruction and result are free to move on °.

)

Stage
Control

Mo nl

(@)

QN

Execution

()

Fig. 19. Counterflow pipeline stage control: {a) structural view, (b} state diagram.

The transitions that involve motion of instructions and results are labelled
AT (accept instruction from below), PI (pass instruction upward), AR (accept
result from above), PR (pass result downward), and G (perform garnering, which
means either executing the instruction if its operand matches the result or re-
leasing both instruction and result).

We note that in the state graph two states are present in which dynamic
arbitration may take place. The first one is state I, where either an instruction
may be passed before the result arrives in the stage or a result may arrive before
an instruction is allowed to leave the stage. Similarly, in state R, either a result
may be passed before an instruction arrives in the stage or an instruction may
arrive before a result is allowed to leave the stage.

The major challenge in designing an asynchronous circuit for Molnar’s tran-
sition system is to transform the latter into a formal model amenable to sub-

® As was noted in [116], in practice this state might be divided further to allow the
result to advance while the instruction is being executed. We, however, abstract away
from such distinctions in this paper.
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sequent circuit synthesis. We would therefore like to obtain a labelled Petri net
that would be observationally equivalent to Molnar’s TS.

From Transition Systems to Petri Nets The basic intuitive idea behind
the construction of a Petri net whose behaviour is equivalent '° to the original
TS is a correspondence between regions and places in the synthesised net. This
allows a 1-1 correspondence between states of a region and markings of the Petri
net in which the place corresponding to the region has a token.

More specifically, a region is a subset of states with which all transitions
labelled with the same event e have exactly the same “entry/exit” relationship.
We say that a subset of states r is entered by event e if for every transition
labelled with e the source state does not belong to » while the destination state
is in 7. Similarly, r is ezited by e if for every e-labelled transition the source state
is in R while the destination is outside r. In the remaining cases, e is said to be
non-crossing, either internal or ezternal, event for a region. Thus, to become a
region, a subset r must satisfy exactly one of the three cases for every event e:
(i) r is entered by e, (ii) r is exited by e, and (iii) r is not crossed by e.

A region r is a pre-region {posi-region, co-region) of an event e if r is exited
by (entered by, internal for) e.

Figure 20 illustrates a pair of regions, r1 = {E, R} and r2 = {I, F, C}, in the
TS of the CFPP stage control. Note that r1 is a pre-region for event AJ and a
post-region for PI whereas r2 is a pre-region for PI, post-region for Al and a
co-region for G. Both regions are not crossed by AR and PR. Finally, G is an
external event for r1 and internal for r2.

Fig. 20. Nlustration of regions.

It is known from [90] that in order to generate an elementary net whose

10 We use a strong notion of equivalence, isomorphism, between the given transition
system and the transition system which is obtained from the reachability graph of
the Petri net.
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reachability graph is isomorphic to a given TS, the TS must be elementary.
Elementary nets are effectively a subclass of 1-safe Petri nets '*. The “gap”
between 1-safe nets and elementary nets is filled by non-pure nets, which allow a
self-loop relation between places and transitions. Such nets and their TS’s, called
semi-elementary, have been studied in[99]. In this design exercise, we need to be
able to deal with non-pure nets.

The semi-elementarity conditions, additional to conditions Al ~ A3, dis-
cussed in Section 4.2, are as follows:

A4, The state separation property, which requires that for any two different states
there must exist a region which contains one of the states and does not
include the other.

A5. The forward closure property, which requires that, for every state s and every
event e, if the sets of pre-regions and co-regions of e are included in the set
of regions such that each of them contains s, then e must be enabled in s
(i-e., there must be a transition from s labelled with e).

Following [99], for any semi-elementary TS T'S there exists a 1-safe PN N
such that: (1) each event in N is uniquely labelled with an event of T'S; (2) the
RG(N) is isomorphic to T'S.

The basic procedure to produce a PN from a semi-elementary TS is as follows:

1. For each event e an event labelled with e is built in the PN;

. For each region r a place named r is generated,;

3. Place r contains a token in the initial marking iff the corresponding region
r contains the initial staie of the TS;

4. The flow relation is built according to the relationship between pre-/co-
regions and events, and between events and post-/co-regions.

N2

A PN synthesised by this procedure is called a saturaied net, since all re-
gions are mapped into corresponding places. A saturated net may have a lot of
redundancy, i.e. some of its places may be removed without disturbing the iso-
morphism of reachability graphs. As shown in [5], it is sufficient to consider only
regions which are not sub-regions of other regions (such regions are called mini-
mal). The net constructed from all minimal regions is called a minimal saturated
net. The method described in [23] and implemented in the Petrify tool [22] per-
forms additional optimisation, and produces an irredundant net with minimal
regions (the idea is somewhat similar to an irredundant cover of prime implicants
in logic minimisation [8]). The semi-elementarity condition sometimes requires
the use of non-minimal regions as co-regions. Since enumeration of non-minimal
regions is computationally hard, Petrify applies some heuristics to optimise its
search for co-region candidates. Furthermore, Petrify uses a modified version of
the semi-elementarity condition, called “Excitation Closure”, based on excitation

11 We say “effectively” because formally elementary nets are defined in a slightly differ-
ent way (see, e.g., [90]), but any elementary net can be converted into a behaviourally
equivalent 1-safe net, by possibly adding complementary places [23].
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regions [23], which allows a more efficient checking procedure using a symbolic
state representation framework.

A set of states is a generalised ezciiation region for event e, denoted by
GER(e), if it is a maximal set of states such that in every element of this
set event e is enabled. Excitation Closure requires that for every event e the
intersection of pre-regions and co-regions of e is equal to GER(e).

In the TS of Figure 20, the semi-elementarity property does not hold for
several events. For example, GER(PI) = {I,C}, but the only pre-region of PI
is region r2 = {I, F,C}; GER(G) = {F} but the set of pre-regions of G is empty.
This TS is therefore not semi-elementary.

Synthesis of a Pelri net model for CFPP siage conirol. Let us now revisit the
original TS model of the CFPP stage control and transform it to a TS that would
generate a PN using the above technique. The main obstacle to satisfying the
semi-elementarity (Excitation Closure) condition comes with event G, for which
we do not have appropriate pre-regions and post-regions. We need to insert
auxiliary (dummy) events into the original TS in such a way that the resulting
TS is semi-elementary and bisimilar to the original TS. This would correspond
to stage (1.1) in our classification of Section 3.1.

Intuitively, and this is one of the heuristics of the dummy insertion method,
we need to establish proper “diamond” structures in the TS, reflecting the po-
tential concurrency between pairs (AI, AR) and (PI, PR).

The solution is shown in Figure 21(b), where states I and R are shared
between the diamonds and the only dummy event is labelled with d. This dummy
plays the same role for the (PI, PR) diamond as G for the (AI, AR) pair.

@ ®)

©
Fig. 21. Converting Molnar’s model to a Petri net: (a) original TS, (b) transformed
TS, (c) 1-safe LPN.

The TS is not elementary in its basic form [90] (without use of co-regions)
but it is semi-elementary since it satisfies the Excitation Closure condition for
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pre-regions and co-regions. We can therefore proceed to stage (1.4) in our trans-
formation process and apply the procedure described above. This produces the
net shown in Figure 21 (c). The regions that generate the places of this net are
as follows: r1 = {E,I,E'},r2 = {E,R,E'},r3 ={R,F,C},r4={I,F,C},rb =
{E,I,C},r6 = {E,R,C} and r7 = {I, E’, F}. Note that (ri,r3), (r2,74) and
(r6,r7) are pairs of complementary regions (for any such pair, the TS is always
either in the first or second region). The reader may check the pre-regions and
co-regions for all events by tracing them back from the arcs. Due to the presence
of co-regions to events, and hence self-loop arcs, the resulting net is non-pure.
The complete description of the circuit design process from this Petri net can
be found in [130].

5 Logic Design

Let us now examine the second design stage, Logic Design, and the role of Petri
net models in producing logic implementations of the behavioural specifications
obtained from the Abstract Design, presented in the previous section. The key
formalism at the logic design stage is the Signal Transition Graph.

5.1 Models for synthesis of circuits at the logic level

Signal Transition Graph. A Signal Transition Graph (STG) is a special case of
a Labelled Petri Net model, and is used to describe signalling ezpansion of
LPNs produced by abstract design. Sometimes, however, an STG description
can be built directly, say, from a timing diagram, if the design process starts
immediately at the binary signal level {which is often the case). The major
advantage of using STGs at the logic design stage is that this model proves to
be very efficient in defining causality and parallelism at the binary signal level.
If STG models are build from the original informal descriptions, such as timing
diagrams for bus protocols, it is possible to use the same techniques as those
described in the previous section, i.e. the compositional approach or synthesis
from Transition Systems. For example, it was shown in [135] that an STG for a
bus interface adapter {one of our initial examples in Section 2.6), can be built
as a parallel composition of STGs built for separate “partial” behavioural views
(called “snippets” by R. Sproull) of the designed circuits.

STGs, either derived from LPNs or built from the original informal descrip-
tions, can be analysed by the same methods and tools as LPNs. This avoids the
problem of looking for an intermediate formal notation to prove the semantic
relationship between the abstract and logic design models. There are several
techniques and tools for synthesis of asynchronous circuits from STGs (see Sec-
tion 6).

It should be stressed that STGs represent a narrower class of processes than
those that can be defined by LPNs. But the narrowness only concerns their al-
phabet of transition labels. We do not impose any restriction upon the structure
of the underlying Petri nets, so that the causality paradigms achievable at the
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abstract level can be preserved at the signal level. Furthermore, since it is possi-
ble to insert auxiliary signal transitions, we can transform the design by changing
its STG.

Formally, a Signal Transition Graph is a triplet G = (N, Y, }), where N =
(P, E, F,mg) is a PN, Y is a nonempty set of binary signals, and A: E — Y x
{+, —,~}, where y+(y—) stands for the rising (respectively, falling) edge of signal
y (e.g., in the four-phase signalling), while y~ means either rising or falling edge
of y (e.g., in the two-phase signalling). In other words, y ~ means a transition
of signal y regardless of its current state. Thus an STG is a PN whose events
are labelled with the names of binary signal transitions. Note that the labelling
function A for STGs can generally be partial, that is, some transitions in the
underlying PN may not be labelled by signal transitions. These are again dummy
or silent transitions. They are often used to simplify the representation of the
behaviour described by an STG. They help to avoid cluttering when transitions
are labelled with the same signal name when merging alternative branches on a
place.

Because it is a special case of an LPN, an STG generates an RG whose events
are labelled with signal transitions. Two STGs Gy and G2 are observationally
equivalent if their labelled RGs RG(G:) and RG(G?2) are observationally equiv-
alent with respect to a signal set Y and their initial markings. For example,
for an RG RG; produced by an STG G; with dummy events, one can obtain
an observationally equivalent TS TS without dummy events. Then the TS can
be converted into another STG G using a synthesis technique similar to the
one described in Section 4.4, though possibly with split events [23]. Such a G»
will be observationally equivalent to G;. Similarly, if an originally defined STG
G, is augmented with new signal transitions or dummy events, then the struc-
tural transformations at the Petri net level shown in Figure 11 always preserve
observational equivalence.

State Graph: consistent stale coding and outpul-persistence. With respect to its
underlying PN, any STG inherits all properties of PNs, such as boundedness,
liveness, persistency etc. There are, however, additional properties introduced by
the signal or circuit interpretation of STG events and states. These properties are
crucial for the synthesis of the logic implementation from an STG specification.
They are defined through the notion of a State Graph.

Any STG G = (N, Y, ), where N = (P, E, F, mp) is an underlying PN, can be
defined with an explicit initial binary state, a vector vo : ¥ — {0,1}",n = |Y|,
associated with the initial marking mo. A feasible sequence o of such a G is
called valid iff for every signal y € Y: (i) the next possible edge of signal y after
y+ (y—) can only be y — (y+), and (ii) the first change of signal y is consistent
with the initial state vp, i.e.: if the value of y is 0(1) in vo, then only y + (y—)
can first appear in o. An STG is valid iff every firing sequence generated from
myg is valid.

It has been shown [104, 19] that any valid STG has a consistent binary state
encoding for all of its reachable markings in set Sy. In fact, the actual validity
check can be performed through analysis of consistency of the state encoding v :
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S~ — {0,1}" of the reachability graph. Namely, such an encoding is consistent
iff for each edge m' — m” in the reachability graph, labelled with signal y:

— if the edge is labelled y+, then signal y is at logical 0 in v(m’) and 1 in
v(m"),

— if the edge is labelled y—, then signal y is at 1 in v(m') and 0 in v(m"),

— otherwise signal y has the same value in both »(m’) and v(m").

Note that the above notion of STG validity and state encoding consistency
is crucial only for STGs in which there is at least one signal (e.g., y) with a
four-phase signalling (i.e. the corresponding events on y are not of the toggle
type y ~). For STGs with toggle events, an STG is valid if for any reachable
marking m no two or more transitions labelled with the same signal name y are
concurrently enabled in m.

With the aid of a consistent encoding v, we can use the reachability graph
in its binary encoded form, which is called the State Graph (SG) of the STG.

An efficient method for checking STG validity using the symbolic traversal of
the RG has been proposed in [59]. Other techniques, that avoid state reachability
analysis, use a partial order approach [62, 108, 64, 61].

Thus, the property of validity is a necessary and sufficient condition for a
bounded STG to produce a consistently encoded finite state graph. This is im-
portant for the logic design of a circuit based on logic synthesis. It is, however,
only a partial condition for logic implementability of the behavioural specifica-
tion.

Another important property for logic synthesis is that of persistence of signal
transitions in the specification. This property is defined in two versions, one at
the STG level and the other at the SG level.

An STG is called output-persistent if its underlying PN is persistent with
respect to transitions labelled with non-input signals. This property is ensured
by means of an STG transformation called the mutual exclusion event insertion.
This is explained below.

An SG is called outpui-persistent if for each non-input signal y and for any
reachable marking m € S¢ such that m enables a transition ¢, labelled with y*
(where yx € Y x {+,~—,~}), any other marking m’' reachable from m by firing
any other transition ¢’ also enables some transition labelled with y.

The difference between STG output-persistence and SG output-persistence
lies in the possibility of an STG to be non-output-persistent and yet produce
an SG that is output-persistent, as shown in Figure 22. Here we have STG G1
and G2 with a and b being non-input signals. These STGs are observationally
equivalent, and they produce isomorphic SGs. In fact we have depicted only one
of the SGs, showing only the binary vectors and hiding the place markings. This
SG is ouput-persistent. Likewise STG G2, whereas G1 is not outpui-persistent
because transitions incident to place pl disable each other. The property of
output-persistence has been studied at length in connection with the logic im-
plementability of STGs in [137, 59].

At this point we should distingunish between the two major threads of circuit
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Fig. 22, Difference between notions of output-persistence at the Signal Transition
Graph level and at the State Graph level.

design from Signal Transition Graphs, according to the transformations (2.2)
and (2.3) initially outlined in Section 3.1.

Before we examine these threads in more detail, let us first detail the notion
of a signalling expansion of an LPN specification into an STG (transformation
(2.1) in Figure 9).

5.2 Signalling expansion of labelled Petri nets

We have already mentioned certain specification refinements which can be ap-
plied purely at the syntactic level, either for abstract LPNs or for STGs. Two
other types of refinements with “semantic flavour” are those of handshake ezpan-
sion, and semaphore insertion or mutual ezclusion insertion. They are discussed
below.

Handshake ezpansion. The two main handshake refinements are shown in Fig-
ure 23. These are passive and active handshakes [123]. Each can be applied in
one of two signalling protocols: (i) fwo-phase (also called Non-Return-to-Zero
(NRZ)) protocol, and (ii) four-phase (Return-to-Zero (RZ)) protocol. Consider
for instance the two-phase case. An abstract action a on a port with a request-
acknowledgement handshake (ar,ak) is typically refined with two events ar ~
and ak ~. For a passive (active) handshake the request ar ~ is an input (output)
event, and the acknowledgement ak ~ is an output (input) event. Input events
are underlined in the figure. We assume that whenever the environment is willing
to execute action a on a passive (active) handshake the circuit must be ready,
and vice versa. This is reflected in the synchronisations shown in the figure. Note
that, if we semantically identify the critical event ak ~ with the original action a
(indeed, the acknowledgement ak ~ actually determines that action a has been
completed), then it should be clear that for a 1-safe Petri net, the net obtained
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after such refinements is observationally equivalent due to the rules of the PN
transformations shown in Figure 11. Similarly, a four-phase protocol can be used
to refine an abstract event a for either a passive or an active handshake.

Initial LPN Passive handshake Active Handshake

l V4 L g—
et
circuit circuit
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T
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Fig. 23. Passive and active handshake refinement of an abstract action.

A simple example of the use of these signalling refinements is shown in Fig-
ure 24, where action a (“receive a data item from the environment”) is refined
as a passive handshake while action b (“send a data item to the environment”)
as an active handshake. Note that a handshake expansion is essentially design-
dependent, and there is no strict rule on how precisely two or more handshake
events must be synchronised on the non-critical events. For example, in our one-
place buffer example, we could “reshuffle” the non-critical transitions of both
handshakes in a number of ways. The question which particular “reshuffling” is
better depends on a tradeoff between the speed of the circuit, for example, by
achieving maximum concurrency between the most time-consuming events, and
its complexity (more concurrent specifications usually require additional state
signals to resolve state encoding conflicts). An example of a more constrained
four-phase synchronisation between the o and b links in the one-place buffer is
shown in Figure 25. Here, the handshakes are also synchronised in the release
phase, which is made “symmetric” to the asserting phase, which leads to simpler
logic (just one C-element for the ak signal, the br signal is a “delayed” copy of
ak) than the one that would have been produced for the more concurrent op-
tion, which requires adding a state signal to resolve the so-called Complete State
Coding problem (explained in Section 5.4).
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Fig. 24. Passive and active handshake refinement of a one-place buffer LPN.
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Mutual exclusion insertion. Asynchronous circuit design sometimes requires the
construction of control circuits with internal conflict resolution. Conflicts may
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exhibit themselves either as part of the algorithm or circuit specification, or as a
result of events being disabled by other events. Examples of the former situation
are designs of asynchronous arbiters [138]. The latter case is less intentional —
the specification of a circuit may involve operation of a signal in such a way that
it is controlled and tested by independent, potentially concurrent processes; e.g.
interrupt handling logic, or devices where the environment may not always fulfill
the prescribed timing constraints [25].

In both situations the corresponding LPN or STG specification is not persis-
tent — a net transition enabled in one marking may be disabled by the firing of
another transition. In fact, it may be non-persistent with respect to transitions
which are labelled with signals produced by the environment. Such a case is
not critical for the design since it is concerned with external nondeterministic
behaviour. However, if a particular non-persistent transition is associated with
a non-input signal, then the latter cannot be implemented without a hazard
unless its transition is regarded as a critical section in the specification, and
suitably protected in the circuit. A method for protecting signals whose initial
specification is non-persistent has been described in detail in [25] and is based
on:

— the insertion of special auxiliary mutez transitions which are similar to
semaphore actions in concurrent programs at the Petri net level in such
a way that nonpersistence with respect to the original noninput signal is
eliminated;

— synthesising all the original non-input signals in the usual way and consid-
ering these auxiliary mutex signals as inputs;

— implementing the auxiliary signals on special mutex or arbiter circuit com-
ponents which are analogue circuits; and

— connecting the outputs of the mutex elements with the logical part of the
circuit.

An example of mutual exclusion action insertion is shown in Figure 26. This
refinement allows for the use of a particular type of arbiter, a so-called RGD
arbiter [118] with a single “Done” signal [116]. Again, this refinement is well
backed up by the PN transformations of Figure 11, and preserves observational
equivalence with respect to actions ¢ and b {and, of course, the rest of the
surrounding net’s actions). It can be observed that the original nonpersistence
between events a and b, which are considered to be critical sections, has been
shifted to a “programmed” conflict between the grant signals of the RGD arbiter,
G, and Gp. Examples of mutual exclusion event insertion can be found in [130,
14, 67].

Let us now proceed to discussing methods for circuit implementation of logic-
level Petri net specifications.

5.8 Syntax-directed circuit synthesis

This approach starts with a labelled Petri net specification, refined at the level
of signal transitions, e.g. by a Signal Transition Graph, and constructs a circuit
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Fig. 26. Refinement with explicit arbiter signals.

which effectively “simulates” the net, by replacing its components with circuit
elements. The net must be 1-safe in order to make sure that the circuit produced
is meaningful, since we consider here only the binary meaning of the token flow!?.
Within this approach two alternative threads can be identified. They are as
follows.

“Place-to-latch” circuit compilation. The first direct translation method
is based on the idea of “physical simulation” of every reachable marking of a
Petri net in terms of the state of the circuit. This is achieved by associating
each place in the net with a memory latch, i.e. SR-flip-flop, and transitions with
appropriate logic at the inputs of the latches. Examples of this style are described
in [43, 127, 128, 129]. Several types of flip-flops reflecting the AND-causal logic
of transitions are shown in Figure 27. The state of signals corresponding to the
markings of the Petri net fragments is shown in brackets, near the appropriate
wire. The signals between adjacent cells that are currently in the process of
switching are indicated by the associated transitions from logical 1 to logical 0.

The arrival of a token in a place, say pl of Figure 27(a), is manifested in the
circuit by setting the corresponding SR-flip-flop (whose outputs are labelled p1
and pl’, respectively) to the state p1 = 1,pl’ = 0. This state can be shifted into
the next flip-flop (p2, p2’), thus modelling the arrival of a token into place p2,
after which the state of (pl1, p1’) will return to pl = 0,p1' = 1.

The arrival of a token in place p3 in Figure 27(b) is dependent upon the
presence of tokens in places pl and p2. This is implemented by the appropriate
sum-of-product logic at the gate that generates output p3. The resetting of
the (p1,p1’) flip-flop in Figure 27(c) back to the state p1 = 0,p1’ = 1, which
corresponds to the situation when the token has been removed from place pl
after the transition has fired, is only possible after both (p2,p2’) and (p3,p3")

12 Tt is of course possible to generalise the notion of direct simulation, and thus relax
the 1-safeness to boundedness, for example by “embedding” a certain element of
datapath into the main control flow design (e.g., compiling k-bounded places into
Up-Down counters rather than flip-flips). For the sake of simplicity we do not consider
such extensions here.
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have been set to states in which p2 = 1,p2' = 0 and p3 = 1,p3' = 0. The
sum-of-product logic of the gate that implements p1’ facilitates this effect.

When this implementation style is employed, it is crucial to note an important
and inevitable discrepancy between the firing semantics of net transitions and
the physical nature of the flip-flop switching process. The abstract character of
transition firing assumes the removal of tokens from input places and addition of
tokens to output places as a simultaneous and indivisible action. In circuits, this
action is split into subactions. The output place flip-flops are first set to logical
1, and then the input place flip-flops are reset to logical 0. To cope with this
discrepancy without further semantic complications, one has to make sure that
the original net never reaches a marking in which any input place of a transition
is marked with a token simultaneously with any of its output places. An analysis
of these semantical aspects may be found in [120].

Petri Net fragment Implementation
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Fig. 27. Syntax-directed translation from Petri nets based on “place-latch” relation-
ship.

For a practical example of the use of this translation style the reader is
referred to [136]. A major part of the speed-independent control logic of a self-
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timed token-ring adaptor is synthesised from a refined labelled Petri net de-
scription of the ring protocol. The main idea of this translation is captured in
Figure 28. Here the transitions in the initial Petri net model (part (a)) are inter-
preted as operations to be activated by the designed control circuit, and places
are associated with latch-based cells. The operations may involve actions on a
datapath, e.g. copying a value from a port into a register, or simply control of bi-
nary latches, e.g. setting a latch to logical 1. In the implementation, these blocks
are then inserted between the request and acknowledge signals in the resulting
control logic. For example, Operation Opl is started by signal a1 switching from
1 to 0 and acknowledged by signal b1 also going from 1 to 0. The phase of control
in which al and b1 are reset to logical 1 follows the activation phase immediately,
that is, prior to the activation of the next operation. This can be seen from the
ordering of signal transitions in the STG in Figure 28(b).
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Fig. 28. “Circuit compilation” of a Petri net specification: fragment of net specification
(a); Signal Transition Graph description of the operation synchronisation (b); control
circuit implementation based on the idea of “place-latch” relationship.
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This method proved to be highly effective for the design of a circuit to control
around 50 different request-acknowledgement handshakes, described in [136].
Other techniques, e.g. those based on Finite State Machines or Signal Transi-
tion Graphs, would have faced with the computationally hard problems of state
assignment and hazard-free implementation. These techniques could not guar-
antee a speed-independent solution whose size would be linear in the size of the
Petri net specification. Compared to the methods described below, this synthesis
technique is clearly more applicable to control circuits of relatively large size and
which are not too critical with respect to speed and area optimality.

Event-based, two-phase circuit compilation. Another way to directly “sim-
ulate” the control flow in Petri nets is based on the correspondence between the
firing of a transition in a net and the switching of a logical level of a circuit signal.
The firing of a transition has purely an event-based meaning, and it does not
imply the direction of a transition between logical levels. This technique is there-
fore more appropriate for specifications defined as STGs with “toggle” transitions
(y~). For such models, there is no difference between the rising and falling edges
of the control signals. This translation sirategy originates from [97]. Figure 29
shows Patil’s “mapping” of primitive fragments of Petri nets into event-based
circuits.

The two most important elements are as follows. A C-element implements
AND-causality between a set of predecessor events and a given event; it can also
be viewed as the so-called JOIN-function between subprocesses. An XOR logic
gate implements (exclusive) OR-causality between a group of mutually exclusive
predecessor actions and a given action; this functionality is often called MERGE.
In order to implement net fragments with a structural conflict, i.e. where a single
predecessor place can be shared between several tramsitions, one has to use a
Switch element. This element has an internal arbitration component. Therefore
specifications with conflicts on output signals {cf. non-output-persistent STGs)
can be implemented.

Patil’s mapping is applicable to a structural subclass of nets known as Simple
Nets (recall that nets are also assumed to be 1-safe). Such nets are characterised
by the following condition: for every transition, at most one input place may also
be an input place for another transition. Figure 30 shows an example of a Petri
net which is not a Simple Net. Its transition ¢ has two input places, pl1 and p2
which are both input places for other transitions. The reasons for this restriction
are quite obvious. It is not possible to use an interconnection of two simple 2-way
Switch components to implement a fragment such as the one shown in Figure 30.
We should also bear in mind that this method, which converts net transitions
into control signals, is effectively applied in its original form only to STGs with
injective labelling. In order to be able to work with multiple labelling we need
some form of multiplexing, which requires use of a special auxiliary component,
e.g. a Call-element (see below).

Eztensions to Patil’s mapping. There are certain conditions under which such
a structurally non-simple fragment can be implemented in a different way (not
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Fig. 30. A fragment of a net which is not Simple Net.

as a Switch element). Under certain behavioural conditions a shared input place
fragment of a simple and safe net can be implemented without the use of a
Switch, whose internal structure requires a mutex element. In some cases this
implementaiion degenerates into a pair of C-elements (see Figure 31,(a),(b)).
This may not always work, since we cannot guarantee that the phases of input
signals arriving at each C-element are appropriate. For example, the marking of
a shared place of the two transitions p2 may not always occur in correspondence
with the phase of the input y as required by the mutual phasing of two inputs
of the same C-element 21 and y. For example, let us assume that transition ¢1
becomes enabled for the first time, and the corresponding C-gate is enabled when
both 21 and y change their value from 0 to 1. Then, when a token arrives in p2
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for the second time (this means that input y becomes 0 again), it may either
again assist in enabling t1, if pl is marked, or this time p3 may be marked. In
the former case the upper C-element will switch back, restoring the output z1
back to 0. In the latter case, however, the inputs of the lower C-gate will be
unmatched, y = 0 and 22 = 1. As a result, a deadlock may arise in the circuit
which does not show up in the Petri net model. Furthermore, if the change of
22 to 1 arrives before the resetting of y to 0, a premature transition may be
generated at the output 22.

?l u b4 u zl * zl x1 zl
O

” : " = 2 |2V
x2 2 2 2 O
p3 7 05 y

@ (b} ©

Fig. 31, Problems with C-elements; need for Decision-Wait element.

The above problems can be verified by means of behavioural analysis of the
STG. This allows us to verify the polarity of the signals corresponding to a
place marking. This can be extracted from the Petri net reachability analysis
~ only if t1 and ¢2 alternate at their even firings we can use C-gates (i.e. ¢1
must fire an even number of times before 12 is enabled, and vice versa). In all
other cases, a more versatile component must be used, called Decision- Wast
(DW). 1t allows synchronisation of an event on one signal out of a group of
mutually exclusive signals with an event on another signal out of another group
of mutually exclusive signals. This synchronisation is done irrespective of the
actual phases of signal transitions, i.e. purely on an event basis. Figure 31(c)
shows the internal implementation of the 2-by-1 Decision-Wait. The internal
structure of this element is not fully speed-independent. The correctness of its
actions depends on the delays of the XOR gates. These gates must have relatively
small delay compared to the delay of the environment of the DW element, which
must not switch inputs z1 and z2 too fast after outputs have changed. An
arbitrary n-by-m DW can be quite complex internally, especially if one wants a
totally speed-independent implementation [47]. Another useful application of a
DW element is illustrated in Figure 32, where the initial net fragment is not a
Simple Net. Here, provided that the shared input places which form structural
conflicts can be split between two groups where the places are mutually exclusive,
we can implement such a fragment by an appropriate n-by-m DW element.

It should be pointed out that Furtek [34] has presented a set of circuit con-
structs associated with four main types of Petri net arcs, which effectively proves
that any safe net can be directly implemented into a circuit with equivalent
behaviour - the circuit will use Patil’s set of modules augmented with an el-
ement similar to the DW shown in Figure 32. However, these constructs are
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prohibitively complex and are mostly of theoretical interest.

With the syntax-directed approach, most transformations, such as decompo-
sition and refinement, have to be done at the Petri net level. Correctness checks
can then be performed by applying composition and verification techniques. Al-
ternatively, one may try to decompose or optimise the design by performing
transformations at the circuit level. This is rather risky, since it can destroy the
semantic correspondence between the net and the circuit. Some of these trans-
formations may optimise the overall design by recognising complex fragments
of Petri nets and compiling them directly into larger circuit elements, such as
Select, Call and Toggle. Their LPN models and possible implementations are
shown in Figures 33, 34 and 35, respectively.

Select is a module which allows us to implement parts of LPN specifications
which model the interfaces between event-based control signals and a datapath
or level-based logic. Such nets use self-loop arcs (also called read arcs, or positive
conteztual arcs [82]). A self-loop arc between a place and a transition syntacti-
cally means that the place is both input and output for the transition. This arc
has the following operational meaning. Whenever such a place is marked with a
token and the transition is enabled the firing of this transition does not change
the state of the place. Note that the implementation of Select uses a component
called Transparent Latch (marked L in the figure). It is described by the follow-
ing equation: out’ = dc + out (d + €), where d is a ‘data’ input and c is the
‘clock’ input.

Call is a module which allows us to ‘multiplex’ multiple occurences of the
same action in the LPN model. It is similar to a procedure call in a program.
Each separate request to execute a unique action a is multiplexed onto the single
request. When the action is complete, the corresponding acknowledgement is
generated. The two-way version of Call has two handshake interfaces (R1, D1)
and (R2, D2) for the signals directly translated from LPN transitions labelled
with action e and a single handshake R, D for the unit associated with a. We
should recall that, in the case of multiple labels, one has to verify first that no
two or more transitions bearing the same label are enabled concurrently. Then
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Fig. 33. Select module: Petri net fragment and circuit.

there are two possibilities. The first one would be to use a multiplexing construct
like Call. An alternative would be to produce such a multiplexer at the LPN level,
by transforming the net into one with injective labelling [41].
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Fig. 34. Implementing multiple labelling: Call module.

Finally, a Toggle is another useful macro-component, which allows simpli-
fication of the logic if the initial specification contains transitions with differ-
ent occurence numbers in the operational cycle of the process, e.g. in models of
counting circuits. Toggle’s possible implementation also uses transparent latches.
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Fig. 35. Toggle module: Petri net fragment and circuit.

Direct synthesis example: modulo-k Up/Down counter. As an example,
let us consider the synthesis of a modulo-k Up/Down counter that uses the event-
based signalling discipline. We assume that the environment always gnarantees
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mutual exclusion between sending requests for Up and Down operations. We refer
to the abstract design of such a counter shown in Figure 17 and Figure 18. Let k
be a power of 2 for the sake of simplicity, as it allows a recursive decomposition of
a modulo-k counter into a modulo-2 and modulo-k/2 ones, shown in Figure 18.

Let us first refine abstract actions U and D into handshake pairs of signals: Ur
and Dr for requests of Up and Down counting respectively, and Ua and Da for
acknowledgements. We also refine pairs of events (incl, inc'l) and (decl, dec’l)
to produce intermediate pairs of acknowledge signals (Ual, Ucl) and (Dal, Dcl).
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Fig. 36. ‘Recursive’ decomposition of a modulo-k Up/Down counter at the logic design
level (note that k¥ = k/2 — 1).

Signal Ual is an acknowledgement which does not need to be carried forward
through the higher stages, where the counter is incremented in the state with
the least significant bit equal to 0. Signal Ucl is a carry signal which is produced
when the current stage is incremented while in state 1. Signals Dal and Del
have similar functionality, respectively, for the decrement operations.

The model of the first stage of the circuit is shown in Figure 37(a).

In order to implement this net by a circuit in Patil’s style, we first transform
it to an observationally equivalent net, shown in Figure 37(b). In the new net,
each signal event has a unique transition associated with it, and we can perform
a syntax-directed translation of it into a circuit, using the component models
described in the previous section. Note that the 2-by-2 DW synchronises an event
occurring on exactly one of the two inputs B+ and B— with either event on Ur
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Fig. 37. Circuit implementation for one bit Up/Down counter stage.

(Up-counting) or on Dr (Down-counting). The lower level implementations of
the 2-by-2 DW can be found in [47].

It is easy to see that the output of the Merge can be used as a level signal
CNT, thus making the task of combining the control and data parts very simple.

We can recursively refine the modulo-k/2 counter in a similar way, until &
becomes equal to 1, to finally obtain the circuit implementation. This design is
speed-independent since the change of signal CNT in each bit stage is always ac-
knowledged by the corresponding completion signals. The signals Ual, Ucl, Dcl
and Dal always change last in each stage.

Another example of direct translation synthesis is shown in Figure 38. Part
(a) shows a two-phase signalling model for a “lazy ring” arbitration adapter {70,
67], whose implementation is depicted in part (b). Note that places labelled
t = 0 and t = 1 stand for the status of the arbitration token (hence use of name
1}, either being held outside or inside the adapter, respectively. For brevity, we
do not show the intermediate STG refinement which has led to this circuit.
Note, however, that this is an example of a non-ouput-persistent specification,
which requires mutual exclusion expansion. The result of such an expansion is
an RGD arbiter which ‘protects’ conflicts between the two dummy transitions
corresponding to non-input signals. The reader may refer to [67] for details of
designs of ring arbiters using Petri nets.
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Fig. 38. “Lazy ring” arbitration adapter example: Petri net model with NRZ signalling
(a), result of direct translation into circuit (b).

5.4 Synthesis based on logic minimisation

Unlike the direct translation approach, this approach implements STG specifi-
cation by means of deriving its logic through a process similar to classical logic
synthesis. For each non-input signal this process finds a Boolean cover over the
states in which the signal is supposed to be equal to logical 1. This Boolean cover
is then mapped into a physical interconnection of logic gates, providing appro-
priate constraints which would guarantee freedom from hagards in the resulting
circuit.

The overall process, though quite straightforward in principle, can be highly
non-irivial when the designer wants to ensure that the eventual implementation
is totally insensitive to the delays of every single gate in the circuit.

Let us first examine the most general conditions that an STG specification
should satisfy in order to be convertable to Boolean logic, that is, without any
particular restriction on the type of Boolean covers or equations it may generate.

First of all, as has already been discussed in Section 5.1, an STG specification
must satisfy the following properties:
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— (i) boundedness of the underlying PN, to guarantee that the final circuit has
a finite size;

— (i) STG validity, or consistency of its the binary encoding of its Reachability
Graph, to allow a meaningful interpretation in terms of binary states and to
be able to generate a State Graph;

— (iii) output-persistency of its State Graph, to guarantee a hagard-free be-
haviour of the discrete logical gates derived for each non-input signal, so
that such behaviour is observationally equivalent to the original specifica-
tion.

These properties are all necessary for performing logic synthesis from an STG
or its SG. Thus, the designer needs to correct the STG if it does not deliver any
of them. The reason why it is the designer who is responsible for modifying the
STG is that such corrections always affect observational equivalence between the
original model and the final behaviour produced by the implementation. In fact,
output-persistence appears to be a property which can often be fixed formally,
by insertion of mutual exclusion events into the net. Unfortunately, none of the
existing software tools are capable of doing this as yet.

Complete State Coding. In addition to the properties discussed above, there
is also a property necessary for logic synthesis which can be provided by means
of formal algorithms. This property is called Complete State Coding (CSC). A
bounded and valid STG G has the CSC property if for all reachable markings
with the same binary coding vector, the corresponding sets of enabled non-input
transitions are equal. More specifically, if there exist a pair of markings m; and
m, with the same code and in one of them a signal y is enabled while in the
other y is stable, we say that there is a state coding conflict between my and m3
with respect to y. An STG which has state coding conflicts is said to have a CSC
problem.

A simple example illustrating a CSC problem is shown in Figure 39. In part
(a) an STG is shown that specifies an autonomous circuit (a pulse generator
without inputs) with two outputs z and y. The RG of the underlying Petri net is
shown in part (b), and its binary encoded version, the SG, is shown in part (c).
It should be obvious that the SG has two states in coding conflict, both labelled
with 00, but with a different enabling of the output signals. In order to resolve
this conflict, an additional state signal z has been inserted. The transitions of z
do not change the original ordering between output signals ¢ and y, i.e. the new
STG, shown in part (d), is observationally equivalent to the original one. Part
(e) depicts the SG of the new STG and demonstrates that the conflict between
the states originally in conflict has been resolved - originally encoded 00, they
are now distinguished by the different values of the new signal z.

Another example of a CSC problem is shown in Figure 40. It is an SG obtained
for the STG presented in Section 2.6 in Figure 6. Here we have two pairs of
conflicting states, encoded with 100011 and 010111, respectively. Both conflicts
have been resolved by adding one state signal, which results in the circuit shown
in Figure 7.
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Fig. 39. Simple example to illustrate the Complete State Coding property: (a) initial
STG with two noninput signals z and y, (b) its Reachability Graph, (c¢) State Graph
with state coding conflicts, (d) modified STG with extra state signal z and (e) its State
Graph.
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The subject of solving the CSC problem has been actively investigated during
the last decade, with initial research being aimed at checking the CSC property
for STGs [19, 104, 135), and identifying coding conflicts [125] for subsequent
manual resolution. The most recent work has been focused on finding fast and
effective algorithms for solving CSC by means of automatic insertion of new
signals [65, 55, 141, 21]. These investigations have given rise to a number of
theoretically challenging, mutually related subproblems:

- the problem of identifying state coding and other types of conflicis amongst
the reachable states; some of these conflicts may be based on subvectors of
state codes, and involve specific subsets of states (cf. work on Monotonic
Cover conditions [60]).

— the problem of efficient pariitioning of the state space into subsets to be
encoded by new state signals;

~ the problem of new signal event insertion, whilst preserving the observational
equivalence, output-persistency and input-output interface.

A key role in solving the partitioning and event insertion problems is played
by the notion of regions (see Section 4.4) in the state graph. The techniques
proposed in [21] exploit the fact that the finest granularity level at which new
signals can be inserted is provided by regions, intersections of regions and unions
of intersections. This approach solves many problematic CSC cases which none
of the previously known methods have been able to deal with in an efficient way.
Other tools, like assassin, had to apply some event re-ordering to the original STG
specification in order to insert new events. Another useful feature of the region-
based approach [60] is that the method, despite working at the state graph level,
generates a new STG from the modified SG. The ability of the designer to review
the CSC-compliant STG is important, as it is a good reference point for manual
optimisations, reverse engineering of the circuit, or simply for the purpose of
visual representation of the circuit behaviour in a more compact form than the
state graph, with its interleaving of concurrency.

In fact, the four-phase STG shown in Figure 24 is one of the “difficult” ex-
amples for formal tools. The reader may, as an exercise, like to construct its
SG and observe a large number of state coding conflicts. Another version of sig-
nalling refinement, shown in Figure 25, does not have the CSC problem. It is
more constrained with respect to the level of parallelism between events in the
a and b handshakes. The version in Figure 24, which allows for more loosely
coupled synchronisation between these handshake protocols, may be prefered by
the designer. One of the possible CSC solutions is shown in Figure 41. It requires
the addition of two signals to resolve ali the conflicts in the original model.

Logic synthesis and logic decomposition

Basic ideas about logic implementation. An STG specification which satisfies the
basic implementability conditions (bounded, consistent, output-persistent), and
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Fig.41. STG with Complete State Coding (original STG shown in Figure 24).

whose SG has the Complete State Coding property can be used for logic syn-
thesis, Truth tables can be obtained from the SG state codes for each non-input
signal. The process of obtaining a truth table depends on a particnlar imple-
mentation architecture chosen for each signal. For example, we can extract truth
tables for functions associated with the states where a signal y; is enabled, or
it is stable, or its implied value is equal to 1 etc. The implied value for signal
¥; in state m with binary code v(m) is defined as the complement of its binary
value vi(m) if y; is excited in m, v;(m) otherwise. For example, in state 000 in
Figure 39 (e), the implied value of  is 1 (z is enabled), and the implied value of
y (stable) is 0. Thus, the functions defined by these truth tables are essentially
associated with certain subsets of states, unified by a specific feature, such as
the implied values.

The process of deriving such functions is central to the implementation stage
~ the obtained Boolean covers are directly associated with logic elements in the
circuit. A Boolean function covers a state m; € Sy if the function evaluates to
TRUE when the variables have values equal to the signals in the binary code
of m;. A function covering a set of states is called a cover function or simply
cover. Each term of the cover is called a cube as it may cover several states in
the state space.

Deriving logic for typical implementation architectures. The following architec-
tures are commonly used for the synthesis of speed-independent circuits:

1. each non-input signal is associated with an dtomic complez gate; this ar-
chitecture is a basic type in which every signal is implemented by a single
complex-gate that may include internal feedback.

2. each signal is associated with a memory element, or latch (e.g. SR-flip-flip
or C-element), with two excitation functions (e.g. S for set and R for reset)
controlling the latch; these excitation functions are implemented as atomic
complex gates;

3. similar to the above except that the excitation functions are decomposed
into simpler gates (combinational decomposition) or latches (sequential de-
composition); the gates and latches are from a restricted subset called the
Library cells.

We do not consider here all these architectures, and the logic synthesis aspects
related to them. These can be found in 58, 112}.
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The simplest from the point of view of the synthesis process is the first type,
based on a complex Boolean cover for each signal. Such a cover can be either
combinational or sequential. In the latter case, the signal function includes the
signal itself. Thus each atomic complex gate corresponding to this cover contains
both a combinational part and a sequential part implemented as an internal
feedback, where delays are assumed to be negligible. To derive such covers, two
mutually complementary subsets of the reachable states are distinguished in
the SG for every non-input signal y, on-set(y) and of f-set(y), which include
all states in which the value of signal y is implied to be 1 and 0, respectively.
The remaining binary combinations, which form the unreachable state set, are
regarded as a dc-set(y) (don’t care set). The implementation of y is derived
by finding a Boolean cover for the on-set(y). The dc-set(y), if it is nonempty,
can be used for minimisation (by applying standard minimisation tools such as
Espresso [8]). An illustration of this process is shown in Figure 42, continued
from Figure 39. Here, part (c) shows a Karnaugh map for the on-set(z) with
dc-set(2) being empty, due to the use of all eight binary combinations to encode
the eight reachable markings of the STG. The minimal size cover for on-set(2)
is ¢ + y'z. Following this process for all three non-input signals (recall that the
designed circuit is an autonomous pulse generator), we obtain three complex
gates, whose functions are as follows: z = z'(y' + z),y=z+zand z=z + y'z.
These gates are in fact not so complex and can be easily implemented directly
in the form of an NMOSC or CMOS transistor network (cf. Figure 2 for C-
element). They can also be easily embedded into standard library cells: z into
a Reset-dominant SR-latch, with set function S(z) = z'y’ (thus only 3 can be
connected to input S of the latch), reset function R(z) = z; y into an OR gate;
z into a Set-dominant SR-latch, with S(z) = z and R(z) = yz' (only y can be
connected to input S of the latch).

The reader may have noticed the use of inverted inputs (literals with primes,
e.g. ') in these equations. This issue is neglected here in the sense that we
do not consider inverters as separate gates with a delay at the output. This is
not always a completely fair assumption (it often relies on certain technological
or timing constraints) and an interested reader may refer to [127] for synthesis
techniques avoiding use of such implicit inverters.

Correciness issues in logic decomposilion. The complex gate implementation is
speed-independent by construction, i.e. any bounded delay attached to any of
the three outputs z, y and z will not change the behaviour of logic that is
observationally equivalent to the original specification. Indeed, since during the
synthesis we have not created any new gates, there will be no deviation from the
original specification.

Other types of implementation require decomposition of the complex gates,
and as a result may be prone to hazards. For example, even the second type,
based on separate implementation of excitation functions, may lead to potential
behavioural deviations. This type of implementation requires the derivation of
hazard-free (sometimes also called hard or monotonic [60]) covers for excitation
functions, for particular latches. An example of such cover for a set function
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Fig. 42. Synthesis by means of finding Boolean covers: (a) Signal Transition Graph,
(b) its State Graph, Karnaugh maps for the implementation by (c) complex gates and
(d) via excitation functions.

S(z) = « of signal z is shown in 42(d). It is obtained as follows. The set cover
for a signal must cover all states in which the signal has value 0 and is enabled
(the excitation region), and it may cover (these states contribute to the dc-set
for this cover) any state in which the signal is stable and has value 1. Informally,
the monotonicity condition requires that this cover never evaluates to TRUE
outside the on-set of the function and never changes its value from TRUE to
FALSE more than once in all feasible sequences passing through the on-set. The
cover S(z) = = is hazard-free, because it is just a single literal and is guaranteed
to be correct by construction (see the above discussion about complex gates).

Discussing these aspects in more detail would require introducing many new
notions, and we therefore refer to work on logic synthesis and decomposition of
speed-independent circuits [13, 58]. We mention one important aspect which has
a close link with Petri net techniques. This aspect concerns the representation
of the semantics of the STG specification appropriately for logic synthesis.

Approzimale cover approach. Two major approaches for deriving Boolean cov-
ers for signals in STGs have been investigated in the literature. The traditional
one, which has been discussed above, is based on exact covers. An ezact cover
for a set of states S can be obtained directly from the set of their binary codes
v(m;). However, it requires an explicit enumeration of all the states. Generating
exact covers is very costly due to the exponential number of states that highly
concurrent STGs may contain — this is known as the state explosion problem. To
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overcome this, approzimate covers can be generated using structural information
from the STG, which avoids state explosion [95, 94]. For example, the method
discussed in [95, 94] works with free-choice nets and therefore applies powerful
algorithms based on State Machine decomposition of free-choice nets [40]. An-
other approach [112] is based on the use of Petri net unfoldings [75], which offer
a compact representation of the semantics of highly concurrent STGs. These
methods use the notion of Boolean cover approximations for STG places and
transitions. A place p is approximated by a Boolean cover C(p), defined on the
support of binary signals ¥, which consists of the literals of those signals which
are not concurrent to p. The concurrency relation between places and transi-
tions is a key notion in these techniques. It can be easily calculated from the
STG unfolding, since the latter is an acyclic graph.

Each such initial place cover is a simple cube; approximate covers for transi-
tions are found as intersections of the covers of their predecessor places. When
these initial covers of the elements of the Petri net structure are found, the syn-
thesis process goes to the stage in which the approximate covers for the necessary
state sets are calculated. For example, for a complex gate implementation (type
1), this amounts to finding an approximation of the on-set(y) and of f-set(y) for
each non-input y, and checking if they are non-intersecting. If they are, the syn-
thesis process is finished; otherwise the approximate covers must be refined. The
algorithms for finding approximate covers for specific sets of states, and their
refinement using the unfolding information, are not trivial [112]. They are based
on the notion of cuts (sets of place instances), slices (sets of cuts) and their spe-
cific types (e.g. min excitation cut, max stable cut, excitation slice etc.), as well
as the relations of precedence, conflict and concurrency between the elements of
the unfolding.

Figure 43 depicts the unfolding of the STG from Figure 42. The approximate
place covers are shown next to their places (i.e. arcs in the shorthand notation).
As an example, the Set and Reset excitation covers are shown for signal z. For
this example, they coincide with those obtained by the exact method (one should
of course exclude the z literal itself as a support if using those functions as inputs
to an SR-latch to implement signal 2), so the refinement is not needed, which is
not true in general case.
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Fig. 43. Finding approximate excitation covers from an STG unfolding.
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We conclude this section by referring the reader back to Figure 7, which
shows the logic implementation of the VMEbus interface adapter, obtained using
Petrify. This is a complex gate solution. Current research is focused on obtain-
ing efficient algorithms and cost functions for the hazard-free decomposition of
this logic into specific libraries, such a decomposition is called technology map-
ping. Initial work has been presented in [58, 24], which develops the theory and
software implementation for technology mapping of speed-independent circuits.
This technique combines a number of algorithms such as Boolean relations for
functional decomposition of complex Boolean covers, and speed-independent pre-
serving sets, based on regions, for correct insertion of new signals. Future work
should also tackle aspects of timing-driven synthesis of control circuits from
STGs, based on the information about delays of library elements, to increase the
effectiveness and performance of the solutions without sacrificing their hazard-
freedom properties.

5.5 Verification of asynchronous control circuits with Petri nets

This tutorial is primarily about use of Petri nets for the synthesis of asynchronous
controllers. However, in previous sections we used the term ‘design’ more often
than term ‘synthesis’. Design obviously assumes both synthesis and verification
of design solutions. Circuits synthesised by means of formal methods are guar-
anteed to be formally correct. But in most practical cases designers construct
circuits either completely manually (because the tools for automated synthesis
are not mature enough) or introduce changes into the synthesis results by using
their experience and intuition. This seems to be inevitable, since it is going to be
a long time before tools would be able to take into account all possible heuristics
concerned with re-ordering of events in STGs or with the role of delay infor-
mation in logic decomposition. Furthermore, designs would often be produced
in parts and then assembled together, with glue logic included manually. Such
cases would obviously require the application of formal verification techniques.

Petri nets have a good track record as a formalism for capturing complex
discrete event systems, and for verification with respect to a set of correctness
conditions. The correctness conditions are classified into the following major
groups: (i) safety requirements, (ii) liveness requirements, and (iii) conformance
between implementation and specification. Often, however, group (iii) is “dis-
solved” between the first two groups. Safety conditions say that “something bad
will never happen in the circuit”, and liveness conditions say that “something
good will eventually happen”.

Asynchronous designs are a typical example of discrete event systems. Their
typical safety requirement is that a circuit must be free from hazards. Another
safety requirement is that the circuit, in its interaction with the environment that
never stops providing stimuli to the circuit’s inputs, never reaches a deadlock
state.

The liveness properties are less of an issue for asynchronous designs, at least
at the discrete logic level. Indeed, these qualities are usually guaranteed by the
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finite nature of delays in the logic gates, and by the absence of nondeterminis-
tic choice in asynchronous designs if they are free from hazards. In the latter
case we certainly should exclude some circuits such as arbiters, which produce
nondeterministic behaviour due to inherent metastability. But their analysis for
boundedness of delays in resolving metastability can be done with “probabilis-
tic pragmatism®, i.e. by proving that an arbiter responds in a given time almost
surely [80)]. To fully model and verify such properties for arbitration and other in-
ternally analogue devices, one needs the modelling power of dynamical systems,
which falls outside the scope of this discussion.

Let us briefly outline the major ideas about circuit verification for hazard-
freedom at the discrete event level. A hazard in an asynchronous circuit is a
spontaneous deviation of the circuit’s behaviour from its prescribed specification.
This deviation is usually “local” to a specific signal or a gate’s output, where
the hazard exhibits itself as a short pulse or glitch. The glitch is caused by a
change of the input conditions for the gate at a time when the gate is enabled
to switch its output according to the specification. Such conditions may arise as
follows. The gate is the result of a logic decomposition and its signal 3’ is not
included in the list of the original signals y. The gate’s function is therefore a
cover which evaluates to TRUE only in some states belonging to, say, on-set(y),
and resets to FALSE in the other parts of the on-set(y). It is easy to imagine that
this gate, under particular delay conditions {maybe it is too slow to complete its
reset to 0 when the new set condition arrives), may have a glitch at its output.
Logic decomposition does not therefore guarantee speed-independence. Another
example of potentially hazardous behaviour could be a manual logic design which
takes into account some timing constraints between delays in the circuit and in
the environment that are not satisfied in reality. We need a means to model the
circuit and check if its composition may produce such an undesirable effect.

Three basic questions must be answered in the context of the use of Petri
nets as a modelling language:

(1) How to model logic circuits and their environment with Petri nets?

(2) Which properties of Petri nets could serve as an analogue of those of
hazardous or hazard-free behaviour in the circuit?

(3) What type of the Petri net semantics and what kind of analysis algorithms
are to be used for checking the properties identified by the answer to question
(2)?

Question (1) can be answered in at least two ways:

(1.1) Represent each circuit gate as a finite state Petri net component, con-
nect those Petri nets together according to some rules of Petri net composition,
extract the model of the environment from the circuit specification, and con-
nect it to the overall Petri net. The whole system can then be analysed as a
composition of Petri nets.

(1.2) Represent each gate as a Boolean equation, regard each equation as
a discrete model which has precise enabling and stability conditions, and build
a Petri net model of the environment from the circuit specification. The entire
system will therefore consist of two parts which can have finite state behaviour
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and can be traversed simultaneously for analysis, satisfying the conditions of
compatibility on the signals in the interface between the circuit and its environ-
ment.

Let us consider briefly the (1.1) approach (more details can be found in [139,
109]). This approach can be subdivided into two modelling techniques, depend-
ing on the signalling type of the logic circuits. These are: level-based elements
and event-based elements. These two types directly correspond to the types of
signalling expansion of labelled Petri nets — the four phase and two phase ones
(see Section 5.2). Level-based elements are ordinary logic gates, such as ANDs,
NANDs, ORs, NORs, AND-OR-NOTSs. Sequential elements are described by a
complex gate equation of the form Y = S + R'y, where S is a set subfunction
and R is a reset subfunction. Event-based elements are less conventional, they
include micropipeline control elements, Join (C-element), Merge (XOR-gate),
Toggle, Select, Call, RGD-arbiter (see Section 5.3) [118]. Their Petri net mod-
els can be built along the lines of Patil’s approach to the direct translation of
Petri nets to circuit, discussed in Section 5.3). For example, Join is modelled by
a transition synchronising two predecessor transitions; Merge is modelled by a
place with two input transitions assumed to be fired on a mutually exclusive
basis.

Modelling level-based logic with Peiri nets. The idea of representing a logic cir-
cuit built from level-based components (i.e. ordinary logic gates, as opposed to
event-based micropipeline elements [118, 139]) by so-called Circuit Peiri nets
was described originally in [37] and refined in [127]. A Circuit Petri net is in
fact a specific type of STG, in which each signal y is associated with two places,
representing its two logical states. The groups of transitions labelled y+ and y—
are connected to these places in such a way that the enabling/firing AND se-
mantics of Petri net transitions, “corrected”’ through the appropriate labelling
mechanism, adequately represents either AND or OR conditions in the logic.
The actual input “guards” for these transitions are formed by using self-loop
(i.e. read-only) Petri net arcs from the places associated with the state of the
input signals to the gate. The use of self-loops, rather than “normal” input arcs,
is essential to this modelling method. It only allows tokens to be moved from the
state-holding places associated with signals by firing transitions of the elements
whose outputs are modelled by these inputs. Therefore, if one models a circuit
with inputs and outputs, the Petri net model of the circuit can only change the
state of the places associated with its outputs. The marking of the places for
the input signals can only by changed by the part of the net representing the
circuit’s environment.

Figure 44 shows two simple examples of such models, an inverter and an
OR-gate.

An example of a model of a level-based circuit is shown in Figure 45(a).
This circuit is closed, i.e. it is autonomous and has no interconnections with its
environment. The Circuit Petri net model is shown in Figure 45(b).

The (1.2) approach has been described in [102].
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Fig. 45. Example of a level-based circuit model.

Analysis of hazard-freedom via net persistency check. Question (2) can be an-
swered as follows.

The notion of a gate being enabled to make a transition of its output signal
from, say, logical 0 to logical 1 is analogous to the notion of a Petri net transition
being enabled by the set of its input places. Similarly, if the gate’s enabling is
removed before it has managed to switch, this can be modelled by removing
some of the tokens from the input places of the corresponding transition in the
net model. Therefore, potentially hazardous circuit behaviour can be mimicked
by the nonpersistence of the corresponding net model. This sort of relationship
between asynchronous circuits and labelled transition systems was noted by R.M.
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Keller [51]. Thus, methods for checking Petri net nonpersistency can be used for
hazard analysis.

Let us return to the example of the Petri net model of a level-based circuit
shown in Figure 45(b). The behaviour of the circuit can be analysed using the
state graph shown in Figure 45(c). It is easy to see that this circuit has hazards
if the delay of one of the inverters (say, #,) is greater or equal to the sum of the
delays of the other inverter and the OR gate. In this case, the Petri net may
start in state 000, in which both transitions z1+ and z2+ are enabled, then fire
z2+ and 23+ in sequence, and finally enter state 011, with =;+ disabled without
firing. In the physical circuit, this corresponds to a potential hazard on signal
21, while in Petri net terms, this is called non-persistency of the transition.

This example suggests a canonical way in which level-based circuits can be
formally checked for hazard-freedom. Such a circuit has a hazard in signal = if
the Petri net model is non-persistent with respect to a transition labelled with
z.

Note that for event-based circuits one can use the property of non-1-safeness
to interpret hazardous behaviour [139]. For example, consider the model of a
Merge (XOR) element with two inputs, shown in Figure 46. If one of the inputs
changes its state before the output has been able to respond to the change of its
other input, then this manifests potentially hazardous behaviour of the Merge.
In the Petri net model, this would correspond to the arrival of two tokens into
place p — thus causing the net to be non-1-safe.

a-
a v O—‘»l p y-
bi O ..l) =0
b~
Fig.46. Model of an XOR gate.

Finally, let us briefly answer question (3); again, more details can be found
elsewhere [139].

Avoiding stale ezplosion in hazard-freedom analysis. Several methods have been
suggested to overcome the state space explosion of the straightforward reacha-
bility state set analysis. Among those are Petri net symbolic traversal [96], stub-
born set methods [122] and Petri net unfoldings [75]. Symbolic traversal uses
implicit representation of the reachability set in the form of Binary Decision Di-
agrams [11] (BDDs) which are canonical representations of boolean functions in
graphical form. Symbolic traversal has been shown to be efficient for analysis of
“state-based” properties such as freedom from deadlock. However, this method
does not immediately provide the relations between transitions.

Stubborn set methods use the fact that interleavings of concurrent transitions
lead to the same marking. These methods partially represent the reachability
set. Although efficient in finding deadlocks, they do not produce a complete
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representation of the reachable state space, and checking for properties other
than freedom of deadlocks usually involves exploring other states.

Petri net unfolding represents the full reachability graph using partial orders
that preserve the relations between transition occurrences (a transition occur-
rence is a unique event associated with a single act of firing of the transition).
Since all reachable markings are represented in the Petri net unfolding, the con-
currency relation for two transitions can be easily obtained. It has been shown
in [109] that the use of unfoldings of Circuit Petri nets should be treated with
special care. Indeed, the presence of a large number of self-loop (or positive
contextual) arcs presents a problem for the unfoldings of ordinary Petri nets,
that is, those where the self-loop arcs are represented explicitly as two single
headed arcs. Since in Circuit Petri nets the meaning of self-loop arcs is exactly
like that of contextual or read-only arcs, treating them as a superposition of
two ordinary arcs would be wrong. The size of the unfolding of such nets may
grow exponentially with the number of concurrently enabled transitions which
are incident via self-loop arcs to a a place. A special method of unfolding nets
with positive contextual arcs has been developed and applied to the verification
of logic circuits [109], with significant performance gain.

The effectiveness and efficiency of the above-mentioned analysis methods
depends on the structural and behavioural type of the net. It is therefore ad-
vantageous to combine them. Petri net unfolding produces temporal relations
between places and transitions. Such relations can then be used to optimise the
order of variables in the BDD representing the reachability set. Experiments
showed improvements from this synergy of methods [111].

Unlike ordinary (untimed) Petri nets, where every transition firing has no
specific firing time or delay, a circuit transition is usually associated with an
action that takes a finite amount of time. This amount is typically a physical
delay associated with a signal change. If two transitions are fired concurrently,
the overall time is the maximum of the firing times of the {ransitions, as opposed
to their sum as in the case of sequential operation. A design in which a certain
major module is decoupled from the rest of the circuit would be considered
more time-efficient, thus suggesting a pipelined operation in the system. Such
an operation is easily captured by a Petri net description.

Circuit models based on Time(d) Petri Nets are amenable to timing analy-
sis and verification — a circuit whose behaviour may be incorrect in the delay-
independent sense, may be perfectly acceptable under appropriate delay condi-
tions (imposed by the environment and/or by the implementation parameters).
Recent results in this area can be found in [103, 44, 110].

Petri nets and VHDL in asynchronous design. The combined use of Petri
nets and conventional high-level hardware description languages such as VHDL is
important at different levels of asynchronous design. Indeed, VHDL is a language
with an increasingly powerful set of supporting commercial and academic tools
for simulation and even synthesis of logical circuits. We imagine the role of the
link between Petri nets and VHDL to be increasing and at least consist in the
following.
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The designer develops an asynchronous circuit from a formal Petri net model,
such as an STG. Firstly, he visualises the behaviour of the specification in the
classical and customary form of waveforms or timing diagrams. Secondly, the
circuit is either designed by hand or synthesised by an asynchronous synthesis
tool. If it is then modified by hand, it may need to be examined in a conventional
way. The easiest way here would be to use existing software tools for simulation
and visualisation. These two important tasks can be realised by means of creating
a conversion tool from Petri net models, including STGs, to VHDL. Such tools
have been described in {126, 117). While the first reference focuses on the role
of VHDL for simulation and testing of the already designed circuit, the second
one demonstrates the involvement of VHDL representation forms at different
intermediate synthesis stages, such as CSC resolution and logic decomposition.

The reverse link, from VHDL to Petri nets and their subsequent translation
into asynchronous or synchronous logic, has been described in {32, 78].

6 Overview of Petri net based tools

Many software tools have been written to perform operations on Petri nets.
It would be impossible to discuss all of them here. In general, the following
functions are performed by such tools:

— net editing, usually through a graphical front-end;

- net simulation, often with graphical feedback, and report generation;

generation of reachability graphs;

verification of net properties, such as liveness;

performance and timing constraint satisfaction analysis;

synthesis of circuits, either synchronous or asynchronous;

- verification of behavioural properties of asynchronous circuits, such as hazard-
freedom.

|

1

There is no single tool to perform all these functions, and the Petri net and/or
circuit designer will usually have a set of tools as his disposal. Different tasks
are performed with different levels of efficiency by different tools, so a designer
may have clear preferences. Sometimes different tools produce different results
on the same net, which may indicate the presence of bugs in the software!

Below we briefly discuss the software tools favoured by the authors. These
tools are a mixture of general purpose Petri net tools and highly specialised tools
for the synthesis of asynchronous circuits.

6.1 SIS

SIS [114] is a very popular software system for the synthesis of both synchronous
and asynchronous sequential circuits. It was written at the University of Cali-
fornia, Berkeley. It accepts input in the form of a state transition table (e.g. in
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Berkeley BLIF format), a signal transition graph (in ASTG format), or a logic-
level description of a circuit. From this it produces an optimized net-list in the
target technology. The software contains a large number of different synthesis
algorithms, which allow the user a great deal of choice at each stage of the design
process.

SIS is freely available from http://www-cad.eecs.berkeley.edu, and is widely
used throughout academia as a back-end synthesis system.

6.2 FORCAGE

FORCAGE is a comprehensive suite of software tools (for MS-DOS machines)
developed originally by Trassa Co-op in St. Petersburg, Russia (later maintained
at Technical University of Denmark and at the University of Aizu, Japan).
This package is based on the theory of Change Diagrams, described in detail
in the monograph by M. Kishinevsky, A. Kondratyev, A. Taubin and V. Var-
shavsky [55] (the book is normally supplied with a diskette). Change Diagrams
are a close “relative” of Petri nets, and their relationship has been investigated
in [132].
The package provides the following tools:

— TRANAL, to verify asynchronous circuits for speed-independence and semi-
modularity (analogous to Petri net persistency [51], and hence characterising
hazard-freedom). The circuit and its environment must be defined by its set
of logical equations. The tool performs analysis by means of reachability set
traversal.

- TRASPEC, to verify asynchronous circuits for speed-independence and dis-
tributivity (semi-modularity restricted with AND-causality [132] only) by
means of building a Change Diagram that describes the behaviour of the
circuit. Unlike TRANAL, this tool uses a polynomial algorithm (based on
partial orders) that does not restore all states of the circuit.

— TRASYN, to check the logic implementability of a Change Diagram spec-
ification and to synthesise a speed-independent circuit implementing this
specification.

FORCAGE is available through anonymous FTP from:

ftp://ftp.id.dtu.dk/pub/forcage.

Additionally, FORCAGE is compatible with a program for analysis of per-
formance of speed-independent circuits. The program (which runs under Unix)
computes the cycle time and critical cycles for a class of STGs based on marked
graphs. This program is available from ftp://fip.id.dtu.dk/pub/timesim /timesim.tar.Z.

6.3 Petrify

Petrify [22] is a tool which helps the designer in performing the following two
tasks:
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— manipulation of concurrent specifications
— synthesis and optimisation of asynchronous circuits

Petrify accepts the following behavioural descriptions: Petri nets, Signal
Transition Graphs and Transition Systems (TSs). A TS is a state graph with
the arcs labelled with abstract names of events.

Given a Petri net, an STG or a TS, Petrify generates another Petri net or STG
which is simpler than the original description, and then produces an optimised
net-list of an asynchronous controller in the target library while preserving the
specified input-output behaviour. Thus, given a specification, Petrify provides
the designer with a net-list of an asynchronous circuit and a Petri net-like de-
scription of the circuit behaviour in terms of evenis and ordering relations be-
tween events. The latter ability of back-annotating to the specification level helps
the designer to control the design process. The final net-list is guaranteed to be
speed-independent, that is hazard-free under any distribution of gate delays and
multiple input changes satisfying the initial specification.

The tool is being developed as a collaborative work of research teams from
Polytechnic University of Catalunya (Spain), Polytechnic of Turin (Italy), Uni-
versity of Aizu (Japan) and University of Newcastle upon Tyne. It is available
from http://www.ac.upc.es/ " vlsi/petrify /petrify.html.

6.4 ASSASSIN

ASSASSIN [140] is a powerful system for the sysnthesis of asynchronous control
circuits from various input formats. It was developed at the IMEC institute
in Lenven, Belgium. The following input formats are supported: STGs (using
a language which is an extension of the SIS ASTG format), FSM descriptions
(in particular, for the description of burst-mode circuits [92]), and CSP-based
models. The approach allows the synthesis of heterogeneous specifications. The
system has a particular emphasis on industrial applications.

ASSASSIN output consists of a low level description of a hazard-free im-
plementation of a circuit in terms of logic equations and asynchronous memory
elements. It is freely available.

8.5 Versify

Versify is a command-line driven tool that performs the following functions:

— verification of a speed-independent circuit against an STG specification;
— verification of STGs;
— verification of Petri nets.

The tool requires both the specification of a circuit and the specification of its
environment. The tool performs reachability analysis, and checks for unexpected
behaviour of the circuit as it reacts to changes in the environment. It was de-
veloped at the Polytechnic University of Catalunya (Spain). It is available from
http://www.ac.upc.es/ “vlsi/versify.
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6.6 PUNT

PUNT [106] was written at the University of Newcastle upon Tyne. It uses a
Petri net unfolding technique as the basis for analysis. PUNT implements both
(Labelled) Petri net unfolding and the STG-unfolding segment techniques. This
allows its use for analysis of asynchronous circuits as well as their specifications
in the form of Labelled Petri nets and STGs. The tool allows analysis of the
Petri nets/STG for safety, persistency, correctness, boundedness. In addition, the
designer may derive concurrency relations between the transitions of the original
Petri net/STG. This helps to determine the design’s performance bottlenecks.
The relations between transitions help the designer to arrive to a design with
higher degree of concurrency and hence higher throughput.

PUNT supports the following input formats: PNS and ASTG. The former is
used in the PNS Petri net simulator, which allows graphical input of the Petri
net. The latter is used in a variety of current asynchronous analysis and syn-
thesis tools. PUNT is a command line driven tool where the properties to be
checked are specified as options at the command line. There is also provision
for a menu which comes up after the unfolding/segment has been constructed.
This allows interrogation of the segment in order to verify a particular prop-
erty. If the property is violated, then at least one trace leading to the offending
marking is produced. From this trace the designer can determine which correc-
tions are required. In addition, PUNT is able to produce a variety of output
formats for further processing of the original net in such tools as PROD and the
unfolding/segment for use in graphical layout tools such as VCG and DOT.

6.7 PROD

PROD [39] is a general net analysis tool written at Helsinki University of Tech-
nology. It has no graphical frontend. Its main function is efficient reachability
analysis. The main problem with reachability analysis is state explosion: the
state space can become so large that it would be impossible to inspect all the
states of the system.

PROD generates reduced reachability graphs using the following methods:

stubborn sets, using several different algorithms;

~ the so called CFFD preserving stubborn sets method;
the sleep set method;

the use of symmetries.

PROD is widely used in academia and industry. The tool and associated
documentation is available from http://topos.hut.fi/“petrinet/prod.html.

6.8 UltraSan

UltraSan [121] is a highly sophisticated tool set developed at the University of
IHinois at Urbana-Champaign. The tools allow model based performance, de-
pendability and performability evaluation of systems, accessed through a graph-
ical frontend. The user constructs a stochastic activity network for his system,
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possibly in a hierarchical fashion. Reward variables are used to model depend-
ability aspect. Simulation and analytic solvers are available to manipulate the
models. Comprehensive report facilities are available.

The tool set is widely used in industry and academia. It is available from
hitp://www.cthc.uiuc.edu/UltraSan.

6.9 PNIT

PNIT [56] is a high level framework developed at the University of Newcastle
upon Tyne. It is written entirely in Tcl/Tk, and allows the following operations:

— editing of hierarchical Petri nets using a sophisticated graphical front-end;

— easy manipulation of the Petri net using the tools described above, by simply
clicking on an appropriate menu item. PNIT will handle the input and output
files, as well as the execution of the software;

— the use of a standard interchange format for Petri nets called PNIF to allow
exchange of designs between different tools.

The overall idea is to give a designer easy access to a range of available de-
sign tools that are already available, and to make it easy to add new design
tools to the system. In order to make interchange of designs between differ-
ent tools possible, an interchange format, called PNIF, has been developed [57]
which allows textual description of Coloured Petri Nets (CPNs) [46]. PNIF has a
LISP-like syntax, and is heavily influenced by EDIF, the Electronic Design Inter-
change Format (version 2.0.0.). The basic types that are supported are boolean,
(subranges of ) integer, floating point, and enumerated types. PNIF supports a
number of keywords to specify arithmetical and boolean expressions using these
basic types. Programming langnage constructs are available through if and the
while statements. A new colour (i.e. data type) for use in token expressions can
be defined. It is also possible to declare variables, constants, arrays, and func-
tions. Statements are available to assign values to variables. PNIF thus supports
a full range of programming constructs. In order to allow the user to keep the
complexity of the net within reasonable bounds, PNIF has provisions for hierar-
chical descriptions of nets, a feature frequently not widely implemented in Petri
Net tools. Hierarchy is essential for reducing the complexity of net descriptions
to manageable proportions. The net is modelled as a collection of small nets,
which may instance each other.

7 Designing synchronous controllers from Petri nets

Petri nets have been used relatively little in the design of synchronous circuits.
The reasons for this are mostly historical: the art of designing synchronous cir-
cuits was already firmly established when the theory of Petri nets was first de-
veloped. Computer aided design software was developed (e.g. schematic capture
systems) to design larger circuits. These systems have now developed into very
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big and very successfull commercial systems. The use of hardware description
languages such as VHDL and Verilog as an input format to these systems is now
widespread.

However, as hardware systems become ever more complex, modelling and
verification of highly concurrent and parallell systems has become ever more
difficult using the standard design methods. An FSM description is most useful
whenever a single state is active at any time. Whenever there are multiple states
active simultaneously in multiple concurrent processes, the FSM approach loses it
attractions. The use of Petri nets is more suitable in these circumstances. State of
the art work is being done at the University of Bristol [7]. Similar investigations
have been reported, e.g. in [1, 68].

The following semantic interpretation is used to synthesize synchronous cir-
cuits from Petri nets. To every transition, a predicate is attached, which is a
function of the input signals. The outputs of the circuits can be associated with
either the places or the transitions. If they are associated with the places, they
are called Moore outputs. If they are associated with the transitions, they are
called Mealy outputs. Enabled transitions do not fire immediately, but instead
do so when the next clock tick occurs (so all enabled transitions fire simulta-
neously). A transition is enabled when the input places are marked and the
predicate is true.

It is normally required that the Petri net used to model a synchronous logic
block is safe, that in any reachable marking the enabled transitions are not in
conflict, and that there are no self-loops in the net (i.e. the net must be pure).
These conditions guarantee that the digital circuit will be free from anomalous
behaviour that might jeopardise its correct behaviour.

Once verified, the net can be subjected to reduction in order improve the
efficiency of the generated hardware. Finally, an appropriate software tool can
generate an appropriate output format that would be used by a synthesis tool
to generate the circuit layout. An appropriate output format would be VHEDL
(particularly, a VHDL dataflow description), since there are currently many
CAD tools that can synthesize VHDL. The CAD software would attempt to
minimise the hardware using standard techniques such as Karnaugh Maps. The
result would be a highly efficient circuit implementation.

It remains to be seen whether the use of Petri nets will become widespread
in the synchronous design community, given the large investment in other tech-
niques, and the inherent reluctance of the designers to change design methods
that are perceived as having worked well for a large number of years.

8 Conclusions

In this tutorial we have tried to present our understanding of a “bridge” between
two related areas of research, Petri nets and asynchronous hardware design.
This relationship has been built historically and is believed to be highly cross-
fertilising for the future benefits of both sides of the “bridge”. We described
our view on the process of asynchronous control circuit design using Petri nets.
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The help of Petri nets in modelling the discrete aspects of asynchronous system
behaviour seems indispensable, and allows synthesis and verification of circuits
at different levels of abstraction. We also showed that Petri nets can be used for
designing parallel synchronous controllers.

Our opinion is that today’s work in this area should be focused (at least) on
the following aspects:

— Improvements of high-level modelling techniques. There is a need for a
greater synergy in methods for designing control and datapath circuits; this
could be achieved, e.g., by searching for new ways of synthesis of asyn-
chronous circuits from coloured or predicate-transition nets, which are al-
ready supported by powerful analysis tools [46].

— Investigations of new links between the discrete nature of Petri nets and
the analogue or “hybrid” character of asynchronous circuit behaviour. Such
investigations should tackle problems of better capturing circuit properties
like causality and conflicts between electronic signals, metastability and haz-
ards [132, 137]. Finding a flexible combination of Petri nets and dynamical
system models (systems of differential equations and their phase spaces) [9]
is of critical importance.

— Studies into hierarchical and reactive system modelling. There is a clear
need for unified modelling tools for designing embedded and real-time sys-
tems, consisting of hardware and software components. Such systems need
an adequate capture of the aspects of synchrony and asynchrony, parallelism
and interrupts etc. Some attempts to find a model of that kind have been
reported in [54].

— Further antomation of the existing approaches to verification and synthesis.
This work should seek greater efficiency in model checking for asynchronous
design and synthesis of circuits from Petri nets. There is a great potential
in structural methods and methods based on partial orders, e.g., develop-
ing better techniques for evaluation of boolean covers in Signal Transition
Graphs [112]. A big challenge is the problem of timing analysis, where use
of canonical techniques based on timed reachability graphs is absolutely im-
practical [110].

Finally, it is our sincere hope that the designers of the next generation of
digital VLSI systems will use Petri nets as an underlying formalism for their
design tools.
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