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1 I n t r o d u c t i o n  

Linear time Temporal Logic (LTL) as proposed by Pnueli [37] has become a well 
established tool for specifying the dynamic behaviour of distributed systems. A 
basic feature of LTL is that  its formulas are interpreted over sequences. Typically, 
such a sequence will model a computation of a system; a sequence of states visited 
by the system or a sequence of actions executed by the system during the course 
of the computation. A system is said to satisfy a specification expressed as an 
LTL formula in case every computation of the system is a model of the formula. 
A rich theory of LTL is now available using which one can effectively verify 
whether a finite state system meets its specification [51]. Indeed, the verfication 
task can be automated (for instance using the software packages SPIN [21] and 
FormalCheck [2]) to handle large systems of practical interest. 

In many applications the computations of a distributed system will constitute 
interleavings of the occurrences of causally independent actions. Consequently, 
the computations can be naturally grouped together into equivalence classes 
where two computations are equated in case they are two different interleavings 
of the same partially ordered stretch of behaviour. It turns out that  many of the 
properties expressed as LTL-formulas happen to have the so called "all-or-none" 
property. Either all members of an equivalence class of computations will have 
the desired property or none will do ("leads to deadlock" is one such property).  
For verifying such properties one has to check the property for just one member 
of each equivalence class. This is the insight underlying many of the partial- 
order based verification methods [17, 35, 50]. As may be guessed, the importance 
of these methods lies in the fact that  via these methods the computational 
resources required for the verification task can often be dramatically reduced. 

It is often the case that  the equivalence classes of computations generated by 
a distributed system constitute objects called Mazurkiewicz traces. They can be 
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canonically represented as restricted labelled partial orders. This opens up an 
alternative way of exploiting the non-sequential nature of the computations of a 
distributed systems and the attendant partial-order based methods. It consists 
of developing linear time temporal logics that can be directly interpreted over 
Mazurkiewicz traces. In these logics, every specification is guaranteed to have the 
"all-or-none" property and hence can take advantage of the partial-order based 
reduction methods during the verification process. The study of these logics also 
exposes the richness of the partial-order settings from a logical standpoint and 
the complications that can arise as a consequence. 

Our aim here is to present an overview of linear time temporal logics whose 
models can be viewed as Mazurkiewicz traces. The presentation is, in principle, 
self-contained though previous exposure to temporal logics [12] and automata 
over infinite objects [49] will be very helpful. We have provided net-theoretic ex- 
amples whenever possible in order to emphasize the broad scope of applicability 
of the material. 

In the next section we introduce linear time temporal logic and sketch the 
automata-theoretic solutions to the satisfiability problem (does a formula have 
a model?) and the model checking problem (do all computations of a system 
constitute models of a given specification formula?). In Section 3 we introduce 
Mazurkiewicz traces viewed as equivalence classes of sequences. This leads to 
the precise formualtion of the notion "all-or-none" LTL properties. 

Next we introduce a well-understood class of trace languages called prod- 
uct languages. The automata that recognize these languages are called product 
automata and they incorporate a simple and yet useful method of forming dis- 
tributed systems. The system consists Of a network of sequential agents, each 
with its own alphabet of actions. In the interesting instances the alphabets are 
not pair-wise disjoint. One then imposes a synchronization regime under which 
the agents are forced to carry out common actions together. After presenting a 
theory of product languages and automata, we formulate in Section 5 a simple 
version of a trace-based version of LTL called product LTL. The formulas of 
this logic have a natural semantics in terms of the computations generated by 
a network of sequential agents as introduced in the previous section. Using the 
theory of product automata we then provide solutions to the satisfiability and 
model checking problems for product LTL. 

In Section 6 we introduce the representation of Mazurkiewicz traces as re- 
stricted labelled partial orders. We then provide a rapid introduction to the 
theory of trace languages and automata that we call asynchronous automata for 
recognizing trace languages. In the subsequent section we introduce the logic 
TrPTL which is a trace-based logic with much richer possibilities than product 
LTL. We then provide solutions to the satisfiability and model checking prob- 
lems for TrPTL using asynchronous automata. This is followed by a brief survey 
of other trace-based linear time temporal logics available in the literature. Sec- 
tion 8 is devoted to considering various expressiveness issues associated with our 
temporal logics. We conclude in the final section with remarks about branching 
time temporal logics based on traces. 
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2 L i n e a r  T i m e  T e m p o r a l  L o g i c  

In our formulation of linear t ime temporal  logics it will be convenient to t rea t  
actions as first class objects both at  the syntactic and semantic levels. As a first 
step we shall consider a version of LTL (linear t ime temporal  logic) in which the 
next-s tate  modali ty is indexed by actions. 

Through the rest of the paper  we fix a finite non-empty a lphabet  of actions 
Z .  We let a, b range over Z and refer to members  of E as actions. Z* is the 
set of finite words and Z ~ is the set of infinite words generated by Z with 
w = {0, 1, 2 , . . .} .  We set Z ~ = Z* U 2? ~ and denote the null word by ~. We 
let a, a t range over Z ~ and r,  r t, r "  range over Z*.  Finally ~_ is the usual prefix 
ordering defined over Z* and for u E Z °°, we let prf(u) be the set of finite 
prefixes of u. 

Next we fix a finite non-empty set of atomic propositions P = {Pl ,P2, . . .}  
and let p, q range over P.  The set of formulas of LTL(Z)  is then given by the 
syntax: 

LTL(Z)  ::= p f ,-~a 1 a V #~ I (a)a ] a U/3. 

Through the rest of this section a,/3 will range over LTL(Z) .  
A model of LTL(Z)  is a pair M = (a, V) where a E Z ~ and V : p r f (a )  --~ 2 P 

is a valuation function. Let M = (a, V) be a model, r E pr f (a )  and a be a 
formula. Then M, r ~ a will stand for a being satisfied at V in M.  This notion 
is defined inductively in the expected manner.  

- M , r ~ p i f f p E V ( r ) .  

- M , r ~ . . ~ a i f f M ,  r ~ a .  

- M , r ~ a V l 3 i f f M ,  r ~ a o r M ,  r ~ / 3 .  
- M , T  ~ (a)a iff ra E prf(a)  and M, ra ~ a. 
- M, r ~ a U /3 iff there exists r '  such tha t  Tr' E prf(a)  and M, Tr t ~ /3. 

Moreover for every T" such tha t  ~ ~_ T" -~ r t, it is the case tha t  M, r r "  ~ a. 

Along with the usual propositional connectives A, D and -- we will also use 

the propositional constants, T ~ plV ~ Pl and i ~ ~ T.  Some useful 
derived modalities are: 

- -  Oc~ ~ m u a .  

- E]Ol < = ~  ~-, 0 ~ 0~. 

Let M = (a, V) be a model and r E prf(a) .  Then it is easy to check the following 
assertions. 

- M , T  ~ Oa iff M,T '  ~ a where T' E prf(a)  is such tha t  IT'] = IT I + 1. 
-- M, r ~ O a  iff there exists a T' 6 Z* with rT' e prf(a)  such that  M, TT ! ~ Ol, 
- M , r  ~ Oa  iff for each r ~ E X*, r r  t E prf(a)  implies M, TT t ~ a. 
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Note that  Oc~ is the usual next-state operator of LTL. 
We say that  a formula a E LTL(X) is satisfiable iff there exist a model 

M = (a ,V)  and T e prf(a)  such that  M , r  ~ ~. This logic does not refer 
to the past either in the syntax or in the semantics. Hence the formula a is 
satisfiable iff there exists a model M such that  M, 6 ~ a. This is easy to check. 
The satisfiability problem for LTL is to develop a decision procedure which will 
determine whether a given formula ~ is satisfiable. We will later in this section 
describe such a decision procedure. 

We now wish to formulate the model checking problem for LTL(E) .  A f n i t e -  
state program over E is a structure P r  = (S, ----~, Si,~, Vp~) where: 

- S is a finite set of states. 
- > C_ S × E × S is a transition relation. 
- S/n c_ S is a set of initial states of the program. 
- Vpr : S -+ 2 P assigns a subset of P to each state of the program. 

The members of P capture a finite set of basic assertions concerning the pro- 
gram which can usually be "read off" by examining the states of P r  and this 
is described by Vp~. It will often be the case that  the set of initial states is a 
singleton. 

It is easy to arrange matters so that  at each reachable state of the program 
at  least one transition can be performed. We will assume that  this is indeed 
the case for all program models we consider in this paper. Further we will say 
"program" instead "finite-state program" from now on. 

A computation of the program P r  is a pair (a, p) where a E ~ and p : 
prf(a)  -~ S is a map which satisfies: 

- p(~) ~ S~,,. 

- p(r)  - - ~  p(Ta) for each Ta E prf(a).  

Let (a, p) be a computation of the program Pr. Then this computation canon- 
ically induces the model M~,p = (a, Vp) where Vp is given by: Vp(r) = Vp~(p(T)) 
for each T e prf(a).  

Let P r  be a program and c~ be a formula of LTL(~) .  We say that  P r  meets 
the specification ~ - -  denoted P r  ~ a - -  if for every computation (a, p) of Pr ,  
it is the case that  M, ~ ~ a where M is the model induced by the computation 
(a, p). The  model checking problem is to decide for a given program P r  and a 
given formula a whether or not P r  ~ a.  We will sketch a solution to the model 
checking problem later in this section. 

Let Af = (B, E,  F, cin) be a finite elementary net system. In other words, it is 
an elementary net system in which both B, the set of conditions and E, the set 
of events are finite sets. We can associate the program P r N  = (S, ---4, S~n, Vp~) 
with Af as follows: 

- ~ = E a n d P = B .  
- S is the least subset of 2 s and ~ is the least subset of S x E: × S satisfying: 

• cin E S.  
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• S u p p o s e c E S a n d e E E s u c h t h a t * e C _ C _ c a n d e  ° M c = 0 . T h e n c  t E S  
and (c, e, c') E > where c' = (c - °e) U e °. 

- 

- Vp.  (e) = e for every c E S. 

Thus the so called case graph - -  or the sequential configuration graph as 
called in the chapter on elementary net systems in this volume - -  is the un- 
derlying transit ion system of the program. The conditions serve as the atomic 
propositions. 

For e C B, let ac be the formula Abec b. Now consider the specification [] ,-~ac 
for some c C_ B. Then Pr~v ~= [] ,.~ ac iff c is a reachable s tate  (i.e. c E S) in 
.M. Next suppose e and e J are two events. Then Pr•  ~ • © ( e ) T  D • O ( e J ) T  
captures the fact tha t  in Af, along every computat ion,  if e occurs infinitely often 
then so does e'. A rich variety of liveness and safety properties can be expressed 
in LTL(2~). For a substantial  collection of examples the reader should see [26]. 

It  turns out tha t  both the satisfiability and model checking problems for 
LTL can be solved elegantly using Bfichi au tomata  [51]. We s tar t  with a brief 
introduction to these automata .  A Biichi automaton over 27 is a tuple /3 = 
(Q, >, Q~,~, F )  where: 

- Q is a finite non-empty set of states. 
- - - ~  c_ Q x 2~ × Q is a transition relation. 
- Qin c_ Q is a set of initial states. 
- F C_ Q is a set of accepting states. 

Let a E Z ~. Then a run of B over a is a map p : prf (a)  - -+  Q such that:  

- e Qi . 

- p(r) ~ p(Ta) for each Ta E prf(a) .  

The run p is accepting iff inf(p) M F ~ ¢ where inf(p) C Q is given by 
q E inf(p) iff p(7-) = q for infinitely many T E prf(a) .  Finally L:(B), the language 
of w-words accepted by B, is: 

E(B) = {a I B an accepting run of B over a}. 

The languages recognized by Bfichi au tomata  are called the o J-regular lan- 
guages. For an excellent survey of regular languages and au toma ta  over infinite 
objects,  the reader is referred to [49]. 

It  is easy to solve the emptiness problem for Bfichi au tomata ;  to determine 
whether or not the language accepted by a Biichi au tomaton  is empty. This can 
be done in t ime linear in the size of the au tomaton  where the size of a Bfichi 
au tomaton  is the number  of states of the automaton [49]. 

We will now show how one can effectively construct for each a E LTL(5~), a 
Bfichi au tomaton  B~ such that  the language of w-words accepted by B~ is non- 
empty  iff a is satisfiable. This is an action-based version of the elegant solution 
presented in [51] for LTL. 
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Through the rest of the section we fix a formula ao. To construct B~ o we first 
define the (Fischer-Ladner) closure of a0. For convenience we will assume that  
the derived next-state modality modality O is included in the syntax of LTL(E) .  
We take d (ao )  to be the least set of formulas that  satisfies: 

- a o  e d ( a o ) .  

- If ,~fl E cl(ao) then fl 6 cl(ao). 
- If a V fl 6 cl(ao) then a, fl 6 cl(ao). 
- If (a)a 6 cl(ao) then a E cl(ao). 
- If a U fl 6 cl(ao) then a,  fl 6 cl(ao). In addition, O(c~ U fl) 6 cl(ao). 

Now CL(ao), the closure of a0, is defined to be: 

CL(ao) = cl(ao) U {,~fl I/~ 6 el(a0)}. 

In what follows ,~,~ fl will be identified with ft. Moreover, throughout the section, 
all the formulas that  we encounter will be assumed to be members of CL(ao). 
For convenience, we shall often write CL instead of CL(ao). 

A C_ CL is called an atom iff it satisfies : 

- f l E A i f f , , , f l f d A .  
- a V f l E A i f f a E A o r f l E A .  
- a U f l E A i f f f l E A o r a ,  O ( a U f l )  6 A .  

- If (a)a 6 A and (b)fl 6 A then a = b. 

AT(ao) is the set of atoms and again we shall often write AT instead of AT(ao). 
Finally we set U~,o, the set of until requirements of ao, to be the given by U~ o = 
{a U fi [ a U fl 6 CL}.  We will often write U0 instead of U~ o- 

The Btichi automaton B~, o (from now on denoted as B) is now defined as 
B = (Q, - - G  Qi,~, F) ,  where the various components of B are specified as follows. 

- Q = A T  x 2 vo is the set of states. 
- The  transition relation > C Q x Z x Q is given by (A, x) --%, (B, y) iff the 

following requirements are met: 
• For every (a)a E CL, (a)a 6 A iff a 6 B and for every O(a) E CL, 

O(a)  6 A iff a e B. 
• if (b)fl 6 A then b = a. 
• i f x  # ~ t h e n y  = {a U fl I a U fl 6 x a n d f l  • B}. I f x  = 0 t h e n  

y = {a U f l l a  V f l  6 B and fl CB} .  
- Qin _c Q is given by (A, x) 6 Qin iff a0 6 A and x = 9. 
- F _C Q is given by (A, x) 6 F iff x = 0. 

It is easy to show that  £(B) # 0 iff a0 is satisfiable. It is also easy to check that  
the size of B is at most exponential in the size of ao. As observed earlier the 
emptiness problem for a Biichi automaton can be solved in time linear in the 
size of the automaton.  Thus we arrive at: 

T h e o r e m  1. The satisfiability problem )or LTL(E) is decidable in exponential 
time. 
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Turning now to the model checking problem we first recall tha t  the inter- 
section problem for Biichi automata can be easily solved. In other words, let 
•1, B2 be two Bfichi automata  both operating over E.  Then one can effectively 
construct a Biichi automaton B over the same alphabet such that  the language 
accepted by B is the intersection of the languages accepted by/31 and B2. More- 
over, the size of B can be assumed to be bounded by 2nln2 where nl  is the size 
of B, and n2 is the size of B~ [49]. 

Now let P r  = (S, >,Si,~,Vpr) be a program. We associate the Biichi au- 
tomaton I3pr = (S,',z,Sin, S) over the alphabet 5: × 2 P with Pr where -,z is 
given by: (s, (a, R), s') E -,-* iff (s, a, s') e ----+ and Vp~(s) = R. 

Let a be a specification. Then we construct the Biichi automaton B~~ corre- 
sponding to the negation of a. Let B~~ = (Q, ~ ,  Qi,~, F) .  Recall that  each state 
in Q is of the form (A, x) where A is an atom. We now convert this automaton 
into the automaton B = (Q,~ ,QI~ ,F)  over the alphabet Z × 2 P by defining 
~} as: ((A, x), (a, R), (B, y)) E ~ iff ((A, x), a, (B, y)) ~ ==> and A O P = R. 
Finally, let /3 be the Biichi automaton which accepts the intersection of the lan- 
guages accepted by Bpr and/3.  It is straightforward to check that  Pr ~ a iff 
the language accepted by B is empty. An easy analysis of the size of/3 leads to: 

T h e o r e m  2. The model checking problem for LTL(E) is decidable in time 
O(IPrl . 21~t). 

In what follows, automata-theoretic constructions and expressiveness issues 
will play a considerable role. These topics can be treated in a simpler fashion 
if we eliminate atomic propositions. Most of the material we present can easily 
accomodate atomic propositions with some notational overhead. Hence from 
now on, we will not - -  except for some passing remarks - -  deal with atomic 
propositions. To be specific, the syntax of LTL(5:) will be assumed to be: 

LTL(5:) ::= T [ ~ a  I a V 13 t (a)a [ a U 13. 

Notice that  a model is now just a member of 5:~ with the semantics being the 
obvious one (T is always true). The set of models of a formula constitute a 
language of infinite words. More precisely, each a induces the language L,~ given 
by: 

L~ = {a l a,~ ~ a}. 

A program is now just a finite-state transition system Pr = (S, ----~, Sin) over 
5:. Each such program Pr has the language Lvr  associated with it. This is just 
the language accepted by the Bfichi automaton (S, ~,Sin, S). It is also easy 
to see that  Pr ~ a iff Lpr  C_ La iff Lp~ n L~a = 0. 

3 M a z u r k i e w i c z  T r a c e s  a n d  T r a c e  C o n s i s t e n t  P r o p e r t i e s  

Here we wish to introduce the notion of traces from the standpoint of sequences. 
This will enable us to define the notion of a trace consistent property. This notion 
plays an important  role in partial order based reducion methods. As pointed out 
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in the introduction, it also provides the motivation for studying trace based 
linear time temporal  logics. 

A (Mazurkiewicz) trace alphabet is a pair (E,  I) ,  where ~ ,  the alphabet, is a 
finite set and I C_ Z x ~ is an irrefiexive and symmetric independence relation. In 
most applications, Z consists of the actions performed by a distributed system 
while I captures a static notion of causal independence between actions. The 
idea is tha t  contiguous independent actions occur with no causal order between 
them. Thus, every sequence of actions from E corresponds to an interleaved 
observation of a partially-ordered stretch of system behaviour. This leads to a 
natural  equivalence relation over execution sequences: two sequences are equated 
if[ they correspond to different interleavings of the same partially-ordered stretch 
of behaviour. 

For the rest of the section we fix a trace alphabet (~ ,  I)  and assume the 
terminology developed in the previous section for objects derived from Z.  We 
define D = (E  x Z)  - I to be the dependency relation. Note that  D is reflexive 
and symmetric. A set p C Z is called a D-clique iff p x p c D. The equivalence 
relation ~,I C_ Z °o × ~V, oo induced by I is given by: 

a ~ I  a '  iff a r P = or' r P for every D-clique p. 

Here and elsewhere, if A is a finite set, p E A °° and B C_ A then p rB is the 
sequence obtained by erasing from p all occurrences of letters in A - B. 

Clearly ~ i  is an equivalence relation. Notice that  i f a  = Tabal and a' = Tbaal 
with (a, b) E I then a ~ I  a ' .  Thus a and a '  are identified if they differ only in 
the order of appearance of a pair of adjacent independent actions. In fact, for 
finite words, an alternative way to characterize ~ i  is to say that  a ~ I  a ~ iff 
~* can be obtained from a by a finite sequence of permutations of adjacent 
independent actions. However the definition of ~ I  in terms of permutations can 
not be directly t ransported to infinite words, which is why we work with the 
definition presented here. 

The equivalence classes generated by ~ I  are called (Mazurkiewicz) traces. A 
set of traces is called a trace language. The theory of traces is well developed 
and documented--see [6, 7] for basic material as well as a substantial number of 
references to related work. 

A variety of models of distributed systems naturally have a trace alphabet 
associated with them [55]. It  also turns out that  many interesting properties 
of distributed systems respect the equivalence relation induced by these trace 
alphabets. This has important  consequences for the practical verification of such 
properties. 

The key notion in this context is that  of a trace consistent property. To bring 
this out, we start  with a trace alphabet (E,  I)  and recall the remarks concerning 
the abolition of atomic propositions at the end of Section 2. Let L C_ Z ~. We 
say that  L is trace consistent in case a 6 L and a ~ I  a '  implies a '  E L; for every 
a, a '  E Z ~. In other words, either all members of a trace are in L or none of 
them are. We say that  the formula a in LTL(Z)  is t raceconsis tent  in case L~ is 
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trace consistent. It is not hard to see that there is a one-to-one correspondence 
between trace languages and trace consistent languages of strings. 

Now suppose Pr is a program over E which has a trace alphabet (~, I) 
associated with it in some natural manner. Suppose further that Lpr, the lin- 
ear time behaviour of Pr, is trace consistent (we will see a number of models 
of distributed programs that possess these features in the material to follow). 
Now consider a specification c~ which happens to be trace consistent. Then, as 
remarked at the end of Section 2, verifying Pr ~ (~ boils down to verifying 
Lpr C L~. Instead of checking Lp~ C_ La we can choose to check L' C_ L~ where 
L ~ is designed to be such that L' C_ Lpr and for every a E Lpr, [a]NL t ~ 0. The 
key point is, the finite representation of L t can be often substantially smaller 
than the representation of Pr. This is the insight underlying many of the so 
called partial-order methods deployed in the model checking world [17, 35, 50]. 

As pointed out in the introduction this is also the main motivation for con- 
sidering the trace-based linear time temporal logics that we will encounter later. 
We shall conclude this section with some examples. 

Recall the material on elementary net systems introduced in Section 2. Sup- 
pose Af = (B, E, F, C~n) is an elementary net system. Each such system induces 
the independence relation I x  given by: 

= t u n u = 

Let e C E and consider the formula E]O(e)T. The property captured by this 
formula says that (along every computation) the event e occurs infinitely often. 
It is easy to see that this is a trace consistent property with respect to the trace 
alphabet (E, Ix) .  Next consider the net system of Figure 1. 

Consider the formula/3 = OO((e)T A (e')T). Suppose a = (ele2ee') ~ and 
a' = (ele'e2e) ~. Then a,e ~/3  and a "~I1¢ a' but a ' ,c  ~ ~. Thus this property 
is not trace consistent with respect to the trace alphabet induced by this net 
system. 

4 P r o d u c t  L a n g u a g e s  a n d  A u t o m a t a  

We will now exhibit a restricted but useful class of distributed behaviours that 
we call product behaviours. Such behaviours are generated by a network of 
sequential agents that coordinate their activities by performing common actions 
together. It will turn out that product behaviours are naturally trace consistent. 
They also constitute a clean and yet non-trivial subset of the class of trace 
behaviours considered later. 

We first study product Biichi automata. We then formulate in Section 5 the 
product version of LTL(,U). We will then use product Bfichi automata to solve 
the satisfiability and model checking problems for the product version of LTL(X). 
The technical details - -  which we suppress here - -  can be found in [47]. The key 
notion underlying product behaviours is that of a distributed alphabet. It can 
be viewed as an "implementation" of a trace alphabet. As a result, distributed 
alphabets play a fundamental role in the automata-theoretic aspects of trace 
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Fig. 1. Example elementary net system 

languages [15, 58]. This will become more clear when the material in Section 6 
is encountered. 

A distributed alphabet is a family {~Up}vep where :P is a finite non-empty set 
of agents (also referred to as processes in the sequel) and Zp is a finite non-empty 
alphabet for each p 6 P.  The idea is that whenever an action from Zp occurs, 
the agent p must participate in it. Hence the agents can constrain each other's 
behaviour, both directly and indirectly. 

Trace alphabets and distributed alphabets are closely related to each other. 
Let ~ = {~Up}pep be a distributed alphabet. Then Ep, the global alphabet 
associated with Z, is the collection [.Jvep Zp. The distribution of Zp over 7 ) can 
be described using a location function loc 2 : ,Up -+ 2 p defined as follows: 

loc2(a) = {v l  a e 

This in turn induces the relation 12 C_ Zp x Zp given by: 

(a, b) 6 12 iff loc2(a ) A loc2(b ) = 0. 

Clearly 12 is irrefiexive and symmetric and hence (Zp, I~) is a trace alpha- 
bet. Thus every distributed alphabet canonically induces a trace alphabet. Two 
actions are independent according to Z if they are executed by disjoint sets 
of processes. Henceforth, we write loc for loc2 whenever ~ is clear from the 
context. 

Going in the other direction there are, in general, many different ways to 
implement a trace alphabet as a distributed alphabet. A standard approach is 
to create a separate agent for each maximal D-clique generated by (Z, I). Recall 
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that  a D-clique of (Z, I) is a non-empty subset p C_ S such that  p × p C_ D. 
Let :P be the set of maximal D-cliques of (Z,  I).  This set of processes induces 

the distributed alphabet ~ = {Zp}peT, where Sp = p for every process p. The 

alphabet ~ implements (Z,  I) in the sense that  the canonical trace alphabet  
induced by it is exactly (Z,  I) .  In other words, S p  = S and I2  = I.  

For example, consider the trace alphabet (Z,  I) where Z = { a , b , d }  and 
I = {(a, b), (b, a)}. The canonical D-clique implementation of (Z,  I) yields the 

distributed alphabet Z = {{a,d}, {d, b)}. 
Through the rest of the section we fix a distributed alphabet {Sp}pep and 

set Z = S p .  It will be convenient to assume that  P = { 1 , 2 , . . . , K } .  Further,  
the ith component of a K-tuple  x = ( x l , x 2 , . . .  , x g )  will be writ ten as x[i]. In 
other words, x[i] -- xi.  

A product Biichi automaton over ~ is a structure A = g ({.4~}~=1 , Q ~ )  where 
.Ai = (Qi, ~i, Fi, F~)  for each i such that  : 

- Qi is a finite set of/-local states. 
- ---+i C Qi × ~i × Qi is the transition relation of the i th component.  
- F~ C Qi is a set of finitary accepting states. 
- F~ C Q~ is a set of infinitary accepting states. 
- Q~n c Q1 x Q2 x . . .  × QK is a set of global initial states. 

We use two types of accepting states for the components in order to be 
able to handle both finite and infinite behaviours. Even if one is interested only 
in global infinite behaviours, finite behaviours at the component level must be 
treated; a component might quit after engaging in a finite number of actions 
while a part  of the network runs forever. We use global initial states to obtain the 
required expressive power. In general, the automaton will not be able to branch 
off into different parts of the state space, starting from a single global initial 
state. This will be brought out through a simple example after we define the 
language behaviour of product automata.  The same example will also illustrate 
why using the cartesian product of local initial state sets as global initial states 
will result in a loss of expressive power. 

Let A = K ({Ai}i=l, Qin) be a product  Biichi automaton over Z.  From now on 
we will say just "product automata".  Also, we shall often suppress the mention 
of Z.  We will also write {A~} instead of K {Ai}~=l. Let Ai = (Qi, "~ i ,F i ,F~) .  
Then we set QG A = Q1 × Q2 × . . .  x Q/~. When A is clear from the context,  we 
will write QG instead of QG A. The global transition relation of A is denoted as 

~A and it is the subset of Qa x S × Qa  given by: 

q ~ )A q' iffV i e loc(a) : q[i] ~ ~i q'[i] and V i ~ loc(a) : q[i] = q'[i]. 

Let a E Z ~ .  A run of A over a is a map p : Pr f (a)  ~ Qa which satisfies: 

- p ( c )  e O ~ n .  

- y Ta E prf(a), p(r )  ~ )A p(ra) .  
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A simple but  useful p rope r ty  of runs  is the  following. Suppose  p is a run  of 
the  p roduc t  a u t o m a t o n  ,4 over a .  Fur ther  suppose  t h a t  r ,  ~-~ E P r f ( a )  such t h a t  
T [ i = r '  [ i for some i. T h e n  p(r)[ i]  = p(T')[i]. 

Let  p be  a run  of the  p roduc t  a u t o m a t o n  .4 over a.  T h e n  p is accepting iff 
for each i, the  following condit ion is satisfied: 

- If  a [ i is finite then  p(T)[i] E Fi where T E p r f ( a )  such t h a t  r r i = a r i. 
- I f  a [ i is infinite then  p(~'a)[i] E F~ for infinitely m a n y  r a  e p r f ( a )  wi th  

a E Z ~ .  

If  a [i is finite then  clearly there  exists T E p r f ( a )  such t h a t  r [ i = a [ i. Now 
the  above  p rope r ty  of  runs  assures us t h a t  the  not ion of  an accept ing  run  is 
well-defined. In  case a [ i is infinite the  accep tance  condi t ion can  also be  ph ra sed  
as :  

- p(r)[ i]  e F ~  for infinitely m a n y  T e p r f (a ) .  

Th is  once again  follows easily f rom the definition of a run.  We now define £ ( A ) ,  
the  language accepted by the product automaton ,4 as, 

£( ,4)  = {a  I 3 an accept ing run of ,4 over  a} .  

Now consider the  a lphabe t  ({a ,d} ,  {d,b}) and the  language  L = {ad, bd}. 
Figure  2 shows a p roduc t  a u t o m a t o n  over  this a lphabe t  which accepts  L. I t  is 

ql q4 Pl 

t o 1 
q2 q5 P2 

q3 P3 

,41 .42 

F1 -- {q3,qs} F1 = 0 = / ~  F2 -- {pa,ps} 

Q~={(ql ,p4) , (q4,pl)}  

p4 

P~ 

Fig.  2. Product automaton accepting L = {ad, bd} 

easy  to  verify t h a t  no produc t  a u t o m a t o n  over  this a lphabe t  wi th  a single global  
initial  s t a te  can accept  L. I t  is also easy to verify t ha t  no p roduc t  a u t o m a t o n  
whose set  of initial  s ta tes  is a car tes ian  p roduc t  of componen t  initial s t a te  sets 
can  accept  this language.  

A crucial  p rope r ty  of  p roduc t  a u t o m a t a  is t h a t  they  accept  ~ -cons i s t en t  
languages.  



655 

L e m m a  3. Let ,A = ({Ai}, Qi~) be a product automaton over 2 .  Then £ ( A )  is 
trace consistent. 

The class of languages accepted by product automata  can now be character- 
ized. To this end we define the K-ary  operation ® : 2 EC x 2 s F  ×.--  × 2 ~  -+ 2 ~ 
via ® ( L t , . . . , L K )  = {a I a l i  e Li for each i}. 

In what follows we will write L = L1 ® L 2 " "  ® LK to denote the fact 
® ( L 1 , . . . ,  LK) = L. We say that  L C_ Z °~ is a direct product language over 
iff 3 Li C Z ~  for each i such that L = L1 ® L2 ® . . .  ® LK. Here are two useful 
properties of direct product  languages. In stating this result and elsewhere we 
will say "product language" instead of "product language over ~ "  etc. 

Proposi t ion 4. 

1. Let L be a direct product language and a E Zoo. Then a E L iff for each i 
there exists a~ E L such that a r i = a~ [ i. 

2. Let L C Z °°. Then L is a direct product language iff L = L1 @ L2 ® " "  ® LK 
where Li = { a I i I a E L} for each i. 

As usual, for an alphabet Z and L _C Zoo we say that  L is regular iff L N Z* 
is a regular subset of Z* and L C_ Z ~ is an w-regular subset of ,U ~ as described 
in Section 2. We can now define the class of languages accepted by product  
automata.  

Definition 5. 

- Tt~o(~) is the subset of 2 E~ given by L e 7¢~o(~) i f fL  = n l ® L 2 ® "  "®LK 
with each L~ a regular subset of Z ~ .  

- T¢®(~) is the least subset of 2 ~ which contains Tt@o and is closed under 
finite unions. 

The class 7~ ® (~)  defined above will be called the regular product languages over 

~ .  As usual, we shall often write TO0 ~ instead of T¢0@(~) and write 7~ ® instead 
of T~ ® (2) .  An interesting observation concerning T¢ ® is the following: 

P r o p o s i t i o n  6. 7¢ ® is closed under boolean operations. 

It turns out that  ~® is precisely the class of languages accepted by product 
automata.  

T h e o r e m  7 ([47]). Let L C Z ~ .  Then L C Tt ® iff there exists a product 
automaton A such that L = £ (A) .  

We shall be using product  automata  to settle the decidability and model 
checking problems for the logic LTL ® to be introduced in the next section. In 
anticipation of this, we shall put down two more results concerning product  
automata.  While doing so and elsewhere the size of the product  automaton ,4 
will be understood to be IQGI. 
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T h e o r e m  8. Let A be a product automaton. Then the question ~(`4) ~ 0 can 
be settled in time O(22K • n 2) where n is the size of `4. 

T h e o r e m  9. Let `41 and ,42 be two product automata. Then one can effectively 
construct a product automaton ,4 such that ~.(,4) = ~(,41)fqf.(,42) and moreover 
n = O(2 g .  nl • n2) where n is the size of A and nt  is the size of .A t for e = 1, 2. 

5 A P r o d u c t  V e r s i o n  o f  L T L  

We now wish to design a product version of LTL denoted LTL®(~). The set of 
formulas and their locations are given by: 

- T is a formula and loc(T) = 0. 
- Suppose a and ~ are formulas. Then so are ~ a and a V f~. Furthermore, 

loc(-~ e) = loc(a) and loc(a V ~) = loc(a) U loc(B). 
- Suppose a E ~i  and a is a formula with loc(a) C_ {i}. Then (a)ia is a formula 

and loc((a)ia) = {i}. 
- Suppose a and ~ are formulas such that  loc(a), loc(f~) C_ {i}. Then a/~if~ is 

a formula. Moreover, loc(a/4i~) = {i}. 

We note that  each formula in LTL®(~) is a boolean combination of formulas 

taken from the set UieLoc LTL~(~)  where, for each i, 

LTL~(~)  = {a la e LTL®(~) and loc(a) C_ {i} }. 

Stated differently, the syntax of LTL~(,~) is given inductively by: 

-- T e LTL/@(~). 
- If a and/~ are in LTL~(~)  then ,~a and a V ~ are in LTL~(~) .  
- If a is in LTL/@(~) and a e ~i then (a)ia is in LTL~(~) .  
- If a and/~ are in LTL/@(~) then aUi~ is in LTL/@(~). 

Once again, we have chosen to avoid dealing with atomic propositions for the 
sake of convenience. They can be introduced in a local fashion as done in [47]. 
The decidability result to be presented will go through with minor notational 
overheads. 

As before, we will often suppress the mention of ~.  We will also often write 
T~, T~ and T~' instead of T [ i , T' [ i and r"  [ i, respectively with T, T', T" E ~*. 

A model is a sequence a E Z c¢ and the semantics of this logic is given, as 
before, with T E prf(a). 

-- o','r ~ T .  

- a , r ~ ~ a i f f a ,  r g = a .  
- a, r D a v ~ i f f a ,  r ~ a o r a ,  r D l 3 .  
- a, r ~ (a}ia iff there exists r '  E prf(a) such that  a, r '  D a and r '  = ria. 

(recall that  r~ = r '  [i.) 
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- a, T ~ aL/it3 iff there exists T' such that  T7' E prf(a)  and a, ~-~-' ~ ft. Further,  
for every v" E prf(v') ,  if ~ ___ 7[' -~ ~-~ then a, "rT" ~ a. 

As before we derive some useful modalities: 

- O i a  VoeE ,  

_ r"lio ~ ~ ~ O i ~ o ~ .  

Let M = a be a model and T E prf(a).  The following assertions can now easily 
be checked. 

- a, 7 ~ O~a iff there exists ~-' E prf((7) such that  a, "r' ~ a and 17[1 = ITil + 1. 
- a, T ~ <>~a iff there exists r ~ with "r71 E prf(a)  such that  a, v #  ~ a. 
- a,T ~ [:]ia i fffor each "#, TT' E prf(a)  implies a, Tr ~ ~ a. 

Note that  O~a is the/- local  version of the usual next-state operator of LTL. 
We will say that  a formula a E LTL®(~)  is satisfiable if there exist a E Z ~ 

and T E prf(a)  such that a, T ~ a.  The language defined by a is given by 

L ~ : { a E E ° ~ l a , ¢ b a  }. 

We will show the satisfiability problem for LTL ® (~)  is solvable in determin- 
istic exponential time. This will be achieved by effectively constructing a product  
automaton .An for each a E LTL®(~) such that  the language accepted by A~ is 
non-empty iff a is satisfiable. Our construction is a generalization of the one for 
LTL in Section 2. The solution to the satisfiability problem will at once lead to 
a solution to the model checking problem for programs modelled as a product  
of sequential agents. 

Through the rest of the section we fix a formula a0 E LTL®(~).  As before 
we will for convenience assume that  the derived local next-state modali ty O4 
is included in the syntax of LTL ®. In order to construct .A~ o we first define 
the (Fischer-Ladner) closure of a0. As a first step let cl(ao) be the least set of 
formulas satisfying: 

- a o  E cl(ao). 
- ,~a E cl(ao) implies a E cl(ao). 
- a V/3 E cl(ao) implies a, 13 E cl(ao). 
- (a)ia E cl(ao) implies a E cl(ao). 
- allil3 E cl(ao) implies a,13 E cl(ao). In addition, Oi(aLt~t3) E cl(ao). 

We will now take the closure of a0 to be CL(ao)  = cl(ao) U {,,,a 1 a E cl(ao)}. 
From now on we shall identify -~,-,a with a. Set CLi(ao)  = CL(ao)M LTL~ for 
each i. We will often write CL instead of CL(ao)  and CLi instead of CL~(ao). 
All formulas considered from now on will be assumed to belong to CL unless 
otherwise stated. 

An i-type atom is a subset A C_ CLi  which satisfies: 
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- T E A .  

- a e A i f f , . , a ~ . A .  
- a V t 3 E A i f f a E A o r f l E A .  
- a/lift  E A iff/3 E A or a, Oi(aLt~fl) E A. 

The set o f / - t y p e  atoms is denoted ATI. We next define, for each a E CL(ao) 
and (A1,. . .  ,An)  E AT1 x . . .  x ATK, the predicate Member(a,  (AI , . . .  ,AK)). 
For convenience this predicate will be denoted as a E (A1, . . . ,  AK) and is given 
inductively by: 

- Let a e CLI. Then a E ( A 1 , . . . , A n )  iff a e Ai. 
- Let a = ,~fl. Then a E (A1, . . . ,AK)  ifffl  ~ (A1,. . .  ,AK). 
- Let a = f l V %  Then a E (A1, . . . ,AK)  iff fl E (A1 , . . . ,AK)  or ~/ E 

(A1,. . .  ,AK). 

Finally, we set Ui = {aL/i~ 1 aUifl E CLi(ao)} for each i. The product  
automaton Aa o associated with a0 is now defined to be A~ o = ({Ai}, Qi , )  
where, for each i, Ai = (Qi, ---+i, F~, F~)  is specified as follows: 

- Q i  = A T i  x {off, on} x 2 u~ 
- - - * i  C_ Qi x 2~i x Qi is given by, (A,x,u) '~i (B,y,v)  iff the following 

conditions are met. 
1. x = on and for all (a)ia E CLi(ao), (a)ia E A iff a E B and for all 

Oia E CLi(ao), Oia E A iff a E B. Moreover, if (b)ifl e A then b = a. 
2. If u # 0 then v = {aL/ifl [ aL/ifl E u and fl ~ B}. If u = 0 then 

v = {aLlifl ] a//d3 E B and fl ~ B}. 
- Fi C_ Qi is given by: (A,x,u) E Fi iff x = off and for all (a)ia e CLi(ao), 

(a)ia ~ A and for all Oia e CLi(ao), Oia ~ A. 
- F~ C_ Qi is given by: (A, x, u) E F~ iff u = 0. 
- Qin c Qt x Q2 x . . .  x QK is given by: ( ( A t , x t , u t ) , . . . ,  (AK,xK,UK)) E Qin 

iff a0 E ( A t , . . . ,  AK) and ui = 0 for every i. 

It is not difficult to now establish the next result by an application of Theo- 
rem 8. 

T h e o r e m  10. ao is satisfiable iff £(A~o) # O. Hence the satisfiability problem 
for LTL ® is decidable in exponential time. 

We now turn to the model checking problem for LTL ®. A product  program 
(over ~ )  is a structure Pr = ({Pri}~=t, P~ Qin ) where, for each i, Pri = (Qi, - -+i)  
with Q~ a finite set and ~i C Qi x Zi x Qi. Since we have agreed to drop 
atomic propositions there is no need for (local) interpretations for the atomic 
propositions. Let us further assume for convenience that  Qi~* is a singleton 
with qi.  as its sole member and with qin[i] = q~,~ for each i. With each such 
program we can associate the product automaton ~4p~ K ---- ({AI}i__-- t, {qin}) where 
Ai = (Qi, )i, Qi, Qi) for each i. 

Now let Pr be a product  program and a0 be a formula of LTL ®. As in 
the case for LTL, we say that  Pr meets the specification ao - -  again denoted 
Pr ~ ao - -  iff a, ¢ ~ a0 for every a E £(,4p~). Once again, using Theorem 9 it 
is not difficult to prove the following. 
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T h e o r e m  11. The 'model checking problem for LTL ® is decidable in time O(IPr I 
2t~ol). 

We wish to observe that  each product program can be represented as a Z -  
labelled 1-safe net system. To see this let Pr  = ({Pri}K=l, {qi.}) be a product  
program. Let 's  assume without loss of generality that  the family of local states 
{Qi} is pairwise disjoint. We set Q = Uiep  Qi and define an a-s tate  to be a map  
q~ : loc(a) -+ Q which satisfies qa(i) E Q~ for each i in loc(a). (A more elaborate  
development of these notions will appear  in the next section). An a-event is a 
pair of a-states (q~, q~) which satisfies q~(i) -?-+i q~(i) for each i in loc(a). We let 
E ,  be the set of a-events. We carl now define the Z-labelled 1-safe net system 
representing Pr  to be Af = (B, E,  F, c~n, ¢) where: 

- B = Q  
- E = U ~ e E  E~ 
- Let qi E Qi and e = (qa,q~) E E~. Then (qi,e) E F iff i E loc(a) and 

q~(i) = qi. Similarly (e, qi) E F i f f i  E loc(a) and q~(i) = q~. 
- Let e E E. Then ¢(e) = a iff e is an a-event. 

On the other hand each 1-safe net system which is covered by a set of S- 
components  can be viewed as a (deterministic) product  program; the a lphabet  
of each component  is its set of events. If necessary, S-complementat ion can be 
performed to ensure tha t  the system is covered by a set of S-components .  We 
do not wish to enter into details here. Instead we show on Figure 3 an example 
of a 1-safe net system composed out of three components.  

e3[ e3 

J 

Prl Pr~ Pr3 

F i g .  3 .  1-safe net with three components 
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Let Pr denote the associated product program over the distributed alphabet 
{{el, e2, e3}, {e3, e4}, {e~, e~, e4}}. Then it is easy to check that  

P r  ~ D101T D D303T. 

This property says that  along every computation, if the first component executes 
infinitely often then so does the third component. The point to note is that  the 
first component and the third component do not have any common events and 
hence there is no direct communication between them. Nevertheless through 
the power of the boolean connectives alone the logic can make assertions about 
the way components that  are "far apart" are required to influence each other 's 
behaviour. 

6 T r a c e  L a n g u a g e s  a n d  A u t o m a t a  

Traces have many equivalent representations. Here we shall view them as re- 
stricted Z-labelled partial orders. Abusing terminology we shall call these objects 
also traces. We will then argue that  these objects are in a rather precise sense 
the same as the objects called traces defined in Section 3 in terms of equivalence 
classes of sequences. 

Let T be a Z-labelled poset. In other words, (E, <) is a poset and A : E --+ Z 
is a labelling function. For Y C E we define SY = {x I 3y E Y : x < y} and 

Y = {x [ 3y E Y : y _< x}. In case Y = {y} is a singleton we shall write Sy 
($ y) instead of ${y} ($ {y}). We also let < be the relation: x < y iff x < y and 
for all z E E,  x < z < y implies x = z or z = y. 

A trace (over (~ ,  I)) is a Z-labelled poset T = (E, <, A) satisfying: 

(T1) Ve E E.  ~e is a finite set 
(T2) Ve, e' e E.  e < e' implies A(e) D A(e'). 
(T3) Ve, e' E E. A(e) D A(e') implies e _< e' or e' _< e. 

We shall refer to members of E as events. The trace T = (E, ~,  A) is said to 
be finite if E is a finite set. Otherwise it is an infinite trace. Note that  E is always 
a countable set. T is said to be non-empty in case E ¢ 0. We let TRIin(~, I) be 
the set of finite traces and TRY(Z, I) be the set of infinite traces over (Z,  I)  and 
set T R( Z, I) = T Rfin( Z, I) U TRY(Z, I). Often we will write T R Iin instead of 
TRIin(Z, I) etc. As before, a subset of traces LTr C_ TR will be called a trace 
language. 

Let T = (E, _<, A) be a trace. The finite prefixes of T, to be called configu- 
rations, will play a crucial role in what follows. A configuration of T is a finite 
subset c C_ E such that  c = $c. We let CT be the set of configurations o f T  and let 
c, c', c" range over CT. Note that  0, the empty set, is a configuration and $ e is a 
configuration for every e E E. Finally, the transition relation ~ T C CT X Z X CT 
is given by: c >r c' iff there exists e E E such that  A(e) = a and e ~ c and 
c' = cU {e}. It is easy to see that  i f c  a)  T e I and c - ~ T  Ctt then c' = c ' .  

Note that  we have now introduced two different notions of traces; one in 
terms of equivalence classes of strings as in Section 3 and the other in terms 
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of Z-labelled partial  orders as in this section. We now sketch briefly the con- 
structions tha t  show that  Zoo/,~l and T R ( Z , I )  represent the same class of 
objects. We shall construct representation maps str : Z o o / ~ I - ~  T R ( Z ,  I) and 
trs : T R ( Z ,  I) --~ Z ° ° / ~ z  and state some results which show tha t  these maps  
are "inverses" of each other. We shall not prove these results. The details can be 
easily obtained using the constructions developed in [55] for relating traces and 
event structures. 

Henceforth, we will not distinguish between isomorphic elements in T R ( Z ,  I). 
In other words, whenever we write T = T ~ for traces T = (E, <, ~) and T ~ = 
(E ~, < ' ,  A~), we mean that  there is a label-preserving isomorphism between T 
and Tq 

Recall tha t  for a E ~7oo, [a] stands for the ~z-equivalence class containing 
a. We now define str : Z °O -+ TR(E ,  I). Let a E 57oo. Then str(a) = (E, <,  ~) 
where: 

- E = {Ta I Ta E prf(a)}.  Recall that  ~- E 57" and a E Z.  Thus E = 
pr f (a )  - {s}, where ~ is the null string. 

- < C_ E × E is the least partial order which satisfies: For all Ta, T~b E E,  if 
Ta '< ~"b and (a, b) E D then Ta < T'b. 

-- For Ta E E, A(Ta) = a. 

The map  str induces a natural  map std from Z ° ° / ~ I  to T R ( Z ,  I) defined by 
str'([a]) = str(a). One can show that  if a,a' E Eoo, then a ~ I  a '  iff str(a) = 
str(a~). This observation guarantees tha t  std is well-defined. In fact, henceforth 
we shall write str to denote both str and std. 

Next, let T = (E, <, A) E T R ( Z ,  I) .  Then a E 57oo is a linearization of T i f f  
there exists a map p : prf (a)  --+ CT, such that  the following conditions are met:  

- p ( ~ )  = ~. 
- Vva E prf (a)  with T E ,U*, p(T) --~T p(Ta). 
-- Ve E E B7 E prf(a) ,  e E p(T). 

The  function p wilt be called a run map of the linearization a. Note tha t  the 
run map  of a linearization is unique. In what  follows, we shall let l in(T) to be 
the set of linearizations of the trace T. 

We can now define the map trs : T R ( Z ,  I) -+ Z ° ° / ~ I  as: trs(T) = lin(T). 
One can now show that  for every a E Zoo, trs(str(a)) = [a] and for every T E 
T R ( Z , I ) ,  str(trs(T)) = T. This justify our claim tha t  Zoo/  ~z  and T R ( Z , I )  
are indeed two equivalent ways of talking about  the same class of objects. 

We note that  every trace consistent subset L of 57oo defines a trace language 
LTr given by LTr = {str(cr) I a e L} which has the proper ty  trs(LTr) ----- L. In 
this sense every product  language defines a trace language. We say tha t  a t race 
language LTr is regular iff trS(LTr) is a regular subset of Zoo. As we will see 
later not every (regular) trace language is a (regular) product  language. Hence in 
order to recognize regular trace languages one will have to use strengthened ver- 
sions of product  au tomata .  Such au toma ta  called asynchronous a u t o m a t a  were 
formulated by Zielonka for recognizing regular languages of finite traces. These 
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were then generalized for handling infinite traces by Gastin and Petit [15]. We 
will use a combination of these two types of automata for solving the satisfi- 
ability and model checking problems for the trace-based temporal logic called 
TrPTL to be considered in the next section. 

Let ~ be a distributed alphabet with P as the associated set of agents. In 
an asynchronous automaton, each process p 6 7 ~ is equipped with a finite non- 
empty set of local p-states, denoted Sp. It will be convenient to develop some 
notations for talking about "more global" states before defining these automata. 

First we set S = Uve~ Sp and call S the set of local states. We let P, Q 
range over non-empty subsets of P and let p, q range over P.  A Q-state is a 
map s : Q ~ S such that  s(q) 6 Sq for every q 6 Q. We let SQ denote the set 
Q-states. We call S~, the set of global states. 

We use a to abbreviate loc(a) when talking about states (recall that  loc(a) = 
{ P I a 6 27p }). Thus an a-state is just a loc(a)-state and Sa denotes the set of 
all loc(a)-states. 

A distributed transition system T S  over ~ is a structure ({Sp}, { ~ } ,  Sin) 
where 

- Sp is a finite non-empty set of p-states for each process p. 
- For a 6 27, ---~a C Sa x S~ is a transition relation between a-states. 
- Sin C_ S~ is a set of initial global states. 

The idea is that  an a-move by T S  involves only the local states of the agents 
which participate in the execution a. This is reflected in the global transition 
relation )TS c_C_ S~ x 27 x Sp  which is defined as follows: Suppose s and s' 

I are two global states and s~ and s~ are the two corresponding a-states. In other 
words, 8a(i)  = s( i )  and s t ( i  ) = s'(i) for each i in loc(a). Then 

8 j s a )TS S' iff (S~, a) 6 ;a and s( j )  = s ' ( j )  for every j ¢ loc(a). 

From the definition of ;TS, it is clear that  actions which are executed by 
disjoint sets of agents are processed independently by TS .  

An asynchronous automaton over 57 is then a distributed transition system 
equipped with a set of global accepting states. More precisely, it is a structure 
,4 = ({Sv}, {---+~}, Sin, F) where 

- F c_ $7, is a set of accepting global states. 

A trace run of ,4 over the finite trace T = (E, <,  A) is a map p : g r  ~ S~ 
such that  p(0) 6 Sin and for every (c,a,c') 6 ....... ~T, p(c) ~ T S  p(c'). We say 
that  p is an accepting run whenever p(E) 6 F. The language of finite traces 
accepted by ,4 is given by 

~-'Tr(,4) = { T 6 T R  fin [ 3 an accepting run of ,4 over T }. 

In the present setting Zielonka's fundamental result can now be formulated 
a s  
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T h e o r e m  12 ([58]). L C_ T R f ~ n ( Z , I )  is regular iff L = LT~(.A) for some 
asynchronous automaton A over some ~ where ~ is a distributed alphabet whose 
induced trace alphabet is (Z,  I) .  Further, one may assume ~4 to be deterministic 
and one may assume ~ to be the distributed alphabet induced by the maximal 
D-cliques of (Z,, I) .  

This result has been generalized to the set of w-regular trace languages by 
Gastin and Peti t  [15] in terms of asynchronous automata  with Bfichi acceptance 
conditions. Since we will treat  both finite and infinite traces on an equal footing 
we will present a class of automata  capable of accepting both  finite and infi- 
nite traces. Hence our automata  are essentially distributed transition systems 
augmented with both finite and infinite accepting states. 

An asynchronous Biichi automaton over Z is a structure 

A = ({Sv}, {----~}, Sin, {(Fp, F~)}),  

where: 

- ({Sp}, {--+a}, S~n) is a distributed transition system. 
- Fp C_ Sp is a set of local finitary accepting states of process p. 
- F~ C_ Sp is a set of local infinitary accepting states of process p. 

For convenience we will from now on denote this class of au tomata  just "asyn- 
chronous automata" .  

To define acceptance we must now compute Infp(p), the set of p-states that  
are encountered infinitely often along p. When incorporating both finite and 
infinite behaviour in this richer domain we have to take care in defining the 
set of infinitely occuring states of process p. The obvious definition, namely 
Infp(p) = {Sp I p(c)(p) = sp for infinitely many c e CT}, will not work. The 
complication arises because some processes may make only finitely many moves, 
even though the overall trace consists of an infinite number of events. 

For instance, consider the distributed alphabet 20 = {{a}, {b}}. In the cor- 
responding distributed transition system, there are two processes p and q which 
execute a's and b's completely independently. Consider the trace T = (E, <, )~) 
where IEp] = 1 and Eq is infinite - -  i.e., all the infinite words in trs(T) contain 
one a and infinitely many b's. Let Sp be the state of p after executing a. Then, 
there will be infinitely many configurations whose p-state is sp, even though p 
only moves a finite number of times. 

Continuing with the same example, consider another infinite trace T '  = 
(E' ,  < ' ,  ~') over the same alphabet where both Ep and Eq are infinite. Once 
again, let sp be the local state of p after reading one a. Further,  let us suppose 
that  after reading the second a, p never returns to the state sp. It  will still be the 
case that  there are infinitely many configurations whose p-state is sp: consider 
the configurations Co, cl, c2 , . . ,  where cj is the finite configuration after one a 
and j b's have occurred. 

So, we have to define Infp(p) so as to detect whether or not process p is 
making progress. The appropriate formulation is as follows: 
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Case 1 Ep is finite: Infp(p) = {sp}, where p(J, Ev) = s and sp = s(p). 
Case 2 Ep is an infinite set: 

Infp(p) = {sp If  or infinitely many e E Ep,se(p) = sp, where p($e) = Se}. 

A trace run of an asynchronous automaton over the (possibly infinite) trace 
T = (E, <_, ~) E T R  is now defined in the obvious way. A run p of A over the 
(possibly infinite) trace T = (E, ~,A) is accepting iff for each process p the 
following conditions are met: 

- If Ep is finite then Infv(p) A Fp # 0. 
- If Ep is infinite then Infp(p) N Fp ¢ 0. 

We then have the following characterization extending Theorem 12. 

T h e o r e m  13. A trace language L C_ T R ( Z , I )  is regular iff L = LT~(A) ]or an 
asynchronous automaton over ~ where ~ is a distributed alphabet whose induced 
trace alphabet is ( Z ,  I) .  

It should be noted however that deterministic automata no longer suffice for 
accepting all regular languages. 

We say that ,4 is in standard form if 

- For each p, Fp A F~ = 0. 
- For each (Sa,ta) E ~a and p E loc(a) we have that sa(p) ¢ Fp. 

Thus, Jt is in standard form if the p-states in Fp are all "dead" and disjoint from 
F~. It is easy to convert every asynchronous automaton into standard form. All 
our asynchronous automata will be in standard form. 

We conclude with a result concerning the emptiness problem for asynchronous 
automata. 

P ropos i t ion  14 ([30]). Let .4 be an asynchronous automaton in standard form. 
The emptiness problem is decidable in time O(n21Pl), where n is the largest of 
the local state spaces, Sp. 

We have defined here the languages defined by asynchronous automata in 
terms of traces. We note that these automata can be viewed - -  and this is 
the conventional approach - -  as automata running over Z-sequences. Using the 
global transition relations of these automata one can easily define the string 
languages accepted by these automata. These languages will be naturally trace 
consistent w.r.t, the trace alphabets induced by the associated distributed alpha- 
bets. The resulting trace languages will be precisely the trace languages accepted 
by these automata according to the definitions we have provided here. 

7 T r P T L  

We present here the linear time temporal logic over traces called TrPTL. This 
is the first such logic patterned after PTL (i.e. LTL) formulated for traces. For 
a detailed treatment of this logic the reader is referred to [44, 45]. 
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As before, it will be notationally convenient to deal with distributed al- 
phabets in which the names of the processes are posi t iveintegers.  Through 
this section and the next, we fix a distributed alphabet Z = {Zi}ie~, with 
7) = ( 1 , 2 , . . . , K }  and K _> 1. We let i , j  and k range over 7). As before, let 
P, Q range over non-empty subsets of 7 ). The trace alphabet induced by ,~ is 
denoted (Z,  I) .  We assume the terminology and notations developed in the pre- 
vious sections. In particular, when dealing with a 7)-indexed family {Xi}~e~ we 
will often write just  {Xi}. 

The logic T rPTL  is parameterized by the class of distributed alphabets_ Hav- 
ing fixed Z we shall often almost always write T rPTL to mean T r P T L ( Z ) ,  the 

logic associated with ~ .  In order to bet ter  illustrate the main features of the 
logic we will first include atomic propositions. They will be dropped once we re- 
turn to considering the technical aspects of the logic. We fix a finite non-empty 
set of atomic propositions P with p, q ranging over P.  Then #TrPTL(~)' the set 

of formulas of T r P T L ( ~ ) ,  is defined inductively via: 

- For p E P and i E 7), p(i) is a formula (which is to be read "p at i").  
- If c~ and ~ are formulas, so are ~ a and a V/3. 
- If a is a formula and a E Zi then (a)ia  is a formula. 
- If c~ and ~ are formulas so is cdli~. 

Throughout  this section, we denote ~TrPTL(~) 3.S jUSt ~. In the semantics of 
the logic, which will be based on infinite traces, the/-view of a configuration will 
play a crucial role. Let T E T R  ~ with T = (E, <, £). Recall that  Ei = (e f e E E 
and £(e) E Zi}. Let c E CT and i E 7). Then $1(c) is the /-view of e and it is 
defined as: 

,L~(e) = $(cn Ei). 

We note tha t  $i(e) is also a configuration. It is the "best" configuration that  
the agent i is aware of at c. We say that  $i(c) is an i-local configuration. Let 
C~ = ($i(c)  t c E CT} be the set of / - local  configurations. For Q c 7 ) and 
e E CT, we let SQ(c) denote the set U{$i(c) I i E Q}. Once again, SQ(c) is a 
configuration. It represents the collective knowledge of the processes in Q about  
the configuration e. 

The following basic properties of traces follow directly from the definitions. 

P r o p o s i t i o n  15. Let T = (E, <, A) be an infinite trace. The following state- 
ments hold. 

1. Let <~ = < M (Ei × El). Then (Ei, <_i) is a linear order isomorphic to w if 
El is infinite and isomorphic to a finite initial segment of w if Ei is finite. 

2. (C~, C_) is a linear order. In fact (C~ - {0}, C) is isomorphic to (Ei, <_i). 
3. Suppose $i(c) ~ 0 where c E CT. Then there exists e E E i  such that $i(e) = 

~ .  In fact e is the <_i-maximum event in (e M Ei). 
4. Suppose Q c_ Q' c_c - 7) and c E CT. Then SQ(c) =$q($Q' (c)). In particular, 

for a single process i, $1(e) =¢(¢(e)). 
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We can now present the semantics of TrPTL.  A model is a pair M = 
(T, {Vi)iev) where T = (E, _<,A) E TR"  and Vi : C~ ~ 2 P is a valuation 
function which assigns a set of atomic propositions to / - loca l  configurations for 
each process i. Let e E CT and a E ~. Then M, c ~ a denotes that  a is satisfied 
at c in M and it is defined inductively as follows: 

- M, c ~ p(i) for p E P iff p E Vi($i(c)). 
- M , c ~ . , a i f f M ,  c~ :a .  
- M , c ~ a V / 3 i f f M ,  c ~ a o r M ,  c ~ f l .  
- M, c ~ (a)ia iff there exists e E E i  - c such that  A(e) = a and M, Se ~ a. 

Moreover, for every e I E E i ,  d < e iff e ~ E c. 
- M,c  ~ aHi/3 iff there exists c' E CT such that  c C_ c' and M,$i (d)  ~ /3 .  

Moreover, for every c" E CT, if $i(c) C_ $i(d') C $i(d) then M, $i(c") ~ a. 

Thus T rPTL  is an action based multi-agent version of LTL. Indeed both in 
terms of its syntax and semantics, LTL(~)  corresponds to the case where there 
is only one agent. The semantics of T rPTL  when specialized down to this case 
yields the previous LTL(E)  semantics. 

Returning to TrPTL,  the assertion p(i) says that  the / -v iew of c satisfies the 
atomic proposition p. Observe that  we could well have p(i) satisfied at c but 
not p(j) (with i # j ) .  It is interesting to note that  all atomic assertions (that 
we know of) concerning distributed behaviours are local in nature. Indeed, it is 
well-known that  global atomic propositions will at once lead to an undecidable 
logic in the current setting [25, 36]. 

Suppose M = (T, {Vi}) is a model and c "-~T C' with j ~ loc(a). Then 
M, c ~ p(j) iff M, d ~ p(j). In this sense the valuation functions are local. 
There are, of course, a number of equivalent ways of formulating this idea which 
we will not get into here. 

The assertion (a) ia  says that  the agent i will next participate in an a-event. 
Moreover, at the resulting/-view, the assertion a will hold. The assertion aHi/3 
says that  there is a future i-view (including the present/-view) at which/3 will 
hold and for all the intermediate/-views (if any) starting from the current/-view, 
the assertion a will hold. 

Before considering examples of T r P T L  specifications, we will introduce some 
notation. We let a,/3 with or without subscripts range over #. Abusing notation, 
we will use loc to denote the map which associates a set of locations with each 
formula. 

- loc(p(i)) = loc((a)ia) = loc(aL/i/3) = {i}. 
- l o c ( ~ a )  = t o c ( a ) .  

- l o e ( a  V/3)  = l o e ( a )  U loc(/3) .  

In what follows, #i = {a [ lot(a)  = {i}} is the set o f / - t y p e  formulas. We 
note that  unlike LTL ®, a T rPTL  formula of the form (a)ia could have j E loe(a) 
with j # i. A similar remark applies to the indexed until-operators. 

A basic observation concerning the semantics of T r P T L  can be phrased as 
follows: 



667 

P r o p o s i t i o n  16. Let M = (T, {Vi}) be a model, c E CT and a a formula such 
that loc(a) g Q. Then M, c ~ a iff M, SQ (c) ~ a. 

A corollary to this result is tha t  in case a E ~i then M, c ~ a if and only if 
M,$i(c) ~ a. As a result, the formulas in ~ can be used in exactly the same 
manner as one would use LTL ® to express properties of the agent i. Boolean 
combinations of such local assertions can be used to capture various interaction 
patterns between the agents implied by the logicM connectives as well as the 
coordination enforced by the distributed alphabet ~.  For writing specifications, 
apart  from the usual derived connectives that  we already introduced in Section 2 
for LTL, the following operators are also available: 

- T ¢=~ Pl (1) V " P l  (1) denotes the constant "True", where P = {Pl,P2,...}. 
We use _1_ = ~ T to denote "False". 

- <>~a ¢ ~  TL/ia is a local version of the O modality of LTL. 

- Oia ~ ~'(>i -~a is a local version of the O modality of LTL. 

- Let X C_ Z~ and X = Z~ - X. Then a/~X/3 ¢ ~  (a A Aaex[a]~±)U~/3. In 
other words aL/X/~ is fulfilled using (at most) actions taken from X.  We set 

- a(i) ¢ ~  aLtia (or equivalently 3.lAia). a(i) is to be read as "a  at i". If 
U = (T, {~})  is a model and c E gT then U , c  ~ a(i) iff U ,$ i (c )  ~ a. It 
could of course be the case that  loc(a) # {i}. 

A simple but  important  observation is that  every formula is a boolean com- 
bination of formulas taken from U~e~ qhi. In T rPTL  we can say that  a specific 
global configuration is reachable from the initial configuration. Let {ai}iEP be 
a family with a ¢ E  qh~ for each i. Then we can define a derived connective 
<>(al,a2,... ,aK) which has the following semantics at the empty configura- 
tion. Let M = (T, {P~}) be a model. Then M, @ ~ O(al ,  a 2 , . . . ,  ak) iff there 
exists c E CT such that  M, c ~ a l  A a2 A -..  A ag. 

To define this derived connective set ~ = E1 and, for 1 < i < K,  set 
Z~ = Zi - U { Z j  l l _< j < i}. Then ~)(al,a2,. . .  ,aK) is the formula: 

The idea is that  the sequence of actions leading up to the required configu- 
ration can be reordered so that  one first performs all the actions in Z1, then all 
the actions in Z2 - Z~ etc. Hence, if now is an atomic proposition, the formula 
O(now(1), now(2) , . . . ,  now(K)) is satisfied at the empty configuration iff there 
is a reachable configuration at which all the agents assert now. 

Dually, safety properties that  hold at the initial configuration can also be 
expressed. For example, let crt~ be the atomic assertion declaring that  the agent 
i is currently in its critical section. Then it is possible to write a formula ~u~ 
which asserts that  at all reachable configurations at most one agent is in its crit- 
ical section, thereby guaranteeing that  the system satisfies the mutual  exclusion 
property. We omit the details of how to specify ~ .  
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On the other hand, it seems difficult to express nested global and safety 
properties in TrPTL.  It is also the case that  due to the local nature of the 
modalities, information about the past sneaks into the semantics even though 
there are no explicit past operators in the logic. 

A formula a is said to be root-satisfiable iff there exists a model M such that  
M, ~ ~ a. On the other hand, a is said to be satisfiable iff there exists a model 
M = (T, {V/}) and c • CT such that  M,c ~ a. It turns out that  these two 
notions are not equivalent. Consider the distributed alphabet ~0 = {El ,  572} 
with 571 = {a, d} and 572 = {b, d}. Then it is not difficult to verify that  the 
formula p(2)(1) A 02 ,-, p(2) is satisfiable but not root-satisfiable. (Recall that  
p(2)(1) abbreviates A_/41p(2)). One can however transform every formula a into 
a formula a r such that  a is satisfiable iff a ~ is root satisfiable. 

This follows from the observation that  every a can be expressed as a boolean 
combination of formulas taken from the set Uiep ~i. Hence the given formula a 
can be assumed to be of the form a = \]jm=l(ajl A a j 2 A "  "AOljg) where aji E ~i 
for each j E {1, 2 , . . . ,  m} and each i • 7 ~. Now convert a to the formula a ~ where 
a '  -- Vjm_l ~ ( a j l ,  aj2," " ' ,  ajK). (Recall the derived modality O(a l ,  a 2 , . . . ,  O~g) 
introduced earlier.) From the semantics of ~ ( a l ,  a2 , . . . ,  aK) it follows that  a is 
satisfiable iff a * is root-satisfiable. 

Hence, in principle, it suffices to consider only root-satisfiability in develop- 
ing a decision procedure for TrPTL.  There is of course a blow-up involved in 
converting satisfiable formulas to root-satisfiable formulas. If one wants to avoid 
this blow-up then the decision procedure for checking root-satisfiability can be 
suitably modified to yield a direct decision procedure for checking satisfiability 
as done in [44]. In any case, it is root satisfiability which is of importance from 
the standpoint of model checking. Hence here we shall only develop a procedure 
for deciding if a given formula of T rPTL is root-satisfiable. 

As a first step we augment the syntax of our logic by one more construct. 

- I r a  is a formula, so is Oia. In the model M = (T, {Vi}), at the configuration 
C E CT, M, c ~ Oia iff M,c  ~ (a)ia for some a E Si .  We also define 
loc(O a) = {i}. 

Secondly, we will from now on drop the atomic propositions and instead work 
with the constant T and its negation J_ as done earlier. The semantic definitions 
are assumed to be suitably modified. 

Thus Oia - Vae~, (a)ia is a valid formula and Oi is expressible in the former 
syntax. It will be however more efficient to admit Oi as a first class modality as 
we did in Section 2. 

Fix a formula ao. Our aim is to effectively associate an asynchronous au- 
tomaton ,4a o with a0 such that  a0 is root-satisfiable iff LTr(A~o) ~ 9. Since the 
emptiness problem for asynchronous automata is decidable (Proposition 14), this 
will yield the desired decision procedure. Let c/(a0) be the least set of formulas 
containing ao which satisfies: 
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- ,,~a e d (ao)  implies a e d ( a o ) .  

- a V/3 E cl(ao) implies a,/3 E d(ao). 
- (a)ia E cl(ao) implies a E cl(ao). 
- Oia E cl(ao) implies a E cI(ao). 
- ah/i~3 E cl(ao) implies a,f~ E cl(a0). In addition, Oi(al4i3) E cl(ao). 

We then define CL(ao) to be the set. cl(ao) U { ~ [ / 3  E c/(ao)}. 
Thus CL(ao), sometimes called the Fisher-Ladner closure of a0, is closed 

under negation with the convention that  ,,~,-~/3 is identified with/3. Moreover, 
throughout  the remainder of the section all formulas that  we encounter will be 
assumed to be members of CL(ao). From now we shall write CL instead of 
CL(ao). 

A C_ CL is called an i-type atom iff it satisfies: 

- T E A .  
- a E A i f f ~ a g A .  
- a V / ~ E A i f f a e A o r / 3 e A .  
- aUi/3 E A iff/3 E A or (a E A and Oi(abli/3) E A). 
- If (a)ia, (b)i~ E Ai then a = b. 

ATi denotes the set o f / - t ype  atoms. We now need to define the notion of 
a formula in CL being a member of a collection of atoms. Let a E CL and 
{Ai}ieQ be a family of atoms with loc(a) C_ Q and A i e  ATi for each i E Q. 
We'll define the predicate Member(a,{Ai}ieQ), which for convenience will be 
denoted by a E {Ai}ieQ. It is defined inductively as: 

- If loc(a) = {j} then a E {Ai}ieQ iff a E Aj. 
- If a = ~-/3 then a E {Ai}iEQ iff/3 ¢~ {A~}ieQ. 
- If a = a l  V a2 then o~ 1 V a 2 E {Ai}iEQ iff al  E {Ai}iEQ or a2 E {Ai}ieQ- 

The construction of the asynchronous automaton .A~ 0 is guided by the con- 
struction developed for LTL in Section 2. However in the much richer setting 
of traces it turns out that  one must make cruciM use of the latest information 
that  the agents have about each other when defining the transitions of A~ 0. 
It has been shown by Mukund and Sohoni [29] that  this information can be 
kept track of by a deterministic asynchronous automaton whose size depends 
only on ~.  (Actually the automaton described in [29] operates over finite traces 
but it is a trivial task to convert it into an asynchronous automaton having 
the desired properties). To bring out the relevant properties of this automaton,  
let T E T R  ~ with T = (E, <,A). For each subset Q of processes, the func- 
tion [atestT,Q : CT X ~ ~ Q is given by latestT,Q(c,j) = ~ iff l is the least 
member of Q (under the usual ordering over the integers) with the property 
SJ($q(c)) C_ SJ($l(c)) for every q E Q. In other words, among the agents in Q, 
I has the best information about j at c, with ties being broken by the usual 
ordering over integers. 

T h e o r e m  17 ([29]). There exists an effectively constructible deterministic asyn 
chronous automaton ~4£ = ({Fi}, {::=~}, F~ ,  {(F~, F~')}) such that: 
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L L T , ( A r )  = T ~ .  

2. For each Q = { i l , i 2 , . . .  , in},  there exists an effectively computable ]unction 
gossipQ : Fi~ x Fi2 x . . .  x Fi, x P -+ Q such that for every T • TFD', every 
C • CT and every j • 7 ) ,  latestT, Q(c,j)  = gossipQ(~/(il),... ,~/(in),j) where 
Pr (c) = 7 and Pr is the unique (accepting) run of A r  over T.  

Henceforth, we refer to A r  as the gossip automaton. Each process in the gossip 
automaton has 2 °(K21°gK) local states, where K = IPl- Moreover the function 
gossipQ can be computed in time which is polynomial in the size of K.  

Each/ -s ta te  of the automaton Aa 0 will consist of an / - t ype  atom together 
with an appropriate/-state of the gossip automaton. Two additional components 
will be used to check for liveness requirements. One component will take values 
from the set Ni = {0,1 ,2 , . . . , lUl l}  where U~ = {aL/ifl I abli~ • CL} .  This 
component will be used to ensure that  all "until" requirements are met. The 
other component will take values from the set {on,off}. This will be used to 
detect when an agent has quit. 

The automaton A~o can now be defined as: 

A.0 = ({s,}, {(F,, 

where: 

- For each i, Si = ATi ×Fi ×N~× {on,off}. Recall that  Fi is the set of i-states of 
the gossip automaton and Ni = {0, 1 , 2 , . . . ,  tUil} with Ui = {a/4ifl 1 a/4i~ e 
CL}. 

! - Let sa,s  a E Sa with sa(i) = (Ai,Ti,ni,v~) and s~(i) = (A~,Ti,nl,v~)' ' for 
8 t each i • Ioc(a). Then ( a, s~) • - - -~  iff the following conditions are met. 

• (%, 7'a) • ==~a (recall that  { ~ }  is the family of transition relations 
of the gossip automaton) where %,7'a • Fa such that  %(i) = 7~ and 
7'~(i) = ~/~ for each i • loc(a). 

• Vi, j • loc(a), A~ = A}. 
Vi • loc(a) V(a)ia e CL. (a)ia e Ai iff a • A~. 

• Vi • loc(a) VO~a • CL. Oia • A iff a • A~. 
• Vi • loc(a)V(b)ifl • CL.  If (b)i~ • Ai then b = a. 
• Suppose j ¢ loc(a) and Z e CL with loc(~) = {j}. Further sup- 

pose that  loc(a) = { i l , i2 , . . . , iN} .  Then fl • A~ iff fl • At where 
g = gossiPloc(a) (7i,, q%, • • •, q'i,, j ) .  

• Let i • loc(a), Ui = {alLt iZl ,a2t~p2, . . .  ,an, LtlZm}. Then u~ and ul are 
related to each other via: 

, r (u i+l)  mod (n i+l ) ,  if ui = 0 or flu, E Ai or au, L/~u, !i~ Ai 
u~ = ~ ul, otherwise 

• For each i E loc(a), vi = on. Moreover, if v~ = off then (a)~a ¢. A~ for 
every i e loc(a) and every (a)~a e CL. 

- Let s E S~, with s(i) = (Ai,~i,u~,vl) for every i. Then s e Sin iff ao e 
{Ai}~e~ and ~/e Fin where 7 E Fp satisfies q,(i) = 7i for every i. Further- 
more, ui = 0 for every i. Finally, for every i, vi = off implies tha t  (a)ia ¢ A~ 
for every (a)ia E CL.  
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- For each i, F~ C_ Si is given by F~ = {(Ai,Ti,ui,vi) I ui = 0 and vi = on} 
and Fi C_ Si is given by Fi = {(Ai,"/i,ui,vi) I vi = of[}. 

This construction is an optimized version of the original construction for 
T r P T L  presented in [44, 45]. Note that  ¢4~ o is indeed in s tandard form. Argu- 
ments similar to those presented in [44, 45] lead to the next set of results. 

T h e o r e m  1 8 .  

1. ao is root-satisfiable iff LTr(A~o) 7 £ O. 
2. The number of local states of Aao is bounded by 2 O(max(n,m21°gm)) where 

n = lc~ol and m is the number of agents mentioned in ao. Clearly, m < n. 
It follows that the root-satisfiability problem (and in fact the satisfiability 
problem) for TrPTL is solvable in time 2 °(m~x('~,'~21°gm)'m). 

The number of local states of each process in ~4~ o is determined by two 
quantities: the length of c~0 and the size of the gossip automaton A t .  As far as 
the size of A r  is concerned, it is easy to verify that  we need to consider only 
those agents in P that  are mentioned in loc(c~o), rather than all agents in the 
system. 

The model checking problem for T rPTL can be phrased as follows. A finite 
state distributed program Pr over ~ is an asynchronous automaton ,4pr = 
( ~ s Pr ~ .f ====:~ Pr  l. .~ Pr  ~[ ( s P r  S Pr  ~ ~ ~ modelling the state space of Pr. 

t ~ J ~  t - - a  l , ~ ' i n  , t \  z , * ] J J  

Viewing a formula s0 as a specification, we say that  Pr meets the specification 
ao - -  denoted P r  ~ C~o - -  if for every T E T R  "~, if Ap~ has a run over T then 
T, 0 ~ ao. 

The model checking problem for T rPTL can be solved by "intersecting" the 
program automaton ~4p~ with the formula automaton .4~~ 0 to yield an automa- 
ton .4 such that  LT~(A) = LT~(Mp~) M LT~(.4~c~o). As before, LT~(¢4) = ~ iff 
Pr ~ ao. 

It turns out that this model checking problem has time complexity 
O(tAP~t" 20(m~x(n'm2 log m).m)) where IAp~I is the size of the global state space 
of the asynchronous automaton modelling the behaviour of the given program 
Pr and, as before, n = la0I and m is the number of agents mentioned in s0, 
where s0 is the specification formula. 

We now take a brief look at some related agent-based linear time temporal  
logics over traces. The first one is the sublogic of TrPTL denoted which consists 

con (from now on of the so called connected formulas of TrPTL.  We define OTrPTL 
written as ~ o , )  to be the least subset of • satisfying the following conditions: 

- T E 4 ~¢°n and as before Loc(T) = ~} 
- I f a , f l  E o~on, so are ,,~a and a V f l .  
- If a E ¢~o~ and a E Si such that  loc(a) C_ loc(a) then (a)ia E ~o~. 
- If a ,  fi E ~¢on with loc(c 0 = loc(¢~) = {i} then ~Aifl E ~¢o~. Actually one 

need only demand that  loc(c~), loc(/~) C ~{loc(a) I a E Si} but  this leads to 
notational complications that  we wish to avoid here. 

- If a E ~¢o, and loc(a) = {i} then Oia E ~°~.  (Once again one needs to just  
demand that  a C_ ~{loc(a)  I a E Si}.) 
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Connected formulas were first identified by Niebert and used by Huhn [22]. 
They have also been independently identified by Ran'lanujam [38]. Thanks to 
the syntactic restrictions imposed on the next state and until formulas, past 
information is not allowed to creep in. Indeed one can prove the following: 

P r o p o s i t i o n  19. Let (~ E ~con. Then (~ is satisfiable i~ ~ is root-satisfiable. 

Yet another pleasing feature of TrPTL c°n is that  the gossip automaton can 
be eliminated in the construction of the automaton Aa 0 whenever a0 E ~¢on. In 
fact one can prove the following. 

T h e o r e m  20. The satisfiability problem /or TrPTL ¢°n is solvable in time 
2o(1~ol). 

Once again, a suitably modified statement can be made about the associated 
model checking problem. At present we do not know whether or not TrPTL is 
strictly more expressive than TrPTL ¢°", but it is clear that  LTL ® is a strict 
sublogic of TrPTL c°n. We shall deal with the relative strengths of these logics 
in the next section. Two of the four logics considered by Ramanujam [38] in a 
closely related setting turn out to be LTL ® and TrPTL ¢°". We conjecture that  
the other two logics are also expressible within TrPTL. 

Katz and Peled introduced the logic ISTL [24] whose semantics has a trace- 
theoretic flavour. In a subsequent paper by Peled and Pnueli [34] on ISTL, the 
connection to traces was made more directly. Indeed this is one of the first in- 
stances of the explicit use of traces in a temporal logical setting that  we know 
of. However, it has branching time modalities which permit quantification over 
the so called observations of a trace. ISTL uses global atomic propositions rather 
than local atomic propositions. Penczek has also studied a number of temporal 
logics (including a version of ISTL) with branching time modalities and global 
atomic propositions [36]. His logics are interpreted directly over the space of 
configurations of a trace resulting in a variety of axiomatizations and undecid- 
ability results. We feel that  local atomic propositions (as used in TrPTL) are 
crucial for obtaining tractable partial order based temporal logics. Niebert has 
considered several/z-calculus versions of TrPTL [31, 32] and has obtained various 
decidability results using a variant of asynchronous Biichi automata.  

The temporal logic of causality (TLC) proposed by Alur, Peled and Penczek 
is basically a temporal logic over traces [1]. The concurrent structures used in [1] 
as frames for TLC can be easily represented as traces over an appropriately cho- 
sen trace alphabet. The interesting feature of TLC is that  its branching time 
modalities are interpreted over causal paths. In a trace (E, _<, A), the sequence 
eoel .- .  E E ~ is a causal path if e0 < el < e2. . . .  This logic admits an essen- 
tially exponential time decision procedure for checking satisfiablity in terms of 
a variant of Biichi automata called Street automata. 
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8 E x p r e s s i v e n e s s  I s s u e s  

Our aim here is to discuss some expressiveness issues concerning trace-based 
linear time temporal  logics. To set the stage we first quickly review the classical 
case of sequences. 

The monadic second-order theory of infinite sequences over Z is denoted 
MSO(Z).  Its vocabulary consists of a family of unary predicates {Ra}ae~, one 
for each a E Z;  a binary predicate <; a binary predicate E; a countable supply of 
individual variables Vat = {x, y, z , . . . } ;  a countable supply of set variables (i.e. 
monadic predicate variables) SVar = {X, Y, Z , . . . } .  The formulas of MSO(Z)  
are then built up by: 

- Ra(x), x < y and x E X are atomic formulas. 
- If ¢ and ¢1 are formulas then so are ~ ¢ ,  ¢ V ¢', (3x)¢ and (3X)¢.  

A structure for MSO(Z) is a w-sequence a E Z ~. Let Z be an interpretation 
of the variables with Z : Vat ~ w and I : SVar ~ 2% Then the notion of a 
being a model of ¢ under the interpretation Z, denoted a ~ z  ¢, is defined in the 
expected manner. In particular, a ~ z  Ra(x) iff a(I (x) )  = a (note that  a E Z ~̀ 
is viewed as a : w ) Z); a ~ z  x < y iff Z(x) <_ l ( y )  (here < is the usual 
ordering over w); a ~ z  x E X iff E(x) E I ( X ) .  

As usual, a sentence is a formula with no free variables. Each sentence ¢ 
defines an w-language, denoted L¢, where: 

L¢ = {a l a ~ ¢}. 

We say that  L C_ Z ~ is MSO(Z)-definable iff there exists a sentence ¢ E MSO(E)  
such that  L = L¢. A celebrated result of Biichi [4] shows that  the class of lan- 
guages expressible by sentences in MSO(Z) coincides with the class of languages 
recognized by Bfichi automata over Z.  This class is the w-regular languages over 
Z .  

The first-order theory of infinite sequences over Z is denoted FO(Z)  and is 
obtained from MSO(Z)  by abolishing the monadic second-order quantifications 
from the logic. The semantics and notions of first-order definability are carried 
over in the obvious manner. 

A fundamental result in the theory of temporal logic is Kamp's Theorem [23] 
which was later strengthened in [14] to establish that  LTL(~)  is expressively 
equivalent to the FO(E) .  The surprise here being that  LTL(~)  admits only a 
bounded number of operators (one unary and one binary as we have formu- 
lated it) whereas infinitely many operators of increasing arities can be defined in 
FO(Z) .  Secondly, as we saw in Section 2, the satisfiability problem for LTL(Z)  
can be solved in deterministic exponential time. The satisfiability problem for 
FO(~7) on the other hand, even when the sentences are interpreted over finite 
words, is known to be non-elementary hard [43]. It is quite easy to see that  
FO(~ )  - -  and hence LTL(Z)  - -  is strictly less expressive than MSO(Z)  in 
the sense that  there is a language which is MSO(Z)-definable but  not FO(Z) -  
definable. (Indeed this is the sense in which we shall compare the expressive 
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power of various logics in what follows.) For instance, as pointed out by Wolper 
in a state-based setting [56], the language L C_ {a, b} ~ given by "a is executed at 
every even position" is not definable in this logic. On the other hand, it is easy 
to come up with a formula of MSO(22) defining L. 

The expressive power of LTL can be extended to obtain the expressive power 
of MSO while still guaranteeing an exponential time decidable satisfiability prob- 
lem as demonstrated first in [57]. Here we sketch how the regular programs over 

can be used to achieve this goal [19]. 
The syntax of regular programs over 22 is given by: 

Prg(22) ::= a I -o  + - ,  1-0;-~ I~*- 

With each program we associate a set of finite words via the map I1" II : 
Prg(22) ---+ 2 E*. This map is defined in the standard fashion: 

- Ilalt = { a } .  
- II~o + ~'~11 = II~'oll U I1~'~11. 
- I1~'o;~',11 = {7-on 17-o e II~roll and 7-1 E I1~'~11}" 
- I lrr*ll = Uie, , ,  I1~"11, w h e r e  

• I1~°tl = { c }  a n d  
• I1-~+'11 = {7-on 17-0 e 1t'11 and 7-, 6 11~11} for every i 6 w. 

The set of formulas of DLTL(22) is given by the following syntax. 

DLTL(22) ::= T I ,-,,:, I ~ v Z  I a u ' %  ~ e Prg(22) 

A model is a w-sequence a E 22~. For 7- E prf(a) we define a, 7- ~ c~ just as 
we did for LTL(22) in the case of the first three clauses. As for the last one, 

- a,T ~ a U~I~ iff there exists T' E I1=11 such that  TT' ~ prf(a) and a, TT' ~ 1~. 
Moreover, for every T" such that  ~ "4 T" -4 T', it is the case tha t  ¢7, T T  I1 ~ Oz. 

Thus DLTL(22) adds to LTL(22) by strengthening the until-operator. To 
satisfy c~ U~I~, one must satisfy a U/~ along some finite stretch of behaviour which 
is required to be in the (linear time) behaviour of the program 7r. We associate 
with a formula c~ of DLTL(22) the w-language La in the obvious manner. 

A useful derived operator of DLTL is: 

- ( l r ) e  ,',~'.'. T / ~ a .  

By replacing the until-modality of DLTL with the above derived operator we ob- 
tain the sublogic DLTL- (22), which is essentially Propositional Dynamic Logic [13] 
equipped with a linear time semantics. It turns out that  DLTL(22) and DLTL-  (22) 
both have the same expressive power as MSO(Z). 

T h e o r e m  21. Let L C_ 22~. Then the following statements are equivalent. 

1. L is w-regular (i.e. definable in MSO(22)). 
2. L is DLTL( 22)-definable. 
3. L is DLTL-(Z)-definable. 



675 

Both the satisfiablity and model checking problems for DLTL(Z) are decid- 
able with the same time complexity as for LTL(Z:). 

Let (E:,I) be trace alphabet. Then MSO(Z, I ) ,  the monadic second-order 
theory of infinite traces (over ~, I), has the same syntax as MSO(S:). The struc- 
tures are elements of TRY(Z, I). Let T E TRY(Z, I) with T = (E, <, )~) and 
let 2: : X -+ E be an interpretation. Then T~MS°R~(x) iff )~(I(x)) = a and 
T ~MSO x < y iff I (x )  _< Z(y). Hence, the essential difference is that  the binary 
predicate symbols is now interpreted as the causal partial order of the trace. The 
remaining semantic definitions go along the expected lines. Each sentence ~ (i.e., 
a formula with no free occurrences of variables) defines the w-trace language 

L~ = { T I T  ~MSO ~fl}. 

We say that  L C_ TR ~ is MSO-definable iff there exists a sentence ~ in MSO(Z,  I) 
such that  L = L~. It is known that  MSO-definable languages are precisely the 
regular trace languages; i.e. those recognized by asynchronous automata  [11]. 

FO(5~,I), the first-order theory of traces, is defined in the obvious way. 
Clearly it will be strictly weaker than MSO(Z, I). For more information the 
reader is referred to [7]. Naturally both these theories can be made to handle 
finite traces as well. 

Through the rest of this section we fix a distributed alphabet Z and let (Z, I) 
be the induced trace alphabet. By MSO(~) we shall mean the theory MSO(Z', I)  
and similarly for FO(Z),  the first-order fragment of MSO(~).  In what follows 
we shall often supress the mention of ~ as well as the induced (5~, I). 

We first consider the logic LTL ®. Recall that  product languages are trace 
consistent and hence they induce trace languages via the map str. The resulting 
trace languages will be called product trace languages. As might be expected, 
the regular product trace languages are the ones obtained from regular product 
languages via the map str. It is easy to show that  not every (regular) trace lan- 
guage is a product trace language [47]. It is also easy to see that  LTL®-definable 
trace languages constitute a strict subclass of regular product trace languages. 
It has been shown that  a product version of DLTL denoted DLTL ® captures 
exactly the class of regular product trace languages [20]. We also claim that  it 
is an easy exercise to formulate a product version of MSO(Z) and show that  it 
captures exactly ~le regular product trace languages. Let us denote this ~roduct 
version of MSO(Z') as MSO®(Z) and its first-order fragment as FO®(Z). It is 
easy to show - -  using Kamp's theorem - -  that  LTL®(5~) has exactly the same 
expressive power as FO ® (~). 

We also know that LTL ® is strictly weaker than TrPTL. First note that  each 
formula (say c~ of TrPTL) defines a trace language L~ via : 

L a = { T I T ,  O~a} .  

Hence we can compare the relative expressive powers of LTL ® and TrPTL. It is 
known that  ([30, 47]): 
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LTL ® C TrPTL c°n C TrPTL. 

It is still open whether TrPTL ¢°n is equal to TrPTL in expressive power. 
It is not difficult to show that  TrPTL is no more expressive than the first- 

order theory of traces but it is not known whether the converse also holds. It 
would be nice to have a linear time temporal logic over traces patterned after 
LTL which has the same expressive power as the first-order theory of traces. The 
motivation is provided by the next result [11]: 

P r o p o s i t i o n  22. Let L C E ~. Then the following statements are equivalent. 

1. L is trace consistent and LTL( S)-definable. 
2. {str(a) l a E L}  is FO(~,  I)-definabte. 

Egged on by this result, recently a different kind of trace-based linear time 
temporal logic called LTrL has been proposed [48]. This logic works directly 
with a trace alphabet (i.e. it is not based on agents). It is interpreted over the 
configurations of a trace and its syntax is given by: 

LTrL(Z, I )  ::= T ] .~a l a V f l t ( a ) a  l a V fl ] ( a - i )T .  

Thus the syntax is very close to LTL except for the addition of a very restricted 
past-operator. In fact, just a constant number of past-operators are present in 
the logic; one for each action. 

A model of LTrL(Z, I)  is a trace T = (E, 5,  A). Let c E CT be a configuration 
of T. Then T, c ~ a will stand for a being satisfied at c in T. This notion is 
defined inductively as follows: 

- T , c ~ T .  
- T, c ~ ~ a and T, c ~ a V fl are defined in the expected manner. 
- T, c ~ (a)a iff there exists d E CT with c --~T e I with T, d ~ a.  
- T, c ~ a U fl iff there exists d E CT with c C_ c' such tha t  T, c' ~ ft. 

Moreover, for every d I E CT, c C_ c" C d implies T, c" ~ a. 
- T ,c  ~ (a-l>a iffthere exists c' E CT with d a) T C. 

The major result concerning LTrL is the following: 

T h e o r e m  23 ([48]). Let L C_ T R Y ( Z ,  I).  Then the following statements are 
equivalent. 

1. L is FO(~,  I)-definable. 
2. L is LTrL(E,I)-definable.  

Thus - -  except for the addition of the restricted past-operators - -  LTrL is 
a generalization of Kamp's Theorem to the much richer setting of traces. Meyer 
and Petit have shown that  the past-operators can be eliminated without loss of 
expressive power when the logic is interpreted over f n i t e  traces [28]. A similar 
result for infinite traces is not known at present. Unfortunately this logic does 
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not have a matching time complexity in relation to LTL. Recently Walukiewicz 
has shown that  the satisfiability problem for LTrL is non-elementary hard [53]. 
A related result concerns the logic TLPO formulated by Ebinger [10]. This is 
also a linear time temporal logic interpreted over traces but with full-fledged 
past-operators. TLPO is claimed to be expressively complete when interpreted 
over f inite traces but nothing is known about the complexity of the satisfiability 
problem nor about  its expressive power in relation to infinite traces. 

At present we do not know much about the relationship between TLC and 
the logics we have mentioned so far, except that  it is strictly weaker than the 
monadic second-order theory of traces. 

In an interesting recent development Niebert [32] has formulated a fixed 
point based linear time temporal logic for traces in the setting of distributed 
alphabets. This logic is denoted as vTrPTL.  It is equal in expressive power 
to the monadic second-order theory of traces and it has decision procedure of 
essentially exponential time complexity. However, the formulas of this logic are 
required to satisfy what appears to be awkward syntactic restrictions and it is 
not clear how one could express global properties of interest in this formalism. 

TLC 

MSO = vTrPTL 

FO L 

TrPTL ~ MSO ® = DLTL ® 

~ r P ~ L ~ ° ~  

T 
FO ® = LTL ® 

Fig. 4. Relative expressive power of the logics 

The relative strengths of the various linear time temporal logics over traces 
mentioned in this section are displayed in Figure 4. A dotted (solid) arrow from 
A to B indicates that  B is at least as expressive as (strictly more expressive 
than) A. Squiggled lines denote that  the logics are incomparable to each other. 

To conclude this section, a lot is known about  linear time temporal  logics 
for traces but  at present we still do not have - -  unlike the case of sequences 
- -  pleasing counterparts to the first-order and monadic second-order theories of 
traces. 
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9 Conclusion 

In this paper we have at tempted an overview of linear time temporal  logics inter- 
preted over traces. We have mainly concentrated on the satisfiability and model 
checking problems as well as expressiveness issues. The problem of axiomatizing 
these logics seems to be a non-trivial task. Some partial results may be found 
in [39]. In [34] the authors present proof rules for the logic ISTL with a trace 
semantics together with a relative expressive completeness result. Reisig has also 
developed a kit of proof rules for a version of UNITY logic [40, 41]. The models 
of this logic are the non-sequential processes of a net system and the proof rules 
are mainly designed to help reason about distributed algorithms modelled using 
net systems. 

At present not much is known about corresponding logics in a branching 
t ime setting. Most of the at tempts in this direction have lead to logics whose 
satisfiablity problems are undecidable [5, 25, 36]. It is however the case that  the 
model checking problem often remains tractable [5,36]. We do not know at 
present whether the properties expressible in such logics have any type of "all- 
or-none" flavour and if so whether one can develop some reduction techniques 
for verifying such properties. Some preliminary at tempts in this direction have 
been made in [16, 54]. 
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