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Abstract .  P-Graphs combine inhibitor Petri nets and abstract data 
types within the same algebraic framework. They are useful for the spec- 
ification of concrete concurrent systems and in particular communication 
protocols. The inhibitor has been included to allow compact descriptions 
of systems by promoting the economy of data types. They are also nec- 
essary for the purging of resources; a common activity when modelling 
protocols or their services. This paper introduces P-Graphs with the aid 
of some simple examples. It also shows how to map P-Graphs to P-nets, 
which are Coloured Petri Nets (CP-nets) extended with place capacities 
and inhibitors. This is important for the analysis of P-Graph specifica- 
tions, as P-nets can be transformed to CP-nets in almost all practical 
situations. Thus the analysis techniques of CP-nets can then be applied. 
Useful notation for capacities are introduced and their semantics defined 
in terms of the P-Graph. A notation for purging places of their tokens is 
also introduced, involving the superimposition of the inhibitor and nor- 
mal arc. Two case studies, the Demon game and the M-Access Service 
of the Cambridge Fast Ring, are included to illustrate the use of the 
P-Graph and the extended notation for protocol specification. 

1 I n t r o d u c t i o n  

Since the early 1970's Petri nets have been used for the modelling and analysis of 
systems that  involve communication, synchronization, co-operation and concur- 
rency [30]. Some of the reasons for this are their foundation in concurrency, their 
ability to be analysed and executed by machine and their graphical appeal allow- 
ing the dynamics of a system to be visualised by playing the token game. This  has 
certMnly been the case for communication protocols. The earliest work on the 
modelling of protocols with nets was probably that  of Merlin [55]. Early surveys 
of the use of Petri net based techniques for the modelling of protocols were carried 
out by Diaz [27, 28] with a more specific t rea tment  in [6]. Burkhardt  et. al. [22] 
presents a methodology for the specification of Open Systems Interconnection 
services and protocols using a high-level net technique called Product  nets. Dur- 
ing the 1980's High-level nets were applied to the specification and analysis of 
many  complex protocols and services [12, 25, 3, 49, 21, 4, 2, 38, 5, 26, 34, 33, 53]. 
More recently a tutorial [15] and a workshop [16] on the application of Petri  nets 
to protocols have been held in conjunction with the annual Petri net conferences. 
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A further workshop [29] has shown how nets can be applied to multimedia sys- 
tems. The third volume [47] of Jensen's book on Coloured Petri Nets contains 
some excellent examples of their application to communication protocols and 
services. Recent applications are to mobility services [64], information infras- 
tructure such as traders [65] and multi-agent systems [18]. The most recent 
papers on the application of Petri nets to Communication networks are being 
compiled for a special issue of Advances in Petri nets [19]. 

Although Petri nets have sufficient modelling power for most (if not all) 
practical systems, they suffer from a lack of modelling convenience or elegance 
particularly for the representation of data. This led to the development of a 
number of hybrid net/data models [59, 58, 50, 63], that associated a set of 
variables with the net and/or attributes with tokens, that could be modified 
on the occurrence of transitions. Thus the 1970's witnessed a number of useful 
experiments with adding a more convenient data representation to nets, driven 
by the needs of practical applications. These models could be analysed using 
reachability techniques and simulation, but other techniques used to analyse 
nets (structure theory, invariants, reductions and synchronic distance) were no 
longer applicable as these extended nets did not come with an underlying Petri 
net semantics. 

This problem was tackled in the next decade, where we have seen the de- 
velopment of high-level nets where tokens are data items and arcs and transi- 
tions are inscribed with symbolic expressions. The earliest of these were Predi- 
cate/Transition nets (PrT nets) [35, 37] and Coloured Petri nets (CP-nets) [42] 
which included methods for calculating invariants. Since then, Predicate/Event 
(P/E) nets, Relation nets [62] and Algebraic nets [61] have been developed and 
PrT nets and CP-nets have been reformulated [36, 43, 45, 46]. The links between 
abstract data types (ADTs) [31] and high-level nets appear to have been discov- 
ered in the mid 1980's [51, 67, 7, 52, 1, 13, 9, 60]. Here the approach has been 
to combine the strengths of ADTs for data representation with the strengths 
of Petri nets (synchronisation, concurrency, graphics) within the same algebraic 
framework. 

Following on from [9], the main purpose of this paper is to present a class 
of high-level inhibitor nets, known as the P-Graph, that combines abstract data 
types and Petri nets, and to illustrate its use with some simple examples and 
then to apply it to two case studies. The approach to the definition of P-Graphs 
has been inspired by [36, 61, 67, 43] and is similar to that of [67] but differs 
in a number of aspects. Firstly we consider nets with inhibitors and capacities 
and more general arc inscriptions. (In this presentation we do not consider the 
axioms of ADTs but they can easily be added). Secondly P-Graphs are defined 
at the concrete level, where places are typed by sets chosen from the carriers 
of a many-sorted algebra that satisfies the ADT signature, and markings and 
capacities are multisets over these sets. Inscriptions are at the level of terms. 
This has similarities with [61] and is appropriate for the specification of concrete 
systems. 
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P-Graphs can be interpreted by Coloured Petri Nets, extended by capacities 
and inhibitors, known as P-nets [8]. This is important for analysis because in 
most practical situations, P-nets can be transformed to CP-nets [8] and all the 
analysis techniques applicable to CP-nets can be employed. 

Why have inhibitors and capacities been introduced? The main reason is to 
provide for modelling convenience when specifying protocols and their services, 
while retaining analysis possibilities as discussed above. This is demonstrated in 
two ways. An abstract railway signalling protocol is firstly modelled by a CP- 
Graph, a subclass of P-Graphs without capacities and inhibitors. This model 
necessitates the introduction of a data  type to specify the control aspects of 
the system. It is then modelled with a P-Graph, where it is shown that  this 
extra control data  type is no longer required. Secondly, the inhibitor allows a 
theory of purging places of their tokens with a single event, to be developed [10]. 
Purging places is useful when modelling protocol procedures such as aborting, 
disconnecting or resetting connections as recognised in [12] for example. It turns 
out that  so long as a finite capacity (and colour set) can be associated with the 
place to be purged, then the P-Graph can be transformed to a finite CP-net 
for analysis. The use of a purging construct (the reset arc) is illustrated when 
modelling the M-Access Service of the Cambridge Fast Ring. 

The paper is organised as follows. After giving a definition of P-nets in sec- 
tion 2, concepts from algebraic specification are recalled in section 3 to provide 
the necessary background for the definition of P-Graphs in section 4 and for 
their interpretation as a P-net in section 5. Section 6 discusses the graphical 
representation of the P-Graph and in section 7, CP-Graphs are defined as a sub- 
class of P-Graphs and illustrated with two examples. The first is the abstract 
railway protocol and the second is a resource sharing management scheme which 
illustrates the use of more complex are inscriptions. The railway system is re- 
modelled with a P-Graph in section 8. It illustrates the use of the inhibitor and 
capacity extensions. A notation for capacity for the P-Graph is developed in 
sections 9 and 10. Two case studies follow. Firstly, the specification of the De- 
mon Game, an example used by the International Standards Organisation as a 
test of formal description techniques for protocols and services, is presented in 
section 11. Secondly, a specification of the M-Access Service of the Cambridge 
Fast l~ing is used to illustrate the capacity and purging notations. Finally some 
conclusions are drawn in the closing section. 

No at tempt  to compare P-Graphs with other formal description techniques 
has been undertaken as this is beyond the scope of this paper. The interested 
reader is referred to [11] for example. 

2 P - n e t s  

P-nets are Coloured Petri Nets [43] (CP-nets) extended by the capacity function 
and the threshold inhibitor map. This section provides the basic definitions. 
Further discussion including P-net to CP-net transformations may be found in 
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[8]. All notation and terminology for sets, multisets, vectors and their associated 
operations is defined in the Appendix. 

2 . 1  D e f i n i t i o n  

A P - n e t  is a structure P = (S, T, C; C, Pre, Post,  I ,  K,  Mo) where 

- S is a finite set of places 
- T is a finite set of transitions disjoint from S (S n T = 0) 
- C is a finite set of non-empty colour sets, the strncturing set 
- C : S U T  ~ C is the colour function used to structure places and transitions 

(of the underlying PT-net)  
- Pre,  Post  : T R A N S  ~ p P L A C E  are the pre and post mappings with 

T R A N S  = {( t ,m)  I m E C( t ) , t  E T }  

P L A C E  = {(s, g) I g E C(s), s E S}  

- I : T R A N S  ~ I ~ P L A C E  is the threshold inhibitor map 
- K E # + P L A C E  is a multiset known as the place capacity; and 
- Mo E # P L A C E  is a multiset known as the initial marking which must 

comply with the place capacity so that  M0 < K 

2 . 2  M a r k i n g  

A M a r k i n g  is a multiset, M E p P L A C E ,  iff M < K.  

2.3 E n a b l i n g  

A finite multiset of transition modes, T~ E p T R A N S ,  is enabled at a marking 
M i f f  

(Pre(T~) <_ M <. K - Post(T~)) A (M < I'(T~)) 

where 
P(T~) = ~ mult(tr,  T~,)P(tr) 

~rETRANS 

is a linear extension with P = Pre or Post, and Vtr E TRANS, and TI~, T2~ E 
#TRANS we have 

- I ' (0) = {(p, ~ )  I P ~ P L A C E }  
- I ' ( t , . )  = I ( t , - )  

- I ' ( T 1 .  + T 2 . )  = I ' ( T l u )  O I ' ( T 2 . )  

Thus a multiset of transition modes is enabl6d if there are enough tokens 
on the input places to satisfy the pre map, there is enough capacity left in 
the output  places to receive tokens when the transition modes occur, and the 
inhibitor thresholds axe not exceeded. 
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2 . 4  T r a n s i t i o n  R u l e  

Given that  a multiset of transitions, T , ,  is enabled at a marking M, then a step 
may occur resulting in a new marking M ~ given by 

M' = M - Pre(T~) + Post(T~). 

t r  i r l  This is often denoted by M[T,)M'  or for a single mode M ~lvi . 

2 . 5  S e t  o f  R e a c h a b l e  M a r k i n g s  

The set of reachable markings, [M0), of P is obtained inductively as follows. 

- Mo E [Mo); and 
- if M1 E [M0) and Ml[tr)M2 for tr E T R A N S ,  then M2 C [M0). 

3 C o n c e p t s  f r o m  A l g e b r a i c  S p e c i f i c a t i o n  

In the P-Graph, we shall inscribe arcs with multisets of terms involving variables, 
and transitions with Boolean expressions. Many-sorted signatures provide an 
appropriate mathematical  framework for this representation. Signatures provide 
a convenient way to characterise many-sorted algebras at a syntactic level. This 
section introduces the concepts of signatures, terms and many-sorted algebras 
that  will be required for the definition of the P-Graph and abstract P-Graph.  We 
make use of the ideas found in [31, 54] for example. This section is only included 
to make the paper self-contained and to introduce the required terminology. 
Those familiar with algebraic specification may like to skip this section. 

3.1 S i g n a t u r e s  

A many-sorted (or R-sorted) signature, 2J, is a pair: 

= (R, n )  

where 

- R is a set of sorts (the n a m e s  of sets, e.g. Int for the integers); and 
- ~2 is a set of operators (the n a m e s  of functions) together with their arity 

in R which specifies the names of the domain and co-domain of each of the 
operators. 

The arity is a function from the set of operator names to R* × R, where R* 
is the set of finite sequences, including the empty string, s, over R. Thus every 
operator in f2 is indexed by a pair (0, r),  ~r E R* and r E R denoted by w(c~ ~). 
~r E R* is known as the input or argument sorts, and r as the output or range sort 
of operator w. (The sequence of input sorts will define a cartesian product  a~s the 
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domain of the function corresponding to the operator and the output  sort will 
define its co-domain - but  this is jumping ahead to the many-sorted algebra.) 

For example, if 1:l = {Int, Bool}, then W(IntJnt,BooO would represent a bi- 
nary predicate symbol such as equality (=) or less than (<). Using a standard 
convention, the type of a constant may be declared by letting cr = e. For example 
an integer constant would be denoted by cons(ej,~t) or simply consist. 

Types of variables may also be declared in the same way. This leads to the 
consideration of signatures with variables. 

3.2 Signatures with Var i ab l e s  

A many-sorted signature with variables is the triple: 

= (R,/2, v )  

where R is a set of sorts, /2 a set of operators with associated arity as before 
and V is a set of typed variables, known as an R-sorted set of variables. It is 
assumed that  R, /2 and V are disjoint. The type of the variable is defined by 
the arity function, in a similar way to that of constants, from the set of variable 
names to {e} × R. A variable in V of sort r E R would be denoted by v(e,r) or 
more simply by v~. For example, if Int E R, then an integer variable would be 
V(C,Int ) o r  Via t. 

V may be partit ioned according to sorts, where Vr denotes the set of variables 
of type (sort) r (i.e. va E Vr if] a - r). 

Including the variables in the signature is a convenient way of ensuring that  
they are appropriately typed. 

3.3 Natural and Boolean Signatures 

The term Boolean Signature is used to mean a many-sorted signature where one 
of the sorts is Boolean. Similarly, the term Natural Signature is used when one 
of the sorts corresponds to the Naturals (N). 

3.4 T e r m s  o f  a Signature with Var i ab l e s  

Terms of sort r E R may be built from a signature ~ = (R, F2, V) in the normal 
way. We denote a term, e, of sort r by e : r and the set of terms of sort r by 
TERM(~2 U V)~, and generate them inductively as follows. For r, r l ,  . . . ,  rn E R 
(n > 0) 

1. V~ c TERM(~2 U V)r; 
2. For all w(e,r) E/2 ,  w(e,r) E TERM(~2 U V)r ; and 
3. If e1 : r l , . . . ,  e,~ : r,~ are terms and w(rl...~,r) E $2, is an operator,  

then w(~l...r~,~)(el,... ,en) E T E R M ( / 2 U  V)r 
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Thus if Int is a sort, integer constants and variables, and operators (with 
appropriate  arguments)  of output  sort Int are terms of sort Int. 

We denote the set of all terms of a signature with variables by TERM(~2U V), 
the set of all closed terms (those not containing variables, also known as ground 
terms) by TERM(D).  Thus 

TERM(~2U V) = U TERM(~U V)r 
rER 

3.5 Mul t i s e t s  o f  Terms 

Multisets or bags of terms can also be built inductively from the signature if we 
assume tha t  we have a Natural  signature. We define multisets of terms this way 
to allow the multiplicities to be terms of sort Nat, rather than just  the Naturals 
themselves. (This allows, for example, the introduction of conditions into arc 
expressions - see sections 4.2.) 

Let BTERM(f2  U V) denote the set of multisets of terms, defined induc- 
tively as follows, using the symbolic sum representation for multisets defined in 
Appendix A. (TERM(~2 U V) is considered as a special set of multisets, where 
each member  of TERM(f2 U V) is a multiset.) 

~- T E R M ( D U  V) C BTERM(~2U V); 
....... if bl, b2 E BTERM([2 U V), then (bl + b2) E BTERM(~2 U V); and 

if i E TERM(~2 U V)ga~ and b E B T E R M ( D  U V), 
then i x b E BTERM(~2 U V) where ' x '  represents scalar multiplication. 

Where there is no confusion the ' x '  will be dropped and juxtaposi t ion will 
be used for scalar multiplication (e.g. '3 x x can be replaced by 3x and 4 × 3 x x 
by 4 x 3x which is distinctly different from 43x.) 

The set of bags with infinite multiplicities, B~TERM(~2 U V), may now be 
defined as follows 

BTERM(~2 U V) C B~TERM(f2  U V); and 
...... if b E BTERM(f2  U V), then oc x b E BooTERM(~ U V). 

where multiplication by oc is defined in appendix A. 

3.6 Man y- sor ted  Algebras  

A many-sorted algebra, (or S-Algebra) ,  H,  provides an interpretation (meaning) 
for the signature ~ .  For every sort, r E R, there is a corresponding set, Hr, known 
as a carrier and for every operator W(rl...r~,r) E ~2, there is a corresponding 
function 

wH : Hrl x .. .  x Hr, -~ Hr. 

In case an operator is a constant, Wr, then there is a corresponding element 
WH E Hr. They may  be considered as functions of arity zero. 
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D e f i n i t i o n :  A many-sorted Algebra, H,  is a pair 

H = (RH,  ~2H) 

where RH = {Hrlr  E R} is the set of carriers and 
~2H = {WHIwcr~ E ~ , t r  E R ' a n d  r E R} the set of corresponding functions. 

For example, if ~ = ( { In t ,  Sool} ,  {<(IntJnt,BooO}) then a corresponding 
many-sorted algebra would be 

H = (Z, Boolean; less than)  

where Z is the set of integers: { . . . ,  - 1 , 0 ,  1 , . . .}  
Boolean -- { true,  f a l s e }  
and less than : Z × Z -* Boolean is the usual integer comparison function. 

It could also be 
B = (N, Boolean; less than)  

where N is the set of non-negative integers: {0, t , . . . }  
Boolean = {true,  f a l s e }  
and less than : N × N --+ Boolean.  

(The power of the signature is that it allows a class of algebras to be cate- 
gorised.) 

For signatures with variables, variables are R-sorted. In the algebra, the 
variable is typed by the carrier corresponding to the sort. 

3 . 7  A s s i g n m e n t  a n d  E v a l u a t i o n  

Given an R-sorted algebra, H,  with variables in V, an assignment 1 for H and 
V is a family of functions a, comprising an assignment function for each sort 
r E  R,  

o~r : Vr---~ Hr. 

This function may be extended to terms by considering the family of functions 
ass comprising 

assr : T E R M ( ~ 2  U V)r --* Hr 

for each sort r E R. The values are determined inductively as follows. For cr E 
R* \ 6 ,  ~ = r l r 2 . . . r n ,  with r, r l , . . . , r n  E R and e, e l , . . . , a n  E T E R M ( ~ 2 U  V) ,  

- If e E V~ is a variable, then assr(e)  = a t (e )  
- For a constant, wr e ~2, assr(wr)  = w g  E Hr. 
- If e = w(a , r ) ( e l , . . . , en ) ,  then 

a s s r ( w ( a , r ) ( e l , . . . , e n ) )  = w H ( a s s r ~ ( e l ) , . . . , a s s r , ( e , ) )  E Hr, where el : 
rl . . . en : rn. 

Knowing the values of terms we can determine the value of multisets of terms 
by considering the multiset as a sum of scaled terms and evaluating each scalar 
and term for a particular assignment to variables. This is defined inductively for 
a E T E R M ( ~ 2  U V) ,  i e T E R M ( O  U Y)Nat and bl, b2 E B T E R M ( ~ 2  U V)  by 

- Vala( i  × a) = ass(i)  × ass(a)  
- Ya l~ (b l  + b2) = Va la (b l )  + Yala(b2)  

1 The terms binding a~d valuation are also used in this context. 
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4 P - G r a p h s  

This section defines a P - G r a p h .  A P-Graph consists of an inhibitor net where 
the arcs are annotated by multisets of terms. The multiplicities of the multisets 
are non-negative integer terms. Transitions are annotated by Boolean terms. 
The terms are built from a Natural-Boolean signature which has an associated 
many-sorted algebra. A colour function associates a colour set with each place. 
The colour set is a carrier of the many-sorted algebra. The capacity and initial 
marking are multisets over the place's colour set. 

4.1 D e f i n i t i o n  

A P - G r a p h  is a structure 

P G  = (IN, L ~, H, C, AN,  K, Mo) 

where 

- I N  = (S, T; F, IF )  is an inhibitor net, with 

• S a finite set of places; 

• T a finite set of transitions disjoint from S; 

• F C  ( S × T )  U ( T x  S) a se t  of arcs; and 

• I F  C S × T a set of inhibitor arcs. 

= (R, f2, V) is a Natural-Boolean signature with variables. 

- H = (RH, $2H) a corresponding L'-Algebra. 
C : S --* RH is the colour function, such that Vs E S, C(s) 7~ 13. 

- A N  = (A, IA, TC)  is a triple of net annotations. 

• A : F -* B T E R M ( Y 2 U V )  such that for C(s) = tI~, then for all 
(s, t), (u, s) E F, A(s, t), A(u, s) E B T E R M ( £ 2  U V)r. It is a function 
that annotates arcs with a multiset of terms of the same sort as the 
carrier associated with the arc's place. 

• IA  : I F  ~ B ~ T E R M ( ~ U  V) such that  for C(s) = H,., then for all 
(s, t)  E IF ,  IA( s , t )  E B ~ T E R M ( f 2 U  V)~. It is a function that an- 
notates inhibitor arcs with a multiset of terms of the same sort as the 
carrier associated with the arc's place. 

• T C  : T --~ T E R M ( f 2  U V)Boo~ where for all t E T, TC( t )  belongs to 
T E R M ( D  U V(t))BooZ and V(t)  is the set of variables occurring in the 
arc inscriptions associated with t. 

T C  annotates transitions with Boolean expressions. 

pooC(s) where K(s)  E #+C(s)  is the capacity function. - K : S ~ U s c s  + ' 
- M0 : S ~ U s e s # C ( s )  such that  Vs E S, Mo(s) <_ K(s) ,  is the initial 

marking. 
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4.2 Discussion 

When generating multisets of terms for the arc inscriptions, we allow the multi- 
plicities to be natural number terms, so that the value can depend on the values 
of variables and operators of other types. In particular this includes as a special 
case, the generalised Kronecker delta extension to PrT-nets [36]. An example of 
a variant of the readers/writers problem is given in [17] to illustrate the utility 
of this extension. 

5 I n t e r p r e t a t i o n  o f  t h e  P - G r a p h  as  a P - n e t  

The P-Graph may be given an interpretation as a P-net in the following way. 

1. Places: S is the set of places in the P-net. 
2. Transitions: T is the set of transitions in the P-net. 
3. Colour Sets: The colour set for a transition is determined by the types of 

the variables occurring in the surrounding arc annotations restricted by its 
transition condition. 
Let there be nt free variables associated with the arcs surrounding a transi- 
tion t E T. Let these have names Vr~(t),..., vr~, (t) E V. In the Z-Algebra, 
H, for all i E {1,2, . . . ,  nt}, let the carrier corresponding to ri, Hri, be de- 
noted by Gi with typed variables vi(t) : Gi. Following [43], let gi E Gi, 
then 

C(t) -- {(gl , . . . ,  gnt) I (~(Vl(t), ' ' ' ,  vn,(t)).TC(t))(gl,..., gn,)) 

(The A-expression provides a means for formally substituting values for the 
variables in the Transition Condition. Tuples which satisfy TC(t)  are in- 
cluded in C(t).) 
The colour sets for the places are obtained from the colour function. Thus 
the structuring set (of colour sets) is given by C "- {C(z)lx E S U T}. 

4. The Colour Function: The colour function restricted to places is defined in 
the P-Graph and C(t) is given above. 

5. Pre and Post Maps. 
The pre and post maps are given, for all (s, t), (t, s) E F, by the following 
family of mappings from C(t) into pC(s) 

Pre(s,t) = ~(vl (t),. . . ,  Vnt (t)).A(s, t) 

Post(,,t) = A(vl( t ) , . . . ,  v~,(t)).A(t, s) 

For (s,t) ~ F and Vm E C(t), Pre(8,t)(m) = O and for (t,s) ~ F and 
V m e  C(t), Post(s,t)(m) = O. 
Thus for all t E T and for all m E C(t) 

Pre(t, m) = {(s, b) I s e S, b e Pre(s,t)(m)} 

Post(t, m) = {(s, b) I s s, b e Post(,,t)(m)) 
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6. Inhibitor Map 
The inhibitor map is a function from C(t)  into #¢~C(s) where for all (s, t) E 
IF  

I(s, t) = )~(vl ( t ) , . . . ,  vn, (t)).IA(s, t) 

and for (s, t) ~ IF, Vg E C(s), m E C(t),  mult(g, I(s, t; m)) = co. 
7. Capacity Function. 

K(s) is as defined in the P-Graph. 
8. Initial Marking. 

Mo(s) is as defined in the P-Graph. 

With this translation from the P-Graph to P-nets in place, we may now use 
the definitions of marking, enabling and transition rule for P-nets to allow the 
P-Graph to be executed. (Alternatively, we could define the enabling condition 
and the transition rule directly for the P-Graph, by considering assignments for 
terms in a similar way to [61].) 

6 G r a p h i c a l  F o r m  o f  P - G r a p h  

6.1 G e n e r a l  

The graphical form comprises two parts: a Graph which represents the net el- 
ements graphically and carries textual inscriptions; and a Declaration, defining 
all the sets, variables, constants and functions that  will be used to annotate  the 
Graph part. The declaration may also include the initial marking, the capacity 
and the colour function if these cannot be inscribed on the graph part due to 
lack of space. 

6.2 P l a c e s  

In the usual way we shall represent places by circles (or ellipses). A place s may 
carry four inscriptions. 

..... the place name; 
- the colour set associated with the place, C(s); 
- the place capacity, K(s);  and 
- the initial marking, Mo(s). 

The first three would be inscribed close to the place, whereas the initial mark- 
ing would be inscribed inside the circle representing the place. (As mentioned 
above, C(s), K(s) and Mo(s) can be defined in the Declaration if there is insuf- 
ficient space in the Graph part.) We shall adopt the convention that  if a place 
s E S is not annotated by a capacity multiset, then it will have infinite capacity 
for all tokens in C(s), unless specified otherwise in the Declaration. 

Useful notation for K(s) is given later in sections 9 and 10. 



304 

6.3 Transitions 

Transitions are represented by rectangles, annotated by a name and may be in- 
scribed by a boolean expression, known as the Transition Condition. The Transi- 
tion Condition for transition t, TC(t), only involves the variables of the inscrip- 
tions of its surrounding arcs. If a transition, t, is left blank, then the Transition 
Condition is true (TC(t) = true). 

6.4 Arcs  

As usual arcs are represented by arrows. For (s, t) E F,  an arrow is drawn from 
place s to transition t and vice versa for (t, s) E F.  If (s, t) and (t, s) have the 
same inscriptions (s is a side place of t), A(s,t) = A(t,s), then this may be 
shown by a single arc with an arrowhead at both ends and annotated by single 
inscription. 

An inhibitor arc, (s,t) E IF,  is represented by an edge from place s to 
transition t with a small circle instead of an arrow head at its destination. 

The arcs will be annotated with multisets of terms of the same type (or 
subtype) of their associated place. We therefore need a convenient representation 
for multisets. We use the symbolic sum or vector representation described in 
appendix A. In order to distinguish multiplicities from terms, the convention is 
adopted that  terms may be enclosed in angular brackets. 

6.5 Markings and Tokens 

A token is a member of U ,es  C(s). A Marking of the net may be shown graph- 
ically by annotating a place with its multiset of tokens M(s). We again use 
the symbolic sum representation and distinguish multiplicities from tokens, by 
enclosing tokens in angular brackets. Thus if g E M(s), g or <g>  could ap- 
pear written in the circle representing place s. We use the natural numbers 
greater than one, to represent the multiplicity of the token in M(s). Thus if 
mult(g, M(s)) = mg we would represent this by juxtaposition: rag<g> and this 
would be written inside the circle representing s. If mg = 1, it would be omitted 
from the inscription. If g is an n-tuple (for example g = (a, b, c)), then we adopt 
the convention of dropping the parentheses (e.g. (a, b, c) would be represented 
by <a,  b, c> and not <(a, b, c)>.) 

7 C P - G r a p h s  

On removing the inhibitor arcs and the place capacities from the P-Graph, we 
obtain a subclass that  is very similar to Jensen's 'CP-g raph '  [43]. We shall 
distinguish our class, called CP-Graphs, from that  of 3ensen by using an upper 
case 'G' in 'Graph'.  The CP-g raph  differs from the CP-Graph defined here in 
two respects: 
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- it is a mult igraph (i.e. multiple arcs are allowed between places and transi- 
tions); and 

- the arc inscriptions and transition conditions ( ' g u a r d s ' )  are not explicitly 
defined. 

Jensen [43] states tha t  the expressions and guards may  be defined by means 
of a many-sorted algebra (but excludes this from his scope of concern) and tha t  
has provided part  of the stimulus for the definition of P-Graphs.  

D e f i n i t i o n  

A C e - G r a p h  ( C P G )  is a P-Graph,  (IN, 17,, H, C, AN, K, Mo), with the fol- 
lowing restrictions 

- I N  = (S, T; F, 0) i.e. no inhibitor arcs. 
- A N  = (A, O, TC) i.e. no inhibitor arc annotations. 

For all s C S, K(s) = {(g, oc)lg C C(s)} i.e. the capacities of the places are 
infinite. 

7.1 A b s t r a c t  R a i l w a y  S igna l l i ng  P r o t o c o l  

In [36], Genrich describes the operation of two trains travelling in the same 
direction on a circular track of seven sections. For safe operation, the trains 
must  never be on the same section or even on adjacent sections. A CP-Graph  is 
given in figure 1 where any number of sections greater than 4 is allowed. 

In this introductory example we have jumped to the level of the algebra 
by defining functions and sets, and typing variables, rather than including the 
signature explicitly. Full details are given in the next example (section 8). 

A token in place p l  represents a train on a particular section of track. Place p2 
represents the control data  - i.e. the vacant sections. The occurrence of transit ion 
t 1 represents movement  of the trains along the track. The variable 'x '  ranges over 
the set of trains, and ' i '  over the sections. The arc inscriptions ensure tha t  a train 
on section ' i '  can only move to section ' i®1'  when sections ' i (~l '  and 'i~b2' are 
vacant. 

Initially train ~a' is on section 0 and train 'b '  is on section 2, fulfilling the 
requirement that  the trains cannot be on the same or adjacent sections. Thus 
sections 0 and 2 are not vacant and hence 0, 2 ~ M(p2).  We can interpret the 
dynamics of the net in a very similar way to PrT-nets.  Thus we can bind 'x '  ~o 
any value in 'T '  and ' i '  to any value in ' I ' .  For example, if we have ' x = a '  and 
fi=0'  then the demand on place p l  is satisfied, M ( p l )  _><0,a>, but the demand 
on place p2 is not satisfied as 2 ~ M(p2).  Hence t l  is not enabled. If however we 
have ' x = b '  and ' i=2 ' ,  then t l  is enabled (and this is the only binding for which 
t l  is enabled in the initial marking).  When t l  occurs, token < 2 , b >  of place p l  
is replaced by <3 ,b>  and token 3 of place p2 is replaced by 2. 

The new marking now allows both trains to move concurrently (so long as 
n > 5). This  can be seen by the bindings: ' x = a ' ,  ' i=0 ' ;  and ' x = b ' ,  ' i=3 ' .  Thus a 
step may  occur by t l  occurring in both these modes. 

The model is a little different from the PrT-net  in [36]. Apar t  from the minor 
difference of generalising the number of track sections, the functions are total  
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Declarations 

Set of Trains:T = {a,b} 
Set of track sections:I = {0, I . . . . .  n -  1 [ n > 4} 
n: number of sections 
Variables x:T; i:I 
Function $:I×I--*I is modulo n addition 
Place pl: Sections occupied by trains 

Place p2: Vacant sections 
M0(pl) = {<0,a>,<2,b>} 
M0(p2) = I \ {0, 2} 

Graph 

IxT tl I 

~ <i,x> = =[ 1~i@1>+<i@2> ~ 

<i@l,x> <i> + <i@2> 

pl p2 

Fig. 1. CP-Graph of Safe Train Operation 

and the variables are explicitly typed. There is also no need for a transition 
condition. 

8 P - G r a p h  E x a m p l e :  G e n r i c h ' s  T r a i n  r e v i s i t e d  

The train example above provides us with a very simple illustration of the use of 
the inhibitor arc. Given that this is the first example of the use of the inhibitor 
and capacity extensions, we shall describe it in full detail. 

8.1 Linear P - G r a p h  

The linear P-Graph for the safe train is given in figure 2. 
In this example we have explicitly shown how tupling (in this case pairing) 

can be achieved with a suitable tupling operator declared in the signature. 

8.2 Graphica l  Form 

The graphical form of the P-Graph for the operation of the train is given in 
figure 3. As usual we include only the information about the algebra in the 
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L i n e a r  P - G r a p h  
S = {pl}, T = {tl}, F = { ( p l , t l ) , ( t l , p l ) } ,  IF  = { (p l , t l ) }  
R -- {r l ,  r2, r3, Nat, Bool} 
t'-2 = {¢r l r l ,~ l ,  (-, -),1r2,,3 } U Natconst U {a,2, b,2, trueBoo, } 
where Natconst is the set of natural  constants including infinity 
V = {irl,X~2} 
H = (RH, OH); RH = {H,1, H,2, g,3, gnat, HBoo,} 
Hrl = I =  {O, 1 , . . . , n -  l ln > 4 } , n e  g 
H r 2 = T = { a , b }  
Hr3 = I x T 

g N a t  = N¢¢; HBool = { t r u e ,  f a l s e }  

Dn = {OH, (-, -)H, a~, bH, trueH} 
a H =  a; bH = b ;  t r u e H  -= t r u e  

• g : I X I ~ I is modulo n addition 
(- , -)H : I x T --+ I x T is a pairing function where 
Vj E I, Vt E T, ( j , t )g  = ( j , t )  
C(p l )  = I x T 
A(pl, t l )  = (i, x), A(t l ,pl)  = (i • 1, x) 
IA(pl, tl  ) = 0 ~ = 1  ~ u e u (  i O j, u) + oo ~ , e j  ~=eu(i  • j, u) 
where J = { 0 , 3 , 4 , . . . , n - 1 }  and U =  Ca, b} 
TC(tl)  : true 
K(pl) = {((j ,u) ,  1)l( j ,u ) E I x T} (i.e. the set I x T) 
Mo(pl) = {(0, a), (2, b)} 

F ig .  2. Linear P-Graph of Safe Train Operation 

Dec la ra t i on  and  type  var iables  wi th  the  a p p r o p r i a t e  carrier .  The  tup l ing  o p e r a t o r  
and  funct ion  are considered p r imi t ive  wi thou t  any need to define t h e m  each t ime  
in a Dec la ra t ion .  I have also been less fo rmal  wi th  the  use of o p e r a t o r  names  and 
f imct ions  in not  d i s t inguish ing  between t h e m  (i.e. ® has been used as an o p e r a t o r  
and  also as a funct ion) .  Also infix n o t a t i o n  has been used as it  is cus tomary .  

For  inh ib i to r  arcs we use the  convent ion t ha t  zero mul t ip l i c i t i e s  are shown 
expl ic i t ly ,  whereas  infini te mul t ip l i c i t i e s  are assumed  for any  t e rm  t h a t  is not  
shown expl ic i t ly  (c.f. pre m a p  arcs which assume tha t  zero mul t ip l i c i t i e s  are not  
shown in the  sum) .  We have also used ' . '  n o t a t i o n  to represent  sums  of tuples .  
I t  is defined as follows: 

Let  ( x , y ) :  A x B, then  ( x , . )  = ~beB(X,b).  
This  can be general ised to  tuples  of  any length,  by a l lowing the  sum to be 

over the  doma ins  of all  the  var iables  replaced by s tars .  

T h e  g raph ica l  form provides  a compac t  specif icat ion of the  behav iou r  of the  
t r a ins  on the t rack.  The  occurrence of t l  aga in  ind ica tes  the  m o v e m e n t  of  a t r a in  
f rom sect ion i to  sect ion i® l .  Th is  is poss ible  if  there  is a t r a in  on sect ion i, (pre 
cond i t ion)  and  there  are no t ra ins  on sect ions i ® l  and  iq)2 ( inh ib i to r  condi t ion) .  
Of course the  concurrent  moving  of  t ra ins  is allowed, so long as the  condi t ions  
are m e t  for different t ra ins  on different sect ions of t rack.  For  example ,  on a 10 
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Set of Trains:T = {a,b} 
Set of track sections:I = {0,1 . . . . .  n - 1 I n > 4} 
n E N:  number of sections 
Variables x:T; i:t 
Function @:IxI~I is modulo n addition 
Place pl: Sections occupied by trains 
K(pl)  = I×T 
M0(pl) = {<0,a>,<2,b>} 

Gra ph  

pl 

0<i~1, ,>  + 0<i~2, .>  t l  

<i,x> ..... ~ ] 

<iq~l,x> 

Fig, 3. P-Graph of Safe Train Operation 

section track (n = 10) if train %' is on section 4 and train 'b'  on section 9, 
then the bindings of i=4 and x = a  a n d  i=9 and x=b,  both satisfy the enabling 
condition when taken together. 

With the CP-Graph model, the control flow aspects are separated out (using 
place p2) from the data  flow and thus emphasised. In effect another (redundant) 
data  type has been introduced. This is fine when we wish to emphasise this 
aspect. At a more abstract level we may not want to make this separation. 
In this case CP-Graphs do not have the necessary modelling convenience. The 
P-Graph allows us to have just  the one data type; there is no need for any 
redundancy. 

The P-Graph has also made us think about resource limitations. Here it is 
sensible that  only one train can be on one track at any time, instead of an 
unlimited number. This provides a further check on the system and allows the 
P-Graph to be transformed into an equivalent CP-net  (see [8] for details) for 
analysis. 

"8.3 E q u i v a l e n t  P - n e t  

To illustrate the transformation from a P-Graph to a P-net, the equivalent P-net 
is given in figure 4. 
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P - n e t  
S = {pl}, T = {tl} 
C = {I x T} 
C(p l )  = C( t l )  = I x W 
Pre(pl ,  t l )  = )~(i, x).(i, x), the identity function on I x T 
Pos t ( t l , p l )  = A(i, x).(i @ 1, x), a permutation of I x W 
I(pl ,  i t )  : I x T --+ #(I x T) 
I(pl, ¢1) = x).(0 E _-I • j, u) + E, J • J, u)) 
where J = { 0 , 3 , 4 , . . . , n -  1} 
K(pl)  = I x T 
M0(pl) = 1(0, a), (2, b)} 

Fig.  4. P-net of Safe Train Operation 

9 N o t a t i o n  f o r  C a p a c i t y  

The  capaci ty of a part icular  place, s, is given by the funct ion 

I((8) : c ( s )  , N £  

It  is convenient to use a shor thand  nota t ion  for this function when anno- 
ta t ing  places of  the P-Graph ,  as the place is indicated by the proximity  of  the 
anno ta t ion  to the place. Thus  for the capaci ty of token gl E C(s) ,  we m a y  write 
(for n l  E N + )  K ( g , )  = nl next to place s, instead of  K ( s ; g l )  = :~1- Of  course, 
this will only be practical  when C(s )  is a very small set, or when mos t  of  the 
capacities are the same. 

A special case is when the capaci ty for each token g E C(s)  is the same, say 
n E N +. This  is the same as the capaci ty  defined for PrT-ne t s  [37], and we use 
the same notat ion.  Thus  if place s is annota ted  by K = n in the P-Graph ,  then 
this means  gg E C(s) ,  K(s;  g) = n. 

1 0  E x t e n d e d  C a p a c i t y  N o t a t i o n  

Al though  the P-net  capaci ty funct ion and the above nota t ion  may  be of use in 
some applications,  for others a much richer capaci ty  nota t ion  is required. It is 
often the case that  a limit needs to be placed on the cardinal i ty of mult isets  over 
(elements of par t i t ions  of) a place's colour set. For example,  we would like to be 
al:)le to  express constraints  like IM(s)l  < n. This represents the total capaci ty  of  
a place (i.e. the sum of all tokens in the place) which could be a resource bound,  
e.g. a buffer capacity. Here we are not  placing a direct l imit on the mult ipl ic i ty  of  
each element of  the colour set but  a limit on the sum of multiplicities o f  elements  
and thus the capaci ty  funct ion (by itself) is inadequate.  
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10.1 Pro toco l  Example  

As a further illustration, consider the following example encountered while mod- 
elling the M-Access Service of the Cambridge Fast Ring [39, 14]. (We shall return 
to this example in more detail in section 12.) 

Declarat ions  

H: Set of Host Addresses FREE 
Me: Set of Host Messages 
Variables: s, d : H; m : Me ( 
M0(BUFFER) = 0 
M0(FREE)=H _ _  / H ~ 

DATA <s J / /  

r e q u e s t ( "  f f ~ .  x~:ltransfer 

H x H x M e  

Fig. 5. LAN Access Buffer 

A network interconnects a set of computers, known as hosts. Hosts can send 
messages to each other via the network. Each host has an address. When a host 
wishes to send a message it appends its own address (source address) and that of 
the destination (destination address) to the message to form a packet. Each host 
accesses the network via a one packet buffer. When this buffer is free, the host 
can store a new packet in the buffer. When network resources are available the 
packet is transferred into the network for routing and delivery, thus freeing-up 
the buffer for a new packet. 

A P-Graph of the access procedure (for all hosts) is shown in figure 5. Place 
BUFFER represents the set of access buffers, one for each host. Place FREE indi- 
cates which buffers are available. (Initially all the buffers are free: M0(BUFFER) 
= 0.) If this place contains a token with the value of host a's address, then host 
a's buffer is free and can be used for the next packet host a wishes to submit to 
the network (transition DATA-request occurs). Host a's buffer will not be free 
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again until the network accepts the packet (transition transfer occurs). Hence 
place FREE provides the control necessary to ensure a capacity limit of one 
buffer per host. 

Declarations 

H: Set of Host Addresses 
Me: Set of Host Messages 
Variables: s , d  : H ; m  : M e  
M0(BUFFER) = 0 

DATA- 
request 

I <s,d,m> 

BUFFER 

ID, 

H x H x M e  

It(s, *, *) = 1 

<s, d, m >  

transfer 

Fig. 6. LAN Access Buffer illustrating extended capacity notation 

When visualization of this control mechanism is not required, we would like 
to replace the capacity control for place BUFFER by an extended capacity 
inscription. This is shown in figure 6, where place BUFFER is inscribed by 
'K( s ,* ,  *) = 1'. We may interpret this to mean that  there is one buffer avail- 
able for each host, i.e. that  the sum of tokens over the set of (destination) host 
addresses, H,  and messages, M e ,  in place BUFFER for a particular value of s, 
is at most one. The *'s indicate sums over the domains of the variables they 
replace. This may be viewed as an extended capacity condition on the marking 
of the place concerned: for all markings of BUFFER, and for each host, j C H,  

~hEH EgEll~Ie M(BUFFER;  j,  h, g) < 1. 

More generally, a place, s, with C ( s )  = G1 x . . .  x G,~, may be annotated 
by an inscription K ( a l , . . . ,  a,~) = k with k E N +. The syntax of ai,  i E I n  = 
{ 1 , 2 , . . . , n }  is given by the production rule ai : :=< vi > l* where angular 
brackets denote non-terminals and vi : Gi .  (The syntax for variables is left open, 
but  it would normally be a finite string of alphanumeric characters.) 

We shall now give the meaning of this notation in terms of a P-Graph without 
it. 
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1 0 . 2  I n t e r p r e t a t i o n  o f  E x t e n d e d  C a p a c i t y  N o t a t i o n  

When there are no stars present in the argument of K ( a l , . . . ,  an), it has the 
same meaning as K,  defined in the previous section. This notation is therefore 
redundant and would not be used. 

We now consider two cases: 

- A. when there is at least one star but less than n stars 
- B. when all arguments are stars. 

Case  A 
For case A, for each place, s, inscribed by K ( a l , . . . ,  an) = k, we remove the 

inscription and replace it by a projected complementary place, ~, and associated 
arcs in the following manner. 

1. From the argument of K create a tuple consisting of only the variables by 
deleting the stars. This will be of the form < vi,. •. ,  vj > with i _< j <_ n. 

2. Create a place, ~, with colour set C('g) = Gi × . . .  × Gj derived from the 
types the variables of the above tuple, where Gi is the type of the variable 
vi and so forth. 

3. Create an arc (~, t) for each arc (t, s), t E T a n d  an  arc (t', ~) for each arc 
(s, t '), t '  E T. 

4. Annotate each arc by the tuple < v i , . . . ,  vj >. 
5. The initial Marking, M0(~) is related to Mo(s) and the value of k in the 

following way. For every gl E Gi . . . gj E Gj 

mu l t ( (g i , . . . ,  gj), M0(~)) + ~ m u l t ( ( g l , . . . ,  g,~), Mo(s)) = k 

where the sum is over the domains of the variables that  have been replaced 
by stars in the argument of K.  

Case  B 
For case B, for each place, s, inscribed by K ( . , . . . , , )  = k, we remove the 

inscription and replace it by a completely-projected complementary place, ~, (a 
P / T - n e t  place) and associated arcs in the following manner. 

1. Create a place, ~, with colour set C(~) = {*}. 
2. Create an arc (~, t) for each arc (t, s), t E T and an are (t', ~) for each arc 

(s, t ' ) ,  t '  E T. 
3. Annotate each arc by the singleton < • >. 
4. The initial Marking, M0(~) is related to Mo(s) and the value of k in the 

following way. 

mult(( . ) ,  M0(~)) + ~ mul t ( (g l , . . . ,  g,),  M0(s)) = k 

where the sum is over the domains of all the variables. 

Case B corresponds to a resource limit and the notation K* will be adopted 
for it (i.e. K* = g ( * , . . . , * ) )  as in Numerical Petri Nets [69]. 

In this section the colour sets have been restricted to a single product set. 
No at tempt  is made to generalise to unions of product sets as the complexity 
and infrequent usage do not justify it. 
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11  D e m o n  G a m e  

In this section a small example is presented that  was used as a test case for 
formal  methods  developed in ISO and C C I T T  with application to Open Sys- 
tems Interconnection protocols and services. The example is called the Demon 
(Daemon)  Game [66]. 

The  following provides a description of the demon game which is slightly more 
abstract  than the narrative description in [66] in that  no assumption is made 
regarding communication.  Thus there is no reference to the use of 'signals' ,  as 
this is considered to be prejudicing an implementation.  It  is believed tha t  the 
spirit of the game is still the same! 

11.1 N a r r a t i v e  D e s c r i p t i o n  

Consider a system in which there lurks a demon which generates bumps; the 
number  of bumps not being directly observable from outside the system. The 
aim of the game is to guess when there has been an odd number  of bumps  
generated. The demon informs a player of the outcome of the guess: either win or 
lose corresponding to there being an odd or even number of bumps  respectively, 
at the t ime of the guess. The demon keeps a score which is initially zero. It  is 
incremented by one for a successful guess and decremented by one if unsuccessful. 
A player can request his score at any t ime and the result will be returned by the 
demon. 

The game can be played by several players. Before start ing a game, a player 
must  log-in. A unique identifier is allocated to a player on logging-in and deal- 
located on logging-out. 

11.2 M A N  S p e c i f i c a t i o n  

The Demon Game can be specified using a (strongly-typed) many-sorted Mge- 
braic net (MAN) [9]. A MAN is a CP-Graph  where all transition conditions 
are true and the multiplicities of terms in arc expressions are natural  numbers 
rather than  natural  number  terms. (The CP-Graph  of the train was a MAN.) 
It illustrates the use of simple many-sorted unary operators. The game can be 
specified by 4 places and 5 transitions with their associated inscribed arcs and 
is given in figure 7. 

The top two transitions and associated arcs and places specify the behaviour 
of players logging-in and togging-out. The next two transitions specify how to 
play the game (guessing the state of the demon's  bumps and requesting the 
cumulative score) and the bo t tom transition specifies the bumping of the demon. 

The  convention of double-headed arcs described in section 6.4 is used. T h a t  
is, if the annotat ion of the arcs associated with the same place and transit ion 
are the same (A(s , t )  = A( t , s ) ) ,  then both the arcs and the annotat ions are 
superimposed, producing a singly annotated arc with an arrowhead at both  
ends. For example, see f l  = (Scores,Request) and f2  = (Request,Scores) in 
figure 7, ,,'here A ( f l )  = A( /2 )  = <i,  s>.  
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Declarations 

Set of Player Identifiers:I 
Set of Game States:G = {win,lose,null} 
State of Bumps:B = {even,odd} 
Set of Integers:Z 
Variables b:B; i:I; g:G; s,r:Z 
Functions 
Complement --:B--*B where 
even = odd and odd = even 
Score S:B--* {-1, 1} where 
S(even) = -1 and S(odd) = 1 
Outcome O:B--~G where 
O(even) = lose and O(odd) = win 
Mo(IDs) = I 
/~to (Scores) = 
Mo(Players) = 0 
Mo(Bumps) = even 

Graph 

Scores ~ ~ ) P l a y e r s  

<i,s+S(b)> I . . ~  :i,O(b),r> 

:b> 

B( )Bump-state 

<b: <g> 

~ ump 

Fig. 7. MAN Specification of Demon Game 
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Information about players is represented as a triple comprising: an identifier; 
the outcome of a guess (including initially the null outcome denoting that  no 
guess has yet been made); and a score. This state information is stored as the 
marking of place Players. Unused identifiers are stored in place IDs; players' 
scores in Scores; and the state of the demon's bumps in Bump-stale. 

Initially, there are no players (place Players is empty); no scores (place Scores 
is empty); all identifiers are available (place IDs is marked with the complete set 
of identifiers I); and the demon has not begun to bump. As far as the game is 
concerned, it is only important  to model the state of the bumps as even or odd; 
there is no need to count the actual number of bumps. Thus initially there is an 
even number (zero) of bumps, represented by place Bumps being marked with 
the token even. 

On logging-in (transition Login), a player's state and score is initialised, and 
his identifier is removed from the unused identifier list. He may now make a 
guess (transition Guess) whereupon his score is updated and he is informed 
of the outcome. He may also request his score (transition Request) or logout 
(transition Logout) with his identifier being returned to the unused list and all 
information about  him being destroyed. The demon bumps whenever it wishes. 

11.3 C o n c u r r e n c y ,  Conf l ic t  a n d  I n t e r l e a v i n g  

The bumping is arbitrarily interleaved with players making guesses (a conflict). 
Similarly, after logging-in, a player may (non-deterministically) make a guess; 
request his score; or logout (another conflict). This interleaving behaviour is 
an essential part of the design. For example, it makes no sense to be able to 
logout and request the score simultaneously. It also makes no sense to guess and 
bump at the same time or to guess and request the score simultaneously. These 
situations are naturally in conflict and require interleaving of these events. 

On the other hand, for a particular player, the events of requesting a score 
or :ogging in or out, are independent of the demon bumping. Hence transitions 
Login and Bump; Logout and Bump; and Request and Bump are concurrent. 

We would also expect that  all players would act independently of one an- 
other and this is mostly the case. Any number of players may login, logout or 
request their scores concurrently but are limited to interleaving when making 
guesses. Here we have made the assumption that 'read access' to the bump-state 
is exclusive. This is not essential and it is valuable to delay such decisions to the 
implementation phase. 

This limitation may be overcome by making copies of the Bump-state,  and 
removing all the old ones when the demon bumps (transition Bump). Let us 
assume that  there can be n simultaneous accesses to the bump-state,  where 
n E N +, then setting A(Bump-state, Bump) = n < b >  and A(Bump, Bump- 
state) = n < b >  achieves the desired specification. Bump and Guess are still 
in conflict, but Guess may occur concurrently with itself limited by n and the 
number of players logged-on. 

These more subtle parts of the design could easily be glossed over with a 
technique based on interleaving semantics. With an interleaving model, the ira- 
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plementer could be unaware of which parts of the specification were intentionally 
in conflict and which could be concurrent. Also, the need to specify the number 
of simultaneous accesses to a resource could be overlooked. 

12 C a m b r i d g e  F a s t  R i n g  S e r v i c e  S p e c i f i c a t i o n  

12.1 Descr ip t ion  of  the  C F R  

The Cambridge Fast Ring (CFR) networking system [39] consists of a cluster of 
CFRs interconnected by bridges. The CFR is a slotted ring designed during the 
early 1980s to provide a raw 100 MBit/s transmission speed and to substantially 
increase the bandwidth between point-to-point users. Hardware for the stations, 
the monitor and bridges for the Cambridge Fast Ring have been fabricated in 
VLSI. The hardware implements the low level protocols between the various 
distributed components. 

An initial draft of the protocol architectures for the CFR was compiled in 
[24], where it is shown that different architectures can co-exist above the basic 
service provided by the CFR hardware. This service is known as the M-Access 
Service and has been defined in [23]. The protocol architecture is shown in figure 
8. The lower two layers correspond to the CFR hardware. On the left side is the 
lowest layer of the Unison architecture that is supported by the CFR, the Unison 
Data Link Layer. On the right side are the lower layers of an architecture that 
can support the IEEE 802 and Open Systems Interconnection protocols. The 
M-Segment layer bridges the gap between the standard Media Access Control 
(MAC) Service of IEEE 802 and the CFR's M-Access Service. Thus M-Segment 
and M-Access together provide the MAC service over which the Logical Link 
Control protocol can be implemented. 

12.2 C F R  M-Access Service 

Terminology  and  Features  We shall use the term packet to refer to a CFR 
packet as defined in [39]. The CFR packet includes a Cyclic Redundancy Check 
(CRC) to detect transmission errors. The term M-Access Service Data Unit (M- 
SDU) will be used to describe data that is transparently exchanged between 
users of the M-Access Service. 

A draft description of the M-Access Service is given in [23]. The main concern 
of the M-Access Service is to transfer messages between hosts connected to the 
CFR. In this paper we shall only consider a single CFR, whereas [10] considers 
ring clusters. 

Service Pr imi t ives  In the M-Access Service, the M-DATA request and indica- 
tion service primitives are defined as usual for data transfer, and it is also useful 
to define an M-TOG indication service primitive. The data primitives and their 
associated parameters are represented as follows: 
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Unison 
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Logical 
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Control 
(IEEE 802) 

M-Segment 

M-Access 

Physical 

Fig. 8. Lower Layer Protocol Architectures for the CFR 

M-DATA reques~(source-CFR-address, destination-CFR-address, M-data) 
M-DATA indication(source-CFR-address, destination-CFR-address, M-data) 

The parameters of corresponding M-DATA request and indication primitives 
have the same values. 

The CFR hardware has the capability of telling a user of the M-Access Service 
that  a transmission of a packet has not succeeded. This signal is known as 
"Thrown-on-Ground' or TOG for short. This is expressed as a parameterless 
primitive, M-TOG indication, indicating that  the current packet is considered 
lost by the service provider. 

12.3 P - G r a p h  S p e c i f i c a t i o n  o f  C F R  M - A c c e s s  S e r v i c e  

Because CFR stations are built from identical chips, the sending (and receiv- 
ing) operations in each of the stations are the same. We therefore only need to 
model a generic sender communicating over the ring with a generic receiver, each 
parameterised by the station address. 

We shall consider the following characteristics of a single CFR: 

Arbitrary number of stations 
- Point-to-point and broadcast modes 
- Single transmit  buffer and single receive buffer for each station 
- Sequence of M-SDUs preserved per source-destination flow 



318 

- Single broadcast by each station (only one broadcast per station is allowed 
at any one time due to the single transmit buffer) 

- Arbitrary loss of M-SDUs 
- Three modes of duplication: 

1. Arbitrary duplication in both point-to-point and broadcast mode; 
2. No duplication in broadcast mode, but arbitrary duplication for point- 

to-point operation; and 
3. No duplication 

The duplication case 2 is close to the operation of the CFR, although du- 
plication for point-to-point is very rare and limited. A limit to the amount of 
duplication can be incorporated into the specification in a straightforward way if 
desired. (It requires an extra place to store the duplication limit for each station.) 

We shall consider the three modes of duplication in separate specifications. 
The left side of each diagram represents the transmitter and the right side the re- 
ceiver. The transitions in the centre represent various ways in which the CFR can 
operate. We represent a set of transmit buffers, one for each station, by the single 
place 'Transmit-buffers' and we record the stations that have empty buffers in 
place 'Empty-transmit-buffers'. A similar situation exists for the receive buffers. 
We also include explicitly which stations are acceptable sources of M-SDUs for 
each of the destinations, by storing them in place 'Acceptable-sources'. 

A r b i t r a r y  Dupl ica t ion  The single CFR M-Access service with arbitrary du- 
plication in both broadcast and point-to-point modes is specified in figure 9. The 
initial state of the service is specified by the initial marking of the net. Each sta- 
tion connected to the CFR will have an empty buffer for transmitting and one for 
receiving. The presence of an empty transmit buffer is represented by storing the 
station's source address in place 'Empty-transmit-buffers' and the presence of 
an empty receive buffer is similarly represented by storing the station's address 
in place 'Empty-receive-buffers'. The monitor is always attached to a ring, but 
cannot transmit normal packets [39]. It can, however, receive normal packets. 
This is why it is excluded from the set of source addresses, but included in the set 
of destination addresses. Since the monitor is always attached to an operational 
ring, its address must be included in the initial marking of place 'Empty-receive- 
buffers'. The addresses of the source stations acceptable to each destination are 
stored in place 'Acceptable-sources' as source-destination pairs. Initially all the 
transmit and receive buffers are empty and hence places 'Transmit-buffers' and 
'Receive-buffers' are empty. 

With this initial state, any number of stations may request the sending of an 
M-SDU. This is achieved by firing transition 'M-DATA request'. A token rep- 
resenting an M-SDU, is placed in 'Transmit-buffers' and the token representing 
that the buffer was empty for that station is removed from 'Empty-transmit- 
buffers'. If the M-SDU is not broadcast, then one of three events may occur: 

1. The M-SDU is successfully transferred to the chosen destination. This may 
only occur if the source is acceptable to the destination. This is achieved by 
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Declarat ions  

Sets: S,D,D',M 
Constants: b,m E D 
Variables: s:S, d:D, d':D', m:M 
Initial Marking 
M0 (Transmit-buffers) =M0 (Receive-buffers)=$ 
M0 (Empty-transmit-buffers)C S 
M0 (Empty-receive-buffers) = M0 (Empty-transmit-buffers)U{m} 
M0 (Accept able-sources) C SxD ~ 

Empty- Empty- 
M-TOG transmit- receive- 

indication buffers REMOVE buffers 

\ _ /  
........ I _ Y ' q .  .I 

M-DATA SxDxM "~ ~ ~" ,, _ M-DATA 
request Transmit- ~ / % N / < s ,  d', m> indication 

b,,ffers \ / , ,~  
<s,b,m>\ <d.>/ /  \<,,~'> 

I. <S, d'> ~ A c c e p t a b l e -  I I" - ~ j  sources 
BROADCAST s x D' 

Fig. 9. Single CFR M-Access Service: Duplication 

firing transition 'TRANSFER' .  A copy of the M-SDU is maintained in the 
transmit  buffer while it is transferred to the destination's receive buffer which 
is removed from the list of empty buffers. The M-SDU may then be removed 
from the transmit-buffer which would then be marked free by the occurrence 
of transition 'REMOVE'.  Concurrently, an M-DATA indication may occur 
at the destination, with the M-SDU being removed from the receive-buffer 
which is marked free. This may be considered as the normal operation of 
the service. Duplication may occur by firing 'TRANSFER'  twice (or more) 
before the occurrence of the 'REMOVE'  transition. 

2. The M-SDU is refused by the destination and this is reported to the source 
user. This is achieved by firing 'M-TOG indication', which removes the M- 
SDU from the transmit buffer and marks it free. 
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3. The M-SDU is lost. The CFR transmitter  hardware falsely believes that  the 
M-SDU has been accepted by the destination, due to a CRC error in the 
return path. This is represented by the firing of the 'REMOVE'  transition. 
The M-SDU is discarded and the transmit buffer marked free. 

For broadcast M-SDUs, there are two possibilities. 

1. The M-SDU is lost by firing transition 'REMOVE'.  
2. The M-SDU is broadcast one at a t ime to any of the allowable destinations 

by repetitively firing transition 'BROADCAST' .  When this transition oc- 
curs, a copy of the M-SDU is retained in the transmit buffer, the M-SDU 
is transferred to an accepting destination and its buffer is removed from 
the empty list. An M-DATA indication may then occur with the consequent 
release of the receive buffer. This then allows duplication of the broadcast 
M-SDU, as the 'BROADCAST'  may occur again for the same destination. It 
may also occur again for any other destination. The broadcast ends with the 
occurrence of the 'REMOVE' transition, which empties the transmit  buffer. 

N o  D u p l i c a t i o n  in  B r o a d c a s t  m o d e  In order to avoid duplication in broad- 
cast mode we must keep a record of the stations to which we have broadcast. In a 
single CFR this is relatively easy as no simultaneous transmissions by a particular 
station are allowed due to single buffering. For each station, only a single point- 
to-point or broadcast transmission is possible and this must have completed 
(successfully or not) before the next transmission can occur. This allows us to 
use the list of allowed source-destination pairs stored in 'Acceptable-sources' to 
determine which station has received a broadcast M-SDU. 

The specification is shown in figure 10. It is the same as figure 9, except that  

- The places 'Empty-transmit-buffers '  and 'Empty-receive-buffers' and their 
associated arcs and initial markings have been removed and replaced by the 
extended capacity notation defined in section 10. 

- The place, 'Broadcast-destinations',  (with initial null marking), the transi- 
tion, 'REMOVE-B',  and associated arcs and inscriptions have been added. 

- The 'REMOVE'  transition has been renamed 'REMOVE-P' .  'REMOVE-P '  
may only remove point-to-point M-SDUs as the tuple annotating the arc now 
contains the variable d~:D r, instead of d:D. 'REMOVE-B'  may only remove 
broadcast M-SDUs. 

- The return arc from transition 'BROADCAST'  to 'Acceptable-sources' has 
been deleted. 

- Both 'Acceptable-sources' and 'Broadcast-destinations' have been annotated 
with a capacity ' K  = 1'. 

The specification is the same as figure 9 for point-to-point operation. As be- 
fore, broadcasting may occur when a broadcast M-SDU is in a transmit buffer 
and there is a destination (with a free buffer) that  will accept M-SDUs from 
the source of the broadcast. When 'BROADCAST'  fires, the destination is re- 
moved from the set of accepting destinations stored in 'Acceptable-sources', and 
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Sets: S,D,D',M 
Constants: b 6 D 
Variables: s:S, d:D, d':D', m:M 
Initial Marking 
M0(Transmit-buffers) = M0(Receive-buffers) = M0(Broadcast-destinations) = O 
M0(Acceptable-sources) C_ SxD' 
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Fig. 10. Single CFR M-Access Service: No Duplication for Broadcast M-SDUs 

is written to a set of destinations that have received a broadcast M-SDU. The 
set is stored in place 'Broadcast-destinations'. The broadcast will continue un- 
til either the set of accepting destinations is exhausted (there will no longer be 
a source-destination pair in 'Acceptable-sources' with the broadcast source ad- 
dress - hence 'BROADCAST'  will not be enabled (for this source address) and 
the only remaining possibility for the broadcast M-SDU is that it is removed 
fi'om the transmit buffer by firing 'REMOVE-B')  or the M-SDU is removed by 
firing 'REMOVE-B' .  
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'REMOVE-B' is enabled by a broadcast M-SDU being in a transmit buffer. 
When it fires, the following actions occur atomically: 

1. A particular source's broadcast M-SDU is removed from the transmit buffer. 
2. All destinations that  have successfully received the source's broadcast are 

purged from 'Broadcast-destinations' and returned to 'Acceptable-sources'. 

Any number of stations can be active at the same time and they operate 
independently except for contention (conflict) for destination receive-buffers. 

To be able to purge 'Broadcast-destinations' of the required destinations for 
the associated source, we have used the notation for purging a member of a 
partition developed in chapter 8 of [10], which also provides an interpretation 
in terms of P-nets. In essence, both an inhibitor and normal arc are required 
with the same inscription. This is represented by overlaying the normal and 
inhibitor arcs and is referred to as a reset arc. Here we shall not be concerned 
with the formalities. The notation # < s , * >  (really a variable ranging over a 
set of multisets) on the reset arc can be interpreted as follows: for a particular 
value of s (say a), the demand on 'Broadcast-destinations' is always satisfied and 
when 'REMOVE-B' occurs, all tokens with the value a in the first position of 
the pair are removed from 'Broadcast-destinations'. The notation ~ < s ,  . >  on 
the output arc from 'REMOVE-B' to 'Acceptable-sources', implies that these 
tokens are added to the marking of 'Acceptable-sources'. 

The addition of the capacity restriction (K -- 1) to places 'Acceptable- 
sources' and 'Broadcast-destinations' better reflects the intent of the specifi- 
cation and guarantees that  the P-net to CP-net transformations can be applied. 

No  D u p l i c a t i o n  The single CFR M-Access service with no duplication can 
be derived from figure 10 by deleting the (return) arc from 'TRANSFER'  to 
'Transmit-buffers'. When 'TRANSFER'  fires, the M-SDU is removed from the 
transmit buffer and hence no duplication can occur. It would also be useful to 
rename the REMOVE-P transition to LOSE-P as it would only model loss. 

We have made the assumption that  as far as users of the M-Access Service 
are concerned, the operation of delivery of an M-SDU to a receiving station and 
the freeing of the transmit buffer can be considered atomic for point-to-point 
operation. 

13  A n a l y s i s  a n d  C o m p u t e r  A i d e d  T o o l s  

The analysis of P-Graphs is a large topic and space precludes going into the 
details here. However, the paper would not be complete without a discussion of 
the analysis capabilities of P-Graphs. One of the design goals in the development 
of P-Graphs was to ensure that  the analysis capabilities of the high-level nets 
being developed in main stream net theory [20] could be applied to P-Graphs. 
This paper shows how P-Graphs can be mapped to P-nets. So long as finite 
resources are required when the inhibitor is used, P-nets can be transformed 
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to CP-nets as shown in [8]. This allows the analysis methods of CP-nets [46] 
to be used for analysing P-nets. These analysis techniques include reachability, 
invariants and reductions, model checking of the teachability graph, and also 
analysis via the skelelon P/T-system as discussed in [67]. It may also be the case 
that some of these techniques may be able to be applied directly to the P-net. 
Direct analysis of subclasses of the P-Graph is possible using invariants as shown 
in [60] and applied in [32]. 

The strong relationship with CP-nets will allow the use of automated tools 
being developed for CP-nets (editors, simulators, analysers) [57, 48], other reach- 
ability analysis tools [68] and a compiler [41]. This will form the basis of a pow- 
erful systems engineering environment for the development and maintenance of 
protocols. 

14 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

P-Graphs have been motivated by the desire to model protocol mechanisms ele- 
gantly. They have been defined as inhibitor nets that include a many-sorted sig- 
nature and a corresponding algebra. Variables can now be appropriately typed 
and functions are total. This paper brings together the work of a number of 
researchers [36, 61, 67, 43]. The contribution of the paper is not only in this syn- 
thesis, but also in the development of the inhibitor and capacity extensions, the 
formalisation of the P-Graph at a concrete level to include natural number terms 
to be used as multiplicities when defining multisets of terms for arc inscriptions, 
and the application of P-Graphs to the specification of protocol services and 
other similar systems. An extended capacity notation has been developed and 
illustrated in the specification of the Cambridge Fast Ring M-Access Service. 
The meaning of this notation is provided in terms of the P-Graph. A notation 
for purging places of tokens has been illustrated with the CFR M-Access Ser- 
vice. It uses a combination of an inhibitor arc and normal arc to form a reset 
arc [10]. It is further shown how P-Graphs can be mapped to P-nets, which (in 
most practical circumstances) can be transformed to CP-nets to take advantage 
of their analysis techniques and automated tools. 

A hierarchy of high-level nets can be defined, by restricting the structure 
of the P-Graph, to include CP-Graphs, many-sorted Algebraic nets and Place 
Transition nets. It thus provides a basis for the comparison of these classes. An 
area of further work is in determining the relative merits of these classes for 
protocol and service specification and for their analysis. 

In [9] it is shown how abstract P-Graphs can be defined at the syntactic level, 
in a similar way to Vautherin [67]. The abstract P-Graph provides a vehicle for 
the specification of classes of systems and the possibility of their analysis via a 
single member of the class as has been demonstrated by Vautherin [67]. This 
opens up possibilities which need to be investigated in the protocol domain. 

The aim of the work is that P-Graphs will be able to be applied to large 
applications. This will require better ways of structuring and refining specifica- 
tions, than used in the past [12, 3]. At a fundamental level, the development of 
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refinement morphisms for P/T-systems [56] shows promise, but  these ideas will 
need to be incorporated into high-level nets. The development of hierarchical 
CP-nets [40] are of practical interest as they have been used to organise the 
specifications of a significant number of protocol applications [47]. This area has 
not been addressed in this paper and it will require a significant effort in the 
future. 

Finally, there is a significant international effort going into the development 
of an international standard for high-level nets [17]. The standard, ISO/IEC 
CD15909, is currently at Committee Draft status, and is built on many of the 
ideas presented in this paper. Elaboration of the standard to include inhibitor 
and other extensions is currently being considered. It is hoped that the standard 
will reach international standard status in a year or two. This will then provide 
a consistent set of concepts to Mlow industry to manadate  the standard for con- 
tractual work, and to allow the development of a standard means of transferring 
high-level nets between tools, while (hopefully) maintaining their semantics. 
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A p p e n d i x  

A S e t s ,  M u l t i s e t s  a n d  V e c t o r s  

A . 1  Se t s  

We make use of the following sets: 

- N = {0, 1 , . . .}  the natural  numbers. 
- g ~  = N U { o o }  
- N + = N \ {0}, the positive integers 
- N + = N + U {oo} 
- Z = { . . . , - 1 , 0 , 1 , . . . } ,  the integers 

A . 2  M u l t i s e t s  

We define a multiset,  B, (also known as a bag) over a basis set, A, to be the 
function 

B : A  ...... N 

which associates a multiplicity, possibly zero, with each of the basis elements. 
(We require multisets to have finite support .)  There are t imes when we shall 
consider a set as a special case of a multiset,  where the multiplicities of each of 
the basis elements is unity. 

The set of multisets over A is denoted by #A (i.e. #A = [A ~. N]). 
For a multiset B E pA, to avoid confusion, we sometimes use the notat ion 
mult(a, B) = B(a) where a E A, for the multiplicity of a in B. 

We may  extend the definition to include the value co, and denote the set of 
multisets over A, that  allows infinite multiplicities, by # ~ A  = [,4 , N ~ ]  and 
tha t  which disallows multiplicities of zero by # + A  = [A .......... ~ N+] .  

V e c t o r  o r  S u m  r e p r e s e n t a t i o n  W~ may represent a multiset  as a symbolic 
sum of basis elements scaled by their multiplicity. 

B = E B(a)a 
aEA 

M e m b e r s h i p  Given a multiset,  B E # ~ A ,  we say tha t  a E A is a member  of 
/3, denoted a E B, if B(a) > 0, and conversely if B(a) = 0, then a ~ B. 

The empty  multiset,  0, has no members:  ga  E A, 0(a) = 0. 

C a r d i n a l i t y  We define multiset cardinality in the following way. The cardinality 
IBI of a multiset B, is the sum of the multiplicities of each of the members  of 
the multiset.  

IBI : B(a) 
aEA 
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E q u a l i t y  a n d  C o m p a r i s o n  Two multisets, B1, B2 E/~A, are equal, B1 = B2, 
iffVa e A, B l ( a )  = B2(a),  and B1 is less than or equal to (or contained in) B2, 
B1 <_ B2 iffVa E A, B l ( a )  < B2(a).  

O p e r a t i o n s  We define four binary operations on multisets, B 1 , B 2  E /~A, 
known as union, intersection, addition and subtraction, as follows: 

B = B1 U B2 iffVa E A B(a) = maz(B l (a ) ,  B2(a))  
B = B1 M B2 iffVa E A B(a) = min(Bl (a) ,  B2(a))  
B = B1 + B2 iffVa E A B(a) = B l ( a )  + B2(a)  
B = B1 - B2 iffVa E A (B l ( a )  > B2(a))  A (B(a) = B I ( a )  - B2(a))  
We also define scalar multiplication of a multiset,  B1 E #A, by a natural  

number,  n E N,  to be 

B = nB1 iff Va E A ,B(a )  = n × B l ( a )  

A d d i n g  ~ a n d  S u b t r a c t i n g  f r o m  ~ For all n E N,  n + oo = ~x~ + n = co. 
For all n E N,  ~ -  n = ~ .  

M u l t i p l i c a t i o n  b y  ~ For all n E N ~  +,  ~ × n = n × ~ = c<~ but ~ x 0 = 
O x c ~ = O .  

A.3  V e c t o r s  

There are t imes when we wish to subtract  one multiset f rom another when 
the above restriction on multiset subtraction does not apply. We then need to 
consider multisets as vectors. We define a vector, V, over a (basis) set, A, to be 
the function 

V : A  , Z  

which associates a negative, zero or positive multiplicity, with each of the basis 
elements. The set of vectors over A is denoted by vA (i.e. vA = [A , Z]). For a 
vector, V E v A ,  to avoid confusion, we sometimes use the notat ion muir(a, V) = 
V(a) where a E A, for the multiplicity of a in V. 

Subtraction is a closed operation for vectors defined component-wise as fol- 
lows. For V1, V2 E vA 

V = V 1 -  V2 iff Va E A, V(a) = V l ( a ) -  V2(a) 

We can also define scalar multiplication of a vector, V1 E v A ,  by an integer, 
z E Z, to be 

Y = zV1 iff Va E A, V(a) = z x VI (a )  

E q u a l i t y  a n d  C o m p a r i s o n  Two vectors, V1, V2 E v A ,  are equal, V1 = V2, 
i f fVa E A, Vl(a )  = V2(a), and V1 is less than  or equal to V2, V1 < V2, iff 
Va E A, Yl (a )  < Y2(a). 


