
Protocol Specification Using P-Graphs, a
Technique Based on Coloured Petri Nets

Jona than Billington

Telecommunications Systems Engineering Centre
Institute for Telecommunications Research, University of South Australia

Warrendi Road, Mawson Lakes, Adelaide, 5095, Australia

Abstract . P-Graphs combine inhibitor Petri nets and abstract data
types within the same algebraic framework. They are useful for the spec-
ification of concrete concurrent systems and in particular communication
protocols. The inhibitor has been included to allow compact descriptions
of systems by promoting the economy of data types. They are also nec-
essary for the purging of resources; a common activity when modelling
protocols or their services. This paper introduces P-Graphs with the aid
of some simple examples. It also shows how to map P-Graphs to P-nets,
which are Coloured Petri Nets (CP-nets) extended with place capacities
and inhibitors. This is important for the analysis of P-Graph specifica-
tions, as P-nets can be transformed to CP-nets in almost all practical
situations. Thus the analysis techniques of CP-nets can then be applied.
Useful notation for capacities are introduced and their semantics defined
in terms of the P-Graph. A notation for purging places of their tokens is
also introduced, involving the superimposition of the inhibitor and nor-
mal arc. Two case studies, the Demon game and the M-Access Service
of the Cambridge Fast Ring, are included to illustrate the use of the
P-Graph and the extended notation for protocol specification.

1 I n t r o d u c t i o n

Since the early 1970's Petri nets have been used for the modelling and analysis of
systems that involve communication, synchronization, co-operation and concur-
rency [30]. Some of the reasons for this are their foundation in concurrency, their
ability to be analysed and executed by machine and their graphical appeal allow-
ing the dynamics of a system to be visualised by playing the token game. This has
certMnly been the case for communication protocols. The earliest work on the
modelling of protocols with nets was probably that of Merlin [55]. Early surveys
of the use of Petri net based techniques for the modelling of protocols were carried
out by Diaz [27, 28] with a more specific t rea tment in [6]. Burkhardt et. al. [22]
presents a methodology for the specification of Open Systems Interconnection
services and protocols using a high-level net technique called Product nets. Dur-
ing the 1980's High-level nets were applied to the specification and analysis of
many complex protocols and services [12, 25, 3, 49, 21, 4, 2, 38, 5, 26, 34, 33, 53].
More recently a tutorial [15] and a workshop [16] on the application of Petri nets
to protocols have been held in conjunction with the annual Petri net conferences.

294

A further workshop [29] has shown how nets can be applied to multimedia sys-
tems. The third volume [47] of Jensen's book on Coloured Petri Nets contains
some excellent examples of their application to communication protocols and
services. Recent applications are to mobility services [64], information infras-
tructure such as traders [65] and multi-agent systems [18]. The most recent
papers on the application of Petri nets to Communication networks are being
compiled for a special issue of Advances in Petri nets [19].

Although Petri nets have sufficient modelling power for most (if not all)
practical systems, they suffer from a lack of modelling convenience or elegance
particularly for the representation of data. This led to the development of a
number of hybrid net/data models [59, 58, 50, 63], that associated a set of
variables with the net and/or attributes with tokens, that could be modified
on the occurrence of transitions. Thus the 1970's witnessed a number of useful
experiments with adding a more convenient data representation to nets, driven
by the needs of practical applications. These models could be analysed using
reachability techniques and simulation, but other techniques used to analyse
nets (structure theory, invariants, reductions and synchronic distance) were no
longer applicable as these extended nets did not come with an underlying Petri
net semantics.

This problem was tackled in the next decade, where we have seen the de-
velopment of high-level nets where tokens are data items and arcs and transi-
tions are inscribed with symbolic expressions. The earliest of these were Predi-
cate/Transition nets (PrT nets) [35, 37] and Coloured Petri nets (CP-nets) [42]
which included methods for calculating invariants. Since then, Predicate/Event
(P/E) nets, Relation nets [62] and Algebraic nets [61] have been developed and
PrT nets and CP-nets have been reformulated [36, 43, 45, 46]. The links between
abstract data types (ADTs) [31] and high-level nets appear to have been discov-
ered in the mid 1980's [51, 67, 7, 52, 1, 13, 9, 60]. Here the approach has been
to combine the strengths of ADTs for data representation with the strengths
of Petri nets (synchronisation, concurrency, graphics) within the same algebraic
framework.

Following on from [9], the main purpose of this paper is to present a class
of high-level inhibitor nets, known as the P-Graph, that combines abstract data
types and Petri nets, and to illustrate its use with some simple examples and
then to apply it to two case studies. The approach to the definition of P-Graphs
has been inspired by [36, 61, 67, 43] and is similar to that of [67] but differs
in a number of aspects. Firstly we consider nets with inhibitors and capacities
and more general arc inscriptions. (In this presentation we do not consider the
axioms of ADTs but they can easily be added). Secondly P-Graphs are defined
at the concrete level, where places are typed by sets chosen from the carriers
of a many-sorted algebra that satisfies the ADT signature, and markings and
capacities are multisets over these sets. Inscriptions are at the level of terms.
This has similarities with [61] and is appropriate for the specification of concrete
systems.

295

P-Graphs can be interpreted by Coloured Petri Nets, extended by capacities
and inhibitors, known as P-nets [8]. This is important for analysis because in
most practical situations, P-nets can be transformed to CP-nets [8] and all the
analysis techniques applicable to CP-nets can be employed.

Why have inhibitors and capacities been introduced? The main reason is to
provide for modelling convenience when specifying protocols and their services,
while retaining analysis possibilities as discussed above. This is demonstrated in
two ways. An abstract railway signalling protocol is firstly modelled by a CP-
Graph, a subclass of P-Graphs without capacities and inhibitors. This model
necessitates the introduction of a data type to specify the control aspects of
the system. It is then modelled with a P-Graph, where it is shown that this
extra control data type is no longer required. Secondly, the inhibitor allows a
theory of purging places of their tokens with a single event, to be developed [10].
Purging places is useful when modelling protocol procedures such as aborting,
disconnecting or resetting connections as recognised in [12] for example. It turns
out that so long as a finite capacity (and colour set) can be associated with the
place to be purged, then the P-Graph can be transformed to a finite CP-net
for analysis. The use of a purging construct (the reset arc) is illustrated when
modelling the M-Access Service of the Cambridge Fast Ring.

The paper is organised as follows. After giving a definition of P-nets in sec-
tion 2, concepts from algebraic specification are recalled in section 3 to provide
the necessary background for the definition of P-Graphs in section 4 and for
their interpretation as a P-net in section 5. Section 6 discusses the graphical
representation of the P-Graph and in section 7, CP-Graphs are defined as a sub-
class of P-Graphs and illustrated with two examples. The first is the abstract
railway protocol and the second is a resource sharing management scheme which
illustrates the use of more complex are inscriptions. The railway system is re-
modelled with a P-Graph in section 8. It illustrates the use of the inhibitor and
capacity extensions. A notation for capacity for the P-Graph is developed in
sections 9 and 10. Two case studies follow. Firstly, the specification of the De-
mon Game, an example used by the International Standards Organisation as a
test of formal description techniques for protocols and services, is presented in
section 11. Secondly, a specification of the M-Access Service of the Cambridge
Fast l~ing is used to illustrate the capacity and purging notations. Finally some
conclusions are drawn in the closing section.

No at tempt to compare P-Graphs with other formal description techniques
has been undertaken as this is beyond the scope of this paper. The interested
reader is referred to [11] for example.

2 P - n e t s

P-nets are Coloured Petri Nets [43] (CP-nets) extended by the capacity function
and the threshold inhibitor map. This section provides the basic definitions.
Further discussion including P-net to CP-net transformations may be found in

296

[8]. All notation and terminology for sets, multisets, vectors and their associated
operations is defined in the Appendix.

2 . 1 D e f i n i t i o n

A P - n e t is a structure P = (S, T, C; C, Pre, Post, I , K, Mo) where

- S is a finite set of places
- T is a finite set of transitions disjoint from S (S n T = 0)
- C is a finite set of non-empty colour sets, the strncturing set
- C : S U T ~ C is the colour function used to structure places and transitions

(of the underlying PT-net)
- Pre, Post : T R A N S ~ p P L A C E are the pre and post mappings with

T R A N S = {(t ,m) I m E C(t) , t E T }

P L A C E = {(s, g) I g E C(s), s E S}

- I : T R A N S ~ I ~ P L A C E is the threshold inhibitor map
- K E # + P L A C E is a multiset known as the place capacity; and
- Mo E # P L A C E is a multiset known as the initial marking which must

comply with the place capacity so that M0 < K

2 . 2 M a r k i n g

A M a r k i n g is a multiset, M E p P L A C E , iff M < K.

2.3 E n a b l i n g

A finite multiset of transition modes, T~ E p T R A N S , is enabled at a marking
M i f f

(Pre(T~) <_ M <. K - Post(T~)) A (M < I'(T~))

where
P(T~) = ~ mult(tr, T~,)P(tr)

~rETRANS

is a linear extension with P = Pre or Post, and Vtr E TRANS, and TI~, T2~ E
#TRANS we have

- I ' (0) = {(p, ~) I P ~ P L A C E }
- I ' (t , .) = I (t , -)

- I ' (T 1 . + T 2 .) = I ' (T l u) O I ' (T 2 .)

Thus a multiset of transition modes is enabl6d if there are enough tokens
on the input places to satisfy the pre map, there is enough capacity left in
the output places to receive tokens when the transition modes occur, and the
inhibitor thresholds axe not exceeded.

297

2 . 4 T r a n s i t i o n R u l e

Given that a multiset of transitions, T , , is enabled at a marking M, then a step
may occur resulting in a new marking M ~ given by

M' = M - Pre(T~) + Post(T~).

t r i r l This is often denoted by M[T,)M' or for a single mode M ~lvi .

2 . 5 S e t o f R e a c h a b l e M a r k i n g s

The set of reachable markings, [M0), of P is obtained inductively as follows.

- Mo E [Mo); and
- if M1 E [M0) and Ml[tr)M2 for tr E T R A N S , then M2 C [M0).

3 C o n c e p t s f r o m A l g e b r a i c S p e c i f i c a t i o n

In the P-Graph, we shall inscribe arcs with multisets of terms involving variables,
and transitions with Boolean expressions. Many-sorted signatures provide an
appropriate mathematical framework for this representation. Signatures provide
a convenient way to characterise many-sorted algebras at a syntactic level. This
section introduces the concepts of signatures, terms and many-sorted algebras
that will be required for the definition of the P-Graph and abstract P-Graph. We
make use of the ideas found in [31, 54] for example. This section is only included
to make the paper self-contained and to introduce the required terminology.
Those familiar with algebraic specification may like to skip this section.

3.1 S i g n a t u r e s

A many-sorted (or R-sorted) signature, 2J, is a pair:

= (R, n)

where

- R is a set of sorts (the n a m e s of sets, e.g. Int for the integers); and
- ~2 is a set of operators (the n a m e s of functions) together with their arity

in R which specifies the names of the domain and co-domain of each of the
operators.

The arity is a function from the set of operator names to R* × R, where R*
is the set of finite sequences, including the empty string, s, over R. Thus every
operator in f2 is indexed by a pair (0, r), ~r E R* and r E R denoted by w(c~ ~).
~r E R* is known as the input or argument sorts, and r as the output or range sort
of operator w. (The sequence of input sorts will define a cartesian product a~s the

298

domain of the function corresponding to the operator and the output sort will
define its co-domain - but this is jumping ahead to the many-sorted algebra.)

For example, if 1:l = {Int, Bool}, then W(IntJnt,BooO would represent a bi-
nary predicate symbol such as equality (=) or less than (<). Using a standard
convention, the type of a constant may be declared by letting cr = e. For example
an integer constant would be denoted by cons(ej,~t) or simply consist.

Types of variables may also be declared in the same way. This leads to the
consideration of signatures with variables.

3.2 Signatures with Var i ab l e s

A many-sorted signature with variables is the triple:

= (R,/2, v)

where R is a set of sorts, /2 a set of operators with associated arity as before
and V is a set of typed variables, known as an R-sorted set of variables. It is
assumed that R, /2 and V are disjoint. The type of the variable is defined by
the arity function, in a similar way to that of constants, from the set of variable
names to {e} × R. A variable in V of sort r E R would be denoted by v(e,r) or
more simply by v~. For example, if Int E R, then an integer variable would be
V(C,Int) o r Via t.

V may be partit ioned according to sorts, where Vr denotes the set of variables
of type (sort) r (i.e. va E Vr if] a - r).

Including the variables in the signature is a convenient way of ensuring that
they are appropriately typed.

3.3 Natural and Boolean Signatures

The term Boolean Signature is used to mean a many-sorted signature where one
of the sorts is Boolean. Similarly, the term Natural Signature is used when one
of the sorts corresponds to the Naturals (N).

3.4 T e r m s o f a Signature with Var i ab l e s

Terms of sort r E R may be built from a signature ~ = (R, F2, V) in the normal
way. We denote a term, e, of sort r by e : r and the set of terms of sort r by
TERM(~2 U V)~, and generate them inductively as follows. For r, r l , . . . , rn E R
(n > 0)

1. V~ c TERM(~2 U V)r;
2. For all w(e,r) E/2 , w(e,r) E TERM(~2 U V)r ; and
3. If e1 : r l , . . . , e,~ : r,~ are terms and w(rl...~,r) E $2, is an operator,

then w(~l...r~,~)(el,... ,en) E T E R M (/ 2 U V)r

299

Thus if Int is a sort, integer constants and variables, and operators (with
appropriate arguments) of output sort Int are terms of sort Int.

We denote the set of all terms of a signature with variables by TERM(~2U V),
the set of all closed terms (those not containing variables, also known as ground
terms) by TERM(D). Thus

TERM(~2U V) = U TERM(~U V)r
rER

3.5 Mul t i s e t s o f Terms

Multisets or bags of terms can also be built inductively from the signature if we
assume tha t we have a Natural signature. We define multisets of terms this way
to allow the multiplicities to be terms of sort Nat, rather than just the Naturals
themselves. (This allows, for example, the introduction of conditions into arc
expressions - see sections 4.2.)

Let BTERM(f2 U V) denote the set of multisets of terms, defined induc-
tively as follows, using the symbolic sum representation for multisets defined in
Appendix A. (TERM(~2 U V) is considered as a special set of multisets, where
each member of TERM(f2 U V) is a multiset.)

~- T E R M (D U V) C BTERM(~2U V);
....... if bl, b2 E BTERM([2 U V), then (bl + b2) E BTERM(~2 U V); and

if i E TERM(~2 U V)ga~ and b E B T E R M (D U V),
then i x b E BTERM(~2 U V) where ' x ' represents scalar multiplication.

Where there is no confusion the ' x ' will be dropped and juxtaposi t ion will
be used for scalar multiplication (e.g. '3 x x can be replaced by 3x and 4 × 3 x x
by 4 x 3x which is distinctly different from 43x.)

The set of bags with infinite multiplicities, B~TERM(~2 U V), may now be
defined as follows

BTERM(~2 U V) C B~TERM(f2 U V); and
...... if b E BTERM(f2 U V), then oc x b E BooTERM(~ U V).

where multiplication by oc is defined in appendix A.

3.6 Man y- sor ted Algebras

A many-sorted algebra, (or S-Algebra) , H, provides an interpretation (meaning)
for the signature ~ . For every sort, r E R, there is a corresponding set, Hr, known
as a carrier and for every operator W(rl...r~,r) E ~2, there is a corresponding
function

wH : Hrl x .. . x Hr, -~ Hr.

In case an operator is a constant, Wr, then there is a corresponding element
WH E Hr. They may be considered as functions of arity zero.

300

D e f i n i t i o n : A many-sorted Algebra, H, is a pair

H = (RH, ~2H)

where RH = {Hrlr E R} is the set of carriers and
~2H = {WHIwcr~ E ~ , t r E R ' a n d r E R} the set of corresponding functions.

For example, if ~ = ({ In t , Sool} , {<(IntJnt,BooO}) then a corresponding
many-sorted algebra would be

H = (Z, Boolean; less than)

where Z is the set of integers: { . . . , - 1 , 0 , 1 , . . .}
Boolean -- { true, f a l s e }
and less than : Z × Z -* Boolean is the usual integer comparison function.

It could also be
B = (N, Boolean; less than)

where N is the set of non-negative integers: {0, t , . . . }
Boolean = {true, f a l s e }
and less than : N × N --+ Boolean.

(The power of the signature is that it allows a class of algebras to be cate-
gorised.)

For signatures with variables, variables are R-sorted. In the algebra, the
variable is typed by the carrier corresponding to the sort.

3 . 7 A s s i g n m e n t a n d E v a l u a t i o n

Given an R-sorted algebra, H, with variables in V, an assignment 1 for H and
V is a family of functions a, comprising an assignment function for each sort
r E R,

o~r : Vr---~ Hr.

This function may be extended to terms by considering the family of functions
ass comprising

assr : T E R M (~ 2 U V)r --* Hr

for each sort r E R. The values are determined inductively as follows. For cr E
R* \ 6 , ~ = r l r 2 . . . r n , with r, r l , . . . , r n E R and e, e l , . . . , a n E T E R M (~ 2 U V) ,

- If e E V~ is a variable, then assr(e) = a t (e)
- For a constant, wr e ~2, assr(wr) = w g E Hr.
- If e = w(a , r) (e l , . . . , en) , then

a s s r (w (a , r) (e l , . . . , e n)) = w H (a s s r ~ (e l) , . . . , a s s r , (e ,)) E Hr, where el :
rl . . . en : rn.

Knowing the values of terms we can determine the value of multisets of terms
by considering the multiset as a sum of scaled terms and evaluating each scalar
and term for a particular assignment to variables. This is defined inductively for
a E T E R M (~ 2 U V) , i e T E R M (O U Y)Nat and bl, b2 E B T E R M (~ 2 U V) by

- Vala(i × a) = ass(i) × ass(a)
- Ya l~ (b l + b2) = Va la (b l) + Yala(b2)

1 The terms binding a~d valuation are also used in this context.

301

4 P - G r a p h s

This section defines a P - G r a p h . A P-Graph consists of an inhibitor net where
the arcs are annotated by multisets of terms. The multiplicities of the multisets
are non-negative integer terms. Transitions are annotated by Boolean terms.
The terms are built from a Natural-Boolean signature which has an associated
many-sorted algebra. A colour function associates a colour set with each place.
The colour set is a carrier of the many-sorted algebra. The capacity and initial
marking are multisets over the place's colour set.

4.1 D e f i n i t i o n

A P - G r a p h is a structure

P G = (IN, L ~, H, C, AN, K, Mo)

where

- I N = (S, T; F, IF) is an inhibitor net, with

• S a finite set of places;

• T a finite set of transitions disjoint from S;

• F C (S × T) U (T x S) a se t of arcs; and

• I F C S × T a set of inhibitor arcs.

= (R, f2, V) is a Natural-Boolean signature with variables.

- H = (RH, $2H) a corresponding L'-Algebra.
C : S --* RH is the colour function, such that Vs E S, C(s) 7~ 13.

- A N = (A, IA, TC) is a triple of net annotations.

• A : F -* B T E R M (Y 2 U V) such that for C(s) = tI~, then for all
(s, t), (u, s) E F, A(s, t), A(u, s) E B T E R M (£ 2 U V)r. It is a function
that annotates arcs with a multiset of terms of the same sort as the
carrier associated with the arc's place.

• IA : I F ~ B ~ T E R M (~ U V) such that for C(s) = H,., then for all
(s, t) E IF , IA(s , t) E B ~ T E R M (f 2 U V)~. It is a function that an-
notates inhibitor arcs with a multiset of terms of the same sort as the
carrier associated with the arc's place.

• T C : T --~ T E R M (f 2 U V)Boo~ where for all t E T, TC(t) belongs to
T E R M (D U V(t))BooZ and V(t) is the set of variables occurring in the
arc inscriptions associated with t.

T C annotates transitions with Boolean expressions.

pooC(s) where K(s) E #+C(s) is the capacity function. - K : S ~ U s c s + '
- M0 : S ~ U s e s # C (s) such that Vs E S, Mo(s) <_ K(s) , is the initial

marking.

302

4.2 Discussion

When generating multisets of terms for the arc inscriptions, we allow the multi-
plicities to be natural number terms, so that the value can depend on the values
of variables and operators of other types. In particular this includes as a special
case, the generalised Kronecker delta extension to PrT-nets [36]. An example of
a variant of the readers/writers problem is given in [17] to illustrate the utility
of this extension.

5 I n t e r p r e t a t i o n o f t h e P - G r a p h as a P - n e t

The P-Graph may be given an interpretation as a P-net in the following way.

1. Places: S is the set of places in the P-net.
2. Transitions: T is the set of transitions in the P-net.
3. Colour Sets: The colour set for a transition is determined by the types of

the variables occurring in the surrounding arc annotations restricted by its
transition condition.
Let there be nt free variables associated with the arcs surrounding a transi-
tion t E T. Let these have names Vr~(t),..., vr~, (t) E V. In the Z-Algebra,
H, for all i E {1,2, . . . , nt}, let the carrier corresponding to ri, Hri, be de-
noted by Gi with typed variables vi(t) : Gi. Following [43], let gi E Gi,
then

C(t) -- {(gl , . . . , gnt) I (~(Vl(t), ' ' ' , vn,(t)).TC(t))(gl,..., gn,))

(The A-expression provides a means for formally substituting values for the
variables in the Transition Condition. Tuples which satisfy TC(t) are in-
cluded in C(t).)
The colour sets for the places are obtained from the colour function. Thus
the structuring set (of colour sets) is given by C "- {C(z)lx E S U T}.

4. The Colour Function: The colour function restricted to places is defined in
the P-Graph and C(t) is given above.

5. Pre and Post Maps.
The pre and post maps are given, for all (s, t), (t, s) E F, by the following
family of mappings from C(t) into pC(s)

Pre(s,t) = ~(vl (t),. . . , Vnt (t)).A(s, t)

Post(,,t) = A(vl(t) , . . . , v~,(t)).A(t, s)

For (s,t) ~ F and Vm E C(t), Pre(8,t)(m) = O and for (t,s) ~ F and
V m e C(t), Post(s,t)(m) = O.
Thus for all t E T and for all m E C(t)

Pre(t, m) = {(s, b) I s e S, b e Pre(s,t)(m)}

Post(t, m) = {(s, b) I s s, b e Post(,,t)(m))

303

6. Inhibitor Map
The inhibitor map is a function from C(t) into #¢~C(s) where for all (s, t) E
IF

I(s, t) =)~(vl (t) , . . . , vn, (t)).IA(s, t)

and for (s, t) ~ IF, Vg E C(s), m E C(t), mult(g, I(s, t; m)) = co.
7. Capacity Function.

K(s) is as defined in the P-Graph.
8. Initial Marking.

Mo(s) is as defined in the P-Graph.

With this translation from the P-Graph to P-nets in place, we may now use
the definitions of marking, enabling and transition rule for P-nets to allow the
P-Graph to be executed. (Alternatively, we could define the enabling condition
and the transition rule directly for the P-Graph, by considering assignments for
terms in a similar way to [61].)

6 G r a p h i c a l F o r m o f P - G r a p h

6.1 G e n e r a l

The graphical form comprises two parts: a Graph which represents the net el-
ements graphically and carries textual inscriptions; and a Declaration, defining
all the sets, variables, constants and functions that will be used to annotate the
Graph part. The declaration may also include the initial marking, the capacity
and the colour function if these cannot be inscribed on the graph part due to
lack of space.

6.2 P l a c e s

In the usual way we shall represent places by circles (or ellipses). A place s may
carry four inscriptions.

..... the place name;
- the colour set associated with the place, C(s);
- the place capacity, K(s); and
- the initial marking, Mo(s).

The first three would be inscribed close to the place, whereas the initial mark-
ing would be inscribed inside the circle representing the place. (As mentioned
above, C(s), K(s) and Mo(s) can be defined in the Declaration if there is insuf-
ficient space in the Graph part.) We shall adopt the convention that if a place
s E S is not annotated by a capacity multiset, then it will have infinite capacity
for all tokens in C(s), unless specified otherwise in the Declaration.

Useful notation for K(s) is given later in sections 9 and 10.

304

6.3 Transitions

Transitions are represented by rectangles, annotated by a name and may be in-
scribed by a boolean expression, known as the Transition Condition. The Transi-
tion Condition for transition t, TC(t), only involves the variables of the inscrip-
tions of its surrounding arcs. If a transition, t, is left blank, then the Transition
Condition is true (TC(t) = true).

6.4 Arcs

As usual arcs are represented by arrows. For (s, t) E F, an arrow is drawn from
place s to transition t and vice versa for (t, s) E F. If (s, t) and (t, s) have the
same inscriptions (s is a side place of t), A(s,t) = A(t,s), then this may be
shown by a single arc with an arrowhead at both ends and annotated by single
inscription.

An inhibitor arc, (s,t) E IF, is represented by an edge from place s to
transition t with a small circle instead of an arrow head at its destination.

The arcs will be annotated with multisets of terms of the same type (or
subtype) of their associated place. We therefore need a convenient representation
for multisets. We use the symbolic sum or vector representation described in
appendix A. In order to distinguish multiplicities from terms, the convention is
adopted that terms may be enclosed in angular brackets.

6.5 Markings and Tokens

A token is a member of U ,es C(s). A Marking of the net may be shown graph-
ically by annotating a place with its multiset of tokens M(s). We again use
the symbolic sum representation and distinguish multiplicities from tokens, by
enclosing tokens in angular brackets. Thus if g E M(s), g or <g> could ap-
pear written in the circle representing place s. We use the natural numbers
greater than one, to represent the multiplicity of the token in M(s). Thus if
mult(g, M(s)) = mg we would represent this by juxtaposition: rag<g> and this
would be written inside the circle representing s. If mg = 1, it would be omitted
from the inscription. If g is an n-tuple (for example g = (a, b, c)), then we adopt
the convention of dropping the parentheses (e.g. (a, b, c) would be represented
by <a, b, c> and not <(a, b, c)>.)

7 C P - G r a p h s

On removing the inhibitor arcs and the place capacities from the P-Graph, we
obtain a subclass that is very similar to Jensen's 'CP-g raph ' [43]. We shall
distinguish our class, called CP-Graphs, from that of 3ensen by using an upper
case 'G' in 'Graph'. The CP-g raph differs from the CP-Graph defined here in
two respects:

305

- it is a mult igraph (i.e. multiple arcs are allowed between places and transi-
tions); and

- the arc inscriptions and transition conditions (' g u a r d s ') are not explicitly
defined.

Jensen [43] states tha t the expressions and guards may be defined by means
of a many-sorted algebra (but excludes this from his scope of concern) and tha t
has provided part of the stimulus for the definition of P-Graphs.

D e f i n i t i o n

A C e - G r a p h (C P G) is a P-Graph, (IN, 17,, H, C, AN, K, Mo), with the fol-
lowing restrictions

- I N = (S, T; F, 0) i.e. no inhibitor arcs.
- A N = (A, O, TC) i.e. no inhibitor arc annotations.

For all s C S, K(s) = {(g, oc)lg C C(s)} i.e. the capacities of the places are
infinite.

7.1 A b s t r a c t R a i l w a y S igna l l i ng P r o t o c o l

In [36], Genrich describes the operation of two trains travelling in the same
direction on a circular track of seven sections. For safe operation, the trains
must never be on the same section or even on adjacent sections. A CP-Graph is
given in figure 1 where any number of sections greater than 4 is allowed.

In this introductory example we have jumped to the level of the algebra
by defining functions and sets, and typing variables, rather than including the
signature explicitly. Full details are given in the next example (section 8).

A token in place p l represents a train on a particular section of track. Place p2
represents the control data - i.e. the vacant sections. The occurrence of transit ion
t 1 represents movement of the trains along the track. The variable 'x ' ranges over
the set of trains, and ' i ' over the sections. The arc inscriptions ensure tha t a train
on section ' i ' can only move to section ' i®1' when sections ' i (~l ' and 'i~b2' are
vacant.

Initially train ~a' is on section 0 and train 'b ' is on section 2, fulfilling the
requirement that the trains cannot be on the same or adjacent sections. Thus
sections 0 and 2 are not vacant and hence 0, 2 ~ M(p2). We can interpret the
dynamics of the net in a very similar way to PrT-nets. Thus we can bind 'x ' ~o
any value in 'T ' and ' i ' to any value in ' I ' . For example, if we have ' x = a ' and
fi=0' then the demand on place p l is satisfied, M (p l) _><0,a>, but the demand
on place p2 is not satisfied as 2 ~ M(p2). Hence t l is not enabled. If however we
have ' x = b ' and ' i=2 ' , then t l is enabled (and this is the only binding for which
t l is enabled in the initial marking). When t l occurs, token < 2 , b > of place p l
is replaced by <3 ,b> and token 3 of place p2 is replaced by 2.

The new marking now allows both trains to move concurrently (so long as
n > 5). This can be seen by the bindings: ' x = a ' , ' i=0 ' ; and ' x = b ' , ' i=3 ' . Thus a
step may occur by t l occurring in both these modes.

The model is a little different from the PrT-net in [36]. Apar t from the minor
difference of generalising the number of track sections, the functions are total

306

Declarations

Set of Trains:T = {a,b}
Set of track sections:I = {0, I n - 1 [n > 4}
n: number of sections
Variables x:T; i:I
Function $:I×I--*I is modulo n addition
Place pl: Sections occupied by trains

Place p2: Vacant sections
M0(pl) = {<0,a>,<2,b>}
M0(p2) = I \ {0, 2}

Graph

IxT tl I

~ <i,x> = =[1~i@1>+<i@2> ~

<i@l,x> <i> + <i@2>

pl p2

Fig. 1. CP-Graph of Safe Train Operation

and the variables are explicitly typed. There is also no need for a transition
condition.

8 P - G r a p h E x a m p l e : G e n r i c h ' s T r a i n r e v i s i t e d

The train example above provides us with a very simple illustration of the use of
the inhibitor arc. Given that this is the first example of the use of the inhibitor
and capacity extensions, we shall describe it in full detail.

8.1 Linear P - G r a p h

The linear P-Graph for the safe train is given in figure 2.
In this example we have explicitly shown how tupling (in this case pairing)

can be achieved with a suitable tupling operator declared in the signature.

8.2 Graphica l Form

The graphical form of the P-Graph for the operation of the train is given in
figure 3. As usual we include only the information about the algebra in the

307

L i n e a r P - G r a p h
S = {pl}, T = {tl}, F = { (p l , t l) , (t l , p l) } , IF = { (p l , t l) }
R -- {r l , r2, r3, Nat, Bool}
t'-2 = {¢r l r l ,~ l , (-, -),1r2,,3 } U Natconst U {a,2, b,2, trueBoo, }
where Natconst is the set of natural constants including infinity
V = {irl,X~2}
H = (RH, OH); RH = {H,1, H,2, g,3, gnat, HBoo,}
Hrl = I = {O, 1 , . . . , n - l ln > 4 } , n e g
H r 2 = T = { a , b }
Hr3 = I x T

g N a t = N¢¢; HBool = { t r u e , f a l s e }

Dn = {OH, (-, -)H, a~, bH, trueH}
a H = a; bH = b ; t r u e H -= t r u e

• g : I X I ~ I is modulo n addition
(- , -)H : I x T --+ I x T is a pairing function where
Vj E I, Vt E T, (j , t)g = (j , t)
C(p l) = I x T
A(pl, t l) = (i, x), A(t l ,pl) = (i • 1, x)
IA(pl, tl) = 0 ~ = 1 ~ u e u (i O j, u) + oo ~ , e j ~=eu(i • j, u)
where J = { 0 , 3 , 4 , . . . , n - 1 } and U = Ca, b}
TC(tl) : true
K(pl) = {((j ,u) , 1)l(j ,u) E I x T} (i.e. the set I x T)
Mo(pl) = {(0, a), (2, b)}

F ig . 2. Linear P-Graph of Safe Train Operation

Dec la ra t i on and type var iables wi th the a p p r o p r i a t e carrier . The tup l ing o p e r a t o r
and funct ion are considered p r imi t ive wi thou t any need to define t h e m each t ime
in a Dec la ra t ion . I have also been less fo rmal wi th the use of o p e r a t o r names and
f imct ions in not d i s t inguish ing between t h e m (i.e. ® has been used as an o p e r a t o r
and also as a funct ion) . Also infix n o t a t i o n has been used as it is cus tomary .

For inh ib i to r arcs we use the convent ion t ha t zero mul t ip l i c i t i e s are shown
expl ic i t ly , whereas infini te mul t ip l i c i t i e s are assumed for any t e rm t h a t is not
shown expl ic i t ly (c.f. pre m a p arcs which assume tha t zero mul t ip l i c i t i e s are not
shown in the sum) . We have also used ' . ' n o t a t i o n to represent sums of tuples .
I t is defined as follows:

Let (x , y) : A x B, then (x , .) = ~beB(X,b).
This can be general ised to tuples of any length, by a l lowing the sum to be

over the doma ins of all the var iables replaced by s tars .

T h e g raph ica l form provides a compac t specif icat ion of the behav iou r of the
t r a ins on the t rack. The occurrence of t l aga in ind ica tes the m o v e m e n t of a t r a in
f rom sect ion i to sect ion i® l . Th is is poss ible if there is a t r a in on sect ion i, (pre
cond i t ion) and there are no t ra ins on sect ions i ® l and iq)2 (inh ib i to r condi t ion) .
Of course the concurrent moving of t ra ins is allowed, so long as the condi t ions
are m e t for different t ra ins on different sect ions of t rack. For example , on a 10

D e c l a r a t i o n s

308

Set of Trains:T = {a,b}
Set of track sections:I = {0,1 n - 1 I n > 4}
n E N: number of sections
Variables x:T; i:t
Function @:IxI~I is modulo n addition
Place pl: Sections occupied by trains
K(pl) = I×T
M0(pl) = {<0,a>,<2,b>}

Gra ph

pl

0<i~1, ,> + 0<i~2, .> t l

<i,x> ~]

<iq~l,x>

Fig, 3. P-Graph of Safe Train Operation

section track (n = 10) if train %' is on section 4 and train 'b' on section 9,
then the bindings of i=4 and x = a a n d i=9 and x=b, both satisfy the enabling
condition when taken together.

With the CP-Graph model, the control flow aspects are separated out (using
place p2) from the data flow and thus emphasised. In effect another (redundant)
data type has been introduced. This is fine when we wish to emphasise this
aspect. At a more abstract level we may not want to make this separation.
In this case CP-Graphs do not have the necessary modelling convenience. The
P-Graph allows us to have just the one data type; there is no need for any
redundancy.

The P-Graph has also made us think about resource limitations. Here it is
sensible that only one train can be on one track at any time, instead of an
unlimited number. This provides a further check on the system and allows the
P-Graph to be transformed into an equivalent CP-net (see [8] for details) for
analysis.

"8.3 E q u i v a l e n t P - n e t

To illustrate the transformation from a P-Graph to a P-net, the equivalent P-net
is given in figure 4.

309

P - n e t
S = {pl}, T = {tl}
C = {I x T}
C(p l) = C(t l) = I x W
Pre(pl , t l) =)~(i, x).(i, x), the identity function on I x T
Pos t (t l , p l) = A(i, x).(i @ 1, x), a permutation of I x W
I(pl , i t) : I x T --+ #(I x T)
I(pl, ¢1) = x).(0 E _-I • j, u) + E, J • J, u))
where J = { 0 , 3 , 4 , . . . , n - 1}
K(pl) = I x T
M0(pl) = 1(0, a), (2, b)}

Fig. 4. P-net of Safe Train Operation

9 N o t a t i o n f o r C a p a c i t y

The capaci ty of a part icular place, s, is given by the funct ion

I((8) : c (s) , N £

It is convenient to use a shor thand nota t ion for this function when anno-
ta t ing places of the P-Graph , as the place is indicated by the proximity of the
anno ta t ion to the place. Thus for the capaci ty of token gl E C(s) , we m a y write
(for n l E N +) K (g ,) = nl next to place s, instead of K (s ; g l) = :~1- Of course,
this will only be practical when C(s) is a very small set, or when mos t of the
capacities are the same.

A special case is when the capaci ty for each token g E C(s) is the same, say
n E N +. This is the same as the capaci ty defined for PrT-ne t s [37], and we use
the same notat ion. Thus if place s is annota ted by K = n in the P-Graph , then
this means gg E C(s) , K(s; g) = n.

1 0 E x t e n d e d C a p a c i t y N o t a t i o n

Al though the P-net capaci ty funct ion and the above nota t ion may be of use in
some applications, for others a much richer capaci ty nota t ion is required. It is
often the case that a limit needs to be placed on the cardinal i ty of mult isets over
(elements of par t i t ions of) a place's colour set. For example, we would like to be
al:)le to express constraints like IM(s)l < n. This represents the total capaci ty of
a place (i.e. the sum of all tokens in the place) which could be a resource bound,
e.g. a buffer capacity. Here we are not placing a direct l imit on the mult ipl ic i ty of
each element of the colour set but a limit on the sum of multiplicities o f elements
and thus the capaci ty funct ion (by itself) is inadequate.

310

10.1 Pro toco l Example

As a further illustration, consider the following example encountered while mod-
elling the M-Access Service of the Cambridge Fast Ring [39, 14]. (We shall return
to this example in more detail in section 12.)

Declarat ions

H: Set of Host Addresses FREE
Me: Set of Host Messages
Variables: s, d : H; m : Me (
M0(BUFFER) = 0
M0(FREE)=H _ _ / H ~

DATA <s J / /

r e q u e s t (" f f ~ . x~:ltransfer

H x H x M e

Fig. 5. LAN Access Buffer

A network interconnects a set of computers, known as hosts. Hosts can send
messages to each other via the network. Each host has an address. When a host
wishes to send a message it appends its own address (source address) and that of
the destination (destination address) to the message to form a packet. Each host
accesses the network via a one packet buffer. When this buffer is free, the host
can store a new packet in the buffer. When network resources are available the
packet is transferred into the network for routing and delivery, thus freeing-up
the buffer for a new packet.

A P-Graph of the access procedure (for all hosts) is shown in figure 5. Place
BUFFER represents the set of access buffers, one for each host. Place FREE indi-
cates which buffers are available. (Initially all the buffers are free: M0(BUFFER)
= 0.) If this place contains a token with the value of host a's address, then host
a's buffer is free and can be used for the next packet host a wishes to submit to
the network (transition DATA-request occurs). Host a's buffer will not be free

311

again until the network accepts the packet (transition transfer occurs). Hence
place FREE provides the control necessary to ensure a capacity limit of one
buffer per host.

Declarations

H: Set of Host Addresses
Me: Set of Host Messages
Variables: s , d : H ; m : M e
M0(BUFFER) = 0

DATA-
request

I <s,d,m>

BUFFER

ID,

H x H x M e

It(s, *, *) = 1

<s, d, m >

transfer

Fig. 6. LAN Access Buffer illustrating extended capacity notation

When visualization of this control mechanism is not required, we would like
to replace the capacity control for place BUFFER by an extended capacity
inscription. This is shown in figure 6, where place BUFFER is inscribed by
'K(s ,* , *) = 1'. We may interpret this to mean that there is one buffer avail-
able for each host, i.e. that the sum of tokens over the set of (destination) host
addresses, H, and messages, M e , in place BUFFER for a particular value of s,
is at most one. The *'s indicate sums over the domains of the variables they
replace. This may be viewed as an extended capacity condition on the marking
of the place concerned: for all markings of BUFFER, and for each host, j C H,

~hEH EgEll~Ie M(BUFFER; j, h, g) < 1.

More generally, a place, s, with C (s) = G1 x . . . x G,~, may be annotated
by an inscription K (a l , . . . , a,~) = k with k E N +. The syntax of ai, i E I n =
{ 1 , 2 , . . . , n } is given by the production rule ai : :=< vi > l* where angular
brackets denote non-terminals and vi : Gi . (The syntax for variables is left open,
but it would normally be a finite string of alphanumeric characters.)

We shall now give the meaning of this notation in terms of a P-Graph without
it.

312

1 0 . 2 I n t e r p r e t a t i o n o f E x t e n d e d C a p a c i t y N o t a t i o n

When there are no stars present in the argument of K (a l , . . . , an), it has the
same meaning as K, defined in the previous section. This notation is therefore
redundant and would not be used.

We now consider two cases:

- A. when there is at least one star but less than n stars
- B. when all arguments are stars.

Case A
For case A, for each place, s, inscribed by K (a l , . . . , an) = k, we remove the

inscription and replace it by a projected complementary place, ~, and associated
arcs in the following manner.

1. From the argument of K create a tuple consisting of only the variables by
deleting the stars. This will be of the form < vi,. •. , vj > with i _< j <_ n.

2. Create a place, ~, with colour set C('g) = Gi × . . . × Gj derived from the
types the variables of the above tuple, where Gi is the type of the variable
vi and so forth.

3. Create an arc (~, t) for each arc (t, s), t E T a n d an arc (t', ~) for each arc
(s, t '), t ' E T.

4. Annotate each arc by the tuple < v i , . . . , vj >.
5. The initial Marking, M0(~) is related to Mo(s) and the value of k in the

following way. For every gl E Gi . . . gj E Gj

mu l t ((g i , . . . , gj), M0(~)) + ~ m u l t ((g l , . . . , g,~), Mo(s)) = k

where the sum is over the domains of the variables that have been replaced
by stars in the argument of K.

Case B
For case B, for each place, s, inscribed by K (. , . . . , ,) = k, we remove the

inscription and replace it by a completely-projected complementary place, ~, (a
P / T - n e t place) and associated arcs in the following manner.

1. Create a place, ~, with colour set C(~) = {*}.
2. Create an arc (~, t) for each arc (t, s), t E T and an are (t', ~) for each arc

(s, t ') , t ' E T.
3. Annotate each arc by the singleton < • >.
4. The initial Marking, M0(~) is related to Mo(s) and the value of k in the

following way.

mult((.) , M0(~)) + ~ mul t ((g l , . . . , g,), M0(s)) = k

where the sum is over the domains of all the variables.

Case B corresponds to a resource limit and the notation K* will be adopted
for it (i.e. K* = g (* , . . . , *)) as in Numerical Petri Nets [69].

In this section the colour sets have been restricted to a single product set.
No at tempt is made to generalise to unions of product sets as the complexity
and infrequent usage do not justify it.

313

11 D e m o n G a m e

In this section a small example is presented that was used as a test case for
formal methods developed in ISO and C C I T T with application to Open Sys-
tems Interconnection protocols and services. The example is called the Demon
(Daemon) Game [66].

The following provides a description of the demon game which is slightly more
abstract than the narrative description in [66] in that no assumption is made
regarding communication. Thus there is no reference to the use of 'signals' , as
this is considered to be prejudicing an implementation. It is believed tha t the
spirit of the game is still the same!

11.1 N a r r a t i v e D e s c r i p t i o n

Consider a system in which there lurks a demon which generates bumps; the
number of bumps not being directly observable from outside the system. The
aim of the game is to guess when there has been an odd number of bumps
generated. The demon informs a player of the outcome of the guess: either win or
lose corresponding to there being an odd or even number of bumps respectively,
at the t ime of the guess. The demon keeps a score which is initially zero. It is
incremented by one for a successful guess and decremented by one if unsuccessful.
A player can request his score at any t ime and the result will be returned by the
demon.

The game can be played by several players. Before start ing a game, a player
must log-in. A unique identifier is allocated to a player on logging-in and deal-
located on logging-out.

11.2 M A N S p e c i f i c a t i o n

The Demon Game can be specified using a (strongly-typed) many-sorted Mge-
braic net (MAN) [9]. A MAN is a CP-Graph where all transition conditions
are true and the multiplicities of terms in arc expressions are natural numbers
rather than natural number terms. (The CP-Graph of the train was a MAN.)
It illustrates the use of simple many-sorted unary operators. The game can be
specified by 4 places and 5 transitions with their associated inscribed arcs and
is given in figure 7.

The top two transitions and associated arcs and places specify the behaviour
of players logging-in and togging-out. The next two transitions specify how to
play the game (guessing the state of the demon's bumps and requesting the
cumulative score) and the bo t tom transition specifies the bumping of the demon.

The convention of double-headed arcs described in section 6.4 is used. T h a t
is, if the annotat ion of the arcs associated with the same place and transit ion
are the same (A(s , t) = A(t , s)) , then both the arcs and the annotat ions are
superimposed, producing a singly annotated arc with an arrowhead at both
ends. For example, see f l = (Scores,Request) and f2 = (Request,Scores) in
figure 7, ,,'here A (f l) = A(/2) = <i, s>.

314

Declarations

Set of Player Identifiers:I
Set of Game States:G = {win,lose,null}
State of Bumps:B = {even,odd}
Set of Integers:Z
Variables b:B; i:I; g:G; s,r:Z
Functions
Complement --:B--*B where
even = odd and odd = even
Score S:B--* {-1, 1} where
S(even) = -1 and S(odd) = 1
Outcome O:B--~G where
O(even) = lose and O(odd) = win
Mo(IDs) = I
/~to (Scores) =
Mo(Players) = 0
Mo(Bumps) = even

Graph

Scores ~ ~) P l a y e r s

<i,s+S(b)> I . . ~ :i,O(b),r>

:b>

B()Bump-state

<b: <g>

~ ump

Fig. 7. MAN Specification of Demon Game

315

Information about players is represented as a triple comprising: an identifier;
the outcome of a guess (including initially the null outcome denoting that no
guess has yet been made); and a score. This state information is stored as the
marking of place Players. Unused identifiers are stored in place IDs; players'
scores in Scores; and the state of the demon's bumps in Bump-stale.

Initially, there are no players (place Players is empty); no scores (place Scores
is empty); all identifiers are available (place IDs is marked with the complete set
of identifiers I); and the demon has not begun to bump. As far as the game is
concerned, it is only important to model the state of the bumps as even or odd;
there is no need to count the actual number of bumps. Thus initially there is an
even number (zero) of bumps, represented by place Bumps being marked with
the token even.

On logging-in (transition Login), a player's state and score is initialised, and
his identifier is removed from the unused identifier list. He may now make a
guess (transition Guess) whereupon his score is updated and he is informed
of the outcome. He may also request his score (transition Request) or logout
(transition Logout) with his identifier being returned to the unused list and all
information about him being destroyed. The demon bumps whenever it wishes.

11.3 C o n c u r r e n c y , Conf l ic t a n d I n t e r l e a v i n g

The bumping is arbitrarily interleaved with players making guesses (a conflict).
Similarly, after logging-in, a player may (non-deterministically) make a guess;
request his score; or logout (another conflict). This interleaving behaviour is
an essential part of the design. For example, it makes no sense to be able to
logout and request the score simultaneously. It also makes no sense to guess and
bump at the same time or to guess and request the score simultaneously. These
situations are naturally in conflict and require interleaving of these events.

On the other hand, for a particular player, the events of requesting a score
or :ogging in or out, are independent of the demon bumping. Hence transitions
Login and Bump; Logout and Bump; and Request and Bump are concurrent.

We would also expect that all players would act independently of one an-
other and this is mostly the case. Any number of players may login, logout or
request their scores concurrently but are limited to interleaving when making
guesses. Here we have made the assumption that 'read access' to the bump-state
is exclusive. This is not essential and it is valuable to delay such decisions to the
implementation phase.

This limitation may be overcome by making copies of the Bump-state, and
removing all the old ones when the demon bumps (transition Bump). Let us
assume that there can be n simultaneous accesses to the bump-state, where
n E N +, then setting A(Bump-state, Bump) = n < b > and A(Bump, Bump-
state) = n < b > achieves the desired specification. Bump and Guess are still
in conflict, but Guess may occur concurrently with itself limited by n and the
number of players logged-on.

These more subtle parts of the design could easily be glossed over with a
technique based on interleaving semantics. With an interleaving model, the ira-

316

plementer could be unaware of which parts of the specification were intentionally
in conflict and which could be concurrent. Also, the need to specify the number
of simultaneous accesses to a resource could be overlooked.

12 C a m b r i d g e F a s t R i n g S e r v i c e S p e c i f i c a t i o n

12.1 Descr ip t ion of the C F R

The Cambridge Fast Ring (CFR) networking system [39] consists of a cluster of
CFRs interconnected by bridges. The CFR is a slotted ring designed during the
early 1980s to provide a raw 100 MBit/s transmission speed and to substantially
increase the bandwidth between point-to-point users. Hardware for the stations,
the monitor and bridges for the Cambridge Fast Ring have been fabricated in
VLSI. The hardware implements the low level protocols between the various
distributed components.

An initial draft of the protocol architectures for the CFR was compiled in
[24], where it is shown that different architectures can co-exist above the basic
service provided by the CFR hardware. This service is known as the M-Access
Service and has been defined in [23]. The protocol architecture is shown in figure
8. The lower two layers correspond to the CFR hardware. On the left side is the
lowest layer of the Unison architecture that is supported by the CFR, the Unison
Data Link Layer. On the right side are the lower layers of an architecture that
can support the IEEE 802 and Open Systems Interconnection protocols. The
M-Segment layer bridges the gap between the standard Media Access Control
(MAC) Service of IEEE 802 and the CFR's M-Access Service. Thus M-Segment
and M-Access together provide the MAC service over which the Logical Link
Control protocol can be implemented.

12.2 C F R M-Access Service

Terminology and Features We shall use the term packet to refer to a CFR
packet as defined in [39]. The CFR packet includes a Cyclic Redundancy Check
(CRC) to detect transmission errors. The term M-Access Service Data Unit (M-
SDU) will be used to describe data that is transparently exchanged between
users of the M-Access Service.

A draft description of the M-Access Service is given in [23]. The main concern
of the M-Access Service is to transfer messages between hosts connected to the
CFR. In this paper we shall only consider a single CFR, whereas [10] considers
ring clusters.

Service Pr imi t ives In the M-Access Service, the M-DATA request and indica-
tion service primitives are defined as usual for data transfer, and it is also useful
to define an M-TOG indication service primitive. The data primitives and their
associated parameters are represented as follows:

317

Unison
Data Link

Logical
Link

Control
(IEEE 802)

M-Segment

M-Access

Physical

Fig. 8. Lower Layer Protocol Architectures for the CFR

M-DATA reques~(source-CFR-address, destination-CFR-address, M-data)
M-DATA indication(source-CFR-address, destination-CFR-address, M-data)

The parameters of corresponding M-DATA request and indication primitives
have the same values.

The CFR hardware has the capability of telling a user of the M-Access Service
that a transmission of a packet has not succeeded. This signal is known as
"Thrown-on-Ground' or TOG for short. This is expressed as a parameterless
primitive, M-TOG indication, indicating that the current packet is considered
lost by the service provider.

12.3 P - G r a p h S p e c i f i c a t i o n o f C F R M - A c c e s s S e r v i c e

Because CFR stations are built from identical chips, the sending (and receiv-
ing) operations in each of the stations are the same. We therefore only need to
model a generic sender communicating over the ring with a generic receiver, each
parameterised by the station address.

We shall consider the following characteristics of a single CFR:

Arbitrary number of stations
- Point-to-point and broadcast modes
- Single transmit buffer and single receive buffer for each station
- Sequence of M-SDUs preserved per source-destination flow

318

- Single broadcast by each station (only one broadcast per station is allowed
at any one time due to the single transmit buffer)

- Arbitrary loss of M-SDUs
- Three modes of duplication:

1. Arbitrary duplication in both point-to-point and broadcast mode;
2. No duplication in broadcast mode, but arbitrary duplication for point-

to-point operation; and
3. No duplication

The duplication case 2 is close to the operation of the CFR, although du-
plication for point-to-point is very rare and limited. A limit to the amount of
duplication can be incorporated into the specification in a straightforward way if
desired. (It requires an extra place to store the duplication limit for each station.)

We shall consider the three modes of duplication in separate specifications.
The left side of each diagram represents the transmitter and the right side the re-
ceiver. The transitions in the centre represent various ways in which the CFR can
operate. We represent a set of transmit buffers, one for each station, by the single
place 'Transmit-buffers' and we record the stations that have empty buffers in
place 'Empty-transmit-buffers'. A similar situation exists for the receive buffers.
We also include explicitly which stations are acceptable sources of M-SDUs for
each of the destinations, by storing them in place 'Acceptable-sources'.

A r b i t r a r y Dupl ica t ion The single CFR M-Access service with arbitrary du-
plication in both broadcast and point-to-point modes is specified in figure 9. The
initial state of the service is specified by the initial marking of the net. Each sta-
tion connected to the CFR will have an empty buffer for transmitting and one for
receiving. The presence of an empty transmit buffer is represented by storing the
station's source address in place 'Empty-transmit-buffers' and the presence of
an empty receive buffer is similarly represented by storing the station's address
in place 'Empty-receive-buffers'. The monitor is always attached to a ring, but
cannot transmit normal packets [39]. It can, however, receive normal packets.
This is why it is excluded from the set of source addresses, but included in the set
of destination addresses. Since the monitor is always attached to an operational
ring, its address must be included in the initial marking of place 'Empty-receive-
buffers'. The addresses of the source stations acceptable to each destination are
stored in place 'Acceptable-sources' as source-destination pairs. Initially all the
transmit and receive buffers are empty and hence places 'Transmit-buffers' and
'Receive-buffers' are empty.

With this initial state, any number of stations may request the sending of an
M-SDU. This is achieved by firing transition 'M-DATA request'. A token rep-
resenting an M-SDU, is placed in 'Transmit-buffers' and the token representing
that the buffer was empty for that station is removed from 'Empty-transmit-
buffers'. If the M-SDU is not broadcast, then one of three events may occur:

1. The M-SDU is successfully transferred to the chosen destination. This may
only occur if the source is acceptable to the destination. This is achieved by

319

Declarat ions

Sets: S,D,D',M
Constants: b,m E D
Variables: s:S, d:D, d':D', m:M
Initial Marking
M0 (Transmit-buffers) =M0 (Receive-buffers)=$
M0 (Empty-transmit-buffers)C S
M0 (Empty-receive-buffers) = M0 (Empty-transmit-buffers)U{m}
M0 (Accept able-sources) C SxD ~

Empty- Empty-
M-TOG transmit- receive-

indication buffers REMOVE buffers

\ _ /
........ I _ Y ' q . .I

M-DATA SxDxM "~ ~ ~" ,, _ M-DATA
request Transmit- ~ / % N / < s , d', m> indication

b,,ffers \ / , ,~
<s,b,m>\ <d.>/ / \<,,~'>

I. <S, d'> ~ A c c e p t a b l e - I I" - ~ j sources
BROADCAST s x D'

Fig. 9. Single CFR M-Access Service: Duplication

firing transition 'TRANSFER' . A copy of the M-SDU is maintained in the
transmit buffer while it is transferred to the destination's receive buffer which
is removed from the list of empty buffers. The M-SDU may then be removed
from the transmit-buffer which would then be marked free by the occurrence
of transition 'REMOVE'. Concurrently, an M-DATA indication may occur
at the destination, with the M-SDU being removed from the receive-buffer
which is marked free. This may be considered as the normal operation of
the service. Duplication may occur by firing 'TRANSFER' twice (or more)
before the occurrence of the 'REMOVE' transition.

2. The M-SDU is refused by the destination and this is reported to the source
user. This is achieved by firing 'M-TOG indication', which removes the M-
SDU from the transmit buffer and marks it free.

320

3. The M-SDU is lost. The CFR transmitter hardware falsely believes that the
M-SDU has been accepted by the destination, due to a CRC error in the
return path. This is represented by the firing of the 'REMOVE' transition.
The M-SDU is discarded and the transmit buffer marked free.

For broadcast M-SDUs, there are two possibilities.

1. The M-SDU is lost by firing transition 'REMOVE'.
2. The M-SDU is broadcast one at a t ime to any of the allowable destinations

by repetitively firing transition 'BROADCAST' . When this transition oc-
curs, a copy of the M-SDU is retained in the transmit buffer, the M-SDU
is transferred to an accepting destination and its buffer is removed from
the empty list. An M-DATA indication may then occur with the consequent
release of the receive buffer. This then allows duplication of the broadcast
M-SDU, as the 'BROADCAST' may occur again for the same destination. It
may also occur again for any other destination. The broadcast ends with the
occurrence of the 'REMOVE' transition, which empties the transmit buffer.

N o D u p l i c a t i o n in B r o a d c a s t m o d e In order to avoid duplication in broad-
cast mode we must keep a record of the stations to which we have broadcast. In a
single CFR this is relatively easy as no simultaneous transmissions by a particular
station are allowed due to single buffering. For each station, only a single point-
to-point or broadcast transmission is possible and this must have completed
(successfully or not) before the next transmission can occur. This allows us to
use the list of allowed source-destination pairs stored in 'Acceptable-sources' to
determine which station has received a broadcast M-SDU.

The specification is shown in figure 10. It is the same as figure 9, except that

- The places 'Empty-transmit-buffers ' and 'Empty-receive-buffers' and their
associated arcs and initial markings have been removed and replaced by the
extended capacity notation defined in section 10.

- The place, 'Broadcast-destinations', (with initial null marking), the transi-
tion, 'REMOVE-B', and associated arcs and inscriptions have been added.

- The 'REMOVE' transition has been renamed 'REMOVE-P' . 'REMOVE-P '
may only remove point-to-point M-SDUs as the tuple annotating the arc now
contains the variable d~:D r, instead of d:D. 'REMOVE-B' may only remove
broadcast M-SDUs.

- The return arc from transition 'BROADCAST' to 'Acceptable-sources' has
been deleted.

- Both 'Acceptable-sources' and 'Broadcast-destinations' have been annotated
with a capacity ' K = 1'.

The specification is the same as figure 9 for point-to-point operation. As be-
fore, broadcasting may occur when a broadcast M-SDU is in a transmit buffer
and there is a destination (with a free buffer) that will accept M-SDUs from
the source of the broadcast. When 'BROADCAST' fires, the destination is re-
moved from the set of accepting destinations stored in 'Acceptable-sources', and

D e c l a r a t i o n s

321

Sets: S,D,D',M
Constants: b 6 D
Variables: s:S, d:D, d':D', m:M
Initial Marking
M0(Transmit-buffers) = M0(Receive-buffers) = M0(Broadcast-destinations) = O
M0(Acceptable-sources) C_ SxD'

M-TOG
indication REMOVE-P

<s, d', Transmit- , d', m>
buffers /

" N ~ SxDxM/~ TRANSFER

Receive-
buffers

K(*,d',*)=l
SxD'xM

M-DATA
request <s d', m>

M-DATA
indication

<s,b,

BROADCAST
• < s ,

<s,d'>]" h

/ K = I

"<s, *>

Acceptable-
sources

<s,b,

L . _ _ _ ~ # < s , *>

REMOVE-B

S x D j

K = I

Broadcast-
destinations

Fig. 10. Single CFR M-Access Service: No Duplication for Broadcast M-SDUs

is written to a set of destinations that have received a broadcast M-SDU. The
set is stored in place 'Broadcast-destinations'. The broadcast will continue un-
til either the set of accepting destinations is exhausted (there will no longer be
a source-destination pair in 'Acceptable-sources' with the broadcast source ad-
dress - hence 'BROADCAST' will not be enabled (for this source address) and
the only remaining possibility for the broadcast M-SDU is that it is removed
fi'om the transmit buffer by firing 'REMOVE-B') or the M-SDU is removed by
firing 'REMOVE-B' .

322

'REMOVE-B' is enabled by a broadcast M-SDU being in a transmit buffer.
When it fires, the following actions occur atomically:

1. A particular source's broadcast M-SDU is removed from the transmit buffer.
2. All destinations that have successfully received the source's broadcast are

purged from 'Broadcast-destinations' and returned to 'Acceptable-sources'.

Any number of stations can be active at the same time and they operate
independently except for contention (conflict) for destination receive-buffers.

To be able to purge 'Broadcast-destinations' of the required destinations for
the associated source, we have used the notation for purging a member of a
partition developed in chapter 8 of [10], which also provides an interpretation
in terms of P-nets. In essence, both an inhibitor and normal arc are required
with the same inscription. This is represented by overlaying the normal and
inhibitor arcs and is referred to as a reset arc. Here we shall not be concerned
with the formalities. The notation # < s , * > (really a variable ranging over a
set of multisets) on the reset arc can be interpreted as follows: for a particular
value of s (say a), the demand on 'Broadcast-destinations' is always satisfied and
when 'REMOVE-B' occurs, all tokens with the value a in the first position of
the pair are removed from 'Broadcast-destinations'. The notation ~ < s , . > on
the output arc from 'REMOVE-B' to 'Acceptable-sources', implies that these
tokens are added to the marking of 'Acceptable-sources'.

The addition of the capacity restriction (K -- 1) to places 'Acceptable-
sources' and 'Broadcast-destinations' better reflects the intent of the specifi-
cation and guarantees that the P-net to CP-net transformations can be applied.

No D u p l i c a t i o n The single CFR M-Access service with no duplication can
be derived from figure 10 by deleting the (return) arc from 'TRANSFER' to
'Transmit-buffers'. When 'TRANSFER' fires, the M-SDU is removed from the
transmit buffer and hence no duplication can occur. It would also be useful to
rename the REMOVE-P transition to LOSE-P as it would only model loss.

We have made the assumption that as far as users of the M-Access Service
are concerned, the operation of delivery of an M-SDU to a receiving station and
the freeing of the transmit buffer can be considered atomic for point-to-point
operation.

13 A n a l y s i s a n d C o m p u t e r A i d e d T o o l s

The analysis of P-Graphs is a large topic and space precludes going into the
details here. However, the paper would not be complete without a discussion of
the analysis capabilities of P-Graphs. One of the design goals in the development
of P-Graphs was to ensure that the analysis capabilities of the high-level nets
being developed in main stream net theory [20] could be applied to P-Graphs.
This paper shows how P-Graphs can be mapped to P-nets. So long as finite
resources are required when the inhibitor is used, P-nets can be transformed

323

to CP-nets as shown in [8]. This allows the analysis methods of CP-nets [46]
to be used for analysing P-nets. These analysis techniques include reachability,
invariants and reductions, model checking of the teachability graph, and also
analysis via the skelelon P/T-system as discussed in [67]. It may also be the case
that some of these techniques may be able to be applied directly to the P-net.
Direct analysis of subclasses of the P-Graph is possible using invariants as shown
in [60] and applied in [32].

The strong relationship with CP-nets will allow the use of automated tools
being developed for CP-nets (editors, simulators, analysers) [57, 48], other reach-
ability analysis tools [68] and a compiler [41]. This will form the basis of a pow-
erful systems engineering environment for the development and maintenance of
protocols.

14 C o n c l u s i o n s a n d F u t u r e W o r k

P-Graphs have been motivated by the desire to model protocol mechanisms ele-
gantly. They have been defined as inhibitor nets that include a many-sorted sig-
nature and a corresponding algebra. Variables can now be appropriately typed
and functions are total. This paper brings together the work of a number of
researchers [36, 61, 67, 43]. The contribution of the paper is not only in this syn-
thesis, but also in the development of the inhibitor and capacity extensions, the
formalisation of the P-Graph at a concrete level to include natural number terms
to be used as multiplicities when defining multisets of terms for arc inscriptions,
and the application of P-Graphs to the specification of protocol services and
other similar systems. An extended capacity notation has been developed and
illustrated in the specification of the Cambridge Fast Ring M-Access Service.
The meaning of this notation is provided in terms of the P-Graph. A notation
for purging places of tokens has been illustrated with the CFR M-Access Ser-
vice. It uses a combination of an inhibitor arc and normal arc to form a reset
arc [10]. It is further shown how P-Graphs can be mapped to P-nets, which (in
most practical circumstances) can be transformed to CP-nets to take advantage
of their analysis techniques and automated tools.

A hierarchy of high-level nets can be defined, by restricting the structure
of the P-Graph, to include CP-Graphs, many-sorted Algebraic nets and Place
Transition nets. It thus provides a basis for the comparison of these classes. An
area of further work is in determining the relative merits of these classes for
protocol and service specification and for their analysis.

In [9] it is shown how abstract P-Graphs can be defined at the syntactic level,
in a similar way to Vautherin [67]. The abstract P-Graph provides a vehicle for
the specification of classes of systems and the possibility of their analysis via a
single member of the class as has been demonstrated by Vautherin [67]. This
opens up possibilities which need to be investigated in the protocol domain.

The aim of the work is that P-Graphs will be able to be applied to large
applications. This will require better ways of structuring and refining specifica-
tions, than used in the past [12, 3]. At a fundamental level, the development of

324

refinement morphisms for P/T-systems [56] shows promise, but these ideas will
need to be incorporated into high-level nets. The development of hierarchical
CP-nets [40] are of practical interest as they have been used to organise the
specifications of a significant number of protocol applications [47]. This area has
not been addressed in this paper and it will require a significant effort in the
future.

Finally, there is a significant international effort going into the development
of an international standard for high-level nets [17]. The standard, ISO/IEC
CD15909, is currently at Committee Draft status, and is built on many of the
ideas presented in this paper. Elaboration of the standard to include inhibitor
and other extensions is currently being considered. It is hoped that the standard
will reach international standard status in a year or two. This will then provide
a consistent set of concepts to Mlow industry to manadate the standard for con-
tractual work, and to allow the development of a standard means of transferring
high-level nets between tools, while (hopefully) maintaining their semantics.

Acknowledgements

This work has benefited from valuable discussions with numerous colleagues,
including Kurt Jensen, Geoff Wheeler, Bernd Baumgarten, Wolfgang Reisig,
Ekkart Kindler and many others involved in the international standardisation
work of ISO/IEC J T C 1 / S C 7 / W G l l project 7.19.3 Petri net techniques.

References

1. E. Battiston, F. De Cindio, and G. Mauri. OBJSA nets: a class of high-level nets
having objects as domains. In G. Rozenberg, editor, Advances in Petri Nets 1988,
Lecture Notes in Computer Science 3~ , pages 20 - 43. Springer-Verlag, Berlin,
1988.

2. Mirion Y. Bearman. Formal specification of the Open Systems Interconnection
Transport Protocol class 2 using NPNs. Technical Report 25, CSIRONET, 1986.

3. Mirion Y. BearmaJa, Michael C. Wilbur-Ham, and Jonathan BiUington. Some re-
sults of verifying the OSI class 0 Transport Protocol. In ICCC, pages 597-602,
Sydney, November 1984.

4. Mirion Y. Bearman, Michael C. Wilbur-Ham, and Jonathan Billington. Analysis
of Open Systems Interconnection Transport Protocol standard. Electronics Letters,
21(15):659-661, July 1985.

5. M.Y. Bearman, K.R. Parker, and R.A. Berger. A formal specification of the OSI
Class 3 Transport Protocol using NPNs. Technical Report TR-ED-88-02, CSIRO
Division of Information Technology, 1988.

6. Gerard Berthelot and Richard Terrat. Petri nets theory for the correctness of
protocols. IEEE Transactions on Communications, COM-30(12):2497-2505, Dec
1982.

7. B. Berthomieu, N. Choquet, C. Colin, B. Loyer, J.M. Martin, and A. Mauboussin.
Abstract Data Nets: combining Petri nets and abstract data types for high level
specifications of distributed systems. In Proceedings o] the Seventh European

325

Workshop on Application and Theory of Petri Nets, pages 25 - 48, Oxford, Eng-
land, 30 June - 2 July 1986.

8. J. Billington. Extensions to Coloured Petri Nets. In Proceedings of the Third In-
ternational Workshop on Petri Nets and Performance Models, pages 61-70, Kyoto,
Japan, 11-13 December 1989. IEEE CS Press.

9. J. Billington. Many-sorted high-level nets. In Proceedings of the Third Interna-
tional Workshop on Petri Nets and Performance Models, pages 166-179, Kyoto,
Japa~a, 11-13 December 1989. IEEE CS Press.

10. J. BiUington. Extensions to Coloured Petri Nets and their Application to Protocols.
PhD thesis, University of Cambridge, May 1990.

11. J. Billington, G. Wheeler, and M.C. Wilbur-Ham. PROTEAN: A high-level Petri
net tool for the specification and verification of communication protocols. IEEE
Transactions on Software Engineering, Special Issue on Tools for Computer Com-
munication Systems, SE-14(3):301-316, March 1988.

12. Jonathan Billington. Abstract specification of the ISO Transport Service Definition
using labelled Numerical Petri Nets. In Harry Rudin and Colin H. West, editors,
Protocol Specification, Testing and Verification, 11I, pages 173-185, Amsterdam,
1983. Elsevier Science Publishers B.V.

13. Jonathan Billington. Extending coloured Petri nets. Technical Report 148, Uni-
versity of Cambridge Computer Laboratory, New Museums Site, Pembroke Street,
Cambridge, England, October 1988.

14. Jonathan Billington. A High-Level Petri net specification of the Cambridge Fast
Ring M-Access service. In Proceedings of the BCS-FACS Workshop on Specifica-
tion and Verification of Concurrent Systems, University of Stirling, Stirring, Scot-
land, July 1988. Earlier version published as University of Cambridge Computer
Laboratory Technical Report No. 121, December 1987.

15. Jonathan Billington, editor, Application of Petri Nets to Communication Proto-
cols, Advanced Practical Tutorial Notes, 15th Int. Conference on Application and
Theory of Petri Nets, Zaragoza, Spain, 20 June 1994.

16. Billington J. and Diaz M., editors, Petri Nets applied to Protocols, Proceedings,
First PetriNets95 Protocol Workshop, Turin, Italy, 26 June 1995.

17. Biltington J., Development of an International Standard for High-level Petri Nets,
In Proc. 3rd IEEE International Software Engineering Standards Symposium and
Forum (ISESS'97), Walnut Creek, California, USA, 1-6 June 1997, ISBN: 0-8186-
7837-2, pp.155-162.

18. Billington, J., Farrington M., and Du B.B., Modelling and Analysis of Multi-Agent
Communication Protocols, to appear ill Proc. 3rd Biennial Engineering Mathemat-
ics and Applications Conference (EMAC'98), Adelaide, 13-16 July 1998.

19. Billington J., Diaz M. and Rozenberg G. (Eds) Application of Petri Nets to Com-
munication Networks, Special Issue of Advances in Petri Nets, Lecture Notes in
Computer Science, Springer-Verlag, in preparation.

20. W. Brauer, W. Reisig, and G. Rozenberg, editors. Petri Nets: Central Models and
Their Properties, volume 254 of Lecture Notes in Computer Science. Springer-
Verlag, Berlin, 1987. Advances in Petri Nets 1986, Part 1: Proceedings of an
Advanced Course, Bad Honnef, September, 1986.

21. H. J. Burkhardt and Hans Eckert. Transport service, formal specification; network
service, formal specification; transport protocol class 2, formal specification, early
drafts, 1984.

22. H.J. Burkhardt, Hans Eckert, and Rainer Prinoth. Modelling of OSI-
communication services and protocols using Predicate/Transition Nets. In

326

Y. Yemini, R. Strom, and S. Yemini, editors, Protocol Specification, Testing and
Verification, IV, pages 165 - 192, Amsterdam, 1985. Elsevier Science Publishers
B.V.

23. A. M. Chambers. CFR M-Access service definition. Draft Unison Project Docu-
ment, Ref: UA008, November 1986.

24. A. M. Chambers and D. L. Tennenhouse. Communications architectures for the
Cambridge Fast Ring. Draft Unison Project Document, Ref: UA004, October 1986.

25. J. P. Courtiat, J. M. Ayache, and B. Algayres. Petri nets are good for protocols.
In A CM SIGCOMM '84 Symposium, Communications Architectures and Protocols,
pages 66-74, Montreal, Canada, June 1984.

26. B. Cousin, J.M. Couvreur, C. Dutheillet, and P. EstraJllier. Validation of a proto-
col managing a multi-token ring architecture. In Proceedings o] the IX European
Workshop on Applications and Theory of Petri Nets, Venice, Italy, 22-24 June
1988. Fourth paper in volume II.

27. Michel Diaz. Modeling and analysis of communication and co-operation protocols
using Petri net based models. Computer Networks, 6:419-441, 1982.

28. Michel Diaz. Petri net based models in the specification and verification of proto-
cols. In W. Brauer, W. Reisig, and G. Rozenberg, editors, Petri Nets: Applications
and Relationships to Other Models of Concurrency, pages 135 - 170. Springer-
Verlag, Berlin, 1987. Lecture Notes in Computer Science, Vol. 255.

29. Diaz M., Little T., and Senac P. (Eds), Multimedia and Concurrency, Workshop
Proceedings, Toulouse, France, 24 June 1997.

30. S. Drees, D. Gomm, H. Plfinnecke, W. Reisig, and R. Walter. Bibliography of net
theory. In G. Rozenberg, editor, Advances in Petri Nets 1987, pages 309 - 451.
Springer-Verlag, Berlin, April 1987. Latest update is 'Bibliography of Petri Nets
1988', Arbeitspapiere der GMD, No. 315, June 1988, which contains over 2,500
entries.

31. H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification i, Equations and
Initial Semantics, volume 6 of EATCS Monographs on Theoretical Computer Sci-
ence. Springer-Verlag, Berlin, 1985.

32. Greg Findlow and Jonathan Billington. High-level Nets for Dynamic Dining
Philosophers Systems. In Proceedings of the International Workshop on Semantics
]or Concurrency, Leicester, UK, ~3-P5 July 199~ London, 1990. Springer-Verlag.

33. R.J. Fone. An analysis of a Numerical Petri Net description of ISDN call control
procedures. Research Laboratories Report 7915, Telecom Australia, August 1988.

34. R.J. Fone. A Numerical Petri Net description of ISDN call control procedures.
Research Laboratories Report 7914, Telecom Australia, August 1988.

35. H. J. Genrich and K. Lautenbach. The analysis of distributed systems by means of
Predicate/Transition-nets. Lecture Notes in Computer Science, 70:123-146, 1979.

36. Hartmann J. Genrich. Predicate/Transition Nets. In W. Brauer, W. Reisig, and
G. Rozenberg, editors, Petri Nets: Central Models and their Properties. Advances
in Petri Nets 1986, Part 1: Proceedings of an Advanced Course, Bad Honne],
September 1986, pages 207 - 247, Berlin, February 1987. Springer-Verlag. Lec-
ture Notes in Computer Science, Volume 254.

37. Hartmann J. Genrich and Kurt Lautenbach. System modelling with high-level
Petri nets. Theoretical Computer Science, 13:109-136, 1981.

38. C. Girault, C. Chatelain, and S. Haddad. Specification and properties of a cache
coherence protocol model. In G. Rozenberg, editor, Advances in Petri Nets 1987,
pages 1 - 20. Springer-Verlag, Berlin, April 1987. Lecture Notes in Computer
Science, Vol. 266.

327

39. A. Hopper and R.M. Needham. The Cambridge Fast Ring Networking System.
IEEE Transactions on Computers, 37(10):1214 - 1223, October 1988. Earlier ver-
sion published as University of Cambridge Computer Laboratory Technical Report,
No. 90, June 1986.

40. P. Huber, K. Jensen, and R.M. Shapiro. Hierarchies in Coloured Petri Nets. In
Proceedings of the l~th International Conference on Application and Theory of
Petri Nets, pages 192 - 209, Bonn, West Germany, June 1989.

41. G.C. Illing. Automatic Petri-net based Protocol Implementation. In 1REECON
International, pages 358 - 361, Melbourne, September 1989.

42. Kurt Jensen. Coloured Petri Nets and the invariant-method. Theoretical Computer
Science, 14:317-336, 1981.

43. Kurt Jensen. Coloured Petri Nets. In W. Brauer, W. Reisig, and G. Rozenberg,
editors, Petri Nets: Central Models and Their Properties. Advances in Petri Nets
1986, Part 1: Proceedings of an Advanced Course, Bad Honnef, September 1986,
pages 248 - 299. Springer-Verlag, Berlin, February 1987. Lecture Notes in Com-
puter Science, Vol. 254.

44. Kurt Jensen. Private communication, July 1988.
45. Kurt Jensen. Coloured Pet ri Nets: Basic Concepts, Analysis Methods and Practical

Use, Volume 1: Basic Concepts, EATCS Monographs on Theoretical Computer
Science. Springer-Verlag, Berlin, 1992.

46. Kurt Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use, Volume 2: Analysis Methods, EATCS Monographs on Theoretical Computer
Science. Springer-Verlag, Berlin, 1994.

47. Kurt Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practi-
cal Use, Volume 3: Practical Use, EATCS Monographs on Theoretical Computer
Science. Springer-Verlag, Berlin, 1997.

48. Jorgensen J.B., and Kristensen L.M., Design/CPN OEOS Graph Manual, Univer-
sity of Aarhus, 1996.

49. W. Jiirgensen and S.T. Vuong. Formal specification and validation of ISO Trans-
port Protocol components, using Petri nets. In ACM SIGCOMM '8~ Symposium:
Communications Architectures and Protocols, pages 75-82, Montreal, Canada,
June 1984.

50. R.M. Keller. Formal verification of parallel programs. Communications of the
ACM, 19(7):371 - 384, July 1976.

51. Bernd Kr£mer. Stepwise construction of non-sequential software systems using a
net-based specification language. In G. Rozenberg, editor, Advances in Petri Nets
1984, pages 307 - 330. Springer-Verlag, Berlin, 1985. Lecture Notes in Computer
Science, Vol. 188.

52. Bernd Kr~mer. SEGRAS - A Formal and Semigraphical Language combining Petri
Nets and Abstract Data Types for the Specification of Distributed Systems. In
Proceedings of the Ninth International Conference on Software Engineering, pages
116 - 125, Los Alamitos, California, March 1987. CS Press.

53. R.Y.L. Lai. Formal Specification and Verification of ISO FTAM Protocol. PhD
thesis, Mathematical and Information Sciences, La~[¥obe University, Melbourne,
Australia, 1989.

54. J. Loeckx. Algorithmic specifications: A constructive specification method for ab-
stract da t a types. ACM Transactions on Programming Languages and Systems,
9(4):646 - 685, October 1987.

328

55. P.M. Merlin. A study of the recoverability of computing systems. PhD thesis,
Information and Computer Science Department, UC Irvine, 1974. Tech Report,
No. 58.

56. J. Meseguer and U. Montanari. Petri nets are monoids: a new algebraic founda-
tion for net theory. In Proceedings of the Third Annual Symposium on Logic in
Computer Science, pages 155 - 164, Washington, DC, July 1988. IEEE Comp. Soc.
Press.

57. Meta Software. Design/CPN Reference Manual. Meta Software Corporation, 1993.

58. J.D. Noe and G.J. Nutt. Macro E-Nets for Representation of Parallel Systems.
IEEE Trans. Comput., C-22(8):718 - 727, August 1973.

59. G.J. Nutt. Evaluation nets for computer system performance analysis. In Proc
FJCC, AFIPS, pages 279 - 286, Montvale, N.J., 1972. AFIPS Press.

60. W. Reisig. Petri Nets and Algebraic Specifications. SFB-Bericht 342/1/90 B,
Technische Universit£t Miinchen, Iustitut fiir Informatik, Miinchen, West Ger-
many, March 1990.

61. W. Reisig and J. Vantherin. An algebraic approach to high level Petri nets. In
Proceedings of the Eighth European Workshop on Application and Theory of Petri
Nets, pages 51-72, Zaragoza, Spain, 24-26 June 1987.

62. Wolfgang Reisig. Petri Nets, An Introduction, volume 4 of EATCS Monographs
on Theoretical Computer Science. Springer-Verlag, Berlin, 1985.

63. F.J.W. Symons. Modelling and Analysis of Communication Protocols using Nu-
merical Petri Nets. PhD thesis, University of Essex, 1978. Dept. of Elec. Eng. Sci.
Telecommunication Systems Group Report No. 152, May 1978.

64. Tokmakoff, A. and Billington, J., Service Trading in Mobile Environments, In
Proceedings of the International Conference on Information, Communications ~J
Signal Processing: Trends in Information Systems Engineering and Wireless Mul-
timedia Communications (ICICS'97), Singapore, 9-12 September 1997, IEEE Sin-
gapore Section, Volume 1 of 3, ISBN: 0-7803-3676-3, pp. 417-421.

65. Tokmakoff, A. and Billington, J., Reachability Analysis of the ODP Trader us-
ing Equivalence Classes, In Proceedings of the Software Engineering: Education
Practice Conference (SE:E&P'98), Dunedin, New Zealand, 26-29 January, 1998.

66. Turner K.J., editor. Using Formal Description Techniques - An Introduction to
Estelle, LOTOS and SDL. John Wiley, New York, January 1993.

67. J. Vautherin. Parallel systems specifications with Coloured Petri Nets and alge-
braic specifications. In G. Rozenberg, editor, Advances in Petri Nets 1987, pages
293 - 308. Springer-Verlag, Berlin, April 1987. Lecture Notes in Computer Science,
Vol. 266.

68. G. Wheeler, A. Valmari, and J. Billington. Baby TORAS eats Philosophers but
thinks about Solitaire. In Proceedings of the Fifth Australian Software Engineering
Conference ASWEC'9~.,pages 283 - 288, Sydney, Australia, 23-25 May 1990.

69. G. R. Wheeler. Numerical Petri Nets - a definition. Research Laboratories Report
7780, Telecom Australia, May 1985.

329

A p p e n d i x

A S e t s , M u l t i s e t s a n d V e c t o r s

A . 1 Se t s

We make use of the following sets:

- N = {0, 1 , . . .} the natural numbers.
- g ~ = N U { o o }
- N + = N \ {0}, the positive integers
- N + = N + U {oo}
- Z = { . . . , - 1 , 0 , 1 , . . . } , the integers

A . 2 M u l t i s e t s

We define a multiset, B, (also known as a bag) over a basis set, A, to be the
function

B : A N

which associates a multiplicity, possibly zero, with each of the basis elements.
(We require multisets to have finite support .) There are t imes when we shall
consider a set as a special case of a multiset, where the multiplicities of each of
the basis elements is unity.

The set of multisets over A is denoted by #A (i.e. #A = [A ~. N]).
For a multiset B E pA, to avoid confusion, we sometimes use the notat ion
mult(a, B) = B(a) where a E A, for the multiplicity of a in B.

We may extend the definition to include the value co, and denote the set of
multisets over A, that allows infinite multiplicities, by # ~ A = [,4 , N ~] and
tha t which disallows multiplicities of zero by # + A = [A ~ N+] .

V e c t o r o r S u m r e p r e s e n t a t i o n W~ may represent a multiset as a symbolic
sum of basis elements scaled by their multiplicity.

B = E B(a)a
aEA

M e m b e r s h i p Given a multiset, B E # ~ A , we say tha t a E A is a member of
/3, denoted a E B, if B(a) > 0, and conversely if B(a) = 0, then a ~ B.

The empty multiset, 0, has no members: ga E A, 0(a) = 0.

C a r d i n a l i t y We define multiset cardinality in the following way. The cardinality
IBI of a multiset B, is the sum of the multiplicities of each of the members of
the multiset.

IBI : B(a)
aEA

330

E q u a l i t y a n d C o m p a r i s o n Two multisets, B1, B2 E/~A, are equal, B1 = B2,
iffVa e A, B l (a) = B2(a), and B1 is less than or equal to (or contained in) B2,
B1 <_ B2 iffVa E A, B l (a) < B2(a).

O p e r a t i o n s We define four binary operations on multisets, B 1 , B 2 E /~A,
known as union, intersection, addition and subtraction, as follows:

B = B1 U B2 iffVa E A B(a) = maz(B l (a) , B2(a))
B = B1 M B2 iffVa E A B(a) = min(Bl (a) , B2(a))
B = B1 + B2 iffVa E A B(a) = B l (a) + B2(a)
B = B1 - B2 iffVa E A (B l (a) > B2(a)) A (B(a) = B I (a) - B2(a))
We also define scalar multiplication of a multiset, B1 E #A, by a natural

number, n E N, to be

B = nB1 iff Va E A ,B(a) = n × B l (a)

A d d i n g ~ a n d S u b t r a c t i n g f r o m ~ For all n E N, n + oo = ~x~ + n = co.
For all n E N, ~ - n = ~ .

M u l t i p l i c a t i o n b y ~ For all n E N ~ +, ~ × n = n × ~ = c<~ but ~ x 0 =
O x c ~ = O .

A.3 V e c t o r s

There are t imes when we wish to subtract one multiset f rom another when
the above restriction on multiset subtraction does not apply. We then need to
consider multisets as vectors. We define a vector, V, over a (basis) set, A, to be
the function

V : A , Z

which associates a negative, zero or positive multiplicity, with each of the basis
elements. The set of vectors over A is denoted by vA (i.e. vA = [A , Z]). For a
vector, V E v A , to avoid confusion, we sometimes use the notat ion muir(a, V) =
V(a) where a E A, for the multiplicity of a in V.

Subtraction is a closed operation for vectors defined component-wise as fol-
lows. For V1, V2 E vA

V = V 1 - V2 iff Va E A, V(a) = V l (a) - V2(a)

We can also define scalar multiplication of a vector, V1 E v A , by an integer,
z E Z, to be

Y = zV1 iff Va E A, V(a) = z x VI (a)

E q u a l i t y a n d C o m p a r i s o n Two vectors, V1, V2 E v A , are equal, V1 = V2,
i f fVa E A, Vl(a) = V2(a), and V1 is less than or equal to V2, V1 < V2, iff
Va E A, Yl (a) < Y2(a).

