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Abstract  A new kind of algorithms, called distributed algorithms, has 
emerged during the last decade, aimed at efficiently solving problems that 
occur whenever distributed computing systems are to be made applicable 
to real-world problems. 
Distributed computing systems are frequently organized as networks of 
agents, with each agent asynchronously interacting with some of its 
neighboring agents. Algorithms running on such networks are called dis- 
tributed. 
A network algorithm is a schema, intended to run on any network in a 
whole class of networks. Such an algorithm can be modeled as a high-level 
Petri net schema. Each interpretation of the schema yields an algorithm 
for a concrete network. 
This paper suggests a variety of Petri net models of network algorithms, 
formally represents their most decisive properties, and proves their va- 
lidity. To this end, well-known techniques such as place invariants and 
traps are adjusted to Petri net schemata, and new techniques to prove 
progress properties are suggested. 

Introduct ion  

The paradigm of computing is shifting away from centralized one agent systems 
towards decentral networks o/agents. Each agent may exchange messages with 
neighboring agents in the network. 

Agents may jointly solve any kind of problems, frequently initiated by one 
of the agents. In most cases, all but the initiator agent are running identical 
algorithms. Each agent is usually aware of its neighboring agents only; thus no 
agent controls the entire network. An algorithm of this kind will be called a 
network algorithm in the following. 

A network algorithm is not intended to run on just one fixed network. Rather, 
a network algorithm is a schema of algorithms, which run on any network in a 
whole class of networks, such-as the connected networks, the ring- or tree-shaped 
networks, etc. 

A Petri net model of a network algorithm must reflect this aspect. Conse- 
quently, a network algorithm will be modeled by Petri net schema. A Petri net 
schema in particular includes symbols to denote sets and functions. Any instan- 
tiation of those functions turns the schema into a concrete high-level Petri net, 
representing an algorithm on a concrete network. 

This contribution assumes basic knowledge of high-level Petri nets. Some few, 
fairly obvious new concepts will be employed, introduced in an intuitive way by 



332 

help of the considered case studies. This applies likewise to verification tech- 
niques: We employ well established algebraic place invariants as well as newly 
designed weighted traps and pick-up rules for progress properties. The consid- 
ered case studies will clarify when and how they are to be used. In fact, choice 
and order of the case studies are governed by increasingly involved analysis tech- 
niques. 

1 C o n s e n s u s  i n  N e t w o r k s  

1.1 The problem 

A consensus algorithm organizes consensus about some contract or agreement 
among the agents of a network. This is not trivial in case all agents are homoge- 
neous, each agent can exchange messages with some neighbors only and there is 
no other communication medium available, e.g., a broker or mediator who could 
communicate with each agent. 

An algorithm will be constructed in the following, to solve this problem for 
any network of agents. The central activity of each agent is broadcast and receipt 
of messages, containing proposals for a joint contract. Each agent u is assigned 
a fixed set of other agents which u is to communicate with. Upon receiving 
a message, an agent returns a receipt to its sender. The algorithm does not 
guarantee that  consensus will ever be reached. But consensus will turn out to 
be stable: Once reached, it remains. 

1.2 The algorithm 

Figure 1.1 shows a Petri  net schema representation, ~1.1, of the consensus algo- 
rithm. 

U and M are symbols, to be instantiated by a set and a relation, as the text  
in the figure's lower par t  explains. U represents the set of agents, and M the 
relation of neighborhood, with M(x) = {yl(x,y) E M} denoting the set of sites 
which u is to send messages to. Notice that  M is not required to be symmetric. 
As a general rule, a message is always represented as a pair (receiver, sender). 
The equations in tim text  of Fig. 1.1 hence specify r(x) and ~(x) as the set of 
all messages to be received or to be sent, respectively, by x. 

Initially, each agent is pending and each request is completed. In this situ- 
ation, an agent u may send each of its neighbors v a message (transition a in 
mode x = u). Upon receiving a message (u, v) from v, a pending agent u returns 
a receipt, (v,u),  to the message's sender v (transition b in mode x = u, y = v). 
A pending agent u may turn agreed, provided all its messages are completed 
(transition d in mode x = u). Finally, upon receiving a message, an agreed agent 
u turns pending (transition c in mode x = u). 

Obviously, at any time, an agent is either pending or agreed, and a message 
is either completed or initiated. The algorithm does not guarantee that  the sites 
eventually all will agree. However, the algorithm guarantees stability: If all sites 
do agree, no site will return to pending; the algorithm terminates in this case. 
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d 

pending ~ agreed 

so_~ site fc_tt r, Y :site --+ set of messages 

so_~ message = site x site va__zr x, y : site 

const U : set of sites r(x) = {x} x M(x) 

const M : set of messages T(x) = M(x) x{x} 

Figure 1.1. Basic algorithm for distributed consensus 

1.3 Algebraic place invariants 
Here we are interested in techniques to prove the above-mentioned stability of 
the consensus algorithm. Of course, it is not possible to just inspect all reachable 
states with all agents agreed, because the net Z l l  is just a schema for in fact 
infinitely many models. Hence we look for techniques that  can be applied to 
the syntactical representation of ~1.1 and would allow to express and prove 
properties tha t  hold in all models. One technique of this kind are the well- 
known algebraic place invariants. In fact, they support  proof of stability, but  
they are not sufficient. In addition, symbolic traps will be used. 

Both, place invariants and symbolic traps, employ syntactical terms which 
at any concrete interpretation represent linear functions. For technical details, 
we refer to the Appendix. Figure 1.2 shows the matrix, initial state and two 
place invariants of the atgorithra of Z1.1. Shorthands for places, as introduced 
in Fig. 1.2, will be applied throughout this chapter. 

As usual, the arc inscriptions are taken as matr ix entries, with the minus 
symbol representing arcs from places to transitions, and ~- - T = 0 for all terms ~- 
(the term 0 is usually skipped). Each invariant entry is a term, including at most 
one variable; for convenience, the name of the corresponding place serves this 
purpose. In Fig. 1.2, the terms are the corresponding variables, up to the t e r m / ) .  
This term, with variable D ranging over relations, denotes {(v, u)t(u, v) E D}, 
i.e. inverts the pairs at D. The product of a matr ix  entry ~- with an invariant 
entry a is gained by substitution of ~- into each occurrence of the unique variable 
in a. For example, - r ( x ) .  C = -r(x) ,  and ~ ( x ) . / )  = (~(x)). The inner product  
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.Uhl I a b c d s o i l i 2  

A X M B --X 

c -rCx) (y,x) (y,~) 
D I ?(x) - (x ,y )  - ( x , y )  

A: pending agents C: acknowledged messages 
B: agreed agents D: initiated messages 

Figure 1.2. Matrix, initial state so, and two place invaxiants, il and i2, to the consensus 
algorithm,/21.1 

of the column a with i2 then is a. i2 = - r ( x )  . C + ~(x) . [~ = - r ( x )  + (~(x)) = 
- r ( x )  + r(x) = O, because (v, u) E r(u) iff (u,v) e ~(u), according to Fig. 1.1. 
Likewise, b. i2 -- (y, x ) .  C - (x, y ) .  b -- (y, x) - (x, y) = (y, x) - (y, x) = 0. The 
product  of each matr ix column with each of il and i2 evaluate to 0, hence both 
il  and i2 axe in fact place invariants of Z~I.1. Furthermore, so • i l  = U-  A = U, 
hence for each reachable state s holds s(A) + s(B) = U; this will for short be 
written 

A + B = U .  (1) 

Likewise holds: So • i2 = M • C = M, hence the equation 

C + b = M (2) 

holds at each reachable state. 

1.4 S y m b o l i c  traps 

A further property will be required, that  follows from an initialized symbolic trap 
of ~1.1. A t rap consists of a set P of places and expressions I p for each p E P ,  
such that  p is the only variable of I p, and for each transition occurrence t holds: 
If t removes the set qo of tokens from P and adds the set ql of tokens to P ,  then 

U IP(q°) C_ U IP(ql)" (3) 
PEP pEP 

For obvious reasons, P is called the domain, and the expressions I p are called 
the weight functions of the trap. For example, P = {A, C}, I A = r(A), and 
I v = C form a t rap of E: Transitions a and b retain the token load on I (A)  O C, 
transition c adds tokens; d is the only nontrivial transition, d removes x from 
A and r(x) from C, hence d removes r(x) from both r(A) and C, but d returns 
r(x) to C, hence d meets requirement (3). 

The initial value of a t rap is the union of the weighted tokens that  initially 
occur in its domain. For example, the initial value of the above described trap 
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of ~1.1, with domain {A,C} and weight functions I A and I c,  is I A (so(A)) U 
I v (so(C)) = IA(u )  U IV(O) = r(U) 0 0 = M. The initial value V of a t rap with 
domain P = { P l , - . . ,  Pn} and weight functions IF1, . . . ,  I P~ yields the inequality 

I P1 (s0(Pl)) + - . .  + I P~ (so(pn)) >_ V, (4) 

which holds for each reachable state. 
For the above example we obtain this way that  

r(A) + C > M (5) 

holds at each reachable state of El.1. 

1.5 Proving stability 

Stability of ~1.1, as informally described at the end of Sect. 1.2, can now formally 
be represented by the formula 

B = U - ~  A = O A D = O ,  (6) 

claimed to hold at each reachable state: A = 0AD = 0 implies tha t  no transition 
is enabled. With A = 0, transitions a, b, and d are not enabled. D = 0 likewise 
implies that  c is not enabled. Hence, in fact A = 0 A D = 0 implies stability. 

The above equations (1) and (2) together with the inequality (5) suffice to 
prove (6): Equation (1) implies r(A) + r(B) = r(U); hence, with r(U) = M 
following from the specifications of ~1,1, we obtain 

r(A) + r(B) = M. (7) 

Subtraction of (5) from the sum of (2) and (7) yields 

r(B) + D <_ M. (8) 

Furthermore, B = U -+ r(B) = M, and r(B) = M - + / 5  = 0 (by (8)), and 
b = 0 -+ D = 0. Transitivity of implication now yields 

B = U -~ D = O. (9) 

Furthermore,  B = U -~ A = O follows from (1), hence (6). 
This proof shows stability for each network N of agents and each reachable 

state of N.  It is exclusively based on the syntactical units of Fig. 1.1, and on 
theorems about Petri net schemata. 

2 P h a s e  S y n c h r o n i z a t i o n  

2.1 T h e  p r o b l e m  

Network algorithms work frequently in rounds or phases: Each agent eventually 
returns to its initial state, thus entering its next phase. 
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A synchronization mechanism is occasionally required, that guarantees syn- 
chronized execution of phases: No agent begins its (k + 1)st phase unless all 
agents have completed their k-th phase. Stated differently, whenever two agents 
are busy at the same time, they are executing the same phase. 

It is not entirely trivial to organize this kind of behavior in a network of 
agents that can exchange messages with some neighbors only, lacking any global 
agent such as a mediator, who could communicate with each agent. 

A phase synchronization algorithm will be presented in the following, to 
run on any connected, acyclic network (undirected tree). Figure 2.1 shows an 
example. Its leaves are a, c,g, h,j ,  k. Adding or deleting an arc without adding 

j h  

...... b ~  d e / / f  ~k--J 
c ~  ~ g  

Figure 2.1. 

or deleting nodes would make the network cyclic or unconnected, respectively. 

2.2 The algorithm 

Figure 2.2 shows the phase synchronization algorithm, E2a. Each agent alter- 
nates between the states busy and pending. The agent's round number increases 
by 1 upon reaching busy. 

Whenever changing its actual state, an agent consumes and produces mes- 
sages from and for neighboring agents, respectively. A message is represented as 
(receiver, sender). (The multiset notation f(x) - (x, y) denotes conventionally 
~(x) \ {(x,y)} and is defined only if (x,y) E ~(x).) 

All agents are initially busy in their 0-th round, and no message is available. 
For an agent u, occurrence of transition a in a mode x -- u and i = 0 furthermore 
requires the set ~(u)\ {(u, v)} of messages, for some v E W(u). With no messages 
for u available, this set must be empty, hence ~(u) = {(u,v)}, hence v must 
be the only neighbor of u. This, in fact, applies to the leaves of the network, 
viz. a, c, g, h, j, k in Fig. 2.1. Occurrence of transition a for some agent u yields 
a message (v, u) to u's unique neighbor, v. Some of the inner agents may then 
enable a (in Fig. 2.1, these agents are b and f). All agents are eventually pending 
and two messages, formed (u, v) and (v, u) of neighboring agents u and v are 
available. In Fig. 2.1, u and v may be d and e, respectively. But any other 
neighboring agents may likewise play this role. For example, agent h in Fig. 2.1 
may remain busy until all other agents are pending. This situation retains one 
message, (h, f) .  Move of h to pending then adds the message (f, h). 

Messages formed (u, v) and (v, u) start the wave back to busy. The partial 
order of occurrences of transition a is now reversed for transition b: The last 
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busy 

pending 

sort site 

sort message = site x site 

const U: set of sites 

const W : set of (sites x sites) 

r, 7: site ~ set of messages 

x, y : site 

var i : nat 

W = W  -1 

x , y e  U - ~ x W * y  

W~ = U  

xoW x I ... XnW Xn+ 1/x 

xi_ 1 ~ xi+ 1 for i=1 ..... n 

Xo:~ X n 

r(x) = W(x) x {x} 

~'(x) = r (x)  -1  

Figure  2.2. Phase synchronization 

agents having reached pending will be the first ones to go busy in the next 
round. The  last agents to go busy again are the leaves. 

A "lazy" site u may still be pending with a message (u, v) in round i, while 
its "diligent" neighbor v, in its (i + 1)st round has sent a further message to u. 
Hence two messages ibrmed (u, v) may coincidentalty be at  place messages. This 
does not perfectly meet the formalism of the Appendix, which disallows more 
than one copy of a token. To fix this problem, either include the round number  
as a further  component  to each message, or canonically extend the formal model 
to cover multiple occurrences of tokens, as suggested in e.g. [Weber et al 98]. 

2.3 P r o p e r t i e s  t o  b e  p r o v e n  

Two properties are to be proven. Firstly, two busy agents are in the same round. 
As a shorthand, for a place p and a token a, the t e rm p.a denotes at  a given 
s tate  tha t  there is at  least one copy of the token a at the place p. Hence we have 
to show tha t  the formula 

busy.(u,n) A busy.(v,m) -+ n = m (10) 

holds at each reachable state of ~U2.2. In the framework of tempora l  logic, this is 
a typical safety property, stating that  "never something bad happens".  

The second property to be proven states tha t  each agent will eventually reach 

each round. More formally: For each interleaved run So L~ sl L~ . . .  of Z2.2 holds: 
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If at state Sw holds busy.(u, n) then there exists an index j >_ w such that at 
s tate sj holds busy.(u, n + 1). We denote this by 

b u s y . ( u , n ) ~ , b u s y . ( u , n  + 1), (11) 

adapting notational conventions from temporal logic, particularly from [Chandy, 
Misra 88]. There, ~+ is called leads-to. 

This kind of properties has rarely been considered in the framework of Petri 
nets. In temporal logic, (11) is a typical liveness property, stating that  "even- 
tuaUy something good will happen". In particular, this kind of liveness proper- 
ties is entirely different from well-established reachability, which just  claims the 
chance to reach a distinguished state. Liveness, to the contrary, states that  a 
distinguished (kind of) state will inevitably be reached in each run (we always 
assume maximal runs; i.e. runs which are infinite or terminate with no transition 
enabled). 

2 . 4  P l a c e  i n v a r i a n t s  

As a matter  of convenience we employ shorthands of pairs and triples: 
(a,b)l = (a,b,c)l  = a, 
(a, b, c)1,2 = (a, c, b)l,3 ---- (b, a, c)2,1 = (a, b), 
(a, b) = (b, ~) 
which lift canonically to (binary or ternary) relations. 

Figure 2.3 shows three place invariants to the phase synchronization algo- 
rithm, Z2.2. il is quite obvious, whereas i2 and i3 are more involved. 

A 

B 

C 

a b 
- ( x , i )  (x , i+ l ) i  

-~(=) ~(=) 
+(=,y) -(~,=) 
+(y,=) -(~,y)  

(=, y,/) -(=, y, i) 

8O 
u x {0} 

il i2 
AI 

Cl r(Cl ) -{- r(Cl ) 
-2C1,2 - 2C2,1 

/3 
a(A) -&(A)  

- B 

0(Cl,3) - #(cl,3) 

A:busy 
B:messages 
C:pending 

~(u, n):= 2n. r(u) 
~(u, n):= 2n. e(u) 
~(~, n):= (2n + 1). r(~) 
/~(~, ~):= (2n + 1)- ~(~) 

Figure 2.3. Matrix, initial state, and four place invariants to ~U2.2 



339 

~2.2 has three important  place invariants. Two of them are quite intuitive. 
First of all, A1 + C1 = U, which for each u E U implies 

Al.u + Cl .u  = 1 . (12) 

Hence each site is always either busy or pending. Furthermore, il implies 

Ic,  I = Ic1al,  (13) 

hence each site u has always a unique round number, and if pending, it is pending 
with a unique site v. 

The place invariant B + B + r(C1) + ~(C1) = 2(C1,2 + C2,1) relates pending 
neighbors to their mutual messages. For each pair (u, v) of neighboring sites this 
implies 

B.(u ,v )  + B. (v ,u)  + r(C1).(u,v)  + r(C1).(v ,u)  (14) 
= 2. C1,2.(u,v) + 2" C1,2.(v,¢t ). 

Furthermore, -~C1 .u A C1 .v implies r (C1). (% u) = C1,2. (u, v) = 0 A r (C1). (u, v) = 
Cla . (v ,u )  = 1, hence, by (14), B.(u ,v )  + B . (v ,u )  = 1, hence with (12), 

Al .u  A ~Al.V -+ B.(u,  v) V B.(v,  u) . (15) 

Tile place invariant above furthermore implies 

IBI + IBI = 2tC1,2 + 6'2,1t - t r ( C i ) I -  I~(C1)t . (16) 

The third place invariant is ~(A) + N + fl(C1,3) = ~(A) + B + fl(Cl,a), which 
implies for all u, v E U: 

a(A) . (u ,  v) + B.(v,  u) + fi(Cl,a).(u, v) = a(A) . (v ,  u) + B.(u, v) + fl(V,,3).(v, u) . 
(17) 

This invariant links all places of ~2.2. 

2.5 Busy neighbors don't exchange messages 

In case two neighboring sites u and v are both busy, there is no message available 
from u to v or from v to u. In terms of Z2.2 this reads for all u E U and v C W(u):  

Al.U A Al .v  -+ B . (u ,v )  = B.(v ,u)  = 0 . (18) 

Upon proving (18), assume a state s with s ~ AI.uAA1 .v. Then at s holds A1 .u = 
Al .v  = 1, hence C1.u = Cl.v = 0 (by (12)), hence C1,2.(u,v) = C1,2.(v,u) = 0 
(by (13)), hence the proposition, by (14). [] 
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2.6 A property of  neighboring pending sites 

A neighbor v of a pending site u is pending with u, or u is pending with v. In 
terms of E2.2, for u E U and v E W(u), 

Cl .u  -~ C1,2.(u, v) V C1,2.(v, u) . (19) 

Proof of (19) assumes a state s with s ~ C1 .u = 1. Then at s holds for all w E 
W(u)  : r(C1).(u,w) = 1, hence particularly r(C1).(u,v) = 1, hence C1,2.(u,v)+ 
Cz,2.(v, u) > 1, by (14), hence the proposition. [] 

2.7 A site is pending with a b u s y  neighbor 

A pending site v with a busy neighbor u is pending with u. (Hence, with (13), 
at most one neighbor of a pending site is busy). In terms of E2.2, for u E U and 
v e w(u) ,  

AI.u A Cl.V --+ C1,2.(v, u) • (20) 

Proof of (20) combines two properties of 2~2.2: First, Cl.v implies C1,2.(u,v) v 
C1,2.(v,u) by (19). Second, Al .u  implies -,Cl.u by (12), hence -,C1,2.(u,v). [] 

2.8 Three pending neighbors f o r m  a sequence 

Assume a site v, pending with w. Then each other pending neighbor u of v is 
pending with v. In Z2.2 this reads for v E U and u,w E W(v): 

Cl.u A C1,2.(v,w) ~ C1,2.(u,v) • (21) 

Proof of (21) combines two properties of E2.2: First, C1 .u implies (31,2. (u, v)V 
Cz,2.(v, u) by (19). Second, C1,2.(v, w) implies -,C1,2.(v, u), by (12). [] 

2.9 B u s y  neighbors are in the same round 

If two neighbors u and v are both busy, they operate in the same round. In Z2.2 
this reads for u • U, v • W(u),  and n , m  • N: 

A.(u,n) A A. (v ,m)  --+ n = m . (22) 

To prove (22), let s be a reachable state of Z2.2 with s ~ Al .u  A Al.v.  Then 
at s holds Cl.u = CI.V = 0 by (12), hence ~(C1,3).(u,v) = fl(C1,3).(v,u) = O. 
Furthermore, B.(u, v) = B.(v, u) = 0, by (18). Combining both properties, (17) 
yields a(A).(u,  v) = a(A).(v, u). Then for ~ach n E N, A.(u, n) --+ A.(v, n). Then 
(22) follows with (12). [] 
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2.10 A property of  chains 

Given u 0 , . . . , u n  E U, the sequence U o . . . u n  is a chain if ui-1 E W(ui )  for 
i = 1 , . . . , n ,  and u i -1  ~ ui+l  for i = 1 , . . . , n -  1. 

Assume a chain uo .. • un, s tar t ing  with a busy site, u0, followed by a pending  
site, Ul. Then  all follower sites u 2 , . . . ,  un are pending.  In  $2.2 this reads 

Al.Uo A C l .u l  -~ Cl .u i  for all i = 1 , . . . ,  n . (23) 

To prove (23), let s be a reachable s ta te  with s ~ Al.uo A C1 .Ul. T h e n  at  s holds 
C1,2.(Ul, u0) by (20). Then  

--nC1,2. (tL1, ~2) (24) 

by (12). Now, contradic t ing (23), assume an index 1 < i < n with s ~ -'161.u i. 
Let j be the smallest  of those indices. Then  at. s holds Al .u j  by (12), hence 
C1,2.(uj-1, uj),  by (20). Then  C1,2.(ui-1, ui) for i = 2 , . . . ,  n by i tera ted appli- 
cat ion of (21). Then  in par t icular  C1,2.(Ul,U2), which contradicts  (24). [] 

2 .11  P r o o f  o f  t h e  s t a t e  p r o p e r t y  (10)  

We are now prepared  to prove (10) as follows: 
Let  s be a reachable s tate  with s ~ A.(u,n)  A A. (v ,m) .  Then  there  exists a 

chain U o . . . u ~  in U with u0 = u and un = v. Then  s ~ Al .u i  for i = 0 , . . . , n ,  
by (23) and (12). Then  at s holds A.(ui ,n)  for i = 0 , . . .  , n  by i terat ion of (22). 
Hence n = m. 

2 .12  P e n d i n g  s i t e s  h a v e  p e n d i n g  m e s s a g e s  

Here we s tar t  p roof  of the liveness p roper ty  (11). First ,  we observe pending  
messages in case all sites are pending: 

Cl.U --+ [BI > 0 . (25) 

P r o o f  of (25) is based on the observat ion tha t  an  undirec ted  tree with n nodes  
has n - 1 arcs. Hence, in Z2.2, 

Ir(U)T -- In(U)[ = 21U 1 - 2 . (26) 

Then Ct.U ---> IBt + tBI = 2tC1,2 + C2,11 - I,'(c1)1 - t~(c1)l (by (16)) = 4lU I - 

2(21u i  - 2) (by (26) )  = 4. 

2 .13  .~2.2 is d e a d l o c k  f r ee  

Each  reachable s tate  of Z2.2 enables at  least one action. (27) 
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Proof. Let s be a reachable state of Z2.2. 1st case: s ~ Al.u for at least one 
u E U. Then there exists a chain Uo.. .  un, n > 0, of sites with s ~ Al.Ui for all 
i = 0 , . . . ,  n, and -~A.v for all v E W ( u n )  - un-1. Hence for all such v holds s 
B. (v ,u )  V B . (u ,v ) ,  by (15). Now we distinguish two cases: Firstly, s ~ B . (u ,v )  
for all v E W ( u n )  - un-1.  Then s enables a(un, un-1,  k), where s ~ A.(un, k). 
Otherwise, there exists some v • r(un) - un-1 with s ~ B.(v,  u). Furthermore, 
s ~ C . (v ,u ,k )  for some k • N (with (12)). Then s enables b(v ,u ,k) .  2nd case: 
There is no u • U with s ~ Al.u. Then s ~ C1.U (with (12)). Then IBI > 0, 
by (25). Hence there exist u ,v  • U with s ~ B. (u ,v) .  Then s ~ C . (u ,v , k )  for 
some k • N, by (14). Then s enables b(u, v, k). [] 

2.14 The  weight  funct ion ~/ 

A function "y(u,v) will be considered, which for neighbors u and v yields an 
integer value 7(u, v) at any given state s. Values 7(ui-1, ui) remain in a limited 
interval for all chains u o . . .  un, and occurrences of transitions increase those 
values. For u, v E U, let 

7(u ,v )  := B. (v ,u )  + ZneN(2n. A.(u ,n)  + (2n + 1). C1,3.(u,n)) • 
(28) 

Then (27) implies 

7(u,v) = 7(v, u) . (29) 

Furthermore, for neighbors w of u, C1,2.(u, w) = r(C1).(u, w); hence 
B.(w,  u) < 2 (by (14)), hence 

]7(u,v) - 7(u,w)[ _< 2 (30) 

again by (14). Then for each sequence u0 . . .  uk of sites, (29) and (30) imply 

[7(u0,ui) -~/(uk-i ,Uk)[ <_ 2 ( k -  1) . (31) 

2.15 P r o o f  of  the  l iveness property  (11) 

Inspection of ~2.2 yields for each step r - ~ s  with t = a(u ,v , i )  or t = b(u,v,i):  

If 7(u, v) = n at state r, then ~(u, v) > n at state s . (32) 

Property (27) implies at least one pair (u, v) of neighbors with infinitely 
many occurrences of a(u ,v , i )  and b(u,v, i) .  Then in the set of all reachable 
states, 7(u, v) is not limited, by (32). This applies to all neighbors u, v, by (31). 
Hence A. (u ,n )  ~ A . (u ,n  + 1). 
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3 Leader Elect ion  and Spanning  Trees 

3.1 A leader e lect ion algorithm 

The sites of a network are frequently supposed to elect one site as their leader. 
In case the leader site crashes, a new leader must be elected. The sites are given 
unique names to this end (e.g., integer numbers) and a total order is assumed 
on those names. 

( ~ x , y )  

updating 

sort site var x, y, z : site 

sort state : site x site x,y • U --~ x W * y  

const U : set of sites W 1 u W 2 = U 

const V,W : set of states V = {(u,u) l u • U} 

_< : totaJ order on U M(x,y) = W(x) x {y} 

fct M : state --~ set of states 

Figure 3.1. Basic leader election 

Figure 3.1 gives a distributed algorithm for the election of a leader in any 
connected network. Initially, each site is pending and assumes its own name as a 
candidate for the leader. In later states, a pending site holds a better candidate, 
i.e., one with a larger name. Generally, a pending site u together with its actual 
candidate v is represented as a state (u,v). Upon pending with v, u informs 
each neighbor in W(u) about v by action a(u,v) and then becomes updating. 
An updating site u with its actual leader candidate v may receive a message 
(u, w). In case the newly suggested candidate, w, does not exceed v, the site u 
remains updating with v (action b(u, v, w)). Otherwise u goes pending with the 
new candidate w (action c(u, v, w)) and continues as described above. 

A message (w, v) E M(u, v) takes the form of a state, with u informing the 
site w about v as a candidate for the leader. There may occur multiple copies of 
identical messages (as in case of communication protocols). This can easily be 
fixed, by extending each message with its sender. 

Given a connected network with a finite set U of sites and a total order < 
on U, the algorithm terminates with updating all pairs (u, w), where u E U and 
w is the maximal element of U. 
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Two neighbors u0, ul of a site w may both  be pending with the same candi- 
date, v. Concurrent  occurrences of a(uo, v) and a(ul, v) then yield two identical 
messages (w, v). This does not perfectly meet  the formalism of the Appendix, 
which disallows more than one copy of a token. To fix this problem, either in- 
clude the sender as a further component  to each message, or canonically extend 
the formal model to cover multiple occurrences of tokens, as suggested in e.g. 
[Weber et al 98]. 

3 . 2  P r o p e r t y  t o  b e  p r o v e n  

The crucial proper ty  to be proven is a typical liveness proper ty  (in the tempo- 
ral logic framework, c.f. Sect. 2.3): Each run terminates with each agent being 
in]ormed about  the leader's number. Using the leads-to operator  already used 
in (11), the initial s tate s~  of E3.1, the maximal  agent max and the formula 

7r = updat ing.U x {max} A pending = 0 A messages = 0 (33) 

we have to show 

sea l  ~ 7r. (34) 

As explained in Sect. 2.3, (34) states that  in each interleaved run so ~ sl ~2~ . . . ,  
each occurrence sk of sE is followed by a s tate  sk+i at which r holds. 

Proof  of (34) can considerably be eased by help of concurrent runs. This 
notion will be considered in the following. 

3 . 3  C o n c u r r e n t  r u n s  

In its essence, a concurrent run consists of the transition occurrences of an in- 
terleaved run, partially ordered by their causal dependencies. As an example, 
Fig. 3.2 shows a network of three agents, U = {1, 2, 3}. Arrows indicate the 

1 ~  = 3  

Figure  3.2. 

neighboring relation. Representing each occurrence of a with valuation x -- u 
and y = v by auv and each occurrence of b or c with valuation x = u, y = v 
and z = w by buvw and cuvw, respectively, one of the interleaved runs of the 
instantiat ion of ~3.z by the above network is 

all-a22-a33-cl13-b221-b331-a13- 
b132-c223-a23-b133-b233-b333. 

(35) 
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It describes the initial occurrences of transition a for all three agents, followed 
by agent l ' s  adoption of the better candidate, 3, and the other two agents'  
deletion of agent 1 as a candidate for the leader. Then agent 1 suggests 3 as a 
better candidate, adopted by 2, and deleted by 3. 

Figure 3.3 shows the corresponding concurrent run. Its elements are ordered 

all f =.c113 ,a13 %b132 , b 1 3 3  

a33 ~- b331 , b333  

Figure 3.3. 

from left to right, with left the earlier and right the later transition occurrences. 
The upper, middle and lower horizontal lines show the "lifeline" of the agents 
1, 2 and 3, respectively. The remaining arcs denote causal precedence due to 
messages. 

Different interleaved runs may correspond to the same concurrent run; each 
total extension of the partial order of a concurrent run is an interleaved run, and 
every interleaved run can this way be obtained from a concurrent run. 

As a further step, to ease construction of concurrent runs and to support 
formal reasoning, it is worthwhile to include the corresponding local states in 
between each neighboring transition occurrences, as well as before the minimal 
and behind the maximal elements. Figure 3.4 shows the respective extension 
of the concurrent run in Fig. 3.3. For a place p, puv  denotes a local state, with 
token (u, v) at p. Shorthands for places, as introduced in Fig. 3.4, will be applied 
in the rest of this chapter. 

Unordered local states may arise together in an interleaved run. Even more, 
each maximal set of pairwise unordered local states constitutes a global state of 
the corresponding interleaved runs. 

3.4 P r o g r e s s  on  c o n c u r r e n t  r u n s  

Here we consider liveness properties that  are based on concurrent runs. In anal- 
ogy to the leads-to operator of Sect. 2.3, a formula 

p ~-+ q (36) 

(p causes q) states for each concurrent run K: I f p  holds at a global state So of K 
then there exists a state sl, reachable from So in K,  where q holds. Stated differ- 
ently, (36) holds in a concurrent run K iff there exists at least one interleaving 
of K (as defined in Sect. 3.3), at which p ~+ q holds. 
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C12 

A 1 1 - ~ a l l  ~ 1 1 - - - ~ c 1 1 3 - ~ A 1 3  ,. 

. .  _/_ A _ _ _ " -  
A22 a~z~' -~ ' : , ' - - -= , ,  b221-=- B22 

/ C 3 1  

A33-~ a33---~ B 3 3 - ~  b331--b B33 

A : pending 
B : updating 
C : messages 

a13 = B13---~b132. = B13 * b133 = B13 

~ C223 - ~  A23- -"  a22 - -~  B23 - ~  b233 - - ~  B23 

• b333 • B33 

Figure  3.4. 

To complete the definition, p ¢-~ q is said to hold in a system Z iff p ~-~ q 
holds for each concurrent run of Z.  

As a first example,  assume any instantiation of U and W in Fig. 3.1 (which 
then fixes V and M).  Then a token (u, w) at  pending enables the transition a in 
mode x = u and y = w. There exists no other transition tha t  could engage the 
token; hence a(u, w) will occur. With  shorthands of Fig. 3.4 this is written 

A.(u, w) a(~v) B1At. (37) 

Replacing the causes operator  '-~ by the leads-to operator  ~t would (37) render 
valid in Z3.1. But (37) can be embedded into a context. Assume a global s tate s 
in a concurrent run K where A.(u, w) A B1.U \ {u} holds. Again, s enables 
a(u,w), among many other transitions, but in K we consider occurrence of 
a(u, w), obtaining 

A.(u,w) ~ B1.U. (38) 
^B1.U \ 

B1.U\  {u} is the context of (38). Replacing "-~ by ~-~ in (38) in general invalidates 
the formula in E3.1, as there may be an interleaving with a transition tha t  
invalidates B1 .U \ {u} before a(u, w) would occur. 

As a second example, let s be a global s tate such tha t  B1.U A C = N ~ 0 
holds at  s, with shorthands B and C as in Fig. 3.4 and some set N C_ M(U) 
of messages. N ¢ 0 implies some u, wo E U with C.(u, wo), and B1.U implies 
some v E U with B.(u,v). With the valuation x = u, y = v and z = w, the state 
s enables b(u,v, wo) or c(u,v, wo). There may be some other message (u,w) 
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in C which u engages in (instead of engaging in w0). But  it is guaranteed tha t  
b(u, v, to) or c(u, v, w) will occur, for some w • U. This is graphically represented 
as 

B1.U 

'0~'~ ' ~ C c N  

C," 
B~.U (39) 
C = N ¢ ~  

A.(u,w) 
B 1U\{u} 

3.5 Fundamental  state properties 

An obvious place invariant implies that  each site is either pending or updating: 

A1 + B1 = U. (40) 

Furthermore, a site v, already knowing the leader, is related to its neigh- 
bors by a property derived from a trap. To this end, assume a state s and 
two neighboring sites u,v • U, and s ~ B.(u, max). s has been reached 
by occurrence of a(u, max). This action also produced C.(v, max). With s 
considered as (a new) initial state, an initialized trap yields the inequality 
A.(u, max) + C.(v, max) + d.(v,  max) + B.(v, max) > 1. Together with (40) this 
yields the valid propositional formula 

B.(u, max) V C.(v, max) V A.(v, max) V B.(v ,max) .  (41) 

Intuitively formulated, each neighbor of a site already updating with the leader 
is also aware of the leader, or a corresponding message is pending. 

3.6 A fundamental  progress property 

A weight function f will be required, that  assigns each state (u, v) its "better" 
candidates. So, for all u, v E U let 

f ( ~ , v )  = {(~,w) I w • u A w  > v}. (42) 

Obviously, f(u,  v) = ¢ if v = max. 
Now, let us consider a state in which all sites are updating (i.e. B1.U), f (B)  = 

M for some M ~ ~ and C = N for some set of messages N. In such a state 
some site not yet knowing the leader will eventually find a bet ter  candidate or 
will consume one of its pending messages. Thus, eventually a state in which all 
sites are updating and (C C Nt A f (B)  = M) V f (B)  C M will be reached. This 
is verified by the proof graph of Fig. 3.5. The proof graph's nodes are justified 
as follows: 
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Let ¢p :=B 1.U A 

B2"max b(u,v,w) )5) q~ 

CcN 

f(B) = M 

1) ~ ~ 2) ~ ' ' - 3) c a(u,w) 

C = N  C = N  ~ O B 1.U\{u} 

f(B) = M ~ E~ fiB) = M B2.max 

A.(U,W) 

W > V  

; 4)¢p ; 6)¢p 

f(B) c M ((C c N Af(B) = M) 

vf(B) c M) 

Figure 3.5. Proof graph for 223.1 

node 1: B2.max, f (B )  ~ 0 and the graph's connectedness imply 
neighboring sites u and w, B.(u, max), and B.(v,i) with 
i < max. Then C.(u, max) by (41) and (40). 

node 2: C ~ 0 implies some C.(u,w), and ~o implies some B.(u,v). 
This enables the occurrence of b(u, v, w) or c(u, v, w). 

node 3: by the occurrence rule. 
nodes 4 and 5: propositional logic. 

3.7 Proof  of (34) 

The proof graph in Fig. 3.5 shows 

9o ¢--4 ~o 
C = N ((C c N A  f (B )  = M).  
f (B)  = M ~ 0 vf(B)  c M) 

(43) 

C may shrink finitely often only, hence finitely many iterations of (43) yield 

C = N f (B)  C M .  
f (B )  = M ~ 0 

(44) 

A remaining message is cleared by 

C = N  C c N  
/ ( B )  = 0 / ( B )  = 0 

(45) 

as C.(u, v) A f ( B )  = ~ implies C.(u, v) A B.(u, max), hence enables b(u, v,max). 
The following proof graph now proves (34): 
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1 ) s  Z C a(V),, ) 2 ) B . V  

, /  
) 3) ko C ) 4)~p C 

C = N f(B) = E~ 

f(B) = M ;~ 0 

-% 
) 5 ) (p  ...... 

C = O  

f(B) = 0 

) 6) C = 0  

B.U x {max} 

A = ~  

Its nodes are justified as follows: 

node 1: by the occurrence of a(v, v) for each v E V. 
node 2: propositional reasoning. 
node 3: finitely many iterations of (44). 
node 4: finitely many iterations of (45). 
node 5: by definition of ~o and ] .  

3.8 A variant o f  the algorithm 

The above algorithm terminates with each site holding the leader's name. As 
a variant, each site will now be informed about  its distance to the leader and 
about  a distinguished neighbor closer to the leader. A site then may effectively 
communicate with the leader along its distinguished neighbor. The respective 
paths to distinguished neighbors form a minimal spanning tree in the underlying 
network. Figure 3.6 gives the algorithm. 

( ~ x , Y , O  

updating 

so~ site va_.!r i, j : nat 

so___~ state = site x site × (nat w {o)}) vat" x, y, z : site 

const l ,  r : s i t e  x,y e U ~ x W * y  

const U : set of sites W t L) W 2 = U 

const V : set of states r E U 

const W : set of (sites x sites) _L ~ U 

_< : total order on U V = ((u,J_,w) I u e U \ {r}} 

fc t  N : site x nat ~ set of states N(x,y,i) = W(x) x {y} x {i} 

Figure  3.6. Shortest distance to a root 

Initially, the leader r is pending with itself as a path to the leader candi- 
date, and distance 0 to the leader. All other sites are initially updating with the 
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unspecified leader candidate _L and infinite distance. In later phases, a pending 
token (u, v, n) indicates that  there is a path of length n from u along v to the 
leader. A pending site u forwards its actual distance n to all its neighbors (by ac- 
tion a(u, v, n)) and then turns updating. An updating token (u, v, n) may receive 
a message (u, w, m). In case the reported distance m of w to the leader would not 
improve the actual distance n, the site u remains with distance n along neighbor 
v (action b(u, v, w, n, m), with ordered set (x, y, z, i, j )  of variables). Otherwise u 
goes pending with distance m + 1 along neighbor w (action c(u, v, w, n, m), with 
ordered set (x, y, z, i, j )  of variables). 

This algorithm can be generalized to a set R C U of leaders in the obvious 
way: Initially, pending carries {(r , r ,0)  I r e R} and updating {(u,J.,w) I u e 
U \ R}. The algorithm then terminates with updating triples (u, v, n), where n is 
the minimal distance to a leader and v the name of a neighbor closer to a leader. 

4 L o a d  B a l a n c e  o n  R i n g s  

A service site is intended to execute tasks, provided by the site's environment. 
At any reachable state a service site has its actual workload, i.e., a set of tasks 
still to be executed. The workload increases or decreases due to interaction with 
the environment. 

Now assume a set of service sites, each one autonomously interacting with its 
environment. Their  individual workload may be heavy or low in a given state, 
and it is worthwhile to balance them: A site with heavy workload may send some 
tasks to sites with less heavy workload. The overall workload in a set of service 
sites is balanced whenever the cardinality of the workload of two sites differs at 
most by one. 

A distributed algorithm is constructed in the following, organizing load bal- 
ancing in a set of service sites. The communication lines among sites are assumed 
to form a ring. Each agent u alternately sends a workload message to its right 
neighbor, r (u) ,  and a task message to its left neighbor, l(u). A workload mes- 
sage of u informs r(u) about the cardinality of the actual workload of u. A task 
message of u depends on the previous workload message of l(u): If this message 
reports less tasks than u has, the next task message of u transfers one of u's 
tasks to l(u). Otherwise, the next task message of u transfers no task to l(u). 
Intuitively formulated, a site u forwards a task to l(u) whenever the workload 
of u exceeds the workload of l(u). 

4.1 A distributed load balance algorithm 

Figure 4.1 shows a load balance algorithm with fixed workload: The overall 
number of tasks remains constant. Each state of a site u is represented as a pair 
(u, n), with n the cardinality of u's actual workload. The task tra.nsfered from u 
to l(u) by a task message (l(u), 1), is not represented itself. 

With the ordered set (x, i , j )  of variables, action in]orm right describes 
communication with right neighbors: A site u with n tasks with action 
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inform r igh t (u ,n ,m)  receives a task message (u ,m)  (with m = 0 or m = 1) 
from r(u) ,  updates  its actual  workload, n, and returns a corresponding work- 
load message (r(u), n + m) back to r(u) ,  indicating tha t  u has now n + m tasks. 
With  the same ordered set of variables, actions send left no task and send left 

upc 
me 
( 

receive inform 
state I right from right . . . . . . .  

(x,j) =, I (X,I+J~ = / , e ' ~  (X,I) - r ' ~ ' ~  (r(x) , i )  

,,° 'x."t t 
ge t , ~ t a t e  3 state ( 

(z (x),~) ~ (x,l) 

we kload 
m~ 5sage 

) 

sort site 
sort  alloc = site x nat 

const U : set of sites 
coast V : set of alloc 
!qt l ,  r : site -> site 

v ~  i , j  : nat 
va___r x ,y  : site 
V x e  U 3 l i e  n a t : ( x , i ) e  V 
V x  V y  3 n e nat: y = rn(x) 

(r(x)) = x 

Figure  4.1. Distributed load balance 

one task describe communication with left neighbors: A site u with n tasks re- 
ceives a workload message (u ,m)  from l(u), compares n and m,  and returns a 
task with action send left one task(u, n, m)  in case its actual workload, n, ex- 
ceeds l(u)'s reported workload, m. Technically, this is denoted by the inscription 
i > j ,  which denotes tha t  transition send left one task may only occur in a mode 
where the value assigned to i exceeds the value assigned to j .  Otherwise, u sends 
a task message with send left no task(u, n, m),  t o / ( u ) ,  containing no task. 

Initially, each site u informs r(u) about  its actual  workload. 

4.2 Decisive properties of the algorithm 

The above algorithm never terminates; each run is infinite. The overall workload 
is eventually balanced, as described above. Two cases may be distinguished, 
depending on the overall workload w := ~vey2v and the number  IUI of sites: 

In case w is a multiple of IUI, a state will be reached where transit ion send left 
one task remains inactive forever, and state1, state2, and state3 together  contain 
the tokens (u, n) with u E U and n = TU[' • Otherwise a state will be reached where 
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for all tokens (u, n) and (v, m) in state1, state2, and state3 holds Irn-nl < 1, and 
this remains valid forever. The algorithm behaves quite regularly: With initially 
V at state1, it evolves exactly one concurrent run. This run is strictly organized 
in rounds: All sites concurrently execute action inform right and produce a 
workload message for their respective right neighbor. Then all sites concurrently 
execute send left no task or send left one task, thus producing a task message 
for their respective left neighbor. Finally, receive from right completes a round. 

4 .3  P r o p e r t i e s  to  b e  p r o v e n  

Figure 4.2 is a redrawn version of the distributed load balance algorithm. We 
have to show that the overall workload remains constant, eventually is balanced, 
and henceforth remains balanced. 

d A a 
r (x,j) ~ " l  (x,i+j) = Q  (x,i) = r " ' - I  (r(x),i) -,, 

) L (x., ( 
(l (x),0) ( x , i - 1 ) ~ ~ / ( x ' i ) ~ ' '  " -- (x,j) .., 

\ ./ 
(z (x), l)  ~ .  (x,j) 

c 

D 

sort site var i, j : nat 
sort alloc = sitex nat YM x,y : site 

V X E  U 3 1 i E  nat:(x, i )e V 
¢0nst U : set of sites V x V y 3 n E  nat :y=rn(x)  
(;0nst V : set of alloc I (r(x)) = x 
fct l ,  r : site --) site 

Figure 4.2. Renamed distributed load balance 

A formal representation of those properties in terms of Ea.2 can be based on 
the following functions. For any place p E {A, B, C, E} and any site u E U, let 

O n iff -~pl.u 
a(p, u) := iff p.(u, n ) '  

a(u) := Zpe{A,B,C,E} a(p, u), and 
(46) 

:= 
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These functions describe the workload of site u at  place p, the entire workload 
of u and the overall workload in the system, respectively. The initial overall 
workload is k iff a~4. 2 ~ a -- k. A balanced state  meets the predicate 

balanced := u ,v  e U --4 In(u) - a(v)l _< 1. (47) 

So we have to show the state proper ty  

Z4.2 ~ a = k (48) 

and the progress proper ty  

Z4.2 ~ a~  ~4 balanced. (49) 

Furthermore,  we have to show that  all states reachable from a balanced s tate  
t 

are balanced, i.e., for each step r - 4  s, 

balanced(r) --4 balanced(s).  (50) 

4.4 Place  invariants  

We have two quite obvious place invariants. First, each site is always in one of 
the three states of Z4.1 (together with its token toad): A1 + B1 + C1 = U (with 
U = V1 according to the specification of Fig. 4.2). Hence in part icular  for each 
u E U holds 

Al. l (u)  + Bl . l (u)  + Cl.l(u) = 1. (51) 

Second, each site is either in the quiet state1 or has sent a workload message to 
its right neighbor (i.e., is the left neighbor of the first component  of a workload 
message), or is to receive an update  message: A1 + r(D1) + E1 = U. Hence for 
each u E U follows Al. l (u)  + r(D1).l(u) + El . l (u)  = 1, which in turn  yields 

Al. l (u)  + Dl .u  + El . l (u)  = 1. (52) 

4.5 Further propert ies  of  the  a lgor i thm 

Here we observe and exploit a particular kind of regular behavior of Z4.1, tha t  in 
a stronger version has been the essence of the phase synchronization algorithm, 
E2.2. In each sequential run of Z2.2, each reachable s tate  is eventually followed 
by a s tate  where all sites are busy. A similar, weaker property holds in Z4.1: In 
each concurrent run, each reachable state is eventually followed by a s tate  where 
all sites are in their local s tate state 1. This means that  in ~ . 2  holds the formula 
true ~4 "AA1.U. Generally, a formula p is a ground formula of a system net Z 
iff true ~-4 p holds at Z.  

Two basic properties are required in the following: the ground formula A1.U, 
and an upper bound for the workload of the sender of a workload message. To 
s tar t  with, we first show: 

A1.U is a ground formula. (53) 
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Upon proving (53), observe that  all steps starting at A1.U are shaped 

A1 a(~)  A1.U - u A BI.u A Dl.r(u), for some u • U and n • N. Then (53) 
follows from Theorem 18.2 and the following proof graph: 

1) A1.U - u A Bl.u A Dl.r(u) ¢-+ 
2) B1 .U A D1.U ~-~ 
3) C1 .U A E1.U ~-~ 
4) A1.U. 

Its nodes are justified as follows: 

1) by occurrence of a(v, n) for all (v, n) E V, v ~ u 
2) by occurrence of b(v, n, m) or c(v, n, m) for all v E U 
3) by occurrence of d(v, n, m) for all v • U. 

Second, we show that  a workload message tops its sender's token load: 

D.(u,n) -~ a(l(u)) <_ n. (54) 

(54) is obviously true at the initial state because D = 0. Inductively assume a 

step r - ~  s with r ~ (54). Upon proving s ~ (54) two cases are distinguished: 

i. Assume r ~ Dl.u and s ~ D.(u,n). Then t = a(l(u),n) (by the structure of 
the net). Then s ~ B.(l(u), n) (by the occurrence rule). Hence s ~ Bl. /(u) ,  
hence s ~ -~Al.l(u) A -~Cl.l(u), by (51). Furthermore, the assumption of 
s ~ D.(u, n) implies s ~ Dl.u, hence s ~ -~El.l(u) (by (52)). Both argu- 
ments together imply a(l(u)) < a(B.l(u)). Then s ~ B.(l(u),n) implies the 
proposition. 

ii. Assume r ~ a(l(u)) <_ n and s ~: a(l(u)) < n. Then t = c(u,n,m), for 
some n ,m e N (by the structure of the net). Then s ~ El.(l(u),n) (by the 
occurrence rule). Then s ~ -~Dl.(u, n) (by (52)), hence the proposition. 

4.6 A d e c r e a s i n g  we igh t  

A weight function T on states will be employed, defined for each state s of E4.2 
b y r ( s ) = n i f f s  

E eua(u) = n. (55) 

It  will turn out tha t  no step increases T. Furthermore, T decreases upon occur- 
rence of c(u,n,m), provided m -t- 1 is smaller than n. 

First we show that  c does not increase T: Let r s be a step. Then 

r ( r )  r(8). (56) 

In order to show (56), observe that  at r holds (*) B.(u, n) as well as (**) D.(u, m), 
due to the occurrence rule. Furthermore, with r ~ a(l(u)) = a A a(u) = b, at r 
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holds b _> n by  (*), n > m by  inscr ipt ion of t rans i t ion  c, and m >_ a( l (u)) ,  by  
(**) and  (54); hence (***) (a - b + 1) <_ 0. Now, 

T(S) = T(r) -- a 2 -- 52 + (a + 1) 2 -t- (b - 1) 2 (by the  s t ruc tu re  of  c(u, n, m))  

= v( r )  - a 2 - b 2 + a  2 + 2 a +  1 + b 2 - 2 b +  1 

= + 2 (a  - b + 1) 

< v(r) ,  by (***), hence (56). 

c(u,n,m)) 
(56) can  be  s t r eng thened  in case a(u)  > a( l (u))  + 1: Let  r s be  a s tep  
of $4.2 with a(u)  > a(l(u))  + 1. T h e n  

> (57)  

P r o o f  of (57) is a slight var iant  of the  above p roof  g raph  of (56): b > a + 1 now 
implies  (a - b + 1) < 0. Then  the  last  two lines read  r ( r )  + 2(a - b + 1) < T(r). 

General iz ing (56), no s tep a t  all increases T: Let  r - ~ s  be  a s tep  of ~4.2. T h e n  

~(r)  > ~(s).  (58) 

To prove (58), observe t ha t  T(r) ~ T(S) implies t = c(u, n, m) for some u E U 
and  n, m E N, by definit ion of ~- and  a ,  and  the  s t ruc tu re  of Z4.2. Then  (58) 
follows f rom (56). 

4 .7  D e s c e n t s  

A descent of length k consists of a sequence u , / ( u ) , / 2 ( u ) , . . . ,  Ik+l(u) of sites, 
wi th  token loads decreasing by 1 f rom u to l(u) and by any  n u m b e r  f rom lk(u) 
to  I k+l (u), and identical  token load o f / ( u ) , . . . ,  Ik(u). More precisely, for any site 
u E U and any  s ta te  s, the  descent of u at s amoun t s  to  k (wri t ten:  5(u) = k) 
iff there  exists some n E N with  

a(u) = n + 1, 
a ( l i ( u ) ) = n  (i = 1 , . . . , k ) ,  (59) 
0 " ( / n + l ( u ) )  ~ n -- 1. 

Figure  4.3 outl ines examples .  
In  general ,  there  m a y  exist s ta tes  s wi th  undefined descent  5(u).  Even  more ,  

obviously  holds for all s ta tes  s of  ~4.2: 

s is ba lanced iff no site has a descent  a t  s. (60) 

In  the  sequel we will show tha t  large descents reduce to  small  ones and  small  
descents  reduce the  weight ~-. Each large descent  reduces to a smal ler  one, as 
exemplif ied in Fig. 4.3. 

n l . v  A 5(u) = k A k > 2 ~+ A1.U A 5(l(u)) = k - 2. (61) 

This  proposi t ion  follows f rom the following proof  graph:  
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before , I I I I  [1 
U 

r, R! a~r I I  =2 
I I , ~<.o)~=2 

U 

Figure 4.3. Reduction of a large descent 

1) A1.UAS(u)  = k A k > 2 - - +  
2) A1.U A A.(u, n + 1) A A.(li(u), n) (i = 1 , . . . ,  k) h A.(l k+l (u), n - j) ~-+ 
3) B1.U A D1.U A B . (u ,n  + 1) A B.(l i (u) ,n)  (i = 1 , . . . , k )  A D.(u,n)  A 

D.( l i (u) ,n)  (i = 1 , . . .  , k -  1) A D . ( i ~ ( u ) , n - j )  
4) C1.UAE1.UAC.(I i(u) ,  n) (i = 1 , . . . ,  k -  1) AC.(I k (u), n - j )  AE.(l(u) ,  1) A 

E.(Z~(~),0) (i = 2 , . . .  ,k) 
5) A1.U A A . ( l ( u ) , n +  l )AA . ( l i (u ) ,n )  (i = 2 , . . .  , k -  1) AA. ( lk (u ) ,n  - 1) -~ 
6) AI.U A 5(l(u)) = k - 2. 

Its nodes are justified as follows: 

node 1: there exist n, j > 1 with the described properties, according to (59) 
node 2: by occurrence of {a(v ,m)  I v e U A A . (v ,m)}  
node 3: by occurrence of c(u ,n  ÷ 1,n), b(l i(u) ,n,n)  for i = 1 , . . . , k  - 1, 

c ( l l : ( u ) , n , n - j ) ,  and b(v ,m,m' )  or c (v ,m ,m ' )  for all v ~ li(u) (i = 

0 , . . . ,  k) 
node 4: by occurrence of { d ( v , m , m ' )  I v E U A C.(v ,m)  A E . (v ,m ' ) }  
node 5: by (59). 

Each descent of length 0 reduces the weight v, as outlined in Fig. 4.4. 

before ~ n = 2 o(u) z + o(l (u)) 2 = 10 
S(u) = 0 

U 

alter no descent o(u~ + o( l  (u)~ = 8 

Figure 4.4. Descent of length 0 
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Formally, 

A 1 . U A S ( u )  = 0AT---- rn ~ T < m. (62) 

This proposition follows from the following proof graph: 

1) A 1 . U A S ( u ) = 0 A T = m  
2) A . ( u , n  + 1) A A . ( l ( u ) , n  - j )  A T = m '--4 

c(u,n+l,n--j) 
3) B . ( u , n  + l )  A D . ( u , n -  j )  A ' r  <_ m '-+ 
4) r < m .  

Its nodes are justified as follows: 

node 1: there exist n, j _> 1 with the described properties, according to (59) 
node 2: by occurrence of a(u, n + 1) and a(l(u),  n - j )  
node 3: by (56). 

Each descent of length 1 likewise reduces the weight ~-, as outlined in Fig. 4.5. 

before ~ [ ~  n = 2 (~(u)2 + o(l (u)) ~ 
5(u) = 1 + o'([2(u))2 = 14 

u 

o(@ + o(z (u)f after no descent 
+ o(/2(u))2= 12 

u 

Figure 4.5. Descent of length 1 

Formally, 

A1.UA(~(u)  = 1 A T - - - - I n L e T  < : m .  (63) 

This proposition follows from the following proof graph: 

1) A 1 . U A S ( u ) = I A T = m - - +  
2) A I . U  A A . ( u , n  + 1) A A . ( l ( u ) , n )  A A.(12(u) ,n  - j )  A T = m "--+ 
3) B . ( u , n +  1) A D . ( u , n )  A B . ( l ( u ) , n )  A D . ( l ( u ) , n - j )  A T  < m 
4) B . ( u , n  + 1) A D . ( u , n )  A B . ( l ( u ) , n )  A D . ( l ( u ) , n  - j )  A T <_ m A a(u)  = 

~(l(~)) + Ac('(~)~ ~-j) 

5) B.(~,  ~ + 1) A D.(u, ~) A ~ < m A o(~) = oq(~) )  + 2~ (~ '~ '~ )  
6) ~ ' < m .  

Its nodes are justified as follows: 
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node 1: there exist n, j > 1 with the described properties, according to (59) 
node 2: by occurrence of a(u ,  n + 1), a ( l ( u ) ,  n ) ,  and a(12(u) ,  n - 1) 
node 3: by (51), and (52) 
node 4: by the occurrence rule 
node 5: by the occurrence rule, and (57). 

The weight r is reducible as long as there exists a descent: 

T = m ~+ r < m V Vu E U : 5(u) is undefined. (64) 

• This proposition follows from the following proof graph: 
1) T = m ~--~ 
2) A1.U A r < m -+ 3) Vu e U : (i(u) undefined 

$ 
4) A 1 . U A T < m A 3 u E U ,  k E N w i t h S ( u ) = k ' - +  
5) A 1 . U A r _ < m A 3 u e U w i t h S ( u ) _ < l  
6) T < m - ~  
7) T < m Y Vu E U : J(u) undefined ( 

Its nodes are justified as follows: 

node 1: by (53) and (58) 
node 2: propositional logic 
node 3: propositional logic 
node 4: by [kj fold application of (61) 
node 5: by (62) if ~(u) = 0, and by (63) if ~(u) = 1 
node 6: propositional logic• 

4.8 Proof  of  the essential properties 

To show (48), let r -~ s be any step of ~V'4.2, and assume ar = k. Then a8 = k 
follows due to the structure of E4.2. Finally, (48) follows by induction on the 
length of interleaved runs of 224.2. 

To prove (50), first consider the case of t = c ( u , n , m )  for some u E U and 
n , m  E N. Then at  r holds B . ( u , n )  A D . ( u , m )  A n  > m .  Furthermore, a ( u )  > n 
by (46) and  m >_ a ( l ( u ) ) ,  by (54). Hence a ( u )  = n and  a ( l ( u ) )  = n -  1, as  r 
is balanced. Then at s holds a ( u )  = n - 1 and  a ( l ( u ) )  = n .  The workload a ( v )  

remains unchanged for all v ¢ u. Hence s is balanced, too. 
All actions t not involving c do not touch a ( u )  for any u E U, hence the 

proposition. 
Proof of (49) requires 

aE ~-+ balanced (65) 

proven by the following proof graph: 
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a E  -~t T m m c-+ T = n l  <: m "--+ "r m r~2 ~ n l  ¢'~ " " ¢"'~ "r m r~m -= O 

Vu e U : ~(u) is undefined 

$ 
balanced 

which is justified as follows: The first implication states that T has some value, 
m,  at  the initial s tate a~ .  All other nodes in the upper line are justified by (64). 
The last implication holds by (60). 

In order to show (49), let w be an interleaved run of ~4.2. Then there exists a 
concurrent run K of ~:a.2, including all actions of w. K has a reachable, balanced 
state, s, (by (65)). Then w has a reachable state, s ' ,  such tha t  all actions of K ,  
occurring before s, are actions of w, occurring before s t. Then Z4.2 ~ s ~-~ s '  
and s '  is balanced by (50), hence the proposition. 

5 The  Echo Algor i thm 

5.1 T h e  p r o b l e m  

Given a finite, connected network with a particular initiator site, the echo algo- 
r i thm organizes acknowledged broadcast  of the initiator 's message throughout  
the entire network to all sites: The initiator will terminate  only after all other 
sites are informed. 

Figure 5.1 shows one round of messages, sent by the initiator i to all its 
neighbors. Messages and receipts are jointly represented in one place. The cen- 
tral  idea of the echo algorithm is now covered in the step from Z~.I to Zs.~: 
Upon receiving the initiator 's  message, a neighbor of the initiator forwards the 
message to all its neighbors except for the initiator, and remains pending until 
receiving messages from all those neighbors. Each site is eventually addressed 
in this schema. Each uninformed site u E U receives in general more than  one 
message, hence u selects one occurrence mode (u, v) of action c. In this case, v 
is called the p a r e n t  s i t e  of u. The pairs (u, v) with v the parent  site of u, form 
a s p a n n i n g  t ree  in the underlying network: For each site u E U there exists a 
unique sequence u0. • • u,~ of sites with u0 = u, u,~ = i and ui the parent  site of 
u~-i (i = 1 , . . . , n ) .  A site u is a l e a f  of the spanning tree if no neighbor of u 
elects u as its parent  node. 

For each pending leaf (u, v), the place m e s s a g e s  eventually holds all messages 
M(u)  - (u, v), hence the leaf becomes i n f o r m e d  by occurrence of d in mode (u, v). 
The leaves are the first to become (concurrently) i n f o r m e d .  Then all sites are 
consecutively i n f o r m e d ,  causally ordered along the spanning tree. Finally, the 
initiator 's transit ion b is enabled, and the w a i t i n g  initiator turns t e r m i n a t e d .  

5.2 P r o p e r t i e s  to  b e  p r o v e n  

Figure 5.3 provides a redrawn version of the Echo Algorithm of Fig. 5.2. It  has 
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start a waiting b terminated 
Q i , i i _ f'-"~ i J'---I i 

(x,y) - k ~ - J  (x,y) - I  I x 
uninformed c pending d informed 

so_rtd site W = W -  1 

SO_.~ message = site x site x,y e U u {i} --> x W y 

const i : site W 1 = U w {i} 

const U : set of sites i ~ U 

const W : set of (sites x sites) M(x) = W(x) x {x} 

fct  M, M : site ~ set of messages M(x)  = M(x ) -  1 

va_.Er x,y : site 

Figure  5.1. The initiator informs its neighbors 

start a waiting b terminated 
Q i d i i i 

(x,y  _ 

(x,y) - I  I x = ~ - - . . )  
uninformed c pending d informed 

sort site W = W-  1 

sort message = site × site x,y e U u {i} --> x W y 

const i : site W 1 = U ~J {i} 

const U : set of sites i ~ U 

const W : set of (sites x sites) M(x) = W(x) x {x} 

fc t  M, M : site --> set of  messages M(x) = M(x) -  t 

va_!r x,y : site 

Figure  5.2. The echo algorithm 
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A 

Q 

Q 
E 

a B b C 
i d , i L ~  i 

(x,y) ~ (y,x) 

x - G  
e F d G 

sort site W = W -  1 

sort message  = site x site x,y e U w {i} ~ x W y 

censt i : site W 1 = U u {i/ 

const U : set of sites i ~ U 

const W : set of (sites x sites) M(x) = W(x) x {x} 
fct M, M : site ~ set of messages  M(x) = M(x)- 1 

v ar x,y : site 

Figure 5.3. Redrawn echo algorithm Z5.1 

two decisive properties: Firstly, the initiator terminates only if all other sites 
have been informed before. In Fig. 5.3, this reads 

C.i --+ G.U. (66) 

Secondly, the initiator will eventually terminate, i.e., 

sE~ 3 ~ C.i. (67) 

Both (66) and (67) will be verified in the sequel. 
There is no straight-forward place invariant or trap that  would prove (66). 

Nor is there an intuitively convincing proof graph for (67). Rather, one has to 
argue inductively along a spanning tree that  yields at place F.  

5 . 3  T h r e e  p l a c e  i n v a r i a n t s  

Figure 5.3 has three important place invariants, as given in Fig. 5.4. Two of 
them are intuitively quite obvious, representing the "life lines" of the initiator i 
and of all other sites, respectively. 

The equation of/1 is A + B + C = i. This implies 

A.i  + B . i  + C.i = 1, (68) 

hence the initiator is always either at its start  or is waiting, or is terminated. 
The equation furthermore implies 
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A 
B 
C 
D 

E 
F 
G 

I .  sv 

a 

- i  
i 

M(i) 

b c d 

- i  
i 

--MCi) M(x) --M(x) 
-(~,~) +(~,y) 
-(y,x) +(y,x) 

- x  U 
(~,y) -(~,y) 

x 
i 

L e t F = F  -1 a n d U ' = U U { I }  

i A 
B 
C 

E 
F1 
6 
U 

I3 
M(A) 

~(c) 
D 

M(E) 
F + ~  

M(U') 

Figure 5.4. Matrix, initial state, and three place invariants of .~'5.3 

Vx E U : A.x  + B .x  + C.x = 0, (69) 

hence no non-initiator site ever finds at A, B, or C. 
Correspondingly, the equation o f /2  is E + F1 + G = U. This implies 

Vx E U : E .x  + FI.x + G.x = 1, (70) 

hence each non-initiator is always either uninformed or pending or informed. 
The equation furthermore implies 

Vx ¢. U : E .x  + F1 .x + G.x = O, (71) 

hence the initiator never finds on E,  F ,  or G. 
/3, finally, represents the potential messages of the system. Its equation is 

M ( A )  + M ( C )  + D + M ( E )  + F + F + M(G)  = M(U') ,  implying for each 
message (y ,x)  e M(U')  the property M ( A ) . ( y , x )  +-M(C) . (y ,x )  + D.(y ,x)  + 
M(E) . (y ,  x) + F. (y, x) + F . ( y ,  x) +M(G) . (y ,  x) = M.(y, x), which in turn reduces 
to 

Vx E U' Vy E W(x) : (72) 
A.x  + C.y + D.(y, x) + E .x  + F.(y, x) + F.(x, y) + G.y = 1. 

Hence for each message (y, x) holds: Its sender x is still starting or uninformed, 
or the message has already been sent but  not received yet, or one of y and x 
has received the message from x to y, respectively, or the message's receiver y is 
terminated or informed. 

5.4 T h e  p e n d i n g  site's  r o o t e d  tree 

A further state property will be required, stating that  the tokens on F always 
form a tree with root i. This will be formulated with the help of the following 
notation: 

A sequence uo . . .  un of sites ui E U' is a sequence of F at a state 
(73) 

s i f f s  ~ F.(u~-I,U~) for i = 1 , . . . , n .  
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For each reachable s tate  s we will now prove the following two properties: 

For each F1 .u there is a unique sequence u 0 . . .  un of F with u0 = u (74) 
and us  = i, 

and 

the elements of each sequence of F are pairwise different. (75) 

Both propert ies now are together shown by induction on the reachability of 
states: 
Both (74) and (75) hold initially, as s~5.3 ~ F = 0. Now, let r be a reachable 

state,  let r --~ s be a step of some transit ion t, and inductively assume (74) and 
(75) for r. 

The case of t = a or t = b implies r (F)  = s(F) ,  hence the step r - - ~ s  retains 
both  (74) and (75) for s. For t = c or t = d let re(x) = u and re(y) = v. 

The case of t = c goes as follows: Enabledness of c(m) at r now for r im- 
plies D.(u, v) and E.u. Then r ~ Fl.v, according to the following sequence of 
implications: 

1. * 2. : 3. , 4. ~ 5 .  
D.(u,v) D.(u,v) ~E.v ~E.v ~ . v  

E.u E.u E.u -G .v  
v e W(u) v e W(u) 

Its  nodes are justified as follows: 

node 1: (71); 
node 2: (72) with x = v, y = u; 
node 3: (72) with x = u, y = v; 
node 4: (70), 

Now, r ~ F1 .v and the inductive assumption of (74) imply a unique sequence 
v . . .  i of F at  s ta te  r. Then u v . . .  i is a sequence of F at s tate s, because s (F)  = 
r ( F ) + ( u ,  v). Together with (70), this implies (74) for s. Furthermore,  r ~ u ¢ F1 
(by (70)) and u # i by (69), hence (75) for s. 

Correspondingly, enabledness of d(m) at r now for r implies D . M ( u )  - (u, v) 
and F.(u, v). Then r ~ F2.u according to the following sequence of implications: 

1. , 2. * 3. ~" 4. * 5. * 6. 
n.-M(u)  n.-M(u) F n (-M(u) E A (M(u)  F N M ( u )  = 0 -,Fu.u 
-(u,  v) - (u,  v) - (u,  v) ) = 0 - (v ,  u) ) = O 
F.(u, v) -~F.(v, u) -~F.(v, u) -~F.(v, u) 

Its nodes 1 and 2 are justified by (72), nodes 3, 4, and 5 by propert ies of M.  
With r ~ -~F2.u, for each sequence u 0 . . . u s  of F, u l , . . . , u s  # u. This 

implies (74) for the s tate  s, because s (F)  = r (F)  - (u, v). (75) is then trivial, 
because s(F) C r(F). 
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5.5 P r o o f  o f  t h e  s t a t e  p r o p e r t y  (66) 

(66) is indirectly proven in three steps: 

i. Assume F ~ $. Then there exists some w E U' with F.(w,i), by (74). Then 
-~C.i by (72). 

ii. For all u E U' we show 
E . u  -+ -~C.i (*) 

by induction on the distance of u to i: For u = i, (*) holds trivially, as 
-~E.i by (71). Inductively assume (*), let v e W(u), and assume E.v. Then 
u e W(v), hence -,G.u, by (72). Then Fl .u  or E.u, by (70). The case of F l .u  
implies F # 0, hence -~C.i by (i). The case of E.u implies -~C.i by inductive 
assumption. 

iii. C.i -~ E = F = 0, by (i) and (ii). Then (66) follows from (70). 

5.6 P r o g r e s s  f r o m  uninformed t o  pending 

Here we show that  each uninformed site u E U will eventually go pending. In 
terms of ~5.3 this reads: 

(76) 
Let U = V U W ,  V ~ 0, W ~ 0. Then 
E . V  ^ F I . W  ~ V v e v ( E . V  - v ^ F 1 . W  + v). 

This property holds due to the following proof graph: 

1) E . V A F 1 . W A V  ~ O A W  ~O--~ 
2) E . V A F 1 . W A e x .  v ~ VAex.  w E W U { i }  with D.(v,w) "-4 
3) E . V - v A F 1 . W  +v 

Its nodes are justified as follows: 

node 1: Connectedness of U' implies some neighbors v, w such that  E.v, and 
Fl.W or w = i. Furthermore, 

i. Fl.w implies w e U by (71), hence -~A.w by (69). w = i and 
W ~ 0 imply some F.(u,i) by (74), hence -,A.i by (72). 

ii. E.v implies v e U by (71), then -,C.v by (69). 
iii. Fl .w implies -~E.w by (70) and w = i implies -~E.w by (71). 
iv. E.v implies -~Fl.v by (74), hence "~F.(v, w). 
v. Let u o . . . u n  be a sequence of F with Uo = w and un = i, 

according to (74). The case of n = 1 implies ul  = i ~ v, hence 
-~F.(w, v). Otherwise, Fl.Ul. Then E.v implies ul ~ v by (72). 
Hence -~F. (w, v). 

vi. E.v implies -~G.v by (70). 
Now (i), . . .  ,(vi), and (72) imply D.(v,w). 

node 2: by the occurrence of c(v, w). 
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5 . 7  P r o g r e s s  f r o m  pending t o  i n f o r m e d  

Here we show that  each pending site will eventually be informed. In terms of 
~ . 3  this reads: 

Let U = V U W with V ~ 0. Then 
F I . V  A G . W  ~ V v e v ( F l . Y  - v h G . W  + v). (77) 

This property holds due to the following proof graph: 

1) F t . V A G . W A V U W = U A V ¢ O - +  
2) ex. v E V e x ,  w E U :  

F I . V  ^ C . W  ^ V u W  = U - ( v , w ) )  

3) ex. v e Vex .  w E U with F1.V - w A G . W  + v. 

Its nodes are justified as follows: 

node i: Let u 0 . . .  u ,  be a maximal sequence of F.  This exists due to (74) and 
(75). In case u1 is the only neighbor of u0, D . ( M ( u o )  - (Uo,Ul)) = 
D.((uo,  u l ) _ -  (uo, ul)) = D.O which holds trivially. Otherwise, let 
(uo, v) E M(uo)  - (uo, ul). Then the following six properties hold: 

i. (74) implies some F. (w , i ) ,  hence ~A. i  by (72), hence -~A.v in 
case i -- v. Otherwise, v E U, hence -~A.v by (69). 

ii. u0 E U by construction, hence ~C.uo by (69). 
iii. E = ~ by (70) and V U W = U, hence -~E.v. 
iv. Maximality of uo . . . un implies ~F.(v ,  uo ). 
v. F . (uo ,u l )  implies ~F. (uo ,v )  as the path from u0 to i is unique 

by (74). 
vi. Fl.U0 implies ~G.uo.  
Now (i),... ,(vi), and (72) imply D.(uo, v). ']:his argument applies to 
all (u0, v) E M(uo)  - (Uo, Ul), hence D . M ( u o )  - (uo, Ul). 

node 2: by the occurrence of d(v, w). 

5.8 P r o o f  of  t h e  l iveness p r o p e r t y  (67) 

(67) is now proven with the help of the proof graph of Fig. 5.5. Its nodes are 
justified as follows: 

node 1: 
node 2: 
node 3: 
node 4: 
node 5: 
node 6: 

definition of s ~  3 
by the occurrence rule 
by the occurrence of c(u, i) with u C M ( i )  
IVI-fold application of (76) 
IUI-fold application of (77) 
we distinguish three cases: 

i. u e M ( i )  implies u ~ i, hence -~A.u by (69) 
ii. G.U implies E = F = ~ by (70) and (71). Hence - E . u ,  ~F.( i ,  u), 

and ~F.(u,  i). 
iii. i ¢ U implies -~G.i by (71). 
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1) sz5.3 ; a i 
2) E=UAA. i  
3) E=U^D.M(i) C c(u,i) ) 
4) E.V A F1.WAW~ O ^ V u W = U  
5) F1.U c ) 

6) G.UI_ 1 

7) D,M(i) 
8) D.M(i) A B.i C b(i) > 
9) C.i ( 

Figure 5.5. A proof graph for s~5 s ~ C.i 

Now, (i), (ii), and (iii) with (72) imply D.(i,  u) V C.i. This argument 
applies to all (i, u) • M(i), hence D.-M(i) V C.i. 

node 7: -~C.i by (72); -~A.i because ss5. s ~ -~D.M(i), the only initial step 
is sJcs.s -~ B. i ,  and {B. i ,  C.i} is a trap, initialized after this step. 
Hence the proposition by (68). 

node 8: by the occurrence rule. 

Appendix 

6 The Concept of System Nets 

The conceptual idea of system nets is quite simple: Each place of a system net 
E represents a set of local states and each transition of ~7 represents a set of 
actions. The sets assigned to the places form the underlying universe: 

6.1 Defini t ion Let ~ be a net. A universe A of S fixes for each place p E PE 
a set Ap, the domain ofp  in .4. 

An actual state fixes for each place a subset of its domain. Some atgo- 
rithmshave reachable states with multiple occurrences of elements. Formally, an 
actual state then fixes a multiset. For the sake of simplicity we stick to proper 
subsets in the following. The canonical generalization to multisets is given in 
[Weber et al 98]. An action correspondingly fixes the degree of change caused by 
its occurrence: 

6.2 Defini t ion Let ~ be a net with a universe ,4. 

i. A state a of Z assigns to each place p • Pr, a set a(p) C A p .  
ii. Let t • T z .  An action m of t assigns to each adjacent arc f = (19, t) or 

f = (t,p) a set re( f )  C_ Ap. 



367 

Enabledness and effect of actions, and the notion of steps, are defined as 
follows: 

6.3 D e f i n i t i o n  Let ~ be a net with some universe .A, let a be a state, let t E T£,  
and let m be an action of t. 

i. m is enabled at a iff for each place p E *t, m(p, t )  C_ a(p) and for each place 
p E t °, (m(t ,p) \ re(p, t)) C_ Av \ aO). 

ii. The state eft(a, m), defined for each place p E PE by 

f a(p) \ re(p, t) 
~ a(p) U ra(t,p) 

eft(a, m)(p) := / (a(p) \ re(p, t ) ) U m( t, p) 

ta(p) 

iff p E °t \ t °, 

iff p E t" \ "t, 

i f fp  E t*M' t ,  

otherwise, 

is the effect of the occurrence of m on a. 
iii. Assume m is enabled at a. Then the triple ( a , m , e f t ( a , m ) )  is called a step 

of t in Z ,  and usually written a - ~  eft(a, m) .  

Steps may  be described concisely by means of a canonical extension of actions: 

6.4 P r o p o s i t i o n  Let Z be a system net, let t E T~, and let a-T+b be a step of 
t. Extend m by re(r, s) := ~ for all pairs (r, s) of net elements which form no 
arc of the net. Then for all places p E P~, b(p) = (a(p) \ m(p, t ))  U m(t ,p) .  

A net with a domain for each place and a set of actions for each transit ion 
is fur thermore equipped with an initial state: 

6.5 D e f i n i t i o n  A net Z is a system net iff 

i. For each place p E P~, a set Ap is assumed (i.e., a universe of S ) ,  
ii. for each transition t E TE, a set of actions of t is assumed, 

iii. a state a z  is distinguished, called the initial s tate of Z.  

7 I n t e r l e a v e d  a n d  C o n c u r r e n t  R u n s  

Interleaved runs of system nets can be defined canonically as sequences of steps. 

7.1 D e f i n i t i o n  Let Z be a system net and let ao := a~ .  

i. For i = 1 , . . .  ,n assume steps ai-1 rn~ ai of Z such that no action is 
enabled at an. They form a finite interleaved run w of Z ,  written ao ml> 
al m2>.., m% an. Each i E {0, . . .  ,n} is an index of w. 

ii. For i = 1, 2 , . . .  assume steps ai-1 m~ ai of ~ .  They form an infinite inter- 

leaved run w of Z ,  sometimes outlined ao ml> al ,~2> . . . .  Each i E N is an 
index of w. 
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Reachable steps, states and actions are defined as follows: 

7.2 D e f i n i t i o n  Let ~U be a system net. 

i. A step a - ~  b of E is reachable in Z iff there exists a finite interleaved run 
i n  i n )  

a~ ml)al m2~a2--+...--~an-1 )an with an-1 an -~ a--~b. 
ii. A state a of Z is reachable in ~ if] a = a~ or there exists a reachable step 

formed b - ~  a. 
iii. An action m is reachable in Z if] there exists a reachable step formed a-T~ b. 

Concurrent runs are now defined in two stages: Firstly, each action m is 
assigned an action net, representing the action's details in terms of an inscribed 
net. In a second step, those nets are "glued together",  forming a concurrent run. 

7.3 D e f i n i t i o n  A state of a system net Z is contact free iff for each t E T~ 
and each action m o f t  holds: if for each place p E "t, m(p, t )  C a(p), then for 
each place p e t °, (m(t ,p) \ m(p, t ) )  C_ Ap \ a(p). 

In the following we stick to system nets where each reachable s ta te  is contact 
free. 

7.4 Def in i t ion  Let Z be a system net, let t E T~,  let m be an action of t, 
and let N be an injectively labeled net with TN = (e}.  Furthermore, assume 
l(e) = ( t ,m) ,  l( 'e)  = {(p,a) I P E " t ,  anda  e m(p , t )} ,  l(e')  = {(p,a) I P E 
t ° , and a E m( t ,p)} .  Then N is an action net of 2Y (for m).  

7.5 D e f i n i t i o n  A net K is called an occurrence net iff 

i. for each p E PK, t "Pl <- 1 and I P" J <- 1, 
ii. for each t E TK, I°tl _> 1 and It" l -> 1, 

iii. the transitive closure F + of FK, frequently written <K, is irreflexive (i.e., 
x l F K x 2 F K . . .  Fgxn  implies xl  # xn), 

iv. for each x E K ,  {y I Y <K x} is finite. 

7.6 D e f i n i t i o n  Let Z be a system net and let K be an element labeled occur- 
rence net. K is a concurrent run of E iff 

i. in each concurrent state a of K ,  different elements of a are differently labeled, 
ii. for each t E TK, (*tUt °, {t},*t x{t} U {t} x t °) is an action net of E 

iii. l({p E Palp ° = 0}) enables no action of ~ .  

8 S t r u c t u r e s  a n d  T e r m s  

System nets have been represented in Sections 1-5 by means of sorted terms. Such 
terms ground on structures. This section provides the formal basis for structures 
and terms. 

We first recall some basic notions on constants and functions: 
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8.1 D e f i n i t i o n  Let A t , . . .  ,Ak  be sets. 

i. Let a E Ai for some 1 < i < k. Then a is called a constant in the sets 
A 1 , . . .  , Ak and Ai is called a sort  of a. 

ii. For i = 1 , . . .  ,n  + 1 let Bi  E {A1, . . .  ,Ak}, and let f : B1 x . . .  x B,~ 
Bn+l be a function. Then f is called a function over the sets A 1 , . . .  ,Ak .  
The sets B 1 , . . .  , Bn are the argument  sorts and Bn+l is the target  sort of 
f .  The n + 1-tuple (B1, . . .  ,Bn+l )  is the arity of f and is usually written 
B1 X . . .  X Bn -+ Bn+l.  

A structure is just  a collection of constants and functions over some sets: 

8.2 D e f i n i t i o n  Let A 1 , . . .  , Ak be sets, let a l , . . .  ,al be constants in A 1 , . . .  ,Ak  
and let f l , . . .  , fm be ]unctions over A 1 , . . .  , Ak.  Then 

,4 = ( A I , . . .  , A k ; a l , . . .  , a t ; f 1 , . . .  ,fro) (78) 

is a structure. A 1 , . . .  ,Ak  are the carrier sets, a l , . . .  ,at the constants,  and 
f l , . . . , f m the functions of A. 

The composition of functions of a s tructure can be described intuitively by 
means of terms. To this end, each constant a of a s tructure A is represented 
by a constant symbol a and likewise each function f of ,4 by a function symbol 
f .  (This choice of symbols is just a mat te r  of convenience and convention. Any 
other choice of symbols would do the same job). Furthermore,  terms include 
variables: 

8.3 D e f i n i t i o n  Let A = (A1, . . .  , A k ; a l , . . .  , al; f l ,  . . . , fm) be a structure. 

i. Let X 1 , . . .  , X k  be pairwise disjoint sets of symbols. For x E X i ,  call Ai  
the sort of x (i = 1 , . . .  ,k) .  Then X = X1 U . . .  U Xk  is a set of A-sorted 
variables. 

ii. Let X be a set of M-sorted variables. For all B C {A1, . . .  , Ak}  we define the 
sets T B ( X )  o / t e rm s  of sort B over X inductively as follows: 
(a) X i  C_ TA, 
(b) for all 1 < i < l, if B is the sort of ai then ai E T B ( X ) .  
(c) For all 1 < i ~ m,  if B1 × . . .  × Bn -+ B is the arity of f i  and if 

t j  E TB~(X) (j = 1 , . . .  ,n) then f ( t l , . . .  , tn) e T B ( X ) .  
iii. The set T A ( X )  := TA1 (X)  U . . .  U TAx (X)  is called the set of A-terms over 

X .  

In the following we always assume some (arbitrarily chosen, but) fixed order 
on variables. Generally we use the following notation: 

A set M is said to be ordered if a unique tuple ( m l , . . .  ,ink) of pairwise 
different elements rni is assumed such tha t  M = { m l , . . .  ,ink}. We write M = 
( m l , . . .  , mk)  in this case. 

Each te rm u over an ordered set of sorted variables describes a unique func- 
tion, v a P ,  the valuation of u: 
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8.4 D e f i n i t i o n  Let ,4 be a structure and let X = ( x t , . . .  ,xn)  be an ordered set 
of.A-sorted variables. For i  = 1 , . . .  ,n  let Bi be the sort of xi and le tu  E T B(X)  
for any sort B of "A. Then B1 x . . .  × B,~ is the set of arguments for X and the 
valuation of u in .4 is a function val u : B1 × . . .  × Bn ~ B,  which is inductively 
defined over the structure of u: 

ai if u = xi for t < i < n, 
a if u = a for some constant a of "A, 

val (al,... ,an)  = f(val '(al, . . . .  a n ) , . . .  
/~ u = f ( u l , . . .  , uk) for some ]unction 
f of 'A and terms Ul , . . .  ,Uk E T A(X) .  

8.5 D e f i n i t i o n  Let ,4 be a structure. 

i. The set TA(O) consists of the .A-ground terms and is usually written TA. 
ii. For each u E T A  of sort B ,  val u is the unique function val ~' : O -~ B,  i.e., 

val u indicates a unique element in B .  This element will be denoted val u. 

9 A T e r m  R e p r e s e n t a t i o n  o f  S y s t e m  N e t s  

Based on structures and terms as introduced in the previous section, a represen- 
tat ion of system nets is suggested in the following, as used in Sections 1-5. The 
representation of a transition's actions is the essential concept. To this end, each 
transition t is assigned its set Mt of occurrence modes. Each occurrence mode 
then defines an action. A typical example was 

A 

I g(x'y) (79) 

B ~ ( ~ J ' ~  t 

Assume the variable x is of sort M, y of sort N and x ordered before y. Then 
M x N is the set of occurrence modes of t. Each pair (m, n) E M x N defines an 
action ~ of t, gained by substituting m and n for x and y in the adjacent terms. 
Hence ~'-d(A,t) = { m , f ( m ) } ,  ~-d(B, t )  = {(re, n)} and ~-d( t ,C)  = {g(m,n)} .  

The syntactical representation of term-based system nets reads as follows: 

9.1 D e f i n i t i o n  Let E be a net and let ,4 be a structure. Assume 

i. each place p e PE is assigned a carrier set Ap of "A and a set aE(p) C_ TAp 
of ground terms, 

ii. each transition t E T~ is assigned an ordered set X t  of.A-sorted variables, 
iii. each arc f = (t,p) or f -- (p, t) adjacent to a transition t is assigned a set 

f C TAp(Xt)  of.Ap-terms over Xt .  

Then E is called term inscribed over "A. 
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In graphical representations, the places p mad the arcs (r, s) are inscribed 
by aE (/9) and F$, respectively. Occurrence modes and actions of a transit ion are 
defined as follows: 

9.2 D e f i n i t i o n  Let ~ be a term inscribed net and let t E TE be a transition. 

i. Let ( x l , . . .  , xn) be the ordered set of variables of t and let Mi  be the sort of 
xi (i = 1 , . . .  , n).  Then Mt := M1 × . . .  × Mn is the set of occurrence modes 
o f t .  

ii. Let m E Mr. For each adjacent are f -- (p,t)  or f = (t,p) and different 
u , v  E f assume valU(m) ~ valV(m). Then Cn is an action of t, defined by 
~n(f) = {vale(m)  l u E ] } .  

The action ~ discussed above is in fact an action of the transit ion (79). A 
term-inscribed net obviously represents a system net: 

9.3 D e f i n i t i o n  Let ~ be a net that is term-inscribed over a structure .4 such 
that for all p E P2  and all different u, v E aE(p), val u ~ val v. Then the system 
net of Z consists of 

- the universe A ,  
- for  all t E T~,  the actions of t as defined in Def. 9.2(ii), 
- the initial state a, defined for each place p E P2 by 

a(p) := {val ~ t u E a~(p)}.  

1 0  S e t - V a l u e d  T e r m s  

The formalism of Sect. 9 is adequate for many system nets. But there exist more 
general system nets requiring set-valued terms. In order to specify this issue more 
precisely, assume a system net Z with a transition t E T~, an action m of t, and 
a place p E " t U t "  with domain A. Then ~ ( p , t )  or Cn(t,p) is a subset of A, with 
each single t e rm u E p--t or u E t-p contributing a single element, valU(rrt) E A. 
Now we suggest single terms v tha t  contribute a subset valV(m) C A. More 
precisely, set-valued constant symbols, set-valued function symbols, and set-valued 
variables will be used. 

For the sake of uniform management  of all cases, the evaluation valU(m) of 
te rms u wilt be slightly adjusted, yielding a set setval~(m) in any case: 

10.1 D e f i n i t i o n  Let Z be a term inscribed net over a structure A .  

i. Let p E P~ and let u E a2(p). Then 

= ~ if the sort of u is Ap 
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ii. Let f = (p, t) E F~ or f = (t,p) e F s ,  let u E f ,  and let m be an argument 
of Xt .  Then 

[ {val~(m) } if the sort of u is Ap 
setvalU(m) 

( valU(m ) if the sort of u is 7) ( Ap ). 

The actions of a term inscribed net with both element-valued and set-valued 
terms is now defined as follows: 

10.2 D e f i n i t i o n  Let S, be a term inscribed net, let t E TE, and let m E Mt 
such that for each adjacent arc f = (19, t) or f = (t,p) and different u, v E 
we have setvalU(m) n setvalV(m) = O. Then ~n is an action of t, defined by 
m ( f )  = U~e7 setvalU(m) • 

10.3 P r o p o s i t i o n  Let ~ be a term inscribed net, let t E T~, let m be an action 
of t, and let a be a state of Z .  For all (r, s) ~. F£ let Vg := 0. 

i. m is enabled at a iff, for each p E PE, Uue~setval~(m) c_ a(p) and 
(Uu~i~ setval~(m) \ U u e ~  setvalU(m)) f) a(p) = 0. 

ii. Let a --~ b be a step of E.  Then for each p E PE, b(p) = (a(p) \ 
Uueb7 setvalU(m)) u Uuevp setvalU(m) • 

The system net of a term-inscribed net with both element-valued and set- 
valued terms is defined as a conservative extension of the corresponding notion 
in Sect. 9.3 for element-valued terms: 

10.4 D e f i n i t i o n  Let Z be a net that is term-inscribed over a structure A,  such 
that for all p E P~ and all different u, v E as(p) holds setval u O setval v = 0. 
Then the system net of E consists of 

- the universe of A,  
- for all t E TE, the actions of t as defined in Def. 10.2, 
- the initial state a, defined for each place p E P~ by a(p) := UueaE(p) setval~- 

We are now prepared to define schemata for system nets: a system schema 
is a term-inscribed net with the underlying structure not entirely fixed. Thus, 
a system schema represents a set of system nets. A representation of a system 
schema declares some sorts (domains) and some constants, functions, and vari- 
ables over s tandard sorts, declared sorts, cartesian products, or powersets of 
sorts. We furthermore assume standard sorts such as the natural numbers nat 
or the t ru th  values bool, together with the usual operations. Some additional 
requirements may focus the intended interpretations. 

The distributed algorithms of Chapters 1-5 are all represented as system 
schemata. This is crucial, as each distributed algorithm is to run on any network 
out of a class of networks. Each interpretation of the involved symbols then yields 
one concrete network. 
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11 First-Order State Properties 

Propert ies of system nets and system schemata are represented in a logical frame- 
work. Terms as introduced in Sect. 9 (there used as arc inscriptions) will serve 
in a first-order logic, with places of system nets as predicate symbols. 

We s tar t  with the syntax of formulas over a s tructure `4. 

11.1 D e f i n i t i o n  Let .4 be a structure, let X be a set of .4-sorted variables, and 
let P be any set of symbols. Then the set Yr(A, X ,  P)  of state  formulas over A, 
X ,  and P is the smallest set of symbol chains such that for all t • T A ( X )  and 
all p, q • P,  

i. p.t, p = t, and p C_ q E jz(`4, X ,  P)  
ii. if f ,  g e ~ ( A ,  X ,  P)  then f A g C ~ ( A ,  X,  P)  and - , f  C Y ( A ,  X ,  P) .  

In the sequel we employ the conventional propositional symbols V and -% 
and for any set Q = {q l , . . .  , qn} the shorthands V Q for ql v . . .  v qn, and A Q 
or just  Q for ql A . . .  A q~. Furthermore,  we write A . u l , . . . ,  u~ as a shor thand 
for A.Ul A . . .  A A.un. 

Each system schema ~ is assigned its set of s tate  formulas. Those formulas 
are constructed from the structure of Z,  with the places of Z serving as predicate 
symbols. The token load s(p) of place p at a s tate  s, as well as the inscriptions 
in f of an arc f ,  are terms that  may occur in state formulas. 

11.2 D e f i n i t i o n  Let ,4 be a structure, let X be an A-sorted set of variables, 
and let Z be a net, term-inscribed over ,4 and X .  

i. Each f E Yr(A, X,  Ps )  is a state formula of Z.  
ii. For each state s of ~ ,  the state formula ~ of Z is defined by ~ := Apes P A 

Ap~t~ ~P. 

Such formulas are interpreted as follows: 

11.3 D e f i n i t i o n  Let ~ be a net, let f be a state formula of Z ,  let v be an 
aryument for its variables, and let s be a state of Z .  

i. s, v ~ f is inductively defined over the structure of f . To this end, let u C 
T A( X) ,  p, q E P r  and g, h E Jz(A, X ,  P).  

- s ,v  ~ p . t  iffsetvalU(v) C s(p), and 
s, v ~ p = t i f f  setval~(v) = s(p). 

- s ,v  ~ p  C q i f fs(p) C_ s(q). 
- s , v ~ g A h  i f fs ,  v ~ g  ands ,  v ~ h .  
- s , v ~ - ~ g  i f f n o t s ,  v ~ g .  

ii. s ~ f iff, for all arguments u of X ,  s, u ~ f . 
iii. ~ ~ f iff, for all reachable states s of S ,  s ~ f .  

Apparently, for each state a, a ~ &. 



374 

1 2  M u l t i s e t s  a n d  L i n e a r  F u n c t i o n s  

State properties can frequently be proven by means of equations and inequalities, 
which in turn  can be derived from the static s tructure of a given system net. 
Each place of the net will serve as a variable, ranging over the subsets of the 
places' domains. 

Each structure .4 canonically induces multisets of its carrier sets and linear 
extensions of its functions. Intuitively, a multiset B over a set A assigns to each 
a E A a multiplicity of occurrences of a. As a special case, a conventional subset 
of a sticks to the multiplicities 0 and 1. For technical convenience we allow 
negative multiplicities, too, but  proper multisets have no negative entry. 

12.1 D e f i n i t i o n  Let A be a set. 

i. Any  function M : A --~ Z is called a multiset over A.  Let A M denote the set 
of all multisets over A. 

ii. Let M E A m and z E Z. Then z M  E A ~n is defined for each a E A by 
z U ( a )  := z .  M(a) .  

iii. Let L , M  E A M. Then L + M E A M is defined for each a E A by (L + 
i ) ( a )  := L(a) + M(a) .  

iv. A multiset M E A M is proper iff  M(a )  >_ 0 for all a E A.  

Sets can be embedded canonically into multisets. 

12.2 D e f i n i t i o n  Let A be a set, let a E A and B C A.  I r A  is obvious from the 
context, a m and B m denote multisets over A,  defined by a m ( x ) =  1 if x = a and 
am(x) = 0 otherwise; and Bin(x) = 1 if  x E B and Bin(x)  = O, otherwise. 

By abuse of notat ion we usually write just  A instead of Am. 
There is a canonically defined scalar product and a sum of functions over 

multisets: 

12.3 D e f i n i t i o n  Let A and B be sets. 

i. Any  function ~ : A M -~ B M is called a multiset function from A to B.  
ii. Let ~ : A m -+ B M be a multiset function and let z E Z.  Then z ~  : A m -¢ 

B M is defined for each M E A M by z~o(M) := z .  (~o(M)). 
iii. Let ~, ¢ : A M -¢ B M be two multiset functions. Then ~ + ¢ : A M -+ B M is 

defined for each M E A M by (~ + ¢ ) ( M )  := ~ ( M )  + ¢ ( M ) .  
iv. OAB denotes the zero-valuating multiset function from A to B ,  i.e., 

OAB (M)  = OB for each M E A M. The index A B  is skipped whenever it 
can be assumed from the context. 

Each function f : A -+ B and each set-valued function g : A -~ B M of a 
s tructure .A can be extended canonically to a multiset function g : A M -~ BM: 

12.4 D e f i n i t i o n  Let A and B be sets and let f : A ~ B or f : A ~ B M be a 
function. Then the multiset function ] : A m --} B M is defined for each M E A m 
and each b e B bU ](m)(b) = Ea i-l(b)i(a). 
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By abuse of notation we write ~ instead of ] whenever the context excludes 
confusion. The induced functions f are linear: 

12.5 L e m m a  Let A and B be sets, let f : A --+ B be a function, let L, M E 
9YC(A), and let z E Z. Then for the multiset extension of f ,  f ( L  + M)  = I (L)  + 
] ( M ) ,  and ] ( z .  M)  = z .  ] (M) .  

13 P lace  Weights ,  S y s t e m  Equat ions ,  
and  S y s t e m  Inequal i t i e s  

State properties are essentially based on weighted sets of tokens, formally given 
by multiset valued mappings on the places' domains. 

13.1 D e f i n i t i o n  Let G be a system net over a universe A, let p E PE, and let 
B be any multiset. Then a mapping I : Mp -+ B is a place weight o f p .  I is 
natural  if B = N. 

Place weights are frequently extended to set-valued arguments and then ap- 
plied to the token load s(p) of the token at place p in a global state, s. In this 
case, a multiset I(s(p)) is called a weighted token load o/p. 

Place weights can be used to describe invariant properties of system nets by 
help of equations that  hold in all reachable states: 

13.2 D e f i n i t i o n  Let Z be a system net over a universe ,4, let B be any multiset 
and let P = {P l , . . . ,Pn}  C_ Pz~. For j = 1 , . . . , k ,  let IJ : ~4pi ~ B be a place 
weight o/ pj. 

i. { i i , . . .  , ik} is a ~U-invariance with value B i/ /or each reachable state s of 
Z,  

I i ( S ( p l ) )  -F " "  q- I k ( s ( p k ) )  = B .  

ii. A Z-invariance { I1 , . . .  , I  k } is frequently written as a symbolic equation 

I1(pl) + . . .  + zk(p~) = B 

and this equation is said to hold in Z.  

In a G-equation 11 (Pl) + " "  + Ik(pk) = B, the value of B is apparently equal 
to I I ( s~(p l ) )  + . . .  + Ik(s~(pk)) ,  with s~ the initial state of G. 

As a technical example, in the term inscribed representation of a system net 
Z ,  

dom 

A B f_~ f, g : dom --) dom 

t v__,E x : dom 

let {u ,v}  be the domain of both A and B, and for x E {u,v} let IA(x)  = 
f ( x )  + g(x) and IB(x)  = x. Then { I A , I  B} is a G-invariance with value U = 
f (u )  + g(u) + f (v )  + g(v), symbolically written 



3 7 6  

A a _f--.,~ x fix) 
x 

f(x) 
x l f :- x 

b f(x) B 
d 

dom va t  x : dom 
const U, V : set of dom f(U) = V 
fct f : dom ---> (tom 

Figure 13.1. f (A)  + B >_ V is a valid inequality 

f ( A )  + g(A) + B = U. (81) 

One of the reachable states is s, with s(A) = u and s(B) = f (v )  +g(v).  Then in 
fact IA(s(A))  + IB(s(B))  = IA(u) q- IB(f(V))  + IB(g(v)) = U. 

Intuitively formulated, according to this invariance, the element u is at A, or 
both f (u )  and g(u) are at B. The corresponding property for v holds accordingly 
in S .  

As a further example, in ~ = 
a i f(x) 

x ........ I g(x) 
I 

~ Q B  

= Q C  

sort dom 

,:;on$t u. v : dora 
f, g. f -1  g -1  : dom_>  dora 

var  x : dora 
f "  l(f(x)) = x 
g -  l(g(x)) = x 

(s2) 

let again {u, v} be the domain of all places A, B, and C, and for x E {u, v} 
let IA(x) = x, IB(x)  = f - l ( x )  and IV(x)  = g - l (x ) .  Then { I A , I B , I  c }  is a Z-  
invariance with value u + v, symbolically written A + f -1  (B) + g-1 (C) = u + v. 
One of the reachable states is s, with s(A) -- u, s(B) -- f (v )  and s(C) = 0. 
Then in fact IA(s(A))  + IB(s(B))  + IC(s(C))  = Ia(u)  + I B ( f ( v ) )  + IV(O) = 
u + f - l ( f ( V ) )  = U + V. 

13.3 Def in i t i on  Let S be a system net over a universe .A, let B be any multiset, 
and let P = {P l , . . . ,Pk}  C_ Pc .  For j = 1 , . . . , k  let ld : Apt -+ B be a place 
weight of p. 

{ i 1 , . . . ,  i k } yields a S-socket with value B if for each reachable state s of 
E ,  

11(8(/91)) q - ' ' "  -}- Ik(8(pk))  > B.  

A S-socket { i 1 , . . . , i  k} is frequently written as a symbolic inequality 

I1(pl) + . . .  + Ik(pk) > B, 

and this inequality is said to hold in Z.  
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Figure 13.1 provides a typical example. 
In X'13.1 let I A and I B be place weights of A and B, respectively, with 

IA(x)  = f ( x )  for each x E U and IS (y )  = y for each y E V. Then { I A , I  B} is a 
E-socket with value V. As a symbolic inequality it reads f (A)  + B > V. 

14 Place Invariants of System Nets  

We are now seeking a technique to prove Z-invariances without explicitly visiting 
all reachable states. To this end we construct place invariants: a set of place 
weights is a place invariant if each occurrence mode m of each transition t yields a 
balanced weighted effect to the places involved, i.e., the weighted set of removed 
tokens is equal to the weighted set of augmented tokens; formally, for place 
weights I 1 , . . . ,  I k of places p l , . . .  ,Pk, 

I I (m( t ,  p l ) ) + . . . + I k ( m ( t ,  pk)) = I I ( m ( p l , t ) ) +  -. .+Ik (m(pk , t ) ) .  (84) 

A more concise representation of (84) is gained by a slightly different per- 
spective on transitions and their actions: Each arc fl = (p, t) or ~ = (t ,p) defines 
a mapping /~ that  assigns each action m of t the corresponding subset m(fl) 
of Ap. Furthermore, this subset is canonically conceived as a multiset, i.e., an 
element of A~ :  

14.1 D e f i n i t i o n  Let Z be a system over a structure .4. Let t E T~ be a tran- 
sition with L/It its set of actions and let fl = (t, p) or fl = (p, t) be an arc of ~ .  

The,, the function fl : M~ -+ A ~  is defined by fl(m) = m(fl). 

The function fl is canonically extended to /~(m) = 0 if fl is no arc. For 
example, in 

A ~ ~  x ~_tu:uS°rt U,V,W 

f(x,~L) ~ c c o ~  v : v 
t g(x,y) fct f, g : U ×V -~ W 

va_[r x : U 
B var y : V 

(85) 

the set of actions of t is U x V. Then each action (u, v) yields 

At (u , v )  = {u}, Bt (u , v )  = {v}, tC(u ,v )  = { f ( u , v ) , g ( u , v ) } ,  and (86) 
tA(u,  v) = tB(u ,  v) = Ct(u, v) = ~. 

t p -  p) is a multiset valued function that  assigns each occurrence mode m 
of t its effect on p, i.e., the tokens removed from p or augmented to p upon t 's 
occurrence in mode m. 

Each place weight I p : Ap -+ B of a place p can canonically be extended to 
the set valued arguments I v : A ~  --~ B w~, by Def. 12.4. This function in turn 

can be composed with tp - /~t ,  yielding a function I p o ( ~  - / ~ ) :  Mt -+ B ~ .  
A set of place weights is a place invariant if the sum of weighted effects of 

all involved places reduces to the zero function {3. The value of a place invariant 
is derived from the net's initial state: 
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14.2 Defini t ion Let  27 be a sys t em net  and let p l  , . . . , Pk E PE.  For j = 1 , . . . ,  k 
let J~ be a place weight of  p j .  Then I = {i1 , . . . ,  i k} is a place invariant of Z i f  
for  each transit ion t E T~ ,  

I 1 o (~Pl - p i t )  + . . "  + I k o (t"pk -- Pkkt) = O. 

The mul t ise t  I I ( s E ( p l ) )  + . . .  + I k ( s E ( p k ) )  is the value of I. 

A place invariant provides in fact a valid Z-equation: 

14.3 T h e o r e m  Let  E be a sys tem net, l e t p l , . . .  ,Pk E P £ ,  and for  j = 1 , . . .  , k ,  
let IJ be a place weight o] Z .  Let  { I 1 , . . . ,  I k } be a place invariant  o f  27 and let 
U be its value. Then the equation 

II(pl) + . . -  + Ik (pk)  = U 

holds in 27. 

Place invariants can be mimicked symbolically in term-inscribed represen- 
tations of system nets. To this end, the functions tp, pt ,  tp - pt,  and I p will 
be represented symbolically. The composition I p o (tp - pt)  of functions I p and 
(tp -/~t) then is symbolically executable as substitution of terms. 

Definition 9.1 assigns each arc f~ = (t,p) or/~ = (p, t) of a term-inscribed net 
27 a set ~ C TAp(X~) of Ap-terms over Xt. For each u E -~, pal ~ (as defined in 
Def. 8.4) is a mapping from Mt to Ap. This mapping can be extended canonically 
to pal u : M t  ~ A ~ .  Mappings of this kind can be summed up, giving rise to 

the mapping/~: M t  -~ . A ~  of Def. 14.1, defined by ~(m) := pal ul (m)  + . . .  + 

pal u~ (m), with X t  = {u l , . . . ,  uk}. Hence ~ can be represented symbolically as 

= Ul + . . .  + uk (87)  

in this case. 
The multiset extension I p : ,4~ ~ B of a place weight I : A n --¢ B can 

be represented as a term with one variable, ranging over A~ .  For the sake of 
convenience we always choose the variable p, hence the corresponding term is 
an element of TB({p}). 

The composed function IPo(~o-l~) : M, -+ B is now symbolically represented 
by the multiset term 

= I~[~ - y / p ]  (88) 

which is gained from I p by replacing each occurrence of the variable p in I p by 
the term t p - p t .  Hence T is a term in Ts(X,), and its valuation pal r is equal to 
z,' o ( 5  - pt). 

15 T r a p s  o f  S y s t e m  N e t s  

We are now seeking a technique to prove E-sockets without visiting all reachable 
states. To this end we construct initialized traps for system nets, in analogy to 
initialized traps of elementary system nets. 
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Informally stated, a t rap of a system net is a set { i 1 , . . .  , i  k} of weights of 
places P l , - - -  ,Pk such that  for each element b of a given set B,  each transition 
tha t  removes at least one token with weight b from those places returns at  least 
one token with weight b to those places. This gives rise to an inequality of the 
form 

I I (p l )  + - - - +  Ik(pk) k B.  (89) 

Traps are essentially a mat ter  of plain sets (whereas place invariants are 
based on multisets). For an arc (p, t) and an occurrence mode rn of t, re(p, t) is 
a plain set according to Def. 6.2. Then I (m(p,  t)) := {I(u) I u • re(p, t)} is a 
set, for any place weight I. Therefore, the definition of traps goes with set union 
(not with multiset addition). 

15.1 D e f i n i t i o n  Let Z be a system net and let p l , . . .  ,Pk • BE. For j = 
1 , . . . , k ,  let I j be a place weight of pj.  Then I = { [ 1 , . . . , i  k} is a t rap of 
Z if for each transition t • T z  and each occurrence mode m, 

I I (m(p l ,  t)) U . . . U Ik(m(pk,  t)) C I i (m( t ,  pl))  U . . . U Ik (m( t ,pk) ) .  

The set I I ( s z ( p l ) )  U . . .  U Ik(sz (pk) )  is the initialization o / I .  

• An initialized trap in fact provides a valid Z-inequality: 

15.2 T h e o r e m  Let Z be a system net, l e t p l , . . . , p k  E Pz ,  and f o r j  = 1 , . . . , k ,  
let I j be a place weight of ~ .  Let {/1 . . .  , i  k} be a trap o/ ~ with initialization 
B.  Then the inequality 

I i (p l )  U . . . U  Ik(pk) > B  

holds in E .  

Proof  of traps can be mimicked symbolically in term-inscribed system nets. 
To this end, place weights I ,  and functions/3 assigned to arcs/3, are represented 
symbolically as described in Sect. 14. The function I o/3 can then be represented 
symbolically by the multiset term 

~- = Ip[~/p] (90) 

in analogy to (88) of Sect. 14. Union of functions then can be expressed by set 
union of singleton sets {~-}. Each valuation of the variable p in ~- by some m E Ap 

then describes the item Ip o ~(m) = IP(~(m)).  

16  P r o g r e s s  o n  I n t e r l e a v e d  R u n s  

A progress property p ~-~ q (p leads to q) is constructed from two state properties 
p and q. p ~-~ q holds in an interleaved run w if each p-state of w is followed by 
a q-state, p ~+ q holds in a system net Z if p ~+ q holds in each of its interleaved 
runs. Technically, leads-to formulas are constructed from state formulas: 
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16.1 D e f i n i t i o n  Let ,4 be a structure, let X be a set of A-sorted variables, let 
P be a set of symbols, and let p, q E Yr(¢4, X,  P)  be state formulas. Then the 
symbol sequence p ~+ q (p leads to q) is a first-order leads-to formula. 

Leads-to formulas are interpreted over interleaved runs and over system nets: 

16.2 D e f i n i t i o n  Let E be a net that is term-inscribed over a structure A and 
a set X of variables. Let p, q E JC(A, X ,  P~)  and let w be an interleaved run of 
E .  

i. For an argument u of X let w ~ (p ~ q)(u) iff ]or each p(u)-state with 
index i, there exists a q(u)-state with index j >_ i. 

ii. p ~-~ q is said to hold in w (written w ~ p ~ q) iff for each argument u of 
X ,  w ~ (p ~-~ q)(u). 

iii. p ~+ q is said to hold in Z (written E ~ p ~ q) iff w ~ p ~ q for each 
interleaved run w of ~ .  

16.3 D e f i n i t i o n  Let E be a system net and let s be a state of Z .  

i. s is progress prone iff s enables at least one action. 
ii. Let t E TE and let m be an action of t. s prevents m iff there exists some 

place p of E ,  such that ~ ~ ~ --+ -~m(p, t). 
iii. Let t E TE and let m be an action of t. m E s* if for some place p of E ,  

s(p) M re(p, t) # O. 
iv. A set M of actions of some transitions of Z is a change set of s if M # O 

and s prevents each m E s" \ M .  

The following theorem describes the most  general case for picking up leads-to 
formulas from the static s t ructure of a system net: Each change set of a progress 
prone s ta te  s yields a leads-to formula: 

16.4 T h e o r e m  Let ~ be a system net, let s be a progress prone state, and let 
M be a change set of s. Then 

s V 
m E M 

17 Progress  of  Concurrent  Runs  

17.1 D e f i n i t i o n  Let .4 be a structure, let X be a set of .4-sorted variables, let 
P be a set of symbols, and let p, q E Jr(A, X,  P)  be state formulas. Then the 
symbol sequence p ~+ q ( '~ causes q") is a first-order causes formula. 

Causes formulas are interpreted over concurrent runs and over system nets: 

17.2 D e f i n i t i o n  Let Z be a net that is term-inscribed over a structure ,4 and a 
set X of variables. Let p, q E jr (A,  X ,  P~) and let K be a concurrent run of ~ .  



381 

i. For an argument u of X ,  let K ~ (p ,-+ q) (u) iff to eafh reachable p(u)-state 
C of K there exists a q(u)-state D o] K that is reachable from C. 

ii. p "--+ q is said to hold in K (written K ~ p ~ q) iff ]or each argument u o] 
X ,  g ~ (p ~ q)(u). 

iii. p ~ q is said to hold in 22 (written 22 ~ p ~ q) iff K ~ p ,-4 q for each 
concurrent run K of Z .  

As an example, A.{u ,v}  "-+ B . { u , v }  holds in 

b 0 
I f(x) 

..h~ x B l " ~ Q  
al (91) 

Io : G  
D 

17.3 L e m m a  Let Z be a system net that is term-inscribed over a structure ~4 
and let p, q E Jc(Jl, X ,  P~).  

i. Z ~ p c - + p .  
ii. I f  Z ~ p~-~ q and Z ~ qc-+ r then Z ~ p~+ r. 

iii. I f  Z ~ pc-~ r and Z ~ q ~-~ r then Z ~ (p V q) ~-~ r. 
iv. I f  Z ~ p ~ t  q then Z ~ pc-+ q. 
v. I f  q includes no logical operator and 22 ~ p ¢-+ q then Z ~ p F-~ q. 

A rule to pick up causes properties from a system net is now derived, in an 
entirely semantical framework. 

We start with some properties and notations of states of system nets. 

17.4 D e f i n i t i o n  Let 22 be a system net and let r, s be two states of ~ .  

i. The state rUs of Z is defined for each place p E PE by (rUs) (p) := r(p)Us(p). 
ii. Let r C_ s iff for each place p C Pr ,  r(p) C s(p). 

iii. r is disjoint with s iff for each p • P z ,  r(p) V) s(p) = O. 
iv. For an action m of some transition t, let "m be a state of ~ ,  defined for 

each place p • P~, by "re(p) = re(p, t). For a set M of actions, let " M  be 
the state defined for each p • P~ by "M(p)  = U{m(p) t m • M}.  

Change sets of system nets, as defined in Def. 16.3 for interleaved progress, 
can likewise be used for concurrent progress properties: 

17.5 T h e o r e m  Let ~ be a system net and let r, s be states of Z .  Assume s is 
progress prone, and let U = V U W be a change set of s, with "V  C_ s and r 
disjoint with "V.  Then 22 ~ r U s ¢-~ (r U Vuey eff(s,u)) v (Vuew eff(r U s ,u)) .  

Many applications of this theorem deal with the special case of W = ~, i.e., 
"U C s and r disjoint with s: 

17.6 C o r o l l a r y  Let 22 be a system net, let s be a progress prone state of ~ ,  
and let U be a change set ors with *U C s. Furthermore, let r be a state that is 
disjoint with s. Then ~ ~ r U s ~ r U (VueV e f ( s ,  u)). 
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18 Ground Formulas and Rounds  

18.1 De f in i t i on  Let 2 be a system net and let p be a state formula of 2 .  Then 
p is a ground formula of E if Z ~ true ~ p. 

18.2 T h e o r e m  Let 2 be a system net and let s be a state of 2 .  Then s is a 
ground formula of 2 iff 2 ~ a~ ~ s and for each element u of some change 
set U holds: Z ~ eft(s, u) ~ s. 

18.3 T h e o r e m  Let 2 be a system and let p be a ground formula of 2 .  Let 
s be a state of 2 with 2 ~ s --~ -~p, and let U be a change set o f s .  Then 
S ~ s ~ V~,eu eft(s, u). 
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