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Abstract. This chapter discusses the role that Generalized Stochastic
Petri Nets (GSPN) can play in the static analysis of distributed software.
The material is organized along two main lines: the need and the advan-
tages of studying both qualitative and quantitative aspects of a program,
and the need for doing it in an automatic manner. The role of perfor-
mance evaluation in the analysis of distributed software is illustrated
through a small example, classical in the qualitative approach (the din-
ing philosophers). Although small this example allows to point out the
need and the requirements of automatic translation and to discuss the
main hypothesis behind program performance evaluation through GSPN
models. A procedure for the automatic generation of GSPN models start-
ing from a distributed program written in a CSP-like language, and for
the definition of program performance indices in terms of GSPN ones is
then given and illustrated by means of a realistic example.
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1 Introduction

Previous chapters have shown the role that Petri nets can play in the qualitative
analysis of systems, and in particular for distributed systems and programs. A
previous chapter on timed Petri nets and on Generalized Stochastic Petri Nets
(GSPN) [2] has already introduced the concept of stochastic duration of activities
associated with transitions, and how it allows to study the performances of the
modelled system.

The aim of this chapter is to show the use of GSPN for the integrated qualita-
tive and quantitative analysis of distributed programs, to help the programmer
to decide whether its program is correct (does it meet the given qualitative
specification?), and it is fast enough (does it meet a given quantitative spec-
ification?). In particular we shall discuss the role that GSPN can play in the
analysis of distributed programs, their advantages and disadvantages, and the
possibility of adopting them as the basic language of a tool that can be used by
a programmer with little or no knowledge of Petri nets.
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There are two classes of techniques normally used for the analysis of dis-
tributed programs: dynamic and static. Dynamic analysis consists of choosing
a set of representative input data to test the programs: program properties are
inferred from these sample executions. Static analysis, on the other hand, is a
method that draws conclusions on the run time behaviour of the program by
“simply” looking at its code without requiring any execution. The two tech-
niques are essentially complementary, and despite the fact that we concentrate
our attention here only on static analysis, it is in general a good idea to apply
them both, whenever possible.

Dynamic analysis can be used to gain confidence in the existence of qual-
itative properties, like, for example, the absence of deadlock, by performing a
number of runs on different test cases. It has its weak point in assessing the
representativeness of the test data and thus in the generality of the conclusions
drawn from a set of test cases, added to the difficulty of performing reproducible
testing of non-deterministic programs. Moreover, to be run, the program must
already exist in an executable form, so that the dynamic approach is not very
well suited for an analysis in the early stages of the design.

The classical approach of static analysis is instead to derive from the pro-
gram a formal model that is subsequently studied to infer the properties of the
program. Since during static analysis nothing is known about the run-time be-
haviour of the program (for example its input data), no assumption is made
about which of the possible execution paths is actually followed by the program.
Static analysis thus tends to account also for many program behaviours that
would never occur in real executions, however all possible run time behaviours
are surely included. In particular it is assumed that a static analyser is correct
if any deadlock that may appear at run time is detected by static analysis.

Three types of anomalies may be detected by static analysis [20]: uncondi-
tional faults, conditional faults, and nonfaults. Unconditional faults correspond
to errors that will definitely occur during program executions. Conditional faults
represent instead errors whose occurrence depends either on nondeterministic
choices or on specific sets of input data. Nonfaults, finally, are errors which are
reported by the static analyzer although they will never occur during program
executions: nonfaults may appear, for example, when the correct behaviour of
programs is ensured by control variables that are ignored during static analysis.
Static analysis thus provides a pessimistic picture of program behaviour and, in-
deed, a measure of efficacy of a static analyser is its ability to reduce the number
of nonfaults.

The role that Petri nets can play here is to serve as formal models, since
the basic mechanism of concurrency, synchronization and conflict are native in
this language. Petri nets are an executable formalism, and indeed we shall make
a static analysis of the program by “executing” its Petri net model, that is to
say by building the set of reachable states. Petri nets also allow a structural
analysis, that does not require to build the state space, and we shall use it
whenever possible (the reader can find in {16] a throughout discussion on the
use of structural analysis to study deadlock). The usefulness of Petri net models
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for the static analysis of concurrent programs was also pointed out in [20] for
programs written in languages such as Ada [19], Occam [6] and others, while
relations between Petri nets and other concurrent languages and paradigms such
as CCS [15] and CSP [14] have been widely studied in the literature (12, 11].

Since our aim is to mix, in a synergetic manner, the qualitative and quanti-
tative analysis, we use as Petri net language the GSPN “dialect”, for its peculiar
feature of allowing the study of functional and performance properties on the
same model.

The same distinction existing for qualitative analysis into dynamic and static
can actually be envisioned for quantitative analysis as well. As explained in the
chapter on Timed Nets, there are two classical approaches to performance eval-
uation, namely measurement and modelling. Measurement consists in observing
the system to be analyzed under a number of test cases, and to measure in each
case the value of a set of performance indices: if the system to be analyzed is
a program, an example of index can be the execution time. The measured val-
ues are then used to assert the performance of the program. Measurement based
analysis has indeed the same advantages and disadvantages as dynamic analysis.

Modelling consists instead in building a model of the system to be ana-
lyzed, and to compute on the model a set of performance indices that are then
interpreted as performance attributes of the system. The indices are usually
computed by building and solving in steady state the Continous Time Markov
Chain (CTMCQ) isomorphic to the state space of the GSPN, or by performing a
Montecarlo simulation of the model. The approach here is analogous to the static
analysis presented above, in particular the approach based on the steady state
solution of the CTMC is similar to state space based static analysis, as the one
proposed by Taylor [20] since they are both centered around the construction of
the set of reachable states.

It is often the case, however, that state space techniques are not feasible, due
to the excessive dimension of the state space. In these cases, GSPNs still play
a relevant role, since simulation can be used to estimate performance indices of
the model, and therefore of the program, while the observation of the execution
of the model, independently of its timed behaviour, allows the programmer fo
reason about program behaviours using a formal specification, and can also aid
the user in visualizing the many possible execution sequences of the program.
Indeed the GSPN model of a program, built along the rules of static analysis,
summarizes all possible run time behaviours of the program.

In the remaining of this chapter we shall deal with the problem of represent-
ing a distributed program with a GSPN model to support the static analysis of
qualitative properties, and the performance evaluation of program performance
indices, in an automatic manner. To reach this goal we shall first discuss, in Sec-
tion 2, a well known small problem, the dining philosophers with unidentified
forks: through this example we intend to show the usefulness of the approach,
but also its limits, as well as the need for tools that can support the analysis.
Section 3 takes a critical view on the example, to identify its peculiarity, and
to show the limits, and some of the advantages, of a GSPN based analysis. At-
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tention will be paied to the problem of choosing an adequate abstraction level
for our model representation of the reality, in particular for what concerns the
modelling of program variables and input values, to the issue of timing (how
are mean delays and distributions assigned to transitions}, and to the definition,
interpretation and significance of performance results. The classical approach to
static analysis does not model program variables at all: this may imply a large
number of non faults, sometimes so large as to make any type of analysis non
feasible. We shall discuss the modelling of variables in Section 3.3. Section 4 dis-
cusses in depth the problem of the automatic translation of distributed programs
into GSPN models, and shows a non trivial application example.

To be able to show examples, and to discuss the issue of the automatic
construction of GSPN models of distributed programs, we refer in this chapter
to a specific class of languages that allows an application to be organized as sets
of cooperating tasks using a message passing paradigm of the rendez-vous type
(realized though a form of synchronous communication over a channel). Major
examples of languages of this type are Occam, CSP and Ada, and we shall use
a CSP-like syntax.

2 An example

We present a very simple and intuitive example to show the goal of the integrated
qualitative and quantitative analysis of distributed programs by considering a
message passing solution of a variation on the theme of the well known dining
philosophers problem: there are numphil philosophers and a pool of numphil
forks, each philosopher needs any two forks to eat. A solution, written in CSP
style, is presented in Fig. 1. The syntax chan_name ? var_name means to execute
an input from channel chan.name, and the data value read from the channel is
put in variable var_name; the symbol ! represents instead an output. The seman-
tics of input and output statements follows the rule of communication in CSP,
based on the rendez-vous paradigm: a process that executes an input (output)
from chan_name is blocked until there is another process that is ready to exe-
cute an output {input) on that same channel: input and output have perfectly
symmetric behaviour. The par Py, Py, ... P, statement activates the n named
processes. The alt command represents instead a non deterministic (unspecified)
choice among different communication statements. Each communication state-
ment can be guarded by a boolean guard: only communication statements whose
guards are true can be considered for the choice.

In the example there are three different processes: Forks.Monitor to manage
the forks, Philos that represents a generic philosopher, and process root that
activates one instance of Forks_Monitor and numphil instances of Philos, pass-
ing to these processes two channels, grant.fork for the monitor to provide to a
philosopher the right to use a fork, and acc_rel for a philosopher to give a fork
back to the monitor.

FEach philosopher executes in an endless loop two output commands from
channel req_chan to acquire the two forks, operations that correspond to a rendez-
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Philos( chan req.chan, chan rel_chan)
while(true)

THINK

req.chan!dummy

req-chan!dummy

EAT

rel.chan!dummy

rel.chan!dummy

Forks_Monitor( chan grant_fork, chan acc_rel)
int Avail=numphil
while{true)
alt
(Avail>0): grant_fork?dummy
Avail—;
acc.rel?’dummy
Avail+4+;

root
chan grant_fork,acc.rel
par
Forks_Monitor(grant_fork,acc_rel)
for i=1 to numphil Philos(grant fork,acc_rel)

Fig. 1. The code of the philosophers acquiring one fork at a time

vous with the monitor when it executes an input from channel grant_fork . It
can then proceed to the “eating” activity, summarized by the macro EAT. The
philosopher releases the two forks by doing two output statements on the formal
parameter channel rel_chan, operations that correspond to a rendez-vous with
the monitor when it executes an input from channel acc_rel.

The monitor process keeps a count of the forks available in variable Avail, that
is incremented and decremented according to whether a fork has been released or
acquired. At each step of the while loop the monitor can receive either a request
or a release of a fork: observe that a request of a fork is taken into consideration
only when Avail is greater than 0.

A GSPN model of the system for numphil = 2 is shown in Fig. 2. The left
and right portions of the net model the two philosopher processes, while the
central part is the monitor. The variable Avail, local to the monitor, has been
modelled by a place with an initial marking of two. The two alternatives of the
alt statement of the monitor {communication on grant_fork or on acc_rel} give rise
to four possible rendez-vous each, modelled by the eight immediate transitions
of the model; notice that the four left immediate transitions, that represent
the acquisition of forks, test and modify the place that models variable Avail,
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the place is instead only modified in the case of the rendez-vous on the acc_rel
channel.

The GSPN model of Fig. 2 can now be studied to infer qualitative and quan-
titative characteristics of the program.

A structural analysis of the model individuates 4 P-semiflows, and 2 T-
semiflows. All places are covered by at least a P-semiflow, and therefore each
place of the model is bounded, and, consequently, the net is bounded as well.
Table 1 shows the P-invariants computed from the P-semifiows. The first three
invariants have the same interpretation: P; represents all possible states of the
first philosopher process {left in the picture), P, represents all possible states of
the second philosopher process {right in the picture}, Ps represents all possible
states of the monitor process {middle in the picture), and the last one, Py, is a
mixing of the value of the Avail variable and of the state of the monitor.

Each transition of the model is included in at least a T-semiflow, and this is
a necessary, but not sufficient, condition for the net to be live. Table 2 shows the
T-semiflows. T) (T3) represents the first (second) philosopher possible actions,
and, whenever it is possible to fire a corresponding firing sequence, the system
comes back in the initial marking.

Pl inrell + inrel2 + inrll 4 inr12 + rfll 4 rf12 4+ endWhilel +
rel12 4 relll + Eatl + Phill = 1

P;|| inre21 + inre22 + inr21 + inr22 + rf21 + rf22 + endWhile2 +

rel2l + rel22 + Eat2 + Phil2 = 1

P inc + dec + inrell + inrel2 + inre2l + inre22 4 inrll +

inr12 4+ inr21 4+ inr22 + ALT =1

Pyl 2%inc + 3%nrell + 2%nrel2 + 2*inr22 + inrll + 3*%inre2l +

inr2l + 2%inre22 <+ rf12 + rel12 4 2*relll + 2*Eatl 4 2%inr12 +

rf22 + 2*Eat2 + rel22 + 2*rel2l 4 Avail + ALT =3

-

Table 1. P-invariants from the 4 P-semiflows of the GSPN model of Fig. 2

T1112*inc 2*dec einre2l einr22 einr2l einre22 Eat2 Think2 inre21
inre22 inr21 inr22 endWhile2
T»112*inc 2*dec einrell einrel? einrll einrl2 Eatl Thinkl inrell
inrel2 inrll inr12 endWhilel

Table 2. T-semiflows of the GSPN model of Fig. 2.
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Indeed the system is not live, since of the 55 reachable markings, one is a
deadlock: the state in which there is a token in places rf22, rf12, and ALT.

The models obtained by removing a philosopher (initial marking of place
Phill = 0 or Phil2 = 0) have no deadlocks, which suggests that, as expected, the
deadlock comes from an interleaving of actions of the two philosopher processes
that want to access the pool of common resources (the forks). By checking the
two philosophers alone, we ensure that the model of each process has no deadlock
(a deadlock in a single process model is generally caused by some missing arc in
the net).

A visual interactive simulation of the net immediately reveals that a firing
sequence that takes the net into a deadlock state is, for example, Thinkl, inrll,
einrll, Think2, dec, inr21, einr21, and dec. The problem is that the two forks
can be granted to two different philosophers, that are not going to release them
unless they get a second one, which obviously causes a deadlock.

One way to eliminate the deadlock is to oblige the philosophers to get both
forks at the same time. The modified code is shown in Fig. 3, and the corre-
sponding net in Fig. 4. A structural analysis of the model individuates again 4
P-semiflows, and 2 T-semiflows, that have the same interpretation as before. The
reachability analysis reveals no deadlocks, and produces 25 states. We can check
on the set of reachable states that it does not exist a state with both places
Eat] and Fat2 marked: this ensures that the two eat activities are in mutual
exclusion. We can also observe that there exists no reachable state in which one
of the eat place is marked together with place Avail. In the general case of N > 2
the property that we need to check is that at most numphil/2 philosophers can
be eating at the same time.

The qualitative analysis also reveals that the reachability graph is strongly
connected, a sufficient condition for the steady state probabilities to be well-
defined: the classical qualitative analysis can be therefore integrated by a quan-
titative analysis that allows to compute performance indices, but also to derive
some assertion on the state space properties in a probabilistic form. Quantitative
analysis is built around two basics performance indices: throughput of transitions
(the mean number of firing of a transition ¢ per unit time) and distribution of
tokens over the places (probability of having a number n of tokens in place p).

Symmetric behaviour We begin our analysis by assuming a timing behaviour
fully symmetric: each timed transition in the system is assigned a weight ! of 1
which implies that all timed activities (computation and communication) have
the same distribution, which implies, obvicusly, the same mean delay value. The
solution in steady state with the above timing assignment reveals a throughput
of 0.110938 for all transitions representing activities of the philosophers, and
twice as much for transitions inc and dec. A symmetric assignment of weights

! According to GSPN definition, the weight of a transition ¢ is the rate of the exponen-
tial distribution of the random variable “delay of transition ¢”, and the mean value
of the delay associated with the transition is therefore the inverse of the weight (the
mean value of an exponential distribution is the inverse of its rate).
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Philos( chan req.chan, chan rel.chan)
while(true)

THINK

req.chan!dummy

EAT

rel.chan!dummy

Forks_Monitor( chan grant_fork, chan acc.rel)
int Avail=numphil

while(true)
alt
(Avail>1): grant_fork?dummy
Avail=Avail-2;
acc.rel?dummy
Avail=Avail+2;

root
chan grant_fork,acc.rel
par Forks_Monitor(grant fork,acc_rel)
for i=1 to numphil Philos(grant fork,acc.rel)

Fig. 3. The code of the philosophers acquiring two forks at a time

implies indeed a symmetric behaviour of the philosophers which, in the mean,
take 9.01404 (computed as 1/0.110938) units time to complete a sequence of
think and eat. If we want to know how much each philosopher is delayed by the
presence of the other, we can solve the same system with an initial marking of
zero token in place Phil2, which yields a throughput of zero for all transitions
related to the second philosopher, and a throughput of 0.2 for the transitions
related to the first one: in absence of contention a philosopher completes his cycle
in a mean time of 5 time units (which may look a little surprising considering
that each cycle requires 6 timed activities to complete, namely a think, an eat,
two exchanges of message, a decrement and an inerement of the shared variable,
but we should consider that the decrement can go in parallel with the eating,
and that the increment goes in parallel with the thinking) Therefore the delay
experienced by a philosopher due to the presence of the other one is of about 4
time units.

Another interesting question is about the behaviour of forks: how long
philosophers have to wait for a fork, and does the behaviour (qualitative and /or
quantitative) of the system change by increasing the number of forks?

If we indicate with P{z} the steady state probability of condition z, and with
m(p) the marking of place p, then the probability that philosopher 1 has to wait
for acquiring the forks can be expressed as the probability of the philosopher
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being in place rf11, that is to say P{m(rf11) = 1}. The value computed for it
is 0.50078, that is to say, more than half of the time of the philosopher is spent
waiting for the communication over the grant.fork channel. It is interesting to
observe that even if there are only two forks, there is a non null probability that
philosopher 1 has to wait before being able to give the forks back on the acc_rel
channel (P{m(rell1) = 1} = 0.05547), and this is because the forks monitor is
executing a decrease variable activity right after granting the forks, and may not
be ready to receive the forks back when the philosopher has finished his eating.

We know that with two forks the eating activities are mutually exclusive since
P{m(Eatl) = 1 and m(Eat2) = 1} = 0.0. Moreover the probability of having
0,1, or 2 forks available is 0.55469, 0.0, and 0.44531, respectively; the value of 0.0
for the probability of having a single fork available is not surprising given that the
forks are always acquired and released by pairs. When we increase the number of
forks by one (m(Avail) = 3), the throughput of the system is maintained, and the
probability of having 0,1, 2, or 3 forks available is 0.0,0.55469,0.0, and 0.44531
respectively (the only change is that there is a fork always sitting in place Avail).
When we increase the number to four, we should expect the two philosopher to
be pretty independent, since the shared resource is non blocking any longer. The
throughput obtained is now 0.122222, for a cycle time of 8.1818331, which is far
from the 5 unit time of the philosopher running alone: by increasing the number
of forks we have simply moved the contention from the forks onto the shared
resource “Forks_Monitor process”.

As a final example that makes our assumptions a little bit more realistic, let
us assume that the increment and decrement activity are quite quick, and that
the communication takes less than the eat or think activity: we can, for example,
assign a weight of 100 to decrement and increment of the variable, and of 50 to
the communication, in this case for two forks we get a cycle time of 2.5687923
and of 2.0415913 for four forks, while we have a value of 2.0401959 for the single
philosopher case. Indeed if communication and variable modification activities
are much faster, the delay due to the presence of the other philosopher is reduced,
and the presence of four forks makes the two processes almost independent.

Asymmetric case We consider two asymmetric loads. In the first case we assume
that the first philosopher thinks 10 times slower than philosopher2, which im-
plies to decrease its rate from 1.0 to 0.1. The consequence on the throughput
and on the cycle time are quite sensible: the throughput of philosopher 1 has
dropped from 0.110933 to 0.05677 (with a cycle time increase from 9.01445072 to
17.614937, that can also be compared with the cycle time of philosopher 1 when
there is no other philosopher, which is 11.040087), while that of philosopher 2
has increased from (0.110933 to 0.155849 (cycle time decrease from 9.0144502 to
6.4164672). The increase in the cycle time is clearly due to the increase in think
time, while the decrease in the cycle time of philosopher 2 is due to the lower
contention for the forks. The probability of a philosopher waiting for the forks
is viceversa similar for the two philosophers: it is 0.23360 for philosopher 1 and
0.29868 for philosopher 2: both philosophers spent some 20 to 30 % of their time
waiting for forks.
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If instead philosopher 1 keeps the forks for a time that is 10 times longer
than philosopher 2 (all transitions rates equal to 1.0, but for transition Fatl,
that is set equal to 0.1), then the two cycle times are similar, they both increase
to a value around 17.5 (17.651004 for the first one and 17.451398 for the second
one}, but the waiting times are rather different (0.25834 for the first philosopher
and 0.74214 for the second).

The analysis reported here has the aim of studying how the processes in-
fluence each other, and how the execution times changes according to different
hypothesis on the temporal behaviour of the processes: it is indeed very specific
to the program that we are considering. In general the choice of the performance
indices to be computed is strictly related to the goal of the evaluation of the
system, but there are also general indications that we may want to extract from
a quantitative analysis. One need frequently arising in the literature is that of
providing a quantitative characterization of the program, that can be used by
load balancing or mapping algorithms. A data structure that is often used by
these algorithms is the communication graph, a graph with one node per process:
there is an arc between node p; and p; if process p; exchanges messages with p;,
or viceversa. The weight of the arc should provide an estimate of the amount
of communication exchanged between the two processes. A possible choice for
the weight is to use the sum of the throughput of all transitions that represent
a communication between p; and p;. Fig. 5 shows the communication graph for
the program of Fig. 3, computed using the throughput of the transitions of the
GSPN model of Fig. 4 that represent a communication statement. Communi-
cation graphs can be enriched by labelling each node with an indication of the
execution time of the corresponding process. Again these values have been com-
puted using the GSPN model in Fig. 4, as the sum of the throughput of all
transitions that represent activities that we have classified as “computation:”
this transitions are Think! and FEat! for the first philosopher, Think2 and Eat?2
for the first philosopher, and dec and inc for the monitor. An algorithm for al-
locating the program on two connected processors, according to the indications
provided by the communication graph will presumably choose to allocate on the
same node Philos_2 and Fork_monitor, since they are the two lightest processes
and, moreover, there is more exchange of communication between Philos_2 and
Fork-monitor than between Philos_1 and Fork-monitor (and in general commu-
nication within the same node is less expensive than communication between
different nodes).

An additional data that can be computed from the GSPN model and that
may be used in the allocation procedure, is the level of interference between pro-
cesses: the probability that two processes are executing at the same time. Indeed
two processes whose computing activities are mutually exclusive, are likely to
be candidate to share the same processing node. For example we can compute
the interference between the two philosophers, as the sum of the probabilities of
all those marking in which both philosophers are performing a computing {eat
or think) activity. This probability is 0.21162 for the two philosophers, 0.27982
for Philo_1 and Forks_Monitor, and 0.16641 for Philo_2 and Forks_Monitor. Indeed
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also the interference shows that the choice of placing on the same node Philo_2
and Forks_Monitor is the more advantageous.

Philos_1
19.376

Fig. 5. The communication graph for the program of Fig. 3.

3 GSPN modelling of distributed programs

The example of the previous section is indeed a successful case: it was rather
straightforward to build the model and solve it, and it was easy to translate back
the results of the analysis in terms of program behaviour {for example it was
very easy to interpret the net deadlock state as a program state). But what are
the characteristics of the philosopher program that makes it suitable to analysis,
and what are the more or less implicit hypothesis that we have based our analysis
upon?

We shall start by first considering the peculiarity of the program, and their
impact on the analysis, together with suggestions on how to deal with more
general cases.

3.1 Learning from the example

The philosopher program was given in a very abstract form: the code only
contains statements that describe either process activations or communications,
and other activities in the philosophers are summarized by the macro activities
THINK and EAT. There is in the example a one to one relationship between
statements of the program and elements of the net, where all places, with the
exception of Avail, basically represents the program counter of each process.
When modelling real programs, we should expect instead a larger proportion
of “normal” statements, and a large number of variables that can be used to
store results of computation, how to decide what to model explicitly, and what



451

to neglect? The choice of the abstraction level should be driven by the goal of
the analysis. Main goal of the qualitative analysis is to check the presence of
deadlock, and therefore all “concurrency” statements (par, alt, 7, ) should be
part of the model. Of course also the path used to reach a certain concurrency
statement should be represented. The quantitative analysis “only” demand is
instead to model activities for which we are able to provide a reasonable estimate
of their duration. As we shall later see this is not a trivial task.

The state space for the erample is rather small: this is not always the case,
although the abstraction level chosen binds the complexity of the model to the
concurrent structure of the program, and not to the sequential part, the resulting
model may still be too big to be solved. The only possible qualitative analysis is
the one based on P- and T-semifiows, and on net structures such as deadlocks
and traps. Quantitative analysis instead can be performed using discrete event
simulation to compute stochastic estimates of the envisioned performance indices
(this technique does not require to store the set of reachable states of the model,
and, although expensive, can be used for much larger nets than the one solvable
through construction and solution of the associated CTMCs).

There is a single variable in the philosopher program, that can take a finite, and
low, number of values. Indeed variable Avail can assume only two values, as
reported by the quantitative analysis, and this is not always the case. Explicit
representation of variables is undoubtly one of the major sources of complexity,
especially when there is a low degree of dependency among the variables values,
so that the state space of the possible joint values of all variables becomes close
to the Cartesian product of the possible values for each variable. The selection
of the variables that should be modelled explicitly is therefore a critical one.

A single deadlock state was found for the example models, and it was straight-
forward to show that it corresponds to a deadlock state of the program. Given
a deadlock state of the net, we need to determine whether it is a non-fault or
whether the real problem can actually block at run time. It is therefore very
important to be able to have an easy way to associate program states to net
states: this is straightforward, since statements of communication, that are the
ones that can cause deadlock, are explicitly represented, and from the places
that represent processes’ program counters it is easy to determine the program
state. Once the net deadlock has been translated into a program state it may
not be obvious, and it is left to the modeller, to decide whether that program
state is a reachable one. For example in the rather simple spooler program pre-
sented in [1], chap.10, there is no deadlock, but the corresponding PN model
has 5 deadlock states: all of them are non faults. The model of a rather simple
2D-FFT program, shown in [9], has 1021 states and 123 deadlocks, all of which
are non-faults.

A classical situation in which a non-fault arises is when two processes com-
municate between them from inside loops, and each loop is executed the same
number of times by the two processes: if the variables that control the loop
are not explicitly represented, then the choice between re-executing and exiting
the loop is taken in a probabilistic manner, and if a process decides to exit the
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loop, thus not performing any additional communication, while instead its peer
process takes the opposite decision, then the model reaches a deadlock state.
Non faults are typical of static analysis, since this type of analysis does not
consider variables. Since static analysis using Petri nets actually amounts to
executing the static model, the run time behaviour of variables whose values do
not depend from run-time supplied input values can be taken into account by
the analysis.
The example program has no dependencies from run-time supplied input values.
How to model a program whose structure of synchronization can depend on
variables whose values are only known at run time? The obvious answer is to add
to the program model an abstract representation of the environment, providing
the input values at run time. A particular class of problems for which this is
rather straightforward is that of process control systems in which the relevant
information is not the value of the input signals, but their frequency. Control
signals are easily represented by timed transitions, and the interested reader can
find in [4] an application of this idea to a monitoring system.
The example program has a cyclic behaviour: the three processes created by root
execute a while(true) statement, but this is certainly not always the case. Indeed
some deadlock states of the program actually represent program termination
states, so that they are perfectly acceptable. The only problem is that no steady
state solution can be computed for models with deadlock states, nevertheless
it could make sense to speak of classical steady state performance results as
“relative frequency of communication over channel ¢”. The solution in this case
is to “restart” the system from each terminal state, by adding to the net a subnet
that changes the state from the deadlock state to the initial one. Obviously this
is possible only when there is a limited, and well defined, number of termination
states: we shall see in the next section one such case.

3.2 Hypothesis behind the analysis

By taking GSPN as a modelling formalism, we are implicitly assuming that du-
ration of (blocks of) statements can be modelled by exponentially distributed
variables, and that we are able to characterize the distribution parameters, more-
over we have assumed that it is reasonable to compute performance of distributed
programs without taking into consideration the contention for physical resources.
We shall now discuss each of these issues separately.

No contention on physical resources: the model of the philosopher program does
not represents explicitly the contention for processors and communication media:
indeed, whatever is the physical environment in which the program is going to be
executed, we are always going to get the same values of the performance indices,
since no hardware description is included in the model. The analysis performed
is therefore valid under the (unrealistic) assumption of infinite resources. This
choice, which may appear as a disadvantage, has the positive aspect of providing
results that are valid in whatever context, in particular it provides a lower bound
on the execution time: it therefore allows a study of the efficiency of the program
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per se, independent from the number of processors, the mapping, and the load
balancing algorithms.

This analysis approach is intended to be performed from the early steps of
the implementation, when the full program is not yet available and the target
architecture may not have been dimensioned. Being machine independent, the
analysis provides very general results that may be checked at later stages of the
software life cycle by building machine dependent models [7] or by monitoring
the final implementation on the target architecture.

Ezponential distribution of delays In GSPN models the delays associated to
transitions are exponentially distributed; this choice produces two major ad-
vantages: the resulting stochastic model is a Markov chain that can be solved
numerically, and the behaviour of the timed model with respect to qualitative
properties is the same as the untimed one, so that all the large set of results
for untimed Petri nets can still be applied. But is the exponential assumption a
realistic one? We can think in general that a statement requires a fixed amount
of time for its execution, and the same holds for communications. Nevertheless
the randomness introduced by the exponential assumption can account for some
variable behaviour of the system: indeed each transition in a GSPN model of a
program may represent a variable number of statements, including loop state-
ments; moreover, since the model does not represent the hardware, a random
delay associated to transitions may account for the variable execution time of
a piece of code or of a communication due to contention for the cpu’'s or the
channels.

Computation of the parameter of the delay distributions To fully specify an
exponential distribution it is necessary to give a parameter (the rate) which is
the inverse of the mean value: we therefore need to estimate the mean delay
of the activity represented by each transition. This may be a formidable task,
especially when transitions represent macro activities, or when the duration of
the activity depends from input data.

Indeed, when the model is used in the early stages of the design, it may make
more sense to perform a study in relative terms than in absolute ones: in the
philosopher example we have considered each delay in terms of the communica-
tion delay, set to one as a reference value, and goal of the analysis was more to
provide indication on the sensitivity of the performance indices with respect to
variations in the delays of basic activities, than not to provide absolute values
for the performance indices.

3.3 Modelling variables

The example can be used to reason on the importance of a correct choice of the
variables to be modelled: if Avail is not modelled the GSPN does not have any
deadlock state, although the program does have a deadlock state. This problem
is obviously caused by the fact that, if Avail is not included in the model, we
are abstracting with respect to the number of available forks, which implies that



454

no philosopher is ever blocked. It should be remarked that a live model of a
deadlocked program violates the main requirement of static analysis {a deadlock
in the program implies at least one deadlock in the model): we shall see in
the next section a more complicated translation of the alt that maintains this
requirement.

Viceversa a variable that controls branching may or may not be modelled,
and there could be no consequences or disastrous ones.

As a final remark, observe that if in the program there is a variable that
counts how many times the philosopher eats and we include it in the program,
the model becomes unbounded, or at least difficult to solve if we assume a
mod(N) increment operation.

4 Automatic modelling and analysis of distributed
programs

The simplicity of the example of the previous section may have given the {(wrong)
impression that building models of distributed programs is a simple matter. If
a program is complex, in particular if its communication structure is complex,
the construction of the model is an error prone activity, moreover there is a high
risk to model what we think the program does, more than what it actually does.
The answer to these problems lays, of course, in automatic translation.

In this section we present the automatic code translation algorithm, an ex-
ample of application of the automatic translation to a time warp distributed
simulation program, and examples of relevant performance indices whose defi-
nition can be automatically generated when the program model is constructed.
The translation has been implemented in a tool called EPOCA (8], the tool used
for the analysis of the GSPN models is GreatSPN[5].

4.1 Awutomatic translation of CSP-like concurrent programs

In Section 2 it has been shown on a simple example how a program can be
modelled using the GSPN formalism. In this section we shall describe an algo-
rithm for automatic translation of programs written in a CSP-like language. The
reference language that we want to automatically translate comprises a set of
statements that we classify as sequential (meaning that these statements are not
specific of a programming language for writing concurrent programs) and a set
of concurrent statements. The sequential statements that we shall consider for
translation are: assignment, if-then-else, and while, that have the usual seman-
tics, and seq, that allows to compose n statements sequentially. The concurrent
statements that we shall use are: par (activation of n concurrent processes), alt
(non deterministic choice among n statements conditioned on the truth value
of some logical condition and/or on the availability of a rendez-vous on a given
channel), and the synchronous input/output communication statements whose
syntax is chan-in?message and chan-out!message respectively.
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This language allows only static process creation, i.e. the set of processes
that compose the concurrent program is known at compile time. All processes
are activated through some par statement and there is a unique root process
which originates all other processes composing the concurrent program. Pro-
cesses communicate through declared common channels.

A process declaration consisting of a name, an interface and a body, defines
a process type: the process name is used in the par statements to define the
type of processes being activated (of course many instances of the same process
type can be activated in the same par as well as in different par statements).
The interface of a given process type is defined as a set of parameters represent-
ing unidirectional channels: the connections through actual channels among the
activated process instances are defined in the par statement that activates the
processes. Finally the body of a process type declaration defines the behaviour
of all processes of that type.

All communications are of the rendez-vous style, i.e. both partners of a com-
munication need to be ready to exchange the data {one ready for an input and
one for an output over a common channel} before the communication can actu-
ally take place.

The alt statement allows a process to wait for a message arriving from other
processes on a given subset of channels, upon reception of a message an action
is performed that depends on the reception channel. It is also possible to add a
logical condition to consider only a subset of input channels at each particular
execution of the alt statement, moreover special mechanisms are also available
to set a timeout so that it is possible to avoid indefinite blocking on the alt
statement. If messages are ready to be received on more than one channel at the
same time, one of them is chosen non deterministically.

The abstraction level that we have to use when constructing a model of a
program depends on several factors, namely on the type of properties of the
program one wants to study, on the available information on the possible ranges
for input data, on the {computational) cost one is willing to pay to obtain the
results and to interpret them (this in turn depends also on the features of the
available analysis tools).

On one hand, in order to get very precise results out of the model one may
want to include as much detail as possible, so that the model behaviour ex-
actly reflects the actual program behaviour, but this choice leads to huge and
intractable models. On the other hand keeping the abstraction level as high as
possible, according to the desired results, has the advantage of decreasing the
computational cost needed to get the results, of allowing to study the logic be-
haviour of the program at a higher abstraction level than that of the code (hiding
lengthy sequences of statements that might be not very significant from the point
of view of the processes interaction, for example) hence making it easier to give
an high-level interpretation of the results. The drawback of less detailed models
is of course that of providing less accurate results, and in particular of opening
the possibility of detecting behaviours on the model that are not possible in the
real program (see for example the discussion of non-faults in Section 1).
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The abstraction level chosen for the automatic translation algorithm is ori-
ented to the verification of a correct and efficient interaction among the processes
composing the program. We have thus chosen to explicitly represent all the pro-
cess activation and interaction statements (i.e., all par, alt, ?, and !) and all those
control statements (while, if, seq) that contain a process activation/interaction
statement at any level in their body. All the portions of sequential statements be-
tween two process activation/interaction statements are instead abstracted out
as single activities (macro-statement), whose precise behaviour is not modeled.

Concerning data representation, we first consider the choice of not including
any data representation in the model, then we show that it is possible to identify
a subset of integer or boolean variables in a program that are used for control
purposes (e.g. counters in loops) that can be easily (and automatically!) modeled,
without causing an unacceptable growth in the model state space and that often
can eliminate the problem of non-faults.

Let us describe the steps needed to translate a concurrent program:

1. Produce a process schema from each process declaration in the program by
coalescing into single macro-statements all those sequences of statements
that do not include any process activation/interaction statement.

2. Translate each process schema into a GSPN model using the translation rules
depicted in Fig. 6, and representing the activation of a process in a par by a
single transition (i.e., do not substitute a process activation with the trans-
lation of the corresponding process schema), the communication statements
by immediate transitions (thus disregarding the explicit representation of
the communication partner, as well as the synchronization aspect of the
rendez-vous), and the macro-statements by single timed transitions (whose
associated delay is an estimate of their execution time).

3. Starting from the root process schema model, substitute each transition rep-
resenting the activation of a process proc; with a copy of the GSPN model
of the corresponding process schema. Since each proc; can in turn activate
other processes, the substitution continues in depth-first mode until all the
transitions that represent the activation of a process have been replaced.

4. Pairs of communication transitions that belong to different processes and
that represent their (mutual) communication are fused to concretely repre-
sent the synchronization deriving from the rendez-vous protocol, and are
then erpanded into an “immediate transition-place-timed transition” se-
quence to express the time needed to complete the transfer of a message
from the sender process to the receiver.

The above four steps allow to produce a PN model (with priorities over tran-
sitions). In order to get a GSPN model, a further step is needed to define the
weights/rates of transitions. To assign the rate of timed transitions we can define
rate parameters corresponding to the basic activities (like the time required to
execute a single statement, e.g. an assignment, or to perform a communication
of a single byte), and then use the rate parameters (or an expression of them) to
define the rate of each timed transition. The problem becomes thus to automati-
cally associate to each transition an expression representing the complexity of the
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code modelled by it, as a function of some basic rate parameters. Following this
approach, all transition rates are expressed in terms of a small set of parameters,
so that it is rather easy to study the sensitivity of the quantitative behaviour
of an application to changes in the duration of the basic program activities.
The weights of immediate transitions allow to probabilistically characterize the
branching points in the program control flow (if, while, alt statements): unless
the programmer can give precise information on the probability of following each
branch, the same probability is assigned to all branches.

Let us discuss each translation step in details. The first step is conceptu-
ally very simple and it requires the implementation of a simple preprocessor to
produce the process schemas.

The second step requires the implementation of a translator based on the
rules of Fig. 6 where r denotes the translation function, A, B and A; stand
for any statement, while proc; stands for a process name. Each statement is
translated into a GSPN in which it can be identified one eniry place and one
exit place; the entry/exit places have an empty input/output set respectively.
As already said above, any macro statement is modelled by a very simple model
consisting of a single timed transition with one input place (the entry place)
and one output place (the ezit place), and any communication statement is
represented by a similar net with an immediate transition instead of a timed
one. In this step it is necessary to store the information on which transition
represents a process activation and which represents an input/output statement
on a given channel: this information will be used in later translation steps.

Let us discuss each translation rules of Fig. 6: the if construct (Fig. 6.a)
is translated as a free choice (out of the entry place) between two immediate
transitions, one associated with the then branch, and one associated with the
else branch. The output place of transition f;5.n is the entry place of the GSPN
model resulting from the translation of statement A. The exit place of model
7(A) is then connected to an immediate transition (representing the end of
execution of statement A) whose only output place is the exit place of the if
model. The translation of the else branch follows the same rule. In case the else
branch does not contain any statement, the else branch subnet is substituted
with a single immediate transition f,,. whose input place is the if entry place
and whose output place is the if exit place.

The model of the while statement (Fig. 6.b) has an initial free choice between
the immediate transitions f.zi; and tieop. The output place of t.4i; is the exit
place of the while model, hence transition f..i: represents the exit from the while
loop when the condition cond is false. The output place of £,,, 1s the entry place
of the GSPN model resulting from the translation of statement A, the exit place
of model 7(A) is then connected to immediate transition f.yc representing a
jump to the condition test at the beginning of the while loop (in fact its only
output place is the entry place of the while model). Observe that if the condition
is simply true, then transition f..s: should be eliminated from the while model
(hence leaving an isolated exit place).

The representation of the seq (Fig. 6.c) is simply obtained by superposing
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the exit place of the GSPN submodel 7(A4;) and the entry place of the GSPN
submodel 7{A;4+1), for alli = 1,...,n—1, hence modeling the sequential control
flow. The entry and exit places of the seq model coincide with the entry place
of the 7(A;) submodel and the exit place of the statement 7(A,) submodel
respectively.

The model of a par statement (Fig. 6.d) consists of a transition t,,, with the
model entry place as unique input, and with as many output places as the number
of processes to be activated, each output place b; of transition #,,, represents the
activation of process of type proc;, and has a single output transition ¢,,,c; which
is a very (!) abstract view of the behaviour of process proc; (that will be refined
in the third translation step). Each transition ?p,c; has a single output place ¢;
representing the termination of the process. Transition ¢,yn. has a single output
place, which is the exit place of the par model, and n input places, e1,...,e,:
this transition models the fact that the par statement terminates only when all
the activated processes have terminated.

The model of the alt statement (Fig. 6.e) can be seen as the dual of the
par model, in fact only one branch of the alt model is “executed” while all
branches of the par are “executed”. The upper part of the model represents a
free (probabilistic) choice among the n guards of the alt represented by the n
immediate transitions Gy, ..., Gn. The output place of transition G; is the entry
place of submodel 7(A;). The exit place of submodel 7(A4;) is then connected
to an immediate transition whose output set contains only the alt model exit
place?.

The proposed model of the alt statement is correct only if the guards are
pure communication guards, and have no boolean condition associated. Should
guard G; comprise a boolean condition condg;, then we should consider the two
possibile truth values for this condition, choose arbitrarily one of the two, and
then perform the free choice in the alt model only considering those guards for
which condg, is assumed to be true. Only this way we can consider all possible
paths in the program execution, as we have already observed in the philosophers
example of Section 2. In Fig. 7 a translation of an alt statement is proposed,
assuming that the subset Gy, ..., G of guards are pure communications, while
the subset Gx41,...,Gp of guards include a boolean condition (the new imme-
diate transitions true_cond;, false_cond; in the upper part of the model have
higher priority than transitions Gj). Intuitively, the first set of free choices be-
tween pairs of immediate transitions true_cond;, false_cond; allows to randomly
decide if the boolean condition associated with guard G; is true or false. Then
one of the enabled guards is chosen randomly, and places representing the truth

2 Observe that the immediate transitions in the alt exit place input set are redundant:
they could be eliminated by simply merging all the exit places of the T{A;) submodels,
and considering the resulting place as the alt exit place. This can be done because by
construction the 7(A;) exit places have no output transitions. Similarly, the last two
immediate transitions of the if model and the t.yc1e transition of the while model could
be eliminated and their input place merged with the output place: this optimization
of the produced model can be easily implemented, however this is a trade-off between
model size and readability.
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value for the conditions are cleared (transitions clear_cond;) before proceeding
to the execution of the statement associated with the chosen guard.

‘We shall discuss again the problem of modeling guarded commands includ-
ing boolean conditions in the guards in a later section on the modelling of the
program control variables.

Once each process schema has been translated in isolation, we can proceed to
the third step: starting from the root process model, substitute in all par state-
ment submodels the timed transitions representing the activation of a process
instance with the corresponding process schema model. The substitution pro-
ceeds recursively since the inserted process schema models may in turn contain
other par statement submodels. For example the translation of the distributed
simulator program of Section 5 makes six substitutions inside root (Fig. 11}, two
for Sim, two for Rec and two for Tran, and each of the two activations of Rec
gives rise to two substitutions, one due to the activation of Buffer and another
one due to the activation of Sender (Fig. 14).
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In this step, care should be taken to keep track of the association of actual
parameters {channels} with formal parameters upon process activation, with the
aim of generating a table containing for each actual channel Chan; the list of
immediate transitions in the whole model representing input/output statements
on Chan;: this information is essential for the implementation of the fourth step.

The model obtained in the third step contains all the information on the
process activation structure of the program, however it still doesn’t model the
synchronization among processes due to communication. The fourth step trans-
forms the model to include this information. The set of immediate transitions
representing communication statements in the model built by the third step, can
be partitioned into as many pairs of subsets InChan;, OutChan; as the number
of distinct actual channels Chan; in the whole program. InChan; (OutChan;)
is the set of all immediate transitions representing an input (output) statement
on channel Chan;. Since potentially any input transition may synchronize with
any output transition on the same channel, we need to add into the model a
synchronization transition #;, for each pair ({;n,tout) € InChan; x OQutChan;:
the input (output) set of the new transition will be given by the union of the
input (output) sets of transitions ¢;, and ... After adding the synchroniza-
tion transitions, all the transitions in InChan; and OutChan; must be removed
from the model. To express the fact that the communication activity takes time,
the newly created communication transitions must undergo a last transforma-
tion, namely each transition %;, is expanded into a sequence tsync, Peomm; teomm
where t,ync 1s an immediate transition whose input set is the input set of #;,
and whose only output place 1s peomm , While teomm 1s a timed transition (whose
associated delay represents the duration of the communication activity) whose
only input place is peomm and whose output set is the output set of ¢;,. An ex-
ample of application of the fourth step is shown in Fig. 8: in the left part of this
figure, a portion of code is shown, comprising two processes {Proc; and Proc;)
interacting through channel chanl. In the middle part of the figure, is shown
the corresponding model portion resulting from the third translation step. In
this model InChany = {chanl?z, chanl?y} and OutChan, = {chanllmsg}.
The right portion of Fig. 8 shows the result of application of step 4: transi-
tions Sync_chanlz and Comm_Chanlz are the result of composition and ex-
pansion of the pair of transitions chanl?z and chanllmsg, similarly transitions
Sync_chanly and Comm_Chanly are the result of composition and expansion
of the pair of transitions chanl?y and chanllmsg.

4.2 Translation of control variables

We have discussed in the previous sections some of the problems that can arise
if variables are ignored when constructing the GSPN model of a concurrent
program. In this section we show how boolean control variables can be included
in the program model to reduce the possibility of nonfaults detection; the variable
translation rule that we propose is automatizable and can be easily extended to
work also with unsigned integer variables. Although the introduction of this
refinement in the model may potentially lead to much larger state spaces, it is
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Fig. 8. An example of superposition and expansion of communication transitions.

often the case that the increase in state space size is not that dramatic, since the
introduction of variables can reduce the set of possible behaviors modelled by
the net, and, moreover, certain variables may depend completely on the state,
so that no additional states are generated. In the 2D-FFT example appeared
in [9], the number of states of the model without variables is 1021 (including 123
deadlock states which are non-faults), while the number of states drop to 169
for the model that explicitly represents the variables that control cycles. Two
limit examples of variables can be considered: if we add to each philosopher a
variable indicating whether the philosopher is eating or not, then its explicit
modelling leaves the state space unchanged (the corresponding state will be
implicit). Viceversa, the addition of an “eating times counter” as explained in
Section 3.1, makes the model unbounded.

If the state space growth after introduction of variables is such that state
space analysis becomes unfeasible, the other opportunity is to model in a more
abstract way the variable(s), however in general this approach is not automati-
zable and hence we shall not discuss this possibility further in this chapter.

To translate a variable we first have to decide how to encode its value in
the model state, then we have to implement in the model the events that cause
the variable to change value, finally we need to connect properly the place(s)
representing the variable value and the transitions representing a choice based
on the variable value.

Let us restrict ourselves to boolean or unsigned integer variables: in this
case a single place is enough to encode the variable value. For an unsigned
integer variable, its value could be simply represented by the number of tokens
in the place, while for the boolean variable, the most natural encoding consists
of associating the false value with the empty place and the true value with one
token in the place.
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Now let us consider an assignment statement 3 on a boolean variable: Fig. 9
shows the translation rule for the two assignment statements x := true and
z := false. Observe that assigning a value to a variable consists of throwing away

x:=false x:=true

4
:
Y

Fig. 9. Translation rule for boolean variable assignment.

its old value and then storing its new value, hence if we want to assign the value
true to boolean variable ¢ we have to add a token (representing the new value) in
the corresponding place and possibly also remove a token from it, if its previous
value was already true. In the case of an unsigned integer variable, getting rid of
the previous value may involve a sequence of immediate transition firings to clear
the place, followed by the firing of a transition putting in the variable’s place
as many tokens as the new value to be assigned to the variable. The translation
becomes more complex if the value to be assigned is not a constant but the
result of an arithmetic operation on other modelled variables (some of these
more complex translation rules can be found in [18]). It is important that all the
immediate transitions used to model a variable modification must have higher
priority than any immediate transition representing a test over the variable, to
avoid visibility of intermediate inconsistent values of the variable.

Observe that a communication of a value over a channel is a special case of
assignment, and as such it must be modelled in a similar way.

Let us now consider control flow statements that are conditioned on the
value of a modelled variable. For the sake of space we have chosen one control
flow statement for all,i.e. the if staterent, the others being easily derivable from
it. When the if statement condition is simply {# = true) then the translation
rule for the if statement can be simply modified as shown in Fig. 10(a). The
case of more complex boolean expressions involving two or more variables is
slightly more complex: the model must comprise a part that generates in an
auxiliary place the truth value of the boolean expression, then the marking of

3 Observe that once it has been chosen that a given control variable has to be modelled,
the first translation step must be modified to keep the statements modifying the
modelled variable separated from the surrounding sequential code, moreover the
second step must be modified to include the variable translation rules described in
this section.
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the auxiliary place is used to influence the choice of the proper branch of the
if statement submodel. In Fig. 10(b) an example is shown where the expression
is an and between two boolean variables. Observe that the model is such that
the marking of the auxiliary place is generated when the control flow statement
becomes enabled, and it is cleared after the decision of which branch to follow
has been taken.

The extension of the translation rules to unsigned integer variables is not
conceptually difficult, more details can be found in [18].

if (x and y)

if (x=true)

true false

false

.-
-

(a) (b)

Fig. 10. Translation rule for boolean variable test.

One last remark is important, concerning how to decide which variable should
be explicitly modelled. Although it is difficult to give a completely general (and
automatically applicable) rule, the basic idea is to identify and explicitly model
the variables that control the decision points in the control flow and that can
thus have an influence on the possible process interaction patterns.

4.3 Definition of program performance indices at the net level

The example of the previous section has shown a case of program performance
analysis: some of the performance indices computed were specific to the philoso-
pher example, but some other were mors general (like the weight for the com-
munication graph, or the interference among processes). Notice that also the
translation of program performance properties into performance indices of the
GSPN model is an error-prone activity, and it is therefore important to define
automatic translation also for the indices.



465

The first step towards an automatic translation is to identify a set of program
performance indices that do not depend on a specific application: in [4] relevant
indices have been identified related to phases, communication, and processing
interference.

A phase is a subset of processes that can be active at the same time. Relevant
indices with respect to phases are: the set of phases, the probability of each phase,
the maximum degree of parallelism, and the minimum degree of parallelism. If
P is the program, and N its GSPN model, then the set of phases F{P) can be
defined as:

F(P) = Upers(n){act-proc(M)}

where act_proc(M) is the set of processes active in marking M and RS(N) is
the reachability set of N. The probability Pr{f) of a phase f is computed as
the sum of the probabilities of states that have a set of active processes equal
to f. From the set of phases it is also possible to compute the maximum degree
of parallelism ( mazsep(py | f | ), that provides information on the maximum
number of processes that can be performing computation, or communication, at
the same time. The mean degree of parallelism provides instead an indication
of the mean number of processes that can be working at the same time, and
therefore of the mean resource requirement of the program. Its definition is

> 1f1-Prif)

feF(P)

Relevant indices about communication behaviour of a program are: the rate of
communication between two processes P; and P; all along the program execution
(communication(P;, P;)), and in a specific phase f (communications (P;, FP;)).
Their definitions in terms of the throughput X (¢) (mean number of firing of
transition ¢ per unit time) is

communication(P;, P;) = Z X(t)
teécom (P, P;)

where com(P;, P;) is the set of transitions that represent communications
between P; and P;. The corresponding index for phase f is instead:
communicationy (P;, Pj) = Ztecom(P,-,Pj) X (t) where X;(t) is the throughput
of transition ¢ while the system is in phase f.

Interference between processes P; and P; is defined as the probability of the
two processes using the cpu at the same time. For a definition at the net level,
we need to identify the set of transitions Cmp(P;) (Cmp(P;)) that represent
computation activities of P; (P;), to get

Inter ference(P;, P;) = Z Pr{enab(t) N enab(t’))
t 't eCmp(Pi) ' €Cmp(P;)

where Pr(enab(t) Nenab(t’)) is the probability of markings that enable both ¢
and t'.
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5 Translation of a time warp distributed simulator

The example program used to illustrate the automatic translation algorithm is
a time warp distributed simulator (a similar example has been presented in [3}).
It can be classified as a SPMD (Single Program Multiple Data) program since
when it is executed, each processor runs the same “procedure” that implements
an event driven Montecarlo simulator of a queueing network (QN) model. Given
a QN model to be simulated, it is partitioned into P disjoint submodels (where
P is the number of available processors), which are distributed among the P
simulator instances. For space reasons, we shall consider the case of P=2.

The simulator instance mapped on o i.:n processor runs asynchronously
with respect to all the other simulator instances, however when it handles an
event affecting a queue that does not belong to its submodel, it sends a message
to the simulator instance responsible for that queue, describing the event and its
occurrence time. Each simulator instance has a local virtual time (LVT) which is
updated locally whenever a new event is processed. When a simulator instance
receives a message, there are two possibilities: either the message time is greater
than the LVT, in this case the corresponding event lies in the future of the
simulator instance who received the message and hence it is properly inserted
into the local event list, or the message time is less than the LVT, in this case
the corresponding event is located in the past and it was not considered by the
simulator (that was not aware of its existence), as a consequence a rollback is
performed that resets the current status to a consistent past status at a time ¢
less than the message time.

This type of distributed simulation is called optimistic because every simula-
tor instance runs ahead as much as possible hoping that only few old messages
will arrive. When a rollback occurs, the simulator must undo the events in be-
tween the message time and the LVT: this is implemented by keeping an history
of the state evolution, i.e., by saving the status at given checkpoints in time and
keeping track of all processed events from the last checkpoint. Besides bringing
back the local clock and status, it is also necessary to undo the effect of the
messages that have been sent to other simulator instances in the period of time
just canceled: this is implemented by sending an antimessage for each message
sent in the period of time that must be undone.

Periodically all the simulators execute a protocol that allows them to agree
on a global virtual time (GVT): after the execution of this protocol each simu-
lator instance can get rid of the information corresponding to checkpoints with
time stamp less than the GVT. The GVT protocol usually is initiated by a
simulator instance that runs out of space and wants to throw away part of its
history. The model that we shall derive does not include the part of the simulator
implementing the GVT protocol.

The simulation must terminate when the simulation time reaches a given
bound TEOQS. Since the local clocks advance independently, it may happen that
the LVT of one simulator instance reaches TEOS while the other instances have
still their LVT less than TEOS. In this situation, the instance that has reached
the TEOS cannot just terminate because it could receive a message that might
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cause a rollback. Instead, when LVT becomes greater than TEOS the simulator
instance switches into a COMA state. The COMA state hence represents a local
end of simulation: the global end of simulation is reached when all the simulator
instances are in the COMA state. A simulator instance can switch from the
COMA state to the active state when it receives a message that causes a rollback
bringing the LVT back to a value less than the TEQOS

In our example each simulator instance is implemented as a concurrent pro-
gram comprising three processes running in parallel: a receiver, a transmitter
and a simulator. The receiver and transmitter take care of the communication
with the other simulator instances, while the simulator performs the actual sim-
ulation. The processes are activated by a root processor whose code and corre-
sponding model are shown in Fig. 11 (assuming a simple case of a two simulator
instances).

root

PAR
Sim({chanSiT1,chanR181)
Rec(chanR1S1.chanT2R1)
Tran{chanT1R2,chanS1T1)
Sim(chan$2T2,chanR282)
Rec(chanR282,chanT1R2)
Tran{chanT2R1,chan32T2}

Fig. 11. Root process code and model

In Fig. 12 (left) the simulator procedure is shown. The interface of this pro-
cess consists of an output channel chanS;T; for communications with the trans-
mitter process, and an input channel chanR;S; for communications with the
receiver process. The simulator performs an endless loop and behaves in a dif-
ferent way depending on its current state: active (LVT < TEOS) or COMA
(LVT > TEOS). A cycle of the simulator in active state consists of extracting
the first event in the event list (if it is not empty) and process it: the status and
the event list are updated as well as the LVT, and if needed a message for the
outside world is generated and forwarded to the transmitter. Then the simula-
tor checks whether there are new arriving messages from the outside world, if



Sim{chanS;T;,chanR,S$;)
seq
WwWT =0
while true
if (LVT < TEOS)
seq
if (Eventlist is not Empty)
{ get event notice (Event) from event list)
LVT = BEvent.time
if (Event.type = Arrival)
{ update the svent list and server quene)
else {Event.type = Departure}
seg
{ update the event list and server queue)
if {external destination queue)
{Prepare Arrival msg)
chan$,; T, ! msg
eadif
endseq
endif
endif
alt
chanR;S; 7 msg :
seq
# {msg.type = AntiMessage)
{Delete event from event list)
else {msg.type = Arrival}
{Insert arrival in event list}
endif
i LVT > msg.time
{perform rollback }
chan3,T; ! RBmsg
endif
endseq
clock 7 after timenow plss timeout
endseq
ese { LVT > TEOS: Coma management }
seq
chanR,8; 7 msg
# {msg.type == AntiMessage)
{Delete svent from event list)
else {msg.type = Arrival}
{Insert arrival in event list}
eadif
if LVT > msg.time
{perform rollback }
ckanS;T; ! RBmsg
endif
endseq
end if
end while
endseq
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Fig. 12. Simulation process code and model

SIM
CHLVT=0
O while(true}
true
if1
O
LVT<TEOS LVT>=TEOS
if2, .
ELempty y RotELempty
L]
if3
Arr O Dep RiSi7msg
O O
UpdgteEL T ot UpdateEL
(4 Q
if7
O ch
$iTi!msg
( endif4
(ifs
endif3 LVT>msg.time
alt ¥ LVT<ms]
f O
Timeout iSi7
Risitmsg  Rollback
O )
ifs SiTi'RB
C
(it )
LVTimsg time endif8
VT>msg time
O
r Roliback
O
SiTi!RB
(J endife
Oréndalt
o -end__LV'I»TEOS
L LVT<TEO
endifl
hile_cycle
(OEND_SIM
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any is available: this is implemented through an alt statement that realizes an
input from channel chanR;S; with a timeout {input from special channel clock)
to escape if there isn’t any new message. If a new message has arrived it first
checks its time and if needed performs a rollback and sends a rollback message
to the transmitter. If a new message has arrived and its time is greater than the
LVT, the corresponding event is simply inserted in the event list. The simulator
reaches a COMA state when its LVT becomes greater than a predefined maxi-
mum simulation time called TEQS. As previously mentioned, The COMA state
represents a local end of simulation. A simulator instance can switch from the
COMA state to the active state only when it receives a message that causes a
rollback bringing the LVT back to a value less than the TEOS: for this reason the
input statement in the else branch of the if (LVT < TEOS) statement doesn’t
need a timeout escape mechanism. When a simulator performs a change from
the active state to the COMA state, it initiates a protocol to check if all other
simulator instances are in this state and in affirmative case it terminates. In the
example program that we are going to present, the termination protocol is not
included, i.e., the termination corresponds to a deadlock state of the program.

TRAN
() white(true)

Tran(chanT;Rk,chanS,T;)

while true

chanS, T, 7 msg

if msg.type = rollback
while (there are anti-msgs to send)
{Remove message from history)
(Prepare anti-msg )
chanT;R; ! anti-msg

SITImsg

NotRollback

ave_msg. in_history

endwhile

else TRk 'msg
{Store message in history)
chanT;Ry ! msg

endif

end while

O enp_TRAN

Fig. 13. Transmitter process code and model

In Fig. 13 (left) the transmitter procedure is shown. The transmitter performs
an endless loop: it receives a message from the simulator, stores it in a history
structure, then forwards it to the destination simulator instance. When a rollback
occurs, the transmitter receives a special message from the simulator; in this case
it sends one antimessage for each stored message sent in the past with time stamp
greater than or equal to the value of the LVT after the rollback.

In Fig. 14 (left) the receiver procedure is shown. It is obtained as parallel



470

activation of two (sub)processes: a Buffer and a Sender. The reason for structuring
the receiver in this way rather than a simple cycle of message reception followed
by a message forward, is that the simpler version would lead to a deadlock, as
explained in [3]. The Sender subprocess performs an endless loop simply waiting
a message from the Buffer (on channel chanBuf;Snd;), forwarding it to the
Simulator (on channel chanR;S;), and then sending a signal to the Buffer (on
channel chanSnd;Buf;) to notify that it is ready to receive and forward the
next message. The Buffer subprocess performs an endless loop awaiting either a
message from a transmitter (on channel chanT;R;) or a signal from the Sender
subprocess (on channel chanSnd; Buf;); this process uses the boolean variable
flagtz to keep track of the status of the Sender: flag_tx is true if the Sender is
ready to receive a message from the Buffer, otherwise it is false. When the Buffer
receives a message from the transmitter, it inserts the message into a local buffer,
then if the buffer is not empty, there are messages to be sent whose timestamp
is less than the TEOS, and the Sender subprocess is ready to receive a message
(flagtz is true), it extracts the first message from the buffer and sends it to
the Sender, setting flag_tx to false. When the Buffer receives a message from the
Sender, if the buffer is not empty, there are messages to be sent whose timestamp
is less than the TEOS it extracts the first message from the buffer and sends it
to the Sender keeping flag tz to false, otherwise it sets flag_tz to true.

Now we shall discuss how the GSPN models depicted next to the processes
code segments can be automatically obtained by applying the translation rules
presented in Subsection 4.1. Let us consider the simulator process: the transia-
tion starts from the outer construct and proceeds recursively towards the inner
ones: hence the first construct to be translated is a seq of an assignment and a
while, place SIM is the input place of the assignment and of the whole seq, place
while(true) is obtained by superposing the assignment exit place and the while
entry place, place END_SIM is the while (and also the seq) exit place, finally
transition LV T=true represents the execution of the assignment statement. The
reason for place END_SIM being isolated is due to the particular condition of
the while statement that is always true, which causes the elimination of the fz:¢
transition connecting the entry and the exit place of the while statement. The
next step consists of translating the body of the while statement, i.e., an if state-
ment. It is easy to recognize the if entry and exit places and the two transitions
labelled LVT<TEOQOS and LVT>TEOQOS representing the choice of either branch
of the if, as well as the transitions representing the end of each branch and the
exit place (end_ifl). Let us consider the then branch of the if statement (left por-
tion of the net): it contains a seq comprising an if, followed by an alt. Place if2is
the entry place of the if and of the seq, place alt is the result of superposing the if
exit place and the alt entry place, finally place end_alt is the seq exit place (that
coincides with the alt exit place). Observe that this if statement has an empty
else branch, hence we merged the start and end transitions of the corresponding
subnet. The subnet corresponding to the translation of the alt statement deserves
a little explanation since it starts with a choice between a timed transition and
an immediate transition (the output set of place alt). This subnet cannot be
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obtained by applying the translation rules discussed in Section 4.1; the reason
for introducing this new type of subnet is due to the special guard clock ? after
timenow plus timeout which implements a timeout: this branch of the alt is taken
only if no other guards become enabled within a given time interval fimeout. It
may seem a nonsense to have a conflict between a timed and an immediate tran-
sition due to the priority of immediate over timed transitions: in the simulator
process model, the transition labelled Timeout will never fire. This is due to the
fact that at this step of the translation procedure, the model doesn’t include
the synchronization between communicating processes yet, indeed this aspect is
introduced in the model only at the fourth step when the immediate transitions
representing input/output statements on the same channel are merged. After the
application of the fourth translation step, the enabling of immediate transition
R;S;7msg will become conditioned on the availability of a token representing
the fact that another process (a receiver) is ready to send a message on chan-
nel chanR;S;: if such a token will be missing for a sufficiently long time, then
transition T9meout will have the opportunity to fire.

The branch of the alt submodel corresponding to the (pure communication)
guard chanR;S; ¢ msg, represents the translation of the seq statement which is
to be executed when the corresponding guard is chosen. The seq includes two
if statements (the corresponding entry places are if5 and ¢f6): it is interesting
to observe that the two statements are translated in a different way because
the first one doesn’t contain any concurrent statement in either branch, and as
a consequence it is treated as a generic sequential macro-statement, while the
second one is translated following the rule of Fig. 6.a because its then branch con-
tains a communication transition. Observe that the model could be reduced by
eliminating some of the immediate transitions that are redundant: for example
transitions endif6, endLVT<TEOS, endLVT>TEQS, and while_cycle could all
be eliminated and the corresponding input places merged together and super-
posed with place while(true)}, however this operation would worsen the model
readability. On the other hand it is not possible to eliminate also transition
LVT<msg.time in the same way because it is in structural conflict relation with
another transition (LVT>msg.time).

Let us consider the translation of the receiver process: the three GSPN sub-
models depicted in Fig. 14 (right) represent the processes Receiver, Sender and
Buffer. It is interesting to briefly discuss the buffer process submodel because it
comprises the representation of the boolean control variable flag tz: if we did-
n’t model this variable the receiver model could easily cause a deadlock (buffer
trying to send a message to a sender that is not ready to receive it). The variable
is represented by a the place labelled flagiz: the presence of a token in this place
means that the current value of the variable is true, the absence of tokens in
this place means that the variable is set to false; initially this place is empty.
There are two type of transitions connected to this place: transitions represent-
ing choices that test the place without modifying it and transitions that modify
the marking of the place. It can be easily recognized the translation schema for
the assignment presented in Fig.9 (transitions setflag.tz and resetflag_tz) and the
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translation schema of the if taking into account the value of a modelled variable
(transitions flagtz_false and flagtz_true).

Finally, let us discuss the effect of applying steps 3 and 4 of the translation
procedure: in order to deal with models of manageable size, we will first consider
in details only the receiver subnet portion, then we will show how the complete
program model looks like, without further explanation. In Fig. 15 is shown the
result of applying the translation step 3 to the receiver process: the two transi-
tions labelled Sender end Buffer in the Receiver submodel are substituted with
the corresponding subnets. The initial transition, labelled par represents the ac-
tivation of the two subprocesses, the subnet on the left represents the Buffer
submodel while the subnet on the right represents the Sender submodel.

DER

Rac(chanﬁ.,s“,chan‘l‘jﬁ.;} BufiSeditmg
par
Buffer(chanBuf;Snd,,chanT ;R;) .
Sender(chanR;S;,chanBuf;Snd;) RiSitmsg
Buffer(chanBuf,Snd;,chanT;R;) SodiBufitend

seq
flag.tx = true
COMA = false
while true
alt
chan‘l‘,‘_lﬂ(?msg H
seq
{insert msg in buffer )
if flag-tx
if not(COMA A (¥ msg in buf, msg.timeD> TEOS)) thes
{ extract msg from buffer )
{ update COMA }
chanBuf;Snd;!msg
flag-tx=false
end if
end i
end seq
chanSnd;Buf;7end :
if not(COMA A (¥ msg in buf, msg.time>TEOS)) then
{ extract msg from buffer )
{ update COMA )}
chanBuf;Snd;!msg
flag-tx==false
else
flag-txmtrue
end if
end while
end seq

cyele

O END_SENDER

Sender{chanR;S;,chanBuf,;Snd;)
while true
seq
chanBuf;8nd;?msg
chanR;S;!msg
chanSnd;Buf;!lend
end seq
end while

END_BUFFER

Fig. 14. Receiver code and model

In Fig. 16 is shown the result of applying translation step 4 to the receiver
submodel portion.

We avoid showing the complete model of the whole program in a figure
because it would hardly fit a page. The use of an High-Level PN formalism
(e.g. Stochastic Wel-Formed Nets, presented in Chapter[10]) would allow us to
represent in a more compact way the model, however it would be still quite
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BufiSndi?msg

RiSilmsg

SndiBufitend

cycle

END“BU“Q\-/O END_SENDER

é END_REC

Fig. 15. Receiver model after step 3

hard to read. Actually the aim in practical use of the technique described in this
chapter is to allow the user, i.e. the program developer, to avoid ever seeing the
automatically generated GSPN model unless he/she wishes to do so.

This goal can be achieved by introducing the possibility of obtaining perfor-
mance indices on the program automatically: for the case of general performance
indices, this is possible since given their definition it is not difficult to produce
a formula expressing the performance indices of interest as a function of the
basic results obtained from the steady state solution of the CTMC underlying
the GSPN model, written in the correct syntax accepted by the tool used to get
the solution. Examples of general (and automatically generated) performance
indices have been given in Section 4.3.
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In the specific case of the time warp simulation model however, there are
some specific performance indices of interest, like for example the ratio between
the useful work (throughput of transitions representing an advance of the sim-
ulation) and useless work (transitions representing a rollback) as a function of
the probability of getting messages with an old timestamp (weight of transitions
LVT>msg.time and LVT<msg.time), or the probability for a process of type Sim
of sitting idle waiting for a new event coming from another simulator (probabil-
ity of markings in which the marking of the simulator process submodel enables
a transition representing an input message statement, but the marking of the
corresponding sender submodel is such that the synchronization is not possible).

However the definition of performance indices specific of the particular pro-
gram under study requires to directly deal with the GSPN model of the program,
since at the moment the technique does not include a system to define program
specific performance indices directly on the program code.

agix_ roe
aghy, trognotflagtx
flagix
o SATR
e

Syncsmmuﬂ
T32

jm

END_BUI END_SENDER

END_REC

Fig. 16. Receiver model after step 4
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One last remark is important about the GSPN model of the distributed
simulator program: as observed at the beginning of this section, the program
can reach a deadlock state corresponding to the situation in which all simulators
are in the COMA state, and no messages are circulating in the network. This
situation corresponds to the termination of the program (that could be detected
by activating a distributed termination detection protocol). This state is indeed
the only deadlock of both the program and the GSPN model. In order to compute
the steady state performance indices we need to make the GSPN model cyclic
(ergodic), this is done by adding a restart transition enabled only in the deadlock
state and bringing the model back in the initial marking.

6 Conclusions

In this chapter we have discussed the role of GSPN for the integrated qualitative
and quantitative analysis of distributed software, to help the programmer decide
whether a program is correct and it does meet the required performance. The
quantitative analysis is performed under an infinite resource hypothesis, hence
it allows to establish the best performance that the program can ever achieve at
run-time. Moreover it allows to compute program performance estimates that
can be used as input data of classical algorithms for mapping and load balancing.
The analysis performed here belongs to the class of “static” approaches, that
typically model only the flow of programs, nevertheless we have shown that
variables can play an important role in increasing the efficacy of the approach,
and we have discussed a translation schema that allows them to be included in
the GSPN model of the program.

Despite the fact that GSPN modelling has been illustrated here has a “final”
step in the software development activity, it can indeed be seen as a help to the
software designer or programmer during the whole development cycle: since it
is based on the construction of an abstract model of the program, it does not
require the program to be completely defined for the model to be built. Starting
from a (partial) specification of the code of the distributed application, a cor-
responding abstract, formal GSPN model of the application can be constructed
and analyzed. So GSPN modelling can be seen as a support tool of the whole
program development cycle.

A very important factor for the applicability of the analysis in contexts where
there is a low expertise in modelling or in performance evaluation and /or in Petri
nets, is the possibility of automatically producing the model and of automati-
cally compute program related quantities. In the translation process presented,
a number of program performance indices are generated so that the program-
mer gets directly program related quantitative results. Qualitative properties
instead, are expressed in terms of the Petri net model (e.g., a deadlock is a
deadlock in the model and no translation into a program state deadlock is given,
liveness is liveness of the net transitions, etc.). A necessary step towards a more
complete translation schema is that of defining and automatically producing
a set of program qualitative properties, in terms of net qualitative properties,
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so that the analysis may produce both quantitative and qualitative properties
of the program (rather than of the corresponding GSPN model). The Great-
SPNtool that we have adopted for analysis, does not allow to define and check
general qualitative properties, but it is not difficult to integrate it with tools like
PROD [17, 21} that include facilities for checking general qualitative properties
expressed through temporal logic formulas, using a model checking approach.
The PEP tool project [13] represents an interesting and successful attempt of
automatic translation of concurrent programs into PN models with the possibil-
ity for the user to perform the analysis at its favorite representation level {either
the program or the PN), however this tool covers only the qualitative analysis
aspects not allowing any type of timing specification and quantitative analysis.

The distributed simulation example has shown the need to compute, in ad-
dition to predefined program indices, also a set of program-specific ad hoc quan-
tities, that should as well be defined without passing through the GSPN model
representation (whose graphical representation might be simply too big to fit on
a screen). Since in general we cannot assume that the programmer is an expert
in nets and performance, and since anyway complex programs are represented
by complex GSPN models which are difficult to deal with also by an expert, it
is not possible to leave this formidable task to the programmer because this is
an error prone activity: the solution could be the definition of a language for
the specification of qualitative and quantitative indices in program terms, and
in the automatic translation of this expressions in net terms.
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