
Graph Grammars and Petri Net Transformations

Hartmut Ehrig and Julia Padberg

Technical University Berlin, Germany
Institute for Software Technology and Theoretical Computer Science

{ehrig,padberg}@cs.tu-berlin.de

Abstract. The aim of this paper is a tutorial introduction to graph
grammars and graph transformations on one hand and to Petri net
transformations on the other hand. In addition to an introduction to
both areas the paper shows how they have influenced each other. The
concurrency concepts and semantics of graph transformations have been
generalized from those of Petri net using the fact that the token game of
Petri nets can be considered as a graph transformation step on discrete
graphs. On the other hand each Petri net can be considered as a graph,
such that graph transformations can be used to change the net structure
of Petri nets. This leads to a rule based approach for the development of
Petri nets, where the nets in different development stages are related by
Petri net transformations.

1 Introduction

The main idea of graph grammars is the rule-based modification of graphs where
each application of a graph rule leads to a graph transformation step. Graph
grammars can be used on one hand to generate graph languages in analogy to
the idea to generate string languages by Chomsky grammars in formal language
theory. On the other hand graphs can be used to model the states of all kinds
of systems which allows to use graph transformations to model state changes of
these systems. This allows to apply graph grammars and graph transformation
systems to a wide range of fields in computer science and other areas of science
and engineering. A detailed presentation of different graph grammar approaches
and application areas of graph transformations is given in the 3 volumes of the
Handbook of Graph Grammars and Computing by Graph Transformation [32,
10, 15].

The intention of the first part of this paper is to give a tutorial introduction
to the basic concepts and results of one specific graph transformation approach,
called double-pushout approach, which is based on pushout constructions in the
category of graphs and graph morphisms. Although this approach is based on a
categorical concept, we do not require that the reader is familiar with category
theory: In fact, we introduce the concept of a pushout in the category of graphs
from an intuitive point of view, where a pushout of graphs corresponds to the
gluing of two graphs via a shared subgraph.

In Section 2 of this paper we give a general overview of graph grammars and
graph transformations including the main approaches considered in literature.

J. Desel, W. Reisig, and G. Rozenberg (Eds.): ACPN 2003, LNCS 3098, pp. 496–536, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Graph Grammars and Petri Net Transformations 497

The basic concepts of the double-pushout approach are introduced in Section
3 using as example the Pacman game considered as a graph grammar. Concepts
and results concerning parallel and sequential independence as well as parallelism
of graph transformations are introduced in Section 4. The main results are the
local Church-Rosser Theorem and the Parallelism Theorem. The relationship
between graph grammars and Petri nets is discussed in Section 5 of this paper.
First we show how the basic concepts of both areas correspond to each other.
Then we give an overview of the concurrent semantics of graph transformations,
which has been developed in analogy to the corresponding theory of Petri nets.

In the second part of this paper we give an introduction to concepts and
results of Petri net transformations. This area of Petri nets has been introduced
about 10 years ago in order to allow in addition to the token game of Petri
nets, where the net structure of fix, also the change of the nets structure [31, 28]
This allows the stepwise development of Petri nets using a rule-based approach
in the sense of graph transformations, where the net structure of a Petri net is
considered as a graph. An intuitive introduction to Petri net transformations is
given in Section 6 using the stepwise development of Petri nets for a baggage
handling system as an example.

In Section 7 we show how the basic concepts of graph transformation - in-
troduced in Section 3 for the double-pushout approach - can be extended to
Petri net transformations in the case of place/transition nets. In addition we
discuss a general result concerning the compatibility of horizontal structuring
and transformation of Petri nets, which has been used in the example of Section
6. Moreover we give an overview of results as well for other Petri net classes,
which kind of Petri net transformations are preserving interesting properties like
safety and liveness.

The conclusion in Section 8 summarizes the main ideas of this paper and
further aspects concerning graph grammars and Petri net transformations.

2 General Overview of Graph Grammars
and Graph Transformation

The research area of graph grammars or graph transformations is a discipline of
computer science which dates back to the early seventies. Methods, techniques,
and results from the area of graph transformations have already been studied
and applied in many fields of computer science such as formal language theory,
pattern recognition and generation, compiler construction, software engineering,
concurrent and distributed systems modeling, database design and theory, logical
and functional programming, AI, visual modeling, etc.

The wide applicability is due to the fact that graphs are a very natural way
of explaining complex situations on an intuitive level. Hence, they are used in
computer science almost everywhere, e.g. as data and control flow diagrams,
entity relationship and UML diagrams, Petri nets, visualization of software and
hardware architectures, evolution diagrams of nondeterministic processes, SADT
diagrams, and many more. Like the token game for Petri nets, a graph transfor-

498 Hartmut Ehrig and Julia Padberg

mation brings dynamic to all these descriptions, since it can describe the evolu-
tion of graphical structures. Therefore, graph transformations become attractive
as a modeling and programming paradigm for complex-structured software and
graphical interfaces. In particular, graph rewriting is promising as a comprehen-
sive framework in which the transformation of all these very different structures
can be modeled and studied in a uniform way.

Before we go into more detail let us discuss the basic question

2.1 What Is Graph Transformation?

In fact, graph transformation has at least three different roots

– from Chomsky grammars on strings to graph grammars
– from term rewriting to graph rewriting
– from textual description to visual modeling.

Altogether we use the notion graph transformation to comprise the concepts
of graph grammars and graph rewriting. In any case, the main idea of graph
transformation is the rule-based modification of graphs as shown in Figure 1.

L R

p = (L,R)

Fig. 1. Rule-based Modification of Graphs

The core of a rule or production p = (L, R) is a pair of graphs (L, R), called
left hand side L and right hand side R. Applying the rule p = (L, R) means
to find a match of L in the source graph and to replace L by R leading to the
target graph of the graph transformation. The main technical problem is how
to connect R with the context in the target graph. In fact, there are different
solutions how to handle this problem leading to different graph transformation
approaches, which are summarized below.

2.2 Overview of Different Approaches

The main graph grammar and graph transformation approaches developed in lit-
erature so far are presented in the Handbook of Graph Grammars and Computing
by Graph Transformation vol 1: Foundations [32].

1. The node label replacement approach, mainly developed by Rozenberg, En-
gelfriet and Janssens, allows replacing a single node as left hand side L by
an arbitrary graph R. The connection of R with the context is determined
by embedding rules depending on node labels.

Graph Grammars and Petri Net Transformations 499

2. The hyperedge replacement approach, mainly developed by Habel, Kreowski
and Drewes, has as left hand side L a labeled hyperedge, which is replaced by
an arbitrary hypergraph R with designated attachment nodes correspond-
ing to the nodes of L. The gluing of R with the context at corresponding
attachment nodes leads to the target graph.

3. The algebraic approaches are based on pushout and pullback constructions
in the category of graphs, where pushouts are used to model the gluing of
graphs. The double pushout approach, mainly developed by Ehrig, Schneider
and the Berlin- and Pisa-groups, is introduced in Sections 3-5 in more detail.

4. The logical approach, mainly developed by Courcelle and Bouderon, allows
expressing graph transformation and graph properties in modanic second
order logic.

5. The theory of 2-structures was initiated by Rozenberg and Ehrenfeucht as a
framework for decomposition and transformation of graphs.

6. The programmed graph replacement approach by Schuerr used programs in
order to control the nondeterministic choice of rule applications.

2.3 Aims and Paradigms for Graph Transformation

Computing was originally done on the level of the von Neumann Machine which
is based on machine instructions and registers This kind of low level computing
was considerably improved by assembler and high level imperative languages.
From the conceptual - but not yet from the efficiency point of view - these lan-
guages were further improved by functional and logical programming languages.
This newer kind of computing is mainly based on term rewriting, which - in
the terminology of graphs and graph transformations - can be considered as a
concept of tree transformations. Trees, however, do not allow sharing of common
substructures, which is one of the main reasons for efficiency problems concern-
ing functional and logical programs. This leads to consider graphs rather than
trees as the fundamental structure of computing.

The main idea is to advocate graph transformations for the whole range of
computing. Our concept of Computing by Graph Transformations is not limited
to programming but includes also specification and implementation by graph
transformations as well as graph algorithms and computational models and com-
puter architectures for graph transformations.

This concept of Computing by Graph Transformations has been developed
as basic paradigm in the ESPRIT Basic Research Actions COMPUGRAPH and
APPLIGRAPH as well as in the TMR Network GETGRATS in the years 1990-
2002. It can be summarized in the following way:

Computing by graph transformation is a fundamental concept for

– programming
– specification
– concurrency
– distribution
– visual modeling.

500 Hartmut Ehrig and Julia Padberg

The aspect to support visual modeling by graph transformation is one of
the main intentions of the ESPRIT TMR Network SEGRAVIS (2002-2006). In
fact, there is a wide range of applications to support visual modeling techniques,
especially in the context of UML, by graph transformation techniques. A state
of the art report for applications, languages and tools for graph transformation
on one hand and for concurrency, parallelism and distribution on the other hand
is given in volumes 2 and 3 of the Handbook of Graph Grammars and Computing
by Graph Transformation [10] and [15]

3 Introduction to the DPO-Approach

As mentioned already in the general overview there are several algebraic graph
transformation approaches based on pushout and pullback constructions in the
category of graphs. The most prominent one is the double-pushout approach,
short DPO-approach, initiated by Ehrig, Pfender and Schneider in [17]. The main
idea is to model graph transformation by two gluing constructions for graphs and
each gluing construction by a pushout. Roughly spoken, a production is given by
p = (L, K, R), where L and R are the left and right hand side graphs and K is a
common interface of L and R. Given a production p = (L, K, R) and a context
graph D, which includes also the interface K, the source graph G of a graph
transformation G ⇒ H via p is given by the gluing of L and D via K, written
G = L +K D, and the target graph H by the gluing of R and D via K, written
H = R +K D. More precisely we will use graph morphisms K → L, K → R and
K → D to express how K is included in L, R, and D respectively. This allows
to define the gluing constructions G = L +K D and H = R +K D as pushout
constructions (1) and (2) leading to a double pushout in Figure 2.

L

��
(1)

K�� ��

��
(2)

R

��
G D�� �� H

Fig. 2. DPO-Graph Transformation

Before we present more technical details of the DPO-approach, let us point
out that it is based on graphs and total graph morphisms. In fact there is a
slightly more general approach using graphs and partial graph morphism, where
a graph transformation can be expressed by a single pushout. This approach
has been initiated by Raoult and fully worked out by Lwe leading to the single
pushout approach, short SPO-approach. A detailed presentation and comparison
of both approaches is given in volume 1 of the handbook [32]. The DPO-approach
has been generalized from graphs to any other kind of high-level structures. This
leads to the theory of high-level replacement systems initiated in [12], which can

Graph Grammars and Petri Net Transformations 501

be applied to Petri nets leading to net transformation systems considered in
Section 6 and Section 7 of this paper.

3.1 Graphs and Graph Morphisms

A directed, labeled graph G, short graph, over fixed sets of colors ΩE and ΩV for
edges and vertices is given by

G = ΩE E
le��

s ��
t

�� V
lv �� ΩV

Fig. 3. Directed Labeled Graph G

where E and V are the sets of edges and vertices of G, s and t are the source
and target functions, and le and lv are the edge and vertex label functions
respectively.

An example for such a graph G is the Pacman graph PG in Figure 4, where
the color * for the edges is omitted in PG.

• ΩV = { }
• ΩE = {∗}
• Identities of nodes and edges are

not shown explicitly

Fig. 4. Pacman Graph PG and Color Sets

A graph morphism f : G→ G′ consists of a pair of functions f = (fE : E →
E′, fV : V → V ′), which is compatible with source, target, and label functions
of G and G′, i.e. fV · s = s′ · fE , fV · t = t′ · fE , l′e · fE = le and l′v · fv = lv.

The diagram schema for graph morphisms and an example for a graph mor-
phism is given in Figure 5.

The category Graph has graphs as objects and graph morphisms as mor-
phisms.

Let us point out that there are also several other notions of graphs and graph
morphisms which are suitable for the DPO-approach of graph transformation;
especially typed graphs and attributed graphs, where the color sets are replaced
by a type graph and a type algebra respectively.

3.2 Graph Productions and Graph Grammars

A graph production p = L
l← K

r→ R consists of graphs L, K and R and
(injective) graph morphisms l : K → L and r : K → R mapping the interface
graph K to the left hand side L and the right hand side R respectively.

502 Hartmut Ehrig and Julia Padberg

G

f

��

E

fE

��

le

���������
s ��
t

�� V

fV

��

lv

���������

ΩE ΩV

G′ E′le′

��������� s′ ��
t′

�� V ′ lv′

���������

Fig. 5. Graph Morphism f : G → G′

A graph grammar GG = {S, P, Ω} consists of a start graph, a set P of graph
productions as defined above, and a pair of color sets Ω = (ΩE , ΩV), where
S and the graphs in P are labeled over Ω. An example is the Pacman graph
grammar
PGG = {PG, {moveP, moveG, kill, eat}},
where the start graph PG is given in Figure 4 and the graph productions moveP,
moveG, kill, eat in Figure 6. The production moveG is similar to moveP, where
pacman is replaced by the ghost. These productions allow pacman resp. the ghost
to move along an arc of the grid of the pacman graph PG. The productions eat
resp. kill allow pacman to eat an apple resp. the ghost to kill pacman, provided
that pacman and the apple resp. ghost are on the same node of the grid.

moveP =

eat =

kill =

Fig. 6. Graph Productions of the Pacman Graph Grammar

Similar to Chomsky grammars it is also possible to distinguish between ter-
minal and nonterminal color sets. In our case we have only terminal color sets.
A graph grammar without distinguished start graph is also called graph trans-
formation system.

Graph Grammars and Petri Net Transformations 503

3.3 Graph Transformation, Derivation and Graph Language

Given a graph production p = L
l← K

r→ R, a graph G and a graph morphism
m : L → G, called match of L in G, then there is a graph transformation, also
called direct derivation, if a double-pushout diagram as shown in Figure 7 can
be constructed, where (1) and (2) are pushouts in the category Graph.

D

K

m (2)(1)

rl

HG

RL

Fig. 7. Graph Transformation with Pushouts (1) and (2)

A graph transformation as given in Figure 7 is denoted by G
p,m
=⇒ H, or

G =⇒ H via (p, m), where G is the source graph and H the target graph.
In the next section we will show that pushouts can be interpreted as gluing
constructions. Given a production and a match m : L → G means that we
require to be able to construct a context graph D such that G is the gluing of
L and D along K in pushout (1) and H is the gluing of R and D along K in
pushout (2) of Figure 7, written
G = L +K D and H = R +K D.

The morphism R → H in Figure 7 is called comatch of the graph transfor-
mation. A graph transformation sequence, also called derivation, is given by a
finite sequence of graph transformations

G0
p1,m1=⇒ , G1

p2,m2=⇒
pn,mn=⇒ Gn.

The graph language generated by a graph grammar GG = {S, P, Ω} is the
set of all graphs derivable from the start graph S with productions in P .

An example of a graph transformation using the production moveP is given
in Figure 8, where pacman is moving from node 1 in graph G to node 2 in graph
H = G1. Moreover, Figure 8 shows a graph transformation sequence, where after
this first step the productions moveP again, and also eat and kill are applied.

In Figure 8 it is intuitively clear that G is the gluing of L and D along K
and H the gluing of R and D along K. Vice versa, given the production moveP
and the match m : L→ G the context graph D can be constructed by removing
from G all items of L, which are not in the interface K. In our case it is only the
arc from pacman to node 1, which has to be removed. This is the first step in
the explicit construction of a graph transformation. It leads to a pushout (1) in
Figure 7 if a suitable gluing condition is satisfied which will be explained below.
The second step is the gluing of R and D along K leading to pushout (2) in
Figure7.

504 Hartmut Ehrig and Julia Padberg

1

121

2

1

22

2

11

2

L RK

G HD

moveP =

G = G0
moveP
=⇒ G1

moveP
=⇒ G2

eat
=⇒ G3

kill
=⇒

Fig. 8. A Sample Graph Transformation and Derivation

In general the construction of a graph transformation G
p,m
=⇒ H from a pro-

duction p = L
l← K

r→ R and a match m : L → G is given in two steps, where
the first step requires that the gluing condition (see 3.5 below) is satisfied:

STEP 1 (DELETE): Delete m(L− l(K)) from G leading to a context graph
D (if the gluing condition is satisfied), s.t. G is the gluing of L and D along
K, i.e. G = L +K D in (1) of Figure 7.

STEP 2 (ADD): Add R−r(K) to D leading to a graph H , s.t. H is the gluing
of R and D along K, i.e. H = R +K D in (2) of Figure 7.

3.4 Gluing Construction and Pushout

The idea of the gluing construction of graphs makes sense also for other kinds of
structures, where the idea is to construct the union of structures along a common
substructure. For structures given by geometrical figures this kind of union or
gluing is shown in Figure 9.

In the framework of category theory the idea of the gluing construction can
be formalized by the notion of a pushout: Given objects (e.g. sets, graphs or
structures) A,B, and C and morphisms (e.g. functors, graph or structure mor-
phisms) f : A → B and g : A → C an object D together with morphisms
h : B → D and k : C → D is called pushout of f and g if we have h ◦ f = k ◦ g
(i.e. diagram (1) in Figure 10 commutes) and the following universal property is
satisfied:

For all objects D′ and morphisms h′ : B → D′, k′ : C → D′ with h′◦f = k′◦g
(i.e. the outer diagram in Figure 10 commutes) we have a unique morphism
d : D → D′ s.t. d ◦ h = h′ and d ◦ k = k′ (i.e. diagrams (2) and (3) commute).

Graph Grammars and Petri Net Transformations 505

Fig. 9. Gluing Construction for Geometrical Figures

(3)
d(2)

k’

h’

k

h

g

f

(1) D’D

C

A

B

Fig. 10. Universal Pushout Property

In the category Sets of sets and functions the pushout object D is given by
the quotient set
D = B + C/ ≡, short D = B +A C,

where B + C is the disjoint union of B and C and ≡ the equivalence relation
generated by f(a) ≡ g(a) for all a ∈ A. In fact D can be interpreted as the gluing
of B and C along A: Starting with the disjoint union B + C we glue together
the elements f(a) ∈ B and g(a) ∈ C for each a ∈ A.

In the category Graph the pushout graph D can be constructed component-
wise for the set of edges and the set of vertices using the pushout construction
in Sets discussed above. This shows that also the pushouts in Graph can be
interpreted as a gluing construction (see Figure 8). In general, the pushout graph
D = (DE , DU , sD, tD, leD, lvD) is given as follows:

– DE = BE +AE CE

– DV = BV +AV CV

– sD(e) =

{
[sB(e′)] ; if e = hE(e′)
[sC(e′′)] ; if e = kE(e′′)

– tD(e) =

{
[tB(e′)] ; if e = hE(e′)
[tC(e′′)] ; if e = kE(e′′)

506 Hartmut Ehrig and Julia Padberg

– leD(e) =

{
[leB(e′)] ; if e = hE(e′)
[leC(e′′)] ; if e = kE(e′′)

– lvD(v) =

{
[lvB(v′)] ; if v = hV (v′)
[lvC(v′′)] ; if v = kV (v′′)

In fact the pushout construction is well-defined and unique up to isomor-
phism. This means that the graph D can also be replaced by any other graph D,
which is isomorphic to D, i.e. there is a bijective graph morphism f : D → D.

Uniqueness of pushouts up to isomorphism is a general property of pushouts
in arbitrary categories. Moreover, it is a general property that pushouts can be
composed horizontally and vertically leading again to pushouts.

3.5 Gluing Condition and Pushout Complement

In order to construct a graph transformation from a given graph production
p = (L l← K

r−→ R) and a match m : L → G as shown in Figure 7 we have to
construct first a graph D and graph morphisms K → D and D → G s.t. diagram
(1) in Figure 7 becomes a pushout in the category Graph. In this case D is called
pushout complement of l : K → L and m : L → G. See also the left diagram
in Figure 11. In general, however, the pushout complement may not exist, or
may not be unique up to isomorphism. In Figure 11 we show two examples in
the category Sets, where in the middle there is no pushout complement D for
given functions l : K → L and m : L→ G. On the right hand side we have two
different non-isomorphic pushout complements D and D′.

a b b2

GD

K L1

d

l

m

K L

D G

m

l

d

k

K L

G

D’

D

a a b

c

c
c

1 2

1 2

k’
k

d

d’

l

m

d

(1)

Fig. 11. Construction, Non-Existence and Non-Uniqueness

In the category Sets and Graphs we have uniqueness of the pushout comple-
ment up to isomorphism l : K → L is injective. For the existence of the pushout
complement we need a Gluing Condition. Given an injective graph morphism
l : K → L and a match m : L → G we can construct a pushout complement
D leading to the pushout (1) in Figure 11 if and only if the following Gluing
condition is satisfied that requires that the boundary of the match m : L → G
is included in the gluing part l(K) of L. More formally, we have:

Gluing Condition:
BOUNDARY ⊆ GLUING

Graph Grammars and Petri Net Transformations 507

where BOUNDARY and GLUING are subgraphs of L defined by

– GLUING = l(K)
– DANGLING = {x ∈ LV | ∃e ∈ GE −mE(LE) :

(mV (x) = sG(e) or mV (x) = tG(e))}
– IDENTIFICATION = {x ∈ K | ∃y ∈ K : (x 	= y and m(x) = m(y))},

where x ∈ K means x ∈ KV with m = mV or x ∈ KE with m = mE , and
– BOUNDARY = DANGLING ∪ IDENTIFICATION

This means that the boundary of the match m given by the graph
BOUNDARY consists of a dangling and an identification part. In the iden-
tification part we have all those nodes and edges which are identified by the
match m. The dangling part consists of those nodes x ∈ L so that mV (x) is
adjacent to an edge e ∈ GE , which is not part of the match m(L). These edges
are called dangling edges because they lack either the source or the target node
in the set theoretical complement G−m(L) = (GE −mE(LE), GV −mV (LV).
For brevity we call the nodes in DANGLING dangling nodes.

Now we can construct the pushout complement graph D in Figure 11 in the
diagram to the left by D = (DE , DV , sD, tD, leD, lvD) with

– DE = (GE \mE(LE)) ∪mE(lE(KE))
– DV = (GV \mV (LV)) ∪mV (lV (KV))
– TC = (TN \mT (TL)) ∪mT (lT (TK))
– sD, tD, leD,and lvD are defined by the restriction of sG, tG, leG,and lvG re-

spectively.

Finally the graph morphisms in the diagram to the left in Figure 11 d : D → G
and h : K → D are given by the inclusion D ⊆ G and by k(x) = m ◦ l(x) for
nodes and edges x ∈ K.

In our pacman graph grammar PGG considered above we can have only injec-
tive matches m : L→ G, because the pacman graph PG in Figure 4 and Figure
8 has no loops. This implies that the identification part of the gluing condition
is always satisfied. But also the dangling part is satisfied for all productions and
all matches, because all nodes of the left-hand side L of each production are
gluing nodes. Hence especially all dangling nodes of L are gluing nodes. In the
graph transformation shown in Figure 8 both nodes 1 and 2 are dangling and
also gluing nodes.

4 Concepts of Parallelism

In this section we present main concepts and results for parallelism of graph
transformations. We start with the concepts of parallel and sequential inde-
pendence leading to a local Church-Rosser Theorem which corresponds to the
concept of concurrency by interleaving. However, using the concept of paral-
lel productions and derivations, the DPO-approach also allows to model true
concurrency. The Parallelism Theorem shows equivalence of true concurrency
and interleaving in our framework. Finally the Parallelism Theorem allows to
formulate shift equivalence leading to canonical parallel derivations.

508 Hartmut Ehrig and Julia Padberg

4.1 Parallel and Sequential Independence

Two graph transformations G ⇒ H1 via (p1, m1), G ⇒ H2 via (p2, m2) are
called parallel independent if the matches m1 : L1 → G and m2 : L2 → G only
overlap in gluing items which are preserved by both graph transformations, i.e.

m1(L1) ∩ m2(L2) ⊆ m1(l1)K1)) ∩ m2(l2)K2))

for pi = (Li
li← Ki

ri−→ Ri) and i = 1, 2.
In Figure 12 we show two productions p1 = move P and p2 = move G with

matches m1 : L1 → PG and m2 : L2 → PG which satisfy the conditions for
parallel independence. In fact, the matches overlap exactly in node 1 which is
gluing node for both productions and hence preserved by the corresponding
derivations. The first derivation PG⇒ H1 via (move P, m1) is explicitly shown
in fig 8 with PG = G and H1 = H . Moreover, the match m2 : L2 → PG can be
extended to a match m2 : L2 → H1 leading to a derivation H1 ⇒ X via (move
G, m′

2). In fact, the two derivations PG ⇒ H1 via (move P, m1) and H1 ⇒ X
via (moveG, m′

2) are sequential independent in the sense defined below.

Fig. 12. Parallel Independence

Two graph transformations G⇒ H1 via (p1, m1) (with comatch m′
1 : R1 →

H1) and H1 ⇒ X via (p2, m2) are called sequential independent if the comatch
m′

1 : R1 → H1) and the match m′
2 : L2 → H2) only overlap in gluing items, i.e.

m′
1(R1) ∩ m2(L2) ⊆ m′

1(r1(K1)) ∩ m2(l2(K2))

Parallel and sequential independence of graph transformations are suitable con-
ditions to allow interleaving of graph transformations as shown in the following
theorem:

Graph Grammars and Petri Net Transformations 509

4.2 Local Church-Rosser Theorem

The following conditions for graph transformations are equivalent and each of
them is leading to the diamond of parallel and sequential graph transformations
in Figure 13, called local Church-Rosser property.

1. G⇒ H1 via (p1, m1) and G⇒ H2 via (p2, m2) are parallel independent
2. G⇒ H1 via (p1, m1) and H1 ⇒ X via (p2, m

′
2) are sequential independent

3. G⇒ H2 via (p2, m
′′
2) and H2 ⇒ X via (p1, m

′
1) are sequential independent.

G

p1
�������

�����

p2 		
��

��
�

��
��

�

H1
p2

		
��

��
�

��
��

�

H2

p1

�������
�����

X

Fig. 13. Local Church-Rosser Property

An explicit proof of the local Church-Rosser Theorem is given in [14]. It is
based on suitable composition and decomposition properties of pushouts.

In the following we will see that parallel independence of graph transfor-
mations also allows to construct a parallel derivation G ⇒ X via a parallel
production p1 + p2.

4.3 Parallel Productions and Parallel Derivations

Given productions pi = (Li
li← Ki

ri→ Ri) for i = 1, 2 the parallel production
p1 + p2 is given by

p1 + p2 = (L1 + L2
l1+l2← K1 + K2

r1+r2→ R1 + R2)

where L1 + L2, l1 + l2 etc. is the disjoint union of graphs and graph morphisms
respectively. This corresponds to the coproduct of objects and morphisms in the
category Graphs.

An example for the parallel production move P + move G is shown in Fig-
ure 14.

Parallel independence of move P and move G in Figure 12 implies according
to the following Parallelism Theorem a parallel derivation G ⇒ X via (p1 +
p2, m), where the match m : L1 + L2 → G is a non-injective graph morphism
induced by m1 : L1 → G and m2 : L2 → G. The nodes 4 and 1 in Figure 14 are
identified with node 1 in Figure 12. In the derived graph X pacman is on node
2 and the ghost on node 1.

In general, a derivation with a parallel production is called parallel derivation.

510 Hartmut Ehrig and Julia Padberg

Fig. 14. Parallel Production move P + move G

4.4 Parallelism Theorem

The following conditions for graph transformations are equivalent;

1. G⇒ H1 via (p1, m1) and G⇒ H2 via (p2, m2) are parallel independent
2. G⇒ X via (p1+p2, m) is a parallel derivation, where (p1+p2) is the parallel

production of p1 and p2 and m1 : L1 + L2 → G is the match induced by
m : L1 → G and m2 : L2 → G.

Together with the Local Church-Rosser Theorem we obtain the parallelism
diamond shown in Figure 15.

G

p1
�������

�����

p2 		
��

��
�

��
��

�
p1+p2

H1
p2

		
��

��
�

��
��

�

H2

p1

�������
�����

X

Fig. 15. Parallelism Diamond

If p1 and p2 are sequentially independent in a derivation sequence G1
p1=⇒

G2
p2+p3=⇒ G3 then this sequence is shift equivalent to a derivation sequence

G1
p1+p2=⇒ G′

2
p3=⇒ G3 and we obtain the shift relation shown in Figure 16.

G1
p1=⇒ G2

p2+p3=⇒ G3 �shift G1
p1+p2=⇒ G′

2
p3=⇒ G3

Fig. 16. Shift Relation

Shift equivalence on parallel derivations is the closure of the shift relation un-
der parallel and sequential composition. The shift relation is well-founded. The
minimal derivations with respect to shift relation are called canonical deriva-
tions. Canonical derivations are unique representations of shift equivalent par-
allel derivation classes (see [3] for more details).

Graph Grammars and Petri Net Transformations 511

5 Graph Grammars, Petri Nets
and Concurrent Semantics

In this section we discuss the relationship between graph grammars and Petri
nets. Both of them are well-known as specification formalisms for concurrent and
distributed systems. First we show how the token game of place-transition nets
can be modeled by double pushouts of discrete labeled graphs. This allows to
relate basic notions of place-transition nets like marking, enabling, firing, steps
and step sequences, to corresponding notions of graph grammars and to transfer
semantical concepts from Petri nets to graph grammars. Since a marking of a net
on one hand and a graph of a graph grammar on the other hand correspond to
the state of a system to be modeled, graph grammars can be seen to generalize
place-transition nets by allowing more structured states. In the second part
of this section we give a short overview of the concurrent semantics of graph
transformations presented in [3] of the Handbook of Graph grammars volume 3,
which is strongly influenced by corresponding semantical constructions for Petri
nets in [36]. Finally let us point out that we discuss the modification of the net
structure of Petri nets using graph transformations in the next chapter.

5.1 Correspondence of Notions
between Petri Nets and Graph Grammars

The firing of a transition in a place-transition net can be modeled by a dou-
ble pushout in the category of discrete graphs labeled over the places of the
transitions. Let us consider the transition firing as token game in Figure 17.

[>t

A B

C

1 2
1

t

A B

C

1 2
1

t

2 2

Fig. 17. Transition Firing as Token Game

The transition t in Figure 17 requires in the pre-domain one token on place
A and two tokens on place B and produces in the post-domain one token on B
and two tokens on place C. This corresponds to the production in the upper row
of Figure 18, where the left hand side consists of three nodes labeled A, B and B
and the right hand sie of three nodes labeled B, C and C. The empty interface

512 Hartmut Ehrig and Julia Padberg

of the production means that no node is preserved by the production, which
corresponds to the token game in place-transition nets. In fact, the transition t in
Figure 17 consumes two tokens and produces one token on place B. Preservation
of tokens in the framework of Petri nets can be modeled by contextual nets, and
transition with context places can be modeled by productions with nonempty
interface.

A

A A A
A A

A A

B B

B B

B

B

C
C

C C

C C C

Fig. 18. Transition Firing as Double Pushout

The marking of the left-hand side net in Figure 17 corresponds to the discrete
graph to the left in the lower row of Figure 18, while the marking after firing of
the transition in Figure 17 corresponds to the discrete graph to the right.

The discrete graph in the middle of Figure 18 is the result of the deleting
step of the double pushout and that on the right in the lower row is the result
of the adding step. This shows that the firing step in Figure 17 corresponds
exactly to a direct derivation in the double-pushout approach. This correspon-
dence of notions between place/transition nets and graph grammars is shown
in Table 1 in more detail. In fact, enabling of a transition at a marking corre-
sponds to applicability of a production to a graph, concurrency of transitions
corresponds to parallel independent productions applied with non-overlapping
matches, conflicts correspond to parallel dependent direct derivations with over-
lapping matches, a parallel transition step of concurrent transitions corresponds
to a parallel direct derivation, and finally a step sequence to a parallel derivation.

5.2 Concurrent Semantics of Graph Transformation

For sequential systems it is often sufficient to consider an input/output semantics
and thus the appropriate semantic domain is usually a suitable class of functions
from the input to the output domains. When concurrent or distributed features
are involved, instead, typically more information about the actual computation
of the system has to be recorded in the semantic domain. For instance, one may
want to know which steps of computation are independent (concurrent), which
are causally related and which are the (non-deterministic) choice points. This
information is necessary, for example, if one wants to have a compositional se-
mantics, allowing to reduce the complexity of the analysis of concurrent systems

Graph Grammars and Petri Net Transformations 513

Table 1. Correspondence of Notions

Petri Nets Graph Grammars

tokens nodes

places node labels

marking discrete, labeled graph

transition enabled at a marking production applicable to a graph

firing direct derivation

firing sequence derivation
concurrent transitions parallel independent productions

conflict parallel dependence

step parallel direct derivation

step sequence parallel derivation

built form smaller parts, or if one wants to allocate a computation on a dis-
tributed architecture. Roughly speaking, non-determinism can be represented
either by collecting all the possible different computations in a set, or by merg-
ing the different computations in a unique branching structure where the choice
points are explicitly represented. On the other hand, concurrent aspects can be
represented by using a truly concurrent approach, where the casual dependencies
among events are described directly in the semantics using a partially ordered
structure. Alternatively, an interleaving approach can be adopted, where concur-
rency is reduced to non-determinism, in the sense that the concurrent execution
of events is represented as the non-deterministic choice among the possible in-
terleavings of such events.

Let us first have a look to the area of Petri nets, where a well-established
theory has been developed already.

Petri nets have been equipped with rich, formal computation-based seman-
tics, including both interleaving and truly concurrent models. In many cases such
semantics have been defined by using well-established categorical techniques, of-
ten involving adjunctions between suitable categories of nets and corresponding
categories of models. Let us point out especially the semantics of safe place-
transition nets presented as a chain of adjunctions by Winskel [36].

To propose graph transformation systems as a suitable formalism for the
specification of concurrent/distributed systems that generalizes Petri nets, we
are naturally led to the attempt of equipping them with a satisfactory semantic
framework, where the truly concurrent behavior of grammars can be suitably de-
scribed and analyzed. The basic result for interleaving and concurrent semantics
of graph transformation are the local Church-Rosser Theorem and the Paral-
lelism Theorem presented in the previous section. In the following we present
the main ideas of trace, process and event structure semantics for graph trans-
formations. For a more detailed overview we refer to the handbook article [3].

The trace semantics for graph transformations is based on parallel deriva-
tion sequences introduced in the previous section. Derivation traces are defined
as equivalence classes of parallel derivations with respect to the shift equiva-

514 Hartmut Ehrig and Julia Padberg

lence, which is the closure of the shift relation (see Figure 16) under parallel
and sequential composition. Abstraction equivalence is a suitable refinement of
the isomorphism relation on parallel derivations, which allows to obtain a well-
defined concatenation of derivation traces. This leads to a category Tr(G) of
derivation traces of a graph grammar G, which can be considered as the trace
semantics of G.

The process semantics for graph transformations is based on the notion of a
graph process, which is a suitable generalization of a Petri net process. In fact,
the idea of occurrence nets and concatenable net processes has been generalized
to occurrence graph grammars and concatenable graph processes. The mapping
of an occurrence graph grammar O to the original graph grammar G determines
for each derivation of O a corresponding derivation of G, such that all derivations
of O correspond to the full class of shift-equivalent derivations. This means that
the graph process, defined by the occurrence graph grammar O together with
the mapping from O to G, can be considered as an abstract representation of
the shift-equivalence class. Hence the graph process plays a role similar to the
canonical derivation introduced in the previous section. The process semantics
for graph transformations is defined by the category CP(G) of abstract graphs
as objects and concatenable processes of G as morphisms.

The event structure semantics for graph transformations allows to construct
an event structure for a graph grammar G which - in contrast to trace and process
semantics - allows to reflect the intrinsic non-determinism of a grammar. Event
structures and domains are well-known semantical models not only for Petri nets,
but also for other specification techniques for concurrent and distributed systems.
The domain Dom(G) of a graph grammar is a partially ordered set, where the
elements of Dom(G) are derivation traces starting at the start graph GS of G,
and we have d1 ≤ d2 for derivation traces d1 : GS ⇒ G1 and d2 : GS ⇒ G2, if
there is a derivation trace d : G1 ⇒ G2 with d ◦ d1 = d2. Roughly spoken an
event e in the event structure ES(G) of the graph grammar G corresponds to
the application of a basic production p(e) in a derivation trace d(e) : GS ⇒ G.
Moreover, we have a partial order ≤ and a conflict relation � in ES(G), where
roughly spoken e1 ≤ e2 means d(e1) ≤ d(e2), and e1�e2 means that there is no
derivation trace d : GS ⇒ G including both p(e1) and p(e2). In the first case e1

and e2 are casually related and in the second case they are in conflict.
In the handbook article [3], where all these semantics are presented in detail,

it is also shown how these different graph transformation semantics are related
with each other (see 1.-3. below).

1. The trace semantics Tr(G) and the process semantics CP(G) are equivalent
in the sense that both categories are isomorphic.

2. For consuming graph grammars G the event structure semantics ES(G) and
the domain semantics Dom(G) are conceptually equivalent in the sense that
one can be recovered from the other. A grammar G is called consuming if
each production of the grammar deletes at least one node or edge. This cor-
respondence is a consequence of a well-known general result concerning the
equivalence of prime event structures and domains, where the configurations

Graph Grammars and Petri Net Transformations 515

of a prime event structure are the elements of the domain. A configuration of
a prime event structure is a subset of events, which is left-closed and conflict
free. In our case the configurations of ES(G) correspond to the derivation
traces in Dom(G).

3. As a consequence of results 1 and 2 above we obtain the following intuitive
characterization of events and configurations from ES(G) in terms of pro-
cesses: Configurations correspond to processes, which have as source graph
the start graph of the grammar. Events are one-to-one with a subclass of
such processes having a production which is the maximum w.r.t. the casual
ordering.

4. In the case of Petri nets Winskel has shown in [36] that the category of safe
place-transition nets is related by a chain of adjoint functors to the cate-
gories of domains and prime event structures. Motivated by this chain of
adjunctions Baldan has shown in his dissertation [2] that there is a chain
of functors between the category of graph grammars and prime event struc-
tures, which is based on the trace and event structure semantics Tr(G) and
ES(G) discussed above. In fact, all but one steps in this chain of functors
have been shown already to be adjunctions as in the case of Petri nets.

6 Introduction to Petri Net Transformations

In the second part of this contribution we investigate Petri net transformations.
Note that there is a shift of paradigm. In graph transformation systems graph

productions are used to model the behavior. Obviously, this is not required
for Petri nets as the token game already models the behavior. In the area of
Petri nets the transformations are used to describe changes of the Petri net
structure. So, we can describe the stepwise development of nets, and have a
formal foundation for the evolution of Petri nets. The main advantages of Petri
net transformations are:

– the rule-based approach
– compatibility with structuring and marking graph semantics
– extension to refinement

There already have been a few approaches to describe transformations of
Petri nets formally (e.g. in [5, 6, 33, 7, 35]). The intention has been mainly on
reduction of nets to support verification, and not on the development process
itself.

First we discuss briefly the formal foundation of Petri net transformations as
an instantiation of so called high-level replacement systems. This is a general-
ization of the DPO-approach from graphs to arbitrary specification techniques,
that can be instantiated especially to graphs and different classes of Petri nets
(see Figure 19). Subsequently we give an extensive example, stepwise developing
the baggage handling system of an airport. Finally we discuss the relevance of
net transformations as means for the rule-based modification and refinement of
nets.

516 Hartmut Ehrig and Julia Padberg

Net

Abstract
representation

Graph Transformation
Systems P/T Nets

Concrete
representation

...
Net

AHL Nets

Applications

Transformation System Transformation System

High-Level
Replacement Systems

Fig. 19. Generalization and Instantiation

6.1 Formal Foundation Based on High-Level Replacement Systems

In this section we sketch the abstract frame work, that comprises the transforma-
tions of graphs in the previous and of Petri nets in the next sections. High-level
replacement systems can be considered as a general description of replacement
systems, where a left-hand side of the rule is replaced by a right-hand side in
the presence of an interface. Historically, rules and transformations of Petri nets
have been introduced as an instantiation of high-level replacement systems [12,
13, 28].

These kinds of replacement systems have been introduced in [13] as a cate-
gorical generalization of graph transformations in the DPO-approach. High-level
replacement systems are formulated for an arbitrary category Cat with a distin-
guished class M of morphisms, called M-morphisms. Figure 20 illustrates the
main idea for some arbitrary specification or structure. The rule given in the up-
per line describes that a black triangle is replaced by a long dotted rectangular,
if there is a light grey square below the triangle. The transformation is given by
the bottom line, where the replacement specified by the rule is carried out.

�����
�����
�����
�����

�����
�����
�����
�����

Fig. 20. Abstract Example

Graph Grammars and Petri Net Transformations 517

High-level replacement systems are a categorical generalization of the alge-
braic approach to graph transformation systems with double pushouts. They
allow formulating the same notions as for graph transformation systems, but
not only for graphs but for objects of arbitrary categories. That means, instead
of replacing one graph by another one, now one object is replaced by another
one. Due to the categorical formulation of high-level replacement systems the
focus is not on the structure of the objects but on the properties of the category.

To achieve the results known in graph transformation systems, the instan-
tiated category of a high-level replacement system has to satisfy certain HLR-
conditions. In [24] an elegant reformulation of some HLR-conditions [26] is given
in terms of adhesive categories.

In [27] we have extended the theory of high-level replacement systems where
rules and transformations are required to preserve some desired properties of the
specification. To do so, rules and transformations are equipped with an additional
morphism that has to preserve or reflect specific properties. At this abstract
level we merely can assume suitable classes of morphisms and then guarantee
that these morphisms lead to property preserving rules and transformations. In
Section 7.6 (and much more detailed in [29]) we give a glance how this approach
works for Petri nets.

6.2 Example: Baggage Handling System
In this example we illustrate the rule-based modification of place/transition nets.
Rules describe the replacement of a left-hand side net by a right-hand side net.
The application of the rule yields a transformation where in the source net the
subnet corresponding to the left-hand side is replaced by the subnet correspond-
ing to the right-hand side. At this level as well as in this example there are
no statements about the properties of the modified nets. Nevertheless based on
the transformation we illustrate here, we already have developed a theory, called
rule-based refinement, where the transformations are extended to introduce, pre-
serve, or reflect net specific properties. In [29] a comprehensive survey can be
found, in Section 7.6 we discuss this theory briefly.

This example concerns the sorting, screening and moving of baggage at an
airport. The physical basis of the baggage handling system consists of check-in
counter, conveyor belts, sorter, screening devices, a baggage claim carousel, stor-
ages, and loading stations. The conveyor belts are transportation belts, that are
starting and ending at some fixed point (as check-in, sorter, loading station, bag-
gage claim carousel, etc). The baggage handling system comprises three check-in
counters, the primary sorter, the early baggage, the lost baggage as well as the
unclaimed baggage storage, the secondary sorter, two loading stations, the bag-
gage claim sorter with two baggage claim carousels and all the conveyor belts in
between. Mainly, there are the following cases to handle:

1. Check-in: The baggage has to be moved from the check-in counter to the
right loading station of a departing carrier. It has to pass a security check
(screening the baggage). At the check-in the baggage items are placed man-
ually into the transport system.

518 Hartmut Ehrig and Julia Padberg

2. Baggage Claim: At the loading station a carrier is unloaded and the baggage
items are placed manually into the transport system. The baggage has to be
moved from the loading station to the right baggage claim carousel.

3. Transfer: The baggage has to be moved from the loading station of the
arriving carrier to the loading station of the connecting flight carrier. The
baggage is moved to the secondary sorter and subsequently either to the right
loading station for the connecting flight or to the early baggage storage.

4. Storing Baggage: For baggage checked in early and for long waits between
connecting flights there must be a storage, called early baggage storage.
Moreover, misled or lost baggage has to be identified and is then handled
manually. Baggage that is not claimed at the baggage claim carousel has to
be stored as well.

To model the above given baggage handling system we can use low-level or
high-level Petri nets. High-level net allow modeling the data explicitly, but for
the purpose of this paper it is sufficient to use low-level nets. In fact, the basic
principles for net transformations are the same for low-level and high-level nets.
Subsequently we model the baggage handling system with place/transition nets,
which requires some abstraction of the data – for example the baggage tags or
the flight numbers are not modeled. Especially, we have modeled baggage as
tokens, hence it cannot be distinguished. The choice what happens to baggage is
accordingly no longer depended from the data, i.e. the baggage tag, but is done
at random.

The place/transition net in Figure 21 is an abstraction of the above speci-
fied baggage handling system. The baggage handling system is an open system;
baggage enters and leaves the system. We have modeled this using transitions
without pre-domain for entering baggage and using transitions without post-
domain for leaving baggage. Therefore we have the empty initial marking.

In the net in Figure 21 neither the conveyor belts nor the screening nor
the lost or unclaimed baggage storage are modeled explicitly. Subsequently we
present a step-by-step development of our first abstraction in Figure 21 that
adds the lacking features. We want to add the representation of the conveyor
belts by places, as well as the explicit modeling of the screening. Extending the
net in this way yields a larger net. So we decompose the net into subnets in order
to continue using the smaller subnets. Subsequently we introduce the subnets
for the lost baggage storage and for the unclaimed baggage storage.

Introducing Conveyor Belts and Screening: The conveyor belt is not yet explic-
itly modeled. The transitions t4 to t14 represent conveyor belts. There are three
different possibilities: A simple conveyor belt connecting two devices of the bag-
gage handling system (e.g. between the sorters and the early baggage storage or
the loading station) a conveyor belt connecting several devices (between check-
in and the primary sorter), and a complex conveyor belt including a screening
device with an optional manual check of unsafe baggage (between primary and
secondary sorter). The baggage is considered by the screening device either as
safe or as unsafe. If it is safe, then it is left on the conveyor belt. If it is considered

Graph Grammars and Petri Net Transformations 519

Primary
Sorter

Early
Baggage

CheckIN

CheckIN

Secondary
Sorter

BCCBCC BCC BCC BCCBCC

Loading
Station

Loading
Station

t1

t2

CheckIN

t3

t4

t5

t6 t8

t9

t17 t18
t19

t20
t21 t22

t24 t25 t26 t27 t28

Baggage
Claim

Baggage
Claim

t23

t15 t16

t11

t12

t29

t30

t13

t14

t31

t32

t10t7

Fig. 21. Baggage Handling System: Net B0

to be unsafe, it is taken off the conveyor belt, is checked manually, and either it
is taken out of the baggage handling system or it is put back into the subsequent
device (sorter, storing, or loading).

For these three cases there are three rules available for the replacement of the
corresponding transitions by subnets containing an explicit place ConveyorBelt.
In the first case it is modeled by the rule r1 = (L1 ← K1 → R1) in Figure 22.
This rule states that a transition X is deleted (including the adjacent arcs) and
is replaced by transitions T1 and T2 and the place ConveyorBelt.

P2P1 P1 P2 ConveyorBelt P2

R1

P1

L1 K1X T1 T2

Fig. 22. Introducing Conveyor Belts (Rule r1)

520 Hartmut Ehrig and Julia Padberg

In the second case we recursively replace transitions X by the already existing
ConveyorBelt in Figure 23.

ConveyorBelt P3
T2R2

P1

P2

T1

T3

ConveyorBelt P3
T2K2

P1

P2

T1
ConveyorBelt P3

T2L2

P1

P2

T1

X

Fig. 23. Recursive Introduction of Conveyor Belts (Rule r2)

Introducing the screening is modeled in Figure 24 adding the new places
ConveyorBelt and ManualCheck for the handling of unsafe baggage. The orig-
inal transition X is deleted, the two new places and the transitions in between
are added. The transition T5 denotes the removal of the unsafe baggage.

P1 P2 P2P1 P1

Manual
Check

P2

L3 X K3 T2
ConveyorBelt

R3 T1

T3
T4

T5

Fig. 24. Introducing Screening Devices (Rule r3)

These rules can be applied several times with different matches. First we
investigate the application of rule r3 with match m in Figure 25 with m(X) =
t7 . Applying rule r3 with match m we have again the two steps as for the
application of a graph production (see 3.3):

STEP 1 (DELETE): Delete m(L3− l(K3)) from B0 leading to a context net
D (if the gluing condition is satisfied), s.t. B is the gluing of L3 and D along
K3, i.e. B0 = L3 +K3 D in (1) of Figure 25.

STEP 2 (ADD): Add R3− r(K3) to D leading to the net B1, s.t. B1 is the
gluing of R3 and D along K3, i.e. B1 = R3 +K3 D in (2) of Figure 25.

Then we obtain the transformation in Figure 25 consisting of two pushouts,
where the context net D is the net B0 without the transition t7 and the re-
sulting net B1 has additional places ConveyorBelt and ManualCheck with the
corresponding transitions and arcs. In Figure 25 we have indicated the changes
by a light grey ellipse.

Next we apply rule r1 using the matches m1i : L1 → B1 mapping the
transition X to one of those transitions in B1 that represent a conveyor belt
and mapping the places P1 and P2 the adjacent places. So, we have m1i(X) = ti
for i ∈ {8, ..., 14} leading to the nets B2, ..., B8 that are not given explicitly. At
last we replace the transitions t4 , t5 , and t6 by conveyor belts. We use match

m14 : L1→ B8 with m14(T) = t4 and transform B8
(r1,m14)=⇒ B9. Subsequently

we can apply rule r2 using the matches m25(T) = t5 and m26(T) = t6 .

Graph Grammars and Petri Net Transformations 521

P1
P2

L
3

X

Pr
im

ar
y

So
rt

er
E

ar
ly

B
ag

ga
ge

C
he

ck
IN

C
he

ck
IN

Se
co

nd
ar

y
So

rt
er

B
C

C
B

C
C

B
C

C
B

C
C

B
C

C
B

C
C

L
oa

di
ng

St
at

io
n

L
oa

di
ng

St
at

io
n

t1 t2

C
he

ck
IN

t3

t4 t5 t6
t8 t9

t1
7

t1
8

t1
9

t2
0

t2
1

t2
2

t2
4

t2
5

t2
6

t2
7

t2
8

B
ag

ga
ge

C

la
im

B
ag

ga
ge

C

la
im

t2
3

t1
5

t1
6

t1
1

t1
2

t2
9

t3
0

t1
3

t1
4

t3
1

t3
2

t1
0

P2
P1

K
3

Pr
im

ar
y

So
rt

er
E

ar
ly

B
ag

ga
ge

C
he

ck
IN

C
he

ck
IN

Se
co

nd
ar

y
So

rt
er

B
C

C
B

C
C

B
C

C
B

C
C

B
C

C
B

C
C

L
oa

di
ng

St
at

io
n

L
oa

di
ng

St
at

io
n

t1 t2

C
he

ck
IN

t3

t4 t5 t6
t8 t9

t1
7

t1
8

t1
9

t2
0

t2
1

t2
2

t2
4

t2
5

t2
6

t2
7

t2
8

B
ag

ga
ge

C

la
im

B
ag

ga
ge

C

la
im

t2
3

t1
5

t1
6

t1
1

t1
2

t2
9

t3
0

t1
3

t1
4

t3
1

t3
2

t1
0

t7

P1

M
an

ua
l

C
he

ck

P2
T

2
C

on
ve

yo
rB

el
t

R
3

T
1

T
3

T
4

T
5 Pr

im
ar

y
So

rt
er

E
ar

ly
B

ag
ga

ge

C
he

ck
IN

C
he

ck
IN

Se
co

nd
ar

y
So

rt
er

B
C

C
B

C
C

B
C

C
B

C
C

B
C

C
B

C
C

L
oa

di
ng

St
at

io
n

L
oa

di
ng

St
at

io
n

C
on

ve
yo

rB
el

t
M

an
ua

l
C

he
ck

D
B

1
B

0

t1 t2

C
he

ck
IN

t3

t4 t5 t6
t8 t9

t1
7

t1
8

t1
9

t2
0

t2
1

t2
2

t2
4

t2
5

t2
6

t2
7

t2
8

B
ag

ga
ge

C

la
im

B
ag

ga
ge

C

la
im

t2
3

t1
5

t1
6

t1
1

t1
2

t2
9

t3
0

t1
3

t1
4

t3
1

t3
2

t1
0

Fig. 25. Transformation B0
(r1,m)
=⇒ B1

522 Hartmut Ehrig and Julia Padberg

This results in the following transformation sequence:

B0
(r3,m)
=⇒ B1

(r1,m18)=⇒ B2
(r1,m19)=⇒ B3

(r1,m110)=⇒ B4
(r1,m111)=⇒ B5

(r1,m112)
=⇒ B6

(r1,m113)=⇒ B7
(r1,m114)=⇒ B8

(r1,m14)=⇒ B9
(r2,m25)=⇒ B10

(r2,m26)=⇒ B11

Note that the nets typed bold face are illustrated in some Figure, e.g. the net
B11 is depicted in Figure 26.

Primary
Sorter

Secondary
Sorter

BCCBCC BCC BCC BCCBCC

Manual
Check

CheckIN

CheckIN

C
on

ve
yo

rB
el

t

t1

t2

CheckIN

t3
ConveyorBelt

ConveyorBelt

Early
Baggage

ConveyorBelt

Loading
Station

t29

t30

Loading
Station

t31

t32

ConveyorBelt

ConveyorBelt

ConveyorBelt

ConveyorBelt

t17 t18
t19

t20
t21 t22

t24 t25 t26 t27 t28

Baggage
Claim

Baggage
Claim

t23

t15

t10

ConveyorBelt

t19

Fig. 26. Net B11: After Introducing all Conveyor Belts

Decomposition of the Net: During stepwise development a net usually reaches
at some point a size, where it becomes to large and has to be decomposed.

We assume the net B11 has become too large, so that some structuring
is required. In Figure 27 the place/transition net B11 is decomposed into two
subnets S1 and S2 and one interface net I, consisting of place SecondarySorter.
The subnets can be glued together using the union construction (see 7.4) and
then yield the original net B11: We have the embedding of I into S1 and S2.
The union describes the gluing of the subnets along the interface, hence we have

Graph Grammars and Petri Net Transformations 523

Secondary
Sorter

ConveyorBelt

ConveyorBelt

Early
Baggage

ConveyorBelt

Primary
Sorter

Secondary
Sorter

Manual
Check

CheckIN

CheckIN

C
on

ve
yo

rB
el

t

t1

t2

CheckIN

t3

t10

ConveyorBelt

BCCBCC BCC BCC BCCBCC

Loading
Station

t31

t32

ConveyorBelt

ConveyorBelt

Loading
Station

t29

t30

ConveyorBelt

ConveyorBelt
Secondary

Sorter

t17 t18
t19

t20
t21 t22

t24 t25 t26 t27 t28

Baggage
Claim

Baggage
Claim

t23

t15 t19

I

S2

S1

Fig. 27. Decomposition Using Union

the the union S1 +I S2 = B11 1. Now we can modify the subnets independently
of each other provided that specific independence conditions are satisfied.
1 In this case the interface net consists of one place only, so that the union corresponds

to the usual place fusion of nets. But the general union construction allows having
arbitrary subnets as interfaces.

524 Hartmut Ehrig and Julia Padberg

Introducing Lost Baggage Storage: If the baggage is misled or the connecting or
the departing carrier are missed, then the baggage is stored in the lost baggage
storage. There it is handled manually, that is it is re-tagged and put back into
the primary sorter. This is expressed at an abstract level in rule r4 in Figure 28.

P1 P2

K4

P1 P2

L4

P2

R4

P1 LostBaggage

Fig. 28. Introducing Lost Baggage Storage (Rule r4)

The application of rule r4 to subnet S1 using the match m4 : L4 → S1
with m4(P1) = SecondarySorter and m4(P2) = PrimarySorter yields the net
S3. Applying rule r1 twice, subsequently adds the corresponding conveyor belts

and we have the transformation sequence S1
(r4,m4)
=⇒ S3 r1=⇒ S4 r1=⇒ S5. S5 is

depicted in Figure 29.

Early
Baggage

ConveyorBelt

Primary
Sorter

Secondary
Sorter

Manual
Check

CheckIN

CheckIN

C
on

ve
yo

rB
el

t

t1

t2

CheckIN

t3

Lost
Baggage

ConveyorBelt

ConveyorBelt

ConveyorBelt

ConveyorBelt

t10

ConveyorBelt

Fig. 29. The Resulting Subnet S5

Introducing Unclaimed Baggage Storage. If the baggage is not claimed at the
baggage claim it is collected and stored in the unclaimed baggage storage. We
use two rules In Figure 30 to introduce the place UnclaimedBaggage and the
adjacent transitions recursively.

Applying first rule r5 and then five times rule r6 we obtain the following

transformation sequence S2 r5=⇒ S6
5�(r6)
=⇒ S7, where the resulting subnet S7 is

given in Figure 31.

Graph Grammars and Petri Net Transformations 525

P1

Unclaimed
Baggage

L6

P1

P1

Unclaimed
Baggage

K6

P1

Unclaimed
Baggage

R5

P1

Unclaimed
Baggage

R6

P1

L5 K5

Fig. 30. Introducing Unclaimed Baggage Storage (Rules r5 and r6)

Loading
Station

t31

t32

ConveyorBelt

ConveyorBelt

Loading
Station

t29

t30

ConveyorBelt

ConveyorBelt
Secondary

Sorter

Baggage
Claim

t24 t25 t26 t27 t28t23

t17 t18
t19

t20
t21 t22

Baggage
Claim

t15 t19

BCC BCC BCCBCCBCCBCC

Unclaimed
Baggage

Fig. 31. The Resulting Subnet S7

The Union Theorem and the Parallelism Theorem together now guarantee
that the resulting net B14 in Figure 32 of the union S5 +I S7 = B14 is the
same as the result of the following transformation sequence B11 r4=⇒ B12 r5=⇒
B13

5�(r6)
=⇒ B14 according to the case without the decomposition. This is quite

obvious if the interface net consists of one place only. In case of more complex
interface nets this result can be only achieved if some independence conditions
are satisfied. This condition states in principle that nothing from the interface
net may be deleted.

526 Hartmut Ehrig and Julia Padberg

6.3 Relevance of Petri Net Transformations

The above example illustrates only some of the possibilities and advantages of
net transformations. The usual argument in favor of formal techniques, to have
precise notions and valid results clearly holds for this approach as well.

Early
Baggage

ConveyorBelt

Primary
Sorter

Secondary
Sorter

Manual
Check

CheckIN

CheckIN

C
on

ve
yo

rB
el

t

t1

t2

CheckIN

t3

Lost
Baggage

ConveyorBelt

ConveyorBelt

ConveyorBelt

ConveyorBelt

Loading
Station

t31

t32

ConveyorBelt

ConveyorBelt

Loading
Station

t29

t30

ConveyorBelt

ConveyorBelt

Baggage
Claim

t24 t25 t26 t27 t28t23

Unclaimed
Baggage

t10

ConveyorBelt

t17 t18
t19

t20
t21 t22

Baggage
Claim

t15 t19

BCC BCC BCCBCCBCCBCC

Fig. 32. The Resulting Net B14

Moreover, we have already investigated net transformations in high-level
Petri net classes (see Section 7.6) that are even more suitable for system mod-
eling than the place/transition nets in our example. The impact for system
development is founded in what results from net transformations:

– Stepwise Development of Models
The model of a complex software system may reach a size that is difficult to
handle and may compromise the advantages of the (formal) model severely.
The one main counter measure is breaking down the model into sub-models,
the other is to develop the model top-down. In top-down development the
first model is a very abstract view of the system and step by step more
modeling details and functionality are added. In general however, this results

Graph Grammars and Petri Net Transformations 527

in a chain of models, that are strongly related by their intuitive meaning,
but not on a formal basis.
Petri net transformations fill this gap by supporting the step-by-step devel-
opment of a model formally. Rules describe the required changes of a model
and their application yields the transformations of the model. Especially the
repeated use of a rule ensures a uniform change of a subnet that appears
as multiple copies in the model (e.g. replacing one transition by the explicit
place ConveyorBelt and its adjacent transitions).
Moreover, the representation of change in a visual way using rules and trans-
formations is very intuitive and does not require a deeper knowledge of the
theory.

– Distributed Development of Models
Decomposing a model, that is too large, is an important technique for the
development of complex models. To combine the advantages of a horizontal
structuring with the advantages of step-by-step development techniques for
ensuring the consistency of the composed model are required. Then a dis-
tributed step-by-step development is available, that allows the independent
development of sub-models.
The theory of net transformations comprises horizontal structuring tech-
niques and ensures compatibility between these and the transformations. In
our example we have employed the union construction for the decomposi-
tion, and have subsequently developed the subnets independently of each
other. The theory allows much more complex decompositions, where the in-
dependence of the sub-models is not as obvious as in the given example. So,
the formal foundation for the distributed development of complex models is
given.

– Incremental Verification
Pure modification of Petri nets is often not sufficient, since the net has
some desired properties that have to be ensured during further development.
Verification of each intermediate model requires a lot of effort and hence is
cost intensive. But refinement can be considered as the modification of nets
preserving desired properties. Hence the verification of properties is only
required for the net, where they can be first expressed. In this way properties
are introduced into the development process and are preserved from then on.
Rule-based refinement modifies Petri nets using rules and transformations
so that specific system properties are preserved. For a brief discussion see
Section 7.6.

– Foundation for Tool Support
A further advantage is the formal foundation of rule-based refinement and/or
rule-based modification for the implementation of tool support. Due to the
theory of Petri net transformations we have a precise description, how rules
and transformation work on Petri nets. Tool support is for the practical use
the main precondition. The user should get tool support for defining and
applying rules. The tool should assist the choice as well as the execution of
rules and transformations.

528 Hartmut Ehrig and Julia Padberg

– Variations of the Development Process
Another area, where transformations are very useful, concerns variations in
the development process. Often a development is not entirely unique, but
variations of the same development process lead to variations in the desired
models and resulting systems. These variations can be expressed by different
rules yielding different transformations, that are used during the step-by-
step development. In our example we can obtain various different baggage
handling systems, depending on the rules we use. We can have a system
where each conveyor belt is equipped with screening device, if we always use
rule r3 instead of rule r1.

7 Concepts of Petri Net Transformations

In this section we give the precise definitions of the notions that we have already
used in our example. For notions and results beyond that we give a brief survey
in Section 7.6 and refer to literature.

7.1 Place/Transition Nets and Net Morphisms

Let us first present a notation of place/transition net that is suitable for trans-
formations is the algebraic approach.

These nets are given in the algebraic style as introduced in [25]. A place/
transition net N = (P, T, pre, post) is given by the set of places P , the set of
transitions T , and two mappings pre, post : T → P⊕, the pre-domain and the
post-domain.

T
pre ��
post

�� P⊕ .

P⊕ is the free commutative monoid over P that can also be considered as the
set of finite multisets over P . The pre- (and post-) domain function maps each
transition into the free commutative monoid over the set of places, representing
the places and the arc weight of the arcs in the pre-domain (respectively in
the post-domain). An element w ∈ P⊕ can be presented as a linear sum w =∑

p∈P λp · p or as a function w : P → N. We can extend the usual operations
and relations as ⊕, �, ≤, and so on.

Based on the algebraic notion of Petri nets [25] we use simple homomorphisms
that are generated over the set of places. These morphisms map places to places
and transitions to transitions. The pre-domain of a transition has to be preserved,
that is even if places may be identified the number of tokens that are taken,
remains the same. This is expressed by the condition pre2 ◦ fT = f⊕

P ◦ pre1.
A morphism f : N1 → N2 between two place/transition nets N1 = (P1, T2,

pre1, post1) and N2 = (P2, T2, pre2, post2) is given by f = (fP , fT) with fP :
P1 → P2 and fT : T1 → T2 so that pre2 ◦ fT = f⊕

P ◦ pre1 and post2 ◦ fT =
f⊕

P ◦ post1. The diagram schema for net morphisms is given in Figure 33.
Several examples of net morphisms can be found in Figure 25 where the

dashed arrows denote injective net morphisms.

Graph Grammars and Petri Net Transformations 529

T1

pre1 ��
post1

��

fT

��

P⊕
1

f⊕
P

��
T2

pre2 ��
post2

�� P⊕
2

Fig. 33. Net Morphism

7.2 Rules and Transformations

The category PT consists of place/transition nets as objects and place/transition
net morphisms as morphisms. In order formalize rules and transformations for
nets in the DPO-approach we first state the construction of pushouts in the
category PT of place/transition nets. For any span of two morphisms N1 ←
N0 → N2 the pushout can be constructed. The construction is based on the
pushouts for the sets of transitions and sets of places in the category Set of sets
and is similar to the pushout construction for graphs (see 3.4).

Given the morphisms f : N0 → N1 and g : N0 → N2 then the pushout
N3 with the morphisms f ′ : N2 → N3 and g′ : N1 → N3 is constructed (see
Figure 34) as follows:

– T3 = T1 +T0 T2 with f ′
T and g′T as pushout of fT and gT in Set.

– P3 = P1 +P0 P2 with f ′
P and g′P as pushout of fP and gP in Set as well.

– pre3(t) =

{
[pre1(t1)] ; if g′T (t1) = t

[pre2(t2)] ; if f ′
T (t2) = t

– post3(t) =

{
[post1(t1)] ; if g′T (t1) = t

[post2(t2)] ; if f ′
T (t2) = t

N0

g

��

f �� N1

g′

��
N2

f ′
�� N3

Fig. 34. Pushout of Nets

We introduce rules, that correspond to graph productions in the DPO-ap-
proach. Rules describe the replacement of the left-hand side net by the right-hand
side net in the presence of an interface net.

– A rule r = (L k1←− K
k2−→ R) consists of place/transition nets L, K and R,

called left-hand side, interface and right-hand side net respectively, and two
injective net morphisms K

k1−→ L and K
k2−→ R.

530 Hartmut Ehrig and Julia Padberg

– Given a rule r = (L k1←− K
k2−→ R) a direct transformation N1

r=⇒ N2, from
N1 to N2 is given by two pushout diagrams (1) and (2) in Figure 35.
The morphisms m : L→ N1 and n : R→ N2 are called match and comatch,
respectively. The net C is called pushout complement or the context net.

L

m

��
(1)

K
k1�� k2 ��

c

��
(2)

R

n

��
N1 C�� �� N2

Fig. 35. Net Transformation

The illustration of a transformation can be found for our example in Figure
25, where the rule r1 is applied to the net B0 with match m. The first pushout
denotes the gluing of the nets L3 and D along the net K3 resulting in net B0.
The second pushout denotes the gluing of net R3 and net D along K3 resulting
in net B1.

7.3 Gluing Condition and the Construction of the Context Net

Given a rule r and a match m as depicted in Figure 35, then we construct in
a first step the pushout complement provided the gluing condition holds. This
leads to the pushout (1) in Figure 35. In a second step we construct the pushout
of c and k2 leading to N2 and the pushout (2) in Figure 35.

The gluing condition correspond exactly to the gluing condition in the graph
case (see 3.5). Using the same interpretation as in the graph case, but the nota-
tion from Figure 35 we have the following:

Gluing Condition for Nets:

BOUNDARY ⊆ GLUING

where BOUNDARY and GLUING are subnets of L defined by

– GLUING = k1(K)

– DANGLING = {p ∈ PL | ∃t ∈ T1 −mT (TL) :
(mP (p) ∈ pre1(t) or mP (p) ∈ post1(t))}

where the notation p ∈ pre1(t) means pre1(t) =
∑

p∈P1
λp · p with λp > 0,

similar for post1,

– IDENTIFICATION = {x ∈ K | ∃y ∈ K : (x 	= y and m(x) = m(y))},
where x ∈ K means x ∈ PK with m = mP or x ∈ TK with m = mT , and

– BOUNDARY = DANGLING ∪ IDENTIFICATION

Now the context net C is the pushout complement C in Figure 35 that is
constructed by:

Graph Grammars and Petri Net Transformations 531

– PC = (P1 \mP (PL)) ∪mP (k1P (PK))
– TC = (T1 \mT (TL)) ∪mT (k1T (TK))
– preC = pre1|TC

and postC = post1|TC

Note that the pushout complement C leads to the pushout (1) in Figure 35
and that it is unique up to isomorphism.

In our example of the development of the baggage handling system the gluing
condition is satisfied in all cases, since the matches are all injective and places
are not deleted by our rules.

7.4 Union Construction
The union of two Petri nets sharing a common subnet, that may be empty, is
defined by the pushout construction for nets.

The union of place/transition nets N1, N2 sharing an interface net I with the
net morphisms f : I → N1 and g : I → N2 is given by the pushout (1) in Figure

36. Subsequently we use the short notation N = N1 +I N2 or N1, N2

 I

 N .

I

g

��

f ��

(1)

N1

g′

��
N2

f ′
�� N

Fig. 36. Union of Nets

In our example we use the union construction to describe the decomposition
in Figure 27. The interface net I is mapped by morphisms to the subnets S1
and S2.

7.5 Union Theorem
The Union Theorem states the compatibility of union and net transformations:
Given a union N1+IN2 = N and net transformations N1

r1=⇒M1 and N2
r2=⇒M2

then we have a parallel rule r1 + r2 (analogously to a parallel production, see
4.3) and a parallel net transformation N

r1+r2=⇒ M . M = M1 +I M2 is then the
union of M1 and M2 with the shared interface I, provided that the given net
transformations preserve the interface I.

The Union Theorem is illustrated in Figure 37:

N1, N2

r1,r2

��

 I

(=)

N

r1+r2

��
M1, M2

 I

 M

Fig. 37. Diagram for the Union Theorem

532 Hartmut Ehrig and Julia Padberg

Note that the compatibility requires an independence condition stating that
nothing from the interface net I may be deleted by one of the transformations
of the subnets. This is obviously the case in our example, since the interface
consists of one place only and the rules do not delete any places.

7.6 Further Results

We briefly introduce the main net classes we have studied up to now, and sub-
sequently we present some main results.

– Place/transition nets in the algebraic style have already been introduced in
the previous Section.

– Coloured Petri nets [20–22] are widely known and very popular. Their prac-
tical relevance is very high, due to the very successful tool Design/CPN [19].

– Algebraic high-level nets are available in quite a few different notions e.g.
[34, 30, 28]. We use a notion that reflects the paradigm of abstract data types
into signature and algebra. An algebraic high-level net (as in [28]) is given
by N = (SPEC, P, T, pre, post, cond, A), where SPEC = (S, OP, E) is an
algebraic specification in the sense of [16], P is the set of places, T is the set
of transitions, pre, post : T → (TOP (X)×P)⊕ are the pre- and post-domain
mappings, cond : T → Pfin(EQNS(SIG)) are the transition guards, and A
is a SPEC algebra.

Horizontal Structuring. Union and fusion are two categorical structuring con-
structions for place/transition nets, that merge two subnets or two different nets
into one.

The Union is introduced in the previous section. Now let us consider fusion:
Given a net F that occurs in two copies in the net N1, represented by two

morphisms F
f ��

f ′
�� N1 the fusion construction leads to a net N2, where both

occurrences of F in N1 are merged. If F consists of places p1, .., pn then each of
the places occurs twice in net N1, namely as f(p1), ..., f(pn) and f ′(p1), ..., f ′(pn).
N2 is obtained from net N1 fusing both occurrences f(pi) and f ′(pi) of each place
pi for 1 ≤ i ≤ n.

The Union Theorem is presented in the previous section. The Fusion Theo-
rem [27] is expressed similarly: Given a rule r and a fusion F

��
�� N1 then

we obtain the same result whether we derive first N1
r=⇒ N ′

1 and then con-
struct the fusion F

��
�� N ′

1 resulting in N ′
2 or whether we construct the fu-

sion F
��
�� N1 first, resulting in N2 and then perform the transformation step

N2
r=⇒ N ′

2. Similar to the Union Theorem a certain independence condition is
required. Both theorems state that Petri nets transformations are compatible
with the corresponding structuring technique under suitable independence con-
ditions. Roughly spoken these conditions guarantee that the interface net I and
respectively the fusion net F are preserved by all net transformations.

Parallelism. In Section 4 the concepts of parallelism have been discussed for
graphs. The main theorems hold for Petri net transformations as well.

Graph Grammars and Petri Net Transformations 533

The Church-Rosser Theorem states a local confluence in the sense of for-
mal languages. The required condition of parallel independence means that the
matches of both rules overlap only in parts that are not deleted. Sequential inde-
pendence means that those parts created by the first transformation step are not
deleted in the second. The Parallelism Theorem states that sequential or paral-
lel independent transformations can be carried out either in arbitrary sequential
order or in parallel. In the context of step-by-step development these theorems
are important as they provide conditions for the independent development of
different parts or views of the system. More details for horizontal structuring or
parallelism are given in see [28] or [27].

Refinement. The extension of High-level replacement systems to rules and trans-
formations preserving properties has the following impact on Petri nets: Rule-
based refinement comprises the transformation of Petri nets using rules while
preserving certain net properties. For Petri nets the desired properties of the
net model can be expressed, e.g in terms of Petri nets (as liveness, bounded-
ness etc.), in terms of logic (e.g. temporal logic, logic of actions etc.) in terms
of relation to other models (e.g. bisimulation, correctness etc.) and so on. We
have investigated the possibilities to preserve liveness of Petri nets and safety
properties in the sense of temporal logic.

Summarizing, we have for place/transition nets, algebraic-high level nets and
Coloured Petri nets the following results for rule-based refinement presented in
table 2. For more details see [29].

8 Conclusion

In the first part of this paper (Sections 2 - 5) we have given a tutorial introduction
to the basic notions of graph grammars and graph transformations including the
relationship to corresponding notions of Petri nets. In the second part (Section
6 and Section 7) we have shown how to use Petri nets transformations for the
stepwise development of systems and have included a detailed example of a
baggage handling system. The main idea of Petri transformations is to extend
the classical theory of Petri nets by a rule-based technique that allows studying
the changes of the Petri net structure.

In our general overview of graph grammars and transformations in Section 2
we have already pointed out that there is a large variety of different approaches
and application areas. The practical use of graph transformations is supported
by several tools. The algebraic approach to graph transformations (presented
in Sections 3 - 5) is especially supported by the graph transformation envi-
ronment AGG (see the homepage of [1]). AGG includes an editor for graphs
and graph grammars, a graph transformation engine, and a tool for the analy-
sis of graph transformations. the AGG system as well as some other tools are
available on a CD which is part of volume 2 of the Handbook of Graph Gram-
mars and Computing by Graph Transformation [10]. This volume provides also

534 Hartmut Ehrig and Julia Padberg

Table 2. Achieved results

Notion/Results PT-nets AHL-nets CPNs

Rules, Transformations
√ √ √

Safety property preserving transformations with
transition-gluing morphisms

√ √ √
place-preserving morphisms

√ √ √

Safety property introducing transformations
√ √ √

Liveness preserving transformations
√

? ?

Liveness introducing transformations
√

? ?

Church Rosser I + II Theorem
√ √ √

Parallelism Theorem
√ √ √

Union
√ √ √

Fusion
√ √ √

Union Theorems I+II
√ √ √

Fusion Theorem
√ √ √

an excellent introduction to several application areas for graph transformations.
Concurrency aspects of graph grammars, which are briefly discussed in Section 5,
are presented in much more detail in volume 3 of the handbook [3]. This volume
includes also an introduction to high-level replacement systems with application
to algebraic specification and Petri nets including the theoretical foundations of
Petri net transformations [11].

On top the graph transformation system AGG there is the GenGED en-
vironment (see the homepage of [18]) that supports the generic description of
visual modeling languages for the generation of graphical editors and the sim-
ulation of the behavior of visual models. Especially, Petri net transformations
can be expressed using GenGED, e.g. for the animation of Petri nets [9, 4]. In
this framework, the animation view of a system modeled as a Petri net consists
of a domain-specific layout and an animation according to the firing behavior of
the Petri net. This animation view can be coupled to other Petri net tools [8]
using the Petri Net Kernel [23] a tool infrastructure for editing, simulating and
analyzing Petri nets of different net classes and for integration of other Petri net
tools.

References

1. AGG Homepage. http://tfs.cs.tu-berlin.de/agg.
2. P. Baldan. Modelling Concurrent Computations: From Contextual Petri Nets to

Graph Grammars. PhD thesis, University of Pisa, 2000.

Graph Grammars and Petri Net Transformations 535

3. P. Baldan, A. Corradini, U. Montanari, F. Rossi, H. Ehrig, and M. Löwe. Concur-
rent Semantics of Algebraic Graph Transformations. In G. Rozenberg, editor, The
Handbook of Graph Grammars and Computing by Graph Transformations, Volume
3: Concurrency, Parallelism and Distribution. World Scientific, 1999.

4. R. Bardohl and C. Ermel. Scenario Animation for Visual Behavior Models: A
Generic Approach Applied to Petri Nets. In G. Juhas and J. Desel, editors, Proc.
10th Workshop on Algorithms and Tools for Petri Nets (AWPN’03), 2003.

5. G. Berthelot. Checking properties of nets using transformations. Advances in Petri
Nets 1985, Lecture Notes in Computer Science 222: pages 19–40. Springer 1986.

6. G. Berthelot. Transformations and decompositions of nets. In Brauer, W., Reisig,
W., and Rozenberg, G., editors, Petri Nets: Central Models and Their Properties,
Advances in Petri Nets, Lecture Notes in Computer Science 254, pages 359–376.
Springer, 1987.

7. R. David and H. Alla, editors. Petri Nets and Grafcet. Prentice Hall (UK), 1992.
8. C. Ermel, R. Bardohl, and H. Ehrig. Specification and implementation of animation

views for Petri nets. In DFG Research Group Petri Net Technology, Proc. of
2nd International Colloquium on Petri Net Technology for Comunication Based
Systems, 2001.

9. C. Ermel, R. Bardohl, and H. Ehrig. Generation of animation views for Petri nets in
GenGED. In H. Ehrig, W. Reisig, G. Rozenberg, and H. Weber, editors, Advances
in Petri Nets: Petri Net Technologies for Modeling Communication Based Systems,
Lecture Notes in Computer Science 2472. Springer, 2003.

10. H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Volume 2: Applica-
tions, Languages and Tools. World Scientific, 1999.

11. H. Ehrig, M. Gajewsky, and F. Parisi-Presicce. High-level replacement systems
with applications to algebraic apecifications and Petri nets, chapter 6, pages 341–
400. Number 3: Concurrency, Parallelism, and Distribution in Handbook of Graph
Grammars and Computing by Graph Transformations. World Scientific, 1999.

12. H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. Parallelism and concur-
rency in high-level replacement systems. Math. Struct. in Comp. Science, 1:361–
404, 1991.

13. H. Ehrig, A. Habel, H.-J. Kreowski, and F. Parisi-Presicce. Parallelism and concur-
rency in high-level replacement systems. Math. Struct. in Comp. Science, 1:361–
404, 1991.

14. H. Ehrig. Introduction to the algebraic theory of graph grammars (A survey). In
Graph Grammars and their Application to Computer Science and Biology, pages
1–69. Lecture Notes in Computer Science 73. Springer, 1979.

15. H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of
Graph Grammars and Computing by Graph Transformation, Volume 3: Concur-
rency, Parallelism, and Distribution. World Scientific, 1999.

16. H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equations and
Initial Semantics, volume 6 of EATCS Monographs on Theoretical Computer Sci-
ence. Springer Verlag, Berlin, 1985.

17. H. Ehrig, M. Pfender, and H.J. Schneider. Graph grammars: an algebraic approach.
In 14th Annual IEEE Symposium on Switching and Automata Theory, pages 167–
180. IEEE, 1973.

18. GenGED Homepage. http://tfs.cs.tu-berlin.de/genged.
19. K. Jensen, S. Christensen, P. Huber, and M. Holla. Design/CPN. A Reference

Manual. Meta Software Cooperation, 125 Cambridge Park Drive, Cambridge Ma
02140, USA, 1991.

536 Hartmut Ehrig and Julia Padberg

20. K. Jensen. Coloured Petri nets. Basic Concepts, Analysis Methods and Practical
Use, volume 1: Basic Concepts. Springer Verlag, EATCS Monographs in Theoret-
ical Computer Science edition, 1992.

21. K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and Practi-
cal Use, volume 2: Analysis Methods. Springer Verlag, EATCS Monographs in
Theoretical Computer Science edition, 1994.

22. K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical
Use, volume 3: Practical Use. Springer Verlag, EATCS Monographs in Theoretical
Computer Science edition, 1997.

23. E. Kindler and M. Weber. The Petri net kernel – an infrastructure for building
Petri net tools. Software Tools for Technology Transfer, 3(4):486–497, 2001.

24. S. Lack and P. Sobociski. Adhesive categories. In Proc. FOSSACS 04, 2004. to
appear.

25. J. Meseguer and U. Montanari. Petri Nets are Monoids. Information and Compu-
tation, 88(2):105–155, 1990.

26. J. Padberg. Survey of high-level replacement systems. Technical Report 93-8,
Technical University of Berlin, 1993.

27. J. Padberg. Categorical approach to horizontal structuring and refinement of high-
level replacement systems. Applied Categorical Structures, 7(4):371–403, December
1999.

28. J. Padberg, H. Ehrig, and L. Ribeiro. Algebraic high-level net transformation
systems. Mathematical Structures in Computer Science, 5:217–256, 1995.

29. J. Padberg and M. Urbášek. Rule-based refinement of Petri nets: A survey. In
H. Ehrig, W. Reisig, G. Rozenberg, and H. Weber, editors, Advances in Petri Nets:
Petri Net Technologies for Modeling Communication Based Systems, Lecture Notes
in Computer Science 2472. Springer, 2003.

30. W. Reisig. Petri Nets and Algebraic Specifications. Theoretical Computer Science,
80:1–34, 1991.

31. L. Ribeiro, H. Ehrig, and J. Padberg. Formal development of concurrent sys-
tems using algebraic high-level nets and transformations. In Proc. VII Simpósio
Brasileiro de Engenharia de Software, pages 1–16, Tech-report no. 93-13, TU
Berlin, 1993.

32. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformations, Volume 1: Foundations. World Scientific, 1997.

33. Vanio M. Savi and Xiaolan Xie. Liveness and boundedness analysis for petri nets
with event graph modules. In Jensen, K., editor, 13th International Conference
on Application and Theory of Petri Nets 1992, Sheffield, UK, Lecture Notes in
Computer Science 616, pages 328–347. Springer, 1992.

34. J. Vautherin. Parallel system specification with coloured Petri nets. In G. Rozen-
berg, editor, Advances in Petri Nets 87, pages 293–308. Lecture Notes in Computer
Science 266. Springer Verlag, 1987.

35. W.M.P. van der Aalst. Verification of workflow nets. In P. Azéma and G. Balbo,
editors, Application and Theory of Petri Nets, Lecture Notes in Computer Science
1248, pages 407–426. Springer, 1997.

36. G. Winskel. Petri nets, algebras, morphisms, and compositionality. Information
and Computation, 72:197–238, 1987.

	1 Introduction
	2 General Overview of Graph Grammars and Graph Transformation
	2.1 What Is Graph Transformation?
	2.2 Overview of Di.erent Approaches
	2.3 Aims and Paradigms for Graph Transformation

	3 Introduction to the DPO-Approach
	3.1 Graphs and Graph Morphisms
	3.2 Graph Productions and Graph Grammars
	3.3 Graph Transformation, Derivation and Graph Language
	3.4 Gluing Construction and Pushout
	3.5 Gluing Condition and Pushout Complement

	4 Concepts of Parallelism
	4.1 Parallel and Sequential Independence
	4.2 Local Church-Rosser Theorem
	4.3 Parallel Productions and Parallel Derivations
	4.4 Parallelism Theorem

	5 Graph Grammars, Petri Nets and Concurrent Semantics
	5.1 Correspondence of Notions between Petri Nets and Graph Grammars
	5.2 Concurrent Semantics of Graph Transformation

	6 Introduction to Petri Net Transformations
	6.1 Formal Foundation Based on High-Level Replacement Systems
	6.2 Example: Baggage Handling System
	6.3 Relevance of Petri Net Transformations

	7 Concepts of Petri Net Transformations
	7.1 Place/Transition Nets and Net Morphisms
	7.2 Rules and Transformations
	7.3 Gluing Condition and the Construction of the Context Net
	7.4 Union Construction
	7.5 Union Theorem
	7.6 Further Results

	8 Conclusion
	References

