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Abstract. This work considers model construction and validation in
controller design. The problem we are interested in is to derive a formal
model of a controlled automation system from a semi-formal description
of the uncontrolled plant and various requirements concerning the plant
and the processes of the controlled system. These requirements are orig-
inally formulated on many different abstraction levels, partly employing
formal notations, partly using just natural language and partly consist-
ing of mixtures of both. Moreover, they are often incomplete, contain
errors, contradict each other and assume some domain knowledge which
is typically not explicitly stated. So a crucial part of the model construc-
tion process is the formalization of the plant and of the requirements as
well as validation of the derived models. We suggest a simulation-based
method which employs formal and graphical representations of process
models and specifications and which involves an iterative process of for-
malization and validation of requirements. The approach is based on
particular Petri nets, called signal nets, as formal process models and
partially ordered runs as their semantics. This contribution also reports
on a case study from the automotive industry.

1 Introduction

This contribution is on model based development of software systems that are
supposed to run in a technical environment. More precisely, we deal with the
development of such systems which is based on formal process models. We use
a tailored variant of Petri nets together with a process net semantics.

Model based system development can only lead to a valuable system if the
underlying models faithfully represent the requirements. The requirements in-
clude information about the existing or the planned environment of the system
as well as the desired system behavior within this environment. These statements
hold true for a wide range of systems. In this work we concentrate on computer
systems which are supposed to function in a given technical environment. These
include automation systems composed of a plant and a control restricting the
plant’s behavior. In particular, we consider embedded systems in cars. In this
setting, the aim is to develop a control algorithm such that the controlled sys-
tem matches the requirements. Unfortunately, the requirement specification is
often formulated on many different abstraction levels, partly employing formal
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notations, partly using just natural language and partly consisting of mixtures
of both. Moreover, it is usually incomplete, contains errors, is contradictory and
assumes some domain knowledge which is not explicitly stated.

Since the general aim is to develop the controller software, one possible ap-
proach would be to start with generating a formal specification of this software.
This software has to run within the environment. Therefore, a formal specifica-
tion of this environment, namely the plant, is necessary as well. This specification
is not easy to obtain because the user is interested in the overall behavior. Thus
he will only provide information concerning the controlled system, i.e. the com-
position of plant and control. Moreover, the precise behavior of the plant might
be unknown as well. Faulty assumptions on the plant specification will lead to
faulty or incomplete control specifications, which eventually leads to controller
software that matches the specification but does not satisfy the user’s needs.

Therefore, we proceed differently; we aim at a model of the entire system,
including both the plant and the control. This model can be viewed as a speci-
fication of the total system. A given control software matches the specification
if its behavior together with the plant precisely corresponds to the behavior of
the model. The model of the entire system is generated from the different spec-
ification items that are given in different form mentioned above. The crucial
steps in model construction are the appropriate formalization of the require-
ments (and their validation) and the correct generation of the model from the
formal specifications.

Model construction is used in controller design for the examination of specifi-
cations w.r.t. feasibility and for creation of reference models for the final system
that are used for verification and tests. These models are also very useful as a
basis for model-based test case generation. So we view model construction, for-
malization and validation as one important early phase in the process of system
development.

This work will present an approach for model construction for controlled
systems that employs different formalization / validation steps and a synthesis
procedure to obtain the model from the specifications in a systematic way. It
also presents a case study developed with the car manufacturing company Audi
(see also [8]) and reports on experiences with applying this method.

The basis of our formal modelling language are signal nets [11,14,15], an
extension of Petri nets. In order to adapt our modelling language to industrial
relevance, features for modularity, interaction between modules and differentia-
tion between controllable, observable and internal events had to be integrated.
Extensions also concern a timing concept for representing real time aspects and
real-valued sensor data employing concepts of High-Level nets. The approach is
based on simulation and verification. By simulation we mean construction and
inspection of partially ordered causal runs, represented again by signal nets.

The paper is organized as follows: In the forthcoming section we describe
what we mean by validation of models, in contrast to system validation. We
also distinguish validation from verification and formalization from specification.
Section three is devoted to the steps of our approach in a general setting. In
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section four, our formal modelling language is presented. The causal simulation
of our extension of signal nets, its advantages and some words about algorithmic
aspects is the topic of section five. Section six illustrates applying this approach
to the industrial case study, also providing net models and partially ordered
runs. Finally, experiences from the case study are outlined in section seven.

The first sections of this paper are strongly based on [2] and [5], where more
details can be found. Different aspects of the approach were also adapted to and
presented in various different communities (see [1], [3], and see [4] for using part
of the concept for education purpose).

2 Model Validation

This section is devoted to a general discussion of the term “model validation” in
system design. Validation is usually related to systems. We adapt its meaning to
models. The usual definition of validation of a system in relation to verification
and evaluation reads as follows:

Validation. Validation is the process determining that the system fulfills
the purpose for which it was intended. So it should provide an answer
to the question “Did we build the right system?” In the negative case,
validation should point out which aspects are not captured or any other
mismatch between the system and the actual requirements.

Verification. Verification is the automated or manual creation of a
proof showing that the system matches the specification. A correspond-
ing question is “Did we build the system right?” In the negative case,
verification should point out which part of the specification is not satis-
fied and possibly give hints why this is the case, for example by providing
counter examples. Nowadays, model checking is the most prominent tech-
nique used for automated verification. Proof techniques can be viewed
as manual verification methods.

Evaluation. Evaluation concerns the questions “Is the system useful?”,
“Will the system be accepted by the intended users?” It considers those
aspects of the system within its intended environment that are not for-
mulated or cannot be formulated in terms of formal requirements speci-
fications. The question “How is the performance of the system?” might
also belong to this category, if the system’s performance is not a matter
of specification.

This contribution is about validation of models, namely process models. So re-
placing the term “system” in the above definitions by “process model” should
provide the definitions we need. Models are used as specifications of systems.
Unfortunately, replacing “system” by “specification” in the definitions does not
make much sense. So we need a more detailed investigation of the role of models
and of validation in model-based system development.
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Fig. 1. Model based system development

In Figure 1, the model is an abstract representation of both, the relevant part
of the “real world” and the actual system implementation. It abstracts from
irrelevant details of the considered part of the “real world”, and it abstracts
from implementation details of the system. Verification mainly concerns the
relation between the model and the system implementation, validation concerns
the relation between the model and the “real world”, whereas evaluation directly
relates the system and the “real world”.

The above view ignores that the system to be implemented will have to
function within an environment, which also belongs to the “real world”. So
the left hand side and the right hand side of the picture cannot be completely
separated; they are linked via the “real world”. Figure 2 shows a more faithful
representation of the situation.

model of the
real world real
world
model
> of ho system|
require-
ments

Fig. 2. Capturing the embedding in the real world

Notice that the word “system” is used with different meanings: the “real
world” (environment plant), the software system to be implemented (control)
and the composition of both (the controlled plant). In the sequel we mainly use
the term for the environment together with (part of) the control.

A more detailed view of the model distinguishes requirements specification
and design specifications on the level of the model.

The model of the real world is obtained by analysis of the domain and formal-
ization of its relevant aspects. The requirements specification models the require-
ments and is derived by formalization of the requirements that exist within the
“real world”. The design specification can be viewed as a model of the system im-
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Fig. 3. Capturing requirements and design specifications

plementation, without considering implementation details though. This model
has to satisfy all properties formulated in the requirements specification. The
transformation from the requirements specification to the design specification is
a nontrivial task. Finally, there should be a more or less direct transformation
from the design specification to the system implementation. This implementation
of the system is also said to be specified by the design specification.

Now let us consider the reverse direction. It is a matter of wverification to
check whether the design specification actually matches the requirement speci-
fication. It can also be verified whether the system implementation reflects the
design specification. The correctness of the formalization transformations can
only be checked by walidation. So “formalization” and “validation” is a related
pair of terms in the same sense as “specification” and “verification”. Finally, re-
quirements that are not captured in the model can only be checked by evaluation
of the system implementation within the “real world”.

In Figure 4, the arrow annotated by “evaluation” points to the “real world”
including the system requirements whereas the lower arrow annotated by “vali-
dation” addresses only the “real world” without system requirements.

evaluation
model of the
real world
world
require- design system
ments P specifi- »  imple-
spec. cation mentation
validation =
verification verifiation

Fig. 4. The position of validation, verification and evaluation



472 Jorg Desel, Vesna Milijic, and Christian Neumair

In our context of controller design, the plant is part of the real world (the
environment, respectively) and the control plays the role of the system imple-
mentation. Formalizing the description of the plant will yield a formal process
model whereas the formalization of the requirements have to be interpreted on
this process model, or, respectively, on its behavior. Both formalization steps
have corresponding validation steps that are supported in our approach.

3 The Approach

How can we derive a valid formal model from a semi-formal description of a
controlled system and of its desired behavior? There is no general answer to this
question, since modelling is a creative process. Creating a model always means
to formalize concepts that have not been formulated that precise before. There-
fore, misunderstandings, errors, missing assumptions etc. can not be avoided in
general. The best we can expect is to provide means for detecting these errors
as soon as possible.

We concentrate on process models that have a dynamic behavior and can
thus be executed. So for each process model there is the notion of a run, i.e.,
one of its executions. Our basic assumption is that the domain expert (the user
of our approach) knows well what the correct runs of the desired system should
look like but might have problems in formalizing an appropriate specification
of this set of runs. We will use causal runs, given by partially ordered sets of
events and local system states. A definition of causal runs and their graphical
representation is deferred to the next sections.

As mentioned in the previous section, formalization tasks appear at different
steps: First, a given or planned system that serves as the environment or plant
has to be modelled. Second, the requirements of the controlled system has to be
specified. Both aspects deserve additional validation procedures. Given a valid
model of the plant and a valid specification of the controlled system, the following
step is to design the control algorithm and to verify its correctness with respect
to the specification. This step is not within the scope of our approach (see [15]).
However, it will turn out that some verification means can also be used for
validation purposes.

We first consider the problem of modelling a given system (the environment).
The behavior of the system should precisely correspond to the behavior of the
model. Assuming that we have a version of this model, our approach generates
the runs of the model, visualizes this behavior in an appropriate way and presents
the result to the expert. This model is often derived directly from the system’s
structure and architecture. If the behavior of the system rather than its structure
is known, then a first version of the system model is constructed from the runs
by folding appropriate representations of runs (this procedure is given in [3] for
workflow models).

The simulation of the system model either shows that the model can be
accepted or that it does not yet match the system. In the latter case, the model
is changed according to identified modelling errors and the procedure is repeated.
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Only when the simulated runs of the model coincide with the required runs, the
model can be used to obtain information about the system. The procedure for
model validation can be complemented by verification means: If some behavioral
properties of the system are known then the model should satisfy according
properties as well. Since this verification step is sometimes hard to conduct, there
is an intermediate solution for properties that all runs should satisfy: Simulation
is paired with verification of the simulated runs. This requires an analysis method
for runs, which is also the kernel of the formalization of other requirements, to
be discussed next.

We now consider the formalization and validation of requirements. That is,
we assume to have a valid model of the environment (the plant) and add require-
ments that have to be satisfied by the controlled system, i.e., that have to be
guaranteed by the desired control. In our approach, we only consider required
properties that can be formulated as properties of runs (generally, all properties
of a Linear Time Temporal Logic). These requirements are formalized, validated
and implemented step by step. In the first step, we begin with some of the re-
quirements and analyze simulated runs of the existing model with respect to
these requirements. The result is a distinction of those runs that satisfy the re-
quirements and those that do not. This way, the user gets information about
his requirement specification in terms of runs (“did you really want to rule out
precisely those runs that failed the test?”). Figure 5 illustrates this step. After an
iterative reformulation of the first requirements the simulation based approach
should eventually yield a valid specification of this requirement. Thereafter the
system is modified in such a way that it satisfies this requirement. For some
requirement specifications, there is an automated procedure for this task. In
general, however, there is some freedom in how to implement the requirement.
The implementation of the requirement is either verified by appropriate verifi-
cation techniques or checked again by simulation.

After the first step, a second requirement can be formalized, validated and
implemented, based on the modified model, in the same way (see Figure 6), and
so on. Notice, however, that the implementation of the new requirement should
not violate a previously implemented requirement. As long as all requirements
only restrict the set of possible runs, this problem does not occur. But, if liveness

Fig.5. A first step in requirements validation
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properties (requiring that something eventually happens) and safety properties
(requiring that something bad does not happen) are added in arbitrary order,
then previous steps might have to be repeated.

implementation

Fig. 6. A second step in requirements validation

4 The Modelling Approach

4.1 The Modelling Language

To model a system, we use signal nets [6,7,11,15,16] that are an extension of
Petri nets. A signal net is, like a Petri net, a graph with two types of nodes. Our
modelling language extends signal nets to principles like modularity, interaction
between modules and differentiation between controllable, observable and inter-
nal actions. Also a timing concept for representing real time aspects and concepts
of High-Level nets for representing real-valued sensor data are included.

Places. Each place may contain tokens from a place-specific defined set of token
types, called domain. The same token can appear more than once in a place. To
depict output-places, where tokens represent data to be read from outside, grey
background color is used. We distinguish two kinds of places, namely low-level
and high-level places.

— Low-level places are represented by a simple circle. The domain of low-level
places contains a single token type: a black token. The number of black tokens
represents the actual state of the place. If these places represent conditions
then in any reachable state they contain at most one black token: one token
means that the condition is fulfilled, no token means it is not. This will be
the case in the examples given in section six.
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— High-level places are represented by a double-framed circle. The domain
of these places is an arbitrary nonempty set of token types. The state is
symbolized by the number of tokens which belong to each token type. In the
examples, high-level places will only contain one token and the domain will
be always the set of real numbers. Hence, to simplify matters, the state of a
high-level place will be symbolized by a real number.

Transitions, drawn as rectangles, represent actions. Actions that do not underly
the control algorithm, called uncontrollable, like user driven actions or errors
will be symbolized by a darker grey background. Transitions with a light grey
background characterize actions that generate new values, for example for sensor
data. These transitions and the white colored transitions are controllable.

Arcs. Nodes can be connected by different kinds of arcs.

— Flow arcs are black arcs that either connect a place with a transition or a
transition with a place. They may have a time label. In the case they connect
high-level places and transitions or vice versa, they are labelled by a variable.

— Read arcs are double-sided black arcs between transitions and places. If they
connect high-level places and transitions, they are labelled by a variable and
may also have a time label.

— Write arcs are double-sided grey arcs between transitions and high-level
places that are labelled by two variables and possibly a time label.

— Synchronization arcs connect two transitions and are graphically represented
by jagged arcs.

S t S t s, ¢t t t,
D O] O] 90« "] O]

Fig. 7. a) Flow arc b) Read arc c¢) Write arc d) Synchronization arc

A state of a signal net is determined by its current distribution of tokens in
the places, also called marking. We denote the initial distribution of tokens by
initial marking. The dynamic behavior of a signal net is given by the firing of
transitions. The surrounding arcs determine whether a transition may fire and
how its firing changes the marking.

Transitions that are not connected to high-level places are called low-level
transitions. If every low-level input place, connected to the low-level transition
by a flow arc or a test arc, contains a token, this transition is enabled and may
fire.

A transition which is connected by labelled arc with at least one high-level
place is called high-level transition. Each variable of the labelled arc can be
substituted by a value of the domain of the connected high-level place (so in
our case by a real number). A high-level transition may have a firing condition,
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Fig. 8. On the left hand side you can see a net where transition ¢ cannot fire because
of the empty place s2. The right hand side shows a net where transition t is able to
fire and the resulting state of the net after firing of ¢

S S S
S4 t S5 t > s t
S S, S,

Fig. 9. On the left hand side, transition ¢ cannot fire because of the empty place ss.
On the right hand side, firing is possible

’ ? ) ?

S X, X
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y) Y]
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Fig.10. This net contains two high-level places (s2 and s3). Place sz contains the
token 2.3. Firing transition ¢ substitutes  and y. While x has to be substituted by 2.3
(as the token of place s2), variable y can be substituted by an arbitrary value but not

the same as . On the right side you can find the resulting net after firing with z = 2.3
and y = 4.1

i.e., a Boolean term that includes the variables from the labelled arcs connected
with the transition. To fire a high-level transition, values for the variables at
the surrounding arcs have to be substituted in the following way: The variable
of an arc, resp. the first variable in the case of a write arc, leading from a
high-level place to the transition is substituted by a token of this place. The
substituted values must fulfill the firing condition of the transition. Moreover,
each low-level input place, has to contain a token. The firing of a transition
(high- or low-level) deletes a token from each low-level input place connected
with a flow arc and produces a token in each low-level output place connected
with a flow arc. Firing a high-level transition deletes the current value in each
input high-level place and produces in every output high-level place the token
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determined by the substitution of the arc variable. In addition, firing a high-level
transition deletes the current value in every high-level place connected with the
transition by a write arc, and the value that substitutes the second variable of
the write arc is produced. Read arcs do not change the token of the place they
are connected with. If an enabled transition is connected to another enabled

Fig. 11. This example shows a net with a write arc before and after firing of transition
t with the substitution z, = 2.3 and z,, = 4.2

transition by a synchronization arc, both transitions will fire at the same time
(the first transition is synchronizing the second transition). A transition with an
incoming synchronization arc will never fire without the synchronization signal,
whereas a synchronizing transition can also fire alone. Our extension of signal
nets also provides a concept of time. An enabled transition fires immediately
after the time on the label of every arc with time label ingoing to the transition
has expired after enabledness. A time label of an arc leading from a transition to
a place causes that firing the transition produces a token in the place after the
time of the time label has passed. The time label of a write arc between a place
and a transition means that by firing the transition the old value is replaced by
the new value after the time on the label has passed.

Controllable transitions that have only ingoing flow and write arcs without
time label underly the progress assumption. This means that for each set of tran-
sitions which are pairwise in conflict, one will eventually fire. Two transitions,
which are both enabled, are in conflict if after firing one transition the other one
is no more enabled.

4.2 Causal Semantics

We now concentrate on process models, i.e., on specifications of runs of a sys-
tem. Each process model has a dynamic behavior, given by its set of runs. In
a run, actions of the system can occur. We will distinguish actions from action
occurrences and call the latter events. In general, an action can occur more than
once in a single run. Therefore, several events of a run might refer to the same
action. Runs and events of our extension of signal nets can be defined in several
ways. We will discuss sequential runs, given by occurrence sequences and causal
runs, given by process nets.
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Fig.12. a) In this net, transitions ¢; and t2 are enabled to fire. Firing transition ¢
synchronizes transition t2, which then also fires. The net state before and after firing
is presented. b) In the second case, only transition ¢; can fire and does not synchronize
transition t2 as the place sz contains no token. c¢) Transition ¢ cannot fire because of
place s1 contains no token. So transition t2 will not fire because it is not synchronized
by transition 1

There are basically two different techniques to describe the behavior of our
signal net model: A single run can either be represented by a sequence of action
names, representing subsequent events, or by a causally ordered set of events.

The first technique is formally described by occurrence sequences. It consti-
tutes the sequential semantics. The main advantage of sequential semantics is
formal simplicity. Sequential semantics generalizes well-known concepts of se-
quential systems. Every occurrence sequence can be viewed as a sequence of
global system states and transformations leading from a state to a successor
state.If transitions fire synchronously due to synchronization arcs, we combine
the names of these transitions and regard them as one event. In sequential seman-
tics, a run is represented by a sequence of events such that causal dependencies
are respected; if an event causally depends on another event, then these events
will not appear in the reverse order in an occurrence sequence.

The second technique employs process nets representing causal runs. It con-
stitutes the causal semantics of our extension of signal nets. Also process nets
are extended signal nets. One of the main advantages of causal semantics is its
explicit representation of causal dependency, represented by paths of directed
arcs in process nets. Consequently, concurrent events are events that are not
connected by a path in a process net.

A causal run consists of a set of events (representing the firing of one or a set
of synchronized transitions each), symbolizing action occurrences of the system.
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An action can only occur in certain system states, i.e. its pre-conditions have to
be satisfied. The occurrence of the action leads to a new system state where some
post-conditions of the action start to hold. An event is therefore causally depen-
dent on certain pre-conditions and might lead to new conditions that are causal
prerequisites for other events. Combining events with their explicitly modelled
pre- and post-conditions yields a causal run, formally represented by a process
net.

Our extensions of signal nets make it necessary to take some further notes
on causal runs concerning causal dependencies of events.

— A read arc either tests if a condition is fulfilled (low-level place) or reads some
value (high-level place) but it does not change the token in the connected
place. Hence, it is possible that more than one transition connected with the
same place by read arcs can simultaneously access the place. Thus, read arcs
do not influence the causal dependencies between events.

— In our modelling language, time aspects are modelled by time labels on some
arcs, which either cause that transitions fire immediately after a certain time
has passed or that tokens are produced after a certain time period. These
time aspects have no effect on the formal system’s behavior, i.e., they do not
influence dependencies of events in a process net.

— Finally, remember that we consider the firing of synchronous transitions as
one event.

In a process net, each token is produced by at most one transition occurrence,
and it is consumed (remember that read arcs just test, but do not consume) by
at most one transition occurrence. Hence, conditions of process nets are not
branched w.r.t. flow and write arcs.

The immediate causal dependency of events is represented by the flow and
write arcs of a process net. No two elements can be mutually causally dependent,
in other words, the flow and write relation has no cycles. So the causal relation
is a partial order that we call causal order. Two different events are causally
ordered if and only if they are connected by a chain of directed flow or write
arcs. Otherwise, they are not ordered but occur concurrently.

A condition of a process net represents the appearance of a token on a place
of the original net and is therefore drawn as a copy of the place labelled by the
name of the place. In case of high-level places, the copy also includes the current
value of the high-level place.

As an event represents the occurrence of at least one transition, it is depicted
as a copy of a transition of the original net. If the event represents the occurrence
of a single transition, it is labelled by the name of the transition. If an event
represents the occurrence of a set of synchronous transitions, it is labelled by
all elements of the set of names of these transitions. Consequently, there are no
synchronization arcs in a process net.

Since events represent transition occurrences, the pre- and post-sets of these
transitions are respected. The initial state of the process net is the characteristic
mapping of the set of conditions that are minimal with respect to the causal
order, i.e., these conditions carry one token each, and all other conditions are
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initially unmarked. We assume that every event has at least one pre-condition
and at least one post-condition. By this assumption, all minimal elements are
conditions. Finally, the initial state of the process net corresponds to the initial
marking of the system net, i.e., each initial token of the system net is represented
by a (marked) minimal condition of the process net. Each process net represents
a single causal run of a system net.

Using acyclic graphs to define partially ordered runs is common for many
computation models. The specific property of process nets is that each process
net is formally a signal net with our extensions and that there is a close con-
nection between a process net representing a run and the extended signal net
modelling the system; the events of a process net are annotated by respective
names of actions of the system. More precisely, mappings from the net elements
of the process net to the net elements of the original net representing the sys-
tem formalize the relations between events of a process net and transitions of a
system net and between conditions of a process net and places of a system net.

Sequential and causal runs have strong relations. Sequences of event occur-
rences of a process net closely correspond to transition sequences of the system
net. Therefore, roughly speaking, the set of occurrence sequences of an extended
signal net coincides with the set of occurrence sequences of its process nets when
only the labels of events of these latter sequences are considered.

5 Simulation by Construction of Runs

By simulation we understand the generation of runs of the process model. For a
valid model, each run should represent a corresponding run of the system, and for
each system run there should exist a corresponding run of the model. Validation
by simulation means generating and inspecting runs of the model with respect
to the desired runs of the modelled system. Since neither the system nor its runs
are given formally, only domain experts can do this comparison. So this task
requires a good and easy understanding of the generated runs of the model.

Usually, the user is supported by a graphical representations of runs: The
extended signal net is represented graphically and sequential runs are depicted
by subsequent occurrences of transitions of the net. We suggest to construct and
visualize causal runs given by partially ordered process nets instead. We argue
that we gain two major advantages, namely expressiveness and efficiency.

Every sequence of events, i.e. transition occurrences, defines a total order
on these events. A transition can either occur after another transition because
there is a causal dependency between these occurrences or the order is just
an arbitrarily chosen order between concurrent transition occurrences. Hence,
an occurrence sequence gives little information on the causal structure of the
system run. Interesting aspects of system behavior such as the flow of control,
possible parallel behavior etc. are directly represented in process nets, but they
are hidden in sequences of events. Causal runs provide full information about
these causal dependencies.

The number of event occurrence sequences of a single run grows dramatically
when a system exhibits more concurrency. Each of these occurrence sequences
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represents the very same causal system run. Hence, the simulation of more than
one of these sequences yields no additional information on the causal behavior of
the system. The gain of efficiency is most evident when all runs of a system can
be simulated, i.e. when there is only a finite number of finite runs. In the case of
arbitrary large runs, a set of process nets allows to represent a larger significant
part of the behavior than a comparable large set of occurrence sequences.

Simulation of a system model means construction of a set of (different) runs.
In general, each causal run corresponds to a nonempty set of occurrence se-
quences. Taking the sequence of labels of events in occurrence sequences of pro-
cess nets yields all occurrence sequences of the system net.

In previous publications, we have described the simulation algorithms [2, 5],
i.e. an algorithm constructing runs. Crucial aspects are a compact representation
of similar runs, completeness with respect to all possible alternatives and in
particular termination conditions for potentially infinite runs.

As described in the third section, we have to provide means to analyze the
constructed runs with respect to specified requirements. These specifications are
formulated on the level of the system net in a graphical way (see [2]), adopting
the well-known fact transitions [10] and introducing analogous graphical repre-
sentations for other properties.

As the specifications are interpreted on runs, we developed algorithms for
analysis of process nets. It turned out that the particular structure of these nets
lead to significant advantages with respect to efficiency, compared to occurrence
sequences, at least for some important classes of requirement specifications.

6 The Case Study

In the context of a new production run of cars, this case study with the car
manufacturing company Audi was concerned with the control system of the fuel
gauge of a car, which is surprisingly complex. The value of the fuel gauge is
sometimes determined by various sensors and sometimes calculated by means
of consumption and an earlier calculated fill level. Numerous parameters like
ignition state, movement of the car, car position and engine on/off are relevant.
Because of the special shape of the tank only the values of some sensors — de-
pending on the current fill level — account for the calculation of the fuel gauge. If
some sensor fails, a plausibility test avoids that the values of this sensor are used
for the calculation. Though the consumption based calculation is rather exact,
the summation of minor measurement errors below a certain threshold may lead
to a significant difference between real and calculated fuel gauge. Already these
problems indicate that complex algorithms are necessary for the control of this
technical system which includes continuous and discrete elements.

Starting point of the case study was an informal, mainly textual document
where functionality of the fuel gauge control system was described. The following
tasks arose in the project:

1. Adaption of appropriate techniques for modelling and model synthesis,
2. development of models of control for the fuel measurement,
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3. simulation and validation of the models,
4. feasibility study for similar tasks but with larger scale,
5. specification of the requirements of software tools to be developed.

6.1 Procedure

When starting the project, we expected to receive a basic model of the uncon-
trolled system and a set of informal and formal requirements [12,13]. However,
actually the input of Audi corporation was a completely different one: informal
descriptions of scenarios were given, that had to be realized by the algorithm
to be modelled, including some implicit requirements. The basic model of the
plant was partly explained by corresponding automotive components (e.g. the
functionality of the four tank sensors) and partly assumed as well-known (e.g.
possible states of ignition or of car movement). Some of these implicit assump-
tions could easily become completed, others made it necessary to query at Audi
corporation. Interpreting the description of the scenarios, ambiguities were de-
tected. Even by Audi corporation, some ambiguities could not be cleared up
instantly. In general, the (not surprising) assumption was affirmed, that mod-
elling strongly depends on feedback of experts and cannot solely be done by the
given documents. So, in the procedure, the first steps of modelling and especially
of a repeated validation turned out to be of high importance [2, 5].

In the following, we present our intended procedure. In our case study, the
later phases of model based generation of test cases are presented only exem-
plarily.

Procedure
Steps one to six refer only to single modules.

Extraction and validation of the model of the plant.

Extraction, formulation and validation of the requirements.

Modelling of runs from the scenarios comprising the model of the plant.
Generation of the complete system by folding the runs. This complete system
includes the given runs but may also have some other (desired or undesired)
ones.

=W

5. Elimination of undesired runs by implementation of the requirements found
in step two. It has to be guarantied that the given runs of step three are still
possible.

Validation of the single modules and verification of the requirements.
Integration of the modules by composition at certain restrictive interfaces.
Verification of the complete system.

Application as reference model.

10. Analysis for efficient generation of relevant test data.

11. Application as test reference by simulation, in parallel to the real control.

© XN
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6.2 Model of Calculation of Fuel Gauge while Ignition off

In the following three subsections we present the case study. Due to lack of space
not every detail can be explained. Each subsection contains a short description
of the given specification of the corresponding model. Then the model, including
both plant and control is presented. A description of its behavior is visualized
by different process nets.

In each model, the plant is represented by dark grey colored transitions and
the places connected with these transitions. For simplicity, those parts of the
plant, which are not necessary for the control algorithm in the current model
are omitted. If a complete model is desired, the models can be connected by
identifying common parts of the plant.

The calculation of the fuel gauge while ignition off consists of two measure-
ment phases. The first measurement phase starts by turning the ignition off and
returns the mean value MW old. Turning the ignition on starts the second mea-
surement phase and returns the mean value MW new. If the difference between
the two mean values exceeds 4 liters, refuelling is recognized. Then the displayed
fuel is recalculated by adding this difference to the old value. The following
requirements must be fulfilled for calculating the fuel gauge:

1. If the period of time while the ignition is off is too short to finish measurement
phase one, there will be no new calculation of the fuel gauge.

2. The result of measurement phase 1 outlasts if ignition is turned on for a
short time.

In the left part of the model the behavior of the ignition is presented by its
physical (1,2) and internal (1’,2’) transitions. When the ignition is off for 6 sec-
onds, measurement phase one starts. 4 seconds later the first phase ends by firing
transition 5 what produces a value in the place MW old. Turning the ignition
on initiates the second measurement phase (transition 6), if measurement phase
one has already been finished (indicated by a token in the place synchroniza-
tion). If the ignition stays turned on for 0.4 seconds, MW new is calculated.
Ignition on and a difference between MW old and MW new greater than 4 liters
are preconditions for a change of the fuel gauge value: the transition with firing
condition |z — y| > 4L fires and the difference is added to the former value in
place old value. If the difference is less than 4 liters, no refuelling is recognized:
the transition with firing condition |z — y| < 4L fires and the marking of the
place displayed fuel remains unchanged.

At this point the calculation is declared finished (token in place calculation
completed), to enable — when the ignition is turned off next time — a new calcu-
lation of the fuel gauge value.

The following three pictures show relevant process nets of the model: first, a
complete calculation and change of the fuel gauge value is done (Fig. 14). In the
second process, calculation is aborted because of turning on ignition before end-
ing of first measurement phase (Fig. 15). The last process shows an interrupted
calculation: after the first measurement phase, when the second is started by
turning ignition on, the driver could turn off again ignition before the second
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Fig. 14. Process net of a complete calculation of the fuel gauge value

measurement phase can happen. In this case, the result of measurement phase
one will be remembered until ignition is turned on and the second measurement
phase is executed (Fig. 16).

After some iteration steps, we came up with the following formalization of
the requirement, which holds for all simulated runs.
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Fig. 15. Process net of an abort of the calculation during the first measurement phase
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Fig. 16. Process net of an interrupted calculation during the second measurement
phase

If exactly the places MW old, ignition off, displayed fuel, old value and syn-
chronization are marked and then transitions 2 and 1 fire sequentially within 0.4
seconds, then the marking in place MW old stays unchanged.

The verification of this formalized requirement will be exemplarily shown.

A sufficient precondition is that always exactly one of the three places cal-
culation MW old, MW old and calculation completed is marked. This property
can be formally proved by so called place invariants. As in our requirement place
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MW old is marked, the other two places are not marked. So transitions 3 and 4
cannot fire while MW old remains marked.

The only enabled, not synchronized transition is transition 2 which fires by
assumption. As transition 6 is enabled it will be synchronized by transition 2.
Therefore place calculation MW new is marked. By assumption, transition 1
fires within 0.4 seconds after transition 2. Before transition 8 can fire, the place
calculation MW new is marked for 0.4 seconds. So transition 7 is enabled and
synchronized when transition 1 fires. Thus the token in calculation MW new
is consumed and a token in place synchronization is produced, recovering the
initial marking.

6.3 Model of Calculation of Fuel Gauge
while Ignition on and Vehicle Stops

The calculation of the fuel gauge while ignition on and vehicle stops also requires
two measurement phases. Measurement phase one starts if the vehicle stops for
8 seconds while the ignition is on. This phase lasts 4 seconds and returns the
mean value MW old. Subsequently, measurement phase 2 returns repeatedly a
new mean value MW new. If refuelling is recognized once (difference between MW
old and MW new greater than 4 liters), the fuel level is repeatedly recalculated
by the MW new values by adding the difference of the mean values MW new and
MW old to the old value. Among others, the following (informal) requirements
must be fulfilled:

1. Recognizing refuelling once, the time period for detecting the mean values
of MW new is shortened from 2 seconds to 0.4 seconds.

2. The calculation of the mean value MW new lasts until the vehicle moves
again or the ignition is turned off.

The left part of the model shows the physical and internal states and the possible
changes of states of the ignition and of the vehicle (vehicle stops, vehicle moves).
To start measurement phase 1 (transition 5), the ignition has to be turned off for
8 seconds and the vehicle must not move. After 4 seconds the calculation of MW
old is completed (transition 6). Afterwards the calculation of the mean value
of MW new starts (transition 7) and is completed after 0.4 seconds (transition
8), if the ignition stays turned on during this time period. Directly after the
calculation of MW new (time label 0 seconds), it is checked if the difference
between MW old and MW new is greater than or equal to 4 liters. If this is the
case, refuelling is recognized (transition with firing condition |z — y| > 4L fires).
If this difference is less than 4 liters, no refuelling is recognized (transition with
firing condition |x — y| < 4L fires), and then every two seconds a new mean
value MW new is calculated (transition 9) and the above procedure is repeated
again. Once refuelling has been recognized a new mean value MW new is yet
calculated every 0.4 seconds (transition 10) and then immediately (time label 0
seconds) the value of the fuel gauge is actualized (transition 11). This happens
by adding the difference of the mean values to the old value (transition 11) until
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Fig. 17. Signal net model of fuel gauge while ignition on and vehicle stops

either the ignition is turned off (transition 1) or the vehicle moves (transition
3). In these cases the recalculation of the value of the fuel gauge is stopped and
the initial marking in the right part of the model is restored again. This allows
a new calculation of the fuel level if the car stops the next time for 8 seconds
while the ignition is on.

As an example, the following figures show scenarios given by partial ordered
runs of the above model.

We provide a valid formalization of requirement 1 and outline its verification:

After firing of the transition with firing condition |x — y| > 4L, transition 9
must not fire but transition 10. It fires alternately to transition 11 until either
transition 1 or transition 3 fires.

When the calculation of the fuel gauge starts, the place between transition
12 and the transition with the firing condition |z — y| > 4L is initially marked.
This marking is a precondition for firing transition 9 (calculation of the MW new
values every two seconds). Analogously, a precondition for firing transition 10 is
that the place between the transition with the firing condition |z — y| > 4L and
transition 12 is marked. As always exactly one of both places contains one token
(this property can be formally proved by so called place invariants), it follows:
if transition 9 can fire, then transition 10 is not enabled and otherwise. So after
firing the transition with the firing condition |x —y| > 4L, only transition 10 and
11 can alternately fire until transition 12 which is synchronized by transition 1
and 3, fires.
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Fig. 18. Process net describing that no refuelling is recognized

6.4 Model of Error Treatment for One Sensor

A sensor can be in one of three different states: sensor ok, sensor broken or
sensor shorted. For the sensor value (called ADC-value) the parameters Su (lower
threshold), So (upper threshold), Au (initial stop of the fuel gauge) and Ao (back
stop of the fuel gauge) are defined. If the ADC-value is beyond the thresholds, a
sensor error has to be recognized (sensor broken if the ADC-value is too large,
sensor shorted if the ADC-value is too small). If the ADC-value is between lower
threshold and initial stop resp. back stop and upper threshold, the stop values
are taken into account for the calculation of the fuel gauge level.
The model should fulfill the following requirements:

1. Error treatment for sensors only occurs while the ignition is on.

2. When the ignition is turned on, initially no sensor error is assumed.

3. If the ADC-value is too large (> So) for 20 seconds, a break should be
recognized.

4. If the ADC-value is too small (< Su) for 20 seconds, a short circuit should
be recognized.

5. If the ADC-value is again within the thresholds for 4 seconds, from error
state should be changed to normal sensor state.
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Fig. 19. Process net of the calculation of a new fuel gauge value, because refuelling is
recognized

The signal-net model consists of four parts: in the left part, the possible physical
states (sensor ok, sensor broken, sensor shorted) and the possible changes of
states of the sensor are modelled. Only if the sensor is ok, the actual sensor
value z (given by transition 1) is used as ADC-value. Otherwise if sensor broken
is given, a maximal value max > So is used and in case of sensor shorted a
minimal value 0 < Swu. In the right lower part the ignition is modelled. The
middle and right part show the algorithm for the error treatment of the sensor.
In the middle part the treatment of the ADC-value is done which either can be
normal (place ADC-value: ok), to small (place ADC-value: too small), or to large
(place ADC-value: too large) depending on the measured sensor value in the place
sensor value. For this purpose the transitions are labelled by the corresponding
firing conditions. In the right part, depending on the classification of the ADC-
value, the internal detection of a sensor error and the kind of the sensor error
is described. This detection only occurs if ignition is on (place ignition on). As
an example the following figures show scenarios given by partial ordered runs of
the above model.

Finally, requirement 3 is formalized and verified:

If for at least 20 seconds the places sensor broken and ignition on are simul-
taneously marked, the place break will be marked after these 20 seconds.

Obviously requirement 1 has to be integrated as a basic condition for an
error treatment of a sensor. The following considerations are necessary for the
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Fig. 20. Signal net model of error treatment for one sensor
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Fig. 21. Process net describing that a short circuit is recognized first, then the sensor
is ok again

verification of requirement 3: in both, the middle and the right part of the model
always exactly one place is marked with one token (so the corresponding sets
of places are place invariants). Furthermore, in both parts of the model always
exactly one transition is enabled what implies that there is no conflict between
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Fig. 22. Process net describing that break is recognized first, a following short circuit
is not recognized as the ignition is turned off/on
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Fig. 23. Process net describing that break is recognized first, then the sensor is ok
again

these transitions. To mark the place sensor broken either transition 13 or 14 has
to fire. In particular, the place sensor value is then marked with the value max.
As the place sensor broken stays marked for 20 seconds (as postulated in the
requirement), during this period of time no transition in the left part fires. So for
at least 20 seconds, the place sensor value is marked by the value maz. Because
of our previous considerations, exactly one transition of the middle part of the
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model with the firing condition = > So can fire. This transition fires because
of the progress assumption as it is in no conflict with any other transition of
the other parts of the model (there are no flow arcs between the different parts
of the model). Afterwards the place ADC-value too large is marked and the
token stays there for at least 20 seconds (as for this period of time there is no
transition enabled which could change this marking). Now the place break of
the right part of the model is marked and so either no transition of this part is
enabled or exactly one of transition 6 or 7 is enabled (depending on the former
ADC-value). Because of the progress assumption, one of these transitions fires
after 20 seconds and marks the place break.

6.5 Generation of Test Cases

We illustrate, exemplarily for the model of error treatment of a sensor, the
generation of test cases resp. test vectors:

The values of the input components of a test vector are supplied by the grey
resp. light grey colored transitions and correspond to the marking of certain
places: these places represent sensor data resp. interfaces to components which
deliver sensor data or control parameters. In this model (sensor ok, ignition on,
max) is an input vector. The first component represents the state of the sensor
delivered by transitions 10 to 15, the second component the state of the ignition
(delivered by transitions 16 and 17) and the third component the sensor value
(delivered by transition 1). The value of the output components corresponds to
the marking of the grey colored places. Suitable values for the test vectors resp.
sequences of test vectors can be determined by the model based range of values. If
necessary, additional information has to be requested if the range of values does
not matter for the algorithm (e.g. the maximal fill level that can be displayed
by a sensor; it is determined by the dimension of the tank and the scale of the
sensor and is important for plausibility test but not for other algorithms). It is
not surprising that for the determination of local test vectors from a model there
cannot be extracted more than it was explicitly put in. The advantages of model
based determination of test vectors rest in more global aspects. The consideration
of dependency resp. independency of input and output values that can be won by
analyzing the model reduces the number of necessary combinations of test values
extensively. For example, it can be derived by the model that ignition on and a
incorrect sensor value are necessary to detect a sensor error. Therefore not all
input combinations of (sensor ok, sensor broken, sensor shorted) and (ignition
on, ignition off ) have to be tested as for ignition off the first parameter plays
no role.

This approach is based on the assumption that the actual realized control
algorithm has the same dependencies as the modelled algorithm. Both should
be equivalent concerning the specification, but this equivalence can be only sup-
ported by tests. So, in the best case, the model based generation of test vectors
can give hints for relevant test data. But it cannot be excluded that such er-
rors in the control, which could be detected by other test data, remain hidden.
Such test data can only be delivered by further information about the realized
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algorithm, which cannot be derived from the specification or the model which is
only based on the specification.

7 Experiences and Conclusions

After a general discussion of model validation, we have presented an approach for
the systematic construction of formal models of embedded systems. In particu-
lar, we considered controlled automation systems that consist of an uncontrolled
plant and a control software. The main purpose of the model is to specify the
behavior of the controlled system, which implies requirements for the controller
software. The approach considers the generation of initial system models (the
plant) and of formal specifications of the requirements for the controlled system,
which are implemented in the model step by step. The approach is based on
the assumption that the user knows the desired runs of the system but tends
to make errors when formalizing specifications for these runs. Thus, the core
of the approach is a simulation based technique to generate runs from specifi-
cations and to visualize these runs for inspection by the user. We have argued
that causal concurrent runs have important advantages in relation to sequential
runs because they better capture relevant aspects of the behavior, allow a more
efficient representation of behavior and allow for more efficient analysis methods
with respect to system requirements.

We further presented our extension of signal nets as the modelling language
to be used and discussed as an industrial case study the fuel gauge control of a
car. We illustrated the extended signal net models and some of the causal runs
and gave an idea of how to verify given requirements.

The main lesson we have learnt from this case study is the following. The
assumption that users start with a vague description of the plant and several
requirements and look for the controlling algorithm is only partly justified in this
application area. Instead, very precise knowledge about the plant is available.
This information has to be transformed in our modelling language which some-
times causes problems and needs feedback, because of hidden assumptions. The
semi-formal requirement specification hardly includes an enumeration of safety
and liveness properties the controlled system has to satisfy. These requirements
are implicitly given and often go without saying (for example, the tank should
not become empty without prior warning of the driver). Instead, the modelling
work was based on desired scenarios of the style “what happens if...”. In our
terminology, a set of runs in a semi-formal style was provided, formalized in our
approach, and validated by the experts. These runs have interfaces to the model
of the plant. Each model of the control algorithm that supports these runs will
also support additional, different runs and shows that situations can arise for
which no scenarios were provided. Our simulation approach identifies these situ-
ations and offers runs to the user that are possible due to the respective model,
this way enforcing the users to complete the necessary requirements. Thereafter,
the formalized requirements are validated.

To draw a conclusion, the feedback from the users, engineers from Audi cor-
poration, indicates that they considered our approach very useful. We were able
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to solve most of the problems posed by the users and, perhaps more impor-
tantly, we proved that the documents provided by Audi corporation contained
much more ambiguities and errors than expected by the users.

The concepts presented in this paper are partly implemented in the VIPtool
[9] that was developed by our group, see http://www.informatik.ku-eichstaett.de/
projekte/vip. Main features of the tool are a graphical net editor, a simulation
engine that generates causal runs, a visualization module that presents runs in
a nice and readable way and moreover depicts the relation between process net
elements and system net elements.
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