Bigraphs for Petri Nets

Robin Milner

University of Cambridge, The Computer Laboratory,
J J Thomson Avenue, Cambridge CB3 OFD, UK

Abstract. A simple example is given of the use of bigraphical reactive systems
(BRSs). It provides a behavioural semantics for condition-event Petri nets whose
interfaces are named condition nodes, using a simple form of BRS equipped with
a labelled transition system and its associated bisimilarity equivalence. Both of
the latter are derived from the standard net firing rules by a uniform technique in
bigraphs, which also ensures that the bisimilarity is a congruence. Furthermore,
this bisimilarity is shown to coincide with one induced by a natural notion of
experiment on condition-event nets, defined independently of bigraphs.

The paper is intended as a bridge between Petri net theory and bigraphs, as well
as a pedagogical exercise in the latter.

1 Introduction

This paper conducts a simple exercise in bigraphical reactive systems (BRSs) [4], con-
sisting of a behavioural study of condition-event Petri nets [12]. The exercise has two
very different purposes. The first is pedagogical: condition-event nets can be modelled
as a link-graph reactive system (LRS), which is a simple form of BRS, so they illustrate
the use of bigraphs while avoiding some of their complexity. The other purpose is to
promote future research: since bigraphs model systems that can reconfigure both their
placing and their linking, the exercise illustrates a framework in which Petri nets may
be generalised to deal with mobile informatic systems.

The exercise involves the interpretation of condition-event nets in terms of bisim-
ilarity [8]. As in process calculi, it may sometimes be useful to employ an abstract
model of the behaviour of a Petri net in which two nets are regarded as equivalent if
they cannot be distinguished by certain forms of experiment. If an experiment e can be
carried out on a system in state g, changing its state to g’, we write

and call it a labelled transition between the two states. If we fix a vocabulary of labels e
and define the possible transitions for each one, we have a (labelled) transition system
(TS) L. Then a symmetric binary relation R between two system states is said to be a
bisimulation (for L) if

whenever fRg and f — f, there exists
a state ¢’ such that g—%+ ¢’ and f'Rg’.

In other words: given two related processes, whatever one of them can do, the other can
also do without losing the relationship. The bisimulation property is preserved by union

J. Desel, W. Reisig, and G. Rozenberg (Eds.): ACPN 2003, LNCS 3098, pp. 686-701, 2004.
(© Springer-Verlag Berlin Heidelberg 2004

Bigraphs for Petri Nets 687

of relations, so there is a largest bisimulation which is the union of all bisimulations,
and it is easily found to be an equivalence relation. We call it bisimilarity (for L).

All this holds for any interpretation of ‘experiment’. We call bisimulations (and
bisimilarity) weak or strong, and denote the equivalence by ~ or ~, according to
whether or not a single experiment e can be accompanied by any finite amount of
internal activity. In the strong case we consider each individual internal action as an
experiment, even though it is indistinguishable from any other such action. Both weak
and strong bisimilarity abstract away from the causal behaviour of systems, but the
weak form is more generous in turning a blind eye to internal activity.

We now consider what might be an experiment on a condition-event net. There are
various ways to make parts of a net externally accessible, in order to observe — or induce
— behaviour of the net from the outside. Authors (some of whom are cited in the next
section) have considered making accessible certain events or actions, or alternatively
certain conditions or states. This exercise is of the latter kind; we allow an experimenter
to change certain conditions from holding to not holding or vice versa, by removing or
adding a token. This choice was made because it makes the exercise simple, but the
alternatives may well yield to a similar approach.

~— O)

Consider the above net, for example. At different times the experimenter will be able
to add or remove a token at x or at y. In general, given a state g, i.e. a marking of the
net, the transition g Az, g’ or g—=> ¢’ represents the addition or subtraction of a token
at z. Since we are dealing with condition-event nets, in any given state exactly one of
these experiments is possible for each accessible condition. A third kind of transition,
g—> ¢’, represents an internal event involving no external participation.

These three kinds of transition are the basis of a TS; we shall it call it £,, and
its induced bisimilarity ~. In the rest of this paper we shall compare this TS and its
bisimilarity with another one, which arises from setting up condition-event nets as an
LRS and then deriving a TS £, by a construction [5,4] that is uniform over all LRSs
(and BRSs). We shall find that the labels of L differ from those of L, but that the two
bisimilarities ~, and ~ coincide. This gives us confidence that the dynamics of nets
may be faithfully presented in bigraph theory.

688 Robin Milner

2 Related Work on Petri Nets

In the introduction we declared two goals: first, to give a simple tutorial in bigraphs;
second, to treat Petri nets in the bigraphical framework, thus perhaps easing the exten-
sion of the net model to admit mobility. We shall tackle both goals by means of a simple
case study. In this section we briefly describe how the study relates to existing work in
Petri net behaviour, with reference to some recent papers on that topic.

Pomello, Rozenberg and Simone [10] give a comprehensive survey of behavioural
equivalences for Petri nets. They cover those based on observation both of actions and
of states, and range from fine equivalences respecting causality to coarser ones, for
example the failures equivalence from CSP, the coarsest which respects deadlock. The
study of congruence is reported as being rather incomplete at that date (1992).

Nielsen, Priese and Sassone [9] characterise some behavioural congruences on nets.
Given semantic function B that assigns an abstract behaviour to each net, they consider
the congruence ~ it induces upon nets; this is defined by

No~N, & B(C[Ng]) = B(C|[N,]) for every context C' .

This definition presupposes a precise notion of context. An important contribution of
their paper is to define such a notion, by means of a set of combinators upon nets. They
are then able to characterise the congruences, for each of four semantic functions B,
by showing that for each pair Ny, [Ny there is a single easily identified context that is
sufficient to determine whether or not Ng ~ V7.

Priese and Wimmel [11] continue this programme; they enrich the net combinators,
and consider a wider range of semantic functions.

The Petri Box calculus of Best, Devillers and Hall [1], like the previous two, em-
phasises combinators and algebra. By identifying certain net-patterns as operators, it
presents a modular semantics of nets in terms of equivalence classes of Boxes (a spe-
cial class of nets). A main result of the paper is agreement between this denotational
semantics and a structured operational semantics of Box expressions.

This brief summary does not do justice to the four papers, which represent well the
progress towards a modular treatment of Petri nets. But it helps us to identify differences
with bigraph theory, which suggest contributions that can be made by the latter. The first
difference is that, since bigraphs and their contexts are the arrows of a category, when-
ever a class of agents (e.g. nets) is encoded in bigraphs the contexts and combinators
are already determined; they need not be defined specifically for each class. The second
difference is that the semantic function on bigraphical agents is defined not by specific
means, but as the quotient by a generic equivalence relation that pertains to all bigraph-
ical systems. Finally, many such equivalences — including bisimulation (which we use
in this paper) but also others — are guaranteed by bigraphical theory to be congruences.

In this brief discussion we have tried to explain the way in which bigraphs aim at a
theory shared by different models of concurrency. Much work is needed to determine
how far they can achieve this aim. Success can be measured in two ways: by the range
of different models that can be satisfactorily treated in bigraphs, and by the depth of the
theory thus shared among them. The present paper begins to evaluate these measures
with particular reference to Petri nets.

Bigraphs for Petri Nets 689

Fig. 1. A typical bigraph

3 Bigraphs and Link Graphs

Figure 1 shows a typical bigraph. The ovals and circles are nodes. Associated with each
node is a control which indicates what kind of node it is. Here we show three controls,
k, m and n; the controls of other nodes are not shown. Each control has an arity, a finite
ordinal indicating the number of ports on that kind of node; here k, m and n have arity
2, 3 and 2 respectively.

A bigraph is so called because its nodes are structured in two ways. The first struc-
ture is placing; the nodes are nested inside one another, giving an ordered set of trees,
i.e. a forest. In our example there are two trees; each has a root — not itself a node — rep-
resented by a dotted rectangle. The second structure is linking; the ports of the bigraphs
are partitioned into /inks, shown by curved lines. A link may be open or closed; each
open link has a distinct name (here x or y). Names allow bigraphs to be joined via their
open links.

The two structures are totally independent; note here how the links cross node
boundaries and even link different trees in the forest.

In other applications of bigraphs the nesting of nodes plays an important role in the
way bigraphs reconfigure themselves; both placing and linking may vary dynamically.
But in our present application the placing vanishes, so we shall work only with /ink
graphs, i.e. the linkage structure. In following sections we shall explain only those parts
of link-graph theory that we need.

Link graphs. Itis common in graph theory to distinguish between concrete and abstract
graphs. In the former the nodes and edges have identity, and we distinguish two graphs
that differ only by a bijection between their nodes and edges; in the latter we equate
them. For link graphs we are interested in both kinds; for applications we usually want
the abstract ones, but the concrete ones provide us a convenient means to develop the

690 Robin Milner

theory. Here we shall work mainly with the concrete link graphs; at the end we point
out how the results, once derived, transfer to the abstract ones.

We treat concrete link graphs, then, as the morphisms of a supported precategory.
This is like a category except that each morphism has a finite set, its support, and the
composition of two morphisms is defined only if their supports are disjoint. The support
of a composite morphism is the union of the supports of its components. Identity mor-
phisms have empty support. Two morphisms F' and F are support equivalent, written
F = I, if they differ only by a bijection between their supports.

Working with supported precategories is hardly different from working with cate-
gories; in this paper the reader can rest assured that any concept familiar from the latter
means practically the same for the former. More discussion of this point can be found
in the concluding section.

In the supported precategory of (concrete) link graphs, the objects are finite sets
X,Y,...of names. A link graph H : X — Y has inner face X and outer face Y. An
example appears in Figure 2; think of H as a context in which to embed a link graph
G with outer face X. The points of a link graph are its ports and its inner names, so
H has eleven points: three ports for each a-node, two for the b-node and three inner
names X = {x1, 29, x3}. (Note that the points do not include the ourer names.) The
links constitute a partition of the points, and to each open link (which we mentioned
already) is assigned a distinct outer name; for H, these are Y = {y1, y2}. Note that H
has two open and three closed links.

Fig. 2. The composite H o G of link graphs G :)— X and H : X —»Y

The support of a link graph consists of its nodes and its closed links (the latter cor-
responding to the edges of a classical graph). Their identity is not shown in the diagram,
but when we show a composition of two link graphs we assume disjoint supports. Fig-
ure 2 shows the composition of G :) — X and H : X — Y; each open link in G is
joined to the link in H that contains the corresponding inner name, and then that name
is erased. The outer and inner names of a link graph need not be disjoint. The identi-

Bigraphs for Petri Nets 691

ties are those link graphs idx : X — X with empty support in which each outer name
x € X is assigned to the link whose only point is the inner name x.

A link graph with empty inner face, such as GG in the diagram, is called ground,
ground link graphs, and more generally ground bigraphs, are used to represent agents,
such as a condition-event net with no missing pieces. We typically use lower case letters
f,9,h, ... for ground link graphs.

Algebra. Let usreview briefly how complex link graphs may be built from simpler ones.
As well as composition, we use tensor product: if F; and F> have disjoint supports,
disjoint inner faces X; and X, and also disjoint outer faces Y; and Y5, then their
tensor product

FioF: XiUX,—YUY,

is formed by placing them side-by-side. The unit for ® is just idy. Using composition
and tensor product we can build all link graphs from the atomic ones (those with a
single node) with the help of wirings (those with no nodes). If k is a control with arity
n and x a sequence of n distinct names then a k-afom with ports named 1, . .., x, is
denoted by k. All wirings can be built from two elementary kinds: a linker y/x and a
closure /x. These three elementary link graphs are as follows, when @ = zzox3:

xr1 X2 X3 T

For example, suppose the outer face of F'is {xyz}. We may want to replace x and y by
v, leaving z unaffected; or we may want to do the same but close off the link z. In each
case we can form w o F', where the wiring w is respectively

w=v/ry®id, or w=v/ay®/z.

More generally, the algebra of link graphs consists of expressions built from the ele-
ments using o, ® and identities, and satisfying some simple equations. In this paper we
shall use a little algebra, but rely more upon diagrams.

One abbreviation will come in handy. If F" has outer face {zyz} and G has inner face
{zy}, then we may write G o F instead of (G ®id,) o F. In other words, we sometimes
omit identities in composition when no confusion arises.

Sorting. For many purposes, it is useful to enrich link graphs by imposing a sorting,
i.e. a discipline of sorts (or types). We set up a sorting in three stages:

1. Specify aset S = {«a, 3, ...} of sorts.

2. Declare for each control with arity n an ordered list of n sorts. This determines a
sort for every port in a link graph.

3. Enrich interfaces X, Y, ... by assigning a sort to each name.

We may then define a well-sorted link graph to be one that satisfies certain con-
straints. Here we are interested especially in many-one sorting, in which there are just
two sorts v and (3. Each link may have any number of a-points, but 3-points are con-
strained follows:

692 Robin Milner

e A closed link has exactly one 3-point;
e An open link with a -name has exactly one 3-point;
e An open link with an c-name has no (3-points.

As an example, for link graphs with controls a and b we may declare that every port of
an a-node has sort «, and every port of an b-node has sort 3. It can be checked for Fig-
ure 2 that G, H and H o G are well-sorted if X has the sorting {z1: o, x9: o, x3: (3}
and Y has the sorting {y1: o, y2: «}. The reader may like to look ahead and see the
rOle of sorting in representing condition-event nets; it ensures that each port on an event
node will be connected to at most one pre- or post-condition node.

Dynamics. To equip link graphs with behaviour, we first specify a subclass of the inter-
faces called agent interfaces. If X is such an interface we call any f:) — X an agent;
these are the link graphs whose behaviour we want to define. For this purpose we spec-
ify a set of reaction rules, each being a pair (r, r’) of ground link graphs with the same
outer face. In each rule we call r the redex and 1’ the reactum. Then we specify the
reaction relation —> over agents to be the smallest such that

Dor——>Dor’

for every reaction rule (r,) and every context D for which the compositions are de-
fined and are agents. We also require both the rule-set and the reaction relation to be
closed under support-equivalence. In the next section we shall set up the firing rules of
condition-event nets as reaction rules.

What we have defined so far is called a reactive system. In process calculi it has
become usual to refine this to a (labelled) transition system (TS), with transitions of the
form f AN /', where the labels ¢ are specific to each calculus. Intuitively, £ represents
the contribution that f may make to a reaction; typically this contribution is incomplete,
so the transition makes precise the idea that both and agent and its environment may
contribute to a reaction. In terms of these TSs, one may define bisimilarity and other
equivalences and preorders over agents; a test of a good TS is that these behavioural
relations are congruential, i.e. preserved by insertion into any context.

In bigraph theory we adopted a proposal by Leifer and Milner [5] to derive TSs
uniformly over all bigraphical reactive systems, in a way that guarantees congruential
behavioural relations. For link graphs, it works as follows. We consider a label L to be
a (link graph) context into which an agent may be inserted in order to enable a reaction
to occur; that is, we define the transition

fE=f
to mean that the equation Lo f = D or holds for some context D and reaction rule

(r,7"), and moreover that f' = D or’. Think of this as inserting f into a (small) context
L so that an instance of the redex r occurs in the composite L o f, and then replace this

occurrence by 7 /.
’ D

- =

Bigraphs for Petri Nets 693

But if we were to allow all such contexts as labels L, there would be an unwieldy
multitude of labels. Indeed, a moment’s reflection reveals that if L is a transition label,
then so would be any larger context C o L! To avoid this, the theory limits labels L to
be the (in some sense) smallest for which the equation L o f = D or holds for some D,
given f and r. It turns out that strong bisimilarity is congruential for any TS so defined,
and we believe that this extends to other behavioural relations. By smallest, we mean
that the above diagram should not only commute but should also be an idem pushout
(IPO), a weaker version of the more familiar pushout.

We need not explain IPOs here, because our precategory of condition-event nets ac-
tually has pushouts where we need them. We shall not show how to construct pushouts
for link graphs; we shall just exhibit the resulting TS and then work with it. The con-
struction can be found in the Technical Report by Jensen and Milner [4]. We should
note that pushouts — even IPOs — exist only for concrete bigraphs, not for abstract ones.
Intuitively, support provides a means of defining exactly which nodes and edges are
shared between two link graphs.

4 Condition-Event Nets as Link Graphs

We are now ready to set up condition-event nets as link graphs'. There are many ways to
do it; we choose one that appears to give a smooth treatment. We shall use the example
from the introduction as an illustration:

T

€11

We choose three kinds of control: m (‘marked’) and u (‘unmarked’) for holding and
non-holding conditions, and ey, for events with & pre- and k post-conditions. The shape
and colour of each node will save us from writing controls in diagrams. Conditions have
arity 1; we site the single port of a condition node in its centre. An epi-node has h + k
ports; h pre-ports for pre-conditions, k post-ports for post-conditions. You may like to
check that the above net has two open and three closed links.

! Terminology can become confused when discussing two different formalisms. In particular,
Petri nets and bigraphs differ in their use of the terms ‘transition” and ‘place’. Fortunately, in
this paper we are concerned only with condition-event nets, not place-transition nets, so we
are able to avoid confusion.

694 Robin Milner

We adopt the many-one sorting described above. Specifically, there are two sorts, 7y
for condition ports and 7 for event ports. An interface assigns one of these sorts to each
of its names. When a net satisfies the many-one sorting constraints from the previous
section (with 7 and ~y for o and 3) we call it well-sorted. Thus, in a well-sorted net, each
condition has a single link to all its pre- and post-events, and each event port is linked
to at most one condition. Let us denote the precategory of well-sorted condition-event
nets by “CE; the accent means that we are dealing with concrete link graphs.

In general an interface may contain both y-names and n-names. But in the example
you will notice that both x and y are y-names, because each names a link containing
a condition. In fact we shall confine our attention to the subprecategory “CE.whose
interfaces contain only y-names, and whose nets are well-sorted. We call these y-nets,
for short. The ground y-nets are our agents; note in particular that an agent contains all
the pre- and post-conditions of its events.

The reader should note that our encoding of condition-event nets into y-nets is not
surjective, even up to support equivalence. The reason is that, in an encoded condition-
event net, each pre-condition of a single event is linked to exactly one of its pre-ports
(and similarly for post-conditions). This constraint is illustrated thus:

e

There are ~y-nets that violate this constraint; it is not imposed by many-one sorting.
This situation arises because in “CE., we have equipped events with several ports, for
technical reasons. But these spurious y-nets need not disturb us, for it can be shown that
a spurious one never arises from a genuine one as the result of a transition.

Let us now add dynamics to “CE.,, making it a reactive system. To do this, we intro-
duce the usual Petri-net firing rules as reaction rules (r,7’), one for each e, Figure 3
shows the rule for h = 1,k = 2. Note that r and ' are indeed agents. Note also that
all the links of r are open; this means for every occurrence of r in an agent f there is
a context D such that f = D or. You may be concerned that we have given particu-
lar names to the interface of our reaction rules; this is no constraint, because by using
wirings we can rename — or close — these names at will.

1 Yyi Y2

Fig. 3. A link-graph reaction rule for condition-event nets

We are now ready to examine the behaviour of y-agents. Recall from the introduc-
tion that we already have a TS for them, namely £, defined without any help from link

graph theory; the labels £ in its transitions f LN f/ take one of the forms +xz,—x or 7.

Bigraphs for Petri Nets 695

We shall assume each transition relation —— to be closed under support equivalence.
Denote by ~, the strong bisimilarity induced by L.

To compare this with the strong bisimilarity ~ induced by link graph theory, let
us now define the latter equivalence accurately. First recall that in the TS Lg, each L-

transition f - f’ is such that, for some D and reaction rule (r, '), the pair (L, D)
is a pushout for (f,r), and f* = Dor’. This ensures that Ly also is closed under
support equivalence. Then, recalling the introduction, the equivalence ~ is the largest
symmetric relation such that

whenever f ~ g and f L. /', with L o g defined,
there exists ¢’ such that g ¢’ and f’ ~ ¢/.

(The condition that L o g be defined is needed because we are working in a precategory.)
Unlike ~,, the bisimilarity ~ is guaranteed by link graph theory to be a congruence,
i.e. preserved by insertion into any context.

Our first task is to characterise the labels of £;. We omit the detailed analysis. It
turns out that (up to isomorphism in “CE) each label is either an identity, or an open
~-net with exactly one e-node, linked to zero or more m-nodes as preconditions and u-
nodes as post-conditions. An identity label just signifies that the agent makes a transition
with no assistance from its environment. In fact f ., SfUiff f — f7; this justifies our
use of the same arrow for both reactions and transitions.

Figure 4 shows a non-identity label. It is not quite a redex; it requires its client agent

Fig.4. A typical label in Ly

to provide one marked precondition and one unmarked postcondition. Figure 5 shows
the anatomy of a transition f L f" with this label. Note that f’ takes the form Lo f;
we call L and f the residuals of L and f respectively. We see that a single transition
may change the marking of several named conditions of f, however far apart they may
lie in f. Any other agent g with the same interface as f will have a similar transition,
provided only that it has the same initial marking of its named conditions.

The two TSs L, and L, are significantly different, so it is not immediately clear that
they will induce the same bisimilarity. We prove that they do so in the next section.

5 Coincidence of Bisimilarities

In “CE, we have two TSs on condition-event nets: £, defined directly with labels ¢ of
the form +z, —z or 7, and L, derived in link graph theory, with labels L consisting of

696 Robin Milner

]

!

-
|
|
|
~l

Fig. 5. Anatomy of a transition f L flin L

link graph contexts having at most a single event node. The bisimilarities for the two
TSs are ~, and ~ respectively.

We shall first show that ~ C ~, . This asserts that if we can distinguish two ~y-nets
f and ¢ by using ‘experiments’ ¢ like +x and —z, then we can also do so using ‘exper-
iments’ L that are elementary link graph contexts. So, among the labels L generated by
our theory (see Figure 4), we need to find those that can do the job of the experiments
+x and —z.

It turns out that such labels need only involve events with one pre- and one post-
condition; we call them input and output probes respectively. They are denoted by in,.
and out,,, and are shown in the first column of Figure 6. The second column shows
the spent probes, the residuals of the probes. The third column shows the spent probes
with their conditions closed; they are defined by in,, o /zoin, and out, s /zoout,,.
They may be called rwigs because, up to the equivalence ~, they can be broken off. The

PROBE SPENT PROBE TWIG

T z T

INPUT

OUTPUT

T out, .

Fig. 6. Probes: labels in L, for observing conditions in a «y-net

Bigraphs for Petri Nets 697

intuition is simply that a twig occurring anywhere in a net can never fire. In fact we
have a lemma, proved easily in link graph theory:

Lemma 1. For any v-agent f having x in its outer face, ingo f ~outgof ~ f.

Now to prove that ~ C ~ it is enough to show that ~ is an L,-bisimulation. For

this, suppose that f ~ g, and let f—-» f” in Lp. We must find ¢’ such that g-tsg
and f' ~ ¢'. If £ = 7 this is easy, because then our assumption implies that f — f”,
and hence f ., f'in Lg; but then by bisimilarity in £; we have 91> g ~ [/, and
by reversing the reasoning for f we get that g— ¢’ and we are done.

Now let £ = +x (the case for —z is dual), so that f =2 f’. This means that f has

an unmarked condition named z, so that in £, we have

fle=e f Zin o f

Hence by bisimilarity in £, we have

g g =gz og

where f”/ ~ ¢"” and ¢’ is the residual of ¢” under the transition. This residual ¢’ differs
from ¢ only in having a marked condition named x that was unmarked in g, and hence
we also have g %> ¢ in L. It remains only to show that f’ ~ ¢’. We deduce this using
the congruence of ~ and Lemma 1:

f/Nm$of/ = /Zoma:zof/ = /ZOfN
~ [zog" = [zoing,og = ingog
~9,
and so we have proved

Lemma2. ~ C ~.

To complete our theorem we must prove the converse, ~, C ~ . It would be enough
to prove that ~, is an Lg-bisimulation; but this is false. Instead we have to consider the
closure of ~, under all contexts, namely

S E {(Cof,Cog)|frpg}-

In fact it will be enough to prove that S=, the closure of S under support equivalence,
is a bisimulation. We get the required result by considering the case C' = id.

So let us assume that f ~, g, and that C'o f M, f" in Lg. Then there is a reaction
rule 7 and context D such that (M, D) forms a pushout for (C'o f,r), as shown in
the left-hand diagram of Figure 7, and f” = D or’. We now take the pushout (L, F')
for (f,r), and properties of pushouts yield the right-hand diagram, in which the upper

square is also a pushout. So there is a transition f L, /', where f' = For’; note also
that [/ = C'o f'.

698 Robin Milner

M
M L
_—=
L CT TC/
Cof D L
—_— D
L
- A
.

Fig. 7. Pushouts underlying transitions of C'o f and f

Now consider the anatomy of this transition, exemplified in Figure 5. We know
that the residual f differs from f only in the changed marking of zero or more named
conditions. It follows therefore that in £ there is a sequence of transitions

fAep e =F (>0

where ¢; € {+x;, —x;}; each transition marks or unmarks a single named condition.

Moreover f' = Lo f. Since f ~ g there exists a similar sequence

0 ‘, o
g—>g1... —*>0Gn =4

with f ~p g. This implies that g has the same initial marking as f for the named con-

ditions involved in the transitions. But we know that L o g is defined (since we assumed
r &t

MoCog = C'oLog to be defined), so in £, there is a transition gibg = Log.
Its underlying pushout is shown in the left-hand diagram of Figure 8. Also it has an
underlying reaction rule (s, s’), with ¢’ = Gos'.

M
_—=
L
CT TC’
_—= _—=
L L
gT TG gT TG
s s
_— _—=

Fig. 8. Pushouts underlying transitions of g and C'o g

Now we form the right-hand diagram of Figure 8 by replacing this pushout for the
lower square in right-hand diagram of Figure 7. Since both small squares are pushouts,
so is the large square; therefore it underlies an Lg-transition

CogMeyg" L Eos .

Bigraphs for Petri Nets 699

To complete our proof we need only show that the pair (f”, ") lies in S~. We already
know that f” = C"o f' = C" o Lo f. We can now compute

§'=FEos =C'0Gos' =C"og =C'oLoyg,

and hence (f”, g") € S~ since f ~, g. It follows that ~, C ~.
So we have proved:

Theorem 1. (coincidence of bisimilarities) ~ = ~, in ‘CE,.

The reader will remember that we have worked in concrete link graphs ‘CE, in
order to ensure the existence of IPOs (in fact pushouts); these were needed to define a
transition system in a way that ensures congruence of bisimilarity. Having done this, we
can now tranfer both the transitions and the bisimilarity to the corresponding category
CE, of abstract link graphs, which has no IPOs. Note that CE, is indeed a category,
not just a precategory, because support no longer places a constraint upon composition.

If G is a concrete link graph, let [G] denote the corresponding abstract one — essen-
tially the support-equivalence class of G. Then we define the transition system [£,] in
CE, to be the smallest set such that

if gLD g" in L4 then [g] 1, [¢'] in [Lg] .

Similarly we define [L,] in CE~; this is even simpler because its labels ¢ are not subject
to support equivalence.

These two abstract transition systems induce corresponding bisimilarities in CE.,;
we shall again denote them by ~ and ~. They are simply related to those in “CE.,. We
conclude by stating this relationship, omitting the proof; it also has the consequence
that the assertion of Theorem 1 for concrete link graphs is matched for abstract link
graphs.

Corollary 1. (coincidence of bisimilarities in abstract condition-event nets)

1. f ~gin’CE, iff [f] ~ [g] in CE,.
2. f ~p gin CE, iff [f] ~p [g] in CE,.
3. In CE,, bisimilarity ~ is a congruence and coincides with ~ .

6 Discussion

This exercise has shown that a particular class of Petri nets, condition-event nets, can be
modelled and analysed in link graphs. It has not shown that this modelling is canonical,
nor that it extends to other net disciplines. I hope that the relatively simplicity of the
present analysis may provoke interest in these questions.

This would not only determine how far the present theory of bigraphs goes for Petri
nets; it may also suggest improvements and variations of bigraph theory. Indeed it was
by trying to analyse other concurrency models — especially the m-calculus of Milner,
Parrow and Walker [7] and the mobile ambients of Cardelli and Gordon [2] — that bi-
graphs evolved from their predecessor action calculi, Milner [6]. A large concern in

700 Robin Milner

defining bigraphs has been to admit theoretical analysis (such as we have illustrated)
which could not be provided so well for action calculi. Furthermore, Jensen and Mil-
ner [3] have recently shown that the behavioural theory of a version of the m-calculus
can be exactly mirrored in bigraphs.

Even within the present exercise, interesting points emerge. In the present encoding
of Petri nets, we stratify the event controls ey, by their arities; this limits the number
of pre- and post-conditions that can be connected to a given event in any context. In
contrast, Nielsen et al [9] use a recursion combinator that connects a given condition to
a given event. Thus the algebraic combinators provided uniformly by link graphs may
not coincide with those designed for a particular application, and the comparison of the
two requires further examination.

Another interesting outcome is the mismatch between the transition system L gen-
erated by link-graph theory and the simple specific transition system L, despite the
coincidence of the bisimilarities they induce. It is clear that the labels in L; are re-
dundant, in the sense that the same phenomenon may be detected by more than one
experiment. This is not surprising, because the labels are generated from each reaction
rule separately; no attempt has yet been made to discover to what extent the labels from
a family of reaction rules duplicate each other’s discriminating power. The exercise sug-
gests that in further development the theory of BRSs we should try to identify general
properties of rule-sets that lead to such redundancies; this could yield more economical
transition systems.

Our formulation of bigraphs uses precategories for two reasons. First, they provide
concrete bigraphs with RPOs, which categories do not. Second, more generally, they
provide a very direct way to distinguish different occurrences within the same bigraph.
Although manipulation with precategories is not troublesome, they are not standard
in category theory. Sassone and Sobocinski [13] have provided a valuable link with
a more standard categorical concept, 2-categories; using these they have been able to
recover exactly the RPO theory and congruence theory. Whether 2-categories will ease
the further development of bigraphical theory, as presented in Jensen and Milner [4], is
a topic for further research. But there is already advantage in an alternative formulation.

Finally, although no proposal is made here about how to enrich Petri nets with mo-
bility, the present exercise offers a microcosm in which to test such proposals.

In summary, Petri nets and bigraphs may be able to enrich one another.

Acknowledgement

I am grateful to Mogens Nielsen, Vladimiro Sassone and Thiagarajan for helpful com-
ments on the ideas in this paper.

References

1. Best, E., Devillers, R. and Hall, J.G., The box algebra: a model of nets and process expres-
sions. 20th International Conference on Application and Theory of Petri Nets, LNCS 1639
(1999) 344-363.

2. Cardelli, L. and Gordon, A.D., Mobile ambients. Foundations of System Specification and
Computational Structures, LNCS 1378 (2000) 140-155.

10.

11.

12.
13.

Bigraphs for Petri Nets 701

Jensen, O.-H. and Milner, R., Bigraphs and transitions. In Proc. 30th SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (2003).

Jensen, O.-H. and Milner, R., Bigraphs and mobile processes. Technical Report UCAM-
CL-TR-570, University of Cambridge Computer Laboratory (2003). Also available at
http://www.cl.cam.ac.uk/users/rml35,together with an index and slides.
Leifer, J.J. and Milner,R., Deriving bisimulation congruences for reactive systems. Proc.
CONCUR 2000, 11th International Conference on Concurrency Theory (2000) 243-258.
Milner, R., Calculi for interaction. Acta Informatica 33 (1996) 707-737,

Milner, R., Parrow, J. and Walker D., A calculus of mobile processes, Parts I and II. Journal
of Information and Computation 100 (1992) 1-77.

Park, D., Concurrency and automata on infinite sequences. In LNCS 104, Springer Verlag
(1980).

. Nielsen, M., Priese, L. and Sassone, V., Characterizing behavioural congruences for Petri

nets. Proc. CONCUR’95, LNCS 962 (1995) 175-189.

Pomello, L., Rozenberg, G. and Simone, C., A survey of equivalence notions for net-based
systems. Advances in Petri Nets 92, LNCS 609 (1992) 410-472.

Priese, L. and Wimmel, H., A uniform approach to true-concurrency and interleaving se-
mantics for Petri nets. Theoretical Computer Science 206 (1998) 219-206.

Reisig, W., Petri Nets: an Introduction. Springer Verlag, Berlin (1985).

Sassone, V. and Sobocinski, P., Deriving bisimulation congruences: 2-categories vs. precat-
egories. In Proc. FOSSACS ’03, LNCS 2620 (2003) 409-424.

	1 Introduction
	2 RelatedWork on Petri Nets
	3 Bigraphs and Link Graphs
	4 Condition-Event Nets as Link Graphs
	5 Coincidence of Bisimilarities
	6 Discussion
	Acknowledgement
	References

