
Communicating Transaction Processes:
An MSC-Based Model of Computation

for Reactive Embedded Systems

Abhik Roychoudhury and Pazhamaneri Subramaniam Thiagarajan

School of Computing, National University of Singapore, Singapore 117543
{abhik,thiagu}@comp.nus.edu.sg

Abstract. Message Sequence Charts (MSC) have been traditionally
used to depict execution scenarios in the early stages of design cycle.
MSCs portray inter-object interactions. Synthesizing intra-object exe-
cutable specifications from an MSC-based description is a non-trivial
task. Here we present a model of computation called Communicating
Transaction Processes (CTP) based on MSCs from which an executable
specification can be extracted in a straightforward manner. Our model
describes a network of communicating processes in which the processes
interact via common action labels. Each action is a non-atomic interac-
tion described as a guarded choice of MSCs. Thus our model achieves
a separation of concerns: the high-level network of processes depicting
intra-process computations and control flow, while the common non-
atomic communication actions capture inter-process interaction via
MSCs. We show how to extract an ordinary Petri net from a CTP model
thereby leading to a standard operational semantics. We also discuss the
connection of our formalism to Live Sequence Charts, an extension of
MSCs which also has an executable semantics.

1 Introduction

Message Sequence Charts (MSCs) are an attractive visual formalism which are
used in the early design stages of reactive systems. They portray scenarios that
arise from component interactions and hence can be used to capture require-
ments and test cases. MSCs and a related mechanism called HMSCs (High-level
Message Sequence Charts) have been standardized [26] for specifying telecom-
munication software. A version of MSC called Sequence Diagram is a behavioral
diagram type used in the Unified Modeling Language (UML) [10].

In all these settings, MSCs are used to capture system requirements. To move
towards an implementation, one must obtain an executable specification which
is related in some fashion to the MSC-based requirements. The key difficulty
here, as identified in [14], is that the inter-object interactions described in form
of MSCs must be related to -or synthesized as- executable specifications given
in terms of intra-object behaviors, say, one state-chart for each object. This is
a difficult problem and it has been studied in various limited contexts [1, 14, 17,
20].

J. Desel, W. Reisig, and G. Rozenberg (Eds.): ACPN 2003, LNCS 3098, pp. 789–818, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

790 Abhik Roychoudhury and Pazhamaneri Subramaniam Thiagarajan

In this paper, we propose using MSCs to construct executable specifications
in a more direct fashion. The main idea is to use traditional methods to capture
the control flow of the system components while using MSCs to describe the
non-atomic component interactions. Among the various possibilities for describ-
ing the control flow in a multi-component system, we choose here the well-known
model of synchronized product of transition systems; a network of labeled tran-
sition systems that synchronize on common actions. With suitable modifications
one could easily use other related models as well.

We impose two restrictions on the control flow; a minor technical one that
we will come to later but also a major one which requires that branchings in
the control flow is effected by the components in a local fashion. In Petri net
terms, this is the so called free choice property [9]. In particular, this restriction
ensures that choices regarding which interactions to take part in are made by
the components in a local fashion.

Starting with a network of labeled transition systems that synchronize on
common actions, we refine each common abstract action γ involving a set of
agents into a transaction scheme Tγ . Each such scheme is a guarded choice of
MSCs. The life lines of the MSCs in Tγ will be from the set of agents participating
in the common action γ. Each guarded MSC in Tγ , called a transaction will
represent one possible interaction and will involve a complex flow of data and
control signals. When a transaction scheme is to be executed is determined by the
control flow in the high level product transition system. As to which transaction
in Tγ will be chosen to be executed is determined by the guards which are
propositional formulas built out of atomic propositions. The truth values of
these atomic propositions, and hence those of the guards, will capture abstracted
properties of the values of the variables associated with the agents. A central
feature of the model is that both the control flow and the evaluation of the guards
(which then leads to the execution of a specific transaction within a transaction
scheme) are done in a distributed and asynchronous manner. In broad terms,
this is our Communicating Transaction Processes (CTP) model.

Our model is in line with the emerging consensus that system-level design
methods for embedded systems should be based on models of computation in
which there is a clean separation of computational and communication features
[11, 3, 12]. The CTP formalism basically uses finite state machines with data
paths to model computational -and the attendant control flow- aspects while
deploying guarded choices of MSCs to capture complex interactions between the
different computational threads.

Our strategy of striking a balance between control flow and component inter-
actions yields a model which is flexible, powerful and at the same time amenable
to formal analysis and synthesis. Indeed, the problem of extracting an executable
specification from the CTP model becomes very manageable and amenable to
automation as we show in section 3. Our main point of reference for this work
is the formalism of Live Sequence Charts [8] and more specifically the Play-
in/Play-out approach [16] in which the component interactions are elaborated
in a powerful way using the LSC language while the control flow information

Communicating Transaction Processes 791

is completely suppressed. On the other hand, in models such as Petri nets and
distributed transitions systems, the focus is on a detailed presentation of control
flow while the only mechanisms for capturing component interactions are the
atomic notions of synchronizing transitions and shared buffers.

An alternative way to use MSCs to capture system behavior is via HMSCs.
However, an HMSC is just a presentation of a collection of MSCs. The problem of
extracting an executable specification from an HMSC is a non-trivial one. There
are a variety of choices available for the executable specification mechanism such
as state charts [20], Petri nets [5] and networks of automata communicating
through FIFOs [17, 1]. Many versions of this synthesis problem -i.e. deriving an
intra-object executable specification from an HMSC- are not even decidable [17,
1, 5]. In contrast, as we shall show, we can extract an executable specification
in the form of a finite Petri net from a CTP model effectively and in a manner
that can be automated quite easily.

In the next section we introduce the CTP model while illustrating its main
features with simple examples. In Section 3, we provide the operational semantics
of the CTP model in terms of ordinary Petri nets. The key step in this process is
converting the transaction schemes into an executable mechanism called event
structures. In Section 4, we present a more detailed example based on the AMBA
bus protocol in order to highlight the communicational aspects of the CTP model
supported by the use of transaction schemes based on MSCs. In Section 5, we
discuss behavioral properties and the means for determining these properties. In
particular we present the notion of well-formed transaction schemes and illustrate
its importance. In the subsequent section, we provide a more detailed comparison
with the closely related formalism of LSCs. Section 7 reports our current efforts
for building an experimental framework to enable the use of the CTP model to
support the specification, verification and implementation of reactive embedded
systems. The concluding section provides additional pointers to future research.

2 The CTP Model

Being based on MSCs, the CTP model captures non-atomic inter-process com-
munications. However, in order to be amenable to efficient distributed implemen-
tation, this is combined with notations for describing intra-process control flow.
As a starting example, consider the specification shown in Figure 11. Each pro-
cess repeatedly interacts with the other process and then performs some internal
computational action. Note that the inter-process interaction and the internal
actions have been separated into distinct units. A number of processes P will
be involved in the execution of a chart. A process p which takes part in such an
execution might next participate in a chart involving a different set of processes,
say Q.
1 We adopt the usual MSC convention that horizontal and downward sloping arrows

denote message send-receives between two processes. Further, a � symbol on a single
vertical line denotes an internal action (such as actions a and b in Figure 1). We
denote a control state of a process as a circle.

792 Abhik Roychoudhury and Pazhamaneri Subramaniam Thiagarajan

m1
b

ack1

a

p c

Fig. 1. Inter-process communication and intra-process control flow

b

req

+

p1

no

req
yes

b

...........

p1

...........

t1s1

s2 t2

Process bProcess p1

b.freeb.free

Fig. 2. Choice of Inter-process communication

The organization of interactions into the various units is up to the conve-
nience of the designer. For example, in Figure 1 we could have made the actions
a and b also to be part of the chart involving processes p and c. Note also that
the example shown in Figure 1 is essentially a Petri net where the local control
states in each process are the places of the net denoted by circles. Each top-level
transition of this net is, in general, a collection of Message Sequence Charts at
the refined level. A particular execution of the high-level transition, is an ab-
straction of the activity in which one of the charts associated with the high-level
transition is chosen and executed. In the example of Figure 1 each net transition
has a single chart associated with it. (An internal action is a degenerate chart
involving just one process executing just one action). The choice as to which
chart is executed -in case more than one chart is associated with a transition-
is based on the value of the local variables of the processes. This is illustrated
in Figure 2 where the choice is determined by the value of the variable free be-
longing to process b). If b.free holds once control reaches s1 and t1 respectively,
we must execute the right-hand chart of Figure 2.

In general, the choice of which chart is executed at a particular net transition
is a distributed one. Let the charts contained in a particular net transition be
as shown in Figure 3. If p1.data holds then chart 1 is ruled out. However, still
we do not know whether chart 2 or chart 3 will be executed. This will depend
on the value of variable free in process b. As shown in Figure 3, each MSC
associated with a net transition has a guard (which we will also refer to as a
pre-condition). This guard is a distributed one in that it will in general involve

Communicating Transaction Processes 793

req

no

p1.data /\

Chart 1 Chart 2

b.freep1.data b.free p1.data

p1 b p1 b
b.free:= false

nd

b.free:= true
done

wdata

/\

p1 b
Chart 3

addr

yes

req

mc

Fig. 3. Distributed nature of choice in a net transition

propositions belonging to different processes participating in the MSC. At the
end of the execution of a chart, the truth values of the various propositions will
be set to new values in general.

2.1 The Definition of the CTP Model

A product transition system is a network of sequential transition systems that
synchronize on common actions. The CTP model is obtained by taking a re-
stricted class of product transition systems and refining the common actions
into collections of guarded MSCs called transaction schemes.

Fix a finite set of process names P with p, q ranging over P . Fix also a
finite set of labels Γ and a family {Γp}p∈P with each Γp a subset of Γ and⋃

Γp = Γ . This induces the function loc which assigns to each label in Γ the set
of agents that participate in the execution of that action. This function is given
by: loc(γ) = {p | γ ∈ Γp}. If loc(γ) = {p} then γ will be called p-local action.
The members of Γ will be treated as abstract action labels in the first step where
we define the control flow model. In the second step they will be interpreted as
transaction schemes and further elaborated. Γp is the set of (abstract) actions
that the process p will participate in.

Anticipating the need to build guards in the second step, we also fix APp

a finite set of atomic propositions, one for each p and set AP =
⋃

p∈P APp. If
P ⊆ P then we let APP =

⋃
p∈P APp. By convention, we shall write APP as

AP . Each subset of APP will be called P -valuation. If P = {p} is a singleton we
will write p-valuation.

For each p let TSp = 〈Sp, Γp,−→p, initp, Vp,in〉 be a finite-state transition
system over Γp with an initial p-valuation. In other words, Sp is a finite set of
states, initp ∈ Sp is the initial state, −→p⊆ Sp × Γp × Sp denotes the transition
relation and Vp,in ⊆ APp is the initial valuation of atomic propositions in APp.
In this paper we will be only interested in control flows in which the choices as
to which transaction scheme that p will take part in is decided locally by p (free
choice). Further, to avoid notational clutter, we will require that each member
of Γp is the label of at most one transition in TSp. These two restrictions on
TSp can be formalized as follows.

794 Abhik Roychoudhury and Pazhamaneri Subramaniam Thiagarajan

(1) if s
γ−→p s1, s

γ′
−→p s2 and s1 �= s2, then γ and γ′ are p-local actions. Thus,

loc(γ) = loc(γ′) = {p}.
(2) If s1

γ−→p s2 and s3
γ−→p s4 then s1 = s3 and s2 = s4.

Definition 1 Product Transition System A product transition system over
({Γp, APp})p∈P is denoted as {TSp}p∈P where each

TSp = 〈Sp, Γp,−→p, initp, Vp,in〉

is as specified above. As usual, the behavior of this product transition system is
defined to be the global transition system 〈S, =⇒, init, Vin〉 where:

– S =
∏

p∈P Sp

– init =
∏

p∈P initp

– s
γ

=⇒ s′ iff s(p)
γ−→p s′(p) if p ∈ loc(γ) and s(p) = s′(p) otherwise. The

notation s(p) denotes local state of process p in global control state s.
– Vin =

⋃
p∈P Vp,in

Next, we need to define transaction schemes. We begin with the standard
notion of MSCs which we shall view, in the present context, as certain kinds
of labeled partial orders. Their visual representation will be as shown in the
various examples already. We shall use Σp to denote the set of actions executed
by the process p. It consists of actions of the form 〈p!q, m〉, 〈p?q, m〉 and 〈p, a〉
where M is an alphabet of messages and Act is an alphabet of internal actions.
The communication action 〈p!q, m〉 stands for p sending the message m to q and
〈p?q, m〉 stands for p receiving the message m from q. On the other hand, 〈p, a〉
is an internal action of p with a being the member of Act being executed. We
set Σ =

⋃
p∈P Σp. We also denote the set of channels Chan given by Chan =

{(p, q) | p �= q}.
Turning now to the definition of MSCs, we define Σ-labeled poset to be

a structure Ch = (E,≤, λ) where (E,≤) is a poset and λ : E → Σ is a
labeling function. For X ⊆ E we define ↓(X) = {e′ | e′ ≤ e for some e ∈
X}. When X = {e} is a singleton we shall write ↓(e) instead of ↓({e}). We
say that X is downclosed in case X = ↓(X). For p ∈ P , we set Ep = {e |
λ(e) ∈ Σp}. These are the events that p takes part in. Further, Ep!q = {e |
e ∈ Ep and λ(e) = 〈p!q, m〉 for some m ∈ M}. Similarly, Ep?q = {e | e ∈
Ep and λ(e) = 〈p?q, m〉for some m ∈ M}. We define for any channel c = (p, q),
the communication relation Rc as: (e, e′) ∈ Rc iff | ↓(e) ∩ Ep!q |=| ↓(e′) ∩ Eq?p |
and λ(e) = 〈p!q, m〉 and λ(e′) = 〈q?p, m〉 for some message m.

An MSC (over (P , M, Act)) is a Σ-labeled poset Ch = (E,≤, λ) which sat-
isfies:

(1) ≤p is a linear order for each p where ≤p is ≤ restricted to Ep × Ep.
(2) Suppose λ(e) = 〈p?q, m〉. Then | ↓(e) ∩ Ep?q |=| ↓(e) ∩ Eq!p |.
(3) For every p, q with p �= q, | Ep?q |=| Eq!p |.
(4) ≤= (≤P ∪RChan)� where ≤P=

⋃
p∈P ≤p and RChan =

⋃
c∈Chan Rc.

Communicating Transaction Processes 795

This definition assumes a FIFO discipline for each channel. Other variations
can also be dealt with easily. In what follows, we let agents(Ch) denote the set of
agents participating in the MSC Ch = (E,≤, λ) and define it as agents(Ch) =
{p | Ep �= ∅}.
Definition 2 Transaction Scheme A Transaction Scheme γ is a finite col-
lection of guarded Message Sequence Charts {[Ii : Chi]}k

i=1. Each Chi is an
MSC over (P , M, Act). Each Ii is of the form

∧
p∈agents(Chi) Ii

p where Ii
p is a

propositional logic formula built from the propositions in APp.

For each chart Chi in a transaction scheme, we have only mentioned a pre-
condition. We have not specified the valuations of atomic propositions upon exit-
ing from a chart. However, send and receive actions have a well-defined meaning.
We can also assume that the internal actions are expressed in a standard impera-
tive language. The operational semantics of this imperative language then lends
a meaning to the internal actions. Consequently each event in a chart will have
a well-defined effect on the truth-values of the local atomic propositions and as
a sum total of these effects, we can associate with each chart an output valua-
tion Oi. If more than one output valuation is possible, we can consider them as
different transactions. Hence in what follows, we will assume that a transaction
scheme is of the form {[Ii : Chi : Oi]}k

i=1 over (P , M, Act).
Finally, we can now define a Communicating Transaction Processes (CTP)

system model as follows.

Definition 3 CTP System Model A CTP model is a product transition sys-
tem {TSp}p∈P over (Γ,P) where Γ is a finite set of transaction schemes over
(P , M, Act). Further, for each γ ∈ Γ , agents(γ) = loc(γ).

Here loc(γ) is as before where γ is viewed as an abstract action label in
high level product transition system; agents(γ) is the set of agents participating
in some transaction associated with the transaction scheme γ. Let γ = {[Ii :
Chi : Oi]}k

i=1. Then agents(γ) =
⋃

i=1,2,...n agents(Chi). Thus the restriction in
the above says that the processes taking part in a high level transition in the
control flow model are the same as the processes taking part in the transaction
scheme associated with this high level transition. This restriction still allows
the designer to reorganize the distribution of transactions across the various
transaction schemes. Indeed, in the extreme case can one collapse the whole
model into a single messy transaction scheme with just one control state for each
process! A subclass of CTPs can be obtained by requiring loc(γ) = agents(Chi)
for each i above. In such CTPs one cannot arbitrarily rearrange the transactions.

2.2 A Simple Example

Consider two processors communicating with a shared memory via a bus. The
bus controller serves as an arbiter for bus access and serializes the bus access
requests by the two processors. The memory controller provides data to the
processors for read requests and commits data for write requests. Two of the

796 Abhik Roychoudhury and Pazhamaneri Subramaniam Thiagarajan

PMB2

PMB1
PMB2PE1 Pl1

Pl2 PMB2PE2
PMB1

PMB1

p1 b mc p2

Fig. 4. CTP system model of Multiprocessor example (common actions are shown in
bold)

Scheme Pl1Scheme PE1

p1p1

p1.data

No−op

p1.datap1.data

p1

env−no−request

p1.data := true

env−request

Fig. 5. Local Choices and Environment Interaction in Transaction Schemes of Fig. 4

simple schemes of this system are shown in Figure 5 whereas the high-level
control flow is as shown in Figure 4. The two processors are denoted by processes
p1 and p2; b is the bus controller and mc is the memory controller.

The schemes Pl1 and PE1 are local schemes in which only p1 participates
(refer Figure 5). They represent local choices. Scheme Pl1 is executed when
processor p1 has data to transfer (p1.data is true). Thus, this scheme consists of
a single degenerate MSC. The MSC consists of a single internal action which is
a no-op. If processor p1 has no data to transfer, then scheme PE1 is executed.
This scheme consists of two MSCs. The choice of which chart is executed is
made by the environment. If the environment (i.e. the application running on
the processor) has data to transfer then p1.data is set; otherwise it remains
reset. In this simple example, whether Pl1 or PE1 is executed, the process p1
next participates in the same transaction scheme, namely, PMB1. In general
however, this branching in the control flow could lead to different transaction
schemes being chosen.

Since the processors have similar behavior, the scheme PMB1 is identical to
PMB2 except that process p1 is replaced by p2. (Similar remarks hold for PE1
and PE2 as well as Pl1 and Pl2) The scheme PMB1 is the one shown earlier in
Figure 3. This scheme involves a decision by the bus controller b about granting
bus access to p1. In Figure 3, p1.data holds when p1 has data to transfer; b.free
holds when the bus is free for transfer. After the transfer the bus is set free.
In this simple example, we have assumed that the bus is released after every
access, and only write transfers are shown. We have also used our formalism to
model more complex interactions such as burst transfers and split transfers, as
discussed in Section 4.

Communicating Transaction Processes 797

3 The Petri Net Semantics

Our goal here is to provide an operational semantics for the CTP model in
terms of Petri nets. A key step in our semantics is to combine the different
guarded transactions within a transaction scheme into a single entity. This entity
will consist of a parallel composition of computation trees; one computation
tree for each process that participates in the transaction scheme. Finite labeled
event structures [21] can be conveniently used for representing such a parallel
composition. We define:

Definition 4 Event Structure An event structure is a triple ES = (E,≤, #)
where E is a set of events, ≤⊆ E × E is a partial ordering causality relation
and # ⊆ E × E is a conflict relation which is required to satisfy the following
conditions: (a) # is irreflexive and symmetric, and (b) conflict is inherited via
causality, that is (e1#e2 ∧ e2 ≤ e3) ⇒ e1#e3.

The idea is that in any execution if an event e occurs and e′ ≤ e then e′

must have occurred earlier in the same execution. On the other hand two events
that are in conflict are mutually exclusive. They can never both occur in the
same execution. Consequently, if e and e′ are mutually exclusive and e′′ causally
depends on e′ then e and e′′ are mutually exclusive as well. This is captured by
the fact that conflict is inherited via causality.

As a related notion, we define a Σ-labeled event structure to be a structure
ES = (E,≤, #, Λ) where (E,≤, #) is an event structure and Λ : E → Σ is a
labeling function. In diagrams, as illustrated in Figure 6, it will be convenient to
represent the causality and conflict relation in a minimal fashion. To this end,
we define the immediate causality relation � and the immediate conflict relation
#µ via:

– e � e′ iff e < e′ and for every e′′, if e ≤ e′′ ≤ e′ then e = e′′ or e′′ = e′.
– e#µe′ iff (↓ (e)× ↓ (e′)) ∩ # = {(e, e′)}.

Thus two events are in immediate conflict if they are in conflict and their
being in conflict can not be attributed to an earlier conflict that is inherited via
the causality relation.

The event structure corresponding to the transaction scheme in Figure 2 is
shown in Figure 6. The minimal causal relationship is captured by unidirectional
arrows. The minimal conflict relation #µ is captured by curved bidirectional
arrows. The way the minimal and maximal events of this event structure are
connected to the input and output control states of the transaction scheme are
also shown.

A (labeled) event structure is accompanied by a natural dynamics. A state is
a set of events that have occurred so far along an execution. States are usually
referred as configurations. Formally, a configuration c of the event structure
ES = (E,≤, #) is subset of E which is downclosed and conflict-free. In other
words ↓ (c) = c and (c × c) ∩ # = ∅. The empty set is a configuration; it is the
initial configuration.

798 Abhik Roychoudhury and Pazhamaneri Subramaniam Thiagarajan

s1 t1

t2

p1!b,req b?p1,req

b!p1,yes b!p1,no

p1?b,nop1?b,yes

s2

Fig. 6. Event Structure for Transaction scheme in Figure 2 (shown in dashed box)

Let CES be the set of (finite) configurations of ES. The event e is enabled
at the configuration c if e is not in c and c ∪ {e} is also a configuration. This
leads to the transition relation −→ES⊆ CES × E × CES where c

e−→ES c′ iff e
is enabled at c and c′ = c ∪ {e}. Thus we can associate the transition system
TSES = (CES ,−→ES , ∅) with the event structure ES. These ideas extend in the
expected manner to labeled event structures.

3.1 Constructing Event Structures

In order to define our operational semantics, we first recall that AP =
⋃

p∈P APp

is the set of atomic propositions. Let γ be a transaction scheme (refer Definition
2) of the form γ = {Ii : Chi : Oi}n

i=1 where each Ii is a propositional formula
built out of AP , each Chi = (Ei,≤i, λi) is a chart over (P , M, Act) and each Oi

is a subset of AP . We let γi = [Ii : Chi : Oi] for each i and call Ii, the input
guard, Chi the body and Oi the output valuation of the transaction T i. We will
assume without loss of generality that the sets {Ei}i=1,...,n are pairwise disjoint.

We construct the labeled event structure ESγ = (E,≤ #, λ) to be associated
with a transaction scheme γ as follows. The set of events E is obtained from the
event sets Ei (i = 1, . . . , n) but after identifying events that have isomorphic
pasts. Consequently we start with a set X whose elements will be of the form
(e, i, P, VP) where e ∈ Ei, P = {p | ∃e′ ∈ Ei

p and e′ ≤i e} and VP is a P -
valuation such that VP |= ∧

p∈P Ii
p. Note that Ei

p is the set of events in Ei in
which p participates, that is, for any event e ∈ Ei

p, the label λi(e) is of the form
〈p!q, m〉 or 〈p?q, m〉 or 〈p, a〉.

Actually, the second and third components in (e, i, P, VP) are redundant but
we will carry them for convenience. Next let x = (e, i, P, VP) and y = (d, j, Q, VQ)
be in X . Then x ≡ y iff ↓(e) in Chi is isomorphic to ↓(d) in Chj in the obvious
sense. We shall denote the ≡-equivalence class containing x as [x].

Communicating Transaction Processes 799

– Set of Events: We define E, the set of events of ESγ to be the ≡-equivalence
classes of X . Thus, E = {[x] | x ∈ X}. Thus for the scheme shown in figure
2, the two events of p1 that send a request message req are equivalent as also
the two corresponding receive events.

– Causality Relation: Let [x], [y] be in E. Then [x] ≤ [y] iff there exists
(e, i, P, VP) in [x] and (d, j, Q, VQ) in [y] such that i = j, e ≤i d and
VQ ∩ APP = VP ∩ APP .

– Conflict Relation: First we define the relation #̂ to be the least subset of
E×E which satisfies the following. Suppose [x], [y] ∈ E are such that [x] � [y]
and [y] � [x]. Furthermore, there exist (e, i, P, VP) in [x] and (d, j, Q, VQ) in
[y] such that e ∈ Ei

p and d ∈ Ej
p for some p but i �= j. Then [x]#̂[y]. We now

define the conflict relation # as the least subset of E ×E which (a) contains
#̂, (b) is a symmetric relation, and (c) inherits through causality, that is,
[x]#[y] and [y] ≤ [z] implies [x]#[z].

– Labeling Function: Finally, the labeling function Λ is given by:

Λ([(e, i, P, VP)]) = λi(e)

Lemma 1 ESγ = (E,≤, #, Λ) is a labeled event structure.

Proof: Due to the isomorphism condition imposed in the definition of ≡, it
is easy to observe that ≤ is a partial ordering relation. From the definition of
the relation # it is symmetric and is inherited via ≤. We need to show that it
is irreflexive. Assume for contradiction that there exists [x] such that [x]#[x].
In this case it is not difficult to see there exist [y] and [z] such that [y]#̂[z]
and [y] ≤ [x] and [z] ≤ [x]. This implies there exist (e, i, P, VP) in [y] and
(e1, i, P1, VP1) in [x] such that e ≤i e1. Further, there exist (d, j, Q, VQ) in [z]
and (d1, j, Q1, VQ1) in [x] such that d ≤j d1. Then by the definition of the ≡
relation, it follows that there exists (d′, i, Q′, VQ′) in [z] such that d′ ≤i e1. But
then from the definition of #̂ it follows that there exists p such that e ∈ Ei

p and
d′ ∈ Ei

p. This leads to e ≤i d′ or d′ ≤i e which in turn leads to [y] ≤ [z] or
[z] ≤ [y] contradicting [y]#̂[z]. The fact that the labeling function is well-defined
is obvious. �

3.2 The Petri Net Semantics

We construct the Petri net semantics for the CTP model in three steps. First
we convert each labeled event structure yielded by a transaction scheme into
an acyclic net (without an initial marking). We then merge these nets with
the high level control flow net. As a last step we refine local control states
and the transitions to expose information about the valuations of the atomic
propositions.

From Event Structure to Acyclic Net. First, let γ be a transaction scheme and
ESγ = (E,≤, #, λ) be its event structure representation. For e ∈ E we set

800 Abhik Roychoudhury and Pazhamaneri Subramaniam Thiagarajan

proc(e) = p if there exists (x, i, P, VP) in e such that x ∈ Ei
p. It is easy to see

that proc is a well-defined function, and it is also easy to check that if e#̂e′,
proc(e) = proc(e′).

Now, we define the net associated with our event structure. Before doing so,
note that the minimal causality relation of event structure ESγ is denoted as
�; the minimal conflict relation is denoted as #µ. From the construction of ESγ

it follows easily that that if e#µe′ then proc(e) = proc(e′). Furthermore, #µ is
transitive (and symmetric). Hence in what follows, while writing # instead of
#µ for convenience, we will let [e]# denote the set of events given by [e]# =
{e} ∪ {e′ | e#µe′}.

We define the net representation ESγ = (E,≤, #, λ) as the acyclic net Nγ =
(Bγ , Eγ , Fγ) where:

(1) The set of transitions Eγ = E.
(2) The set of places Bγ and the flow relation Fγ are the least sets which satisfy:

(i) Suppose e � e′ and proc(e) �= proc(e′). Then (e, e′) ∈ Bγ , (e, (e, e′)) ∈
Fγ , and ((e, e′), e′) ∈ Fγ .

(ii) Let e�e′ and proc(e) = proc(e′). Then (e, [e′]#) ∈ Bγ and (e, (e, [e′]#))
∈ Fγ and ((e, [e′]#), e′′) ∈ Fγ for every e′′ in [e′]#.

The net representation of the event structure of Figure 6 is shown in Figure 7.

Merging the Control Flow. Let TP = {TSp}p∈P be a CTP over (Γ,P) where Γ
is a finite set of transaction schemes over (P , M, Act). Let TSp = (Sp, Γp,−→p

, initp, Vp,in) be the transition system associated with transaction process p (note
that Vp,in is the initial p-valuation). For each transaction scheme γ in Γ let ESγ

be its event structure representation and Nγ = (Bγ , Eγ , Fγ), the net associated
with ESγ .

For convenience we will denote the set of pre and post control states of the
transaction scheme γ as •γ and γ• respectively and define these sets as:
•γ = {s | γ ∈ Γp and s

γ−→p s′ for some s, s′ ∈ Sp}.
γ• = {s′ | γ ∈ Γp and s

γ−→p s′ for some s, s′ ∈ Sp}.
We can now carry out the second step in providing the operational semantics.
The control flow Petri net of TP is the Petri net

CFNTP = (STP, TTP, FTP, Min,TP)

where:

– STP =
⋃{Sp | p ∈ P} ∪ ⋃{Bγ | γ ∈ Γ}.

– TTP =
⋃{Eγ | γ ∈ Γ}

– FTP=
⋃

γ∈Γ (Fγ) ∪
{(s, e) | e ∈ min(Eγ), s ∈ •γ ∩ Sp, proc(e) = p} ∪
{(e, s′) | e ∈ max(Eγ), s′ ∈ γ• ∩ Sp, proc(e) = p})

– Min,TP(z) = 1 if there exists p s.t. z = initp (the initial state of some p).
Otherwise Min,TP(z) = 0.

Communicating Transaction Processes 801

s1 t1

t2

b?p1,req

b!p1,yes b!p1,no

p1?b,nop1?b,yes

s2

p1!b,req

Fig. 7. Acyclic Net for Transaction scheme in Figure 2 (shown in dashed box)

By min(Eγ) (max(Eγ)) we mean the set of minimal (maximal) elements
under the causality relation of the event structure ESγ .

The control flow net of a CTP description captures the behaviors in the indi-
vidual processes with one major caveat. For events which are in minimal conflict,
it does not expose the valuations of the atomic propositions which resolve the
conflict. As an example, consider the event structure of Figure 6 and its net
representation shown in Figure 7. Now, consider the place marked in bold in
Figure 7; this place has two outgoing flow arcs leading to two events in minimal
conflict. Here, the control flow net contains infeasible behaviors not allowed by
the transaction scheme of Figure 2. This is because the control flow net of Figure
7 does not capture the condition which needs to be evaluated to decide which
of the two conflicting events is executed (in this case, the condition is b.free).
The simplest solution is to annotate the flow arcs with this condition (i.e., the
two arcs should be annotated with b.free and ¬b.free)2. However adding such
annotations does not give an executable model of the allowed behaviors for a
CTP. To construct such an executable model, we need to systematically expose
the data dependencies, that is, the valuation of atomic propositions in the places
and transitions of the control flow net. This is now done by constructing a Petri
net corresponding to any CTP specification.

Constructing the Petri Net. Let CFN = (STP, TTP, FTP, Min,TP) be the control
flow net of TP, a CTP. Then PNTP is the Petri net representation of TP and
it is the Petri net PNTP = (S, T, F, Min) where S, T and F are the least set of
elements satisfying the following conditions:

2 One could capture this easily using Colored Petri nets [19] but this would entail an
additional intermediate description.

802 Abhik Roychoudhury and Pazhamaneri Subramaniam Thiagarajan

– Suppose s is in Sp. Then (s, Vp) is in S where Vp is a p-valuation. Next
let γ be in Γ and Nγ = (Bγ , Eγ , Fγ) be the net associated with ESγ and
(x, y) ∈ Bγ . Now suppose (e, i, P, VP) ∈ x. Then ((x, y), VP) is in S.

– Let γ be in Γ and Nγ = (Bγ , Eγ , Fγ) be the net associated with ESγ and
x ∈ Eγ . Suppose (e, i, P, VP) ∈ x. Then (x, VP) is in T .

– Suppose (s, x) ∈ FTP with s ∈ Sp for some p and (e, i, {p}, Vp) ∈ x. Then
((s, Vp), (x, Vp)) is in F . Also, suppose (x, s′) ∈ FTP with s′ ∈ Sp for some
p and (e, j, Q, VQ) ∈ x and Oj is the output valuation of the transaction
[Ij : Chj : Oj]. Then ((x, VQ), (s′, Vp)) is in F where Vp = Oj ∩ APp.
Finally, let ((x, y), VP) ∈ S. Then ((x, VP), ((x, y), VP)) is in F . Furthermore,
(((x, y), VP), (y, VQ)) ∈ F provided proc(x) �= proc(y) and (y, VQ) is in T and
VQ ∩ APP = VP . In case proc(x) = proc(y) then (((x, y), VP), (z, VQ)) ∈ F
provided z ∈ y and VQ ∩APP = VP . In general, y denotes a set of events in
minimal conflict and belonging to the same process.

– Min(z) = 1 if z = (initp, Vp,in) for some p. Otherwise Min(z) = 0.

For example, the Petri net fragment for the transaction scheme of Figure 2,
together with the refined representation of its surrounding control places will be
as shown in Figure 8. Here for convenience we have assumed that the output
guard for both the transactions is b.free.

b.free ¬b.free

b.free

B!p1, no

Fig. 8. Petri net fragment for Transaction scheme in Figure 2

This concludes the construction of the Petri net to be associated with a CTP.
The execution semantics of a CTP is then just the usual execution semantics of
its associated Petri net.

Communicating Transaction Processes 803

4 Specifying the AMBA Bus Protocol

In this section, we present a non-trivial example to show the use of the CTP as
a modeling language. In particular, we model the data communication between
two components via a bus. We call the originator of the data communication the
master and the receiver of the communication the slave. Our model consists of
five processes executing in parallel: the master component (called Pm), interface
of the master component (called Im), the bus controller (called BC), interface of
the slave component (called Is) and the slave component (called Ps). The master
and slave components (Pm and Ps) are often processors or co-processors. The
high level transition systems of the individual processes are shown in Figure 9.
In the diagram, the constituent guarded transactions of the various transaction
schemes have not been shown.

Request

Local_m
Transfer

Transfer
Local_BC

Dequeue_s
Local_s

Enqueue_m

I_m BC
I_sP_m

P_s

Fig. 9. CTP model of interfaces between two embedded co-processors. Common actions
are shown in bold. Wherever possible, labels of repeated occurrences of a common
action have been shared to reduce visual clutter.

To develop our example, we fix: (1) a specific bus protocol, (2) storage capa-
bilities of the interfaces, Im and Is (3) interaction between the components and
interfaces. We choose the popular AMBA bus protocol used in ARM system-
on-chip designs [2]. We assume that each interface contains a bounded queue to
hold data in transit. The interaction between a component and its interface then
involves enqueueing and dequeuing these queues. In particular, our choice of the
component-interface protocol is drawn from the interface modules developed in
the European COSY project [7]. These interfaces were originally designed for
data transfer between co-processors connected to a common bus running the
PI-Bus protocol. Here instead we shall be using the AMBA bus protocol.

The transaction schemes Localm, LocalBC and Locals have only one partic-
ipating process: namely Pm, BC and Ps respectively. They represent internal
computations of these processes and we do not describe them here. The other
three transaction schemes denote the following interactions. Enqueuem involves
enqueueing of data by the master process Pm into the queue of the master inter-
face Im. Similarly, Dequeues denotes the dequeuing of data from the queue of
the slave interface Is by slave processor Ps. The scheme Request denotes request
for bus access by the master to the bus controller, and subsequent granting of
bus access (if any). Finally, the scheme Transfer denotes the transfer of data
from master interface Im into slave interface Is over the bus.

804 Abhik Roychoudhury and Pazhamaneri Subramaniam Thiagarajan

We now describe the transaction scheme Transfer where

agents(Transfer) = {Im, Is, BC}
In particular, this will show our formal specification of the AMBA bus protocol.
Conditions on the local variables of each of these processes are used to decide
which chart of Transfer is executed in a particular execution. We will freely use
values of these local variables in our charts. The events in the charts pass these
values between variables of different processes, thereby modeling data transfer.

Local Variables. We present the local variables of the processes Im, Is and BC
in Figure 10. We wish to note that maxwait denotes a predefined fixed positive
constant, and D denotes the data type of the data being transmitted from master
component Pm to slave component Ps. Furthermore, Addr denotes the range of
addresses manipulated by Im and Is.

Process Local Variables

Im mq : Queue of (Addr,D)
data sent, wait data : D
wait addr : Addr
grantm: boolean

Is sq : Queue of (Addr,D)
addr rcvd : Addr
waitcnt : 0 . . . maxwait

BC gntm, splitm : boolean

Fig. 10. Local Variables in the Interface Example

The master and slave interfaces Im and Is each contain a queue mq and sq.
The master queue mq receives data from Pm and passes it to the slave interface
Is. The slave queue sq receives data from master interface Im and passes it
to the slave component Ps. The transfer of data between the master and slave
interfaces is over a bus, and is thus dictated by the bus protocol. In this case,
we consider the AMBA bus protocol which has the following features. This will
clarify the need for the various local variables.

Bus Access Protocol. Each transfer is preceded by a grant of bus access by the
bus controller to a master. This information is stored by the bus controller BC in
the boolean variable gntm. Its value is communicated to Im in the Request trans-
action scheme (not shown here) when Im requests for bus access. Im stores this
information in grantm. Thus there is clear relationship between Im.grantm and
BC.gntm. Similar relationships exist between other local variables of different
processes owing to the flow of values via messages.

Pipelined Transfer. Multiple transfers from Im to Is are pipelined. For example
suppose Im wants to transfer (a1, d1),(a2, d2), (a3, d3) to Is. This is a request to

Communicating Transaction Processes 805

write d1 to address a1, d2 to address a2 and d3 to address a3. The transfer over
the address and data lines proceeds as follows:

Clock cycle: 1 2 3 4
Address : a1 a2 a3 -
Data : - d1 d2 d3

Since in every cycle, the data of the previous cycle’s address is transmitted,
this needs to be remembered. This information is stored in the local variable
data sent of Im. Similarly, on the slave interface side, the address received in
previous cycle is stored in the variable addr rcvd of process Is.

Transfer with Wait Cycles. The slave interface Is may not be ready to write
data in every cycle e.g. the slave queue sq may be full. This results in insertion
of “wait cycles”. The number of such wait cycles is stored in the local variable
waitcnt. In the presence of wait cycles, the transfer can be as follows:

Clock cycle: 1 2 3 4 5 6
Address : a1 a2 a2 a2 a3 -
Data : - d1 d1 d1 d2 d3

Here, d1 is transfered after two wait cycles. During these wait cycles, the
master interface needs to keep on transmitting a2 as address and d1 as data;
otherwise the correspondence between address and data is lost. Hence the need
for the local variables wait addr and wait data in process Im.

Split Transfer. If the number of wait cycles equals a threshold maxwait, the
slave interface Is informs the bus controller BC that it is currently unable to
service the master interface Im. The bus controller BC then records that Im is
suspended by setting splitm (which is reset later when Is is able to serve Im).

Message Sequence Charts. The transaction scheme Transfer is collection of
MSCs, one for each of the following mutually exclusive conditions3.

(1) ¬grantm ∨ (empty(mq) ∧ waitcnt = 0) ∨ (splitm ∧ full(sq))
(2) grantm ∧ ¬splitm ∧ ¬empty(mq) ∧ ¬full(sq) ∧ waitcnt = 0
(3) grantm ∧ ¬splitm ∧ ¬empty(mq) ∧ full(sq) ∧ waitcnt = 0
(4) grantm ∧ ¬splitm ∧ ¬full(sq) ∧ waitcnt > 0
(5) grantm ∧ ¬splitm ∧ full(sq) ∧ waitcnt > 0 ∧ waitcnt < maxwait
(6) grantm ∧ ¬splitm ∧ full(sq) ∧ waitcnt = maxwait
(7) grantm ∧ splitm ∧ ¬full(sq) ∧ waitcnt = maxwait

In case 1, either the bus is busy (¬grantm holds) or the master queue mq is
empty and waitcnt = 0 (i.e. new data needs to be dequeued from mq which is
empty), or the data transfer from Im has been split, but Is is still not ready to

3 These guards are also total, when the relationships between the local variables of
various processes are taken into account.

806 Abhik Roychoudhury and Pazhamaneri Subramaniam Thiagarajan

input data (sq is full). In these cases, no data is transmitted, no control signals
are exchanged and the chart is a no-op.

In case 2 (shown in Figure 11), the master is granted access to the bus,
data is dequeued from the master queue mq, and enqueued into the slave queue
sq. This corresponds to “normal” data transfer without wait cycles and split
transfer. Each message is of the form Signal name(Value), such as ADDR(a).
Access to mq and sq are through the Enqueue and Dequeue methods.

The chart for case 3 is shown in Figure 12. This corresponds to the scenario
where wait cycles are initiated (note that waitcnt = 0) for some transfer, since
the queue at Is is full. Note that the first three actions by Im in this chart are the
same as Figure 11. This illustrates the distributed decision-making performed
by agents of a transaction scheme in deciding which chart is to be executed. As
long as the slave interface Is does not execute its internal actions, we cannot
decide whether chart for case 2 or case 3 is being executed.

(a,d) := Dequeue(mq)

READY(true)

ADDR(a)

data_sent := d

addr_rcvd := a

WRITE_DATA(data_sent)

grant waitcnt = 0full(sq)empty(mq)split

Enqueue(sq, (addr_rcvd, data_sent))

Master Interface Slave Interface

m m

Fig. 11. Normal data transfer between master and slave interface

Case 4 corresponds to grantm∧¬splitm∧¬full(sq)∧waitcnt > 0. Thus, the
master has been granted bus access (since grantm holds) and is currently going
through a wait cycle (since waitcnt > 0). The slave is however ready to input
data (since ¬full(sq)), that is, the master need not wait any more. Thus, this
scenario corresponds to the last wait cycle. The chart is shown in Figure 13.

Case 5 corresponds to grantm∧¬splitm∧full(sq)∧waitcnt > 0∧waitcnt <
maxwait. Here again the master has been granted bus access (since grantm
holds) and is currently going through a wait cycle (since waitcnt > 0). The slave

Communicating Transaction Processes 807

waitcnt := waitcnt + 1

wait_data := data_sent

wait_addr := a

READY(false)

data_sent := d

ADDR(a)

grant split

(a,d) := Dequeue(mq)

waitcnt = 0full(sq)

WRITE_DATA(data_sent)

empty(mq)

Master Interface Slave Interface

m m

Fig. 12. Initiation of wait cycles

READY(true)

Enqueue(sq, (addr_rcvd, wait_data))

addr_rcvd := wait_addr

WRITE_DATA(wait_data)

ADDR(wait_addr)

waitcnt := 0

grant m

Master Interface Slave Interface

full(sq) waitcnt > 0split m

Fig. 13. The last wait cycle

is still not ready to input data (since full(sq)). This scenario corresponds to a
wait cycle which is not the last. The chart appears in Figure 14.

Case 6 corresponds to grantm ∧ ¬splitm ∧ full(sq) ∧ waitcnt = maxwait.
Here the master is going through a wait cycle, but the number of wait cycles
has reached the pre-defined threshold maxwait. Thus, this requires the slave to

808 Abhik Roychoudhury and Pazhamaneri Subramaniam Thiagarajan

waitcnt := waitcnt + 1

WRITE_DATA(wait_data)

READY(false)

ADDR(wait_addr)

grant m full(sq) waitcnt > 0 waitcnt < maxwait

Master Interface Slave Interface

split m

Fig. 14. A wait cycle which is not the last

ADDR(wait_addr)

SPLIT_ACK

WRITE_DATA(wait_data)

SPLIT(1)

READY(false)

Master Interface Slave Interface Bus Controller

split := truem

waitcnt = maxwaitfull(sq)grant
m m

split

Fig. 15. Initiation of split transfer

initiate split transfer by interacting with the bus controller. The chart appears
in Figure 15.

Case 7 corresponds to grantm∧splitm∧waitcnt = maxwait∧¬full(sq). This
means that the transfer from Im to Is was previously split, thus splitm holds.
However, the slave is currently ready to input data (since ¬full(sq)), thereby
terminating the split transfer. Thus, this chart will involve exchange of SPLIT
and SPLIT ACK signals along the lines of Figure 15, and the resetting of waitcnt
to zero.

Remark. As a matter of fact, the AMBA bus protocol is intended for interaction
between multiple masters and multiple slaves. Here we have modeled only one
master and one slave. However, all the features for multi-component interaction
have been, in principle, captured. For example, the suspension of bus access to
a master (split transfers) is to allow another master to take over bus access. In
our case, even with one master we have modeled this feature via the variable
splitm.

Communicating Transaction Processes 809

In future, we plan to explicitly model interaction among multiple masters
and slaves, that is, multiple instances of Pm and Ps. An elegant way of modeling
masters and slaves is to treat all masters as one process class, and all slaves
as another process class. The individual masters and slaves then correspond to
concrete objects of these classes. This requires extending our model to handle
objects, classes and subclasses. We are currently pursuing research in this direc-
tion.

5 Behavioral Properties of CTPs

In this section, we introduce some important behavioral properties of the CTP
model and the techniques currently available for determining these properties.

5.1 Well-Formed Transaction Schemes

For pragmatic reasons, our definition of the CTP model imposes almost no syn-
tactic restrictions. As a result, one can easily specify behaviors which are prob-
lematic from both specification and implementation standpoints. For instance,
consider the transaction scheme shown in Figure 16 and its associated event
structure. If the control flow enables this transaction scheme with the valuation
{¬A, B}, there will be a deadlock and no event in the associated event structure
will execute. On the other hand if the valuation is {A,¬B} then the send events
〈p!q, m1〉 and 〈q!p, m2〉 can execute with no order after which there will be a
deadlock. Thus local deadlocks can arise due to incomplete specification of the
transaction schemes. As a method for detecting and eliminating such undesirable
behaviors, we propose the notion of well-formed transaction schemes. Intuitively,
this notion says that in the locality of a transaction scheme, the maximal execu-
tions of the event structure associated with the transaction scheme are precisely
the executions of the transactions mentioned in the transaction scheme.

p!q,m1 q!p,m2

q?p,m1p?q,m2

Transaction Scheme Event Structure

A B A B

m1 m2

p q p q

Fig. 16. A Transaction Scheme which is not well-formed

Definition 5 Well-formed Transaction Scheme Let T = {T i = [Ii : Chi :
Oi]}i=1,2,...,n be a transaction scheme and EST = (E,≤, #, Λ) be its event struc-
ture representation. For a configuration (a downclosed conflict-free subset of
events) c of EST, we let ESc,T be the sub-event structure induced by c; it is the
event structure (c,≤c, #c) where ≤c(#c) is ≤(#) restricted to c. Let MAXCT

810 Abhik Roychoudhury and Pazhamaneri Subramaniam Thiagarajan

be the sub-event structures of EST induced by the set of maximal configurations
of T. Then, transaction scheme T is said to be well-formed iff there exists a
bijection f : {1, 2, . . . , n} → MAXCT such that Chi is isomorphic to f(i) for
each i in {1, 2, . . . , n}.

Each transaction scheme can be effectively analyzed to determine if it is
well formed. Clearly the transaction scheme shown in Figure 16 is not well-
formed. We are not advocating the notion of well-formedness as mandatory but
we believe it is a useful criterion using which certain types of incomplete and
inconsistent specifications at the level of transaction schemes can be caught.
It should also be clear that well-formedness alone will not suffice to guarantee
sound implementations. For instance if the behaviors of a transaction scheme
exhibit intra-process non-determinism then hardware implementation can be
problematic.

5.2 Behavioral Properties

Let TP be a CTP and NTP be its Petri net representation. We shall assume
the standard behavioral notions for Petri nets here [9]. We will say that that
TP is transaction-deterministic if for every reachable marking M of PNTP, if x
and y are events belonging to the event structure associated with a transaction
scheme in TP and both x and y are enabled at M then proc(x) �= proc(y).
Consequently x and y can occur causally independent of each other at M . Thus
transaction-determinism guarantees during the course of executing events taken
from a transaction scheme, there will be no conflict. We will also say that TP
is bounded in case its Petri net is bounded (has only a finite set of reachable
markings).

We say that a transaction scheme is anchored in case each of its transactions
is anchored. A transaction is anchored if its associated MSC, say, Ch = (E,≤, λ)
has a least element ein and greatest element efin and further more,there exists
p such that ein, efin ∈ Ep. Thus the transaction is initiated and terminated by a
single agent. An interesting observation here is that if each transaction scheme
in a CTP is anchored, then the CTP is bounded.

Via the Petri net semantics, the notions of TP being live and dead-lock free
can also be defined. Clearly, all these properties are decidable since the corre-
sponding problems for Petri nets are decidable. We are currently studying how
efficient decision procedures can be developed by exploiting the additional struc-
ture provided by the CTP model.

6 Connection to Live Sequence Charts (LSC)

Our CTP formalism serves as a high level executable specification language based
on Message Sequence Charts. Recently, Damm and Harel have developed the Live
Sequence Charts (LSC) formalism which is also a MSC based modeling language.
A powerful execution framework for LSCs based on the so called Play-in/Play-
out approach is also being developed by Harel and his collaborators [13, 15]. In

Communicating Transaction Processes 811

this section, we explore the connections between the CTP and LSC formalisms,
namely (a) how to interpret LSCs over the CTP model and (b) how to translate
CTP models to the LSC language.

The basic feature of LSCs is that it has two types of charts, namely existential
and universal charts. The universal charts are used to specify requirements that
all the possible system runs must satisfy. A universal chart typically contains
a pre-chart followed by a main chart to capture the requirement that if along
any run, the scenario depicted in the pre-chart occurs then the system must also
execute the main chart. Existential charts specify sample interactions, typically
between the system components and the environment that at least one system
run must satisfy. Existential charts can be used to specify system tests and
illustrate typical unrestricted runs. The LSC formalism also uses cold and hot
conditions which are in some sense provisional and mandatory guards. If a cold
condition holds during an execution then control is intended to pass to the
location immediately after the cold condition. If it is false then the chart-context
in which this condition occurs is exited. A hot condition, on the other hand, must
always be true. If an execution reaches a hot condition which evaluates to false
then this signals the violation of requirement and the system is supposed to
abort. Thus we can attach the constant false condition at the end of chart Ch
to capture the requirement that Ch must never occur. In other words, Ch is a
forbidden scenario. On the other hand, cold conditions can be used to program
if-the-else constructs. Similarly we can also specify events to be hot or cold.

It will be convenient to break down the features of the LSC language into
simple units and present them individually. Assuming the notations and termi-
nology developed in the previous section, we define a basic universal LSC (over
(P , M, Act)) with a pre-chart as a structure [PCh, BCh] where:

(1) PCh = (EPCh,≤PCh, λPCh) is a MSC called the pre-chart.
(2) BCh = (E,≤, λ) is a MSC called the body with EPCh ∩ E = ∅.
(3) [PCh, BCh] denotes PCh ◦ BCh, the asynchronous concatenation of PCh

with BCh. This is in keeping with the asynchronous nature of our CTP
model; [8] mentions a variant involving synchronous concatenation. Thus,
strictly speaking, we consider an asynchronous version of the LSC formal-
ism [8].

(4) agents(min(BCh)) ⊆ agents(PCh).

In order to explain the last condition given above, recall that min(BCh) is the
set of minimal events in BCh. The last condition is intended to ensure that
in the asynchronous concatenation of PCh followed by BCh, every event of
BCh will have a causal predecessor in PCh. As might be expected, we define
the asynchronous concatenation Ch1 ◦ Ch2 of two MSCs Ch1 = (E1,≤1, λ1)
and Ch2 = (E2,≤2, λ2) with E1 ∩ E2 = ∅ as the MSC Ch = (E,≤, λ) where
E = E1 ∪ E2 and λ(e) = λ1(e) (λ2(e)) if e is in E1 (E2). Finally ≤ is the least
partial ordering relation over E which contains ≤1 and ≤2 and satisfies: if e ∈ E1

p

and e′ ∈ E2
p for some p then e ≤ e′.

We define a basic universal chart with pre-condition as a structure [P, ϕ, BCh]
where ϕ is a propositional formula built out of APP called the pre-condition and

812 Abhik Roychoudhury and Pazhamaneri Subramaniam Thiagarajan

BCh is a chart called the body such that agents(min(BCh)) ⊆ P . Basic exis-
tential charts denoted 〈PCh, BCh〉 with a pre-chart as well as basic existential
charts with pre-conditions denoted 〈P, ϕ, BCh〉 can be defined in a similar fash-
ion. Neither existential nor universal charts with post-charts are interesting. We
however define a basic universal (existential) chart with a post-condition as the
structure [BCh, P, ϕ] (〈BCh, P, ϕ〉) where, as before, ϕ is a propositional for-
mula built out of APP and agents(max(BCh)) ⊆ P . Intuitively such charts
denote the property that if BCh is executed, ϕ must (may) hold.

A cold condition is a basic existential chart with a pre-condition whose body
chart is empty. A hot condition is a basic universal chart with a post-condition
whose body chart is empty. LSCs can now be inductively obtained by starting
with the basic charts and allowing the body itself to be an LSC. Viewing the
resulting class of LSCs as atomic assertions, one can obtain LSC specifications
by forming boolean combinations of these atomic assertions.

6.1 When Does a CTP Model Satisfy a LSC Specification?

We now interpret the basic LSC specifications over CTPs. It is easy to extend
this interpretation to more complicated LSC specifications.

Let TP = {TSp}p∈P be a CTP over (Γ,P) where Γ is a finite set of trans-
action schemes over (P , M, Act). Let PNTP be the Petri net representation of
TP, constructed from Σ-labeled event structures representing the transaction
schemes. Let =⇒ be the labeled transition relation defined over the reachable
markings of PNTP given by: M

α=⇒ M ′ iff there exists a transition t of PNTP

such that t is enabled at M and M ′ is the resulting marking when t occurs at M .
Furthermore, Λ(t) = α where Λ is the obvious labeling function that assigns to
each transition of PNTP, a label in Σ (the set of labels of events appearing in the
transaction schemes). This transition relation =⇒ is extended to Σ-sequences
in the obvious way and this extension will be also be denoted as =⇒. Next let
Ch = (E,≤, λ) be an MSC. Then λ applied pointwise to a linearization of (E,≤)
yields a member of Σ∗. We let lin(Ch) be the subset of Σ∗ obtained this way,
and refer to it also, by abuse of terminology, as the linearizations of Ch. We
define ΣCh to be the subset of Σ given by ΣCh = {λ(e) | e ∈ E}. Finally, if
σ ∈ Σ∗ and Σ′ ⊆ Σ then �Σ′ (σ) is the Σ′ projection of σ. For an MSC Ch we
will often write �Ch instead of �ΣCh

. We are now prepared to interpret the basic
LSC specifications over CTPs.

(1) Let [PCh, BCh] be a basic universal chart with a pre-chart. Then TP sat-
isfies [PCh, BCh] iff every reachable marking (s0, V0) of PNTP satisfies the
following condition. Suppose M0

σ0=⇒ M1 such that �PCh (σ0) is in lin(PCh).
Then for every M1

σ1=⇒ M2, there exists M2
σ2=⇒ M3 such that a pre-

fix of �Σ′ (σ0σ1σ2) corresponds to a member of lin(PCh ◦ BCh) where
Σ′ = ΣPCh ∪ ΣBCh. Thus, this universal requirement demands that when-
ever (a linearization of) PCh has been executed then this must be followed
by an execution of (a linearization of) BCh.

Communicating Transaction Processes 813

(2) Next suppose [P, ϕ, BCh] is a basic universal chart with a pre-condition.
Then TP satisfies [P, ϕ, BCh] iff every reachable marking M0 = (s0, V0) of
PNTP satisfies the following condition. Suppose V0 |= ϕ. Then for every
M0

σ0=⇒ M1 there exists M1
σ1=⇒ M2 such that a prefix of �BCh (σ0σ1)

is a member of lin(BCh). Hence this universal requirement demands that
whenever ϕ holds then this must be followed by an execution of BCh.

(3) Next suppose 〈PCh, BCh〉 is a basic existential chart with pre-chart. Then
TP satisfies 〈PCh, BCh〉 iff there exists a reachable marking M0 and M0

σ0=⇒
M1 such that a prefix of �Σ′ (σ0) contains a member of lin(PCh◦BCh). As
before Σ′ = ΣPCh ∪ ΣBCh. Thus this existential requirement is satisfied if
there exists a reachable marking starting from which there is an execution
of linearization of PCh followed by an execution of BCh.

(4) Now suppose 〈P, ϕ, BCh〉 is a basic existential chart with a pre-condition.
Then TP satisfies 〈P, ϕ, BCh〉 iff there exists a reachable marking M0 and
M0

σ0=⇒ M1 such that V0 |= ϕ and a prefix of σ0 corresponds to a member
of lin(BCh).

(5) Basic charts with post-conditions are dealt with similarly. For instance, sup-
pose [BCh, P, ϕ] is basic universal chart with a post-condition. Then TP
satisfies this requirement iff every reachable marking M0 satisfies the follow-
ing condition. Suppose M0

σ0=⇒ M1 such that �BCh (σ0) has a prefix which
is a member of lin(BCh) and σ is the least prefix of σ0 with this property.
Then V |= ϕ where M0

σ=⇒ M and M = (s, V). Thus whenever an execution
of BCh takes place then at the resulting marking, the condition ϕ holds.
The semantics of the basic existential chart with a post-condition is defined
in a similar way.

One can effectively decide whether or not a bounded CTP TP satisfies an
LSC requirement lsc. This is so because from PNTP (the Petri Net corresponding
to TP), we can extract a finite Kripke structure. Moreover, it is known that lsc
can be effectively transformed into a CTL∗ formula [14]. As a result we can apply
the known model checking procedure for CTL∗ to solve this problem [6]. This
however will involve high computational complexity and more efficient decision
procedures are needed to solve this problem.

6.2 Translating CTP Models to LSC

We can also translate a CTP model into an LSC specification. Consequently the
play engine mechanism developed in the LSC framework [15] becomes readily
accessible for simulating CTP models. Furthermore, this translation also makes
it clear that the CTP model is a restricted version of the LSC formalism in
which only universal charts are used but the intra-object control flow is explicitly
specified using traditional mechanisms.

Let TP = {TSp}p∈P be a CTP over (Γ,P) where Γ is a finite set of trans-
action schemes over (P , M, Act). Assume as before that each process p ∈ P
is associated with TSp = (Sp, Γp,−→p, initp, Vp,in). Recall also that the set of
pre and post control states of the transaction scheme T denoted as •T and

814 Abhik Roychoudhury and Pazhamaneri Subramaniam Thiagarajan

T•. To construct the LSC specification of TP, we will deploy
⋃{Sp | p ∈ P}

also as atomic propositions. Now let T be a transaction scheme of TP with
T = {[Ii : Chi : Oi] | i = 1, 2, . . . , n}. We recall that each Ii is a propositional
formula built out of AP , each Chi = (Ei,≤i, λi) is a chart over (P , M, Act) and
each Oi is a subset of AP . With T, we associate the LSC specification lscT given
by lscT = lsc1∧ lsc2 . . .∧ lscn where for each i we have lsci = [BChi, posti] with
BChi = [prei, Chi]. Also, prei and posti are given by prei =

∧
s∈•T s ∧ Ii and

posti =
∧

s∈T• s ∧ ∧
A∈Oi A.

Intuitively, T translates to the universal requirement: whenever the pre-
control states of T hold and the guard for the i-th transaction holds, then the i-th
transaction must execute followed by the holding of the post-valuation Oi and
the post-control states of T. The actual semantics is given in an asynchronous
execution framework.

7 Using the CTP Language

Based on the abstract formal model presented so far, we have designed a simple
language, called CTPL, in order to explore the feasibility of using our approach
for system-level design of reactive embedded systems. In order to develop CTPL
into a full-fledged modeling language, we have had to elaborate several features of
the formalism such as (a) syntax/semantics of the internal actions, (b) data types
of messages sent and received, (c) local variable declarations in individual pro-
cesses etc. Here we shall touch upon the major issues. The full syntax of the cur-
rent version of the language can be obtained from www.comp.nus.edu.sg/∼ctp.

Language Features. We use a simple imperative language without iterations to
describe the internal actions. Thus an internal action is an imperative program
with arithmetic and boolean expressions, whose control flow is acyclic. Note that
this is not a restriction in the expressive power of the language, since the overall
control flow of a process allows (potentially) unbounded iterations. A related
issue is that our current modeling language does not allow iterative executions
within a transaction scheme. Such an extension would allow one execution of a
transaction scheme γ to be specified as a number of iterations of the constituent
transactions (where in each iteration, one of the constituent transactions is ex-
ecuted). Exit from the execution of γ happens when the guards of none of the
constituent transactions of γ are enabled. In future, we plan to extend CTP (and
CTPL) along these lines to support the specification of iterations within a trans-
action scheme. This will of course naturally define iterations for internal actions
as well, since an internal action is simply a degenerate transaction scheme. For
the data types of messages as well as local variables of processes, the language
implementation currently supports scalar types (such as boolean, integers, user-
defined subrange types) as well as vectors (registers) of these scalar types. The
guards of transactions are boolean expressions, where the propositions in the
boolean expression are allowed to use arithmetic expressions.

Communicating Transaction Processes 815

Language Implementation. Currently the implementation of CTPL is supported
with the following tools and applications.

– a Graphical User Interface for constructing diagrammatic specifications and
visualizing them

– a translator for converting visual CTP specifications to a textual format
(based on XML)

– a scanner and parser for the textual format generated by translating the
visual specifications

– A translator that produces Verilog code from the Intermediate Representa-
tion produced by the parser.

– Modeling and deriving of an FPGA-based implementation of an embed-
ded controller for a 16-chamber micro-Polymerase Chain Reaction (µ-PCR)
biochip. This real-life embedded controller co-ordinates a complex thermal
cycling process requiring highly accurate temperature control and real-time
temperature monitoring.

All of these tools are under active development and again, more details can be
found at www.comp.nus.edu.sg/∼ctp.

Integration into Co-design Environments. One of our goals is also to integrate
CTPL as a front-end into a hardware-software co-design toolkit. Towards this
goal, we are working on translating CTPL into the Metropolis Meta Model
(MMM) language [3]. MMM is a common intermediate language for specifying
heterogeneous embedded systems, and allows for simulation of system descrip-
tions specified via different models of computation. The Metropolis project pro-
vides a SystemC based simulator for generating traces of a system described
MMM; this is useful for functionality checking and performance evaluation.
Based on experience gained through hand-translations of simple bus protocol
examples from CTPL to MMM, we have developed a strategy for designing the
translator. In the current version, we are implementing transaction schemes in
CTPL via more centralized channels in MMM. The results concerning this effort
will be reported elsewhere.

Formal Verification. We are also working on automated verification of CTPL
programs via model checking. Towards this end, we have developed a translator
from CTP to the input language of the SMV[4] model checker. However, the
state machine like input language of SMV has a very different specification style
as compared to CTPL and hence the SMV-based verification method does not
appear to be the ideal one for CTPL specifications. Consequently, we are also
building a translator from CTP to Promela (the input language of the SPIN
[18] model checker). Unlike the SMV model checker, Spin allows modeling of
explicit control-flow within processes. This is similar in flavor to the process
specification style of the CTP modeling language. Asynchronous message passing
communication (as used in our MSCs) is also directly supported in Promela via
channels.

816 Abhik Roychoudhury and Pazhamaneri Subramaniam Thiagarajan

Synthesis. As for automatic synthesis, we have developed a translator to generate
Verilog descriptions from CTPL programs, thereby creating a path to hardware
implementation. So far, we have not studied the means for generating software
code from CTPL specifications. One possibility would be to convert CTPL spec-
ifications to multi-threaded programs (where the processes in a CTPL specifica-
tion map to threads in the generated program). This may require translating the
message passing style of communication espoused in CTPL (via the use of MSCs)
into shared variable communication among threads in the target programming
language (such as Java). Developing an automated translation scheme for gen-
erating multi-threaded Java code from CTPL specifications is a topic of current
and future work in our project [25].

8 Discussion

In this paper we have presented CTP, a high level specification language for mod-
eling reactive systems. Our model is based on Message Sequence Charts (which
emphasize inter-process communication) and explicit description of intra-process
computations and control flow. The main questions to be pursued in this con-
text involves well-formedness checking, formal verification as well synthesizing
implementations from such models.

We have constructed a translator that transforms a CTP program into an
internal representation of the Petri net representing the behavior of the CTP
model. A crucial step in this translation consists of obtaining the event struc-
ture representation of each transaction scheme. Using this translator we are
currently automating the analysis of transaction schemes for well-formedness.
Work is also underway to devise a more efficient and direct procedure for deter-
mining the boundedness property. An interesting related problem is the issue of
schedulability analysis as formulated in [24], which focuses on ensuring bounded
message queues during system execution.

As for formal verification, the Petri net representation of bounded CTP mod-
els can be represented as a finite transition system. Indeed, due to the presence
of the atomic propositions, this transition system can be viewed as a Kripke
structure. Hence dynamic properties of the system being modeled as a CTP can
be specified in a temporal logic such as LTL and formal verification of these
specifications can be carried out using model checking tool such as Spin [18].

We are also currently exploring the means for extending our model along a
number of dimensions, namely: parameterizing each component as an instance
of a class together with the parameterization of the transaction schemes; further
relaxing the control flow restrictions; and, adding timing constraints. Introduc-
tion of classes and objects into our model is particularly interesting since it can
allow to symbolically simulate a CTP specification with unboundedly many ob-
jects (which form finite number of classes in terms of behaviors). Formalizing
these ideas and observations is a topic of future work.

Communicating Transaction Processes 817

Acknowledgments

Preliminary versions of parts of this paper have appeared in [22] and [23]. We
would like to thank the anonymous referees of these two papers for their com-
ments. This research has been supported by an A*STAR (Agency for Science,
Technology and Research, Singapore) Research Grant 022 106 0042 funded under
the Embedded and Hybrid Systems Program.

We would like to thank Tran Tuan Anh for providing a substantial amount of
inputs for all aspects of the research reported here. We would also like to thank
the following people for their contributions in the implementation of the CTP
language and its usage in system level design: Prakash Chandrasekaran, Kathy
Nguyen Dang, Roman Gagarsky, Pankaj Jain, Nikhil Jain and Kamrul Hasan
Talukder.

References

1. R. Alur, K. Etessami, and M. Yannakakis. Realizability and verification of MSC
graphs. In International Colloquium on Automata, Languages and Programming
(ICALP), 2001.

2. ARM Limited. AMBA On-chip Bus Specification, 1999.
3. F. Balarin, L. Lavagno, C. Passerone, A. Sangiovanni-Vincentelli, Y. Watanabe,

and G. Yang. Concurrent execution semantics and sequential simulation algorithms
for the Metropolis Meta-Model. In International symposium on Hardware/software
codesign (CODES), 2002.

4. Cadence Berkeley Laboratories, California, USA. The SMV Model Checker, 1999.
www-cad.eecs.berkeley.edu/~kenmcmil/smv/.

5. B. Caillaud, P. Darondeau, L. Helouet, and G. Lesventes. Hmscs as partial speci-
fications ... with pns as completions. In Modeling and Verification of Parallel Pro-
cesses 4th Summer School, MOVEP 2000, LNCS 2067, 2001.

6. E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT Press, 1999.
7. Codesign, Simulation and Synthesis (COSY) project. Generic Interface Modules

for PI-Bus, 2001.
8. W. Damm and D. Harel. LSCs: Breathing life into message sequence charts. Formal

Methods in System Design, 19(1), 2001.
9. J. Desel and J. Esparza. Free Choice Petri Nets. Cambridge University Press, 1995.

10. B.P. Douglass. Doing Hard Time: Developing Real-time Systems using UML, Ob-
jects, Frameworks and Patterns. Addison-Wesley, 1999.

11. D.D. Gajski, J. Zhu, R. Dmer, A. Gerstlauer, and S. Zhao. SpecC: Specification
Language and Methodology. Kluwer Academic Publishers, 2000.

12. T. Grotker, S. Liao, G. Martin, and S. Swan. System Design with SystemC. Kluwer
Academic Publishers, 2002.

13. D. Harel and H. Kugler. From play-in scenarios to code: An achievable dream. In
Fundamental Approaches to Software Engineering (FASE), LNCS 1783, 2000.

14. D. Harel and H. Kugler. Synthesizing state-based object systems from LSC speci-
fications. International Journal on Foundations of Computer Science, 13(1), 2002.

15. D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart play-out of behavioral
requirements. In International Conference on Formal Methods in Computer Aided
Design (FMCAD), 2002.

818 Abhik Roychoudhury and Pazhamaneri Subramaniam Thiagarajan

16. D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using
LSCs and the Play-Engine. Springer-Verlag, 2003.

17. J.G. Hendriksen, M. Mukund, K.N. Kumar, and P.S. Thiagarajan. Message se-
quence graphs and finitely generated regular MSC languages. In International
Colloquium on Automata, Languages and Programming (ICALP), LNCS 1853,
2000.

18. G. J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-
neering, 23(5):279–295, May 1997.

19. K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. Springer Verlag, 1997.

20. I. Krueger, R. Grosu, P. Scholz, and M. Broy. From MSCs to statecharts. In In-
ternational Workshop on Distributed and Parallel Embedded Systesms (DIPES),
1998.

21. M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures and domains.
Theoretical Computer Science (TCS), 13, 1981.

22. A. Roychoudhury and P.S. Thiagarajan. Communicating transaction processes. In
IEEE International Conference on Applications of Concurrency in System Design
(ACSD), 2003.

23. A. Roychoudhury and P.S. Thiagarajan. An executable specification language
based on message sequence charts. In Formal Methods at the Crossroads: from
Panacea to Foundational Support. Springer Verlag, LNCS 2757, 2003.

24. M. Sgroi and L. Lavagno. Synthesis of embedded software using free-choice Petri
nets. In ACM Design Automation Conference (DAC), 1999.

25. P.S. Thiagarajan et al. Communicating Transaction Processes (CTP) project, 2003.
http://www.comp.nus.edu.sg/~ctp.

26. Z.120. Message Sequence Charts (MSC’96), 1996.

	1 Introduction
	2 The CTP Model
	2.1 The Definition of the CTP Model
	2.2 A Simple Example

	3 The Petri Net Semantics
	3.1 Constructing Event Structures
	3.2 The Petri Net Semantics

	4 Specifying the AMBA Bus Protocol
	5 Behavioral Properties of CTPs
	5.1 Well-Formed Transaction Schemes
	5.2 Behavioral Properties

	6 Connection to Live Sequence Charts (LSC)
	6.1 When Does a CTP Model Satisfy a LSC Specification?
	6.2 Translating CTP Models to LSC

	7 Using the CTP Language
	8 Discussion
	Acknowledgments
	References

