InterPlay: Horizontal Scale-up and Transition to Design
in Scenario-Based Programming

Dan Barak, David Harel, and Rami Marelly

The Weizmann Institute of Science, Rehovot, Israel

Abstract. We describe InterPlay, a simulation engine coordinator that supports
cooperation and interaction of multiple simulation and execution tools, thus help-
ing to scale-up the design and development cycle of reactive systems. InterPlay
involves two main ideas. In the first, we concentrate on the inter-object design ap-
proach involving LSCs and the Play-Engine tool, enabling multiple Play-Engines
to run in cooperation. This makes possible the distributed design of large-scale
systems by different teams, as well as the refinement of parts of a system using
different Play-Engines. The second idea concerns combining the inter-object ap-
proach with the more conventional intra-object approach, involving, for example,
statecharts and Rhapsody. InterPlay makes it possible to run the Play-Engine in
cooperation with Rhapsody, and is very useful when some system objects have
clear and distinct internal behavior, or in an iterative development process where
the design is implementation-oriented and the ultimate goal is to end up with an
intra-object implementation.

1 Introduction

The goal of this work is to enrich the scale-up possibilities in the development cycle
of reactive systems, when working in an inter-object, scenario-based paradigm, such
as that described in [5]. We do this by introducing and implementing a methodology
of distributed design, which involves two related ideas. The methodology is intended
to supply a new level of flexibility in system development, and to help ensure that the
various parts of a system designed by different teams cooperate and integrate into a
single working and harmonious system.

The ideas are implemented in what we shall be calling InterPlay, a simulation
engine coordinator' that supports the cooperation and interaction of different simulation
and execution tools. These can support different design approaches to the modeling
parts of a system or the various levels of abstraction thereof.

There are many proposed approaches to distributed computing, and many feature
platform and language independence. This allows connecting applications spanning
multiple platforms and operating systems, which have been written by different com-
panies in various languages. Among such solutions are the following: RMI (Remoter
Method Invocation) for distributed Java applications [11]; DCOM?, which is most often
associated with Microsoft operating systems but is also supported on Unix, VMS and

! In fact, in [5] InterPlay was referred to by the acronym SEC.
2 Soon to be replaced by .NET [8].

J. Desel, W. Reisig, and G. Rozenberg (Eds.): ACPN 2003, LNCS 3098, pp. 66-86, 2004.
(© Springer-Verlag Berlin Heidelberg 2004

InterPlay: Horizontal Scale-up and Transition to Design 67

Macintosh [1]; CORBA [9]; and the more recent Web Services using the SOAP com-
munication protocol [10]. While all these approaches apply to the realm of implemented
components, there appears to be no solution to the problem of high-level model-driven
distributed design that can offer independence of vendors (supporting, e.g., both Ratio-
nal Rose, and Rhapsody from I-Logix), of overall design philosophy (supporting both
an inter-object and an intra-object methodology), and of levels of abstraction. InterPlay
can be viewed as an attempt to address these kinds of independence too.

Before discussing the two ideas manifested in InterPlay, we briefly recall the dual
approaches to specifying reactive behavior, described, e.g., in [2,5]. The first approach
is an inter-object, scenario-based one, which is based on specifying cross-object sce-
narios of various modalities, one at a time. This approach is particularly natural for
discussing behavior and specifying requirements, and is exemplified by the language of
live sequence charts (LSCs) [2] and the play-in/out method with its supporting Play-
Engine tool [5]. The second approach is the more conventional intra-object one, which
is usually state-based, and is naturally suited for the specification of objects that have
clear internal behavior. This approach specifies all possible behaviors for each object in
the system, and it leads directly to implementation. It is exemplified by the language of
statecharts [3] and the Rhapsody tool [4, 6], or by conventional object-by-object code.
The conceptual duality between these approaches is illustrated visually in Figure 1.

BY [.
‘)
M}
[

)\" Al

! \

Fig. 1. A visual description of the intra-object and inter-object design approaches respectively.

Let us examine the design and development cycle of a system, observing how the
two approaches may be used within it. In the early stages of transforming the client’s
requirements into a formal specification, the overall functionality of the system is the
most important. Here, the main logical components of the system will typically appear,
with no specific implementation-related details. This bird’s-eye point of view is best
described using the inter-object design approach, where we ignore inner mechanisms

68 Dan Barak, David Harel, and Rami Marelly

of system components and focus on the overall behavior of the system, concentrating
on interactions among the user, the environment and the system components. Complex
systems may have a very large number of objects, practically forcing the distribution of
the specification effort — and later also the design and implementation efforts — between
multiple teams.

Accordingly, the first ability of InterPlay concentrates on the inter-object approach,
and enables multiple Play-Engines to run in cooperation. This makes it possible for
different teams to specify the inter-object behavior of different collections of objects,
and then run these specifications in a fully cooperative manner. It also makes it possible
to refine parts of the system using different Play-Engines. Technically, this is achieved
by using external objects: each team is assigned some part of the system (actually, a
set of objects) to design in detail. A particular team’s objects may interact with other
objects, to which the team refers as external. These external objects are in fact the
interface of the other subsystems with respect to the current team’s subsystem?. All
other objects are ignored. The objects with which the team’s specification interacts are
thus outside the assigned scope and responsibility of the team, yet the team is aware
of them, recognizing them as being designed and driven by some other team. The first
part of the InterPlay methodology allows these different parts to be executed in tandem,
by its ability to have multiple Play-Engines execute together. This distributed design
method is illustrated in Figure 2.

| ,
th i

/
~ /]
/

Fig. 2. Distributed design with external objects: External objects are drawn as clouds and each
external-internal pair share the same color. Each team specifies a part of the system using the
inter-object design approach, and refers to other relevant objects as external.

Let us now turn to the second ability of InterPlay. Following detailed specifications
and refinement of requirements, we would like to carry out a transition to design and
implementation. While the Play-Engine can indeed execute inter-object specifications,

* For more details about external objects, interfaces and distribution to subsystems, see Sec-
tion 3.

InterPlay: Horizontal Scale-up and Transition to Design 69

including multiple engines playing together through InterPlay, this is still within the
inter-object approach. There will often be objects that have clear and distinct internal
behavior which we would like to specify in a more conventional state-based intra-object
fashion, using, say, statecharts or code. Moreover, the ultimate goal might be to end up
with a complete intra-object implementation, which could be achieved by an iterative
development process, during which objects will be gradually provided with intra-object
implementation-oriented behavior. The Play-Engine would be useful at the very begin-
ning of this process, and a standard intra-object tool like Rhapsody would be useful
at the end, but we want something for the interim, when we have a combination of
inter-object and intra-object specifications.

The second feature of InterPlay allows just that: the cooperative execution of a
mixed system, some parts being specified in a scenario-based fashion, e.g., in LSCs,
and others specified in an intra-object state-based fashion, e.g., in statecharts or code.
Technically, InterPlay allows the Play-Engine and Rhapsody to execute simultaneously,
each taking care of some of the objects. Figure 3 illustrates this, by showing an inter-
object specification, with one object designed using the intra-object approach.

The two InterPlay ideas combined enable what we call horizontal scale-up, where-
by a large system can be split up into parts, each specified in an inter-object or intra-
object fashion, at will, and then executed as a whole by Play-Engines cooperating
among themselves and/or cooperating with the Rhapsody tool. We view this as a crucial
step towards the ability to incorporate the inter-object approach into the development
of large and complex systems.

~,

Fig. 3. An inter-object specification with one object designed using the intra-object approach.

The rest of this paper is organized as follows. Section 2 gives a brief overview of the
LSC language and the Play-Engine, illustrated using a take-out service system, which
serves as a running example throughout the paper. Section 3 discusses the changes intro-
duced in the Play-Engine to support InterPlay and explains their relevance to horizontal
scale-up. Section 4 introduces in more detail the InterPlay tool and techniques. Section
5 elaborates on the take-out service example, illustrating the usefulness of InterPlay in

70 Dan Barak, David Harel, and Rami Marelly

integrating the various parts of a system. Section 6 concludes with a discussion of future
work, including related research we are carrying out on vertical scale-up.

2 The Play-Engine and LSCs

This section provides a short introduction to the language of live sequence charts
(LSCs) and the Play-Engine. The discussion, however, is very brief, and we strongly
suggest referring to [5] for more details.

The language of LSCs [2] is a scenario-based visual formalism, which extends clas-
sical message sequence charts (MSCs) with logical modalities, thus achieving a far
greater expressive power, comparable to that of temporal logic [7]. The Play-Engine
supports LSCs, by enabling a system designer to capture behavioral requirements by
playing in behavior using a graphical interface (GUI) of the target system or an abstract
version thereof. As the behavior is played in, the formalized behavior is automatically
generated by the Play-Engine, in the form of LSCs.

LSCs have two types of charts, universal and existential. Universal charts are used
to specify restrictions over all possible system runs, and thus constrain the allowed
behaviors. A universal chart typically contains a prechart, which specifies the scenario
which, if successfully executed, forces the system to satisfy the scenario given in the
actual chart body. Existential charts, on the other hand, specify sample interactions
between the system and its environment, and are required only to be satisfied by at least
one system run. They thus do not force the application to behave in a certain way in
all cases, and can be used to specify system tests, or simply to illustrate longer (non-
restricting) scenarios that provide a broader picture of the behavioral possibilities to
which the system gives rise.

We borrow an LSC from our running example, a take-out system described in detail
in section 5, to illustrate the main concepts and constructs of the language of LSCs.

In the universal LSC of Figure 4, the prechart (top dashed hexagon) contains the
event of the user clicking the btnOper button. If this indeed occurs, the chart body
then requires the Cus tomerConrtol object to update the occupancy of the restaurant
by means of a method call that changes the number of customers in the restaurant.
However, we want this update to happen only after a fixed time interval — three clock
ticks in our case. The chart body consists of an unbounded loop construct (denoted by
“*#7), which is repeated infinitely many times, unless interrupted. The loop contains an
assignment in which the variable N is assigned the current time. It is important to note
that the assignment’s variable is local to the containing chart and can be used for the
specification of that chart only, as opposed to the system’s state variables, which may
be used in several charts.

After the assignment comes a hot condition, requiring the time to advance 3 ticks
before continuing. Hot conditions are mandatory, and must always be true; if not, the
requirements are violated and the system aborts. However, when dealing with time, the
system simply waits until the specified condition holds. On the other hand, if a cold
condition is false, the surrounding (sub)chart is exited. This is one example of the way
the logical modalities are incorporated into LSCs.

InterPlay: Horizontal Scale-up and Transition to Design 71

% ‘ Open ‘C‘Astomerﬁont%ll Cloze |

< o Clek] N

" 1
o =
M:=Time
= =
(Timesfi+ 25

Forbidden Elements

ELL ek N [

Fig.4. An LSC example: Updating the occupancy of a restaurant.

An LSC can have forbidden elements, listed in a separate area underneath the
main chart. Hot and cold elements work similarly there too; e.g., if a hot forbidden
condition becomes true, the requirements are violated and the system aborts, whereas
a cold one becoming true causes the chart or subchart which is its scope to be exited.
In our example in Figure 4, there is a cold forbidden message associated with the loop
subchart, the effect being that if the user presses the btnOper button again the loop
and the chart terminates.

We shall not discuss the play-in process here, but play-out is very relevant. In the
play-out phase the user plays the GUI application as he/she would have done when
executing a system model (or, for that matter, the final system) but limiting him/herself
to ‘end-user’ and external environment actions only. While doing so, the Play-Engine
keeps track of the actions taken, and causes other actions and events to occur as dictated
by the LSCs, thus giving the effect of working with a fully operational system or an
executable model. It is actually an iterative process, where after each step taken by
the user, the play-engine computes a superstep, which is a sequence of events carried
out by the system as response to the event input by the user. Only those things it is
required to do are actually done, while those it is forbidden to do are avoided. This is
a minimalistic, but completely safe, way for a system to behave exactly according to
the requirements. It is noteworthy that no code needs to be written in order to play out
the behavior, nor does one have to prepare a conventional intra-object system model,
as is required in most system development methodologies (e.g., using statecharts or
some other language for describing the full behavior of each object, as in the UML, for
example). We should also emphasize that the behavior played out is up to the user, and

72 Dan Barak, David Harel, and Rami Marelly

need not reflect the behavior as it was played in; the user is not merely tracing scenarios,
but is executing the specified behavior freely, as he/she sees fit.

This ability to execute inter-object behavior without building a system model or
writing code leads to various improvements in building reactive systems. It enables ex-
ecutable requirements, for example, whereby the Play-Engine becomes a sort of ‘uni-
versal reactive machine’, running the requirements that were played in via a GUI or
written directly as LSCs*. You provide the global, declarative, inter-object ways you
want your system to behave (or to not behave), and the engine simulates these directly.
It also allows for executable test-suites, whose executions can then be compared with
those of the actual implementation.

As we shall explain later, enabling the cooperation of multiple Play-Engines and
these cooperating with conventional tools, allows both distributed design and refine-
ment of such specifications, as well as the gradual introduction of implementation-
oriented details in advanced design stages.

3 External Objects in Preparation for InterPlay

Some time ago we introduced external objects into LSCs and implemented them in the
Play-Engine along with their respective mechanisms; see Chapter 14 in [5]. However,
that introduction was made bearing in mind the idea presented here. In fact, on their
own, without InterPlay, external objects are rather hollow, providing little substantial
enhancement to the design and development cycle’. In this section, we briefly survey
the addition of external objects, stressing their role in the scheme we present.

When dealing with reactive systems we distinguish between the system proper and
other elements that interact with it, to which we refer as the environment. The system’s
user is separated from the environment and can interact with the system through the
GUI, while the other elements of the environment can affect external settings of the
system, mainly through changing object properties. Since most reactive systems work in
the presence of such external/environmental objects and can affect them and be affected
by them, it is necessary to express the interaction with them.

Technically, we have added to the LSCs language and to the Play-Engine a new
kind of object, the external object, which will be considered as part of the system’s
environment. External objects are recognized by the system, but are driven externally by
another modeling tool, or by code. What will become extremely important, however, is
the fact that external objects allow other systems to interact with the one we are working
on.

Having external objects within the specification entails more than just breaking up
the environment into individual pieces. These pieces are objects in their own right, they
have properties, they can be in different states, they can call other objects, etc. However,
as we shall see in a moment, in terms of what the Play-Engine knows when ‘working
on’ a particular system with its environment, an external object is abstract; it is not

* In principle this could have been done using any other sufficiently powerful scenario-based
language, such as timing diagrams or temporal logic.

5 Without InterPlay no more than two Play-Engines can run cooperatively, and they must always
use the exact same system model.

InterPlay: Horizontal Scale-up and Transition to Design 73

considered to be an ordinary object, and, for example, cannot be triggered (by our Play-
Engine specification) to call other objects.

In the LSCs themselves (and also during play-in) external objects are treated much
like other objects, and the fact they are external is merely indicated by a little cloud at-
tached to the object-name box. Any object can be made external easily, by flipping the
appropriate property in its definition. Thus, objects can be considered internal through-
out some portion of the system development process, and then made external later on,
whether for refining its design elsewhere, or to implement and test it. We shall see later
how this ability can be exploited.

The main difference between internal and external objects occurs during play-out.
Usually, property changes of objects, and calls between them, are performed by the
Play-Engine as a part of its super-steps. This, however, is not what we want for external
objects. The way they are controlled in a simple one-engine use of the Play-Engine is
by the system’s end-user, but the ultimate goal is for them to be controlled by some
other modeling tool, possibly another Play-Engine, or implemented in code. And this is
what InterPlay is all about. Consequently, the execution mechanism of the Play-Engine
has been modified, so that it does not initiate events that originate from external objects,
just as it does not initiate events from the user, or the environment.

Appropriate sets of external objects serve as a commitment between the different
teams and their respective parts of the system. They can be compared to an interface in
object-oriented programming. The team that sees a specific object as external uses it as
a part of its communication mechanism with the outside world. As such, the team relies
on this object having certain properties and methods. Hence, the team that ‘owns’ the
object as internal can add properties or methods to it, but not change the original ones.
All the added properties and methods added in such a way are for the internal use of
that specific team and are not reflected outside on the other external views of the object.

Our methodology is, in a sense, backward compatible, since it can be applied to
any existing specification set, even if it was prepared before the introduction of exter-
nal objects. One of the benefits of this compatibility is that even if two systems have
been specified separately, they can later be joined, without any pre-planning. If the two
different specifications have referred to some common part, even if slightly differently
and by different names, they can still be considered jointly, by choosing the common
part to be external in one of the specifications and remaining internal in the other.

In order to support the external objects mechanism, we added to the Play-Engine an
external event manager, which deals with the technicalities of remote connections to
other computers (e.g., IP, ports, etc.) and conveys messages to and from external objects.
In fact, once the external manager is activated, the Play-Engine transmits to the outside
world the entire sequence of events that occurs among its GUI and internal objects. The
Play-Engine also receives via the external manager events and messages from other
Play-Engines, or other modeling tools. Since external objects reflect elements speci-
fied or implemented outside the scope of the local Play-Engine, events (e.g., property
changes or method calls) that originate in those objects also arrive through the external
manager. Upon receiving such an event, the Play-Engine acts as if the event originated
from the external object itself. In short, the external object is recognized by the local
system, but is driven by a remote one.

74 Dan Barak, David Harel, and Rami Marelly

In order to best serve the InterPlay techniques, the external manager has various op-
eration modes, allowing either cooperation between two Play-Engines or execution by
a single Play-Engine and monitoring its run by another. Such a connection was possible
between only two Play-Engines having the exact same system model. However, using
InterPlay any number of Play-Engines, with different system models, can be connected,
as we shall see shortly.

4 InterPlay: Cooperation of Various Design Tools

InterPlay operates in two stages, a preprocessing offline stage, and a main online exe-
cution stage. In the first stage a mapping is set up, which associates each internal object
with all of its images as external objects in other tools, making them all seem as a single
object. During the execution stage InterPlay uses the mapping to translate and transmit
messages and events among the connected models and their respective tools, so that
whatever happens to an object during play-out is reflected in all its external views.

s
1/

P

Fig. 5. Inter-object specifications of a system from the points of view of two teams. Objects with
thin dotted lines do not actually appear in the relevant specification and are included for better
illustration only.

.
N

InterPlay’s mapping stage is really part of the system’s specification, in which one
indicates how the different parts of the system fit together. We use the two specifications
in Figure 5 throughout this section as a specific example, and concentrate on connecting
only multiple Play-Engines.

Consider object D in the figure. It is internal to the left-hand team 77, and external
to the right-hand team T'r. Although both teams do deal with this common object, they
might refer to it by different names® and team 7', might have added to it additional

® Had there been another team containing object D as external, it could have referred to it by
yet a different name than do teams 77, and T'r.

Maodel Mappings

InterPlay: Horizontal Scale-up and Transition to Design 75

Maodel 1 Load M apping number Load Model 2
|c: WPCLineage. <ml 1] - |c: YSigTrans. xml
+- [lin7 - = ptnLET23 -~
+-Jlin-10 g
= let-23 O Find
mly Add New Mapping O 1sExtemal
O kind +-[] Properties
O IsExtemal -1- [Methods
+- [Properties Match LIN-3signal
-- [Methods +- [ptnLIM15
[getLIN-3 +- [ptnSEME
+ Qe Uizt + O] ptrLINZ
N 1006.3.-1 — 2016.3.1 + O ptrNC11
+1- O mpk-1 2009.3-1 > 1101 31 #- O] ptnlIN7
+-] ExChrom 2014.3.-1 > 1117.3.-1 +- [ptn3LI
- .Olet60 2821 > 10121 + O] ptnLIN10
01 .- =
g 2014135 1117.1.2 et ETED
O kind g
O IsExtemal O Kind
-1- [Properties O IsExtemal
O MatChrom -1- [Properties
O PatChrom [E xpression
Activiey Activity
[Methads v SNT;;" Clear M PrateinTine b
< »)
Connections Fil= Options
Connect Disconnect Infa
|F'B.p
Model: {132 76.50.100 i
Connect | Connected Disconhect File
Eamiadcs] |c:\2CEIe.map

todel: [127.0.0.1

Disconhect

Save Mapping | Load Mapping

todel: Cornect | Disconnected Disconnect
todel: Connect | Disconnected Disconnect ok | Cancel |

Fig. 6. InterPlay screen shot, mapping two biological models through an interface of a method
and a property of two common to both.

properties or methods. Thus InterPlay works on mapping two system parts together,
in order to overcome such naming differences while matching an object to its external
view. This, of course, does not limit the number of specifications of systems parts and
their respective tools that can be fused together. Figure 6 displays a screenshot of In-
terPlay mapping two system models to each other. These are two parts of a biological
system, which communicate using two common proteins Let-23 and Let-60. Although
both parts refer to the same proteins, their descriptions are very different in the two mod-
els. The common interface is a method in Let-23 and an activity measurement property
in Let-60, which are mapped to each other through InterPlay.

When using InterPlay to bridge different levels of abstraction one has to pay partic-
ular attention to the specification refinement from coarse to fine. Objects described on
the coarse level are interface objects for some subsystem that interacts through them.

76 Dan Barak, David Harel, and Rami Marelly

P
!
_;' Specification

i

% refinement
Y

\\._‘
Fig. 7. Multiple levels of abstraction. The left figure represents a specification refinement of the
external interface object Ix in the coarse level.

Hence, on a coarse level we describe interactions among interface objects, while when
refining the specification we implement’ the subsystems that interact through them.
This rather subtle difference from actually refining an object is further illustrated in
Figure 7: The right-hand side of the figure is the coarse level system, in which there
is an external interface object I'x. The left-hand portion of the figure is a refinement
of the I'x, and within it the internal object X implements the interface object on the
coarse level. All other objects on the fine level constitute the subsystem behind the
interface X. Thus, all interactions between this subsystem and other subsystems are
conducted through object X. When mapping the two specifications through InterPlay,
X is matched to Ix, allowing events on the finer abstraction level to be reflected on the
coarser level, and vice versa.

Here’s how the mapping is set up. InterPlay loads a system model from a Play-
Engine specification and displays it to the user. Only the components of the system are
loaded (i.e., the GUI and internal objects, with their properties and methods), without
any behavior (LSCs) attached. There are several levels of mapping between objects.
Assuming object A has not been extended with new methods or properties by team T,
the mapping can be completed as is, by simply associating (using an appropriate form
that pops up) the two versions of A on the object level. This implies that all the object’s
properties and methods are also mapped.

Assume that object B has been expanded by team 7T'r. InterPlay allows partial map-
pings of selected properties and methods, leaving some unmatched. Thus, only the prop-
erties and methods common to the two teams will be mapped to each other and we do
not allow splitting; e.g., mapping some properties of B in team T'r’s specification to ob-
ject B of team T}, and others to object C' therein. This kind of splitting up of an object
is closely related to aggregation, and is the central aspect of vertical scale-up, which
we discuss briefly in Section 6. Nevertheless, InterPlay does allow mapping multiple
objects to a single one on the object abstraction level. Going back to Figure 5, it might

" By “implementation” in this context we still refer to inter-object design, used to specify in
detail a subsystem which has been declared on the coarse level.

InterPlay: Horizontal Scale-up and Transition to Design 77

be the case that the left-hand team 77, considers objects A, B and C' as having the same
functionality. For example, D might be a department manager with a direct phone line
connection to his/her bosses A, B and C. As only these bosses can call this line, D is
impervious to which of them assigns him/her a task. Team 77, can thus use a single ex-
ternal object only, say, A, which will be mapped to the group of objects A, B and C in
team T'r’s specification. This raises the question of whether any event involving object
Ain team T7,’s specification would have to be reflected in all of its mapped variants on
the right. Currently, InterPlay broadcasts such an event to all internal objects mapped
to an external one, but other possibilities are mentioned in Section 6.

During play-out, InterPlay carries out the ramifications of the mappings set up in the
preliminary phase. Each Play-Engine connects to InterPlay through its external man-
ager. Once connected, played out events (user operations, property changes and method
calls) are transmitted to InterPlay, which translates them according to the mappings and
sends them to all the relevant Play-Engines. Consider the blue (rightmost) scenario in
Figure 5. Play-out starts with team 7r’s Play-Engine, involving object C'. Since C' is
internal to Tr’s, its Play-Engine performs the necessary events, operating it. InterPlay
translates and transmits these events to the 77, ’s Play-Engine, which traces the scenario
as well. The scenario moves on to object D, which is external to T’r’s scope, and thus
Tr’s Play-Engine goes idle. Object D is now ‘driven’ by the T7’s Play-Engine and
through InterPlay the respective events are sent to the T'r’s Play-Engine. This initiates
an event coming from D, allowing the scenario to proceed. The scenario continues in
a similar fashion, with each Play-Engine running and driving its own internal objects,
and waiting to receive input from the other one if necessary.

As mentioned above, this description concentrates on several Play-Engines, but a
similar process is carried out when the Play-Engine is connected to Rhapsody. More on
this later.

S An Example: The Food Take-Out System

In this section we illustrate InterPlay by a simple example of a food take-out service that
enables clients to order food from diverse restaurants through a single ordering center.

= Take-out system: Overview

Client Ordering Center Restaurant

Fig. 8. The three high-level components of the food take-out system.

78 Dan Barak, David Harel, and Rami Marelly

The development process starts with specifying an inter-object overview of the sys-
tem’s overall functionality. This coarse specification identifies the system’s main com-
ponents — a client, the ordering center and a restaurant component — as illustrated in
the GUI of Figure 8. Using the Play-Engine and LSCs, we describe the functional-
ity of the system by interactions among these components, as exemplified in Figure 9.
One LSC therein describes the simple process of acquiring a menu from the ordering
center, while the other concerns placing a take-out order. Before we explain the latter
LSC, note that the Client and Restaurant were internal at this stage and became
external only in later design stages. The prechart contains the event of the Client
ordering a dish by calling the Center’s Order (Dish) method. Should this occur,
the main chart specifies the Center asking for a time estimate on the Dish from
the Restaurant, by calling the Restaurant’s Estimate (Dish) method. The
Restaurant’sresulting estimated time is conveyed to the Center via the Time (T)
method. (In accordance to the inter-object design approach we do not specify at this
stage how the restaurant calculates this estimated time.) After receiving the estimated
time to delivery, the Client responds by calling the Conf irm method with its ID
and Decision. Should the Client agree, depicted by the cold Decision=True
condition, a series of method calls follows, confirming the order to the Restaurant
and getting an OrderID in exchange. If for some reason the Cus tomer doesn’t wish
to order, the chart is simply exited, in effect cancelling the order.

I:lﬁ —3 o
Client l Client I | Center | [Fiest I

< f_i_el_M _EDHLM_E9Q> N . < L OrderDishl_ {3 \ R
Mer Dls_h_‘l_ Dighz| D!shB] : : _E_s_tl_rqa_l_e[Q ish| :
' 4..Il_n3@LTJ___<
iq,,l",“}?m,, -
Mo Forbidden Elements anfl_rr_n CI0.| D_e_c_lqgml
™
<DE°'SE£'T'_“E/ |
| +_ Order(Dish_ {:1
Qr_d_er_l DIDrderlD;

Mo Forbidden Elements

Fig. 9. Two LSCs describing an overview of the behavior of the take-out system.

We now decide to distribute the rest of the specification among three teams, each
in charge of one of these components. Each team is required to refine the specifica-

InterPlay: Horizontal Scale-up and Transition to Design 79

tion of its assigned subsystem, respecting the interface that was defined on the coarse
level. Hence the client has an internal object called I_Panel, implementing the in-
terface defined by the C1lient object on the coarse level and serving as its interface
with the other system components. It also has an external object called CommUnit
that implements the ordering center’s interface within the client’s subsystem. In other
words, the entire client subsystem interacts with the rest of the system, represented by
CommUni t, through its interface, I_Panel. Similarly, the restaurant’s subsystem has
an internal object, I_Rest, as its interface with the ‘outside world’, which in turn is
represented by the external CommUni t. These objects can be seen in Figures 10 and
12, which show the refined GUIs and additional objects of the client and restaurant
subsystems, respectively.

=, Client Panel ol [=] |
Internal Objects Map D@E
- Menu
Interrials Breakfast Lunch ‘ Dinner ‘
|_Panel CommUnit
D=3 State = Up rder
Decision = Available | |Gethdenuf) Pasta ‘ Salad ‘
Menul) Order(]
Time() Confirm()
ideill] Estimated Time: (30
‘ LIJ ok Cancel

Fig. 10. The client’s GUI and internal objects.

ST T T TN

< Ok
: Dish := Dish_Class.Mame

Mo Forbidden Elements

Fig.11. An LSC that describes the ordering process from the client’s point of view. This LSC
is invoked by all three buttons referring to dishes (second row in the GUI), which are of class
Dish_Class.

Having the coarse design level available, we then approach the client subsystem
and refine its specification using the aforementioned interface and adding to it further

80 Dan Barak, David Harel, and Rami Marelly

objects and internal behavior. Figures 10 and 11 illustrate this specification refinement,
with its GUI and a self-explanatory LSC example that describes the process of the client
ordering a dish.

Now that the client’s subsystem refinement is complete, we make the Client ob-
ject on the coarse level external. As such, the Play-Engine playing out the coarse level
can no longer initiate events from the client. Instead, it waits for them to arrive, having
been initiated by another Play-Engine playing out the client subsystem. We played out
both specifications, one fine and one coarse, in cooperation, using InterPlay, as we ex-
plain shortly. At this stage the restaurant has not been refined yet, so it continued to be
‘driven’ by the coarse level specification.

=| Restaurant g@g\
=
Internals Close
Cornmlnit |_Rest
State = Up State = Lp
Tire{) E stimatel) Customers: 13
OrderlD{) Order
;
Ordler: 103
kil ;I_‘ Tirne:
Cooks 10

Fig. 12. The restaurant’s GUI, including cooks and a reflection of its state. Cooks wearing hats
are laboring in the kitchen while the others are on break.

The restaurant’s team then starts to refine its specification, deciding that the restau-
rant has to have some cooks to keep the business running, a few customers who sit
inside, and two indicator buttons to capture the opening and closing of the restaurant.
The team specifies how these parts of the system should behave, independently of, and
in ignorance of, how their ‘outside world’ operates, but still aware of it and interacting
with it through the external CommUni t. The restaurant’s GUI and additional objects
are shown in Figure 12, while an LSC example describing part of its internal behavior
is shown in Figure 13.

The LSC in the figure specifies how the restaurant calculates the time estimate for
a requested dish. It is activated when the CommUnit requests an estimate by calling
the method Estimate (Dish) of the restaurant’s interface, I_Rest, as defined in
the prechart. In the main chart, using a select-case construct, the basic time required for
the requested dish is stored. The number of available cooks is also taken into consid-
eration in the if-then-else construct. Finally, the restaurant’s interface I_Rest returns
the preparation time to the ordering center, through the CommUni t. The restaurant’s
specification refinement involved a few other LSCs that deal with its internal behavior,
such as one describing the working routine of the cooks in the restaurant, depending on
the amount of clientele patronizing it. For lack of space we will not show these here.

InterPlay: Horizontal Scale-up and Transition to Design 81

EommUnil| | |_Rest | | Cookl | | Conkz2 | | Cook3 |
ey N

< _E_s_tma_t_e[Q I§h

Dlshzea_k/

20

T

Drizh=| F'asti/

—

Ci:sz

Eonk‘l State=| Eusy CookZ Slate—Busy Caok3 State Busf/

—5—

T=T+15

-

e D
o Tme@ T T T

Mo Forbidden Elements

Fig.13. An LSC describing part of the restaurant’s inner behavior.

Recall also Figure 4, which updates the number of clients in the restaurant every 3 clock
ticks, by calling the Upda te method.

Having now refined the specifications of the client and the restaurant subsystems,
we make both Client and Restaurant objects external on the coarse level. The
three system models, with only the objects and their respective properties and methods,
are loaded into InterPlay. We map the refined subsystems to the coarse specification, in
turn, by associating their appropriate interface objects: I_panel is mappedto Client
and I_Rest is mapped to Rest, while both CommUn1i ts on the fine level are mapped
(separately) to Center on the coarse level. Notice that the latter two mappings are
made based only on a subset of the methods and properties, while the former two are
made on the object level. The mapping of the refined restaurant to the overview of the
system is shown in Figure 14.

The entire system can now be run in cooperation by three different Play-Engines,
one for each of the two refined subsystems and the third running the coarse specifica-
tion, providing the functionality of the yet unrefined ordering center and monitoring the
entire run. Since the Play-Engine can record a run and later display it as an LSC, we
have attached in Figure 15 the three recordings of the respective Play-Engines.

After all of this, and assume we have executed, revised and verified the inter-object
specification, we might want to make a transition to design, or in other words, to move
towards an intra-object implementation. We could pick the restaurant’s interface unit
(I_Rest), for example, which has clear internal behavior. We would make it external
to the inter-object specification of the restaurant, and proceed to define its internal be-
havior in a state-based fashion using statecharts and Rhapsody. We can now load the

82 Dan Barak, David Harel, and Rami Marelly

£z Translator,
tModel Mappings
Model 1 Load Mapping number Load Model 2
|c:\Demo\appﬁestauranl.kml 1 - |c:\Demo\appDverview.xm|
+-[J Cook3 -~ +- [Client
+-[JOpen =[O Center
+- [Close g
+- [Custarneri Add Mew Mapping [Kind
+- [Orde =IO Properties
+- [Time Gtate
+- [CustomerCorttral Match =[] Methods
= [#1_Rest O Gettenu
[[l Timne
-I- [Properties Urimrenelh O Corfirrn
O state 200331 -5 100231 O] el
=[] Methods 2002.3.1 > 1003.3.1 OrdderlD
[Estimate 2003.2.1 - 1002.2.2 = Rest
o e
= O Cormmlit 200201 > 100361 D ine
O - - -1 O Properties
-I- [Properties OsState
State -1 O Methads
-1 [Methads [Estimate
Timne [Order
OrdedD
br ir,r:: Clear
¢ > 2
Connections File Options
Connect Disconnect Infa
|I_Hest
Model: R
127001 Connect | Connected Disconnect File
Modet [13276. 80100 Conrect | Comnected Disconnect |e:tDemaitakeout map
- Save Mappi Load tappi
Mnodel (132 7651 114 Connect | Connected Discannect SN SR
Model: '7 Connect | Disconnected Dizconnect ,TI Cancel |

Fig. 14. InterPlay screenshot, showing the mapping of the refined restaurant’s subsystem model
to the coarse level overview of the take-out system.

unit’s system model from Rhapsody into InterPlay and map it to the restaurant’s LSCs
specification. This would then allow running the intra-object design, or implementation,
of the panel both against its specification and in cooperation with the rest of the take-out
service system.

Doing this for all the parts of the system that we want to have implemented in
an intra-object way would lead to a full implementation. All remaining parts would
be played-out in an inter-object manner, with the relevant Play-Engines handing over
control whenever an implemented part is to become active.

6 What Next?

In this section we discuss several issues for future research.

InterPlay: Horizontal Scale-up and Transition to Design 83

—03
[Clignt I ‘ Center

I Rest]

P —f—
Gt anujBreakfia;-}t] :

Enmml_lnit] | |_Rest | ‘ Ordert ‘

Merﬂﬁ teak, Pasta,S.alad]
: ldeljStsak_]_Dj

s stmatelstear

;} Tirnef20]

| DdeSieak) !
D02

\

\

\

\

\

\

\

\

\

\

\

\

\ :
Client_R H
L
% | Lunch | ‘ 1_Panel

CUmmUn|t| | Dishl | ‘ Dish2 ‘ | Dish3 | | Time | ‘ 0K ‘ | D|nner|

%::]M ake Deckion{coent)
1Ennf\|m[33,Tluﬁ

sanfimn].35. T

|
| : .
| i : ‘40_ derlD(102)_
| ‘ '
|

" Make Decjsionftvailable] |

Fig. 15. The results of running the take-out system using three cooperating Play-Engines. Each
LSC is the trace of the run from the point of view of one Engine’s model.

Connecting to Rhapsody: We have repeatedly stated as our goal not only to connect
Play-Engines to each other, but also to allow cooperation between many types of design
or modeling tools. We have set up an initial connection between Rhapsody and the Play-
Engine. Its present status is that of a feasibility test, and was carried out in a tailored
fashion for a particular system model, with very encouraging results. We are now in the
final stages of making this connection generic through InterPlay.

We do not make any changes to Rhapsody’s framework in order to allow this con-
nection. Instead, we offer an API with which a dll plug-in can be created. The plug-in
serves as an observer that receives events of interest from Rhapsody as they take place
during the system run, and can also interact with the animation module of Rhapsody,

84 Dan Barak, David Harel, and Rami Marelly

generating events that will impact the animation. We then made it possible for these dll
plug-ins to communicate with InterPlay, in both sending and receiving events.

Connecting to Other Implementations: There is clearly much value in allowing
the Play-Engine to be connected to other kinds of modeling and implementation tools,
including standard programming environments. For example, if a project requires de-
signing a new component that has to fit exactly into an existing complex of implemented
components or systems, it could be extremely useful to connect the LSC model we build
for it using the Play-Engine via InterPlay directly to the real environment, allowing the
composite system to be tested and run as an integrated whole.

Moreover, given such flexible connection abilities, modeling tools like the Play-
Engine could be used to conduct integration tests of implemented components even if
these were designed using other tools. The implemented system could then be executed
with a Play-Engine tracing its runs, making sure they fit the requirements (which would
have been predefined as LSCs).

To make such broad connection abilities possible, we intend to construct a simple
API for connecting to InterPlay, which most implemented systems will be able to in-
corporate. Since they would all connect to each other through InterPlay, no changes in
any of these tools will be required by this addition.

Synchronous Messages: Synchronous messages, supported by the Play-Engine, raise
a whole new level of complexity when one uses InterPlay to carry out truly distributed
modeling and implementation. Recall that a synchronous messages is one that flows
(for all practical purposes in zero time) from the sending object to the receiving object
if and when the former is ready to send it and the latter is free to receive it. When both
objects are controlled by a single Play-Engine it is relatively easy to determine whether
the message can be sent, and if so to make sure nothing changes in the two objects until
the message is delivered. This is far more complicated when the two objects are driven
by different Play-Engines, and even worse if they are driven by statecharts or code.

Several possible solutions come to mind, such as using a two phase commit proto-
col, of the kind used in certain kinds of transaction processing. We have not yet dealt
with this feature, and doing so would probably require subtle changes both in the Play-
Engine and in the InterPlay module.

Centralized Clock Ticks: Another complication that InterPlay gives rise to involves
time. Recall that the Play-Engine supports time via a single clock, with a tick event
that can be advanced through the host computer’s clock or via the model itself (e.g., by
the user or by other objects). Clearly, different Play-Engines running different specifi-
cations cannot be assumed to advance clock ticks at the same (absolute) rate, and the
classical problems of distributed time arise in full force. Even running a single Play-
Engine will advance time very differently when run with or without visual animation
of the LSCs, not to mention different Play-Engines working in tandem or with other
modeling tools.

Without getting into the usual controversies and opinions about how to best deal
with time in a distributed environment, it is quite obvious that there are several incen-
tives for supplying a mechanism for centralized clock ticks across InterPlay. (For one,
we might be using InterPlay to build an ultimately centralized system in a distributed

InterPlay: Horizontal Scale-up and Transition to Design 85

fashion.) We propose to add the option of receiving clock tick signals from InterPlay
through the external event manager. This is relatively easily done. We have also looked
closely into Rhapsody, which has a special time mode controlled by the user, and con-
clude that it too can receive clock ticks from InterPlay through the observer dll without
making changes to the main program’s framework.

Type Mapping: Currently two objects, or their properties and methods, can be ef-
fectively mapped to one another if they are of the same type, or receive parameters of
the same type. We plan to consider adding more flexibility to InterPlay through a type-
mapping feature, allowing system models to enrich their interaction without having to
make further adjustments to the model itself.

Delegating to Multiple Objects: Recall that InterPlay allows mapping multiple ob-
jects to a single one on the object abstraction level. However, should an event that
involves the single object be necessarily reflected onto all of its multiple images? We
do not have enough experience with InterPlay to decide on this quite yet. Other than the
obvious approach, currently implemented, of broadcasting each message (and relevant
event) to all the objects mapped to the source, we could also implement a scheme that
sends it to the latest image to have interacted with the source. We could also have a
user-driven mode, letting the user of InterPlay decide at run time how to delegate the
message. Recently we have been toying with the idea of allowing asymmetric map-
pings, which might solve this problem more elegantly, but this is still in preliminary
stages only.

Vertical Scale-up: In this paper we have used the term horizontal scale-up to denote
the kinds of connections between tools we have discussed. The reason is that what they
make possible is the composition of collections of objects in a side-by side manner
(although in an implicit way a limited kind of refinement can be specified too as we
have seen in section 5). Complimentary to this is vertical scale-up, whereby we want to
support in LSCs and the Play-Engine the aggregation, or rich refinement of objects.
In other words we want in the large a full notion of hierarchies of objects, complete
with multiple-level behavior, even within a single LSC specification. And we want all
this related in the play-in and play-out processes. This is a complicated topic, since it
is not clear how to best define aggregation in the presence of inter-object behavior. For
example, how should scenarios (i.e., LSCs) defined within an object, among its sub-
objects, be connected to the scenarios between the parent object and its siblings on the
higher level? What kind of mappings should we allow between levels, etc.? We are in
the midst of a research project on this, and hope to be able to report on it in a future

paper.

References

1. N. Brown and C. Kindel. Distributed Component Object Model Protocol - DCOM/1.0.
http://www.microsoft.com/oledev/olecom/draft-brown-dcom-v1-spec-01.txt.

2. W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence Charts. Formal Meth-
ods in System Design, 19(1), 2001. (Preliminary version in Proc. 3rd IFIP Int. Conf. on
Formal Methods for Open Object-Based Distributed Systems (FMOODS’99), (P. Ciancarini,
A. Fantechi and R. Gorrieri, eds.), Kluwer Academic Publishers, 1999, pp. 293-312.).

86

10.

11.

Dan Barak, David Harel, and Rami Marelly

D. Harel. Statecharts: A Visual Formalism for Complex Systems. Sci. Comput. Prog., 8,3,
231-274, 1987. (Preliminary version: Tech. Report CS84-05, The Weizmann Institute of Sci-
ence, Rehovot, Israel, February 1984.).

. D. Harel and E. Gery. Executable Object Modeling with Statecharts. Computer, July 1997,

pp. 31-42.

D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using LSCs and
the Play-Engine. Springer-Verlag, 2003.

I-logix,inc., Website: http://www.ilogix.com/products/rhapsody/index.cfm.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specifi-
cation. Springer-Verlag, 1992.

Microsoft .NET architecture and resources: http://www.microsoft.com/net/.

OMG - Object Management Group. The Common Object Request Broker: Architecture and
Specification. 2.2 ed, 1992.

Simple Object Access Protocol (SOAP) 1.1. W3C Note 08 May 2000.
http://www.w3.0org/TR/2000/NOTE-SOAP-20000508/.

A. Wollrath, R. Riggs and J. Waldo. A Distributed Object Model for the Java System.
USENIX Computing Systems, vol. 9, November/December 1996.

	1 Introduction
	2 The Play-Engine and LSCs
	3 External Objects in Preparation for InterPlay
	4 InterPlay: Cooperation of Various Design Tools
	5 An Example: The Food Take-Out System
	6 What Next?
	References

