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Abstract. Dependability evaluation main objective is to assess the ability of a
system to correctly function over time. There are many possible approaches to
the evaluation of dependability: in these notes we are mainly concerned with de-
pendability evaluation based on probabilistic models. Starting from simple prob-
abilistic models with very efficient solution methods we shall then come to the
main topic of the paper: how Petri nets can be used to evaluate the dependability
of complex systems.

1 Introduction

The term dependability is normally used to refer to the ability of an element ( hardware
or software component, plant or whatever complex system) to correctly perform its
intended function, or mission, over time.

In this paper we are interested in the quantitative evaluation of dependability, a
research field that has many practical implications, as: 1) the analysis of risks and safety;
2) the specification and contract document of a system - it is usually the case that the
definition of a new system also includes requirements about dependability, that is to say
on how much we can rely on the system being built, whether this is a software product,
an automation system, or a bridge; 3) incidence of maintenance in the life cycle of a
system - being able to estimate the dependability of an object allows to predict how
often it will break down, with the consequence of additional costs on maintenance,
and to take decision on the balance between investing more time and money on the
construction of the system and having bigger maintenance costs; 4) dimensioning of
technical assistance sector: being able to predict how often a component of a car will
break down allows to estimate the number of spare components needed over a certain
time period, the costs of the repairs during the warranty period, and the planning of the
preventive maintenance.

To study the evolution over time of the dependability of a system it is necessary to
be able to foresee when and how its component will be subject to malfunctioning, and
how the malfunctioning of a component may affect the system behavior. There are two
major approaches: measuring of physical, existing systems, and evaluation of abstract
models of the (existing or planned) systems.

For what concerns measures, we can distinguish the following classes:

� Field measures.
It assumes that the system is already operational, and that is possible to measure the
quantities of interest without altering the system behavior. Field measures should
be collected for a “statistically significant” period.
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� Single component measures.
Only a subset of the components are placed under test to collect measures. This is
usually accompanied by acceleration technique, that generate, in a short period of
time, the same conditions that the component will encounter along a much longer
period.

� Prototype measures.
A prototype of the system is built, and measures are taken on the prototype under
normal operational condition. This technique is very expensive, and it can be used
only for goods of large consume or that involve an expected high safety risk.

The approach based on models requires first the construction of abstract mathe-
matical models that describe the behavior of the system: the quantity of interest is the
computed through the analysis and solution of the model. Modeling for dependability
suffers of the same problems as any other modeling approach: the choice of the right
level of abstraction for the quantity/property we want to evaluate and the complexity of
the model solution.

Models are usually distinguished according to the following characteristics:

� Modeling language.
A model can be described in terms of basic quantities and mathematical expressions
that relate the overall behavior to the basic quantities, as well as through an high
level language with a well defined semantics, as for example Petri nets or queueing
networks, or application-specific languages, in which the language elements have
a direct counterpart on the system basic components. In general, the higher level is
the language, the easier is to define the model, and usually the harder is to solve it.
By model solution we mean the evaluation of the quantity of interest, in our case it
is usually a direct definition of the dependability of the system.

� Solution methods.
There are two large classes of solution methods: analytical techniques and simu-
lation. Analytical techniques assume that it is possible to derive from the model
a set of equations that describe the quantities under evaluation, and that there are
mathematical techniques, exact or approximate, to solve the equations. Simulation
consists instead in executing the model on a computer a number of times that is suf-
ficient to provide a statistically acceptable estimation of the quantities of interest.
There are high level modeling languages for which simulation is the only viable
analysis technique, as it is usually the case for application-oriented languages, in
which the semantics of the basic elements of the language is not defined in mathe-
matical terms, but through a piece of program code.

Topic of these notes is indeed to describe various modeling approaches to the eval-
uation of dependability, with a large emphasis on Petri nets.

Measures and models should by no means be considered as competitors. The eval-
uation of dependability requires the synergic use of both: measures can indeed be used
to set the model parameters, while models can be used to drive the, usually expensive,
measuring activity.

With the inherent complexity of modern systems it is extremely difficult to precisely
and deterministically describe the physical, technological, and environmental factors
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and interactions that provoke a system malfunctioning. It is instead very much accepted
that the time to failure of a system (how long does it take for the system to go into
a faulty state) is not a deterministic quantity, but a random variable of a, generally
unknown, distribution. A similar rationale supports also the idea that, if a system can
be repaired, then the time to repair (how long it takes for the system to be repaired) is
also a random variable.

The above observations led to the development of a probabilistic approach to the
quantitative evaluation of system dependability, that is the main topic of this paper.

Let us now introduce the terminology used in this paper.

Faults, errors and failures. We adhere to the terminology discussed in [43], and we say
that when the delivered service of a system deviates from fulfilling the system intended
function, then the system has a failure. A failure is due to a deviation from the correct
state of the system, known as error. Such a deviation is due to a given cause, for instance
related to the physical state of the system, or to a bad system design. This cause is called
a fault. We shall generically refer to fault, errors, and failures as the “FEF elements.”

Systems and components. We view a system as built out of elementary components.
We shall first discuss dependability of a component in isolation (that can be seen as a
single-component system), to then introduce the dependability of a system as a function
of the dependability of its components. When dealing with a single component we do
not distinguish the FEF elements, so we equivalently refer to a component as being
faulty/non-faulty, failed/not-failed, not-working/working, down/up, which are current
terms in the literature. For a system with a simple structure like whose presented in
Sub-Section 5.1 we distinguish between fault in a component and failure of the system
(provoked by one or more faulty components). The reader should nevertheless be aware
that it is also common of the literature to use the generic term failure, so that the failure
of one or more component provokes the failure of the system.

Net classes. Since the main topic of the paper is on quantitative analysis based on
probabilistic approach, we shall consider Petri nets with timed transitions. The time
associated to transition is either zero (immediate transition) or it is a delay described
by an exponentially distributed random variable. We shall use two specific net classes:
Generalized Stochastic Petri Nets (GSPN) [1], and their colored counterpart Stochastic
Well-formed Nets (SWN) [18].

The paper is organized as follows: in Section 2 the basic concepts of dependability
are introduced. Section 3 presents two combinatorial techniques for the dependability
analysis of systems consisting of a number of independent components: the reliability
block technique and fault tree analysis. Section 4 describes state enumeration tech-
niques that can be applied also for the dependability analysis of systems in which the
independence assumption among components does not hold. The material presented in
Sections 2,3 and 4 derives from [13]. Section 5 introduces dependability modeling us-
ing Petri Nets. Two examples are presented: a simple one, representing a system with
two independent components, and a more complex example with several interacting
components that is a simplified version of the case study analyzed in [10]. Section 6
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describes a systematic, compositional approach to the construction of Stochastic Petri
Net models for dependability and Section 7 describes the application of such approach
to the automation system domain. The material presented in Sections 6 and 7 has been
taken from [8, 7, 4]. Finally, conclusions are written in Section 8.

2 Basic Concepts of Dependability

A first step towards quantitative evaluation of dependability is the definition of the de-
pendability quantity. The definition of dependability takes different flavors depending
on whether we consider a system that, once broken, stays broken forever, or a system
that, once broken, it is repaired and goes through cycles of correct functioning and re-
pairs. In the first case the measure to be considered is the reliability, in the second case
is the availability, as we shall see in the following.

2.1 Dependability of Non-repairable Components: Reliability

The first case considered is that of non-repairable components, that is to say the system
under study is seen as a monolithic component that, once it is broken/malfunctioning, it
will stay in that state forever. In this case the dependability of the system is characterized
by the reliability quantity. A commonly accepted definition of reliability [60] is:

The reliability of a component at time t is the probability that the component
correctly fulfills the assigned mission during the interval [0, t], given its environ-
mental conditions.

Observe that the definition relates the reliability of a component to its environment:
it is therefore possible that the same component will have a very different reliability
depending on the environment in which it is placed.

Let τ be the random variable that represents the time to failure of the component
under study, τ being a time quantity, it is defined only for non-negative values. The
probability distribution function of the variable τ is:

F(t) = Prob{τ ≤ t } (1)

that defines the probability that the system is malfunctioning at time t. The following
properties hold true for F(t):






F(0) = 0

lim
t→∞

F(t) = 1

F(t) not decreasing in t

(2)

The reliability function is defined as the complement of F(t):

R(t) = Prob{τ > t } = 1 − F(t) (3)
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that defines the probability that the system is still working properly (still up) at time
t (and since the system is not repairable, being up at time t it means that no fault has
taken place). The following properties hold true for R(t):






R(0) = 1

lim
t→∞

R(t) = 0

R(t) not increasing in t

(4)

If F(t) is derivable, the probability density function of the variable τ is:

f (t) =
d F(t)

d t
= − d R(t)

d t
(5)

where f (t)dt is the probability that the value of τ falls in between t and t +dt, that is to
say, the fault takes place in between t and t + dt. Moreover:

∫ b

a
f (t) d t = Prob{a < τ ≤ b} = F(b) − F(a)

represents the probability that the fault takes place in the interval [a,b].
The expected value of the variable τ, E[τ], is called Mean Time To Failure, and is

indicated by the acronym MTTF.

The hazard rate. The hazard (or failure) rate represents the probability that a component
gets faulty between t and t +dt, given that it was correctly functioning up to time t (that
is to say, the hazard rate is equal to the probability density function of the τ variable,
conditioned on the fact that the component was still working correctly at time t [51]).

h(t) = Prob{ t < τ ≤ t + dt |τ > t } =
Prob{ t < τ ≤ t + dt , τ > t }

Prob{τ > t } (6)

From (6), using (5), we can derive:

h(t) =
f (t)
R(t)

= − 1
R(t)

d R(t)
dt

(7)

and solving for R(t) we get:

R(t) = exp

[

−
∫ t

0
h(x)dx

]

(8)

that is the fundamental equation that relates reliability and hazard rate.
The classic shape of the failure rate when plotted over the time axis is that of a bath-

tube: the failure rate is high at the beginning of the life of the object, it then remains
stable for a significant period, and it finally increases. In terms of behavior of a system,
it means that most systems have a very high probability of breaking when they are new,
this probability decreases while experiencing a correct functioning of the system, up to
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a point in time in which the failure rate is constant, that is to say the failure rate does
not depend on the particular time instant that we are considering, and up to a certain
time barrier after which the aging of the system is predominant and the probability
of breaking down increases as the time passes by. The bath-tube shape is particularly
evident for manufacturing products, while for electronic components the aging effect is
less evident.

In the technical literature it is often the case that the failure rate is a single constant
value, which implies that we are assuming that the system is in its period of life corre-
sponding to the bottom of the bath-tube: a constant failure rate is therefore equivalent
to saying that the system has no memory of its past.

Which distribution for τ? Given that the time of correct functioning of a system is a
random variable, what is an adequate distribution for it? We shall present two candidate
distributions: exponential and Weibull.

The main characteristic of the exponential distribution is that the failure rate is con-
stant, and, vice-versa, any distribution with a constant failure rate is exponential [63].
Given a constant failure rate, h(t) = cost = λ, from (7) and (5) we can derive:

F(t) = 1 − e−λ t

R(t) = e−λ t

f (t) = λ e−λ t (9)

h(t) = λ

The mean value is of τ is MT T F = 1/λ, that is to say, the failure rate has a clear
physical meaning: it is the inverse of the failure rate.
The exponential distribution is known as memoryless since the reliability conditioned
on the fact that the component has been working correctly already for a duration t = a,
is equal to the reliability at time t = 0.

The Weibull distribution is:

F(t) = 1 − exp
[
−(t/η)β

]

where η > 0 is the scaling parameter (displacement on the x-axis), and β > 0 is the
shaping parameter. Changing β we get a different characterization of the failure rate:

β < 1 =⇒ h(t) decreasing

β = 1 =⇒ h(t) constant

β > 1 =⇒ h(t) increasing

Observe that the exponential distribution can be seen as a Weibull with β = 1. The abil-
ity to represent various behaviors of the failure rate is the major appeal of the Weibull
distribution for dependability modeling.
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2.2 Dependability of Repairable Components: Availability

We now consider the case of a component that, once broken, can be repaired. The
behavior of a repairable component over time is therefore determined not only by the
way in which it fails, but also by the way in which it is repaired, and we can consider
the life of a system as an alternation between two states: Up (system is working) and
Down (system is not working and it is under repair).

We assume that the intervals of correct functioning (time to failure), and the inter-
vals of incorrect functioning (time to repair) are described by random variables. Let
τ1, τ2, τ3, . . . be the random variables of the successive duration of the up times, and
θ1, θ2, θ3, . . . the associated repair times, under the hypothesis that the repair is “regen-
erative”, that is to say that after the repair the component is “good as new”, then all the
τi have the same distribution F(t), and all the θi have the same distribution G(t), and
we can describe the behavior of the system with only two random variables τ, duration
of the Up times, and θ, duration of the Down times. G(t) represents the probability that
the component is repaired in [0,t], and it is called Maintainability. Similarly to what we
have done for F(t), we get for G(t) the following expressions:

g(t) =
d G(t)

dt

hg(t) =
g(t)

1 − G(t)

MT T R =
∫ ∞

0
t g(t)dt

where MTTR is the Mean Time To Repair, and hg(t), the repair rate, is the probability
that the repair is terminated in the interval [t,t + dt], given that the component was
still unrepaired at time t. If we assume that the repair rate hg(t) is time-independent,
hg(t) = cost = µ, then the maintainability is an exponential function:

G(t) = 1 − e−µt and MT TR =
1
µ

(10)

The assumption of time-independence is not very realistic since, in general, the time
it takes to finish a repair does depend on how long the repair has already taken, but
this assumption is nevertheless often taken in the literature and in the practice, for the
advantages that it offers in the solution process.

It is clear that if a system is subject to failures and repairs, the reliability function
R(t) is not particularly informative since for any t greater than the time of the first
failure, the value of R(t) is always going to be zero.

A new quantity is therefore defined, and it is called availability, indicated as A(t).
A(t) is the probability that the system is Up at time t.

A(t) = Prob{at time t, state = Up} (11)

The unavailability U(t) is instead the probability that the system is Down at time t.

U(t) = Prob{at time t, state = Down} (12)
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and, since we assume that the system is either Up or Down , we have:

A(t) + U(t) = 1

The computation of A(t) and U(t) of a system starts from the observation that A(t)
(U(T )) is equivalent to the probability of being in the Up (Down) state at time t. But the
probability of being in the Up state can be computed writing equilibrium equation, since
the variation over time of the probability of being in state Up is equal to the difference
between the probability of entering the Up state and the probability of leaving the state,
that, assuming a fixed failure (repair) rate equal to λ (µ), amounts to the following
equations: 





d A(t)
d t

= −λA(t) + µU(t)

d U(t)
d t

= λA(t) − µU(t)

(13)

Assuming that at time 0 the system is working properly, we can set A(0) = 1, we can
solve the equations (13), and obtain:

A(t) =
µ

λ + µ
+

λ
λ + µ

e−(λ+µ)t

(14)

U(t) =
λ

λ + µ
− λ

λ + µ
e−(λ+µ)t

And we get:

A(0) = 1 ; lim
t→∞

A(t) = A∞ =
µ

(λ + µ)
(15)

The typical shape of the availability function is made up of a transient term that ex-
hibits an exponential decay, and a time independent term that constitute the horizontal
asymptote.

Since in a repairable system MT T F � MT T R, and hence λ � µ, the contribution
of the transient term decays very quickly, and therefore the availability is often identified
by its asyntotic behavior in (15).

If A∞ is the asymptotic availability, we can write

A∞ =
µ

λ + µ
=

1/λ
1/λ + 1/µ

=
MT TF

MT T F + MT T R
(16)

Although the above expression has been derived under the hypothesis of constant
failure and repair rate, it has been proven [24] that it holds for any distribution F(t) and
G(t), given that MTTF is the mean value of F(t) and MTTR is the mean value of G(t).

3 Combinatorial Methods for System Dependability

Assuming that we are able to characterize the failure and repair distribution of a compo-
nent, we have seen how to predict its availability. But if a system is a complex aggregate
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of components, it may be difficult to associate directly to the system a failure and repair
distribution. As usual in computer science, when a problem is too complex, a divide
and conquer technique may lead to viable solution, and this is indeed the approach that
we shall discuss next: given a number of independent components, and a well defined
way of combining them into a system configuration, we shall see how to compute the
reliability (availability) of a (repairable) system. We present two techniques: reliability
blocks [60] and fault trees [59].

3.1 Reliability of Non-repairable Systems

In reliability blocks we assume that the system under study is built out of two basic
configuration schemes: series configuration and parallel configuration.

A system is the series configuration of two components if the failure of one of
them provokes the failure of the whole system. If we assume that the components are
statistically independent, and letting R1(t), R2(t), . . . ,Rn(t) be the reliability of the n
components at time t, then the reliability of the system at time t, Rs(t) is [60]:

Rs(t) = R1(t) ·R2(t) · · · Rn(t) (17)

The reliability of the system is the product of the reliability of the components, and
since the Ri(t) are positive values less than 1, it implies that more components we have
in a series the less reliability we have.

If the failure rate of the components is constant (and therefore the Ri(t) are expo-
nential distributions of parameter λi), we derive from (17):

Rs(t) = e−λs t with : λs =
n

∑
i=1

λi and MT TF =
1
λs

(18)

meaning that the whole system fails according to an exponential distribution.
If we want to build a more robust system, we can use the concept of parallel redun-

dancy: the system is built out of n components, and the whole system fails only if all
the components fail. Again, assuming that the components are independent, and for the
simple case of n = 2, we can state that the unreliability Fs(t) can be computed as:

Fs(t) = F1(t) ·F2(t) (19)

from which we derive:

Rs(t) = R1(t) + R2(t) − R1(t) ·R2(t) (20)

Equation (20) implies that the reliability of the system is greater that the maximum
reliability of its components. In the case of constant failure rate we get:

Rs(t) = e−λ1 t + e−λ2 t − e−(λ1+λ2)t e MT T F =
1
λ1

+
1
λ2

− 1
λ1 + λ2

(21)

The expression for Fs(t) of (19) can be generalized to the n case, leading to:

[1 − Rs(t)] =
n

∏
i=1

[1 − Ri(t)] (22)

from which Rs(t) can be computed.
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The equations above allow the computation of the reliability function of systems
that have a complex parallel-series composition scheme, indeed each Ri(t) could be the
reliability of a complex subsystem, that can be expressed with a formula that depends
on whether the subsystem is the serial or parallel composition of sub-subsystems, and
so on.

A special type of parallel redundancy is the so-called k out of n (indicated as k:n):
the system has n redundant components placed in parallel, and the system works fine
when at least k out of the n components works properly. An example of such a system
can be a redundant water pipeline in which the required water flow is ensured as far as
k pipelines are correctly transporting their flows.

The probability that exactly i components out of n work fine, in the hypothesis that
all components have the same failure rate R, is given by the binomial distribution:

Pr{ i : n} =
(

n
i

)

Ri (1 − R)(n−i) (23)

since the system is working in all cases in which i components, with i > k, are correctly
working, we get:

Rk:n =
n

∑
i=k

(
n
i

)

Ri (1 − R)(n−i) (24)

3.2 Availability of Repairable Systems

Let us now consider the case of a system built out of repairable components. Again
we shall consider the failure process and the repair process of the components totally
independent: this hypothesis is less realistic than in the case of a single component,
since it is often the case that there is a limited number of resources allocated for repairs,
shared among all components, so that the computed availability may be an upper bond
of the real value.

If there are n components configured in series, then the availability of the system As

is given by:
As = A1 ·A2 · · · An

where the A1, A2, . . . , An and As are evaluated for the same time instant t, or at infinity.
If the constant rate hypothesis applies, then the first equation in (14) can be used.

Again, the availability of the system is smaller than the availability of the worst
component, and therefore to increase the availability of a system it is advisable to act
on the worst component.

For what concerns the redundant parallel systems, considering the simplifying hy-
pothesis of two components, we have that the unavailability Us is given by:

Us = U1, ·U2 (25)

from which we can derive

As = (1 − Us) = A1 + A2 − A1 ·A2 (26)

showing that the availability of the system is greater than the availability of the most
available component.
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3.3 Fault Trees

Another approach to the combinatorial study of systems built out of independent com-
ponents is that of fault trees [59]: logical trees for the representation and analysis of the
critical conditions whose combined occurrence causes a specific event, called the Top
Event (TE), to occur.

When the TE is one particular undesired event, then the analysis of the combina-
tion of elementary events that lead to the occurrence of the TE assumes the name of
Fault-tree analysis (FTA). Elementary events are of the type: component X is working
properly, or component X is not working properly.

The TE is the root of the tree and the construction of the tree is usually “top / down”
from general to specific. The FTA is particularly suited to the analysis of complex sys-
tems comprising several subsystems or components which are connected in various
configurations, with a high level of redundancy. FTA is commonly used by reliability
engineers dealing with aircraft, space, chemical and nuclear systems, and it is also con-
sidered in the IEC-1025 standard [36]. The interested reader can find a full treatment of
the topic in [3, 31, 32, 22, 59].

The methodological approach to dependability based on FTA consists of the fol-
lowing steps: definition of the Top Event, construction of the Fault Tree, qualitative
analysis, and qualitative analysis.

Definition of the Top Event. TE candidates are events whose occurrence may lead to
unsafe operating conditions, catastrophic failure or malfunction, unaccomplishment of
the assigned mission, and so on.

If more TE’s need to be investigated a different tree for each one the TE’s must be
generated and analyzed.

Construction of the fault-tree. Once the TE has been defined, the construction of the
FT proceeds by identifying the immediate causes for the occurrence of the TE, and their
logical relationship (for example, whether the immediate causes must occur separately
or simultaneously for the TE to occur).

The immediate, necessary and sufficient causes for the TE constitute the first level
of the tree. Each immediate cause is now treated as a sub-top event, and the analysis
proceeds to determine their immediate causes. In this way, the construction evolves
iteratively from events to their causes, continuously approaching finer resolution, until
a desired level of detail is reached.

Interactions between causes at each level of the iterative construction are repre-
sented by means of logic gates (usually OR and AND gates, but more complex gates can
be defined, as, for example, k out of n gates), while the output of the logical gates repre-
sents the occurrence of the higher level of the tree. The events at which the construction
of the tree is ended are called terminal events.

Qualitative Analysis of a FT. The qualitative analysis is aimed at identifying all the
combinations of events that cause the top event to occur, as a function of the terminal
events. Combinations are ranked according to the number of events, since the smaller
the number of events that cause the TE the less resilient to failure it is likely to be our
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system. The qualitative analysis of an FT consists in deriving a logical expression of
the TE, in such a way that all the combinations of events whose simultaneous occur-
rence provokes the TE are evidenced. A combination of events whose simultaneous
occurrence provokes the TE is called a cut set (CS) for the system. A CS that does not
contain any subset which is again a CS , is minimal and is called a minimal cut set
(MCS) or mincut.

Definition. A CS is a set of terminal events whose simultaneous occurrence forces the
occurrence of the TE. A CS is an MCS if it does not contain any subset of terminal
events that is still a CS.

Suppose the FT has m MCS denoted by K1, K2, . . . , Km. According to the above
definition, the occurrence of any Ki (i = 1, 2, . . . , m) implies the occurrence of the TE,
hence:

T E = K1 or K2 or . . . or Km = ORm
i=1 Ki (27)

The list of all the MCS provides a very valuable information to the analyst since it
provides all the minimal sets of failure events that can provoke the TE to occur, that is
the system failure event, and allows the analysts to identify the potential weak points of
the system and to initiate corrective actions.

The determination of the CS proceeds iteratively in a top down fashion, starting
from the TE and applying the rules of the logic algebra, guided by the gate typology,
until all the terminal nodes are reached. If the FT does not contain repeated events, the
above search directly provides the MCS, otherwise if the FT contains repeated events
the list of the MCS must be further extracted from the obtained CS.

Quantitative Analysis. The quantitative analysis has the objective of evaluating the
probability of occurrence of the TE, of the MCS and of any other intermediate event
of the FT in terms of the probability of occurrence of the basic events. FTA assumes
that the failures of the basic components are statistically independent. According to this
assumption, the properties of the FT are completely specified if an individual probability
is assigned to each single basic event.

Let Ai be a terminal event and denote Qi = P(Ai), where Ai stays for “component
Ai not working”. To compute the probability values in either cases a mission time must
be fixed. Denote the mission time TM, hence

Qi = P(Ai, TM) (28)

If a component is non-repairable, then Qi is the component unreliability computed at
time TM , if it is repairable Qi is the component unavailability computed at time TM.

Many FT tools accept as input parameter for each basic even only a constant failure
and a constant repair rate, thus implicitly assuming that the failure and repair times of
each component are exponentially distributed and restricting the analysis to this case,
only. By denoting with λi and µi, respectively, the constant failure and a repair rate of
component Ai, formula (28) becomes [3, 64]:

Qi =
λi

λi + µi
(1 − e− (λi +µi)TM ) (29)

from which the value for a non-repairable component (the usual unreliability expression
for a component with constant failure rate) is obtained by setting µi = 0.
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Probability of the TE. Since the TE can always be expressed in disjunctive normal form
in terms of the MCS, then:

P(T E) = P(K1 + K2+, . . . , Km)

where each CS K is the AND of a number (called the CSorder) of terminal events, then

K = A1 A2 · · · A�

and
Pr (K) = Pr (A1)Pr (A2) · · · Pr (A�) (30)

If there are m MCS’s (K1, K2, · · · , Km), since the occurrence of a single MCS implies
the TE, then the probability of TE is given by

Pr (T E) = Pr (K1 + K2 + · · · + Km) (31)

Recall that, if A and B are two events, then

Pr (A or B) = Pr (A) + Pr (B) − Pr (A B) (32)

and that the OR of m events requires an expansion into (2m − 1) terms involving the
computation of the probability of the AND of groups of j events, ( j = 1, 2, . . . , m).

The computation of the probability of the TE can therefore be quite complex, but we
should consider that the probability of the single events are in general quite low (they are
failure probabilities), and that all terms that compute the product of a significant number
of basic events can be quite low. It is therefore a widely accepted practice to truncate
the computation, especially considering that upper and lower bounds on Pr (T E) can
be computed using the probability of the single CS’s and the probability of the AND of
pair of CS’s, as follows.

Pr (T E) ≤ ∑
i

Pr (Ki) (33)

Pr (T E) ≥ ∑
i

Pr (Ki) − ∑
i> j

Pr (Ki Kj) (34)

The computation of the probability of occurrence of the TE and of the MCS is, usually,
the main concern of a FTA. However, several other useful measures can be defined and
evaluated, like the expected number of failed components, the main failure equivalence,
and the Mean Time To Failure.

FTA is a widespread practice for the availability analysis of systems, and there are
indeed a number of tools that support it, among them we cite [55, 62].

4 State Enumeration Techniques

The work of the previous section is here extended to consider systems of independent
components but with arbitrary configurations, and systems in which the independence
assumption does not hold. Both techniques are based on the idea of enumerating all the
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possible states of the system, and to classify them as “good” or “bad”. The probability
of being in a state (at time t or in steady-state) is then computed, and the reliability of
the system is then obtained summing up the probability of all the good states.

If the components are independent we can provide a closed form expression for
the probability of each state, thus adopting a combinatorial approach, as for reliability
blocks, while if dependencies among components are to be taken into account, more
complex quantitative analysis techniques need to be considered, based on the solution
of the associated stochastic process.

In this section we shall first consider the problem of state enumeration, to then sep-
arately discuss the quantitative analysis for the independent case and for the dependent
one, limited to the simpler case in which the associated stochastic process is a Markov
chain.

Consider a system with n components and any configuration among them. The usual
hypothesis is to assume that each single component can be represented by two mutually
exclusive conditions or states referred to as working (or Up) and failed (or Down),
identified by the state indicator variable xi associated to the i-th component, with the
following encoding:

xi =
{

1 component i Up
0 component i Down

The state of the system is identified by the vector x = (x1,x2, . . . ,xn) [3]. The state
space of the system Ω is the set of all the possible values of x, i.e. the set of all the
possible combinations of the n components being working or failed, leading to N =
|Ω| = 2n.

The state space, that we shall call RG for similarity with Petri nets terminology,
is a labeled directed graph whose nodes are the states of the system and each edge
represents the transition between states due to failure or repair. If we assume that no
multiple failures or repairs can take place at the same time, which is indeed the case for
independent components working in continuous time, then there is a direct arc labelled
i between state x and x′ only if the two states differ only in the value of variable xi.

We assume that the system as a whole can be classified according to a binary behav-
ior: working or failed. Hence, we introduce a binary indicator variable y for the system
[3, 41]:

y =
{

1 system is in a working state
0 system is in a failed state

(35)

The value of y is a function of the state, and we can define y = ϕ(x), or y =
ϕ(x1,x2, . . . ,xn)

The state space Ω can be partitioned in two exhaustive and mutually exclusive sub-
sets Ωu and Ωd .

Ωu = {Ω : ϕ(x) = 1} ; Ωd = {Ω : ϕ(x) = 0}

Let Nu = |Ωu| be the cardinality of Ωu, and Nd = |Ωd| the cardinality of Ωd , then

Ω = Ωu ∪ Ωd ; Ωu ∩ Ωd = 0 ; N = Nu + Nd (36)
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Observe that the system configuration is totally identified by the function y = ϕ(x).
For example, in the 2-parallel connection configuration the only system failed state is
x = (0,0), that is to say, both components have to be down for the whole system to fail.

The failure process defined on the state space. The evolution of the system in time can
be represented by means of the succession of states passed through by the system due
to failure or repair events of its components.

Denoting by Z(t) the function of the time that represents the state occupied by the
system at time t. For any value of t, Z(t) is a random variable that assumes non negative
values in the states of Ω. The probability that the system is in state x at time t is denoted
by px(t) and is defined as:

px(t) = Pr{Z(t) = x} (37)

under the normalization condition:

∑
x∈Ω

px(t) = 1 for any t ≥ 0 .

On the failure process the following measures con be defined:
Reliability: since there are many states (all whose in Ωu) in which the system is consid-
ered as working properly, then the Reliability of the system is obtained summing up the
probability of each of these states, leading to:

RS(t) = ∑
x∈Ωu

px(t) (38)

Availability:
A(t) = ∑

x∈Ωu

px(t) (39)

Mean sojourn time spent in a state up to time t:

�x(t) =
∫ t

0
px(z) d z (40)

System MTTF

MT T F =
∫ ∞

0
RS(z)dz = ∑

x∈Ωu

∫ ∞

0
px(z)dz = lim

t→∞ ∑
x∈Ωu

�i(t)

Average interval availability:

AI(t) =
1
t ∑

x∈Ωb

�i(t)

Z(t) is a stochastic process defined over the discrete state space Ω and with continu-
ous time parameter t. The quantitative evaluation of the state probabilities expressed
by equation (37), completely determines the stochastic process Z(t) and, hence, the
behavior of the system. If the components are statistically independent, evaluation of
expression (37) can be performed by resorting to combinatorial formulas, presented in
the following subsection, while the case of statistically dependent components will be
treated next.
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4.1 Independent Components

If the components of a system are statistically independent, the probability px(t) of
being in a generic state x with characteristic vector x = (x1, x2, . . . , xn) at time t can be
expressed as the product of the probabilities of the individual variables:

px(t) = Pr{(x1(t)} ·Pr{(x2(t)}· · ·Pr{(xn(t)} (41)

where, thanks to the independent component assumption, each term Pr{(xi(t)} is given
by: {

Pr{xi(t) = 1} = Ri(t)
Pr{xi(t) = 0} = 1−Ri(t)

(42)

where Ri(t) is the probability that component i is in working condition at time t, and
coincides with the reliability of component i in case of non-repairable components or
with the availability of component i in case of repairable components.

In the usual case in which the time to failure distribution of each individual compo-
nent is considered exponentially distributed with failure rate λi, equation (42) takes the
form:

Pr{xi(t)} =
{

Ri(t) = e−λi t if xi(t) = 1
1 − Ri(t) = 1 − e−λi t if xi(t) = 0

(43)

4.2 Markovian Methods for Dependent Components

The analysis above relies on the hypothesis that the components are independent, but
this is not always the case. In the previous section we have shown how state enumer-
ation techniques can be used to cheaply compute the reliability of a system built out
of independent components. The hypothesis of independence is not always reasonable,
for example the failure of a component may induce a larger load on the remaining com-
ponents, thus increasing their failure rate, or two or more components have a common
cause of failure (for example a computer and a video can be seen as independent, but if
they use the same source of power their failure are not independent). If the component
are statistically dependent, i.e. the failure or repair process of any one of them is de-
pendent on the state of the other(s), more sophisticated techniques are necessary, able
to incorporate the conditional dependencies of each component with respect to the state
of the other ones.

Consider a system with two components whose state space is the Cartesian product
of the state spaces of the components and is depicted in Figure 1; if λ1 
= λ′

1 then the
failure rate of the first component depends on the state of the second component (for
example the failure rate of the first component increases if the second component is
not working properly). This dependency does not allow to compute the reliability of the
system in the simple product form of Equation (41), and we need to solve the associated
stochastic process. Continuous Time Markov Chains (CTMC) are stochastic process
with a good tradeoff between expressiveness and solution cost.

A very large literature exists on the topic, the interested reader may refer, for ex-
ample, to [51, 25, 42, 64]. Reliability analysis through CTMC is also dealt with in the
international standard IEC1165 [37].
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Fig. 1. The state space of a two components system

Let Z(t) be a stochastic process defined over the discrete state space Ω. Z(t) is a
Continuous Time Markov Chain (CTMC) [51, 64] if, given any ordered sequence of
time instants (0 < t1 < t2 < .. . < tm), the probability of being in state x(m) at time tm
depends only on the state occupied by the system at the previous instant of time tm−1

and not on the complete sequence of state occupancies. This property, that is usually
referred to as the Markov property, can be rephrased by saying that the future evolution
of the process only depends on the present state and not on the past. More formally the
Markov property may be written as:

P{Z(tm) = x(m) |Z(tm−1) = x(m−1), , . . . ,Z(t1) = x(1)}
(44)

= P{Z(tm) = x(m) |Z(tm−1) = x(m−1) }
If we number the states from 1 to N, for example taking the lessicographical order, then
we can define the transition probability matrix of the process:

P(u,v) = [pi j(u,v)]

of dimension (N ×N) whose entries are the transition probabilities pi j(u,v) defined as:

pi j(u,v) = P{Z(v) = j |Z(u) = i} (u ≤ v) (45)

pi j(u,v) represents the probability that the Markov chain Z(t) is in state j at time v,
given it was in state i at time u, and it is called the transition probability between state
i and j. For the transition probabilities pi j(u,v), the following initial conditions hold:

pii(v,v) = 1 ; pi j(v,v) = 0 (46)

Further, let pi(t) be the (unconditional) probability that the system is in state i at
time t. pi(t) is the state occupancy probability, or simply the state probability, and is
defined as:

pi(t) = Pr{Z(t) = i} (47)

and p(t) = [pi(t)] denotes the row vector of dimension (1×N) whose entries are the
state probabilities pi(t) defined in (47). p(t) is called the state probability vector of the
process.
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If the Markov process is homogeneous1 we can derive the following equation:

d p(t)
d t

= p(t) ·Q with initial condition p(0) = p0 (48)

where p0 is a probability vector describing the initial conditions, and Q is a matrix,
called infinitesimal generator, whose elements qi j are the conditional probabilities of
jumping in state j in a small interval ∆ t, given that the CTMC was in state i at the
beginning of the interval. The quantities qi j are called the transition rates of the process,
and they are a simple function of the pi j values.

Equation (48) is the fundamental equation for CTMC: it consists of a set of N first
order differential equations with constant coefficients, that provide the state occupancy
probabilities at time t, from which the required performance models can be computed.
Various analytical and numerical solution techniques are available for the fundamental
CTMC Equation ([61]).

If the Markov chain is irreducible, that is to say each state is reachable from any
other state, then the limit

lim
t→∞

pi(t) = πi

always exists and it is independent of the initial state; equation 48, when t goes to
infinity, simplifies to:

π ·Q = 0 with
N

∑
i=1

πi = 1 (49)

where the normalizing condition on the right is necessary to impose that the solution is
a probability vector. Equation (49) is a linear set of homogeneous equations, and can be
solved with numerical solution techniques [61].

Observe that, if the components are non-repairable, then the associated MC will
never be irreducible (from a state in which there is a failed component is never possible
to come back to the initial state in which all components are working properly), and
therefore the only reasonable measures to be computed are the probabilities at time t,
and derived quantities.

From what concerns complexity, we can observe that most techniques used for the
solution “at time t” or in steady state are based on iterative methods: at each iteration
the most expensive operation is a vector-matrix multiplication (vector of size equal
to the number of states and matrix with a number of non-null elements equal to the
number of arcs in the RG). The iteration procedure is stopped when a certain (estimated)
convergence towards the actual solution is reached.

The number of iteration is usually the major factor affecting the solution cost.

5 Dependability Modeling Using Petri Nets

Specifying systems at the state space level can be an error-prone, low level activity. Petri
nets have been widely recognized in the literature as an effective way to specify systems

1 A Markov process is said to be homogeneous when the transition probabilities in matrix P(u,v)
depend only on the length time interval (v− u) and not on the values of the time instants v
and u.
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using a reasonably high-level formalism, while at the same time having a precise oper-
ational semantics that allows the derivation of the associated state-space. In particular
the class of Stochastic Petri Nets [47, 2] (SPN) has a semantics defined through Markov
chains, so they are considered a natural language to use when the stochastic process
underlying the system is a Markov chain. With the term SPN we actually indicate the
more general class of Petri nets with stochastic delays associated to transitions, that in-
clude various extensions like ESPN [28], GSPN [1], Stochastic Reward nets [48], and
colored/parametric extensions like Stochastic Activity Networks [57], and Stochastic
Well-formed Nets [18].

Indeed SPN have been widely used not only for the study of generic performance
indices, but also specifically for dependability studies, as testified by the available SPN
tools that allow the computation of some pre-defined dependability quantities, like
SURF-2 [30], UltraSAN [23], and SPNP [20]. Among the initial works on the use of
SPNs for dependability modeling and analysis we can mention [33, 35, 48, 58, 39, 46,
14]. In [29] Extended SPNs are used for carrying out sensitivity analysis of the system
reliability and availability when the error coverage probability varies. The work [49]
presents an overview of different classes of non Markovian Petri Nets used for depend-
ability analysis. Net-compositionality has been adopted in [40, 56, 16, 11] to cope with
the complexity of dependability modeling. Concerning works on the translation of Fault
Trees into SPNs we mention the works [34, 45, 15]. In [34] and in [45] the translation
into Petri Nets allows to model the dependences among system components, while in
[15] SWNs are used as a target formalism of the translation to exploit the symmetries
of the parametric fault trees.
But what do we gain from the use of Petri nets?

– An high level language to describe the system.
– The possibility of reusing the tools and the solution methods available for the SPN

tools, including the possibility of validating qualitative properties (like liveness or
deadlock freeness) that can be an important issue when the system being modeled
as a complex behavior.

What do we loose by using SPN? The solution associated to an SPN is usually produced
solving the associated CTMC, but the CTMC is, in principle, a “flat” structure, in which
all the information on independency between components is basically lost, thus forcing
the solution of the whole Markov chain with numerical methods, even in whose cases,
like that of independent components, in which the solution is just the product of the
solution of the components.

The section is organized as follows: we shall first show a very simple model, equiv-
alent to a 2-parallel configuration, and then a slightly more complex case, in which a
model of a system is modified to include the presence of faults. We conclude the sec-
tion with the presentation of a (simplified version) of a case study of a “dependability
mechanisms”.

5.1 Simple PN Models of Dependability

The very simple SPN model of Figure 2 represents a system with two independent
components. Each SPN is a simple sequence place - transition - place, where the tran-
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p1 p3

p2 p4

T1 T2

Fig. 2. A simple SPN model of a two component system

sition represents the failure. The Markov chain of this SPN is exactly that of Figure 1 if
λi = λ′

i and it is equal to the rate of transition Ti. If λi 
= λ′
i then it is necessary to resort

to marking dependent rates.
How do we compute the reliability/unreliability of the system? Again, as for CTMC

based approaches, we can sum up the probability of the Up and Down states, where the
Up and Down states depend on the system configuration. But how can we specify a
system configuration? There are two possible approaches: an implicit one, in which it
is the definition of the measure that encodes the configuration, and an explicit one, in
which the configuration is reported in the net.

If we assume the implicit approach, and we want to express a series configuration,
then to compute the unreliability of the system we have to sum up the probability of all
states in which either place p2 is marked, or place p4 is marked, or both. For the parallel
configuration we sum over a single state: that with a token each in places p2 and p4.

p1 p3

p2 p4

T1 T2

Failed

(a)
p1 p3

p2 p4

T1 T2

Failed

(b)

Fig. 3. Explicit modeling of the failure state

If we want to make the configuration explicit we can add a place Failed, as it is
done in Figure 3. The place is connected to places p2 and p4 in different manners, to
reflect the parallel configuration in Figure 3(a), and the series one in Figure 3(b).
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The simple SPN model of Figure 2 can be modified so as to take into account re-
pairs, leading to the SPN model of Figure 4 where one repair transition per component
(named T3 and T4) has been added. Again, we can define the configuration in an im-
plicit manner through the definition of the availability/unavailability metrics, or we can
explicitly define the configuration in the model. Indeed the modification of the net is
not as simple as in the unrepairable components case, since we need to put a token in
place Failed without removing the tokens from the places P2 and P4, moreover we need
to model also the fact that, in consequence of a component repair, the whole system can
be working again, and this may not be trivial.

p1 p3

p2 p4

T1 T2T3 T4

Fig. 4. Modeling of repair actions

The approach based on reliability blocks can be translated into SPN with a limited
effort, nevertheless since the SPN solution requires the solution of the Markov chain,
then this translation makes sense only if we need to insert dependencies between the
components (for example a simple failure rate dependency).

A similar argument holds true also for fault trees. There has been a number of trans-
lation defined from fault trees of various flavors to various flavors of SPN, always with
the objective of being able to include dependencies [33, 45], or to exploit symmetries
of the fault tree also in the solution process [15].

In the previous SPN models we have assumed that a component has only two states,
Up and Down, represented as distinct places, but a model can be a much more com-
plicated net. In the next section we shall introduce a simplified version of the model
of a piece of software that provides a sort of parallel redundancy. Although being a
simplified version of the real code, it has indeed a more articulated structure than the
two-states approach discussed in these SPN introductory examples, moreover it is a
good example of the problem related to the modeling of the restart of normal operation
after a failure.

5.2 A More Complex PN Model of Dependability: The Local Voter

The Local Voter mechanism (LV) presented in this sub-section is a simplified version
of a fault-tolerance mechanism designed and implemented within the TIRAN EEC
project [17] and studied in [10]. A fault-tolerance mechanism is basically a piece of
code aimed at improving the reliability of a complex software system. LV aims at mask-
ing occurrences of faults during the execution of the code of an application process.
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Fault masking is achieved by the adoption of a spatial redundancy (as in the k : n case
that we have seen for reliability blocks) of the execution of the piece of code and by
the voting on the results coming from the replicas. Depending on the voting technique
adopted in the LV and on the spatial redundancy, a limited number of faults may be
masked; for instance, by using a majority voting algorithm and by running concurrently
K copies, up to [K−1

2 ] faults can be made transparent for an application process.
In [10] the purpose of the modeling activities was to evaluate the “goodness”of the

mechanism both from a qualitative (i.e., correctness with respect to the design specifi-
cation) and from a quantitative point of view (i.e., performance and dependability). In
particular, concerning the quantitative analysis of the LV two important issues were ad-
dressed: first, the amount of overhead induced by the use of the mechanism with respect
to not to use it in the application execution; second, the probability of voting success.

Observe that the first measure is not a dependability measure in a strict sense, but it
is aimed at evaluating the cost of “dealing with faults”, in particular the cost of masking
them whenever possible. The second measure can be considered instead a reliability
measure, since we can consider as the “assigned mission” of our system the ability to
vote on an agreed value.

IST12

ISTn2

Plane 2

IST11

ISTn1

Plane 1

O
V

n
O
V

1

BB

APPn

APP1

Plane 0

IST10

ISTn0

Fig. 5. Representation of the local voter mechanism

Figure 5 shows a graphical representation of the simplified LV; the LV can be used
concurrently by several application processes and three replicas are considered per ap-
plication.

The replicas are executed on separate “planes”, that naturally correspond to separate
processing nodes. The application process APPi that uses the LV mechanism is split in
two parts, a part that does not require a replicated execution, and a part that requires
it. If there are n applications that use LV, then each application has its distinct piece of
code to be executed.

The three replicas of an application i, called ISTi0, ISTi1 and ISTi2 in the figure,
receive the same input data from the application.
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When a replica ISTi j ends its computation, it sends its output data to the appropriate
voting OVi; there is one voting task per application.

The components of the local voter interact with the backbone BB, which is a sort of
run-time support for the TIRAN library of mechanisms which handles all exceptions as
well as the recovery actions. All interactions among tasks are based on communication
through mailbox.

Table 1 lists the acronyms used for the different tasks, and for each task lists how
many copies of that task there are in a LV that serves n applications.

Table 1. Acronyms

Acr. description no. of copies

APP application n
IST replicated software to vote upon 3∗n
OV output voter n
BB backbone 1

Each OVi is characterized by a timer which is set and starts to count-down for
expiration as soon as OVi receives the first output from one of the replicas of the cor-
responding application APPi. If either all the three replicas of APPi or two of them
are received before the time-out expiration then the timer is disabled and a voting on
the available replicas is carried out. In any case, OVi will send a message to the BB to
notify the voting outcome on the available replicas and, if it is the case, the time-out
expiration. The BB is in charge of notifying the termination of the elaboration to the
application and of restarting the system in case of a time-out occurrence.

The SWN Model of the Local Voter. The following assumptions were made to model
LV: tasks communicate in an asynchronous manner via mailboxes, and there is one
mailbox for each ordered pair of tasks; time required to prepare a message is in gen-
eral negligible, while the time to actually transmit it from the task output buffer to the
recipient mailbox is not. With respect to the graphical representation, we have used
cross-lined places to emphasize mailboxes and shadowed boxes to delimit portions of
the nets that correspond to “recovery actions”, and that will be explained in a second
step. Moreover, we have adopted the SWN syntax of the GreatSPN [5] tool: net objects,
i.e., places and transitions, are denoted as name|label where name is the name of the
object and label is the label, τ labels are omitted. Labels are used for net composition.

Colors have been used to identify applications, planes and to distinguish the output
value as “termination with normal operation” or “termination under abnormal condi-
tions”. Three color classes have been defined:

AP is the color class of applications that can request a replicated execution of their
code, and it is defined as AP = {ap1, ..,apn};

P is the color of the planes, and there are always three planes, therefore P = {pl1, pl2,
pl3};
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Exc is the color used to distinguish the positive or negative outcome of a LV activity,
and it is built out of two static subclasses Exc = Ecx1∪Ecx2, where Exc1 = {e1}
means that there has been a time-out expiration, while Exc2 = {e2} means that
there was no time-out expiration.

Since the system is specified compositionally, it is a very natural choice to model
each component of Figure 5 as an isolated SWN, to then compose them. This approach
simplifies the model construction and allows model reuse, but it might make more com-
plex the modeling of whose activities that require the knowledge of the global state, as
for the restart activity after a failure.

P2ap
AP

ap|mbxAP-Ist
AP

P3ap
AP

Idle_Appl

A
AP

P1ap
AP

ap|mbxBB-AP

AP

T1ap
<x> <x,S>

activity
<x> <x>

rcv_reply

<x>

<x>

<x>

snd_LV

<x>

<x>

<x>

Fig. 6. The application model

Figure 6 shows the SWN model of the APPi, that cyclically execute their own ac-
tivity, broadcast the input to their replicas (tasks ISTi j), and wait for a message of ter-
mination of elaboration coming from the backbone BB.

Figure 7 shows the SWN model of a copy of the code to be executed on the different
planes: it is assumed that all replicas are activated at the beginning and then suspend
themselves waiting for a message from the APP tasks. There are |AP|× |P| replicas,
i.e., one for each application and for each plane. Each replica (x,y) waits for the input
message (x,y) from the application x. When such message is received the replica of
application x on plane y starts its activity, modeled by timed transition comp, and then
sends the result of the computation to OV.

Figure 8 shows the SWN model of the output voter OV: there is an OV for each
application that can use LV.

Each OV executes the voting algorithm (majority voting 2 out of 3) on replicas of
the same application, independently from the others. OV waits for the replicas outcome
from the three different planes. As soon as the first outcome is received, a timeout for
reception of the other two replicas outcome is set (transition setTOforx). Then three
situations may occur:

C1 all the three outcomes are received before the time-out expiration (transition
recv3noTO fires) and voting on the three outcomes takes place;

C2 the time-out has expired and two of the three outcomes have been received (transi-
tion recv2&TO fires), and a vote on the two replicas takes place;

C3 the time-out has expired and only one of the three outcomes has been received by
OV (transition recv1&TO fires).
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Fig. 7. The model of the replicated code

Under condition C1 an exception message of type e2 (no time-out has occurred)
is sent to the the backbone BB; in cases C2 and C3 a message of exception of type
e1 (a time-out has occurred) is sent to BB. Observe that we are not passing on to the
backbone the information on whether the vote was successful or not, although this will
be a trivial extension, since the success or failure of the 2-out-of-3 algorithm is modeled
in detail in the SWN of Figure 8.

When the message is sent to BB, OV waits for an acknowledge from BB to return
back into its idle state. Observe that we are assuming that no direct answer goes back
directly from OV to APP, not even in the case of a “normal” 3-out-of-3 voting, since we
impose that all restarted are caused by BB.

Figure 9 shows the SWN model of the BB task, or, more precisely, of that part of
BB devoted to interactions with LV. BB is in an idle state until it receives an exception
message coming from OV. If the exception is of type e2, i.e., no time-out has occurred,
then BB sends an acknowledge to OV and to the application. If instead the exception
is of type e1, then a time-out has occurred, and therefore a reset operation is needed,
before sending back the messages to OV and to APP.

Local Voter without Recovery Actions: An Open Model. A first analysis was per-
formed for the case of a “single run” for each application. In order to obtain the com-
plete model the single nets have to be composed using the program algebra [10], a
program associated to the GreatSPN tool that allows superposition of nets over places
and transitions. The nets used are the one without shadowed portion and, since in the
non-shadowed portion no message is passed from OV to BB, each application is ex-
ecuted only once. The resulting SWN net has been solved, for the single application
case, using the reachability graph construction of GreatSPN, that produces 68 tangible
states.
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Fig. 8. The model of the output voter

There are 7 dead markings. Three of them correspond to the case of time-out ex-
piration after OV receives the results coming from one replica and is waiting for the
results to be sent by the other two replicas. The three markings differ from the identity
of the replica that has sent the results to the OV before the time-out expiration. All com-
ponents, except OV and APP, are in their initial states (idle state), APP and OV are both
waiting for a message from BB, that will, of course, never arrives. Three deadlocks cor-
respond to the case of time-out expiration after the results coming from any two replicas
have been received. The last deadlock represents the case of reception of all the three
replicas before the time-out occurrence. The qualitative behavior was judged correct by
the system designer, and the modeling activity could move on to the subsequent step.

Local Voter and Recovery Actions: An Ergodic Model In a second step the recovery
actions due to the time-out expiration have been added to the model. The recovery
action taken by BB is:
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Fig. 9. The model of the backbone

– to remove messages from mailboxes that refer to the application that has caused the
exception;

– to take the corresponding tasks back to the their initial states.

To accomplish this BB enables a number of immediate transitions, one per model
component, and they are labelled in such a way as to superpose with the resetting tran-
sitions in the model components. Observe that these transitions are assigned a different
priority, mainly to avoid the generation of useless inter leavings of immediate transi-
tions, that could significantly slow down the state space generation.

The model is obtained by composing all nets, including also the shadowed portions.
The resulting SWN is ergodic (since there is a single strongly connected component in
the reachability graph and only exponential and immediate transitions are present).

The reachability graph for the single application case has 106 tangible states and
the initial marking is a home state. The generation takes a few seconds on a 256Mbyte
Pentium 4 machine.

Local Voter without Recovery Actions and Explicit Faults In the models considered
up to now no fault is explicitly included in the model, so that a time-out can expire only
due to a delay in the completion of one of the replicas. In order to consider the effect
of explicit faults the model of IST has been modified to include a timing transition
that models the fault and that takes IST into an error state place: the modified model is
depicted in Figure 10.
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Fig. 10. The modified model of the replicated code

The model assumes that:

– only the replicas ISTi j can be affected by a fault and only during their computation
phase;

– faults are independent.

The resulting model, for the single application case, has 119 tangible markings and
there are 20 dead markings. Among them a very interesting one is the marking that
represents the state of the model where all the replicas are in an error state, and this
corresponds to a case in which no replica will ever reach OV, so no time-out will be set.
This case was, up to the modeling phase, overlooked by the specification document and
it is an example of use of Petri Nets for the correctness analysis of the mechanism.

Quantitative Results. The mechanism overhead may be analyzed using the ergodic
model with a single application and the time-out deactivated, and computing the mean
time to execute a computation through the local voter (inverse of the throughput of
transition activity of Figure 6) divided by the mean time spent by a single replica to
perform the operation (inverse of the throughput of transition comp of Figure 7).

The probability of different voting outcomes for one application cycle is given by
the relative throughput of transitions recv1&TO,recv2&TO, recv3&noTO of Figure 8.
The value of the metric depends on the length of the time-out as well as on the proba-
bility of matching of the results produced by the replicas. Observe that, not having ex-
plicit faults in the ergodic model, the time-out can expire only due to excessive delays
of the computations on the planes and/or of the communications between the model
components. This implies that, assuming that the results produced by the replicas al-
ways match, the probability of 3-out-of-3 voting converges to one as the length of the
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time-out goes to infinity. This behavior cannot be observed, instead, if we consider the
effect of explicit faults and we compute the same metric on the third model. A detailed
description of the quantitative analysis of the LV can be found in [10].

6 Dependability of Complex Systems Using Petri Nets

A system can be a complex aggregation of components, and the ways in which the up
and down states of a component influence the up and down states of the whole system
may not be so straightforward as what we have seen in the previous sections. As we have
seen in the introduction (Section 1), when the delivered service of a system deviates
from fulfilling the system intended function, we say that the system has a failure. A
failure is due to a deviation from the correct state of the system, known as error. Such a
deviation is due to a given cause, for instance related to the physical state of the system,
or to a bad system design. This cause is called a fault.

But if we consider a system as a set of interacting components, which is pretty much
in the line with the way systems are designed nowadays, then we should consider, as
pointed out in [44], that the failure of a sub-component (deviation from its intended
functionality) may be perceived by the other sub-components as an external fault, thus
giving rise to the so-called Fault-Error-Failure (FEF) chain.
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Fig. 11. Relationships between faults, errors and failures

Error propagation within and among system components is explicitly shown in Fig-
ure 11 extracted from [44]: internal propagation is caused by the computation process
of the faulty component A while the external propagation from component A to compo-
nent B, that receives service from A, occurs when, through internal error propagation,
an error reaches the service interface of the faulty component A. Then, the service de-
livered by component B to component A becomes incorrect provoking the failure of
component A that appears as an external fault to component B and propagates the error
into B.
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Fig. 12. The CD system description

To be able to model the FEF chain we need a more articulated vision of the system,
that allows to clearly identify the components that can be affected by a fault, the system
elements on which faults can induce erroneous behaviors, and how these behaviors may
lead to a (sub)system failure. Although with a different aim in mind, the work in [27]
introduces a view of the system as a layered structure in which a system component
realizes a certain function by using a set of resources. Since the pattern of usage of
resources can be quite complicated, an intermediate level is added, called services. This
point of view on system behavior leads to a three layer structure, represented as an UML
Class Diagram (CD) in the left portion of Figure 12.

The right portion of the CD shows instead the FEF chain: relationships between
faults, errors and failures as well as their propagation among the system entities is cap-
tured by the cause-effect associations. Once customized on a specific application the
CD shows which faults provoke which errors and which (set of) errors provoke a fail-
ure, that is to say a deviation from the function delivered by the system. The diagram
also connects each type of fault, error and failure with the corresponding system entity
affected by it, so a fault may affect a resource, an error may affect a service performed
on one or more faulty resources, and a failure may affect the whole system if errors are
not recovered in due time.

Moreover, if a service is affected by an error, the error can be propagated to an-
other service either performed by the same resource (i.e., internal propagation) or by
another resource communicating with the former (i.e., external propagation). This error
propagation is represented by the Ecause-Eeffect association.

Since a failure of a system component can be perceived by another component as
an external fault (as described in [44]), an association exists between the failure and the
fault classes. This is an aspect that adds additional complexity to the modeling and is
out of the scope of these notes.

We would like to use the high-level information provided by the CD of Figure 12
to drive the construction of PN models. To do this we need first to introduce the PSR
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modeling approach that has been presented in [27], and then to modify it to allow for
the treatment of the FEF aspects.

6.1 A Layered Approach to Modeling: The PSR

The PSR is a model construction approach in which the PN model is organized into
three levels: resources, services and processes. Resources are at the bottom level, and
they provide operations for the services, where a service is basically a complex pattern
of use of the resources. Services are then requested by the application model placed at
the highest level, called process level (and that we have called “System Component” in
the CD, since it is more intuitive, although it is not the original term used in [27]).

PSR provides a schema of how the resource, service, and process levels nets should
look like, and a compositional operator to compose them.

Figure 13, bottom part, depicts a model of a resource: a resource can be idle, and
it can offer one or more operations op i through the sequence of actions start opera-
tion, operation, end operation. Each transition of the sequence has an associated label
(shown in italics in the figure), that is used for composition with the service level, and
that is derived from the association perform(Resource,Service) of the CD diagram of
Figure 12, prefixing it with an S or with an E to indicate Start and End of operation,
and postfixed with the operation index. Depending on the type of operation it may be
necessary to acquire a lock (transition lockRes and unlockRes). Figure 13, in the mid-
dle, models a service. A service can be requested by a process through the pair of labels
of start and end service (S perform(Service, System Component), E perform(Service,
System Component)). Once activated the service can request resource operation via the
S perform(Resource, Service) i, E perform(Resource, Service) i labels.

The upper part of Figure 13 depicts a skeleton of the process model that uses ser-
vices: the request of a service is performed through the label perform(Service,System
Component) and through a matching function that maps the label into the pair of labels
S perform(Service,System Component), E perform(Service,System Component).

Each level is defined through net composition operators based on transition super-
position (“horizontal composition”), then resource level is composed with the service
level, and the resulting net is composed with the process level also through transition su-
perposition (“vertical composition”). Transition superposition of nets is based on tran-
sition labels: two transitions of equal label in two separate nets are fused into a single
one: the formal definition of the superposition operator for GSPN can be found in [27],
and the SWN extension is instead presented in [10]. Therefore if {Ri},{Sk},{Pm}, are
the sets of GSPN (or SWN) models representing resources, services, and processes, re-
spectively, and if || is the transition superposition operator, then the full model of the
system is given by:

R = R1 ||R2 || · · · ||Rnr

S = S1 ||S2 || · · · ||Sns

P = P1 ||P2 || · · · ||Pnp

PSR = R ||S ||P
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Fig. 13. Resource, service and process models

From now on the term PSR will refer to a structure of the models according to
Figure 13.

6.2 PSR and FEF Elements

The PSR originally defined in [27] is not adequate for dependability modeling, since
it does not take into consideration the interactions with the FEF elements. In [7, 4]
the PSR has been modified by changing the basic models of the resources, services, and
process so as to allow interactions with the FEF elements, and by extending the formula
to compose the {Ri}, {Sk}, and {Pm} with models of the FEF elements.
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Fig. 14. The modified models of resources, services, and processes

Figure 14 presents the modification to the basic PSR models. Following the CD
scheme of Figure 12, we assume that faults affect only the behavior of the resources,
errors are perceived at the service level, while failure are a concern of System Compo-
nents, and therefore of the process level.

Figure 14, bottom part, models a resource. From each state in which a fault can
be perceived by the resource a transition labeled affect(Fault,Resource) has been added
(to be used for synchronization with the fault model) which takes the resource into a
faulty state. Again, affect(Fault,Resource) is the association that, in the CD diagram of a
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specific application, relates a specific type of fault to a specific type of resource affected
by that fault.

Also for service and process models (Figure 14 in the middle part and at the bot-
tom part, respectively), transitions to be used for synchronization with an error and a
failure model, respectively, have been added which take the services/processes into an
anomalous state.
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Fig. 15. Organization of the Petri net models in the layered approach

Now that we have the modified resource, service, and process models we need to
modify the PSR construction: indeed the {Ri}, {Sk}, and {Pm} models have to be inte-
grated with the models of the FEF elements. Figure 15 assumes that there are a number
of models for faults, errors, and failures, called {FTj}, {Eh}, and {Fn}, respectively,
and it provides a schematic view of how they are organized in three levels: fault models
are placed at the resource level, error models at the service level and failure models at
process level. Each model is depicted as a box with explicit interface transitions that are
labelled according to the associations defined in the CD of Figure 12.

Each level is obtained through horizontal composition, and the global model is ob-
tained through vertical composition of the levels, as for the original PSR. Therefore if
{Ri},{FTj},{Sk},{Eh},{Pm},{Fn} are the sets of GSPN (or SWN) models represent-
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ing resources, faults, services, errors, processes, and failure, and if || is the transition
superposition operator, then the full model of the system is given by

R = R1 ||R2 || · · · ||Rnr ||FT1 ||FT2 || · · · ||FTnr

S = S1 ||S2 || · · · ||Sns ||E1 ||E2 || · · · ||Ene

P = P1 ||P2 || · · · ||Pnp ||F1 ||F2 || · · · ||Fn f

PSR = R ||S ||P

The proposed approach to the construction of Petri net models for dependability
shares similarities with other approaches. In [54] there is an example of organization
of dependability GSPN model into layers to separate the architecture model, the ser-
vice model and the failure modes model, although without explicitly modeling the FEF
chain. The modeling of the FEF is made more explicit instead in [12], although the ap-
proach taken is that of a top down hierarchical approach more than flat compositional
as in the PSR.

6.3 PN Models of the FEF Elements

The compositional approach depicted in Figure 15 requires the definition of models
for the FEF elements. In the following we present a library of FEF element models
that respect the transition interface of the boxes of Figure 15. The original definition
of the library can be found in [8]. The library is built starting from a classification
of faults, errors, and failures into a hierarchy of classes that has been devised in the
DepAuDE [26] EEC project, and whose complete description can be found in [9].
The classification of the FEF elements in DepAuDE was heavily inspired by the work
in [43], customized on the automation system field that was the application target of
DepAuDE.

The hierarchy of the classes has a counterpart in a hierarchy of PN components. To
set the field to the description of the hierarchy of the FEF models we need first to define
the notion of PN component and that of hierarchy for PN components.
PN component is a GSPN system [1] (or an SWN one [18]) labeled over transitions,
parametric with respect to transition rates (weights) and/or initial marking and with an
associated list RESULTS of performance results to be computed and/or verified and a
list CONST R of constraints to be verified.

Hierarchy of PN models. Hierarchy in a Class Diagram involves a notion of inher-
itance, that involves the structure of a class (attributes, operation names, and associa-
tions) as well as behavior (operations). In GSPN the inheritance of the structure of a
class is reflected into 1) inheriting parameters (rate/weight, initial marking), results to
be computed, constraints to be verified, and possibly adding new ones; 2) inheriting,
and in case modifying, the labels associated to either places or transitions. Inheritance
of the dynamic behavior of the super-class is reflected in either maintaining the same
net structure in the sub-class or modifying it by applying transformation rules that pre-
serve the behavioral inheritance [66]. Two main notions of behavioral inheritance are
introduced in [66]: protocol inheritance and projection inheritance. Although they have
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been defined for labeled transition systems, it is rather straightforward to use them for
the reachability graphs (RGs) of SPN models. Intuitively, let p and q be two SPN mod-
els representing the behavior of a class P and of its super-class Q, respectively; protocol
inheritance can be verified by not allowing to fire transitions that are present in p and not
in q (i.e., blocking new actions) and by checking whether the RGs of p and q are equiv-
alent. Projection inheritance can be verified, instead, by considering not observable the
transitions that are present in p and not in q (i.e., hiding the effect of new actions) and by
checking whether the RGs of p and q are equivalent. In both cases, branching bisimula-
tion [53] is used as equivalence relation. Branching bisimulation belongs to the class of
observational equivalence, in which two systems are equivalent if an external observer
cannot discriminate between them. Of course two systems may or may not be equiv-
alent depending on what an observer is allowed to see. In our context an observer is
allowed to see all transition labels, unless otherwise stated, that is to say the labels that
are used to compose models.

The two basic notions of inheritance are combined [66] in order to obtain a stronger
and a weaker notion. Stronger inheritance is preserved if both protocol and projection
inheritance are satisfied. Life cycle inheritance is the weaker notion: the set of transitions
present in p and not in q is partitioned into “not-observable” and “not-allowed to fire”
such that the observable behavior of P equals the behavior of Q.

Observe that the proposed rules for inheritance only consider the net functional
behavior, the stochastic behavior may not be preserved, and usually it is not.

Fault Models. Figure 16(A) is the classification of faults: the root class of the inher-
itance tree describes a generic fault; the first level of the inheritance tree distinguishes
Physical Fault, Design Fault, Interaction Fault and Malicious Logic. Physical faults
are characterized by two input attributes that allow to specify the maximum time dur-
ing which the fault is active and can be perceived by the system (duration) and the
frequency of its occurrence (fault rate). Attribute fault dormancy, the length of time
between the occurrence of a fault and the appearance of the corresponding error, is con-
sidered instead as a metric to be evaluated. The different type of usage of class attributes
is denoted by prefixing the attribute name with a specific symbol (i.e., “$” = input at-
tribute, “/” = metric to be evaluated, “/$” = metric to be evaluated and validated).

Physical Faults may be either considered permanent or temporary: their discrim-
ination depends on the values assigned to the input attributes min-duration and max-
duration as emphasized by the constraint written in the note symbol. Permanent phys-
ical faults and temporary physical faults are further specialized by several sub-classes.
For example, temporary physical faults are discriminated in DevTemp Physical Faults,
that is internal faults due to the development phase; Transient Physical Faults, that is
faults induced by environmental phenomena; Intermittent Physical Faults, i.e., internal
physical defects that become active depending on a particular point-wise condition.

Transient and intermittent physical faults classes are enriched with some input pa-
rameters, such as: latency rateN and latency rateB, representing the rate of transient
fault activation in case of normal conditions and burst conditions, respectively, persis-
tence rate, representing the rate of fault disactivation and latency rate, representing the
rate of intermittent fault activation.
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Dotted boxes in Figure 16(A) represent classes that are not described here: the in-
terested reader can find a complete description in [9].

GSPN component models for faults have been built according to the hierarchy view
of Figure 16(A): each GSPN model is an elaboration of previous generic Petri net mod-
els of fault generator proposed in [50] where only physical faults are considered and
they are classified with respect to their persistence in permanent and temporary, the
latter being further specialized in transient and intermittent.
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Fig. 16. GSPN component models of fault classes

In Figure 16(B) each box is a labelled GSPN component: a GSPN net with a set of
parameters, results to be computed, and constrains to be verified. For sake of graphical
clarity the rates of transitions are not shown in the figure, they are listed in the text when
needed. Labels are associated to transitions, they determine the observable part of the
net behavior and they identify the transitions that can be used for the composition with
another model.

The behavior of Fault super-class of Figure 16(A) corresponds to the GSPN com-
ponent model FT0 of Figure 16(B) characterized by three states: the fault is not present
(place no f t ), the fault is active and it may be perceived by a system entity (place
act f t) and the fault is terminated (place gone f t). The fault occurrence is represented
by the firing of transition f t occ, and when the fault is active it can be perceived (transi-
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tion f t prcv) by a system entity, causing an error situation. Transition f t prcv is labeled
so as to allow synchronization with the affected system entity (i.e., the resource model
of Figure 14) and with an error model. The fault termination is represented by the firing
of transition f t end. Since neither attributes nor constraints are specified for the Fault
super-class, the lists of parameters, results and constraints of the corresponding GSPN
model FT0 are empty.

Classes Design Faults, Interaction Faults, Malicious Logic, and their corresponding
sub-classes, present the same behavior of the more general class Fault, so that the GSPN
model FT0 is reused to represent these classes also.

The class Physical Faults is associated with the GSPN model FT1 that inherits
from FT0 and adds to the parameter list fault rate and duration and to the result list
fault dormancy. The parameters and the result correspond to the homonyms attributes
defined in the Physical Fault class.

The net structure of FT0 has been maintained, but rates of transitions f t occ and
f t end have been defined as functions of the added parameters, i.e., w( f t occ) = f ault
rate and w( f t end) = 1/duration.

The behavior of Permanent Physical Faults and of Temporary Physical Faults
classes is represented by the GSPN models FT21 and FT22, respectively. Both the mod-
els inherit from model FT1, add a parameter (the parameter min-duration for model
FT21 and the parameter max-duration for model FT22) and maintain the same net as
FT1. A fault is classified permanent if it lasts more than min-duration, and it is classi-
fied temporary if it lasts less than max-duration, with the constraints, derived from the
note symbol of the CD of Figure 16(A), that min-duration is greater than max-duration.
The interaction of the models with the corresponding resource and error models (that
amounts to the labels associated to transitions) is also inherited from FT1.

With respect to the fault models proposed in [50], where permanent faults remain
always active while temporary faults once occurred after a certain amount of time even-
tually disappear, both the fault models FT21 and FT22 are characterized by a termination
state (i.e., place gone f t) and the represented fault classes are discriminated by the fault
duration.

Temporary faults can still be distinguished into intermittent and transient faults. In-
termittent faults, once occurred, are characterized by alternating periods in which they
are active, and they can be perceived by the system entity, and periods in which they are
latent and hence they do not cause any error. Transient faults, instead, disappear a cer-
tain amount of time after their activation; however, unlike generic temporary faults, they
are characterized by a complex mechanism of activation that depends on the condition
of the external environment.

The behavior of Transient Physical Faults class is represented by the GSPN model
FT31 in which a fault moves from the latent state to the active state with a different rate
depending on the environment conditions. Under normal condition, represented by the
place normal marked, transition lat-actN with rate parameter equal to latency rateN
will fire, while under “burst” condition, represented by the place burst marked, transi-
tion lat-actB with rate parameter equal to latency rateB will fire.

The behavior of Intermittent Physical Faults class is represented by the GSPN
model FT32, in which firing of transition act-lat (with rate parameter equal to per-
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sistence rate) brings the state of the fault from active to latent and, vice-versa, firing
of transition lat-act (with rate parameters equal to latency rate) changes the fault state
from latent to active.

GSPN models FT31 and FT32 inherit from FT22: for the structure, new parameters
have been added with respect to the parameter list of FT22 and for FT31 the parameter
fault rate is now not relevant (and it has been set to the default value of 1), since the fault
activation depends upon the two transitions lat-actN and lat-actB. From the behavioral
point of view the GSPN model FT32 strongly inherits from FT22, i.e., it preserves both
the projection and the protocol inheritance, while the GSPN model FT31 preserves only
the projection inheritance, that is to say, if any of the transitions act− lat, lat-actN, and
lat-actB is used in a synchronization with another model, then it may be the case that
FT31 is not able to act as FT22.

Finally, the sub-classes DevTemp of temporary physical faults and sub-classes of
permanent physical faults inherit the behavior of their super-classes and they have been
represented by the same GSPN models associated to the latter.

All the fault GSPN models described above can have more than one label for each
transition; in particular, transition f t prcv is characterized by two labels: one is used to
interact with the resource model affected by the fault and the other is used to interact
with the corresponding error model.

Error Models. Errors are deviations from the correct state of the system that may cause
a subsequent failure [44]; they are caused by faults affecting the resources of the system
and they are related to the services performed by the faulty resources. A classification
of errors is given by the CD of Figure 17(A), taken from [9], that considers only errors
caused by physical faults, and discriminate them depending on which type of resource
has been affected. The type of resources considered in DepAuDE are processing, mem-
ory, and communication.

The super-class Error of the hierarchy/logical view is modeled by the GSPN ER0

- shown in Figure 17(B). The class is characterized by two attributes that are mapped
in two results to be computed on ER0: error latency, the length of time between the
occurrence of an error and the appearance of the corresponding failure, and PE, the
probability of error. Note that for some results, as PE, it is already possible to give their
definitions, since their computation is based only on local information; the definition of
other results, as error latency, requires instead information on the whole system.

The GSPN model ER0 is characterized by four states: the error is not present (place
no err), the error is generated (place pot err), the error is occurred (place error) and the
error has been detected (detected). Places error and detected are used to define the result
PE as the probability that one of the places is marked. The error can be caused by either
a fault occurred in a resource or by the error propagation effect: the error generation
is represented by the firing of transition cause that is labeled so as to ensure synchro-
nization with caused fault or error model. The labels are derived from the associations
effect(Fault, Error) and association Eeffect(Error,Error) of the CD of Figure 17(A). In
general, ER0 contain as many transition “cause” (i.e., with input place no err and with
output place pot err) as the number of GSPN models representing potential causes of
the error. The occurrence of the error in the corresponding service is represented by the
firing of transition err occ, properly labeled to ensure synchronization with the service
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Fig. 17. GSPN component models of error classes

model. Transition det err represents error detection carried out by some other model,
synchronized through the label detection.

Test transitions err prop and err fail are instead interface transitions for an error
model and for a failure mode model, respectively.

Classes Processing Error, Memory Error, Communication Error, Runtime Errors,
Memory Violation, Corrupted Processing and Disordered Communication present the
same behavior of the super-class Error, so that GSPN model ER0 is reused to represent
the behavior of these classes also.

Late Processing and Late Communication classes are characterized by an input at-
tribute, delay, whose values indicate the delay caused in the execution of the corre-
sponding erroneous function. Their behavior is modeled by the GSPN ER21 where
delay has been added to their parameter list. Moreover, the model contains a pair of
causal connected transitions: err delay, that represents the delay caused by the error,
and end err that brings the error model to its initial state (no err). Timed transition
err delay is characterized by a rate equal to w(err delay) = 1/delay, immediate tran-
sition end err is, instead, an interface transition and has to be synchronized with the
service model in order to bring it from an erroneous state to a normal state. Protocol
inheritance is preserved for model ER21; indeed if transition err delay is not allowed to
fire the RG of ER21 is equal to the RG of ER0.

Finally, GSPN model ER22 has been associated to the Corrupted Communication
class characterized by the input attribute BER (Bit Error Rate). BER has been added
to the parameter list of ER22 and it has been assigned to the weight of the immediate
transition err. For model ER22 life cycle inheritance is preserved, when considering
transition err non observable and transitions no err and end err not allowed to fire.
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Failure Models. Failures are deviations of the service delivered by the system with
respect to the system intended function. The CD shown in Figure 18(A) associates to a
generic failure mode two metrics to be computed and verified: PF, i.e., the probability
of failure, and RF, rate of failure. The CD represents a classification of failures with re-
spect to the their impact on the system, that is whether their occurrences are considered
acceptable or not depending on the criticality level associated to the system process they
affect. The different failure mode assumptions are represented by the sub-classes: Halt-
ing Failure, Degrading Failure and Repairing Failure. Halting failures cause the system
activity not to be any longer perceptible by the user. Depending whether the absence of
system activity takes form of a frozen output or of silence, they are further classified
in passive failures and in silent failures, respectively. Degrading failures still allow the
system to provide a subset of its specified behavior. Repairing Failure requires instead
that faulty resources originating the failure be replaced or repaired before the system
activity continues. Repairing actions are undertaken during the failure treatment phase
and are performed by proper mechanisms (association address).

The failure hierarchy of Figure 18(A), defined in [9] can be exploited to construct
GSPN model components representing different failure modes. The main purpose of
GSPN models representing failure modes is to synthesize in a unique place the set
of (erroneous) states that have equivalent consequences on the system. These models
correspond to the failure mode layer described in [54] that allows to arrange an SPN
model in a manner suitable for the analysis of different levels of service degradation. In
Figure 18(B) two skeletons of GSPN models representing a generic failure mode and
a repairing failure mode, respectively, are depicted. The model F0 is characterized by
three main states: no fail, pot fail and fail, respectively meaning the absence of fail-
ure, the occurrence of the error conditions causing it and the failure occurrence. Several
error conditions may cause the occurrence of a failure: the firing of transition cond i
represents the occurrence of one of such conditions; since, in general, the failure oc-
currence is caused by a combination of errors, cond i is a multi-labeled transition with
labels derived from association effect(Error, Failure) for synchronization with the error
models. Transition fail occ has to be synchronized with a System Component model,
so that its label is derived from association affect(Failure, SystemComponent).

Concerning the result list, the GSPN model is characterized by two metrics derived
from the homonyms attributes of Failure class: PF , defined as the probability the place
fail is marked, and RF defined as the throughput of transition fail occ.

Model F1, representing a repairing failure mode, contains one transition more with
respect to F0: fail repair that is an interface transition to be synchronized with recon-
figuration mechanism models. Model F1 respects protocol inheritance.

7 A Methodological Approach to the Construction of Petri Nets
Models for Dependability in the Automation System Domain

The Petri Net component models and their organization into a three-layered structure
described in Section 5 constitute a first support in the construction of a Petri Net model
suitable to be analyzed through either numerical or simulation techniques. But a number
of points are still open: how does the modeler identifies, in the system being modeled,
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Fig. 18. GSPN component models of failure mode classes

the resources operations, the services and the system components required by the PSR
approach? And while modeling a system that includes some FT mechanisms, where
should the mechanisms models be placed in the context of Figure 15? In this section we
try to give an answer to these questions by restricting the scope to a particular domain,
that of automation systems. A larger treatment of the topic can be found in [7, 4].

This work was developed in the EEC-IST project DepAuDE [26] as part of a meth-
odological effort to support the analyst from the early phases of the project (collection of
dependability requirements) down to the definition, validation and dependability evalu-
ation of fault tolerance strategies adopted for automation systems [9].

The DepAuDE methodology follows the approach of integrating different notations
during the dependability process as suggested by emerging standard like IEC 60300
[21]. In particular, UML Class Diagrams (CDs) and SPN are used in the methodology
with different roles, but the information contained in the CDs is exploited to drive the
SPN modeling process.

CDs are meant as a support for the requirements collection and/or for structuring
and/or reviewing for completeness already available requirements. A set of predefined
CDs for the automation system domain (called generic CD scheme) and guidelines
on how to produce from it the customized one that refers to the target application are
provided.

Stochastic Petri nets - in particular GSPN and SWN – are used to support depend-
ability design validation and evaluation through modeling. The methodology supports
the construction of PN evaluation scenarios. A PN scenario consists of a set of PN
model components and of their interactions, plus the set of model parameters and the
set of performance and validation properties of interest.

The methodology helps the analyst in the construction of a PN scenario by provid-
ing a set of predefined reusable PN models for some of the UML classes, a suggested
structure of interaction of the model components, guidelines on how to extract infor-
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mation from Class Diagrams, and in particular on the Class Diagram instantiated on
the specific application, automatic translation from UML State-Charts and Sequence
Diagrams into PN, and a suggested approach to the dependability analysis.

The issue of re-use of high level information available from the UML design has
been a major concern also for the European Esprit project HIDE [16], that has devised
an integrated environment supporting dependability analysis of UML-based system de-
sign from the early stages, based on the automatic generation of PN from a number
of UML diagrams that encode specific dependability aspects in a rather abstract form.
The goal being the evaluation from the early stages of the design the resulting model is
obviously rather abstract (since a limited amount of information is available), which is
an advantage from a computational point of view, but may be not sufficiently detailed
to allow also qualitative properties to be checked.

CD
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Fig. 19. Scheme hierarchy

UML Class Diagrams. The CDs of the generic CD scheme of the DepAuDE method-
ology are grouped into the hierarchical structure of packages represented in Figure 19,
where each non-leaf package of the structure encapsulates a set of inner packages to-
gether with their definition dependency relationships. The scheme is therefore consti-
tuted by a set of CDs that describe the system in terms of automation components,
automation functions, dependability attributes, and timing requirements (left branch in
Figure 19), a set of CDs that describe the dependability model in terms of the FEF chain
(central branch), and a set of CDs devoted to the strategy model (right branch) that is
seen as a set of dependability actions/steps, that can be achieved through a number of
software “mechanisms”. The Fault Model, Error Model and Failure Model packages
contain, respectively, the hierarchy views of fault, errors and failures described in sub-
Section 6.3.

Class attributes are used to represent either parameters, whose values have to be
provided as input to the specifications, or measures to be computed or upper/lower
bounds whose values have to be provided as input to the specification and to be validated
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at later stages of the development. We have chosen to discriminate these different types
of usage of class attributes by prefixing the name of the attributes with a specific symbol
(“$” , “/” or “/$”, respectively).

Elements of a generic CD can be customized on a specific application with the help
of a set of guidelines [9]. In the customized CD the value of the class attributes and of
the association multiplicities have been set and new classes and associations are added.

The customized CD still refers to classes, and not to objects, but certain classes
and associations have been made more specific using information from the application.
We now illustrate a few Class Diagrams of the generic CD scheme, trimmed so as to
simplify explanation, while still, we hope, containing enough information for what will
be discussed later.
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Fig. 20. The CD Structure of Composition (a) and its instantiation to the running example (b)

Figure 20(a) describes a portion of the system: an automation site is a plant (op-
tional) together with one or more automation systems. An automation system is com-
posed by a set of automation functions, that can communicate among them, and by a set
of automation components that can be used to perform one of more automation func-
tions. An automation component controls zero or more plant components. An instanti-
ated version of the CD of Figure 20(a) will contain application specific information.

Let us consider, for example, a cyclic application that activates two concurrent pro-
cesses: each process reads a sample input from a plant, elaborates the future state, saves
the new state in memory and produces the new output for the plant. The memory units
can be affected by physical faults that may cause errors in the automation functions.
Communication units are instead assumed not affected by faults. To increase the de-
pendability of the automation system a fault-tolerance strategy has been devised con-
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sisting of error detection, error diagnosis and error recovery. The error detection step
uses a standard watchdog mechanism while error diagnosis and recovery steps are im-
plemented by a recovery mechanism. If the watchdog expires, it sends a notification
message to a software recovery mechanism, that provides to terminate the watchdog
and check the status of the automation system: if no error is present then it is a false
alarm, and the watchdog is simply reinitialized. If instead an error is present then a
recovery action is carried out. Measures to be computed are the availability of the au-
tomation functions and the probability of failure of the automation system.

Figure 20(b) shows an instantiated version of the CD depicted in Figure 20(a) to
the example: there are two types of automation components dealing with communica-
tion (ACCOM) and memory (ACMEM), three types of automation functions dealing with
asynchronous communication (ACFA), synchronous communication (ACFS), and mem-
ory (AFMEM), and a single type of automation system AS.

Classes ACCOM and ACMEM are characterized, respectively, by the input attributes
comm rate, representing the communication rate, and copy rate, representing the rate
of the copy operation. The values assigned to these attributes are exponential probability
distribution functions with parameter λ = 0.1. Class AFMEM is characterized, instead,
by a metric to be evaluated and verified against the requirements that is the mean avail-
ability of the automation functions performed by the memory components whose value
has to be included in the interval [0.98,0.999].
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Fig. 21. The generic FEF chain (a) and its instantiation to the running example (b)

Figure 21(a) is a trimming of the CD of the FEF chain. Once customized on a spe-
cific application it shows which faults cause which errors, how errors propagates, and
which (set of) errors cause a failure, that is to say a deviation from the service delivered
by the system. The diagram also connects each type of fault, error and failure with the
corresponding system components affected by it. The instantiated version is shown in
Figure 21(b): it contains only one type of faults (Physical Faults), a single type of error
(Memory Error) and a failure (Halting Failure). The instantiation of the affect relation-
ship relates the fault to the ACMEM component only, the error to function AFMEM , and
failure to AS. Values are set to the input attributes of Physical Fault and Memory Error
classes (i.e., the attributes prefixed with the “$” symbol), while the attribute PF (pre-
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fixed with the “/” symbol) emphasizes that the probability of failure of the automation
system is a measure of interest to be computed.

The CD description of a system contains a lot of useful information for the con-
struction of PN evaluation scenarios, in particular we have observed the following re-
lationships: (1) the package structure provides indication on the organization of PN
component models; (2) the aggregations provides information that allows to identify
PN components and the composition formulae; (3) binary general associations (asso-
ciations from now on) among classes indicate interactions and can therefore be used to
identify labels for PN model composition; (4) classes are rich of attributes that are use-
ful to set rate parameters (input and/or upper-lower bound attributes) and to define the
performance/dependability indices (output measures and upper-lower bound attribute
to be checked); (5) information on the FEF chain is fundamental to set the relationship
among the PN models of faults, errors, failures, and system components; (6) hierarchies
can indicate reuse of PN components through inheritance [65]; (7) the Strategy Model
package allows to identify which mechanisms are used for which fault, error, or failure
(dependability strategy).

Composition Scheme of PN Models. To use the PSR in the automation system domain
we need to identify the main PN models involved and their interactions. This identifica-
tion is again driven by the CDs. The organization of PN models into layers is described
by Figure 22. The package structure with the three branches of Figure 19 is reflected
in the organization into three columns of Figure 22, while to decide in which level to
place the various PN models we have considered the FEF chain first (Figure 21). Faults
are at the lowest level of the chain, and they have therefore been placed at the resource
level. Consequently also automation components (AC), that are affected by faults, have
been placed at the same level. With a similar reasoning errors and automation functions
(AF) have been placed at the service level, and failure models and automation system
(AS) have been placed at the process level.

This is depicted in Figure 22 by the set of boxes ACi for automation components,
FTj for the fault models, AFk for the automation functions, ERh for the error models,
AS for the automation system, and FAILn for the failure models.

The composition of automation components with faults requires a proper assign-
ment of labels to interface transitions for horizontal composition, that can be derived
from the associations affect(Fault, Automation Component) of the CD scheme in Fig-
ure 21.

The labels for the composition of automation functions with errors and for error
propagation are derived from the association affect(Error, Automation Function) and
Eeffect(Error, Error), from the CD of Figure 21.

The inter-level interaction between service and resource is given by the association
perform(Automation Component, Automation Function) of the CD of Figure 20 and by
the cause-effect association between faults and errors of Figure 21.

The labels for the composition of automation system with failure are derived from
the association affect(Failure, Automation System), while the propagation from error to
failure is based on the association effect(Error, Failure).

The software mechanisms are instead placed either at the service or at the process
level, depending on whether they address errors or failures.
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Fig. 22. Organization of the PN models in the DepAuDE methodology

Observe that the relationship between software mechanisms and automation func-
tions is through the error models, although there are cases, like the Local Voter pre-
sented in Sub-Section 5.2, in which it seems more natural to have a direct relationship
between the mechanisms and the functions, but unfortunately, no information of the
subject is contained in the CDs, so that no general guidelines can be derived.

Getting an Executable PN Model. Once the basic structure of the PN models has
been identified it is necessary to complete them with a number of information related
to the specific application. To reach this goal we have identified a number of steps that
will be illustrated through an example.
Step 1. Select the concrete classes of the customized CD scheme amenable to a PN
model
The set of PN component models can be identified by examining the customized CD
scheme to select the classes that are relevant from a quantitative point of view. Good
candidates are classes of the customized CD scheme that contain attributes specifying
input parameters, metrics to be computed and/or to be verified.

If we assume a class level specification, then all GSPNs are initialized with a single
token, while in case of object level specification the identities of the objects come into
play. In the context of modeling of distributed object software, an in-depth treatment of
the specification level is reported in [67], where a formalism derived from Colored Petri
Nets (CPN) [38] has been defined. Having used GSPN for the class models, SWN [18]
is a natural choice at the object level to keep track of the object identities.
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Fig. 23. Example of analyzable PN model: the set of PN components

Example. The customized CD scheme allows the identification of the PN components
shown in Figure 23.

At the resource level, left to right, we have: the communication unit, the memory
units, and the physical fault models. For ACCOM and ACMEM we have reused the re-
source models of Figure 13 and of Figure 14, respectively, with transmission and copy
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as basic operations, while adding reset transitions in ACMEM . For FTPH the predefined
physical fault model FT0 of Figure 16 has been used (with reset).

At service level, left to right, there are: the synchronous communication function
used by the automation system to initialize the watchdog, the asynchronous commu-
nication function used by the automation system to send signals to the watchdog, the
memory automation functions, the errors affecting the memory automation functions,
and the recovery mechanism. Models ACFA and ACFS are simplified models of commu-
nication presented in [6]. AFMEM follows the basic skeleton of service model of Figure
14 with “reset” transitions. ERMEM is an error memory model obtained by refining the
PN model component ER0 of Figure 17. Model REC has been produced from the high
level design specification of the recovery mechanism.

At process level there are: the automation system, the halting failure mode of the au-
tomation system, and the watchdog mechanism. Model AS has been produced from the
high level design specification of the automation system. Model FAIL is a customiza-
tion of the predefined failure mode model F0 of Figure 18. WD is a simplification of the
watchdog model resulting from the automatic translation of the State-Chart specifica-
tion of the watchdog [11].

Colors have been used to keep track of the multiple copies of ACMEM , FTPH , and
ERMEM , as well as to model two parallel subprocesses of AS.

Step 2. Customize the composition rules using the associations of the customized CDs.
The names/rolenames of the binary general associations defined in the CDs have been
used to characterize the labels of the PN components in Figure 23.

If object level specification is assumed, and therefore SWN models are used, fur-
ther “control” SWN component models may be necessary, to do the right association
between colors, as, for example, in the case of AC and AF model, to associate to each
Automation Component the corresponding Automation Function.

Example. The associations named affect allow to define three synchronization labels:
ftmem, to synchronize the memory model and the faults, erraf, to synchronize the au-
tomation functions and the memory, and finally, fail, to synchronize the automation sys-
tem and the halting failure model. New labels are introduced for the interaction between
the recovery mechanism and the memory error model (detect, noerr) and between the
recovery mechanism and the automation functions model (recaf). We can then define
the sets of labels for the horizontal compositions of the resource level (Lres = { f tmem}),
of the service level (Lsrv = {erra f}, and L′

srv = {detect,noerr,reca f}), and the process
level (Lpr = { f ail}).

The resource layer model R, the service layer model S and process layer model P
are then obtained by applying the composition operator || over transition labels:

R =
(

ACCOM | |
/0

ACMEM

)
| |

Lres

FTPH ,

S =
{[(

ACFA | |
/0

ACFS

)
| |
/0

AFMEM

]
| |

Lsrv

ERMEM

}
| |

L′srv

REC,

P =
(

AS | |
Lpr

FAIL
)
| |
/0

WD
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A similar procedure allows to identify the labels for the vertical composition of lay-
ers based on the associations perfom between automation components and automation
functions, and on the associations effect between physical faults and memory errors,
and between memory errors and halting failure. New labels are also added to repre-
sent: the interactions among the recovery mechanism model and the component models
laying at resource level and at process level, the interactions among the automation
system model and the automation (communication) functions models and, finally, the
interactions among the watchdog model and the automation communication functions
models.

The final PN model PSR is then obtained using the parallel composition of the
various levels upon the identified labels, according to the PSR methodology.

Step 3. Define the initial marking of the composed PN.
A complete definition of the initial marking is possible only when system design spec-
ification is available, by composing the initial marking of the components, that may
require information on the object identities.

Example. The initial marking is based on the assumptions that there is one commu-
nication unit, and that physical faults affects only one the first memory. The marking
parameter M0 has one token per color of the class C = C1 ∪C2 = {c1}∪{c2} and it is
used for ACMEM and AFMEM . The marking parameter M1, defined as the single color
c1, is used for FTPH ,ERMEM and FAIL.

Step 4. Initialize the rate/weight parameters of the PN composed model and define the
results.
The rate/ weight parameters and performance/ dependability indices should be defined
according to the values set to the input and output attributes of the customized classes.
The remaining ones are added and initialized by the modeler.

Example. From the customized CDs of Figure 20(b) and of Figure 21(b) we can identify
the following input parameters for the PN model: comm rate, copy rate, fault rate and
duration representing the communication rate, the rate of copy operation, the rate of the
fault occurrence and its duration, respectively.

The metrics to be evaluated and/or validated are specified by three attributes: avail-
ability, defined in class AFMEM of Figure 20(b), and PF, defined in the Halting Failure
class of Figure 21(b), specifying the probability of failure. These information extracted
from the CDs are only indications, no formal definition is associated to them, and they
have to be defined by the modeler.

Step 5. Perform the analysis.
To perform the analysis it may not be a straightforward task, since it may require a
modification of the PN model: as exemplified by the Local Voter mechanism in Sub-
Section 5.2 we point out that for certain types of indices it may be necessary to perform
a transient analysis in which the states representing a failure are made absorbing, while
if instead a recovery strategy is being evaluated it is likely that the model should be
made ergodic.

Example. We have used GreatSPN tool [52] to construct the PN component models de-
picted in Figure 23 and the program algebra [10] to carry out their composition. The
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reachability graph of the final SWN model contains 115 tangible markings, 778 vanish-
ing markings and 4 dead markings (failure of the automation system). The model can
be used for the computation of the probability of failure defined as the probability that
place fail becomes marked within time t, i.e., Pr{M[ f ail](x) = 1,x ≤ t}. The modified
ergodic model (in which a restart from failure has been modeled) is characterized by
103 tangible markings and 1051 vanishing markings. The ergodic model can be used
for the computation of the mean availability of the memory automation function that
can be affected by error that is defined as the probability that place error is empty.

8 Conclusions

In this paper we have introduced the quantitative evaluation of dependability based on
a probabilistic approach, following an order of presentation that somehow reflects also
be the historical development of the dependability field.

Starting from the dependability of simple systems, that can be expressed as rela-
tively simple formulas of the dependability of the elementary components of the sys-
tem, following a divide and conquer approach, we have then discussed the role of state
enumeration techniques for dependability, and in particular of state enumeration tech-
niques based on Continuous Time Markov Chain.

Since state enumeration is a low-level, error-prone activity, the researchers have
looked with interest into higher level formalisms as Petri nets, and in particular to whose
classes of Petri nets that have an underlying stochastic process semantics as either the
simple Markov Chain, like SPN, or as the more complex form of Markov Regenerative
Process, like Markov Regenerative SPN [19].

When building a model of complex systems for dependability, the interplay between
the system components and the FEF elements plays a central role, we have therefore
also presented a systematic, compositional approach to the construction of SPN models
for dependability. The approach has been exemplified with an example taken from the
automation system domain.
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Networks, DSN’01, pages 379–388, Göteborg, Sweden, July 2001. IEEE Computer Society
ed.

7. S. Bernardi and S. Donatelli. Building Petri net scenarios for dependable automation sys-
tems. In Proc. of the 10th International Workshop on Petri Nets and Performance Models
(PNPM2003), pages 72–81, Urbana-Champain, Illinois (USA), September 2003. IEEE Com-
puter Society ed.

8. S. Bernardi and S. Donatelli. Stochastic Petri nets and inheritance for dependability mod-
elling. In Proc. of the 10th Pacific Rim International Symposium on Dependable Computing
(PRDC04), Papeete, tahiti (French Polynesia), March 2004. IEEE C.S. to be published.

9. S. Bernardi, S. Donatelli, and G. Dondossola. Methodology for the generation of the mod-
eling scenarios starting from the requisite specifications and its application to the collected
requirements. Deliverable D1.3b - DepAuDE IST Project 25434, June 2002.
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