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Abstract. We present a modular formalism and methodology for modelling and
control of discrete event systems, such as flexible manufacturing systems. The
formalism is based on Petri net modules which communicate via signals. Two
kinds of signals are employed, namely active signals, which force occurrence of
(enabled) events (typically switches), and passive signals which enable/prohibit
occurring of events (typically sensors). Modelling with such modules appears to
be very natural from engineering perspective, enables hierarchical structuring,
and support locality principle.
Further, we discuss the role of both kinds of signals in control tasks and we focus
on the control aspects in general. We present a methodology for synthesis of
controlled behavior for systems modelled by modules of signal sets. Given an
uncontrolled system (a plant) modelled by a module of a signal net, and a control
specification given as a regular language representing the desired signal output
behavior of this system, we show how to synthesize the maximal permissive and
non-blocking behavior of the plant respecting the control specification. Finally,
we show how to synthesize the controller (as a module of a signal net) forcing
the plant to realize the controlled behavior.

1 Introduction

Petri Nets are already widely used for modelling and control of Discrete event sys-
tems [10, 22], because of their modelling power, graphical expression, strong theoretical
background, very developed analytical methods, tools, and many other features. How-
ever, there are still some features which are not directly supported by Petri Nets (at least
in their basic version), but are, on the other hand, quite natural for engineers working
with real applications. For example, to cover control tasks, Petri nets were extended by
adding external conditions, which are necessary for enabling occurrence of transitions
[10]. In the following paragraphs we are trying to identify some of features which are
important for applications and are not directly supported by Petri nets. Based on this
discussion we are presenting an extension of Petri nets, which can still benefit from
all strong advantages that Petri nets bring, but also enables to deal with the discussed
unsupported features in an effective way.

Petri nets are in principle distributed, however they do not support modularity. Mod-
ularity is quite natural and important in engineering. In complex application, models are
usually built in several steps and are described on several levels of abstraction. Almost
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each system is a part of a bigger system, such as a robot is a part of a manufacturing
cell, as well as almost each system itself is composed from subsystems. This fact gives
an importance to principle of compositionality. Thinking on one level of abstraction one
does not need to reason about all details of subsystems which were taken into consid-
eration in a sublevel. It is usually sufficient to consider just those parts of subsystems,
which are in contact with environment, i.e. “input/output” parts and to consider the “in-
side” of the subsystems being a “black box”. Such approach supports local changes in
the whole system, it enables a replacement of one module by another with the same
“input/output” functionality. A typical example of a modular approach in control ap-
plications are block diagrams. It would be very nice to have such a modular approach
based on Petri nets. There are already developed many compositional frameworks for
Petri nets, mostly based on gluing common places and/or transitions. However, because
the subject of engineering are mostly complex systems, it is desirable that the compo-
sition of modules preserve the structure of modules.

In classical control theory it is given a system which can interfere with environment
via inputs and outputs. The aim of its control is to ensure desired behaviour by giving
the system right inputs in order to get the right outputs. The central idea in control the-
ory is, that system and control build a so called closed loop (or feedback loop), which
means, roughly speaking, that the control gives inputs to the system based on the system
outputs which are observed by the control. In this paper, we are interested in control of
discrete event systems, where the dynamic behaviour of a system is described by oc-
currence of discrete events changing the states of the system. The crucial question to be
answered when choosing a formalism for modelling control systems is how to formalize
“giving inputs and observing outputs”. In order to answer the question, let us discuss
a very simple example. Consider a switch which can turn on a light. Turning on the
switch forces the bulb to light, however, only if the bulb is not damaged. And of course
the bulb can not start to light, if no switch is turned on. In other words, in the previous
situation the switch is the actuator of the bulb. In this example the switch plays the role
of the control, while the light (bulb with cables etc.) plays the role of the system to be
controlled. Thus, inputs to the system can be actuators representing conditional assym-
metric synchronization - events of the control are trying to force events in the system.
This is a typical situation in control of discrete event systems: a product line will not
start without pressing a control button, or a mobile phone will not call a number with-
out pressing appropriate buttons, but a printer is not printing without paper even if the
“print” button was pressed. The other typical interaction between control and discrete
event systems are sensors readings: An event in the system can occur only if a sensor
in the control is in a certain state and vice versa. Thus events can be enabled/prohibited
via states of sensors.

Thus, an event of a system can have two kinds of inputs: Actuators, which try to
force the event, or sensors, which can prohibit the event. Events associated to inputs are
called controllable. Of course there can be uncontrollable events in the system. Regard-
ing for example a printer, a “paper jam” event can occur without any influence from the
control. The following two kinds of outputs can be observed: Either the occurrence of
an event (via actuators) or the fact that a state is reached (via sensors). Event resp. states
associated to outputs are called observable. Of course there can be unobservable events
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resp. states. As mentioned, it would be natural to model control of a discrete events sys-
tems by influencing its behaviour by actuators and sensors in order to observe desired
outputs as decribed above.

However, the solution in the discrete event control community, which is now quite
accepted, is to use only the sensors. More exactly, in supervisory control [2, 16] the
events of the system to be controlled are divided as above into controllable and uncon-
trollable. But the controllable events can only be enabled/prohibited by a supervisor.
Thus, in supervisory control actuators can only be modelled indirectly using the “sen-
sor principle” by prohibiting all controllable events, except the event which is actuated
([1], pp. 185 - 202). For example, modelling a switch and a light, one needs to prohibit
all controllable events except the event “a bulb starting to light” to model the situation
when the switch turns on. In fact, in case of supervisory control, the control means to
restrict the behaviour of the system to fulfil the control specification. As mentioned in
[1], pp. 185 - 202, “sometimes it is desirable to have a controller which not only dis-
ables controllable events but also chooses one among the enabled ones. This event can
be interpreted as a command given to the plant.” The solution to such cases is given by a
construction of “an inplementation”, which is a special supervisor, enabling at most one
controllable event at a time. There arises the natural question, why not directly model
actuators?

We would like to have an extension of Petri nets, which support input/output struc-
turing using actuator and sensors, modularity and compositionality in an intuitive graph-
ical way.

So, as a modelling formalism, we use modules communicating by means of the
above described signals. This formalism is based on the work [18], where automata
were used to describe the internal behavior of a system, and the paper [19], where
Petri nets were used for this purpose. We call these models, i.e. Petri nets equipped
with two kinds of signals, signal nets. Nowadays, this concept is successfully used in
modelling and control of discrete event systems by a growing community. There are
several dialects of these nets and several different names, such as net condition/event
systems [8, 7, 9] or signal nets [20]. In this paper we are using the name signal nets. One
reason is that the name condition/event nets is used in the Petri net context for a well
known basic net class. A signal net is a Petri net enriched by event signals, which force
the occurrence of (enabled) events (typically switches), and condition signals which
enable/prohibit the occurring of events (typically sensors). Adding input and output
signals to a signal net, one gets a module of a signal net. Modules of signal nets can be
composed by connecting their respective input and output signals.

There are several related works employing modules of signal nets in control of
discrete event systems. In [8, 7, 9] effective solutions for particular classes of specifi-
cations, such as forbidden states, or simple desired and undesired sequences of events,
are described. Recently, an approach for control specifications given by cycles of ob-
servable events was presented in [15]. However, in [15] the actuators are used only to
observe events of the controlled system, but surprisingly, for control actions only con-
dition signals (for prohibiting events) are taken. In our paper, we adapt the framework
of supervisory control providing a methodology for control of discrete event systems
using both concepts, namely actuators and sensors. Such a methodology with the slo-
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gan “forcing and prohibiting instead of only prohibiting” would be more appropriate for
the class of discrete event systems, where actuators and commands are used in practice.
In addition, we consider a general class of control specification in form of a language
over steps of event outputs (steps of observable events). We consider steps (i.e. sets) of
outputs, rather then simple outputs, because some outputs can be simultaneously syn-
chronized by an event of the system. We allow also steps containing an input with some
outputs. Such a situation describes that an input signal is trying to synchronize a control-
lable event of the system, which is also observable. So the controller can immediately
(i.e. in the same step) observe whether the input signal has forced the event to occur or
not. However, since the control is assumed to send inputs based on observed outputs
(as stated in the beginning), we do not allow the symmetric situation: observable events
can not synchronize inputs in the same step.

As it was already mentioned, in case of supervisory control, the behavior of the DES
can not be forced by the supervisor: control means to restrict the behavior of the system
to fulfill the control specification. Formally (see e.g. [2]), there is given a regular prefix
closed language over the set of system events. This language represents the uncontrolled
behavior of the system. Control specification is given in form of a regular subset of this
language and is representing the desired behavior. Moreover, some states in an automa-
ton representing the uncontrolled behavior are marked. The sequences (words) of events
leading to these states describe completed tasks. Remember also, that the events of the
system are divided into controllable events, which can be enabled/prohibited by the
control, and uncontrollable events. The basic aim of supervisory control is to find a su-
pervisor, which will prohibit the controllable events in such a way, that the behavior of
the system is restricted to its maximal regular sublanguage, which still respects the con-
trol specification, and is moreover non-blocking (every sequence of this language can
be completed to a marked state, i.e. no dead- or livelocks occur in unmarked states).
Such a supervisor is called minimally restrictive nonblocking supervisor.

In our framework we identify which input signals have to be sent to the module of
the plant in order to observe only such sequences of (steps of) output signals, which
are prefixes of the control specification, and every sequence of (steps of) output signals
can be completed to a sequence of output signals belonging to the control specification.
The presented solution is maximal in the sense, that we match all sequences of (steps of)
outputs which can be achieved by sending appropriate inputs without being in danger
to observe a sequence of (steps of) outputs which is not a prefix of a sequence in the
control specification, or a sequence of (steps of) outputs which can not be completed
to a sequence in the control specification (i.e. which is blocking). The maximality is
achieved under the paradigm, that no output signal of the plant can synchronize an input
signal of the plant (as already stated above). In other words, we construct a language
over steps of input and output signals of the module of the plant, which represents
the maximally permissive nonblocking behavior and fulfills the control specification.
Finally, we show that for such a behavior there exists a control module (of a signal net),
which will in composition with the plant module realize this behavior. As the main
result we will construct such a control module.

The paper is organized as follows: In Section 2 we present modules of signal nets
with definition of step semantics, composition rules and input/output behavior. In Sec-
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tion 3 we outline our control framework implementing the “forcing and prohibiting”-
paradigm by means of modules of signal nets. It is compared in detail to classical su-
pervisory control. The Section splits into two parts. In Subsection 4.1 we synthesize the
maximally permissive nonblocking behavior of a module of a signal net (representing
the plant) respecting a given regular specification language. Finally, in Subsection 4.2
we present the construction of the controller as a module of a signal net.

2 Modules of Signal Nets

As mentioned in the introduction we present an extension of Petri nets which allows
to model actuators, sensors and modularity, and still has all the benefits that Petri nets
bring. We assume the underlying Petri nets to be elementary Petri nets (1-safe Petri nets)
equipped with the so called first consume, then produce semantics (since we want to al-
low loops, e.g. [13]). The first step in the extension is to add two kinds of signals, namely
active signals, which force the occurrence of (enabled) events (typically switches or ac-
tuators), and passive signals which enable/prohibit the occurrence of events (typically
sensors). These signals are expressed using two kind of arcs. A Petri net extended with
such signals is simply called a signal net.

Active signals are represented using arcs connecting transitions and can be inter-
preted in the following way: An active signal arc, also called event arc, leading from
a transition t1 to a transition t2 specifies that if transition t1 occurs and transition t2 is
enabled to occur then the occurrence of t2 is forced (synchronized) by the occurrence
of t1, i.e. transitions t1 and t2 occur in one (synchronized) step. If t2 is not enabled,
t1 occurs without t2, while an occurrence of t2 without t1 is not allowed. Taking an
example, an event turning on a switch would be modelled via the transition t1, while
the event lighting the bulb would be modelled via transition t2.

In general (synchronized) steps of transitions are build inductively in the above way.
Every step starts at a unique transition, which is not synchronized itself. Notice that this
implies that event arcs build no cycles. Consider a transition t which is synchronized
by several transitions t1, . . . , tn, n � 2. Then two situations can be distinguished. For
simplicity consider the case n = 2.

If the transitions t1 and t2 do not build a synchronized step themselves, either t1 or
t2 can synchronize transition t in the above sense, but never transitions t1 and t2 can
occur in one synchronized step. As an example you can think of several switches to turn
on a light on (see Figure 1, part (a)).

If the transitions t1 and t2 build a synchronized step themselves, then there are two
dialects in literature to interpret such a situation: In the first one ([8, 7, 9]) both tran-
sitions t1, t2 have to agree to synchronize t. Thus the only possible step of transitions
involving t has to include transitions t1 and t2, too. We call this dialect AND-semantics
(see Figure 1, part (b)).

In the second one ([4]) the occurrence of at least one of the transitions t1 and t2
synchronizes transition t, if t is enabled. It is also possible, that t1, t2 and t occur in one
synchronized step. We call this dialect OR-semantics (see Figure 1, part (c)).

In general the relation given by event arcs builds a forest of arbitrary depth. In
this paper we introduce the most general interpretation, where both semantics are pos-
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Fig. 1. In Figure (a) the enabled steps are {t1, t} and {t2, t}. Figure (b) shows a signal net in
AND-semantics: here the only enabled step is {t′, t1}, i.e. t is not synchronized. In Figure
(c) the same net is shown in OR-semantics: here we have the enabled step {t′, t1, t}, i.e. t is
synchronized.

t1t1 t
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Fig. 2. Figure (a) shows an enabled step {t1, t}. The left part of Figure (b) shows an enabled
transition t, which tests a place to be marked. The occurrence of t leads to the marking shown in
the right part of Figure (b). Figures (c) and (d) again present situations of an enabled step {t1, t}.

sible and are interpreted locally backward. That means we distinguish between OR-
and AND-synchronized transitions. An OR-synchronized transition demands to be
synchronized by at least one of its synchronizing transitions, whereas an AND-syn-
chronized transition demands to be synchronized by all of its synchronizing transitions.
Since we allow loops w.r.t. single transitions, we also allow loops w.r.t. steps of transi-
tions (see Figure 2, part (a)).

Passive signals are expressed by so called condition arcs (also called read arcs or
test arcs in the literature) connecting places and transitions. A condition arc leading
from a place to a transition models the situation that the transition can only occur if
the place is in a certain state but this state remains unchanged by the transition’s occur-
rence (read operation) (see Figure 2, part (b)). Of course several transitions belonging
to a synchronized step can test a place to be in a certain state via passive signals simul-
taneously, since the state of this place is not changed by their occurrence (see Figure 2,
part (c)).

We also allow that a transition belongs to a synchronized step of transitions testing
a place to be in a certain state via a passive signal, whereas the state of this place is
changed by the occurrence of another transition in this step. That means we use the so
called a priori semantics ([12]) for the occurrence of steps of transitions, where testing
of states precedes changing of states by occurrence of steps of transitions (see Figure 2,
part (d)).

Definition 1 (Signal nets). A signal net is a six-tuple N = (P, T, F, CN, EN, m0)
where
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P denotes the finite set of places,
T = TAND∪̇TOR the distinct union of the finite sets of AND-synchronized transitions
TAND and OR-synchronized transitions TOR (P ∩ T = ∅),
F ⊆ (P × T ) ∪ (T × P ) the flow relation,
CN ⊆ (P × T ) the set of condition arcs (CN ∩ (F ∪ F−1) = ∅),
EN ⊆ (T × T ) the acyclic set of event arcs (EN+ ∩ idT = ∅), and
m0 ⊆ P the initial marking.

Places, transitions and the flow relation are drawn as usual using circles, boxes
and arrows. To distinguish between AND- and OR-synchronized transitions, AND-
synchronized transitions are additionally labelled by the symbol “&”. Event arcs and
condition arcs are visualized using arcs of a special form given in Figure 1 and Figure 2.

For a place or a transition x we denote
•x = {y | (y, x) ∈ F} the preset of x,
x• = {y | (x, y) ∈ F} the postset of x.

For a transition t we denote
+t = {p | (p, t) ∈ CN} the positive context of t,
�t = {t′ | (t′, t) ∈ EN} the synchronization set of t,
t� = {t′ | (t, t′) ∈ EN} the synchronized set of t.

Given a set ξ ⊆ T of transitions, we extend the above notions to: •ξ =
⋃

t∈ ξ
•t

and ξ• =
⋃

t∈ ξ t• , �ξ =
⋃

t∈ ξ
�t, ξ� =

⋃
t∈ ξ t� .

Definition 2 (Enabling of transitions). A transition t ∈ T is enabled at a marking
m ⊆ P , if •t ∪ +t ⊆ m and (t• \ •t) ∩ m = ∅.

The following definition introduces a notion of steps of transitions which is different
to the usual one used in Petri nets. A step denotes a set of transitions connected by event
arcs, which occur synchronously. A transition, which is not synchronized by another
transition, is a step. Such transitions are called spontanuous. In general, steps are sets
of transitions such that for every non-spontaneous OR-synchronized transition in this
step at least one of it’s synchronizing transitions belongs also to this step, and for every
AND-synchronized transition in this step all of it’s synchronizing transitions belong
also to this step.

Definition 3 (Steps). Given a signal net N , steps are sets of transitions ξ defined in-
ductively by

– If t ∈ T with �t = ∅ (t is spontaneous), then ξ = {t} is a step.
– If ξ is a step, and t ∈ T \ ξ is a transition, then ξ ∪ {t} is a step, if either t ∈ TOR

and �t ∩ ξ �= ∅, or t ∈ TAND and �t ⊆ ξ.

Now we introduce how a step is enabled to occur. A step ξ is said to be potentially
enabled at a marking m if every transition t ∈ ξ is enabled at m and no transitions
t1, t2 ∈ ξ are in conflict, except for possible loops p ∈ •ξ ∩ ξ• w.r.t. ξ, where p ∈ m is
required. From all steps potentially enabled at a marking only those are enabled which
are maximal with this property.

Definition 4 ((Potentially) enabling of steps). A step ξ is potentially enabled in a
marking m if
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– All t ∈ ξ are enabled: •t ∪ +t ⊆ m and (t• \ •ξ) ∩ m = ∅ and
– No pair of transitions t, t′ ∈ ξ is in conflict: •t ∩ •t′ = t• ∩ (t′)• = ∅.

The step ξ is enabled, if ξ is potentially enabled, and there is not a potentially enabled
step η � ξ (ξ is maximal).

Definition 5 (Occurrence of steps and follower markings). The occurrence of an
enabled step ξ yields the follower marking m′ = (m \ •ξ) ∪ ξ• . In this case we write
m[ξ〉m′.

Definition 6 (Reachable markings, occurrence sequences). A marking m is called
reachable from the initial marking m0 if there is a sequence of markings m1, . . . , mk =
m and a sequence of steps ξ1, . . . , ξk, such that m0[ξ1〉m1, . . . , mk−1[ξk〉mk. Such a
sequence of steps is called an occurrence sequence.

Adding some inputs and outputs to signal nets, i.e. adding condition and event arcs
coming from or going to an environment, we get modules of signal nets with input and
output structure.

Definition 7 (Modules of signal nets). A module of a signal net is a triple M =
(N, Ψ, c0), where N = (P, T, F, CN, EN, m0) is a signal net, and Ψ = (Ψsig , Ψarc)
is the input/output structure, where
Ψsig = Cin ∪ Ein ∪ Cout ∪ Eout is a finite set of input/output signals, and
Ψarc = CIarc ∪EIarc ∪COarc ∪EOarc is a finite set of arcs connecting input/output
signals with the elements of the net N . Namely,
Cin resp. Ein denotes the set of condition resp. event inputs,
Cout resp. Eout the set of condition resp event outputs,
CIarc ⊆ Cin × T resp. EIarc ⊆ Ein × T the set of condition resp event input arcs,
COarc ⊆ P ×Cout resp. EOarc ⊆ T ×Eout the set condition resp event output arcs,
c0 ⊆ Cin the initial state of the condition inputs.

We extend the notions of preset, postset, positive context, synchronization set and
synchronized set to the elements of Ψsig in the obvious way. An example of a module
of a signal net, with Cin = {ci}, Ein = {j, k}, Cout = {co} and Eout = {u, v} is
shown in the Figure 3.

Two modules can be composed by identifying some inputs of the one module M1

with appropriate outputs of the other module M2 and vice versa with a composition
mapping Ω. The connections of the nets to the involved identified inputs and outputs
are replaced by direct signal arcs respecting the identification (see Figure 7), such that

– the initial markings are compatible with the initial states of the condition inputs,
and

– no cycles of event arcs are generated.

The composition of M1 and M2 w.r.t. Ω is denoted by M1 ∗Ω M2.

Definition 8 (Composition of modules of signal nets). Let M1 = (N1, Ψ1, c01),
M2 = (N2, Ψ2, c02) be modules of signal nets with input/output structures Ψi = (Ψsig

i ,
Ψarc

i ) and initial markings m0i (i = 1, 2).
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Module A

co1

eo1

eo2

ci1

ei1

ei2

Fig. 3. A module of a signal net with condition inputs Cin = {ci}, event inputs Ein = {j, k},
condition outputs Cout = {co} and event outputs Eout = {u, v}.

Module A

coA1

eoA1

eoA2

ciA1

eiA1

eiA2

Module B

eoB1eiB1

coB1

Fig. 4. The composition of two modules.

Let Q ⊆ Ψsig
1 and Ω : Q → Ψsig

2 be an injective mapping, such that the initial
markings are compatible with the initial states of the condition inputs:
(p, co) ∈ COarc

1 ∧ Ω(co) ∈ c02 ⇒ p ∈ m01 and
(p, co) ∈ COarc

2 ∧ Ω−1(co) ∈ c01 ⇒ p ∈ m02.
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coA1

eoA1

eiA1

Module B * A

Fig. 5. The result of the composition of the modules from Figure 4.

Ω has to satisfy:
Ω(Ein

1 ∩Q) ⊆ Eout
2 , Ω(Eout

1 ∩Q) ⊆ Ein
2 , Ω(Cin

1 ∩Q) ⊆ Cout
2 , and Ω(Cout

1 ∩Q) ⊆
Cin

2 .
Finally, no cycles of event arcs should be generated.

Then the composition M = M1 ∗Ω M2 of M1 and M2 w.r.t. Ω is the module
M = (N, Ψ, c0) with N = (P1 ∪ P2, T1 ∪ T2, F1 ∪ F2, CN, EN, m01 ∪ m02) and
Ψ = (Ψsig , Ψarc), where involved inputs, outputs and corresponding signal arcs are
deleted, i.e.

Ψsig = (Ψsig
1 \ Q) ∪ (Ψsig

2 \ Ω(Q),
Ψarc = (Ψarc

1 \ (( •Q × Q) ∪ (Q × Q• ))) ∪
(Ψsig

2 \ (( •Ω(Q) × Ω(Q)) ∪ (Ω(Q) × Ω(Q)• ))),
c0 = (c01 \ Q) ∪ (c02 \ Ω(Q)),

and new signal arcs are added according to Ω in the following way:

CN = CN1 ∪ CN2 ∪
{(p, t) | ∃co ∈ Cout

1 : (p, co) ∈ COarc
1 ∧ (Ω(co), t) ∈ CIarc

2 } ∪
{(p, t) | ∃ci ∈ Cin

1 : (ci, t) ∈ CIarc
1 ∧ (p, Ω(ci)) ∈ COarc

2 },
EN = EN1 ∪ EN2 ∪

{(t, t′) | ∃eo ∈ Eout
1 : (t, eo) ∈ EOarc

1 ∧ (Ω(eo), t′) ∈ EIarc
2 } ∪

{(t, t′) | ∃ei ∈ Ein
1 : (ei, t′) ∈ EIarc

1 ∧ (t, Ω(ei)) ∈ COarc
2 }
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Remark 1. For each new arc (t, t′) in a composed module M1 ∗Ω M2 w.r.t. an event
output eo ∈ Eout

1 with (t, eo) ∈ EOarc
1 and (Ω(eo), t′) ∈ EIarc

2 we say that t′ replaces
eo and t replaces Ω(eo). A similar notion is used also for new arcs w.r.t. event inputs
and condition inputs and outputs.

In order to define the behavior of a module, observe: transitions connected by an
event input to the environment are not able to occur spontaneously, but need to be syn-
chronized by the event input in order to occur. Similar a transition connected by an con-
dition input to the environment is only able to occur, if the condition input is activated.
Therefore we are interested in the behavior of the module w.r.t. a given environment.
In the most general case this environment is assumed to be maximal permissive in the
sense, that there is no causal restriction in sending event inputs and activating condition
inputs. We will model such an environment also as a module E of a signal net and then
compose the environment module appropriately with the original module M . E realizes
a maximally permissive environment in the following sense:

– at any moment E can send event inputs to M : so each event signal of M is modelled
in E by a corresponding always enabled transition;

– at any moment E can enable and disable condition inputs of M : so each condition
input of M is modelled in E by a corresponding place, which can be marked and
unmarked by associated transitions;

– E can observe outputs of M : every output of M is modelled in E by a corresponding
transition, which synchronized in the case of an event output, and enabled in the
case of an condition output;

– in E no synchronization between its transitions is allowed: in particular, inputs
should not be sent in steps from E to M , and outputs M should only be observed
by E and not synchronize inputs of M via E .

Definition 9 (Maximally permissive environment). Let M = (N, Ψ, c0) be a module
with Ψ = (Ψsig , Ψarc). Define the maximally permissive environment module E =
(NE , ΨE , c0E), ΨE = (Ψsig

E , Ψarc
E ), w.r.t. M by ENE = CNE = ∅ and

PE = {pci.on | ci ∈ Cin},
TE = {tc | c ∈ Cout} ∪

{tci.on | ci ∈ Cin} ∪ {tci.off | ci ∈ Cin} ∪
{te | e ∈ Eout ∪ Ein},

FE = {(tci.on, pci.on) | ci ∈ Cin} ∪ {(pci.on, tci.off ) | ci ∈ Cin},
m0E = {pci.on | ci ∈ Cin ∩ c0},
Cin

E = {cic | c ∈ Cout},
Cout

E = {coc | c ∈ Cin},
Ein

E = {eie | e ∈ Eout},
Eout

E = {eoe | e ∈ Ein},
CIarc

E = {(cic, tc) | c ∈ Cout},
COarc

E = {(pc, coc) | c ∈ Cin},
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Module A

coA1

eoA1

eoA2

ciA1

eiA1

eiA2

Environment E

eoB2eiB2

coB1

eoB1

eiB1

ciB1

Fig. 6. The composition of the module in Figure 3 with its maximally permissive environment
module.

EIarc
E = {(eie, te) | e ∈ Eout},

EOarc
E = {(te, eoe) | e ∈ Ein}.

The composition of M with its maximally permissive environment E is called the
standalone of M (observe that this composition has empty input/output structure) (as
an example see Figure 7).

Definition 10 (Standalones). Let M be a module of a signal net and E be the max-
imally permissive environment module of M . The standalone of M is the composi-
tion module MS = (NS , ΨS) = M ∗Ω E w.r.t. the following composition mapping
Ω : Ψsig → Ψsig

E :

Ω(e) = eie for e ∈ Eout,

Ω(e) = eoe for e ∈ Ein,

Ω(c) = cic for c ∈ Cout,

Ω(c) = coc for c ∈ Cin.

Definition 11 (Behavior of modules of signal nets). Let M be a module of a signal
net and let MS = (NS , ΨS) be the standalone of M . The set LM of all occurrence
sequences of NS is called the behavior of the module M .

LM represents the set of all possible sequences of steps of input signals, output
signals and inner transitions of M under the assumptions: Output signals of M can
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Standalone SA

Fig. 7. The standalone of the module of a signal net in Figure 3.

not synchronize input signals of M via the maximally permissive environment module.
Several input signals of M can not be sent in steps from the maximally permissive
environment module.

Thus, modules of signal nets are a Petri net extension supporting input/output struc-
turing, modularity and compositionality in an intuitive graphical way. They are used in
many applications in the area of design, modelling and control of discrete event systems,
such as flexible manufacturing systems and control of traffic systems for more than ten
years, see e.g. [8, 7, 9, 19]. This fact gives a motivation for a more detailed theoretical
investigation of this extension of Petri nets. In this section we have provided a proper
formal foundation for this modelling framework, including definitions of input/output
structure and composition of modules. In [14], we have concentrated on a definition of
an equivalence w.r.t. input/output behaviour, which is preserved by the composition of
modules. It is a crucial concept for hierarchical modelling, which enables to replace a
module with a more abstract/concrete module with the same “input/output” functional-
ity.

In the following sections we discuss the role of both kinds of signals in control tasks
and we focus on the control aspects in general.

3 Controller Synthesis

As mentioned in the introduction, in classical control the aim is to influence the behavior
of a system by a control via sensors and actuators in order to get a specified desired
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behavior. In principle there are two possibilities to express a desired behavior (see [2]
for an actual survey, and [1, 21] for recent developments):

– the event based approach used in the seminal work of Ramadge and Wonham on
supervisory control of discrete event systems (DES) [16]. In this framework the
desired behavior is given in the form of legal sequences of events.

– the state based approach ([10]), where the desired behavior is derived from a set of
legal resp. forbidden states.

Considering discrete event systems (DES) in both approaches the main problem
is that the considered modelling formalisms (languages, automata, Petri nets) do not
provide a mechanism for asymmetric synchronization intended by actuators.

For example in classical supervisory control this problem is solved by modelling ac-
tuators via prohibiting all other possible events ([5]). As a consequence, the behavior of
the DES cannot be forced by the control, now called supervisor, but only be restricted.
Formally there is given a regular prefix closed language over a fixed set of events rep-
resenting the uncontrolled behavior of the DES and a regular subset of this language
representing the restricted desired behavior. In the most general case one distinguishes
between controllable events (which can be prohibited by the supervisor) and uncontrol-
lable events, and between observable events (which can be observed by the supervisor)
and unobservable events. The question is, which controllable events should be prohib-
ited by the supervisor after observing a certain sequence of observable events in order
to disable all undesired behavior in a minimal restrictive way.

We present an alternative to the existing approaches to control of DES with direct
modelling of actuators. Our formalism is suitable for both kind of specifying the desired
behavior. Because in literature the event based approach is more developed than the
state based approach in the sense that it allows more general specifications ([23]), we
concentrate in this paper on a event based specification of the desired behavior.

In particular, we specify the desired behavior by sequences of event output signals.
Therefore we consider modules, modelling the plant, without condition output signals
(which correspond to states). Notice that a condition output signal c in a behavior spec-
ification could be replaced by two event output signals c.on and c.off synchronized by
transitions marking and emptying the place in +c, respectively.

Our framework could be easily adapted to behavior specifications which include
input signals: In this case one could additionally consider specifications of the form
“After sending input i, we want to observe a sequence of outputs w” or “input i always
synchronizes output o”. The restriction to sequences of output signals is only for sake
of simplicity.

Throughout this section we consider a module P of a signal net as a model of an
uncontrolled plant and its maximally permissive environment E . As in the previous
section T denotes the set of transitions of P . We additionally fix the set I of transitions
of E corresponding to event input signals together with transitions switching condition
input signals on/off, and the set O of transitions of E corresponding to event output
signals:

I = {te | e ∈ Ein} ∪ {tci.on | ci ∈ Cin} ∪ {tci.off | ci ∈ Cin},
O = {te | e ∈ Eout}.
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We consider the inside of P as a black box: We only can send input signals to P and
meanwhile observe sequences of output signals. In particular, the behavior of the DES
(represented by P) is forced, not only restricted from outside. Of course this approach
leads to formal and technical differences to the classical supervisory control approach:

Mainly, all events of P are assumed to be uncontrollable and unobservable. Control-
lable are only the input signals, modelled by the set of transitions I of E , and observable
are, beside the input signals, exactly the output signals, modelled by the set of transi-
tions O of E .

Remember that we specify a desired behavior of P by a set of desired sequences
only of output signals (in difference to supervisory control, where the specification is
over all events, observable and unobservable, controllable and uncontrollable ones). Ob-
serve that, since the event arc relation produces a step semantics, we observe sequences
of steps of output signals.

The aim of control synthesis is to find a control module C which appropriately
composed (by a composition mapping Ω) with P fulfills: Each occurrence sequence of
the underlying signal net of C ∗Ω P respects the desired behavior in the sense that the
projection of this occurrence sequence onto the set of transitions of C which replaces
output signals of P (see remark 1) belongs to the desired behavior.

We synthesize such a control module C in two steps. First we define conditions of
controllability of a subbehavior of the behavior LP of the plant module P (analogously
to [16]) and show how to compute the maximal controllable subbehavior of LP re-
specting the desired behavior (if it exists), see subsection 4.1. Second we show that for
every controllable subbehavior of LP there is a control module C, which in composi-
tion with the plant module P realizes this controllable subbehavior. As the main result
of the second step we will construct such a control module by adding new net struc-
ture to the maximally permissive environment module E in E ∗Ω P (see Figure 7), see
subsection 4.2.

Since sets of occurrence sequences of signal nets are regular languages1 over an
alphabet of steps, we assume the desired behavior to be a regular language. In the fol-
lowing section we provide a short introduction to the theory of regular languages, which
will be used in the subsections 4.1 and 4.2.

4 Regular Languages

We need the following language theoretic notations ([11] and [2]). For a finite set A we
denote

– 2A = {B | B ⊆ A} the set of all subsets of A,
– ε the empty word,
– A∗ = {a1 . . . an | n ∈ N0, a1, . . . , an ∈ A} ∪ {ε} the set of all finite words over

the alphabet A.

In paragraph 3 we are solely concerned with regular languages L ⊆ A∗ with A = 2X

for finite sets X . In the following we will briefly introduce some representations of
regular languages and some operations on regular languages.

1 Observe that we use elementary nets, which have a finite reachability graph.
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Finite Automata. A regular language L can be represented as the language L(G) of a
(deterministic) finite automaton G = (S, A, δ, F, s0), where

– S is the set of states.
– δ : S × A → S is the transition function: δ(s, a) = s′ means that the automaton

reaches state s′ when reading a in state s.
– s0 is the initial state.
– F ⊆ S is the set of accepting states.

The transition function is extended in the obvious way to δ : S×A∗ → S: δ(s, w) = s′

means that the automaton reaches state s′ when reading w in state s. A word w ∈
A∗ belongs to L(G) if and only if δ(s0, w) ∈ F . The states of G can be denoted as
equivalence classes over A∗:

[w]G = {v ∈ A∗ | δ(s0, v) = δ(s0, w)}.

A finite automaton can be viewed as a labelled transition system (S, Σ, A), where S is
the set of states, Σ = {s a→ s′ | δ(s, a) = s′} the set of transitions and A the set of
(event) labels.

Regular Expressions. A regular language L can be represented as the language L(α)
of a regular expression α over A. Regular expressions are build inductively from the
elementary regular expressions α = x with x ∈ A∪{ε, ∅}, where L(α) = L(x) = {x}
for x �= ∅ and L(∅) = ∅, by:

– union:
α, β regular expressions⇒ α+β regular expression with L(α+β) = L(α)∪L(β).

– concatenation:
α, β regular expressions ⇒ αβ regular expression with L(αβ) = L(α)L(β) =
{uv | u ∈ L(α), v ∈ L(β)}.

– iteration:
α regular expressions ⇒ α∗ regular expression with L(α∗) = (L(α))∗ = {u1 . . .
un | ui ∈ L(α), n ∈ N}.

Operations on Regular Languages. There is the so called prefix relation �⊂ A∗×A∗:

u � v ⇔ ∃x ∈ A∗ : ux = v.

In this case u is called a prefix of v. For x �= ε we call u a proper prefix of v. Beside the
set operations ∩, ∪ and \ there are the following operations on languages:

– cocatenation L1L2 (already mentioned).
– iteration L∗ (already mentioned).
– prefix closure L = {v ∈ A∗ | v is prefix of a word in L}.
– postfix closure post(L) = {v ∈ A∗ | a word in L is prefix of v} = LA∗.
– minimal words min(L) = {v ∈ L | no proper prefix of v is in L}.
– quotient L1/L2 = {v ∈ A∗ | ∃w ∈ L2 : vw ∈ L1}.
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– projection PB(L) = {PB(w) = PB(x1) . . . PB(xn) | w = x1 . . . xn ∈ L}, where
PB(ε) = ε and

PB(x) =
{

x for x ∈ B,
ε otherwise.

– pumping P−1
B (L) = {w ∈ (A ∪ B)∗ | PB(w) ∈ L}.

The set of regular languages is closed under all these operations.

The Hiding Operator. For the alphabets of the form A = 2X as we consider, we need
a more sophisticated projection operator, called hiding operator, to hide characters from
subsets Y ⊆ X . We define the hiding operator λY w.r.t. Y by:

– For a character a ∈ A:
λY (a) = a \ Y if a \ Y �= ∅, and λY (a) = ε otherwise.

– For a word w ∈ A∗:
λY (w) = λY (a1) . . . λY (an) if w = a1 . . . an, and λY (w) = ε if w = ε.

– For a language L ⊆ A∗:
λY (L) = {λY (w) | w ∈ L}.

The hiding operator defines equivalence classes over A∗ in the following way: For a
w ∈ A∗ denote

[w]Y = {v ∈ A∗ | λY (w) = λY (v)}.
The set of regular languages is closed under the hiding and corresponding pumping op-
erations. This can be seen by constructing from a given regular expression α two regular
expressions λY (α) and extY (α) such that L(λY (α)) = λY (L(α)) and L(extY (α)) =
λ−1

Y (L(α)):

Definition 12. Let X, Y be two finite sets and α be a regular expression over the al-
phabet A = 2X .

(a) We construct a regular expression λY (α) over the alphabet 2Y by replacing every
character a ∈ 2X in α by λY (a).

(b) We construct a regular expression extY (α) over the alphabet 2X∪Y by replacing
every character a ∈ 2X in α by

extY (a) =

(
∑

b∈2Y

b

)∗ (
∑

b∈2Y

a ∪ b

)(
∑

b∈2Y

b

)∗
,

and by replacing the character ε by

extY (ε) =

(
∑

b∈2Y

b

)∗
.
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Observe that by construction

extY (α1 + α2) = extY (α1) + extY (α2),
λY (α1 + α2) = λY (α1) + λY (α2),
extY (α1α2) = extY (α1)extY (α2),

λY (α1α2) = λY (α1)λY (α2),
extY (α∗) = (extY (α))∗,

λY (α∗) = (λY (α))∗.

Lemma 1. Let X , Y be finite sets and α be a regular expression over the alphabet
A = 2X .

(a) Each w ∈ (
2Y

)∗
satisfies

w ∈ λY (L(α)) ⇔ w ∈ L(λY (α)).

(b) Each w ∈ (
2X∪Y

)∗
satisfies

λY (w) ∈ L(α) ⇔ w ∈ L(extY (α)).

Proof. We will only show ’(b):⇒’. The proofs of the other cases are similar argumenta-
tions using again structural induction over the construction rules of regular expressions:

Let α = x ∈ 2X ∪ {ε} (these are the constants of a regular expression over 2X ),
and let w ∈ (2X∪Y )∗ satisfying λY (w) = x. Then w is of the form w = x1 . . . xn

(xi ∈ 2X∪Y ), such that there exists an index k satisfying λY (xk) = x and λY (xi) = ε
for i �= k. It follows immediately from the construction above, that w ∈ L(extY (α)).
Let α1 and α2 be regular expressions over the alphabet 2X satisfying the induction hy-
pothesis, and let β1 = extY (α1) and β2 = extY (α2) be the corresponding extensions
according to the above construction. We get for w ∈ (2X∪Y )∗:

(i) Assume λY (w) ∈ L(α) for α = α1 + α2:
In this case λY (w) ∈ L(α1) or λY (w) ∈ L(α2). By induction hypothesis w ∈
L(β1) or w ∈ L(β2). This implies w ∈ L(β1 + β2) = L(extY (α)).

(ii) Assume λY (w) ∈ L(α) for α = α1α2:
There are w1, w2 ∈ (2X∪Y )∗ satisfying w = w1w2 and λY (wi) ∈ L(αi) (i =
1, 2). By induction hypothesis
w = w1w2 ∈ L(β1)L(β2) = L(β1β2) = L(extY (α)).

(iii) Assume λY (w) ∈ L(α) for α = (α1)∗:
There are w1 . . . wn ∈ (2X∪Y )∗ satisfying w = w1 . . . wn and λY (wi) ∈ L(α1)
(i = 1, . . . , n). By induction hypothesis w = w1 . . . wn ∈ (L(β1))∗ = L(β∗

1) =
L(extY (α)).

��

4.1 The Behavior of the Controlled Plant

We will formulate our approach language theoretically similarly as it is done in classi-
cal supervisory control. We will see, that despite the mentioned differences, some algo-
rithms of classical supervisory control can at least be adapted to our framework. While
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omitting therefore most details of these algorithms, out paper remains selfcontained,
i.e. can be understood without previous knowledge of supervisory control.

We search for a sublanguage K (of occurrence sequences) of the language LP rep-
resenting the behavior of the controlled plant, which can be realized by a composition
of the plant module P and a control module C. This implies the following requirements
on K:

– If an occurrence sequence in K can be extended by a step of output transitions or
unobservable transitions to an occurrence sequence in LP , then also this extended
occurrence sequence should be in K . This follows the paradigm: “What cannot be
prevented, should be legal”.

– According to the unobservability of some events, some occurrence sequences in LP
cannot be distinguished by the control. As a consequence, following the paradigm
“what cannot be distinguished, cannot call for different control actions”, if an input
is sent to the plant after a sequence w of steps has occurred, then the same input has
to be send after occurrence of any other sequence, which is undistinguishable to w

Observe that the first condition correspond to the classical one in supervisory control.
The second one is due to our step semantics, where an input can synchronize differ-
ent unobservable and output transitions depending on the state of P , in combination
with the notion of observability in supervisory control. Such a sublanguage K is called
controllable w.r.t. LP , I and O (figure 8):

Definition 13 (Controllable Language). A prefix closed, regular sublanguage K of
LP is said to be controllable w.r.t. LP , I and O, if

∀w ∈ K, ∀o ∈ 2O∪T : wo ∈ LP ⇒ wo ∈ K, (1)

∀vj ∈ K, j ∩ I �= ∅,
∀j′, j ∩ I = j′ ∩ I,

∀v′ ∈ K, λT (v) = λT (v′) : v′j′ ∈ LP ⇒ v′j′ ∈ K. (2)

If the sets LP , I and O are clear, we simply call K controllable.

Observe that for each controllable sublanguage K of LP two undistinguishable
words in LP are either both in K , or both not in K . This property is also called nor-
mality in supervisory control. In case each controllable event is also observable (as in
our framework) every controllable sublanguage of LP can be proved to be normal.

Lemma 2. Let K ⊆ LP be controllable. Then for each w ∈ LP either [w]T ∩LP ⊆ K
or [w]T ∩ LP ∩ K = ∅.

Proof. We prove the lemma by contradiction: let v, w ∈ LP with λT (w) = λT (v) and

w ∈ K and v �∈ K.

First observe v �= ε, since ε ∈ K . Assume without loss of generality

v = v′x with v′ ∈ K.
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{i}

{o1} {o2}

{i}

{o1} {o2}

{o1,t1}

{i}

{o1,t2}

(a) Controllability (1) (b) Controllability (2)

{o1,t1} {o1,t2}

{i,o2} {i} {i,o2}

Fig. 8. A step (sequence) consisting of transitions from T (I resp. O) are denoted by (indexed)
t’s (i’s resp. o’s). Part (a) (controllability condition (1)): After sending the input i, the output o2

cannot be avoided. Part (b) (controllability condition (2)): The steps {o1, t1} and {o1, t2} cannot
be distinguished from the control, because only the output o1 is visible. Therefore sending the
input i should be allowed either in both cases or in none case. Hereby it does not play a role, what
effect has this input to the plant (i.e. whether it synchronizes another output or not).

By condition (1) x ∩ I �= ∅. From λT (w) = λT (v) we deduce

w = w′y with λT (w′) = λT (v′) ∧ x ∩ I = y ∩ I.

This contradicts condition (2). ��
Observe that the property of normality can also be written in the form

λ−1
T (λ(K)) ∩ LP = K.

In supervisory control there exists moreover the notion of observability of sublanguages
K ⊆ LP , which essentially states that if the supervisor cannot distinguish between
sequences of events (according to some unobservable events), these sequences need
the same control action. Observe, that this concept is directly integrated into the above
definitions.

As mentioned we are searching for a controllable K , which additionally respects
Lc and is maximal with this property:

Definition 14 (Maximally Permissive Controllable Language). Let Lc be a regular
language over the alphabet 2O and let K ⊆ LP be controllable w.r.t LP , I and O
satisfying

λT∪I(K) ⊆ Lc.

We say that K is maximally permissive controllable w.r.t. Lc, LP , I and O, if there
exists no language K ′ satisfying K � K ′ ⊆ L, which is controllable w.r.t. LP , I and
O and fulfills λT∪I(K ′) ⊆ Lc.

If the sets Lc, LP , I and O are clear, we simply call K maximally permissive con-
trollable.
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(b) Blocking 
sequence

{o1,t1}

{o2}

{o1,t2}

{i}

{o1}

{o2}

(a) Unsatisfiable      
specification

Lc

{o1}

{o2}
{o1}

Lc

(c) Blocked 
specification

{o1,t1}

{o2}

{o1,t2}{o1}

{o2}

Lc

Fig. 9. A step (sequence) consisting of transitions from T (I resp. O) are denoted by (indexed)
t’s (i’s resp. o’s). The desired behavior is represented by finite automata, where accepting states
are black. Part (a) (condition (3)): The occurrence sequence {o1}{o2} is not a prefix of a word
in Lc. So, Lc is unsatisfiable. Part (b) (condition (4)): The occurrence sequence {i}{o1, t2}
cannot be completed to a word respecting Lc. This blocking situation can only be avoided by not
sending the input i before. Part (c) (condition (5)): The occurrence sequence {o1, t2} cannot be
completed to a word respecting Lc and cannot be avoided, i.e. Lc is only blocking satisfiable.

It is possible to get the result K = {ε} as maximally permissive controllable lan-
guage, what means that the maximal behavior respecting the specification is empty, but
there happens nothing wrong without inputs from outside. If even without any input the
specification can be violated, we call Lc unsatisfiable (figure 9 (a)).

Definition 15. Lc is said to be unsatisfiable (w.r.t. LP , I and O), if

∃w ∈ (2O∪T )∗ : w ∈ LP ∧ λT (w) �∈ Lc. (3)

If this is not the case, we call Lc satisfiable (w.r.t. LP , I and O).

Consider a maximally permissive controllable language K: By definition every oc-
currence sequence in K is a prefix of an occurrence sequence respecting Lc. But it
can happen there are such occurrence sequences that cannot be extended within K to
an occurrence sequence respecting Lc, i.e. the desired behavior is blocked. We require
additionally K to be nonblocking (figure 9 (b)):

Definition 16 (Nonblocking Language). Let K ⊆ L be maximally permissive con-
trollable w.r.t Lc, LP , I and O and let M ⊆ K be controllable w.r.t. LP , I and O
satisfying

∀r ∈ M : ∃x ∈ (2O∪I∪T )∗ with rx ∈ M, λI∪T (rx) ∈ Lc. (4)

We say that M is nonblocking controllable w.r.t. Lc, LP , I and O. If it is maximal with
this property, M is called maximally permissive nonblocking controllable language
w.r.t. Lc, LP , I and O.
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If the sets Lc, LP , I and O are clear, we simply call K maximally permissive non-
blocking controllable language.

In classical supervisory control some states in an automaton representing the be-
havior of the uncontrolled plant are marked. The sequences (words) of events leading
to these states describe completed tasks. Nonblocking control requires that every se-
quence of the language of the controlled plant can complete to a marked state (no dead-
or livelock occurs in unmarked states).

In comparison we define nonblocking w.r.t. the given (not prefix closed) specifica-
tion Lc, thus specifying desired tasks also by Lc and not by an extra given set of states in
a fixed automaton representing the uncontrolled behavior. As we will see later, one can
construct an automaton recognizing LP , where the set words respecting Lc correspond
to certain marked states.

Assume Lc is satisfiable and let K be the maximally permissive controllable. If
K �= {ε}, it is possible to get M = {ε} as maximally permissive nonblocking control-
lable language, but only if ε ∈ Lc. In this case the maximal nonblocking behavior is
empty, but without inputs from outside no blocking state can be reached. If even without
any input a blocking state can be reached, we call Lc blocked (figure 9 (c)).

Definition 17. Let M ⊆ LP be prefix closed. We refer to the the condition

∃w ∈ (2O∪T )∗ : w ∈ M ∧ (∀x ∈ (2O∪I∪T )∗ : wx ∈ M ⇒ λT∪I(wx) �∈ Lc), (5)

as blocking condition w.r.t. M .

Remark 2. If the condition (5) is fulfilled w.r.t. a language M , Lc is said to be blocked
w.r.t. M .

Lemma 3. If Lc is blocked w.r.t. LP , then there is no nonblocking controllable sublan-
guage of LP .

In the next two paragraphs we synthesize the maximally permissive nonblocking
controllable language M , if it exists. First we examine the case, when Lc is prefix
closed. In this case the maximally permissive controllable sublanguage of LP is al-
ready nonblocking. In particular safefy properties can be formalized via a prefix closed
specification Lc.

Safety Properties

Safety properties specify undesired behavior, that should not happen (for example for-
bidden states of the system). If some undesired behavior is realized by an occurrence
sequence, the whole possible future of this occurrence sequence is undesired, too. In
other words: If an occurrence sequence realizes no undesired behavior, all prefixes also
do so. That means, safety properties can be formalized by prefix closed specification
languages. On the other hand every prefix closed specification language can be regarded
as the formalization of safety properties.

The searched (control) language M as defined in the last paragraph is computed
in several steps. First we define the (potentially safe) language Lpsafe as the set of all
occurrence sequences of LP respecting Lc.
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{o3}

{i}

{o1,t1} {o1,t2}

{i,o2}

{o1}

{o2}

Lc

{o1,t1} {o1,t2}

Lpsafe Lsafe

Fig. 10. The languages are represented by finite automata, where accepting states are black (ob-
serve that all languages are prefix closed). Sending the input i after observing the output o1 can
cause the not avoidable output o3. This gives an occurrence sequence not respecting Lc. There-
fore allways after observing o1 the input i should not be sent.

Definition 18. We define

Lpsafe = {w ∈ LP | λI∪T (w) ∈ Lc} = λ−1
I∪T (Lc) ∩ LP ,

Lunsafe = {w ∈ LP | λI∪T (w) �∈ Lc} = LP \ Lpsafe.

Observe that
Lc unsatisfiable ⇔ ∃w ∈ Lunsafe ∩ (2O∪T )∗.

Lpsafe is only a first approximation to M , since it is in general not controllable. In
particular it may contain occurrence sequences which are not closed under extensions
by outputs (condition (1) in definition 13). Such occurrence sequences must be cut at
the last possible input (the last possibility of control), if there is one. Due to condition
(2) (of controllability) such an input must be avoided at all undistinguishable places.
The words ending with these inputs are collected in the language Ldanger. Deleting
the futures of occurence sequences in Ldanger from Lpsafe gives the language Lsafe,
which we will prove below to be the searched language M (figure 10).

Definition 19. We define

Ldanger = {vj ∈ Lpsafe | j ∩ I �= ∅,
∃v′ : λT (v′) = λT (v),
∃j′ : j′ ∩ I = j ∩ I,

∃y ∈ (2T∪O)∗ : v′j′y ∈ Lunsafe)}.

Lsafe = Lpsafe \ post(Ldanger).
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If Lc is satisfiable, every word from Lunsafe has a nonempty prefix in Ldanger. It
is obvious from the definitions of Lpsafe, Lunsafe, Ldanger and Lsafe that every set
[w]T ∩ LP is either subset of or disjoint to these languages (see also lemma 2).

The main result of this subsection is the following theorem:

Theorem 1. Lsafe is maximally permissive nonblocking controllable w.r.t. Lc, LP , I
and O, if Lc is satisfiable w.r.t. LP , I and O.

Before proving this theorem we give an algorithm to compute Lsafe: It is essentially
shown, that Lsafe can be constructed by appropriate operations on regular languages.
We want to remark here that for computing the maximally permissive controllable lan-
guage also the more sophisticated framework presented in [2] could be adapted (since
our different notion of controllability is still compatible with the union operation ∪). In
[2] can also be found some hints to the complexity of the computation.

By definition Lpsafe and Lunsafe are regular (see section 4):

Lemma 4. Lpsafe and Lunsafe are regular.

Next we show that Ldanger is regular. We will give Ldanger as a simple formula over
the regular languages (2O∪T )∗ and Lunsafe. First observe that the regular language

Lreal
danger = (Lunsafe/(2O∪T )∗) ∩ LP ,

where the symbol “/” denotes the quotient operation on languages, is the set of those
words vj ∈ Ldanger, which themselves can be extended by an y ∈ (2O∪T )∗ to a word
in Lunsafe. The remaiming words in Ldanger are of the form v′j′ with λT (v′) = λT (v)
and j′ ∩ I = j ∩ I for a word vj ∈ Lreal

danger. We get these words by means of a special

defined hiding operator λ defined by

v ∈ (2O∪I∪T )∗, x ∈ 2O∪I∪T : λ(vx) = λT (v)λT∪O(x).

Obviously the operators λ and (λ)−1 preserve the regularity of languages, since this is
the case for the hiding operator λ as argued in lemma 1 (section 4). We get

Lemma 5. Ldanger and Lsafe are regular.

Proof. Ldanger is regular, since it can be constructed by regularity preserving opera-
tions in the following way:

Ldanger = (λ)−1(λ(Lreal
danger)) ∩ Lpsafe.

Then also Lsafe = Lpsafe \ post(Ldanger) is regular as a formula over regular lan-
guages. ��

The main theorem 1 now is shown in two steps by the following lemmata.

Lemma 6. Let Lc be satisfiable. Then Lsafe is controllable.

Proof. We show both conditions of controllability by contradiction:
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(i) Condition (1):
Assume there is an word w ∈ Lsafe and a step o ∈ 2O∪T satisfying wo ∈ LP ,
but wo �∈ Lsafe. There are two cases:

– wo ∈ Lpsafe:
Then wo ∈ post(Ldanger). This imlies obviously w ∈ post(Ldanger), what
contradicts w ∈ Lsafe.

– wo �∈ Lpsafe:
Then by definition wo ∈ Lunsafe. Since Lc is satisfiable w.r.t. LP , I and O,
wo has a prefix in Ldanger. This again contradicts w ∈ Lsafe.

(ii) Condition (2):
Assume there are words v′, vj ∈ Lsafe and a step j′ with j ∩ I = j′ ∩ I �= ∅ and
λT (v′) = λT (v) satisfying v′j′ ∈ LP , but v′j′ �∈ Lsafe. For such vj and v′j′ we
have according to the definition of Ldanger:

vj ∈ post(Ldanger) ⇔ v′j′ ∈ post(Ldanger).

From this it follows vj �∈ Lsafe analogously to the first case. A contradiction.
��

Lemma 7. Let Lc be satisfiable. There is no language K ⊆ LP satisfying Lsafe � K ,
which is controllable and fulfills λI∪T (K) ⊆ Lc.

Proof. We choose a w ∈ K \ Lsafe and construct from w a word w′ ∈ K satisfying
λI∪T (w′) �∈ Lc. As w ∈ LP , there are two cases:

– w �∈ Lpsafe:
Then w ∈ Lunsafe and thus λI∪T (w) �∈ Lc.

– w ∈ Lpsafe:
Then w ∈ post(Ldanger), i.e. w has a prefix vj ∈ Ldanger. That means, there is are
words v′ ∈ LP , y ∈ (2O∪T )∗ and a step j′ with j∩I = j′∩I and λT (v) = λT (v′)
such that v′j′y ∈ Lunsafe, i.e. λI∪T (v′j′y) �∈ Lc. Since K is controllable, v′j′

also belongs to K (condition (2)) and consequently v′j′y ∈ K (condition (1)).
��

It follows immedeately from the above proof, that Lsafe is the unique maximally
permissive language, analogously to related results in supervisory control.

Nonblocking Control

More general properties as for example the full execution of certain tasks cannot be
formalized by a regular language Lc which is prefix closed. Of course a maximally per-
missive controllable language K w.r.t. a not prefix closed Lc should contain occurrence
sequences of the standalone of LP which represent prefixes of words in Lc, but only
such ones, which can be extended to a word in Lc within K , i.e. which are nonblocking.

We now search for a sublanguage Lnbsafe of Lsafe, which is controllable and re-
specting Lc, nonblocking and maximal with these two properties according to definition
16. As mentioned, in our framework every controllable event is also observable. There-
fore, we are able to adapt a result in supervisory control ([2], subsection 3.7.5), which
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states (under the assumption that every controllable event is also observable): If there
is at least one controllable language respecting Lc which is nonblocking, then there is
a unique maximal one.

In order to compute Lnbsafe, we collect all blocking occurrence sequences of Lsafe

in the set Lblocking (observe that every future of a blocking occurrence sequence is
blocking, too). We have to cut all occurrence sequences in this set at the last possi-
ble input, if there is one. Due to condition (2) (of controllability) such an input must
be avoided at all undistinguishable places. The prefixes ending with these inputs are
collected in the language Lbadchoice. Deleting the futures of occurrence sequences in
Lbadchoice possibly produces new blocking words. Therefore we have to iterate this
procedure. We define (figure 11)

Definition 20. Let M ⊆ Lsafe. Denote

Mblocking = {w ∈ M |� ∃x ∈ (2O∪I∪T )∗ : wx ∈ M ∧ λI∪T (wx) ∈ Lc},
= M \ ((M ∩ λ−1

I∪T (Lc))/(2O∪I∪T )∗),

Mbadchoice = {vj ∈ M | j ∩ I �= ∅,
∃v′ : λT (v′) = λT (v),
∃j′ : j′ ∩ I = j ∩ I,

∃y ∈ (2T∪O)∗ : v′j′y ∈ min(Mblocking))}.

The language Mblocking is regular by definition, if M is regular. In analogy to Ldanger,
then Mbadchoice is regular, too. Observe that

Lc blocked w.r.t. M ⇔ ∃w ∈ Mblocking ∩ (2O∪T )∗.

We are now prepared to state the algorithm to compute Lnbsafe:

Input: Language M0 = Lsafe, Integer k = 0.

Step 1:
Compute Mk

blocking .

Step 2:
If Mk

blocking ∩ (2O∪T )∗ �= ∅: return “Lnbsafe does not exist”.
If Mk

blocking = ∅: return Mk.

Step 3:
Compute Mk

badchoice.
Mk+1 = Mk \ post(Mk

badchoice).
Set k = k + 1.
Goto Step 1.

Starting with M0 = Lsafe the algorithm iteratively deletes blocking words by cut-
ting them at the last possible inputs (and by additionally cutting all undistinguishable
words). This is done until either no new blocking words are produced (in which case
Lnbsafe is found) or an Lc is blocked w.r.t. the actually computed language (in which
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{o2}

{i}

{o1,t1} {o1,t2}

{i}

{o1}

{o2}

Lc
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{o3}

{o2}

{o2}

{o3}
{t3}

{o1,t1} {o1,t2}

{o3}

{o2}

Fig. 11. The black states in the automaton representing Lc are the accepting states. The white
states in the other automata (representing languages computed in the nonblocking algorithm) are
blocking w.r.t. the given Lc. In the grey states there is the last possibility not to send an input in
order to avoid the blocking situation. The input must be avoided at all undistinguishable states.
This can cause new blocking situations, which can be even not avoidable.

case no controllable nonblocking language exists). All computed languages Mk are
controllable and normal, but possibly not nonblocking. Observe that if Mk

blocking ∩
(2O∪T )∗ = ∅, then each word in Mk

blocking has a nonempty prefix in Mk
badchoice and

therefore does not belong to Mk+1.
Before stating the main result, namely that this algorithm returns Lnbsafe if and

only if a maximally permissive nonblocking controllable sublanguage exists, we have
to verify, that the algorithm allways terminates. For completeness we will give a sketch
of the proof below. A detailed proof can be found for example in [3]: the algorithm pre-
sented there only slightly differs from ours. The following procedure is repeated: It first
iteratively deletes blocking words by cutting them at the last possible inputs, without ad-
ditionally cutting all undistinguishable words. This is also done until no new blocking
word is found. The resulting language is controllable and nonblocking, but not normal.
Then all cuts done so far are also realized for all undistinguishable words, which yields
a controllable and normal language, which is possibly not nonblocking. The whole pro-
cedure in repeated until the resulting language is nonblocking. Both algorithms have the
same output.

The main idea for showing the termination is to find a deterministic finite automa-
ton G = (S, (2I∪O∪T )∗, δ, F, s0) recognizing Lsafe, such that deleting words from
post(Mk

badchoice) (in the algorithm) corresponds to deleting edges in G. A nessecary
and sufficient condition for this is that the states of G distinguish words in Mk

badchoice

from words not in Mk
badchoice, i.e. (see also Figure 13)

δ(s0, w) = δ(s0, v) ⇒ (w ∈ Mk
badchoice ⇔ v ∈ Mk

badchoice). (6)
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{o3}

{o1}

{t1} {t2}

{o2}

{o1}

{o3}

Lc

{o2}

{o4}

Fig. 12. In general two words v = {t2}{o2} �∈ Mk
blocking and w = {t1}{o1} ∈ Mk

blocking

can have the same follower state in an automaton A recognizing Lsafe. For the automaton G
implementing the nonblocking algorithm however we require that one can distinguish between
“blocking-states” and “not blocking-states”. Such states can be splitted appropriately by synchro-
nizing A with an automaton recognizing λ−1

T∪I(Lc).

wv w‘ v‘

x‘

Blocking state

Badchoice states

Fig. 13. In general two words v �∈ Mk
badchoice and w ∈ Mk

badchoice can have the same follower
state in an automaton A recognizing Lsafe. For the automaton G implementing the nonblock-
ing algorithm however we require that one can distinguish between “badchoice-states” and “not
badchoice-states”: If there is a w′ undistinguishable from w leading to a blocking state, there
must also be a word v′ undistinguishable from v leading to a blocking state. G is even choosen
such that v′ and w′ have the same follower state.

Taking v, w ∈ Lsafe with δ(s0, w) = δ(s0, v) and w ∈ Mk
badchoice, we know that

there is a w′ ∈ Mk
badchoice with λT (w) = λT (w′) and there is a x′ ∈ (2O∪T )∗ with

w′x′ ∈ Mk
blocking . To prove (6) it suffices to find v′ ∈ Mk

badchoice with λT (v) = λT (v′)
such that δ(s0, v

′) = δ(s0, v) and v′x′ ∈ Mk
blocking (Figure 13). In other words, the

possible futures of words undistinguishable from v and the possible futures of words
undistinguishable from w should be the same.
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In general a finite automaton A recognizing Lsafe does not fulfill this property,
i.e. does not distinguish by its states words, for which the possible futures of their
undistinguishable words are not the same. Such states have to be split appropriately by
synchronizing A with another automaton B. B can be constructed from A in such a
way that a state [w]B of B is defined as the set of exactly those states of A which are
follower states of words undistinguishable from w:

s ∈ [w]B ⇒ ∃w′ ∈ Lsafe : λT (w) = λT (w′) ∧ s = [w′]A.

Formally B can be constructed from A in three steps. For this let (SA, ΣA, (2I∪O∪T ))
be the labelled transition system associated to A:

(1) Replace each edge s
x→ s′ ∈ ΣA by s

λT (x)→ s′ (this yields in particular s
ε→ s′

for x ⊆ T ). The result is a so called nondeterministic ε-automaton. By definition
of such automata ([11]) the possible follower states of a word z ∈ (2I∪O)∗ in this
automaton are exactly the follower states of words w ∈ Lsafe in A with λT (w) =
z.

(2) Compute the deterministic finite automaton simulating the nondeterministic ε-auto-
maton from (1) by the well-known subset construction ([11]): Then exactly the sets
of possible follower states of a word z ∈ (2I∪O)∗ in the above ε-automaton define
the states of this deterministic automaton.

(3) Pump the automaton from (2) by steps of unobservable transitions from 2T in the
following way: For all states s and all x ⊆ T (loop) transitions s

x→ s are added.

For all transition s
y→ s′ with y ⊆ I ∪ O and forall x ⊆ T transitions s

x∪y→ s′ are
added.

Finally we have to require the automaton A to distinguish words in Mk
blocking from

words not in Mk
blocking by its states (which is not the case in general, see Figure 12):

∀w, ∀v ∈ [w]A : w ∈ Mk
blocking ⇔ v ∈ Mk

blocking , (7)

This can be achieved by building A as the synchronized product of the minimal au-
tomata recognizing Lsafe and λ−1

I∪T (Lc). Then A fulfills

∀v ∈ [w]A : λI∪T (w) ∈ Lc ⇔ λI∪T (v) ∈ Lc. (8)

It can be seen as follows, that then property (7) is also satisfied: Take v ∈ [w]A, v �=
w. Assume w �∈ Mk

blocking . There is a x ∈ (2I∪O∪T )∗, such that wx ∈ Mk and
λI∪T (wx) ∈ Lc. Since vx ∈ [wx]A it follows from property (8), that λI∪T (vx) ∈ Lc,
i.e. v �∈ Mk

blocking .

Let us state the main theorem of this subsection:

Theorem 2. There exists a maximally permissive nonblocking controllable sub-
language of Lsafe, if and only if the previous algorithm returns a language Lnbsafe. In
this case Lnbsafe is this searched sublanguage.

Proof. Let Lsafe = M0, . . . , MN0 be the sequence of languages the algorithm has
computed until it has stopped.
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We first show the “only if”-part:
Assume the previous algorithm outputs “Lnbsafe does not exist”. We have to show, that
there is no maximally permissive nonblocking controllable sublanguage of Lsafe. We
will show this by contradiction: Assume there is a controllable language M ⊆ Lsafe

with Mblocking = ∅. Observe that

M ∩ M0
blocking ⊆ Mblocking,

i.e. the assumption in particular implies

M ∩ M0
blocking = ∅. (9)

By Step 1 MN0 fulfills
∃v0 ∈ MN0

blocking ∩ (2O∪T )∗.

From the controllability of M (condition (1)) we deduce v0 ∈ M . From (9) it follows
v0 �∈ M0

blocking . That means v0 can be extended by some word y �= ε (remark that
λT∪I(v0) �∈ Lc!) to a word v0y ∈ M0 with λI∪T (v0y) ∈ Lc. By the assumption one
of these extensions v0y0 must be in M :

v0y0 ∈ M and λI∪T (v0y0) ∈ Lc.

Since v0 ∈ MN0
blocking , we have moreover v0y0 �∈ MN0 . By construction (Step 2) there

must be an index N1 < N0, such that

v0y0 ∈ post(MN1
badchoice).

Let v0xi ∈ MN1
badchoice for a prefix xi of y0 with i∩ I �= ∅. By definition of MN1

badchoice

there is a v1 = v′0x
′i′y ∈ MN1

blocking with

(a) λT (v′0x′) = λT (v0x),
(b) i′ ∩ I = i ∩ I , and
(c) y ∈ (2O∪T )∗.

Remember now that all prefixes of v0y0, in particular v0x and v0xi, belong to M . Since
M is assumed to be controllable, M contains all words in LP ∩ [v0x]T (lemma 2).
In particular v′0x

′ ∈ M (property (a)). From the condition (2) (of controllability) and
(b) we get further v′0x

′i′ ∈ M , and therefore v1 = v′0x
′i′y ∈ M (condition (1) (of

controllability) and (c)).
By repeating this construction we get an strictly decreasing sequence of natural

numbers N0 > N1 > . . . and associated words v0, v1, . . . ∈ M , such that vi ∈
MNi

blocking , i = 0, 1, . . .. Finally Nk = 0 for some k, which implies vk ∈ Mblocking ,
what contradicts our assumption.

Next we consider the “if”-part:
By construction MN0 = Lnbsafe is controllable and nonblocking. It remains to show
that it is maximally permissive with these two properties. We show this statement by
contradiction. Assume another language M to be controllable and nonblocking control-
lable satisfying Lnbsafe � M ⊆ Lsafe. In particular, by assumption Mblocking = ∅.
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There is a x ∈ M \MN0 . As MN0 and M are prefix closed we can assume (without
loss of generality) that x is of the form

x = wj ∈ M, w ∈ MN0 , j ∩ I �= ∅.

Since wj �∈ MN0 , for some step N1 < N0 it holds wj ∈ MN1
badchoice. By definition of

MN1
badchoice there is a v0 = w′j′y ∈ MN1

blocking with

(a) λT (w′) = λT (w),
(b) j′ ∩ I = j ∩ I , and
(c) y ∈ (2O∪T )∗.

As above, since M is assumed to be controllable, we follow v0 ∈ M . By assumption,
as in the ’only if’-part, v0 �∈ M0

blocking . Therefore v0 must have an extension within M
to a word respecting Lc. Let v0y0 be this extension of v0. Proceed now as in the “only
if”-part. ��

4.2 Synthesis of Control Modules

In this subsection we show how to synthesize a control module C from a given behavior
Lcb ⊆ LP of P and to compose this module with P , such that the resulting composed
module has exactly this behavior up to transitions of C which are not in I∪O, whenever
possible. Of course, as a first necessary condition, we have to require Lcb to be a prefix
closed regular language, since the set of occurrence sequences of a module has this
property. Formally a control module C w.r.t. such a language Lcb is defined as follows:

Definition 21. Let C be a module of a signal net with the set of transitions TC and
denote U = TC \ (I ∪ O). Then C is the control module of P w.r.t. Lcb, if there is
a composition mapping Ω, such that the set of all occurrence sequences LCP of the
module C ∗Ω P satisfies λU (LCP) = Lcb.

We claim that for the existence of such a control module it is sufficient to require Lcb

to be controllable (see definition 13). This gives the main theorem of this subsection:

Theorem 3. If Lcb ⊆ LP is a regular, controllable, prefix closed language, then there
is a control module C of P w.r.t. Lcb.

In practice this statement can be applied to Lcb = Lsafe or Lcb = Lnbsafe. We prove
the theorem by constructing C. The main idea is to synthesize C by adding new net
structure to E (see Figure 7). In particular C is composed with P via the connections
(given by Ω) between P and E .

For the construction we use a deterministic finite automaton A = (S, 2I∪O, δ, F, s0)
recognizing λT (Lcb). We denote Σ = {s x→ s′ | δ(s, x) = s′} the set of edges of A

and l : Σ → 2I∪O, l(s x→ s′) = x, the labelling of Σ.
Remember that Lcb is prefix closed. Without loss of generality we assume that

(a) All states are accepting states: F = S. Just omit all edges leading to non-accepting
states.
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Fig. 14. Part (a): splitting states to avoid loops. Part (b): splitting states to distinguish words
according to their last character.

(b) There are no loops in A: s
x→ s �∈ Σ. If this is not the case for a state of A you

can think of splitting this state into two copies and thus transforming the loop into
a cycle of length 2 (see Figure 14, (a)).

(c) The states of A distinguish words according to their last character: s′ x→ s, s′′
y→

s ∈ Σ ⇒ x = y. As long as this is not the case for a state s of A, i.e. x �= y, you
can think of splitting s into two copies, one for words ending with x and one for
words ending with y (see Figure 14, (b)). Hence we get l(s′) = l(s x→ s′) = x for
s

x→ s′ ∈ Σ.

Formally (b), (c) can be achieved by synchronizing A with appropriate other finite au-
tomata.

We will construct a signal net N = (P, U ∪I∪O, F, EN, CN, m0), where P is the
set of places, U∪I∪O is the set of transitions, F is the flow arc relation, EN is the event
arc relation, CN is the context arc relation, and m0 is the initial marking. N together
with input/output structure of E , will give the searched module C. For simplicity we will
use two kinds of context arcs: Usual positive context arcs, called condition arcs in the
context of signal nets, which test places for presence of tokens, and negative context
arcs, also called inhibitor arcs in literature ([12]), which test places for absence of
tokens. It is well known that in elementary nets negative context arcs can be equivalently
replaced by a structure using positive context arcs and so-called co-places ([12], see
Figure 15). So CN splits into the set of condition arcs CN+ and inhibitor arcs CN−.
We modify some notions for the enabling of steps w.r.t. CN−: For a transition t we
denote +t = {p | (p, t) ∈ CN+} and −t = {p | (p, t) ∈ CN−}. Given a set ξ ⊆ T of
transitions, we extend the above notions to: +ξ =

⋃
t∈ ξ

+t and −ξ =
⋃

t∈ ξ
−t.

Definition 22 (Potentially enabled for negative context). A step ξ is potentially en-
abled in a marking m if

– All t ∈ ξ are enabled: •t ∪ +t ⊆ m, −t ∩ m = ∅ and (t• \ •ξ) ∩ m = ∅ and
– All pairs t, t′ ∈ ξ are not in conflict: •t ∩ •t′ = t• ∩ (t′)• = ∅.
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Fig. 15. Introducing coplaces to translate inhibitor arcs into condition arcs.

We set

– P = {ps | s ∈ S}.
– UOR = {tempty

s | s ∈ S} ∪ {tfill
s | s ∈ S} ∪ {ts,i | ∃s

x→ s′ ∈ Σ : i ∈ x ∩ I}.
– UAND = {t

s
x→s′ | s

x→ s′ ∈ Σ}.

Our aim is to identify each state s ∈ S of A with a unique set of places Ps ⊆ P , and
each edge s

x→ s′ ∈ Σ of A with a unique set of transitions ξ
s

x→s′ ⊆ U ∪ I ∪ O, such
that

– ξ
s

x→s′ is enabled if and only if exactly the places in Ps are marked,
– ξ

s
x→s′ together with an appropriate set of transitions of T build a step in C ∗Ω P ,

and
– •ξ

s
x→s′ = Ps and ξ•

s
x→s′ = Ps′ .

The idea is the following: Assume that C is in the state Ps. Then for each s
x→ s′ ∈ Σ it

should be possible to send the input i ∈ x∩I (if there is one) to the plant synchronizing
a step in the plant (in the case of event inputs) or switching a condition input on/off. In
the first case this step in the plant should synchronize the step of outputs x∩O sent from
the plant. If there is no input i ∈ x∩ I , there should be a step in the plant synchronizing
the step of outputs x ∩ O sent from the plant. Let x be such a set, and let i ∈ x ∩ I .
Since there are in general also states in which i is not allowed to be sent to the plant,
we model the transition ts,i in such a way that

– ts,i is enabled exactly under the marking Ps via condition and inhibitor arcs (Fig-
ures 18 and 20), and

– ts,i synchronizes the transition i (Figure 18).

A transition t
s

x→s′ is intended to simulate the step of signals x in the control module C,
if C is in state Ps. Therefore t

s
x→s′

– is enabled exactly under the marking Ps via condition and inhibitor arcs (Figures
16 and 20),

– synchronizes the transition tempty
s which is intended to empty exactly the places in

Ps (Figure 16),
– synchronizes all transitions tfill

s′′ , which are intended to mark the places ps′′ in the
follower marking Ps′ (Figure 16), and

– is synchronized by all outputs in x∩O and by ts,i for i ∈ x∩I (Figures 17 and 18).
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s

s1

{o1,o2}

s2

{o1}

Ps

ps

ts
emptyts
empty

Ps2

ps2

ts2
fillts2
fill

&

t s   s2
{o1,o2}t s   s2
{o1,o2}

Fig. 16. For clearness we model only the transition s
{o1,o2}→ s2 of the above behavior (the

black states). The transition t
s
{o1,o2}→ s2

simulates the edge s
{o1,o2}→ s2. t

s
{o1,o2}→ s2

synchronizes

tempty
s to empty the marking Ps, and synchronizes exactly the transitions tfill

p with p ∈ Ps2

(observe in particular ps ∈ Ps and ps2 ∈ Ps2 ). Moreover t
s
{o1,o2}→ s2

tests the places in Ps to be

marked. The event arc connections to input and output transitions are omitted (see Figure 17).

The second part of the last condition is necessary, since in general in the same state
the same step of outputs can occur spontaneous or can be initiated by an input. Observe
that, if C is in state Ps, a step of outputs x∩O synchronizes beside the transition t

s
x→s′

also each transition t
s

y→s′′ with y ⊂ x. See figure 19.
We are now able to define the sets ξ

s
x→s′ and Ps′ :

– From the event arc relation we deduce (Figure 19) ξ
s

x→s′ = {ts,i | i ∈ x∩ I}∪x∪
{t

s
y→s′′ | y ⊆ x} ∪ {tempty

s } ∪ {tfill
s′′ | ps′′ ∈ Ps′}.

– Because t
s

x→s′ synchronizes tfill
s′ ) the place ps′ belongs to Ps′ . For every s ∈ S

with s
x→ s′ ∈ Σ the step of inputs and outputs x also synchronizes beside the

transition t
s

x→s′ each transition t
s

y→s′′ with y ⊆ x. Therefore we get in such cases
Ps′′ ⊆ Ps′ . This procedure has to be applied recursively. Therefore we define Ps′

to be the smallest set satisfying (Figure 20)
(i) ps′ ∈ Ps′ .

(ii) ∀s
x→ s′, s

y→ s′′ ∈ Σ (s′ �= s′′) with y ⊂ x: Ps′′ ⊆ Ps′ .

Altogether we get formally:

– F = {(p, tempty
s ) | s ∈ S, p ∈ Ps} ∪ {(tfill

s ,ps) | s ∈ S},
– CN+ = {(p, t

s
x→s′) | s ∈ S, p ∈ Ps} ∪ {(p, ts,i) | s ∈ S, p ∈ Ps},
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s

s1

{o1,o2}

s2

{o1}

ps

&

&

plant

o1

o2

Ps

t s   s2
{o1,o2}t s   s2
{o1,o2}

t s   s1
{o1}t s   s1
{o1}

Fig. 17. The transition t
s
{o1,o2}→ s2

simulates the edge s
{o1,o2}→ s2. It is therefore synchronized by

the output transitions o1 and o2. The occurrence of o1 together with o2 synchronizes also t
s
{o1}→ s1

,

since t
s
{o1}→ s1

is also enabled under Ps. The occurrence of o1 without o2 only synchronizes

t
s
{o1}→ s1

. For clearness the connections to empty- and fill-transitions and places in the follower

marking are omitted (see Figure 16), but observe that this implies ps1 ∈ Ps1 ⊂ Ps2 . (see also
Figure 20).

– CN− = {(p, t
s

x→s′) | ∃s ∈ S : Ps ⊂ Ps ∧ p ∈ Ps \ Ps} ∪ {(p, ts,i) | ∃s ∈ S :
Ps ⊂ Ps ∧ p ∈ Ps \ Ps}, and

– EN = {(ts,i, i) | s ∈ S, i ∈ I}∪{(ts,i, ts x→s′) | s ∈ S, i ∈ x∩ I}∪{(o, t
s

x→s′) |
s ∈ S, o ∈ x∩O}∪{(t

s
x→s′ , t

fill
s′′ ) | s

x→ s′ ∈ Σ, ps′′ ∈ Ps′}∪{(t
s

x→s′ , t
empty
s ) |

s ∈ S},

Remark 3. Observe that ps′ ∈ Ps implies either s′ = s or l(s′) ⊂ l(s). This implies
that for all s, s′ ∈ S: ps �∈ Ps′ and/or ps′ �∈ Ps.

Lemma 8. (a) The mapping φ : S → 2P , φ(s) = Ps is injective.
(b) (ξ

s
x→s′ \ x)• = Ps′ and •(ξ

s
x→s′ \ x) = Ps.

(c) ξ
s

x→s′ \ x is potentially enabled in Ps.
(d) ξ

s
x→s′ is maximal w.r.t. U and Ps: For each transition t ∈ U \ ξ

s
x→s′ with �t ∩

ξ
s

x→s′ �= ∅ the set ξ
s

x→s′ ∪ {t} is not potentially enabled in Ps.

Proof.
ad (a): see remark 3.

ad (b): Follows from

(ξ
s

x→s′ \ x)• =
⋃

ps′′∈Ps′

(tfill
s′′ )• , •(ξ

s
x→s′ \ x) = •(tempty

s ).
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s

s1

{i,o}

s2

{o}

ps

&

&

plant

o

i

ts,iPs

t s   s1
{o}

t s   s2
{i,o}

Fig. 18. Here the label of the edge s
{i,o}→ s2 contains an input transition i. This input transition is

synchronized by the spontaneous transition ts,i, which is exactly enabled under Ps. If i synchro-
nizes the output transition o via transitions in the plant, the transition t

s
{i,o}→ s2

is synchronized

together with the transition t
s
{o}→ s1

(analogously to Figure 17). It is also possible that the plant

sends the output o without the input i. In this case t
s
{o}→ s1

is synchronized alone. Observe that no

cycles of event arcs are produced.

i ts,i

o2
:

T

empty-transiton

fill-transitions

o1t s   s‘
x

Fig. 19. The event arc relation w.r.t. an edge s
{x}→ s′ ∈ E. The event arc from i to T is optional:

it exists only, if i replaces an event input signal, and not in the case i is an on- or off-transition of
an condition imput signal.

ad (c): By definition of F , CN− and CN+, the only sets of places of the form •t, t•

or +t for t ∈ ξ
s

x→s′ \ x which are not empty are:

+t
s

x→s′ = +ts,i = Ps,
•tempty

s = Ps, (tfill
s′′ )• = {ps′′}.

This gives •t ∪ +t ⊆ Ps. Moreover, −t ∩ Ps = ∅ by definition. Finally, from (b) we
get (t• \ •ξ

s
x→s′) ∩ Ps = (t• \ Ps) ∩ Ps = ∅. By this the first part of the potentially

enabled definition 22 is fulfilled.
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s1

{o1,o2,o3}

s2

{o1,o2}

s3

{o1}

Ps1Ps2Ps3 ps1ps2ps3

s4

{o4}

t s3   s4
{o4}

Fig. 20. By definition we get Ps3 ⊂ Ps2 ⊂ Ps1 . The transition t
s3

{o4}→ s4
has to test the places in

Ps3 for the presence of tokens and the places in Ps1 \ Ps3 for the absence of tokens.

It remains to verify that there are no conflicts w.r.t. pre- resp. postsets in ξ
s

x→s′ \ x:
The only transition in ξ

s
x→s′ \x with nonempty preset is tempty

s . So there are no conflicts
w.r.t. presets. The only transitions with nonempty postsets in ξ

s
x→s′ \ x are of the form

tfill
s′′ for ps′′ ∈ Ps′ . All postsets of such transitions consist of a unique place, and so are

pairwise distinct.

ad (d): Each transition t ∈ U \ ξ
s

x→s′ with �t ∩ ξ
s

x→s′ �= ∅ is of the form (see figure
19) t = t

s
x→s′ . There are two cases:

– s �= s:
From Ps �= Ps we deduce that t is not enabled. Therefore ξ

s
x→s′ ∪ {t} is not

potentially enabled.
– s = s and l(s′) �⊆ l(s′):

That means �t �⊆ ξ
s

x→s′ . Since t ∈ UAND, ξ
s

x→s′ ∪ {t} is not a step. ��
We are now going to prove λU (LCP) = Lcb. We need some additional notions: For

an occurrence sequence w = x1 . . . xn of E ∗Ω P we denote

– wi = x1 . . . xi,
– mi the marking of E ∗Ω P after the occurrence of wi,
– si = δ(s0, λT (wi)) the state in A after executing λT (wi).
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Observe sε = s0 and xi ∩ (I ∪ O) = ∅ ⇔ si−1 = si. For xi ∩ (I ∪ O) �= ∅ we get
l(si) = λT (xi). Define

ηi =
{

xi ∪ ξ
si−1

x→si
if x = xi ∩ (I ∪ O) �= ∅,

xi else.

For a set of transitions σ and a marking m of C ∗Ω P we denote

– σC = λT (σ) and mC = m ∩ P the C-parts, and
– σEP = λU (σ) and mEP = m \ P the E ∗Ω P-parts.

Observe that ηEP
i = xi, ηC

i = ξ
si−1

x→si
resp. = ∅, (mi ∪ Psi)C = Psi and (mi ∪

Psi)EP = mi. Between the net structure in module E ∗Ω P and the additional net struc-
ture in C ∗Ω P there are only event arc connections. There are no events arc connections
between transitions in T and transitions in U . Therefore:

– σ is potentially enabled in C ∗Ω P under the marking m if and only if both σC is
potentially enabled in C under the marking mC and σEP is potentially enabled in
E ∗Ω P under the marking mEP

– σ is maximal w.r.t. T ∪U and m in the sense of lemma 8 (d) if and only if both σC

is maximal w.r.t. U and mC and σEP is maximal w.r.t. T and mEP in the sense of
lemma 8 (d).

Putting this together, observe that σ is an enabled step in C ∗Ω P under the marking m
if and only if σ is a step and σC and σEP are potentially enabled and maximal as above.

Lemma 9. λU (LCP) ⊇ Lcb.

Proof. We show by induction on the length of w = x1 . . . xn ∈ Lcb:

(A) The occurrence sequence η = η1 . . . ηn is enabled in C ∗Ω P under the marking
m0 ∪ Ps0 .

(B) The occurrence of η gives the follower marking mn ∪ Psn .
(C) x1 . . . xnxn+1 ∈ Lcb implies that the step ηn+1 is enabled in C ∗Ω P under the

marking mn ∪ Psn .

First let w = ε (n = 0): (A) and (B) are clear. Ad (C): Observe that in each case the C-
and EP-parts of η1 are potentially enabled and maximal in the above sense. According
to the above considerations, it remains to show that η1 is a step. We distinguish three
cases:

(i) x1 ⊆ T :
η1 = x1 is clearly a step.

(ii) x1 ⊆ T ∪ O and x1 ∩ O �= ∅:
x1 builds a step in E ∗Ω P which includes the set of transitions x = l(s1). From
the transitions in x the transition t

s0
x→s1

is synchronized. The transition t
s0

x→s1
synchronizes the empty and fill transitions of ξ

s0
x→s1

(see figure 19).
(iii) x1 ∩ I �= ∅:

analogously to (ii).
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Let w = x1 . . . xn−1xn. By assumption the statements (A) − (C) are valid for wn−1.
This implies (A) for w. Statement (B) is clear (since the markings are unions of the C-
and EP-parts). (C) can be seen analogously to the above argumentation.

Lemma 10. λU (LCP) ⊆ Lcb.

Proof. To see the statement, the controllability of Lcb will play the crucial role: Ob-
serve that λU (LCP ) ⊆ LP . Assume there is σ = σ1 . . . σnσn+1 ∈ λU (LCP ) \ Lcb.
Without loss of generality σ1 . . . σn ∈ Lcb. Denote s = δ(s0, λT (σ1 . . . σn)) and
s′ = δ(s0, λT (σ)).

(i) σn+1 ⊆ T ∪ O:
According to the first condition (1) of controllability it follows σ ∈ Lcb. A con-
tradiction.

(ii) σn+1 ∩ I �= ∅:
Let σn+1 ∩ I = {i}. The sequence λT (σ1) . . . λT (σn)λT (σn+1) = λT (σ1) . . .
λT (σn)l(s′) is a path in A from s0 to s′. That means there is a word x1 . . .
xnxn+1 ∈ Lcb with λT (xi) = λT (σi) (i = 1, . . . , n + 1). In particular we have
λT∪O(xn+1) = λO(l(s′)), since every step contains at most one input. According
to the second condition (2) of controllability it follows σ ∈ Lcb. A contradiction.

��

5 Conclusion

In this paper we have presented a methodology for synthesis of the controlled behavior
of discrete event systems employing actuators which try to force events and sensors
which can prohibit event occurrences. As a modelling formalism, we have used mod-
ules of signal nets. The signal nets offer a direct way to model typical actuators behav-
ior. Another advantage of such modules consists in supporting input/output structuring,
modularity and compositionality in an intuitive graphical way.

In the paper we were not focusing on complexity issues. It is known that the com-
plexity of the supervisory control problem is in general PSPACE-hard, and sometimes
even undecidable ([21], pp. 15 - 36). To get efficient algorithms one has to restrict the
setting in some way, for example by considering only very special kinds of specifica-
tions.

As the main result of the paper, we have shown how to synthesize the control mod-
ule from the behavior of the controlled plant under the paradigm, that outputs of the
plant cannot force inputs of the plant via the control module. This paradigm of course
(structurally) restricts the class of modules which can be used as control modules. It
would be interesting to discuss a generalization of this concept, where the composition
of a control module with a plant module is not restricted. That means, in any pair of
composed modules both modules can be considered as the control module symmetri-
cally, or even more generally both modules can be considered to control each other. For
sake of simplicity, we have restricted the control specification over set of outputs. We
are presently working on extension of our methodology for the control specifications
including input signals. The methodology for the specifications over observable states
(i.e. condition output signals) is also an interesting subject of the further research.
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The presented approach considers only Petri nets on a very elementary level. For
complex industrial-size systems, these nets tend to be either very large or too abstract.
In particular, data and time aspects can not be modelled in a natural way. Therefore,
we are working on extension of modules of signal nets by special high-level Petri net
features.
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