
Application of Coloured Petri Nets
in System Development

Lars Michael Kristensen�, Jens Bæk Jørgensen, and Kurt Jensen

Department of Computer Science, University of Aarhus
IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark

{lmkristensen,jbj,kjensen}@daimi.au.dk

Abstract. Coloured Petri Nets (CP-nets or CPNs) and their supporting
computer tools have been used in a wide range of application areas such
as communication protocols, software designs, and embedded systems.
The practical application of CP-nets has also covered many phases of
system development ranging from requirements to design, validation, and
implementation. This paper presents four case studies where CP-nets and
their supporting computer tools have been used in system development
projects with industrial partners. The case studies have been selected
such that they illustrate different application areas of CP-nets in various
phases of system development.

1 Introduction

System development and engineering [73] is a complex task involving a multitude
of activities such as analysis, requirement engineering, design, implementation,
and testing. Several approaches to system development have been suggested and
described in the literature such as the classical waterfall approach [44] and the
newer, iterative Rational Unified Process (RUP) [61]. One universal technique
that can be used across many of the activities in system development is mod-
elling. The act of constructing a model of the system to be developed is typically
done in early phases of system development, and is also known from other dis-
ciplines, e.g., when engineers construct bridges and architects design buildings.
The main benefit of modelling is that it provides insight about the properties
of the system prior to implementation. This allows many issues about the sys-
tem to be resolved in the requirements and design phase rather than in the
implementation phase. Many modelling languages have been suggested and are
being used for system development. The most prominent example is the Uni-
fied Modeling Language (UML) [69,78] which is the de-facto standard modelling
language of the software industry and which supports modelling of the structure
and behaviour of systems.

CP-nets [47,48,50,58] is a graphical modelling language suited for modelling
concurrency, synchronisation, and communication in systems. Prototypical ap-
plication domains of CP-nets and Petri nets are communication protocols, data
� Supported by the Danish Natural Science Research Council.

J. Desel, W. Reisig, and G. Rozenberg (Eds.): ACPN 2003, LNCS 3098, pp. 626–685, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Application of Coloured Petri Nets in System Development 627

networks, embedded systems, and other types of reactive systems. CP-nets and
Petri nets are, however, also applicable more generally for modelling systems
where concurrency and communication are key characteristics. Examples of this
are business process/workflow modelling and manufacturing systems.

The CPN modelling language combines Petri nets and programming lan-
guages. Petri nets [24, 77] provide the foundation of the graphical notation and
the semantical foundation for modelling concurrency, synchronisation, and com-
munication in systems. The functional programming language Standard ML [86]
provides the primitives for compactly modelling the sequential aspects of sys-
tems (such as data manipulation) and for creating compact and parameterisable
models. CP-nets have a module concept allowing CPN models to be organised
into several modules (called pages). The module concept is hierarchical, allow-
ing a module to have a number of submodules and allowing a set of modules
to be composed to form new modules. This enables the modeller to work both
top-down and bottom-up when constructing CPN models. CPN models can be
timed, meaning that the time taken by different events in the system can be
modelled. This means that CP-nets can be used to investigate both logical and
functional properties such as absence of deadlocks, and performance properties
such as execution times and queue lengths.

The CPN modelling language is supported by two computer tools: CPN Tools
and Design/CPN. The Design/CPN tool [25] was developed in 1989 and is now
being replaced by the next generation of tool support: CPN Tools [22]. The CPN
computer tools support construction of CPN models including syntax check, type
checking, and simulation (execution) of CPN models. Editing and simulation of
the CPN models are done directly on the graphical representation of CP-nets.
It is also possible to animate the system behaviour using a number of graphical
libraries [13,75]. These libraries can be used on top of the CPN models to display
graphics specific to the application domain. The basic idea in this behavioural
animation is to have the CPN model display the evolution of the system using
other graphical means such as, e.g., message sequence charts [9, 13].

The CPN computer tools support state space (reachability) analysis [48] of
CPN models. The basic idea in state spaces is to calculate all reachable states and
state changes of the system and represent these as a directed graph. The state
space of a CPN model can be used to verify a number of properties of the system
under consideration. A number of state space reduction methods [15, 16, 49] are
also available in the computer tools for alleviating the state explosion problem
[88], i.e., the fact that the number of reachable states can be large for complex
systems. The computer tools also allow the performance of the system to be
analysed based on simulation.

This paper presents four projects where CP-nets and their supporting com-
puter tools have been used in system development. The four projects make it
evident that CP-nets can be used in many phases of system development. CP-
nets is however not a modelling language designed to replace other modelling
languages (such as UML). In our view it should be used as a supplement to ex-
isting modelling languages and methodologies. CP-nets are suited for modelling

628 Lars Michael Kristensen, Jens Bæk Jørgensen, and Kurt Jensen

and analysing behaviour in concurrent and distributed systems – an aspect where
many other modelling languages, and in particular UML, are weak. While UML
sequence- and collaboration diagrams are widely used to describe examples of
system behaviour, the UML diagrams available for modelling behaviour in a gen-
eral way, i.e., UML state machines and activity diagrams, are more rarely used.
They have a number of limitations, and, in many cases, there are substantial
technical reasons to prefer CP-nets over, e.g., UML state machines. The latter
lack a well-defined execution semantics, do not support modelling of multiple in-
stances of classes, and do not scale well to large systems [30,55]. CP-nets may be
seen as a convenient supplement to the well-established UML diagram types such
as sequence diagrams and class diagrams. On the other hand, CP-nets are not
suited for giving purely static descriptions of system architecture and structure.

Another characteristic of the CPN modelling language is that it is general
instead of domain specific, i.e., it is not aimed directly at modelling a specific
class of systems, but aimed towards a very broad class of systems that can be
characterised as concurrent and distributed. This is also evident in that the
CPN language has few, but powerful modelling primitives that make it possible
to model systems and concepts at different levels of abstraction. This is both
a weakness and a strength of the CPN modelling language. The capability of
CP-nets to model systems at different levels of abstraction is one of the keys to
making formal analysis (e.g., state space analysis) of such models tractable, as
large and very detailed models will usually be intractable for state space analysis.
Finding the different abstraction levels that are useful at different points in
systems development and more generally finding the right abstraction level is
one of the arts of modelling. Finally, the CPN modelling language is able to
describe large and complex systems. The use of a full programming language
(Standard ML) gives CP-nets a scalability at the modelling level that cannot be
found in low-level Petri nets.

Below we give a brief introduction to the four projects presented in this
paper. The presented CPN models have all been constructed in joint projects
between the CPN group [23] at the University of Aarhus and industrial partners.

Modelling Scenarios in Ad Hoc Networking. This joint project [57] with
Ericsson Telebit A/S [33] was concerned with network architectures for inte-
grating stationary core networks and mobile ad-hoc networks. The presented
CPN model was developed in an early phase of the project to specify the net-
work architecture itself and the mobility and communication scenarios to be
supported by the communication protocols to be developed in later phases.
CPN modelling was hence used to formalise the problem domain and for
specifying requirements for the later implementation. This application of
CP-nets is presented in Sect. 2.

Modelling Requirements in Pervasive Healthcare. This joint project [53]
with Systematic Software Engineering A/S [84] and Aarhus County Hospi-
tal was concerned with specifying the business processes at Aarhus County
Hospital and their support by a new IT system. The CPN model was used to
engineer requirements for the system. Input from nurses was crucial in this

Application of Coloured Petri Nets in System Development 629

process. The project demonstrated how application-specific graphics driven
by underlying CPN models can be used to visualise system behaviour and
to discuss requirements with people who are not familiar with the CPN
modelling language. This application of CP-nets in presented in Sect. 3.

State Space Analysis of an Audio/Video Protocol. This joint project
[14] with Bang and Olufsen A/S [5] was concerned with the design of the
communication protocols to be used in the next generation of the B & O
Beolink system. The presented CPN model was used to specify the new
lock management protocol, and state space analysis was used to validate
and analyse the protocol. The project took place in 1995-1996 when only
very basic state space analysis was available in the CPN computer tools.
Since then, a number of new state space methods have been developed and
implemented in the CPN computer tools. A revised CPN model of the lock
management protocol is presented in Sect. 4, together with the application
of the state space methods currently available in the CPN computer tools.

Implementation of a Planning Tool. This joint project [94] with the Aus-
tralian Defence Science and Technology Organisation (DSTO) [4] was con-
cerned with the development of the Course of Action Scheduling Tool
(COAST). CPN modelling has been used to conceptualise and formalise the
planning domain to be supported by the COAST tool. Furthermore, the con-
structed CPN model has been extracted in executable form from the CPN
computer tools and embedded into the server of the COAST tool together
with a number of state space analysis algorithms. This project demonstrated
how a constructed CPN model can be used for the implementation of a com-
puter tool by effectively bridging the gap between the design specified as
a CPN model and the implementation of the system. This application of
CP-nets is presented in Sect. 5.

The four projects presented in this paper can be read in any order, but
we have ordered their presentation according to the typical phases in system
development starting with analysis and requirements, moving on to design and
validation, and finally implementation. For readers with only limited or no prior
knowledge of Petri nets we recommend reading Sect. 2 first as it also gives some
introduction to the basic constructs in the CPN modelling language. We sum up
the conclusions in Sect. 6 and give references to further reading on CP-nets.

2 Modelling Scenarios in Ad-Hoc Networking

The overall topic of this joint research project with Ericsson Telebit A/S [57]
presented in this section is the use of the Internet Protocol v6 (IPv6) [42] for
ad-hoc networking [71]. An ad-hoc data network is a collection of (typically)
mobile nodes, such as laptops, personal digital assistants (PDAs), and mobile
phones, capable of establishing a communication infrastructure for their com-
mon use. Ad-hoc networking differs from conventional data networks in that
the network of nodes operates in a fully self-configuring and distributed man-
ner, i.e., there is no central network management, control, or components at the

630 Lars Michael Kristensen, Jens Bæk Jørgensen, and Kurt Jensen

network layer. Furthermore, there is no preexisting infrastructure, such as base
stations and routers, available. One of the challenges in ad-hoc networking is to
design the routing protocols in such a way that they are able to quickly adapt to
the frequent changes in network topology due to node mobility and nodes leav-
ing/joining the network. Ad-hoc networking has a number of application areas,
such as sensor networks, rescue operations in remote areas, mobile conferencing,
home networking, and wireless personal area networks. Routing protocols for ad-
hoc networking are under development by the IETF Mobile Ad-hoc Networks
working group [35]. The main focus of the project is the integration of routing
protocols for conventional wired data networks e.g, OSPF, RIP, and BGP [83])
with routing protocols for ad-hoc networks (e.g, DSR, AODV, and OLSR [71]).

Figure 1 shows the IPv6 based network architecture considered in the project.
The network architecture consists of an IPv6 core network connecting a number
of mobile ad-hoc networks (MANETs) on the edge of the core network. The
network architecture is aimed at supporting communication between nodes re-
siding in different ad-hoc networks and communication between nodes in the
ad-hoc networks and stationary nodes in the core network. Communication be-
tween nodes in the same ad-hoc network is facilitated by the ad-hoc network
itself. Another important aspect of the network architecture is mobility. Macro-
mobility is concerned with the movement of nodes from one ad-hoc network to
another ad-hoc network, and the movement of an entire ad-hoc network from
one point of attachment to the core network to another point of attachment.
Micromobility is concerned with the movement of the nodes within an ad-hoc
network which changes the topology of the ad-hoc network.

IPv6 Core
Network

Ad Hoc
Network

Ad Hoc
Network

Ad Hoc
Network

Ad Hoc
Network

Ad Hoc
Network

Fig. 1. IPv6 based networking architecture.

CPN modelling was used in the first phase of the project to develop the
network architecture shown in Fig. 1 and to capture in a rigorous way the com-
munication and mobility scenarios that must be supported. Capturing these
requirements was done by constructing a CPN model that described mobility
and communication in the above networking architecture. In the following, we
give a detailed description of this CPN model.

2.1 CPN Modelling of Mobility and Communication

Figure 2 shows the hierarchy page of the CPN model. The hierarchy page pro-
vides an overview of the pages (modules) constituting the CPN model and their

Application of Coloured Petri Nets in System Development 631

relationship. Each node in Figure 2 represents a page in the CPN model, and is
labelled with a page name and a page number. As an example, the page node
at the top left of Figure 2 is named Scenarios and has page number 1. Page Sce-
narios is the most abstract page in the CPN model. An arc between two nodes
indicates that the destination page is a subpage (submodule) of the source page.
The arc label(s) specifies the name of the substitution transition(s) represent-
ing the corresponding subpage at the source page. Substitution transitions are
explained in more detail later.

Declarations#2

Hierarchy#100Scenarios#1

Communication#3 AHSendReceive

Mobility#5

Macromobility#6

Micromobility#7

M

Type1#9

Type2#12

Type3#13

System#10

Init#11 M

Enter#14

Exit#15

C

CNSendReceive#

SendReceive4

SendReceive2

SendReceive3

SendReceive1Communication

Mobility

Macromobility

Type1

Type2

Type3

System

Enter

Exit

Micromobility

SendReceive

Fig. 2. Hierarchy page - overview of CPN model.

The CPN model consists of three main parts. Page System and its two sub-
pages model the system scenarios which are concerned with ad-hoc nodes en-
tering and leaving the system. Page Mobility and its five subpages model the
mobility scenarios, i.e., the movement of the nodes in the ad-hoc networks. Page
Communication and its two subpages, AHSendReceive and CNSendReceive, model
the communication between nodes in the system.

632 Lars Michael Kristensen, Jens Bæk Jørgensen, and Kurt Jensen

Figure 3 depicts page Scenarios which is the most abstract part of the CPN
model. It corresponds to the Scenarios page node in Fig. 2. The rectangles in Fig-
ure 3 are substitution transitions as indicated by the associated HS-tag (in the
lower left corner of each rectangle). Each substitution transition has an associ-
ated subpage modelling the compound behaviour represented by the substitution
transition in more detail. The name of the subpage is given in the dashed box
next to the HS-tag. The communication scenarios are modelled by the substi-
tution transition Communication which has page Communication (see Fig. 2) as
its associated subpage. The mobility scenarios are modelled by the substitution
transition Mobility which has page Mobility as its associated subpage. The sys-
tem scenarios are modelled by the substitution transition System which has page
System as its associated subpage.

Area1

AHNodexState

2

1‘(AHnode(1),(Area1,IDLE))++
1‘(AHnode(2),(Area1,IDLE))

Communication

HS Communication#3

Mobility

HS Mobility#5

Area2

AHNodexState

2

1‘(AHnode(3),(Area2,IDLE))++
1‘(AHnode(4),(Area2,IDLE))

Area3

AHNodexState

2

1‘(AHnode(5),(Area3,IDLE))++
1‘(AHnode(6),(Area3,IDLE))

Area4

AHNodexState

2

1‘(AHnode(7),(Area4,IDLE))++
1‘(AHnode(8),(Area4,IDLE))

System

HS System#10

Outside

AHNode

1

1‘AHnode(9)

Core
Network

CNNode

5

1‘CNnode(1)++ 1‘CNnode(2)++
1‘CNnode(3)++ 1‘CNnode(4)++
1‘CNnode(5)

Fig. 3. The Scenarios page - top level page in the CPN model.

The ellipses in Fig. 3 are called places and are used to model the state of
the system. The state of a CPN model is called a marking and is a distribution
of tokens on the places of the CPN model. Each of the places Area1, Area2,
Area3, and Area4 correspond to areas where ad-hoc networks can exist. In our
scenarios, ad-hoc networks can exist in four areas. Nodes that are part of the ad-
hoc network in a given area are modelled as tokens residing on the corresponding
place. The place CoreNetwork is used for modelling the nodes in the core network.
The place Outside is used for modelling the ad-hoc nodes currently outside of
the system.

Application of Coloured Petri Nets in System Development 633

The kind of tokens that may reside on a place is determined by the colour set
of the place. A colour set in a CPN model is similar to a type in a programming
language, and the values in a colour set are referred to as colours. The colour set
of a place is typically written below the place and is declared using the Standard
ML programming languages. As an example, place Area1 has the colour set
AHNodexState. The declarations of the colour sets used in Fig. 3 are listed in
Fig. 4 and will be explained below.

val AHn = 9;

color AHInt = int with 1..AHn;

color AHNode = union AHnode : AHInt;

color Macrostate = with IDLE | MACROMOVE;

color Area = with Area1 | Area2 | Area3 | Area4;

color State = product Area * Macrostate;

color AHNodexState = product AHNode * State;

val CNn = 5;

color CNInt = int with 1..CNn;

color CNNode = union CNnode : CNInt;

Fig. 4. Colour sets used in Fig. 3.

The symbolic constant AHn is used to specify the total number of ad-hoc
nodes in the system. Colour sets are declared using the keyword color. The colour
set AHInt denotes the set of integers in the range from 1 to AHn. The colour set
AHNode is used to model the ad-hoc nodes. An ad-hoc node is specified as a
value (colour) with the form AHnode(i) where 1 ≤ i ≤ AHn. The colour set
Macrostate is used to model the internal state of an ad-hoc node with respect
to movement from one area to another area. The state may either be IDLE
indicating that the node is currently not on the move from one area to another
area, or MACROMOVE indicating that the node is currently on the move from
one area to another area. The state of an ad-hoc node is modelled by the colour
set State which is the cartesian product of the colour sets Area and Macrostate.
Hence, the state of an ad-hoc node specifies the area that the ad-hoc node is
currently in, and whether the ad-hoc node is currently moving from one area to
another. The area places in Fig. 3 all have the colour set AHNodexState. Hence,
tokens residing on these places represents ad-hoc nodes. Place Outside on page
Scenarios has the colour set AHNode. The reason for this is that the state of the
ad-hoc node is not important when the node is outside the system. The colour
set CNNode is used to model the nodes in the core network. A core network node
is specified as a value (colour) with the form CNnode(ci) where 1 ≤ bi ≤ CNn.
Place CoreNetwork in Fig. 3 has the colour set CNNode.

634 Lars Michael Kristensen, Jens Bæk Jørgensen, and Kurt Jensen

The small circles and associated dashed boxes in Fig. 3 show the current
marking of the CPN model. The small circle positioned inside a place indicates
the number of tokens on the given place in the current marking. In the marking
shown, there are two ad-hoc nodes in each of the four areas, and ad-hoc node 9
is currently outside the system. There are fives nodes in the core network. The
dashed boxes positioned next to the places specify the colours of the individual
tokens residing on that place. The marking of a place is a multi-set of tokens over
the colour set of the place, i.e., there can be multiple appearances of the same
token. The text inside the dashed boxes specifies the multi-set of tokens residing
on the place using ++ to denote union (pronounced and) and ‘ (pronounced
of) to specify coefficients, i.e., the number of occurrences of tokens with that
value. As an example, on place Area1 in the marking shown in Fig. 3 there is
one token of colour (AHnode(1),(Area1,IDLE)) and one token of colour (AHN-
ode(1),Area1,IDLE). The CPN model contains an initialisation step responsible
for the initial distribution of tokens on the CPN model. It is, however, possible
for the modeller to also manually specify the initial marking of the CPN model.

The transitions and places in Fig. 3 are connected by double-deaded arcs.
Some of these arcs have been partly positioned on top of each other to improve
readability of the figure. A place connected to a substitution transition is called
a socket place, and a socket place is associated to a port place on the subpage as-
sociated with the substitution transition. This is called a port-socket assignment.
This association has the effect that the port and the socket places will always
have identical markings. Note that a place may be a socket place for several sub-
stitution transitions. The dynamics of a CPN model consists of occurrences of
transitions (ordinary, not substitution transitions) which add and remove tokens
to/from the places of the CPN model, thereby changing the current marking. An
arc leading to a place from a substitution transition means that transitions on
the subpage associated with the substitution transitions will add tokens on this
place. Similarly, an arc leading from a place to a substitution transition means
that transitions on the subpage will remove tokens from this place. A double-
deaded arc is a shorthand for an arc in each direction. The basic idea in the
CPN model is to capture mobility scenarios of the network architecture by mov-
ing tokens corresponding to ad-hoc nodes from one area place to another area
place. Similarly, communication scenarios will be modelled by moving tokens in
the CPN model corresponding to packets.

2.2 Modelling Mobility

Figure 5 depicts page Mobility which is the most abstract page in the part of the
CPN model specifying mobility. Two types of mobility are considered: macro-
mobility and micromobility. Recall that macromobility is concerned with the
mobility of ad-hoc nodes between ad-hoc networks. In the CPN model we con-
sider only the macromobility case of one ad-hoc node moving from one ad-hoc
network to another ad-hoc network. The case of an entire ad-hoc network mov-
ing can be viewed as the individual movement of all of the nodes in the ad-hoc
network. Micromobility is concerned with the movement of ad-hoc nodes within

Application of Coloured Petri Nets in System Development 635

an ad-hoc network. The two types of mobility are modelled by the subpages of
the substitution transitions Macromobility and Micromobility, respectively. The
four places Area1-4 are port places of this page - indicated by the P-tags posi-
tioned next to them. The I/O-tag specifies that they are input and output port
places. This means that tokens may be added and removed to/from these places.
Each of the area places are associated with the identically named socket place
in Fig. 3. The places Area1-4 are also socket places since they are connected to
the Macromobility and Micromobility substitution transitions.

Area2

AHNodexState

P I/O 2

1‘(AHnode(3),(Area2,IDLE))++
1‘(AHnode(4),(Area2,IDLE))

Area1

AHNodexState

P I/O2

1‘(AHnode(1),(Area1,IDLE))++
1‘(AHnode(2),(Area1,IDLE))

Area4

AHNodexState

P I/O2

1‘(AHnode(7),(Area4,IDLE))++
1‘(AHnode(8),(Area4,IDLE))

Area3

AHNodexState

P I/O 2

1‘(AHnode(5),(Area3,IDLE))++
1‘(AHnode(6),(Area3,IDLE))

Macromobility

HS Macromobility#6

Microtopology

AreaxAHTopology

4

1‘(Area1,[])++ 1‘(Area2,[])++
1‘(Area3,[])++ 1‘(Area4,[])

Micromobility
HS Micromobility#7

Fig. 5. The Mobility page.

The macromobility scenarios are specified by considering the movement of
ad-hoc nodes between the places Area1-4. The place Microtopology is used to
represent the current topology of the ad-hoc networks. The definition of the
colour set AreaxAHTopology is given in Fig. 6.

color AHNodexAHNode = product AHNode * AHNode;

color AHTopology = list AHNodexAHNode;

color AreaxAHTopology = product Area * AHTopology;

Fig. 6. Declaration of colour set AreaxAHTopology.

The topology of an ad-hoc network is a pair consisting of the ad-hoc network
and a list of pairs specifying the current set of links between the nodes in the
ad-hoc network. For example, a pair (AHnode(6),AHnode(5)) captures that ad-
hoc node 5 can be reached from ad-hoc node 6, but not necessarily the other
way around as links may be unidirectional. In the current marking of place

636 Lars Michael Kristensen, Jens Bæk Jørgensen, and Kurt Jensen

Microtopology shown in Fig. 5, no ad-hoc nodes are able to reach each other in
any area, and hence the topology in each area is specified as the empty list []. The
substitution transition Macromobility is connected to the place Microtopology by
a double arc. When a node moves from one area to another area, all existing
links to nodes in the area being moved from disappear.

Micromobility. Figure 7 depicts page Micromobility specifying the micromobil-
ity. The micromobility scenarios are abstractly modelled by viewing the ad-hoc
network as a directed graph where edges represent connectivity. Hence, we have
abstracted from the physical location of the nodes in the ad-hoc networks. The
nodes in the ad-hoc networks are represented as tokens on the area places. The
current topology of the ad-hoc network is represented by the tokens on place
Microtopology. All five places on this page are connected via port-socket rela-
tionships to the identically named places on page Mobility (see Fig. 5). The
two rectangles AddLink and DeleteLink are ordinary transitions. Transition Ad-
dLink models that a new link between two ad-hoc nodes arises, and transition
DeleteLink models that an existing link between two ad-hoc nodes disappears.

Microtopology

AreaxAHTopologyP I/O

4

1‘(Area1,[])++ 1‘(Area2,[])++ 1‘(Area3,[])++ 1‘(Area4,[])

Add
Link

[AHnode(i) <> AHnode(j),
 NotReach ahtopology (AHnode(i),AHnode(j))]

Delete
Link

[Reach ahtopology (AHnode(i),AHnode(j))]

Area1

AHNodexState
2

1‘(AHnode(1),(Area1,IDLE))++
1‘(AHnode(2),(Area1,IDLE))

P I/O

Area2
AHNodexState

2

1‘(AHnode(3),(Area2,IDLE))++
1‘(AHnode(4),(Area2,IDLE))

P I/O

Area3

AHNodexState
2

1‘(AHnode(5),(Area3,IDLE))++
1‘(AHnode(6),(Area3,IDLE))

P I/O

Area4

AHNodexState

2

1‘(AHnode(7),(Area4,IDLE))++
1‘(AHnode(8),(Area4,IDLE))

P I/O

(area,
 DeleteReach ahtopology
 (AHnode(i),AHnode(j)))

(area,
 AddReach ahtopology (AHnode(i),AHnode(j)))

(area,
 ahtopology)

(area,
 ahtopology)

if area = Area1
then (1‘(AHnode(i),statei) ++
1‘(AHnode(j),statej))
else empty

if area = Area2
then (1‘(AHnode(i),statei) ++
1‘(AHnode(j),statej))
else empty

if area = Area3
then (1‘(AHnode(i),statei) ++
1‘(AHnode(j),statej))
else empty

if area = Area4
then (1‘(AHnode(i),statei) ++
1‘(AHnode(j),statej))
else empty

Fig. 7. The Micromobility page.

The actions of a CPN model consist of occurrences of enabled transitions
removing tokens from places connected to incoming arcs and adding tokens to
places connected to outgoing arcs of the transition. The transition AddLink is
enabled in the marking shown in Fig. 7. This is indicated by the thick border of
the transition. Transition AddLink has five input places and five output places. A
transition is required to be enabled before it may occur. A transition is enabled

Application of Coloured Petri Nets in System Development 637

if sufficient tokens with adequate colours exist in each of its input places. When
a transition occurs, it removes tokens from input places and adds tokens to
output places. The exact multi-set of tokens required for a transition to be
enabled and removed from input places when it occurs, and the exact multi-set
of tokens added to output places of the transition are determined by assigning
value to the variables of the transition, and by evaluating the arc expressions,
i.e., the inscriptions positioned next to the arcs. Arc expressions are written in
the Standard ML language.

To evaluate the arc expressions on the surrounding arcs of a transition, a
binding of the transition must be created. A binding is an assignment of data
values to the variables of the transition. Figure 8 shows the declaration of the
variables appearing in the surrounding arcs of the NewReach transition in Fig. 7.
The definition of the colour sets have previously been given in Fig. 4.

var area : Area

var i,j : AHInt;

var statei, statej : State;

var ahtopology : AHTopology;

Fig. 8. Variables used on page Micromobility shown in Fig. 7.

A binding of a transition is enabled in the current marking if when evaluating
each of the arc expressions on input arcs, the resulting multi-set of tokens is a
subset of the multi-set of tokens currently present in the corresponding input
place. An enabled binding of the transition AddLink is the following which lists
the value assigned to each variable of the transition:

< area=Area1,i=1, statei=IDLE, j=2, statej=IDLE, ahtopology=[] >

This binding corresponds to the event that ad-hoc node 1 is now able to
reach ad-hoc node 2. Evaluating the input arc expression from place Area1 in
this binding yields the multi-set: 1‘(AHnode(1),IDLE) ++ 1‘(AHnode(2),IDLE).
The result of evaluating the input arc expression from place Microtopology yields
the multi-set 1‘(Area1,[]). The remaining input arc expressions all yield the empty
multi-set since the variable area is bound to the value Area1. This binding is en-
abled since each of the multi-sets of tokens are present on the corresponding
input places, and because the guard (shown in square bracket below the transi-
tion) of the NewReach transition is satisfied. A guard is a boolean expression that
must evaluate to true in the binding in order for the transition to be enabled.
The guard expresses the condition that the two ad-hoc nodes determined by the
binding of the variables i and j must be distinct, and there must not already
exist a link between ad-hoc node i and j. The latter requirement is checked by
the function NotReach which is a function implemented in Standard ML. The
implementation of the NotReach function is shown in Fig. 9. The implementation
of the NotReach function uses the built-in Standard ML function [79] List.all to

638 Lars Michael Kristensen, Jens Bæk Jørgensen, and Kurt Jensen

check whether the edge between ad-hoc node i and j already exists in the list ah-
topology corresponding to the current topology. We explain the other functions
listed in Fig. 9 shortly.

fun NotReach ahtopology (ahnode1,ahnode2) =

(List.all (fn edge => edge <> (ahnode1,ahnode2)) ahtopology)

fun AddReach ahtopology (ahnode1,ahnode2) = (ahnode1,ahnode2)::ahtopology

fun Reach ahtopology (ahnode1,ahnode2) =

(List.exists (fn edge => edge = (ahnode1,ahnode2)) ahtopology)

fun DeleteReach ahtopology (ahnode1,ahnode2) =

List.filter (fn edge => edge <> (ahnode1,ahnode2)) ahtopology

Fig. 9. Function used in arc expression on page Micromobility in Fig. 7.

If the above enabled binding of transition AddLink occurs, it will remove the
multi-set of tokens from input places of the transition obtained by evaluating the
input arc expressions, and add the multi-set of tokens to each output place ob-
tained by evaluating the corresponding output arc expression. Since the AddLink
transition is connected to the area places with double arcs, the same multi-set of
tokens will be removed and added for each of these places. Hence, the marking
of these places will remain unchanged. The marking of place Microtopology will
change as the token (Area1,[]) will be removed and a new token will be added
as described by the arc expression from AddLink to Microtopology. This arc ex-
pression uses the function AddReach to add the edge AHnode(i),AHnode(j) to the
microtopology in area 1. The AddReach function uses the list constructor :: to
insert the edge (AHnode(i),AHnode(j)) at the head of the list ahtopology repre-
senting the current topology. Figure 10 shows the marking of page Micromobility
after the occurrence of the above binding of the AddLink transition. The marking
of the place Microtopology has changed so that Ahnode(1) is now able to reach
AHnode(2) in area 1. The transition AddLink is also enabled in other bindings.
In fact, it is enabled in bindings corresponding to all the possible edges that can
arise between nodes given the current location of nodes in the four areas.

In the marking shown in Fig. 10 both transitions are enabled. Transition
DeleteLink is enabled with the binding:

< area=Area1,i=1, j=2, ahtopology=[(AHnode(1),AHnode(2))] >

The guard of the DeleteLink transition uses the function Reach to ensure that
the transition is only enabled in bindings corresponding to links that exists in
the area. The implementation of Reach is given in Fig. 9, and it uses the list
library function List.exists to ensure that the link to be removed is an existing
list in the current topology of the ad-hoc network. The output arc expression to

Application of Coloured Petri Nets in System Development 639

Microtopology

AreaxAHTopologyP I/O

4

1‘(Area1,[(AHnode(1),AHnode(2))])++ 1‘(Area2,[])++
1‘(Area3,[])++ 1‘(Area4,[])

Add
Link

[AHnode(i) <> AHnode(j),
 NotReach ahtopology (AHnode(i),AHnode(j))]

Delete
Link

[Reach ahtopology (AHnode(i),AHnode(j))]

Area1

AHNodexState
2

1‘(AHnode(1),(Area1,IDLE))++
1‘(AHnode(2),(Area1,IDLE))

P I/O

Area2
AHNodexState

2

1‘(AHnode(3),(Area2,IDLE))++
1‘(AHnode(4),(Area2,IDLE))

P I/O

Area3

AHNodexState
2

1‘(AHnode(5),(Area3,IDLE))++
1‘(AHnode(6),(Area3,IDLE))

P I/O

Area4

AHNodexState

2

1‘(AHnode(7),(Area4,IDLE))++
1‘(AHnode(8),(Area4,IDLE))

P I/O

(area,
 DeleteReach ahtopology
 (AHnode(i),AHnode(j)))

(area,
 AddReach ahtopology (AHnode(i),AHnode(j)))

(area,
 ahtopology)

(area,
 ahtopology)

if area = Area1
then (1‘(AHnode(i),statei) ++
1‘(AHnode(j),statej))
else empty

if area = Area2
then (1‘(AHnode(i),statei) ++
1‘(AHnode(j),statej))
else empty

if area = Area3
then (1‘(AHnode(i),statei) ++
1‘(AHnode(j),statej))
else empty

if area = Area4
then (1‘(AHnode(i),statei) ++
1‘(AHnode(j),statej))
else empty

Fig. 10. The Micromobility page - after occurrence of AddLink.

Area2

AHNodexState

P I/O

2

1‘(AHnode(3),(Area2,IDLE))++
1‘(AHnode(4),(Area2,IDLE))

Area1

AHNodexState

P I/O

2

1‘(AHnode(1),(Area1,IDLE))++
1‘(AHnode(2),(Area1,IDLE))

Area3

AHNodexState

P I/O

2

1‘(AHnode(5),(Area3,IDLE))++
1‘(AHnode(6),(Area3,IDLE))

Area4

AHNodexState

P I/O

2

1‘(AHnode(7),(Area4,IDLE))++
1‘(AHnode(8),(Area4,IDLE))

Type1

HS Type1#9

Type2

HS Type2#12

Type3

HS Type3#13

Microtopology

AreaxAHTopology

P I/O4

1‘(Area1,[(AHnode(1),AHnode(2))]
)++ 1‘(Area2,[])++ 1‘(Area3,[])++
1‘(Area4,[])

Fig. 11. The Macromobility page.

Microtopology uses the DeleteReach function to delete the edge in the list describ-
ing the topology in the area where the link disappears. If transition DeleteReach
occurs in the above binding, it will result in the marking shown in Fig. 7. This
means that it will remove the link which was added when AddLink occurred.

Macromobility. Figure 11 depicts page Macromobility specifying the macro-
mobility scenarios. Three types of macromobility are considered and modelled

640 Lars Michael Kristensen, Jens Bæk Jørgensen, and Kurt Jensen

by the subpages of the accordingly named substitution transitions. All arcs in
Fig. 11 are double-headed arcs, but they have been positioned on top of each
other to reduce the number of crossing arcs. Each of the three types of macro-
mobility is described below.

Type 1: This type specifies the movement of an ad-hoc node from one ad-hoc
network to another ad-hoc network. The subpage Type1 modelling this type is
shown in Fig. 12. The transition InstantMove represents the instantaneous move
from one ad-hoc network to another ad-hoc network, i.e., at the same moment
as the node leaves the ad-hoc network in one area it joins the ad-hoc network
in another area. The declarations used are listed in Fig. 13. The value bound to
the variable i (on the arcs between the area places and InstantMove) of type Int
corresponds to the ad-hoc node that moves. When the InstantMove transition
occurs, the variable to will be bound to the area which is being moved to and the
variable from will be bound to the area being moved from. The microtopology of
the area being moved from is also updated by changing the corresponding token

Area4

AHNodexState

P I/O

2

1‘(AHnode(7),(Area4,IDLE))++
1‘(AHnode(8),(Area4,IDLE))

Area3

AHNodexState

P I/O

2

1‘(AHnode(5),(Area3,IDLE))++
1‘(AHnode(6),(Area3,IDLE))

Area2

AHNodexState

P I/O

2

1‘(AHnode(3),(Area2,IDLE))++
1‘(AHnode(4),(Area2,IDLE))

Area1

AHNodexState

P I/O

2

1‘(AHnode(1),(Area1,IDLE))++
1‘(AHnode(2),(Area1,IDLE))

Instant
Move

[to<>from]

Microtopology

AreaxAHTopology

P I/O4

1‘(Area1,[(AHnode(1),AHnode(2))])++ 1‘(
Area2,[])++ 1‘(Area3,[])++ 1‘(Area4,[])

if from = Area1
then 1‘(AHnode(i),(Area1,IDLE))
else empty

if (to = Area1)
then 1‘(AHnode(i),(Area1,IDLE))
else empty

if from = Area3
then 1‘(AHnode(i),(Area3,IDLE))
else empty

if (to = Area3)
then 1‘(AHnode(i),(Area3,IDLE))
else empty

if from = Area2
then 1‘(AHnode(i),(Area2,IDLE))
else empty

if from = Area4
then 1‘(AHnode(i),(Area4,IDLE))
else empty

if (to = Area4)
then 1‘(AHnode(i),(Area4,IDLE))
else empty

if (to = Area2)
then 1‘(AHnode(i),(Area2,IDLE))
else empty

(from,
 ahtopology)

(from,DeleteAllReach ahtopology (AHnode(i)))

Fig. 12. Macromobility – Type 1.

var area,to,from : Area;

var ahtopology : AHTopology;

fun DeleteAllReach ahtopology ahnode =

List.filter

(fn (snode,dnode) => (snode <> ahnode) andalso (dnode <> ahnode))

ahtopology

Fig. 13. Declarations for macromobility – Type 1.

Application of Coloured Petri Nets in System Development 641

on place Microtopology. The function DeleteAllReach uses the built-in function
List.filter to delete all edges in the microtopology related to the ad-hoc node
that moves. An ad-hoc node has to be in its IDLE state to move from one area
to another area. This ensures that the ad-hoc node is not currently moving
according to one of the other types of macromobility types described below. The
guard of the transition ensures that it is only enabled when the variables to and
from are bound to different areas, i.e., the binding corresponds to movement of
nodes between distinct areas.

The following binding is an example of an enabled binding of the transition
InstantMove in the marking shown in Fig. 14. It corresponds to the movement
of ad-hoc node 1 from area 1 to area 2:

< i=1,from=Area1,to=Area2,ahtopology=[AHnode(1),AHnode(2)] >

The transition is enabled in bindings corresponding to all the possible move-
ment of nodes between areas. An occurrence of the above binding results in the
marking shown in Fig. 14 where the token corresponding to ad-hoc node 1 is
now positioned on the place corresponding to area 2 and the link between ad-hoc
nodes 1 and 2 in area 1 no longer exists. The movement of ad-hoc nodes is also
evident on page Scenarios shown in Fig. 15.

Area4

AHNodexState

P I/O

2

1‘(AHnode(7),(Area4,IDLE))++
1‘(AHnode(8),(Area4,IDLE))

Area3

AHNodexState

P I/O

2

1‘(AHnode(5),(Area3,IDLE))++
1‘(AHnode(6),(Area3,IDLE))

Area2

AHNodexState

P I/O

3

1‘(AHnode(1),(Area2,IDLE))++
1‘(AHnode(3),(Area2,IDLE))++
1‘(AHnode(4),(Area2,IDLE))

Area1

AHNodexState

P I/O

1

1‘(AHnode(2),(Area1,IDLE))

Instant
Move

[to<>from]

Microtopology

AreaxAHTopology

P I/O4

1‘(Area1,[])++ 1‘(Area2,[])++ 1‘(Area3,[]
)++ 1‘(Area4,[])

if from = Area1
then 1‘(AHnode(i),(Area1,IDLE))
else empty

if (to = Area1)
then 1‘(AHnode(i),(Area1,IDLE))
else empty

if from = Area3
then 1‘(AHnode(i),(Area3,IDLE))
else empty

if (to = Area3)
then 1‘(AHnode(i),(Area3,IDLE))
else empty

if from = Area2
then 1‘(AHnode(i),(Area2,IDLE))
else empty

if from = Area4
then 1‘(AHnode(i),(Area4,IDLE))
else empty

if (to = Area4)
then 1‘(AHnode(i),(Area4,IDLE))
else empty

if (to = Area2)
then 1‘(AHnode(i),(Area2,IDLE))
else empty

(from,
 ahtopology)

(from,DeleteAllReach ahtopology (AHnode(i)))

Fig. 14. Macromobility Type 1 - after occurrence of InstantMove.

Type 2: This type specifies the movement of an ad-hoc node from one ad-hoc
network to another ad-hoc network. The difference between type 2 and type 1
is that there is a period of time in which the nodes moving are not part of any
of the ad-hoc networks in Area1-4. The page for type 2 mobility is similar to the
one for type 1 and is therefore omitted.

Type 3: This type specifies the movement of an ad-hoc node from one ad-hoc
network to another with the addition that there is a period of time in which

642 Lars Michael Kristensen, Jens Bæk Jørgensen, and Kurt Jensen

Area1

AHNodexState

1

1‘(AHnode(2),(Area1,IDLE))

Communication

HS Communication#3

Mobility

HS Mobility#5

Area2

AHNodexState

3

1‘(AHnode(1),(Area2,IDLE))++
1‘(AHnode(3),(Area2,IDLE))++
1‘(AHnode(4),(Area2,IDLE))

Area3

AHNodexState

2

1‘(AHnode(5),(Area3,IDLE))++
1‘(AHnode(6),(Area3,IDLE))

Area4

AHNodexState

2

1‘(AHnode(7),(Area4,IDLE))++
1‘(AHnode(8),(Area4,IDLE))

System

HS System#10

Outside

AHNode

1

1‘AHnode(9)

Core
Network

CNNode

5

1‘CNnode(1)++ 1‘CNnode(2)++
1‘CNnode(3)++ 1‘CNnode(4)++
1‘CNnode(5)

Fig. 15. The Scenarios page - after occurrence of InstantMove.

the node moving is part of both the ad-hoc network being moved from and the
ad-hoc network being moved to. The page for type 3 mobility is similar to the
one for type 1 and is therefore omitted.

2.3 Modelling Communication

Figure 16 depicts page Communication which is the most abstract page modelling
the communication. The page models that each of the nodes (ad-hoc and core
network nodes) may send and receive packets. Packets in transit between ad-hoc
nodes are represented as tokens on place Routing. At the abstraction level of the
CPN model, there is no distinction made between communication internally in
an ad-hoc network and between nodes in different ad-hoc networks. The CPN
model simply specifies the requirement that the packet must be delivered to the
appropriate node - no matter in which ad-hoc network the node currently resides.
Place Routing hence abstractly represents the routing functionality that will have
to be implemented to get the packets from the source to the destination. How this
is done is a design and implementation issue. The transition Drop Packet models
that packets for ad-hoc nodes currently outside the system will be dropped.

The declarations used for modelling communication between nodes are listed
in Fig. 17. The colour set Packet is used modelling packets. A packet is abstractly
represented as having a source and destination. As an example, a packet sent
from AHnode(1) to AHnode(2) will be represented as a token with value (colour)

Application of Coloured Petri Nets in System Development 643

Area3

AHNodexState

P I/O 2

1‘(AHnode(5),(Area3,IDLE))++
1‘(AHnode(6),(Area3,IDLE))

Area4

AHNodexState

P I/O2

1‘(AHnode(7),(Area4,IDLE))++
1‘(AHnode(8),(Area4,IDLE))

Area2

AHNodexState

P I/O2

1‘(AHnode(3),(Area2,IDLE))++
1‘(AHnode(4),(Area2,IDLE))

Area1

AHNodexState

P I/O 2

1‘(AHnode(1),(Area1,IDLE))++
1‘(AHnode(2),(Area1,IDLE))

Routing

Packet

SendReceive1

HS AHSendReceive#4

SendReceive3

HS AHSendReceive#4

SendReceive2

HS AHSendReceive#4

SendReceive4

HS AHSendReceive#4

Outside

AHNode

P I/O1

1‘AHnode(9)

Drop
Packet

Core
Network

CNNode

P I/O 5

1‘CNnode(1)++ 1‘CNnode(2)++
1‘CNnode(3)++ 1‘CNnode(4)++
1‘CNnode(5)

SendReceive

HS CNSendReceive#16

AHnode(i)

{src=node,dest=AHN(AHnode(i))}

Fig. 16. The Communication page.

color Node = union CNN : CNNode + AHN : AHNode;

color Packet = record src : Node * dest : Node;

var node : Node;

Fig. 17. Declarations for modelling communication.

{src = AHN(AHnode(1)), dest = AHN(AHnode(2))}. Hence for specification of
requirements, we abstract from the actual content of packets.

Page AHSendReceive modelling the sending and receiving of packets by ad-
hoc nodes is shown in Fig. 18. It is the subpage of each of the four SendReceive1-4
substitution transitions in Fig. 16. This means that there will be four instances
of this page when the CPN model is executed, one for each of the substitution
transitions. The marking and enabling of transitions on these instances will be
independent of each other. The instance depicted in Fig. 18 corresponds to the
instance associated with the substitution transition SendReceive1 in Fig. 16. The
transition SendPacket models the transmission of a packet from ad-hoc node i
to a node assigned to the variable node. The transition ReceivePacket models
the reception of a packet by ad-hoc node i. An occurrence of this transition will
remove the token corresponding to the packet being received from place Routing.

An occurrence of the SendPacket transition in Fig. 18 in a binding with:
i=1, state=IDLE,dest=AHN(AHnode(3)) results in the marking shown in Fig. 19.
The corresponding marking of page Communication is shown in Fig. 20. The Re-
ceivePacket transition on the instance of the AHSendReceive page corresponding
to the substitution transition SendReceive2 will now be enabled in binding cor-
responding to ad-hoc node 3 receiving the packet. The reception of the packet
will result in the corresponding token being removed from place Routing.

644 Lars Michael Kristensen, Jens Bæk Jørgensen, and Kurt Jensen

Routing P I/O

Packet

Area

AHNodexState

P I/O 2

1‘(AHnode(1),(Area1,IDLE))++
1‘(AHnode(2),(Area1,IDLE))

Send
Packet

Receive
Packet

(AHnode(i),state) {src=AHN(AHnode(i)),dest=node}

{src=node,dest=AHN(AHnode(i))}(AHnode(i),state)

Fig. 18. The AHSendReceive page - instance for SendReceive1.

Routing P I/O

Packet

1

1‘{src = AHN(AHnode(1)),
dest = AHN(AHnode(3))}

Area

AHNodexState

P I/O 2

1‘(AHnode(1),(Area1,IDLE))++
1‘(AHnode(2),(Area1,IDLE))

Send
Packet

Receive
Packet

(AHnode(i),state) {src=AHN(AHnode(i)),dest=node}

{src=node,dest=AHN(AHnode(i))}(AHnode(i),state)

Fig. 19. The AHSendReceive page - after occurrence of SendPacket.

Area3

AHNodexState

P I/O 2

1‘(AHnode(5),(Area3,IDLE))++
1‘(AHnode(6),(Area3,IDLE))

Area4

AHNodexState

P I/O2

1‘(AHnode(7),(Area4,IDLE))++
1‘(AHnode(8),(Area4,IDLE))

Area2

AHNodexState

P I/O2

1‘(AHnode(3),(Area2,IDLE))++
1‘(AHnode(4),(Area2,IDLE))

Area1

AHNodexState

P I/O 2

1‘(AHnode(1),(Area1,IDLE))++
1‘(AHnode(2),(Area1,IDLE))

Routing

Packet

1

1‘{src = AHN(AHnode(1)),
dest = AHN(AHnode(3))}

SendReceive1

HS AHSendReceive#4

SendReceive3

HS AHSendReceive#4

SendReceive2

HS AHSendReceive#4

SendReceive4

HS AHSendReceive#4

Outside

AHNode

P I/O1

1‘AHnode(9)

Drop
Packet

Core
Network

CNNode

P I/O 5

1‘CNnode(1)++ 1‘CNnode(2)++
1‘CNnode(3)++ 1‘CNnode(4)++
1‘CNnode(5)

SendReceive

HS CNSendReceive#16

AHnode(i)

{src=node,dest=AHN(AHnode(i))}

Fig. 20. Marking of the Communication page - packet in transit.

Application of Coloured Petri Nets in System Development 645

The modelling of send and receive for nodes in the core network is simi-
lar to the ad-hoc nodes. Hence, we do not give a detailed explanation of page
CNSendReceive.

2.4 Conclusions on Modelling Ad-Hoc Networking Scenarios

The CPN model developed describes the abstract network architecture and as-
sociated communication and mobility scenarios considered in the project. A key
point of the CPN model is that it captures the communication and the mobility
aspects in a single model. The CPN model also allows derivation of combined
scenarios involving simultaneously communication and mobility. As such, the
CPN model can be seen as a formal documentation of the network architec-
ture and its communication and mobility requirements. The CPN model is also
suitable for generation of communication and mobility test-cases against which
the later protocol designs can be checked. A number of such interesting scenar-
ios were derived using simulation of the CPN model. The plan is to use these
scenarios as test-cases for the protocols to be developed in later phases of the
project. Finally, and probably most importantly, the development of the CPN
model has served as an important tool for stimulating discussion of the network
architecture and requirements.

The graphical layout of the CPN model currently mimics the network archi-
tecture. This was chosen since it is easier to visualise the behaviour of the system
directly at the level of the CPN model. This has been useful when presenting the
CPN model to people without CPN knowledge. A more compact CPN model
with tokens representing ad-hoc networks instead of tokens representing ad-hoc
nodes could be developed. This would make it possible to model an arbitrary
number of areas where ad-hoc networks can exists and it could be considered a
more direct way of modelling mobility of an entire ad-hoc network. The CPN
model would, however, lose some of its graphical appeal and hence possibly other
means of graphics showing mobility and communication would have to be added
to the CPN model. This approach seems more suitable for later CPN modelling
of the actual protocol designs.

The CPN model does not have an explicit representation of the connection
between the core network and the ad-hoc networks since the purpose of the CPN
model was to abstractly specify the communication and mobility requirements
and scenarios related to nodes in the ad-hoc networks. The operation of gate-
ways integrating the IPv6 core network routing protocols and the ad-hoc routing
protocols is at a lower level of abstraction than the current CPN model. The
purpose of the presented CPN model was to describe the scenarios and hence
capture requirements in an implementation-independent manner.

3 Modelling Requirements in Pervasive Health Care

The pervasive health care system (PHCS) [12] is envisioned in a joint project
between Aarhus County Hospital, the software company Systematic Software

646 Lars Michael Kristensen, Jens Bæk Jørgensen, and Kurt Jensen

Engineering A/S [84], and the Centre for Pervasive Computing [10] at the Uni-
versity of Aarhus. In this section, we describe how CP-nets are applied in re-
quirements engineering for PHCS. The section is based on previous descriptions
given in [52–54], and has benefitted from efforts of many participants in the
pervasive health care research project [72].

The aim of PHCS is to improve the electronic patient record (EPR) [1],
which is currently being deployed at the hospitals in Aarhus, Denmark. EPR
is a comprehensive health care IT system with a budget of approximately 15
million US dollars; it will eventually have 8-10,000 users.

EPR solves obvious problems occurring with paper-based patient records
such as being not always up-to-date, only present in one location at a time,
misplaced, and sometimes even lost. However, the version of EPR currently
being deployed is a desktop PC based system which is not very practical for
hospital work, since the users like nurses and doctors are often on the move and
away from their offices (and, thus, desktop PCs). Moreover, users are frequently
interrupted. Therefore, the desktop PC based EPR potentially induces at least
two central problems for its users [6]. The first problem is immobility: in contrast
to a paper-based record, an electronic patient record accessed only from desktop
PCs cannot be easily transported. The second problem is time-consuming login
and navigation: EPR requires user identification and login to ensure information
confidentiality and integrity, and to start using the system for clinical work, a
logged-in user must navigate, e.g., to find a specific document for a given patient.

The motivation for PHCS is to address these problems. In the ideal situation,
the users should have access to the IT system wherever they need it, and it should
be easy to resume a work process which has previously been interrupted.

3.1 The Pervasive Health Care System

Use of personal digital assistants (PDAs), with which nurses and doctors could
access EPR using a wireless network, is a possible solution to the immobility
problem. That approach has been considered, but is not ideal, e.g., because
of well-known characteristics of PDAs like small screens and limited memory,
and because it does not fully address the time-consuming login and navigation
problem. PHCS is a more ambitious solution which to a larger extent takes
advantage of the possibilities of pervasive computing [81,90]. Three basic design
principles are exploited.

The first principle is context-awareness [80]. This means that PHCS is able
to register and react upon certain changes of context. More specifically, nurses,
patients, beds, medicine trays, and other items are equipped with radio frequency
identity (RFID) tags [74], enabling the presence of such items to be detected
automatically by involved context-aware computers, e.g., located by the medicine
cabinet and by the patient beds.

The second design principle is that PHCS is propositional, in the sense that
it makes qualified propositions, or guesses. Context changes may result in au-
tomatic generation of buttons that appear at the task-bar of computers. Users
may explicitly accept a proposition by clicking a button – and implicitly ignore

Application of Coloured Petri Nets in System Development 647

or reject it by not clicking. The presence of a nurse holding a medicine tray for
patient P in front of the medicine cabinet is a context that triggers automatic
generation of a button Medicine plan:P, because in many cases, the intention of
the nurse is now to navigate to the medicine plan for P. If the nurse clicks the
button, she is logged in and taken to P’s medicine plan. It is, of course, impossi-
ble always to guess the intention of a user from a given context, and without the
propositional principle, automatic shortcutting could become a nuisance since
guesses would sometimes be wrong.

The third design principle is that PHCS is non-intrusive, i.e., not interfering
with or interrupting hospital work processes in an undesired way. Thus, when a
nurse approaches a computer, it should react to her presence in such a way that
a second nurse, who may currently be working on the computer, is not disturbed
or interrupted. The last two design principles cooperate to ensure satisfaction of
a basic mandatory user requirement: important hospital work processes have to
be executed as conscious and active acts by responsible human personnel, not
automatically by a computer.

Figure 21 outlines PHCS (with an interface that is simplified and translated
into English for the purpose of this paper). The current context of the system is
that nurse Jane Brown is engaged in pouring medicine for patient Bob Jones for
the giving to take place at 12 a.m. The medicine plan on the display shows which
medicine has been prescribed (indicated by ‘Pr’), poured (‘Po’), and given (‘G’)
at the current time. In this way, it can be seen that Advil and Tylenol have been
poured for the 12 a.m. giving, but Comtrex not yet. Moreover, the medicine tray
for another patient, Tom Smith, stands close to the computer, as can be seen
from the task-bar buttons.

Fig. 21. PHCS – outline.

3.2 Medicine Administration

To aid requirements engineering for PHCS, CPN models of envisioned new work
processes and of their proposed computer support were created. The scope of this
section is the work process medicine administration, which is described below.

648 Lars Michael Kristensen, Jens Bæk Jørgensen, and Kurt Jensen

Assume that nurse N wants to pour medicine into a medicine tray and give
it to patient P. First, N goes to the room containing the medicine cabinet (the
medicine room). Here is a context-aware computer on which the buttons Login:N
and Patient list:N appear on the task-bar when N approaches. If the second but-
ton is clicked, N is logged in and a list of those patients of which she is in charge
is displayed on the computer. A medicine tray is associated with each patient.
When N takes P’s tray nearby the computer, the button Medicine plan:P will
appear on the task-bar, and a click will make P’s medicine plan appear on the
display. N pours the prescribed medicine into the tray and acknowledges this in
PHCS. When N leaves the medicine room, she is automatically logged out. N
now takes P’s medicine tray and goes to the ward where P lies in a bed, which
is supplied with a context-aware computer. When N approaches, the buttons
Login:N, Patient list:N, and Medicine plan:P will appear on the task-bar. If the
last button is clicked, the medicine plan for P is displayed. Finally, N gives the
medicine tray to P and acknowledges this in PHCS. When N leaves the bed area,
she is automatically logged out again.

The given description captures just one specific combination of sub work
processes. There are numerous other scenarios to take into account, e.g., medicine
may be poured for one or more patients, for only one round of medicine giving, all
four regular rounds of a 24 hours period, or for ad hoc giving; a nurse may have to
fetch trays left at the wards prior to pouring; a nurse may approach the medicine
cabinet without intending to pour medicine, but only to log into EPR (via PHCS)
or to check an already filled medicine tray; two or more nurses may do medicine
administration at the same time. To support a smooth medicine administration
work process, the requirements for PHCS must deal with all these scenarios and
many more. A CPN model, with its fine-grained and coherent nature, is able to
support that.

3.3 Medicine Administration CPN Model

The medicine administration CPN model consists of 11 pages with a total of
54 places and 29 transitions. An overview of the model in terms of the hierar-
chy page is given in Fig. 22. The graph shows how the work process medicine
administration is decomposed in sub-work processes.

We give an impression of the model by describing the page shown in Fig. 23.
The page models the pouring and checking of trays and is represented by the node
PourChkTrays in Fig. 22. The medicine cabinet computer is in focus. It is mod-
elled by a token on the Medicine cabinet computer place. This place has colour set
COMPUTER, whose elements are 4-tuples (compid,display,taskbar,users) consist-
ing of a computer identification, its display (main screen), its task-bar buttons,
and its current users. In the initial marking, the computer has a blank display,
no task-bar buttons, and no users.

The colour set NURSE is used to model nurses. A nurse is represented as a
pair (nurse,trays), where nurse identifies the nurse and trays is a container data
structure holding the medicine trays that this nurse currently has in possession.

Application of Coloured Petri Nets in System Development 649

ProvideTrays

Hierarchy#10

PourAndAck#

MedAdm#1 Erklaeringer#

GiveToPat#1

GiveMed#7

PourChkTray FindPlanTray#

PourChkTrays

GiveToPats#9

FindPlan#10

GetTrays#3

Fig. 22. Medicine administration CPN model: hierarchy page.

Initially, the nurses Jane Brown and Mary Green are ready (represented as tokens
in the Ready place) and have no trays.

Occurrence of the Approach medicine cabinet transition models that a nurse
changes from being ready to being busy nearby the medicine cabinet. At the
same time, two buttons are added to the task-bar of the medicine cabinet com-
puter, namely one login button for the nurse and one patient list button for
the nurse. In the CPN model, these task-bar buttons are added by the function
addMedicineCabinetButtons appearing on the arc from the transition Approach
medicine cabinet to the place Medicine cabinet computer.

The possible actions for a nurse who is by the medicine cabinet are modelled
by the three transitions Pour/check tray, Enter EPR via login button, and Leave
medicine cabinet. Often, a nurse at the medicine cabinet wants to pour and/or
check some trays. How this pouring and checking is carried out is modelled on
the subpage PourChkTray, which is the subpage of the substitution transition
Pour/check tray.

The Enter EPR via login button transition models that a nurse clicks on the
login button and makes a general-purpose login to EPR. It is outside the scope
of the model to describe what the nurse subsequently does – the domain of
the model is specifically medicine administration, not general EPR use. The
transition has a guard which checks if a nurse is allowed to log into EPR. When
a nurse logs in, the login button for that nurse is removed from the task-bar of
the computer, modelled by the removeLoginButton function. Moreover, the nurse
is added to the set of current users by the function addUser.

The Leave medicine cabinet transition models the effect of a nurse leaving:
it is checked whether the nurse is currently logged in, modelled by the function

650 Lars Michael Kristensen, Jens Bæk Jørgensen, and Kurt Jensen

Ready

NURSE

By medicine
cabinet

NURSE

Trays by
medicine cabinet

TRAY

Medicine
cabinet
computerCOMPUTER

Approach
medicine cabinet

Leave medicine
cabinet

Pour/check
tray HS

Enter EPR via
login button

[loginAllowed nurse
(compid,display,
taskbar,users)]

2

1‘(janeBrown,noTrays)++
1‘(maryGreen,noTrays)

1
1‘(1,blank,
noButtons,
noUsers)

(nurse,trays)

(nurse,trays)

(nurse,trays)

(nurse,trays)

(nurse,trays)

(nurse,trays)

tray

(compid,display,taskbar,users)

(compid,display,taskbar,users)

(compid,display,
addMedicineCabinetButtons nurse taskbar,
users)

if loggedin nurse (compid,display,taskbar,users) then
 (compid, blank, removeMedicineCabinetButtons nurse taskbar, removeUser nurse users)
else
 (compid, display, removeMedicineCabinetButtons nurse taskbar, users)

(compid,display,taskbar,users)

(compid,display,
removeLoginButton nurse taskbar,
addUser nurse users)

Fig. 23. Medicine administration CPN model: PourChkTrays page.

loggedin appearing in the if-then-else expression on the arc going from Leave
medicine cabinet to the Medicine cabinet computer place. If the nurse is logged in,
the medicine cabinet computer automatically returns to a blank screen, removes
the nurse’s task-bar buttons (removeMedicineCabinetButtons), and logs her off
(removeUser). If she is not logged in, the buttons generated because of her pres-
ence are removed, but the state of the computer is otherwise left unaltered. In
any case, the token corresponding to the nurse is put back on the Ready place.

3.4 Medicine Administration Animation

An animation built on top of the CPN model is shown in Fig. 24. The anima-
tion is an interface to the CPN model, i.e., the animation is consistent with
the CPN model and reflects the markings, transition occurrences, and marking
changes that appear when the CPN model is executed. The animation hides the
technicalities of CP-nets, e.g., concepts like places, transitions, tokens, enabling,
occurrence, etc. In this way, the animation supports communication between
users and system developers, by reducing the semantic distance [26] between the
CPN model and the conception by the users of future work processes and their
proposed computer support. The limitations of formal specifications as a means
of communication in general, and, thus, the need for an animation, are widely
recognised, see, e.g. [95].

The link between the CPN model and the animation is that the transitions
of the CPN model are calling drawing functions related to the animation when

Application of Coloured Petri Nets in System Development 651

Department

Give medicine

Pour/check trays

Provide trays

Ward

Bath Team room Ward

Ward Medicine room Bath Ward

Medicine room

Bob Jones

Leave medicine cabinet

Take trayPatient list: Jane Brown

Login: Jane Brown

Ward

Fig. 24. Medicine administration animation.

they occur. Occurrence of a transition in this way triggers that graphical objects
like nurse icons are created, moved, deleted, etc. in the animation.

The animation runs in three windows. The Department window (at the top
of Fig. 24) shows the layout of a hospital department with wards, the medicine
room, the so-called team room (the nurses’ office), and two bathrooms. The
Medicine room window (in the middle of Fig. 24) shows the medicine cabinet,
pill boxes, tables, medicine trays, and the computer screen (enlarged). The Ward
window (at the bottom of Fig. 24) shows a patient, a bed, a table, and the
computer screen. Thus, the Department window gives an overview, and the other
windows zoom in on areas of interest.

The animation is interactive in the sense that the animation user is prompted
to make choices. In Fig. 24, the animation shows a situation where nurse Jane
Brown is in the medicine room, shown in the Department window and the
Medicine room window, sufficiently close to produce two task-bar buttons at
the computer. The animation user must make choices in order to drive the an-
imation further. Specifically, by selecting one of the buttons to the right in the
Medicine room window, the animation user can choose to take a tray or leave the
medicine room. Also, the animation user can select one of the task-bar buttons at
the computer. These four choices correspond to enabled transitions in the CPN
model. As examples, if the animation user pushes the Leave medicine cabinet but-
ton, it forces the transition with the same name in the CPN model (cf. Fig. 23)
to occur. The result of the occurrence is experienced by the animation user who
sees Jane Brown walking away from the medicine cabinet and the removal of
the task-bar buttons on the computer screen, which were generated because of

652 Lars Michael Kristensen, Jens Bæk Jørgensen, and Kurt Jensen

Jane Brown’s presence. If the animation user pushes the Take tray button and
then selects Bob Jones’ medicine tray, it is moved close to the computer, and a
medicine plan button for Bob Jones appears on the task-bar. If this button is
pushed, the computer will display a screen similar to the one shown in Fig. 21.

3.5 CPN in Requirements Engineering for PHCS

The PHCS project started in early 2001. The first activities were domain analysis
in the form of ethnographic field work, and a series of vision workshops with
participation of nurses, doctors, computer scientists, and an anthropologist. An
outcome of this analysis was natural-language descriptions of work processes and
their proposed computer support. The first version of the CPN model presented
in this section was based on these prose descriptions. The CPN model and the
animation were extended and modified in a number of iterations, each version
based on feedback on the previous versions. The animation has served as a
basis for discussions in evaluation workshops with participation of nurses from
hospitals in Aarhus and personnel from the involved software company.

Through construction and use of the CPN model and the animation, in par-
ticular at the evaluation workshops, we have gained some experiences with CP-
nets in requirements engineering. In the terminology of [89], we have seen that
for PHCS, the CPN model and the animation have been an effective means for
specification, specification analysis, elicitation, and negotiation and agreement.
Each of these concepts will be discussed in more detail below.

Specification and Specification Analysis. Our specification has a sound
foundation because of the formality and unambiguity of the CPN model. From
the CPN model of medicine administration, requirements are precisely described
by the transitions modelling manipulation of the involved computers. Each tran-
sition connected to the places modelling computers, e.g., the place Medicine cab-
inet computer shown in Fig. 23, must be taken into account. The following are
examples of requirements induced by the transitions on the page of Fig. 23:

1. (R1) When a nurse approaches the medicine cabinet, the medicine cabinet
computer must add a login button and a patient list button for that nurse
to the task-bar (transition Approach medicine cabinet).

2. (R2) When a nurse leaves the medicine cabinet, if she is logged in, the
medicine cabinet computer must return to a blank display, remove the nurse’s
login button and patient-list button from the task-bar, and log her out (tran-
sition Leave medicine cabinet).

3. (R3) When a nurse selects her login button, she must be added as a user
of EPR, and the login button must be removed from the task-bar of the
computer (transition Enter EPR via login button).

Specification analysis is well supported through simulation that allows ex-
periments and trial-and-error investigations of various scenarios for the new en-
visioned work process. Specification analysis may also be supported through

Application of Coloured Petri Nets in System Development 653

formal verification. However, the CPN model of medicine administration is too
large and complex to make, e.g., verification by exploration of the full state space
possible in practice. In general, we believe that the full state space of a CPN
model made to support requirements engineering typically will be very large. The
reason is that often, in the view of the users who should be actively involved
in the requirements engineering process, a representation of a work process and
its proposed computer support must include many details. This conflicts with
modelling the work process in a more coarse-grained, abstract way, with a corre-
sponding smaller state space. Therefore, verification of CPN models supporting
requirements engineering is an application area where strong methods for state
space reduction, condensation, and exploration are highly needed.

Elicitation. Elicitation includes the discovery of new requirements and the gain
of a better understanding of known requirements. Elicitation is, like specifica-
tion analysis, well supported through simulation. Simulation spurs elicitation by
triggering many questions. Simulation of a CPN model typically catalyses the
participants’ cognition and generates new ideas. Interaction with an executable
model that is a coherent description of multiple scenarios most likely brings up
questions, and issues appear that the participants had not thought about earlier.
Examples of questions (Qs) that have appeared during simulation of the CPN
model for medicine administration and corresponding answers (As) are:

1. (Q1) What happens if two nurses are both close to the medicine cabinet com-
puter? (A1) The computer generates login buttons and patient list buttons
for both of them.

2. (Q2) What happens when a nurse carrying a number of medicine trays ap-
proaches a bed? (A2) In addition to a login button and a patient list button
for that nurse, only one medicine plan button is generated – a button for
the patient associated with that bed.

3. (Q3) Is it possible for one nurse to acknowledge pouring of medicine for a
patient while another nurse at the same time acknowledges giving of medicine
for that same patient? (A3) No, that would require a more fine-grained
concurrency control exercised over the patient records.

Questions like Q1, Q2, and Q3 may imply changes to be made to the CPN
model, because sometimes emergence of a question indicates that the current
version of the CPN model does not reflect the work process properly. As a
concrete example, in an early version of the medicine administration CPN model,
the leaving of any nurse from the medicine cabinet resulted in the computer
display being blanked off. To be compliant with the non-intrusive design principle
for PHCS, the leaving of a nurse who is not logged in, should of course not disturb
another nurse who might be working at the computer, and the CPN model had
to be changed accordingly.

Negotiation and Agreement. Leaving practical issues such as being widely
accepted by involved stakeholders aside, negotiation and agreement may be eased

654 Lars Michael Kristensen, Jens Bæk Jørgensen, and Kurt Jensen

via CPN models. In large projects, negotiation about requirements inevitably
takes place during the project. In many cases, this has strong economical con-
sequences, because a requirements specification for a software system may be
an essential part of a legal contract between a customer, e.g., a hospital, and
a software company. Therefore, it is important to be able to determine which
requirements were included in the initial agreement. Questions like Q1, Q2, and
Q3 above may easily be subject to dispute. However, if the involved parties have
the agreement that medicine administration should be supported, and have the
overall stipulation that the formal and unambiguous CPN model is the author-
itative description, many disagreements can quickly be settled.

3.6 Conclusions on Modelling Requirements to the PHCS

In this section, we have demonstrated that CPN models are able to support
various common requirements engineering activities. However, of course, CP-
nets are not a panacea. Use of CP-nets does not address, e.g., how to carry
out the necessary initial domain analysis, interviews with users, etc. Moreover,
the purpose of the presented CPN model is solely to describe the requirements
of an IT system, relative to the work processes to be supported. A number of
other requirements issues are not addressed properly by the CPN model, e.g.,
performance and availability issues.

The CPN model and the animation of the medicine administration work
process can be seen as an alternative to or supplement to UML use cases [20,45].
Use cases model work processes to be supported by a new IT system, and a set
of use cases is interpreted as functional requirements for that system.

A main motivation for our choice of requirements engineering approach for
PHCS was to build on top of prose descriptions of work processes and proposed
computer support, consolidated as UML use cases, with which the stakeholders
of PHCS were already familiar via EPR. A key observation, done many times
before, is that UML use cases have a number of weaknesses and shortcomings,
e.g., [82] points out a number of problems under headlines like use case modelling
misses long-range logical dependency and use case dependency is non-logical and
inconsistent. Various remedies have been proposed, see, e.g., [2, 3].

Having an executable representation of a work process, instead of a static
representation in terms of a UML use case, supports specification analysis and
elicitation as we discussed. This is possible via the CPN model itself, but can
only be done properly by people who are able to read and understand the formal
model. In practice, this often means only the system developers. The animation
enables users like nurses and doctors to be actively engaged in specification anal-
ysis and elicitation, which is crucial. User participation increases the probability
that a system is ultimately built that fits with the future users’ work processes.

4 State Space Analysis of an Audio/Video Protocol

Bang & Olufsen [5] is a Danish manufacturer of audio/video systems. The project
described in this section was originally conducted in 1995-1996 [14] and was

Application of Coloured Petri Nets in System Development 655

concerned with the design of the next generation of the BeoLink system. The
BeoLink system makes it possible to connect audio and video devices in a home
via a dedicated network. The CPN modelling and analysis focused on the design
of the lock management protocol in the BeoLink system. This protocol is used
to grant devices exclusive access to services in the system, such as being able
to use the loud speakers when playing music. The lock management protocol
is based on the notion of a key, and a device is required to possess the key to
access services in the system. When the system is switched on, exactly one key
must be generated by the devices currently in the system. Furthermore, this
key must be generated within 2 seconds for the system to be properly working.
Special devices in the system called audio and video masters are responsible for
generating the key when the system is switched on.

A CPN model modelling BeoLink systems with 1-4 devices was constructed
in the original project and analysed using the state space method of CP-nets. The
CPN model constructed in the project was timed, meaning that the time taken
by the various events in the lock management protocol was reflected in the CPN
model. This was needed since the correctness of the lock management protocol
depends on timing. When the project was conducted, the CPN computer tools
had only support for ordinary state spaces, i.e., state spaces in their most basic
form. Since the ordinary state space of the timed CPN model was infinite, this
meant that only the initialisation phase of the lock management protocol could
be validated. The initialisation phase is concerned with generating the key when
the system is switched on. Since then, a number of more powerful state space
methods have been developed and implemented in the CPN computer tools.

In this section we give a brief presentation of a revised and more compact
CPN model of the BeoLink system able to capture any number of devices.
This is followed by a demonstration of how the more elaborate set of state
space analysis methods currently available can be used to verify the full lock
management protocol.

4.1 The Revised BeoLink CPN Model

Figure 25 shows the hierarchy page of the BeoLink CPN model. The subpage
network models the network connecting the devices in the system. Page device and
its subpages model the lock management protocol entities in each device. The
subpages on the right, from reqkey down to fltimeo2 correspond to the different
functional blocks of the lock management protocol. The subpage keyuser models
the behaviour of devices as seen from the lock management protocol.

Figure 26 shows the BeoLink page. The substitution transition Network rep-
resents the network connecting the devices in the system. The substitution tran-
sition Device models the devices in the system. The CPN model provides a folded
representation of the behaviour of the devices. This is achieved by encoding the
identity of the devices as part of the colour of tokens. This makes it possible
to capture any number of devices without having to make changes to the net
structure of the CPN model, and without having an instance of the subpages
of the substitution transition Device for each of the devices in the system. This

656 Lars Michael Kristensen, Jens Bæk Jørgensen, and Kurt Jensen

Hierarchy#

config#41

BeoLink#4

decl#9990

device#43

network#42

fltimeo1#65

keyrel1#63

keywan2#6

keywan1#6

keyuser#67

fltimeo2#66

LockMan#50

reqkey1#5

newlock1#

keylost2#5

keytran1#5

keyimp1#5

newlock2#

keylost1#5

StateSpace

Generation

Verification

Debugging

Fig. 25. Hierarchy page for the CPN BeoLink model.

Device
HS device#43

recbuf

TLG_BUFFERS

c

CONFIGS

Network
HS network#42

sendbuf

DIDxTLG_LIST

Fig. 26. The BeoLink page.

way of compactly representating any number of devices, and which makes the
CPN model parametric will become evident when we present the keyuser page.

The socket places recbuf and sendbuf in Fig. 26 connecting the two substi-
tution transitions, model send and receive message buffers between the devices
and the network. Messages in the lock management protocol are called telegrams
and are abbreviated TLG. Each device has a buffer for outgoing and incoming

Application of Coloured Petri Nets in System Development 657

requestkey

idle
DIDT

3
1‘1@500++1‘2@[500]++1‘3@[500]

waiting
DIDT

getkey

usekey
DIDT

releasekey

fl_status

DIDxFL_STATUS
P In

fl_cmd_list

DIDxFL_CMD_LIST

P I/O3

1‘(1,[])++ 1‘(2,[])++ 1‘(3,[])

recbuf

TLG_BUFFERS

P I/O1

1‘[(1,[]),(2,[]),(3,[])]

fl_in

DIDxTLG_LIST

P I/O3

1‘(1,[])++ 1‘(2,[])++ 1‘(3,[])

sendbuf

DIDxTLG_LIST

P I/O3

1‘(1,[])++ 1‘(2,[])++ 1‘(3,[])

(did,fl_cmd_list^^[LOCK_MAN_KEY_WANTED])

did

did

did

(did,KEY_IS_READY)

did@+(10+40*ran_0_1)

did

did@+(10+40*ran_0_1)

(did,fl_cmd_list^^[LOCK_MAN_KEY_RELEASE])

(did,fl_cmd_list)

(did,fl_cmd_list)

tlgbuf

(did,tlg_list2)

(did,tlg_list3)

Fig. 27. The keyuser page - initial marking.

telegrams. The place c is used for configuration of the CPN model and will not
be explained in any detail.

The behaviour of devices, as seen from the lock management protocol, is
modelled by page keyuser shown in Fig. 27. Each device has a cyclic control
flow where the device is initially idle (modelled by place idle), then it asks for
the key (modelled by the transition requestkey), and it enters a state where it is
waiting for the key (modelled by place waiting). Granting of the key to a device is
modelled by the transition getkey which causes the device to enter a state where
it is using the key (modelled by the place usekey). When the device is finished
using the key, it will release the key and return to the idle state where it may
then ask for the key again. The places fl status, fl cmd list, and fl in are used to
model the internal state of a device. The places sendbuf and recbuf are linked to
the accordingly named places on page BeoLink via port/socket relationship. The
markings of these five places are also changed by the different functional blocks
of the lock management protocol.

Figure 27 shows a marking of the CPN model with three devices all in their
idle state, as represented by the three tokens on place idle. A device is simply
identified by a number. In the marking shown in Fig. 27 any of the three devices
may ask for the key corresponding to the requestkey transition being enabled
in three different bindings depending on the device identifier assigned to the
variable did of colour set DIDT. The domain of the DIDT colour set is the set
of device identifiers. If the transition occurs in a binding with did = 1, the
token with colour 1 will be removed from place idle and added to place waiting.
Figure 28 shows a marking of page keyuser where device 1 uses the key, whereas
devices 2 and 3 have requested but have not been granted the key.

658 Lars Michael Kristensen, Jens Bæk Jørgensen, and Kurt Jensen

requestkey

idle
DIDT

waiting
DIDT

21‘2@[500]++1‘3@[500]

getkey

usekey
DIDT

1 1‘1@[2050]

releasekey

fl_status

DIDxFL_STATUS
P In

fl_cmd_list

DIDxFL_CMD_LIST

P I/O3

1‘(1,[])++ 1‘(2,[])++ 1‘(3,[])

recbuf

TLG_BUFFERS

P I/O1

1‘[(1,[]),(2,[]),(3,[])]

fl_in

DIDxTLG_LIST

P I/O3

1‘(1,[])++ 1‘(2,[])++ 1‘(3,[])

sendbuf

DIDxTLG_LIST

P I/O3

1‘(1,[])++ 1‘(2,[])++ 1‘(3,[])

(did,fl_cmd_list^^[LOCK_MAN_KEY_WANTED])

did

did

did

(did,KEY_IS_READY)

did@+(10+40*ran_0_1)

did

did@+(10+40*ran_0_1)

(did,fl_cmd_list^^[LOCK_MAN_KEY_RELEASE])

(did,fl_cmd_list)

(did,fl_cmd_list)

tlgbuf

(did,tlg_list2)

(did,tlg_list3)

Fig. 28. The keyuser page - device 1 using the key.

The CPN model of the BeoLink system is timed. This means that the CPN
model captures the time taken by the different events in the protocol. The time
concept of CP-nets is discrete and is based on the introduction of a global clock
used to represent current model time. Furthermore, in addition to a data value,
tokens in a timed CPN model may carry time stamps. The time stamp of a
token describes the earliest model time at which the token can be consumed,
i.e., removed by the occurrence of a transition. The time stamps of tokens are
written as part of the current marking. As an example, the three tokens on
place idle in Fig. 27 all have time stamp 500. This can be seen from the number
in square brackets written after the @ sign in the box showing the details of
the tokens residing on that place. To model that an event corresponding to the
occurrence of a transition takes r time units, the tokens added to output places
of the transition are given a time stamp that is r time units larger than the
model time at which the transition occurs. The time units to add to the current
model time when tokens are produced by the occurrence of a transition are
specified using the @+ operator. As an example, the transition getkey uses the
@+ operator in the arc expression on the output arc leading to the place usekey.
The time units to add to the current model time is specified by the expression
10+40*ran 0 1 where ran 0 1 is a variable that can be bound to either 0 or 1.
This models that the event of obtaining the key take either 10 or 50 time units.

The execution of a timed CPN model is time driven. The CPN model remains
at a given model time as long as there are enabled transitions at that model
time. When no more transitions are enabled at the current model time, the
global clock is incremented to the earliest next model time at which transitions
are enabled. The model time in the marking shown in Fig. 27 is 500. Hence,

Application of Coloured Petri Nets in System Development 659

transition requestkey is enabled since the time stamps of the tokens on place idle
are less than or equal to current model time. The model time in the marking
shown in Fig. 28 is 2036. This is the reason why the releasekey transition is not
enabled, since the time stamp of the token residing on place usekey is 2050. In
the marking shown, transitions are enabled in the other pages of the CPN model.

4.2 Full State Spaces

The basic idea of state spaces is to calculate all reachable states and state changes
of the system and represent these as a directed graph. The state space of a CPN
model has a node for each of its reachable markings, i.e., markings that can
be reached by occurrences of transitions starting from the initial marking. The
outgoing arcs of a node n in the state space correspond to the set of enabled
binding elements in that marking. A binding element is a pair consisting of a
transition and an assignment of values to the variables of the transition. The
destination node of an arc originating in node n is the node representing the
marking resulting from the occurrence of the binding element corresponding to
the arc in the marking represented by node n.

1

idle : 1‘1@[500]++1‘2@[500]++
 1‘3@[500]
waiting : tempty
usekey : tempty

2

idle : 1‘1@[500]++
 1‘2@[500]
waiting : 1‘3@[500]
usekey : tempty

3

idle : 1‘1,@[500]++
 1‘3,@[500]
waiting : 1‘2,@[500]
use_key : tempty

4

idle : 1‘2@[500]++
 1‘3@[500]
waiting : 1‘1@[500]
usekey : tempty

5

6 7

8

9

10

requestkey : did=3
requestkey : did=2

requestkey : did=1

keywan : did=2

requestkey : did=3 requestkey : did=1

keywan : did=1

requestkey : did=3

requestkey : did=2

keywan : did=3

requestkey : did=2

requestkey : did=1

Fig. 29. Initial fragment of state space.

Figure 29 shows an initial fragment of the state space for the BeoLink sys-
tem. Node 1 corresponds to the marking previously shown in Fig. 27. Figure 29
shows the nodes in the state space that are reachable by at most two occur-
rences of transitions starting from node 1. In the marking corresponding to node
1, there are three enabled binding elements corresponding to the three outgoing
arcs from node 1. This three outgoing arcs correspond to all three devices being
able to request the key in the marking corresponding to node 1. The dashed

660 Lars Michael Kristensen, Jens Bæk Jørgensen, and Kurt Jensen

boxes shown next to nodes 1-4 list the tokens present on selected places on the
keyuser page in the marking represented by the node. The constant tempty de-
notes the empty set of tokens in a timed CPN model. These boxes have been
omitted for some nodes to make the figure readable. The dashed boxes posi-
tioned on top of the arcs describes the enabled binding element to which the arc
corresponds. The transition keywan is on another page in the CPN model.

Figure 29 was created using the support in the CPN computer tools for
drawing selected parts of a state space. The CPN computer tools make it possible
to generate the state space manually as well as automatically. The state space
can be generated either depth-first or breadth-first. From a constructed state
space it is possible to automatically verify a number of properties of the system
such as absense of deadlocks and other safety properties. The CPN computer
tools contain a number of query functions that allow the analyst to investigate
and verify the system using state spaces. The three main correctness criteria of
the lock management protocol are listed below.

1. (C1) Key generation. When the system is booted, a key is eventually gener-
ated. The key is to be generated within 2.0 seconds.

2. (C2) Mutual exclusion. At any time during the operation of the system at
most one key exists.

3. (C3) Key access. Any given device always has the possibility of obtaining
the key, i.e., no device is ever excluded from getting access to the key.

In the original analysis conducted in [14] only the first property was verified.
The remaining properties could not be verified due to the state space of the
timed CPN model being infinite. The key generation property was investigated
by considering a partial state space, i.e., a finite fragment of the full state space.
The partial state space was obtained by not generating successors for states
where the key had been generated or where the model time had passed two
seconds. It was then checked that in all markings for which successor states had
not been generated, a key was present in the system. Table 1 lists some statistics
showing the number of states in the partial state space and the CPU time it
took to generate the partial state space. Configurations written with the form
V M : n are configurations with a video master and a total of n devices. Similarly,
configurations with one audio master and a total of n devices are written with
the form AM : n. CPU time is written on the form h : mm : ss where h is

Table 1. Statistics for partial state space of initialisation phase.

Config Nodes Time

AM : 3 1,839 0:00:07
AM : 4 22,675 0:02:42
AM : 5 282,399 1:47:44

VM : 3 1,130 0:00:04
VM : 4 13,421 0:01:26
VM : 5 164,170 0:58:28

Application of Coloured Petri Nets in System Development 661

hours, mm is minutes, and ss is seconds. The results using partial state spaces
and the revised CPN model were obtained on a HP Unix Workstation with 1
Gb of memory.

4.3 Timed Condensed State Spaces

A main problem with state spaces in their most basic form is that they are
infinite for timed CPN models of cyclic/reactive systems. The problem is that
the absolute notion of time as represented by the global clock and the time
stamps of tokens are carried over into the state space. The BeoLink system is
an example of a cyclic system since the devices are executing a loop where they
request the key, are granted the key, and finally release the key. As a concrete
example, consider the marking of the keyuser page shown in Fig. 30. This marking
is similar to the marking previously shown in Fig. 28, except that all devices have
had the key once and device 1 now possesses the key again. The markings in
Fig. 28 and Fig. 30 are, however, represented by two nodes in the state space
because the time stamps of the tokens and the value of the global clock differ.
Intuitively, the markings are, however, similar.

requestkey

idle
DIDT

waiting
DIDT

21‘2@[4372]++1‘3@[4472]

getkey

usekey
DIDT

1 1‘1@[4498]

releasekey

fl_status

DIDxFL_STATUS
P In

fl_cmd_list

DIDxFL_CMD_LIST

P I/O3

1‘(1,[])++ 1‘(2,[])++ 1‘(3,[])

recbuf

TLG_BUFFERS

P I/O1

1‘[(1,[]),(2,[]),(3,[])]

fl_in

DIDxTLG_LIST

P I/O3

1‘(1,[])++ 1‘(2,[])++ 1‘(3,[])

sendbuf

DIDxTLG_LIST

P I/O3

1‘(1,[])++ 1‘(2,[])++ 1‘(3,[])

(did,fl_cmd_list^^[LOCK_MAN_KEY_WANTED])

did

did

did

(did,KEY_IS_READY)

did@+(10+40*ran_0_1)

did

did@+(10+40*ran_0_1)

(did,fl_cmd_list^^[LOCK_MAN_KEY_RELEASE])

(did,fl_cmd_list)

(did,fl_cmd_list)

tlgbuf

(did,tlg_list2)

(did,tlg_list3)

Fig. 30. The keyuser page - all devices have used the key once.

Timed condensed state spaces [16] have been developed to overcome this
problem, and use equivalence on the states to factor out the absolute notion
of time. In this way, the infinite state space can be condensed into a finite
state space. The condensed state space can be computed using a variant of the
standard algorithm for state space construction, but without first constructing

662 Lars Michael Kristensen, Jens Bæk Jørgensen, and Kurt Jensen

the full state space. The basic idea is to normalise each state encountered during
state space generation by:

1. (N1) Setting all time stamps on tokens that are less than current model time
to zero (as their time stamp cannot influence enabling).

2. (N2) Subtracting the current model time from all time stamps of tokens that
are greater than current model time.

3. (N2) Setting the current model time to 0.

It have been proven [16] that all properties of the system expressible in the
real-time temporal logic RCCTL∗ [31] are preserved in the condensed state space.
This set of properties includes all standard dynamic properties of CP-nets. Ta-
ble 2 shows statistics for the condensed state space for the full BeoLink system.
The results were obtained on a HP Unix Workstation with 1Gb of memory. It
was not possible to generate the time condensed state space for more than 3
devices with the available amount of memory. Using the condensed state space
it is now also possible to verify properties C2 and C3 from Sect. 4.2. Property
C2 can be expressed as the property that in no reachable marking is there more
than one token on place usekey (see Fig. 27), and property C3 can be expressed
as the property that from any reachable marking and for any device it is always
possible to reach a marking where the token corresponding to this device is on
place usekey. These two properties can be expressed using the query functions
in the CPN state space tool and answers was computed in a few seconds.

Table 2. Statistics for the time condensed state spaces.

Config Nodes Arcs Time

AM : 2 346 399 0:00:03
AM : 3 27,246 37,625 0:04:10

VM : 2 274 310 0:00:02
VM : 3 10,713 14,917 0:01:34

4.4 The Symmetry Method

Many concurrent systems possess a certain degree of symmetry. For example,
many concurrent systems are composed of similar components whose identities
are interchangeable from a verification point of view. This symmetry is also
reflected in the state spaces of such systems. The basic idea in the symmetry
method [17, 19, 32, 43, 48, 49] is to represent symmetric states and symmetric
binding elements using equivalence classes. State spaces can be reduced by fac-
toring out this symmetry, and the symmetry-reduced state space is typically
orders of magnitude smaller than the full state space. Furthermore, the same
set of dynamic properties can be verified and analysed based on the symmetry-
reduced state space without unfolding to the full state space.

Application of Coloured Petri Nets in System Development 663

The devices in the BeoLink system that are not audio or video masters
are symmetric, in the sense that they behave in the same way. They are only
distinguishable by their device identity. This symmetry is also reflected in the
state space (see Fig. 29). Consider, for instance, the two states 2 and 3 that
correspond to states in which exactly one non-master device (device 1 is the
audio master in the considered configuration) has requested the key. These two
states are symmetric in the sense that node 2 can be obtained from node 3 by
swapping the identity of device 2 and 3. Similarly, the two states represented
by node 5 and node 10 can be obtained from each other by interchanging the
identity of devices 2 and 3. These two states correspond to states in which one
device has requested the key and the lock management protocol has registered
the request. Furthermore, it can be observed that two symmetric states such
as state 2 and state 3 have symmetric sets of enabled binding elements, and
symmetric sets of successor states. This property can be extended to finite and
infinite occurrence sequences of transitions.

Figure 31 shows the initial fragment of the symmetry-reduced state space for
the BeoLink system obtained by considering two states equivalent if one can
be obtained from the other by a permutation of the identity of the non-master
devices. The nodes and arcs now represent equivalence classes of markings and
binding elements, respectively. The equivalence class of states represented by a
node is listed in brackets in the inscription of the node, e.g., node 2 represents the
states 2 and 3 from Fig. 29. A similar notation is used for binding elements. The
basic idea in symmetry-reduced state spaces is to represent these equivalence
classes by picking a representative for each equivalence class. The symmetries
used to reduce the state space are required to be symmetries actually present in
the CPN model. The CPN model is, therefore, required to satisfy a set of static
properties relative to the set of symmetries to be used for the reduction [48].

1
{1}

2
{2,3}

3
{4}

5
{5,10}

4
{6}

6
{7,9}

7
{8}

{requestkey : did=2,
 requestkey : did=3}

{requestkey : did=1}

{keywan : did=2
 keywan : did=3}

{requestkey : did=2
 requestkey : did=3}

keywan : did=1

{requestkey : did=2
 requestkey : did=3}

{requestkey : did=1}

Fig. 31. Initial fragment of symmetry-reduced state space.

Table 3 shows the results when using the symmetry method on the initial-
isation phase of the BeoLink system. The size of the full state space for the

664 Lars Michael Kristensen, Jens Bæk Jørgensen, and Kurt Jensen

Table 3. Statistics for symmetry reduced state space - initialisation phase.

Full State Spaces Symmetry Reduced
Config Nodes Time Nodes Time Factor (n − 1)!

AM : 3 1,839 0:00:07 53.0 % 100.0 % 1.9 2
AM : 4 22,675 0:02:42 19.3 % 40.1 % 5.2 6
AM : 5 282,399 1:47:44 5.6 % 10.4 % 17.8 24
AM : 6 3,417,719 - 1.4 % 2:13:29 71.4 120

VM : 3 1,130 0:00:04 53.2 % 100.0 % 1.9 2
VM : 4 13,421 0:01:26 19.4 % 40.6 % 5.1 6
VM : 5 164,170 0:58:28 5.6 % 10.1 % 17.6 24
VM : 6 1,967,159 - 1.4 % 1:10:35 71.4 120
VM : 7 22,892,208 - 0.3 % ≈15 hours 333.3 840

AM:6, VM:6, and VM:7 configurations has been calculated from the symmetry-
reduced state space by computing the size of each equivalence class. The results
were obtained on a HP Unix Workstation with 1Gb memory. Calculation of the
symmetry-reduced state space is based on calculating canonical representatives
for each equivalence class [63]. This means that whenever a state is generated,
this state is transformed into a canonical representative for its equivalence class.
It is then checked whether this canonical representative is already included in
the state space. The numbers in the Nodes column for the symmetry-reduced
state space are relative to the number of nodes in the full state space, i.e., the
number of nodes in the symmetry-reduced state space divided by the number of
nodes in the full state space. The numbers in the Time column are also relative
to the generation of the full state space for those configurations where the full
state space could be generated. The Factor column gives the number of nodes
in the full state space divided by the number of nodes in the symmetry reduced
state space. The column (n−1)! lists the factorial of n−1 where n is the number
of devices in the configuration. When there are n devices in the configuration,
there are n−1! possible permutations of the non-master devices. Hence, (n−1)!
is the theoretical upper limit on the reduction factor that can be obtained for a
configuration with n devices. It can be seen that the computation time becomes
large for 7 devices. This is due to the calculation of canonical representative
being costly. It has been proven [17] that computing canonical representative
for equivalence classes is at least as hard as the graph isomorphism problem for
which no polynomial time algorithm is known.

Table 4 lists the statistics for the symmetry-reduced state space of the full
BeoLink system. Here we have used the symmetry method and the time con-
densed state space simultaneously. The number of nodes for the AM : 4 and
V M : 4 configurations in the time condensed state space has been computed
from the symmetry reduced state space.

4.5 The Sweep-Line Method

The amount of available main memory is often the limiting factor in the use
of state spaces. During construction of the state space, the set of markings en-

Application of Coloured Petri Nets in System Development 665

Table 4. Statistics for symmetry reduced state space - full system.

Time Equivalence Symmetry Reduced
Config Nodes Time Nodes Time Factor (n − 1)!

AM : 2 346 0:00:03 100.0 % 100.0 % 1 1
AM : 3 27,246 0:04:10 50.1 % 52.0 % 1.9 2
AM : 4 12,422,637 - 16.7 % ≈25 hours 5.9 6

VM : 2 274 0:00:02 100. % 100.0 % 1 1
VM : 3 10,713 0:01:34 50.6 % 50.0 % 1.9 2
VM : 4 3,557,441 - 16.7 % 7:10:21 5.9 6

countered are kept in memory to recognise already visited marking and thereby
ensure that the state space generation terminates. The basic idea of the sweep-
line method [15, 59] is to exploit a certain kind of progress exhibited by many
systems. Exploiting progress makes it possible to explore all the reachable mark-
ings of a CPN model, while only storing small fragments of the state space in
memory at a time. This means that the peak memory usage is reduced. The
sweep-line method was used in [38] for verification of transactions in the Wire-
less Application Protocol (WAP) with a reduction in peak memory usage to
20%. The sweep-line method is aimed at on-the-fly verification of safety proper-
ties, e.g., determining whether a reachable marking exists satisfying a given state
predicate. Hence, it can be used to verify properties C1 and C2 of the BeoLink
system, but not property C3.

The Basic Sweep-Line Method. For the BeoLink system, one source of
progress is the time in the system (the model time) as represented by the value
of the global clock in the CPN model. The global clock in a timed CP-net [48]
has the property that for two markings M and M ′, where M ′ is a successor
marking of M , the value of the global clock in M is less than or equal to the
value of the global clock in M ′. This progress can be formalised as a progress
measure mapping a marking into the corresponding value of the global clock.
The progress measure based on the global clock is a monotonic progress measure.

Figure 32 shows how the markings/nodes in the state space fragment from
Fig. 29 can be ordered according to this notion of progress. The intuition of the
ordering is the following: markings in one layer all have the same value of the
progress measure (the global clock), and markings in higher numbered layers
are markings where the system has progressed further than in markings in lower
numbered layers. Layer 0 contains markings in which the global clock has value
0. Layer 1 contains markings where the global clock is 500 time units.

A marking in a given layer has successor markings either in the same layer or
in a layer that represents further progress, but never in a layer that represents
less progress. Markings in Layer 0 can thus never be reached by markings in
Layer 1. If we calculate the markings one layer at a time, moving from one layer
to the next when all markings in the first layer have been calculated and not
before, we can think of it as a sweep-line moving through the state space. At any

666 Lars Michael Kristensen, Jens Bæk Jørgensen, and Kurt Jensen

1

2 3 4

5

6 7

8

9

10

Layer 0:
Global clock 0

Layer 1:
Global clock 500

requestkey : did=3
requestkey : did=2

requestkey : did=1

keywan : did=2

requestkey : did=3 requestkey : did=1

keywan : did=1

requestkey : did=3

requestkey : did=2

keywan : did=3

requestkey : did=2

requestkey : did=1

Fig. 32. Initial fragment of full state space – arranged by progress.

one point during state space generation, the sweep-line corresponds to a single
layer—all the states in the layer are “on” the sweep-line—and all new markings
calculated are either on the sweep-line or in front of the sweep-line. Table 5 lists
the statistics for the application of the sweep-line method on the initialisation
phase of the BeoLink system and using the global clock as the progress measure.
The figures in the Sweep-Line Method column are given relative to the numbers
in the Full State Spaces columns. The results were obtained on a Pentium II PC
with 160 Mb of memory.

Table 5. Application of the sweep-line method – initialisation phase.

Full State Spaces Sweep-Line Method
Config Nodes Time Peak Nodes Time

AM: 3 1,839 0:00:11 100.0 % 100.0 %
AM: 4 22,675 0:05:32 22.8 % 84.0 %
AM: 5 282,399 5:03:53 12.4 % 39.4 %

VM: 3 1,130 0:00:06 100.0 % 100.0 %
VM: 4 13,421 0:02:40 38.5 % 106.0 %
VM: 5 164,170 2:30:27 21.3 % 45.4 %

The Generalised Sweep-Line Method. While the basic idea behind the
sweep-line described above is intuitive and simple, it has the obvious drawback
that it only works on systems exhibiting this kind of monotonic progress. While
a lot of systems have a certain degree of progress, it is usually not strictly
monotonic. There will be occasional occurrences of binding elements from high-
progress markings to low-progress markings. The generalised sweep-line method
[59] solves this problem by introducing multiple sweeps of the state space. Each

Application of Coloured Petri Nets in System Development 667

sweep follows only binding elements that result in markings with unchanged
or increasing progress measure and collects information about regress-arcs that
result in markings with decreasing progress measure. The markings at the end of
regress-arcs are then marked as persistent meaning that they cannot be deleted
again, and they are used as starting point for a subsequent sweep. The generalised
sweep-line method visits all the reachable markings, but may visit some markings
multiple times.

To apply the sweep-line method for the full BeoLink system we first need
to obtain a finite state space using the time condensed state spaces as described
in Sect. 4.3. This, however, has the drawback that the value of the global clock
becomes 0 in all markings. Hence, the progress measure defined above based on
the global clock will map all markings into 0, resulting in no peak memory re-
duction when we apply the sweep-line method. It is however possible to define a
non-monotonic progress measure for the BeoLink system based on the control
flow of the devices. Recall that the devices have a cyclic control flow where they
are first idle, then they request the key, and finally they obtain the key. When
they have used the key they return to the idle state. This is a kind of local
progress starting from the idle state progressing towards the state where they
have the key. This ordering on the states of the devices can be used to define
a non-monotonic progress measure. Details of such a progress measure can be
found in [59]. With this progress measure, the marking shown in Fig. 28 will
have a higher progress value than the marking shown in Fig. 27. When a device
releases the key and moves to the idle state, then this will result in a regress-arc
in the state space. Table 6 lists statistics for the application of the generalised
sweep-line method to the full BeoLink system using the progress measure in-
formally defined above. The experiments were conducted on a Pentium II PC
with 160 Mb of memory. It can be seen that some states are explored multiple
times which causes a time penalty, but the sweep-line method still achieves a re-
duction in peak memory usage to about 10 %. The relatively large time penalty
is due to an inefficient implementation of deletion of states in the Design/CPN
Sweep-Line Library [37]. A more efficient algorithm for deletion of states has
been developed in [60].

Table 6. Application of the sweep-line method – full system.

Time Equivalence Sweep-Line Method
Config Nodes Time Nodes Explored Peak Nodes Time

AM:2 346 00:02 102.6 % 18.8 % 200.0 %
AM:3 27,246 06:54 104.1 % 9.7 % 327.8 %

VM:2 274 00:02 103.3 % 15.0 % 200.0 %
VM:3 10,713 02:19 106.3 % 9.7 % 207.2 %

Above we have seen that it is possible to combine time condensed state spaces
with both the symmetry method and the sweep-line method. It is also possible
to use the sweep-line method and the symmetry method simultaneously. This

668 Lars Michael Kristensen, Jens Bæk Jørgensen, and Kurt Jensen

combination was investigated in [7] where it was demonstrated by means of
experimental results that using the two methods simultaneously leads to better
reduction than when either method is used in isolation.

4.6 Conclusions on Audio/Video Protocol and State Space Analysis

The revised state space analysis of the BeoLink system illustrates the use of
the state space reduction methods that have been developed and implemented
in the CPN computer tools in recent years. In addition to time condensed state
spaces, the symmetry method, and the sweep-line method, several other methods
have been developed to combat the state explosion problem. Examples of these
include partial order reduction methods [70,87,93], the unfolding method [34,65],
and methods based on Binary Decision Diagrams (BDDs) [66]. Until now, the
above methods have only been used in practice on low-level Petri nets or by
unfolding the high-level Petri net into the equivalent low-level Petri net. For CPN
models constructed in industrial projects which often have variables from infinite
domains, approaches based on unfolding to low-level are not feasible. Some work
has been done on developing a version of the stubborn set method for CP-nets
without having to rely on unfolding to low-level Petri net [56]. Methods that
appear more promising for being included in the CPN computer tools include
the bit-state hashing method [40,41] and the state space caching method [39,46]
which both are based on ideas similar to the sweep-line method, i.e., deleting
information about states during the state space exploration. In general, the CPN
computer tools must support a suite of state space reduction methods since
these reduction methods exploit different characteristics of the modelled system
to achieve the reduction. As a consequence, only some reduction methods will
work on a given CPN model. The protocol verification technique used, e.g., in [38]
based on language comparison to verify a protocol specification against a service
specification is another candicate for inclusion into the CPN computer tools.

The support for state space methods in the CPN computer tools differs from
other tools, such as SPIN [85], in its support for drawing selected parts of a
state space and the support for a query language not based on temporal logic
and model checking [18] but on functions to traverse the state space and extract
information from the nodes and arcs. While it seldom makes sense to draw the
full state space of a system, practical experience has shown that being able to
visualise small fragments of the state space is an efficient way of investigating
local behavior of the system in detail. A main reason for supporting a query
language that allows the user to write traversals of the state space is that it
provides better support for analysis. With the available query functions it is
possible to compute quantitative values such as e.g., minimum and maximum
number of tokens on a place rather than just yes/no answers as supported by
temporal logic. Furthermore, query functions for typical dynamic properties of
CPN models is also available. Instantiating these query functions is much more
convenient for practitioners than writing the equivalent formulas in temporal
logic. Support for CTL model checking [11] is, however, available as a library to
the state space tool.

Application of Coloured Petri Nets in System Development 669

Another feature of the state space tool that has shown to be valuable in the
practical use of state space methods is the support for generation of a predefined
state space report. The state space report contains information regarding a set
of standard dynamic properties of CP-nets and can be generated fully automat-
ically and then inspected by the user. Generation of the state space report is
usually the first activity in state space analysis, and many errors and problems
in a design are often detectable from the state space report.

5 Implementation of a Planning Tool

This project [94] is concerned with the development of the Course of Action
Scheduling Tool (COAST) by the Australian Defence Science and Technology
Organisation (DSTO) [4]. A Course of Action (COA) (also referred to as a plan)
consists of a set of tasks. The key capability of COAST is the computation of
task schedules called line of operations (LOPs) and is aimed at supporting the
planner in COA Development and COA Analysis which are two of the main
activities in a military planning process. The basic idea in COAST is to use
a CPN model for modelling the execution of tasks according to the pre- and
postconditions of tasks, imposed synchronisations, and available resources. The
LOPs are then obtained by generating a state space for the CPN model and
extracting paths in the state space leading from the initial marking to certain
markings representing end-states.

The COAST planning tool has been developed in close cooperation with
DSTO researchers, the Computer System Engineering Centre at University of
South Australia [21], and planners at the Australian Defence Force. The latter
group is the envisioned user of the tool. The role of CP-nets in the development
of COAST has been threefold. Firstly, CPN modelling has been used in the devel-
opment and specification of the underlying framework. Secondly, the constructed
CPN model has been used directly in the implementation of COAST by embed-
ding it into the COAST server which constitutes the computation back-end of
COAST. Hence, CP-nets provide the semantical foundation by formalising and
implementing the abstract conceptual framework underlying the tool. Finally,
the analysis capabilities of COAST are based on state space methods.

5.1 An Example Plan

In this section we give a brief overview of the conceptual framework of the
COAST and present a small example plan used as a running example throughout
this section. The framework underlying COAST is based on four key concepts:

Tasks are the basic units in a plan and have associated preconditions and ef-
fects describing the conditions required for a task to start and the effect
of executing the task. A task also includes a specification of the resources
required to execute the task, and may also have a specified duration. Tasks
also have other attributes, but these are omitted in this presentation.

670 Lars Michael Kristensen, Jens Bæk Jørgensen, and Kurt Jensen

Conditions are used to describe the explicit logical dependencies between tasks
via preconditions and effects. As an example, a task T1 may have an effect
used as a precondition of a task T2. Hence, T2 logically depends on T1 in
the sense that it cannot be started until T1 has been executed.

Resources are used by tasks during their execution. Resources typically repre-
sent planes, ships, and personal required to executed a task. Resources may
be available only at certain times due to e.g., service intervals. Resources
may be lost in the course of executing a task.

Synchronisation can be used to capture that a set of tasks must begin or end
simultaneously, that there has to be a specific amount of time between the
start and end of certain tasks, and that a task can only start after a certain
point in time. A set of tasks that are required to begin at the same time is
said to be begin-synchronised. A set of tasks required to end at the same time
is said to be end-synchronised. End-synchronisations can cause the duration
of tasks to be extended.

Table 7 lists an example of a plan with 6 tasks. The table specifies for
each task its preconditions, its effects, the required resources, and the dura-
tion of the tasks. In addition to the information provided in the table, the set
{T5,T6} of tasks are begin-synchronised and the set {T4,T5,T6} of tasks are end-
synchronised. The assigned resources are: 4’R1++3‘R2++3‘R3++1‘R5++1‘R6
(written as a multi-set). Figure 33 provides a graphical illustration of the depen-
dencies between tasks using dashed lines to indicate begin-synchronisations and
end-synchronisations.

Table 7. A example plan with 6 tasks.

Task Preconditions Effects Resources Duration

T1 - E1 4‘R1 2
T2 E1 E2 2‘R2 ++ 2‘R3 4

T3 E1 E3 2‘R2 ++ 2‘R3 7
T4 E1 E4 1‘R2 ++ 1‘R3 -

T5 E2 E5 1‘R5 7
T6 E3 E6 1‘R6 7

For this example, we are interested in the possible ways (if any) that the set
of tasks can be sequenced such that a state satisfying conditions E4, E5, and
E6 can be reached given the assigned resources and synchronisation constraints.
Figure 34 illustrates one such possible line of operation (LOP) by giving the
start and end time of tasks such that the desired end-state is reached.

5.2 Engineering COAST

Figure 35 shows the client-server software architecture of COAST. The COAST
client, which includes a domain-specific graphical user interface, is implemented

Application of Coloured Petri Nets in System Development 671

T1

T2

T3

E1

E1

T4

E1

T5

T6

E2

E3

begin end

Fig. 33. Illustration of dependencies between tasks in the example plan.

Time

T1

0

T2

T4

T3

T5

T6

2 6 13 20

Fig. 34. One possible line of operation for the example plan.

in Java, whereas the COAST server is implemented in Standard ML (SML) via
the embedded CPN model which forms the core of the COAST server. Com-
munication between the client and the server is based on Comms/CPN and
Comms/JAVA [36], a library supporting TCP/IP communication between CPN
models and external applications. A SML session layer has been implemented on
top of Comms/CPN. This layer allows the client to invoke functions available
in the server and receive the corresponding results. The SML Session layer is
implemented by allowing the client to submit SML code to the server for eval-
uation. The received SML code is then executed by the server, and results are
sent back to the client. The SML code sent to the server corresponds to the in-
vocation of the SML functions made available by the server by the COA Analysis
module. The COAST client consists of two main parts: an Editor for creating
and editing plans, and an Analyser for the analysis of plans. The COAST server
consists of three main parts. The Initialisation module allows the CPN model to
be initialised according to the plan to be analysed. The Simulation Code module
for executing the CPN model which consists of the simulation code generated by
the CPN computer tools for executing CPN models. The State Space Code and
COA Analysis modules support the generation of state spaces and LOPs. The
State Space Code module consists of the code for generation of state spaces in
the CPN computer tools.

Figure 36 is a snapshot from the COAST client illustrating how the user views
the plans in the editor. There are four main windows. A window displaying the

672 Lars Michael Kristensen, Jens Bæk Jørgensen, and Kurt Jensen

COA Analysis

Initialisation

Comms/CPN

SML Session

COAST Server

Standard ML

COAST Client

JAVA

TCP/IP

Analyser

Editor

State Space
Code

Simulation Code

SML Session

Comms/Java

Fig. 35. Architectural overview of the COAST tool.

Fig. 36. Snapshot from the COAST editor.

set of tasks, a window showing the assigned resources, and a window showing
the conditions, and a window showing the synchronisations.

Figure 37 shows an example of how LOPs are reported to the user in the
Analyser part of the COAST client. The window gives a specification of the LOP

Application of Coloured Petri Nets in System Development 673

Fig. 37. Snapshot from the COAST analyser.

for the example plan corresponding to the one previously shown in Fig. 34. That
the COAST server uses a CPN model as a basis for the scheduling analysis is
fully transparent to the analyst using the COAST client.

5.3 The CPN Model

The CPN model has been parameterised with respect to the set of tasks, re-
sources, conditions, and task synchronisations. This ensures that a given set of
tasks, resources, and task synchronisation can be analysed by setting the initial
marking of the CPN model accordingly, i.e., no changes to the structure of the
CPN model are required to analyse a different set of tasks. Figure 38 shows the
hierarchy page for the CPN model. The page CoastServer is the top level page
in the CPN model which consists of three main parts. Page Execute (left) and
its subpages model the execution of tasks, i.e, start, termination, abortion, and
failure of tasks according to the set of tasks, resources, conditions, and synchroni-
sation in the plan. Page Environment and its subpages model the environment in
which tasks execute, and is responsible for managing the availability of resources
over time, change of conditions over time, and task failures. Page Initialisation
and its subpages are used for the initialisation of the model according to the
concrete set of tasks, synchronisation, and resources in a plan. The CPN model

674 Lars Michael Kristensen, Jens Bæk Jørgensen, and Kurt Jensen

Hierarchy#10010
Normal#28

Deallocate#30

Terminate#15

Resources#11

ResourceManager#19

Failure#1

Start#14

StartTasks#2

Allocate#26

TaskFailures#24

VanConditions#22

TaskInterrupt#6

Initialisation#3

Conditions#16

Synchronisation#10

Execute#13

CoastServer#20

FailEndSynchronis

Environment#21

Abort#7

TaskFail#2

AbortEndSynch#9

IntDeallocate#4

FailDeallocate#8

Interrupt

End

TaskFailure

Resource

Change

Fail

Interrupt

EnvironmentExecute
Initialise

Terminate

Start

Conditions

Synchronisation

ResourcesStartTasks

Allocate

End

Abort

Failure

Normal

Deallocate

Deallocate

Deallocate

Fig. 38. Hierarchy page of the COAST CPN model.

is timed since capturing the time taken by executing a task is an important part
of the computation of LOPs.

The COAST server was obtained from the CPN model by first generating the
standard simulation and state space code. SML files implementing Comms/CPN
and the SML session layer were then loaded together with the functions imple-
menting the server and the LOP generation algorithms. The resulting executable
file constitutes the COAST server and includes the functions required to exe-
cute the CPN model and to conduct state space analysis. The COAST server is
totally detached from the GUI of the CPN computer tools. When the COAST
server is started, it will wait for an incoming TCP connection, and once the
COAST client has established a connection, it can start invoking functions on
the COAST server and thereby conduct the task scheduling analysis.

Figure 39 shows the top level page of the CPN model with the three main
parts of the CPN model represented as the substitution transitions Initialise,
Execute, and Environment. The marking shown is the marking of the CPN model
after initialisation of the CPN model with the example plan from Table 7. Place
Tasks contains six tokens corresponding to the six tasks in the example plan.
Place Conditions contains one token which is a list containing the conditions in
the plan and their truth value. It can be seen that all conditions are initially
false. Place Resources contains two tokens. There is one token consisting of a list
describing the current set of idle (available) resources, and one token consisting
of a list describing the resources that have been lost until now. Since the colour
of the tokens on the places Resources and Tasks are of a complex colour set,
we have not shown the detailed colours of the tokens but only the number of
tokens. As an example, the colour set Task modelling tasks is record type with
more than 15 fields.

Application of Coloured Petri Nets in System Development 675

Initialise

HS

Init

E

e

Resources

Resources

2

Execute

HS

Tasks

Task

Conditions

Conditions

1

1‘[CONDITION(("E1",false)),
CONDITION(("E2",false)),
CONDITION(("E3",false)),
CONDITION(("E4",false)),
CONDITION(("E5",false)),
CONDITION(("E6",false))]

Environment

HS

Execute
Status

TaskxResxStatus

6

Fig. 39. The CoastServer page after initialisation.

Initialise

HS

Init

E

e

Resources

Resources

2

Execute

HS

Tasks

Task

Conditions

Conditions

1

1‘[CONDITION(("E1",true)),
CONDITION(("E2",true)),
CONDITION(("E3",true)),
CONDITION(("E4",true)),
CONDITION(("E5",true)),
CONDITION(("E6",true))]

Environment

HS

Execute
Status

TaskxResxStatus

6

Fig. 40. The CoastServer page – all tasks executed.

Figure 40 shows the top level page of the CPN model in a marking where
all six tasks in the example plan have been executed. All six tokens have been
removed from place Tasks since the tasks have now been executed. The marking

676 Lars Michael Kristensen, Jens Bæk Jørgensen, and Kurt Jensen

shown corresponds to a desired end-state since the conditions E4, E5, and E6 are
now all satisfied as can be seen from the marking of place Conditions.

5.4 Line of Operation Generation

The main analysis capability of COAST is the generation of LOPs. A LOP is a
specification of start and end times for the tasks in the plan. The LOP generation
implemented in the COAST server consists of two phases. In the first phase, the
state space is generated relative to the plan to be analysed. Successors are not
generated for states that qualify as desired end-states according to the conditions
specified by the user. In the second phase, LOPs are computed by traversing the
constructed state space. The LOPs are determined from the paths in the state
space, and they are divided into two classes. Complete LOPs are LOPs that
lead from the initial marking to a marking representing a desired end-state.
The incomplete LOPs are LOPs that lead to markings representing undesired
end-states, i.e., markings without enabled transitions that do not satisfy the
conditions specified by the user. When incomplete LOPs are reported, the user
will typically investigate the causes of these using queries about tasks, conditions,
and resources in different states. In that sense, COAST also supports the planner
in identifying errors and inconsistencies in the plan under analysis.

1 1 1 1 1 2 1 2 2 2 3 2

2

2

4

4

2

4

5

2

4

5

3

4

5

3

5

6

4

4

4

6

3

4

4

6

3

5

5

6

3

8

9

10

7

11

12

14

13

5

3

7

6

7

6

7

6

16

15

8

6

8

7

8

7

8

7

8

7

18

17

8

7

8

8

9

8

9

9

19 9

9 9 9 9 9 20 1 1 1 1 1 1 1 1 1 1 21

T1:0

T2:2

T4:2

T3:2

T4:2

T2:2

T3:2

T4:2

T2:6

T3:9

T3:6

T2:9

T1:2

T3:13

T2:13

T5/T6:13

T4/T5/T6:20

Fig. 41. State space for the example plan.

Figure 41 shows the state space for the example plan from Fig. 7. Node 1 to
the left corresponds to the initial marking previously shown in Fig. 39. Node 21
to the lower right corresponds to the marking previously shown in Fig. 39. The

Application of Coloured Petri Nets in System Development 677

thick arcs in the state space correspond to start and termination of tasks. The
other arcs correspond to internal events in the CPN model related to the start
and termination of tasks. The thick arcs have labels of the form T i : t where
i specifies the task number and t specifies the time at which the event takes
place. As an example, task T1 starts at time 0 as specified by the label on the
outgoing arc from node 1, and terminates at time 2 as specified by the label on
the outgoing arc from node 2.

The computation of LOPs is based on a breadth-first traversal of the state
space starting from the initial marking. The basic idea is to compute the LOPs
leading to each marking encountered during the traversal of the state space,
where the LOPs in a given marking are computed from the LOPs associated
with its predecessor markings. The LOPs associated with a given marking are
then deleted once the LOPs have been computed for all its successor markings.
The algorithm exploits the fact that the state space of the CPN model is acyclic
for any plan, and that the paths leading to a given marking in the state space
all have the same length measured in occuring binding elements.

1 1 1 1 1 2 1 2 2 2 2 3 2

2

2

4

4

2

4

5

2

4

5

3

4

5

3

5

6

4

4

4

6

3

4

4

6

3

5

5

6

3

8

9

10

7

11

12

T1:0

T2:2

T4:2

T3:2

T4:2

T2:2

T3:2

T4:2

T1:2

[(T1,0,?)] [(T1,0,2)][]

[(T1,0,2),(T2,2,?)]

[(T1,0,2),(T4,2,?)]

[(T1,0,2),(T3,2,?)]

[(T1,0,2),(T2,2,?),(T4,2,?]

[(T1,0,2),(T2,2,?),(T4,2,?]

[(T1,0,2),(T3,2,?),(T4,2,?]

[(T1,0,2),(T3,2,?),(T4,2,?]

Fig. 42. LOP generation after initial marking has been processed.

We now illustrate how the algorithm operates. Figure 42 shows the LOPs
information associated with each marking in the first part of the state space.
The LOP associated with the initial marking is the empty LOP represented
as the empty list []. LOPs for the successor marking of the initial marking are
now computed. Since the arc leading to the successor marking corresponds to
the start of a task, the LOP is augmented with information about the time at
which T1 was started. This results in the LOP: [(T1,0,?)] being associated with
the successor marking of the initial marking. The LOP remains the same until
the arc corresponding to the termination of T1 at time 2 is reached. In this
case, the termination time of T1 can be recorded in the LOP. This results in
associating the LOP [T1,0,2] with the successor marking of node 2. The LOP
now associated with the succesor of node 2 is propagated forward. The LOP
generation now proceeds and when node 3 is reached, the LOPs are propagated
along three branches corresponding to the three successor markings of node 3.
The LOP generation will now continue until the nodes 7, 8, 9, and 10 are reached.
Here the LOPs associated with nodes 7 and 8 will be merged and associated with
node 11 since the start and termination time of each of the tasks in the LOPs
are identical. Similarly, the LOPs associated with node 9 and 10 will be merged

678 Lars Michael Kristensen, Jens Bæk Jørgensen, and Kurt Jensen

and associated with node 12. The breadth-first traversal will now continue until
eventually the situation shown in Fig. 43 is reached where the two complete
LOPs leading to the desired end-state have been computed.

9 9 9 9 9 20 1 1 1 1 1 1 1 1 1 1 21
T4/T5/T6:20

[(T1,0,2),(T2,2,6),(T4,2,20),(T3,6,13),(T5,13,20),(T6,13,20)]
[(T1,0,2),(T4,2,20),(T3,2,9),(T2,9,13),(T5,13,20),(T6,13,20)]

Fig. 43. Termination of the LOP generation.

Typical planning problems to which COAST is applied consist of 15 to 25
tasks resulting in state spaces with 10,000 to 20,000 nodes and 25,000 to 35,000
arcs. Such state spaces can be generated in less than 2 minutes on a standard PC.
The state spaces are relatively small because the conditions, available resources,
and imposed synchronisations in practice strongly limit the possible orders in
which the tasks can be executed.

5.5 Conclusions on the Development of COAST

The development of the COAST tool is an example of how the usual gap between
design as specified by a CPN model and the final implementation of a system
can be overcome. The CPN model that was constructed to develop the concep-
tual and semantical foundation of COAST is being used directly in the final
implementation of the COAST server. The project also demonstrates the value
of having a full programming language environment in the form of the Standard
ML compiler integrated in the CPN computer tools. The use of Standard ML as
part of the CPN computer tools was crucial in several ways in the development
of COAST. It allowed a highly compact and parameterisable CPN model to be
constructed, and it allowed the CPN model to become the implementation of the
COAST server. The parameterisation is important to ensure that the COAST
server is able to analyse any set of tasks, resources, and synchronisations without
having to make changes to the CPN model. Having a full programming language
available also made it possible to extend the COAST server with the specialised
algorithms required to extract the task schedules from a generated state space.

6 Conclusions and Future Directions

In this paper we have presented four projects where the CPN modelling language
and computer tools have been put into practical use in system development
projects. The project on modelling communication and mobility scenarios for
ad-hoc networking illustrates how quite abstract CPN models can be used in an
early phase of system development to determine the boundaries of the project
and specify requirements. The pervasive health care project illustrated how CP-
nets can be used to construct an executable use case in the form of an animated

Application of Coloured Petri Nets in System Development 679

CPN model. An informal use case described in prose was augmented with notions
of execution, formality, and animation. We have illustrated the use of state space
methods for the analysis of the BeoLink system and for obtaining lines of
operation in the COAST tool. The revised case study on the BeoLink system
demonstrates that significant progress has been made in recent years on the
support for state space analysis. The work presented on the COAST tool also
shows how a CPN model can be integrated into an application making the use
of CP-nets transparent to the user and overcoming the usual gap between design
and implementation. Another example of automatic code generation from CPN
models can be found in [67]. The paper [62] describes an approach to making a
tailored graphical user interface on top of a CPN model using web technology.

In general, many CPN projects have been carried out and documented in
papers and reports. As examples, the proceedings of the CPN workshops 1998-
2002 [51], and the two special issues of the Software Tools for Technology Transfer
journal [27, 28] contain many papers on practical use of CP-nets. The most
comprehensive overview of application and industrial use of CP-nets can be found
on the web pages [22,23,25] that are maintained by our research group. Together,
all these projects provide solid evidence that CP-nets have good potential to be
used in the software industry. On the other hand, as evidenced by the recent
survey [68], in general formal methods (like CP-nets) are only rarely used in
the software industry. An interesting direction for future research is to try to
increase the use of Petri nets in the software industry. That is for obvious reasons
attractive for us as Petri net researchers. However, it may also be attractive
for many parts of the software industry. It is widely recognised that today’s
mainstream software development methods and tools are not always adequate
for solving the range of difficult problems that software developers are facing.

The choice of formal modelling language to be used in a system development
project is non-trivial, and many aspects must be taken into account, e.g., avail-
able tool support and background of the involved system developers. Choosing
CP-nets has a number of virtues. CP-nets has a sound, mathematically well-
founded execution semantics, is well-proven, and has proper tool support. This
includes support for creating animations of CPN models, which has been used in
a number of projects, see, e.g., [76] for an alarm system, [64] for mobile phones,
and [8] for ISDN services.

Even though we see a number of advantages of using Petri nets, other re-
searchers and practitioners may have other opinions and preferences. If we want
to advocate wide-spread and long-term use of Petri nets in system development
in a company, we have to convince not only the software developers, but also
higher-level decision makers like business and project managers. In conversations
with the latter, we must stress the key business question: How does my company
save time and money by using Petri nets? Sometimes, we should perhaps talk
about reducing time to market, increasing return of investment, and limitation
of risks, instead of about, e.g., nice theoretical properties like formal semantics.
We should also promote Petri nets as a supplement to existing software devel-
opment practices, not as something fundamentally new. In particular, with the
success of UML, the software industry has in large scale adopted modelling as a

680 Lars Michael Kristensen, Jens Bæk Jørgensen, and Kurt Jensen

valuable discipline in everyday software development. Many software developers
appreciate UML (in particular the static parts of UML such as class diagrams)
as a productive asset to help them in their work. Those who have also tried
to model behavioural aspects in UML might have encountered problems with
UML state machines and activity diagrams. Therefore, for many developers, the
motivation to use a supplementary modelling language together with UML may
be quite high. In this way, the success of UML can be seen as a good chance to
establish Petri nets more broadly in the software industry.

The reader interested in getting started with CPN modelling is referred to
the paper [58] and the book [47]. The paper introduces the CPN modelling
language using a simple communication protocol, whereas the book contains
several smaller examples and also the formal definition of CP-nets. Readers
interested in getting started using the state space method is referred to the
book [48], the introductory paper [58], and the examples found on the web
pages [22, 25]. The reader interested in the recent work on state space methods
is referred to [16] for the time condensed state spaces, [15,59] for the sweep-line
method, and [29] for the symmetry method. CPN models can also be analysed
using simulation, and the papers [91,92] describe how quantitative measures such
as throughput and delay of the system can be obtained using simulation-based
performance analysis and the CPN computer tools.

The web pages for the CPN computer tools [22, 25] contain several tutorials
and small examples of CPN models useful for getting started using CPN mod-
elling and the CPN computer tools. A license for the CPN computer tools can
be obtained free of charge, and a licence form is available electronically from
our web-pages [22]. Mailing lists have also been established for users of the CPN
computer tools.

References

1. Aarhus Amt Electronic Patient Record. www.epj.aaa.dk.
2. D. Amyot, R.J.A. Buhr, T. Gray, and L. Logrippo. Use Case Maps for the Capture

and Validation of Distributed Systems Requirements. In Proc. of 4th IEEE Inter-
national Symposium on Requirements Engineering, pages 44–53. IEEE Computer
Society, 1999.

3. A.I. Antón, R.A. Carter, A. Dagnino, J.H. Dempster, and D.F. Siege. Deriving
Goals from a Use-Case Based Requirements Specification. Requirements Engineer-
ing Journal, 6:63–73, 2001. Springer-Verlag.

4. Australian Defence Science and Technology Organisation.
www.dsto.defence.gov.au.

5. Bang & Olufsen. www.bang-olufsen.com.
6. J.E. Bardram and C. Bossen. Moving to get aHead: Local Mobility and Collabo-

rative Work. In Proc. of 8th European Conference on Computer-supported Coop-
erative Work, pages 355–374. Kluwer Academic Publishers, 2003.

7. J. Billington, G. Gallasch, L.M. Kristensen, and T. Mailund. Exploiting Equiva-
lence Reduction and the Sweep-Line Method for Detecting Terminal States. IEEE
Transactions on Systems, Man, and Cybernetics. Part A: Systems and Humans,
2004. To appear.

Application of Coloured Petri Nets in System Development 681

8. C. Capellmann, S. Christensen, and U. Herzog. Visualising the Behaviour of Intel-
ligent Networks. In Services and Visualisation, Towards User-Friendly Design, vol-
ume 1385 of Lecture Notes in Computer Science, pages 174–189. Springer-Verlag,
1998.

9. ITU (CCITT). Recommendation Z.120: MSC. Technical report, International
Telecommunication Union, 1992.

10. Centre for pervasive computing. www.pervasive.dk.
11. A. Cheng, S. Christensen, and K.H. Mortensen. Model Checking Coloured Petri

Nets Exploiting Strongly Connected Components. In Proc. of the International
Workshop on Discrete Event Systems, WODES96. Institution of Electrical Engi-
neers, Computing and Control Division, Edinburgh, UK, 1996.

12. H.B. Christensen and J.E. Bardram. Supporting Human Activities – Exploring
Activity-Centered Computing. In Proc. of 4th Ubicomp Conference, volume 2498
of Lecture Notes in Computer Science. Springer-Verlag, 2002.

13. S. Christensen. Message Sequence Charts. User’s Manual, January 1997.
14. S. Christensen and J.B. Jørgensen. Analysis of Bang and Olufsen’s BeoLink Au-

dio/Video System Using Coloured Petri Nets. In Proc. of 18th International Con-
ference on Application and Theory of Petri Nets, volume 1248 of Lecture Notes in
Computer Science, pages 387–406. Springer-Verlag, 1997.

15. S. Christensen, L.M. Kristensen, and T. Mailund. A Sweep-Line Method for State
Space Exploration. In Proc. of 7th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, volume 2031 of Lecture Notes
in Computer Science, pages 450–464. Springer-Verlag, 2001.

16. S. Christensen, L.M. Kristensen, and T. Mailund. Condensed State Spaces for
Timed Petri Nets. In Proc. of 22nd International Conference on Application and
Theory of Petri Nets, volume 2075 of Lecture Notes in Computer Science, pages
101–120. Springer-Verlag, 2001.

17. E. Clarke, E.A. Emerson, S. Jha, and A.P. Sistla. Symmetry Reductions in Model
Checking. In Proc. of 10th International Conference on Computer-Aided Verifica-
tion, volume 1427 of Lecture Notes in Computer Science, pages 147–159. Springer-
Verlag, 1998.

18. E. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press, 1999.
19. E.M. Clarke, R. Enders, T. Filkorn, and S. Jha. Exploiting Symmetries in Temporal

Logic Model Checking. Formal Methods in System Design, 9(1/2):77–104, 1996.
20. A. Cockburn. Writing Effective Use Cases. Addison-Wesley, 2000.
21. Computer Systems Engineering Centre at University of South Australia.

www.unisa.edu.au/eie/csec/.
22. CPN Tools. www.daimi.au.dk/CPNtools.
23. The CPN Group at University of Aarhus. www.daimi.au.dk/CPnets.
24. J. Desel and W. Reisig. Place/Transition Petri Nets. In Lecture on Petri nets I:

Basic Models, volume 1491 of Lecture Notes in Computer Science, pages 122–173.
Springer-Verlag, 1998.

25. Design/CPN. www.daimi.au.dk/designCPN.
26. N. Dulac, T. Viguier, N. Leveson, and M.-A. Storey. On the Use of Visualization in

Formal Requirements Specification. In Proc. of 7th IEEE International Symposium
on Requirement Engineering, pages 71–80. IEEE Computer Society, 2002.

27. K. Jensen (ed.). International Journal on Software Tools for Technology Transfer,
Vol. 2, No. 2. Special section on Coloured Petri nets, 1998.

28. K. Jensen (ed.). International Journal on Software Tools for Technology Transfer,
Vol. 3, No. 4. Special section on Coloured Petri nets, 2001.

682 Lars Michael Kristensen, Jens Bæk Jørgensen, and Kurt Jensen

29. L. Elgaard. The Symmetry Method for Coloured Petri Nets. PhD thesis, Depart-
ment of Computer Science, University of Aarhus, July 2002.

30. M. Elkoutbi and R.K. Keller. User Interface Prototyping Based on UML Scenarios
and High-Level Petri Nets. In Proc. of 21st International Conference on Applica-
tion and Theory of Petri Nets, volume 1825 of Lecture Notes in Computer Science.
Springer-Verlag, 2000.

31. E. A. Emerson, A.K. Mok, A.P Sistla, and J. Srinivasan. Quantitative Temporal
Reasoning. In Proc. of 2nd International Workshop on Computer-Aided Verifica-
tion, volume 531 of Lecture Notes in Computer Science, pages 136–145. Springer-
Verlag, 1990.

32. E.A. Emerson and A.P. Sistla. Symmetry and Model Checking. Formal Methods
in System Design, 9(1/2):105–131, 1996.

33. Ericsson Telebit A/S. www.ericssontelebit.dk.
34. J. Esparza. Model Checking using Net Unfoldings. Science of Computer Program-

ming, 23:151–195, 1994.
35. Internet Engineering Task Force. Mobile ad-hoc networks.

www.ietf.org/html.charters/manet-charter.html.
36. G. Gallasch and L. M. Kristensen. Comms/CPN: A Communication Infrastructure

for External Communication with Design/CPN. In Proc. of the 3rd Workshop and
Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools, pages 79–93.
Department of Computer Science, University of Aarhus, 2001. DAIMI PB-554.

37. G.E. Gallasch, L.M. Kristensen, and T. Mailund. Sweep-Line State Space Explo-
ration for Coloured Petri Nets. In Proc. of 4th Workshop and Tutorial on Practical
Use of Coloured Petri Nets and the CPN Tools, pages 101–120. Department of
Computer Science, University of Aarhus, 2002. DAIMI PB-560.

38. S. Gordon, L.M. Kristensen, and J. Billington. Verification of a Revised WAP
Wireless Transaction Protocol. In Proc. of 23rd International Conference on Ap-
plication and Theory of Petri Nets, volume 2360 of Lecture Notes in Computer
Science, pages 182–202. Springer-Verlag, 2002.

39. G.J. Holzmann. Tracing Protocols. Bell System Technical Journal, 64:2413–2434,
1985.

40. G.J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall Inter-
national Editions, 1991.

41. G.J. Holzmann. An Analysis of Bitstate Hashing. Formal Methods in System De-
sign, 13(3):287–305, 1998.

42. C. Huitema. IPv6: The New Internet Protocol. Prentice-Hall, 1998.
43. C.N. Ip and D.L. Dill. Better Verification Through Symmetry. Formal Methods in

System Design, 9(1/2):41–75, 1996.
44. M. Jackson. System Development. Prentice-Hall, 1983.
45. I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard. Object-Oriented Soft-

ware Engineering: A Use Case Driven Approach. Addison-Wesley, 1992.
46. C. Jard and T. Jeron. Bounded-memory Algorithms for Verification On-the-fly. In

Proc. of 3rd International Workshop on Computer-Aided Verification, volume 575
of Lecture Notes in Computer Science, pages 192–202. Springer-Verlag, 1991.

47. K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical
Use. - Volume 1: Basic Concepts. Springer-Verlag, 1992.

48. K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical
Use. - Volume 2: Analysis Methods. Springer-Verlag, 1995.

49. K. Jensen. Condensed State Spaces for Symmetrical Coloured Petri Nets. Formal
Methods in System Design, 9(1/2):7–40, 1996.

Application of Coloured Petri Nets in System Development 683

50. K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical
Use. - Volume 3: Practical use. Springer-Verlag, 1997.

51. K. Jensen, editor. Proceedings Workshop and Tutorial on Practical Use of Coloured
Petri Nets and CPN Tools. Available via www.daimi.au.dk/CPnets, 1998-2002.

52. J.B. Jørgensen. Coloured Petri Nets in Development of a Pervasive Health Care
System. In In Proc. of 24th International Conference on Application and Theory
of Petri Nets, volume 2679 of Lecture Notes in Computer Science, pages 256–275.
Springer-Verlag, 2003.

53. J.B. Jørgensen and C. Bossen. Requirements Engineering for a Pervasive Health
Care System. In Proc. of 11th IEEE International Requirements Engineering Con-
ference, pages 55–64. IEEE Computer Sociery, 2003.

54. J.B. Jørgensen and C. Bossen. Executable Use Cases: Requirements for a Pervasive
Health Care System. IEEE Software, March/April 2004. To appear.

55. J.B. Jørgensen and S. Christensen. Executable Design Models for a Pervasive
Healthcare Middleware System. In In Proc. of the 5th UML Conference, volume
2460 of Lecture Notes in Computer Science, pages 140–149. Springer-Verlag, 2002.

56. L. M. Kristensen and A. Valmari. Finding Stubborn Sets of Coloured Petri Nets
Without Unfolding. In Proceedings of 19th International Conference on Application
and Theory of Petri Nets, volume 1420 of Lecture Notes in Computer Science, pages
104–123. Springer-Verlag, 1998.

57. L.M. Kristensen. Ad-hoc Networking and IPv6: Modelling and Validation.
www.pervasive.dk/projects/IPv6/IPv6_summary.

58. L.M. Kristensen, S. Christensen, and K. Jensen. The Practitioner’s Guide to
Coloured Petri Nets. International Journal on Software Tools for Technology
Transfer, 2(2):98–132, 1998.

59. L.M. Kristensen and T. Mailund. A Generalised Sweep-Line Method for Safety
Properties. In Proc. of Formal Methods Europe, volume 2391 of Lecture Notes in
Computer Science, pages 549–567. Springer-Verlag, 2002.

60. L.M. Kristensen and T. Mailund. A Compositional Sweep-Line State Space Explo-
ration Method. In Proc. of Formal Techniques for Networked and Distributed Sys-
tems, volume 2529 of Lecture Notes in Computer Science, pages 327–343. Springer-
Verlag, 2002.

61. P. Kruchten. The Rational Unified Process: An Introduction. Addison-Wesley, 1999.
62. B. Lindstrøm. Web-Based Interfaces for Simulation of Coloured Petri Net Models.

International Journal on Software Tools for Technology Transfer, 3(4):405–416,
2001.

63. L. Lorentsen and L. M. Kristensen. Exploiting Stabilizers and Parallelism in State
Space Generation with the Symmetry Method. In Proceedings of International
Conference on Application of Concurrency in System Design, pages 211–220. IEEE
Computer Society, 2001.

64. L. Lorentsen, A-P Tuovinen, and J. Xu. Modelling Features and Feature Inter-
actions of Nokia Mobile Phones Using Coloured Petri Nets. In Proc. of the 23rd
International Conference on Application and Theory of Petri Nets, Lecture Notes
in Computer Science. Springer-Verlag, 2002.

65. K. L. McMillan. A Technique of State Space Search Based on Unfolding. Formal
Methods in System Design, 6(1):45–65, 1995.

66. K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
67. K.H. Mortensen. Automatic Code Generation Method Based on Coloured Petri Net

Models Applied on an Access Control System. In Proceedings of 21st International
Conference on Application and Theory of Petri Nets, volume 1825 of Lecture Notes
in Computer Science, pages 367–386. Springer-Verlag, 2000.

684 Lars Michael Kristensen, Jens Bæk Jørgensen, and Kurt Jensen

68. C.J. Neill and P.A. Laplante. Requirements Engineering: The State of the Practice.
IEEE Software, 20(6):61–69, 2003.

69. OMG Unified Modeling Language Specification, Version 1.4. Object Management
Group (OMG); UML Revision Taskforce, 2001.

70. D. Peled. All from One, One for All: On Model Checking Using Representatives.
In Proc. of 5th International Conference on Computer-Aided Verification, volume
697 of Lecture Notes in Computer Science, pages 409–423. Springer-Verlag, 1993.

71. C.E. Perkins. Ad Hoc Networking. Addison-Wesley, 2001.

72. Pervasive Healthcare. www.healthcare.pervasive.dk.

73. S. Lawrence Pfleeger. Software Engineering: Theory and Practice. Prentice-Hall,
2nd edition, 2001.

74. Radio Frequency Identification. www.rfid.org.

75. J. L. Rasmussen and M. Singh. Mimic/CPN. A Graphical Simulation Utility for
Design/CPN. User’s Manual. www.daimi.au.dk/designCPN.

76. J.L. Rasmussen and M. Singh. Designing a Security System by Means of Coloured
Petri Nets. In Proc.of 17th International Conference on Application and Theory
of Petri Nets, volume 1091 of Lecture Notes in Computer Science, pages 400–419.
Springer-Verlag, 1996.

77. W. Reisig. Petri Nets, volume 4 of EACTS Monographs in Theoretical Computer
Science. Springer-Verlag, 1985.

78. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Refer-
ence Manual. Addison-Wesley, 1999.

79. The Standard ML Basis Library.
http://www.smlnj.org/doc/basis/pages/sml-std-basis.html.

80. M. Satyanarayanan. Challenges in Implementing a Context-Aware System. In Per-
vasive Computing, volume 1(3). IEEE, 2002.

81. M. Satyanarayanan, editor. Pervasive Computing, volume 1(1). IEEE, 2002.

82. A.J.H. Simons and I. Graham. 30 Things That Go Wrong in Object Modelling
with UML 1.3. In H. Kilov, B. Rumpe, and I. Simmonds, editors, Behavioral Spec-
ifications of Businesses and Systems. Kluwer Academic Publishers, 1999.

83. W. Stallings. Data & Computer Communications. Prentice Hall, 6th edition, 2000.

84. Systematic Software Engineering A/S. www.systematic.dk.

85. The SPIN Tool. netlib.bell-labs.com/netlib/spin/whatispin.html.

86. J.D. Ullman. Elements of ML Programming. Prentice-Hall, 1998.

87. A. Valmari. A Stubborn Attack on State Explosion. In Proc. of 2nd International
Workshop on Computer-Aided Verification, volume 531 of Lecture Notes in Com-
puter Science, pages 156–165. Springer-Verlag, 1990.

88. A. Valmari. The State Explosion Problem. In Lectures on Petri Nets I: Basic Mod-
els, volume 1491 of Lecture Notes in Computer Science, pages 429–528. Springer-
Verlag, 1998.

89. A. van Lamsweerde. Requirements Engineering in the Year 00: A Research Per-
spective. In Proc. of the 22nd International Conference on Software Engineering.
ACM Press, 2000.

90. M. Weiser. The Computer for the 21st Century. In Scientific American, volume
265 (3). Scientific American, Inc., 1991.

91. L. Wells. Performance Analysis Using Coloured Petri Nets. In Proc. of the Tenth
IEEE International Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems, pages 217–221. IEEE Computer Society, 2002.

Application of Coloured Petri Nets in System Development 685

92. L. Wells, S. Christensen, L.M. Kristensen, and K. Mortensen. Simulation Based
Performance Analysis of Web Servers. In Proc. of the 9th International Workshop
on Petri Nets and Performance Models, pages 59–68. IEEE Computer Society,
2001.

93. P. Wolper and P. Godefroid. Partial Order Methods for Temporal Verification.
In Proc. of 4th International Conference on Concurrency Theory, volume 715 of
Lecture Notes in Computer Science, pages 233–246. Springer-Verlag, 1993.

94. L. Zhang, L.M. Kristensen, C. Janczura, G. Gallasch, and J. Billington. A Coloured
Petri Net based Tool for Course of Action Development and Analysis. In Proc. of
Workshop on Formal Methods Applied to Defence Systems, volume 12 of Confer-
ences in Research and Practice in Information Technology, pages 125–134. Aus-
tralian Computer Society, 2001.

95. M.K. Zimmerman, K. Lundqvist, and N. Leveson. Investigating the Readability
of State-Based Formal Requirements Specification Languages. In Proc. of 24th
International Conference on Software Engineering, pages 33–43. ACM Press, 2002.

	1 Introduction
	2 Modelling Scenarios in Ad-Hoc Networking
	2.1 CPN Modelling of Mobility and Communication
	2.2 Modelling Mobility
	2.3 Modelling Communication
	2.4 Conclusions on Modelling Ad-Hoc Networking Scenarios

	3 Modelling Requirements in Pervasive Health Care
	3.1 The Pervasive Health Care System
	3.2 Medicine Administration
	3.3 Medicine Administration CPN Model
	3.4 Medicine Administration Animation
	3.5 CPN in Requirements Engineering for PHCS
	3.6 Conclusions on Modelling Requirements to the PHCS

	4 State Space Analysis of an Audio/Video Protocol
	4.1 The Revised BeoLink CPN Model
	4.2 Full State Spaces
	4.3 Timed Condensed State Spaces
	4.4 The Symmetry Method
	4.5 The Sweep-Line Method
	4.6 Conclusions on Audio/Video Protocol and State Space Analysis

	5 Implementation of a Planning Tool
	5.1 An Example Plan
	5.2 Engineering COAST
	5.3 The CPN Model
	5.4 Line of Operation Generation
	5.5 Conclusions on the Development of COAST

	6 Conclusions and Future Directions
	References

