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Abstract. Software engineering and Petri net theory are disciplines of
different nature. Research on software engineering focuses on a problem
domain, i.e., the development of complex software systems, and tries
to find a coherent set of solutions to cope with the different aspects of
the problem, while research on Petri nets investigates applications and
properties of a specific model (Petri nets).

When Petri nets can solve some problems of software development, the
two disciplines meet with mutual benefits: software engineers may find
useful solutions, while Petri net experts may find new stimuli and chal-
lenges in their domain.

Petri nets and software engineering have similar age: Karl Adam Petri
wrote his thesis in 1962, while the term “software engineering” was coined
in 1968 at a NATO conference held in Germany. The two disciplines met
several times in the past forty years with alternate fortune. Presently,
software engineering and Petri nets do not find many meeting points, as
witnessed by the scarce references to Petri nets in software engineering
journals and conferences and vice versa, but software engineering is facing
many new challenges and the Petri net body of knowledge is extending
with new results.

This paper attempts to illustrate the many dimensions of software en-
gineering, to point at some aspects of Petri nets that have been or can
be exploited to solve software engineering problems, and to identify new
software engineering challenges that may be solved with Petri net re-
sults. This paper does not have the ambition of completely surveying
either discipline, but hopes to help scientists and practitioners in iden-
tifying interesting areas where software engineers and Petri net experts
can fruitfully collaborate'.

1 Introduction

Software engineering presents several problems that can be attacked with many
different techniques and methodologies. Software engineers do not focus on a
particular technique or model to solve all problems, but select the solutions that
best fit the requirements for each different problem and context. Solutions that
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are excellent in a specific context and at a given time, may be sub-optimal in
other domains, may not suite well other problems, or may become obsolete in
other moments. Software specification and design are typical examples: structure
analysis based solutions that were very popular in the eighties, became less and
less popular in the nineties, and are now substituted by object oriented based
solution; client-server solutions that may solve well many classes of problems,
may be ignored in contexts that benefit from other equally good solutions. A
quick scan of software engineering handbooks, conferences, and journals would
clearly give a variegate picture from the methods and techniques viewpoint.

Disciplines like software engineering that focus on problems and search for the
best solutions regardless of the underlying methods or techniques can be identi-
fied as problem-oriented disciplines. The main characteristic of these disciplines
is the presence of many complex problems and the co-existence of alternative
solutions, none of which optimal per se. Problem-oriented disciplines are eclec-
tic, since problems may be solved in many different ways with radically different
techniques, and fickle, since techniques can be adopted and abandoned as the
field evolves [1].

Conversely, the research on Petri nets focuses on a “solution”: Petri nets. The
research on Petri nets is not driven by a problem domain that asks for successful
solutions, but is rather driven by a theory that is studied for solving problems
of different nature. Research on Petri nets investigates the various possibilities
presented by the theory, and proposes the theory to solve problems in different
domains. Advances in Petri nets can be used for attacking problems in computer
science, chemistry, biology, hardware design, software specification, distributed
computing, multimedia and so forth. Disciplines like Petri net research that
focus on theory and offer it for different application domains can be identified as
solution-oriented disciplines. Solution-oriented disciplines are homogeneous and
have a well-defined theory and a stable set of tools.

The meeting of problem and solution-oriented disciplines may bring enormous
benefits to both fields: problem-oriented disciplines may find efficient solutions
to key problems, while solution-oriented disciplines may find new stimuli in the
field. Unfortunately meeting of different disciplines is difficult: few scientists
understand different fields well enough to be able to see the potentialities for
cross fertilization, and blind attempts to investigate new fields to search for novel
solutions are often frustrated by skepticism and lack of successes. However, when
problem- and solution-oriented disciplines meet, the whole scientific community
can benefit from scientific and technological progresses. This is happening for
example in the meeting of biology and research on algorithms that is opening
enormous opportunities in bioinformatics.

Software engineering and Petri nets met several time in the past and the
meeting seeded interesting ideas in both fields. Useful applications of Petri nets
have been proposed in requirement engineering (e.g., [2]), reverse engineering
(e.g., [3,4]), design of user interfaces (e.g., [5]), modeling and analysis of safety
critical systems (e.g., [6]), distributed systems (e.g., [7,8]), real time systems
(e.g., [9-12]), multimedia systems (e.g., [13-17]), software process management
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(e.g., [18,19]), and software performance evaluation (e.g., [20]). However, the
cross fertilization has never stabilized an the two fields are passing a period of
scarce communication.

Software engineering is characterized by many dimensions that assume dif-
ferent relevance from different perspectives and are difficult to summarize and
frame. Figure 1 suggests three main dimensions: product development, process
support and application domain. Software engineers must find an adequate pro-
cess support to fit the different characteristics of the product for the specific
application domain. Each dimension includes many elements with mutually de-
pendent choices hard to concert in a successful project.

The first dimension considered in the figure is related to the development of
products, i.e., concerns with the development of software, and is characterized
by the specific aspects of the software system, the development phases and the
activities performed during development, and the involved stakeholders.

The aspects of software systems are the relations among components of the
system from different perspectives. They include structure and architecture, i.e.,
relations among components, functions, i.e., relations among values, behavior,
i.e., relations among processes over time, and non-functional properties, i.e.,
relations between the system and its environment. The distinct aspects can be
instantiated in many ways, but instantiations are not independent: the system
structure may strongly impact on the behavior of the system, which may impact
on non-functional properties or functions, and so on. For example, a pipeline
architecture may limit concurrency that may result in low performances. Thus,
factoring aspects independently can be hard and not always possible.

Software development includes different phases that span from requirements
analysis and specification to design, implementation and test. Each phase copes
with specific problems at distinct abstraction levels, and uses suitable tools and
techniques. Phases are not independent. Many activities performed in different
phases overlap and influence each other. The distinction of phases over time, as
postulated by the waterfall model, is merely conventional and does not reflect
the complex intertwining among phases, which characterize real life processes.
The real situation is better represented for example by the process model shown
in Figure 2, which captures the effort allocation among phases and process iter-
ations. The vertical slices of the figure show how effort is concurrently allocated
to different phases. Each vertical slice corresponds to a process iteration that
involves all phases. Each process iteration produces a complete version of the
software that improves the former version: inception and elaboration iterations
produce early prototypes, construction iterations produce beta versions and re-
lease candidates, transition iterations produces software evolutions.

Each development phase requires many activities, analysis, abstraction, mod-
eling, construction, refinement, documenting, testing, comprehension, refactoring,
reverse engineering, etc... System activities must adapt to the different phases
and may require different tools and techniques, depending on the phase in which
they are performed and the aspects of the developed system. For example, mod-
ern modeling methodologies offer many different models suited to distinct de-



442 Giovanni Denaro and Mauro Pezze

alnjonis

Methods

PROCESS SUPPORT

management

type

Languages

puropose

modeling

Multi Media

WorkFlow

Fig. 1. Software engineering dimensions

velopment stages and to different aspects (Figure 4 at page 447 illustrates this
issue in the case of the Unified Modeling Language.)

Software development involves many stakeholders who are involved with dif-
ferent roles, speak different languages, have different expectations, and focus on
different problems: users, analysts, software architects, developers, test design-
ers, managers, marketing analysts, etc... Software engineering must cope with
the different needs and must provide a suitable means to coordinate stakehold-
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ers. Lack of communication and comprehension among stakeholders can impact
on the overall costs and even on the success of the whole project. For example,
difficulties of analysts to understand the user language can lead to ill-designed
requirements, while difficulties of users to read design models can lead to poor
validation in the early stages, resulting in a final system that does not meet the
user requirements. Expertise and needs of stakeholders impact on activities, on
phases, and on the way system aspects influence the overall process. For exam-
ple, familiarity of users with specific notations may influence the organization
of system analysis and validation, the presence of an independent quality team
may impact on the planning of activities and phases, the lack of familiarity with
the application domain and the programming languages required by the user
may require specific training, and so forth.

The second dimension considered in the figure is the software process: a
suitable blend of methodologies, languages and tools that support the activities
of the stakeholders through the development phases of the different aspects of
the system.

Software development may involve many languages at different stages of de-
velopment, e.g., specification, design, development, as well as within the same
development phase, e.g., class diagrams, statecharts, interaction diagrams dur-
ing specifications, or different programming languages for different subsystems.
Languages involved in the development process are of different type (operational,
descriptive, executable, etc...) and style (textual, visual, diagrammatic, hybrid,
etc...). Languages affect other factors of the development process. For example,
the presence of code generators or tools for analysis for a given language changes
the effort required in specific phases, while strong user requirements, due for in-
stance to requests of certification agencies or the legacy of the application, may
impact on the organization of activities and roles.
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Human activities are supported and complemented by many tools, which
are responsible for shaping the process: planning and monitoring, configuration
management, design and specification, analysis, test case generators tools are es-
sential in mature development processes. Availability and functionalities offered
by tools may determine choices of methodologies, activities, people and phases.

The third dimension considered in the figure concerns the application do-
mains that emphasize different software characteristics that further impact on
the development process. The development of interactive, reactive, embedded,
real-time, distributed, mobile, batch systems may require different techniques,
tools, languages, phases, and people.

Thus large variety of dimensions and choices that characterize problem ori-
ented disciplines adds a critical dimension to the problems to be solved. Finding
solutions to single problems is not sufficient: single techniques must be suitably
blended within a general context and changes in one solution may affect many
other solutions to different problems. For example, techniques for test and anal-
ysis may require different approaches to specification, design and coding, they
may change the overall organization of the different development phases, they
may require new skills and training, they may be based on new tools that may
in turn impact on organization, methodologies, phases, and so forth.

Petri nets, as any solution-oriented discipline, cannot cope with all software
engineering problems, but they can help for an unexpected variety of problems
that involve all dimensions of software engineering. They can and have been suc-
cessfully used during software development for modeling and analyzing behavior
as well as non functional aspects both in the specification and design phases;
They can support analysis, abstraction, modeling and documenting activities;
They can provide a means for communication among users and analysts. They
have been proposed as specification language for analysis as well as a means for
modeling and enacting software processes. They have been used in many ap-
plication domains that include real-time, workflow, multimedia, and distributed
systems. Figure 3 summarizes the software engineering dimensions that can ben-
efit from Petri nets.

Surveying either of the two disciplines would be impossible in the length of
a single paper and it is out of the scope of this paper. Main goal of this paper is
to illustrate how Petri nets can and have been used through the three outlined
dimensions of software engineering, i.e., as models for software development,
for describing and enacting software processes, and for solving problems in the
specific domain of embedded real time systems.

2 The Role of Models in Software Engineering

The unexpectedly wide spectrum of applicability of Petri nets in software en-
gineering derives from the central role of models in this discipline. Engineering
software means describing and reasoning about the problem domain, the software
solution, and the process evolution: analysts must capture the problem domain
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to understand what has to be solved, designers must describe the system in terms
of its architecture, programmers and test designers must understand the data
and the control flow through the program, architects must capture the struc-

ture of systems to engineer and evolve applications, managers must build a cost
model to plan and monitor the process.
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Models are essential for communicating and reasoning about systems and
must adapt to the people and the properties of interest. Models must capture
the relevant system aspects in the different design phases; They must abstract
from details that hide the overall picture; They must provide a common lan-
guage for the different actors; They must support the analysis of the properties
of interest. No model suites all phases, aspects, activities, stakeholders, and char-
acteristics of software. The development of a single product usually requires the
construction and analysis of many different models. The requirements of a good
model depend from the goal of the model: models used for communication among
people must be easily understandable for all involved specialists; models used for
reasoning about properties must support efficient analysis of the target proper-
ties. For example, a detailed data flow model of a program can hardly be used for
discussing software requirements or design strategies, but may be excellent for
identifying anomalies in the code; conversely, use cases or interaction scenarios
provide little help for analyzing program properties, but are often used to dis-
cuss the system requirements among software specialists, and between software
specialists and domain experts.

During software development we need to discuss and reason about all aspects
of the systems: structure, function, behavior, non-functional properties. These
aspects cover a wide spectrum of elements, relations and views of the system.
Capturing such a variety of elements with a single language requires enormous
flexibility and generality that is hardly available in a single language. Universal
languages, e.g., natural languages, provide such wide-spectrum coverage, but in-
troduce ambiguities that reduce the possibility of analyzing properties. Modern
methodologies, e.g. UML [21], are grounded on sets of complementary languages
that cover different aspects for supporting communication and analysis of many
aspects at different levels. Sets of languages help describing different aspects
at different abstraction levels. In the case of UML, use case and sequence dia-
grams can be used in the early analysis phases to discuss early requirements with
domain experts, class diagrams, collaboration diagrams and Statecharts can sup-
port modeling of behaviors during the detailed design of the system, component
and deployment diagrams can model design and implementation details, as in
Figure 4.

Models are used for communicating design decisions among different stake-
holders. To this end, languages must be comprehensible to the involved people
and must suite goals such as documentation, analysis, testing, early validation
and problem understanding. For example, requirements analysis languages must
provide a means for communication among analysts, users, architects, test de-
signers, as well as software specialists, managers and marketing staff. Different
attitudes and purposes inspired a large variety of languages that span from
textual to visual and diagrammatic, from informal to formal, from detailed to
abstract, etc...

Models are used for systems with different characteristics and requirements,
e.g., interactive, reactive, embedded, real-time, control, workflow, distributed,
mobile, multimedia, web-based systems. Different languages provide means for
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Fig. 4. Support of UML diagram to the software process

dealing with distinct characteristics: for example, Statecharts have been designed
for reactive systems, Petri nets and process algebras for concurrent systems,
UML-RT for real time systems.

Software systems are extremely complex and can change both during and
after development. Constructing a complete and consistent model of the system
is almost impossible and never cost effective. Modeling languages must support
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flexibility, adaptability and instrumentability of specification and design. Soft-
ware developers need a suitable blend of precision, for supporting analysis, and
incompleteness that stems from lack of knowledge of the application domain and
evolving design.

3 Petri Nets for Specification and Verification

The variety of uses of models in software engineering requires modeling lan-
guages with properties that may be very different if not contradicting. It is
difficult to imagine a single language that satisfies all requirements and needs,
rather, software engineers tend to uses different modeling languages through the
many phases of software development, as well as within the same phase. Modern
methodologies, e.g., UML, are based on sets of modeling languages with different
characteristics that are integrated in a unifying framework as in Figure 4.

The main challenge in software engineering is rarely to invent yet another
modeling language, but more often it is to identify modeling languages suitable
to the specific needs, and to integrate them in a coherent framework.

As any other modeling language, Petri nets cannot satisfy all needs of soft-
ware engineering, but present features that can be appealing in many context
within the software development process. The ability of easily modeling concur-
rency and synchronization aspects, the intuitive graphic notation, the formal
semantics that supports powerful analysis capabilities and the availability of
several supporting tools make Petri nets an appealing candidate in many sit-
uations. However, despite these advantages and the success stories in several
application domains, Petri nets are not widely used in software engineering, and
successful methodologies often suggest alternative modeling languages, e.g., SDL
or Statecharts.

Goal of this paper is not to discuss the mutual diffusion of alternative model-
ing language, nor to identify the remote causes of relative successes and failures
that may change in a few years, as happened many times in the still young
history of software engineering. Rather, in this section, we will try to under-
stand limits of Petri nets in coping with software engineering problems aiming
at providing directions for further investigation.

Petri nets are available in many variants and extensions that span from
place/transition nets to high-level nets and timed Petri nets. Here we focus on
untimed models, leaving timed extensions to the next section, where we discuss
the usage of Petri nets in the domain of embedded real-time systems.

Place/transition nets provides an essential model of concurrency that can be
very useful in addressing specific problems. The absence of constructs for dealing
with data and negative conditions results in powerful analysis mechanisms, but
limits the applicability to many interesting software engineering problems, and
affects scalability.

Figure 5 illustrates the limits of place/transition nets from the modeling
viewpoint. The place/transition net of Figure 5 (a) captures the essence of the
problem (a process A that can either synchronize with process B or be inter-
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rupted by an asynchronous interrupt or by the expiration of a timeout), but
cannot model intuitively the duration of the timeout, or the conditions that
may govern the timeout or the interrupt handler: if all places interrupt, process
A, and process B are marked, the transition that fires is chosen non determinis-
tically among interrupt handler, timeout, or synchronization. We cannot easily
specify that transition timeout fires only if the token in place process A has a
given age, or that transition interrupt handler fires only if the interrupt has a
given priority or is of a given type. Figure 5 (b) illustrates the problems of scal-
ing the description to the presence of different handlers for different interrupts.
We can model several instances of interrupts of the same nature increasing the
number of tokens, but we cannot distinguish the single tokens, and thus, to keep
track of the identity of tokens we need to use different subnets.

interrupt process A process B

interrupt handler timeout synchronization

(a) Process A synchronizes with process B unless timed out or interrupted.

interrupt 3 interrupt 2 interrupt 1 process A process B

timeout synchronization

I !

interrupt handler 3 interrupt handler 2 interrupt handler 1

(b) Presence of different interrupt handlers for different signals.

Fig. 5. Limits of place/transition nets as modeling language. (Transitions and places
are labeled only for easy referencing)

Place/transition nets have been extended in several ways to overcome their
modeling limits: inhibitor arcs, priority, time and predicates help solving different
problems. For example, we can use predicates to distinguish different interrupt
handling routines, like in Figure 6 that shows a colored Petri net model for three
types of interrupt handlers that access resources “L” and “M” in different ways.

The top rectangle groups declarations of colors and variables. In the example,
we have two colors: “ITH”, corresponding to tokens of type “Interrupt Handlers”,
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and “R”, corresponding to tokens of type “Resources”. We have three types of

(134

handlers: “i”, “” and “k”, and two types of resources “I” and “m”. Variable
“x” of type “IH” is used in the expressions that annotate arcs to indicate an
interrupt handler. Places are annotated with the type of tokens they can contain,
and with a marking and an initialization expression. The marking is expressed
as a number in a circle and an expression nearby. Place ”L” is initially market
with three tokens of type “1” and Place “M” is marked with 2 tokens of type
“m”. The figure is a subnet of a larger model, place A is marked by the firing of
“ancestor” transitions. The initialization expression is expressed as an underlined
expression beside places and helps initializing the net. In the figure, the initial
marking corresponds to the effect of applying the initialization expression. Arcs
are annotated with expressions that indicate the number and type of tokens
flowing on the arcs. The firing of transition “T'1” removes a token of type “IH”
from place “A” and either a token of type “1” from place “L” if the considered
interrupt is of type “i” or “j”, or two tokens of type “1” if the interrupt is of
type “k”, and produces an “IH” token in place “B” with the same identity of
the token removed from the input place.

The special keyword “empty” indicates that no tokens of that type flows on
the arc. For example, handlers of type “j” and “k” release resources of type “1”
after the firing of transition “T2” (one and two resources, respectively), while
handlers of type “i” returns the resource of type “1” only after the firing of
transition “T'3”. Similarly, handlers of type “i” and “k” perform actions “T1”,
“T2” and “T3”, while handlers of type “j” stop after action “T2” and continue
with “T4”.

We can see that colored Petri nets allow identifying different handlers, and
to model handlers of different types without affecting the complexity of the net
structure, capturing identity and actions with colors and annotations.

The information captured by structure and annotations can be balanced in
different ways. For example, we could compact all states of the interrupt handlers
in a single state and use colors and predicates to describe the evolution of the
computation.

The various extensions of Petri nets and in particular colored Petri nets
(or, more generally, high-level Petri nets) are very useful for modeling many
software engineering problems, and find some important applications. Unfortu-
nately, adding modeling capabilities and “compacting” the structure solves only
some of the limits of the modeling language. Software engineers need flexible,
adaptable and scalable modeling notations: they need to change and adapt the
notation to the different abstraction levels, to the different stakeholders involved
in the development, to the different application domains, and to the evolution of
requirements during and after development. They need to cope with large prob-
lems and they look for models that help mastering complexity and size. Petri
nets, as many other formal methods, rarely provide the flexibility, adaptability,
modularity and scalability required in software development. Research in Petri
nets moved in two main directions: adding either modeling power or user-friendly
interfaces to Petri nets.
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case x of IH color IH = with i,j,k
i=>11 color R = with I,m
[j=>11 var x:IH
lk =>2'
©F]
case x of
R i =>2m
31 | j => empty
[k =>1m
case x of
i => empty @ 2'm
[j=>11
Ik => 21 ~ R
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else empty =
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i=> 1
| =>empty
i , [k =>1'x
if )I(—] then 21 case x of
else empty i => 2'm
| j => empty
X |k =>1'm
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Fig. 6. A colored Petri net model for a set of interrupt handling routines that access
resources “L” and “M”

Petri nets have been augmented in many additional ways with hierarchy
and object oriented constructs to add flexibility, adaptability and scalability,
i.e., the modeling power sought by software engineers. Although the different
extensions provide useful capabilities and find interesting applications, none of
them has a prominent role in software engineering yet. All these useful attempts
move in a single direction, ignoring the complexity of the software engineering
domain. Software engineering must consider modeling power, precision, ana-
lyzability, but also costs, understandability, tool support, and familiarity with
the notation. Similarly to programming languages, modeling languages succeed
when they present an appealing balance among the different needs. Stochastic
Petri nets represent a notable case: they do not present specific features that
make them more modular, flexible, adaptable or scalable than other Petri net
extensions, but they address a specific problem, namely performance evaluation.
When performance is prominent, and then the tradeoff among costs, training,
understandability, flexibility, adaptability and scalability is unbalanced towards
analysis, software engineers do not hesitate to use stochastic Petri nets in the
mosaic of notations adopted in the software development. The (limited, but no-
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table) success of stochastic Petri nets in software engineering may indicate a
direction to pursue to increase the applicability of Petri nets, or, from a pes-
simistic viewpoint, a limit of their applicability: finding specific problems where
Petri nets can provide an advantageous solution and adapting Petri nets to the
identified problems.

Recognizing that the main advantage of Petri nets, as well as other formal
methods, relies not in their intuitive modeling power as communication means,
but in their powerful analysis capabilities suggests a different research direction
that has been pursued by many scientists: finding “user-friendly” interfaces.
The approach is somehow similar to high level programming languages that pro-
vide a useful abstraction of the underlying machine and hide the complexity of
machine languages, but allow programmers to execute their code, i.e., to take
full advantage of the underlying machine language. Similarly, several scientists
have been worked on “dual-language” approaches where successful user-friendly
specification and design notations are paired with formal models that support
powerful analysis capabilities. The approach has been investigated with many
specification notations and formal models, including Petri nets. The straightfor-
ward operational semantics of Petri nets that supports different types of analysis
including “partial” analysis that can be obtained from example by executing par-
tial specifications, provide a strong advantage over other formal models, whose
semantics cannot be paired with many specification notations as easily as Petri
nets. Moreover, the huge body of knowledge on Petri nets and the immediate
modeling of concurrency aspects makes them more appealing than other formal
models with operational semantics.

Many scientists defined “compilers” from different specification notations (re-
cently UML, but in the past structured analysis, SDL, etc...) to Petri nets. “Tra-
ditional style compilers” that freeze a notation and provide a specific semantics
through a fix mapping to Petri nets forget the tradeoff among the variety of
aspects to be considered in software engineering: while the primary need of
executing the final code overcomes many other requirements, and thus makes
acceptable the use of programming languages with fixed and precise semantics,
flexibility, understandability and adaptability often overcome the need of ana-
lyzability in specifications, thus making it difficult to accept “frozen specification
notations”. Many projects tried for example to find “the” semantics of structured
analysis and provided tools for automatically capturing the identified semantics
with a mapping to Petri nets. The resulting frameworks allow for formally ana-
lyzing structured analysis, but limit the freedom of the analysts or the architects,
who cannot adapt the notation to the specific needs of the end-users, of the ap-
plication domains or of the changes in requirements. Few attempts survived a
few pilot projects.

Several scientists pursue an interesting alternative that consists of providing
flexible semantics, i.e., mappings from specification notations to formal models
that can be adapted to new needs and requirements. Mappings are given as
sets of rules that can be adjusted to meet different needs that result in different
interpretation of the same syntactic element or in modifications of the notation.
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Flexible approaches seem a better tradeoff for software engineering, but their
success is still bound to the ability of identifying a clear advantage in terms of
analysis capabilities added with Petri nets.

Software engineering is dealing with new problems that derive from the
rapid spread of new applications: pervasive computing, mobile applications, het-
erogeneous environments, software components that are reused in new unfore-
seen frameworks, context awareness and new constraints derived from resource
bounds like screen size (palm devices), variable bandwidth (mobile computing)
present new challenges that may not be easily addressable with traditional tech-
niques. The software engineering community is actively seeking new solutions
and ideas to address these new problems. Petri nets as many other modeling
languages may provide useful support to some new challenges, thus starting a
new time for collaboration among the two communities.

4 Petri Nets for Embedded Real-Time Systems

Petri nets can be used to address the needs of specific application domains. Here
we survey embedded real-time systems, which seem particularly well suited for
time and stochastic extensions of Petri nets. We will try to summarize the state
of art and the future trend in this important domain with respect to possible
uses of Petri nets.

In many application domains, software is embedded in larger systems. The
software is the heart of the systems: it sends control signals and receives feed-
back. The behavior of these systems is time dependent: the correctness of the
software cannot be expressed merely in terms of functional relations between in-
puts and outputs, but depends on the instants at which the results are produced.
A functionally correct result produced too late may be wrong. For example, a
drive-by-wire system that computes the correct maneuver for avoiding an obsta-
cle too late, e.g., after crashing into the obstacle, is obviously wrong regardless
of the produced value. Results produced too early may be wrong as well. For
example the signal for controlling the delivery of power to an electrical engine
cannot be produced too early, otherwise the engine may reach a wrong speed at
a wrong time.

Missing deadlines can have different consequences for different systems. In
some cases, it can be tolerated if it does not happen too frequently, while in
other cases, results must be always available within the deadlines. Although
the distinction is not sharp, we often classify real-time systems as hard and soft.
Hard real time systems do not tolerate missing deadlines. An approximate results
produced within the deadline may be preferable to an exact result produced too
late. This is the case of many control systems that must send control signals
when they are needed by the controlled systems: we prefer a vehicle to break a
bit too suddenly, because the control software computes an approximate control
signal, but avoids the collisions, to a vehicle that crashes because the ideal signal
is computed after the collision.
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Soft real time systems can tolerate some late results. For example, voice pack-
ets must be received with specific frequencies for reproducing the correct voice
signal, but a small percentage of late packets can be ignored without appreciable
degradation of the reproduced voice signal.

Hard and soft real time constraints often coexists in the same systems: the
GPS signal used by the drive-by-wire system as well as by the position display
on the driver console owns hard real time constraints in one case, since a late
signal to the drive-by-wire system may cause the vehicle to crash, and soft real
time constraints in the other, since a late signal to the driver display may not
be even perceivable to the end user.

The distinction between hard and soft real time system is important to iden-
tify suitable analysis techniques: performance analysis may be enough for soft
real time systems, but is rarely sufficient for hard real time systems.

Embedded real time systems can be composed of several concurrent subsys-
tems. They include at least the controller and the controlled system, but more
often, both the software controller and the controlled system include several
concurrent subsystems. Different components are often of different nature, the
behavior of the components of the controlled system is usually time-continuous,
while the behavior of the controlling software is usually time-discrete. The con-
trolled system and the controlling software interact through special purpose de-
vices (sensors and actuators) that may be responsible of failures. Moreover, the
timing of the system depends on elements that are usually not considered in
“traditional” systems: hardware, operating system, and middleware. Abstract-
ing from such elements may not be possible for not trivial real-time systems.

Embedded real time systems present many new challenges. Modeling and
analyzing systems in the early development phases requires models and analy-
sis technique that can capture the subtle intertwining between functional and
timing aspects, and that can model both continuous and discrete timing. The
correspondence between requirement specifications and code must take into ac-
count limited availability of resources and constraints that can derive from the
hardware and software platform. Analysis techniques must cope with new prop-
erties that include timing and safety properties.

Petri nets were originally proposed for modeling concurrent systems abstract-
ing away from timing aspects. Extensions of Petri nets for dealing with time have
been studied since the early seventies. We can identify two different approaches:
timed Petri nets that augment Petri nets with deterministic time, and stochastic
Petri nets that augment Petri nets with time probabilities.

Timed Petri nets have been proposed as early as 1974 by Ramchandani [22],
and by Merlin and Farber in 1976 [9]. Since the early proposals, Petri nets
have been extended with time in several ways, by adding time to either places
or transitions or both, by interpreting time as firing delay or firing duration,
by adding a single time value or a time set (interval) to transitions or places.
Different models satisfy different needs, but they are all substantially equivalent
from the semantic viewpoint.
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Sys1-ready [10,15] Sys2-ready [3,6]

system ready signal

process-signal [1,3]

Fig. 7. A simple timed Petri net. Transitions are augmented with pairs of numeric
values that represent the minimum and maximum firing time relative to the enabling
time, i.e., the instant at which all input places are marked. Labels are added only for
referencing. Marking is represented by black dots in places

Extending Petri nets with time can greatly affect the semantics. While weak
time semantics does not affect the locality of enabling, strong time semantics
violates the locality principle. Informally, weak time semantics considers the time
constraints as instants at which the modeled events will happen, if they happen,
while strong time semantics considers the time constraints as instants at which
the events must happen.

Let us consider for example the timed Petri net of Figure 7 that represents a
simple systems where an incoming signal can be handled by two different signal
handlers (Sys! and Sys2). Sys! required from 10 to 15 time units to become
ready, Sys2 requires from 3 to 6 time units. The signal is processed in 1 to 3
time units.

If we consider each transition “locally”, i.e., ignoring relations among firings
that may derive from time constraints, both transitions Sysi-ready and Sys2-
ready are enabled. If transition SysI-ready fires at time e.g. 10, transition process
signal is enabled in the interval (11,13}, i.e., between 1 and 3 time units after
the enabling at time 10. The firing of transition process-signal at time e.g. 12
consumes the tokens. Thus, the token in place signal is not available any more.
If we now consider again transition Sysl-ready enabled between 3 and 6, it can
fire e.g. at time 5. The considered sequence of firings can be ordered to obtain
a monotonically non-decreasing sequence with respect to time: Sysi-ready at
time 5, Sys2-ready at time 10, process-signal at time 12, obtaining a legal firing
sequence according to weak time semantics. This is true in general: each firing
sequence obtained by considering transitions locally is equivalent to a legal time
monotonically non-decreasing firing sequence according to weak time semantics.
This means that analysis performed on the underlying Petri net produces results
that are valid also for the timed net.

In the considered example, the obtained sequence represents the case in which
Sys1 becomes available for handling the signal at time 5, but does not handle
the signal for some reasons that are not explicitly captured by the model. The
signal is handled later by Sys2 that becomes available at time 10.
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Sys1-ready — >
Sys2-ready _ /
Process-signal \‘— 071777,
0 3 5678 10 15

Fig. 8. Weak vs. strong time semantics

Unfortunately, strong time semantics does not have this nice property. The
same firing sequence cannot be ordered according to strong time semantics, as
illustrated in Figure 8. Initially both transitions Sys! and Sys2 are “locally”
enabled, but transition Sys! must fire before its deadline (time 6). The firing of
transition Sys2 e.g. at time 5 enables transitions process-signal within the time
interval (6, 8). Transition process-signal must fire before time 6. Transition SysI
can fire only after the firing of transition process-signal, e.g., at time 10. Since
transition process-signal is forced to fire before time 8, removing the token from
place signal, the token produced by the firing of transition Sys! cannot enable
transition process-signal, differently from the case of weak time semantics.

The model used in Figure 7 that associates firing fixed time intervals to
transitions cannot capture all aspects of real time systems. In particular, we
cannot model complex intertwining between timing and functional aspects. Let
us assume for example that the processing of the signal depends on the load of
the system that handles it, and that the choice of the handling system depends on
the characteristics of the incoming signal. The fixed time interval associated to
transition process-signal that indicates the minimum and maximum firing time
as constants can approximate the modeled system by indicating an upper and
a lower bound, and cannot express complex conditions for selecting the signal
handler depending on the nature of the signal.

Complex intertwining between timing and functional aspects can be modeled
by merging timed and high-level Petri nets (HLTPN). HLTPNs associate data
(and timestamps) to the tokens, and predicates, actions and time functions to
transitions, as shown in Figure 9.

Soft real time systems can be modeled and analyzed with stochastic Petri
nets that were first proposed in the late seventies by Sifakis [23] and later ex-
tended by many scientists. Stochastic Petri nets augment transitions with a
distribution of probability that the transition will fire. Figure 10 shows a simple
example of generalized stochastic Petri nets: a processing task that may or may
not require instrumentation, and may or may not require elaboration. The two
choices are represented with the two pairs of conflicting transitions need instru-
mentation, instrumentation ok, and need processing, system ok. Black transitions
indicate immediate transitions, i.e. transitions that fire immediately, represent-
ing instantaneous decisions, while white transitions indicate timed transitions,
representing the termination of actions with given durations. Transitions are
associated with a priority 7 and a weight W. Immediate transitions fire first,
while timed transitions fire only when no immediate transition is enabled. Pri-
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type,
load

Sys1-ready Sys2-ready

type, type
load
system ready signal

process-signal
predicate: suited(system_ready.type, signal.type)
action: .....
tMin: minTime(system_ready.load)
tMax: maxTime(system_ready.load)

Fig.9. A simple HLTPN. Data associated with tokens are represented with types.
Predicates, actions and time intervals associated with transitions are partially given
only for transition process-signal. The predicate requires the evaluation of a boolean
function suited that computes the suitability of the system to process the signal. The
time interval can be computed by evaluating functions minTime and maxTime that
compute the minimum and maximum firing time according to the load of the system

process

need instrumentation
instrument

n5=1
W5 =2
W2 =1 system ok
instrumentation ok

Fig. 10. A simple generalized stochastic Petri net

ority defines a (partial) order of firings among transitions of the same kind. The
weight indicates the frequency of firings for immediate transitions with equal
priority, and a distribution of probability that describes the firing time of timed
transitions.

In the example, transitions need instrumentation and instrumentation ok
have the same priority and fire with a ration of 9:1, while transitions need pro-
cessing and system ok, also with equal priority, fires with a ration 8:2.
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Stochastic Petri nets support powerful performance analysis that determines
their success in important application domains. Timed Petri nets support time
reachability analysis.

Real time systems are quickly evolving: the spread of SoC (System on a Chip),
the vanishing distinction of hardware and software components, the increasing
use of COTS (Components-Of-The-Shelf) in complex real time systems, the
introduction of Internet connectivity introduce new challenges that call for new
methodologies and techniques and open new potentialities to Petri nets as well
as other formal methods.

5 Software Processes

Complex software is developed by a set of specialists that use many techniques
and tools, and collaborate over a long period of time to design, develop and
maintain a suitable product. Often, nobody knows all the details of a software
product, but different actors share partial views of the system. For example,
managers and analysts may have an abstract view of some aspects of the overall
system, but may not know all implementation details, while architects, designers,
programmers and test engineers may have a detailed view of part of the software,
but not be familiar with other parts.

People, techniques and tools must be suitably coordinated and organized over
time to assure the success of a project, i.e., the developed of the right product
within time, resource and environmental constraints. The overall organization of
the activities required to develop, test and maintain a software product is called
a software process.

A software process consists of a set of interacting software engineering activ-
ities aimed at producing (and maintaining) a software product. A key property
of a software process is wvisibility, i.e., the ability of examining progresses and
results. Process visibility gives the possibility to monitor and steer the process
towards its goals. Visibility is often achieved by identifying different phases and
associating activities and phases with the production of intermediate artifacts,
such as, requirements specifications, design specifications, code and quality re-
ports, which are often associated with process milestones.

Large projects span over many months. Requirements are seldom clear at
the beginning of the project. Usually a first core of requirements is detailed
and expanded through the process following the increasing understanding of the
problem and the solution, and adapting to the evolution of the domain. Systems
are rarely developed as single monolithic products. More often, systems are de-
veloped incrementally though several iterations that produce many prototypes
and releases that increasingly approximate the final product. Process phases can
seldom be organized as separate development steps, as postulated by the water-
fall process model. They often overlap with complex interaction patterns that
must be suitable organized and monitored. Software projects usually involve
separated teams that work concurrently on different phases of the process.
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The large variety of situations results in many different requirements that
cannot be fully captured by a standard process. Each project has its own prop-
erties, and requires a specific process. The definition and implementation of a
software process is a complex activity that can and shall be suitably programmed
and executed [24]. Software processes must be suitably described to guide and co-
ordinate the key activities, and to push forward repeatability and controllability
of the processes. Rigorous software process descriptions enable the development
of tools to enact process descriptions thus automating coordination of activities,
tools and people. The definition of precise process models is also referred to as
software process programming.

The goal of software process programming is the creation of process-centered
software engineering environments (PSEEs), i.e., information systems that sup-
port the enactment of software processes. The core of a PSEE is a Process Mod-
eling Language (PML), i.e., the language used to describe the target processes.
Ambriola et al. outline the main requirements for a PML [25], which can be
summarized as follows:

Modeling concurrency: Concurrency is intrinsic in software processes. PMLs
must be able to clearly capture the concurrency of activities and their syn-
chronization.

Modeling products: The artifacts produced during software development are
complex and strictly interrelated. For example, a test report that points
out a failure of a software system must be related to the tested software
version and to the revealing test case, which in turn is related to a number
of implementation artifacts (e.g., test drivers and stubs). PMLs must take
into account the structure of the artifacts involved in the process and their
mutual relationships.

Managing tool integration: Software process activities are supported by sev-
eral tools (e.g., editors, compilers, debuggers, configuration management sys-
tems, and so forth). Mechanisms to control at a fine-grained level the tools
involved with the process are essential for managing the interactions between
a PSEE and its users in an effective way. PMLs must provide both active
and reactive mechanisms to allow the PSEE to send messages to external
tools and to react to messages from external tools, respectively.

Supporting process enactment: Software process descriptions must be in-
terpreted to provide automatic support to processes when they are executed
(process enactment). PMLs must produce operational descriptions with well-
defined non-ambiguous semantics.

Supporting analysis: PMLs must support verification of important proper-
ties, e.g., absence of deadlocks, against process descriptions.

Supporting evolution: Software process improvement is an important issue
in software engineering and has been the target of important industrial and
research activities in the last years. For example, the SEI Capability Matu-
rity Model (CMM [26]) defines a framework for assessing the level of matu-
rity of a software process. This framework consists of five maturity levels.
At the fist level, software processes are chaotic and uncontrolled, activities
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(“my unit", )} (‘test2", )J

(“test1”, )}

TestCases:
class TestCase
inherits ModelType
type tuple
(public name: String,
public testData: Text)

UnitUnderTest:
class ExecUnit
inherits ModelType

[event StartTesting ...

CumulativeTestResults:
class TestSummary

TestData: inherits ModelType

class ExecTest
inherits ExecUnit, TestCase

event AllTestCasesRun(CTR, TRS: TestSummary)
guard CTR->pendingTestsNum > 0

action {TRS = CTR}

event ExecuteTest (T: TestData)
Action{// calls the testing tool}

event AddToTestResults ]

TestResults:
class TestResult
inherits ModelType

TestReport:
class TestSummary
inherits ModelType

Fig. 11. Description of a generic unit test session in SLANG

are carried without any explicit guideline and there is no description of the
process. The introduction of methods and technologies such as configuration
management, quantitative measurement, quality control and process descrip-
tion, is expected to gradually increase the maturity of a software process and
correspondingly its capability of dealing successfully with complex software
projects. At level 5, software processes are continuously improved based on
the experience and data accumulated over time. Mature software processes
must support evolution of the the process descriptions. To this end PMLs
must possess reflexive features allowing to modify process descriptions either
off-line or on-the-fly.

Petri nets present several nice properties that make them particularly ap-
pealing as PML: They have a precise semantics; They provide an intuitive way
of modeling concurrency and non-determinism; Their marking supports easily
modeling of the process state, thus facilitating the representation of milestones
and conditional choices; Their operational semantics allows to easily represent
and analyze process enactment; Their intuitive visualization provides an excel-
lent communication means; There exists a large body of theory that support
analysis of many properties under different assumptions; There are many sup-
porting tools.

Basic Petri nets have been extended and specialized in several ways to cover
all requirements of a PML, by adding reflexivity, features for modeling process
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artifacts, and mechanisms for managing tool integration. Extensions of Petri nets
to cope with process modeling aspects are illustrated in the example of Figure 11
that shows a model of a generic unit test session in SLANG (the PML of the
SPADE PSEE [19]). The availability of both the unit under test and a set of
corresponding test cases triggers the testing activity that starts setting up the
testing environment and starting the tracking of cumulative test results. The
test results are incrementally cumulated while executing the test cases. When
all test cases have been executed, a test report is generated.

SLANG extends high-level Petri nets, using tokens to represent the process
data. SLANG tokens are structured objects whose types are defined in the tradi-
tional object-oriented style, i.e., as a data structure that can be accessed through
a set of exported operations. The net places are associated with a type (a.k.a.
class) and they can contain only objects of the associated type. All SLANG types
are organized in a type hierarchy as specified by the inheritance relation. The
object oriented-paradigm makes it possible to describe the structure of software
artifacts. For example, in the figure, the test cases are described as tuples with
two fields: a string that identifies the test case by name and a text that describes
the test data.

The transitions that in SLANG are called events are associated with guard
predicates that control their execution, and actions that that describes the effect
of the firings on the tokens. A transition can fire if enabled by the associated
guard predicate evaluated on the tokens in the input places. Its firing removes the
tokens from the input places and produces tokens in the output places according
to the associated action. For example, in the figure, the transition AllTestCases-
Run is not enabled (guarded) until there are still test cases to execute. Its firing
produces the test report from the incrementally generated test summary.

SLANG uses special black transitions and user places to integrate CASE
tools. Black transitions send asynchronous messages to external tools as part of
their action. User places (double circles) change their content as a result of an
event that happens in the user environment. For example, in the figure, the event
FEzecuteTest is a black transition whose action calls an external testing tool for
executing the test cases. After the execution of each test case, the external tool
will produce a token in the user place TestResults, thus allowing the process to
progress.

SLANG provides reflexive features for dynamically modifying a process de-
scription. Figure 12 shows a SLANG type hierarchy that includes both the pre-
defined SLANG types and the user defined types for the previous examples.
All types that participate to a process description derive from the predefined
type Token that defines the set of properties common to all tokens. All user
defined types inherit (directly or indirectly) from the predefined type Model Type
which is a direct descendent of Token. The set of predefined types includes three
additional types: Activity, Meta type and Active copy that allow to access the
activity definitions, the user type definitions and the instantiated copies of a
process during enactment, respectively. The specification of how to modify the
process can be part of the process description itself.
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Token
Activity ActiveCopy MetaType ModelType

< 4 AW SLANG predefined types

User defined types

ExecUnit TestCase TestResult TestSummary

>

ExecTest

Fig.12. A SLANG type hierarchy

Thirty years of research solved many problems in software process model-
ing, but some are still open: tolerability to inconsistencies and incompleteness,
non-intrusiveness of PSEE, inconsistency management are some of the problems
where Petri nets can find new applications.

6 Further Readings

The literature on software engineering and Petri nets is immense and finding a
good compass is hard. Here we try to indicate some doors to access the enormous
body of knowledge for identifying areas of common interest for software engineers
and Petri net experts following the schema of this paper.

A good way for understanding problems and dimensions of software engineer-
ing is the volume “Future of Software Engineering” published in 2000 [27]. The
introduction illustrates the many dimensions of the discipline, while the many
papers present the current trends of the most important areas.

Modeling languages have been widely studied and it is difficult to identify
a good survey. Interested readers can find a general overview in software engi-
neering handbooks, e.g., in [28], [29] or [30]. A good survey of formal methods is
given by Wing [31], while an interesting discussion on the role of formal methods
in software engineering is proposed by Saiedian [32]. The different models that
comprise the UML approach are illustrated in many book, e.g., [21].

A comprehensive overview of Petri nets is given in [33]. Colored Petri nets
together with a sample of industrial applications are presented in Jensen’s books
[34-36]. The volume edited by Agha and De Cindio discusses the use of Petri
nets in the object oriented framework [37].

Approaches for mapping various notations to Petri nets have been proposed
by many authors: [38-42]. Rule based mappings have been proposed by Paige [43]
and Baresi et al. [44].

Stochastic Petri nets are presented in the books by Bause and Kritzinger and
by Ajmone Marsan et al. [45,46]. Timed Petri nets are discussed in the classic
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paper by Merlin and Farber [9], while high-level timed Petri nets (ER nets, in
the paper) and weak and strong time semantics have been introduced by Ghezzi
et al. [11]. Time Petri nets are overviewed also in in the book by Nissanke [12].
Time reachability analysis is discussed by Berthomieu and Diaz [10] for timed
Petri nets, and by Ghezzi et al. for high-level timed Petri nets [47].

The term “software process” was first proposed by Osterwiel in his seminal
paper [24]. Various PSEE are discusses in many papers, e.g., [48,49,19, 18]) The
possibility of using Petri nets as a PML for describing workflows of business
processes and many results related to the use of Petri nets for this purpose have
been described in Chapter 12 of this book.

7 Conclusions

The meeting of problem- and solution-oriented disciplines can lead to important
progresses in both areas. Petri nets provide an excellent means for modeling
concurrent aspects and have been extended in many ways to cope with many
problems. Petri nets have been successfully applied many times to several soft-
ware engineering problems. However, the two disciplines do not go through a
period of particularly strong cross fertilization. This paper tried to overview
some aspects of software engineering, pointing to aspects where Petri nets have
been or can be proposed as solutions to critical problems. We hope to have pro-
vided few ideas to foster new fruitful collaborations between the two disciplines.
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