
A Coloured Petri Net Approach
to Protocol Verification�

Jonathan Billington, Guy Edward Gallasch, and Bing Han

Computer Systems Engineering Centre
University of South Australia

Mawson Lakes Campus, SA 5095, Australia
jonathan.billington@unisa.edu.au,

{guy.gallasch,bing.han}@postgrads.unisa.edu.au

Abstract. The correct operation of communication and co-operation
protocols, including signalling systems in various networks, is essential for
the reliability of the many distributed systems that facilitate our global
economy. This paper presents a methodology for the formal specifica-
tion, analysis and verification of protocols based on the use of Coloured
Petri nets and automata theory. The methodology is illustrated using
two case studies. The first belongs to the category of data transfer pro-
tocols, called Stop-and-Wait Protocols, while the second investigates the
connection management part of the Internet’s Transmission Control Pro-
tocol (TCP). Stop-and-Wait protocols (SWP) incorporate retransmission
strategies to recover from data transmission errors that occur on noisy
transmission media. Although relatively simple, their basic mechanisms
are important for practical protocols such as the data transfer procedures
of TCP. The SWP case study is quite detailed. It considers a class of pro-
tocols characterized by two parameters: the maximum sequence number
(MaxSeqNo) and the maximum number of retransmissions (MaxRetrans).
We investigate the operation of the protocol over (lossy) in-sequence
(FIFO) channels, and then over (lossy) re-ordering media, such as that
provided by the Internet Protocol. Four properties are considered: the
bound on the number of messages that can be in the communication
channels; whether or not the protocol provides the expected service of
alternating sends and receives; (unknowing) loss of messages (i.e. data
sent but not received, and not detected as lost by the protocol); and the
acceptance of duplicates as new messages. The model is analysed using
a combination of hand proofs and automatic techniques. A new result
for the bound of the channels (2MaxRetrans+1) is proved for FIFO chan-
nels. It is further shown that for re-ordering channels, the channels are
unbounded, loss and duplication can occur, and that the SWP does not
provide the expected service. We discuss the relevance of these results
to the Transmission Control Protocol and indicate the limitations of our
approach and the need for further work. The second case study (TCP)
illustrates the use of hierarchies to provide a compact and readable CPN
model for a complex protocol. We advocate an incremental approach to
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both modelling and analysis. The importance of stating the assumptions
involved is emphasised and we illustrate how they affect the abstractions
that can be made to simplify the model. The incremental approach to
analysis allows us to validate the model against the TCP definition and
to show how errors in the connection establishment procedures can be
found. Finally we provide some observations and tips on the how the
methodology can be used based on many years of experience. The em-
phasis of the paper is on providing a tutorial style introduction to the
methodology, examining case studies in depth, rather than breadth, and
giving some insight into the process while noting its limitations.

1 Introduction

The global economy is becoming more and more dependent on distributed sys-
tems. An important example is the Internet which connects millions of computers
all over the world via the interconnection of thousands of networks. It provides
the infrastructure for the world wide web and email and the development of new
information services such as electronic commerce, GRID computing, web services
and mobile data services. At the heart of distributed systems are the commu-
nication and co-operation protocols that ensure that the required services are
provided to their users. It is thus vitally important that these protocols operate
correctly.

A protocol needs to satisfy a set of properties defined for the communication
service it is meant to provide (e.g. data is neither lost nor duplicated and arrives
in sequence, and there are no deadlocks). Proving that a protocol satisfies its
required properties is known as protocol verification. Protocol verification [40,70]
is a difficult problem due to inherent complexity [77].

This paper summarises a protocol verification methodology set in the context
of the broader field of protocol engineering [9]. The paper does not attempt to
compare the merits of this approach with other approaches. For a comparison of
the main techniques for protocol specification and analysis, including the Petri
net approach, the reader is referred to a recent survey by Babich and Deotto [4].

Coloured Petri Nets [48–50,53] have been used successfully for the modelling
and analysis of a wide range of concurrent and distributed systems [50] includ-
ing communication systems and protocols [11, 14, 23, 24, 31, 32, 51, 83]. Thus the
methodology uses Coloured Petri Nets for the specification of protocol behaviour.

In order to prove that the protocol specification satisfies the requirements of
its users, a higher level specification, known as the service specification is also
modelled with Coloured Petri Nets (CPNs). We then wish to prove that the
protocol specification is a refinement of the service specification, in that it com-
plies with the sequencing constraints on user observable events (known as service
primitives) that are embodied in the service specification. These constraints can
be expressed as the service language: the set of sequences of service primitives at
each of the user interfaces. In principle, the service language can be derived from
the CPN service specification by generating its occurrence graph (reachability
graph, state space), converting it to an automaton by nominating halt states and
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labelling events that are not observable (by users) as empty, and then reducing
this automaton to its minimised deterministic form using standard automata
reduction techniques.

We can follow the same approach with the protocol specification, masking
out internal events such as retransmissions, to obtain the protocol language:
the set of sequences of service primitives generated by the protocol. We then
compare the protocol and service languages. If they are the same, then we can
say that the protocol specification satisfies the service sequence constraints. If
the protocol language is a subset of the service language, then the protocol
satisfies the constraints, but may not provide all the desired features of the
service. Finally if the protocol language is not a subset of the service language,
then it contains sequences that are erroneous (if the service language has been
defined correctly).

We are also interested in other behaviour of the protocol, such as whether
or not it will deadlock or livelock in various circumstances. In general, we need
to define (a priori) a set of properties that the protocol needs to fulfill, such as
correct termination or transparent delivery of data. These properties can be ex-
pressed in some language (often a temporal logic) and model checking techniques
used over the occurrence graph (OG) to prove their existence or otherwise. Thus
our methodology comprises two parts: the first checks sequencing constraints
are satisfied at the user interface; the second proves general properties (such as
boundedness or absence of deadlock) and specific protocol properties by hand
proofs on the CPN model or by investigating the occurrence graph.

After presenting the methodology in some detail in Section 2, this paper for-
malises the methodology in Section 3 and illustrates it with two case studies.
The first of these is concerned with data transfer procedures and comprises the
class of Stop-and-Wait protocols [73] (see Sections 4 to 8). This is motivated by
their basic mechanisms being important for practical protocols such as the In-
ternet’s Transmission Control Protocol (TCP). The second case study (Sections
9 to 12) investigates the connection management part of protocols, using the
rather complex 3-way handshake of TCP. The paper also attempts to provide
some guidelines for modelling and analysing protocols using high-level Petri net
techniques based on twenty-five years experience of the first author and the work
of his colleagues and students. The paper does not aim to be complete, it does
however aim to give some insight and detailed illustrations of a Coloured Petri
Net approach to protocol verification.

2 Protocol Verification Methodology

Our first attempts to develop a protocol verification methodology were published
in [19]. Since then we have used it with some success to verify that industrial
scale protocols do or do not meet their service specifications [34–37, 39, 55, 58,
59, 74, 78, 80].
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The main steps of the methodology are:

1. Service specification: specify the service to be provided to the users of the
protocol under investigation;

2. Protocol specification: specify a protocol entity for each party involved in
communication;

3. Underlying service specification: specify the characteristics of the commu-
nication medium by which the different protocol entities communicate, by
defining the communication service provided by the underlying service in the
protocol architecture;

4. Composite specification: combine the protocol specification with the speci-
fication of the medium to obtain a composite specification of the protocol
entities communicating over the underlying service;

5. Analysis: analyse the composite specification using reachability analysis
and/or theorem proving to investigate desired properties of the system; and

6. Comparison: compare the service specification with the composite specifi-
cation to see if the composite specification is a faithful refinement of the
service.

2.1 Service Specification

This first step of the methodology has led to the development of formal service
specifications using high-level nets for a number of protocols. The first of these
was for the ISO Open Systems Interconnection (OSI) Transport Service [7]. The
OSI standardisation effort had strongly supported the notion of service speci-
fication and promulgated guidelines for their development, known as the OSI
service conventions [46]. This has greatly assisted the development of formal ser-
vice specifications. In the case of OSI and other protocol development forums,
such as ITU-T [41] and the Wireless Application Protocol Forum [81], this has
led to the inclusion of service definitions as an integral part of developing pro-
tocol specifications. In contrast, this has not been the case in the development
of Internet drafts and Request for Comments (RFCs) used in the Internet com-
munity.

Integral to the development of service specifications is the notion of a service
primitive. A service primitive represents an interaction between the user of the
service (often another protocol entity in a higher layer) and the provider of the
service (i.e. the protocol operating over its underlying service). It corresponds to
some feature of the service, such as a request by a user to establish or release a
connection or to transfer data, or an indication by the provider that a connection
has been requested by a remote user. Primitives are meant to be implementation
independent, allowing them to be implemented in various ways such as message
passing or procedure calls. They are also considered to be atomic events in service
specifications, and are readily modelled by labelling transitions in a Coloured
Petri net with the name of the primitive.

In an attempt to verify industrial protocols we have recently developed a
number of service specifications. These have included the Wireless Application
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Protocol (WAP) transaction layer [35] and the capability exchange signalling
(CES) protocol of ITU-T recommendation H.245 [56], where the service defini-
tions exist in the standards documents. We have also attempted to create service
specifications for Internet Request for Comments such as the Resource Reserva-
tion Protocol (RSVP) [78,79],the Internet Open Trading Protocol (IOTP) [58,60]
and the Internet’s Transmission Control Protocol (TCP) [15,16]. We have found
that the specification of services has ranged from relatively straightforward
(WAP) to requiring significant ingenuity.

Although the CES protocol and service are very simple, ensuring that the ser-
vice specification properly reflected the sequences of service primitives required
complex synchronisation mechanisms [56]. The work for RSVP and IOTP was
much more complicated, firstly due to the complex nature of the protocols and
secondly that no service definitions had been written as part of the standard-
isation process. With IOTP there was the added complexity of catering for 4
interfaces, due to there being 4 user roles (Consumer, Merchant, Payment Han-
dler and Delivery Handler). This complexity has led to the development of local
automata which express the sequencing constraints at each one of the interfaces
separately, before trying to define the global sequences by converting the au-
tomata into Coloured Petri nets (CPNs) and synchronising them via queues.
We considered that attempting to directly build the correct CPN (covering all
interfaces at once) would be too error prone, and that a divide and conquer
approach of specifying local interface sequences first, as is done in the service
conventions, would be an easier task. This has led to defining a validation step
when specifying services this way. The validation step comprises proving that
the CPN service specification does conform to the local sequences as defined
by the local automata. This is done using reachability analysis and automata
reduction techniques [5]. Interested readers can consult [60] for the details. For
complex service specifications (such as IOTP), this validation step has proved
to be of significant value, as now an iterative approach is used to remove errors
from the CPN specification of the service.

Our experience with both the CES protocol and TCP has shown that the
reachability graph for many service specifications is not finite. This is due to the
service provider (e.g. the Internet) having an unknown storage capacity (number
of buffers) and that the service allows an arbitrary number of service data units
to be accepted by the service provider, before they are delivered to a peer user.
This has important ramifications for our comparison step, which we shall return
to below in section 2.3.

2.2 Protocol, Underlying Service and Composite Specifications

Currently we tend to consider steps 2 to 4 together, whereas step 1 is quite
independent, and could be performed by a separate member of the protocol
verification team, concurrently with steps 2 to 4. The reasons for considering
these 3 steps together are that:

– it is important that the level of abstraction used for modelling the underlying
service and the protocol entities is the same;
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– for verification, the precise architectural location where the underlying ser-
vice is considered, may not correspond to a strict layer boundary; and

– separate specifications for the protocol and underlying service tend to gen-
erate a larger state space when combined, due to there being ways of opti-
mising the specification at the boundaries when the composite specification
is considered.

Regarding the first point, normally we consider protocol data units (packets)
as being transferred through the underlying medium, rather than service data
units.

We illustrate the second point by considering how to model the error detec-
tion mechanism in protocols that need to recover from transmission errors. To
detect transmission errors, packets contain redundant bits known as a checksum.
The operation of checksums is very well known and either does not need to be
verified or can be verified separately. We thus can assume that the checksum
works correctly and then use a non-deterministic approach to model the effect
of the checksum: a packet is accepted as correct (passes the checksum) or is dis-
carded (fails the checksum). The effect is that one possible action is to discard
(or lose) the packet. The processing of a checksum is an operation that occurs
on the contents of the whole packet, and thus it is done before the details of the
main protocol mechanisms are considered. Thus checksum processing, although
part of the protocol, can be considered as a preliminary layer that can be com-
bined with the characteristics of the medium (underlying service). This loss of
a packet (due to the checksum) can then be combined with a lossy medium -
such as that provided by the Internet Protocol (IP) [61] - where packets can be
dropped at routers due to congestion. Hence we only need to model the loss of
a packet once. It may be due to a bit error, or due to congestion, but from the
point of view of the major protocol mechanisms, it does not matter. Thus when
modelling a transport protocol such as TCP, we only model above the checksum
procedures of TCP, and hence the boundary for verification is not strictly at the
TCP and Internet Protocol boundary.

When using hierarchical CPNs it is natural to model the medium (under-
lying service) between protocol entities as a hierarchical substitution transition
as in [53]. This makes a lot of sense from a specification point of view, as the
details of the operation of the medium can be hidden and specified separately.
Further, the medium can be changed separately as we change our view of its
characteristics. However, this can have a penalty when considering verification
and state space explosion. The use of a substitution transition requires that
there is both an input place (perhaps representing a sending entity buffer) and
an output place (representing a receiving entity buffer). This can lead to a com-
binatorial explosion of states of the buffers in both directions of information
flow in the medium. To avoid this component of combinatorial state space ex-
plosion, we can often provide a coarser model, where the storage of the sending
buffer, the medium and the receiving buffer are combined and modelled by one
place. Thus we do not model any of the details of transferring packets from one
buffer to another, which is not relevant to most protocol mechanisms, and hence
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avoid these different buffer states and the consequential state space explosion
that results. However, this does mean that we can not hide the medium in the
specification using hierarchical CPNs, as no hierarchical place is provided. Thus
it is important to keep in mind sources of state space explosion when creating a
model that is to be verified using model checking approaches.

2.3 Analysis and Comparison

The methodology in [19] proposed to concentrate on comparing sequences of
service primitive events at each of the interfaces, between the service specification
and the composite specification. It was assumed that other properties, such as
absence of deadlock or livelock, or boundedness properties could be decided by
querying the reachability graph.

Deadlocks can be determined by examining the dead markings of the reach-
ability graph of the composite specification, to see if they are desired or not.
(Dead markings correspond to the leaf nodes of the reachability graph.) Desired
dead markings correspond to required terminal states, such as in a connection
establishment protocol, where both protocol entities perform an initialisation
sequence (for example to synchronise sequence numbers or to set flow control
window sizes) before data is transferred. The connection establishment protocol
needs to place each protocol entity in the data transfer state, and have no packets
left in the underlying medium. This would be a dead marking corresponding to
the desired terminal state of correct establishment. Dead markings that are not
desired, we then call deadlocks. These may correspond to unspecified receptions,
where a packet is left in the medium because the protocol does not define a pro-
cedure for processing the packet in some circumstances, or to when the different
protocol entities are not synchronised (e.g. one is established, while the other is
closed).

Livelocks occur when the protocol entities are involved in the exchange of
control information (such as a reset) but no progress is made with respect to
the aim of the protocol, which is to transfer data (for example), and that there
is no way out of this cyclic behaviour. Livelocks can be detected by calculat-
ing the strongly connected components (SCC) of the reachability graph. Each
terminal SCC can then be examined. It may be a dead marking or it may be
a component that involves cycles. Each of these cycles needs to be checked to
see if it is desired or not. In a data transfer protocol, the main loop sending
and receiving data is an expected component. However, other components may
not be desired (such as each end constantly sending each other resets) and they
would be considered to be livelocks. Non-terminal SCCs that contain cycles are
not livelocks, but may correspond to tempo blocking behaviour, such as repeated
loss and retransmission. The difference is that there is always the possibility of
escaping from this cyclic behaviour.

Also of interest are bounds on the maximum number of messages in the com-
munication channels, as this may affect buffer and network dimensioning or the
need for congestion control procedures. These properties are generic for proto-
cols. There may also be many other properties that are specific to a particular
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protocol that we wish to prove, and this can be done using a model checking
approach on the reachability graph.

Given that we can determine divergent behaviour (deadlocks and livelocks)
from the reachability graph of the composite specification, it is not important if
this information is lost when comparing the service and composite specifications.
Once we have determined the presence or absence of deadlocks or livelocks in
our protocol we are interested in whether or not the sequences of primitives that
occur in the composite specification are compatible with the service specification.
Thus we can use the notion of language equivalence1 or language inclusion to
check this compatibility. We refer to the set of sequences of service primitives
that occur in the service specification as the service language and similarly, those
that occur in the composite specification as the protocol language.

If the protocol language is the same as the service language, then the proto-
col is a faithful refinement of the service specification. If the protocol language
is included in the service language, then we may be able to define conditions
under which the protocol is also a faithful refinement, for example, if there are
some options which the protocol does not include, or some concurrent behaviour
that is acceptable but not essential, see [58,59]. It may also be the case that the
protocol does not implement an essential part of the service, in which case the
protocol needs to be revised to include it (for example, it is unlikely that the
empty set would be an acceptable subset of service primitive sequences!). How-
ever, if the protocol language is not a subset of the service language, then there
is at least one sequence in the protocol that does not exist in the service speci-
fication. This means that there is an error, either in the service specification or
in the protocol specification. If the error is in the service specification, then it is
normally readily fixed by inspecting the sequences and understanding how they
occur. If it is in the protocol specification (which is more usually the case) then
the sequence of service primitives needs to be traced back to protocol behaviour
(in the reachability graph) to see how the sequence was generated, normally a
more difficult task, as there are usually many more epsilon transitions in the
protocol specification.

Obtaining the Service Language. The service language is obtained from
the service specification by generating its occurrence graph and using automata
reduction techniques [5]. Normally, transitions in the service specification are
labelled by service primitive names, except for some transitions that may only
relate to synchronisation transitions or garbage collection. Once the OG is gen-
erated, it contains all sequences of transitions that can occur in the CPN for
the initial marking. To obtain the service language, any non-primitive transition
is mapped to an internal transition (epsilon transition), and acceptance (halt)
1 There are many other equivalence notions defined in the literature (155 reported in

1993 by van Glabbeek) [77], including observational, failures, testing and Valmari’s
Chaos-Free Failures Divergences (CFFD). The problem with language equivalence
is that progress properties, such as the absence of deadlock and livelock are not pre-
served. However, since these properties can be obtained directly from the protocol’s
state space [49] language equivalence is sufficient.
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states are designated. Designation of halt states may not be trivial and requires
some experience of protocols on the part of the verifier. In connection manage-
ment and transaction protocol services halt states will often correspond to dead
markings, while in data transfer services there may only be one halt state corre-
sponding to the initial marking. The OG can then be considered as a Finite State
Automaton (FSA), that encodes a language. This FSA is then transformed into
an equivalent deterministic and minimum FSA that preserves the sequences of
primitives while removing the epsilon transitions. This uses 5 algorithms and is
implemented in tools such as FSM from AT&T [33]. This minimum deterministic
FSA is the service language.

Obtaining the Protocol Language. We use the same procedure to obtain the
protocol language from the composite specification. An important difference is
that the service specification has been created with service primitives in mind. In
the composite specification, there may be few guidelines as to which transitions
correspond to service primitives, because the protocol may have been developed
without a service specification, as is the case for Internet protocols. In this case,
significant judgement is required to label transitions correctly. It is worse than
that because if the protocol is modelled first (a natural way to proceed to get
a good understanding of the protocol before trying to retrofit its service), it
may be that decisions have been made in the protocol model which mean that
for a particular transition, a service primitive will only correspond to some of
its modes and not others. Thus the creation of the FSA corresponding to the
OG needs to map transition modes (rather than transitions) to primitives or
epsilons.

Comparing Languages. Languages can be compared if they are represented
by deterministic automata. We use the FSM tool to obtain the difference between
the service language and the protocol language and vice versa. For details of how
this is done see [34, 58, 78].

Infinite State Systems. We have assumed in this section that the systems
we are dealing with are finite state and for physical systems, this seems to be a
reasonable assumption. Unfortunately, there are times when we do not know the
range of a parameter, even though we may be sure it is finite. An example of this
is the storage capacity of the Internet. In this case, we would like our results to
be general, that is, to apply to any arbitrary value of the storage capacity. Our
approach to this problem [17,56] has been to introduce a parameter representing
the storage of the Internet (as the length of a queue) into the model. We can
then obtain results for small values of this capacity using standard reachability
analysis. In the case of the CES protocol service, we find that the OG grows
linearly with the length of the queue [56]. We can thus derive recursive formulae
for the OG for any value of the length of the queue. Further, we have been able
to show that the corresponding deterministic automaton (DFSA) also grows
linearly in the size of the queue and have derived a recursive formula for it [57].
The hope is that we shall be able to derive a similar recursive formula for the
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  Protocol Definition

 OG of  the Protocol CPN

   Service Definition

Service CPN

OG of the Service CPN

Protocol LanguageService  Language

Language Comparison OG analysis

Verification against service specification Verification of general properties

Protocol CPN

Fig. 1. Protocol verification methodology.

protocol language DFSA and then be able to extend language comparison to
recursive FSAs. In the case of TCP [17], we have been able to show that the
OG of the service grows exponentially with the size of the queue and have been
able to derive expressions for the nodes and arcs of the OG directly, without the
need for recursive formulae.

2.4 Summary

The verification methodology is summarised in Fig. 1. The dashed box on the
right shows the procedures for verifying properties of a protocol. We start with
the protocol definition (often provided by an international standard) and model
it with CPNs. From the CPN model, we use a software package for CPNs called
Design/CPN [29] to generate its OG. By analysing the OG we can obtain infor-
mation about the dynamic behaviour and properties of the protocol. This may be
proving correct termination (e.g. absence of deadlock and livelock), investigating
boundedness properties and message sequences, or more specific properties that
could be written in a temporal logic or other technique suitable for querying
OGs.

The dashed box on the left of Fig. 1 illustrates the steps required to verify
a protocol against its service language [19]. We do this by comparing the se-
quences of service primitives that occur as a result of the protocol’s operation
(the protocol language), with the sequences specified in the service specification
(the service language). We firstly create a CPN model of the service specification,
in which service primitives are associated with CPN transitions. The OG of the
CPN model is calculated. The OG includes all the possible occurrence sequences
of CPN transitions. The CPN model may include transitions that do not model
service primitives, but rather internal events of the service provider required to
ensure correct operation. We need to eliminate these internal transitions while
preserving service primitive sequences. To do this, we treat the OG as a FSA
and use standard FSA reduction techniques [5]. This minimised and determinis-
tic FSA embodies the service language. In a similar way, we generate the protocol
language. These are compared to see if all the sequences of service primitives in
the protocol language are sequences specified in the service language, to discover
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if there are any inconsistencies between the protocol definition and the service
definition. The automata reductions and comparison algorithms are automated
in tools such as FSM [33].

3 Definitions

3.1 High-Level Petri Nets

We use Coloured Petri nets and Design/CPN for the specification of protocols
and services, and refer readers to [48–50, 53] for an introduction to CPNs and
their definitions. However, for some of the proofs in this paper, it is useful to use
the definition of the High-level Petri Net (HLPNs) semantic model presented in
clause 5 of international standard ISO/IEC 15909-1 [44]. It is drawn from similar
work published in [8, 10] and earlier work in [47].

In order to be self-contained, we begin by presenting definitions concerning
multisets and vectors, followed by the semantic model from [44]. We then define
occurrence sequences for high-level nets and provide some propositions that we
require in the analysis of the Stop-and-Wait protocol.

Multisets

Definition 1. A multiset, B : A → N, is a function that associates a natural
number, known as the multiplicity, with each of the elements of a non-empty
basis set, A.

The multiplicity of a ∈ A in B, is given by B(a). The set of all multisets over A
is denoted by µA.

Multiset Operations

Definition 2. Equality:
Two multisets, B1, B2 ∈ µA, are equal, B1 = B2, iff ∀a ∈ A, B1(a) = B2(a).

Definition 3. Comparison:
B1 is less than or equal to B2, B1 ≤ B2, iff ∀a ∈ A, B1(a) ≤ B2(a) and
B1 is greater than or equal to B2, B1 ≥ B2, iff ∀a ∈ A, B1(a) ≥ B2(a).

We define addition and subtraction on multisets B1, B2 ∈ µA as follows.

Definition 4. Addition and Subtraction:
B = B1 + B2 iff B(a) = B1(a) + B2(a)
B = B1 − B2 iff B(a) = B1(a) − B2(a) if B1(a) ≥ B2(a)

There are times when we wish to subtract one multiset from another when
the above restriction on multiset subtraction does not apply. We then need to
consider multisets as vectors.
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Vectors

Definition 5. A vector V over a basis set A is a function V : A → Z where Z

is the set of integers.

The set of all vectors over A is denoted by νA. Subtraction is a closed operation
for vectors, defined componentwise as follows.

Definition 6. Vector Subtraction:
For V 1, V 2 ∈ νA, V = V 1 − V 2 iff ∀a ∈ A, V (a) = V 1(a) − V 2(a).

High-Level Petri Net

We now define a High-level Petri net (HLPN) [8, 44].

Definition 7. HLPN = (P, T, D; Type, Pre, Post, M0) where

– P is a finite set of Places.
– T is a finite set of Transitions, disjoint from P (P ∩ T = ∅).
– D is a non-empty finite set of non-empty domains where each element of D

is called a type.
– Type : P ∪ T −→ D is a function used to assign types to places and to

determine transition modes.
– Pre, Post : TM −→ µPLACE are the pre and post mappings with

• TM = {(t, m)|t ∈ T, m ∈ Type(t)}, the set of transition modes; and
• PLACE = {(p, g)|p ∈ P, g ∈ Type(p)}, the set of elementary places.

– M0 ∈ µPLACE is a multiset called the initial marking of the net.

Marking of a HLPN

Definition 8. A Marking of the HLPN is a multiset, M ∈ µPLACE.

Enabling of Transition Modes

Definition 9. A single transition mode, tm ∈ TM , is enabled at a marking M
iff Pre(tm) ≤ M .

We can also define the concurrent enabling of a finite multiset of transition modes
(see [10, 44]) but this is not required for this paper.

Transition Rule

Definition 10. The transition rule for a single transition mode tm ∈ TM en-
abled at a marking M is given by

M ′ = M − Pre(tm) + Post(tm)

where an occurrence of tm results in the new marking M ′.

The occurrence of a single transition mode tm ∈ TM in marking M is denoted
by M [tm〉M ′ or M

tm−→ M ′.
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Occurrence Sequences and Reachability
In addition to that defined in [44], we define the following in relation to occur-
rence sequences.

Definition 11. Let M be a marking of the HLPN. A finite sequence of transition
modes, tm1, tm2, . . . , tmk ∈ TM, k ∈ N

+, is called a finite occurrence sequence
able to occur from M , if there are markings M1, M2, . . . , Mk such that

M
tm1−→ M1

tm2−→ M2 . . .
tmk−→ Mk

We denote a finite occurrence sequence by σk = tm1tm2 . . . tmk and write M
σk−→

Mk.

Definition 12. A marking M ′ is reachable from a marking M if there is a
finite occurrence sequence σk leading from M to M ′, i.e. M

σk−→ M ′.

Definition 13. An infinite sequence of transition modes, σ = tm1tm2tm3 . . . is
called an infinite occurrence sequence, able to occur from a marking M , if there
are markings M1, M2, . . . such that

M
tm1−→ M1

tm2−→ M2
tm3−→ . . .

Following directly from these definitions are Propositions 1 and 2. They are
HLPN extensions of the propositions given in [28] and are used in the proof of
Theorem 4 in Section 6.

Proposition 1. An infinite occurrence sequence σ of transition modes can occur
from a marking M if and only if every finite prefix of σ can also occur from M .

Proposition 2. If M and L are markings of a HLPN and for a finite occurrence
sequence σk, M

σk−→ M ′ and L
σk−→ L′ then (using vector subtraction) M ′−M =

L′ − L.

The following proposition is useful for proving that a finite occurrence sequence
of transition modes can be repeated indefinitely.

Proposition 3. If M and L are markings satisfying M ≥ L then every occur-
rence sequence that can occur from L can also occur from M .

Proof. Consider the infinite occurrence sequence σ = tm1tm2tm3 . . . that can
occur from L. Now all finite prefixes of σ (i.e. σk = tm1tm2 . . . tmk, k ∈ N

+) can
occur from L according to Proposition 1, i.e.

L
tm1−→ L1

tm2−→ . . .
tmk−→ Lk

Using the enabling condition (and transition rule) as defined above, this
means that L ≥ Pre(tm1). Occurrence of tm1 at marking L leads to a marking
L1 in which the next transition mode in the sequence, tm2, is enabled, and from
which the rest of the sequence tm2tm3 . . . tmk can occur.
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Now consider the marking M . We know that M ≥ L. If L ≥ Pre(tm1) then
this means that M ≥ Pre(tm1) also. Thus transition mode tm1 is enabled in
M .

Occurrence of tm1 from M will lead to a new marking M1, i.e. M
tm1−→ M1,

and by Proposition 2 we know that M1 − M = L1 − L (again using vector
subtraction). Knowing M ≥ L and substituting L for M we obtain

M1 − L ≥ L1 − L

⇒ M1 ≥ L1

We know that tm2 is enabled in L1, and by the above arguments, tm2 is also
enabled in M1. By repeated application of the above arguments, we obtain that
for every intermediate marking Ln(1 ≤ n ≤ k) during execution of the occurrence
sequence σk there is a corresponding marking Mn such that Mn ≥ Ln. So all
finite prefixes σk of the infinite occurrence sequence σ can occur from M , and
by Proposition 1, σ can occur from M . Thus any occurrence sequence that can
occur from L can also occur from M . ��

3.2 Definitions of Occurrence Graphs and Associated Automata

Part of the methodology requires the generation of a CPN’s occurrence graph
(OG) and its transformation to an appropriate finite state automaton (FSA).
This section provides the definitions that are useful for this purpose.

Occurrence Graphs
We consider that an OG can be defined as a labelled directed graph, where
the nodes of the graph represent markings of the CPN, and the directed arcs
represent the transition modes that can occur in all executions of the net from
the initial marking. The arcs are thus labelled by the transition mode. We thus
start by defining a labelled directed graph.

Definition 14. A labelled directed graph is a triple G = (V, L, E) where

– V is the set of vertices or nodes;
– L is a set of labels; and
– E ⊆ V × L × V is a set of labelled directed edges.

Definition 15. An occurrence graph of a HLPN with an initial marking M0, is
a labelled directed graph OG = (V, TM, A) where

– V = [M0〉 is the set of markings reachable from M0 (the reachability set);
– TM is the set of transition modes of the HLPN; and
– A = {(M, tm, M ′) ∈ V × TM × V |M [tm〉M ′} is the set of arcs (directed

edges) labelled by transition modes.
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Abstract OGs
When we only consider sequences of primitives, there are two abstractions of the
OG which are useful. The first removes the modes (variable bindings) from the
transition modes to give transitions only. The second removes the details of the
markings, so that they are just represented by integers. Both abstractions may
be used together. We formalise these abstractions in the following definitions.

For an occurrence graph where we are only interested in the transition names,
rather than transition modes, e.g. in the case of service primitives where we are
not concerned with service primitive parameter values, but just the primitive
name, then an abstract OG with respect to transitions, AOGT , is defined as
follows.

Definition 16. An abstract OG, with respect to transitions, of a HLPN with
an initial marking M0 and a set of transition modes, TM , is a labelled directed
graph AOGT = (V, T, A) where

– V = [M0〉 is the set of markings reachable from M0;
– T is the set of transitions of the HLPN; and
– A = {(M, t, M ′) ∈ V × T × V |(t, m) ∈ TMandM [(t, m)〉M ′} is a set of arcs

labelled with transition names.

In the case where we are only interested in the identification of the markings
for the nodes, and not the details of the markings, we introduce an injection, I,
mapping the set of reachable markings into the set of positive integers:

I : [M0〉 −→ N
+

where I(M0) = 1 represents the initial marking.

Definition 17. An abstract OG, with respect to markings, of a HLPN with an
initial marking M0 and a set of transition modes TM , is a labelled directed graph
AOGM = (V, TM, A) where

– V = {I(M)|M ∈ [M0〉} is the set of nodes;
– TM is the set of transition modes of the HLPN; and
– A = {(I(M), tm, I(M ′)) ∈ V ×TM×V |M [tm〉M ′} is the set of arcs labelled

with transition modes.

This definition is useful for the analysis of the Stop-and-Wait protocol (see sec-
tion 6).

Finally we combine the two abstractions to obtain an abstract OG with
respect to markings and transitions, AOGMT .

Definition 18. An abstract OG, with respect to markings and transitions, of
a HLPN with an initial marking, M0, and a set of transition modes, TM , and
given an injection, I, mapping markings to positive integers, is a labelled directed
graph AOGMT = (V, T, A) where
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– V = {I(M)|M ∈ [M0〉} is the set of nodes;
– T is the set of transitions of the HLPN; and
– A = {(I(M), t, I(M ′)) ∈ V ×T ×V |(t, m) ∈ TMandM [(t, m)〉M ′} is the set

of arcs labelled with transition names.

This last definition is useful when we are only interested in sequences of
transitions, e.g., sequences of service primitive names.

FSA Associated with the OG
The next step is then defining the mapping from an abstract OG to its FSA.
In our methodology, the FSAs are only used to determine language equivalence
(or inclusion) and thus we are not concerned with the details of the markings,
and hence we can use an abstract OG that does not include the marking details.
Hence we just represent the nodes by positive integers.

When we construct the CPN model of the protocol, we normally do so with
primitive events in mind, and thus label transitions in the CPN with service
primitive names. However, in some cases (such as for the stop-and-wait protocol)
it is convenient to have a more general mapping from transition modes to service
primitives. (In the following, we restrict our attention to a mapping to service
primitive names, as that is our current focus, but in general the mapping could
be to service primitives in general, i.e. where service primitive parameters are
included as well as the name.) We thus need a function that maps each transition
mode in the abstract OG to either a service primitive name, or to an epsilon.
Lets call this function Prim as it returns a primitive name (or epsilon). Thus
we have

Prim : TM ′ −→ SP ∪ {ε}
where

– TM ′ ⊆ TM is the set of transition modes used to label arcs in the abstract
OG; and

– SP is the set of service primitive names in the system we are describing.

Given an abstract OG with respect to markings AOGM = (V, TM, A) (see
Definition 17) we can formulate its corresponding FSA as

Definition 19. FSAAOGM = (V, SP, ASP , v0, F ) where

– V is the set of nodes of the abstract OG (the states of the FSA);
– SP is the set of service primitive names of the system of interest (the alphabet

of the FSA);
– ASP = {(v, Prim(tm), v′)|(v, tm, v′) ∈ A} is the set of transitions labelled

by service primitives or epsilons for internal events (the transition relation
of the FSA);

– v0 = 1 corresponds to the abstract initial marking (initial state of the FSA);
and

– F ⊆ V is the set of final states.
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4 Stop-and-Wait Protocols

This part of the paper illustrates our approach to the verification of data transfer
protocols by investigating the class of Stop-and-Wait protocols (SWP) [66, 73].
The work presented here is a major eleboration and extension of that recently
published by the first two authors [12] and is based on [13].

We choose the SWP class because the protocol mechanisms are readily un-
derstood and because they are the simplest representative class of data transfer
protocols since they include sequence numbers and retransmission counters. The
class of SWP protocols is characterised by two parameters: the maximum se-
quence number and the maximum number of retransmissions.

Stop-and-Wait is an elementary form of flow control [66,73] between a sender
and a receiver. The sender stops after transmitting a message and waits until
it receives an acknowledgement indicating that the receiver is ready to receive
the next message. Stop-and-Wait Protocols often operate over noisy channels
and combine flow control with error recovery using a timeout and retransmis-
sion scheme, known as Automatic Repeat ReQuest (ARQ) [73]. In this case,
a checksum [73] is included to detect transmission errors. Messages that pass
the checksum are acknowledged as received correctly. A message that fails the
checksum is discarded by the receiver. In this case, the sender of the message
will not receive an acknowledgement within its specified timeout period, and
thus retransmits the message. This works well if the cause of not receiving the
acknowledgement is due to the message being discarded (due to errors). How-
ever, the acknowledgement is also error protected by a checksum and it could
have been discarded. In this case the retransmitted message is an unnecessary
duplicate of the original message that has already been received correctly. To
prevent duplicate messages being accepted as new messages a sequence number
is appended to each message.

The class of SWPs are important because many practical data transfer pro-
tocols use sliding window mechanisms that have their foundations based on
Stop-and-Wait principles. Sliding Window protocols [66, 73] improve the effi-
ciency of SWPs by allowing many messages (rather than one) to be sent before
requiring an acknowledgement. The number of messages that can be sent be-
fore the sender must stop and wait to receive an acknowledgement is known
as the window . Cumulative acknowledgements and more sophisticated error re-
transmission schemes (such as Selective Reject) [66] can also improve efficiency.
These schemes are used in many practical protocols such as TCP [62]. The un-
derlying principles of ARQ used in sliding window protocols are the same as
those used in SWPs, so that a window size of 1 corresponds to a Stop-and-Wait
protocol. Thus it is essential that the stop-and-wait mechanisms work correctly
if the more advanced protocols are also to be correct.

It is well known [73] that for sliding window protocols to work properly in
detecting and discarding duplicates, the sequence number space needs to be one
greater than the number of unacknowledged messages (the window). In the case
of Stop-and-Wait protocols which have just one outstanding unacknowledged
message, the sequence number space can be just two numbers, usually {0,1}.
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When a SWP uses the sequence numbers {0,1} it is called an Alternating Bit
protocol (ABP) [6], because the sequence number can be implemented using just
one bit in the header of the message, and the sequence number value alternates
between 0 and 1. Acknowledgement messages in this case serve a dual purpose:
that of flow control (indicating that the receiver is ready to receive another
message) and transmission error recovery (informing the sender not to retransmit
as the data has been received correctly). This is the simplest class of SWPs
where the maximum sequence number is instantiated to 1. We consider Stop-
and-Wait protocols with an arbitrary maximum sequence number as this takes
us a step closer to sliding window protocols, where the window size is arbitrary,
and hence the sequence number space (which must be at least one greater than
the window size) is also arbitrary. It may also be the case that SWPs with larger
sequence number spaces can work correctly over media with a limited amount
of re-ordering (see [52]), but we do not consider this situation in this paper.

A number of papers, articles and books [1, 3, 6, 18, 30, 63, 68, 71–73,76] have
been written about the ABP. Many demonstrate that the ABP will work per-
fectly over an underlying medium that behaves in a FIFO (First-In First-Out)
manner and that may also include loss. The ABP is often used as a case study
when developing a new modelling language or a derivation from an existing mod-
elling language, to demonstrate the use or effectiveness of the new language.
This is the case in [68] where the ABP is used as an example to illustrate a new
Timed Rewriting Logic (TRL) for capturing the static and dynamic aspects of
SDL (Specification and Description Language) [45]. Another example of this is
in [71] and [72] where the ABP is formally modelled and analysed using Temporal
Petri nets (derivations of Petri nets with restrictions on the firing of transitions
based on formulae containing temporal operators.) The ABP is used to illustrate
modelling and analysis of protocols using Petri Nets in [30]. The Abracadabra
Service and Protocol Example [76] describes a protocol using Alternating Bit
sequence numbers, Retransmissions on timeout, Acknowledgements, Connection
And Disconnection (ABRACAD), and is one of a graded set of examples used
to provide guidelines for the application of three standardised formal description
techniques, namely Estelle [21], LOTOS (Language Of Temporal Ordering Spec-
ifications) [20] and SDL [45]. Billington et al [18] use a variant of the ABP [22] to
demonstrate a software tool. Reisig [63] develops the ABP in a series of steps as
part of a case study on acknowledged messages, developed incrementally using
simple Petri net models to illustrate the principles and operation of the ABP
over FIFO (First-In First-Out) communication channels.

Some of the above papers demonstrate that the ABP will work as expected
over FIFO channels that may also include loss. It appears, however, that the
situation in which messages may be re-ordered by the medium has not been
considered. The ABP was originally designed to provide a reliable data link ser-
vice over an unreliable point-to-point physical link. In this situation overtaking
of messages does not occur. However, the same ARQ mechanisms are used in
transport level protocols, such as TCP [62], that operate over a medium that
does not guarantee in-sequence delivery and may also lose messages [73]. It is
therefore useful to investigate this situation for SWPs.
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In Section 5 we present and explain our Coloured Petri Net (CPN) [48, 53]
model of the SWP and discuss some of the modelling decisions made during its
construction. The model is then analysed in Section 6 using a combination of
hand proofs and language analysis. A discussion of the impact of the analysis
results on the Transmission Control Protocol is given in Section 7, as well as
the identification and discussion of a limitation of our approach. Finally some
concluding remarks are presented in Section 8.

5 The Stop-and-Wait Protocol Model

We model a Stop-and-Wait protocol that includes error recovery using retrans-
missions operating over a lossy re-ordering medium. The CPN model of our
SWP is given in Figs. 2 and 3. Figure 2 presents the graphical representation
of the system, while Fig. 3 defines all the constants, sets and functions required
and declares the types of the variables used in the annotations associated with
the graphical representation. The software tool, Design/CPN [29], was used for
the construction of the model. Design/CPN has four main facilities: an editor,
a simulator, a state space tool and a performance tool. The simulation engine
and state space tool are built using CPN ML [27], a variant of the functional
programming language Standard ML of New Jersey (SML/NJ) [67]. CPN ML
is used for the net annotations in Fig. 2 and the declarations in Fig. 3.

In Fig. 3 colour sets (types) are defined using the keyword color and enu-
merated types (Sender, Seq, Retranscounter) are created with the set constructor
with. Variables are declared using the keyword var and are typed by a colour
set, e.g. the variables sn and rn of type Seq (sequence number). Functions are
defined using the keyword fun and values (e.g. constants) are defined using the
keyword val.

We now describe the CPN model of the SWP in detail. The model comprises
three main parts: the Sender (on the left), the Receiver (on the right) and an
underlying bidirectional communication medium, Network, in the middle.

5.1 Sender

The sender consists of four places, four transitions and their interconnecting arcs.
The places, sender ready and wait ack, represent the two states of the sender
(either ready to send a new data message or awaiting an acknowledgement)
and are typed by the colour set Sender, representing a single sender. The place,
sender ready, has an initial marking of one s token, indicating that the Sender is
initially in the ready state. The seq no place stores the sender sequence number,
which is either the number of the message just sent (an unacknowledged message)
or if acknowledged, the number of the next message to be sent. It is typed by the
colour set Seq (sequence number) and has an initial marking of a single 0 token,
indicating that the first message to be sent will have sequence number 0. The
current number of retransmissions is recorded in place retrans counter, typed by
the colour set RetransCounter and is initially 0.
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Fig. 2. The CPN of the Stop-and-Wait Protocol operating over a lossy re-ordering
channel.

val MaxRetrans = 1;

val MaxSeqNo = 1;

color Sender = with s;

color Seq = int with 0..MaxSeqNo;

color RetransCounter = int with 0..MaxRetrans;

color Message = Seq;

var sn,rn : Seq;

var rc : RetransCounter;

fun NextSeq(n) = if(n = MaxSeqNo) then 0 else n+1;

Fig. 3. Global Declarations for the Stop-and-Wait Protocol CPN.

Transition send mess models the sending of a message to the receiver. Message
content is not represented as no protocol operations involve it (the protocol
behaves the same way irrespective of content). The same is true for the addresses
of sender and receiver, as we only have one of each in this model. Consequently, a
message (or an acknowledgement) can be modelled by just its sequence number.



230 Jonathan Billington, Guy Edward Gallasch, and Bing Han

When the sender is ready send mess may occur. It writes its sequence number
(as the message) to the message channel and changes state to waiting for an
acknowledgement.

The timeout retrans transition models the expiry of the retransmission timer
and the retransmission of the currently unacknowledged message. This transition
can only occur if the sender is waiting for an acknowledgement and there have
been less than MaxRetrans retransmissions of this message (see the guard). When
timeout retrans occurs, the retransmission counter is incremented by 1 and the
retransmitted message is placed into the message channel.

Transition receive ack models the receipt of expected acknowledgements from
the receiver, i.e. those that acknowledge the currently outstanding message. Du-
plicate acknowledgements are received and discarded by transition receive dup
ack. These may result from acknowledged retransmissions, where delay rather
than loss was the cause of the retransmission. The complementary guards on
these transitions identify the acknowledgement as being expected or a duplicate.
An expected acknowledgement will have a sequence number one greater than
the sender sequence number. The function NextSeq is used to increment the
sequence number modulo (MaxSeqNo + 1), as shown in Fig. 3. An occurrence
of receive ack will remove the acknowledgement from the channel, return the
sender to the ready state, reset the retransmission counter to 0 and increment
the sequence number stored in seq no using modulo arithmetic. The transition
receive dup ack discards duplicate acknowledgements irrespective of the state of
the sender.

5.2 Receiver

The receiver consists of two places and two transitions. The places receiver ready
and process mess model the states of the receiver and are typed by the colour
set Seq. A sequence number token present on one of these places indicates that
the receiver is in that state (either ready to receive a message, or processing a
message.) The receiver ready place has an initial marking of one 0 token, indi-
cating that initially the receiver is in the ready state and expecting a message
with sequence number 0.

Transition receive mess models the receipt of a message from the sender. The
annotation on the arc from receive mess to process mess compares the sequence
number of the message (sn) with the sequence number expected by the receiver
(rn). If they match, then the message is the one expected (and is passed onto the
user, a process that is not modelled) and the sequence number is incremented
modulo (MaxSeqNo + 1) by the NextSeq function and placed in process mess.
If they don’t match, a duplicate is detected (and discarded) and the receive
sequence number is placed in process mess unchanged. Transition send ack occurs
when the receiver has finished processing the message, indicating that enough
buffer space is available to receive another message. This transition sends an
acknowledgement containing the next sequence number expected by the receiver
and returns the receiver to the ready state. Sending an acknowledgement when
a duplicate message is received is necessary because if an acknowledgement of a



A Coloured Petri Net Approach to Protocol Verification 231

(new) message is lost and subsequent retransmissions of the same message are
not acknowledged, the system will fail to progress as no acknowledgement will
ever be delivered to the sender.

5.3 Underlying Medium

The underlying communication medium is modelled as a bidirectional chan-
nel consisting of one place and one transition for each direction of communica-
tion. The mess channel place models the message channel while the ack channel
place models the acknowledgement channel. Both channel places are typed by
the colour set Message (a sequence number, see Fig. 3) and are both initially
empty. This models the overtaking behaviour of the communication medium.
The two transitions mess loss and ack loss model the loss of messages and ac-
knowledgements respectively. This corresponds to either loss in the network (due
to congestion and buffer overflow in a router), or to discarding messages (and
acknowledgements) due to checksum failures.

5.4 Discussion of Modelling Decisions

A straightforward way to begin modelling a system such as this is to use one place
for each state of an entity, one place for each data item, and one transition for
each action. This is evident in the Sender, where we have one place for each state
(i.e. ready, waiting for an acknowledgement), one place for each item of data (i.e.
sequence number, retransmission counter) and one transition for each action. A
representation such as this gives a clearer visual indication of the control flow
within the Sender than if the sender states were folded and represented by a
single place typed by the set of states. However, this is normally only possible
for protocols with very few states. As the number of states increases, so do
the number of arcs, which leads to a visually complex diagram with many arc
crossings, distracting from the major flows. This is alleviated to some extent by
the use of thicker lines for arcs to emphasise major flows, as is illustrated for
control flow in Fig. 2.

The receiver has been modelled using a different style, where there has been
a folding of the receiver sequence number and receiver state. The transition re-
ceive mess represents both the receipt of an expected message and the discarding
of duplicate messages, requiring a complex arc annotation. This provides a more
compact representation of the receiver clearly highlighting the control flow loop.
This demonstrates the versatility of CPNs in being able to illustrate visually
control flow and data flow. To do this well requires significant experience, es-
pecially for complex protocols that require a hierarchical approach. We used
different styles for the sender and receiver to illustrate the different approaches.
When modelling a complex protocol this would rarely be done, and a consistent
style throughout the whole model is advocated.

We may want the model structure to reflect the structure of the real life
system, given a certain amount of abstraction. For example, we have illustrated
this by modelling the sequence number at the sender in the net structure as a
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separate place. This is to reflect the fact that in an implementation, the sequence
number as an entity of data may exist separately from, and regardless of, the
state of the sender. It also simplifies modelling of the sender, because duplicate
acknowledgement messages can be received and discarded regardless of the state
of the sender. Conversely, the meaning of the value of the sequence number
(either the next to be sent when in state sender ready, or the message to be
acknowledged when in state wait ack) is dependent on the state, and hence this
would favour folding the sequence number into the state places, as in the receiver.
Modelling the loss of messages and acknowledgements by separate transitions
(instead folding them into the receive transitions) allows for more flexibility in
analysis, as to analyse a system without a lossy channel requires nothing more
than adding a [false] guard to each loss transition. Thus various trade-offs present
themselves to the modeller, even in models as simple as this.

6 SWP CPN Model Analysis

6.1 Properties of Interest

As described previously, with the SWP it is usual to place an upper bound
(MaxRetrans) on the number of retransmissions that are allowed per message.
When this limit is reached, the communication medium is considered to be down.
In practice, an indication is given to a management entity that invokes a proce-
dure to deal with the fault. This interaction (and procedure) is not modelled as
it is not part of the SWP. In our model, the protocol will just terminate in a state
where the retransmission counter has reached its maximum value (MaxRetrans).
This is an expected terminal state, indicating that the network is down, and
that the last message sent may have been lost.

Thus we are not particularly concerned with terminal states. Instead we focus
on properties that are quintessential for correct operation of the SWP. The first
concerns bounds on the channels, the second that duplicates are not accepted as
new messages, the third that messages are not lost unknowingly and the fourth
that the protocol conforms to the Stop-and-Wait service of alternating sends and
(correct) receives, ensuring that messages are received in the same order as they
were sent.

6.2 FIFO Channels

Our first step is to consider the SWP operating over communication channels
that preserve sequence. This corresponds to the SWP operating over a physical
link (as is the case for data link protocols) and is thus important in its own right.
It is also important from the point of view of incremental analysis of the SWP
operating over re-ordering channels. This is because most networks will provide
a FIFO channel most of the time. Thus it is important to ensure that the SWP
will operate correctly over FIFO channels, before we investigate the re-ordering
case.
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The CPN in Fig. 4 and associated declarations in Fig. 5 show our Stop-and-
Wait protocol operating over a lossy FIFO channel. Places mess channel and
ack channel are modified to operate as FIFO queues by altering their colour set
from Message to MessList (a list of messages), giving them an initial marking
of the empty list and modifying appropriate arc expressions on incoming and
outgoing arcs to manipulate the list as a FIFO queue. All arcs placing a message
into one of the channels do so by appending it to the end of the message list
using the infix append operator (^^). All arcs removing a message from one of
the channels do so by removing a message from the beginning of the list using
the infix ‘cons’ operator (::). Loss in the medium is modelled by transitions
mess loss or ack loss. This loss behaviour includes the discarding of corrupted
messages (due to failing the checksum) and loss due to routers dropping packets
(if applicable).
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Fig. 4. A CPN of the Stop-and-Wait Protocol operating over an in-order medium.

We now consider the first property of interest, that of the bounds on the
channels, and then investigate the other three properties (loss, duplication and
SWP service).

Channel Bounds. In this section we state and prove two theorems regarding
the maximum length of each of the message queues in places mess channel and
ack channel.
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val MaxRetrans = 1;

val MaxSeqNo = 1;

color Sender = with s;

color Seq = int with 0..MaxSeqNo;

color RetransCounter = int with 0..MaxRetrans;

color Message = Seq;

color MessList = list Message;

var sn,rn : Seq;

var rc : RetransCounter;

var queue : MessList;

fun NextSeq(n) = if(n = MaxSeqNo) then 0 else n+1;

Fig. 5. Declarations of the CPN shown in Fig. 4.

Theorem 1. For the Stop-and-Wait CPN of Figs. 4 and 5 with MaxRetrans
≥ 0 and MaxSeqNo ≥ 1, the message queue length in place mess channel is
bounded by (2MaxRetrans + 1), i.e. ∀M ∈ [M0〉, |queue| ≤ (2MaxRetrans + 1)
where M(mess channel) = 1‘queue, queue ∈ {0, ..., MaxSeqNo}∗ and |queue| is
the length of the list ‘queue’.

Proof. We use the notation ⊕ for addition modulo (MaxSeqNo + 1) and ‘n-
message’ as shorthand for ‘a message with sequence number n’.

We firstly examine the case where MaxRetrans = 0. From the initial marking
of the CPN as shown in Fig. 4, the only transition that can occur is send mess,
which inserts a 0-message into the message queue, so |queue| = 1. Transition
timeout retrans will never occur because of its guard. The only enabled transitions
are mess loss and receive mess, both of which remove the 0-message, resulting in
|queue| = 0. An occurrence of mess loss leads to a dead marking and hence
the theorem holds in this case. An occurrence of receive mess with the variable
bindings sn = rn = 0 indicates this is the message expected by the receiver. The
receiver sequence number is incremented by the NextSeq function on the arc
from receive mess to process mess. Now the only enabled transition is send ack,
inserting an acknowledgement (rn = 1) into the acknowledgement queue on place
ack channel. The only possible action now is to remove this acknowledgement
from the queue, either through the occurrence of ack loss (leading to a dead
marking and hence the theorem holds) or through receive ack as rn = NextSeq(sn)
= 1. An occurrence of receive ack will return the model to a state identical to
the initial state except that all sequence numbers are now 1 instead of 0. The
behaviour described above is the only behaviour of the system. This behaviour
repeats, each time leading to the ‘same’ state except for the sequence numbers
that have been incremented modulo MaxSeqNo. When the sequence number
wraps back to zero, the CPN returns to the initial state. This demonstrates that
for any MaxSeqNo≥ 1, |queue| ≤ 1 for all markings when MaxRetrans = 0. This
proves the theorem for MaxRetrans = 0.
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For the more general case of MaxRetrans ≥ 1, the situation is complicated by
the possibility of duplicate messages and duplicate acknowledgements. Consider
that we start with empty queues. The maximum number of messages with a given
sequence number n that can be inserted into the message queue is the original
(send mess occurs) plus MaxRetrans duplicates (by MaxRetrans occurrences of
timeout retrans) giving |queue| = (MaxRetrans+1) (given the queue was empty).
At this point the sender must stop and wait until it receives an acknowledge-
ment (receive ack) for the n-message. The minimum number of n-messages that
need to be received and acknowledged (i.e. when no loss occurs) is one, leaving
MaxRetrans n-messages in the message queue. When this acknowledgement is
received, the retransmission counter is reset to zero and (MaxRetrans+1) (n⊕1)-
messages can be sent, giving a queue with MaxRetrans n-messages followed by
(MaxRetrans+1) (n ⊕ 1)-messages and |queue| = (2MaxRetrans+1). Because of
the FIFO property of the communication channels, the remaining MaxRetrans
n-messages must be removed (by loss or receipt) before the first (n⊕1)-message
can be received and acknowledged allowing messages with sequence number n⊕2
to be placed in the message channel. Thus before any new message can be sent,
the length of the queue can be no more than MaxRetrans. As already discussed,
only (MaxRetrans+1) new messages can be added to the queue, giving a maxi-
mum queue length of 2MaxRetrans+1. ��

A similar theorem to that stated in Theorem 1 holds for the acknowledgement
channel.

Theorem 2. For the Stop-and-Wait CPN of Figs. 4 and 5 with MaxRetrans
≥ 0 and MaxSeqNo ≥ 1, the acknowledgement queue in place ack channel is
bounded by (2MaxRetrans + 1), i.e. ∀M ∈ [M0〉, |queue| ≤ (2MaxRetrans + 1)
where M(ack channel) = 1‘queue, queue ∈ {0, ..., MaxSeqNo}∗ and |queue| is
the length of the list ‘queue’.

Proof. From Theorem 1 at most (2MaxRetrans+1) messages can be in the mes-
sage queue. Also, from the proof of Theorem 1 when there are (2MaxRetrans+1)
messages in the message queue the acknowledgement queue is empty. We know
that exactly one acknowledgement is generated for each message accepted by
the receiver, by the occurrence of receive mess followed by send ack, which im-
plies that a message is removed from mess channel for every acknowledgement
generated by the receiver. Further, from the proof of Theorem 1, the sum of
messages and acknowledgements in the channel places can be no more than
MaxRetrans before a new message can be sent. Thus although the removal of
one acknowledgement can result in the addition of (MaxRetrans + 1) messages,
this can only happen when the sum of messages and acknowledgements in the
channels is MaxRetrans. Thus (taking loss into account) the sum of the messages
and acknowledgements in any marking must be ≤ (2MaxRetrans + 1). There-
fore the maximum number of acknowledgements that can be in ack channel is
(2MaxRetrans + 1) (when all the messages in mess channel have been received
and acknowledgements deposited in ack channel). ��
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Loss, Duplication and Stop-and-Wait Property
We firstly prove that the SWP satisfies the SW property for a range of parameter
values and then consider whether or not loss and duplication can occur. We would
like to prove the following theorem.

Theorem 3. The Stop-and-Wait CPN of Figs. 4 and 5 where MaxRetrans ≥ 1
and MaxSeqNo ≥ 1, satisfies the Stop-and-Wait property.

We use language analysis to prove this theorem for a significant range of
values of MaxRetrans and MaxSeqNo.

For the SWP service, we define two primitives: a send at the sender entity
interface; and a receive at the receiver entity interface. We can then define the
service language as 0 or more repetitions of the sequence (send, receive). This
can be represented by the regular expression (send receive)∗ or by the Finite
State Automaton (FSA) shown in Fig. 6.

0 1
send

receive

Fig. 6. FSA for the SWP service.

The next step is to generate the protocol language from the protocol specifica-
tion. The protocol language just contains service primitive events. Our protocol
specification is the CPN model of Figs. 4 and 5. In this CPN we can consider
that the send primitive occurs when the send mess transition occurs and that the
receive primitive occurs when receive mess occurs when the bindings of sn and
rn are the same (sn = rn). (Otherwise the occurrence of receive mess represents
the discarding of duplicates, which does not correspond to a receive primitive.)

Following the verification methodology, the protocol language is obtained
from the CPN’s reachability graph by treating it as a FSA. All non-service
primitive transitions (i.e. those associated with sending and receiving acknowl-
edgements, with loss, retransmission or discarding duplicates) are replaced by
empty (ε) transitions and the resulting FSA minimised [5] to produce the min-
imum deterministic FSA. This FSA represents all possible sequences of service
primitives, generated from the protocol, and is thus the protocol language. We
use the suite of tools available in the FSM package [33] for FSA minimisation
and comparison.

Reachability graphs of the CPN defined in Fig. 4 and Fig. 5 were generated
using Design/CPN [29] for both lossy and lossless media. (Loss is disabled by
adding a guard of [false] to each of the two loss transitions.) We generated the
OGs for a range of values of the parameters MaxRetrans and MaxSeqNo. Table 1
gives the statistics for some selected values of the parameters for lossy FIFO
channels. Each OG is generated on a 2.4 Ghz PC with 1 GByte of memory.
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Table 1. OG Results for SWP operating over lossy FIFO channels.

SeqNo. MaxSeqNo MaxRetrans Nodes Arcs Dead Channel Time
Bits Bound (hh:mm:ss)

1 1 0 12 12 4 1 00:00:00
1 1 1 80 194 4 3 00:00:00
1 1 2 264 834 4 5 00:00:00
1 1 3 640 2278 4 7 00:00:00
1 1 4 1300 4956 4 9 00:00:00

2 3 0 24 24 8 1 00:00:00
2 3 1 160 388 8 3 00:00:00
2 3 2 528 1668 8 5 00:00:00
2 3 3 1280 4556 8 7 00:00:00
2 3 4 2600 9912 8 9 00:00:00

9 511 0 3072 3072 1024 1 00:00:01
9 511 1 20480 49664 1024 3 00:00:29
9 511 2 67584 213504 1024 5 00:03:22
9 511 3 163840 583168 1024 7 00:16:34
9 511 4 332800 1268736 1024 9 00:55:32

10 1023 0 6144 6144 2048 1 00:00:04
10 1023 1 40960 99328 2048 3 00:01:32
10 1023 2 135168 427008 2048 5 00:11:49
10 1023 3 327680 1166336 2048 7 00:57:07
10 1023 4 665600 2537472 2048 9 04:02:14

The first two columns give the value of the number of bits required to en-
code the sequence number and the corresponding maximum sequence number.
The next column records MaxRetrans. The next three columns list the numbers
of nodes (markings), arcs, and dead markings in each OG, respectively. The
second last column indicates the maximum number of messages in the message
queue and the maximum number of acknowledgements in the acknowledgement
queue, confirming Theorems 1 and 2. The last column records the time it took
to generate the OG in hours, minutes and seconds.

The results indicate that the state space is linear in the size of the sequence
number space (MaxSeqNo + 1) and the number of dead markings is given by
2((MaxSeqNo + 1). We expect the number of dead markings to be independent
of the number of retransmissions, and for there to be a dead marking for each
sequence number for two cases: firstly, when all messages are lost; and secondly,
when all acknowledgements are lost.

Generating the reachability graph and answering our analysis questions is
readily achieved with Design/CPN for small values of the MaxSeqNo and MaxRe-
trans parameters. We can obtain results for some practical values of sequence
numbers. For example, the X.25 protocol allows the use of 3 bit, 7 bit and 15 bit
sequence numbers. For MaxSeqNo = 127 (7 bit sequence numbers) and MaxRe-
trans = 3, we find the reachability graph contains 40960 states and takes 94
seconds to generate. Increasing MaxSeqNo to 1023 (10 bit sequence numbers)
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and for MaxRetrans = 4 we find that there are 665600 reachable states, tak-
ing over 4 hours to generate. At around 1.5 million states the generation time
becomes too slow to be feasible. (1.5 million states takes Design/CPN days to
generate and will exhaust the memory on a PC with 1Gb of RAM.) Thus ob-
taining a result for 15 bit sequence numbers is problematic. Further, TCP, which
uses 32 bit sequence numbers (MaxSeqNo = 4294967295), would require the gen-
eration of a reachability graph containing over 1012 states (for MaxRetrans = 3).
Clearly this is not feasible with Design/CPN.

We generated a similar set of statistics for the case without loss. In this case
there are no dead markings and the size of the state space is smaller but still is
linear in the size of the sequence number space. For example, without loss, the
reachability graph for MaxRetrans=1 and MaxSeqNo=1 comprises 48 nodes and
86 arcs, as opposed to 80 nodes and 194 arcs in the lossy case. This reachability
graph is shown in Fig. 7.

We have abbreviated the names of transitions (S for send, R for receive and
T for timeout), included the sequence number and indicated when a duplicate
is received. We can see that the behaviour is quite complex even for this simple
case. The usual behaviour when there are no retransmissions is given by the
cycle of nodes 1,2,3,5,7,9,12,17,1. The rest of the graph depicts the behaviour
when retransmissions occur, leading to the need to receive duplicate acknowl-
edgements. It is worth noting that this graph is strongly connected (all markings
are mutually reachable from each other).

The suite of tools available in the FSM package [33] was used for FSA gener-
ation and manipulation. A mapping was provided for the reachability graph to
distinguish between the transition occurrences of interest and internal events (ε
transitions). Final (halt) states were chosen to be those states in which the sender
and receiver are both in their ready states with the same sequence numbers, as
the protocol can terminate after sending an arbitrary number of messages, not
necessarily a multiple of the modulo value. All the reachability graphs that were
generated in both the lossy and lossless cases were then converted into a format
understandable by the FSM tools. For the lossless FIFO medium, all the mini-
mum deterministic FSA produced were identical to that shown in Fig. 6. Thus
for the range of parameters tested (MaxSeqNo up to 1023 and MaxRetrans up to
4), the SWP operating over a lossless in-order medium is language equivalent to
its service. For the lossy case, the FSA in Fig. 8 was produced for each combi-
nation of parameters tested. It shows that there can be sequences of alternating
sends and receives that may end after either a send or a receive. This is expected,
as the sequence may end after a send if a message and all its retransmissions are
lost, ending in a dead marking, where the medium is declared down. (In this case
the sender cannot tell if the last message was lost or successfully received, as it
could have been that the acknowledgements were lost instead.) Given that this
is inevitable for a finite number of retransmissions, we consider that the SWP
satisfies the stop-and-wait property in this case.

We have thus shown that the SWP satisfies the stop-and-wait property for
the values of the parameters tested. We also conjecture that this result implies
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Fig. 7. OG of the Stop-and-Wait protocol, with MaxRetrans=1, MaxSeqNo=1, operat-
ing over a FIFO channel.
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0 1
send

receive

Fig. 8. A FSA showing sequences of send and receive primitives when the Stop-and-
Wait protocol operates over a lossy FIFO channel.

that no duplicates are accepted as new messages by the receiver, and no messages
are lost, except for possibly the last message in the case of a lossy medium as
discussed above. We have further confidence that these conjectures are true
because the Alternating Bit Protocol is widely accepted as being correct over
lossy FIFO channels [2].

We thus conclude that the SWP operates as expected over lossy FIFO chan-
nels. If we allow messages in the channel to be re-ordered, will these properties
still be satisfied? The next section shows they are not.

6.3 Re-ordering Channels
Channel Bounds. We wish to prove that the number of messages in the com-
munication channel has the potential to grow without bound. This is formally
captured in the following theorem.

Theorem 4. For the Stop-and-Wait CPN of Figs. 2 and 3 where MaxRetrans ≥
1 and MaxSeqNo ≥ 1, the message channel (place mess channel) is unbounded.

Proof. To prove this theorem, we show that a cycle of transition occurrences
exists where the total effect of each cycle is to increase the number of messages
in the message channel by one, and that this cycle can be repeated indefinitely.
The following lemma is used in our proof.

Lemma 1. Let σk be a finite occurrence sequence that can occur from a marking
L, i.e. L

σk−→ L′. If L′ ≥ L, then the occurrence sequence σk can be repeated
indefinitely from marking L.

Proof. Given L
σk−→ L′ and L′ ≥ L, from Proposition 3 we know that σk can also

occur from L′, i.e. L′ σk−→ L′′. From Proposition 2, we know that L′′−L′ = L′−L
and because L′ ≥ L we know that L′′ ≥ L′. Thus from Proposition 3 we know
that σk can occur from L′′. Thus by repeated application of Propositions 2 and 3,
σk can repeat indefinitely from marking L. ��

All that is left to do to complete the proof of Theorem 4 is to identify a finite
occurrence sequence σk of transitions in our CPN model, such that σk can be
repeated indefinitely (i.e. L

σk−→ L′ with L′ ≥ L), and that the total effect of
an occurrence of the sequence σk is to increase the number of messages in the
communication channel.

Consider our CPN model from Fig. 2 with declarations as shown in Fig. 3 but
with MaxRetrans ≥ 1 and MaxSeqNo ≥ 1. From the initial marking, M0, only the
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send mess transition is enabled (with the variable sn bound to 0) indicating that
the sender is ready to begin a transmission. The occurrence of this transition
leads to a new marking M1 in which there is a message (a ‘0’ token) in the
mess channel place.

Transitions timeout retrans, mess loss and receive mess are all enabled at
marking M1. We note that the medium is lossy, but that this does not mean
that messages must be lost. An occurrence of receive mess, with variables sn
and rn bound to 0, models the receipt of this message and leads to a marking
M2. The arc inscription of the output arc from transition receive mess to place
process mess determines that this message is not a duplicate (sn = rn = 0) and
indicates this by placing a ‘1’ token (through evaluation of NextSend(0)) into
this place.

Transition send ack is enabled in marking M2 and when fired returns the
receiver to the ready state and places an acknowledgement message into the
acknowledgement channel (place ack channel). This results in marking M3.

The timeout retrans transition now occurs, with rc and sn bound to 0. The
guard on timeout retrans evaluates to true, because MaxRetrans ≥ 1. This leads
to a marking M4 in which the retransmission counter has been incremented (a ‘1’
token on retrans counter) and a duplicate message ‘0’ is in the message channel
(place mess channel).

Transition receive ack rather than receive dup ack is enabled in M4, due to the
complimentary guards, with a binding of rn = 1, sn = 0 and rc = 1. Occurrence
of receive ack removes the acknowledgement message from the acknowledgement
channel, returns the sender to the ready state, increments the sequence number
(NextSeq(0) = 1), and resets the retransmission counter to 0. The resulting
marking is M5, with

M5(sender ready)=1‘s M5(retrans counter)=1‘0
M5(seq no)=1‘1 M5(receiver ready)=1‘1
M5(ack channel)=∅ M5(wait ack)=∅
M5(process mess)=∅ M5(mess channel)=1‘0

M0 and M5 are similar in many respects, but M5 � M0 as the sequence
numbers stored at the sender and at the receiver have been incremented by one.
Note that there is an additional message (‘0’) left in the message channel. Let us
refer to the above sequence of transition occurrences as σ0 where σ0 = send mess
<sn=0>, receive mess <rn=0, sn=0>, send ack <rn=1>, timeout retrans <rc=0,
sn=0>, receive ack <rc=1, rn=1, sn=0> and M0

σ0−→ M5. The binding of vari-
ables for each transition occurrence is written inside angular brackets.

For illustration purposes, we firstly consider alternating bit sequence num-
bers (MaxSeqNo = 1). Consider the sequence of transition modes σ1 where
σ1 = send mess <sn=1>, receive mess <rn=1, sn=1>, send ack <rn=0>, time-
out retrans <rc=0, sn=1>, receive ack <rc=1, rn=0, sn=1>

σ1 is very similar to σ0, with the exception of the bindings of sn and rn. In
all instances, the values to which sn and rn are bound have been incremented,
modulo (MaxSeqNo+1) (modulo 2 in this case). σ1 can occur from M5, resulting
in a marking M10, with
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M10(sender ready)=1‘s M10(retrans counter)=1‘0
M10(seq no)=1‘0 M10(receiver ready)=1‘0
M10(ack channel)=∅ M10(wait ack)=∅
M10(process mess)=∅ M10(mess channel)=1‘0 + 1‘1

We note that M10 = M0 + {((mess channel, 0), 1), ((mess channel, 1), 1)}.
Thus M10 is a covering marking of M0, i.e. M10 ≥ M0. The sequence numbers
at sender and receiver have wrapped back to their original value of 0 and M10

is identical to M0 with the addition of the two extra messages in the message
channel. According to the transition rule for HLPNs, additional tokens on a place
will not disable any transitions that were previously enabled. From Lemma 1,
the occurrence sequence σ0σ1 can repeat indefinitely, increasing the number of
tokens in mess channel by two each cycle. Thus mess channel is unbounded and
we have proved Theorem 4 for MaxSeqNo = 1.

Generalising for MaxSeqNo ≥ 1, we have MaxSeqNo+1 sequence numbers
and thus require σ0, σ1, . . . , σMaxSeqNo, defined in the same way as σ0 and σ1

above. For 0 ≤ j ≤ MaxSeqNo, σj = send mess <sn=j>, receive mess <rn=
sn=j>, send ack <rn=(j⊕1)>, timeout retrans <rc=0, sn=j>, receive ack <rc=1,
rn=(j⊕1), sn=j>.

The occurrence of σ0σ1 . . . σMaxSeqNo in marking M0 leads to a marking Mm,
where m = 5MaxSeqNo and

Mm(sender ready)=1‘s Mm(retrans counter)=1‘0
Mm(seq no)=1‘0 Mm(receiver ready)=1‘0
Mm(ack channel)=∅ Mm(wait ack)=∅
Mm(process mess)=∅
Mm(mess channel)=1‘0 + 1‘1 + ... + 1‘MaxSeqNo

Mm covers marking M0 so that σ0σ1 . . . σMaxSeqNo can repeat indefinitely from
marking M0, resulting in MaxSeqNo additional messages in the message channel
for each repetition. Thus the message channel is unbounded. ��

A similar theorem holds for the acknowledgement channel.

Theorem 5. For the Stop-and-Wait CPN of Figs. 2 and 3 where MaxRetrans
≥ 1 and MaxSeqNo ≥ 1, the acknowledgement channel (place ack channel) is
unbounded.

Proof. The proof is similar to that of Theorem 4, hence we just provide a sketch.
Consider the transition sequence send mess, receive mess<rn=sn>, send ack,
timeout retrans, receive ack, receive mess<sn�=rn> and send ack. (Binding ele-
ments have been omitted where they are not important.) Transition occurrence
sequences σ0, σ1, . . . σMaxSeqNo are defined in a similar way. The occurrence se-
quence σ0, σ1, . . . σMaxSeqNo can be repeated indefinitely from M0, resulting in
MaxSeqNo additional acknowledgements in the acknowledgement channel for
each repetition. ��
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Loss, Duplication and Stop-and-Wait Property. As previously discussed,
when the Stop-and-Wait protocol operates as required, one message will be re-
ceived correctly at the receiver for every original message sent by the sender. It
turns out that this is not always the case for the Stop-and-Wait protocol operat-
ing over a medium that reorders messages. This demonstrates that the protocol
does not satisfy the Stop-and-Wait service. Further we can show that sequences
of sends and receives exist where there are more receives than sends, indicating
that duplicates are accepted. Finally we can also demonstrate that there are
sequences in which there are more sends than receives, indicating that messages
can be lost.

We summarise these results in the following theorems.

Theorem 6. The Stop-and-Wait CPN of Figs. 2 and 3 where MaxRetrans ≥ 1
and MaxSeqNo ≥ 1, does not satisfy the Stop-and-Wait service.

Theorem 7. For the Stop-and-Wait CPN of Figs. 2 and 3 where MaxRetrans
≥ 1 and MaxSeqNo ≥ 1, the receiver may incorrectly accept duplicate messages
as new messages.

Theorem 8. For the Stop-and-Wait CPN of Figs. 2 and 3 where MaxRetrans ≥
1 and MaxSeqNo ≥ 1, messages can be lost without the sender or receiver being
aware of it.

Proof. We use language analysis to prove the above theorems. Due to the un-
bounded communication channels in our original model shown in Fig. 2, the
resulting reachability graph is infinite. However, to prove our theorems, we only
need to demonstrate that it is possible for the system to malfunction. We there-
fore limit the capacity of the communication channels to two. The rationale
behind this is that if the protocol operates incorrectly with a channel capacity
of two messages, the same incorrect behaviour will also be present in a chan-
nel with capacity greater than two. Capacities of 0 and 1 are not appropriate,
as a capacity of 0 results in no communication and a capacity of 1 prohibits
overtaking. Thus a capacity of two is the minimum needed to show interesting
behaviour.

To obtain the smallest reachability graph of interest, we also set MaxRetrans
= 1 and MaxSeqNo = 1. We argue that if incorrect behaviour is evident when
MaxRetrans = 1 then the same behaviour can occur for MaxRetrans ≥ 1 (as it in-
cludes MaxRetrans = 1) and similarly for MaxSeqNo (as sequence numbers always
wrap, but the sequences illustrating the incorrect behaviour will be longer).

Channel capacity has been implemented as shown in Fig. 9 with declarations
shown in Fig. 10. The initial marking of the mess channel and ack channel places
has been modified so that each place contains a certain number of empty tokens,
in this case two each, representing empty buffers. Each time a message is placed
in the channel, an empty token must be removed, and whenever a message is
removed, an empty token must be put back. This is shown on the arc expres-
sions connecting the mess channel and ack channel places to the surrounding
transitions.
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Fig. 9. A CPN of the Stop-and-Wait Protocol operating over a reordering medium
with finite capacity.

val MaxRetrans = 1;

val MaxSeqNo = 1;

color Sender = with s;

color Seq = int with 0..MaxSeqNo;

color RetransCounter = int with 0..MaxRetrans;

color Message = union message : Seq + Empty;

var sn,rn : Seq;

var rc : RetransCounter;

fun NextSeq(n) = if(n = MaxSeqNo) then 0 else n+1;

Fig. 10. Declarations of the CPN shown in Fig. 9.

Design/CPN [29] was used to generate the reachability graph of this CPN
(Fig. 9) for the configuration shown in Fig. 10, without loss in the channel. The
reachability graph contains 410 nodes and 848 arcs. After interpreting this as a
FSA, the FSM package was used to obtain the equivalent minimum deterministic
FSA as shown in Fig. 11. We have replaced send with s and receive with r in the
figure due to size constraints.
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Fig. 11. FSA showing erroneous sequences of send and receive primitives for the Stop-
and-Wait protocol operating over a lossless reordering medium.

This FSA shows that the SWP operating over a medium that reorders mes-
sages does not satisfy its service. For example, we see that the sequence 4 r→
5 s→ 8 s→ 6 r→ 4 violates the Stop-and-Wait service of alternating send and
receive events. There are other more interesting sequences also. There are incor-
rect sequences of send and receive primitives, indicating that the receiver can
mistakenly accept duplicate messages as new messages. For example, the cycle
7 s→ 10 r→ 13 s→ 6 r→ 4 r→ 5 r→ 7 shows that it is possible for the system to enter
a loop where the receiver accepts four messages as legitimate messages for every
two sent by the sender. Another such loop is 5 s→ 8 r→ 11 r→ 13 s→ 6 r→ 4 r→ 5.
To illustrate how duplication can happen in the protocol, we have included a
protocol trace corrresponding to the initial sequence 0 s→ 1 r→ 2 s→ 3 r→ 4 r→ 5
as shown in Fig. 12.

In Fig. 12, event 1 corresponds to sending a message (send primitive) with
sequence number 0 (mess(0)), which is received (event 2: receive) and acknowl-
edged (event 3) by sending ack(1). The timer then expires at the sender, and
mess(0) is retransmitted (event 4) giving rise to a duplicate (mess(0)[dup]) which
is delayed in the medium. The sender then receives ack(1) (event 5) and sends out
its next message, mess(1), at event 6 (send). At this stage there are two messages
in the channel. Because the retransmitted mess(0) is delayed, it is overtaken by
mess(1) which is expected and received normally by the receiver (event 7:receive)
who acknowledges it with ack(0) at event 8. At this point, the primitive events
have been as expected: send, receive, send, receive. Next the sender retransmits
mess(1) (mess(1)[dup]) at event 9 (not relevant to this discussion). Then at event
10 (receive), the receiver is expecting a mess(0) and receives it. However, it is
a duplicate of the first message, and not a new message. The receiver wrongly
interprets it as a new message and a receive primitive occurs, giving the sequence
send, receive, send, receive, receive.

We now consider a third cycle in Fig. 11, given by 13 s→ 6 s→ 9 s→ 12 r→ 13.
This cycle shows that for every 3 messages sent, only one is received, demon-
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Fig. 12. Time Sequence diagram showing the acceptance of a duplicate for the Stop-
and-Wait protocol operating over a lossless reordering medium.

strating message loss even though there is no loss in the medium! We illustrate
this behaviour with the protocol trace shown in Fig. 13.

The sequence starts as expected with the first two messages (mess(0) and
mess(1)) sent (events 1 and 8) and received (2 and 9) correctly. Retransmissions
occur for both mess(0) (event 4) and mess(1) (event 11), but these are correctly
discarded as duplicates (events 6 and 13). However, they give rise to duplicate
acknowledgements (events 7 and 14) which the sender incorrectly interprets as
acknowledgements (events 16 and 18) for the new messages sent (events 15 and
17). For example, this is due to ack(0) overtaking ack(1) and mess(0) being sent
before ack(1) arrives. Now mess(1) (the fourth message sent) overtakes mess(0)
(the third message sent) and is misinterpreted by the receiver as a duplicate and
discarded (event 19) because the receiver is expecting mess(0). An acknowledge-
ment (ack(0)) is thus sent (event 20) indicating that the receiver is expecting
a message with a sequence number 0. Meanwhile, the sender has received du-
plicate ack(0) (event 18) which it interprets as a good acknowledgement for the
fourth message (which is discarded by the receiver, as already discussed) and
transmits (event 21) the fifth message (mess(0)). This gives us the primitive se-
quence: send, receive, send, receive, send, send, send. The receiver now receives
the third message (mess(0)) correctly (event 22) and acknowledges it (event 23).
The receiver is thus expecting to receive a message with sequence number 1,
but receives the new fifth message (event 25) and discards it as a duplicate.
However, the sender now receives ack(1) (event 24) and believes that the fifth
message has been received correctly. This sequence demonstrates how two mes-
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Fig. 13. Time Sequence diagram showing how loss can occur for the Stop-and-Wait
protocol operating over a lossless reordering medium.

sages (the fourth and fifth) can be lost due to incorrect protocol mechanisms,
while both the sender and receiver believe that there is no problem. Note that
this sequence only requires two retransmissions to occur.

It is interesting to note that problems with acceptance of incorrect messages
do not occur until the sequence numbers wrap, i.e. at node 4 in Fig. 11.

We also considered the case when the channel was lossy (in addition to re-
ordering). The same parameter settings were used. The reachability graph con-
tained 624 nodes and 2484 arcs. The reduced FSA showing the protocol language
for this configuration contains 29 nodes and 47 arcs, and is shown in Fig. 14.
There are many incorrect sequences in this language also. ��

7 Discussion

7.1 Practical Relevance

In order to understand the relevance of these results to practical protocols, let us
consider the error recovery and flow control strategies implemented in TCP [62].
TCP uses retransmission on timeout to recover from packet loss and a sliding
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and-Wait protocol operating over a lossy reordering medium.
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window mechanism for flow control, which includes dynamic window changes.
TCP operates over IP (the Internet Protocol), which allows packets (known as
segments) to be dropped or reordered. The correctness of TCP’s data transfer
procedures can thus be related to the correctness of the Stop-and-Wait protocol
operating over a medium that allows reordering.

It is necessary to distinguish between ‘old’ duplicates, those left from a pre-
vious connection, and duplicates caused by retransmissions within a connection.
TCP uses a 32 bit sequence number, giving 232 = 4294967296 sequence numbers.
Each sequence number is associated with 1 byte of data. Apart from unbounded-
ness, the problems associated with the Stop-and-Wait protocol only arise after
sequence numbers wrap, so that delayed duplicates can disrupt the acknowl-
edgement mechanism, resulting in loss of messages or mistaken acceptance of
duplicates as new messages. This will only happen in TCP after 4Gbytes of data
have been transmitted and duplicates still remain in the network.

The threat posed by old duplicates was recognised by the designers of the
Internet. They introduced the concept of a life-time for a packet in the IP layer,
known as time-to-live. (This is implemented as a ‘hop count’ in practice.) The
idea is that duplicate packets left floating around a network will be discarded
once their time-to-live expires. TCP also implements a 3-way handshake for con-
nection establishment, such that the starting sequence number for a connection
can be chosen carefully for each new connection. In this way, (time-to-live com-
bined with the 3-way handshake) TCP tried to avoid the problem caused by old
duplicate packets being accepted due to wrapping sequence numbers.

RFC (Request for Comment) 793 [62], the protocol specification for TCP
maintained by the Internet Engineering Task Force (IETF) [42], states that the
maximum lifetime for a segment of data (MSL) is two minutes. Thus there will
not be a problem with duplicate packets if they are destroyed before sequence
numbers can wrap. Every byte is given a sequence number, thus for a trans-
mission rate of 1 megabit per second (125 kBytes/sec) and ideal conditions for
data transfer, the sequence number space will be exhausted in approximately
232/(1.25 ∗ 105) ≈ 9.5 hours. Clearly this is not a problem. For a transmission
rate of 100 megabits/sec (12.5 megabytes/sec) we see that the sequence num-
bers will wrap after 232/(1.25 ∗ 107) ≈ 5 minutes and 45 seconds. This is getting
close to the maximum packet lifetime, but should not pose a problem unless
the hop count mechanism takes longer than 2 minutes to quash packets. With
the introduction of Gigabit networks [73] the sequence numbers of TCP could
wrap after only 34 seconds of data transfer at 1 gigabit/second. Although the
maximum throughput of a network rarely approaches the theoretical maximum,
it would not be unreasonable to assume that with a very large window size and
very large data transfers, wrapping of sequence numbers would occur after about
one minute, allowing for the possibility of duplicates being in the channel at the
same time as new packets with the same sequence numbers.

This is the condition necessary for packet loss and the acceptance of du-
plicates (as a new packet) to occur. However, to get duplicates, there must be
retransmissions caused by additional delay due to network congestion or lack
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of responsiveness in the receiver (e.g. an overloaded web server) which will re-
duce throughput. This delay, however, does not need to be very great to cause
retransmissions, and hence the effect on throughput may not be significant. An-
other factor limiting throughput is TCP’s window size and the round trip delay
(RTD). In standard TCP implementations, the maximum window size is 216

bytes, limiting the throughput to (216/RTD) bytes/sec. The speed of light prop-
agation delay contribution to RTD will then provide a limit irrespective of the
transmission speed. However, to allow users to take advantage of high-speed
networks, RFC 1323 [43] proposes to increase the maximum window size to 230

bytes or 1Gbyte, in which case the speed of light delays are no longer a limiting
factor.

It is unlikely that duplicates are a problem for TCP with the current speed of
networks, however these problems may become more probable if network speed
were to increase by another order of magnitude, i.e. 10 gigabit/second. There are
additional ramifications to be considered if incorrect acceptance of duplicates or
loss of data becomes a problem. For safety critical applications operating over
the Internet the consequences could be catastrophic.

There are a number of suggested ways in which this problem could be solved,
or at least alleviated. RFC 1323 [43] specifies a number of TCP extensions
for high performance. The extension for a larger window size has already been
mentioned. Another extension is Protect Against Wrapped Sequence Numbers
(PAWS) which proposes a solution to wrapping sequence numbers within a con-
nection, by including a 32 bit time-stamp in every segment. Another solution
involves extending the sequence number space, to 264, i.e. 64 bit sequence num-
bers. Even at 10 gigabit/second, a 64 bit sequence number field would take 470
years to wrap. The procedure of sequence numbering may also be reviewed, as
currently every byte is given a sequence number. Providing a sequence num-
ber for every packet would extend the usefulness of the existing 32-bit sequence
numbers.

How likely is it that unbounded growth of messages in the communication
channels will actually occur? The unbounded growth is caused by retransmis-
sions due to delayed acknowledgements. Given the variability of the round trip
delay (due to the unpredictability of network congestion or overloaded servers) it
is not uncommon for these delays to occur. This is countered to some extent by
TCP measuring round trip delay and setting its retransmission timeout period
accordingly. However, due to transients, unnecessary retransmissions will always
occur. The unbounded growth, however, only occurs because the duplicates are
not received by the receiver. This is highly unlikely. Also those that are delayed
in the network will be expunged after their time-to-live limit has expired. Thus
TCP already has mechanisms in place to prevent unbounded growth. TCP has
also developed sophisticated techniques to cope with network congestion [73],
so we don’t see that our unboundedness result for re-ordering media will cause
major difficulties with protocols such as TCP. Nonetheless, as network speeds
increase the problem will get worse, particularly if the time to live value is main-
tained at 2 minutes. In general we can say that the contribution to congestion
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over FIFO channels is well contained (determined by the maximum number of re-
transmissions allowed) whereas over channels that re-order messages, it requires
other mechanisms to contain congestion.

One avenue of further study is to generalise these results for other flow control
mechanisms, such as the Sliding Window mechanism used in TCP and other
protocols.

7.2 Shortcomings of Our Approach

The language analysis performed in Section 6.3 uncovered a number of errors,
but was not able to detect all errors. We discovered many scenarios in which
the Stop-and-Wait protocol, operating over a reordering channel (bounded or
unbounded), can generate sequences of alternating send and receive events in
which duplicate data is accepted and messages can be lost.

The following sequence of events is just one of many in which the above two
problems are evident. This particular sequence was chosen because it is one of
the shortest. Starting from the initial state of the CPN as depicted in Figs. 9
and 10, it illustrates the possibility of acceptance of duplicate data and message
loss. This scenario represents a loop in the reachability graph of the model and
exists independently of the boundedness and lossy properties of the channel. In
the following event sequence, we use ‘message n’ as shorthand for ‘the message
with sequence number n’. The corresponding transition and binding of variables
is written after each action.

1. Send message 0 (send mess <sn=0>)
2. Receive message 0 (receive mess <rn=0, sn=0>)
3. Send acknowledgement for message 0 (send ack <rn=1>)
4. Timeout and retransmit message 0 (timeout retrans <rc=0, sn=0>)

- A duplicate message 0 remains in the channel.
5. Receive the ack of message 0 (receive ack <rc=1, rn=1, sn=0>)
6. Send message 1 (send mess <sn=1>)
7. Receive message 1 (receive mess <rn=1, sn=1>)

- Message 1 has overtaken message 0.
8. Send acknowledgement for message 1 (send ack <rn=0>)
9. Receive the ack of message 1 (receive ack <rc=0, rn=0, sn=1>)

10. Send message 0 (send mess <sn=0>)
- Now there are two message 0’s in the channel, a new message 0 and the
duplicate of the previous message 0 from line 4.

11. Receive message 0 (receive mess <rn=0, sn=0>)
- Duplicate data accepted (unless the new message 0 overtakes the old mes-
sage 0.) The receiver believes this to be the correct (new) message 0.

12. Send acknowledgement for message 0 (send ack <rn=1>)
13. Receive and discard a duplicate message 0 (receive mess <rn=1, sn=0>)

- Loss of the data in the new message 0 (unless overtaking occurred in step
11, in which case we are discarding the duplicate message 0 from step 4.)

14. Send a duplicate acknowledgement of message 0 (send ack <rn=1>)
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15. Receive the ack of message 0 (receive ack <rc=0, rn=1, sn=0>)
16. Receive the duplicate ack of message 0 (receive dup ack <rn=1, sn=1>)
17. Send message 1 (send mess <sn=1>)
18. Receive message 1 (receive mess <rn=1, sn=1>)
19. Send acknowledgement of message 1 (send ack <rn=0>)
20. Receive ack of message 1 (receive ack <rc=0, rn=0, sn=1>)
21. Repeat from the beginning.

The problem arises in steps 11 and 13 of the above sequence. Because we do
not include message data in our model, we can not determine which message is
being received at step 11 (the original message from step 10 or the duplicate from
step 4) and which is being discarded at step 13. Note that the global sequence
of alternating send and receive events, as defined in our service, still holds.

Language equivalence is sufficient to prove or disprove that the correct se-
quences of events were occurring in the protocol, as defined in our service specifi-
cation. From it we were able to detect numerous errors relating to the sequences
of events, and to infer from those incorrect sequences that loss or duplication
was occurring. However, given our existing service and protocol specifications,
we were unable to detect the incorrect data acceptance and loss problems iden-
tified above, when the event sequences were as expected. The fault lies not with
language analysis itself but with what we are applying language analysis to. The
service specification is incomplete. Indeed, the service only specifies that there
must be alternating send and receive events, i.e. that every send event (for a
new message) is followed by a receive event (for what the receiver believes is the
same new message). It abstracts from the data that is sent and received. What
appears to be a reasonable abstraction (that is, the data to be sent is not re-
quired as it does not affect the operation of the protocol) is adequate for proving
or disproving properties such as deadlocks and livelocks, and for determining the
sequences of events, but says nothing about the data delivered on the occurrence
of such events.

The assumption we made in defining the service is related to the notion of
data independence [54, 64, 65, 77, 82]. Conceptually, a system is said to be data
independent if the operation of the system is independent of the specific data
it is operating on. Sabnani [65] uses data independence principles to define and
verify properties about the Alternating Bit Protocol operating over a link-layer
channel with a capacity of one. For example, to prove that data is passed up
to the receiving user in the same order in which it is supplied by the sending
user, both Wolper [82] and Sabnani [65] tell us that we need a minimum of three
distinct data values. Incorporating these ideas into our service and protocol
specifications may provide a solution.

Another avenue for investigation is the work presented in [52]. Knuth essen-
tially derives design rules for appropriate bounds on sequence numbers for data
transfer protocols operating over FIFO channels. He then provides a general-
isation of these rules for channels that are basically FIFO in nature but may
exhibit limited (bounded) reordering. Investigating the derivation of these rules
may provide insight into our use of sequence numbers in the analysis of the
protocol specification.
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8 Concluding Remarks on the Stop-and-Wait Protocol

The class of Stop-and-Wait protocols (SWPs) include message acknowledge-
ments and retransmission on time-out procedures to recover from transmission
errors or from dropped packets in a communication medium such as the Inter-
net. They form the basis of the data transfer procedures for both data link layer
protocols and transport level protocols. The retransmission procedure can result
in duplicate messages due to acknowledgements being lost or delayed. To de-
tect duplicates a SWP inserts sequence numbers into messages and keeps track
of the sequence numbers at both ends. However, sequence numbers need to be
from a finite sequence number space and the number of times that a message can
be retransmitted is also limited. We thus characterise SWPs using two param-
eters: the maximum sequence number (MaxSeqNo) and the maximum number
of retransmissions (MaxRetrans). We demonstrate how a simple CPN model can
be built that is parameterised by MaxSeqNo and MaxRetrans and discuss some
of the modelling decisions. The first model operates over a lossy re-ordering
medium. We also show how the CPN model can be modified to operate over
(lossy) FIFO channels (applicable to data link protocols) and that this is an
important starting point for analysing the re-ordering case. We consider four
properties that we believe are important for stop-and-wait protocols: the bound
on the channels; (unknowing) loss of messages; acceptance of duplicates as new
messages; and the stop-and-wait property of alternating sends and receives. In
the case of lossy FIFO channels, we manually prove that the communication
channels are bounded by one more than twice the maximum number of retrans-
missions (2MaxRetrans + 1). We believe this is a new result. This illustrates an
approach to proving properties of protocols for arbitrary parameter values using
manual proofs. Using the protocol verification methodology, i.e., by generating
the occurrence graph of the protocol and using automata reduction, we also
show that the stop-and-wait property holds for small values of the parameters
and conjecture that this implies that no loss or duplication occurs.

Protocols (such as TCP) operating over the Internet Protocol have to contend
not only with loss due to transmission errors and packets dropped at routers, but
also with the possibility that the order of packets is not maintained. Since TCP
can behave as a Stop-and-Wait protocol under certain conditions it is interesting
to investigate the behaviour of SWPs over a reordering medium. We analysed
our CPN model with re-ordering channels and proved that: the communication
channels are unbounded; messages can be lost, although the sender believes they
have been confirmed by the receiver; duplicates can be accepted as new messages
by the receiver; and that the SWP does not satisfy its service of alternating sends
and receives. We provided a manual proof that the channels were unbounded
so long as both parameters were positive giving a general result. The last 3
properties were obtained using our automatic verification method for the case
when the channel capacity was 2 and MaxRetrans and MaxSeqNo were both 1.
We then argued that this would also imply that these error conditions would
occur for any channel capacity greater than one, and any positive values of the
parameters. We also noted that the first result is independent of sequence number
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wrap, while the last three results depend on sequence numbers wrapping before
the problems occur.

We discuss the practical relevance of these results to TCP. We conclude
that sequence number wrap is possible in Gigabit networks, particularly if the
extended window size option is used. RFC 1323 discusses this problem and sug-
gests a mechanism (PAWS) using 32 bit time stamps to reject old duplicates,
which hopefully will eliminate the problems associated with sequence number
wrap. The problem with unbounded channels is not serious, but could add to
congestion problems as the speed of networks increases. Our discussion is at a
high-level and does not investigate in detail TCP’s procedures for data transfer,
nor the suggested PAWS scheme.

Our language analysis results allow us to detect incorrect sequences of events
in our protocol specification and to deduce that loss and duplication are occur-
ring. However, we illustrate that our data abstraction assumption (that data is
not required as it does not affect the operation of the protocol) prevents us from
detecting data loss and duplication in situations where the sequences of events
are correct (i.e. correspond to the SWP service). Thus, with the data abstraction
used, language analysis does not provide a method for verifying correct operation
of the protocol in terms of absence of loss and duplication. To solve this problem
we plan to apply data independence principles and techniques in order to define
service and protocol specifications that capture the required information.

9 Transmission Control Protocol

The purpose of this part of the paper is to provide an example of an applica-
tion of the methodology to an important complex protocol of the Internet, the
Transmission Control Protocol (TCP). Our concern here will be to illustrate the
first steps in modelling and analysing a complex protocol in the hope that this
experience will help others to tackle other complex protocols. We concentrate on
the connection management aspects of the protocol (especially establishment),
rather than data transfer, which has already been discussed in detail for the
Stop-and-Wait protocol.

TCP is specified in Internet Request For Comments (RFC) number 793 [62].
Its goal is to establish, maintain and close point-to-point connections between
host computers attached to the Internet. Its main purpose is the reliable transfer
of data between host computers. It also provides facilities for many connections
to be running simultaneously to support multiple Internet application sessions
such as those related to the World Wide Web and Email.

9.1 TCP Messages

In order to establish and release connections and to transfer data, RFC 793
defines a set of messages that are exchanged between the two computers. A
TCP message, known as a segment, comprises a header field and a data field
that carries application data. The TCP header field provides control information
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for handling multiple connections, their management (the opening and closing
of connections) and reliable data transfer including end-to-end flow control. The
format of a TCP segment is given in Fig. 15.
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Fig. 15. TCP Segment Format.

The 16 bit source and destination port fields are used to identify the ap-
plication that is going to use the connection and allow multiple connections to
be running simultaneously. On a particular connection, a sequence number is
associated with every octet of data that is to be sent from one host computer to
another. When transmitting data, the 32 bit sequence number field specifies the
sequence number of the first data octet in the segment. The 32 bit acknowledge-
ment number field indicates the successful receipt of data octets and contains
the next sequence number of the data octet that the sender of the acknowledge-
ment segment is expecting to receive. The four bit data offset field contains the
header length (in 32 bit words). The next 6 bits are reserved, then there are a
set of 6 control bits that are vitally important for TCP connection management.
We describe them in detail in the next paragraph. A 16 bit window field is used
for flow control. It signals to the receiver of the segment the number of data
octets that the sender of the segment is prepared to receive, beginning with the
acknowledgement number in the segment.

As already mentioned the header contains six 1-bit control flags: URG (ur-
gent), ACK (acknowledgement), PSH (push), RST (reset), SYN (synchronisa-
tion) and FIN (finish). The URG flag if set, is used in conjunction with an urgent
pointer field, to indicate to the receiver the position of data in the octet stream
that needs priority when being delivered to the user. A segment with the ACK
flag set indicates that the acknowledgement number field is valid. A set PSH
flag indicates to the receiving TCP process that all queued data, including that
just received, must be immediately delivered to the user. When set, the RST
flag informs the receiver of the segment to reset the connection. This normally
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results in the connection being aborted. A TCP connection is initiated by setting
the SYN bit in a segment. The SYN carries an initial sequence number which
indicates that the first octet of data to be sent will carry the next sequence num-
ber (initial sequence number plus one). The initial sequence number is chosen
according to the value of a clock that the host runs, instead of always being set to
zero. This is to reduce the probability of delayed old duplicate SYNs interfering
with the connection. Finally, a segment with the FIN bit set indicates that the
sender of the segment has no more data to send. It is used to gracefully close
the connection (i.e. without data loss). The sequence number of the FIN is that
of the last data octet sent plus one. A TCP segment is usually named after the
control bits that are set. For example, a SYNACK segment refers to the segment
which has both the SYN and ACK bits set.

The remaining header fields comprise a 16 bit checksum used to detect trans-
mission errors, a 16 bit urgent pointer required for urgent data (already discussed
above) and an options field (allowing, for example, a maximum segment size to
be indicated in a SYN segment).

9.2 TCP Connection Management Procedures

A TCP state diagram [26,62, 69] is included in the RFC to illustrate TCP con-
nection management procedures. It defines TCP’s 11 states and a core set of
state changes related to processing user calls and connection management seg-
ments. It is incomplete in that it does not include TCP’s state variables nor does
it incorporate reset processing and error handling. A much more comprehensive
pseudo-code like description of TCP’s procedures is given in Section 3.9 of RFC
793. In this section we just illustrate the procedures using message sequence
diagrams.

Figure 16 (a) is a message sequence diagram for normal connection setup
and tear down. On the left is the client (the initiator of the connection) and on
the right is the server. Time progresses down the page. The client’s states (e.g.
CLOSED, SYN SENT, ESTABLISHED) are written to the left of the vertical
line representing the client. A similar convention is adopted for the server side.
User commands (i.e. active open, passive open, and close) are written in paren-
theses on top of some states, indicating when they occur. TCP uses a “three-way
handshake” [75] to establish a connection, i.e., three segments are used by the two
communicating hosts to open the connection. In Fig. 16, the sequence number
and the acknowledgement number (when relevant) are included with the segment
name. The procedure is initiated by the TCP entity on one host (client), and re-
sponded to by the TCP entity on the other (server). In Fig. 16 (a), after receiving
an active open command from its user, the TCP client sends out a SYN segment
with a sequence number ISS1, its initial sequence number for the connection. The
client also changes state from CLOSED to SYN SENT. The TCP server enters
LISTEN after receiving a passive open command from its user. To respond to the
SYN from the client, it sends out a SYNACK segment with an acknowledgement
number ISS1+1 as well as a sequence number ISS2, the server’s initial sequence
number for the connection. After sending the SYNACK segment, the TCP server
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changes state from LISTEN to SYN RCVD. To respond to the SYNACK, the
TCP client sends an ACK with sequence number ISS1+1 and acknowledgement
number ISS2+1 and changes state from SYN SENT to ESTABLISHED. After
receiving the ACK, the server goes into ESTABLISHED from SYN RCVD. The
connection is now set up between the client and the server.
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Fig. 16. Message sequences for TCP connection management.

Graceful connection termination is illustrated at the bottom of Figure 16
(a). Firstly, the TCP client user indicates that it has no further data to send by
issuing a close command. The TCP client sends a FIN segment to the server and
enters the FIN WAIT 1 state. On receipt of the FIN, the server acknowledges it
and informs its user that the client is closing the connection. When the server
user has no more data to send, it issues a close command to the server TCP
entity, which sends a FIN to the client, closing the connection from the server to
the client. Finally the FIN is acknowledged by the client. The sequence number
(x) and acknowledgement number (y) used in this message sequence diagram
assume that the server had no more data to send.

The TCP connection management protocol also incorporates procedures for
simultaneously opening and simultaneously closing connections by both TCP en-
tities. Figs. 16 (b) and (c) show the sequences respectively. For more information
about them, see [62, 69].

As well as the major states defined in the state diagram, TCP state vari-
ables are used to maintain the state of a TCP connection and are stored in a
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record called the Transmission Control Block (TCB). Important TCP variables
for connection management are: SND UNA, SND NXT, ISS and RCV NXT.
SND UNA records the oldest sequence number of a segment that has been sent
but has yet to be acknowledged. SND NXT stores the sequence number of the
next segment to be sent. ISS represents the initial send sequence number of the
initiating TCP entity, while RCV NXT stores the sequence number of the next
expected incoming segment.

10 CPN Model of TCP Connection Management

In this section we explore building a CPN model of TCP’s connection man-
agement procedures. We start by discussing the assumptions and abstractions
used.

10.1 Modelling Assumptions and Abstractions

We make five assumptions when modelling TCP connection management.

1. The communication channel does not lose, corrupt or duplicate packets, but
may delay and re-order packets.

The reason for starting from a non-lossy channel is that a lossy channel
may hide possible deadlocks in the protocol, such as unspecified receptions
which the channel can conveniently lose, but mostly will not! Thus this
anomaly would be missed when inspecting the leaf nodes of the reachability
graph if arbitrary channel loss is included, but nonetheless it would be a
problem. Excluding loss initially allows these imperfections to be detected
by inspecting dead markings.

2. There is no retransmission.

We would like to ensure that the procedures work without the complication of
retransmissions, which we know will cause state space explosion. Thus, when
no loss is involved, retransmissions are not necessary for the procedures to
operate correctly. Later, we shall need to investigate the effect of loss and the
use of retransmissions, once the basic behaviour is confirmed to be correct.
This assumption allows us to ignore the retransmission procedures for SYN
and FIN segments.

3. We consider a single instance of a TCP connection.

Because all instances of a connection operate the same way, we can just
consider one instance. It is only when we wish to consider contention for
resources (such as buffer space in a host) between a number of running
connections, that we need to consider multiple connections. This is ruled
out of the scope of the initial analysis of TCP. This assumption allows us to
ignore the source and destination port numbers.
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4. The receive buffer is big enough to store all the incoming segments.
Since we are only considering connection management, and not data transfer,
it is reasonable to assume that the receiver will be able to store the connection
management segments. This allows us ignore the flow control window and
the calculations and comparisons based on it. This simplifies the model and
thus reduces the size of the state space.

5. The user issues four commands to the TCP entity: active open, passive open,
send and close.
The TCP user interface also allows for three other calls: abort, receive and
status. We do not model the abort call at this stage, as we wish to investi-
gate TCP’s basic behaviour of establishing and gracefully releasing connec-
tions, before including arbitrary aborts. Once we know the core behaviour
is satisfactory, then we can start to investigate the rarer and more complex
behaviour that includes user aborts. The receive and status calls do not af-
fect the operation of the protocol and can be considered as local interface
matters. They are also not modelled.
The TCP RFC says little about feedback to the user (such as receipt of data,
or indications that the connection has been requested or is established) and
thus at this stage of the investigation, we do not consider it. It is however
of vital importance with respect to whether or not TCP satisfies its service,
where we must be explicit about such interactions. Since RFC 793 does not
define a service, we firstly investigate the operation of the protocol without
it. Once more experience is gained, then we are in a much better position to
define the service [15–17].

We model TCP segments at the level of detail needed for analysing the con-
nection management procedures, given the above assumptions. A TCP segment
is thus modelled by including: the sequence number, the acknowledgement num-
ber and four control flags: SYN, ACK, RST and FIN. Other fields in the TCP
header can be omitted because they do not affect the operation of the connection
management procedure. For example, we do not need to model the checksum as
discussed in Section 2.2, and the flags PSH and URG, the urgent pointer field
and the window are only concerned with the data transfer procedures. We also
do not consider options.

10.2 Architecture

Our CPN model comprises 6 places and 87 transitions. It is organised into three
hierarchical levels, as shown in Fig. 17.

The first level has one page called TCP Overview. The second level also has
one page, named TCP Entity. Since TCP is symmetrical (both ends implement
the same procedures) we only need to define the procedures once, and then
instantiate them for each end, using page instances [53]. The third level has
eleven pages, one for each TCP state. This is standard practice in many protocol
definitions and has been used in the modelling of other communication protocols,
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Fig. 17. Hierarchy page for the CPN model.

for example, [34]. This approach is also consistent with the way TCP is specified
in Section 3.9 of RFC 793. (It turns out that other structures are possible which
take advantage of common procedures in different states ( [37]). However, the use
of a state-based approach provides a clean and readily followed structure when
first starting to model protocols, especially if they include state diagrams or
state tables in their definitions. Once this experience has been obtained, further
important optimisations of the structure can be undertaken.)

10.3 Declarations for the TCP Model

The declarations shown in Fig. 18 define the colour sets and any associated
variables for User Commands, TCP segments and the TCB and include values
for the initial sequence numbers.
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1 (* User Commands *)

2 color COMMAND = with A Open | P Open | Send | Close;

3

4 (* TCP Segments *)

5 color Int = int;

6 color CTLbit = with SYN | RST | ACK | FIN;

7 color ACKflag = with on | off;

8 color SEG CTL = product CTLbit*ACKflag;

9 color SEG = record

10 SEQ: Int *

11 ACK: Int *

12 CTL: SEG CTL;

13 var seg: SEG;

14

15 (* Transmission Control Block *)

16 color STATE = with CLOSED | LISTEN | SYN SENT | SYN RCVD | EST |
17 CLOSE WAIT | LAST ACK | FIN W1 | FIN W2 |CLOSING | TIME WAIT;

18 color SV = record

19 RCV NXT: Int *

20 SND NXT: Int *

21 SND UNA: Int *

22 ISS: Int;

23 var v: SV;

24 color LISTENstat = with lis | cls;

25 var i: LISTENstat;

26 color TCB = product STATE*SV*LISTENstat;

27

28 (* ISS *)

29 val ISS tcp1 = 10;

30 val ISS tcp2 = 20;

Fig. 18. Declarations for TCP user commands, segments and TCB.

The colour set COMMAND (line 2) defines four commands: A Open (active
open); P Open (passive open); Send; and Close, that are issued by users. The
colour set SEG (lines 9–12) defines a TCP segment as a record with three entries:
SEQ, ACK and CTL. SEQ is used to model the sequence number and ACK, the
acknowledgement number. Both numbers are defined as integers. Note that the
actual sequence number and acknowledgement number space is finite, ranging
from 0 to 232 − 1. Because we are only dealing with connection management
and not data transfer, only a very small portion of the sequence number space
is used for establishing and releasing a connection. Thus we can also assume
that the sequence numbers do not wrap (i.e. cycle back to zero), so that modulo
arithmetic is not required. (Note that including modulo arithmetic is essential
when modelling the data transfer procedures.)

CTL (line 12), typed by the colour set SEG CTL, is used to model TCP’s
control flags. SEG CTL (line 8) is a product of CTLbit (line 6) and ACKflag
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(line 7) that model the four segment types and the ACK flag respectively. The
ACKflag indicates the status (on or off) of the Acknowledgement Number field. If
the ACK flag is on it indicates that the Acknowledgement field is valid. Variable
seg (line 13), the variable for TCP segments, is declared as type SEG. An example
of a SYNACK using ML syntax is {SEQ = 20, ACK = 11, CTL = (SY N, on)}.

The Transmission Control Block (lines 15–30) defines at line 26 a colour
set, TCB, as a product of STATE (line 16), SV (lines 18–22) and LISTENstat
(line 24). STATE comprises the 11 TCP states. SV defines the four TCP variables
explained in Section 9.2: RCV NXT, SND NXT, SND UNA and ISS. We use
integers for state variable values (instead of 32 bit integers) for the same reason
as given above for sequence numbers. LISTENstat is a Boolean used to keep
track of whether or not the TCP entity has previously been in the LISTEN
state. If it has, variable i, typed by LISTENstat (line 25), will take the value lis,
otherwise it will take the value cls, indicating that the entity has not previously
been in LISTEN but CLOSED. This is used to determine the next state that
TCP enters from states SYN SENT and SYN RCVD on receipt of a RESET
segment (see RFC 793, Section 3.4). Variable v (line 23), the variable for the
record of TCP state variables, can take any value belonging to SV, such as
{RCV NXT = 21, SND NXT = 11, SND UNA = 11, ISS = 10}. ISS tcp1 and
ISS tcp2 (lines 29–30) define the initial send sequence numbers for each TCP
entity.

We also define six functions that create TCP segments, depending on the
value of state variables or incoming segments, as shown in Fig. 19. All the func-
tions are similar, so we just illustrate in detail the creation of a segment by using
the function SYNseg (lines 32–35) that creates a SYN segment, as an example.
The initial sequence number, stored in TCB as the fourth component of the state
variable record and specified in ML as #ISS(v), is assigned to the sequence num-
ber field of the SYN segment. By convention, the acknowledgement number field
is assigned the value 0 (for null), because the SYN segment is used to initiate
a connection and therefore cannot carry a valid acknowledgement number. In
the SYN segment, the control bit SYN is on and ACK is off (indicating that the
acknowledgement number is not valid), so entry CTL of the segment record is as-
signed (SYN,off). Other TCP segments are modelled in a similar way. Note that
functions RSTackon and RSTackoff take incoming segments as their argument
rather than TCB’s state variables. They are used to model the RST segment
with ACK on and off respectively.

10.4 The Top and Second Level Pages

The top level page is shown in Fig. 20, which provides an abstract view of the
protocol.

There are 6 places in Fig. 20. Places User 1 and User 2, typed by COM-
MAND, model TCP user commands. Changing the initial marking of a user
place will change the command issued to TCP, resulting in modelling different
cases. Places TCB 1 and TCB 2, typed by TCB, model TCP state information.
A token in either place represents a local TCP (compound) state. Places H1 H2
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31 (* Functions for TCP Segments *)

32 fun SYNseg(v: SV): SEG =

33 {SEQ = #ISS(v),

34 ACK = 0,

35 CTL = (SYN,off)};
36

37 fun SYNACKseg(v: SV): SEG =

38 {SEQ = #ISS(v),

39 ACK = #RCV NXT(v),

40 CTL = (SYN,on)};
41

42 fun ACKseg(v: SV): SEG =

43 {SEQ = #SND NXT(v),

44 ACK = #RCV NXT(v),

45 CTL = (ACK,on)};
46

47 fun FINseg(v: SV): SEG =

48 {SEQ = #SND NXT(v),

49 ACK = #RCV NXT(v),

50 CTL = (FIN,on)};
51

52 fun RSTackon(seg: SEG): SEG =

53 {SEQ = 0,

54 ACK = #SEQ(seg)+1,

55 CTL = (RST,on)};
56

57 fun RSTackoff(seg: SEG): SEG =

58 {SEQ = #ACK(seg),

59 ACK = 0,

60 CTL = (RST,off)};

Fig. 19. Functions for creating TCP Segments.

and H2 H1, typed by SEG, each model a unidirectional communication channel.
H1 H2 indicates the transmission direction is from host 1 to host 2, whereas
H2 H1 indicates the opposite direction. A token in the communication channel
place represents that a segment is in transit from one TCP entity to its peer
TCP entity, and may be anywhere in the network or in a buffer of either local
entity.

Also in Fig. 20, are two substitution transitions named TCP’1 and TCP’2.
Each represents a TCP connection management process that implements both
the establishment and termination procedures. A substitution transition may be
viewed as a macro that is linked with another CPN page (known as a subpage)
that is called when the CPN executes. TCP’1 and TCP’2 are both linked with
the second level page (Fig. 21), which serves as a page instance.

The places associated with a substitution transition need to be assigned to
places on the subpage. For example, places User 1 and User 2 in Fig. 20 are both
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Fig. 20. Top level CPN page: TCP Overview.

assigned to place User in Fig. 21. In contrast, Place H1 H2 in Fig. 20 is assigned
to place Out for TCP’1 and In for TCP’2 (see Fig. 21) and vice versa for H2 H1.

The second level page structures the TCP connection management process
into eleven substitution transitions. Each transition is named by a TCP state
and is linked with a page at the third level, which models TCP’s behaviour for
that state.

10.5 Third Level Pages

We illustrate the TCP model at the executable level by considering four pages
at the third level: CLOSED, LISTEN, SYN SENT and SYN RCVD.

The CLOSED Page. The CLOSED page (Fig. 22) models TCP’s behaviour
for the CLOSED state. It has 4 transitions and 4 places that have already been
described.

When a server wishes to receive connection requests, it issues a passive open
to its TCP entity. This is modelled by transition Passive Open. TCP enters
the LISTEN state (with state variables unchanged) after receiving a passive
open (P Open) command. When transition Passive Open occurs, the value of
the LISTENstat flag of the token in TCB is changed from cls to lis, indicating
that TCP has been in LISTEN. Transition Active Open models the expected
behaviour of TCP sending out a SYN after receiving an active open (A Open)
command from its user. TCP enters SYN SENT and updates its state variables
as shown on the output arc to place TCB.

When TCP is CLOSED, it is not expecting any incoming segments. If it
receives one, then it needs to inform the sender that it is closed, by sending a
reset. However, if the incoming segment is a reset, then it is discarded, as the
receiver does not need to inform its peer to close. As indicated by its guard,
transition Rcv noRST models TCP’s response to any incoming segment that is
not a reset (i.e. the RST bit is not set). TCP sends a RST segment to its peer
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Fig. 21. Second level CPN page: TCP Entity.

and remains CLOSED with its state variables unchanged. As indicated by the
output arc expression, the RST sent by TCP may carry an acknowledgement
number or not, depending on the status of the ACK bit in the incoming segment.
Transition Rcv RST models TCP’s behaviour on receipt of a segment with RST
on, that is, discarding the incoming segment and remaining in CLOSED.

The LISTEN Page. The actions taken by TCP when in the LISTEN state
are shown in Fig. 23.

The LISTEN page has 5 transitions: Close, Send, Rcv ACK, Rcv RST and
Rcv SYN. Transitions Close and Send model TCP’s behaviour on the receipt of
user commands Close and Send respectively. A passive open command followed
by Send is equivalent to a two stage active open, resulting in the sending of a SYN
segment and TCP entering the SYN SENT state. Receiving a Close command
while in LISTEN returns TCP to CLOSED, with no need to send any segment,
as no peer has requested a connection.
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Fig. 22. The CLOSED page.

Transition Rcv ACK and Rcv RST model unexpected behaviour. Transition
Rcv ACK specifies TCP’s response to any incoming segment with its ACK on
that is not a reset. It replies with a RST segment and remains in LISTEN. Transi-
tion Rcv RST models TCP remaining in LISTEN after receiving and discarding
a RST segment.

When in LISTEN, TCP expects to receive a connection request. Transition
Rcv SYN models this situation by receiving a SYN segment. TCP returns a
SYNACK and enters SYN RCVD with its state variables updated.

The SYN SENT Page. The SYN SENT page (Fig. 24) has 9 transitions that
are created in accordance with the TCP specification for the SYN SENT state.

Transition Close models TCP entering CLOSED from SYN SENT in re-
sponse to a Close command. Transitions Rcv uACK and Rcv uACK RST model
TCP’s response to an unacceptable ACK segment with the RST bit off and on re-
spectively. Transitions RST LISTEN and RST CLOSED are used to respond to
a RST with an acceptable ACK number based on TCP’s previous state informa-
tion. That is, if it has previously been in LISTEN, indicated by the LISTENstat
flag having the value lis, TCP changes state to LISTEN from SYN SENT (mod-
elled by transition RST LISTEN), Otherwise, it goes into CLOSED (modelled
by transition RST CLOSED). Transition Rcv RSTnoACK is used to respond to
a RST without an ACK. Transitions Rcv SYNACK and Rcv SYN model TCP’s
response to an incoming segment with the SYN bit on under different conditions.
If the incoming segment acknowledges the SYN, TCP goes into ESTABLISHED
from SYN SENT and sends out an ACK (modelled by Rcv SYNACK). Other-
wise, it enters SYN RCVD and sends out a SYNACK (modelled by Rcv SYN).
If the incoming segment has neither SYN nor RST set (normally an acceptable
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Fig. 23. The LISTEN page.

ACK), TCP drops the segment. This is modelled by transition noSYN noRST.
Note that if the ACK in an incoming segment is not acceptable, TCP sends out
a RST, as specified by transition Rcv uACK.

The SYN RCVD Page depicted in Fig. 25 has 11 transitions. Transition
Close models TCP sending a FIN segment and entering FIN WAIT 1 after re-
ceiving a Close command from its user. Rcv uSeq and Rcv uSeq RST are used
to respond to an incoming segment with an unacceptable sequence number (first
item of the guard) with RST off or on respectively.

Other transitions in Fig. 25 require that the sequence number of the incom-
ing segment is acceptable (first item of the guard). Transitions RST LISTEN
and RST CLOSED model TCP’s response to a RST with an acceptable se-
quence number based on TCP’s previous state. That is, if it has previously
been in LISTEN, TCP enters LISTEN from SYN RCVD, otherwise, it changes
state to CLOSED. Also depending on TCP’s previous state, transitions SYN-
inw LISTEN and SYNinw CLOSED model TCP sending out a RST after re-
ceiving an acceptable SYN (i.e. its sequence number is in the receive window). If
the SYN’s sequence number is not in the window, an ACK is sent as a result of
the sequence number check (see transition Rcv uSeq). Transition Rcv ACKoff
models TCP dropping the incoming segment and remaining in SYN RCVD in re-
sponse to a segment with ACK off. Transitions Rcv ACKonA and Rcv ACKonU
model TCP’s behaviour on receipt of an ACK under different conditions. If the
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Fig. 24. The SYN SENT page.

ACK is acceptable, TCP enters ESTABLISHED (modelled by Rcv ACKonA),
otherwise, TCP sends out a RST (modelled by Rcv ACKonU). Finally, tran-
sition Rcv FIN models TCP entering CLOSE WAIT and sending an ACK on
receipt of a FIN segment.
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Fig. 25. The SYN RCVD page.
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11 Functional Analysis of TCP Connection Management

The TCP connection management protocol is analysed by generating occurrence
graphs (OGs) using Design/CPN 4.0.5 running under Linux on a 800MHZ Intel
Celeron laptop computer with 128 MB RAM.

11.1 Initial Configurations

We can analyse many different connection management scenarios by choosing
a number of different initial markings of places User 1 and User 2 in Fig. 20.
This allows us to start simply by just considering the connection establishment
protocol, before analysing the effect of releasing connections. This incremental
approach has two advantages. Firstly it allows us to gain confidence in the model
by providing the simplest analysis results which can be checked against the spec-
ification (i.e. RFC 793). This is an important step in model validation. Secondly,
we may discover errors in the protocol, which we can more easily debug in a
simpler reachability graph. Once we gain confidence that the model is correct,
we can then look at more complex scenarios which exercise all parts of the speci-
fication, by choosing the initial marking of places User 1 and User 2 accordingly.
For example, we could include an active open and a close command in one user
place, and a passive open, send and close in the other.

In this paper we shall just illustrate the approach by considering two cases
that just relate to connection establishment. In Case 1, place User 1 has an
A Open (active open) command as the initial marking, while place User 2 has a
P Open (passive open) command as its initial marking. This represents the usual
client-server opening scenario that would occur, for example, when requesting a
web page. In Case 2, both user places have an A Open as the initial marking,
which allows for the simultaneous opening of a connection, that may occur in
peer to peer applications. The initial markings of the remaining places are the
same for the different cases. The channel places are empty, while the TCB places
are as shown in Fig. 20. Since the initial send sequence (ISS) number for each
TCB can be chosen arbitrarily within the 32 bit integer range, we arbitrarily
select ISS=10 for TCB 1 and ISS=20 for TCB 2.

11.2 Analysis Results

When we analysed our CPN model for the above two cases, we found that there
was a problem with the simultaneous open procedures (Case 2). We modified
the original model (Model A) twice to remove the problems. We refer to the first
modified model as Model B and to its modification as Model C.

Analysis of Model A
OGs for Model A are obtained for both cases. The results are summarised in
Table 2 and the OGs for Cases 1 and 2 are given in Figs. 26 and 27.

The table shows the number of nodes, arcs and dead markings in the OG.
The final column indicates whether or not the dead markings are considered to
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Table 2. Results for Model A.

Model A Nodes Arcs Dead Markings Deadlocks

Case 1 11 12 2(0) 0

Case 2 42 60 2(1) 0

1 
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1:2
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1:1
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1:2
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2:1
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1:1

7 
1:1
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8 
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1:1

11 
1:0

CLOSED’Active_Open 1 CLOSED’Passive_Open 2

CLOSED’Rcv_noRST 2 CLOSED’Passive_Open 2 CLOSED’Active_Open 1

SYN_SENT’RST_CLOSED 1 CLOSED’Passive_Open 2

CLOSED’Passive_Open 2 SYN_SENT’RST_CLOSED 1

LISTEN’Rcv_SYN 2

SYN_SENT’Rcv_SYNACK 1

SYN_RECEIVED’Rcv_ACKonA 2

Fig. 26. OG of Model A for Case 1.

be deadlocks (i.e. undesired terminal markings). The integer in parenthesis in
column Dead Markings shows the number of dead markings reached through
undesired transition sequences. Both OGs are small and are generated in less
than 1 second.

Case 1 has two dead markings, nodes 9 and 11 in Fig. 27. The details of the
dead markings are given in Fig. 28. Node 9 has one TCP entity in CLOSED, the
other in LISTEN, and nothing in the channel. This is an expected terminal state
because when the TCP server is in CLOSED (the passive open command has
yet to be issued) and receives a SYN, it sends out a RST that changes the state
of the TCP client from SYN SENT to CLOSED. The server TCP entity then
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Fig. 27. OG of Model A for Case 2.

goes into LISTEN after receiving the passive open command. The other dead
marking (Node 11) has both TCP entities in the ESTABLISHED state and
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nothing in the channel. Also, the sequence numbers are synchronised at both
ends, that is, the send next (SND NXT) and the send oldest unacknowledged
(SND UNA) numbers are equal on one side and also equal the receive next
number (RCV NXT) at the other end of the connection. This is thus the desired
terminal state in which the connection is properly established at both ends.
Examining the sequences leading to the two dead markings (see Fig. 26) indicates
that they are reached through desired transition sequences.

9 
2:0

9
User 1: empty
User 2: empty
H1_H2 1: empty
H2_H1 1: empty
TCB 1: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 0},cls)
TCB 2: 1‘(LISTEN,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 20},lis)

11 
1:0

11
User 1: empty
User 2: empty
H1_H2 1: empty
H2_H1 1: empty
TCB 1: 1‘(EST,{RCV_NXT = 21,SND_NXT = 11,SND_UNA = 11,ISS = 10},cls)
TCB 2: 1‘(EST,{RCV_NXT = 11,SND_NXT = 21,SND_UNA = 21,ISS = 20},lis)

Fig. 28. The dead markings for Case 1 (Model A).

In Case 2 there are two dead markings, nodes 32 and 42 as shown in Fig. 27.
Both are desired terminal states as can be seen from the marking details given
in Fig. 29. Node 42 has both TCP entities in the ESTABLISHED state with
synchronised state variables and nothing in the channel. The other dead marking
(node 32) has both TCPs in the CLOSED state and nothing in the channel.

42 
6:0

42
User 1: empty
User 2: empty
H1_H2 1: empty
H2_H1 1: empty
TCB 1: 1‘(EST,{RCV_NXT = 21,SND_NXT = 11,SND_UNA = 11,ISS = 10},cls)
TCB 2: 1‘(EST,{RCV_NXT = 11,SND_NXT = 21,SND_UNA = 21,ISS = 20},cls)

32 
4:0

32
User 1: empty
User 2: empty
H1_H2 1: empty
H2_H1 1: empty
TCB 1: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 0},cls)
TCB 2: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 0},cls)

Fig. 29. The dead markings for Case 2 (Model A).

There are 38 sequences of transitions from node 1 to node 42, of length 7
or 8. Thus we do not find the sequence corresponding to the scenario shown in
Fig. 16(b), which is of length 6. Instead, we find sequences similar to the trace
obtained from the OG and shown in Fig. 30. This scenario is drawn as a message
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1 
0:2

1
User 1: 1‘A_Open
User 2: 1‘A_Open
H1_H2 1: empty
H2_H1 1: empty
TCB 1: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 10},cls)
TCB 2: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 20},cls)

2 
1:2

2
User 1: empty
User 2: 1‘A_Open
H1_H2 1: 1‘{SEQ = 10,ACK = 0,CTL = (SYN,off)}
H2_H1 1: empty
TCB 1: 1‘(SYN_SENT,{RCV_NXT = 0,SND_NXT = 11,SND_UNA = 10,ISS = 10},cls)
TCB 2: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 20},cls)

5 
2:2

5
User 1: empty
User 2: empty
H1_H2 1: 1‘{SEQ = 10,ACK = 0,CTL = (SYN,off)}
H2_H1 1: 1‘{SEQ = 20,ACK = 0,CTL = (SYN,off)}
TCB 1: 1‘(SYN_SENT,{RCV_NXT = 0,SND_NXT = 11,SND_UNA = 10,ISS = 10},cls)
TCB 2: 1‘(SYN_SENT,{RCV_NXT = 0,SND_NXT = 21,SND_UNA = 20,ISS = 20},cls)

10 
1:2

10
User 1: empty
User 2: empty
H1_H2 1: empty
H2_H1 1: 1‘{SEQ = 20,ACK = 0,CTL = (SYN,off)}++ 1‘{SEQ = 20,ACK = 11,CTL = (SYN,on)}
TCB 1: 1‘(SYN_SENT,{RCV_NXT = 0,SND_NXT = 11,SND_UNA = 10,ISS = 10},cls)
TCB 2: 1‘(SYN_RCVD,{RCV_NXT = 11,SND_NXT = 21,SND_UNA = 20,ISS = 20},cls)

15 
2:2

15
User 1: empty
User 2: empty
H1_H2 1: 1‘{SEQ = 10,ACK = 21,CTL = (SYN,on)}
H2_H1 1: 1‘{SEQ = 20,ACK = 11,CTL = (SYN,on)}
TCB 1: 1‘(SYN_RCVD,{RCV_NXT = 21,SND_NXT = 11,SND_UNA = 10,ISS = 10},cls)
TCB 2: 1‘(SYN_RCVD,{RCV_NXT = 11,SND_NXT = 21,SND_UNA = 20,ISS = 20},cls)

24 
1:2

24
User 1: empty
User 2: empty
H1_H2 1: empty
H2_H1 1: 1‘{SEQ = 20,ACK = 11,CTL = (SYN,on)}++ 1‘{SEQ = 21,ACK = 11,CTL = (ACK,on)}
TCB 1: 1‘(SYN_RCVD,{RCV_NXT = 21,SND_NXT = 11,SND_UNA = 10,ISS = 10},cls)
TCB 2: 1‘(SYN_RCVD,{RCV_NXT = 11,SND_NXT = 21,SND_UNA = 20,ISS = 20},cls)

36 
2:2

36
User 1: empty
User 2: empty
H1_H2 1: 1‘{SEQ = 11,ACK = 21,CTL = (ACK,on)}
H2_H1 1: 1‘{SEQ = 21,ACK = 11,CTL = (ACK,on)}
TCB 1: 1‘(SYN_RCVD,{RCV_NXT = 21,SND_NXT = 11,SND_UNA = 10,ISS = 10},cls)
TCB 2: 1‘(SYN_RCVD,{RCV_NXT = 11,SND_NXT = 21,SND_UNA = 20,ISS = 20},cls)

40 
4:1

40
User 1: empty
User 2: empty
H1_H2 1: 1‘{SEQ = 11,ACK = 21,CTL = (ACK,on)}
H2_H1 1: empty
TCB 1: 1‘(EST,{RCV_NXT = 21,SND_NXT = 11,SND_UNA = 11,ISS = 10},cls)
TCB 2: 1‘(SYN_RCVD,{RCV_NXT = 11,SND_NXT = 21,SND_UNA = 20,ISS = 20},cls)

42 
6:0

42
User 1: empty
User 2: empty
H1_H2 1: empty
H2_H1 1: empty
TCB 1: 1‘(EST,{RCV_NXT = 21,SND_NXT = 11,SND_UNA = 11,ISS = 10},cls)
TCB 2: 1‘(EST,{RCV_NXT = 11,SND_NXT = 21,SND_UNA = 21,ISS = 20},cls)

CLOSED’Active_Open 1: {v={RCV_NXT = 0,
SND_NXT = 0,SND_UNA = 0,ISS = 10},
i=cls}

CLOSED’Active_Open 2: {v={RCV_NXT = 0,
SND_NXT = 0,SND_UNA = 0,ISS = 20},
i=cls}

SYN_SENT’Rcv_SYN 2: {v={RCV_NXT = 0,
SND_NXT = 21,SND_UNA = 20,ISS = 20},
seg={SEQ = 10,ACK = 0,CTL = (SYN,off)},
i=cls}

SYN_SENT’Rcv_SYN 1: {v={RCV_NXT = 0,
SND_NXT = 11,SND_UNA = 10,ISS = 10},
seg={SEQ = 20,ACK = 0,CTL = (SYN,off)},
i=cls}

SYN_RCVD’Rcv_uSeq 2: {v={RCV_NXT = 11,
SND_NXT = 21,SND_UNA = 20,ISS = 20},
seg={SEQ = 10,ACK = 21,CTL = (SYN,on)},
i=cls}

SYN_RCVD’Rcv_uSeq 1: {v={RCV_NXT = 21,
SND_NXT = 11,SND_UNA = 10,ISS = 10},
seg={SEQ = 20,ACK = 11,CTL = (SYN,on)},
i=cls}

SYN_RCVD’Rcv_ACKonA 1: {v={RCV_NXT = 
21,SND_NXT = 11,SND_UNA = 10,ISS = 10},
seg={SEQ = 21,ACK = 11,CTL = (ACK,on)},
i=cls}

SYN_RCVD’Rcv_ACKonA 2: {v={RCV_NXT = 
11,SND_NXT = 21,SND_UNA = 20,ISS = 20},
seg={SEQ = 11,ACK = 21,CTL = (ACK,on)},
i=cls}

Fig. 30. A sequence of the OG for Case 2 (Model A).

sequence diagram in Fig. 31(a), which shows that an ACK is sent in response to
each SYNACK before each TCP entity enters the ESTABLISHED state. This
behaviour is not desired because it adds delay when there is a simultaneous open
and also is not according to TCP’s intent as described by the message sequence
diagrams in [62].

By examining the trace in Fig. 30, we see that it is transition Rcv uSeq in
Fig. 25 that sends out the redundant ACK, on receipt of segment SYNACK
(see the transition from node 24 to node 36 in Fig. 30). Transition Rcv uSeq
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CLOSED CLOSED

SYN_RCVD

SYN_SENT

(active open)

SYNACK(10, 21)

SYN 20

RST (21,0)

SYN 10

RST (11,0)

CLOSED

SYN_SENT

CLOSED

(b) Open fails

(active open)

CLOSED CLOSED

SYN_RCVD

SYN_SENT

(active open)

SYN_SENT SYN 10
SYN 20

ESTABLISHED

SYNACK(10,21)

(a) Unnecessary acknowledgements

ESTABLISHED

(active open)

ACK(21,11)

ACK(11,21)

SYNACK(20, 11) SYNACK(20, 11)SYN_RCVD SYN_RCVD

Fig. 31. Problematic simultaneous open scenarios.

sends out an ACK in response to any incoming segment that satisfies the two
inequalities on its transition guard, according to the specification on page 69 of
RFC 793.

“If an incoming segment is not acceptable, an acknowledgment should
be sent in reply (unless the RST bit is set, if so drop the segment and
return) . . . ”

This means that the sequence number of the incoming SYNACK is less than
the value of RCV NXT. In addition, the second inequality is satisfied because
the SYNACK is not a RST segment. As the inequalities are applicable not only
to the expected SYNACK, but also to other segments (including unexpected
SYNACKs), we do not revise them to remove the problematic ACK for this case.
Instead, we question the value of RCV NXT on whether or not it reflects the
sequence number of the next segment that TCP is expecting after receiving the
SYN segment. The next segment that TCP is expecting is a SYNACK which has
the same sequence number as that of the SYN (see Fig. 8, page 32 of RFC 793 and
Fig. 16(b)). Examining the marking immediately prior to the firing of transition
Rcv uSeq, we find that the value of RCV NXT is updated to SEQ(seg)+1 by
transition Rcv SYN on the SYN SENT page (Fig. 24), according to processing
a SYN in SYN SENT on page 68 of RFC 793. To remove this inconsistency, we
propose not to update RCV NXT in the case of simultaneous open, keeping its
value as SEQ(seg). Therefore, #SEQ(seg) < #RCV NXT (v) will be false, and
hence transition Rcv uSeq will not be enabled.

To test our assertion, we make the corresponding modification, assigning
#SEQ(seg) to RCV NXT, on the output arc of transition Rcv SYN to place
TCB (see Fig. 24). This gives us Model B.

Analysis of Model B
The analysis results of Model B are again generated in less than 1 second and
shown in Table 3. The results for Case 1 are the same as those of Case 1 for
Model A.
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Table 3. Results for Model B.

Model B Nodes Arcs Dead Markings Deadlocks

Case 1 11 12 2(0) 0

Case 2 44 62 2(1) 0

Examining the sequences leading to the dead markings of Case 2 shows that
this undesired sequence is removed. However, it reveals another problematic
sequence, which involves the generation of RSTs by each TCP entity in response
to a SYNACK, as shown in Fig. 32. The corresponding scenario is drawn in
Fig. 31(b), where the connection is unnecessarily terminated.

Examining the trace in Fig. 32, we see that it is transition SYNinw CLOSED
in Fig. 25 that sends out the RST. SYNinw CLOSED rejects the SYN in the
window by sending out a RST, as specified on page 71 of RFC 793. However,
the SYNACK is mistakenly treated as an old duplicate, because RFC 793 spec-
ifies that for state SYN RCVD, all segments with the SYN bit on (hence for
a SYNACK) are rejected by sending out a RST. It is worth mentioning that
our proposed solution for the first problem helps to reveal this. To remove the
second problem, we must check the ACK bit while checking the SYN bit for
state SYN RCVD in the case of simultaneous open.

We make the corresponding modifications to the guards of transitions SYN-
inw CLOSED and Rcv ACKonA in Fig. 25. Firstly, we replace #1(#CTL(seg)) =

SY N with #CTL(seg) = (SY N, off) for transition SYNinw CLOSED to exclude
the SYNACK. Then we replace #CTL(seg) = (ACK, on) with #1(#CTL(seg)) <>

RST and #1(#CTL(seg)) <> FIN for transition Rcv ACKonA to accept the
SYNACK. We also replace the annotation on the arc from Rcv ACKonA to
TCB by function. It is the same as the previous annotation except that it up-
dates the value of RCV NXT with #SEQ(seg)+1 if a SYNACK is received and
with #SEQ(seg) if an ACK is received. We thus get Model C.

Analysis of Model C
The analysis results of Model C are shown in Table 4.

Table 4. Results for Model C.

Model C Nodes Arcs Dead Markings Deadlocks

Case 1 11 12 2(0) 0

Case 2 39 54 2(0) 0

The results of Case 1 are the same as those of Case 1 for Models A and B.
Analysis of Case 2 shows that there are two dead markings that are desired and
reached through desired sequences. One dead marking (Node 35 in Fig. 33) has
TCP entities in ESTABLISHED, state variables synchronised and nothing in
the channel. The other (Node 32) has both TCPs in CLOSED and nothing in
the channel.
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1 
0:2

1
User 1: 1‘A_Open
User 2: 1‘A_Open
H1_H2 1: empty
H2_H1 1: empty
TCB 1: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 10},cls)
TCB 2: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 20},cls)

2 
1:2

2
User 1: empty
User 2: 1‘A_Open
H1_H2 1: 1‘{SEQ = 10,ACK = 0,CTL = (SYN,off)}
H2_H1 1: empty
TCB 1: 1‘(SYN_SENT,{RCV_NXT = 0,SND_NXT = 11,SND_UNA = 10,ISS = 10},cls)
TCB 2: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 20},cls)

5 
2:2

5
User 1: empty
User 2: empty
H1_H2 1: 1‘{SEQ = 10,ACK = 0,CTL = (SYN,off)}
H2_H1 1: 1‘{SEQ = 20,ACK = 0,CTL = (SYN,off)}
TCB 1: 1‘(SYN_SENT,{RCV_NXT = 0,SND_NXT = 11,SND_UNA = 10,ISS = 10},cls)
TCB 2: 1‘(SYN_SENT,{RCV_NXT = 0,SND_NXT = 21,SND_UNA = 20,ISS = 20},cls)

10 
1:2

10
User 1: empty
User 2: empty
H1_H2 1: empty
H2_H1 1: 1‘{SEQ = 20,ACK = 0,CTL = (SYN,off)}++ 1‘{SEQ = 20,ACK = 11,CTL = (SYN,on)}
TCB 1: 1‘(SYN_SENT,{RCV_NXT = 0,SND_NXT = 11,SND_UNA = 10,ISS = 10},cls)
TCB 2: 1‘(SYN_RCVD,{RCV_NXT = 10,SND_NXT = 21,SND_UNA = 20,ISS = 20},cls)

15 
2:2

15
User 1: empty
User 2: empty
H1_H2 1: 1‘{SEQ = 10,ACK = 21,CTL = (SYN,on)}
H2_H1 1: 1‘{SEQ = 20,ACK = 11,CTL = (SYN,on)}
TCB 1: 1‘(SYN_RCVD,{RCV_NXT = 20,SND_NXT = 11,SND_UNA = 10,ISS = 10},cls)
TCB 2: 1‘(SYN_RCVD,{RCV_NXT = 10,SND_NXT = 21,SND_UNA = 20,ISS = 20},cls)

23 
1:2

23
User 1: empty
User 2: empty
H1_H2 1: 1‘{SEQ = 10,ACK = 21,CTL = (SYN,on)}++ 1‘{SEQ = 11,ACK = 0,CTL = (RST,off)}
H2_H1 1: empty
TCB 1: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 0},cls)
TCB 2: 1‘(SYN_RCVD,{RCV_NXT = 10,SND_NXT = 21,SND_UNA = 20,ISS = 20},cls)

35 
1:1

35
User 1: empty
User 2: empty
H1_H2 1: 1‘{SEQ = 10,ACK = 21,CTL = (SYN,on)}
H2_H1 1: empty
TCB 1: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 0},cls)
TCB 2: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 0},cls)

43 
2:1

43
User 1: empty
User 2: empty
H1_H2 1: empty
H2_H1 1: 1‘{SEQ = 21,ACK = 0,CTL = (RST,off)}
TCB 1: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 0},cls)
TCB 2: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 0},cls)

32 
4:0

32
User 1: empty
User 2: empty
H1_H2 1: empty
H2_H1 1: empty
TCB 1: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 0},cls)
TCB 2: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 0},cls)

CLOSED’Active_Open 1: {v={RCV_NXT = 0,
SND_NXT = 0,SND_UNA = 0,ISS = 10},
i=cls}

CLOSED’Active_Open 2: {v={RCV_NXT = 0,
SND_NXT = 0,SND_UNA = 0,ISS = 20},
i=cls}

SYN_SENT’Rcv_SYN 2: {v={RCV_NXT = 0,
SND_NXT = 21,SND_UNA = 20,ISS = 20},
seg={SEQ = 10,ACK = 0,CTL = (SYN,off)}
,i=cls}

SYN_SENT’Rcv_SYN 1: {v={RCV_NXT = 0,
SND_NXT = 11,SND_UNA = 10,ISS = 10},
seg={SEQ = 20,ACK = 0,CTL = (SYN,off)}
,i=cls}

SYN_RCVD’SYNinw_CLOSED 1: {v={RCV_NXT 
= 20,SND_NXT = 11,SND_UNA = 10,ISS = 
10},seg={SEQ = 20,ACK = 11,CTL = (SYN,
on)},i=cls}

SYN_RCVD’RST_CLOSED 2: {v={RCV_NXT = 
10,SND_NXT = 21,SND_UNA = 20,ISS = 20}
,seg={SEQ = 11,ACK = 0,CTL = (RST,off)
},i=cls}

CLOSED’Rcv_noRST 2: {v={RCV_NXT = 0,
SND_NXT = 0,SND_UNA = 0,ISS = 0},seg={
SEQ = 10,ACK = 21,CTL = (SYN,on)},
i=cls}

CLOSED’Rcv_RST 1: {v={RCV_NXT = 0,
SND_NXT = 0,SND_UNA = 0,ISS = 0},seg={
SEQ = 21,ACK = 0,CTL = (RST,off)},
i=cls}

Fig. 32. A sequence of the OG for Case 2 (Model B).

Based on the sequences from the reachability analysis, three typical simul-
taneous open scenarios that are expected are obtained. They are presented in
Fig. 16(b), and Fig. 34 (a) and (b). The scenarios shown in Fig. 34 are not
discussed in RFC 793, nor in the text books (e.g., [26, 69]).

12 Concluding Remarks on TCP

In this part of the paper we have illustrated two parts of the verification method-
ology for a complex practical protocol. Firstly we have provided some guidelines
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35 
8:0

35
User 1: empty
User 2: empty
H1_H2 1: empty
H2_H1 1: empty
TCB 1: 1‘(EST,{RCV_NXT = 21,SND_NXT = 11,SND_UNA = 11,ISS = 10},cls)
TCB 2: 1‘(EST,{RCV_NXT = 11,SND_NXT = 21,SND_UNA = 21,ISS = 20},cls)

32 
2:0

32
User 1: empty
User 2: empty
H1_H2 1: empty
H2_H1 1: empty
TCB 1: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 0},cls)
TCB 2: 1‘(CLOSED,{RCV_NXT = 0,SND_NXT = 0,SND_UNA = 0,ISS = 0},cls)

Fig. 33. The dead markings for Case 2 (Model C).

CLOSED

SYN_SENT

(active open)
SYN 10

CLOSED CLOSED

SYN_SENT

SYN_RCVD

SYN_SENT

(active open)
SYN 10

SYN 20

SYNACK (20, 11)

ACK (11, 21)

ACK (11, 21)

ESTABLISHED

RST (0, 11)

SYN 20

SYNACK (10, 21)

SYN_RCVD

SYN_SENT

(active open)

CLOSED

ACK (21, 11) ESTABLISHED

(b) Delayed RST(a) Delayed SYN

ESTABLISHED

ESTABLISHED

(active open)

Fig. 34. Two expected simultaneous open scenarios.

for taking the first steps when modelling a complex protocol. The protocol is di-
vided into its connection management part and its data transfer part. We firstly
model the connection management part and importantly list the assumptions
made. We then illustrate the use of hierarchical CPNs to structure the specifica-
tion, taking advantage of symmetry, to just specify the connection management
procedures once, but call them for each TCP entity by using page instances.
This reduces the complexity of the model and eases maintenance. The detailed
part of the model is structured into the processing that occurs per state which is
a standard way of specifying protocols and a useful starting point for organising
specifications. Secondly, we have illustrated the process of analysing a connection
management protocol using reachability analyis with the help of Design/CPN.

The analysis has revealed some problems with the procedures for simultane-
ously opening a connection as specified in Section 3.9 of RFC 793. One problem
causes delay and additional traffic due to an unnecessary exchange of acknowl-
edgements when establishing the connection. A solution to this was incorporated
and analysed revealing a more serious problem where the procedure can fail to
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establish the connection. This is due to another error in the functional specifi-
cation of RFC 793. A further correction to the model is made which removes
the problem. Note that the second error also occurs in the finite state machine
(FSM) diagram of RFC 793. So the FSM and narrative descriptions of Section
3.9 of RFC 793 are consistently in error. No deadlocks or other subtle errors
were found. These results were reported in [38, 39].

This part has only touched the surface regarding the analysis of TCP connec-
tion management, where we have presented results just for the case of opening a
connection. Further work addresses closing of the connection, relaxes some of the
modelling assumptions, for example, allowing segments to be lost in the chan-
nel and recovered by retransmissions, develops a service specification [15–17]
and compares the connection management protocol language with its service
language. This work is consolidated in [37].

13 Some Observations Concerning Specification
and Verification

13.1 Modelling Assumptions

After reading the definition of the protocol or service in a standards document (or
other primary reference) it is vitally important to write down the assumptions
that are made when modelling the protocol (or service). This is to ensure that
the analysis results obtained are with respect to the set of assumptions made
and that this is firmly in the mind of both the verifier and the reader of the
results. The assumptions can be with respect to scope or restrictions within the
scope, or abstractions that are made. Illustrations of these for complex protocols
are given in [34, 37, 58, 78].

13.2 Specification Structure

There are several ways to structure a specification using hierarchical nets such as
Coloured Petri Nets. One of the most popular ways is to structure specifications
according to the (major) states of the protocol entities. For each major state,
each action in that state is modelled by a transition, for example, the processing
of an incoming message or a command from a user. Many international standards
are structured this way by using state tables, or Specification and Description
Language (SDL) [45] processes where there is one SDL diagram for each major
state. If the CPN structure matches the structure in the international standard,
then this aids in validating the CPN model against the standard, to ensure that
the CPN accurately reflects the standard.

However, there are some specifications where this approach has significant
drawbacks and can lead to specifications that have a lot of redundancy. This
is the case when the processing of various input messages are treated the same
way in a set of states. For example in TCP, the state machine comprises 11
states, and processing of some actions such as reset is essentially the same for
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8 of these states. Thus the specifier needs to be aware of commonalities that
exist for various states and to structure the specification according to processing
actions (such as opening connections, resetting, closing connections and dealing
with timeouts and retransmissions) rather than slavishly following a state-based
approach. This leads to a more elegant specification that has fewer transitions,
where actions that are common are clearly seen to be the same, and where main-
tenance is facilitated. This is following the usual rules of good programming and
good writing, which is at the core of the object-based approach. The reduction
in the specification is achieved by the folding of transitions that have the same
actions for different states, and using a variable that runs over states, with the
appropriate restrictions placed in a guard (see [37]).

13.3 Specification Validation

The validation of a CPN specification against the definition of a protocol pro-
vided in a standards document or in a proprietary definition is a very important
step in making sure that the analysis results do apply to the system of interest.
Validation may involve several steps. Firstly developing specifications incremen-
tally and checking that each transition does accurately reflect the intent of the
system is essential. This may include stepping through the model using interac-
tive simulation on a tool such as Design/CPN. The next step is to incrementally
analyse the model using the OG. Errors discovered may be in the model or in
the protocol definition. This is detected by carefully checking if the error is in
fact in the system or introduced into the model due to some misinterpretation
or inaccurate assumption. Errors in the model need to be removed and then the
model re-analysed, iteratively removing inaccuracies. In circumstances where
the protocol definition can be discussed with its inventors, this is a vital step in
resolving assumptions made in the model.

13.4 Specification versus Verification

Various concerns are more important when developing specifications for imple-
mentation rather than for verification. A specification for implementation needs
to be readable to ease understanding, and complete so that it contains all es-
sential details to ensure that implementations will interwork correctly. Due to
complexity, the verifier will want to modify the specification to just concentrate
on essential aspects that need verification. Otherwise the verification task be-
comes impossible. The main approach concerns making the right abstractions
and dividing the specification into manageable and separable components that
can be verified independently.

When considering the development aspects of protocol engineering in full,
the protocol engineering team will need to develop the protocol architecture and
complete service and protocol specifications. The art of the protocol verifier is
then to have sufficient insight into how the protocol specification can be divided
into manageable parts for verification. This may then lead to proof obligations
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that the independence assumptions are valid for the properties that require ver-
ification.

Let us briefly look at some of the techniques that are used.

Independence of Protocol Mechanisms. Transaction protocols, such as the
Internet Open Trading Protocol, define a set of transactions that may be carried
out by the different parties. In this case, it is possible to treat each transaction
separately. This greatly reduces the complexity of verification. It is only when
transactions interact in some way (such as when a refund is dependent on a
previous purchase), that we need to consider transactions together. Hence a
lot of insight can be obtained and errors can be detected by considering each
transaction independently (see [58]).

For connection-oriented protocols, we can divide the operation of the protocol
into phases: connection establishment; data transfer; and connection release,
and verify each phase separately, before considering their interactions. The next
step will normally be to consider the release or abortion of connections at any
time during the life of the connection, considering connection establishment and
termination together.

Data Abstraction. Protocol messages may include fields that are not used or
affected by the protocol mechanisms under investigation. For example, address
and multiplexing fields (such as port numbers in TCP) allow multiple connec-
tions to be in progress at the same time between a large number of end systems.
However, the operation of each connection is the same, and as long as we are not
concerned about resources that are shared between connections (such as buffer
space), we can just consider one connection as a representative and analyse its
behaviour. This means that we can greatly reduce the address space and mul-
tiplexing fields. For example, in the case of TCP, we do not need to include
these fields at all, and can just consider two protocol entities interacting over
a medium representing the operation of IP, where every message that is sent is
destined for the peer entity. This is easily achieved by having two places for the
medium, one for each direction of information flow. Further, if our objective is to
verify TCP connection management procedures, then we can safely ignore fields
that are concerned with data transfer, such as windows for flow control, and ur-
gent pointers and flags that are concerned with urgent data transfer. Moreover,
we can omit the checksum (used to detect transmission errors) and model its
effect using non-determinism as discussed in Section 2.2. We also do not need to
model the header length or options (such as the maximum packet size), nor the
data that may be transferred. This then reduces the message to a small tuple of
values. In the case of TCP a message can be reduced to a triple where we model
the message type (such as a connect request (SYN) or reset (RST)), its sequence
number and an acknowledgement number. This also reduces the amount of state
information that needs to be modelled in the TCP entities, such as the window
size. An illustration of the approach is given in [39] and explained earlier in this
paper.
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With data transfer protocols it is normally sufficient to consider the sender
and receiver parts of a protocol entity separately. Thus we just consider one way
flow of data across the medium between a sender and receiver, with a return
path for control information such as acknowledgements. However, ignoring the
data field in data transfer protocols can lead to situations where although service
primitive sequences are satisfied, duplicate data and data loss may be occurring,
as discussed in Section 7.2.

13.5 Modelling the Underlying Medium

The behaviour of the protocol depends on the medium over which it operates.
It is important to start with the simplest medium that makes sense. This is
often a FIFO queue. For example, although the Internet Protocol allows for re-
ordering, loss, delay and duplication of messages, most of the time it behaves like
a FIFO queue. Thus as a first step, it is important to verify that the protocol
will operate correctly over this perfect medium. The reason for this is that media
that can lose messages or reset or disconnect connections, can hide undesirable
behaviour such as the occurrence of deadlocks. However, that the medium may
occassionally lose a message or reset a connection is cold comfort to the users
of the protocol who may have to wait a long time for such an event to occur to
remove the deadlock. Once the protocol is shown to operate correctly over this
friendly medium, then medium imperfections can be introduced and the protocol
re-analysed.

13.6 Incremental Approach

To gain confidence in the CPN model and with its verification it is important
to use an incremental approach in modelling and analysing the system under
investigation. This is illustrated in [78] where RSVP mechanisms are examined
one at a time. A similar approach is taken for IOTP [58] where error free and
successful transactions are examined first and then arbitrary cancellation and
error handling procedures are added.

13.7 Parameters

Complex protocols include several parameters of significance such as the size of
the sequence number space, flow control and congestion control window sizes,
the maximum number of retransmissions, and the data that is to be sent. An-
other parameter may also be the capacity of the medium over which the protocol
operates. For example, in the Stop-and-Wait protocol we have two parameters of
interest, the maximum sequence number and the maximum number of retrans-
missions.

Reachability analysis requires that parameters of the system be instantiated
with particular values before the reachability graph can be generated. Thus
we have to generate the OG and its equivalent deterministic automaton for
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every parameter value. The first step is to start with the smallest values that
make sense (such as a medium capacity of one or two, no retransmissions, and
maximum sequence number of one) to obtain results to give a feel for how the
system operates.

As the values of these parameters increase, reachability analysis suffers from
the state explosion problem [77] and becomes intractable. It also means that we
can only obtain results for a (small) subset of values, rather than a general result
for any value. It may be that results can be obtained for the values of interest
of the parameters involved, such as the maximum values of the retransmission
counters in the transaction service of WAP [34]. However, in general we would
like a result that is valid for any value of the parameters involved. In this case
we resort to theorem proving, quite often based on the results obtained from
reachability analysis for small parameter values.

In some cases we can invoke the notion of data independence [82] to reduce
what could be an infinite set (e.g. data items) to a finite and possibly very small
number (such as 3), when protocol operations do not affect the data. This can be
the case for the data that is sent, when only read/write or assignment operations
are involved [65].

Recently, we have managed to obtain symbolic expressions (possibly recur-
sive) for the reachability graphs and their deterministic automata in terms of
the medium capacity for the Capability Exchange Signalling service and TCP’s
data transfer service as discussed under infinite state systems in Section 2.3.

14 Conclusions

This paper summarises the steps of a protocol verification methodology and
discusses them in some detail based on several years of attempting to use the
methodology for the verification of industrial scale protocols. The methodology
uses Coloured Petri Nets (CPNs) to specify both the service provided by the
protocol to is users, and the composite specification of the protocol entities inter-
acting over a communication medium or channel. The composite specification is
analysed using tool supported reachability analysis to discover behavioural prop-
erties, such as undesirable terminal states, livelocks, channel bounds or sequences
of events which are inefficient, without recourse to the service specification. Some
of this behaviour (inefficient sequences or bounds) are not visible to the users
and are thus not captured in service specifications. However, because they have
impact on the use of network resources they are worthy of investigation.

Most protocols are characterised by a set of parameters (such as window
sizes, sequence number range and maximum number of retransmissions) which
need to be instantiated for automatic reachability analysis. For parameters with
a small range, such as the maximum number of retransmissions for the Wire-
less Application Protocol transaction layer (where no more than 8 is required)
repeated automated runs may be sufficient to obtain the desired results [34].
The range of results obtained may be extended by using advanced state space
techniques, such as the sweep-line method [25, 36], partial orders or equivalence
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classes or some combination [14]. However, for many industrial protocols, the
number of parameters and their significant ranges, preclude obtaining results
for all but very small values of the parameters using automated analysis. When
this is the case, the automated approach may be able to be supplemented by
hand proofs to obtain general results for all values of the parameters. Quite of-
ten the intuition behind these hand proofs arises from the results obtained from
using automated reachability analysis for small values of parameters.

It is also valuable to compare the behaviour of the composite specification
with that of the service specification. For some protocols the service has also been
defined as part of the process of defining the protocol. This greatly facilitates
the creation of a CPN model of the service. However, the service definitions
invariably do not completely specify the global sequences of user observable
events (known as service primitives) concentrating instead on defining the local
interface sequences. The CPN modeller must then use their intuition to obtain
a consistent set of global sequences. Sometimes this involves complex structures
in the CPN to ensure that the correct sequences occur, while in other cases it
is quite straightforward. However, as far as we are aware, none of the Internet
protocols have included service definitions, and thus a service specification must
be created, based on the protocol definition, interface definitions if they exist and
the experience of the modeller. In this circumstance, it is recommended that the
protocol be modelled and analysed first, and then the service developed, based
on the experience gained. Once a service model is obtained, the sequences of
service primitives embedded in the service model (the service language) can
be compared with the service primitive sequences that occur in the composite
specification (the protocol language). This can be done automatically for finite
state systems using well-known reachability analysis and automata reduction
and comparison algorithms. This approach also suffers from the state explosion
problem. For infinite state systems, or where parameter values are unknown,
we briefly discuss an approach using recursive techniques to provide symbolic
representations of the occurrence graphs and associated automata. The intuition
behind these symbolic representations has been obtained from using reachability
analysis for small values of parameters. In some cases it is possible to derive the
symbolic representations directly without the need for recursive formulations.

The methodology is illustrated by two case studies. One considers the class of
Stop-and-Wait protocols (SWP) as a representative of the class of data transfer
protocols. This involves the inclusion of two parameters: the maximum sequence
number and the maximum number of retransmissions. We define 4 properties of
interest (queue bounds, data loss, duplication and the Stop-and-Wait property)
and prove that the SWP operates correctly over FIFO channels. The channel
bound depends the maximum number of retransmisions (MaxRetrans) and is
given by 2MaxRetrans + 1 for both channels. We believe this to be a new result.
This is obtained using hand proofs, which we develop in detail to illustrate the
process. To prove that there is no loss or duplication and that the Stop-and-Wait
property holds (i.e. that the protocol satisfies its service of alternating sends and
receives) we use automatic reachability and language analysis. We do this for a
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significant range of parameter values e.g. up to 10 bit sequence numbers for up to
4 retransmissions, which gives confidence that the results are general. However,
we have no general proof. We also prove that the properties do not hold when the
SWP operates over lossy (or lossless) re-ordering channels. Again hand proofs are
used to prove that the channels are unbounded, giving a general result when both
the maximum number of retransmissions and the maximum sequence number
are any positive integer. We use language analysis for the other proofs, and
argue that they are generally applicable for medium capacities of two or greater,
and for the other two parameters (MaxRetrans and MaxSeqNo being positive
integers. The results for loss and duplication are illustrated with time sequence
diagrams. We discuss the practical relevance of these results by considering their
impact on the Transmission Control Protocol. We conclude that the problems
can occur once transmission rates are at about 10 Gbit/s. We also discuss a
limitation of our approach. We have shown that loss and duplication can occur
in the SWP by considering sequences where there are more sends than receives
(loss) or more receives than sends (duplication). We also illustrate that both loss
and duplication can occur even when the Stop-and-Wait property of alternating
sends and receives holds. This is due to our data abstraction assumption, which
is too strong. We note that using the notion of data independence may overcome
this limitation.

The second case study examines the connection management procedures of
the Transmission Control Protocol, as a representative example of connection
management procedures as opposed to the data transfer procedures of the SWP.
It also illustrates the application of the methodology to a practical protocol
of major significance. We exemplify the process of writing down assumptions,
regarding the creation of the model, that simplify the analysis task. We also
stress the importance of this step. We build a model of significant complexity
and analyse the connection establishment protocol. This allows us to discover two
problems with the simultaneous open procedures, and provide a solution which
we then verify to be correct. This is easily handled by brute force reachability
analysis. However, we have only illustrated the use of the methodology for the
analysis of the very simplest of procedures. Further work is in hand to provide a
comprehensive verification of the connection management procedures, including
release, abort and the use of retransmissions [37].

Finally we end the paper with some observations and recommendations re-
garding the use of the methodology. Better tool support is required for the
methodology to allow the seamless integration of reachability analysis and lan-
guage analysis and to allow language equivalence or inclusion to be done on-the-
fly using advanced techniques such as the sweep-line method. Promising areas
of future work include the incorporation of the notion of data independence into
the methodology and the use of recursive techniques to obtain general results
for parameteric verification.
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