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Abstract. As web applications become more and more complex, prim-
itives for handling interaction patterns among independent components
become essential. In fact, distributed applications require new forms
of transactions for orchestrating the progress of their negotiations and
agreements. Still we lack foundational models that accurately explain
the crucial aspects of the problem. In this work we explore how to
model transactions in coloured, reconfigurable and dynamic nets, (i.e.,
high-level/high-order Petri nets that can express mobility and can ex-
tend themselves dynamically during their execution). Starting from zero-
safe nets – a well-studied extension of Place/Transition Petri nets with
a transactional mechanism based on a distinction between consistent
(observable) and transient (hidden) states – we show how the zero-safe
approach can be smoothly applied to a hierarchy of nets of increasing
expressiveness.

1 Introduction

To some extent, place/transition Petri nets (p/t nets) [27, 28] are for Concur-
rency Theory what finite automata are for the Theory of Computation: their
rigorous theories have been consolidated in pioneering work; they are founda-
tional models for many other languages and calculi; they have been enriched
in a number of ways (e.g. time, stochastic, data type, high-order and reflec-
tion) for taking into account particular features demanded by real case studies
and scenarios; they have been applied with success interdisciplinarily and even
in industrial applications; they have been a constant reference for comparing
emerging paradigms with; they admit intuitive graphical presentations; they are
widely used in software engineering and in system specification and verification.

Nowadays, one of the main challenges for researchers with interest in Con-
currency is the definition of adequate models for global computing applications,
where aspects like distribution, name and code mobility, security, quality of
services, and coordination are stretched to the very limit. Several of these as-
pects have been investigated separately and sometimes combined especially with

� Research supported by the MSR Cambridge Project Napi, by the FET-GC Project
IST-2001-32747 Agile, by the MIUR Project COFIN 2001013518 CoMeta, and by
the MURST-CNR 1999 Project, Software Architectures on Cooperative WAN.

J. Desel, W. Reisig, and G. Rozenberg (Eds.): ACPN 2003, LNCS 3098, pp. 291–327, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



292 Roberto Bruni, Hernán Melgratti, and Ugo Montanari

the help of suitable process calculi (e.g. π-calculus [26], join calculus [21], spi-
calculus [1], ambient calculus [19]), where new primitives can be easily introduced
and experimented with. Although such calculi are much more expressive than
p/t nets, it is possible to recover their spirit by progressively enriching the basic
p/t net model with high-level and high-order features, like exemplified in [15].
The Petri Box calculus [4] is a different approach for reconciling both worlds.

In this paper, the aspect we want to focus on is orchestration. In fact, as
more and more complex global computing applications are developed, then more
primitives for handling common interaction patterns between independent com-
ponents become essential. Academy and Industry are showing renewed interest
in the orchestration of distributed applications via programming languages and
calculi with primitive transactional mechanisms for managing electronic negoti-
ations and contracts carried on among independent components. Although some
solutions have been proposed in the literature (see the section on related work),
still there is no complete agreement on the foundational models that better ex-
pose the crucial points of the problem.

The solution we propose in the paper relies on the so-called zero-safe ap-
proach, that is shown to span along a hierarchy of concurrent models (of in-
creasing expressiveness), from p/t nets to dynamic nets, (i.e., high-level petri
nets that can express dynamic network reconfigurability and reflection), step-
ping through coloured nets and reconfigurable nets. The hierarchy is indeed the
one proposed in [15], where it is also shown that each net flavors correspond to a
typeable fragment of join calculus. The straight consequence is that the zero-safe
approach can be transferred also to those (sub)calculi at no additional cost.

Zero-safe approach. Zero-safe nets (zs nets) have been introduced to model
transactions in concurrent systems [11]. The basic model extends p/t nets with
a mechanism for expressing serializable concurrent (multiway) transactions. In
ZS nets there are two kinds of places (and, consequently, two kinds of tokens),
called stable and zero-safe. Roughly, a transaction on a ZS net is a concur-
rent computation that departs from and arrives to a multiset of stable tokens.
Recently, they have been used in [8] to encode short-running transactions of
Microsoft Biztalk r©, a commercial workflow management system [30]. zs nets
additionally provides a “dynamic” specification of transactions boundaries (as
opposed to the “static” one of BizTalk) supporting multiway transactions, which
retain several entry and exit points, and admit a number of participants which
is statically unknown. Nevertheless, zs nets are not suitable to express some
interesting aspects of negotiations in global computing, such as value passing,
dynamic reconfiguration of communication, name mobility, programmable com-
pensations and nesting. Also their expressive power is limited as e.g. reachability
is decidable [16].

zs nets offer a two-level view of the modeled system: (1) the concrete op-
erational view where transient places and the coordination mechanism between
activities participating to a transaction are fully exposed; (2) the abstract view,
where transactions are seen as atomic activities, and the user is aware of stable
places only, while transient places are transparent. In fact, the abstract view is
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given by an ordinary p/t net, whose places are the stable places of the zs net and
whose transitions are the transactions of the zs net. Moreover, the correspon-
dence between the two views admits a rigorous mathematical characterization
as coreflection between suitable model categories. It is worth remarking that zs
nets with a finite number of transitions can yield abstract p/t nets with in-
finitely many transitions. From the system designer viewpoint, this means that
the combinatorial features of zs nets can be exploited to keep small the size of
the architecture.

The zero-safe approach has been extended to more expressive frameworks
such as nets with read and inhibitor arcs [13], which have been shown expressive
enough to give a concurrent operational semantics to the language TraLinda (an
extension of Linda with transactional primitives).

From the implementation point of view, a distributed interpreter for zs nets
has been proposed in [10] that is based on the ordinary unfolding construction
for Petri nets, while both centralized and distributed interpreters have been
proposed in [7, 8], which are written in (distributed) join calculus. In partic-
ular, while the centralized implementation closely corresponds to the spirit of
BizTalk’s Transaction Manager and can be written in the join fragment corre-
sponding to coloured nets, the distributed implementation exploits a novel com-
mit protocol, called Distributed 2-Phase Commit (D2PC) and exploits reflection
for dynamic creation of local transaction managers. Given the correspondence
in [15], the distributed interpreter can be directly translated in dynamic nets,
but neither in reconfigurable nets, nor in coloured nets.

A hierarchy of transactional frameworks. In this paper, we progressively enrich
zs nets by adding: (1) the value passing mechanism of coloured nets; (2) the
dynamic interconnection mechanism of reconfigurable nets; (3) the high-order
features of dynamic nets.

In most cases, it is shown that that two-level view of the zero-safe approach
is fully preserved, in the sense that, e.g. the abstract net of a coloured zs net is
a coloured p/t net, and so on. Moreover, most constructions are consistent with
the obvious embedding derived from the hierarchy, in the sense that, e.g. if we
regard a coloured zs net as a reconfigurable zs net and take the corresponding
abstract reconfigurable p/t net, then we get a coloured p/t net. In other words,
the diagram in Figure 1 commutes (vertical arrows are the obvious embedding,
while horizontal arrows stand for the construction of abstract nets). We used the
word “most”, because although we conjecture that the construction of abstract
nets can be extended to the dynamic case, at the moment the problem is still
open and therefore the tower in Figure 1 misses the roof.

For each layer of the tower we give several examples for illustrating the
main features of the corresponding model. The two main case studies which
are presented are the mobile lessees problem and the mailing list. Regarding
the mobile lessees problem, first it is shown that an instance of the problem
can always be represented as a zs net, then it is shown that colours allow for
modeling all the instances with a unique coloured zs net. Regarding the mailing
list example, first it is shown that reconfigurable arcs are needed for modeling
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dynamic zs nets ? dynamic p/t nets

reconfigurable zs nets reconfigurable p/t nets

coloured zs nets coloured p/t nets

zs nets p/t nets

Fig. 1. The hierarchy of transactional frameworks.

dynamic message delivery, and then it is shown that the example can be extended
with dynamic creation of new mailing lists by exploiting reflection in dynamic
zs nets.

Structure of the paper. In Sections 2 and 3 are background sections, where we
recall the basics of p/t nets and zs nets. In particular, we define the operational
semantics of such models and the notion of a causal net, the notion of a process
and the notion of an abstract net, which are later extended to account for colours,
reconfiguration and high-order. The modeling of (instances of) the mobile lessees
problem is instead original.

Section 4 and 5 contains the original proposals for extending the zero-safe
approach to coloured and reconfigurable nets. In both cases, the operational and
abstract semantics are defined and related by strong correspondence theorems.

Section 6 attempts to extend the zero-safe approach to dynamic nets. The
operational semantics of dynamic zs nets is presented and discussed on the basis
of the mailing list example, whereas the abstract semantics is just informally
discussed to put in evidence the difficulties in completing the tower in Figure 1.

Some concluding remarks and future work are in Section 7.

Related work. This part collects pointers to recent approaches to formal meth-
ods applied to negotiations for distributed systems. It can be skipped without
compromising the reading of the rest of the paper.

Recent works have addressed the extension of the coordination language
Linda [23] to express transactions. In particular, the serializability of transac-
tions in JavaSpaces [31] have been studied in [17] by adding new primitives for
handling traditional flat transactions to Linda. An alternative extension with
multiway negotiations is proposed in [14], called TraLinda. The semantics of
TraLinda relies on a zero-safe extension of contextual nets. Contextual nets have
been previously used in [29] to study the serializability on database transactions.

While aforementioned works are closely related to the classical notion of
transactions – “all or none” effect of a transaction is observable – web services
languages, such as bpel [6], wsfl[25], xlang [32], and its graphical representa-
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tion Biztalk[30], are particular aware of primitives for handling long-lived nego-
tiations. Such languages do not guarantee atomicity of transactions, but provide
programmable compensations for undoing actions performed by failed negotia-
tions. The compensation mechanism has been introduced in [22] for designing
long-running transactions in database applications.

A compensation language, called StAc, has been proposed in [18]. Processes
and compensations in StAc are written in terms of atomic activities. Never-
theless, the interaction among activities is reduced to data sharing and is not
described at the top-level (they are hidden on the detailed description of the
atomic activities).

In the spirit of process description languages, an extension of the π-calculus
with nested compensation contexts has been introduced in [5]. Nevertheless, the
extension accounts only for compensation and there is no mechanism to restrict
the interactions of transactional processes: the communication capabilities of a
process do not change when it runs inside a transactional context. A different
approach is taken in cJoin [9] – an extension of the Join calculus with nested,
compensatable negotiations – where processes in different transactions can inter-
act by joining their original negotiations into a larger one. Finally, [20] introduces
the pike calculus based on conclaves (i.e., set of dependent processes) as main
abstractions for programming fault-tolerant applications. Different notions of
transactions can be modelled in pike by combining such abstractions.

2 Petri Nets

In Petri nets, places are repositories of tokens (i.e. resources, messages) and
transitions fetch and produce tokens. We consider an infinite set of resource
names P . Given S ⊆ P , we denote with ℘f(S) the set of all finite subsets of S.

Definition 1 (Net). A net N is a 4-tuple N = (SN , TN , δ0N , δ1N ) where SN ⊆
P is the (nonempty) set of places, a, a′, . . ., TN is the set of transitions, t, t′, . . .
(with SN ∩ TN = ∅), and the functions δ0N , δ1N : TN → ℘f(SN ) assign respec-
tively, source and target to each transition.

We will denote SN ∪TN by N , and omit subscript N whenever no confusion
arises. We abbreviate a transition t ∈ T such that δ0(t) = s1 and δ1(t) = s2 as
s1[〉s2, where s1 is usually referred to as the preset of t (written •t) and s2 as the
postset of t (written t•). Similarly for any place a in S, the preset of a (written •a)
denotes the set of all transitions with target in a (i.e., •a = {t|a ∈ t•}, and the
postset of a (written a•) denotes the set of all transitions with source in a (i.e.,
a• = {t|a ∈ •t}. Moreover, let ◦N = {x ∈ N |•x = ∅} and N◦ = {x ∈ N |x• = ∅}
denote the sets of initial and final elements of N respectively. A place a is said
to be isolated if •x ∪ x• = ∅.

Remark. We consider only nets whose transitions have a non-empty preset, i.e.
such that ◦N ⊆ S.
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(firing)

m [〉 m′ ∈ T m′′ ∈ MS

m ⊕ m′′ →T m′ ⊕ m′′

(step)

m1 →T m′
1 m2 →T m′

2

m1 ⊕ m2 →T m′
1 ⊕ m′

2

Fig. 2. Operational semantics of p/t nets.

Note that in a net, the target and the source of a transition is a set of states,
and thus transitions can consume and produce at most one token in each state.
More generally in p/t nets, a transition can fetch and produce several tokens in
a particular place, i.e., the pre and postset of a transition are multisets.

Definition 2 (Multiset). Given a set S, a multiset over S is a function m :
S → N. Let dom(m) = {a ∈ S | m(a) > 0}. The set of all finite multisets
(i.e., with finite domain) over S is written MS. The empty multiset (i.e., with
dom(m) = ∅) is written ∅. The multiset union ⊕ is defined as (m1 ⊕m2)(a) =
m1(a) +m2(a).

Note that ⊕ is associative and commutative, and ∅ is the identity for ⊕.
Hence, Ms is the free commutative monoid S⊕ over S. We write a for a singleton
multiset m such that dom(a) = {a} and m(a) = 1.

Definition 3 (p/t net). A marked place / transition Petri net (p/t net) is a
tuple N = (SN , TN , δ0N , δ1N ,m0N ) where SN ⊆ P is a set of places, TN is a set
of transitions, the functions δ0N , δ1N : TN → MSN assign respectively, source
and target to each transition, and m0N ∈ MSN is the initial marking.

The notions of pre and postset, initial and final elements, and isolated places
are straightforwardly extended to consider multisets instead of sets.

The operational semantics of p/t nets is given by the inference rules in
Figure 2. Given a net N , the proof m →T m′ means that a marking m evolves
to m′ under a step, i.e., the concurrent firing of several transitions. Rule firing
describes the evolution of the state of a net (represented by the marking m⊕m′′)
by applying a transition m[〉m′, which consumes the tokens m corresponding to
its preset and produces the tokens m′ corresponding to its postset. The multiset
m′′ represents idle resources, i.e. the tokens that persist during the evolution.
Rule step stands for the parallel composition of computations, meaning that
several transitions can be applied in parallel as far as there are enough tokens to
fire all of them. We omit the subscript T whenever it is clear from the context.
The sequential composition of computations is indicated →∗, i.e. m →∗ m′

denotes the evolution of m to m′ under a (possibly empty) sequence of steps.

Example 1 (A simple p/t net). Let N be a p/t net s.t. S = {a, b, c, d}, T =
{t1, t2}, δ0(t1) = δ0(t2) = {a, b}, δ1(t1) = {c}, δ1(t2) = {d}, m0 = {a, b}. Fig-
ure 3(a) shows the graphical representation ofN . As usual, places are represented
with circles, transitions with boxes, tokens with dots, and the pre and postset
functions are represented with arcs. Figure 3(b) shows a possible computation in
N for the initial marking {a, a, b, b}, which corresponds to the concurrent firing
of t1 and t2.
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•
a

•
b

t1 t2

c d
(a) p/t net N .

t1 = a ⊕ b[〉c ∈ T

a ⊕ b →T c

firing
t2 = a ⊕ b[〉d ∈ T

a ⊕ b →T d

firing

a ⊕ a ⊕ b ⊕ b →T c ⊕ d

step

(b) A computation in N for a⊕ a⊕ b⊕ b

Fig. 3. A simple p/t net.

3 Zero-Safe Nets

In this section we recall the basics of the zero-safe approach by following the
presentation given in [11]. Zero-safe nets are an extension of Petri nets suitable
to express transactions. Differently from p/t nets, the places of zero-safe nets
are partitioned into ordinary and transactional ones (called stable and zero,
respectively). Accordingly to the ordinary terminology, in a ’0-safe’ net all places
cannot contain any token in all reachable markings. Zero-safe net – note the word
’zero’ instead of the digit ’0’ – is used to denote that the net contains zero places
that cannot contain any token in any observable marking. The role of zero places
is to coordinate the atomic execution of complex collections of transitions.

Definition 4 (zs net). A Zero-Safe net ( zs net) is a 6-tuple B = (SB, TB,
δ0B, δ1B,m0B, ZB) where NB = (SB , TB, δ0B, δ1B,m0B) is the underlying p/t
net and the set ZB ⊆ SB is the set of zero places. The places in SB\ZB (denoted
by LB) are called stable places. A stable marking m is a multiset of stable places
(i.e., m ∈ MLB), and the initial marking m0B must be stable.

Note that markings m ∈ MSB can be seen as pairs (s, z) with m = s ⊕ z,
where s ∈ MLB is a stable marking and z ∈ MZB is the multisets of zero
resources, because MSB 
 MLB ×MZB . Transitions are written m[〉m′, with
m and m′ multisets of stable and zero places. A transaction goes from a stable
marking to another stable marking. The key point is that stable tokens produced
during a transaction are made available only at commit time, when no zero
tokens are left. As usual, we omit subscripts when referring to components of a
zs net if they are clear from the context.

The operational semantics of zs nets is defined by the two relations ⇒T

and →T in Figure 4. Rules firing and step are the ordinary ones for Petri
nets, for the execution of one/many transition(s). However, sequences of steps
differ from the ordinary transitive closure of →T : The rule concatenation
composes zero tokens in series but stable tokens in parallel, hence stable tokens
produced by the first step cannot be consumed by the second step. Transactions
are step sequences from stable markings to stable markings, when close can be
applied. The moves (s, ∅) ⇒T (s′, ∅) define all the atomic activities of the net,
and hence they can be performed in parallel and sequentially as the transitions
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(firing)

s⊕z[〉s′⊕z′ ∈ T s′′ ∈ MLB z′′ ∈ MZB

(s ⊕ s′′, z ⊕ z′′) →T (s′ ⊕ s′′, z′ ⊕ z′′)

(step)

(s1, z1) →T (s′1, z
′
1) (s2, z2) →T (s′2, z

′
2)

(s1 ⊕ s2, z1 ⊕ z2) →T (s′1 ⊕ s′2, z
′
1 ⊕ z′

2)

(concatenation)

(s1, z) →T (s′1, z
′′) (s2, z

′′) →T (s′2, z
′)

(s1 ⊕ s2, z) →T (s′1 ⊕ s′2, z
′)

(close)

(s, ∅) →T (s′, ∅)
(s, ∅) ⇒T (s′, ∅)

Fig. 4. Operational semantics of zs nets.

of an ordinary net. It is worth noting that a step (s, ∅) ⇒T (s′, ∅) can be itself
the parallel composition of several concurrent transactions (by rule step).

One of the main advantages of the zero safe approach is that it prevents
combinatorial explosion at the specification level. In fact, atomic activities can
be defined in terms of several subactivities, which keeps the description of the
system small, tractable and modular.

Example 2 (The free choice problem). Suppose the net introduced in Example 1
(see Figure 3(a)) to code the assignment of two resources a and b either to the
activity c or d. By firing t1 the resources are assigned to c, and by t2 to d. The
nondeterministic choice encoded by the net corresponds to a centralized coordi-
nation mechanism that guarantees that both resources are assigned atomically
to the same activity. Nevertheless, if one wants to model the system using a
free choice net, where all decisions are made locally (i.e., by looking just one
place) the situation is different. Consider the free choice net shown in Figure 5.
It models the system with two independent decisions: one for the assignment of
a, the other for the assignment of b.

Nevertheless, the free choice net admits computations not allowed in the
abstract system in Figure 3(a). In fact, the free choice net has deadlocks: consider
the firing of assigna,c and assignb,d. In this case, the net cannot evolve to either
b or c, which is a computation not possible in the original net.

zs nets can be used to overcome this problem, by defining intermediate places
as zero places. The assignment problem can be modelled as the zs net in Figure 6,
where smaller circles stand for zero places. The zs net avoids deadlocks because
computations ending in markings containing zero tokens are recoverable and not
observable.

Example 3 (Mobile lessees). The general problem that we want to model con-
sist of a set of apartments that can be rented immediately, a group of people
looking for an apartment, and people that want to change their apartments, i.e.,
they are willing to move to another apartment if somebody else can rent their
actual apartments. Consider an instance of the problem with three apartments
A,B,C and four people P,Q,R, S. The initial state can be represented as in
Figure 7(a), where the apartment A is available for rent, P and S are searching
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•
a

•
b

assigna,c assigna,d assignb,c assignb,d

a to c a to d b to c b to d

t1 t2

c d

Fig. 5. Free choice net for the assignment problem.

for an apartment, Q wants to leave B, and R wants to leave C. Figure 7(b)
shows the preferences of people on apartments.

The formulation of the problem as a zs net is shown in Figure 8. Note that
there is a place for any apartment available for immediate rent in the initial
state (A free), a place for any person looking for an apartment (S wants and
P wants), and a place for any person willing to change apartment (Q changes B
and R changes C). There is also a place for any possible rent (i.e., accordingly to
the preference matrix in 7(b)). For instance, the transition S takes A states that
person S can rent the apartment A whenever A is free and S is searching for an
apartment, and a token in S moves A means that the person S has rented the
apartment A. The more interesting transitions are Q leaves B and R leaves C,
each of them starts a transaction. In fact, they describe the activity of changing
an apartment as the orchestration of two different activities, one in which a
person finds a new apartment, and other in which the apartment is rented. For
instance, when Q leaves B is fired a token is produced in Q search, and another
in B avail. Note this transaction can finish only when both tokens are consumed,
meaning that both Q has rented a new apartment and B has been rented. The
initial marking denotes the initial state of the problem.

In Figure 9 we show a proof for a transaction in which Q leaves B and takes
A, R leaves C and takes B; and P takes B, while S remains without apartment.
For space reason, we abbreviate the name of places (i.e. Af for A free, QBc for
Q changes B, and similarly for the rest). Moreover, we write stable places with
capital letters, while zero places are written with lower case. The computation
corresponds to the parallel begin of two transactions (where Q changes B and
R changes C are decomposed into two subactivities) followed by the parallel
execution of Q takes A, P takes C and R takes B
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•
a

•
b

assigna,c assigna,d assignb,c assignb,d

a to c a to d b to c b to d

t1 t2

c d

Fig. 6. Free choice net for the assignment problem.

P Q R S Free
A •
B •
C •

Wants • •
(a) Initial State.

P Q R S
A • •
B •
C •

(b) Preferences.

Fig. 7. An instance of the mobile lessees.

3.1 Abstract Semantics

As stated by the operational semantics of zs nets (Figure 4), the observable
states of a system are those represented by stable markings, while the meaningful
computations (i.e., the atomic activities) are the stable steps of the net, i.e.
the steps consuming and producing stable markings (relation ⇒). Since stable
steps can be composed in sequence and parallel, a stable step can be thought
of as the execution of several basic transactions, i.e., stable steps that cannot
be decomposed into other stable steps. Consequently, all the correct behaviours
of the system can be derived from the set of basic transactions of the net. The
abstract semantics of zs net is intended to capture the behaviour of a zs net in
terms of its basic transactions.

In this context, a transaction denotes an activity of the system that might
be composed by many, possibly concurrent, coordinated subactivities. Since the
concurrent semantics of an operational model is usually defined by considering as
equivalent all the computations where the same concurrent events are executed
in different orders, it follows that we should quotient out those transactions
which are equivalent from a concurrent point of view, in such a way that the
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•
A free

•
S wants

•
P wants

•
Q changes B

•
R changes C

Q leaves B R leaves C

Q search B avail

C avail
R search

Q takes A S takes A P takes C R takes B

Q moves A S moves A P moves C R moves B

Fig. 8. zs net of the mobile lessees example.

A:

Af ⊕ qs [〉 QAm ∈ T

(Af, qs) →T (QAm, ∅)
(f)

ba ⊕ rs [〉 RBm ∈ T

(∅, ba ⊕ rs) →T (RBm, ∅)
(f)

(Af, qs ⊕ ba ⊕ rs) →T (QAm ⊕ RBm, ∅)
(s)

Pw ⊕ ca [〉 PCm ∈ T

(Sw ⊕ Pw, ca) →T (Sw ⊕ PCm, ∅)
(f)

(Sw ⊕ Pw ⊕ Af, qs ⊕ rs ⊕ ba ⊕ ca) →T (Sw ⊕ QAm ⊕ RBm ⊕ PCm, ∅) (A)
(s)

QBc [〉 qs ⊕ ba ∈ T

(QBc, ∅) →T (∅, qs ⊕ ba)
(f)

RCc [〉 rs ⊕ ca ∈ T

(RCc, ∅) →T (∅, rs ⊕ ca)
(f)

(QBc ⊕ RCc, ∅) →T (∅, qs ⊕ rs ⊕ ba ⊕ ca)
(s) A

(Sw ⊕ Pw ⊕ Af ⊕ QBc ⊕ RCc, ∅) →T (Sw ⊕ QAm ⊕ RBm ⊕ PCm, ∅)
(concat)

(Sw ⊕ Pw ⊕ Af ⊕ QBc ⊕ RCc, ∅) ⇒T (Sw ⊕ QAm ⊕ RBm ⊕ PCm, ∅)
(close)

Fig. 9. A proof for the execution of a transaction in the mobile lessees zs net.

actual order of execution of concurrent transitions in the zs net is invisible in
the abstract net.

In order to identify the equivalent executions from a concurrent point of view
there are two main approaches: the collective token philosophy (CTph) and the
individual token philosophy (ITph). The net semantics under the CTph does not
distinguish among different instances of the idealized resources (i.e., tokens).
This is a valid interpretation of the behaviour of a system only when any such
instance is operationally equivalent to all the others. Nevertheless, tokens may
have different origins and histories, thus the causality information carried on by
different tokens is disregarded when identifying equivalent computations w.r.t.
CTph, which turns to be the main drawback of this approach. Alternatively, the
ITph takes into account the causal dependencies arising in concurrent executions.

The abstract semantics of zero-safe nets has been largely studied under both
philosophies. In particular, in both cases the abstract net is characterized by an
adjunction on suitable categories [11]. We summarise here the basics of the ab-
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stract semantics under the ITph, which is the most significant one. In particular,
the distinction between tokens with different origins and history relies on the
notion of a deterministic process. A deterministic process denotes a particular
computation in a net, and therefore it explicitly carries the causal information
between firings. To define processes we need two other concepts: net morphisms
and causal nets.

Definition 5 (Net morphism). Let N,N ′ be p/t nets. A pair f = (fS :
SN → SN ′ , fT : TN → TN ′) is a net morphism from N to N ′ (written f : N →
N ′) if fS(δiN (t)) = δiN ′(fT (t)).

We usually omit subscripts when they are clear from the context. With abuse
of notation we apply functions (i.e., fS) over (multi)sets, meaning the multiset
obtained by applying the function element-wise: fS({m0, . . . ,mn}) = fS(m0) ⊕
. . .⊕ fS(mn).

Definition 6 (Causal Net and Process). A net K = (SK , TK , δ0K , δ1K)
is a causal net (also called deterministic occurrence net) if it is acyclic and
∀t0 
= t1 ∈ TK , δiN (t0) ∩ δiN (t1) = ∅, for i = 0, 1.

A (Goltz-Reisig) process for a p/t net N is a net morphism P from a causal
net K to N .

Two processes P and P ′ of N are isomorphic and thus equivalent if there
exists a net isomorphism ψ : KP → KP ′ such that ψ;P ′ = P .

Given a process P : K → N , the set of origins and destinations of P are
defined as O(P ) = ◦K and D(P ) = K◦ ∩SK , respectively. We write pre(P ) and
post(P ) for the multisets denoting the initial and final markings of the process,
i.e. pre(C) = P (O(P )) and post(C) = P (D(P )). Moreover, as isomorphisms
respect initial and final markings, we say that O(ξ) = pre(P ), D(ξ) = post(P ),
for ξ = �P �≈. Finally, the set of evolution places of a process P is the set
EP = {P (a)|a ∈ K, |•a| = |a•| = 1}.
Definition 7 (Connected transaction). Given a zs net B, let P be a process
of the underlying p/t net NB. The equivalence class ξ = �P �≈ is a connected
transaction of B if:

– pre(P ) and post(P ) are stable markings, i.e., the process starts by consuming
stable tokens and produces only stable tokens;

– EP ⊆ ZB, i.e. stable tokens produced during the transaction cannot be con-
sumed during in the same transaction;

– P is connected, i.e. the set of transitions TK is non-empty, and for all t0, t1 ∈
TK there exists an undirected path connecting t0 and t1; and

– P is full, i.e., it does not contain idle (i.e., isolated) places (i.e., ∀a ∈
SK , |•a| + |a•| ≥ 1).

We denote by ΞB (ranged by ς) the set of connected transaction of B.

A connected transaction can be executed when the state of the net contains
enough stable tokens to enable all the transitions independently. At the end of
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•
S wants

•
A free

•
P wants

•
Q changes B

•
R changes C

S takes A Q takes A & P takes C & R takes B

S moves A Q moves A P moves C R moves B

Fig. 10. Abstract net of the mobile lessees example.

its execution no token may be left on zero places (nor may be found on them at
the beginning of the step). This means that all the zero tokens produced by a
transaction are also consumed by the same transaction. Moreover, in a connected
transaction no intermediate marking is stable.

Definition 8 (Causal abstract net). Let B = (SB, TB, δ0B, δ1B ,m0B, ZB).
The net IB = (SB\ZB, ΞB, δ0I , δ1I ,m0B), with δ0I(ς) = pre(ς) and δ0I(ς) =
post(ς), is the causal abstract net of B (we recall that pre(ς) and post(ς) denote
the multisets Pς(O(ς)) and Pς(D(ς)), respectively, and that ΞB is the set of all
the connected transactions of B).

Example 4 (Abstract Net for the Mobile lessees problem). Figure 10 shows the
abstract net corresponding to the zs net in Figure 8. In the abstract net there
are only two transitions, each of them representing an abstract transaction of
the zs net: S takes A, corresponding to the homonymous transition in the zs
net; Q takes A & P takes C & R takes B, for the atomic negotiation in which
Q leaves B and takes A, R leaves C and takes B; and P takes B. These two
transitions are enough to model the abstract behaviour of the system. In fact, any
other combination is not possible because it would imply that some exchanged
apartment (i.e., B or C) remains available for rent or a person willing to change
apartment (Q or R) remains without apartment, which is an inconsistent state
(with pending negotiations).

Note that one of the main advantages of the approach is that it allows to
fully specify the behaviour of a system without analyzing all possible global
combinations. Consider an instance of the lessees problem with a larger number
of apartments and people, and a more complicated set of preferences. It could be
tedious to figure out which are all the possible combinations that correspond to
consistent transformations in the system. Moreover, it is possible to describe an
infinite abstract net with a finite zs net, as the multicasting system presented in
[11] or the generalized version of the mobile lessees problem analyzed in Section 7.

The correspondence between the concrete and the abstract view is stated by
the following theorem [12].

Theorem 1. Let B be a zs net and IB its abstract net. Then m →TIB
m′ iff

m⇒TB m′.
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4 Adding Colours to zs Nets

4.1 Coloured p/t Nets

In coloured p/t nets [24] (known also as high-level nets), tokens carry on informa-
tion, which is given by their colours. Actually, colours are values/data associated
with a particular instance of a resource. Hence, the state and transitions of a
net exploit also the information present in tokens, i.e. their colours.

We consider an infinite set of constant colour names B, ranged over by
x, x1, . . . and an infinite set of colour variables V , ranged over by v, w, . . .. We
denote the set of constants and variables with C = B ∪ V . Moreover, we require
constant and variable colours to be disjoint (B∩V = ∅) and different from place
names, i.e. C ∩ P = ∅. Let S be a set, S∗ stands for the set of all finite (possible
empty) sequences on S, i.e. S∗ = {(s1, . . . , sn)|n ≥ 0 ∧ si ∈ S}. The empty
sequence is denoted by •, and the underlying set of a sequence (s1, . . . , sn) by:

(s1, . . . , sn) =
⋃

i

{s1}

Definition 9 (Coloured net). A coloured net N is a 5-tuple N = (SN , CN ,
TN , δ0N , δ1N ) where SN ⊆ P is the (nonempty) set of places, CN ⊆ C is the set
of colours, TN is the set of transitions (with SN ∩ TN = ∅), and the functions
δ0N , δ1N : TN → ℘f(SN × C∗

N ) assign respectively, source and target to each
transition. To assure that a transition fetches and produces at most one token
in a place we require that ∀t ∈ TN , if(s, c1), (s, c2) ∈ δiN (t) then c1 = c2, for
i = 0, 1.

The pre and postset of a transition are defined similarly to Section 2, but
taking into account that they are coloured sets instead of sets. Analogously, for
any place a in SN , the preset of a (written •a) denotes the set of all transitions
with target in a (i.e., •a = {t|(a, c) ∈ t•}, and the postset of a (written a•)
denotes the set of all transitions with source in a (i.e., a• = {t|(a, c) ∈ •t}.
The definitions for the sets of initial and final elements, and isolated place are
identical to those given in Section 2.

Note that in coloured nets a transition m1[〉m2 denotes a pattern that should
be matched/instantiated with appropriated colours in order to be applied. In par-
ticular, constant colours appearing in m1 act as values that should be matched
in order to fire the transition, while variables should be instantiated with appro-
priate colours. Variables are binders of colours occurring in m2. For instance, the
transition t = (a1, v), (a2, v), (a3, x1) [〉(a1, v), (a4, x2) denotes a pattern stating
that whenever a1 and a2 contain tokens with the same colour (but they can
be of any constant colour because of the variable v) and a3 contains a token
with constant colour x1, the transition can be fired. When t is fired, the tokens
matching the preset are consumed, and a new token is put in a1, whose colour
corresponds to the consumed tokens in a1 and a2, and a token with colour x2 is
produced in a4. Consequently, the firing of t over m = (a1, x3), (a2, x3), (a3, x1)



Extending the Zero-Safe Approach 305

will produce m′ = (a1, x3), (a4, x2). From a functional point of view, colour vari-
ables occurring in the preset of a transition act as its parameters, which are
called received colours.

Definition 10 (Received colours of a transition). The colour of a set s ⊆
S×C∗ is defined as col(s) = ∪(a,c)∈s c, the set of constants is colB(s) = col(s)∩B,
and the set of variables colV(s) = col(s) ∩ V. Given a transition t = m[〉m′, the
set of received colours (also received names) of t is given by rn(t) = colV(m).

Remark. As variables are used to describe parameters in a transition, we will con-
sider only coloured nets in which each transition t = m[〉m′ satisfies colV(m′) ⊆
rn(t). This restriction states that all variables occurring in the postset of a tran-
sition are bound to some variable in the preset.

Clearly, previous definitions can be straightforwardly extended to consider
coloured multisets instead of sets.

Definition 11 (Coloured Multiset). Given two sets S and C, a coloured
multiset over S and C is a function m : S → C → N. Let dom(m) = {(s, c) ∈
S × C | m(s)(c) > 0}. The set of all finite multisets over S and C∗ is written
MS,C. The multiset union is defined as (m1 ⊕m2)(s)(c) = m1(s)(c)+m2(s)(c).
We write s(c) for a multiset m such that dom(m) = {(s, c)} and m(s)(c) = 1.
Additionally, (s, c) ∈ m is a shorthand for (s, c) ∈ dom(m), while s ∈ m means
(s, c) ∈ m for some c.

Definition 12 (c-p/t net). A coloured marked place / transition net (c-p/t
net) is a 6-tuple N = (SN , CN , TN , δ0N , δ1N ,m0N ) where SN ⊆ P is the set
of places, CN ∈ C is the set of colours, TN is a set of transitions, the functions
δ0N , δ1N : T → MSN ,CN assign respectively, source and target to each transition,
and m0N ∈ MSN ,CN is the initial marking. Moreover, ∀t ∈ TN , colV(t•) ⊆ rn(t)
(i.e., variables in the postset are bound to received names), and col(m0N ) ⊆ B
(i.e., tokens in the initial marking are coloured with constants).

As aforementioned, the firing of a transition t in a coloured net requires
to instantiate t with appropriate colours, i.e., those corresponding to tokens
present in places. Consequently, the instantiation of a transition corresponds to
a substitution on colour variables.

Definition 13 (Substitution on colours). Let σ : V → B ∪ V be a partial
function. The substitution vσ on a colour variable v is c if σ(v) = c, otherwise
it is v, i.e., it is the identity when σ it is not defined. Instead, the substitution
xσ on a constant colour x produces x, i.e., it has no effect. The substitution
on a colour sequence is the simultaneous substitution on the names appearing in
the sequence, i.e., (c1, . . . , cn)σ = (c1σ, . . . , cnσ). The colour substitution on a
multiset m ∈ MS,C is given by (m 	 σ)(s)(c) =

∑
dσ=c m(s)(d).
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The operational semantics of coloured nets is given by replacing the rule
firing in Figure 2 by the following version:

(coloured-firing)

t = m [〉 m′ ∈ T m′′ ∈ MS,C

m 	 σ ⊕m′′ →T m′ 	 σ ⊕m′′
dom(σ) = rn(t) and σ(v) ∈ B for v ∈ dom(σ)

Remark: α-equivalence on defined names. Note that the variables chosen to
denote colours in the preset of a transition are meaningless. Actually, they act
as binders whose scope is just that transition, and consequently the can be
changed without modifying the meaning of a transition. Therefore we define the
following relation over transitions, called α-conversion on received colours.

Two transitions t1 = m1[〉m′
1 and t2 = m2[〉m′

2 are α-convertible if there
exists an injective substitution σ : V → V , where dom(σ) ⊆ rn(t1), such that
m1 	 σ = m2 and m′

1 	 σ = m′
2. The α-conversion is an equivalence relation,

which is denoted by ≡α. We usually talk about transitions up-to α-equivalence.

4.2 Coloured zs Nets

The zs version of a coloured net is obtained also by distinguishing stable places
from zero ones.

Definition 14 (c-zs net). A coloured zs net (c-zs net for short) is a 7-tuple
B = (SB, CB , TB, δ0B, δ1B,m0B, Z0B) where NB = (SB , CB, TB, δ0B, δ1B,m0B)
is the underlying c-p/t net and the set ZB ⊆ SB is the set of zero places. The
places in SB\ZB (denoted by LB) are called stable places. A stable marking m is
a coloured multiset of stable places (i.e., m ∈ MLB ,CB), and the initial marking
m0B must be stable and satisfy col(m0B) ⊆ B.

The operational semantics of c-zs nets is a straightforward extension of rules
given in Figure 4, where the firing rule is replaced by the following version:

(coloured-firing)

t = s⊕ z [〉 s′ ⊕ z′ ∈ T s′′ ∈ ML,C z′′ ∈ MZ,C

(s 	 σ ⊕ s′′, z 	 σ ⊕ z′′) →T (s′ 	 σ ⊕ s′′, z′ 	 σ ⊕ z′′)
dom(σ) = rn(t), and
σ(v) ∈ B for v ∈ dom(σ)

We still write a marking m = s⊕ z as a pair (s, z) to denote that s ∈ ML,C

and z ∈ MZ,C .

Example 5 (c-zs net for the mobile lessees problem). A more general represen-
tation for the mobile lessees problem introduced in the Example 3 can be given
in terms of c-zs nets. Consider the net in Figure 11, where label on arcs corre-
sponds to the colours of the pre and postset of a transition. Tokens present in
the place free represent apartments that are available for being rented immedi-
ately. The actual identity of the apartment is given by the colour of the token.
Similarly people looking for an apartment are represented as coloured tokens
in wants, and those willing to change apartment as tokens (w′, v′) in changes,
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v

free

(w′,v′)

changes

w

wants

freeing

v

changing
v′ w′

searching

w

v′′
avail

w′′
search

taking

(w′′ ,v′′)

(w′′,v′′)

(w′′,v′′) pref

moves

Fig. 11. Coloured zs net of the mobile lessees example.

meaning that the person w′ changes the apartment v′. The transition freeing
initiates a transaction by making available for rent an offered apartment. Anal-
ogously, searching initiate a transaction in which a person is looking for an
apartment. Transition changing starts a transaction by rendering available the
offered apartment and putting a token in the place of persons looking for an
apartment. Finally, the transition taking states that a person w′′ searching for
an apartment can take the available apartment v′′ if she likes it (i.e., a token
with colour (w′′, v′′) is in the set of preferences). A token with colour (w′′, v′′)
produced in the place moves means that the person w′′ has moved to the apart-
ment v′′. It is worth noting that tokens are actually produced on place moves
when no token is left in the zero places (i.e., avail or search).

While in the zs net different instances of the problem (i.e., different set of
apartments, people or preferences) correspond to different structures of the net
(i.e., states, transitions and flow function), in the coloured version the structure
is the same for every instance of the problem, the only thing that changes is the
initial marking. In fact, all the information about a particular instance of the
problem is represented by colours.

Contextual nets. The self-loops introduced to model the preference sets in the
Example 5 can be better modelled as read arcs. Nets with read arcs allow for
modelling “read without consume”, where many readers can access concurrently
the same resource. Consider transition taking in Figure 11. Actually, there is
no need to consume the token in pref. To fire taking it is enough to check the
presence of a token with suitable colours on pref. The extension of the zs model
to contextual nets have been studied in [13].

zs nets can be encoded as c-p/t nets. zs nets have been encoded in [7] into a
fragment of the join calculus corresponding to the coloured nets. In such encoding
(which is called flat) the transactional mechanism of zs nets is implemented
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through a centralized coordinator, which is aware of the zero tokens present in
the net. Roughly, stable tokens produced during a transaction are kept frozen
by the coordinator, which will release them when no zero token is left in the net.

4.3 Abstract Net under the ITph Approach

In order to define the abstract net associated to a c-zs net we revise the notion
of causal net and processes in order to take into account colours.

Definition 15 (Coloured Causal Net). A coloured net K = (SK , CK , TK ,
δ0K , δ1K) is a causal net if it is acyclic and transitions do not share places in
their pre and postsets, i.e. if a ∈ δiN (t0) and a ∈ δiN (t1) then t0 = t1.

When viewing coloured causal nets as descriptions of runs, it should be clear
that differently from causal nets, in the coloured version a causal net can be
blocked because the bindings between the different colours are not consistent.
Consider a simple causal net with the following transitions t0 = (a0, •)[〉(b0, x0),
t1 = (a1, •)[〉(b1, x1), and t2 = (b0, v), (b1, v)[〉(a, •). Starting with the marking
a0(•) ⊕ a1(•), it cannot execute completely because t0 produces a token with
the constant colour x0 on b0 and t1 a token with colour x1 on b1, but t2 requires
tokens in b0 and b1 with the same colour.

In general, causal nets can execute completely when the colours used to label
transitions are sequences of variables of the same length.

Definition 16 (Plain nets). A causal net K is a plain net if ∃k ∈ N s.t.
∀t ∈ T, (s, c) ∈ •t ∪ t• : c ⊆ V ∧ |c| = k, with |c| denoting the length of c.

As for p/t net, we define a notion of morphism between c-p/t nets.

Definition 17 (Coloured net morphism). Let N,N ′ be c-p/t nets. A tuple
f = (fS : SN → SN ′ , fT : TN → TN ′ , σ = {σt}t∈TN ) is said a coloured net
morphism from N to N ′ (written f : N →σ N ′) if fS(•t)[〉fS(t•) = •fT (t) 	
σt[〉fT (t)• 	 σt.

Note that a morphism explains also the correspondence between colours used
by transitions. Each σt relates each colour appearing in t with a colour in fT (t).
Moreover, transitions in N are required to be a particular case of those in N ′.

Definition 18 (Process of a coloured net). A (Goltz-Reisig) process for a
c-p/t net N is coloured net morphism P : K →σ N , from a coloured causal net
K to N , s.t. ∀σt ∈ σ, σt is injective and σt : V → V.

Two coloured processes P and P ′ are isomorphic and thus equivalent if there
exists a net isomorphism ψ : KP →σ KP ′ such that ψ;P ′ = P .

A process P associates a coloured causal net K to a c-p/t net N . As K is
itself a coloured net, its transitions can be fired for any suitable substitution of
colours. Therefore, a process describes several runs that start from initial mark-
ings with different colours. (Our approach is similar to that presented in [3]).
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Nevertheless, this does not mean that a process can be instantiated for any
possible combination of colours. In fact, a process stands for executions where
just one token is produced and/or consumed from a particular place, and conse-
quently the colours appearing in the preset and postset of a place must coincide.
Consequently, a process implicitly defines a relation among colours in admissible
markings. A compatible execution of a process is an instantiation of colours that
satisfies such constraints.

For simplicity, we defined the notion of compatible execution for the equiva-
lence class of P , i.e. �P �≈.

Definition 19 (Compatible execution of �P �≈). Let ς ∈ �P �≈ such that
∀t1, t2 ∈ Tς , rn(t1)∩rn(t2) = ∅, i.e., transitions do not share variables. A substi-
tution σ is said a compatible execution of ς if ∀a ∈ Sς ,

•a 	σ = a• 	 σ. If such σ
exists, we say that �P �≈ is compatible. A process P is compatible if there exists
a compatible execution for �P �≈.

A compatible execution captures the notion of unification that takes place
when computing in a coloured net.

Example 6. Two simple processes for the c-zs net in Figure 11 are presented
in Figure 12. The first one represents a person looking for an apartment that
takes a free apartment, while the second shows the process in which two people
exchange their apartments.

The first process can be used as representative of its equivalence class because
its transitions do not share variables. The substitution σ = {v/v′, w/w′} is a
compatible execution for the first process. Note that w/w′ in σ captures the
idea that the token consumed from the state wants refers to the same person
of the token used from the preference set (similarly, v/v′ relates the different
tokens referring to the same apartment). Observe also that the substitution
σ′ = {v/x, v′/x,w/x,w′/x} is a compatible execution for the same process,
which requires all names to be equals to the constant x. Clearly, σ′ imposes
more restrictive constraints than σ. Moreover, σ′ is a particular case of σ.

On the other hand, the second process cannot be taken as representative of
its equivalence class because some transitions, such as changing′ and taking,
share variables. Nevertheless, a representative can be obtained by applying α-
conversion on transitions.

Proposition 1. Any process P of a plain net is compatible.

As we are interested on capturing the most general definition for equivalent
executions, we will associate particular cases to instantiations of more general
ones. Consequently, we are interested on the less restrictive constraints on colours
implied by a process, which is called the most general compatible execution.

Definition 20 (mgce). A compatible execution σ is said the most general com-
patible execution (shorten as mgce) of ς, written σς , if for every other compatible
execution σ′ there exist a substitution γ s.t. ∀t ∈ Tς , (t 	 σς) 	 γ = t 	 σ′.
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pref′

pref′′ moves moves′ pref′′′

Fig. 12. Two coloured processes for the mobile lessees example.

We write by ΞB (ranged by ς) the set of connected transaction of B.
The definition for connected transactions is identical to Definition 7, but

requiring processes to be compatible. Consequently, the definition of the abstract
net is immediate, the only difference is that abstract transitions are defined in
terms of the processes and their mgce.

Definition 21 (Causal abstract coloured net). Let B = (SB , CB, TB, δ0B,
δ1B,m0B, ZB). The net IB = (SB\ZB, CB, ΞB, δ0I , δ1I ,m0B), with δ0I(ς) =
pre(ς) 	 σς and δ0I(ς) = post(ς) 	 σς , is the causal abstract net of B (we recall
that σς is the mgce for ς, that pre(ς) and post(ς) denote the multisets Pς(O(ς))
and Pς(D(ς)), respectively, and that ΞB is the set of all the compatible connected
transactions of B).

Example 7 (Abstract coloured net for the generalized mobile lessees problem).
Figure 13 shows a partial view of the abstract net corresponding to the mobile
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v v0
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(w,v)

⊕
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... n changes
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i(wi,vi+1)⊕(wn,v1)

moves

Fig. 13. Partial abstract net of the c-zs net of the mobile lessees example.

lessees example. Transition wants&free corresponds to the atomic step in which
a person who is searching for an apartment rents an available apartment. Tran-
sition n changes corresponds to the case in which n people interchange their
apartments. Note there are infinite transitions of this kind, one for any n ≥ 2.
Similarly, the transition n changes&wants&free stands for the atomic step in
which n people change their apartments, but one of them takes a free apartment
and one person looking for an apartment participates in the exchange. Observe
that this infinite abstract net is modelled with a finite concrete zs net.

Finally, the correspondence between the two different views provided by the
concrete zs net and the abstract net is guaranteed by the following result.

Theorem 2. Let B be a c-zs net and IB its abstract net. Then m→TIB
m′ iff

m⇒TB m′.

Proof (sketch). ⇒) By induction on the structure of the proof m →TIB
m′.

(i) When the reduction is obtained by applying rule firing, then there is a
transition m1[〉m′

1 in IB s.t. m1 	 σ⊕m′′ = m and m′
1 	 σ⊕m′′ = m′, i.e., m1 is

consumed, m′
1 is produced, and m′′ denotes idle resources. Consequently, by the

construction of the abstract net there is a connected transaction (a compatible
process) ς with a mgce σς s.t. pre(ς)	σς = m1 and post(ς)	σς = m′

1. We can build
a proof for m1	σς 	σ ⇒B m′

1	σς 	σ using ς in the following way: at each step use
rules coloured-firing and step for firing all enable transitions, then combine
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steps with rule concatenation. The concatenation rule can always be applied
because the evolution places of a concatenable transaction are zero-places. The
family of substitutions σt used by the morphism explains how variables appearing
in the transitions (of the net B) are used in the process. Consequently, any
substitution used in the proof to fire a transition t is defined as σt 	 σς 	 σ
restricted to rn(t). Note that proof obtained by adding idle resources in the
application of firing is also a valid rule. Consequently, the idle resources m′′

can always be added to the computation described by the process. (ii) When
the reduction is obtained by applying rule step the proof is immediate by using
inductive hypothesis on premises and by noting that steps in the abstract net
corresponds also to steps in the zs net.

⇐) Note that it is possible to define a process P describing the computation
m ⇒TB m′, s.t. pre(P ) = m, post(P ) = m′. Moreover, the causal net used
by P contains a place for each produced token in the proof, and a transition
for any application of firing. Note that by rule concatenation all evolution
places corresponds to zero places. If two independent computations are combined
with rule step, then the process has independent subnets, each of them is a
process from a stable marking to a stable marking. So, they can be considered
independently. Obviously, each independent process is compatible, because it is
a possible computation of the net (the compatible execution can be built from
the substitutions used during the proof). Therefore the abstract net contains a
transition representing this process. This is guaranteed because transitions in the
abstract net are defined in terms of the mgce (i.e., any compatible instantiation
of the processes can be obtained as an instantiation the mgce). Consequently,
there is a firing corresponding to any independent subnet in the process. The
entire computation in the abstract net can be obtained by using rule step to
combine concurrent firings. Isolated places in the causal net are idle resources
and can be added to any firing in the proof.

zs nets as c-zs nets. p/t (and zs) nets can be seen as a particular case of c-p/t
(resp., c-zs) nets where tokens are coloured with the empty sequence •.

Definition 22 (Coloured version of a p/t net). Let N = (SN , TN , δ0N ,
δ1N ,m0N ) be a p/t net. The coloured net CN = (SN , ∅, TN , δ0CN , δ1CN ,m0CN ),
with δiCN (t)(a, •) = δiN (t)(a) for i = 1, 2 and m0CN (a, •) = m0N (a) is the
coloured version of N . Given a zs net B, the c-zs net CB is coloured version B
if its underlying c-p/t net NCB is the coloured version of the underlying p/t
net NB of B, and ZB = ZCB .

It should be noted that the construction of the abstract nets under these
two different views is consistent. That is, the coloured abstract net for a zs net
coincides with the abstract (non-coloured) net.

Theorem 3. Let B a zs net, IB its abstract p/t net, CB and CIB their coloured
versions, and ICB the abstract net of CB (i.e., the colored version of B). Then
CIB ≈ ICB .
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Proof (sketch). The proof follows from the fact that the coloured version CP of
a process P of a net N is a process of the coloured net CN . Moreover, if P ≈ P ′

then CP ≈ C′
P . On the other hand, the coloured version of P is always a plain

net, because all colours are sequences of length 0. Therefore any coloured process
CP is compatible, and consequently CIB ≈ ICB .

5 Reconfigurable zs Nets

5.1 Reconfigurable Nets

The idea behind reconfigurable nets (r-p/t nets) is that basic colours are names
of places in the net, and consequently the postset of a transition is not static,
but depends on the colours of the consumed tokens. For instance, a transition
t = a(v)[〉v(a) denotes a pattern that consumes a token from a and generates a
token in the place corresponding to the colour v of the consumed message. In
fact, if t is applied to m1 = a(b) it produces m2 = b(a). Instead, when applied
to m′

1 = a(b′), it generates m′
2 = b′(a).

Consequently, the definitions of nets and of place/transitions nets can be
extended in order to allow received names to appear as places in the postsets
of transitions. We consider an infinite set of variable names V , ranged over by
v, w, . . .. We require also variable names be different from place names, i.e.,
V ∩ P = ∅. Moreover, the constant colours are names of places, hence C = P .

Definition 23 (r-p/t net). A Reconfigurable marked place / transition net
is a 5-tuple N = (SN , TN , δ0N , δ1N ,m0N ) where SN ⊆ P is a set of places,
TN is a set of transitions, the functions δ0N : TN → MSN ,SN∪V and δ1N :
TN → MSN∪V,SN∪V assign respectively, source and target to each transition,
and m0N ∈ MSN ,SN is the initial marking. Moreover, for every t in TN we
require δ1N (t) ⊆ MSN∪rn(t),SN∪rn(t), i.e., variables occurring in the postset of a
transition are received names.

Note that we allow variables to occur in the preset of a transition just in
colour positions, while they can also occur in place positions in the postsets.
Variables are used analogously to variables in the coloured model, i.e., they are
the parameters of a transition that should be instantiated in order to fire the
transition. As usual, we consider transitions up-to α-conversion.

The main difference between coloured and reconfigurable nets is that when
a transition t is fired in a r-p/t net, the variables in the postset of t should
be substituted also when they appear in place position. The following definition
introduces the substitution of names occurring both in colour and place position.

Definition 24 (Substitution). Let σ : V → V ∪ P be a partial function.
The substitution σ on a multiset m ∈ MV∪P,V∪P is given by (mσ)(s)(c) =∑

rσ=s∧dσ=c m(s)(d).

The operational semantics for reconfigurable nets can be defined by replacing
the rule (firing) in Figure 4 by the following (reconf-firing) rule:
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(reconf-firing)

t = m [〉 m′ ∈ T m′′ ∈ MS,S

m 	 σ ⊕m′′ →T m′σ ⊕m′′
dom(σ) = rn(t), and
σ(v) ∈ S for v ∈ dom(σ)

Comparing rule (coloured-firing) of c-p/t nets and (reconf-firing)
of r-p/t nets, it should be clear that in both cases a transition t can be fired on
m only when m contains an instance of the preset obtained by renaming only
colours (i.e., m 	 σ). That is, a transition in both c-p/t nets and r-p/t nets
consumes messages from a fixed set of places. Differently, in c-p/t nets, tokens
generated by firing t corresponds to an instance of the postset of t obtained by
substituting only colours accordingly to σ, whereas in r-p/t nets the renaming
also affects names appearing in place position. For this reason, in c-p/t nets
a transition produces messages in a fixed set of places (although their colour
can be different for each firing). Instead, in r-p/t nets two different firings of
the same transition can produce messages in different places, i.e. the postset
of a transition changes dynamically depending on the colours of the consumed
messages.

5.2 Reconfigurable zs Nets

The first consideration is that in r-p/t net there is no difference between places
and colours. Taking into account that places in zs nets can be either stable or
zero, also colours are zero and stable. Consequently, the distinction between sta-
ble and zero markings must also consider colours present inside places. Actually,
a stable marking should contain only stable names, therefore we write s to in-
dicate s ∈ ML,L and we write z for denoting a zero marking. At a first glance,
it could appear that any other marking denotes a zero marking. This is not the
case for a non-empty marking m ∈ ML,Z. Markings of this kind contain stable
places with tokens coloured with zero names, which is somehow contrary to the
zs approach. Note that in zs nets, tokens in stable places produced during a
transaction are released only at commit, when all zero tokens have been con-
sumed. Consequently, we will restrict zero markings to z ∈ M Z,S . We denote
the set of well-defined markings as WL,Z = ML,L ∪M Z,L∪Z . Additionally, we
consider the set of variable names V as partitioned into sets: VL, the set of stable
variables V,W, . . ., and VZ the set of zero variables v, w, . . ..

Definition 25 (r-zs net). A Reconfigurable zs net is a 6-tuple B = (SB, TB,
δ0B, δ1B,m0B,ZB) where NB = (SB, TB, δ0B, δ1B,m0B) is the underlying r-
p/t net and the set ZB ⊆ SB is the set of zero places. The places in SB\ZB

(denoted by LB) are called stable places. A stable marking m is a coloured mul-
tiset of stable places (i.e., m ∈ MLB,LB), and the initial marking m0B must
be stable. Moreover, we impose the pre and postset functions to be defined over
well-defined markings, i.e., ∀t ∈ TB, δiN (t) ∈ WLB∪VL,ZN∪VZ , for i = 1, 2.

We require transitions to be fired with appropriate names, that is zero vari-
ables are substituted by zero places and stable variables by stable places.
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Definition 26 (Type preserving substitution). A substitution σ is type
preserving if ∀V ∈ VL, σ(V ) ∈ (LB ∪ VL) and ∀v ∈ VZ , σ(v) ∈ (ZB ∪ VZ).

In what follows we assume all substitutions to be type preserving. Then,
firing rule for r-zs nets can be written as follows.

(reconf-firing)

t = s⊕ z [〉 s′ ⊕ z′ ∈ T s′′ ∈ ML,L z′′ ∈ MZ,S

(s 	 σ ⊕ s′′, z 	 σ ⊕ z′′) →T (s′σ ⊕ s′′, z′σ ⊕ z′′)
dom(σ) = rn(t), and
σ(v) ∈ S for v ∈ dom(σ)

Example 8 (Mailing list). Consider a data structure that allows to send atom-
ically a message to a list of subscribers (in the sense that it is either sent to
all or to none). Figure 14 shows a zs net corresponding to such structure. Nil
is a stable constant colour, all other colours used for labelling arcs are stable
variables.

The stable place newSubs contains the tokens corresponding to the agents
that want to be subscribed to the list. Their colours are the places in which they
expect to receive a new message. Place top contains the element on top of the
list (the latest subscriber). We assume that an empty list is denoted with a token
coloured with the constant colour Nil. A list is encoded with several tokens in
place subscList, where each token carries on the information corresponding to
one subscriber and the next subscriber in the list, hence their colours are pairs.

By firing the transition add a new subscriber N is added on top of the list.
The token corresponding to the previous subscriber on top of the list (whose
colour is T ) is replaced with a new token of colour N , i.e., the new subscriber
becomes the top of the list. Also, a new token is produced in subscList whose
colour is (N,T ), meaning that the subscriber that follows N in the list is the
previous element on top of the list T .

Transition tell allows to send a message M to every subscriber in the list.
When tell is fired a new transaction is initiated, because a new token is gen-
erated in place sending, which is a zero place. Note that the top of the list is
consumed, and a new token with the same colour is produced in top, but it will
be released only when the transaction finishes. Therefore, transitions add and
tell will not be enabled until the current transaction finishes.

The zero token present in sending contains the information of the subscriber
to notify (i.e., the first colour of the pair), and the message to send (i.e., the sec-
ond colour). Transition notify is a reconfigurable transition. In fact, it consumes
from sending the token (T,M), and sends M to the subscriber T (nevertheless
this token will be available actually when the transaction finishes). Additionally,
notify takes from subscList the subscriber F that follows T in the list, and
update the state of the transaction by putting in the zero place sending a token
to notify the next subscriber with M .

The transaction finishes when the end of the list is reached. That is, when
the token in sending is addressed to the receiver Nil. At this point, the tran-
sition end can be fired to consume the zero token present in the net, which will
release all the stable tokens produced during the transaction. At this moment
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(T,M)

(Nil,M)
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notify
(F,M)(T,F )

M

end

T

Fig. 14. A r-zs net for the mailing list example.

all subscribers atomically receive message M , and the top of the list is available
for executing new activities.

5.3 Abstract Net under the ITph Approach

The definition of the abstract semantics of r-zs net also relies on the identifi-
cation of the basic atomic computations of the net, and for the ITph approach
on the notion of Goltz-Reisig processes. The interesting point here is that dur-
ing a computation on a reconfigurable net some transitions are instantiated in
a particular way. Consider the reconfigurable net shown in 15(a), consisting of
two transitions t1 = a(u, v)[〉u(v) and t2 = c(w)[〉w(•), where a, b and c are
places, and u, v and w variables. Figure 15(b), shows a possible execution in
the net where the transition t′1 is an particular case of t1, where the received
name u has been used as colour c. Consequently, our notion of processes of a
reconfigurable net is based on this idea of instantiation.

Definition 27 (Instance of a transition). Let t = m[〉m′ be a transition.
A transition i is an instance of t for a substitution σ if dom(σ) ⊆ rn(t) and
i = m 	 σ[〉m′σ.

Definition 28 (Reconfigurable net morphism). Let N,N ′ be r-p/t nets.
A tuple f = (fS : SN → SN ′ , fT : TN → TN ′ , ρ = {ρt}t∈TN , σ = {σt}t∈TN ) is a
reconfigurable net morphism from N to N ′ (written f : N →σ,ρ N

′) if ∀t ∈ TN :

– ρt : V → P (i.e., substitutes variables by constants);
– fS(•t 	 ρt)[〉fS(t• 	 ρt) is an instance of •fT (t)[〉fT (t)• for σt.

Substitution ρt are referred to as proper substitutions or instantiations.
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(a) A r-p/t net
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Fig. 15. Reconfigurable net morphism.

For the particular case of coloured transitions (i.e., transitions without re-
configurable capabilities), the condition required on the mapping is analogous to
that on coloured net morphisms (Definition 17). In fact, no proper instantiations
are needed. Moreover, if used they correspond to instantiations of colours.

Figure 15(c) shows a morphism between reconfigurable nets. Note that the
received name u′ of t′1 has been instantiated as c′ (i.e., the proper substitution
is ρt1 = {c′/u′}), because t2 consumes messages from c. Nevertheless, the whole
net is still a reconfigurable net. In fact, the place v′ in which the final transition
will produce the token depends on the colour of the token consumed from a′.

Definition 29 (Process of a reconfigurable net). A (Goltz-Reisig) process
for a r-p/t net N is a reconfigurable net morphism P : K →σ,ρ N , from a
reconfigurable causal net K to N , s.t. every ρtk

is minimal (i.e., for every other
ρ′tk

that satisfies the morphism conditions ρ′tk
⊆ ρtk

holds) and every σtk
is

injective and σtk
: V → V.

As done for coloured nets, we also define a notion of compatible execution of
a process to capture the relation between the different colours appearing in the
causal net.

Definition 30 (Compatible execution of �P �≈). Let ς ∈ �P �≈ s.t. ∀t1, t2 ∈
Tς , rn(t1) ∩ rn(t2) = ∅, i.e., transitions do not share variables. A substitution σ
is said a compatible execution of ς if:

– if ∀a ∈ Sς ,
•a 	 σ = a• 	 σ.

– σ is consistent with any proper instantiation ρt in ς, i.e., ∀t ∈ Tς , ρt ⊆ σ.

If such σ exists, we say that �P �≈ is compatible. A process P is compatible if
there exists a compatible execution for �P �≈.
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Fig. 16. Two reconfigurable processes.

The first condition is similar to that for compatible executions of coloured
processes. The second one assures that in a compatible execution a name is not
instantiated in different ways.

Example 9. Consider a reconfigurable net consisting of the following transitions:
t1 = a(v)[〉b(v) ⊕ v(•), t2 = b(w)[〉w(•), t3 = d(•)[〉f(•) and t4 = e(•)[〉g(•).
Figure 16 shows two process of the net (both can be taken as representative of
their equivalence class because their transitions do not share variable names). For
simplicity, we call transitions in the causal net t′ if they are mapped to t, while
corresponding places have the same name. Places with name such as w = e denote
the proper instantiations used by the morphism. Consider the first process, the
place v = d can be mapped only into d, because t′3 in the net corresponds to t3 in
the original net. Consequently, t′1 is an instance of t1 for the proper instantiation
{d/v}.

Note that the first process does not admit a compatible execution σ. By the
first condition of a compatible execution, σ should include substitutions {v/w},
{w/v} or {u/v, u/w}. By the second, as t′1 is a proper instantiation for {d/v}
then {d/v} should be in σ. Similarly, by considering t′2, {e/w} should be in
σ. Hence, all conditions together are inconsistent because a substitution is a
function and cannot assign two different substitutions for the same variable.

The second process admits σ = {d/v, d/w} as a compatible execution.

The definitions for the most general compatible execution (mgce), compatible
process, connected transactions, and causal abstract net are analogous to those
presented in Section 4.3.

Example 10 (Abstract net for the mailing list example). In Figure 17 we (par-
tially) show the abstract net corresponding to the r-zs net in Figure 14. Transi-
tion add is identical to transition add in Figure 14. The transition tell n sends
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N1

...

Ni

...
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Fig. 17. A partial view of the abstract net for the mailing list example.

atomically a message M to n subscribers in the list whose top is N1 and finishes
in Nil. There is one such transition for any n ≥ 2. The transition drop handles
the case in which the list is empty. In such situations the message sent is simply
lost (consumed).

Also for the reconfigurable case, the following theorem assures the correspon-
dence between the abstract and the concrete view.

Theorem 4. Let B be a r-zs net and IB its abstract net. Then m→TIB
m′ iff

m⇒TB m′.

Proof. The proof follows as in Theorem 2 (considering also proper instantia-
tions).

c-zs nets as r-zs nets. c-zs nets are a particular case of r-zs net, where no
transition uses received names as places in their postset. Thus, given a c-zs net
B, it is possible to construct its abstract c-p/t net CB and its abstract r-p/t
net RB. The following results assure that both constructions are isomorphic.

Proposition 2. Let N be a coloured net. If P is a compatible coloured process,
then P is a compatible reconfigurable process.

Theorem 5. Let B be a c-zs net, CB its abstract c-p/t net, and RB its ab-
stract r-p/t net RB. Then RB ≈ CB .

Proof (sketch). The proof follows from Proposition 2. First noting that equiv-
alence classes are the same under both views. Finally, as proper instantiations
are not used for coloured transition, a compatible execution under the coloured
view is also compatible under the reconfigurable view.
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6 Towards Dynamic zs Nets

6.1 Dynamic Nets

While in reconfigurable nets the sets of states and transitions remains unchanged
during computations, dynamic nets can create new components while executing:
new places and transitions may be added to the net when a transition is fired.
The main idea is that the firing of a transition may allocate a new subnet, which
is parametric on the actual values of the received names. Nevertheless, it is not
possible to modify existing transitions: they always consume tokens from a fixed
multiset of places and the postset is always the same expression (multiset of
places or nets) parametric on the received values. Moreover, it is not possible to
attach new transitions with preset in a place after the net has been instantiated
(i.e., there is not input capability). The definition given here of dynamic nets
follows the presentation given in [2].

Definition 31 (DN). The set dn is the least set satisfying the following equa-
tion:

N = {(SN , TN , δ0N , δ1N ,m0N ) |
SN ⊆ P ∧ δ0N : TN → MSN ,C ∧ δ1N : TN → N ∧ m0N ∈ MP,C}

If (SN , TN , δ0N , δ1N ,m0N ) ∈ DN: SN is the set of places, TN is the set of
the transitions, δ0N and δ1N are the functions assigning the pre and postset to
every transition, and m0N is the initial marking. Note that while in previous
nets the initial marking is required to be a multiset over the places of the net,
here we allow a net to fixed a marking over states that are not defined by it. In
fact, the initial marking m0N is a multiset over P (i.e., m0N ∈ MP,C) and not
over the places of the net SN (MSN ,C). A trivial example is the way in which
a coloured transition a(v)[〉b(•) is written: a(v)[〉(∅, ∅, ∅, ∅, b(•)), where b clearly
does not belong to the new subnet. In what follows, we write coloured and recon-
figurable transitions as in the previous sections, and use verbose notation just for
transitions that allocate new components. Also the postset of transitions defined
in a new subnet can produce tokens in places not defined by it. Nevertheless,
well-defined subnets cannot use places that do not belong to the net they are in.

Names defined in SN act as binders on N . Therefore, nets are considered up-
to α-conversion on SN . Specially, the creation in N of a new subnet N1 means
the creation of a α-equivalent net N ′

1 s.t. all names in SN ′
1

are guaranteed to be
different from any other place in N (i.e., they are fresh).

Example 11 (A simple dynamic net). Consider the net N represented in Fig-
ure 18(a). The double-lined arrow indicates the dynamic transition t = a(•)[〉N1,
which creates an instance of the subnet N1 when fired. We allow the initial mark-
ing of N1 and the postset of transitions in TN1 to generate tokens in a. Therefore,
the following is a valid definition forN1: SN1 = {d}, TN1 = {t1},m1 = a(•)⊕d(•)
and t = d(•)[〉a(•). A firing of t will produced the net shown in 18(b). A new
place d and a transition t (whose pre and postset are d(•) and a(•), resp.) have
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Fig. 18. A simple dynamic net.

been added to the net. Also two tokens have been produced: one in a and the
other in d, accordingly to the initial marking of N1. In this marking t is enabled
and can be fired again. The intended meaning of the new activation of t is to
create a new subnet: a new place and a new transition whose names are different
from others in the net (Figure 18(c)).

Definition 32 (Defined and Free names). The set of defined names in a
marking m is dn(m) = {a|a ∈ m}, i.e. names appearing in place position. Given
N = (SN , TN , δ0N , δ1N ,m0N ) ∈ dn, the set of defined (dn) and free (fn) names
of transitions, sets of transitions, and nets are defined as follow:

dn(m1[〉N1) = dn(m1)
dn(N) = dn(TN ) =

⋃
t∈TN

dn(t)
fn(m1[〉N1) = dn(m1) ∪ colB(m1) ∪ (fn(N1) \ rn(m1))
fn(TN ) =

⋃
t∈TN

fn(t) \ dn(TN)
fn(N) = fn(TN) \ SN

Definition 33 (Dynamic Net). N ∈ DN is a dynamic net if fn(N) = ∅.
As mentioned above, a well-defined net N does not generate tokens in places

that do not belong to it. Note that the condition on the free names imposed for
dynamic nets (i.e., fn(N) = ∅) assures that tokens are always generated in the
same net. In this case, any name is bound to a particular place defined in the
net, which is guaranteed to be different to any other place.

As for coloured and reconfigurable nets, the firing of a transition t requires
the postset to be instantiated with the received colours of t, i.e., the parameters
of the t (rn(t)). Hence, we need a suitable notion of substitution on nets.

Definition 34 (Instantiation of a net). Let σ : V → P ∪V be a substitution.
The instantiation of a transition t = m1[〉N1 with σ s.t. rn(t) ∩ dom(σ) = ∅ is
defined as tσ = m1[〉N1σ. Given a dynamic net N = (SN , TN , δ0N , δ1N ,m0N ),
the instantiation of N with σ s.t. dom(σ)∩SN = ∅ is defined as Nσ = (SN , TN ,
δ0N , δ1Nσ,m0Nσ), where δ1Nσ(t) = (δ(t)1N )σ.

The condition imposed on the substitution used to instantiate a net (or a
transition) avoids the capture of free names appearing in the substitution. If
this side condition is not satisfied, an α-conversion on the places of the net (or
on the received names of the transition) can be applied before.
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(dyn-firing)

t = m [〉 N1 ∈ T m′′ ∈ MSN ,C

(S, T, m � σ ⊕ m′′) → (S, T, m′′) � N1σ

dom(σ) = rn(t), and
σ(v) ∈ S for v ∈ dom(σ)

(dyn-step)

(S, T, m1) → (S, T, m′
1) � N1 (S, T, m2) → (S, T, m′

2) � N2

(S, T, m1 ⊕ m2) → (S, T, m′
1 ⊕ m′

2) � (N1 ⊕ N2)

Fig. 19. Operational semantics of dynamic nets.

Definition 35 (Composition of nets). Let N1 and N2 be dynamic nets. The
addition of N2 to N1 (written N1 �N2) defined as N1 �N2 = (SN1 ∪SN2 , TN1 ∪
TN2 , δ0N1∪δ0N2 , δ1N1∪δ1N2 ,m0N1⊕m0N2) provided with the fact that N1∩N2 = ∅
and fn(N1)∩SN2 = ∅. The addition N1 �N2 is said the parallel composition of
N1 and N2 (written N1 ⊕N2) if also fn(N2) ∩ SN1 = ∅.

Observe that side conditions for the parallel composition avoid free names in
one net to be captured by the transitions defined by of the other. Nevertheless,
when a subnet N2 is added to a net N1 (N1 � N2) we allow the free names of
N2 to be capture by the definitions in N1. We remind that we are considering
nets up-to α-conversion in the name of the places, thus it is always possible to
rename places in order to satisfy the side conditions mentioned above.

In order to provide the operational semantics for dynamic nets, we remark
that the state of a net is not given just in terms of the markings, but also in
the structure of the net. The operational semantics is presented in Figure 19.
For simplicity we write (S, T,m) as a shorthand for (S, T, δ0, δ1,m). Rule dyn-
firing stands for the firing of t when the marking contains an instance of the
preset of t (for a suitable substitution on colours σ). The resulting net consists
of the original net, where the consumed tokens have been removed, and a new
instance of N1 (i.e., the postset of t). Note that the composition � of nets assures
that the names of the added components are fresh. Rule dyn-step stands for the
parallel composition of computations when the initial marking contains enough
tokens to execute them independently. By requiring (N1 ⊕N2), the components
added by concurrent activities are guaranteed to be disjoint.

It is worth noting that reconfigurable nets are a particular case of dynamic
nets. In fact when t is a reconfigurable rule, i.e. N1 = (∅, ∅,m1), the expression
(S, T,m) �N1 = (S, T,m⊕m1) corresponds to the reconf-firing rule.

6.2 Applying the zs Approach to Dynamic Nets

The evolving structure of dynamic nets opens several possibilities when applying
the zs approach. The more obvious option is to provide transactions by allowing
any net to define stable and zero places, as done for the other kind of nets.
Nevertheless, other options can take advantage of the possibility of creating
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(dyn-firing)

t = s ⊕ z[〉N1 ∈ T s′′ ∈ ML,L z′′ ∈ MZ,S

(S, T, (s�σ ⊕ s′′, z�σ ⊕ z′′), Z) → (S, T, (s′′, z′′), Z) � N1σ

dom(σ) = rn(t), and
σ(v)∈S for v∈dom(σ)

(dyn-step)

(S, T, m1, Z) → (S, T, m′
1, Z) � N1 (S, T, m2, Z) → (S, T, m′

2, Z) � N2

(S, T, m1⊕m2, Z) → (S, T, m′
1⊕m′

2, Z) � (N1 ⊕ N2)

(dyn-concatenation)

(S, T, s1 ⊕ z1, Z) → (S′′, T ′′, z′′, Z′′) � s′1 (S′′, T ′′, s2⊕z′′, Z′′) → (S′, T ′, s′2⊕z′, Z′)

(S, T, (s1⊕s2, z), Z) → (S′, T ′, (s′1⊕s′2, z
′), Z)

(dyn-close)

(S, T, s1, Z) → (S′, T ′, s′1, Z
′)

(S, T, s1, Z) ⇒ (S′, T ′, s′1, Z
′)

Fig. 20. Operational semantics of flat dynamic sz nets.

subnets to specify subactivities that should be executed atomically, providing in
this way a hierarchy of atomic activities, i.e., nested transactions. On the rest
of this section we describe the operational semantics for the first case, called
flat dynamic zs nets. We left as interesting problems to be investigated in the
future the characterization of the abstract net, and the different possibilities for
applying the zs approach to dynamic nets.

Flat Dynamic zs Nets. As mentioned above, flat dynamic zs nets correspond
to a direct application of the zs approach where the places of a net B are
either stable, i.e. in LB = SB\ZB, or zero, i.e., in ZB. As for reconfigurable
nets, we rely on two disjoint set of variables: VLB , ranged over by V,W, . . . for
stable variables, and VZB for zero variables v, w, . . .. Similarly, we use s ∈ ML,L

for denoting a stable marking, and z ∈ M Z,S for zero markings. Moreover
WL,Z = ML,L ∪M Z,L∪Z stands for the set of well-defined markings.

Definition 36 (Flat d-zs net). A flat dynamic zs net is a 6-tuple B =
(SB, TB, δ0B, δ1B,m0B, ZB) where NB = (SB, TB, δ0B, δ1B,m0B) is the under-
lying dynamic net and the set ZB ⊆ SB is the set of zero places. The places
in SB\ZB (denoted by LB) are called stable places. A stable marking m is a
coloured multiset of stable places (i.e., m ∈ MLB ,LB), and the initial marking
m0B must be stable. Moreover, we impose the pre and postset functions to be
defined over well-defined markings.

Rules in Figure 20 shows the operational semantics of flat d-zs nets. The
rules are the straightforward extension of rules corresponding to r-zs nets for
the case of dynamic transitions.

Example 12 (Private Mailing Lists). Consider the mailing list problem presented
in Example 8. Suppose there are n users ui, each of them needs to send atomically
messages present in mi to listeners whose names are in si. (Every user has its
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own list of subscribers and messages). The system can be modelled as a flat
dynamic zs net by reusing the mailing list structure in Figure 14. Consider the
dynamic net in Figure 21 for the case of two users. The net N1 (appearing in
the postset of t = new(V,W )[〉N1) corresponds exactly to the net in Figure 14
plus the initial marking m0N1 = V (newSubs) ⊕W (message) ⊕ top(Nil).

There are n transitions subsci and disti, i.e., a pair for each user ui. The
listeners for the user ui are in place si, while the messages are inmi. For instance,
the listeners for u1 are j1 and j2, and it has only the message l1 to send. To create
a list for u1 it is necessary to put a token on new with colour (as1 , dm1) (we omitted
it in Figure 14 for space limitations) . The obtained net after firing new with
colours (as1 , dm1) is shown in Figure 22. Note that a new instance of N1 has been
created. For convenience in the graphical representation we renamed newSubs
with 1s and message with 1m. Observe that tokens corresponding to the initial
marking of N1 have been produced: token Nil in top, 1s in as1 , and 1m in
dm1 . Now, listeners in s1 can be subscribed to the list by firing the reconfigurable
transition subsc1. Note that any coloured tokenW in s1 is forwarded to the place
1s, which will enable the transition add of the mailing list structure. Similar is
the case for tokens in m1, which are forwarded by dist1 to the place 1m.

Suppose that t is fired again for a token (as2 , dm2) in new. In this case, a new
mailing list structure is created, which is guaranteed to be independent of the
first structure.

About the abstract view of flat dynamic zs nets. The main difficulty when defin-
ing the abstract dynamic net describing the atomic movements of the concrete
zs nets is to figure out a suitable notion for a process. A process, viewed as
morphism from a causal net into a p/t net, identifies elements of the causal net
as particular instances of elements in p/t net. For p/t, c-p/t, and r-p/t nets,
where the elements of the net are fixed, the correspondence between instances
and general elements is quite clear. In particular, states are mapped into states
and transitions (instance of some pattern) to transitions (representing a general
pattern). Instead, when describing the execution of a dynamic net D it could
be necessary to talk about states and transitions that are not present in D (al-
though D describes how to create them). This question is still open and remains
as an interesting problem that bears further investigation.

7 Conclusions

In this paper we have extended the zero-safe approach along the hierarchy of
increasingly expressive models characterized in [15]. The results are summarized
in Figure 1. Although the more general case of dynamic nets presents some tech-
nical difficulties in reconciling the operational and abstract view, the zero-safe
approach has been shown somehow orthogonal to the whole hierarchy. Notably,
when defining the operational semantics of c-zs nets and r-zs nets only the rule
describing the firing of a transition is modified. Instead, for dynamic nets all
rules are rewritten to consider also the structure of the net as part of the state.
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Fig. 21. Private Mailing Lists.
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Fig. 22. Private Mailing Lists after firing t with colours (as1 , dm1).

Regarding the abstract semantics, it is clear that the description of the abstract
view associated to a dynamic zs net – in particular the characterization of a
process in such an evolving structure – remains as an open problem.

On the other hand, the extensions proposed here account only for flat transac-
tions. We plan to investigate alternative extensions of dynamic nets for modelling
nested transactions. In particular, by exploiting the capability of creating new
subnets to describe sub-transactions. Moreover, the description of compensations
in this framework is an ambitious goal that we leave to future work.
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Finally, we think that the distributed two phase commit protocol proposed
in [8] (used to encode zs nets in Join) can be reused or extended to implement
dynamic zs nets.
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