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Abstract. This chapter is to provide a tutorial and pointers to results and related
work on timed automata with a focus on semantical and algorithmic aspects of
verification tools. We present the concrete and abstract semantics of timed au-
tomata (based on transition rules, regions and zones), decision problems, and
algorithms for verification. A detailed description on DBM (Difference Bound
Matrices) is included, which is the central data structure behind several verifica-
tion tools for timed systems. As an example, we give a brief introduction to the
tool UPPAAL.

1 Introduction

Timed automata is a theory for modeling and verification of real time systems. Exam-
ples of other formalisms with the same purpose, are timed Petri Nets, timed process
algebras, and real time logics [17,42,47,40, 8,20]. Following the work of Alur and
Dill [5, 6], several model checkers have been developed with timed automata being the
core of their input languages e.g. [50,33]. It is fair to say that they have been the driv-
ing force for the application and development of the theory. The goal of this chapter is
to provide a tutorial on timed automata with a focus on the semantics and algorithms
based on which these tools are developed.

In the original theory of timed automata [5, 6], a timed automaton is a finite-state
Biichi automaton extended with a set of real-valued variables modeling clocks. Con-
straints on the clock variables are used to restrict the behavior of an automaton, and
Biichi accepting conditions are used to enforce progress properties. A simplified ver-
sion, namely Timed Safety Automata is introduced in [28] to specify progress properties
using local invariant conditions. Due to its simplicity, Timed Safety Automata has been
adopted in several verification tools for timed automata e.g. UPPAAL [33] and Kronos
[50]. In this presentation, we shall focus on Timed Safety Automata, and following the
literature, refer them as Timed Automata or simply automata when it is understood from
the context.

The rest of the chapter is organized as follows: In the next section, we describe the
syntax and operational semantics of timed automata. The section also addresses deci-
sion problems relevant to automatic verification. In the literature, the decidability and
undecidability of such problems are often considered to be the fundamental proper-
ties of a computation model. Section 3 presents the abstract version of the operational
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semantics based on regions and zones. Section 4 describes the data structure DBM (Dif-
ference Bound Matrices) for the efficient representation and manipulation of zones, and
operations on zones, needed for symbolic verification. Section 5 gives a brief introduc-
tion to the verification tool UPPAAL. Finally, as an appendix, we list the pseudo-code
for the presented DBM algorithms.

2 Timed Automata

A timed automaton is essentially a finite automaton (that is a graph containing a finite
set of nodes or locations and a finite set of labeled edges) extended with real-valued
variables. Such an automaton may be considered as an abstract model of a timed sys-
tem. The variables model the logical clocks in the system, that are initialized with zero
when the system is started, and then increase synchronously with the same rate. Clock
constraints i.e. guards on edges are used to restrict the behavior of the automaton. A
transition represented by an edge can be taken when the clocks values satisfy the guard
labeled on the edge. Clocks may be reset to zero when a transition is taken.

The first example. Fig. 1(a) is an example timed automaton. The timing behavior of
the automaton is controlled by two clocks = and y. The clock z is used to control the
self-loop in the location loop. The single transition of the loop may occur when x = 1.
Clock y controls the execution of the entire automaton. The automaton may leave start
at any time point when y is in the interval between 10 and 20; it can go from loop to
end when y is between 40 and 50, etc.

start

10<=y
10<=y<=20 enter
enter x:=0, y:=0
x:=0, y:=0
x== == 10<=
=y<= =y
work 1(_)_<0 y<=20 work y:=
x:=0 y= x:=0
40<=y<=50

leave
y:=0

Fig. 1. Timed Automata and Location Invariants.

Timed Biichi Automata. A guard on an edge of an automaton is only an enabling con-
dition of the transition represented by the edge; but it can not force the transition to
be taken. For instance, the example automaton may stay forever in any location, just
idling. In the initial work by Alur and Dill [5], the problem is solved by introducing
Biichi-acceptance conditions; a subset of the locations in the automaton are marked as
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accepting, and only those executions passing through an accepting location infinitely
often are considered valid behaviors of the automaton. As an example, consider again
the automaton in Fig. 1(a) and assume that end is marked as accepting. This implies
that all executions of the automaton must visit end infinitely many times. This imposes
implicit conditions on start and loop. The location start must be left when the value
of y is at most 20, otherwise the automaton will get stuck in start and never be able to
enter end. Likewise, the automaton must leave loop when y is at most 50 to be able to
enter end.

Timed Safety Automata. A more intuitive notion of progress is introduced in timed
safety automata [28]. Instead of accepting conditions, in timed safety automata, loca-
tions may be put local timing constraints called location invariants. An automaton may
remain in a location as long as the clocks values satisfy the invariant condition of the
location. For example, consider the timed safety automaton in Fig. 1(b), which corre-
sponds to the Biichi automaton in Fig. 1(a) with end marked as an accepting location.
The invariant specifies a local condition that start and end must be left when y is at
most 20 and loop must be left when y is at most 50. This gives a local view of the
timing behavior of the automaton in each location.

In the rest of this chapter, we shall focus on timed safety automata and refer such
automata as Timed Automata or simply automata without confusion.

2.1 Formal Syntax

Assume a finite set of real-valued variables C ranged over by z, y efc.standing for clocks
and a finite alphabet X' ranged over by a, b etc.standing for actions.

Clock Constraints. A clock constraint is a conjunctive formula of atomic constraints of
the formz ~ norz —y ~ nforz,y € C,~€ {<,<,=,>,>}and n € N. Clock
constraints will be used as guards for timed automata. We use B(C) to denote the set of
clock constraints, ranged over by g and also by D later.

Definition 1 (Timed Automaton) A fimed automaton A is a tuple (N, ly, E, I) where

— N is a finite set of locations (or nodes),

lg € N is the initial location,

E € N x B(C) x ¥ x 2¢ x N is the set of edges and
— I: N — B(C) assigns invariants to locations

g,a,r

We shall write | =—— 1’ when (I, g,a,r,l') € E.

As in verification tools e.g. UPPAAL [33], we restrict location invariants to con-
straints that are downwards closed, in the form: x < n or x < n where n is a natural
number.

Concurrency and Communication. To model concurrent systems, timed automata
can be extended with parallel composition. In process algebras, various parallel compo-
sition operators have been proposed to model different aspects of concurrency (see e.g.
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CCS and CSP [39,29]). These algebraic operators can be adopted in timed automata.
In the UPPAAL modeling language [33], the CCS parallel composition operator [39] is
used, which allows interleaving of actions as well as hand-shake synchronization. The
precise definition of this operator is given in Section 5.

Essentially the parallel composition of a set of automata is the product of the au-
tomata. Building the product automaton is an entirely syntactical but computationally
expensive operation. In UPPAAL, the product automaton is computed on-the-fly during
verification.

2.2 Operational Semantics

The semantics of a timed automaton is defined as a transition system where a state or
configuration consists of the current location and the current values of clocks. There are
two types of transitions between states. The automaton may either delay for some time
(a delay transition), or follow an enabled edge (an action transition).

To keep track of the changes of clock values, we use functions known as clock
assignments mapping C to the non-negative reals IRy . Let u, v denote such functions,
and use © € ¢ to mean that the clock values denoted by u satisfy the guard g. For
d € Ry, let u + d denote the clock assignment that maps all z € C to u(z) + d, and
for r C C, let [r — O]u denote the clock assignment that maps all clocks in r to 0 and
agree with u for the other clocks in C \ 7.

Definition 2 (Operational Semantics) The semantics of a timed automaton is a tran-
sition system (also known as a timed transition system) where states are pairs (I, u),
and transitions are defined by the rules:

- (I, u) 4, (l,u+d) ifu € I(l) and (u + d) € I(l) for a non-negative real d € R,
- (Lu) S 0y if 1 2250w e gou = [r e Oluand ' € 1(I')

2.3 Verification Problems

The operational semantics is the basis for verification of timed automata. In the follow-
ing, we formalize decision problems in timed automata based on transition systems.

Language Inclusion. A timed action is a pair (¢, a), where a € X is an action taken
by an automaton A after ¢ € IR time units since .4 has been started. The absolute time
t is called a time-stamp of the action a. A timed trace is a (possibly infinite) sequence
of timed actions £ = (t1, a1)(t2, a2)...(t;, a;)... where t; < t; 4 forall i > 1.

Definition 3 A run of a timed automaton A = (N, lo, E, I) with initial state (lo, uo)
over a timed trace £ = (t1, a1)(t2, a2)(ts, ag)... is a sequence of transitions:

di a do a ds a
(lo,uo) === (li,u1) === (la, uz) == (I3, u3) - ..
satisfying the condition t; = t;_1 + d; forall i > 1.
The timed language L(A) is the set of all timed traces & for which there exists a run
of A over €.
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Undecidability. The negative result on timed automata as a computation model is that
the language inclusion checking problem i.e. to check L(A) C L(B) is undecidable
[6,4]. Unlike finite state automata, timed automata is not determinizable in general.
Timed automata can not be complemented either, that is, the complement of the timed
language of a timed automaton may not be described as a timed automaton.

The inclusion checking problem will be decidable if B in checking L(.A) C L(B)
is restricted to the deterministic class of timed automata. Research effort has been made
to characterize interesting classes of determinizable timed systems e.g. event-clock au-
tomata [7] and timed communicating sequential processes [48]. Essentially, the unde-
cidability of language inclusion problem is due to the arbitrary clock reset. If all the
edges labeled with the same action symbol in a timed automaton, are also labeled with
the same set of clocks to reset, the automaton will be determinizable. This covers the
class of event-clock automata [7].

We may abstract away from the time-stamps appearing in timed traces and define
the untimed language Ly niimed(A) as the set of all traces in the form ajasas ... for
which there exists a timed trace £ = (t1,a1)(t2, a2)(ts,as)... in the timed language
of A.

The inclusion checking problem for untimed languages is decidable. This is one of
the classic results for timed automata [6].

Bisimulation. Another classic result on timed systems is the decidability of timed
bisimulation [19]. Timed bisimulation is introduced for timed process algebras [47].
However, it can be easily extended to timed automata.

Definition 4 A bisimulation R over the states of timed transition systems and the al-
phabet X U R, is a symmetrical binary relation satisfying the following condition:
forall (s1,82) € R, if s1 = &' for some 0 € ¥ UR, and s}, then sy > s and
(sh,8%) € R for some sb.
Two automata are timed bisimilar iff there is a bisimulation containing the initial
states of the automata.

Intuitively, two automata are timed bisimilar iff they perform the same action tran-
sition at the same time and reach bisimilar states. In [19], it is shown that timed bisim-
ulation is decidable.

We may abstract away from timing information to establish bisimulation between
automata based actions performed only. This is captured by the notion of untimed bisim-

. € . d . .. . .
ulation. We define s — s’ if s — s’ for some real number d. Untimed bisimulation is

defined by by replacing the alphabet with X' U {e} in Definition 4. As timed bisimula-
tion, untimed bisimulation is decidable [35].

Reachability Analysis. Perhaps, the most useful question to ask about a timed automa-
ton is the reachability of a given final state or a set of final states. Such final states may
be used to characterize safety properties of a system.

Definition 5 We shall write (I,u) — (I',u') if (I, u) %> (I',u') for some 0 € X UR,.
For an automaton with initial state (ly,uo), (I,u), is reachable iff (ly,uo)—*(l, u).
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More generally, given a constraint ¢ € B(C) we say that the configuration (l, $) is
reachable if (1, u) is reachable for some u satisfying ¢.

The notion of reachability is more expressive than it appears to be. We may specify
invariant properties using the negation of reachability properties, and bounded liveness
properties using clock constraints in combination with local properties on locations [38]
(see Section 5 for an example).

The reachability problem is decidable. In fact, one of the major advances in ver-
ification of timed systems is the symbolic technique [23,46, 28,49, 34], developed in
connection with verification tools. It adopts the idea from symbolic model checking for
untimed systems, which uses boolean formulas to represent sets of states and operations
on formulas to represent sets of state transitions. It is proven that the infinite state-space
of timed automata can be finitely partitioned into symbolic states using clock constraints
known as zones [12,23]. A detailed description on this is given in Section 3 and 4.

3 Symbolic Semantics and Verification

As clocks are real-valued, the transition system of a timed automaton is infinite, which
is not an adequate model for automated verification.

3.1 Regions, Zones and Symbolic Semantics

The foundation for the decidability results in timed automata is based on the notion of
region equivalence over clock assignments [6, 3].

Definition 6 (Region Equivalence) Let k be a function, called a clock ceiling, map-
ping each clock x € C to a natural number k(x) (i.e. the ceiling of ). For a real
number d, let {d} denote the fractional part of d, and |d| denote its integer part. Two
clock assignments u, v are region-equivalent, denoted u ~y, v, iff

1. forall z, either |u(x)| = |v(x)| or both u(x) > k(x) and v(z) > k(x),

2. forall z, if u(x) < k(x) then {u(z)} = 0 iff {v(x)} = 0 and

3. Jzor(agl}x,y if u(x) < k(z) and u(y) < k(y) then {u(z)} < {u(y)} iff {v(z)} <
vy

Note that the region equivalence is indexed with a clock ceiling k. When the clock ceil-
ing is given by the maximal clock constants of a timed automaton under consideration,
we shall omit the index and write ~ instead. An equivalence class [u] induced by ~ is
called a region, where [u] denotes the set of clock assignments region-equivalent to w.
The basis for a finite partitioning of the state-space of a timed automaton is the follow-
ing facts. First, for a fixed number of clocks each of which has a maximal constant, the
number of regions is finite. Second, u ~ v implies (/,u) and (I, v) are bisimilar w.r.t.
the untimed bisimulation for any locaton [ of a timed automaton. We use the equivalence
classes induced by the untimed bisimulation as symbolic (or abstract) states to construct
a finite-state model called the region graph or region automaton of the original timed
automaton. The transition relation between symbolic states is defined as follows:
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Fig. 2. Regions for a System with Two Clocks.

= (I, [u]) = (I, [v]) if (L, u) 4, (I, v) for a positive real number d and
— (1, [u]) = (I, [v]) if (I,u) < (I',v) for an action a.

Note that the transition relation = is finite. Thus the region graph for a timed au-
tomaton is finite. Several verification problems such as reachability analysis, untimed
language inclusion, language emptiness [6] as well as timed bisimulation [19] can be
solved by techniques based on the region construction.

However, the problem with region graphs is the potential explosion in the number
of regions. In fact, it is exponential in the number of clocks as well as the maximal
constants appearing in the guards of an automaton. As an example, consider Fig. 2. The
figure shows the possible regions in each location of an automaton with two clocks x
and y. The largest number compared to x is 3, and the largest number compared to y
is 2. In the figure, all corner points (intersections), line segments, and open areas are
regions. Thus, the number of possible regions in each location of this example is 60.

A more efficient representation of the state-space for timed automata is based on the
notion of zone and zone-graphs [23,27,46,49,28]. In a zone graph, instead of regions,
zones are used to denote symbolic states. This in practice gives a coarser and thus
more compact representation of the state-space. The basic operations and algorithms
for zones to construct zone-graphs are described in Section 4. As an example, a timed
automaton and the corresponding zone graph (or reachability graph) is shown in Fig. 3.
We note that for this automaton the zone graph has only 8 states. The region-graph for
the same example has over 50 states.

A zone is a clock constraint. Strictly speaking, a zone is the solution set of a clock
constraint, that is the maximal set of clock assignments satisfying the constraint. It is
well-known that such sets can be efficiently represented and stored in memory as DBMs
(Difference Bound Matrices) [12]. For a clock constraint D, let [ D] denote the maximal
set of clock assignments satisfying D. In the following, to save notation, we shall use
D to stand for [D] without confusion. Then 5(C) denotes the set of zones.

A symbolic state of a timed automaton is a pair (I, D) representing a set of states of
the automaton, where [ is a location and D is a zone. A symbolic transition describes
all the possible concrete transitions from the set of states.

Definition 7 Let D be a zone and r a set of clocks. We define D' = {u+d|u € D,d €
Ry} and r(D) = {[r — OJu | u € D}. Let ~ denote the symbolic transition relation
over symbolic states defined by the following rules:
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<L off, z = O >>
off z > 0)
(dlm T = O
press? ,
(bright, x = 0) (dlm z > 0)

A/ \
(off,:r >10) O (bright, z < 10)
i

(bright, x > 0)

Fig. 3. A Timed Automaton and its Zone Graph.

- (I, D) ~ (I, DV A I(1))
= (I,D) ~ (I',r(D A g) NI(I")) if 1 2251

We shall study these operations in details in Section 4 where D' is written as up(D)
and r(D) as reset (D, r:=0). It will be shown that the set of zones B(C) is closed un-
der these operations, in the sense that the result of the operations is also a zone. Another
important property of zones is that a zone has a canonical form. A zone D is closed un-
der entailment or just closed for short, if no constraint in D can be strengthened without
reducing the solution set. The canonicity of zones means that for each zone D € B(C),
there is a unique zone D’ € B(C) such that D and D’ have exactly the same solution set
and D’ is closed under entailment. Section 4 describes how to compute and represent
the canonical form of a zone. It is the key structure for the efficient implementation of
state-space exploration using the symbolic semantics.

The symbolic semantics corresponds closely to the operational semantics in the
sense that (I, D) ~» (I’, D’) implies for all v’ € D', (I, u) — (I, ) for some u € D.
More generally, the symbolic semantics is a correct and full characterization of the
operational semantics given in Definition 2.

Theorem 1 Assume a timed automaton with initial state (lo, ug).

1. (soundness) (lo, {uo}) ~* (ly, D) implies (lo, wo) —* (lf,uy) forall uy € Dy.
2. (Completeness) (ly, uo) —* (Iy,us) implies (ly,{uo}) ~* (Iy, Dy) for some Dy
such that uy € Dy

The soundness means that if the initial symbolic state (I, {uo}) may lead to a set of
final states (I, D) according to ~~, all the final states should be reachable according to
the concrete operational semantics. The completeness means that if a state is reachable
according to the concrete operational semantics, it should be possible to conclude this
using the symbolic transition relation.

Unfortunately, the relation ~~ is infinite, and thus the zone-graph of a timed automa-
ton may be infinite, which can be a problem to guarantee termination in a verification
procedure. As an example, consider the automaton in Fig. 4. The value of clock y drifts
away unboundedly, inducing an infinite zone-graph.
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< start,x =y >
i
(loop,z < 10 Az = y)
—
(loop,z <10 Ay <20Ay —x = 10)
g
(loop,z <10 Ay < 30Ay —z = 20)
s

(loop,z < 10 ANy <40 Ay — x = 30)

P

(end, = = 1)

Fig.4. A Timed Automaton with an Infinite Zone-Graph.

The solution is to transform (i.e. normalize) zones that may contain arbitrarily large
constants to their representatives in a class of zones whose constants are bounded by
fixed constants e.g. the maximal clock constants appearing in the automaton, using an
abstraction technique similar to the widening operation [26]. The intuition is that once
the value of a clock is larger than the maximal constant in the automaton, it is no longer
important to know the precise value of the clock, but only the fact that it is above the
constant.

3.2 Zone-Normalization for Automata without Difference Constraints

In the original theory of timed automata [6], difference constraints are not allowed to
appear in the guards. Such automata (whose guards contain only atomic constraints in
the form = ~ n) are known as diagonal-free automata in the literature in [18]. For
diagonal-free automata, a well-studied zone-normalization procedure is the so-called
k-normalization operation on zones [43,41]. It is implemented in several verification
tools for timed automata e.g. UPPAAL to guarantee termination.

Definition 8 (k-Normalization) Let D be a zone and k a clock ceiling. The semantics
of the k-normalization operation on zones is defined as follows:

normy (D) = {u|u ~ v,v € D}

Note that the normalization operation is indexed by a clock ceiling k. According to
[43,41], norm (D) can be computed from the canonical representation of D by

1. removing all constraints of the formz < m,z < m,z —y <mandz —y < m
where m > k(z),

2. replacing all constraints of the formz > m,z > m,z —y > mandz —y > m
where m > k(z) with z > k(x) and x — y > k(z) respectively.

Let [D], denote the resulted zone by the above transformation. This is exactly the
normalized zone as defined in Definition 8, that is, [D]; = {u|u ~; v,v € D}

As an example, the normalized zone-graph of the automaton in Fig. 4 is shown in
Fig. 5 where the clock ceiling is given by the maximal clock constants appearing in the
automaton.
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< start, x =y >
|
(loop,z < 10 Az = y)
(loop,z <10 ANy <20 Ay —z = 10)

i

(loop,m<10/\y7m_20

(loop,:r<10/\y>20/\y7w>20 \

(end, z = y)

Fig. 5. Normalized Zone Graph for the Automaton in Fig. 4.

Note that for a fixed number of clocks with a clock ceiling k, there can be only
finitely many normalized zones. The intuition is that if the constants allowed to use are
bounded, one can write down only finitely many clock constraints. This gives rise to a
finite characterization for —.

Definition 9 (I, D) ~, (I', norm;,(D")) if (I, D) ~ (I', D").

For the class of diagonal-free timed automata ~~, is sound, complete and finite in
the following sense.

Theorem 2 Assume a timed automaton with initial state {ly, uo), whose maximal clock
constants are bounded by a clock ceiling k. Assume that the automaton has no guards
containing difference constraints in the form of t — y ~ n.

1. (soundness) (lo, {uo}) ~% (ly, Ds) implies (lo,uo) —* (Iy,us) foralluy € Dy
such that ug(x) < k(zx )for all x.

2. (Completeness) (lo, uo) —* (g, uy) withuy(z) < k(x) for all x, implies (ly, {uo})
~¥ (ly, Dy) for some Dy such thatuy € Dy

3. (Finiteness) The transition relation ~y, is finite.

Unfortunately the soundness will not hold for timed automata whose guards contain
difference constraints. We demonstrate this by an example. Consider the automaton
shown in Fig. 6. The final location of the automaton is not reachable according to the
operational semantics. This is because in location Ss, the clock zone is (x — y > 2 and
x > 2) and the guard on the outgoing edge is z < z+ 1Az < y+ 1 which is equivalent
toxr—z<1Az—y<1Az—y <2 Obviously the zone at S can never enable the
guard, and thus the last transition will never be possible. However, because the maximal
constants for clock z is 1 (and 2 for y), the zone in location So: x —y > 2 Az > 2 will
be normalized to x —y > 1 A = > 1 by the maximal constant 1 for z, which enables
the guard z — z < 1 A z — y < 1 and thus the symbolic reachability analysis based on
the above normalization algorithm would incorrectly conclude that the last location is
reachable.
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So S1 S2 S3

>2
@ z:=0 @ i;:() @ {)

x<z+1, z<y+1

Fig. 6. A counter example.

z—y=0
S(): y—Z:(] So
z—x=0

z—y=0
y—z=0
z—x=0

z—y=0 z—y=0
S1:{z—x<0 S1: ¢ z—z2z<0

z—y<0 z—y<0
y—zr <=2 y—z<—1
y—2<0 y—2<0
Sz : z—x <0 Sz z—x <0
0—z< -2 0—z< -1
y—x < —1

y—2<0

Ss - z—x <0
10—z < -1

0—-2<0

r—z<1

(a) Zones without normalization  (b) Zones normalized with k-normalization

Fig.7. Zones for the counter example in Fig. 6.

The zones in canonical forms, generated in exploring the state-space of the counter
example are given in Fig. 7. The implicit constraints that all clocks are non-negative are
not shown.

Note that at .Sy and S, the normalized and un-normalized zones are identical. The
problem is at So where the intersection of the guard (on the only outgoing edge) with
the un-normalized zone is empty and non-empty with the normalized zone.

3.3 Zone-Normalization for Automata with Difference Constraints

Our definition of timed automata (Definition 1) allows any clock constraint to appear in
a guard, which may be a difference constraint in the form of x — y ~ n. Such automata
are indeed needed in many applications e.g. to model scheduling problems [24]. It is
shown that an automaton containing difference constraints can be transformed to an
equivalent diagonal-free automaton [18]. However, the transformation is not applicable
since it is based on the region construction. Besides, it is impractical to implement such
an approach in a tool. Since the transformation modifies the model before analysis, it is
difficult to trace debugging information provided by the tool back to the original model.

In [14,16], a refined normalization algorithm is presented for automata that may
have guards containing difference constraints. The algorithm transforms DBMs accord-
ing to not only the maximal constants of clocks but also difference constraints appearing
in the automaton under consideration. Note that the difference constraints correspond to
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the diagonal lines which split the entire space of clock assignments. A finer partitioning
is needed.

We present the semantical characterization for the refined normalization operation
based on a refined version of the region equivalence from Definition 6.

Definition 10 (Normalization Using Difference Constraints) Let G stand for a finite
set of difference constraints of the form x—y ~ nforx,y € C, ~€ {<,<,=,>, >} and
n € N, and k for a clock ceiling. Two clock assignments u,v are equivalent, denoted
u ~y, g v if the following holds:

— u ~ vand
—forallge G, uecgiffveyg.

The semantics of the refined k-normalization operation on zones is defined as follows:
normk’g(D) = {u\u f@k’g U,V € D}

Note that the refined region equivalence is indexed by both a clock ceiling % and a finite
set of difference constraints G, and so is the normalization operation.

Since the number of regions induced by ~ is finite and there are only finitely
many constraints in G, ~ ¢ induces finitely many equivalence classes. Thus for any
given zone D, normy, g (D) is well-defined in the sense that it contains only a finite set
of equivalence classes though the set may not be a convex zone, and it can be computed
effectively according to the refined regions. In general, normy ¢ (D) is a non-convex
zone, which can be implemented as the union of a finite list of convex zones. The next
section will show how to compute this efficiently.

The refined zone-normalization gives rise to a finite characterization for —.

Definition 11 (I, D) ~» g (I', normy, (D)) if (I, D) ~ (', D').
The following states the correctness and finiteness of ~~j, g.

Theorem 3 Assume a timed automaton with initial state {ly, ug), whose maximal clock
constants are bounded by a clock ceiling k, and whose guards contain only a finite set
of difference constraints denoted G.

1. (soundness) (lo, {uo}) (~1r,g)* (If, Dy) implies (lo, uo) —* (ly,us) foralluy €
Dy such that uy(x) < k(z) for all x.

2. (Completeness) (lo, uo) —* (g, uy) withus(z) < k(z) for all x implies (ly, {uo})
(~r,g)* (Iy, Dy) for some Dy such that uy € Dy

3. (Finiteness) The transition relation ~y, g is finite.

3.4 Symbolic Reachability Analysis

Model-checking concerns two types of properties liveness and safety. The essential
algorithm of checking liveness properties is loop detection, which is computationally
expensive. The main effort on verification of timed systems has been put on safety
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Algorithm 1 Reachability analysis.

PASSED = @), WAIT = {(lo, Do)}
while WAIT # () do
take (I, D) from WAIT
ifl =1y A DN ¢y # 0 then return “YES”
if D ¢ D’ forall (I, D') € PASSED then
add (I, D) to PASSED
for all (', D') such that (I, D) ~» k,G({l', D’) do
add (I', D’) to WAIT
end for
end if
end while
return “NO”

properties that can be checked using reachability analysis by traversing the state-space
of timed automata.

Reachability analysis can be used to check properties on states. It consists of two
basic steps, computing the state-space of an automaton under consideration, and search-
ing for states that satisfy or contradict given properties. The first step can either be per-
formed prior to the search, or done on-the-fly during the search process. Computing
the state-space on-the-fly has an obvious advantage over pre-computing, in that only
the part of the state-space needed to prove the property is generated. It should be noted
though, that even on-the-fly methods will generate the entire state-space to prove certain
properties, e.g. invariant properties.

Several model-checkers for timed systems are designed and optimized for reacha-
bility analysis based on the symbolic semantics and the zone-representation (see Sec-
tion 4). As an example, we present the core of the verification engine of UPPAAL (see
Algorithm 1).

Assume a timed automaton .4 with a set of initial states and a set of final states (e.g.
the bad states) characterized as (g, Do) and (s, ¢ ) respectively. Assume that k is the
clock ceiling defined by the maximal constants appearing in A and ¢, and G denotes
the set of difference constraints appearing in .4 and ¢;. Algorithm 1 can be used to
check if the initial states may evolve to any state whose location is [y and whose clock
assignment satisfies ¢ . It computes the normalized zone-graph of the automaton on-
the-fly, in search for symbolic states containing location [ and zones intersecting with
¢r-

The algorithm computes the transitive closure of ~+j, ¢ step by step, and at each
step, checks if the reached zones intersect with ¢ ;. From Theorem 2, it follows that
the algorithm will return with a correct answer. It is also guaranteed to terminate be-
cause ~~,g is finite. As mentioned earlier, for a given timed automaton with a fixed set
of clocks whose maximal constants are bounded by a clock ceiling k, and a fixed set
of diagonal constraints contained in the guards, the number of all possible normalized
zones is bounded because a normalized zone can not contain arbitrarily large or arbi-
trarily small constants. In fact the smallest possible zones are the refined regions. Thus
the whole state-space of a timed automaton can only be partitioned into finitely many
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symbolic states and the worst case is the size of the region graph of the automaton, in-
duced by the refined region equivalence. Therefore, the algorithm is working on a finite
structure and it will terminate.

Algorithm 1 also highlights some of the issues in developing a model-checker for
timed automata. Firstly, the representation and manipulation of states, primarily zones,
is crucial to the performance of a model-checker. Note that in addition to the opera-
tions to compute the successors of a zone according to ~, g, the algorithm uses two
more operations to check the emptiness of a zone as well as the inclusion between
two zones. Thus, designing efficient algorithms and data-structures for zones is a major
issue in developing a verification tool for timed automata, which is addressed in Sec-
tion 4. Secondly, PASSED holds all encountered states and its size puts a limit on the
size of systems we can verify. This raises the research challenges e.g. state compression
[14], state-space reduction [15] and approximate techniques [9].

4 DBM: Algorithms and Data Structures

The preceding section presents the key elements needed in symbolic reachability anal-
ysis. Recall that the operations on zones are all defined in terms of sets of clock assign-
ments. It is not clear how to compute the result of such an operation. In this section, we
describe how to represent zones, compute the operations and check properties on zones.
Pseudo code for the operations is given in the appendix.

4.1 DBM Basics

Recall that a clock constraint over C is a conjunction of atomic constraints of the form
x~mandx —y ~nwherex,y € C, ~¢ {<,<,=,>,>}and m,n € N. A zone
denoted by a clock constraint D is the maximal set of clock assignments satisfying D.
The most important property of zones is that they can can be represented as matrices i.e.
DBMs (Difference Bound Matrices) [12,23], which have a canonical representation.
In the following, we describe the basic structure and properties of DBMs.

To have a unified form for clock constraints we introduce a reference clock 0 with
the constant value 0. Let Co = C U {0}. Then any zone D € B(C) can be rewritten as a
conjunction of constraints of the form z —y < nforz,y € Cy, <€ {<,<}andn € Z.

Naturally, if the rewritten zone has two constraints on the same pair of variables
only the intersection of the two is significant. Thus, a zone can be represented using
at most |Co|? atomic constraints of the form z — y =< n such that each pair of clocks
x — y is mentioned only once. We can then store zones using |Co| X |Co| matrices where
each element in the matrix corresponds to an atomic constraint. Since each element
in such a matrix represents a bound on the difference between two clocks, they are
named Difference Bound Matrices (DBMs). In the following presentation, we use D;;
to denote element (i, j) in the DBM representing the zone D.

To construct the DBM representation for a zone D, we start by numbering all clocks
in Cg as 0, ..., n and the index for 0 is 0. Let each clock be denoted by one row in the
matrix. The row is used for storing lower bounds on the difference between the clock
and all other clocks, and thus the corresponding column is used for upper bounds. The
elements in the matrix are then computed in three steps.
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— For each constraint x; — x; < nof D, let D;; = (n, =).

— For each clock difference x; — x; that is unbounded in D, let D;; = oco. Where 0o
is a special value denoting that no bound is present.

— Finally add the implicit constraints that all clocks are positive, i.e. 0 — z; < 0, and
that the difference between a clock and itself is always 0, i.e. x; — z; < 0.

As an example, consider the zone D = 2 — 0 < 20Ay —0 < 20 Ay —z <
10Nz —y < —10A0— z < 5. To construct the matrix representation of I, we number
the clocks in the order 0, x, y, z. The resulting matrix representation is shown below:

(0,<) (0,<) (0,2)(5,<)

(20><) (07§) (_107§) o0
MDY= (20,) (10,5)  (0.9)
00 00 oo (0,5)

To manipulate DBMs efficiently we need two operations on bounds: comparison
and addition. We define that (n, <) < oo, (n1, <1) < (n2, <X2) if n1 < ng and (n, <)
< (n, <). Further we define addition as b; + 0o = o0, (m, <) +(n, <) = (m +n, <)
and (m, <) + (n, %) = (m +n, <).

Canonical DBMs. Usually there are an infinite number of zones sharing the same solu-
tion set. However, for each family of zones with the same solution set there is a unique
constraint where no atomic constraint can be strengthened without losing solutions.

To compute the canonical form of a given zone we need to derive the tightest con-
straint on each clock difference. To solve this problem, we use a graph-interpretation of
zones. A zone may be transformed to a weighted graph where the clocks in Cy are nodes
and the atomic constraints are edges labeled with bounds. A constraint in the form of
x —y = n will be converted to an edge from node y to node z labeled with (n, <),
namely the distance from y to x is bounded by n.

As an example, consider the zone z — 0 < 20Ay — 0 < 20 Ay —x < 10A
z —y < —10. By combining the atomic constraints y — 0 < 20and z —y < —10
we derive that x — 0 < 10, i.e. the bound on x — 0 can be strengthened. Consider the
graph interpretation of this zone, presented in Fig. 8(a). The tighter bound on  — 0 can
be derived from the graph, using the path 0 — y — =z, giving the graph in Fig. 8(b).
Thus, deriving the tightest constraint on a pair of clocks in a zone is equivalent to
finding the shortest path between their nodes in the graph interpretation of the zone.
The conclusion is that a canonical, i.e. closed, version of a zone can be computed using
a shortest path algorithm. Floyd-Warshall algorithm [25] (Algorithm 2) is often used
to transform zones to canonical form. However, since this algorithm is quite expensive
(cubic in the number of clocks), it is desirable to make all frequently used operations
preserve the canonical form, i.e. the result of performing an operation on a canonical
zone should also be canonical.

Minimal Constraint Systems. A zone may contain redundant constraints. For exam-
ple, a zone contains constraints z — y < 2,y — z < 5 and x — z < 7. The constraint
x — z < 7 is obviously redundant because it may be derived from the first two. It is
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(0, <)

Fig. 8. Graph interpretation of the example zone and its closed form.

desirable to remove such constraints to store only the minimal number of constraints.
Consider, for instance, the zonex —y < 0Ny —2<0Az—2<0A2<z2—-0<3.
This is a zone in a minimal form containing only five constraints. The closed form of
this zone contains more than 12 constraints. It is known, e.g. from [31], that for each
zone there is a minimal constraint system with the same solution set. By computing this
minimal form for all zones and storing them in memory using a sparse representation
we might reduce the memory consumption for state-space exploration. This problem
has been thoroughly investigated in [31,41,36].

The following is a summary of the published work on the minimal representation
of zones. We present an algorithm that computes the minimal form of a closed DBM.
Closing a DBM corresponds to computing the shortest path between all clocks. Our
goal is to compute the minimal set of bounds for a given shortest path closure. For
clarity, the algorithm is presented in terms of directed weighted graphs. However, the
results are directly applicable to the graph interpretation of DBMs.

First we introduce some notation: we say that a cycle ina graph is a zero cycle if
the sum of weights along the cycle is 0, and an edge x; i, x; 18 redundant if there is
another path between z; and x; where the sum of weights is no larger than n;;.

In graphs without zero cycles we can remove all redundant edges without affecting
the shortest path closure [31]. Further, if the input graph is in shortest path form (as for
closed DBMs) all redundant edges can be located by considering alternative paths of
length two.

As an example, consider Fig. 9. The figure shows the shortest path closure for a

zero-cycle free graph (a) and its minimal form (b). In the graph we find that x; 2, To 18
made redundant by the path x; KR T4 2, z9 and can thus be removed. Further, the edge

T3 15, o is redundant due to x3 5, T 3, z2. Note that we consider edges marked
as redundant when searching for new redundant edges. The reason is that we let the
redundant edges represent the path making them redundant, thus allowing all redundant
edges to be located using only alternative paths of length two. This procedure is repeated
until no more redundant edges can be found.

This gives the O(n?) procedure for removing redundant edges presented in Algo-
rithm 3. The algorithm can be directly applied to zero-cycle free DBMs to compute the
minimal number of constraints needed to represent a given zone.
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Fig. 9. A zero cycle free graph and its minimal form.

However, this algorithm will not work if there are zero-cycles in the graph. The
reason is that the set of redundant edges in a graph with zero-cycles is not unique. As
an example, consider the graph in Fig. 10(a). Applying the above reasoning on this

—2
graph would remove x; 3, 3 based on the path z; — 2 3, 3. It would also

5 2 3 .
remove the edge o — x5 based on the path xzo — x1 — x3. But if both these edges
are removed it is no longer possible to construct paths leading into x3. In this example

there is a dependence between the edges x; 3, x3 and o 5, x5 such that only one of
them can be considered redundant.

@ () @ (b)

Fig. 10. A graph with a zero-cycle and its minimal form.

The solution to this problem is to partition the nodes according to zero-cycles and
build a super-graph where each node is a partition. The graph from Fig. 10(a) has two
partitions, one containing x; and z2 and the other containing x3. To compute the edges
in the super-graph we pick one representative for each partition and let the edges be-
tween the partitions inherit the weights from edges between the representatives. In our
example, we choose z; and z3 as representatives for their equivalence classes. The
edges in the graph are then {x1,z2} 3, {z3} and {z3} 3, {x1, z2}. The super-graph
is clearly zero-cycle free and can be reduced using Algorithm 3. This small graph can
not be reduced further. The relation between the nodes within a partition is uniquely
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defined by the zero-cycle and all other edges may be removed. In our example all edges
within each equivalence class are part of the zero-cycle and thus none of them can
be removed. Finally the reduced super-graph is connected to the reduced partitions. In
our example we end up with the graph in Fig. 10(b). Pseudo-code for the reduction-
procedure is shown in Algorithm 4.

Now we have an algorithm for computing the minimal number of edges to repre-
sent a given shortest path closure that can be used to compute the minimal number of
constraints needed to represent a given zone.

4.2 Basic Operations on DBMs

This subsection presents all the basic operations on DBMs except the ones for zone-
normalization, needed in symbolic state space exploration of timed automata, both for
forwards and backwards analysis. The two operations for zone-normalization are pre-
sented in the next subsection.

First note that even if a verification tool only explores the state space in one direction
all operations are still useful for other purposes, e.g. for generating diagnostic traces.
The operations are illustrated graphically in Fig. 11.

To simplify the presentation we assume that the input zones are consistent and in
canonical form. The basic operations on DBMs can be divided into two classes:

1. Property-Checking: This class includes operations to check the consistency of a
DBM, the inclusion between zones, and whether a zone satisfies a given atomic
constraint.

2. Transformation: This class includes operations to compute the strongest postcon-
dition and weakest precondition of a zone according to conjunction with guards,
time delay and clock reset.

Property-Checking

consistent(D) The most basic operation on a DBM is to check if it is consistent,
i.e. if the solution set is non-empty. In state-space exploration this operation is used to
remove inconsistent states from the exploration.

For a zone to be inconsistent there must be at least one pair of clocks where the
upper bound on their difference is smaller than the lower bound. For DBMs this can be
checked by searching for negative cycles in the graph interpretation. However, the most
efficient way to implement a consistency check is to detect when an upper bound is set
to lower value than the corresponding lower bound and mark the zone as inconsistent by
setting Dyg to a negative value. For a zone in canonical form this test can be performed
locally. To check if a zone is inconsistent it will then be enough to check whether Dy
is negative.

relation(D, D’) Another key operation in state space exploration is inclusion
checking for the solution sets of two zones. For DBMs in canonical form, the con-
dition that D;; < ng for all clocks 7, 7 € Cy is necessary and sufficient to conclude
that D C D’. Naturally the opposite condition applies to checking if D’ C D. This
allows for the combined inclusion check described in Algorithm 5.
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D t up(D) t down(D) "
Y
F=
L _ |
free‘(D,y)} t reset(D,m:z?)x copy(D, z:=1vy) *
Y

O

. normg (D) v shift(D,y::erﬂ

and(D,x < 2)

Fig. 11. DBM operations applied to the same zone where for normy (D), k is defined by k(x) =
2and k(y) = 1.

satisfied(D,x; — x; < m) Sometimes it is desirable to non-destructively check
if a zone satisfies a constraint, i.e. to check if the zone D A x; — x; = m is consistent
without altering D. From the definition of the consistent-operation we know that
a zone is consistent if it has no negative cycles. Thus, checking if D A 2; — 2; X m
is non-empty can be done by checking if adding the guard to the zone would introduce
a negative cycle. For a DBM on canonical form this test can be performed locally by
checking if (m, <) 4+ Dj; is negative.

Transformations

up(D) The up operation computes the strongest postcondition of a zone with respect
to delay, i.e. up(D) contains the clock assignments that can be reached from D by
delay. Formally, this operation is defined as up(D) = {u+d |u € D,d € R}
Algorithmically, up is computed by removing the upper bounds on all individual
clocks (In a DBM all elements D, are set to co). This is the same as saying that any
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clock assignment in a given zone may delay an arbitrary amount of time. The property
that all clocks proceed at the same speed is ensured by the fact that constraints on the
differences between clocks are not altered by the operation.

This operation preserves the canonical form, i.e. applying up to a canonical DBM
will result in a new canonical DBM. The up operation is also presented in Algorithm 6.

down(D) This operation computes the weakest precondition of D with respect to
delay. Formally down(D) = {u|u+d € D,d € R4}, i.e. the set of clock assignments
that can reach D by some delay d. Algorithmically, down is computed by setting the
lower bound on all individual clocks to (0, <). However due to constraints on clock
differences this algorithm may produce non-canonical DBMs. As an example, consider
the zone in Fig. 12(a). When down is applied to this zone (Fig. 12(b)), the lower bound
on z is 1 and not 0, due to constraints on clock differences. Thus, to obtain an algorithm
that produce canonical DBMs the difference constraints have to be taken into account
when computing the new lower bounds.

Y Y

(a) (b)

Fig. 12. Applying down to a zone.

To compute the lower bound for a clock z, start by assuming that all other clocks
y; have the value 0. Then examine all difference constraints y; —  and compute a new
lower bound for x under this assumption. The new bound on 0 — x will be the minimum
bound on y; — x found in the DBM. Pseudo-code for down is presented in Algorithm 7.

and(D, x; — y; =< b) The most used operation in state-space exploration is conjunc-
tion, i.e. adding a constraint to a zone. The basic step of the and operation is to check
if (b, <) < D;; and in this case set the bound D;; to (b, <). If the bound has been
altered, i.e. if adding the guard affected the solution set, the DBM has to be put back on
canonical form. One way to do this would be to use the generic shortest path algorithm,
however for this particular case it is possible to derive a specialization of the algorithm
allowing re-canonicalization in O(n?) instead of O(n?).

The specialized algorithm takes the advantage that D;; is the only bound that has
been changed. Since the Floyd-Warshall algorithm is insensitive to how the nodes in the
graph are ordered, we may decide to treat x; and x; last. The outer loop of Algorithm 2
will then only affect the DBM twice, for £k = 7 and k = j. This allows the canonical-
isation algorithm to be reduced to checking, for all pairs of clocks in the DBM, if the
path via either z; or z; is shorter than the direct connection. The pseudo code for this
is presented in Algorithm 8.
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free(D,x) The free operation removes all constraints on a given clock, i.e. the
clock may take any positive value. Formally this is expressed as free(D, z) = {u[z =
d]|u € D,d € R4 }. In state-space exploration this operation is used in combination
with conjunction, to implement reset operations on clocks. It can be used in both for-
wards and backwards exploration, but since forwards exploration allows other more
efficient implementations of reset, free is only used when exploring the state-space
backwards.

A simple algorithm for this operation is to remove all bounds on z in the DBM
and set Do, = (0, <). However, the result may not be on canonical form. To obtain
an algorithm preserving the canonical form, we change how new difference constraints
regarding x are derived. We note that the constraint 0 — x < 0 can be combined with
constraints of the form y — 0 < m to compute new bounds for y — x. For instance,
if y — 0 < 5 we can derive that y — x < 5. To obtain a DBM on canonical form we
derive bounds for D, based on D, instead of setting ,;, = oo.In Algorithm 9 this
is presented as pseudo code.

reset(D,x:=m) In forwards exploration this operation is used to set clocks to
specific values, i.e. reset(D,z:=m) = {ulr = m| | v € D}. Without the require-
ment that output should be on canonical form, reset can be implemented by setting
Dyo = (m, <), Doz = (—m, <) and remove all other bounds on z. However, if we
instead of removing the difference constraints compute new values using constraints on
the other clocks, like in the implementation of £ ree, we obtain an implementation that
preserve the canonical form. Such an implementation is presented in Algorithm 10.

copy(D, x :=1y) This is another operation used in forwards state-space exploration.
It copies the value of one clock to another. Formally, we define copy(D, z:=y) as
{ulz = u(y)] | v € D}. As reset, copy can be implemented by assigning D, =
(0, <), Dy, = (0, <), removing all other bounds on 2 and re-canonicalize the zone.
However, a more efficient implementation is obtained by assigning D,, = (0, <),
D,, = (0, <) and then copy the rest of the bounds on z from y. For pseudo code, see
Algorithm 11.

shift(D,x:=x + m) The last reset operation is shifting a clock, i.e. adding or
subtracting a clock with an integer value, i.e. shift(D,z:=x+m) = {ulz = u(z)+
m] | w € D}. The definition gives a hint on how to implement the operation. We can
view the shift operation as a substitution of  — m for z in the zone. With this reasoning
m is added to the upper and lower bounds of x. However, since lower bounds on x
are represented by constraints on y — x, m is subtracted from all those bounds. This
operation is presented in pseudo-code in Algorithm 12.

4.3 Zone-Normalization

The operations for zone-normalization are to transform zones which may contain arbi-
trarily large constants to zones containing only bounded constants in order to obtain a
finite zone-graph.
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normg (D) For a timed automaton and a safety property to be checked, that contain
no difference constraints, the k-normalization normy (D) is needed, and it can be com-
puted based on the canonical form of D (see Section 3). It is to remove all upper bounds
higher than the maximal constants and lower all lower bounds higher than the maximal
constants down to the maximal constants. The result of normy, (D) is illustrated graph-
ically in Fig. 11.

In the canonical DBM representation of a zone, the operation consists of two steps:
first, remove all bounds z — y < m such that (m, <) > (k(x), <) and second, set all
bounds x — y = m such that (m, %) < (=k(y), <) to (—k(y), <). Pseudo-code for
k-normalization is given in Algorithm 13 where k; denotes k(z;).

The k-normalization will not preserve the canonical form of a DBM, and the best
way to put the result back on canonical form is to use Algorithm 2.

normy g (D) For automata containing difference constraints in the guards, it is more
complicated and expensive to compute the normalized zones. Assume an automataon A
containing the set of difference constraints G and the maximal clock constants bounded
by a clock ceiling k. Assume a zone D of A to be normalized. According to the se-
mantical characterization for normy, ¢ (D) in Definition 10 we know that if a difference
constraint is not satisfied by any assignment in the zone D), it should not be satisfied by
any assignment in the normalized one, normy, g (D), and if all assignments in D satisfy
a difference constraint then so should all assignments in normy, g (D). This leads to a
core normalization algorithm consisting of three steps.

1. Collect all difference constraints g used as guards in A such that
(a) g A D is empty. This is the case when g is outside of D.
(b) =g A D is empty. That is the case when g contains D completely.
Let Gunsat = {glg A D = 0} U {~g|-g A D = 0}

2. Compute normy (D), that is, to run the k-normalization without considering the
difference constraints.

3. Subtract (or cut) the k-normalized zone of D by all difference constraints in Gypgat,
that is to compute normyg (D) A =Gunsat-

The last step is to make sure that none of the collected difference constraints are satisfied
after the k-normalization. In Algorithm 14, the core normalization is given as pseudo
code. The set G4 used in the algorithm is the set of difference constraints appearing
in the automaton under consideration with the maximal clock constants bounded by a
given clock ceiling k as input.

It appears to be the case that normg (D) A —Gunsat 18 the normalized zone we are
looking for. Unfortunately this is not. The core normalization does not handle the case
when a difference constraint splits the zone D to be normalized. That is, there is a
guard g such that g A D # () and ~g A D # (. In this case, we need to split D by g
using Algorithm 15, and then apply the core normalization algorithm to the parts of D
separately, which are the sub-zones of D resulted from the splitting. The union of the
normalized sub-zones is what we are looking for, that is normg, g (D).

The complete normalization procedure is presented in Algorithm 16. The splitting,
denoted by split in the description, is used as a preprocessing step and then the core nor-



Timed Automata: Semantics, Algorithms and Tools 109

malization algorithm (i.e. Algorithm 14) is applied to all the resulted sub-zones resulted
from the splitting.

Finally, the symbolic transition relation ~»;, g can be computed as follows:
If (I, Dy ~~ (I', D"}, (I, D) ~>,g (I', D") forall D" € @ used in Algorithm 16, i.e. the
algorithm for normy, g(D).

To demonstrate the normalization procedure we apply it to the zone for location So
in our counter example. The difference constraints in the example are gy =z — 2 < 1
and go = z — y < 1. The zone contains both clock assignments satisfying ¢g; and
assignments satisfying its negation, and thus we have to split the zone with respect to
this constraint prior to normalization, giving the zones below.

y—x < =2
y—z<—1 y—x < =2
z—x <0 y—2<0

0—x< -2 0—z< -2
0—z< -1 z—xr < -1
r—z<l1

(a) satisfying g; (b) satisfying —g;

Zone (a) above does not contain any clock assignments satisfying go and thus it
will not be split further. Zone (b) however needs to be split into two parts satisfying
g2 and —gs. This gives us the following zones to normalize by the core normalization
procedure.

y-a <=2 —r <=2
y—z<—1 y—x <=2 y
y—z2< -1
z—x <0 y—2<0
z—x < -—1
0—xz< -2 0—x< -2
0—z<—1 |z—a<-1 |07%<72
- 0—2<-1

r—z<1
(a) g1 and =g2 (b) —g; and g2 (c) —g1 and —g2

The sets of difference constraints not satisfied by the zones (a), (b) and (c) shown

above are: gl(lz)isat = {91,902}, gl(l};)llat = {91,792}, gl(lfl)sat = {91, g2} respectively.

We apply k-normalization to each of them, giving:

y—xr < —1
y—r<—1
y—z<—-1 [y—x<-1 <
z—x <0 y—2<0 Z—xz—l
0—z< -1 0—z< -1 -
0—z< -1 r—z2>1 0—w<-1
- 0—z<-1

r—z<1
(A) g1 and ~g2 (B) —g1 and g2 (C) g1 and —go

Since the k-normalized zones (A), (B) and (C) shown above do not enable any
constraint in Gynsat, We need not to subtract the corresponding difference constraints
from the zones. Finally, we note that, as the un-normalized zones (a), (b) and (c), none
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of the normalized zones (A), (B) and (C) intersects with g1 A go; the transition from .S
to S5 is not enabled by the normalization procedure.

4.4 Zones in Memory

This section describes a number of techniques for storing zones in computer memory.
The section starts by describing how to map DBM elements on machine words. It con-
tinues by discussing how to place two-dimensional DBMs in linear memory and ends
by describing how to store zones using a sparse representation.

Storing DBM Elements. To store a DBM element in memory we need to keep track
of the integer limit and whether it is strict or not. The range of the integer limit is
typically much lower than the maximum value of a machine word and the strictness can
be stored using just one bit. Thus, it is possible to store both the limit and the strictness in
different parts of the same machine word. Since comparing and adding DBM elements
are frequently used operations it is crucial for the performance of a DBM package that
they can be efficiently implemented for the chosen encoding. Fortunately, it is possible
to construct an encoding of bounds in machine words, where checking if b; is less than
bs can be performed by checking if the encoded b; is smaller than the encoded bs.

The encoding we propose is to use the least significant bit (LSB) of the machine
word to store whether the bound is strict or not. Since strict bounds are smaller than
non-strict we let a set (1) bit denote that the bound is non-strict while an unset (0) bit
denote that the bound is strict. The rest of the bits in the machine word are used to store
the integer bound. To encode oo we use the largest positive number that fit in a machine
word (denoted MAX_ INT).

For good performance we also need an efficient implementation of addition of
bounds. For the proposed encoding Algorithm 17 adds two encoded bounds b; and
ba. The symbols & and | in the algorithm are used to denote bitwise-and and bitwise-or,
respectively.

Placing DBMs in Memory. Another issue is how to store two-dimensional DBMs
in linear memory. In this section we present two different techniques and give a brief
comparison between them. The natural way to put matrices in linear memory is to store
the elements by row (or by column), i.e. each row of the matrix is stored consequently
in memory. This layout has one big advantage, its good performance. This advantage is
mainly due to the simple function for computing the location of a given element in the
matrix: loc(x,y) = x*(n+1)+y. This function can (on most computers) be computed
in only two instructions. This is important since all accesses to DBM elements use this
function. How the different DBM elements are place in memory with this layout if
presented in Fig. 13(a).

The second way to store a DBM in linear memory is based on a layered model where
each layer consists of the bounds between a clock and the clocks with lower index in the
DBM. In this representation it is cheap to implement local clocks, since all information
about the local clocks are localised at the end of the DBM. The drawback with this
layout is the more complicated function from DBM indices to memory locations. For
this layout we have:
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yx(y+1)+aife <y
THxT+yY otherwise

loc(z, y) = {

This adds at least two instructions (one comparison and one conditional jump) to the
transformation. This may not seem such a huge overhead, but it is clearly noticeable.
The cache performance is also worse when using this layout than when storing the
DBMs row-wise. This layout is illustrated in Fig. 13(b).

The conclusion is that unless the tool under construction supports adding and re-
moving clocks dynamically the row-wise mapping should be used. On the other hand,
if the tool supports local clocks the layered mapping may be preferable since no re-
ordering of the DBM is needed when entering or leaving a clock scope.

0123 02 6 12
456 7 13 713
8 9 1011 45 8 14
121314 15 9101115
(a) Row wise (b) Layered

Fig. 13. Different layouts of DBMs in memory.

Storing Sparse Zones. In most verification tools, the majority of the zones are kept
in the set of states already visited during verification. They are used as a reference to
ensure termination by preventing states from being explored more than once. For the
states in this set we may benefit from storing only the minimal number of constraints
using a sparse representation.

A straight forward implementation is to store a sparse zone as a vector of constraints
of the form (z, y, b). We may save additional memory by omitting implicit constraints,
such as 0 — z < 0. A downside with using sparse zones is that each constraint require
twice the amount of memory needed for a constraint in a full DBM, since the sparse
representation must store clock indices explicitly. Thus, unless half of the constraints in
a DBM are redundant we do not gain from using sparse zones.

A nice feature of the sparse representation is that checking whether a zone Dy
represented as a full DBM is included in a sparse zone D s may be implemented without
computing the full DBM for Dy. It suffices to check for all constraints in D, that the
corresponding bound in Dy is tighter. However, to check if D, C Dy we have to
compute the full DBM for D;.

S UPPAAL

In the last decade, there have been a number of tools developed based on timed automata
to model and verify real time systems, notably Kronos [50] and UPPAAL [33]. As an
example, we give a brief introduction to the UPPAAL tool (www.uppaal.com).

UPPAAL is a tool box for modeling, simulation and verification of timed automata,
based on the algorithms and data-structures presented in previous sections. The tool was
released for the first time in 1995, and since then it has been developed and maintained
in collaboration between Uppsala University and Aalborg University.
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5.1 Modeling with UPPAAL

The core of the UPPAAL modeling language is networks of timed automata. In addition,
the language has been further extended with features to ease the modeling task and to
guide the verifier in state space exploration. The most important of these are shared
integer variables, urgent channels and committed locations.

Networks of Timed Automata. A network of timed automata is the parallel compo-
sition A ---|A,, of a set of timed automata Ay, ..., A,, called processes, combined
into a single system by the CCS parallel composition operator with all external actions
hidden. Synchronous communication between the processes is by hand-shake synchro-
nization using input and output actions; asynchronous communication is by shared vari-
ables as described later. To model hand-shake synchronization, the action alphabet 3 is
assumed to consist of symbols for input actions denoted a?, output actions denoted a!,
and internal actions represented by the distinct symbol 7.

An example system composed of two timed automata is shown in Fig. 14. The
network models a time-dependent light-switch (to the left) and its user (to the right).
The user and the switch communicate using the label press. The user can press the
switch (press!) and the switch waits to be pressed (press?). The product automaton, i.e.
the automaton describing the combined system is shown in Fig. 15.

press?

Fig. 14. Network of Timed Automata.

The semantics of networks is given as for single timed automata in terms of tran-
sition systems. A state of a network is a pair (I, u) where [ denotes a vector of current
locations of the network, one for each process, and w is as usual a clock assignment re-
membering the current values of the clocks in the system. A network may perform two
types of transitions, delay transitions and discrete transitions. The rule for delay tran-
sitions is similar to the case of single timed automata where the invariant of a location
vector is the conjunction of the location invariants of the processes. There are two rules
for discrete transitions defining local actions where one of the processes makes a move
on its own, and synchronizing actions where two processes synchronize on a channel
and move simultaneously.
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bright, study

Jof{,idle x:=0, y:=0 dim,relax

x>10, y>10

x:=0, y:=0

y<s x>10

off,study bright,relax

x<10
y:=0

bright, idle

dim,idle

off,relax

y:=0

Fig. 15. Product Automaton for the Network in Fig. 14.

Let /; stand for the ith element of a location vector [ and [[l; /;] for the vector [ with
l; being substituted with [;. The transition rules are as follows:

- (lu) = (,u+t)ifueI(l)and (u+d) € I(l), where I(1) = A I(l;)

= (Lu) D (/L)WY it l; 225 1w € g,u’ = [r e Olu, o/ € I(1[1;/1])

— (Louy 5 UL ] ) i L it 1,1, L Ui j,u € gi Ngju =
[r; U — Olu and ' € 1(1 [0 /L110/150).

l* I~

Note that a network is a closed system which may not perform any external action.
In fact, the CCS hiding operator is embedded in the above rules.

Shared Integer Variables. Clocks may be considered as typed variables with type
clock. In UPPAAL, one may also use integer variables and arrays of integers, each with
a bounded domain and an initial value. Predicates over the integer variables can be
used as guards on the edges of an automaton process and the integer variables may
be updated using resets on the edges. In the current version of UPPAAL, the syntax
related to integer variables resembles the standard C syntax. Both integer guards and
integer resets are standard C expressions with the restriction that guards can not have
side-effects.

The semantics of networks can be defined accordingly. The clock assignment w in
the state configuration (I, u) can be extended to store the values of integer variables in
addition to clocks. Since delay does not affect the integer variables, the delay transi-
tions are the same as for networks without integer variables. The action transitions are
extended in the natural way, i.e. for an action transition to be enabled the extended clock
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assignment must also satisfy all integer guards on the corresponding edges and when a
transition is taken the assignment is updated according to the integer and clock resets.
There is a problem with variable updating in a synchronizing transition where one
of the processes participating in the transition updates a variable used by the other.
In UPPAAL, for a synchronization transition, the resets on the edge with an output-
label is performed before the resets on the edge with an input-label. This destroys the
symmetry of input and output actions. But it gives a natural and clear semantics for
variable updating. The transition rule for synchronization is modified accordingly:

= () D (L /) ) A L 2 g B Gk e i A gyl =
[ri = 0]([rj — OJu) and u’ € I(U[L/L:][1}/1;])

Urgent Channels. To model urgent synchronizing transitions, which should be taken
as soon as they are enabled, UPPAAL supports a notion of urgent channels. An urgent
channel works much like an ordinary channel, but with the exception that if a syn-
chronization on an urgent channel is possible the system may not delay. Interleaving
with other enabled action transitions, however, is still allowed. In order to keep clock
constraints representable using convex zones, clock guards are not allowed on edges
synchronizing on urgent channels.

To illustrate why this restriction is necessary, consider the network shown in Fig. 16.
Both processes may independently go from their first state to their second state. In the
second state, the first process must delay for at least 10 time units before it is allowed to
synchronize on the urgent channel «. In the second state, the other process must delay
for at least 5 time units before it is allowed to synchronize on the urgent channel u. As
soon as both processes have spent the minimal time periods required in their second
state, they should synchronize and move to their third state. The problem is in [S2,T2]
where the zone may be for example (z > 10 Ay = 5) V (y > 5 Ax = 10) whichis a
non-convex zone.

S0 S1 S2
x:=0 x>=10
M)
@ N u!
TO T1 T2
y:=0 Y y>=5
@ /U u?

Fig. 16. An example of a network with non convex timing regions.

For this example, the problem can be solved by splitting the non-convex zone into
two convex ones. But in general, the splitting is a computationally expensive operation.
In UPPAAL, we decided to avoid such operations for the sake of efficiency. So only
integer guards are allowed on edges involving synchronizations on urgent channels.

Committed Locations. To model atomic sequences of actions, e.g. atomic broadcast
or multicast, UPPAAL supports a notion of committed locations. A committed location
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is a location where no delay is allowed. In a network, if any process is in a committed
location then only action transitions starting from such a committed location are al-
lowed. Thus, processes in committed locations may be interleaved only with processes
in a committed location.

Syntactically, each process A; in a network may have a subset N C N; of loca-
tions marked as committed locations. Let C'(1) denote the set of locations in [, that are
committed. For the same reason as in the case of urgent channels, as a syntactical re-
striction, no clock constraints but predicates over integer variables are allowed to appear
in a guard on an outgoing edge from a committed location.

The transition rules are given in the following, where —. denotes the transition
relation for a network with committed locations and — denotes the transition relation
for the same network without considering the committed locations.

— Lu) S (Lutd)if (Lu) S (1, u+d)and C(1) = 0

= (Lu)y Do (1], 'y i (L u)y 5 (1 [z /u ') and either [; € C(I) or C(1) = 0

- (Lu) S (111 ][z’/z Jou') if (Lou) S (/61 /1), u') and either I; € C(1),
l; € C’(l) orC(l) =

5.2 Verifying with UPPAAL

The model checking engine of UPPAAL is designed to check a subset of TCTL formula
[2] for networks of timed automata. The formulas should be one of the following forms:

- A[] ¢ — Invariantly ¢.

— E<> ¢ — Possibly ¢.

— A<> ¢ — Always Eventually ¢.

- E[] ¢ — Potentially Always ¢.

- ¢ - -> 1 — ¢ always leads to . This is a shorthand for VO (¢ = VO).

where ¢, 1 are local properties that can be checked locally on a state, i.e. boolean ex-
pressions over predicates on locations and integer variables, and clock constraints in
B(C).

The transition system of a network may be unfolded into an infinite tree contain-
ing states and transitions. The semantics of the formulas are defined over such a tree.
The letters A and E are used to quantify over paths. A is used to denote that the given
property should hold for all paths of the tree while E denotes that there should be at
least one path of the tree where the property holds. The symbols [] and <> are used to
quantify over states within a path. [] denotes that all states on the path should satisfy
the property, while <> denotes that at least one state in the execution satisfies the prop-
erty. In Fig. 17 the four basic property types are illustrated using execution trees, where
the dashed arrows are used to denote repetitions in the trees. The states satisfying ¢ are
denoted by filled nodes and edges corresponding to the paths are highlighted using bold
arrows.

The two types of properties most commonly used in verification of timed systems
are E<>¢ and A [] . They are dual in the sense that E<>¢ is satisfied if and only if
A []1-¢ is not satisfied. This type of properties are often classified as safety properties,
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Fig.17. (T)CTL-formulae.

i.e. meaning that the system is safe in the sense that a specified hazard can not occur. It
is also possible to transform so called bounded liveness properties, i.e. properties stating
that some desired state will be reached within a given time, into safety properties using
observer automata [1] or by annotating the model [37]. For example, to check if an
automaton will surely reach a location [ within 10 time units, we use one clock x (set to
0 initially) and introduce a boolean variable [, (set to false initially). For each incoming
edge to [ in the automaton, set [ to true. Then if the automaton satisfies the invariant
property "z < 10 V [;", it will surely reach [ within 10 time units provided that the
automaton contains no zeno loops which stop time to progress.

The other three types of properties are commonly classified as unbounded liveness
properties, i.e. they are used to express and check for global progress. These properties
are not commonly used in UPPAAL case-studies. It seems to be the case that bounded
liveness properties are more important for timed systems.

5.3 The UPPAAL Architecture

To provide a system that is both efficient, easy to use and portable, UPPAAL is split into
two components, a graphical user interface written in Java and a verification engine
written in C++. The engine and the GUI communicate using a protocol, allowing the
verification to be performed either on the local workstation or on a powerful server in a
network.
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Reachability

Initial

Fig. 18. Schematic view of the reachability pipeline in UPPAAL.

To implement the reachability analysis algorithm 1, the UPPAAL verification engine

is organized as a pipeline that incarnates the natural data flow in the algorithm. A sketch
of this pipeline is shown in Fig. 18. This architecture simplifies both activating and
deactivating optimizations at runtime by inserting and removing stages dynamically,
and introducing new optimizations and features in the tool by implementing new or
changing existing stages.

In addition to the zone-manipulation algorithms described in Section 4 and the

pipeline architecture, in UPPAAL a number of optimizations have been implemented:

Minimal constraint systems [31] and CDDs [32, 11], to reduce memory consump-
tion by removing redundant information in zones before storing them.

Selective storing of states in PASSED [31], where static analysis is used to detect
states that can be omitted safely from PASSED without losing termination.
Compression [13] and sharing [10,21] of state data, to reduce the memory con-
sumption of PASSED and WAIT.

Active clock reduction [22], that use live-range analysis to determine when the
value of a clock is irrelevant. This does not only reduce the size of individual states
but also the perceived state-space.

Supertrace [30] and Hash Compaction [45,44] where already visited states are
stored only as hash signatures, and Convex-hull approximation [9] where convex
hulls are used to approximate unions of zones, for reducing memory consumption
at a risk of inconclusive results.
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Appendix: Pseudo-Code for Operations on DBMs

Algorithm 2 close(D): Floyds algorithm for computing shortest path

for k := 0tondo
for i := 0 ton do
for j := 0ton do
Dij = min(Dij, Dik + ij)
end for
end for
end for

Algorithm 3 Reduction of Zero-Cycle Free Graph G with n nodes

for i :== 1ton do
for j :=1tondo
for k£ :=1tondo
if Gir + G; < Gyj then
Mark edge ¢« — j as redundant
end if
end for
end for
end for
Remove all edges marked as redundant.

Algorithm 4 Reduction of negative-cycle free graph G with n nodes

for i :== 1ton do
if Node; is not in a partition then
Eq =10
for j :=iton do
if Gij —+ sz‘ = 0 then
Eqi = FEq; U {Nodei}
end if
end for
end if
end for
Let G’ be a graph without nodes.
for each Eq; do
Pick one representative Node; € Eq;
Add Node; to G’
Connect Node; to all nodes in G’ using weights from G.
end for
Reduce G’
for each Eq; do
Add one zero cycle containing all nodes in Eq; to G’
end for
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Algorithm 5 relation(D, D')

focp =1
foopr =1
for i := 0tondo
for j := Oton do
focp = focpr A (Dij < Di)
foopr = fpoopr A (Dij > Dij)
end for
end for
return (fpcp/, fpopr)

Algorithm 6 up(D)

fori:=1tondo
Dio =0
end for

Algorithm 7 down(D)

fori:=1tondo
Do; = (0,<)
for j :=1tondo
if Djz‘ < D(Ji then
Do; = Dji
end if
end for
end for

Algorithm 8 and(D, g)

if Dy, + (m, <) < 0 then

Doo = (—1,<)
else if (m, <) < D, then
Day = (m7 j)

for i := 0 ton do
for j := 0Otondo
if D;, + Dzj < Dz‘j then
Dij = Diz + Daj
end if
if Dz‘y + Dy]‘ < Dij then
Dij = Diy + Dy;
end if
end for
end for
end if
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Algorithm 9 free(D, x)

for i := 0 tondo

if i # = then
Du = 0
Dix = Dio
end if
end for

Algorithm 10 reset(D,xz:=m

for i := 0 tondo
Dy := (m, <) + Do;
Diz == Do + (—TTL7 S)
end for

Algorithm 11 copy(D, x :=1y)

for i := 0 tondo
if i # x then
Dzz‘ = Dyl
end if
end for

Algorithm 12 shift(D,z:=x + m)

for i := 0 ton do
if i # x then
Diz = Dzz + (_ma S)
end if
end for
Do := max(Dqo, (0, <))
Doz := min(Dogz, (0, <))

Algorithm 13 normy (D))

for i := 0 ton do
for j := 0ton do
if Dij 76 oo and Dij > (kl), S) then

DL, = 0
else if D;; # oo and D;; < (—k;j, <) then
Dij = (—k]‘, <)
end if
end for
end for

close(D)
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Algorithm 14 Core normalization: Core-Normy (D).

gunsat = @
for all g € Gq do
if D A g = () then
Gunsat = Gunsat U {g}
end if
if D A =g = () then
Gunsat = Gunsat U {_‘g}
end if
end for
D :=normg(D)
for all g € Gunsat do
D:=DA-g
end for
return D

Algorithm 15 Zone splitting: split(D).

Q= 1{D),@" =0
for all g € G4 do
for all D' € Q do
if D' A gand D’ A —g then
Q' :=Q " U{D'ANg, D' A—g}

else
QR :=Q u{D'}
end if
end for
Q:=Q,Q =0
end for
return @)

Algorithm 16 Normalization: normy, g (D).

Q=0
for all D’ € split(D) do

Q := Q U {Core-Norm(D’)}
end for
return @)

Algorithm 17 Algorithm for adding encoded bounds.

if by = MAX_INT or b = MAX_INT then
return MAX_TINT
else
return by + by — ((b1&1)[(b2&1))
end if
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