
Model-Based Development of
Executable Business Processes for Web Services

Reiko Heckel1,2 and Hendrik Voigt2

1 Faculty of Computer Science, University of Dortmund, Germany
2 Faculty of Computer Science, Electrical Engineering and Mathematics

University of Paderborn, Germany
{reiko,hvoigt}@upb.de

Abstract. In order to implement business processes, the composition of
simpler services provided by different independent participants requires a
high degree of standardization and flexibility. For this purpose, platform-
independent XML-based languages like the Business Process Execution
Language for Web Services (BPEL4WS) are suitable. XML documents
are in fact human readable, but in general they are hard to produce and
to understand by business experts which are, however, most qualified
for defining business processes. We present a model-based development
method based on an intuitive and adequate modelling notation, an au-
tomatic transformation of process models to their XML-based encoding,
and techniques to analyze processes. In this context the Unified Model-
ing Language (UML) as standard notation for modelling software, graph
transformation as meta language for defining model transformations, and
a semantic interpretation of process models in terms of Communicating
Sequential Processes (CSP) are used.

1 Introduction

A Web service is a software component that can be dynamically discovered,
linked, and invoked by its clients via XML-based protocols. This software-ori-
ented definition of the term can be contrasted with a business-oriented view,
considering a Web service as a business process, implemented by the composition
(and coordination) of simpler services provided by other businesses.

The composition of services provided by different independent parties, at
both development time or runtime, requires a high degree of standardization and
flexibility. Therefore, rather than hard-coding business processes in platform-
specific programming languages which depend on certain compilers and run-
time environments, platform-independent XML-based languages like the Busi-
ness Process Execution Language for Web Services (BPEL4WS) [1] are advo-
cated. Such processes in XML representation can, at least in theory, be adapted
at runtime, exchanged between different services, and executed on different stan-
dardized interpreters.

However, even if XML documents are text files and therefore, in principle,
human readable, the XML representation of a processes is hard to produce and to

J. Desel, W. Reisig, and G. Rozenberg (Eds.): ACPN 2003, LNCS 3098, pp. 559–584, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

560 Reiko Heckel and Hendrik Voigt

understand even by an experienced programmer. It resembles, in a linear form,
the abstract syntax tree of a program without providing the usual front-end
notation. What is more, in their role as business processes, Web service processes
should be defined by business experts which are not typically programmers.

Therefore a model-based development method is required based on

1. an intuitive and adequate modelling notation, to allow precise specifications
of processes at the conceptual level

2. an automatic transformation of process models to their XML-based encod-
ing, to avoid the costly and error-prone task of deriving the implementation
manually

3. techniques to analyze processes at the model level for syntactic and semantic
properties, to avoid “debugging” the XML code

These problems and requirements are prototypical for a wide variety of lan-
guages and platforms, in the Web services domain and elsewhere. Therefore,
instead of defining and implementing languages, transformations, and analysis
tools for every single problem, reusable solutions are required.

In this paper, we will present an approach based on the combination of three
such solutions: the Unified Modeling Language (UML) [8] as standard notation
for modelling software, graph transformation [12] as meta language for defining
model transformations, and a semantic interpretation of process models in terms
of Communicating Sequential Processes (CSP) [6] which offers a language to
express semantic consistency properties and tool support for analysis.

In the following section we will discuss the complementary roles of these tech-
niques in general and outline their application to the model-based development
of Web service processes.

2 Defining a Model-Based Development Method

An outline of our approach can best be given in terms of the triangle in Fig. 1,
whose vertices are the languages by which processes may be represented, and
whose edges represent uni- or bi-directional transformations between these rep-
resentations.

UML profile for BPEL
(aktivity, component,
and class diagrams)

CSPBPEL4WS

Fig. 1. Outline of the approach: languages and transformations

The UML, as a general-purpose modelling language, provides a rich set of
concepts to model all kinds a software system. However, to address the more
specific aspects of a particular application domain or implementation platform,

Model-Based Development of Executable Business Processes 561

the language needs to be specialized and extended. For this purpose, the stan-
dard [8] foresees the extension mechanism of profiles, a compromise between
desirable flexibility of the language and necessary compatibility with existing
tools. We shall use a profile to tailor, in particular, UML activity diagrams to
the specification of BPEL4WS processes. In conjunction with these, class di-
agrams and component diagrams shall be used to describe, respectively, data
types and software architecture relevant to the process.

Besides the concrete visual representation of a UML model, an abstract repre-
sentation is required to capture its semantically relevant structure. This abstract
syntax of UML models is defined by means of a meta model, i.e., a class diagram
with well-formedness constraints expressed in the Object Constraint Language
(OCL) [7]. The meta model specifies the collection of all legal abstract syntax
graphs—its instances—each of which represents a legal model. This graph-based
internal representation of UML models, which is typical of visual languages in
general, shall be needed when defining the transformation of models.

These transformations do, in fact, represent the core features of a model-
based development approach. In our case, they occur in two places: the trans-
formation into BPEL4WS, the implementation language, and into CSP, the lan-
guage for behavioral analysis. In many situations, two-way transformations are
required, e.g., to support a round-trip engineering approach, where not only
models are transformed into implementations (forward engineering), but also
vice versa (reverse engineering), thus allowing incremental changes at both lev-
els.

Our tool for describing (potentially bi-directional) transformations between
models and other (typically textual) languages is the approach of pair gram-
mars [10], i.e., a coupling of context-free grammars which allows to generate
a sentence in the target language after parsing a given sentence in the source
language. Since at least one of the languages will be a graphical one, context-free
graph grammars [5] shall be employed which generalize context free grammars
on strings by describing languages whose sentences are graphs.

For a mapping specification to be manageable and reusable, a modular ap-
proach is important which is structured in terms of the fundamental concepts
of the domain. In this case, whenever a concept is added or modified, the cor-
responding transformation rules can be exchanged without affecting the rest of
the mapping specification. For the domain of executable business processes, or
workflow models, a corresponding concept analysis has produced an established
list of workflow patterns [16], a subset of which is supported by UML activity
diagrams. In fact, it turns out that these workflow patterns, interpreted over
either activity diagrams or BPEL4WS processes, provide us with the pairs of
context-free rules making up the pair grammar that specifies the translation.

The model-based analysis of processes represents the final ingredient of our
approach. Depending on the representation on which the analysis is performed,
we distinguish between syntactic and semantic analysis. The former is often re-
stricted to the evaluation of well-formedness constraints on (the abstract syntax
graph of) the model which reveal inconsistencies in structural dependencies and

562 Reiko Heckel and Hendrik Voigt

typing. However, syntactic analysis also includes the manual review of models
based on semi-formal error patterns, a method that is quite successful in re-
vealing behavioral problems and that may be the only method available in the
presence of semi-formal models.

Formal analysis of behavioral properties, however, can hardly be done at
the syntactic level, but requires a mapping of models into a semantic domain
providing (1) a representation of the behavior to be analyzed, (2) means to
express the desired properties, and (3) techniques and tools to check if these
properties hold [4]. We have chosen the semantic domain of CSP [6] for this
purpose, whose refinement relations are the basis for expressing properties over
processes while tool support is provided by the FDR2 model checker [11].

The paper is structured according to the triangle in Fig. 1. The following
section is devoted to the modelling of processes in the UML. Then, Sections 4
and 5 deal, respectively, with the mapping between UML and BPEL4WS, and
the analysis of processes, including the mapping to CSP. Section 6 concludes the
paper and summarizes the results.

3 Modelling BPEL4WS Processes in the UML

In this section, we describe how UML diagrams can be used to model Web
service processes. We put special emphasis on the behavioral aspect given by
BPEL4WS process interactions. As already discussed in [15], visual and more
high-level modelling languages like UML have important advantages in compar-
ison to low-level XML-based specification languages. Among others, they allow
a better abstraction from implementation details and are therefore better un-
derstandable.

In particular UML use case-, component-, class-, and activity diagrams are
suitable for modelling Web service processes in the context of business processes.
In the following, we will demonstrate this by a sample model of an online shop.

Use case diagrams describe the business segment of our example. As shown in
Fig. 2, the use case itself symbolizes the business process, in this case the service
provided by the shop. The participants in the use case represent the roles of
the partners that interact with the process. In the example, a buyer, a delivery
service, and an invoice service interact with the online shop service.

onlineShop

Electronic Shopping

invoiceService

deliveryService

buyer

Fig. 2. Use Case Diagram

Model-Based Development of Executable Business Processes 563

Component diagrams are used to refine the dependencies described in the use
case diagram. In doing so, the component symbol is used for depicting a Web
service. Both, the participants of the business process and the business process
itself are modelled as Web services (see Fig. 3). In order to establish possible
points of interactions, port types are added to the diagram as interfaces (the
circular symbols, PT is used as abbreviation for port type). If a Web service
provides a port type, the interface is connected to the component symbol by a
solid line. If a Web service requires a port type, this is modelled by a dashed
arrow (a UML dependency) to the corresponding interface.

DeliveryPT

<<component>>
invoiceService

<<component>>
onlineShop

<<component>>
deliveryService

InvoicePT

<<component>>
buyer

OnlineShopPT

Fig. 3. Component Diagram

For example in Fig. 3, the online shop service provides exactely one port
type OnlineShopPT and requires the port types DeliveryPT and InvoicePT for
processing the corresponding data.

Class diagrams are used to provide further details of the different port types
by defining their operations and involved parameters. In Fig. 4, the three port
types from the component diagram are refined. In this simplified example, each
port type provides only one operation which is mainly used to submit and receive
the processing data to and from the partners. Likewise, the necessary messages
and parameter types could be modelled by the class diagram.

Protocols and business processes for Web services are modelled with activity
diagrams. Besides control-flow elements (decision, fork, join, etc.), the activity
diagrams contain the necessary basic activities for interacting with the partner
services. The activities are stereotyped like receive, reply, or invoke depending on
their function as defined in the BPEL4WS specification [1]. A triplet consisting
of partner, port type and operation follows the stereotype. This triplet assigns
one of the available port type operations to each activity.

Fig. 5 shows the process of the online shop service. The first part is used to
accept an order provided by the buyer through OnlineShopPT. After the data
has been received, the online shop concurrently invokes an invoice and a deliv-
ery service with the required data. In order to simplify the example, we have

564 Reiko Heckel and Hendrik Voigt

<<Port Type>>
InvoicePT

doInvoice
(Invoice): Bill

<<Port Type>>
OnlineShopPT

receiveOrder
(Order): Answer

<<Port Type>>
DeliveryPT

calculateDeliveryDate
(Product): Date

Fig. 4. Class Diagram

<<receive>>
buyerLink

OnlineShopPT
receiveOrder(order)

<<reply>>
buyerLink

OnlineShopPT
receiveOrder(answer)

<<invoke>>
deliveryLink
DeliveryPT

date = calculateDeliveryDate(product)

<<invoke>>
invoiceLink
InvoicePT

bill = doInvoice(invoice)

Fig. 5. Activity Diagram: Online Shop

omitted the details of assigning variables to establish the connection between the
received order and further activities. In addition, the decision process for gener-
ating the answer for the buyer is hidden. The last activity in the row, which can
be identified by the stereotype receive in Fig. 5, sends the corresponding answer
to the buyer.

The protocols of the partners are modelled with activity diagrams, too. This
step is essential for further analysis, because inconsistent behavior between the
participants has to be discovered to ensure a correct execution of the interactions.

Model-Based Development of Executable Business Processes 565

Therefore, the following three activity diagrams in Fig. 6 represent the pro-
cesses on the Buyer, Invoice Service and Delivery Service part, respectively. In this
example, a quick comparison of their activities with the activities of the Online
Shop shows that the processes are behaviorally compatible.

<<receive>>
onlineShop
InvoicePT

doInvoice(invoice)

<<reply>>
onlineShop
InvoicePT

doInvoice(bill)

<<receive>>
onlineShop
DeliveryPT

calculateDeliveryDate(product)

<<reply>>
onlineShop
DeliveryPT

calculateDeliveryDate(date)

<<invoke>>
onlineShop

OnlineShopPT
answer = receiveOrder(order)

Fig. 6. Activity Diagram: Buyer, Invoice Service and Delivery Service

For more complex interactions, the consistency of all involved partner pro-
cesses cannot be checked as easily as in this example. For this reason, Section 5
discusses more advanced methods to maintain certain consistency properties.
Before, however, the transformation of process models into BPEL4WS processes
by means of pair grammars is described.

4 Mappings between UML and BPEL4WS

A formal definition of the translation between UML models and an executable
process language is important, not only to automate the translation, but also to
define and ensure consistency at the model level (cf. Section 3).

Translations between string and graph representations of programs and data
may be formally defined by means of pair grammars [10]. A pair grammar con-
sists of two context-free grammars describing, respectively, the source and the
target language, together with a correspondence between their rules and non-
terminals. In this way, it defines a correspondence between source and target
sentences which represents a mapping between the two languages. By virtue
of their symmetric nature, pair grammars allow the definition of bi-directional
mappings between UML activity diagrams and BPEL4WS processes.

To support the translation of graphical languages, pair grammars are based
on context-free graph grammars, i.e., formal grammars similar to ordinary
context-free grammars, except that the language defined is a set of graphs rather

566 Reiko Heckel and Hendrik Voigt

than a set of strings. Context-free grammars, in fact, form a subclass of context-
free graph grammars. In this paper, an informal introduction to the most impor-
tant concepts of pair grammars is given. For an exhaustive and formal treatment
we refer to [10].

Our presentation is based on edge replacement graph grammars, one of the
simplest forms of context-free graph grammars which form, in their generalized
form of hyperedge replacement (HR) graph grammars [5], one of the two major
approaches in the literature. Here, context-freeness means that the left-hand side
of a rule is given by a single edge (or hyperedge, i.e., an edge attached to an ar-
bitrary number of vertices) representing a nonterminal which is replaced by the
graph that forms the right-hand side of the rule. The obvious alternative con-
sists in replacing a nonterminal node, leading to the family of node-replacement
approaches [2].

4.1 Pair Grammars

First, we introduce the basic notions of graphs and context-free graph gram-
mars. A graph consists of vertices and edges such that each edge has a source
and a target vertex in the graph, respectively. In accordance with [5], in our
graphs labelled edges carry the relevant information, while nodes just represent
the points where the edges are attached.

Definition 1 (edge-labelled graphs). Let C be a fixed set of edge labels.
A (directed edge-labelled) graph G = 〈GV , GE , srcG, tarG, lab〉 over C has a
set of vertices GV , a set of edges GE, two functions srcG : GE → GV and
tarG : GE → GV associating to each edge its source and target vertex, and a
labelling function lab : EV → C associating with every edge its label.

Definition 2 (edge replacement (ER) graph grammars). Let N ⊆ C be
a set of nonterminal labels. A production rule over N is a pair p = A

x,y−→ R
where A ∈ N and R is a graph over C with distinguished vertices x, y ∈ RV .

An edge replacement (ER) graph grammar G = 〈C, N, P, S〉 consists of the
sets of labels and nonterminals introduced above, a set P of productions over N ,
and a start symbol S ∈ N .

Edge replacement graph grammars subsume context free grammars by repre-
senting strings of terminal and nonterminal symbols as chains of correspondingly
labelled edges. Every application of a rule derived in this way from a context-
free grammar rule takes out one nonterminal edge and replace it with a path,
gluing the source vertex of the path to the (former) source vertex of the edge,
and analogously for the target.

In the general case of ER grammar rules, an edge in graph is replaced by a
graph with two attachment points x, y (that we think of as “source” and “target”
vertices) which are glued to the source and target vertex of the replaced edge,
respectively.

Full hyperedge replacement grammars generalize this by allowing an arbi-
trary number of attachment points for the graphs to be inserted and, conse-
quently, for the edge to be replaced. We have limited ourselves to ER graph

Model-Based Development of Executable Business Processes 567

grammars here for simplicity, and because they are sufficient to illustrate the
concept of grammar-based translation of graphical languages.

The definition of pair grammars, originally formulated for a simple kind of
node-replacement graph grammars, has been tailored to our purposes.

Definition 3 (pair grammar). A pair grammar is a quadruple Q = 〈C, N,
PP, S〉 where C and N are sets of labels and nonterminals as before, S ∈ N is
a start symbol, and PP is a finite set of triples (p1, h, p2), where

1. p1 = A1
x1,y1−→ R1 and p2 = A2

x2,y2−→ R2 are ER rules over C and N as above
such that A1 = A2,

2. h is a nonterminal edge pairing of R1 and R2, i.e., a bijection between their
nonterminally labelled edges such that e1he2 implies label(e1) = label(e2).

The language defined by a pair grammar Q consists of ordered pairs of graphs
from the left and right language, respectively, of Q. The pair grammar defines
how these graph pairs may be generated in parallel form the same start sym-
bol. At each intermediate stage in the generation we have a pair of graphs, each
containing some nonterminal nodes, and a correspondence between these non-
terminal nodes. At each rewriting, a corresponding pair of nonterminal nodes,
one in each graph, is rewritten according to a rule of the pair grammar, and a
new correspondence is set up between nonterminal nodes in the resulting graphs
using the nonterminal pairing of the grammar rule.

4.2 UML–BPEL4WS Mapping

Let us illustrate the notions introduced so far by means of a mapping between
UML activity diagrams and BPEL4WS processes, specified by the pair grammar
whose rules are shown in Fig. 7 through 10.

Left production rule of the pair grammar Right production rule of the pair grammar

Act ::=
<process>

A1:Act
</process>

Act ::=

Fig. 7. Pattern 0: Start and End

Production rules of this pair grammar combine ordinary context-free gram-
mar rules for BPEL4WS processes and truly graphical rules for (a subset of)
UML activity diagrams. In order to regard these diagrams as graphs that can
be generated by edge rewriting, activities shapes as well as fork / join bars are
interpreted as terminal edges. Nodes (presented as little circles) are introduced
whenever two activities are connected by a transition. As the only nonterminal
label, Act stands for an arbitrary diagram with one entry and one exit transition.
Thus our sets of labels are defined by C = {activity, bar, Act} and N = {Act},
such that Act is the only possible start symbol.

568 Reiko Heckel and Hendrik Voigt

Vertices have no labels, but we distinguish attachment points as filled circles
with name x or y. Nonterminal edges (i.e., with label Act) are denoted as boxes
connected to their source and pointing to their target vertex.

The bijection h between nonterminal edges of the right-hand sides of left
and right rules is given by identical names for corresponding edges. According
to Def. 3, corresponding edges as well as left hand sides must be of the same
label. For example, in the rule of Fig. 8, symbols A1 : Act through A1 : Act in
the upper BPEL4WS production correspond to the edges with the same name
in the lower UML production rule.

Left production rule of the pair grammar

Act ::=

<sequence>
A1:Act
…
An:Act

</sequence>
with n ∈ N.

Right production rule of the pair grammar

Act ::=

Fig. 8. Pattern 1: Sequence

It is interesting to note how the definition of the individual rules is inspired
by the workflow patterns [16]. For example, in the case of sequence or parallel
split and synchronization, the interpretation of each pattern in both BPWL4WS
and activity diagrams yields the right hand sides of the two corresponding rules.

The mapping specified by the pair grammar shall be applied to our online
shop example. Recall Fig. 5 specifying a business process of the shop. In order
to execute this process it shall be translated into the BPEL4WS. The opera-
tional idea is to start parsing the sentence of the source language (UML) and
to generate the sentence in the target language (BPEL4WS) along the resulting
derivation tree.

Parsing the source language. As result of parsing the activity diagram, its syn-
tactic structure is represented by the derivation tree in Fig. 11. In the first step
of the construction of this diagram, the basic activities (rectangles with rounded
corners) are replaced with nonterminal edges. It follows the detection of struc-
tured activities based on the patterns of sequence (the outermost box a6 : Act)
and parallelism (box a5 : Act).

Thus, the parsing yields a hierarchical decomposition of the diagram which
can be seen as a tree with the innermost boxes (terminal edges) as leafs and the
outermost box (the start symbol) as root. This structure resembles derivation
trees of ordinary context-free grammars. In particular, it abstracts from the

Model-Based Development of Executable Business Processes 569

ordering of independent derivation steps, i.e., boxes that are not nested in one
another, like a1, a2, a3, a4 in Figure 11, can be processed in any order or in
parallel.

When the graph representing the activity diagram is reduced to the start
symbol, the parsing process is finished successfully.

Generating the target language. The next step is to generate the correspond-
ing BPEL4WS sentence, invoking the rules of the right grammar following the
structure of the derivation tree. This second phase begins with the start symbol,
i.e., the tree is computed bottom up, but evaluated top down.

After the first step, one derives the box with the ¡process¿ tag (see the left
production rule in Figure 7). Since the correspondence between the rules of the
two languages is fixed by the pairing, there is no other option but to start with
this pattern, which represented the last step in the generation of the tree.

Next, the structure of the process is refined by introducing sequence and
flow instructions (compare Fig. 8 and 9). First, the sequence is inserted because
this is the next outermost structure. Subsequently, the parallel part is gener-
ated. Alternatively, one could have substituted the first activity in the flow of
the sequence, because this step is independent of the generation of the parallel
activities.

Left production rule of the pair grammar

Act ::=

<flow>
A1:Act
…
An:Act

</flow>
with n ∈ N.

Right production rule of the pair grammar

Act ::=

Fig. 9. Pattern 2: Parallel Split and Synchronization

We emphasize the role of the correspondence between the nonterminals on
the right sides. Symbols A1 : Act to An : Act are associated with the edges
A1 : Act to An : Act, so that the “content” of edge Ai can determine the
replacement of the corresponding nonterminal.

570 Reiko Heckel and Hendrik Voigt

At this stage, the considered BPEL-process looks like this:

<process>
<sequence>
A1:Act
<flow>

A2:Act
A3:Act

</flow>
A4:Act

</sequence>
</process>

In the last step, all nonterminals are substituted by terminals. As shown
in Figure 10, all variables of the right production rule must be replaced with
the corresponding terminals for partner, port type, and so on. After generating
all basic activities, the transformation is completed. The resulting BPEL4WS
process is listed below.

<process>
<sequence>
<receive name="receiveOrder"

partnerLink="ns:buyerLink"
portType="ns:onlineShopPT"
operation="ns:receiveOrder"
variable="order"
createInstance="yes"/>

<flow>
<invoke name="invokeBank"
partnerLink="ns:invoiceLink"
portType="ns:InvoicePT"
operation="ns:doInvoice"
inputVariable="invoice"
outputVariable="bill"/>

<invoke name="invokeDeliverer"
partnerLink="ns:deliveryLink"
portType="ns:DeliveryPT"
operation="ns:calculateDeliveryDate"
inputVariable="product"
outputVariable="date"/>

</flow>
<receive name="replyOrder"

partnerLink="ns:buyerLink"
portType="ns:onlineShopPT"
operation="ns:receiveOrder" variable="answer"/>

</sequence>
</process>

Model-Based Development of Executable Business Processes 571

Left production rule of the pair grammar

Act ::=

<invoke
partnerLink="PLname"
portType="PTname"
operation="OPname"
inputVariable="input"
outputVariable="output">

</invoke>

Right production rule of the pair grammar

::=

Fig. 10. Pattern: Invoke

<<receive>>
�

<<reply>>
�

<<invoke>>
�

<<invoke>>
�

a1:Act

a2:Act a3:Act

a4:Act

a5:Act

a6:Act

Fig. 11. Decomposition of the activity diagram

572 Reiko Heckel and Hendrik Voigt

4.3 Properties of the Mapping

A basic requirement for an automated translation, even before semantic con-
siderations are made, is that there should be a unique sentence of the target
language generated for every given sentence of the source language. Uniqueness
may be relaxed by some notion of semantic equivalence, but in many cases such
notion is not readily available, or very hard to verify.

A purely syntactic criterion is the notion of (un)-ambiguity of the pair gram-
mar which is based on corresponding notions for the underlying grammars.
Definition 4 (ambiguity). An ER graph grammar G is ambiguous iff there
exists a graph G in the generated language which has two distinct derivation
trees.

That means, a grammar is unambiguous if every sentence can be parsed in
essentially one way, up to the ordering of independent steps which are abstracted
from in the parse tree.

It is difficult to prove unambiguity in general, but there exists a simpler
sufficient condition based on the idea of critical pairs in rewriting: Consider the
grammar as a reduction system, applying its rules from right to left in order
to reduce the given graph to the start symbol. Now, unambiguity is ensured if
there is never a true conflict between the application of two reduction rules. A
conflict is evident in an overlapping of the left-hand sides of two reduction rules
(i.e., the right-hand sides of two production rules) if (cf. [9])

– they intersect in anything else than attachment vertices, and
– both rules are applicable to reduce the graph formed by the overlapping

The second condition is violated if one of the reduction rules attempts to
delete a vertex that is connected to an edge originating from the other rule. In
this case, the resulting structure is no longer a graph since the edge misses its
source or target vertex. Hence, in a critical pair, an overlap in a non-attachment
node entails that all edges connected to this node in both rules are also in the
intersection. In turn, an overlap of an edge obviously entails an overlap of its
source and target node.

That means, the intersection includes all nodes and edges of both rules indi-
rectly reachable from a non-attachment node or edge in the intersection. Since
the right-hand sides of our rules are connected, this implies that the overlap is
complete whenever a non-attachment node or an edge is involved.

For a pair grammar we consider unambiguity for both directions of the trans-
lation. Generally, it requires that the source grammar is unambiguous, so the
parse tree is uniquely determined, and that for every source production there is
exactly one target production, so the tree uniquely induces a derivation in the
target. Depending on who is source and who is target, this results in the notions
of left and right unambiguity.
Definition 5 (unambiguity of pair grammars). A pair grammar Q is left
(right) unambiguous if the left (right) grammar of Q is unambiguous, and Q
contains no two distinct rules with identical left (right) rules.

Q is unambiguous if it is both left and right unambiguous.

Model-Based Development of Executable Business Processes 573

The pair grammar presented in Section 4.2 is unambiguous. However, there
exists another possibility for describing sequences in BPEL4WS, besides the one
shown in Fig. 8. The alternative shown in Fig. 12 uses the flow construct, spec-
ifying the desired temporal dependencies by means of links between activities.

Fig. 12. Pattern 1: Sequence (via BPEL4WS flow construct)

The resulting pair grammar is no longer right unambiguous because there are
two rule pairs sharing the same right rule. Indeed, since we have two choices to
implement a sequence, the result of the translation is no longer unique. Hence,
for right-to-left mappings, one of the two rules should be disregarded.

On the other hand, the alternative sequence rule is useful for the left-to-
right from BPEL4WS to UML because, when reverse engineering a process we
cannot assume a certain style of implementation, but have to handle the full
spectrum of language constructs. Fortunately, the extended pair grammar is
still left unambiguous.

This example shows that, while in potentially bi-directional, it could be nec-
essary to tailor the mapping description to one or the other direction in order
to achieve unambiguity.

5 Model-Based Analysis

Model-based development tends to create a variety of artifacts that describe the
system to be built from different viewpoints and at different levels of abstrac-
tion. This allows developers to concentrate on the concern of present interest,
reducing complexity by hiding other not so relevant concerns, but it also creates
consistency problems between the different descriptions.

574 Reiko Heckel and Hendrik Voigt

Besides this general, domain and language-independent cause for consistency
problems, there are more specific reasons resulting from the choice of a specific
development method, target language, or application domain. Typical for Web
services is, for example, the consistency between descriptions of required and
provided services, which need to be matched before services can be composed.
This includes, e.g., the compatibility of their signatures to ensure type safety,
and of their interaction protocols to avoid deadlocks.

Other consistency problems are inherited from the target language of devel-
opment, in our case BPEL4WS, which entails particular restrictions for processes
formulated in that language. Type checking rules for BPEL4WS require, for ex-
ample, that all operations used in activities of the process must be declared in the
appropriate port types. This induces a dependency between the class diagram
containing the interfaces from which the port types are derived and the activity
diagram where the process is modelled. Thus, the precise notion of consistency
that needs to be applied at the model level depends on both the restrictions
at the implementation level and the mapping of models to implementations as
described in Section 4.

In this section, we are dealing with model-based analysis of consistency prob-
lems. Both subject and result of the analysis are given at the model level because,
obviously, it would limit the applicability of a method if developers were forced
to work on different representations of processes, e.g., to eliminate a fault di-
rectly in an XML-based business process language, or to analyze a process in
a process algebra. This, again, emphasizes the need for automated mappings
between different representations.

For dealing with consistency in UML-based development processes, we apply
a general methodology for specifying and analyzing consistency [4]. In short, the
methodology consists of the following steps.

1. Consistency problems must be identified in a given UML-based development
process, documented and categorized into
– problems of syntactic (e.g., structural) nature that can be formulated

and solved at the level of models;
– problems of semantic (e.g., behavioral) nature that require a separate

semantic representation.
2. For each semantic consistency problem, a suitable semantic domain must be

chosen and a semantic mapping of models into this domain must be designed.
3. For both syntactic and semantic problems, consistency conditions must be

stated as constraints, either over the abstract syntax or the semantic repre-
sentation of models.

In the following two subsections we consider, in turn, the syntactic and the
semantic case.

5.1 Syntactic Analysis

In our sample process, for illustration we identify syntactic consistency problems
between component diagrams and class diagrams, as well as between activity
diagrams and class diagrams.

Model-Based Development of Executable Business Processes 575

For component and class diagrams a consistency problem occurs whenever
an interface is used in a component diagram that is not declared in the class dia-
gram. This consistency problem can be considered syntactic because a syntactic
condition can be formulated using OCL, requiring that each interface used is
declared in the class diagram.

With regard to activity diagrams and class diagrams, a similar kind of con-
sistency problem is illustrated in Fig. 13: An activity contains references to the
partner component, interface and operation which must be in a certain relation
(e.g., the interface declares the operation and is implemented or used by the com-
ponent playing the partner role). Considering the class diagram in Fig. 4, it is
obvious, that the OnlineShopPT does not support a receiveInstruction operation.

<<receive>>
buyerLink

OnlineShopPT
receiveInstruction(order)

<<reply>>
buyerLink

OnlineShopPT
receiveOrder(answer)

<<invoke>>
deliveryLink
DeliveryPT

date = calculateDeliveryDate(product)

<<invoke>>
invoiceLink
InvoicePT

bill = doInvoice(invoice)

Fig. 13. Activity Diagram: Syntactic consistency problem

When modelling Web service processes, we also have to take into account
language-specific consistency properties, as for instance: In a BPEL4WS process
a process instance must not simultaneously enable two receive actions for the
same partner, port type, and operation. If two receive actions for the same
partner, port type, and operation are, in fact, simultaneously enabled, e.g., in
two concurrent threads of the process, then a standard fault must be thrown
by the process interpreter that complies with the BPEL4WS specification. In
such a case, the processing of the current scope is terminated. Possible results
are the invocation of compensation handlers (if defined) or the abortion of the

576 Reiko Heckel and Hendrik Voigt

entire process. In any case, the chance for a successful completion of the process
decreases.

In order to avoid such conflicts, we can provide sufficient static conditions at
the model level, e.g., by means of a semi-formal error pattern as illustrated in
Fig. 14. ActivityA and ActivityB are place holders for sub-processes of arbitrary
structure. Such a pattern, which must not occur in a process, can serve as a
guideline for the developer or as a documentation for a formal analysis of this
property, if available.

<<receive>>
Partner Link PL
Port Type myPT

Operation Op(RequestData)

<<receive>>
Partner Link PL
Port Type myPT

Operation Op(RequestData)

Activity A

Activity B

Fig. 14. Conflict potentials in parallel sections

Another example of an error pattern is shown in Fig. 15. It reflects, at the
level of models, the fact that BPEL4WS requires control flows that are based
on links to be acyclic.

Activity A Activity B...

Fig. 15. Cycles

5.2 Semantical Analysis

Next, we deal with consistency conditions that are formulated and analyzed in a
separate semantic domain. In our example, different interaction protocols of the
participants are combined and conclusions about their compatibility are given.
Thus, we focus on the behavioral aspect. In particular, if the business processes
have a complex control flow, the concrete or abstract syntax of models is not
suitable for such problems. Therefore we choose the process algebra CSP [6] as
semantic domain for analysis.

Since we cannot assume that developers are familiar with CSP, and in order
to avoid mistakes in the translation, an automated mapping of models into CSP
is required, as well as a mapping of analysis results back into UML models.

Model-Based Development of Executable Business Processes 577

Translation from UML to CSP. In principle, the translation from UML activity
diagrams into the semantic domain CSP is based on the same concepts as the
translation shown in Section 4. However, in this case a pair grammar is not fully
satisfactory, because one has to generate complex Pre and Post processes for
managing events accurately in CSP. These are interconnected by an Environ-
ment. In order to control these processes, the concept of a Global Scheduler is
adopted. Furthermore, the Control process guarantees the correct termination of
the whole system. Both basic and structured activities (i.e., nodes like split and
join that describe the control flow) are coded as separate CSP processes denoted
as Activity processes. Thus Activity processes emulate the proper control flow
as well as the sending and receiving of events. In order to execute the Activity
processes independently, they are combined by interleaving.

Processes may be composed by operators which require synchronization on
some events. Each component must be willing to participate in a given event
before the whole can make the transition. In this regard, suitable communica-
tion and synchronization alphabets consisting of events must be defined. The
composition of processes is itself a process, allowing a hierarchical description
of a system. The process structure can be represented as a tree. The root node
represents the process as a whole (cf. System−Control). According to the num-
ber of sub-components of the node branches are added. Fig. 16 visualizes the
process structure, whereby rectangles indicate the parallel composition symbol
including the alphabet in question and ovals display CSP processes. The several
atomic Pre, Post and Activity processes are hidden, because their occurrence
strongly depends on the underlying example.

In the following, we focus on the generation of the Activity processes. As
already mentioned, the concept of pair grammars is suitable for demonstrating
the basic idea. Now the grammar for UML activity diagrams is paired with the
one for CSP processes. This is shown in Fig. 17.

On each left-hand side of the considered rules the type of the expected non-
terminal is used. In this way, these nonterminals are paired. For the grammar for
UML activity diagrams we refer to Section 4, because it has already been dis-
cussed. The right-hand sides of the rules for the CSP grammar include terminals
like if and else, and nonterminals like ActivityA1, whereby Activity indicates
the type and A1 indicates the variable. We have chosen this alternative represen-
tation for a better readability of the CSP process. Below we explain the Activity
process in short without deepening the language CSP too much.

ActivityA1 is the name of the considered Activiy process. The first event in
the flow activates this process (compare act−ActivityA1). Afterwards t reads out
the channel transitionx, whereas the value 1 respectively 0 indicates a positive
respectively negative precondition. If t has in fact the value 1, then the corre-
sponding transition process is instructed to reset itself. After this the transition
for the following Activity process is set and ActivityA1 is disabled and ends with
a recursive invocation on itself, so it is available in the next step of the Global
Scheduler.

578 Reiko Heckel and Hendrik Voigt

Pre Post

Enviroment AD

AD_Enviroment Global Scheduler

System

System_Control

Control

[|alphaEnviroment|]

[|alphaAD_Enviroment|]

[|alphaSystem|]

[|alphaSystem_Control|]

Fig. 16. Combing processes in CSP

For UML activity diagrams and CSP, we do not require a bi-directional trans-
lation, because we do not assume that business processes are formulated as CSP
processes. For analyzing CSP processes we use the model checker FDR2 [11]. As
results of a check one obtains a trace, which the process is, or is not, willing to
execute. These traces can be transformed into a sequence diagram. Hence, a de-
veloper is able to work solely at the model level. Moreover, the complex structure
of the established CSP process is the reason for customizing the concept of pair
grammars in this regard. For completely describing this translation, we would
have to upgrade from pair grammars to so-called triple graph grammars [13].
Beside lifting the restriction to context-free grammars, triple graph grammars
allow to store auxiliary data, accumulated during the translation, inside a third
intermediate graph, which also keeps track of the relation between source and
target. This feature is important to determine the alphabet of a process by col-
lecting data on operations and partners occurring in the process. However, in
this paper we stick to the pair grammar representation which is still sufficient
to convey the basic ideas.

After defining a translation from UML activity diagrams into CSP, we can
finally turn to the actual semantical analysis. Basically, we distinguish between

Model-Based Development of Executable Business Processes 579

Left production rule of the pair grammar

::=

Right production rule of the pair grammar

Act ::=

ActivityA1 =
 act_ActivityA1 ->
 transistion_x?t ->
 if (t == 1) then
 ini_Transition_x ->
 post_Transition_ActivityA1_ActivityA2 ->
 ackn_ActivityA1 -> ActivityA1
 else
 ackn_ActivityA1 -> ActivityA1

�

ActivityAn =
 act_ActivityAn ->
 transistion_ActivityAn-1_ActivityAn?t ->
 if (t == 1) then
 ini_Transition_ActivityAn-1_ActivityAn ->
 post_Transition_y ->
 ackn_ActivityAn -> ActivityAn
 else
 ackn_ActivityAn -> ActivityAn

Fig. 17. Pattern 1: Sequence

classical requirements for concurrent processes and requirements for business
processes.

Classical concurrency properties. At first we consider classical requirements like
deadlock or livelock. Concerning the property of deadlock freedom, we need to
provide a consistency concept for activity diagrams. At first we give a definition
for deadlock.

Definition 6 (deadlock). A set of processes is deadlocked if each process in
the set is waiting for an event that only another process in the set can cause.

As an example, consider the modified activity diagram of the Buyer shown
in Fig. 18 and the one of the Online Shop Service, illustrated in Fig. 5. Both
processes expect a signal from each other which gives rise to a deadlock. This
circumstance is independent of changes in their interfaces.

In general, whenever a deadlock occurs, processes can not be completed suc-
cessfully. Hence, we take into account suitable measures to avoid such conflicts.
The tool FDR2 supports the detection of deadlocks. However, due to the complex
structure of the CSP process implementing a business process, CSPs definition
of a deadlock, which requires that a process does not communicate at all, is not
applicable here. Instead, we have to check for a livelock in order to capture the
notion of a business process deadlock in CSP, see [17] for details.

580 Reiko Heckel and Hendrik Voigt

<<invoke>>
onlineShop

OnlineShopPT
answer = receiveOrder(order)

<<receive>>
onlineShop
BuyerPT

receiveMessage(message)

Fig. 18. A deadlock situation

Requirements for business processes. Now we turn to requirements which must
be formulated depending on the context of a business process. The verification
of so called security properties is based on the comparison of CSP processes to a
set of traces. This set defines sequences of events and by doing so secure states
are specified. In this sense, a CSP process is in fact secure if its provided traces
are in the set of traces of the security property. In addition we want to check,
if a concrete activity diagram covers several scenarios. These scenarios can be
formalized as UML diagrams. In this context UML behavior diagrams are of
special importance (compare UML sequence and statechart diagrams). In order
to compare all these different diagram types, a sufficient transformation into the
semantic domain CSP must be established. In [14], Stehr picks the translation
of sequence and statechart diagrams out as a central theme. In this survey we
have already demonstrated, how activity diagrams can be translated into CSP.

Such a scenario can be derived from different use cases.

– By modelling sequence diagrams one has the opportunity to define permit-
ted respectively prohibited examples. This means that a developer identifies
concrete scenarios, which are checked regarding a concrete business process.

– Concrete executions of existing business process instances can be monitored.
By doing so sequence diagrams can be formulated by assigning exchanged
messages to objects.

In both cases, one has to establish the relationship between the different mes-
sage and event names, respectively, used in the diagrams. In general, sequence
diagrams are much less formalized than activity diagrams. This task can only
be handled by the developer himself. Agreeing on the same name space is a
precondition for meaningful analysis.

Model-Based Development of Executable Business Processes 581

:Buyer

:OnlineShop

:InvoiceService :DeliveryService

receiveOrder(order)

doInvoice(invoice)

calculateDeliveryDate(product)

date

answer

Fig. 19. Property formulated as a UML sequence diagram

Messages Events

receiveOrder(order) post_Event_buyerLink_OnlineShopPT_receiveOrder_Request

doInvoice(invoice) post_Event_invoiceLink_InvoicePT_doInvoice_Request

 post_Event_invoiceLink_InvoicePT_doInvoice_Response

calculateDeliveryDate

(product)
post_Event_deliveryLink_DeliveryPT_calculateDeliveryDate_Request

date post_Event_deliveryLink_DeliveryPT_calculateDeliveryDate

_Response

answer post_Event_buyerLink_OnlineShopPT_receiveOrder_Response

Fig. 20. Assigning messages of the sequence diagram to the events of the CSP process

An example of such an assignment is shown in Fig. 20. We emphasize that
the events of the CSP process are not introduced in this context, because the
underlying example consists of over 1400 lines of code. For the complete example
we again refer to [17].

The result of a check shows whether the trace of the sequence diagram is in
the set of traces of the activity diagram. In this example, a required event does
not have any correspondence in the sequence diagram. And in fact, this event
must be executed in the underlying business process. Hence, the CSP processes
(and thus the business processes visualized as activity diagrams) do not conform
to the defined property.

Further on, complete subsystems can be compared to each other. In doing
so, we want to check, if a subsystem might be replaced by another. This anal-
ysis is only based on CSP processes, which are representations of UML activity
diagrams. For this purpose the FDR2 trace refinement checker is suitable.

582 Reiko Heckel and Hendrik Voigt

Matching of Localisation Pattern
for Consistency Problem

Translation of
Activity Diagrams to CSP

Preparation
Of Input for Model Checker

Adding Consistency Conditions

Verification of Consistency Conditions and Interpretation of Results

Activity
Diagrams

CSP File

CSP Files

Fig. 21. A sample consistency check

Defining consistency checks. On the basis of a consistency concept, consistency
checks can be defined in order to validate that a model is consistent. A consis-
tency check must therefore validate the consistency conditions of a consistency
concept. Within our approach, such a check may involve the translation of a
model into a semantic domain, the verification of consistency conditions by a
model checker, and an interpretation of the results.

Informally, the specification of such a consistency check can be visualized by
an activity diagram extended by mechanisms for modelling object flow. In the
following, we will sketch the definition of a consistency check for the consistency
problem type of activity diagrams, ensuring their deadlock freedom.

In Fig. 21, the consistency check for activity diagrams is shown (with ob-
ject flow visualized by arrows). Within the first activity, a UML localization
pattern is used for locating and identifying, within a larger UML model, those
activity diagrams relevant for the consistency check. These are then given to the
translation activities. Within the translation activities, the translation to CSP
is performed. Resulting CSP files are then assembled to a single file which can
be handed over directly to the model checker.

This concept is implemented in the ConWork tool developed at the university
of Paderborn, which allows to define flexible consistency checks based on rule-
based translations of UML diagrams into CSP [3].

Model-Based Development of Executable Business Processes 583

6 Conclusions

With the wide integration of Web services into software development, modelling
of Web service processes is gaining increasing importance. In order to be bene-
ficial, a modelling approach should take into account the characteristics of Web
service processes. Currently, the Unified Modeling Language is the accepted in-
dustrial standard for modelling object-oriented systems. In this paper, we have
discussed how the UML can be applied for modelling Web service processes.
Furthermore we have introduced several UML models for suitable abstractions
of both structure and behavior of Web service processes. Then we have focused
on a bi-directional translation between UML activity diagrams and BPEL4WS.
Thus we provide a framework for forward and reverse engineering based on the
considered translation concept. As consistency is not established by the language
definition of UML, it must be ensured by the software engineer applying UML
for modelling Web service processes. In order to prove consistency conditions
in regard to the UML models, we categorized possible inconsistency types into
syntactical and semantical problems depending on the language that is suitable
for solving these. In this context the analysis of different interaction protocols
participating in a given business process is of particular interest. For this task we
chose CSP as semantic domain for further analysis. On this account we provide
a translation from UML into CSP and propose an approach, how results of the
model checker FDR2 can be visualized as UML models. The visual modelling
language UML facilitates an adequate abstraction of implementation details and
supports a better understanding of consistency analysis.

Future work includes the definition of a generic development process for Web
service processes and the elaboration of consistency management within this de-
velopment process. For that purpose, we must automate the translation between
UML activity diagrams and BPEL4WS as well as UML activity diagrams into
a semantic domain such as CSP. Currently, we are developing tool support for
this task based on the Consistency Workbench [3]. This tool allows the software
engineer to define translations of UML models into a semantic domain and define
consistency checks as workflows, like visualized in Fig. 21.

References

1. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process
Execution Language for Web Services, Version 1.1, May 2003.

http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/.

2. J. Engelfriet and G. Rozenberg. Node replacement graph grammars. In Rozenberg
[12], pages 1 – 94.

3. G. Engels, R. Heckel, and J. M. Küster. The consistency workbench: A tool for
consistency management in uml-based development. In UML 2003 - The Unified
Modeling Language. Modeling Languages and Applications. 6th International Con-
ference, San Francisco, USA, LNCS. Springer, 2003.

584 Reiko Heckel and Hendrik Voigt

4. G. Engels, J.M. Küster, L. Groenewegen, and R. Heckel. A methodology for speci-
fying and analyzing consistency of object-oriented behavioral models. In V. Gruhn,
editor, Proc. European Software Engineering Conference (ESEC/FSE 01), Vienna,
Austria, volume 1301 of LNCS, pages 327–343. Springer Verlag, 2001.

5. A. Habel. Hyperedge Replacement: Grammars and Languages, volume 643 of Lec-
ture Notes in Computer Science. Springer-Verlag, Berlin, 1992.

6. C. Hoare. Communicating sequential processes. Communicat. Associat. Comput.
Mach., 21(8):666–677, 1978.

7. Object Management Group. Object constraint language (OCL) 2.0, 2003.
http://www.omg.org/uml.

8. Object Management Group. Unified modelling language(UML) 2.0, 2003.
http://www.omg.org/uml.

9. D. Plump. Hypergraph Rewriting:Critical Pairs and Undecidability of Confluence.
In M. Plasmeijer and M.C. van Eekelen, editors, Term Graph Rewriting, pages
201–214. Wiley, 1993.

10. T. W. Pratt. Pair grammars, graph languages and string-to-graph translations.
Journal of Computer and System Sciences, 5:560–595, 1971.

11. A.W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.
12. G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph

Transformation, Volume 1: Foundations. World Scientific, 1997.
13. A. Schür. Specification of graph translators with triple graph grammars. In Tin-

hofer, editor, Proceedings WG’94 International Workshop on Graph-Theoretic
Concepts in Computer Science, pages 151–163. LNCS 903, Springer–Verlag, 1994.

14. J. Stehr. Semantical Consistency Check of UML Behavior Diagrams for Modelling
Embedded Systems [in German]. Diploma thesis, University of Paderborn, 2003.

15. S.Thöne, R.Depke, and G.Engels. Process-Oriented, Flexible Composition of Web
Services with UML. In Proc. of ER-Workshop on Conceptual Modeling Approaches
for e-Business (eCOMO 2002); Tampere, Finland. LNCS, 2002.

16. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Distributed and Parallel Databases. 2003.

17. H. Voigt. Model-based Analysis of Executable Business Processes for Web Services
[in German]. Diploma thesis, University of Paderborn, 2003.

	1 Introduction
	2 Defining a Model-Based Development Method
	3 Modelling BPEL4WS Processes in the UML
	4 Mappings between UML and BPEL4WS
	4.1 Pair Grammars
	4.2 UML–BPEL4WS Mapping
	4.3 Properties of the Mapping

	5 Model-Based Analysis
	5.1 Syntactic Analysis
	5.2 Semantical Analysis

	6 Conclusions
	References

