
Teaching Coloured Petri Nets:
Examples of Courses and Lessons Learned

Søren Christensen and Jens Bæk Jørgensen

Department of Computer Science, University of Aarhus
Aabogade 34, DK-8200 Aarhus N, Denmark

{schristensen,jbj}@daimi.au.dk

Abstract. In this paper, we describe and discuss three different courses
in which Coloured Petri Nets (CPN) is used: (1) an introductory course
on distributed systems and network protocols; (2) an advanced course
on CPN; (3) a course on industrial application of CPN. Courses (1) and
(2) are taught at the Department of Computer Science, University of
Aarhus and course (3) is given for professional software engineers. For
each course, we briefly present contents, format, and role of CPN. Then
we describe a number of lessons learned from teaching the three courses.
We have two aims in mind: In the first place, we want to share our
specific experiences with other teachers. Secondly, we want to contribute
to a more general discussion and exchange of ideas on Petri nets and
education.

1 Introduction

Coloured Petri Nets (CPN) [10] has had a place in the curriculum at the Depart-
ment of Computer Science, University of Aarhus (henceforth abbreviated with
the Danish acronym DAIMI [32]) for the last twenty years. The main reason
is that formal modelling languages like CPN are suitable for many educational
activities within computer science. Another contributing factor is the presence
of professor Kurt Jensen [28], whose PhD work around 1980 defined the first
version [9] of the CPN language and laid the foundation for the research of the
CPN Group [26] at DAIMI.

In the 1980’s, CPN was used at DAIMI as a general system description lan-
guage in the introductory first-year course taken by 150-200 students each year.
One of the main purposes of using CPN was to teach students that making
abstract system descriptions (or models) is an important activity in computer
science. A number of lectures on CPN were given, the students read some intro-
ductory material, and they were required to solve exercises on CPN. Examples
of exercises were to model the flow of customers through the local canteen and
to model a traffic light. These were non-trivial exercises, especially because at
that time, tool support for CPN (and other kinds of Petri nets) was scarce. Mod-
els were drawn on paper and simulations were carried out by playing the token
game with coins or drawing pins on sheets of paper. Another main purpose of
using CPN was to introduce the students to formal semantics of programming

J. Desel, W. Reisig, and G. Rozenberg (Eds.): ACPN 2003, LNCS 3098, pp. 402–412, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



Teaching Coloured Petri Nets: Examples of Courses and Lessons Learned 403

languages via CPN, e.g., the semantics of various language constructs of Pas-
cal [12].

Around 1990, DAIMI began to offer advanced courses on the CPN language
itself. There were two kinds of courses: (1) application-oriented courses, where
students constructed and analysed fairly large CPN models (made possible by
the emergence of the Design/CPN tool [27] in 1989); (2) theoretical courses,
where students immersed in the mathematical foundation of CPN and typically
pursued formal verification methods like state spaces or place invariants.

In the 1990’s, CPN made up about half of the curriculum in a third-year
course on distributed systems; the mid-1990’s incarnation of that course is de-
scribed in detail in the paper [6]. Two textbooks were used: Jensen’s CPN
book [10] and Tanenbaum’s book on distributed operating systems [24]. The
main emphasis of the CPN part of the course was on CPN modelling and use of
the Design/CPN tool as vehicles for design and analysis of distributed systems,
but students were also thoroughly introduced to the mathematical foundation
and to formal verification methods of CPN.

We, the authors of this paper, are members of the CPN Group at DAIMI.
We have seen CPN in education from different perspectives, starting with our
first encounter in the early and mid 1980’s, when we were students at DAIMI.
From around 1990, we have experienced CPN from the other side of the table:
as teachers in various computer science courses. This paper is based on our
experiences with using CPN in education. We have two aims: In the first place,
we want to share our specific experiences with other teachers, and hopefully
provide some kind of inspiration (and perhaps save computer science students
at other universities from teachers making the same errors as we did). Secondly,
we want to contribute to a more general discussion and exchange of ideas on
Petri nets and education.

In Sect. 2, we describe three courses we have taught and which have used
CPN. In Sect. 3, we report some lessons learned. We draw some conclusions in
Sect. 4.

2 Examples of Courses

Currently, CPN is used at DAIMI in two different courses:

– The distributed systems course: a third-year introductory course on dis-
tributed systems and network protocols [33].

– The advanced course on CPN: a graduate course in which CPN is studied
as a language in its own right.

We describe these two courses more thoroughly in this section. In addition,
we describe:

– The industrial application of CPN course: a course on application of CPN
held for a group of engineers from a software company.



404 Søren Christensen and Jens Bæk Jørgensen

2.1 Distributed Systems Course

Since the late 1990’s, CPN has been used as an ingredient of a third-year in-
troductory course on distributed systems and network protocols. The course
runs over 15 weeks and is attended by close to 100 students. The course gives a
credit of 10 ECTS points and consists of two parts of equal size. The first part
introduces basic concepts and design techniques for distributed systems. The
second part introduces the basic ideas behind computer networks and network
protocols, including a detailed coverage of the Internet protocols. The textbooks
currently used are Coulouris et al’s on distributed systems [7] and Stallings’ on
networks and network protocols [23].

The format of the course is a combination of lectures for all students and tu-
torials where the students are divided into classes of approximately 20 students,
and where an older student is available as teaching assistant. In average, there
are three hours of lectures and three hours of tutorials each week. Students are
expected to use a total of up to 15 hours on the course each week.

Three two-hour lectures on CPN are given early in the course. The first in-
formally introduces the basic concepts of CPN. The second gives some practical
hints on the construction of CPN models and it introduces basics of the Stan-
dard ML language [17]; some elementary Standard ML programming skills are
necessary in order to properly apply the CPN tool, which is introduced in the
third lecture in an extensive tool demonstration. The CPN literature we have
used over the years is excerpts from Jensen’s book [10] (chapter 1 and parts of
chapter 3) and the practitioner’s guide to CPN [15]. The tools which have been
applied are Design/CPN and the newer CPN Tools [21, 30].

CPN is used to give the students a better understanding of distributed sys-
tems and network protocols than can be provided by the textbooks alone. Thus,
the role of CPN is to be a supplement to the main curriculum. We feel that
the exercises are a weak part of the two textbooks we use. Therefore, we need
additional exercises and CPN helps us to achieve this. CPN exercises are put
forward throughout the course. An example of a CPN exercise aiming at mak-
ing the students better understand fundamental mechanisms of distributed file
systems as described in the textbook (chapter 8 of Coulouris et al’s book [7])
is: (1) Make a CPN model of caching in Sun’s Network File System (NFS); (2)
based on your model, discuss the problem of cache consistency and advantages
and drawbacks of the NFS solution.

In addition to smaller exercises, we have asked the students to solve a larger
mandatory project on CPN over a time period of three weeks. The project varies
from year to year. In 2003, the students were asked to design a protocol ensuring
reliable communication over an unreliable communication channel with appro-
priate use of timers, sequence numbers, retransmissions, etc.

CPN is a suitable language for this course because it allows the students to ex-
plicitly describe their interpretation of the highly prose-based and always slightly
ambiguous and sometimes even vague presentation of algorithms, protocols etc.
from the textbooks. In particular, CPN facilitates the students’ comprehension of
traditionally hard-to-understand issues related to concurrency, resource sharing,



Teaching Coloured Petri Nets: Examples of Courses and Lessons Learned 405

synchronisation, and conflicts. CPN models give a solid foundation for discus-
sions between students and between students and teaching assistants.

2.2 Advanced Course on CPN

CPN is the subject of an advanced course, which runs over 12-15 weeks and
is typically attended by 10-15 students. The course gives a credit of 10 ECTS
points and comprises three parts. The second part is rather special; it consists
in participation in an international workshop on CPN being held in Aarhus (for
the 2002 incarnation of that workshop, see [31]). Thus, from the students’ per-
spective, the workshop is an integrated part of the course. The first part consists
of introductory lectures and student presentations of the scientific papers on
CPN, which are accepted for the workshop. Together, the first and the second
parts occupy about a month of calendar time, in which the students work inten-
sively with the course. The third part, which takes approximately two months,
consists in carrying out a project. The literature used in the course is excerpts
from volumes 1 and 2 of Jensen’s books [10, 11], the practitioner’s guide [15],
and workshop proceedings (which in 2002 were [8]).

The students choose between two categories of projects: One category is
application-oriented project, i.e., creation and analysis of CPN models of do-
mains of interest for the students. An example of such a project from 2002 is
a group of students who worked together with the large Danish company Dan-
foss to model and investigate the behaviour of control software for an industrial
embedded system. The other category comprises theoretical projects. Examples
of such projects are study of methods for verification by means of state space
analysis. The students read relevant literature and sometimes do small practi-
cal exercises using various tools (depending on availability and quality of such
tools). All students interested in this subject study basic state space analysis.
Subsequently, some choose to pursue more advanced methods, e.g., state space
analysis using equivalence classes or symmetries [11], state space analysis using
stubborn sets [25], or state space analysis by the sweepline method [5].

2.3 Industrial Application of CPN Course

In addition to teaching CPN to computer science students, we have given sev-
eral CPN courses for software engineers from the industry over the years. These
courses are tailored for particular companies and vary in contents and format.
Examples of CPN projects where a course has been an integrated part are analy-
sis of audio/video transmission protocols at Bang and Olufsen as described in [4],
design of alarm systems at Dalcotech [20], and analysis of car control systems
at Peugeot Citroen [18].

Typically, between two and six engineers participate in the course, which
runs over a total of six full days, divided into two parts each comprising three
days in one week and three days in another week. The course is very application-
oriented and no introduction to the formal, mathematical foundation of CPN is



406 Søren Christensen and Jens Bæk Jørgensen

given. The attendees use most of their time doing practical hands-on exercises
in small groups.

In the first part, the basic CPN concepts and a CPN tool are introduced. The
first day covers the most fundamental CPN concepts (corresponding to chapter
1 of Jensen’s book [10]). The second day covers hierarchical CPN models (corre-
sponding to parts of chapter 3 of Jensen’s book [10]) and on the third day, CPN
models with time are introduced. The introductions are not traditional lecture-
like presentations, but integrated parts of extensive tool demonstrations. It is
always shown how to create, edit, and simulate CPN models (it is often shown
how to carry out simple state space analysis as well). The basic functionality of
the tool is explained and step-by-step instructions on how to carry out modelling
tasks are given. Throughout the first part, the engineers do practical hands-on
exercises with the tool. As example, on the first day, they make various modi-
fications of a small model of a simple communications protocol, e.g., modify a
stop-and-wait protocol to become a more general sliding-window protocol.

On the last day of the first part, much time is allocated for discussion and
determination of the more specific contents of the second part. It is crucial
that the engineers make this choice themselves. They identify problems in their
domain which they would like to address using CPN. CPN instructors often
start to outline model drafts. In the time between the first and the second part,
the engineers and the CPN instructors continue to think about how CPN can be
used for the particular problem that the engineers want to solve. This thinking is
crucial preparation for the second part in which the engineers spend most of the
time creating and analysing larger domain-specific models. The CPN instructors
are available to help the engineers, who, thus, are in a good position to work
efficiently. Quite often, one engineer and one CPN instructor sit together in front
of a computer and build models together.

3 Lessons Learned

In this section, we describe and discuss a number of lessons we have learned from
teaching the three courses described above. The sources include course evaluation
forms that students fill out after having attended a course and feedback from
teaching assistants.

3.1 On Literature

As mentioned in the previous section, in the distributed systems course and the
industrial application course, we have tried two possibilities for introductory lit-
erature on CPN: excerpts of Jensen’s book [10] and the practitioner’s guide [15].

In the distributed systems course, we have experienced that Jensen’s book
work better than the practitioner’s guide. Students seem to prefer the thorough,
step-wise introduction of the basic CPN concepts given in Jensen’s book via
easily understandable place-transition nets (PT nets) and small examples of CPN
models. In the industrial application course, we have better experiences with



Teaching Coloured Petri Nets: Examples of Courses and Lessons Learned 407

the practitioner’s guide, which is written to be directly appealing to industrial
software engineers. It is non-formal, emphasises the application aspects of CPN,
and advocates CPN as a way to address common software development problems.
As an example, many industrial software engineers have scalability as a main
concern; some may be reluctant to use of formal methods at all because they
have seen approaches that do not scale well (e.g., when they studied computer
science some years ago). One of the main purposes of the practitioner’s guide is
to demonstrate that CPN scales well to the size of problems that the software
industry is dealing with. Therefore, the practitioner’s guide introduces the basic
CPN concept via a quite large example model and without PT nets, which do
not scale well to modelling of industrial systems.

In the advanced course, the students who attend are particularly interested
in CPN and want a thorough and broad coverage of the language. Therefore,
we use both Jensen’s books [10, 11] for a well-founded introduction of the basic
concepts and analysis methods, and the practitioner’s guide to set the stage for
large-scale modelling. In addition, we use workshop proceedings from the current
year. Typically, the range of subjects covered by the papers in these proceedings
is quite broad. Reading the papers gives the students an introduction to research
in CPN and to the process of writing and publishing scientific papers. Workshop
papers often describe early results and work in progress. They may later mature
into conference and journal papers, after more research, writing, and rewriting.
Therefore, it is often possible for students to find errors and shortcomings and to
propose constructive improvements. It is useful for the students to see the authors
present their papers at the workshop and to compare this with the presentation
that they (the students) gave themselves earlier in the course. And the students
are in an excellent position to ask questions and to engage in discussions.

3.2 On Tools

The choice of which tool to use in a particular course may have a high impact
on the quality of the course as experienced by the students.

In the distributed systems course, in which relatively many unexperienced
users use the tool, it must be easy to learn, stable, and well documented. In the
advanced course, the demands to the tools are lower for a number of reasons. In
the first place, the students are older and more mature than the students, who
attend the distributed systems course. Secondly, the students have a particular
interest in CPN, and thirdly, they have a higher willingness to accept the inherent
limitations of research prototypes of tools. In the industrial application course,
the requirements to the tool are very high because industrial software engineers
will inevitably compare it with top-quality commercial tools that they are used
to from their everyday development work.

For the last couple of years, the choice between the new CPN Tools [21, 30]
and the older Design/CPN tool has been difficult in all three courses. The trade-
off between stability and being easy to learn has not been easy. Design/CPN has
a quite steep learning curve; there are a number of obstacles causing troubles for
unexperienced users like young students or software engineers previously unfa-



408 Søren Christensen and Jens Bæk Jørgensen

miliar with CPN. As an example, Design/CPN does not have a fully incremental
syntax check which often makes it difficult to debug models. On the other hand,
for the last many years, Design/CPN has been a stable and well-tested tool with
many useful and nice features (and a bit old-fashioned user interface). CPN
Tools alleviates many of the problems that are present with Design/CPN. In
particular, it seems to be faster to become a proficient CPN Tools user than
a Design/CPN user. However, sometimes we have been too eager to use new
versions of CPN Tools. They have not always been tested well enough and have
occasionally caused frustration for students (who do not want to spend their
valuable time as alpha or beta testers of a tool, which is not sufficiently mature
for a large group of unexperienced users). In 2003, CPN Tools had reached a
maturity that ensured a successful use by approximately 100 students in the
distributed systems course.

In all the CPN related courses we have taught, we have experienced that it
is important that a long extensive tool demo is given. The students who do not
attend the demo often have had severe problems getting started with the tool.

3.3 On Teacher Skills
The required level of CPN skills for the teacher or teachers varies between the
three courses discussed in this paper. It must of course be solid, but is low-
est for the distributed systems course, in which only basic CPN is taught and
only relatively small exercises are put forward. The skill level required to run
the industrial application course is higher: It is necessary that the teachers are
experienced in building large CPN models and have the ability to understand
the domain of interests for the engineers. The advanced course demands the
highest skill level: It can probably only be taught properly by teachers who are
themselves CPN researchers.

The teaching assistants for the distributed systems course are appointed by
the Faculty of Science, University of Aarhus. We have taught instances of the
course where the teaching assistants were not sufficiently proficient with either
CPN itself or with the applied CPN tool. That problem immediately propa-
gated on to the students, who were not being appropriately helped. To solve
the problem, we now staff the weekly tutorials in the weeks in which CPN are
introduced with older students who we know are well experienced with CPN and
CPN tools (e.g., recruited among the CPN Group’s PhD students and student
programmers). In this way, help is readily available, and students do not have to
spend excessive amounts of time trying to figure out themselves the peculiarities
of CPN and CPN Tools (including the Standard ML programming language,
which is new to the majority of the students).

In the advanced course and the industrial application course, we have always
hand-picked teaching assistants to ensure that they were sufficiently experienced
CPN users.

3.4 On Student Motivation
In the advanced course and the industrial application course, the attendees them-
selves have usually chosen that they want to learn about CPN. Therefore, we



Teaching Coloured Petri Nets: Examples of Courses and Lessons Learned 409

always teach highly motivated people in these two courses. But in the much
broader distributed systems course, a number of students have seen CPN as a
small and irritating “appendix” that they did not have to take too seriously. This
has caused these students to more or less ignore CPN in the weeks where it was
introduced. As a consequence, it turned out to be very difficult and sometimes
even impossible for them to solve the CPN exercises put forward in conjunc-
tion with the main curriculum. To address this problem, we now require that all
students carry out a larger mandatory CPN project early in the course.

In the advanced course, we have experienced that it is very motivating for
students to participate in an international workshop giving them an opportunity
to meet other students and researchers from foreign universities and companies.
We have also experienced that it is motivating for some students to collaborate
with an industrial partner like Danfoss.

In the industrial application course, it is important that focus is on the
domain-specific problems that the engineers are facing. Therefore, as we saw,
an example model of something that the engineers is familiar with from their
everyday work is always a central ingredient in the course; we have not met
many industrial software engineers, who find the dining philosophers or similar
toy examples very appealing. Moreover, it is essential to present CPN as a useful
supplement to the software development techniques that the engineers are al-
ready using; software engineers do typically not take a CPN course because they
(or their managers) want to make dramatic changes to their company’s software
development practices. They want to improve what they are already good at. To-
day, this means that CPN often must be presented as a supplement to UML [19,
22], the de-facto modelling language of the software industry. CPN models may
supplement, e.g., UML use cases [13], class diagrams, sequence diagrams, and
collaboration diagrams. CPN may be seen as vehicle to make strong descrip-
tions of behaviour and as an alternative to UML state machines and activity
diagrams [14].

3.5 On Integration with Main Curriculum

The discussion in this section only applies to courses in which CPN is one com-
ponent amongst others; not for courses exclusively on CPN. In the scope of this
paper, this means the distributed systems course, where a number of students
have criticized us for not integrating CPN well enough with the main curriculum.
One of their arguments is that CPN is not sufficiently used at the lectures.

We partly agree with the students. As mentioned earlier, CPN mainly play a
role in the tutorials and there are a number of reasons for not using CPN more
extensively at the lectures. In the first place, the course is about distributed
systems and network protocols; CPN is merely a vehicle for gaining a better un-
derstanding, description, and discussion of concepts and problems of the main
curriculum. More extensive use of CPN could cause the course to become a
“CPN Modelling of Distributed Systems and Network Protocols” course. Sec-
ondly, the lectures would deviate more from the textbooks than we feel they
should. Thirdly, there is already plenty of material for the students to digest, so



410 Søren Christensen and Jens Bæk Jørgensen

expanding the use of CPN would force us to reduce something else, which we do
not believe is a good decision for this particular course.

However, finding the right balance between CPN and the rest of the cur-
riculum is a non-trivial task that we are currently working on and have not yet
solved to our full satisfaction.

4 Conclusions

In this paper, we have described three CPN related courses which we have taught
and a number of lessons we have learned. Naturally, many of the lessons are of a
general kind, applicable not only to the particular courses described here, but to
many other kinds of courses as well: All teachers put an effort into finding good
literature, making sure to have appropriate skills, and worrying about student
motivations; many computer science teachers also have to deal with tools.

At this point in our writing, we would have liked to make a qualified com-
parative discussion of the experiences of colleagues who have taught Petri nets
related courses at other universities. Berthelot and Petrucci report on experi-
ences with education in relation to modelling, simulating, and verifying a train
system using CPN and Design/CPN [2]. However, we have not been able to find
many papers discussing Petri nets and education. Therefore, we encourage oth-
ers to publish their experiences; we would like improve our teaching and to gain
inspiration from an exchange of ideas with other teachers of Petri nets related
courses.

If we take a broader perspective, going from teaching Petri nets to teaching
computer science in general, there is a host of sources for more information, e.g.,
proceedings from the Innovation and Technology in Computer Science Educa-
tion (ITiCSE) conferences, see, e.g., [3], and the ACM Curricula Recommenda-
tions [29]. Putting this paper into a broader perspective using such sources is
future work.

We believe that over the years, DAIMI students and industrial software en-
gineers have developed many useful skills from courses in which CPN has been
used. This may well continue in the future. However, due to the general growth
in computer science knowledge, the competition for a place in computer sci-
ence curricula and for attention from the software industry is getting harder. At
DAIMI, in the 1990’s, CPN constituted about half of the curriculum of the dis-
tributed systems course. The amount of CPN has been decreasing; in 2003, CPN
made up about 10-15 percent of the curriculum. In general, “exotic” subjects
like CPN are at risk of having to leave the curriculum in order to accommo-
date something else, in particular in the undergraduate courses. Two examples
on relatively recent additions to the undergraduate curriculum at DAIMI are a
course on web technology and a course on security – that is tough competition.
When use of Petri nets is considered in broader courses, there seems to always be
good alternatives like process algebras (e.g., CCS [16]) and timed automata [1]
in theoretical courses on concurrency and verification, and UML in software en-
gineering oriented courses. In summary, we believe that it is worthwhile to think
about good arguments to justify Petri nets in computer science curricula.



Teaching Coloured Petri Nets: Examples of Courses and Lessons Learned 411

Acknowledgements

We thank Kurt Jensen, Lars M. Kristensen, and Thomas Mailund for allowing
us to draw from their teaching experiences as a supplement to our own; we also
thank them for discussions and helpful comments on this paper.

References

1. R. Alur and D. Dill. Automata for Modelling Real-Time Systems. Theoretical Com-
puter Science, 126(2):183–236, 1994.

2. G. Berthelot and L. Petrucci. Specification and Validation of a Concurrent Sys-
tem: an Educational Project. Software Tools for Technology Transfer, 3(4):372–381,
2001.

3. R. Boyle and G. Evangelidis (eds.). Proceedings of the 8th Annual Conference on
Innovation and Technology in Computer Science Education, 2003. Thessaloniki,
Greece.

4. S. Christensen and J.B. Jørgensen. Analysing Bang & Olufsen’s BeoLink Au-
dio/Video System Using Coloured Petri Nets. In P. Azema and G. Balbo, edi-
tors, Proceedings of the 18th International Conference on Application and The-
ory of Petri Nets, volume 1248 of LNCS, pages 387–406, Toulouse, France, 1997.
Springer-Verlag.

5. S. Christensen, L.M. Kristensen, and T. Mailund. A Sweep-Line Method for State
Space Exploration. In T. Margaria and W. Yi, editors, Proceedings of the 7th In-
ternational Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2001), volume 2031 of LNCS, pages 450–464, Genova, Italy,
201. Springer-Verlag.

6. S. Christensen and K.H. Mortensen. Teaching Coloured Petri Nets – A Gentle
Introduction to Formal Methods in a Distributed Systems Course. In P. Azema and
G. Balbo, editors, Proceedings of the 18th International Conference on Application
and Theory of Petri Nets, LNCS, pages 290–309, Toulouse, France, 1997. Springer-
Verlag.

7. G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems – Concepts and
Design. Addison-Wesley, 2001.

8. K. Jensen (ed.). Proceedings of the 3rd CPN Workshop, CPN’02. Technical report
DAIMI PB-560, Department of Computer Science, University of Aarhus, 2002.

9. K. Jensen. Coloured Petri Nets and the Invariant Method. Theoretical Computer
Science, 14:317–336, 1981.

10. K. Jensen. Coloured Petri Nets – Basic Concepts, Analysis Methods and Practical
Use. Volume 1, Basic Concepts. Monographs in Theoretical Computer Science. An
EATCS Series. Springer-Verlag, 1992.

11. K. Jensen. Coloured Petri Nets – Basic Concepts, Analysis Methods and Practical
Use. Volume 2, Analysis Methods. Monographs in Theoretical Computer Science.
An EATCS Series. Springer-Verlag, 1994.

12. K. Jensen and E.M. Schmidt. Pascal Semantics by a Combination of Denotational
Semantics and High-level Petri Nets. In G. Rozenberg, editor, Advances in Petri
Nets, volume 222 of LNCS, pages 297–329. Springer-Verlag, 1985.

13. J.B. Jørgensen and C. Bossen. Requirements Engineering for a Pervasive Health
Care System. In Proceedings of the IEEE International Requirements Engineering
Conference (RE’03), pages 55–64, Monterey Bay, California, 2003. IEEE.



412 Søren Christensen and Jens Bæk Jørgensen

14. J.B. Jørgensen and S. Christensen. Executable Design Models for a Pervasive
Healthcare Middleware System. In J.M. Jézéquel, H. Hussmann, and S. Cook,
editors, Proceedings of the 5th International Conference on the Unified Modeling
Language (UML’02), volume 2460 of LNCS, pages 140–149, Dresden, Germany,
2002. Springer-Verlag.

15. L.M. Kristensen, S. Christensen, and K. Jensen. The Practitioner’s Guide to
Coloured Petri Nets. International Journal on Software Tools for Technology
Transfer, 2(2):98–132, 1998.

16. R. Milner. Communication and Concurrency. Prentice Hall, 1989.
17. R. Milner, R. Harper, and M. Tofte. The Definition of Standard ML. MIT Press,

1990.
18. G. Monvelet, S. Christensen, H. Demmou, M. Paludetto, and J. Porras. Analysing

a Mechatronic System with Coloured Petri Nets. Software Tools for Technology
Transfer, 2(2):160–167, 1998.

19. OMG Unified Modeling Language Specification, Version 1.4. Object Management
Group (OMG); UML Revision Taskforce, 2001.

20. J.L. Rasmussen and M. Singh. Designing a Security System by Means of Colored
Petri Nets. In J. Billington and W. Reisig, editors, Proceedings of the 17th Interna-
tional Conference on Application and Theory of Petri Nets, volume 1091 of LNCS,
pages 400–419, Osaka, Japan, 1996. Springer-Verlag.

21. A.V. Ratzer, L. Wells, H.M. Lassen, M. Laursen, J.F. Qvortrup, M.S. Stissing,
M. Westergaard, S. Christensen, and K. Jensen. CPN Tools for Editing, Simulating,
and Analysing Coloured Petri Nets. In W. van der Aalst and E. Best, editors,
Proceedings of the 24th International Conference on Application and Theory of
Petri Nets, volume 2679 of LNCS, pages 450–462, Eindhoven, The Netherlands,
2003. Springer-Verlag.

22. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Refer-
ence Manual. Addison-Wesley, 1999.

23. W. Stallings. Data & Computer Communications, Sixth Edition. Prentice Hall,
2000.

24. A.S. Tanenbaum. Modern Operating Systems. Prentice Hall, 1992.
25. A. Valmari. A Stubborn Attack on State Explosion. Formal Methods in System

Design, 1:297–322, 1992.
26. Home page of the CPN Group at the University of Aarhus.

www.daimi.au.dk/CPNets.
27. Home page of Design/CPN. www.daimi.au.dk/designCPN.
28. Home page of Kurt Jensen. www.daimi.au.dk/˜kjensen.
29. Home page of ACM Curricula Recommendations.

www.acm.org/education/curricula.html.
30. Home page of CPN Tools. www.daimi.au.dk/CPNtools.
31. Home page of 3rd CPN Workshop, CPN’02.

www.daimi.au.dk/CPnets/Workshop02.
32. Home page of Department of Computer Science, University of Aarhus.

www.daimi.au.dk.
33. Home page of Distributed Systems Course. www.daimi.au.dk/dDist (in Danish).


	1 Introduction
	2 Examples of Courses
	2.1 Distributed Systems Course
	2.2 Advanced Course on CPN
	2.3 Industrial Application of CPN Course

	3 Lessons Learned
	3.1 On Literature
	3.2 On Tools
	3.3 On Teacher Skills
	3.4 On Student Motivation
	3.5 On Integration with Main Curriculum

	4 Conclusions
	Acknowledgements
	References

