
Unbounded Petri Net Synthesis

Philippe Darondeau

IRISA, campus de Beaulieu, F35042 Rennes Cedex

Abstract. We address the problem of deciding uniformly for graphs
or languages of a given class whether they are generated by unlabelled
Place-Transition nets whose sets of reachable markings may be infinite.

1 Introduction

Initialized Petri nets may be seen alternatively as graph generators or as language
generators. In the first case, the generated graph is the reachable state graph
of the net, considered up to isomorphisms of graphs (i.e. any set in bijection
with the set of reachable markings may be used equivalently to represent the
vertices of this graph). In the second case, the generated language is the set of
firing sequences of the net (we will not introduce in this paper any labelling of
transitions nor any special subset of accepting states or markings). The Petri
net synthesis problem consists in deciding uniformly for a fixed class of graphs
or languages whether a given member of this class has a Petri net generator
and in producing such a generator if it exists. For classes of graphs or languages
where the decision is not possible, a connected problem is to produce from a
given object a Petri net generator which approximates it at best.

The Petri net synthesis problem may be addressed for several classes of nets,
including notably the Elementary Nets and the Place-Transition Nets. Synthesis
was dealt with originally by Ehrenfeucht and Rozenberg in the context of finite
graphs and Elementary Nets [22] [23]. As the number of (simple) elementary
nets with a fixed set of transitions is finite, the decision problem has an obvious
solution in this context. The goal of the cited authors was to put forward a
graph theoretic and axiomatic solution. The seminal idea which they introduced
for this purpose is the concept of regions of a graph. The regions of a graph
are particular subsets of vertices. The regions of a graph edge-labelled on T
correspond bijectively with the simulations of this graph by elementary nets of
the atomic form ({p}, T, F, M0). A finite and reachable rooted graph (loopfree,
deterministic and simple) is simulated by an elementary net if all walks in the
graph are matched by similar firing sequences of the net, such that two walks
ending at the same vertex are always simulated by firing sequences ending at
the same marking. Each simulation induces thus a (unique) map from vertices
to markings. The regions of the graph are the inverse images of the marking
p = 1 under arbitrary simulations of the graph by atomic nets ({p}, T, F, M0).
Ehrenfeucht and Rozenberg gave a purely graph theoretic characterization of
these regions. Their logical structure was studied further in [11] and [12].
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Given any graph edge-labelled on T , one may synthesize an elementary net
from this graph by gluing together on their common transitions all the simulating
atomic nets ({pl}, T, Fl, Ml,0). A graph is generated by some elementary net if
and only if it is generated by the elementary net constructed in this way. It follows
that the family of graphs with elementary net generators may be characterized
by two axioms: i) for any two distinct vertices v and v′, some region contains
either v or v′ (but not both); ii) for any t ∈ T and for any vertex v, if no edge
labelled with t leaves the vertex v, then the vertex v is outside some region that
contains all sources of edges labelled with t and none of their targets.

Synthesis algorithms based on the above characterization were proposed in
[20], [11], and [17]. In the context of Elementary Nets, synthesis is an NP-
complete problem [3]. Efficient heuristic algorithms have been implemented in
the tool Petrify, with application to Asynchronous Circuit Design [16]. On the
side of theory, a categorical version of the correspondence between Elementary
Graphs (finite and reachable rooted graphs, loopfree, deterministic and simple,
satisfying axioms (i) and (ii) ) and Elementary Nets was given in [38]. The latter
work sheds additional light on synthesis: it indicates that morphisms of nets may
also be synthesized from morphisms of graphs (i.e. net synthesis is functorial).
For more on the synthesis of Elementary Nets, we refer the reader to [22] [23],
to the papers mentionned above, and to the survey [6]. A closely related topic is
the synthesis of labelled one-safe nets from Asynchronous Transition Systems,
which was explored in [44] and [8].

The concept of regions, which was introduced in the context of Elementary
Nets, was quickly adapted to Place-Transition Nets. In this different context,
the regions of a graph edge-labelled on T are in bijective correspondence with
the simulations of this graph by P/T-nets of the atomic form ({p}, T, F, M0). A
rooted, reachable and deterministic graph is simulated by a P/T-net if all walks
in the graph are matched by similar firing sequences of the net, such that two
walks ending at the same vertex are simulated by firing sequences ending at the
same marking. Each simulation of a graph by an atomic P/T-net ({p}, T, F, M0)
induces thus a (unique) map from vertices to non-negative integers. Regions are
no longer subsets of vertices. They are multisets of vertices: a region assigns to
each vertex v the weight defined by this induced map. Multiset regions may still
be given a graph-theoretic characterization, but their logical structure is unclear.
This is compensated for by nice algebraic properties: the (multiset) sum of two
regions is a region, and the (multiset) difference of two regions, when it is defined,
is also a region. We shall intensively exploit this linear algebraic structure in the
body of the paper.

Regions as multisets were introduced independently by several groups of re-
searchers. Slightly different definitions of regions were given, depending on the
amount of concurrency embedded in the classes of labelled graphs considered.
Concurrency by steps was considered in [33] and [37] (the first two papers in
which multiset regions were defined), and regions served there to characterize
respectively the subclass of Local Trace Languages with P/T-net generators
and the subclass of Step Transition Systems with P/T-net generators. Another
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form of concurrency (pairwise independence, which is weaker than step indepen-
dence) was considered in [21], where regions served to characterize the subclass
of Automata with Concurrency Relations that may be generated from P/T-nets.
Multiset regions of ordinary graphs, i.e. graphs without concurrency, were de-
fined in [9], where they served to characterize the subclass of finite graphs with
P/T-net generators. All characterizations are expressed by two axioms akin to
Ehrenfeucht and Rozenberg’s axioms (i) and (ii) . The adaptation of the axiom
(i) is immediate: a multiset region separates two vertices v and v′ if they have
different weights in this region. The adaptation of the axiom (ii) is not so im-
mediate and it depends on the exact definition of regions that is used. Roughly,
the modified axiom requires from any vertex v that, if no edge leaving v bears
the label t, then some region assigns to the vertex v a weight strictly lower than
the weights of all sources of edges labelled with t.

While the accent was set on categorical correspondences between graphs and
nets in [37] and [21], it was set in [9] on the algebraic and combinatorial properties
of regions. It was shown in the latter reference that the minimal regions of a
finite graph provide all the information needed to determine whether this graph
has a P/T-net generator. The decision problem was however left unsolved. It
was actually shown in [2] that the synthesis problem is decidable for pure and
bounded P/T-nets and for finite graphs or for regular languages. The main
principle for the decision is to compute a finite set of regions that generate
all other regions (the regions of a finite graph form a module, and the bounded
regions of a regular language do the same). The synthesis algorithm is polynomial
in the size of the graph, and it is exponential in the size of the regular expression.
This algorithm was extended in [5] to bounded P/T-nets (which may be impure)
and to finite Step Transition Systems. The synthesis algorithm for bounded P/T-
nets has been implemented in the tool Synet, with tentative applications to
the distributed realization of protocols [4]. Another application of the bounded
P/T-net synthesis is the computation of Petri net supervisory controllers [27].
All state-avoidance problems in one-safe Petri nets may in fact be solved in this
way. For more on the synthesis of bounded P/T-nets and applications, we refer
the reader to the above mentioned papers or to the survey [6].

The remaining sections of the paper are devoted to the algorithmic syn-
thesis of unbounded P/T-nets, a topic which was not covered in [6] because it
was studied afterwards. Section 2 deals with the synthesis of unbounded P/T-
nets from languages. Section 3 deals with the synthesis of unbounded P/T-nets
from infinite graphs. The last section summarizes the results and indicates some
directions for future work. The paper is self-contained. No familiarity with the
synthesis of Elementary Nets nor with the synthesis of bounded Place-Transition
Nets is assumed. The presentation of net synthesis given here is simpler than the
general presentation given in [6], but it ignores most of the results reported there.
The presentation below is based on the work of the author and his colleagues
from Irisa (see references in the bibliography).
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2 Net Synthesis from Languages

Let us recall the definition of Place-Transition nets (or P/T-nets for short).

Definition 1 (P/T-nets). A P/T-net is a triple N = (P, T, F ) where P and T
are finite disjoint sets of places and transitions, respectively, and F is a function,
F : (P × T ) ∪ (T × P ) → IN. A marking of N is a map M : P → IN. The state
graph of N is a labelled graph, with markings as vertices, where there is an edge
labelled with transition t from M to M ′ (in notation: M [t〉M ′) if and only if,
for every place p ∈ P , M(p) ≥ F (p, t) and M ′(p) = M(p) − F (p, t) + F (t, p).
The reachable state graph of an initialized P/T-net N = (P, T, F, M0), with
initial marking M0, is the restriction of its state graph induced by the subset of
vertices that may be reached inductively from M0. The net N is unbounded if
its reachable state graph is infinite. The language of an initialized P/T-net is
the set of sequences w ∈ T ∗ that label walks from the root M0 of this graph.
Thus, the language of N is the set {w ∈ T ∗ |M0[w〉} where M0[w〉 means that
the sequence w may be fired inductively from M0.

Example 1. Let P = {1, 2} with M0(1) = 0 and M0(2) = 1. Let T = {a, b} with
F (a, 1) = 1 = F (1, b) and F (2, b) = 1. Let F evaluate to 0 for all the remaining
arguments. The reachable state graph of the specified net is the infinite graph
shown below. The language of this net is the regular language a∗ + aa∗ba∗. ��

(0, 1) (2, 1)

(0, 0) (1, 0)

(3, 1)

(2, 0)

(1, 1)

b

a a a

a a

b b

The P/T-net synthesis problem for a class of languages is the problem whether
one can decide uniformly from any language L in this class whether it coincides
with the language of some (initialized) P/T-net, and construct such a net when
it exists. Uniformity means that the same constructive procedure should apply
to all languages in the considered class. For instance, the P/T-net synthesis
problem has a (positive) solution for L = a∗ + aa∗ba∗ in the singleton class {L},
but this does not mean that the P/T-net synthesis problem has a solution for
L = a∗ + aa∗ba∗ in the class of regular languages over two letters a and b.

We propose in this section a uniform procedure that computes, for any class
of semi-linear languages closed under right quotients with letters, the least over-
approximation of a language in the class by the language of a P/T-net. We
propose moreover a uniform procedure that solves the P/T-net synthesis prob-
lem for classes of semi-linear languages closed under right quotients with letters
and under the max operation (w.r.t. the order prefix). We show that the synthe-
sis problem is decidable for the regular or deterministic context-free languages,
whereas it is undecidable for the context-free languages and for the languages
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of High-level Message Sequence Charts (or HMSCs for short). We argue finally
about the practical relevance of approximating languages by P/T-net languages.

Before we describe the common principles under the two procedures, let us
add two remarks about example 1. First, infinitely many different P/T-nets have
the language a∗ + aa∗ba∗. Therefore, one cannot require from an effective syn-
thesis procedure to produce all of them. Second, any P/T-net with the language
a∗ + aa∗ba∗ has an infinite number of reachable markings. To see this, assume
the opposite. Then the transition a should act as the identity on the markings of
some initialized P/T-net (P, {a, b}, F, M0) generating this language. As M0[ab〉,
necessarily M0[b〉, a contradiction. This remark shows that the synthesis of un-
bounded P/T-nets is a relevant problem for all reasonable classes of languages.

Henceforth in this section T = {t1, . . . , tn} is a fixed alphabet of transitions,
and P/T-nets have always the set of transitions T . The languages L under con-
sideration are always subsets of T ∗. As we are mainly interested in languages of
P/T-nets and these languages are non-empty and prefix-closed, it will always be
assumed that L is non-empty and prefix-closed, i.e. (∀w ∈ L) w = u·v =⇒ u ∈ L
where · denotes the concatenation product in T ∗. In particular, the empty word
ε is always in L. In the sequel, initialized P/T-nets are called P/T-nets for short.
The language of the P/T-net N is denoted L(N ).

2.1 The Regions of a Language

The two essential facts on which is based the synthesis of P/T-nets from lan-
guages are stated in the (almost obvious) propositions 1 and 2 below.

Definition 2 (Atomic subnets). A P/T-net N = (P, T, F, M0) is a subnet
of N ′ = (P ′, T, F ′, M ′

0) if P ⊆ P ′ and F and M0 are the induced restrictions of
F ′ and M ′

0 (respectively on (P ×T )∪ (T ×P ) and on P ). The net (P, T, F, M0)
is atomic if |P | = 1. An atomic subnet of N ′ is a subnet of N ′ which is atomic.

Proposition 1. The language of a P/T-net is the intersection of the languages
of its atomic subnets.

Definition 3 (P/T-regions). Given a word w ∈ T ∗, an atomic P/T-net N =
({p}, T, F, M0) is a P/T-region of w if w ∈ L(N ). Given a language L, an atomic
P/T-net N is a P/T-region of L if it is a P/T-region of every word w ∈ L.

Proposition 2. L is the language of a P/T-net if and only if the set of P/T-
regions of L contains a finite subset {N1, . . . ,Nm} such that, for every t ∈ T
and for every w ∈ L, if w · t /∈ L, then some Nl is not a P/T-region of w · t.
When this condition is satisfied, L = L(N ) where N is the P/T-net with the set
of atomic subnets {N1, . . . ,Nm}.

Example 2. The P/T-net described in the example 1 has two atomic subnets
N1 and N2, where 1 is the unique place of N1 and 2 is the unique place of N2.
Both nets are regions of the language a∗ + aa∗ba∗. The word ε · b is not in this
language, but it does not belong either to L(N1), thus N1 is not a region of this
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word. Similarly, N2 is not a region of any word akbal · b for k > 0 and l ≥ 0.
Finally observe that the language a∗ + aa∗ba∗ has an infinite set of regions. For
instance, all the atomic P/T-nets ({p}, {a, b}, F, M0) such that F (p, a) = 0 and
F (p, b) = 0 are regions of this language. ��

In view of proposition 2, the feasability of a procedure for the decision of the
P/T-net synthesis problem (with respect to a fixed class of languages) depends
on the feasability of two subproblems. First, one should compute an effective
representation of the set of regions of a language, notwithstanding the fact that
this set is always infinite. Second, one should decide whether some finite subset
of regions suffices to reject all minimal words (with respect to the order prefix) in
the complement of the given language, even though these unwanted words may
form an infinite set (e.g., the set b + aa∗bb in example 1).

The above problems cannot be solved without specific assumptions on the
considered classes of languages. Fortunately, the first problem has an easy solu-
tion for semi-linear languages.

2.2 A Procedure for Computing Generating Regions

Let us recall two definitions.

Definition 4 (Commutative image). The commutative image of a word w ∈
T ∗ is the n-vector [w] whose respective entries [w]i count for each i ∈ [1, n] the
occurrences of the letter ti in w. The commutative image of a language L ⊆ T ∗

is the set [L] = {[w] |w ∈ L}.

Definition 5 (Semi-linear subset). Let M = (M, · , 1) be a monoid. A subset
of M is linear if it may be expressed as m ·F∗ where m ∈ M, F is a finite subset
of M, and F∗ is the least submonoid of M containing F . A finite union of linear
subsets of M is called a semi-linear subset.

A language L is said to be semi-linear if its commutative image [L] is a
semi-linear subset of INn, the commutative monoid where the product · is the
addition of n-vectors and where the neutral element 1 is the all-zeroes n-vector.

Example 3. For L = a∗+aa∗ba∗, where we let a = t1 and b = t2 for convenience,
[L] =< 1, 0 >∗ + < 1, 0 > · < 1, 0 >∗ · < 0, 1 > · < 1, 0 >∗. By commutativity
of the product (i.e. addition) in INn, [L] =< 1, 0 >∗ + < 1, 1 > · < 1, 0 >∗,
hence this set is semi-linear (in regular expressions, + denotes set union). ��

The considerations in the above example may be generalized to all regular
expressions. It should therefore be clear that for any language L, [L] is semi-linear
if and only if [L] = [R] for some regular language R. A celebrated theorem by
Parikh shows that this condition holds for the context-free languages (see section
6.9 in [31] for the construction of R from a context-free grammar generating L).

In order to achieve our goals, we shall actually require a little more than
the semi-linearity of [L]. Namely, we require that all right derivatives L/tj are
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semi-linear, where tj ∈ T and L/tj = {v ∈ T ∗ | v · tj ∈ L}. Under this stronger
requirement (which is met by context-free languages), one can effectively com-
pute a finite representation of the infinite set of P/T-regions of L. Moreover, this
representation yields for free a P/T-net N whose language L(N ) is the least net
language larger than L. The construction is explained in the rest of the section.

Recall that a P/T-region of L is an atomic P/T-net N = ({p}, T, F, M0) such
that L ⊆ L(N ). An atomic P/T-net N as above may be represented equivalently
as a (2n + 1)-vector < M0(p), F (p, t1), . . . , F (p, tn), F (t1, p), . . . , F (tn, p) >. We
claim that a (2n+1)-vector x =< x0, x1, . . . , xn, xn+1, . . . , x2n > defines a region
of L if and only if all its entries xk are non-negative integers, and for each (non
empty) word v · tj in L

x0 +
n∑

i=1

[v]i × (x(n+i) − xi) ≥ xj (1)

Actually, if the vector x is seen as an atomic P/T-net, the above inequality may
be read as M [tj〉 where M is the marking of the net reached after firing the
sequence of transitions v, assuming that v may be fired. Since L is prefix-closed,
this will necessarily be the case if similar inequalities hold for all the non-empty
prefixes u · tk of v. Let us now use the assumption that all derivatives L/tj are
semi-linear. Thus, for each tj ∈ T , the set [L/tj ] is a finite union of linear sets
e · F∗, where e ∈ INn and F is a finite subset of INn. For each tj ∈ T and for
each linear set e · F∗ in [L/tj ], the collection of instances of 1 generated from
words v ∈ L/tj such that [v] ∈ e · F∗ may be replaced equivalently with the
finite linear system:

n∑

i=1

e[i] × (x(n+i) − xi) ≥ xj − x0 (2)

n∑

i=1

f [i] × (x(n+i) − xi) ≥ 0 (3)

where f ranges over the finite set F . Let us justify this claim. For any vector
x which is a solution of the finite linear system, the inequality 1 is obviously
satisfied for all v ∈ L/tj such that [v] ∈ e · F∗. Conversely, the conjunction
of all such inequalities entails 2 and 3. To see that it entails 3, suppose for a
contradiction that 3 does not hold for some f ∈ F . Then, for h large enough,∑n

i=1 ( (e+hf) [i] )× (x(n+i)−xi) < xj −x0. As [e+hf ] = [v] for some v ∈ L/tj
and the inequality 1 cannot hold for the considered v, a contradiction has been
reached. Therefore, the set of P/T-regions of L, seen as vectors x ∈ IN2n+1,
is the set of solutions of a finite system of linear inequalities (T is finite, and
each set [L/tj ] is a finite union of linear subsets). Moreover, all inequalities in
this system are homogeneous, i.e. they may be written equivalently in the form∑2n

k=0 αk × xk ≥ 0 (where the αk are constants in ZZ).

Example 4. For L = a∗+aa∗ba∗, one obtains L/a = L and L/b = aa∗. Therefore
if we let a = t1 and b = t2, [L/t1] =< 1, 0 >∗ + < 1, 1 > · < 1, 0 >∗ and
[L/t2] =< 1, 0 > · < 1, 0 >∗. The P/T-regions L are the solutions of the system
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0 ≥ x1 − x0

(x3 − x1) + (x4 − x2) ≥ x1 − x0

(x3 − x1) ≥ x2 − x0

(x3 − x1) ≥ 0

The atomic net N1 = ({1}, T, F, M0) given by x0 = M0(1) = 0, x1 = F (1, a) = 0,
x2 = F (1, b) = 1, x3 = F (a, 1) = 1, and x4 = F (b, 1) = 0 is a P/T-region of L,
and similarly is the atomic net N2 = ({2}, T, F, M0) given by x0 = M0(2) = 1,
x1 = F (2, a) = 0, x2 = F (2, b) = 1, x3 = F (a, 2) = 0, and x4 = F (b, 2) = 0. ��

Let S be the finite system of linear inequalities in the variables x0, . . . , x2n

which defines the regions of L, augmented with inequalities xk ≥ 0 for all k ∈
[0, 2n]. If one lets the variables xk range over the set Q of rational numbers, the
solutions of S in Q2n+1 form a cone with a finite set of generators x1 . . .xm

(see [41]). This means that a rational vector x is a solution of S if and only if
x =

∑m
l=1 qlxl for some non-negative rational coefficients ql. Moreover, one can

effectively compute a minimal set of generators x1 . . .xm, e.g. using Chernikova’s
algorithm [15]. A finite representation of the set of P/T-regions of L is then
obtained.

——————————————————————————————————
A vector x is a P/T-region of L if and only if x ∈ IN2n+1 and
x =

∑m
l=1 ql xl for some non-negative rational coefficients ql.

——————————————————————————————————

Henceforth in the section, we assume that x1 . . .xm are vectors of integers (this
may be assumed w.l.o.g. since xl may be replaced equivalently with ql xl for any
non-negative ql), and we call them the generating regions of L.

Example 5. For L = a∗ + aa∗ba∗, where a = t1 and b = t2, the generating
regions are the columns of the following table (we let x =< m0,

• a,• b, a•, b• >
for convenience):

m0 1 0 0 1 1 0 1
•a 0 0 0 1 1 0 0
•b 0 0 0 1 0 1 1
a• 0 1 0 1 1 1 0
b• 0 0 1 1 0 0 0

The last two regions correspond to the atomic nets N1 and N2 already seen. ��

Let N be the P/T-net formed by gluing together on transitions tj ∈ T the
atomic P/T-nets N1 . . .Nm defined by the generating regions x1 . . .xm of L.

——————————————————————————————————
L(N ) is the least net language larger than L.

——————————————————————————————————

Let us establish this claim. As each atomic net Nl (l ∈ [1, m]) is a region of L, it
should be clear from definition 3 and proposition 1 that L(N ) is larger than L.
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Now let N ′ be any P/T-net such that L ⊆ L(N ′). Suppose for a contradiction
that some word w belongs to L(N ) \ L(N ′). We may assume w.l.o.g. that w is
minimal w.r.t. the order prefix among the words in that case. Then necessarily,
w = v·tj for some tj ∈ T and v ∈ L(N )∩L(N ′). As v ∈ L(N ′) and v·tj /∈ L(N ′),
the inequality 1 does certainly not hold for some 2n + 1-vector x′ representing
an atomic subnet of N ′. Since L ⊆ L(N ′), this atomic subnet is a region of L,
thus x′ =

∑m
l=1 ql xl for some non-negative rational coefficients ql. Therefore,

the inequality 1 does not hold for some vector x = xl ∈ {x1, . . . ,xm}. It follows
that v · tj /∈ L(Nl), and hence v · tj /∈ L(N ), a contradiction.

The above construction may be applied to any class of languages with semi-
linear right derivatives. This is the case of every semi-linear full TRIO (by defini-
tion, a full TRIO is closed under homomorphisms, inverse homomorphisms, and
intersection with regular languages). Examples are the regular languages, the
context-free languages, the simple matrix languages of fixed degree [35], the lan-
guages of flip-pushdown automata with a fixed number of reversals [32], and the
full slip AFLs described in [30]. This is also the case of two other classes of lan-
guages generated by parallel systems, namely the languages of parallel communi-
cating grammar systems with terminal transmission and with fully synchronized
mode [25], and the languages of HMSCs [14].

2.3 A Procedure for the Decision of the Net Synthesis Problem

Deciding whether a given language L has a P/T-net generator amounts to de-
ciding whether L = L(N ) where N is the net constructed from the generating
regions of L. We propose now a decision procedure that works under additional
requirements of semi-linearity on the considered class of languages. Namely, we
require that the complements in L of the right derivatives are also semi-linear.
This requirement is significant: the assumption that all sets [L/tj] are semi-linear
does not entail that all sets [L \ (L/tj)] are semi-linear (although [L] must be
semi-linear in this case).

For convenience of notation, let L� tj = L \ (L/tj), thus L� tj is the set of
the words v ∈ L such that v · tj /∈ L. Clearly, L = L(N ) if and only if v · tj is
not in L(N ) whenever tj ∈ T and v ∈ (L� tj). Seeing that N was built up from
the atomic nets defined by the generating regions of L, v · tj is not in L(N ) if
and only if

x0 +
n∑

i=1

[v]i × (x(n+i) − xi) < xj (4)

for some generating region x ∈ {x1, . . . ,xm}. Let y = [v] thus y ∈ [L� tj ], and
let y =< y1, . . . , yn >, then relation 4 may be rewritten to the linear inequality

x0 +
n∑

i=1

yi × (x(n+i) − xi) < xj (5)

When the xk are fixed constants in IN (for k ∈ [0, 2n]) and the yi are variables
in IN (for i ∈ [1, n]), the formula 5 amounts to a Presburger formula (it may be
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expressed equivalently as a comparison between two sums), hence it defines an
effective semi-linear subset of INn [29]. For each l ∈ [1, m] and for each j ∈ [1, n],
let Yl,j be the semi-linear subset of INn which is defined with formula 5 for the
constants xk = xl[k] (i.e. for x = xl). Now, L = L(N ) if and only if, for all tj ,

[L � tj ] ⊆ ∪m
l=1 Yl,j (6)

As we assumed that all sets [L�tj ] are semi-linear, and the semi-linear subsets of
INn form an effective boolean algebra [28], one can compute [L�tj ]\∪m

l=1 Yl,j and
decide whether this set is empty. Therefore, one can decide whether L = L(N ).
We have thus obtained a decision procedure for the P/T-net synthesis problem.

——————————————————————————————————
Assuming that all sets [L/tj] and [L \ (L/tj)] are semi-linear,

one can decide whether the language L has a P/T-net generator.
——————————————————————————————————

When the decision is successful, it may occur that L = L(N ′) for some proper
subnet N ′ of the net N constructed from all the generating regions of L. The
procedure may be adapted in order to produce directly some minimal subnet
N ′ of N such that L = L(N ′). The subsets of {x1, . . . ,xm} should be explored
in increasing order until discovering some subset {xl1 , . . . ,xlp} large enough to
make relation 6 valid for all j ∈ [1, n] when l ranges over {l1, . . . , lp}. The solution
net N ′ is then constructed from the atomic nets defined by xl1 . . .xlp .

Example 6. For L = a∗+aa∗ba∗, one obtains (L�a) = ∅ and (L�b) = ε+aa∗ba∗.
Let a = t1 and b = t2, then [L � t2] =< 0, 0 > + < 1, 1 >< 1, 0 >∗. For the two
regions x1 =< 0, 0, 1, 1, 0 > and x2 =< 1, 0, 1, 0, 0 > (see example 5), the sets
Y1,2 and Y2,2 are defined by the respective formulas y1 − y2 < 1 and 1 − y2 < 1.
Clearly, < 0, 0 >∈ Y1,2 and for any non-negative integer h, < 1 + h, 1 >∈ Y2,2.
Therefore, L is the language of the net formed of the two atomic P/T-nets N1

and N2 from example 4. Seeing that < 0, 0 >/∈ Y2,2 and < 2, 1 >/∈ Y1,2, this net
is a minimal net generator for L. ��

It remains to show classes of languages in which our working assumptions
hold, i.e. where [L/tj ] and [L�tj ] are semi-linear for every prefix-closed language
L and for every tj ∈ T . For any language L of T ∗, define

max(L) = {u ∈ L | (∀v ∈ T ∗)u · v ∈ L =⇒ v = ε}

Then, for any prefix-closed language L of T ∗, v ∈ L and v · tj /∈ L if and only if
v · tj ∈ max(L · tj). Therefore, L� tj = (max(L · tj))/tj . It follows that the sets
[L� tj ] are semi-linear in every class of semi-linear languages with the following
properties:
i) the class is closed under right products and right quotients with letters,
ii) the class is closed under max.
Property (i) holds in any full TRIO, but property (ii) does not! As the following
example shows, it does not hold e.g. for the context-free languages.
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Example 7. ([18]) Define context-free languages on the alphabet {a, b, c, d, e} as
follows. First, let A = {anb cm |n �= m}, B = b c∗, C = {cnb cm |n �= m}. Next,
let D = a∗B∗BB b d, E = AB∗B b d e + a∗B∗b CB∗b d e, and L = D + E. Then
max(L) = E + F , where F = {an(b cn)mb d |n ≥ 0 ∧ m ≥ 2}. Assume that
[max(L)] is semi-linear. Since [E] is semi-linear and [E] and [F ] are disjoint,
[F ] = [max(L)] \ [E] and this set is semi-linear, hence it may be defined by
a Presburger formula. Now [F ] is the set of the integer vectors of the form
< n, m + 1, n × m, 1, 0 >. As multiplication cannot be defined in Presburger
arithmetic, a contradiction has been reached, hence [max(L)] is not semi-linear.

We know actually only two classes of semi-linear languages with properties
(i) and (ii): the regular languages (a full TRIO) and the deterministic context-
free languages (which do not form a full TRIO). The deterministic context-free
languages are indeed closed under right products and quotients with regular
languages (see [31]), and they are closed under the max operation (see [34]).

——————————————————————————————————
The P/T-net synthesis problem is decidable for
regular or deterministic context-free languages.

——————————————————————————————————

2.4 Two Undecidable Cases

We show that it is undecidable i) whether an arbitrary context-free language
has a P/T-net generator, and ii) whether the language of an arbitrary HMSC
has a P/T-net generator. The proofs for the two facts are similar.

We consider first context-free languages. Given any context-free languageL of
T ∗, let N be the P/T-net defined by the generating regions of L (see section 2.2).
Then L �= T ∗ if and only if L �= L(N ) or L(N ) �= T ∗. The complement of
a (deterministic) P/T-net language may be generated by a labelled P/T-net
with a finite subset of final partial markings [39]. The reachability of partial
markings is decidable [36]. Therefore one can decide whether L(N ) = T ∗. If one
could decide whether L = L(N ), one could decide whether L = T ∗. Now it is
undecidable for an arbitrary context-free language L of T ∗ whether L = T ∗ (see
e.g. [34]). Therefore, the P/T-net synthesis problem is undecidable for context-
free languages.

We consider now HMSC languages. In this case, the alphabet T has a specific
structure. On the one hand, it is equipped with a map � : T → [1, K] that
assigns a specific location to each transition. On the other hand, the transitions
in T are divided into message emissions (emit towards location k), message
receptions (receive from location k), and internal transitions. An HMSC H1

with K locations and with internal transitions only may be simulated by an
HMSC H2 with 2K locations and with no internal transitions, such that L(H1)
is a P/T-net language if and only if L(H2) is a P/T-net language: each internal
transition at location k may be simulated by an emission from k to k + K plus
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a matching reception at k + K. We shall assume below, for simplicity, that all
transitions in T are internal.

Let T = T1 ∪ T2 where �(t) = k for t ∈ Tk, and let Ek = Tk \ {$k} where $k

is a distinguished symbol in Tk. Whenever a relation R ⊆ (E∗
1 ×E∗

2 ) is accepted
by a finite automaton over the product monoid E∗

1 ×E∗
2 , the relation R· ($1, $2)

is accepted by a finite and trim automaton over T ∗
1 × T ∗

2 . This trim automaton
may be seen as an HMSC over T . For any rational relation R ⊆ (E∗

1 ×E∗
2 ), there

exists therefore an HMSC H over T with the language

L(H) = pref{w | ∃(u, v) ∈ R : w ∈ (u · $1)�� (v · $2)}

where pref denotes prefix closure and �� is the shuffle operation. Let �� be
defined on languages of T ∗ by an additive extension of the latter. There obviously
exists a P/T-net N ′ such that L(N ′) = pref ((T ∗

1 · $1)�� (T ∗
2 · $2)). It follows

from the definition of L(H) that L(H) = L(N ′) if and only if R = (E∗
1 × E∗

2 ).
Now let N be the P/T-net constructed from the generating regions of L(H).

Then R �= (E∗
1 × E∗

2 ) if and only if L(H) � L(N ) or L(N ) � L(N ′). From
the results in [39] and [36] one can decide whether L(N ) = L(N ′). If one could
decide whether L(H) = L(N ), one could decide whether R = (E∗

1 × E∗
2 ). Now,

provided that each subalphabet Ek contains at least two letters, it is undecidable
for an arbitrary rational relation R whether R = (E∗

1 × E∗
2 ), see [26] or [10].

Therefore, the P/T-net synthesis problem is undecidable for HMSC languages.

——————————————————————————————————
The P/T-net synthesis problem is undecidable for
context-free languages and for HMSC languages.

——————————————————————————————————

2.5 Comments and Complements

Many classes of semi-linear languages extend the context-free languages, or are
based on rational relations. The undecidability results presented in section 2.4
apply in both cases. In order to extend the decidability results established in
section 2.3, it appears suitable to focus on sub-classes of languages generated
with deterministic automata, as we have done for the context-free languages.
This way is still open for HMSC languages, since deterministic generators have
not yet been thoroughly investigated in this context.

As concerns applications, one may argue that least over-approximations of
languages by P/T-nets are often more suitable than exact realizations. Two cases
in support of this thesis are discussed below.

Let us come again to HMSCs. As these are intended to serve at an early
stage of design of distributed systems, collections of scenarios defined by HM-
SCs are usually seen as incomplete specifications of a system. P/T-net synthesis
may be used to build a prototype of the specified system, i.e. a distributed
scale model that may be run and model-checked before designing software. Now
model-checking is undecidable for general HMSCs (see [1] or [14]). Therefore,
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one should accept that a prototype system may have a language larger than the
language of the specifying HMSC. Approximating HMSC languages by P/T-net
languages as indicated in section 2.2 is justified, because the model-checking
of P/T-nets w.r.t. linear-time µ-calculus is decidable [24]. Moreover, relations
L(N ) ⊆ R and R ⊆ L(N ) are decidable for arbitrary P/T-nets N and regular
languages R (because R and �R have labelled P/T-net generators with final
markings). A matter not yet discussed is distribution. Recall that P/T-regions
may be seen as vectors x =< x0, . . . , x2n > in IN2n+1, where T = {t1, . . . , tn}.
By simply imposing on vectors x, for some I ∈ P([1, n]), the additional con-
straint (∃I ∈ I)(∀i ∈ I) (xi = 0), distributable P/T-nets may be produced by
the synthesis procedure. In a distributable P/T-net (see [4]), the transitions
have locations, and an input place is never shared by transitions with differ-
ent locations. Because competitions for tokens are local, distributable P/T-nets
may be cut to local subnets communicating by asynchronous message passing.
Distributed prototypes of HMSCs may be obtained in this way.

Another field of application is supervisory control. Let us briefly recall the
framework defined by Ramadge and Wonham [40]. A plant is a finite automaton
over an alphabet A with two orthogonal partitions: A = Ac ∪ Auc where the
transitions in Ac and Auc are respectively controllable and uncontrollable, and
A = Ao∪Auo where the transitions in Ao and Auo are respectively observable and
unobservable. Let Rp be the language of the plant, and let Rl ⊆ Rp be a regular
subset of legal firing sequences. For the sake of simplicity, assume that Rp and
Rl are prefix-closed and Ac ⊆ Ao (unobservable transitions are uncontrollable).
A controller is then a (finite or infinite) automaton that defines a prefix-closed
language K of A∗

o. The problem is to search for some K in a given class of
languages such that {u ∈ Rp |πo(u) ∈ K} ⊆ Rl where πo projects A∗ on A∗

o.
An admissible controller K should moreover satisfy

∀t ∈ (Ao ∩ Auc) ∀u ∈ Rp ∀v ∈ K
v = πo(u) ∧ (u · t) ∈ Rp =⇒ (v · t) ∈ K

Deciding whether maximally permissive admissible controllers exist reduces to
deciding whether for some K,

� ∩ πo (Rl) ⊆ K ⊆ �

where � is the largest subset of A∗
o containing no observation sequence v = πo (u)

such that uw ∈ Rp and uw /∈ Rl for some uncontrollable sequence w ∈ A∗
uc.

Thus, if ·/· denotes quotient of languages, � is the complement in A∗
o of the set

� = πo ( (Rp ∩ �Rl) /A∗
uc )

As � is a regular set, � is regular, hence L = � ∩ πo (Rl) is regular. The
problem amounts to deciding whether there exists some K in the specified class of
languages such that L ⊆ K ⊆ � where L and � are two regular languages.
This problem may be posed w.r.t. the class of P/T-net languages. The solution
is to compute N from L as shown in section 2.2, such that K = L(N ) is the
least P/T-net language larger than L, and then to check whether L(N ) ⊆�
(this is decidable). Maximally permissive P/T-net controllers are then obtained.



426 Philippe Darondeau

3 Net Synthesis from Infinite Graphs

The P/T-net synthesis problem for a class of graphs is the problem whether one
can decide uniformly from any graph in this class whether it is isomorphic to
the reachable state graph of some initialized P/T-net, and construct such a net
when it exists. In this section, T = {t1, . . . , tn} is a fixed alphabet, all P/T-nets
have the set of transitions T , and all graphs have directed edges with labels in
T .

Let G = (V, E, v0) denote a graph with respective sets of vertices and edges
V and E, where v0 ∈ V is the root and E ⊆ (V × T × V ). An edge (v, t, v′) ∈ E
has a source v, a label t, and a target v′. We consider deterministic and reachable
graphs exclusively, i.e. we assume that every vertex v can be reached by some
walk from v0 to v, and that distinct edges with a common source have distinct
labels. A morphism of graphs σ : G → G′, where G′ = (V ′, E′, v′0), is a map
σ : V → V ′ such that σ(v0) = σ(v′0) and (σ(v), t, σ(v′)) ∈ E′ for every edge
(v, t, v′) ∈ E. Note that there is at most one morphism from G to G′. Let G ≤ G′

when this morphism exists. It is easily seen that ≤ is an order relation and that
two graphs G and G′ are isomorphic (G ∼= G′) if and only if G ≤ G′ and G′ ≤ G.
Let G(N ) denote the reachable state graph of the P/T-net N . The problem is
to decide from a given graph G whether G ∼= G(N ) for some P/T-net N .

This problem is a strengthening of the problem dealt with in section 2. Indeed,
G ∼= G(N ) =⇒ L(G) = L(N ) where L(G) is the set of sequences in T ∗ labelling
walks from v0 to arbitrary vertices v in G. The converse implication does not
hold. We show in this section that the P/T-net synthesis problem for graphs may
be solved by a modification of the techniques already presented. The leading idea
is to replace the relation of language inclusion ⊆ used in section 2 with the order
relation ≤ on graphs. The development given hereafter mimics the development
given in this earlier section.

3.1 The Regions of a Graph

To begin with, let us observe that any finite family of graphs Gl = (Vl, El, vl,0),
l ∈ [1, m], has a greatest lower bound

∧
l Gl. This greatest lower bound is a graph

(V, E, v0) where V ⊆ (V1 × . . .× Vm) and v0 = (v1,0, . . . , vm,0). Moreover V and
E are the least sets such that v0 ∈ V and the following closure axiom is satisfied:

if v = (v1, . . . , vm) is in V and for some t ∈ T , (vl, t, v
′
l) ∈ El for all l ∈ [1, m],

then v′ = (v′1, . . . , v
′
m) is in V and (v, t, v′) is in E.

Proposition 3. The reachable state graph of a P/T-net is isomorphic to the
greatest lower bound of the reachable state graphs of its atomic subnets.

The proposition follows immediately from the firing rule of nets. In view of
this fundamental property of reachable state graphs, the modified definition of
P/T-regions which is proposed hereafter supplies a basis for the synthesis of
P/T-nets from graphs.
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Definition 6 (P/T-regions of a graph). A P/T-region of G is any atomic
P/T-net N = ({p}, T, F, M0) such that G ≤ G(N ).

Example 8. Consider the following graph G:

v 2,1

v 0,0 v 1,0

v 3,1

v 2,0

v 1,1

b

a a a

a a

b b

v 0,1

The atomic nets N1 and N2 defined in example 4 are two P/T-regions of G.
The respective graphs G(N1) and G(N2) are shown below, with G(N1) on the
left hand side.

0 2
01

a a

1
b b

a a
b

The inequalities G ≤ G(N1) and G ≤ G(N2) are established by the respective
morphisms σ1(vi,j) = i and σ2(vi,j) = j. ��

The next proposition follows from proposition 3 and the (obvious) fact that
G(N ) ≤ G(Nl) for every atomic subnet Nl of N .

Proposition 4. G ∼= G(N ) for some P/T-net N if and only if G ∼=
∧

l G(Nl)
for some finite collection {N1, . . . ,Nm} of P/T-regions of G.

Definition 6 and proposition 4 are too abstract and they should be refined.
We aim in the sequel at equivalent statements with better algorithmic contents.
Because G ≤ G(N ) ⇒ L(G) ⊆ L(N ), every region of a graph G is a region of the
language L(G). In example 8, all regions of L(G) are regions of G, but this is not
true in general. For instance, if G has edges (v0, a, v1) and (v0, b, v1), a P/T-net
({p}, T, F, M0) such that F (a, p) − F (p, a) �= F (b, p) − F (p, b) may be a region
of L(G) but it cannot be a region of G. This distinction is clarified below.

Definition 7. Given G = (V, E, v0) and w ∈ L(G), let ∂w denote the vertex at
the end of the walk with label w from the root v0. Two words w and w′ of L(G)
are said to converge in G if ∂w = ∂w′, and they are said to diverge otherwise.

Proposition 5. Given graphs G1 and G2, G1 ≤ G2 if and only if L(G1) ⊆ L(G2)
and every pair of words that converges in G1 converges in G2.

Proof. The two conditions are clearly necessary to the existence of a morphism
of graphs from G1 to G2. Conversely, when both conditions are satisfied, the map
σ defined with σ(∂1w) = ∂2w, where w ∈ L(G1) and ∂1 and ∂2 are interpreted
w.r.t. G1 and G2, respectively, is a morphism of graphs. ��

Corollary 1. Let N = ({p}, T, F, M0) be a region of L(G), then N is a region
of G if and only if every pair of words that converges in G converges in G(N ).
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By definition, G ≤ G(Nl) for every P/T-region Nl of G, hence G ≤
∧

l G(Nl)
for every finite collection {N1, . . . ,Nm} of P/T-regions of G. By proposition 5,
the converse inequality

∧
l G(Nl) ≤ G holds if and only if

⋂
l L(Nl) ⊆ L(G) and

every pair of words that diverges in G diverges in G(Nl) for some l. Proposition 4
may therefore be restated equivalently as follows.

Proposition 6. G ∼= G(N ) for some P/T-net N if and only if there exists a
finite collection {N1, . . . ,Nm} of P/T-regions of L(G) such that:
i) every pair of words that converges in G converges in G(Nl) for all l ∈ [1, m],
ii) for every t ∈ T and for every w ∈ L(G), if w · t /∈ L(G), then w · t /∈ L(Nl)
for some l ∈ [1, m],
iii) every pair of words that diverges in G diverges in G(Nl) for some l ∈ [1, m].
When these conditions are satisfied, G ∼= G(N ) where N is the P/T-net with the
set of atomic subnets {N1, . . . ,Nm}.

A comparison between proposition 6 and proposition 2 indicates that two
new problems should be solved if one wants to decide on the P/T-net synthesis
problem for classes of graphs. First, the computation of the generating regions
defined in section 2.2 should be accomodated to the constraints induced by
the requirement (i) in the above proposition. Second, the procedure defined in
section 2.3 should be augmented so as to decide whether both requirements (ii)
and (iii) in the proposition can be satisfied by the generating regions. The two
problems are examined in sequence in the sections below.

3.2 A Procedure for Computing Generating Regions

Let us introduce two definitions.

Definition 8. Given a graph G = (V, E, v0), a prefix-closed language L ⊆ L(G)
spans G if (∀v ∈ V ) (∃w ∈ L) v = ∂w (in G).

Definition 9. For any vector ψ ∈ IN2n, let ψL and ψR denote the respective
vectors in INn such that ψ decomposes to (ψL,ψR) through the isomorphism
IN2n ∼= (INn × INn). For any pair of words wL and wR in T ∗, let [wL, wR] denote
the (unique) vector ψ ∈ IN2n such that ψL = [wL] and ψR = [wR].

In order to compute effectively from a graph G = (V, E, v0) a finite set of
P/T-regions generating all regions of this graph, we require that G should be
spanned by some (prefix-closed) language L such that:

for every edge label tj ∈ T ,

Ψj = { [w, w′] |w, w′ ∈ L ∧ (∂w, tj , ∂w′) ∈ E}

is a semi-linear subset of IN2n.

Example 9. Let G be the infinite graph depicted below. It is easily seen that this
graph is spanned by the prefix-closed language L = (ab)∗a∗ + (ab)∗b + (ab)∗bb.
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Let a = t1, b = t2, c = t3 and define the following vectors in IN3 × IN3 ∼= IN6

(where ; is used in place of , for better readability):

0 = < 0, 0, 0 ; 0, 0, 0 >
δab = < 1, 1, 0 ; 1, 1, 0 >
δa = < 1, 0, 0 ; 1, 0, 0 >
δb = < 0, 1, 0 ; 0, 1, 0 >
δbb = < 0, 2, 0 ; 0, 2, 0 >

Let Ψ = 0 · (δab + δa)∗ + δb · (δab)∗ + δbb · (δab)∗, thus Ψ is a semi-linear set.
For t ∈ {a, b, c}, the respective sets Ψt = { [w, w′] |w, w′ ∈ L ∧ (∂w, t, ∂w′) ∈ E}
may be given the semi-linear expressions:

Ψa = < 0, 0, 0 ; 1, 0, 0 > · Ψ (7)
Ψb = < 0, 0, 0 ; 0, 1, 0 > · (δab + δa)∗+ < 0, 0, 0 ; 0, 1, 0 > · δb · (δab)∗ (8)
Ψc = < 2, 1, 0 ; 1, 0, 0 > · (δab + δa)∗ (9)

The requested condition is fulfilled. ��

We define now a procedure that computes the generating P/T-regions of a
graph from a language L spanning this graph and from the associated semi-
linear sets Ψj (j ∈ [1, n]). Recall that an atomic P/T-net N = ({p}, T, F, M0)
may be represented as a (2n + 1)-vector x =< x0, x1, . . . , xn, xn+1, . . . , x2n >
where x0 = M0(p) and for all j ∈ [1, n], xj = F (p, tj) and xn+j = F (tj , p).
We claim that a (2n + 1)-vector x =< x0, x1, . . . , xn, xn+1, . . . , x2n > defines a
region of G if and only if all its entries xk are non-negative integers, and the
following inequalities and equations hold for all tj ∈ T and ψ ∈ Ψj :

n∑

i=1

ψL[i] × (x(n+i) − xi) ≥ xj − x0 (10)

n∑

i=1

ψR[i] × (x(n+i) − xi) = x(n+j) − xj +
n∑

i=1

ψL[i] × (x(n+i) − xi) (11)
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In order to see that both conditions are necessary, let N be the atomic P/T-net
defined by the vector x. If N is a region of G, then L(G) ⊆ L(N ) and therefore
L ⊆ L(N ). The inequality 10 states that whenever u ∈ L and u · tj ∈ L(G),
if u can be fired in N then u · tj can be fired in N . This must be true since
L(G) cannot be included in L(N ) otherwise. Under the same assumptions, the
equation 11 states that whenever u · tj and v converge in G for some v in L, u · tj
and v converge in G(N ). The corollary 1 states that this also must be true.

In order to establish the claim, it remains to show that whenever the conditions
10 and 11 hold for a vector x, the atomic P/T-net N defined by x is a region of
the graph G. By corollary 1, it suffices to prove that L(G) ⊆ L(N ) and that all
pairs of words of L(G) that converge in G converge in G(N ).

Proposition 7. L ⊆ L(N ) and moreover, the pairs of words of L that converge
in G converge also in G(N ).

Proof. As L is prefix-closed, L ⊆ L(N ) follows from 10 by induction on words.
Consider v, w ∈ L such that ∂v = ∂w in G. If v = w, they do converge in G(N ).
If v �= w, at least one of them is non-empty. Assume w.l.o.g. that v = u · tj with
tj ∈ T . As L is prefix-closed, u ∈ L. Therefore, ψ = [u, v] and ψ′ = [u, w] are
vectors in Ψj . It follows from the equation 11 that

∑n
i=1 [v]i × (x(n+i) − xi) =∑n

i=1 [w]i × (x(n+i) − xi). Therefore, v and w converge in G(N ). ��

Proposition 8. For all v′ ∈ L(G) and for all w ∈ L such that ∂v′ = ∂w in G:

i) v′ ∈ L(N ), and
ii) v′ and w converge in G(N ).

Proof. Since L(G) is prefix-closed, one may use an induction on words. As ε ∈ L,
the basis of the induction is clear from proposition 7. For the induction step, let
v′ = u′ · tj where tj ∈ T . Choose u, v ∈ L such that ∂u = ∂u′ and ∂v = ∂v′

(since L spans G, such words must exist). As v′ ∈ L(G), (∂u′, tj , ∂v′) is an edge
of G, and this edge is equal to (∂u, tj, ∂v). By proposition 7, u, v ∈ L(N ) since
u, v ∈ L. Hence u · tj ∈ L(N ), in view of the inequality 10, and u · tj and v
converge in G(N ), in view of the equation 11. From the induction hypothesis,
u′ ∈ L(N ), and u and u′ converge in G(N ). Therefore, u′ · tj ∈ L(N ), and u′ · tj
and u · tj converge in G(N ). This entails that v′ ∈ L(N ), and v′ and v converge
in G(N ). As ∂v = ∂v′ = ∂w and v, w ∈ L, v and w converge in G(N ), by
proposition 7. Therefore, v′ and w converge in G(N ). ��

Corollary 2. N is a P/T-region of G.

Proof. Seeing that L spans G, proposition 8 entails that whenever two words
v′, v′′ of L(G) converge in G, they converge in G(N ). ��

Using the assumption that all sets Ψj are semi-linear, the (possibly) infinite
collection of linear homogeneous constraints that derive as instances of (10) or
(11) for some ψ ∈ Ψj (j ∈ [1, n]) may be reduced to a finite linear system.
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As regards the inequality (10), which is similar to the inequality (1), the
reduction follows the same lines as in section 2.2 (the former set [L/tj] is replaced
with the semi-linear set Σj = {ψL |ψ ∈ Ψj}).

As regards the equation (11), let ∆j = {ψR−ψL |ψ ∈ Ψj} for each j ∈ [1, n].
Since Ψj is a semi-linear subset of IN2n, and in view of the definition 5, ∆j is a
finite union of linear sets e · F∗, where e ∈ ZZn and F is a finite subset of ZZn.
For each linear subset e ·F∗ of ∆j , the set of constraints that derive as instances
of the equation 11 for some ψ ∈ e · F∗ may be replaced equivalently with the
finite linear system:

n∑

i=1

e[i] × (x(n+i) − xi) = x(n+j) − xj (12)

n∑

i=1

f [i] × (x(n+i) − xi) = 0 (13)

where f ranges over the finite set F . Therefore, the collection of instances of the
equation 11 for all j ∈ [1, n] and for all ψ ∈ Ψj reduces to a finite system.

Let S be the finite linear system in the variables x0, . . . , x2n formed of the
reduced systems defined above, plus inequalities xk ≥ 0 for all k ∈ [0, 2n]. One
can compute as was explained in section 2.2 a finite and minimal set of solutions
x1 . . .xm of S in IN2n+1, called the generating regions of the graph G, such that
the regions of this graph may be characterized as follows:

——————————————————————————————————
A vector x is a P/T-region of G if and only if x ∈ IN2n+1 and
x =

∑m
l=1 ql xl for some non-negative rational coefficients ql.

——————————————————————————————————

Example 10. Let us compute the generating regions of the graph G from exam-
ple 9. In order to enhance the readability, let x =< m0,

• a,• b,• c, a•, b•, c• >
where t1 = a, t2 = b, and t3 = c. The respective sets ∆1, ∆2, and ∆3 are the
singleton sets defined with ∆1 = ∆a = {< 1, 0, 0 >}, ∆2 = ∆b = {< 0, 1, 0 >},
and ∆3 = ∆c = {< −1,−1, 0 >}. The finite system derived from equation 11 is:

a• −• a = a• −• a
b• −• b = b• −• b
•a − a• +• b − b• = c• −• c

Two trivial equations may be dropped. The linear constraints generated from the
instances of the inequality 10, where ψL ranges over the respective semi-linear
sets Σj = {ψL |ψ ∈ Ψj} (j ∈ [1, 3]), are as follows.
Σ1 = Σa = 〈0, 0, 0〉 · (〈1, 1, 0〉+ 〈1, 0, 0〉)∗+ 〈0, 1, 0〉 · 〈1, 1, 0〉∗+ 〈0, 2, 0〉 · 〈1, 1, 0〉∗

produces the constraints
0 ≥ •a − m0

b• −• b ≥ •a − m0

2 (b• −• b) ≥ •a − m0

a• −• a ≥ 0
a• −• a + b• −• b ≥ 0
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Σ1 = Σb = 〈0, 0, 0〉 · (〈1, 1, 0〉+ 〈1, 0, 0〉)∗+ 〈0, 1, 0〉 〈1, 1, 0〉∗ adds two constraints

0 ≥ •b − m0

b• −• b ≥ •b − m0

Σ3 = Σc = 〈2, 1, 0〉 · (〈1, 1, 0〉+ 〈1, 0, 0〉)∗ brings finally one more constraint

2 (a• −• a) + b• −• b ≥ •c − m0

The generating regions computed by Chernikova’s algorithm are the following:

m0 2 1 1 1 0 2 1 0 0 2 1 1 2 1 1
•a 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0
•b 1 0 1 1 0 2 0 0 0 1 0 1 2 1 0
•c 3 1 1 1 1 3 1 2 1 0 0 0 0 0 0
a• 1 1 0 1 1 1 0 1 0 1 1 1 1 0 0
b• 0 0 1 1 0 1 0 0 1 0 0 1 1 1 0
c• 3 1 1 1 0 3 1 1 0 0 0 0 0 0 0

Many generating regions are useless, as we will show later on. ��

We claim that the P/T-net N built up from the atomic subnets N1 . . .Nm

defined by the generating regions x1 . . .xm is the best net-approximation of the
graph G in the following sense:

——————————————————————————————————
G ≤ G(N ) and ∀N ′ G ≤ G(N ′) =⇒ G(N ) ≤ G(N ′)

——————————————————————————————————

The relation G ≤ G(N ) is easily established, as G ≤ G(Nl) for all l ∈ [1, m] (by
definition of the regions of a graph) and G(N ) =

∧
l G(Nl) (by proposition 3).

The two propositions below aim at establishing the second part of the claim.

Proposition 9. ∀N ′ G ≤ G(N ′) =⇒ L(N ) ⊆ L(N ′)

Proof. Assuming the converse, let w ∈ L(N ) ∩ L(N ′) and tj ∈ T such that
w · tj ∈ L(N ) and w · tj /∈ L(N ′). Necessarily,

∑
i [w]i × (x′[n + i] − x′[i]) <

x′[j] − x′[0] for some (2n + 1)-vector x′ representing an atomic subnet of N ′.
As G ≤ G(N ′) and G(N ′) ≤ G(N ′′) for every subnet N ′′ of N ′, this atomic
subnet of N ′ is a region of G. Therefore, x′ =

∑m
l=1 ql xl for some non-negative

rational coefficients ql. Owing to the sign of the coefficients, it must be true for
some l ∈ [1, m] that

∑
i [w]i×(xl[n+i]−xl[i]) < xl[j]−xl[0]. But this inequality

entails w · tj /∈ L(Nl) and hence w · tj /∈ L(N ), a contradiction. ��

Proposition 10. If G ≤ G(N ′), then two words of L(N ) converge in G(N ′)
whenever they converge in G(N ).

Proof. Assuming the converse, let w, w′ converge in G(N ) and diverge in G(N ′).
Necessarily,

∑
i [w]i × (x′[n + i]−x′[i]) �=

∑
i [w′]i × (x′[n + i]−x′[i]) for some
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(2n + 1)-vector x′ representing an atomic subnet of N ′. Like in the proof of the
former proposition, x′ =

∑m
l=1 ql xl, and it must be true for some l ∈ [1, m] that∑

i [w]i × (xl[n + i] − xl[i]) �=
∑

i [w′]i × (xl[n + i] − xl[i]). As a consequence,
w and w′ diverge in G(Nl) and hence in G(N ), a contradiction. ��

In view of these propositions, the second part of the claim follows from the
proposition 5. Optimal net-approximations may therefore be computed in any
class of graphs (V, E, v0) spanned by languages L such that, for every tj ∈ T ,
the transition relation Tj = { (w, w′) |w ∈ L ∧ w′ ∈ L ∧ (∂w, tj , ∂w′) ∈ E }
is semi-linear (i.e. { [w, w′] | (w, w′) ∈ Tj } is semi-linear). A trivial example is
the class of finite graphs. Two other examples are the classes of labelled domains
induced by recognizable sets of Mazurkiewicz traces, or by Finite Automata with
Concurrency Relations [13]. In both cases, the language of a labelled domain G
is a regular language L, and { [w, w′] | (w, w′) ∈ Tj } = { [w, w · tj ] | (w · tj) ∈ L},
hence the transition relations are semi-linear. Optimal net-approximations may
also be computed in any class of graphs where the transition relations Tj may be
defined with finite 2-tape automata (this is the case for deterministic pushdown
graphs [42][43]), or more generally with (non-deterministic) 2-tape pushdown
automata (this particular use of 2-tape pda’s is a suggestion of ours).

3.3 A Procedure for the Decision of the Net Synthesis Problem

We show in this section that under additional conditions on G and the spanning
language L, one can decide whether G has a P/T-net generator, i.e. whether
G ∼= G(N ) where N is the net constructed in section 3.2.

Because G ≤ G(N ) and G(N ) is the least net-approximation of G, the graph
G has a P/T-net generator if and only if G(N ) ≤ G. By proposition 5, the
following two conditions are necessary and sufficient:

i) for every w ∈ L(G) and tj ∈ T , if w · tj /∈ L(G), then w · tj /∈ L(N ),
ii) every pair of words of L(N ) that diverges in G diverges in G(N ).

The condition (i) reads as L(N ) ⊆ L(G), hence when it holds, L(N ) = L(G)
because G ≤ G(N ) =⇒ L(G) ⊆ L(N ). We thus retrieve the respective conditions
(ii) and (iii) stated in proposition 6 (the atomic subnets of N are the generating
regions Nl of G, hence they are regions of L(G) and they satisfy condition (i) in
prop. 6). Recalling that L ⊆ L(G), the above conditions may be simplified to:

i’) for every w ∈ L and tj ∈ T , if w · tj /∈ L(G), then w · tj /∈ L(N ),
ii’) every pair of words of L that diverges in G diverges in G(N ).

(i’) entails (i) : Let w ∈ L(G) and w ·tj /∈ L(G). As L spans G, ∂w = ∂u for some
u in L. As w · tj /∈ L(G), u · tj /∈ L(G), hence u · tj /∈ L(N ). As G ≤ G(N ) and w
and u converge in G, they lead to the same marking of N , hence w · tj /∈ L(N ).
(ii’) entails (ii) : Let w and w′ be words of L(G) such that ∂w �= ∂w′. As L spans
G, ∂w = ∂u and ∂w′ = ∂u′ for some u and u′ in L. As ∂u �= ∂u′, u and u′ lead
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to distinct markings of N . As G ≤ G(N ), w and u lead to the same marking of
N , and similarly do w′ and u′, hence w and w′ diverge in G(N ).

In order to decide whether G ∼= G(N ), we add the following requirements on
G and its spanning language L:

1. Dis = { [w, w′] |w ∈ L ∧ w′ ∈ L ∧ ∂w �= ∂w′ } should be semi-linear,
2. Inhj = { [w] |w ∈ L∧w · tj /∈ L(G) } should be semi-linear for all j ∈ [1, m].

Assuming these requirements are fulfilled, we propose a decision procedure.
Recall that N has m atomic subnets N1 . . .Nm , viz. the generating regions
of G, represented with (2n + 1)-vectors x1 . . .xm. Thus, for any w ∈ L and
for any l ∈ [1, m], the marking reached after firing w in the atomic subnet
Nl = ({p}, T, F, p = m0) is defined with p = m0 +

∑
i [w]i × (xl[n + i] − xl[i]).

The condition (ii’) is satisfied if and only if Dis ⊆ ∪m
l=1 Disl where:

Disl = {ψ ∈ IN2n |
∑n

i=1 (ψR[i] −ψL[i]) × (xl[n + i] − xl[i]) �= 0 }
Now, for fixed l, all coefficients (xl[n + i] − xl[i]) are constants in ZZ, hence
the above formula is a Presburger formula and Disl is a semi-linear subset of
IN2n. Such subsets form an effective boolean algebra. Therefore, when Dis is
semi-linear, one can decide whether the condition (ii’) is satisfied.

The condition (i’) is satisfied if and only if, for all j ∈ [1, m],
Inhj ⊆ ∪m

l=1 Inhl
j where:

Inhl
j = {ψ ∈ INn |

∑n
i=1 ψ[i] × (xl[n + i] − xl[i]) < xl[j] − xl[0]

As Inhl
j is defined by a Presburger formula, Inhl

j is a semi-linear subset of IN2n.
Therefore, when all inhibitor sets Inhj are semi-linear, one can decide whether
the condition (i’) is satisfied.

——————————————————————————————————
The P/T-net synthesis problem is decidable in classes of graphs spanned by
languages L such that the set Dis and all sets Ψj and Inhj are semi-linear

——————————————————————————————————

Like in section 2, it may occur that G ∼= G(N ′) for some proper subnet N ′ of
N . Minimal nets N ′ may be derived from minimal subsets of generating regions
such that Dis ⊆ ∪l Disl and Inhj ⊆ ∪l Inhl

j for l ranging over indices of regions
in these subsets.

Example 11. For the graph G in the example 9, L = (ab)∗a∗ + (ab)∗b + (ab)∗bb,
and Dis = {ψ |ψL ∈ [L] ∧ψR ∈ [L] ∧ψL �= ψR} where [L] is the commutative
image of L. As L is a regular language, [L] is a semi-linear set, hence Dis is a
semi-linear set (because it is defined by a Presburger formula). Consider now the
two regions of G represented respectively by the columns 1 and 9 in the table at
the end of the example 10. The respective sets Dis1 and Dis9 are given by the
semi-linear expressions:
Dis1 = {< na, nb, nc ; n′

a, n′
b, n

′
c > |na − nb �= n′

a − n′
b }
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Dis9 = {< na, nb, nc ; n′
a, n′

b, n
′
c > |nb − nc �= n′

b − n′
c }

Clearly, for any ψ =< na, nb, nc ; n′
a, n′

b, n
′
c >∈ Dis, nc = 0 and n′

c = 0 because
L ⊆ {a, b}∗, and na �= n′

a or nb �= n′
b. If nb �= n′

b then ψ ∈ Dis9. If na �= n′
a and

nb = n′
b then ψ ∈ Dis1. Thus, Dis ⊆ Dis1 ∪ Dis9.

The respective inhibitor sets Inh1 = Inha, Inh2 = Inhb, and Inh3 = Inhc

are given by the semi-linear expressions:

Inh1 = ∅
Inh2 = 〈0, 2, 0〉 · 〈1, 1, 0〉∗
Inh3 = 〈0, 0, 0〉 · 〈1, 0, 0〉∗ + (〈0, 0, 0〉+ 〈0, 1, 0〉 + 〈0, 2, 0〉) · 〈1, 1, 0〉∗

As Inh1
2 = {〈na, nb, nc〉 |na − nb < −1}, it follows that Inh2 ⊆ Inh1

2.
Now Inh1

3={〈na, nb, nc〉 |na−nb < 1}, and Inh9
3={〈na, nb, nc〉 |nb−nc < 1}.

Clearly, 〈0, 0, 0〉 · 〈1, 0, 0〉∗ ⊆ Inh9
3, and Inh3 ⊆ Inh1

3 ∪ Inh9
3.

The graph G is therefore isomorphic to the reachable state graph of the net
built from the atomic nets defined by the respective vectorsx1 = 〈2, 0, 1, 3, 1, 0, 3〉
and x9 = 〈0, 0, 0, 1, 0, 1, 0〉. This net is shown in the figure below. ��

a cb

3

3

A well known class of graphs where the requirements 1 and 2 are fulfilled
is the class of the deterministic pushdown graphs. This assertion is not trivial
and it follows from the results establihed by Sénizergues in his unpublished work
[43]. Therefore, the general decision procedure presented in this section may be
considered as an extension of the specific procedure proposed in [19] for the
deterministic pushdown graphs. This extension owes much to Sénizergues’s view
of graphs with an automatic structure. Building on his ideas, a wide class of
graphs where the P/T-net synthesis problem is decidable was proposed in [7].

4 Conclusion

In this paper, we focussed on the problem whether a language or an infinite graph
may be realized exactly by an unbounded P/T-net, a problem which was ignored
in [6]. We have shown that this problem is decidable under strong requirements
of semi-linearity, met by deterministic pushdown languages and graphs, and by
graphs in wider families. We have shown that the exact net-realization problem
is undecidable for pushdown languages and for HMSC languages. These nega-
tive results, and the strong constraints imposed for deciding on the synthesis
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problem when this is possible, indicate that approximate net-realizations of lan-
guages or graphs is often the best one can expect. We have shown that (least)
over-approximations by nets may be computed under mild assumptions of semi-
linearity on languages or graphs. It was argued that such approximations are
particularly adequate in the context of supervisory control problems.

It might be objected that the procedures we have proposed are too limited,
since the P/T-nets produced by these procedures have always semi-linear sets of
reachable markings. We are conscious of this limitation, but we do not see how
it could be removed consistently with our approach.

If one agrees that the exact realization of languages or graphs by nets is not
the central problem, there are two ways for further research. One is to search
for approximate realizations of languages or graphs by nets, as was proposed
in this paper. A second way is to change the data of the P/T-net synthesis
problem, by taking sets of graphs or languages as inputs, in place of individuals.
Then, the problem is to search for a net N such that G(N ) or L(N ) belongs to
the given set. This problem has been solved in [7] for sets of graphs defined by
path-automatic specifications, a combination of modal transition systems and
automatic graphs. We are currently working on a similar problem in the context
of languages.
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