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Abstract. A constraint is a piece of (partial) information on the values of the
variables of a system. Concurrent constraint programming (ccp) is a model of
concurrency in which agents (also called processes) interact by telling and ask-
ing information (constraints) to and from a shared store (a constraint). Timed (or
temporal) ccp (tccp) extends ccp by agents evolving over time. A distinguishing
feature of tccp, is that it combines in one framework an operational and alge-
braic view from process algebra with a declarative view based upon temporal
logic. Tccp has been widely used to specify, analyze and program reactive sys-
tems.
This note provides a comprehensive introduction to the background for and cen-
tral notions from the theory of tccp. Furthermore, it surveys recent results on a
particular tccp calculus, ntcc , and it provides a classification of the expressive
power of various tccp languages.

1 Introduction

Saraswat’s concurrent constraint programming (ccp) [45] is a well-established formal-
ism for concurrency based upon the shared-variables communication model where in-
teraction arises via constraint-imposition over shared-variables. In ccp, agents can in-
teract by adding (or telling) partial information to a medium, a so-called store. Partial
information is represented by constraints (i.e., first-order formulae such as x > 42) on
the shared variables of the system. The other way in which agents can interact is by
asking partial information to the store. This provides the synchronization mechanism of
the model; asking agents are suspended until there is enough information in the store to
answer their query.

As other models of concurrency, ccp has been extended to capture aspects such as
mobility [8,12,37], stochastic behavior [13], and most prominently time [5,14,40,42].
Timed ccp extends ccp by allowing agents to be constrained by time requirements.

Modal extensions of logic study time in logic reasoning, and in the same way mature
models of concurrency have been extended with explicit notions of time. For instance,
neither Milner’s CCS [25], Hoare’s CSP [19], nor Petri Nets [33], in their original form,
were concerned explicitly with temporal behavior, but they all have been extended to
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incorporate an explicit notion of time, e.g. Timed CCS [53], Timed CSP [35], and Timed
Petri Nets [54].

A distinctive feature of timed ccp is that it combines in one framework an oper-
ational and algebraic view based upon process calculi with a declarative view based
upon temporal logic. So, processes can be treated as computing agents, algebraic terms
and temporal formulae, and the combination in one framework of the alternative views
of processes, allows timed ccp to benefit from the large body of techniques of well
established theories.

Furthermore, timed ccp allows processes to be (1) expressed using a vocabulary
and concepts appropriate to the specific domain (of some application under consider-
ation), and (2) read and understood as temporal logic specifications. This feature is
suitable for timed concurrent systems, since they often involve specific domains (e.g.,
controllers, databases, reservation systems) and have time-constraints specifying their
behavior. Several timed extensions of ccp have been developed as settings for the mod-
eling, programming and specification of timed systems [5, 14, 40, 43].

Organization. This note provides an overview of timed ccp with its basic background
and various approaches explored in the literature. Furthermore, the note offers an intro-
duction to a particular timed ccp process calculus called ntcc . In Sections 2 and 3 we
give a basic background on ccp and timed ccp. Section 4 is devoted to present the devel-
opments of the timed ccp calculus ntcc [30]. In Section 5 we describe in detail several
timed ccp languages and provide a classification of their expressive power. Finally, in
Section 6 we discuss briefly some related and future work on timed ccp.

2 Background: Concurrent Constraint Programming

In his seminal PhD thesis [39], Saraswat proposed concurrent constraint programming
as a model of concurrency based on the shared-variables communication model and a
few primitive ideas taking root in logic. As informally described in the next section, the
ccp model elegantly combines logic concepts and concurrency mechanisms.

Concurrent constraint programming traces its origins back to Montanari’s pioneer-
ing work [28] leading to constraint programming and Shapiro’s concurrent logic pro-
gramming [46]. The ccp model has received a significant theoretical and implementa-
tional attention: Saraswat, Rinard and Panangaden [45] as well as De Boer, Di Pierro
and Palamidessi [6] gave fixed-point denotational semantics to ccp, whilst Montanari
and Rossi [36] gave a (true-concurrent) Petri-Net semantics (using the formalism of
contextual nets); De Boer, Gabrielli et al [7] developed an inference system for proving
properties of ccp processes; Smolka’s Oz [48] as well as Haridi and Janson’s AKL [17]
programming languages are built upon ccp ideas.

The ccp Model. A concurrent system is specified in the ccp model in terms of con-
straints over the variables of the system. A constraint is a first-order formula represent-
ing partial information about the values of variables. As an example, for a system with
variables x and y taking natural numbers as values, the constraint x + y > 16 specifies
possible values for x and y (those satisfying the inequation). The ccp model is parame-
terized by a constraint system, which specifies the constraints of relevance for the kind
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of system under consideration, and an entailment relation |= between constraints (e.g,
x + y > 16 |= x + y > 0).

During a ccp computation, the state of the system is specified by an entity called
the store in which information about the variables of the system resides. The store is
represented as a constraint, and thus it may provide only partial information about the
variables. This differs fundamentally from the traditional view of a store based on the
Von Neumann memory model, in which each variable is assigned a uniquely determined
value (e.g., x = 16 and y = 7), rather than a set of possible values.

The notion of store in ccp suggests a model of concurrency with a central memory.
This is, however, only an abstraction which simplifies the presentation of the model. The
store may be distributed in several sites according to the sharing of variables (see [39]
for further discussions about this matter). Conceptually, the store in ccp is the medium
through which agents interact with each other.

A ccp process can update the state of the system only by adding (or telling) informa-
tion to the store. This is represented as the (logical) conjunction of the store representing
the previous state and the constraint being added. Hence, updating does not change the
values of the variables as such, but constrains further some of the previously possible
values.

Furthermore, ccp processes can synchronize by querying (or asking) information
from the store. Asking is blocked until there is enough information in the store to en-
tail (i.e., answer positively) the query, i.e. the ask operation determines whether the
constraint representing the store entails the query.

A ccp computation terminates whenever it reaches a point, called a resting or a
quiescent point, in which no more information can be added to the store. The output of
the computation is defined to be the final store, also called the quiescent store.

Example 1. Consider the simple ccp scenario illustrated in Figure 1. We have four
agents (or processes) wishing to interact through an initially empty store. Let us name
them, starting from the upper leftmost agent in a clockwise fashion, A1, A2, A3 and A4,
respectively.

In this scenario, A1 may move first and tell the others through the store the (par-
tial) information that the temperature value is greater than 42 degrees. This causes the
addition of the item “temperature>42” to the previously empty store.

Now A2 may ask whether the temperature is exactly 50 degrees, and if so it wishes
to execute a process P . From the current information in the store, however, the exact
value of the temperature can not be entailed. Hence, the agent A2 is blocked, and so is
the agent A3 since from the store it cannot be determined either whether the temperature
is between 0 and 100 degrees.

However, A4 may tell the information that the temperature is less than 70 degrees.
The store becomes “temperature > 42 ∧ temperature < 70”, and now process A3 can
execute Q, since its query is entailed by the information in the store . The 2 agent A2 is
doomed to be blocked forever unless Q adds enough information to the store to entail
its query. ��

In the spirit of process calculi, the language of processes in the ccp model is given by
a small number of primitive operators or combinators. A typical ccp process language
contains the following operators:
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temperature=50?.Ptemperature>42

temperature<70 0<temperature<100?.Q

S T O R  E
(MEDIUM)

Fig. 1. A simple ccp scenario

– A tell operator, telling constraints (e.g., agent A1 above).
– An ask operator, prefixing another process, its continuation (e.g. the agent A2

above).
– Parallel composition, combining processes concurrently. For example the scenario

in Figure 1 can be specified as the parallel composition of A1, A2, A3 and A4.
– Hiding (also called restriction or locality), introducing local variables, thus restrict-

ing the interface through which a process can interact with others.
– Summation, expressing a nondeterministic combination of agents to allow alternate

courses of action.
– Recursion, defining infinite behavior.

It is worth pointing out that without summation, the ccp model is deterministic, in
the sense that the final store is always the same, independently of the execution order
(scheduling) of the parallel components [45].

3 Timed Concurrent Constraint Programming

The first timed ccp model was introduced by Saraswat et al [40] as an extension of ccp
aimed at programming and modeling timed, reactive systems. This tcc model elegantly
combines ccp with ideas from the paradigms of Synchronous Languages [2, 15].

The tcc model takes the view of reactive computation as proceeding determinis-
tically in discrete time units (or time intervals). In other words, time is conceptually
divided into discrete intervals. In each time interval, a deterministic ccp process re-
ceives a stimulus (i.e. a constraint) from the environment, it executes with this stimulus
as the initial store, and when it reaches its resting point, it responds to the environment
with the final store. Furthermore, the resting point determines a residual process, which
is then executed in the next time interval.

This view of reactive computation is particularly appropriate for programming reac-
tive systems such as robotic devices, micro-controllers, databases and reservation sys-
tems. These systems typically operate in a cyclic fashion; in each cycle they receive and
input from the environment, compute on this input, and then return the corresponding
output to the environment.

The tcc model extends the standard ccp with fundamental operations for program-
ming reactive systems, e.g. delay and time-out operations. The delay operation forces
the execution of a process to be postponed to the next time interval. The time-out (or
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weak pre-emption) operation waits during the current time interval for a given piece of
information to be present and if it is not, triggers a process in the next time interval.

In spite of its simplicity, the tcc extension to ccp is far-reaching. Many interesting
temporal constructs can be expressed, see [40] for details, As an example, tcc allows
processes to be “clocked” by other processes. This provides meaningful pre-emption
constructs and the ability of defining multiple forms of time instead of only having a
unique global clock.

The tcc model has attracted a lot of attention recently. Several extensions have been
introduced and studied in the literature. One example can be found in [43], adding a
notion of strong pre-emption: the time-out operations can trigger activity in the current
time interval. Other extensions of tcc have been proposed in [14], in which processes
can evolve continuously as well as discretely.

The tccp framework, introduced in [5] by Gabrielli et al, is a fundamental repre-
sentative model of nondeterministic timed ccp. In [5] the authors advocate the need of
nondeterminism in the context of timed ccp. In fact, they use tccp to model interesting
applications involving nondeterministic timed systems (see [5]).

It would be hard to introduce all the tcc extensions in detail, and hence we focus
in the following on the ntcc calculus, which is a generalization of the tcc model in-
troduced in [30] by Palamidessi and the present authors. The calculus is built upon
few basic ideas but it captures several aspects of timed systems. As tcc, ntcc can
model unit delays, time-outs, pre-emption and synchrony. Additionally, it can model
unbounded but finite delays, bounded eventuality, asynchrony and nondeterminism. The
applicability of the calculus has been illustrated with several examples of discrete-time
systems involving , mutable data structures, robotic devices, multi-agent systems and
music applications [38].

The major difference between tccp model from [5] and ntcc is that the former
extends the original ccp while the latter extends the tcc model. More precisely, in tccp
the information about the store is carried through the time units, thus the semantic
setting is completely different. The notion of time is also different; in tccp each time
unit is identified with the time needed to ask and tell information to the store. As for
the constructs, unlike ntcc, tccp provides for arbitrary recursion and does not have an
operator for specifying unbounded but finite delays.

4 The ntcc Process Calculus

This section gives a formal introduction to the ntcc model. We introduce the syntax
and the semantics of the ntcc process language, and illustrate the expressiveness by
modeling robotic devices. Furthermore, we shall present some of the reasoning tech-
niques provided by ntcc focusing on

1. Behavioural equivalences, which are characterized operationally, relating process
behavior much like the behavioral equivalences for traditional process calculi (e.g.,
bisimilarity and trace-equivalence).

2. A denotational semantics which interprets a given process as the set of sequences
of input/output behaviours it can potentially exhibit while interacting with arbitrary
environments.
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3. A process logic expressing specifications of behaviors of processes, and an associ-
ated inference system providing proofs of processes fulfilling specifications.

Informal Description of ntcc Processes

We shall begin with an informal description of the process calculus with examples.
These examples are also meant to give a flavour of the range of application of ntcc .

As for the tcc model, the ntcc model is parameterized by a constraint system.
A constraint system provides a signature from which syntactically denotable objects
called constraints can be constructed, and an entailment relation |= specifying inter-
dependencies between these constraints.

We can set up the notion of constraint system by using first-order logic. Let us
suppose that Σ is a signature (i.e., a set of constants, functions and predicate symbols)
and that ∆ is a consistent first-order theory over Σ (i.e., a set of sentences over Σ
having at least one model). Constraints can be thought of as first-order formulae over
Σ. We can then decree that c |= d if the implication c ⇒ d is valid in ∆. This gives us
a simple and general formalization of the notion of constraint system as a pair (Σ, ∆).

In the examples below we shall assume that, in the underlying constraint system,
Σ is the set {=, <, 0, 1 . . .} and ∆ is the set of sentences over Σ valid for the natural
numbers.

We now proceed to describe with examples the basic ideas underlying the behavior
of ntcc processes. For this purpose we shall model simple behavior of controllers such
as Programmable Logic Controllers (PLC’s) and RCX bricks.

PLC’s are often used in timed systems of industrial applications [9], whilst RCX
bricks are mainly used to construct autonomous robotic devices [21]. These controllers
have external input and output ports. One can attach, for example, sensors of light,
touch or temperature to the input ports, and actuators like motors, lights or alarms to
the output ports. Typically PLC’s and RCX bricks operate in a cyclic fashion. Each
cycle consists of receiving an input from the environment, computing on this input, and
returning the corresponding output to the environment.

Our processes will operate similarly. Time is conceptually divided into discrete in-
tervals (or time units). In a particular time interval, a process Pi receives a stimulus
ci from the environment. The stimulus is some piece of information, i.e., a constraint.
The process Pi executes with this stimulus as the initial store, and when it reaches its
resting point (i.e., a point in which no further computation is possible), it responds to
the environment with a resulting store di. Also the resting point determines a residual
process Pi+1, which is then executed in the next time interval.

The following sequence illustrates the stimulus-response interactions between an
environment that inputs c1, c2, . . . and a process that outputs d1, d2, . . . on such inputs
as described above.

P1
(c1,d1)====⇒ P2

(c2,d2)====⇒ . . . Pi
(ci,di)====⇒ Pi+1

(ci+1,di+1)======⇒ . . . (1)

Telling and Asking Information. The ntcc processes communicate with each other
by posting and reading partial information about the variables of system they model.
The basic actions for communication provide the telling and asking of information. A
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tell action adds a piece of information to the common store. An ask action queries the
store to decide whether a given piece of information is present. The store is a constra-
int itself. In this way, addition of information corresponds to logical conjunction, and
determining the presence of information corresponds to logical entailment.

The tell and ask processes have the syntactic forms respectively

tell(c) and when c do P. (2)

The only action of a tell process tell(c) is to add, within a time unit, c to the current
store d. The store then becomes d ∧ c. The addition of c is carried out even if the store
becomes inconsistent, i.e., (d ∧ c) = false, in which case we can think of such an
addition as generating a failure.

Example 2. Suppose that d = (motor1_speed > motor2_speed). Intuitively, d
tells us that the speed of motor one is greater than that of motor two. It does not tell us
the specific speed values. The execution in store d of process

tell(motor2_speed > 10)

causes the store to become (motor1_speed > motor2_speed > 10) in the current
time interval, thus increasing the information we know about the system.

Notice that in the underlying constraint system d |= motor1_speed > 0, there-
fore the process

tell(motor1_speed = 0)

in store d causes a failure. ��

The process when c do P performs the action of asking c. If during the current
time interval c can eventually be inferred from the store d (i.e., d |= c ) then P is
executed within the same time interval. Otherwise, when c do P is precluded from
execution (i.e., it becomes permanently inactive).

Example 3. Suppose that d = (motor1_speed > motor2_speed) is the store.
The process

P = when motor1_speed > 0 do Q

will execute Q in the current time interval since d |= motor1_speed > 0, by contrast
the process

P ′ = when motor1_speed > 10 do Q

will not execute Q, unless more information is added to the store during the current
time interval entailing motor1_speed > 10.

��

Nondeterminism. As argued above, partial information allows us to model behavior
for alternative values of variables. In concurrent systems it is often convenient to model
behavior for alternative courses of action, i.e., nondeterministic behavior.
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We generalize the processes of the form when c do P described above to guarded-
choice summation processes of the form

∑

i∈I

when ci do Pi (3)

where I is a finite set of indices. The expression
∑

i∈I when ci do Pi represents
a process that, in the current time interval, nondeterministically chooses a process
Pj (j ∈ I) whose corresponding constraint cj is entailed by the store. The chosen
alternative, if any, precludes the others. If no choice is possible during the current time
unit, all the alternatives are precluded from execution. In the following example we
shall use “+” for binary summations.

Example 4. Often RCX programs operate in a set of simple stimulus-response rules of
the form IF E THEN C. The expression E is a condition typically depending on the
sensor variables, and C is a command, typically an assignment. In [11] these programs
respond to the environment by choosing a rule whose condition is met and executing its
command.

If we wish to abstract from the particular implementation of the mechanism that
chooses the rule, we can model the execution of these programs by using the summation
process. For example, the program operating in the set

{
(IF sensor1 > 0 THEN motor1_speed := 2),
(IF sensor2 > 99 THEN motor1_speed := 0)

}

corresponds to the summation process

P =
when sensor1 > 0 do tell(motor1_speed = 2)
+
when sensor2 > 99 do tell(motor1_speed = 0).

In the store d = (sensor1 > 10), the process P causes the store to become
d ∧ (motor1_speed = 2) since tell(motor1_speed = 2) is chosen for execution
and the other alternative is precluded. In the store true, P cannot add any information.
In the store e = (sensor1 = 10 ∧ sensor2 = 100), P causes the store to become
either e ∧ (motor1_speed = 2) or e ∧ (motor1_speed = 0). ��
Parallel Composition. Given P and Q we denote their parallel composition by the
process

P ‖ Q (4)

In one time unit processes P and Q operate concurrently, “communicating” via the
common store by telling and asking information.

Example 5. Let P be defined as in Example 4 and

Q =
when motor1_speed = 0 do tell(motor2_speed = 0)
+
when motor2_speed = 0 do tell(motor1_speed = 0).

Intuitively Q turns off one motor if the other is detected to be off. The parallel
composition P ‖ Q in the store d = (sensor2 > 100) will, in one time unit, cause
the store to become d ∧ (motor1_speed = motor2_speed = 0). ��
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Local Behavior. Most process calculi have a construct to restrict the interface through
which processes can interact with each other, thus providing for the modeling of local
(or hidden) behavior. We introduce processes of the form

(localx)P (5)

The process (local x)P declares a variable x, private to P . This process behaves
like P , except that all the information about x produced by P is hidden from external
processes and the information about x produced by other external processes is hidden
from P .

Example 6. In modeling RCX or PLC’s one uses “global” variables to represent ports
(e.g., sensor and motors). However, one often also uses variables, which represent some
local (or private) computational data.

Suppose that R is a given process modeling some controller task. Furthermore,
suppose that R uses a variable z, which is set at random to a value v ∈ {0, 1} in the
process P , i.e.

P = (
∑

v∈{0,1}
when true do tell(z = v)) ‖ R

representing the behavior of R under P ’s random assignment of z.
We may want to declare z in P to be local since it does not represent an input or

output port. Moreover, notice that if we need to run two copies of P , i.e., process P ‖ P ,
a failure may arise as each copy can assign a different value to z. Therefore, the behavior
of R under the random assignment to z can be best represented by P ′ = (local z)P .
In fact, if we run two copies of P ′, no failure can arise from the random assignment to
the z’s as they are private to each P ′. ��

The processes hitherto described generate activity within the current time interval
only. We now turn to constructs that can generate activity in future time intervals.

Unit Delays and Time-Outs. As in the Synchronous Languages [2] we have constructs
whose actions can delay the execution of processes. These constructs are needed to
model time dependency between actions, e.g., actions depending on preceding actions.

The unit-delay operators have the form

nextP and unless c nextP (6)

The process nextP represents the activation of P in the next time interval. The
process unless c nextP is similar, but P will be activated only if c cannot be inferred
from the resulting (or final) store d in the current time interval, i.e., d �|= c. The “unless”
processes add time-outs to the calculus, i.e., they wait during the current time interval
for a piece of information c to be present and if it is not, they trigger activity in the next
time interval.

Notice that unless c next P is not equivalent to when ¬c do nextP since d �|= c
does not necessarily imply d |= ¬c. Notice also that Q = unless false nextP is
not the same as R = nextP , since R (unlike Q) always activates P in the next time
interval, even if the store entails false.
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Example 7. Let us consider the following process:

P = when false do next tell(motor1_speed = motor2_speed = 0).

P turns the motors off by decreeing that motor1_speed = motor2_speed = 0 in
the next time interval if a failure takes place in the current time interval. Similarly, the
process

unless false next (tell(motor1_speed > 0) ‖ tell(motor2_speed > 0))

makes the motors move at some speed in the next time unit, unless a failure takes place
in the current time interval. ��

Asynchrony. We now introduce a construct that, unlike the previous ones, can describe
arbitrary (finite) delays. The importance of this construct is that it allows us to model
asynchronous behavior across the time intervals.

We use the operator “�” which corresponds to the unbounded but finite delay oper-
ator for synchronous CCS [26]. The process

� P (7)

represents an arbitrary long but finite delay for the activation of P . Thus, � tell(c) can
be viewed as a message c that is eventually delivered but there is no upper bound on the
delivery time.

Example 8. Let S = � tell(malfunction(motor1_status)). The process S can
be used to specify that motor1, at some unpredictable point in time, is doomed to
malfunction ��

Infinite Behavior. Finally, we need a construct to define infinite behavior. We shall use
the operator “!” as a delayed version of the replication operator for the π−calculus [27].
Given a process P , the process

! P (8)

represents P ‖ (nextP ) ‖ (next nextP ) ‖ · · · ‖! P , i.e., unboundedly many copies
of P , but one at a time. The process ! P executes P in one time unit and persists in the
next time unit.

Example 9. The process R below repeatedly checks the state of motor1. If a malfunc-
tion is reported, R tells that motor1 must be turned off.

R = !when malfunction(motor1_status) do tell(motor1_speed = 0)

Thus, R ‖ S with S = � tell(malfunction(motor1_status)) (Example 8) even-
tually tells that motor1 is turned off. ��
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Some Derived Forms

We have informally introduced the basic process constructs of ntcc and illustrated
how they can be used to model or specify system behavior. In this section we shall
illustrate how they can be used to obtain some convenient derived constructs.

In the following we shall omit “when true do” if no confusion arises. The
“blind-choice” process

∑
i∈I when true do Pi, for example, can be written as∑

i∈I Pi. We shall use
∏

i∈I Pi, where I is finite, to denote the parallel composition of
all the Pi’s. We use nextn(P ) as an abbreviation for next(next(. . . (nextP ) . . . )),
where next is repeated n times.

Inactivity. The process doing nothing whatsoever, skip can be defined as an abbrevia-
tion of the empty summation

∑
i∈∅ Pi. This process corresponds to the inactive proce-

sses 0 of CCS and STOP of CSP. We should expect the behavior of P ‖ skip to be
the same as that of P under any reasonable notion of behavioral equivalence.

Abortion. Another useful construct is the process abort which is somehow to the
opposite extreme of skip. Whilst having skip in a system causes no change whatso-
ever, having abort can make the whole system fail. Hence abort corresponds to the
CHAOS operator in CSP. In Section 4 we mentioned that a tell process causes a failure,
at the current time interval, if it leaves the store inconsistent. Therefore, we can define
abort as ! tell(false), i.e., the process that once activated causes a constant fail-
ure. Therefore, any reasonable notion of behavioral equivalence should not distinguish
between P ‖ abort and abort.

Asynchronous Parallel Composition. Notice that in P ‖ Q both P and Q are forced
to move in the current time unit, thus our parallel composition can be regarded as being
a synchronous operator. There are situations where an asynchronous version of “‖” is
desirable. For example, modeling the interaction of several controllers operating con-
currently where some of them could be faster or slower than the others at responding to
their environment.

By using the star operator we can define a (fair) asynchronous parallel composition
P | Q as

(P ‖ � Q) + (� P ‖ Q)

A move of P | Q is either one of P or one of Q (or both). Moreover, both P and Q
are eventually executed (i.e. a fair execution of P | Q). This process corresponds to the
asynchronous parallel operator described in [26].

We should expect operator “|” to enjoy properties of parallel composition. Namely,
we should expect P | Q to be the same as Q | P and P | (Q | R) to be the same
as (P | Q) | R. Unlike in P ‖ skip, however, in P | skip the execution of P may
be arbitrary postponed, therefore we may want to distinguish between P | skip and
P . Similarly, unlike in P ‖ abort, in P | abort the execution of abort may be
arbitrarily postponed.

Bounded Eventuality and Invariance. We may want to specify that a certain behavior
is exhibited within a certain number of time units, i.e., bounded eventuality, or during a
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certain number of time units, i.e., bounded invariance. An example of bounded eventu-
ality is “the light must be switched off within the next ten time units” and an example
of bounded invariance is “the motor should not be turned on during the next sixty time
units”.

The kind of behavior described above can be specified by using the bounded ver-
sions of ! P and � P , which can be derived using summation and parallel composition
in the obvious way. We define !IP and �IP , where I is a closed interval of the natural
numbers, as an abbreviation for

∏

i∈I

nextiP and
∑

i∈I

nextiP

respectively. Intuitively, �[m,n]P means that P is eventually active between the next m
and m + n time units, while ![m,n]P means that P is always active between the next m
and m + n time units.

4.1 The Operational Semantics of ntcc

Following the informal description of ntcc above, we now proceed with a formal def-
inition. We shall begin by formalizing the notion of constraint system and the syntax
of ntcc . We shall then give meaning to the ntcc processes by means of an oper-
ational semantics. The semantics, which resembles the reduction semantics of the π-
calculus [27], provides internal and external transitions describing process evolutions.
The internal transitions describe evolutions within a time unit, and they are considered
to be unobservable. The external transitions describe evolution across the time units,
and they are considered to be observable.

Constraint Systems. For our purposes it will suffice to consider the notion of constraint
system based on first-order logic, following e.g. [47].

Definition 1 (Constraint System). A constraint system (cs) is a pair (Σ, ∆) where Σ
is a signature of function and predicate symbols, and ∆ is a decidable theory over Σ
(i.e., a decidable set of sentences over Σ with a least one model).

Given a constraint system (Σ, ∆), let (Σ,V ,S) be its underlying first-order lan-
guage, where V is a countable set of variables x, y, . . ., and S is the set of logic sym-
bols ¬,∧,∨,⇒, ∃, ∀,true and false. Constraints c, d, . . . are formulae over this
first-order language. We say that c entails d in ∆, written c |= d, iff c ⇒ d is true in
all models of ∆. The relation |=, which is decidable by the definition of ∆, induces an
equivalence ≈ given by c ≈ d iff c |= d and d |= c.

Convention 1 Henceforth, C denotes the set of constraints modulo ≈ under consider-
ation in the underlying constraint system.

Let us now give some examples of constraint systems. The classical example is the
Herbrand constraint system [39].

Definition 2 (Herbrand Constraint System). The Herbrand constraint system is such
that:
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– Σ is a set with infinitely many function symbols of each arity and equality =.
– ∆ is given by Clark’s Equality Theory with the schemas

f(x1, . . . , xn)=f(y1, . . . , yn) ⇒ x1 = y1 ∧ . . . ∧ xn = yn

f(x1, . . . , xn)=g(y1, . . . , yn) ⇒ false, if f, g are distinct symbols
x = f(. . . x . . .) ⇒ false .

The importance of the Herbrand constraint system is that it underlies conventional
logic programming and many first-order theorem provers. Its value lies in the Herbrand
Theorem, which reduces the problem of checking unsatisfiability of a first-order for-
mula to the unsatisfiability of a quantifier-free formula interpreted over finite trees.

Another widely used constraint system is the finite-domain constraint system FD
defined in [18]. In FD variables are assumed to range over finite domains and, in ad-
dition to equality, we may have predicates that restrict the range of a variable to some
finite set. The following is a simplified finite-domain constraint system.

Definition 3 (A Finite-Domain Constraint System). Let n > 0. Define FD[n] as the
constraint system such that:

– Σ is given by the constants symbols 0, 1, ...., n − 1 and the equality =.
– ∆ is given by the axioms of equational theory x = x, x = y ⇒ y = x, x = y∧y =

z ⇒ x = z, and v = w ⇒ false for each two different constants v, w in Σ.

Intuitively FD[n] provides a theory of variables ranging over a finite domain of
values {0, . . . , n − 1} with syntactic equality over these values.

The following is a somewhat more complex finite-domain constraint system.

Definition 4 (Modular Arithmetic Constraint System). Let n > 0. Define A[n] as
the constraint system such that:

– Σ is given by {0, 1, ...., n− 1,succ,pred, +,×, =, >}.
– ∆ is the set of sentences valid in arithmetic modulo n.

The intended meaning of A[n] is the natural numbers interpreted as in arithmetic
modulo n. Due to the familiar operations it provides, we shall often assume that A[n]
is the underlying constraint system in our examples and applications.

Other examples of constraint systems include: Rational intervals, Enumerated type,
the Kahn constraint system and the Gentzen constraint system (see [45] and [39] for
details).

Process Syntax and Semantics

Following the informal description above, the process constructions in the ntcc calcu-
lus are given by the following syntax:

Definition (Processes, Proc). Processes P , Q, . . .∈ Proc are built from constraints
c ∈ C and variables x ∈ V in the underlying constraint system by:

P, Q, . . . ::= tell(c) | ∑
i∈I

when ci do Pi | P ‖ Q | (localx)P

| nextP | unless c nextP | � P | ! P
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The informal semantic meaning provided above of the constructs is formalized in
terms of the following structural operational semantics (SOS) of ntcc . This semantics
defines transitions between process-store configurations of the form 〈P, c〉, with stores
represented as constraints and processes quotiented by the congruence ≡ below.

Let us define precisely what we mean by the term “congruence” of processes, a key
concept in the theory of process algebra. First, we need to introduce the standard notion
of process context. Informally speaking, a process context is a process expression with
a single hole, represented by [·], such that placing a process in the hole yields a well-
formed process. More precisely,

Definition 5 (Process Context). Process contexts C are given by the syntax

C ::= [·] | when c do C + M | C ‖ P | P ‖ C |(localx)C
| nextC | unless c nextC | � C | ! C

where M stands for summations. The process C[Q] results from the textual substitution
of the hole [·] in C with Q.

An equivalence relation is a congruence if it respects all contexts:

Definition 6 (Process Congruence). An equivalence relation ∼= on processes is said to
be a process congruence iff for all contexts C, P ∼= Q implies C[P ] ∼= C[Q].

We can now introduce the structural congruence ≡. Intuitively, the relation ≡ de-
scribes irrelevant syntactic aspects of processes. It states that (Proc/ ≡, ‖, skip) is a
commutative monoid.

Definition 7 (Structural Congruence). Let ≡ be the smallest congruence over proce-
sses satisfying the following axioms:

1. P ‖ skip ≡ P
2. P ‖ Q ≡ Q ‖ P
3. P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R.

We extend ≡ to configurations by decreeing that 〈P, c〉 ≡ 〈Q, c〉 iff P ≡ Q.

Convention 2 Following standard notation, we extend the syntax with a construct
local (x, d) in P , to represent the evolution of a process of the form localx inQ,
where d is the local information (or store) produced during this evolution. Initially
d is “empty”, so we regard localx inP as local (x,true) in P .

The transitions of the SOS are given by the relations−→ and =⇒ defined in Table 1.
The internal transition 〈P, d〉 −→ 〈P ′, d′〉 should be read as “P with store d reduces, in

one internal step, to P ′ with store d′ ”. The observable transition P
(c,d)

====⇒ R should
be read as “P on input c, reduces in one time unit to R and outputs d”.

Intuitively, the observable reduction is obtained from a sequence of internal reduc-
tions starting in P with initial store c and terminating in a process Q with final store
d. The process R, which is the one to be executed in the next time interval (or time
unit), is obtained by removing from Q what was meant to be executed only during the
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Table 1. Rules for internal reduction −→ (upper part) and observable reduction =⇒ (lower part).
γ �−→ in OBS holds iff for no γ′, γ −→ γ′. ≡ and F are given in Definitions 7 and 8.

TELL
〈tell(c), d〉 −→ 〈skip, d ∧ c〉

SUM
d |= cj j ∈ I

〈∑
i∈I when ci do Pi, d

〉 −→ 〈Pj , d〉

PAR
〈P, c〉 −→ 〈

P ′, d
〉

〈P ‖ Q, c〉 −→ 〈
P ′ ‖ Q, d

〉 LOC
〈P, c ∧ ∃xd〉 −→ 〈

P ′, c′
〉

〈(localx, c) P, d〉 −→ 〈
(localx, c′) P ′, d ∧ ∃xc′

〉

UNL
〈unless c nextP, d〉 −→ 〈skip, d〉

if d |= c

REP
〈! P, d〉 −→ 〈P ‖ next ! P, d〉

STAR
〈� P, d〉 −→ 〈next nP, d〉

if n ≥ 0

STR
γ1 −→ γ2

γ′
1 −→ γ′

2

if γ1 ≡ γ′
1 and γ2 ≡ γ′

2

OBS
〈P, c〉 −→∗ 〈Q, d〉 �−→

P
(c,d)
====⇒ R

if R ≡ F (Q)

current time interval. Notice that the store d is not transferred to the next time interval,
i.e. information in d can only be transfered to the next time unit by P itself.

Most of the rules in Table 1 should be straightforward from the informal description
of the intended semantics given above. For detailed comments we refer to [30], and
here we only comment on two of the rules: the rule for local variables LOC and OBS
(covering the seemingly missing rules for “next” and “unless” processes).

Consider the process

Q = (local x, c)P

in Rule LOC. The global store is d and the local store is c. We distinguish between
the external (corresponding to Q) and the internal point of view (corresponding to P ).
From the internal point of view, the information about x, possibly appearing in the
“global” store d, cannot be observed. Thus, before reducing P we should first hide the
information about x that Q may have in d. We can do this by existentially quantifying
x in d. Similarly, from the external point of view, the observable information about
x that the reduction of internal agent P may produce (i.e., c′) cannot be observed.
Thus we hide it by existentially quantifying x in c′ before adding it to the global store
corresponding to the evolution of Q. Additionally, we should make c′ the new private
store of the evolution of the internal process for its future reductions.

Rule OBS says that an observable transition from P labeled with (c, d) is obtained
from a terminating sequence of internal transitions from 〈P, c〉 to a 〈Q, d〉. The process
R to be executed in the next time interval is equivalent to F (Q) (the “future” of Q).
F (Q) is obtained by removing from Q summations that did not trigger activity and any
local information which has been stored in Q, and by “unfolding” the sub-terms within
“next” and “unless” expressions.
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Definition 8 (Future Function). Let F : Proc ⇀ Proc be defined by

F (Q) =






skip if Q =
∑

i∈I when ci do Qi

F (Q1) ‖ F (Q2) if Q = Q1 ‖ Q2

(localx)F (R) if Q = (local x, c)R
R if Q = nextR or Q = unless c nextR

Remark 1. F need no to be total since whenever we need to apply F to a Q (OBS in Table 1),
every tell(c), � R and ! R in Q will occur within a “next” or “unless” expression.

Example 10. Recall Example 9. Processes R and S were defined as:

R = !when c do tell(e)
S = � tell(c)

where c = malfunction(motor1_status) and e = (motor1_speed = 0).
Let P = R ‖ S, S′ = tell(c) and R′ = when c do tell(e). One can verify

that for an arbitrary m > 0, the following is a valid sequence of observable transitions
starting with P :

R ‖ S
(c,c∧e)
====⇒ R ‖ next mS′ (true,true)

====⇒ R ‖ next m−1S′ (true,true)
====⇒ . . .

. . .
(true,true)

====⇒ R ‖ S′ (true,c∧e)
====⇒ R

(true,true)
====⇒ . . . .

Intuitively, in the first time interval the environment tells c (i.e., c is given as input
to P ) thus R′, which is created by !R, tells e. The output is then c ∧ e. Furthermore, S
creates an S′ which is to be triggered in an arbitrary number of time units m + 1. In
the following time units the environment does not provide any input whatsoever. In the
m + 1-th time unit S′ tells c and then R′ tells e. ��

4.2 Observable Behavior

In this section we recall some notions introduced in [31] of process observations. We
assume that what happens within a time unit cannot be directly observed, and thus
we abstract from internal transitions, and focus on observations in terms of external
transitions.

Notation 1 Throughout this paper Cω denotes the set of infinite sequences of con-
straints in the underlying set of constraints C. We use α, α′, . . . to range over Cω.

Let α = c1.c2. . . . and α′ = c′1.c
′
2. . . .. We use the notation P

(α,α′)
====⇒ω to denote

the existence of an infinite sequence of observable transitions (or run): P = P1
(c1,c′1)
====⇒

P2
(c2,c′2)
====⇒ . . . .

IO and Output Behavior. Consider a run of P as above. At the time unit i, the environ-
ment inputs ci to Pi, which then responds with an output c′i. As observers, we can see

that on α, P responds with α′. We refer to the set of all (α, α′) such that P
(α,α′)
====⇒ω
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as the input-output (io) behavior of P . Alternatively, if α = trueω, we interpret the
run as an interaction among the parallel components in P without the influence of any
(external) environment; as observers what we see is that P produces α on its own. We

refer to the set of all α′ such that P
(trueω ,α′)
====⇒ ω as the output behavior of P .

Quiescent Sequences and SP. As a third alternative, we may observe the quiescent
input sequences of a process. These are sequences of input on which P can run without

adding any information; we observe whether α = α′ whenever P
(α,α′)
====⇒ω.

In [30] it is shown that the set of quiescent sequences of a given P can be char-
acterized as the set of infinite sequences that P can possibly output under arbitrary
environments; the strongest postcondition (sp) of P .

Summing up, we have the following notions of observable behavior.

Definition 9 (Observable Behavior). The behavioral observations that can be made
of a process are:

1. The input-output (or stimulus-response) behavior of P , written, io(P ), defined as

io(P ) = {(α, α′) | P
(α,α′)
====⇒ω}.

2. The (default) output behavior of P , written o(P ), defined as

o(P ) = {α′ | P
(trueω ,α′)
====⇒ ω}.

3. The strongest postcondition behavior of P , written sp(P ), defined as

sp(P ) = {α | P
(α′,α)
====⇒ω for some α′}.

Given these notions of observable behaviors, we have the following naturally in-
duced equivalences and congruences (recall the notion of congruence given in Defini-
tion 6.)

Definition 10 (Behavioral Equivalences). Let l ∈ {io, o, sp}. Define P ∼l Q iff
l(P ) = l(Q). Furthermore, let ≈l the congruence induced by ∼l, i.e., P ≈l Q iff
C[P ] ∼l C[Q] for every process context C.

We shall refer to equivalences defined above as observational equivalences. No-
tice, that they identify processes whose internal behavior may differ widely. Such an
abstraction from internal behavior is essential in the theory of several process calculi;
most notably in weak bisimilarity for CCS [25].

Example 11. Let a, b, c, d and e mutually exclusive constraints. Consider the processes
P and Q below:

when a do next
when b do next tell(d)
+
when c do next tell(e)

︸ ︷︷ ︸

,
when a do nextwhen b do next tell(d)
+
when a do nextwhen c do next tell(e)
︸ ︷︷ ︸

P Q

The reader may verify that P ∼o Q since o(P ) = o(Q) = {trueω}. However,
P �∼io Q nor P �∼sp Q since if α = a.c.trueω then (α, α) ∈ io(Q) and α ∈ sp(Q)
but (α, α) �∈ io(P ) and α �∈ sp(P ). ��
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Congruence and Decidability Issues. In [30] it is proven that none of the three obser-
vational equivalences introduced in Definition 10 are congruences. However, ∼sp is a
congruence if we confine our attention to the so-called locally-independent fragment of
the calculus, i.e. the fragment without non-unary summations and “unless” operations,
whose guards depend on local variables.

Definition 11 (Locally-Independent Processes). P is locally-independent iff for ev-
ery unless c next Q and

∑
i∈I when ci do Qi (|I| ≥ 2) in P , neither c nor the ci’s

contain variables in bv(P ) (i.e., the bound variables of P ).

The locally-independent fragment is indeed very expressive. Every summation pro-
cess whose guards are either all equivalent or mutually exclusive can be encoded in this
fragment [51]. Moreover, the applicability of this fragment is witnessed by the fact all
the ntcc applications we are aware of [30,31,51] can be model as locally-independent
processes. Also, the (parameterless-recursion) tcc model can be expressed in this frag-
ment as, from the expressiveness point of view, the local operator is redundant in tcc
with parameterless-recursion [29]. Furthermore, it allows us to express infinite-state
processes (i.e., there are processes that can evolve into infinitely many other processes).
Hence, it is rather surprising that ∼sp is decidable for the local-independent fragment
as recently proved in [52]. In 5 below we shall present a number of other seemingly
surprising decidability results for other fragments of ntcc .

� � �

4.3 Denotational Semantics

In the previous section we introduced the notion of strongest-postcondition of ntcc
processes in operational terms. In the following we show the abstract denotational
model of this notion, first presented in [32].

The denotational semantics is defined as a function [[·]] associating with each pro-
cess a set of infinite constraint sequences, [[·]] : Proc → P(Cω). The definition of this
function is given in Table 2. Intuitively, [[P ]] is meant to capture the set of all sequences
P can possibly output. For instance, the sequences associated with tell(c) are those
for which the first element is stronger than c (see DTELL, Table 2). Process nextP
has not influence on the first element of a sequence, thus d.α is a possible output if
α is a possible output of P (see DNEXT, Table 2). The other cases can be explained
analogously.

From [7] we know that there cannot be a f : Proc → P(Cω), compositionally
defined, such that f(P ) = sp(P ) for all P . Nevertheless, as stated in the theorem
below, Palamidessi et al [32] showed that the sp denotational semantics matches its
operational counter-part for the locally-independent fragment 11.

Theorem 1 (Full Abstraction, [32]). For every ntcc process P , sp(P ) ⊆ [[P ]] and if
P is locally-independent then [[P ]] ⊆ sp(P ).

The full-abstraction result above has an important theoretical value; i.e., for a signif-
icant fragment of the calculus we can abstract away from operational details by working
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Table 2. Denotational semantics of ntcc . Symbols α and α′ range over the set of infinite
sequences of constraints Cω; β ranges over the set of finite sequences of constraints C∗. Notation
∃xα denotes the sequence resulting by applying ∃x to each constraint in α.

DTELL: [[tell(c)]] = {d.α | d |= c}

DSUM: [[
∑

i∈I when ci do Pi ]] =
⋃

i∈I

{d.α | d |= ci and d.α ∈ [[Pi]]} ∪ ⋂
i∈I{d.α | d �|= ci}

DPAR: [[P ‖ Q]] = [[P ]] ∩ [[Q]]

DLOC: [[(localx) P ]] = {α | there exists α′ ∈ [[P ]] s.t. ∃xα′ = ∃xα}

DNEXT: [[nextP ]] = {d.α | α ∈ [[P ]]}

DUNL: [[unless c nextP ]] = {d.α | d |= c} ∪ {d.α | d �|= c and α ∈ [[P ]]}

DREP: [[! P ]] = {α | for all β, α′ s.t. α = β.α′, we have α′ ∈ [[P ]]}

DSTAR: [[� P ]] = {β.α | α ∈ [[P ]]}

with [[P ]] rather than sp(P ). Furthermore, an interesting corollary of the full-abstraction
result is that ∼sp is a congruence, if we confine ourselves to locally-independent pro-
cesses.

4.4 LTL Specification and Verification

Processes in ntcc denote observable behavior of timed systems. As with other such
formalisms, it is often convenient to express specifications of such behaviors in logical
formalisms. In this section we present the ntcc logic first introduced in [32]. We start
by defining a linear-time temporal logic (LTL) expressing temporal properties over in-
finite sequences of constraints. We then define what it means for a process to satisfy a
specification given as a formula in this logic. Finally, we present an inference system
aimed at proving processes satisfying specifications.

A Temporal Logic. The ntcc LTL expresses properties of infinite sequences of con-
straints, and we shall refer to it as CLTL.

Definition 12 (CLTL Syntax). The formulae F, G, ... ∈ F are built from constraints
c ∈ C and variables x ∈ V in the underlying constraint system by:

F, G, . . . := c | ˙true | ˙false | F ∧̇G | F ∨̇G | ¬̇F | ∃̇x F | ◦F | �F | ♦F

Here c is a constraint (i.e., a first-order formula in the underlying constraint system)
representing a state formula c. The symbols ˙true, ˙false, ∧̇, ∨̇, ¬̇, ∃̇ represent linear-
temporal logic true, false, conjunction, disjunction, negation and existential quantifica-
tion. As clarified later, the dotted notation is introduced since in CLTL these operators
may have different interpretations from the symbols true,false,∧,∨,¬, ∃ in the
underlying constraint system. The symbols ◦, �, and ♦ denote the temporal operators
next, always and sometime.
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The standard interpretation structures of linear temporal logic are infinite sequences
of states [22]. In the case of ntcc , it is natural to replace states by constraints, and
hence our interpretations are elements of Cω.

The CLTL semantics is given in Definition 14. Following [22] we introduce the
notion of x-variant.

Notation 2 Given a sequence α = c1.c2. . . ., we use ∃xα to denote the sequence
∃xc1∃xc2 . . . . We shall use α(i) to denote the i − th element of α.

Definition 13 (x-variant). A constraint d is an x-variant of c iff ∃xc = ∃xd. Similarly
α′ is an x-variant of α iff ∃xα = ∃xα′.

Intuitively, d and α′ are x-variants of c and α, respectively, if they are logically the
same except for information about x. For example, x = 0 ∧ y = 0 is an x-variant of
x = 1 ∧ y = 0.

Definition 14 (CLTL Semantics). We say that α ∈ Cω satisfies (or that it is a model
of) the CLTL formula F , written α |=CLTL F , iff 〈α, 1〉 |=CLTL F , where:

〈α, i〉 |=CLTL ˙true 〈α, i〉 �|=CLTL ˙false
〈α, i〉 |=CLTL c iff α(i) |= c
〈α, i〉 |=CLTL ¬̇F iff 〈α, i〉 �|=CLTL F
〈α, i〉 |=CLTL F ∧̇G iff 〈α, i〉 |=CLTL F and 〈α, i〉 |=CLTL G
〈α, i〉 |=CLTL F ∨̇G iff 〈α, i〉 |=CLTL F or 〈α, i〉 |=CLTL G
〈α, i〉 |=CLTL ◦F iff 〈α, i + 1〉 |=CLTL F
〈α, i〉 |=CLTL �F iff for all j ≥ i 〈α, j〉 |=CLTL F
〈α, i〉 |=CLTL ♦F iff there is a j ≥ i such that 〈α, j〉 |=CLTL F

〈α, i〉 |=CLTL ∃̇x F iff there is an x-variant α′ of α such that 〈α′, i〉 |=CLTL F.

Define [[F ]]={α | α |=CLTL F}. We say that F is CLTL valid iff [[F ]] = Cω, and that F
is CLTL satisfiable iff [[F ]] �= ∅.

State Formulae as Constraints. Let us comment briefly on the role of constraints as
state formulae in our logic. A temporal formula F expresses a property of sequences
of constraints. As a state formula, c expresses a property, which is satisfied by those
e.α′ such that e |= c. Hence, the state formula false (and consequently �false) is
satisfied by falseω. On the other hand, the temporal formula ˙false has no model
whatsoever.

Similarly, the models of the temporal formula c ∨̇ d are those e.α′ such that either
e |= c or e |= d holds. Therefore, the formula c ∨̇ d and the atomic proposition c ∨ d
may have different models since, in general, one can verify that e |= c ∨ d may hold
while neither e |= c nor e |= d hold – e.g. take e = (x = 1 ∨ x = 2), c = (x = 1) and
d = (x = 2).

In contrast, the formula c ∧̇ d and the atomic proposition c∧d have the same models
since e |= (c ∧ d) holds if and only if both e |= c and e |= d hold.

The above discussion tells us that the operators of the constraint system should
not be confused with those of the temporal logic. In particular, the operators ∨ and
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Table 3. A proof system for linear-temporal properties of ntcc processes.

LTELL: tell(c) � c LPAR:
P � F Q � G

P ‖ Q � F ∧̇G

LSUM:
∀i ∈ I Pi � Fi

∑

i∈I

when ci do Pi �
∨̇

i∈I

(ci ∧̇Fi) ∨̇
∧̇

i∈I

¬̇ ci

LLOC:
P � F

(localx) P � ∃̇x F

LNEXT:
P � F

nextP � ◦F
LUNL:

P � F

unless c next P � c ∨̇◦F

LREP:
P � F

! P � �F
LSTAR:

P � F

� P � ♦F

LCONS:
P � F

P � G
if F ⇒̇G

∨̇. This distinction does not make our logic intuitionistic. In fact, classically (but not
intuitionistically) valid statements such as ¬̇A ∨̇A and ¬̇ ¬̇A ⇒̇A are also valid in our
logic.

Process Verification

We are now ready to define what it means for a process P to satisfy a specification F .

Definition 15 (Verification). P satisfies F , written P |=CLTL F , iff sp(P ) ⊆ [[F ]].

Thus, the intended meaning of P |=CLTL F is that every sequence P can possi-
bly output on inputs from arbitrary environments satisfies the temporal formula F . For
example, � tell(c) |= ♦c, since in every infinite sequence output by � tell(c) on arbi-
trary inputs, there must be an element entailing c.

Following the discussion above, notice that P = tell(c) + tell(d) |= (c ∨̇ d) as
every constraint e output by P entails either c or d. In contrast, Q = tell(c ∨ d) �|=
(c ∨̇ d) in general since Q can output a constraint e which entails c ∨ d, but neither c
nor d.

4.5 Proof System for Verification

[32] introduces a proof (or inference) system for assertions of the form P � F , where
P � F is intended to be the “counterpart” of P |= F in the sense that P � F should
approximate P |=CLTL F as closely as possible (ideally, they should be equivalent). The
system is presented in Table 3.

Definition 16 (P � F ). We say that P � F iff the assertion P � F has a proof in the
system in Table 3.
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Inference Rules. Let us briefly comment on (the soundness of) some of the inference
rules of the proof system. The inference rule for the tell operator is given by

LTELL: tell(c) � c

Rule LTELL gives a proof reflecting the fact that every output of tell(c) on arbitrary
input, indeed satisfies the atomic proposition c, i.e., tell(c) |=CLTL c.

Consider now the rule for the choice operator:

LSUM:
∀i ∈ I Pi � Fi∑

i∈I

when ci do Pi �
∨̇

i∈I

(ci ∧̇Fi) ∨̇
∧̇

i∈I

¬̇ ci

Rule LSUM can be explained as follows. Suppose that for P =
∑

i∈I when ci do Pi

we are given a proof that each Pi satisfies Fi, i.e. (inductively) Pi |=CLTL Fi. Then we
may conclude that every output of P on arbitrary input will satisfy either: (a) some of
the guards ci and their corresponding Fi (i.e.,

∨̇
i∈I(ci ∧̇Fi)), or (b) none of the guards

(i.e.,
∧̇

i∈I ¬̇ ci).
The inference rule for parallel composition is defined as

LPAR:
P � F Q � G

P ‖ Q � F ∧̇G

The soundness of this rule can be justified as follows. Assume that each output of P ,
under the influence of arbitrary environments, satisfies F . Assume the same about Q
and G. In P ‖ Q, the process Q can be thought as one of those arbitrary environment
under which P satisfies F . Then P ‖ Q must satisfy F . Similarly, P can be one of
those arbitrary environment under which Q satisfies G. Hence, P ‖ Q must satisfy G
as well. We therefore have grounds to conclude that P ‖ Q satisfies F ∧̇G.

The inference rule for the local operator is

LLOC:
P � F

(local x)P � ∃̇x F

The intuition is that since the outputs of (localx)P are outputs of P with x hidden
then if P satisfies F , (localx)P should satisfy F with x hidden, i.e., ∃̇x F .

The following are the inference rules for the temporal ntcc constructs:

LNEXT:
P � F

nextP � ◦F

LUNL:
P � F

unless c next P � c ∨̇ ◦F

LREP:
P � F

! P � �F

LSTAR:
P � F

� P � ♦F

Assume that P � F , i.e. (inductively) P |=CLTL F . Rule LNEXT reflects that we may
then conclude that also the process next P satisfies ◦F . Rule LUNL is similar, except
that P can also be precluded from execution, if some environment provides c. Thus
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unless c nextP satisfies either c or ◦F . Rule LREP says that if F is satisfied by P ,
then executing P in each time interval will imply F to be satisfied in each time interval,
i.e. ! P satisfies �F . Rule LSTAR reflects that if P is executed in some time interval,
then in that time interval F is satisfied, and hence � P satisfies ♦F .

Finally, we have the rule:

LCONS:
P � F

P � G
if F ⇒̇G

Notice that this rule refers to some unspecified way of inferring validity of CLTL for-
mulae. We shall return to this point shortly. Rule LCONS simply says that if P satisfies
a specification F then it also satisfies any weaker specification G. We shall also refer to
LCONS as the consequence rule.

Notice that the inference rules reveal a pleasant correspondence between ntcc op-
erators and the logic operators. For example, parallel composition and locality corre-
sponds to conjunction and existential quantification. The choice operator corresponds
to some special kind of conjunction. The next, replication and star operators correspond
to the next, always, and eventuality temporal operator.

The Proof System at Work. Let us now give a simple example illustrating a proof in
inference system.

Example 12. Recall Example 9. We have a process R which was repeatedly checking
the state of motor1. If a malfunction is reported, R would tell that motor1 must
be turned off. We also have a process S stating that motor motor1 is doomed to
malfunction. Let R =!when c do tell(e) and S = � tell(c) with the constraints
c = malfunction(motor1_status) and e = (motor1_speed = 0). We want
to provide a proof of the assertion: R ‖ S � ♦ e. Intuitively, this means that the par-
allel execution of R and S satisfies the specification stating that motor1 is eventually
turned off. The following is a derivation of the above assertion.

when c do tell(e) � (c ∧̇ e) ∨̇ ¬̇ c
LSUM

when c do tell(e) � c ⇒̇ e
LCONS

R � � (c ⇒̇ e)
LREP

tell(c) � c
LTELL

S � ♦ c
LSTAR

R ‖ S � � (c ⇒̇ e) ∧̇♦c
LPAR

R ‖ S � ♦ e
LCONS

More complex examples of the use of the proof system for proving the satisfaction of
processes specification can be found in [30]—in particular for proving properties of
mutable data structures. ��

Let us now return to the issue of the relationship between � and |=CLTL.

Theorem 2 (Relative Completeness, [30]). If P is locally-independent then P � F iff
P |=CLTL F.
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Notice that this is indeed a “relative completeness” result, in the sense that, as men-
tioned earlier, one of our proof rules refer to the validity of temporal implication. This
means that our proof system is complete, if we are equipped with an oracle that is guar-
anteed to provide a proof or a confirmation of each valid temporal implication. Because
of this, one may wonder about the decidability of the validity problem for our temporal
logic. We look at this issue next.

Decidability Results. In [52] it is shown that the verification problem (i.e., given P
and F whether P |=CLTL F ) is decidable for the locally-independent fragment of ntcc
and negation-free CLTL formulae. Please recall that the locally-independent fragment
of ntcc admits infinite-state processes. Also note that CLTL is first-order. Most first-
order LTL’s in computer science are not recursively axiomatizable, let alone decid-
able [1].

Furthermore, [52] proves the decidability of the validity problem for implication
of negation-free CLTL formulae. This is done by appealing to the close connection
between ntcc processes and LTL formulae to reduce the validity of implication to the
verification problem. More precisely, it is shown that given two negation-free formulae
F and G, one can construct a process PF such that sp(PF ) = [[F ]] and then it follows
that PF |=CLTL G iff F ⇒̇G. As a corollary of this result, we obtain the decidability of
satisfiability for the negation-free first-order fragment of CLTL

A theoretical application of the theory of ntcc is presented in [52], stating a new
positive decidability result for a first-order fragment of Pnueli’s first-order LTL [22].
The result is obtained from a reduction to CLTL satisfiability, and thus it also con-
tributes to the understanding of the relationship between (timed) ccp and (temporal)
classic logic.

5 A Hierarchy of Timed CCP Languages

In the literature several timed ccp languages have been introduced, differing in their way
of expressing infinite behavior. In this section we shall introduce a few fundamental
representatives of mechanisms introducing infinite behavior, expressed as variants of
the ntcc calculus. We shall also characterize their relative expressiveness following
[29].

Since timed CCP languages are deterministic we shall confine our attention to the
deterministic processes of ntcc as described in [30]. These are all the star-free proce-
sses with all summations having at most one guard. On top of this fragment we consider
the following variants:

– rep: deterministic ntcc ; infinite behavior given by replication.
– recp: obtained from deterministic ntcc replacing replication by parametric re-

cursion. In recp each procedures body has no free variables other than its formal
parameters.

– reci: same as recp, but where the actual parameters in recursive calls are iden-
tical to the formal parameters; i.e., we do not vary the parameters in the recursive
calls.
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– recd: obtained by using parameterless recursion, but including free variables in
procedure bodies with dynamic scope.

– recs: same as recd but with static scope.

In the following, the expressive power of these process languages is compared with
respect to the notion of input-output behavior, as introduced in Section 4.2. More pre-
cisely, one language is considered at least as expressive as another, if any input-output
behavior expressed by a process in the latter can be expressed also by a process in the
former. The comparison results can be summarized as follows:

– recp and recd are equally expressive, and strictly more expressive than the other
languages,

– rep, recs and reci are equally expressive.

In fact, [29] shows a strong separation result between the languages recp/recd
and rep/recs/reci: the input-output equivalence is undecidable for the languages in
the first class, but decidable for the languages in the second class.

The undecidability results holds even if we fix an underling constraint system with
a finite domain having at least one element. The undecidability result is obtained by
a reduction from Post’s correspondence problem [34] and an input-output preserving
encoding between recp/recd.

The decidability results hold for arbitrary constraint systems, and follow from Büchi
automata [3] representation of ntcc processes and input-output preserving encodings
between the languages in rep/recs/reci.

The expressiveness gaps illustrated above may look surprising to readers familiar
with the π-calculus [27], since it is well known that the π-calculus correspondents of
rep,reci and recp all have the same expressive power. The reason for these differ-
ences can be attributed to the fact that the π-calculus has some powerful mechanisms
(such as mobility), which compensate for the weakness of replication and the lower
forms of recursion.

We start by formally defining our five classes of process languages.

5.1 Replication

We shall use rep to denote the deterministic fragment of ntcc . The processes in the
deterministic fragment are those star-free processes in which the cardinality of every
summation index set is at most one. Thus, the resulting syntax of process in rep is
given by:

P, Q, . . . ::= skip | tell(c) | when c do P | P ‖ Q | (localx)P
| nextP | unless c nextP | ! P (9)

Infinite behavior in rep is provided by using replication. This way of expressing
infinite behavior is also considered in [43]. To be precise, [43] uses the hence operator.
However, henceP is equivalent to next ! P and, similarly ! P is equivalent to P ‖
henceP .
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5.2 Recursion

Infinite behavior in tcc languages may also be introduced by adding recursion, as e.g.
in [40,41,49]. Consider the process syntax obtained from replacing replication !P with
process (or procedure) calls A(y1, . . . , yn), i.e.:

P, Q, . . . ::= skip | tell(c) | when c do P | P ‖ Q | (localx)P
| nextP | unless c nextP | A(y1, . . . , yn) (10)

The process A(y1, . . . , yn) is an identifier with arity n. We assume that every identi-

fier has a (recursive) process (or procedure) definition of the form A(x1, . . . , xn) def= P
where the xi’s are pairwise distinct, and the intuition is that A(y1, . . . , yn) behaves as
P with yi replacing xi for each i.

We declare D to be the set of recursive definitions under consideration. We shall
often use the notation x as an abbreviation of x1, x2, . . . , xn if n is unimportant or
obvious. We shall sometimes say that A(y) is an invocation with actual parameters y,

and given A(x) def= P we shall refer to P as its body and to x as its formal parameters.

Finite Dependency and Guarded Recursion Following [40], we shall require, for all
the forms of recursion defined next, the following: (1) any process to depend only on
finitely many definitions and (2) recursion to be “next” guarded. For example, given

A(x) def= P , every invocation A(y) in P must occur within the scope of a “next”
or “unless” operator operator. This avoids non-terminating sequences of internal reduc-
tions (i.e., non-terminating computation within a time interval). Below we give a precise
formulation of (1) and (2).

Given A1(x1)
def= P1 and A2(x2)

def= P2, we say that A1 (directly) depends on A2,
written A1 � A2, if there is an invocation A2(y) in P1. Requirement (1) can be then
formalized by requiring the strict ordering induced by �∗ (the reflexive and transitive
closure of �)1 to be well founded.

To formalize (2), suppose that A1 � A2 � . . . � An � An+1 = A1, where

Ai(x1)
def= Pi. We shall require that for at least one i, 1 ≤ i ≤ n, the occurrences of

Ai+1 in Pi are within the scope of a “next” or an “unless” operator.

Parametric Recursion

We consider a further restriction for the case of recursion involving parameters. All the
free variables in definitions’ bodies must be formal parameters; more precisely, for each

A(x1, . . . , xn) def= P , we decree that fv (P ) ⊆ {x1, . . . , xn}.
We shall use recp to denote the tcc language with recursion with the above syntac-

tic restriction. The operational rules for recp are obtained from Table 1 by replacing
the rule for replication REP with the following rule for recursion:

REC
〈A(y), d〉 −→ 〈P [y/x], d〉

A(x) def= P (11)

1 The relation �∗ is a pre-ordering. By induced strict ordering we mean the strict component of
�∗ modulo the equivalence relation obtained by taking the symmetric closure of �∗.
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As usual P [y1, . . . , yn/x1, . . . , xn], with all the xi’s being pairwise distinct, is the pro-
cess that results from syntactically replacing every free occurrence of xi by yi using
α-conversion wherever needed to avoid capture.

Identical Parameters Recursion. An interesting tcc language considered in [40] arises
from recp by restricting the parameters not to change through recursive invocations.
In the π-calculus this restriction does not cause any loss of expressive power since such
form of recursion can encode general recursion (see [27]).

An example satisfying the above restriction is RP (x) def= P ‖ nextRP (x). Here
the actual parameters of the invocation in the body of the definition are the same as the

formal parameters of RP . An example not satisfying the restriction is R′
P (x) def= P ‖

next (localx)R′
P (x). Here the actual parameters are bound and therefore different

from those of the formal parameters.
One can formalize the identical parameters restriction on a set of mutually recursive

definitions as follows. Suppose that A1 � A2 and A2 �∗ A1 with A1(x1)
def= P1

and A2(x2)
def= P2 in the underlying set of definitions D. Then for each invocation

A2(y) in P1 we should require y = x2 and y �∈ bv(P1). In other words the actual
parameters of the invocation A2 in P1 (i.e., y) should be syntactically the same as its
formal parameters (i.e., x2). Furthermore, they should not be bound in P1 to avoid cases
such as R′

P (x) above.
The processes of tcc with identical parameters are those of recp that satisfy this

requirement. We shall refer to this language as reci.

Parameterless Recursion

Tcc with parameterless recursion have been studied in [40]. All identifiers have arity
zero, and hence, for convenience, we omit the “( )” in A( ).

Given a parameterless definition A
def= P , requiring all variables in fv(P ) to be

formal parameters, as in recp, would mean that the body P has no free variables, and
the resulting class of process languages would be expressively weak. Hence, we now
suggest to allow free variables in procedure bodies.

Now. assuming that the operational rules for parameterless recursion are the same
as for recp, what are the resulting scope rules for free variables in procedure bodies?
Traditionally, one distinguishes between dynamic and static scoping, as illustrated in
the following example.

Example 13. Consider a constant identifier A with the following definition

A
def= tell(x = 1)

‖ next (localx) (A ‖ when x = 1 do tell(z = 1))

In the case of dynamic scoping, an outside invocation A causes the execution tell(z =
1) in the second time interval. The reason is that (localx) binds the x resulting from
the unfolding of the A inside the definition’s body. In fact, the telling of x = 1, in the
second time unit, will not be visible in the store. In the case of static scoping, (localx)
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does not bind the x of the unfolding of A because such an x is intuitively a “global”
variable, and hence tell(z = 1) will not be executed. In fact, the telling of x = 1, will
also be visible in the store in the second time interval. ��

Parameterless Recursion with Dynamic Scoping. The rule LOC in Table 1 combined
with REC causes the parameterless recursion to have dynamic scoping2. As illustrated
in the example below, the idea is that since (local x)P reduces to a process of the form
(local x)Q, the free occurrences of x in the unfolding of invocations in P get bounded.

Example 14. Consider A as defined in Example 13. Let us abbreviate the definition of

A as A
def= tell(x = 1) ‖ P . Also let Q = skip ‖ P . We have the following reduction

of (localx)A in store true.

〈tell(x = 1),true〉 −→ 〈skip, x = 1〉 TELL

〈tell(x = 1) ‖ P, true〉 −→ 〈Q, x = 1〉 PAR

〈A,true〉 −→ 〈Q, x = 1〉 REC

〈(local x,true)A,true〉 −→ 〈(local x, x = 1) Q,true〉 LOC

Thus, (localx)A in store true reduces to (localx, x = 1) (skip ‖ P ) in store
true. Notice that the free x in A’s body become local to (localx, x = 1) (skip ‖ P ),
i.e, it now occurs in the local store but not in the global one. ��

We shall refer to the language allowing only parameterless recursion with free-
variables in the procedure bodies as recd; parameterless recursion with dynamic scop-
ing.

Remark 2. It should be noticed that, unlike in recp, we cannot freely α-convert proce-
sses in recd without changing behavior. For example, we could α-convert the process
(local x)A in the above example into (local z)A (since A[z/x] is syntactically equal
to A) but the behavior of (local z)A would not be the same as that of (localx)A.

Parameterless Recursion with Static Scoping. From the previous section it follows
that static scoping as in [40] requires an alternative to the rule for local behavior LOC .

The rule LOC′ defines locality for the parameterless recursion with static scoping
language henceforth referred to as recs.

LOC′ 〈P [y/x], d〉 −→ 〈P ′, d′〉

〈(local x)P, d〉 −→ 〈P ′, d′〉
if y is fresh (12)

As in [24], we use the notion of fresh variable meaning that it does not occur else-
where in a process definition or in the store. It will be convenient to presuppose that the
set of variables V is partitioned into two infinite sets F and V − F . We shall assume
that the fresh variables are taken from F and that no input from the environment or

2 Rules LOC and REC are basically the same in ccp, hence the observations made in this section
regarding dynamic scoping apply to ccp as well.
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processes, other than the ones generated when applying LOC′, can contain variables
in F .

The fresh variables introduced by LOC′ are not to be visible from the outside. We
hide these fresh variables, as suggested in [43], by using existential quantification in the
output constraint of observable transitions. More precisely, we replace in Table 1 the
rule for the observable transitions OBS with the rule

OBS′ 〈P, c〉 −→∗ 〈Q, d〉 �−→
P

(c,∃Fd)
====⇒ F (Q) (13)

where ∃Fd represents the constraint resulting from the existential quantification in d of
free occurrences of variables in F .

In order to see why LOC′ causes static scoping in recs, suppose that P in Rule

LOC′ in Equation 12 contains an invocation A where A
def= R. When replacing x with

y in P , A remains the same since A[y/x] is A. Furthermore, since y is chosen from
F , there will be no capture of free variables in R when unfolding A. This causes the
scoping to be static. Let us illustrate this by revisiting the previous example.

Example 15. Let A, P and Q as in the previous example. We have the following reduc-
tion of (localx)A in store true.

〈tell(x = 1),true〉 −→ 〈skip, x = 1〉 TELL

〈tell(x = 1) ‖ P,true〉 −→ 〈Q, x = 1〉 PAR

〈A,true〉 −→ 〈Q, x = 1〉 REC

〈(local x)A,true〉 −→ 〈Q, x = 1〉 LOC′

Thus, (local x)A in store true reduces to skip ‖ P in store (x = 1) making the free
x in A’s body visible in the “global” store . ��
Remark 3. Notice that, as in recd, in recs we do not need α-conversion since in the
reductions of recs we only use syntactic replacements of variables by fresh variables.

5.3 Summary of TCC Languages

We have described five classes of tcc languages with infinite behabior, based on the
literature. We adopt the following convention.

Convention 3 We shall use L to designate the set of tcc languages

{rep,recp,reci,recd,recs}.
Furthermore, we shall index sets and relations involving tcc processes with the appro-
priate tcc language name to make it clear what is the language under consideration.
We shall omit the index when it is unimportant or clear from the context.

For example, −→recp and
(.,.)

====⇒recp refer to the (internal and observable) reduc-
tion of recp. Similarly, Procrecp denotes the set of processes in recp, ∼recp

io denotes
the input-output equivalence (Definition 10) for processes in Procrecp , and ≈recp

io de-
notes congruence induced by ∼recp

io .
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5.4 The TCC Equivalences

In this section we relate the equivalences and their congruences for the various tcc lan-
guages. Each behavioral equivalence (and congruence) for a tcc language � is obtained
by taking the ntcc transitions given in Definition 9 (and thus in Definition 10) to be

those of � (i.e., replace
(.,.)

====⇒ with
(.,.,)

====⇒�).
The theorem below states the relationship among the equivalences.

Theorem 3 (Equivalence Results, [29]). For each � ∈ L,

1. If � = recs then ≈�
io =≈�

o ⊂∼�
io⊂∼�

o .
2. If � �= recs then ≈�

io =≈�
o =∼�

io ⊂∼�
o.

The theorem says the input-output and output congruences coincide for all lan-
guages. It also states that the input-output behavior is a congruence for every tcc lan-
guage but recs. This reveals a distinction between recs and the other tcc languages
and, in fact, between recs and the standard model of concurrent constraint program-
ming [45].

In the following sections we shall classify the tcc languages based on the decidabil-
ity of their input-output equivalence.

5.5 Undecidability Results

In [29] it is shown that ∼recp
io is undecidable for processes with an underlying finite-

domain constraint system. Recall that a finite-domain constraint system FD[n] (see
Definition 3) provides a theory of variables ranging over a finite domain of values
D = {0, 1, . . . , n − 1} with syntactic equality over these values. We shall also prove a
stronger version of this result establishing that ∼recp

io is undecidable even for the finite-
domain constraint system with one single constant FD[1], i.e., |D| = 1. In sections
5.7 we shall give an input-output preserving constructive encoding from recp into the
parameterless recursion language recd, thus proving also the undecidability of ∼recd

io .

Theorem 4 (Undec. of ∼recp
io , [29]). The problem of deciding given P, Q ∈ Procrecp

in a finite-domain constraint system, whether or not P ∼recp
io Q, is undecidable.

We find it convinient to outline the proof of the above theorem given in [29] since
it decribes very well the computational power of recp. The proof is a reduction from
Post’s correspondence problem (PCP) [34].

Definition 17 (PCP). A Post’s Correspondence Problem (PCP) instance is a tuple
(V, W ), where V = {v0, . . . , vn} and W = {w0, . . . , wn} are two lists of non-empty
words over the alphabet {0, 1}. A solution to this instance is a sequence of indexes
i0, . . . , im in I = {0, . . . , n} with i0 = 0 s.t.

vi0 .vi2 . . . vim = wi0 .wi2 . . . wim .

PCP is the following problem: given a PCP instance (V, W ), does it have a solu-
tion?

The Post’s Correspondence Problem is known to be undecidable [34]. We reduce
PCP to the problem of deciding input-output equivalence between recp processes, thus
proving Theorem 4.
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The Post’s Correspondence Problem Reduction. Let (V, W ) be a PCP instance where
V = {v0, . . . , vn} and W = {w0, . . . , wn} are sets of non-empty words. Let FD[m]
(Definition 3) be the underlying constraint system where m = max (|V |, 2) (i.e., we
need at least two constants in the encoding below).

For each i ∈ I = {0, . . . , |V | − 1}, we shall a define process Ai(a, b, index , x)
which intuitively behaves as follows:

1. It waits until is told that a = 1 to start writing vi, one symbol per time unit. Each
such a symbol, say s, will be written in x by telling x = s. Similarly, it waits until
b = 1 to start writing wi, one symbol per time unit. Each such a symbol will also
be written in x.

2. It spawns a process Aj(a′, b′, index , x) when the environment inputs an index
index = j in I .

3. It sets a = 0 and a′ = 1 when it finishes writing vi, i.e., |vi| time units later after
it started writing vi (this way it announces that its job of writing vi is done, and
allows Aj to start writing vj). Similarly, it sets b = 0 and b′ = 1 when it finishes
writing wi.

4. It aborts unless the environment provides an index in I . It also aborts if an incon-
sistency arises: Either two symbols (one from a V word and another from a W
word) are written in x in the same time unit and they do not match (thus generating
false), or the environment itself inputs false.

Thus, intuitively the Ai’s keep writing V and W words, as the environment dictates, as
long as the symbols match and the environment keeps providing indexes in I at each
time unit.

Auxiliary Constructs We use the following constructs:

Wc,P (x) def= when c do P ‖ unless c nextWc,P (x)
RQ(y) def= Q ‖ nextRQ(y)

where fv (P ) ∪ fv (c) = {x} and fv(Q) = {y}. We use the more readable notation
wait c do P and repeat Q for Wc,P (x) and RQ(y), respectively. We also define
whenever c do P as an abbreviation of repeat when c do P .

We now define Ai(a, b, index , x) for each i ∈ I according to Items 1-4. The local
variable ichosen is used as flag to check whether the environment inputs an index.

Ai(a, b, index , x) def= (local a′ b′ ichosen) (
wait a = 1 do Vi

‖ wait b = 1 do Wi

‖ ∏
j∈I when index = j do (tell(ichosen = 1)

‖ nextAj(a′, b′, index , x))
‖ Abort )

The process Vi writes, one by one, the vi symbols in x (notation vi(n) denotes the
n−th element of vi). Furthermore it sets a = 0 and a′ = 1 when it finishes writing vi.



Notes on Timed Concurrent Constraint Programming 733

The process Wi is defined analogously.

Vi =
∏

0≤k<|vi|
next ktell(x = vi(k)) ‖ next |vi|(tell(a = 0) ‖ tell(a′ = 1))

Wi =
∏

0≤k<|wi|
next ktell(x = wi(k)) ‖ next |wi|(tell(b = 0) ‖ tell(b′ = 1))

The process Abort aborts, according to Item 4 above, by telling false thereafter
(thus creating a constant inconsistency).

Abort =
‖ unless ichosen = 1 next repeat tell(false)
‖ when false do repeat tell(false)

Let us now define a process Bi(a, b, index , x, ok) for each i ∈ I that behaves
exactly like Ai(a, b, index , x), but in addition it outputs ok = 1 whenever it stops
writing vi and wi exactly in the same time interval3. This happens when both a and b
are set to zero in the same unit and it will imply that a solution of the form vi0 . . . . .vi =
wi0 . . . . .wi for the PCP (V, W ) has been found.

Bi(a, b, index , x, ok) def= (local a′ b′ ichosen) (
wait a = 1 do Vi

‖ wait b = 1 do Wi

‖ ∏
j∈I when index = j do (tell(ichosen = 1)

‖ nextBj(a′, b′, index , x, ok ))
‖ Abort
‖ whenever a = 0 ∧ b = 0 do tell(ok = 1))

Since we require the first index in a solution for PCP (V, W ) to be 0, we define two
processes A(index , x) and B(index , x, ok) which trigger A0 and B0 as follows.

A(index , x) def= (local a b) (
tell(a = 1) ‖ tell(b = 1) ‖ A0(a, b, index , x))

B(index , x, ok) def= (local a b) (
tell(a = 1) ‖ tell(b = 1) ‖ B0(a, b, index , x, ok ))

One can verify that the only difference between the processes A(index , x) and
B(index , x, ok ) is that the latter eventually tells ok = 1 iff there is a solution to the
PCP (V, W ).

Since the PCP problem is undecidable, from the lemma above it follows that given
P, Q ∈ Procrecp in a finite-domain constraint system, the question of whether P ∼recp

io

Q or not is undecidable. This proves Theorem 4. ��
3 The reader may wonder why the Ai’s do not have the formal parameter ok as well. This causes

no problem here, but you can think of A as having a dummy ok formal parameter if you wish
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Undecidability over Fixed Finite-Domains

Actually [29] gives a stronger version of the above theorem; input-output equivalence
in undecidable in recp even if we fix the underlying constraint system to be FD[1],
which is the finite-domain constraint system whose only constant is 0.

Theorem 5 ( [29]). Fix FD[1] to be the underlying constraint system. The question of
whether P ∼recp

io Q or not is undecidable.

From Theorems 5 and 3, we also have that the input-output and default output con-
gruences are undecidable for recp over a fixed finite-domain constraint system.

Theorem 6. The input-output and output congruences ≈recp
io and ≈recp

o are undecid-
able for processes in the finite-domain constraint system FD[1].

Notice that FD[1] is a very simple constraint system (i.e., only equality and one
single constant). So, the undecidability results for other constraint systems providing
theories with equality and an at least one constant symbol follow from Theorem 5.
This includes almost all constraint system of interest (e.g. the Herbrand constraint sys-
tem [39], the Kahn constraint system [45], Enumerated Types [39] and modular arith-
metic [32]).

5.6 Decidability Results

In sharp contrast to the undecidability result for recp, the equivalence of rep processes
is decidable even for arbitrary constraint systems [29].

Theorem 7. The following equivalences for processes in rep over arbitrary constraint
system are decidable:

1. The input-output equivalence∼rep
io , default output equivalence∼rep

o and strongest-
postcondition equivalence ∼rep

sp .
2. The output congruences ≈rep

io and ≈rep
o .

In section 5.7 we shall show via constructive encodings that rep, reci, recs have
the same expressive power. We then conclude that the corresponding equivalences for
reci and recs are also decidable. These decidability results in rep with arbitrary
constraint system are to be contrasted to the undecidability results in recp with the
simple finite-domain constraint system FD[1].

5.7 Classification of the Timed CCP Languages

In this section we discuss the relation between the various tcc languages, and we classify
them on the basis of their expressive power.

Figure 2 shows the sub-language inclusions and the encodings preserving the input-
output behaviour between the various tcc versions. To complete the picture, we have
included the class rec0 denoting the language with neither parameters nor free vari-
ables in the bodies of definitions. Classes I, II, III represent a partition based on the
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Fig. 2. Classification of the various tcc languages: The tcc hierarchy.

expressive power: two languages are in the same class if and only if they have the same
expressive power. We will first discuss the separation results, and then the equivalences.

Given the input-output preserving encodings in [29], which we will recall in the next
section, the separation between Classes II and III is already suggested by the results in
Sections 5.6 and 5.5. From the proof of Theorem 4 it follows that recp is capable of
expressing the "behavior" of Post’s correspondence problems, and hence clearly capable
of expressing output behavior not accepted by Büchi automata. It turns out that the
output (and input-ouput) behavior of every process in rep can be represented as a
language accepted by a Büchi automata [29].

The separation between Classes I and II, on the other hand, follows from the fact that
without parameters or free variables the recursive calls cannot communicate with the
external environment, hence in rec0 a process can produce information on variables
for a finite number of time intervals only.

The Encodings

Let us recall briefly the input-output preserving encodings among the various tcc lan-
guages in [29]. Henceforth, [[·]] : � → �′ will represent the encoding function from
class � to class �′ We shall say that [[·]] is homomorphic wrt to the parallel operator if
[[P ‖ Q]] = [[P ]] ‖ [[Q]], and similarly for the other operators.

Notation 3 We shall use the following notation:

– We use call (x) as abbreviation of x = 1 and declare, for each identifier A, a fresh
variable zA uniquely associated to it.

– We denote by I(P ) the set of identifiers on which P depends, i.e. the transitive
closure of � of the identifiers occurring in P (see Section 5.2).

– We often use D� to denote the set of recursive definitions under consideration for
processes in �. As usual we omit � when it is clear from the context.
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Encoding recs → rep. Here the idea is to simulate a procedure definition by a
replicated process that activates (the encoding of) its body P each time it is called. The
activation can be done by using a construct of the form when c do P . The call, of
course, will be simulated by tell(c).

The key case is the local operator, since we do not want to capture the free variables
in the bodies of procedures. Thus, we need to α-convert by renaming the local variables
with fresh variables.

First we need two auxiliary encodings [[·]]D and [[·]]0 : given by :

[[A def= P ]]D = !when call (zA) do [[P ]]0

[[A]]0 = tell(call (zA))

[[(local x)P ]]0 = (local y) ([[P [y/x]]]0)
where y is fresh

with [[·]]0 being homomorphic on all the other operators of recs.
We are now ready to give our encoding of recs into rep.

Definition 18. The encoding [[·]] : recs → rep is given by:

[[A]] = (local z) ([[P ]]0 ‖
n∏

i=1

[[Ai(xi)
def= Pi]]D)

with I(P ) = {A1, . . . , An} and z = zA1 . . . zAn .

Encoding reci → rep. This encoding is similar to the encoding in the previous
section, except that now we need to encode the passing of parameters as well. Let us
give some intuition first.

A call A(y), where A(x) def= P , can occur in a process or in the definition of iden-
tifier B (possibly A itself). Consider the case in which there is no mutual dependency
between A and B or A is a call in a process. Then, the actual parameters of A may be
different from the formal ones (i.e., y �= x). If so, we need to model the call by provid-
ing a copy of the replicated process that encodes the definition of A and by making the
appropriate parameter replacements.

Now, consider the case in which there is a mutual dependency between A and B
(i.e. if also A depends on B). From the restriction imposed on (the mutual) recursion
of reci (see Section 5.2), we know that the actual parameters must coincide with
the formal ones (i.e., y = x) and therefore we do not need to make any parameter
replacement. Neither do we need to provide a copy of the replicated processes as it will
be available at the top level.

As for the previous encoding, we first define the auxiliary encodings [[·]]D and [[·]]0:

[[A(x) def= P ]]D = !when call (zA) do [[P ]]0
[[A(y)]]0 = tell(call(zA))

if y = x and A(x) def= P ∈ D
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[[A(y)]]0 = (local zA) (
tell(call (zA)) ‖ [[A(x) def= (P [y/x])]]D)
if y �= x and A(x) def= P ∈ D

with [[·]]0 homomorphic on all the other operators of reci.
It worth noticing that if we did not have the restriction on the recursion in reci

mentioned above, the encoding [[.]]D would not be well-defined. E.g., consider the defi-

nition A(x) def= next (local y)A(y) which violates the restriction, and try to compute

[[A(x) def= (local y)A(y)]]D .
We are now ready to give our encoding of reci into rep.

Definition 19. The encoding [[·]] : reci → rep is given by:

[[A(y)]] = (localz) ([[P ]]0 ‖
n∏

i=1

[[Ai(xi)
def= Pi]]D)

with I(P ) = {A1, . . . , An} and z = zA1 . . . zAn .

Encoding rep → reci. This encoding is rather simple. The idea is to replace ! P by
a call to a new process identifier RP , defined as a process that expands P and then calls
itself recursively in the next time interval. The free variables of ! P , x, are passed as
(identical) parameters.

Definition 20. The encoding [[·]] : rep→ reci is given by:

[[! P ]] = RP (x)
where RP (x) def= [[P ]] ‖ nextRP ∈ Dreci , x = fv (P ).

with [[·]] homomorphic on all the other operators of rep.

Encoding recd → recp. Intuitively, if the free variables are treated dynamically, then
they could equivalently be passed as parameters.

Definition 21. The encoding [[·]] : recd → recp is given by

[[A]] = A(x)
where A

def= P ∈ Drecd

and A(x) def= [[P ]] ∈ Drecp , x = fv(P )

with [[·]] homomorphic on all the other operators of recd

Encoding recp → recd. The idea is to establish the link between the formal pa-
rameters x and the actual parameters y by telling the constraint x = y. However, this
operation has to be encapsulated within a (localx) in order to avoid confusion with
other potential occurrences of x in the same context of the call.
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Definition 22. The encoding [[·]] : recp → recd is given by

[[A(y)]] = (localx) (A ‖ Ey/x)
where A(x) def= P ∈ Drecp , A

def= [[P ]] ∈ Drecd ,

and Ey/x
def= tell(y = x) ‖ nextEy/x ∈ Drecd

with [[·]] homomorphic on all the other operators of recd.

Encoding rep → recs. Here we take advantage of the automata representation of
the input-output behavior of rep processes given in [29]. Basically, the idea is to use
the recursive definitions as equations describing these input-output automata.

Let P be an arbitrary process in rep. Let us recall the automaton MP = Aio
P in [29]

representing the input-output behavior of P on the inputs of relevance for P . The start
state of MP is P . Let TP be the set of transitions of MP . Each transition from Q to
R with label (c, d), written 〈Q, (c, d), R〉 ∈ TP , represents an observable transition

Q
(c,d)

====⇒ R.
So, for each state Q of MP we define an identifier AQ as follows:

AQ
def=

∏
〈Q,(c,d),R〉∈TP

when c do (tell(d) ‖ O(�c, R))

with � c =
∨

e∈{c′ | c′ �=c, c′|=c, 〈Q,(c′,d′),R′〉∈TP }
e

where O(�c, R) takes the form unless � c nextAR if c �= false, otherwise it takes
the form next AR.

Intuitively, AQ expresses that if we are in state Q and c is the strongest constra-
int entailed by the input, then the next state will be R and the output will be d, with
〈Q, (c, d), R〉 ∈ TP .

Definition 23. The encoding [[·]] : rep→ recs is defined as [[P ]] = AP .

6 Related Work and Concluding Remarks

Saraswat el al proposed a proof system for tcc [40], based on an intuitionistic logic en-
riched with a next operator. The system is complete for hiding-free and finite processes.
Also Gabrielli et al [4] introduced a proof system for the tccp model (see Section 3).
The underlying second-order linear temporal logic in [4] can be used for describing
input-output behavior. In contrast, the ntcc logic can only be used for the strongest-
postcondition, but also it is semantically simpler and defined as the standard first-order
linear-temporal logic of [22].

The decidability results for the ntcc equivalences here presented are based on
reductions from ntcc processes into finite-state automata [29,31,52]. The work in [43]
also shows how to compile tcc into finite-state machines thus providing an execution
model of tcc.

In [49] Tini explores the expressiveness of tcc languages, focusing on the capability
of tcc to encode synchronous languages. In particular, Tini shows that Argos [23] and a
version of Lustre restricted to finite domains [16] can be encoded in tcc.
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In the context of tcc, Tini [50] introduced a notion of bisimilarity with a complete
and elegant axiomatization for the hiding-free fragment of tcc. The notion of bisimilar-
ity has also been introduced for ntcc by Valencia in his PhD thesis [51].

On the practical side, Saraswat el al introduced Timed Gentzen [41], a particular
tcc-based programming language for reactive-systems implemented in PROLOG. More
recently, Saraswat el al released jcc [44], an integration of timed (default) ccp into the
JAVA programming language. Rueda et al [38] demonstrated that essential ideas of
computer generated music composition can be elegantly represented in ntcc. Hurtado
and Muñoz [20] in joint work with Fernández and Quintero [10] gave a design and
efficient implementation of an ntcc-based reactive programming language for LEGO
RCX robots [21]—the robotic devices chosen in Section 4 as motivating examples.

Future Work. Timed ccp is still under development and certainly much remain to be
explored. In order to contribute to the development of timed ccp as a well-established
model of concurrency, a good research strategy could be to address those issues that are
central to other mature models of concurrency. In particular, the analysis and formaliza-
tion of the ntcc behavioral equivalences, which at present time are still very immature
(e.g., axiomatizations of process equivalences and automatic tools for behavioral anal-
ysis).

Furthermore, the decision algorithms for ntcc verification and satisfiability, are
very inefficient, and of theoretical interest only. For practical purposes, it is important
to conduct studies on the design and implementation of efficient algorithms for verifi-
cation.
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