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Abstract. Several notions of non-interference have been proposed in
the literature to study the problem of confidentiality in nondeterministic
and concurrent systems. Here we rephrase some of them – notably SNNI
and BNDC – over the model of safe Place/Transition Petri Nets. The
common feature of these non-interference properties is that they are all
defined as extensional properties based on some notion of behavioural
equivalence on systems. Here we also address the problem of defining
non-interference by looking at the structure of the net systems under
investigation. We define structural non-interference properties based on
the absence of particular places in the net. We characterize structural
properties that are slight refinement of well-known properties such as
SNNI and SBNDC. We then argue that, in order to capture all the intu-
itive interferences at the structural level, it is necessary to consider the
net originated by the region construction, yielding the property RBNI
we advocate.

1 Introduction

Non-interference has been defined in the literature as an extensional property
based on some observational semantics: the high part of a system is non-inter-
fering with the low part if whatever is done at the high level produces no visible
effect on the low part of the system. The original notion of non-interference in [8]
was defined, using trace semantics, for system programs that are deterministic.
Generalized notions of non-interference were then designed to include (nondeter-
ministic) labeled transition systems and finer notions of observational semantics
such as bisimulation (see, e.g., [12, 6, 11, 13, 7]). Relevant properties in this class
are the trace-based properties SNNI and NDC, as well as the bisimulation-based
properties BSNNI, BNDC and SBNDC proposed by Focardi and Gorrieri some
years ago [6, 7] on a CCS-like process algebra. In particular, SNNI states that a
system R is secure if the two systems R \ H (all the high level actions are pre-
vented) and R/H (all the high level actions are permitted but are unobservable)
are trace equivalent. BNDC intuitively states that a system R is secure if it is
bisimilar to R in parallel with any high level process Π w.r.t. the low actions
the two systems can perform. And SBNDC tells that a system R is secure if,
whenever a high action h is performed, the two instances of the system before
and after performing h are bisimilar from a low level point of view.

The first part of the paper is devoted to show that these non-interference
properties, originally proposed on the Security Process Algebra, can be naturally
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defined also on Petri Nets; in particular – to keep the presentation as simple as
possible – we use 1-safe Place/Transition Petri Nets [10]. The advantage of this
proposal is the import in the Petri Net theory of security notions that makes
possible the study of security problems. Technically, what we do is to introduce
two operations on nets, namely parallel composition (with synchronization in
TCSP-like style) and restriction, and suitable notions of observational equiva-
lences on the low part of the system (low trace equivalence and low bisimulation);
then, five security properties are defined and compared in a rather direct way.
In particular, the two properties based on low trace semantics, namely SNNI
and NDC, are equivalent. On the contrary, in the bisimulation case, BSNNI is
weaker than BNDC, which turns out to be equivalent to SBNDC.

In this approach, the security property is based on the dynamics of systems;
they are all defined by means of one (or more) equivalence check(s); hence, non-
interference checking is as difficult as equivalence checking, a well-studied hard
problem in concurrency theory.

In the second part of the paper, instead, we address the problem of defining
statically non-interference by looking at the structure of the net systems under
investigation:

– in order to better understand the causality and conflict among different
system activities, hence grounding more firmly the intuition about what is
an interference, and

– in order to find more efficiently checkable non-interference properties that
are sufficient conditions for those that have already received some support
in the literature.

We define structural non-interference properties based on the absence of par-
ticular places in the net. We identify two special classes of places: causal places,
i.e., places for which there are an incoming high transition and an outgoing low
transition; and, conflict places, i.e. places for which there are both low and high
outgoing transitions. Intuitively, causal places represent potential source of in-
terference (hilo flow for high input – low output), because the occurrence of the
high transition is a prerequisite for the execution of the low transition. Similarly,
conflict places represent potential source of interference (holo flow for high out-
put – low output), because the occurrence of a low event tells us that a certain
high transition will not occur.

The first result of the paper is that when causal places are absent, we get a
non-interference property which is slightly finer than SNNI. More precisely, if N
has no causal places, then N satisfies SNNI. We present an example that shows
that this structural notion is actually finer than SNNI.

The second result is that when also conflict places are absent, we get a prop-
erty, called Place-Based Non-Interference (PBNI for short), which is slightly finer
than SBNDC. More precisely, if the net N has no causal and no conflict places,
then N satisfies SBNDC. A relevant counterexample shows that the inclusion is
strict. This counterexample also hints that PBNI may still miss some potentially
dangerous interferences.
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In order to capture all the intuitive interferences at the structural level, we
argue that it is necessary to consider nets that are saturated w.r.t. the region
construction [4, 1]. Intuitively, given the marking graph MG(N) of a net N ,
another net N ′ is obtained by adding to N all the possible (useful) places such
that MG(N ′) is isomorphic to MG(N). The final property we propose is called
Region-Based Non-Interference (RBNI for short) that we advocate as the most
intuitive non-interference notion in this setting.

The paper is organised as follows. In Section 2 we recall the basic definitions
about transition systems and Petri Nets. In Section 3 we recast the behavioural
approach to non-interference properties, originally defined in a process algebraic
setting, on Petri Nets. The original structural property PBNI is introduced in
Section 4, while RBNI is presented in Section 5. Finally, some conclusive remarks
are drawn.

2 Basic Definitions

Here we recall the basic definition about transition systems and safe Place/
Transition Petri Nets we will use in the following.

2.1 Transition Systems

Definition 1. A transition system is a triple TS = (St, E,→) where

– St is the set of states
– E is the set of events
– →⊆ St × E × St is the transition relation.

In the following we use s
e→ s′ to denote (s, e, s′) ∈→.

A rooted transition system is a pair (TS, s0) where TS = (St, E,→) is a
transition system and s0 ∈ St is the initial state.

Definition 2. Let TS1 = (St1, E1,→1, s1) and TS2 = (St2, E2,→2, s2) be two
rooted transition systems. An isomorphism is a bijection f : St1 → St2 such that

– s
e→ s′ iff f(s) e→ f(s′)

– s2 = f(s1).

If there exists an isomorphism between TS1 and TS2 then we say that TS1

and TS2 are isomorphic.

2.2 Petri Nets

Definition 3. Given a finite set S, a multiset over S is a function m : S → ω.
The set of all multisets over S is denoted by M(S) The multiplicity of an element
s in m is the natural number m(s). We write m ⊆ m′ if m(s) ≤ m′(s) for all
s ∈ S. The operator ⊕ denotes multiset union: (m ⊕ m′)(s) = m(s) + m′(s) for
all s ∈ S. The operator \ denotes multiset difference: (m\m′)(s) = max{m(s)−
m′(s), 0}. We say that s ∈ m if m(s) > 0. If X ⊆ S, with abuse of notation we
use X to denote the multiset X(s) = 1 if s ∈ X and X(s) = 0 otherwise.
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Definition 4. A net is a tuple N = (S, T, F ), where

– S and T are the (finite) sets of places and transitions, such that S ∩ T = ∅
– F ⊆ (S × T ) ∪ (T × S) is the flow relation

A multiset over the set S of places is called marking. Given a marking m and
a place s, we say that the place s contains m(s) tokens.

Let x ∈ S ∪ T . The preset of x is the set •x = {y | F (y, x)}. The postset of
x is the set x• = {y | F (x, y)}. The preset and postset functions are generalized
in the obvious way to set of elements: if X ⊆ S ∪ T then •X =

⊕
x∈X

•x and
X• =

⊕
x∈X x•. A transition t is enabled at marking m if •t ⊆ m. The firing

(execution) of a transition t enabled at m produces the marking m′ = (m\•t)⊕t•.
This is usually written as m[t〉m′.

A net system is a pair (N, m0), where N is a net and m0 is a marking of N ,
called initial marking. With abuse of notation, we use (S, T, F, m0) to denote
the net system ((S, T, F ), m0).

The set of markings reachable from m, denoted by [m〉, is defined as the least
set of markings such that

– m ∈ [m〉
– if m′ ∈ [m〉 and there exists a transition t such that m′[t〉m′′ then m′′ ∈ [m〉.

The set of firing sequences is defined inductively as follows:

– m0 is a firing sequence;
– if m0[t1〉m1 . . . [tn〉mn is a firing sequence and mn[tn+1〉mn+1 then

m0[t1〉m1 . . . [tn〉mn[tn+1〉mn+1 is a firing sequence.

Given a firing sequence m0[t1〉m1 . . . [tn〉mn, we call t1 . . . tn a transition se-
quence. The set of transition sequences of a net N is denoted by TS(N). We use
σ to range over TS(N). Let σ = t1 . . . tn; we use m[σ〉mn as an abbreviation for
m[t1〉m1 . . . [tn〉mn.

The marking graph of a net N is

MG(N) = ([m0〉, T, {(m, t, m′) | m ∈ [m0〉 ∧ t ∈ T ∧ m[t〉m′})
A net is pure if •t ∩ t• = ∅ for all transitions t ∈ T . A net is simple if the

following condition holds for all x, y ∈ S ∪T : if •x = •y and x• = y• then x = y.
A net system is safe if each place contains at most one token in any marking

reachable from the initial marking, i.e., m(s) ≤ 1 for all s ∈ S and for all
m ∈ [m0〉. A net system is reduced if each transition can occur at least one time:
for all t ∈ T there exists m ∈ [m0〉 such that m[t〉.

In the following we consider safe net systems. To lighten the definitions, in
Sections 4 and 5 we we consider safe net systems that are pure, simple and
reduced.

3 A Behavioural Approach to Non-interference

In this section we want to recast some basic properties, proposed by Focardi and
Gorrieri some years ago [6, 7], in our setting. Our aim is to analyse systems that
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can perform two kinds of actions: high level actions, representing the interac-
tion of the system with high level users, and low level actions, representing the
interaction with low level users. We want to verify if the interplay between the
high user and the high part of the system can affect the view of the system as
observed by a low user. We assume that the low user knows the structure of the
system, and we check if, in spite of this, he is not able to infer the behavior of
the high user by observing the low view of the execution of the system.

Hence, we consider nets whose set of transitions is partitioned into two sub-
sets: the set H of high level transitions and the set L of low level transitions.
To emphasize this partition we use the following notation. Let L and H be two
disjoint sets: with (S, L, H, F, m0) we denote the net system (S, L ∪ H, F, m0).

The non-interference properties we are going to introduce are based on some
notion of low observability of a system, i.e., what can be observed of a system
from the point of view of low users. The low view of a transition sequence is
nothing but the subsequence where high level transitions are discarded.

Definition 5. Let N = (S, L, H, F, m0) be a net system. The low view of a
transition sequence of N is defined as follows:

ΛN(ε) = ε

ΛN(σt) =
{

ΛN (σ)t if t ∈ L
ΛN (σ) otherwise

The definition of ΛN is extended in the obvious way to sets of transitions
sequences: ΛN (Σ) = {ΛN(σ) | σ ∈ Σ} for Σ ⊆ (L ∪ H)∗.

Definition 6. Let N1 and N2 be two net systems. We say that N1 is low-view

trace equivalent to N2, denoted by N1
Λ≈tr N2, iff ΛN1(TS(N1)) = ΛN2(TS(N2)).

We define the operations of parallel composition (in TCSP-like style) and
restriction on nets, that will be useful for defining some non-interference prop-
erties.

Definition 7. Let N1 = (S1, L1, H1, F1, m0,1) and N2 = (S2, L2, H2, F2, m0,2)
be two net systems such that S1 ∩ S2 = ∅ and (L1 ∪ L2) ∩ (H1 ∪ H2) = ∅. The
parallel composition of N1 and N2 is the net system

N1 | N2 = (S1 ∪ S2, L1 ∪ L2, H1 ∪ H2, F1 ∪ F2, m0,1 ⊕ m0,2)

Definition 8. Let N = (S, L, H, F, m0) be a safe net system and let U be a
set of transitions. The restriction on U is defined as N\U = (S, L′, H ′, F ′, m0),
where

L′ = L \ U
H ′ = H \ U
F ′ = F \ (S × U ∪ U × S)

Strong Nondeterministic Non-Interference (SNNI for short) is a trace-based
property, that intuitively says that a system is secure if what the low-level part
can see does not depend on what the high-level part can do.

Definition 9. Let N = (S, L, H, F, m0) be a net system. We say that N is SNNI

iff N
Λ≈tr N\H.
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The intuition is that, from the low point of view, the system where the high
level transitions are prevented should offer the same traces as the system where
the high level transitions can be freely performed. In essence, a low-level user
cannot infer, by observing the low view of the system, that some high-level
activity has occurred.

As a matter of fact, this non-interference property captures the information
flows from high to low, while admits flows from low to high. For instance, the
net N ′ of Figure 1 is SNNI while the net N ′′ is not SNNI.

Fig. 1. The net system N ′ is SNNI while N ′′ is not SNNI.

An alternative notion of non-interference, called Nondeducibility on Compo-
sition (NDC for short), says that the low view of a system N in isolation is not
to be altered when considering each potential interaction of N with the high
users of the external environment.

Definition 10. Let N = (S, L, H, F, m0) be a net system. We say that N is a
high-level net if L = ∅.
Definition 11. Let N = (S, L, H, F, m0) be a net system. N is NDC iff for all

high-level nets K = (SK , ∅, HK , FK , m0,K): N\H Λ≈tr (N | K)\(H \ HK).

The left-hand term represents the low view of the system N in isolation,
while the right-hand term expresses the low view of N interacting with the high
environment K (note that the activities resulting from such interactions are in-
visible by the definition of low bisimulation). NDC is a very intuitive property:
whatever high level system K is interacting with N , the low effect is unob-
servable. However, it is difficult to check this property because of the universal
quantification over high systems. Luckily enough, we will then prove that SNNI
and NDC are actually the same non-interference property.

Theorem 1. Let N = (S, L, H, F, m0) be a net system. N is SNNI if and only
if N is NDC.
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The two properties above are based on (low) trace semantics. It is well-known
[7] that bisimulation semantics is more appropriate than trace semantics because
it captures also some indirect information flows due to, e.g., deadlocks. For this
reason, we now consider non-interference properties based on bisimulation. To
this aim, we first need to introduce a notion of low–view bisimulation.

Definition 12. Let N1 = (S1, L1, H1, F1, m0,1) and N2 = (S2, L2, H2, F2, m0,2)
be two net systems. A low–view bisimulation from N1 to N2 is a relation on
M(S1) ×M(S2) such that if (m1, m2) ∈ R then for all t ∈ ⋃

i=1,2 Li ∪ Hi:

– if m1[t〉m′
1 then there exist σ, m′

2 such that m2[σ〉m′
2, ΛN1(t) = ΛN2(σ) and

(m′
1, m

′
2) ∈ R

– if m2[t〉m′
2 then there exist σ, m′

1 such that m1[σ〉m′
1, ΛN2(t) = ΛN1(σ) and

(m′
1, m

′
2) ∈ R

If N1 = N2 we say that R is a low–view bisimulation on N1.

We say that N1 is low–view bisimilar to N2, denoted by N1
Λ≈bis N2, if there

exists a low–view bisimulation R from N1 to N2 such that (m0,1, m0,2) ∈ R.

The first obvious variation on the theme is to define the bisimulation based
version of SNNI, yielding BSNNI.

Definition 13. Let N = (S, L, H, F, m0) be a net system. We say that N is

BSNNI iff N
Λ≈bis N\H.

Obviously, BSNNI ⊆ SNNI. The converse is not true: the net N in Figure 2
is SNNI but not BSNNI. Note that SNNI misses to capture the indirect infor-
mation flow present in this net: if the low transition l is performed (and hence
low observed), the low user can infer that the high transition h has not been
performed, hence deducing one piece of high knowledge.

Fig. 2. A net system that is SNNI but not BSNNI.

Similarly, BNDC can be defined from NDC, yielding a rather appealing se-
curity property, which is finer than BSNNI.

Definition 14. Let N = (S, L, H, F, m0) be a net system. N is BNDC iff for

all high-level nets K = (SK , ∅, HK , FK , m0,K): N\H Λ≈bis (N | K)\(H \ HK).
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Theorem 2. Let N = (S, L, H, F, m0) be a net system. If N is BNDC then N
is BSNNI.

Unfortunately, the converse is not true: Figure 3 reports a net that is BSNNI
but not BNDC; the reason why can be easily grasped by looking at their respec-
tive marking graphs in Figure 4.

Fig. 3. A net system that is BSNNI but not BNDC.

Fig. 4. The marking graphs of the net systems N , N\H and (N | K)\{h2}.

BNDC is quite appealing but, because of the universal quantification on all
poossible high level systems, it is difficult to check. The next property, called
Strong Bisimulation Non Deducibility on Composition (SBNDC for short), is
actually an alternative characterization of BNDC which is easily checkable.

Definition 15. Let N = (S, L, H, F, m0) be a net system. N is SBNDC iff for
all markings m ∈ [m0〉 and for all h ∈ H the following holds:

if m[h〉m′ then there exists a low–view bisimulation R on N\H such that
(m, m′) ∈ R.

Theorem 3. Let N = (S, L, H, F, m0) be a net system. N is BNDC if and only
if N is SBNDC.
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The theorem above holds because we are in an unlabeled setting: transitions
are not labeled. In [6, 7] it is proved that – for the security Process Algebra –
SBNDC is strictly finer than BNDC.

4 Place-Based Non-interference in Petri Nets

In this section we define a non-interference property based on the absence of some
kinds of places in a net system. Consider a net system N = (S, L, H, F, m0).

Fig. 5. Examples of net systems containing conflict and (potentially) causal places.

Consider a low level transition l of the net: if l can fire, then we know that
the places in the preset of l are marked before the firing of l; as the nets under
investigation are pure nets, we also know that such places become unmarked
after the firing of l. If there exists a high level action h that produces a token
in a place s in the preset of l (see the system N1 in Figure 5), then the low
level user can infer that h has occurred if he can observe the occurrence of the
low level action l. We note that there exists a causal dependency between the
transitions h and l, because the firing of h produces a token is consumed by l.
Consider now the situation illustrated in the system N2 of Figure 5: in this case,
place s is in the preset of both l and h, i.e., l and h are competing for the use
of the resource represented by the token in s. Aware of the existence of such a
place, a low user knows that no high-level action h has been performed, if he
observes the low-level action l. Place s represents a conflict between transitions
l and h, because the firing of l prevents h from firing.

Our idea is to consider a net system secure if it does not contain places of
the kinds illustrated above.

In order to avoid the definition of a security notion that is too strong, and
that prevents systems with no flow of information to be considered secure, we
need to refine the concept of causal place. Let s be a place such that s ∈ h• ∩ •l.
If s is empty in the initial state of the system, then the low user can infer that h
has occurred from the occurrence of l. On the other hand, if s is marked in the
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initial state, then the first occurrence of l can happen even if h has not fired; thus,
the low level user can infer that h has occurred by observing two occurrences
of l. Hence, in this last case, such a place s is a source of a flow of information
only if transition l can be fired at least two times. For example, consider the net
system N3 reported in Figure 5. Place s is a potentially causal place, but the
system has to be considered secure, as the only (maximal) transition sequence
is ll′h.

Definition 16. Let N = (S, L, H, F, m0) be a net system. Let s be a place of N
such that s• ∩ L �= ∅.

The place s ∈ S is a potentially causal place if •s ∩ H �= ∅. A potentially
causal place s is a causal place if the following condition holds: if m0(s) > 0
then there exists a transition sequence t1 . . . tn and i < n s.t. ti, tn ∈ s• ∩ L.

The place s ∈ S is a conflict place if s• ∩ H �= ∅.
Definition 17. Let N = (S, L, H, F, m0) be a net system. We say that N is
PBNI (Place Based Non-Interference) if, for all s ∈ S, s is neither a causal
place nor a conflict place.

Now we show that the absence of causal places implies SNNI. We need the
following preliminary lemma.

Lemma 1. Let N = (S, L, H, F, m0) be a net system without causal places.
if m0[σ〉m1 then there exists m2 s.t. m0[ΛNσ〉m2 and m2(s) ≥ m1(s) for all
s ∈ •L.

Theorem 4. Let N = (S, L, H, F, m0) be a net system. If N has no causal
places then N is SNNI.

Fig. 6. A net system containing a causal place, whose marking graph is SNNI.

The converse is not true. For example, consider the net system N4 in Figure 6:
place s is a causal place, but N4 is SNNI (but not SBNDC). However, as we will



338 Nadia Busi and Roberto Gorrieri

see in Section 5, in absence of any form of conflicts in the system, SNNI implies
the absence of causal places.

As SBNDC can reveal the presence of conflicts between high-level transitions
and low-level transitions, the absence of causal places in a system is not sufficient
to guarantee SBNDC. Consider for example the system N2 in Figure 5, and its
marking graph MG(N2) reported in Figure 8. The system N2 has no causal
places, but N2 is not SBNDC. In fact, m1

h→ m2 and the markings m1 and m2

have different low-level behaviours, because m1 can perform l whereas m2 cannot
perform any action.

If we take into account also conflict places, we obtain that the absence of
both causal and conflict places is a sufficient condition for SBNDC.

Theorem 5. Let N = (S, L, H, F, m0) be a net system. If N is PBNI then N
is SBNDC.

Fig. 7. Two examples of net systems that illustrate the inadequacy of SBNDC and
PBNI.

On the other hand, the absence of causal and conflict places is not a necessary
condition for SBNDC. Consider the system N5 reported in Figure 7: the system
contains a conflict place, s, hence N5 is not PBNI. However, N5, whose marking
graph is reported in Figure 8, is SBNDC: in fact, the only high-level transition is
m3

h→ m4, and m3 and m4 are behaviourally equivalent because both markings
have no low outgoing moves.

In our opinion, the system N5 is not secure, because the occurrence of the low-
level transition l permits to a low-level user to deduce that no high-level action
has been (and will be) performed. We note that the same kind of information
flow is exhibited by the system N2 of Figure 5, which, on the contrary, is not
SBNDC.

Hence, SBNDC fails to capture some kinds of interference, concerned with the
presence of a conflict between a low-level transition and a high-level one. Indeed,
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Fig. 8. The marking graphs of the systems N2 (Figure 5) and N5 (Figure 7).

also the absence of conflict places, hence PBNI, is not sufficient to ensure the
absence of the kind of interference discussed above. Consider for the example
the system N−

5 of Figure 7, obtained by removing the conflict place s from N5.
The two systems N5 and N−

5 have the same behaviour, as their marking graphs
are isomorphic, but N−

5 is PBNI. The example above suggests us to look for
conflict places not only in the system under investigation, but in all the systems
exhibiting the same marking graph.

5 Region-Based Non-interference in Petri Nets

In this section we enhance PBNI to capture the kind of interference we envisaged
in system N−

5 . We learned from the previous section that in order to capture
some kinds of information flows – arising from conflicts among high and low
transitions – it is necessary to look for the presence of conflict places in all the
systems whose marking graph is isomorphic to the marking graph of the analyzed
system. To construct all such places, we exploit the notion of region, introduced
in [4] and investigated, e.g., in [1, 2] for the synthesis of Petri nets1. A region is a
set of states in the marking graph of a net, corresponding to a real or a potential
place of the net. After recalling some basic notions and results on regions (see,
e.g., [2]), the non-interference notion based on regions is introduced.

5.1 Theory of Regions

Given the marking graph G of a safe net system N , a region of G is basically a
set of markings corresponding to the states where a real or potential place of N
is marked. In other words, a region r groups together all the states of the graph
in which a place r contains a token. Let r be a region of MG(N). Consider a
place s that is necessary for a transition t to happen, i.e., s ∈ •t. Let m ∈ r

1 The restriction to safe Place/Transition nets is essential to keep the presentation of
the region construction as simple as possible.
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and assume that m[t〉; then, s is marked in m; as we consider pure nets, s is
no longer marked after the firing of t. Thus, we have a transition m

t→ m′ in
the marking graph, and m′(s) = 0; hence, m′ �∈ r. So, for each state in r, if a
t-labelled transition exits from it then that transition enters a state that is not
in r. Moreover, if a state m is outside r, then t cannot happen in m, because
the place s in the preset of t is empty; so we do not have t- labelled transitions
exiting from s. To summarize, if s ∈ •t, then each t-labelled transition of the
graph starts inside r and ends outside r. Analogously, if a transition t produces
a token in s, i.e., s ∈ t•, then each t-labelled transition in the graph has source
outside r and target inside r.

Suppose now that place s is unrelated to transition t, i.e., s �∈ •t ∪ t•. If t
fires in a state where s is marked, then place s is marked also after the firing
of t; that is, if a t-labelled transition starts inside r, then it also ends inside r.
Analogously, if t happens in a state where s is empty, then s remains empty
also after the firing of t, i.e., t-labelled transitions that start outside r also end
outside r.

From the above discussion we deduce that t-labelled transitions have a uni-
form behaviour w.r.t. r: either all of them cross r exiting, or all of them cross r
entering, or none of them cross r.

We recall here the notion of region and some relevant results that will be
used later.

Definition 18. Let TS = (St, E,→) be a transition system, a set r ⊆ St is said
to be a region if and only if ∀s1

e→ s′1, s2
e→ s′2 the following conditions hold:

– if s1 ∈ r and s′1 �∈ r then s2 ∈ r and s′2 �∈ r;
– if s1 �∈ r and s′1 ∈ r then s2 �∈ r and s′2 ∈ r.

It is easy to see that both St and ∅ are regions, and they are called the trivial
regions. The set of non-trivial regions of a transition system TS will be denoted
with Reg(TS).

The complementary set of a region is itself a region:

Proposition 1. Let TS = (St, E,→) be a transition system. If r is a region of
TS, then also St \ r is a region of TS.

As t-labelled arcs have a uniform behaviour w.r.t. a region, we can define the
analogous of preset and postset for events and regions

Definition 19. Let TS = (St, E,→) be a transition system and e ∈ E. The
preregionset and the postregionset of e are the sets of regions defined as follows:

◦e = {r ∈ Reg(TS) | ∀(s, e, s′) ∈→: s ∈ r ∧ s′ �∈ r}
e◦ = {r ∈ Reg(TS) | ∀(s, e, s′) ∈→: s �∈ r ∧ s′ ∈ r}

Given a region r of TS, ◦r = {e ∈ E | r ∈ e◦} and r◦ = {e ∈ E | r ∈ ◦e}.
The following proposition explains the relation between the places of a net

system and the regions of its marking graph.
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Definition 20. Let N = (S, T, F, m0) be a net system and let s ∈ S. With rs

we denote the set of states of MG(N) where s is marked: rs = {m ∈ [m0〉 |
m(s) = 1}.
Proposition 2. Let N = (S, T, F, m0) be a net system and let s ∈ S. The set
rs is a region of MG(N).

Proposition 3. Let N = (S, T, F, m0) be a net system and let s ∈ S. We have
that •s = ◦rs and s• = r◦s .

On the other hand, a region not always corresponds to a place of the net,
but may represent a potential place. The addition of such a potential place to
the net system has no influence on its behaviour.

Definition 21. Let N = (S, T, F, m0) be a net system and let r be a region of
MG(N) s.t. the following holds: ∀s ∈ S : ◦r �= •s or r◦ �= s•. Let sr be a place
s.t. sr �∈ S. We net system N+r = (S′, T, F ′, m′

0) is defined as follows:

S′ = S ∪ {sr}
F ′ = F ∪ {(sr, t) | r ∈ ◦t} ∪ {(t, sr) | r ∈ t◦}
m′

0 =
{

m0 ⊕ {sr} if m0 ∈ r
m0 otherwise

Proposition 4. Let N be a net system and r be a region of MG(N). Then
MG(N) is isomorphic to MG(N+r).

Given a net sytem N , we can construct the saturated version of (the marking
graph of) N , obtained by using all the nontrivial regions of MG(N) as places.
Note that the set Reg(MG(N)) is finite, as the set of nontrivial regions of a
transition system is a subset of the powerset of the set of states of the transition
system, and the set of states of the marking graph of a safe Petri net is finite.

Definition 22. Let TS = (St, E,→, s0) be the marking graph of a net system.
The net system Sat(G) = (S, T, F, m0) is defined as follows:

S = Reg(G)
T = E
F = {(r, e) | r ∈ ◦e} ∪ {(e, r) | r ∈ e◦}
m0(r) =

{
1 if s0 ∈ r
0 otherwise

Proposition 5. Let N be a net system. Then MG(N) is isomorphic to
MG(Sat(MG(N))).

5.2 Region-Based Non-interference

We introduce a non-interference property based on the absence of some kinds of
regions in the marking graph of a net system.
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Definition 23. Let N = (S, L, H, F, m0) be a net system. Let r be a region in
Reg(MG(N)) such that r◦ ∩ L �= ∅.

The region r ∈ Reg(MG(N)) is a potentially causal region if ◦r ∩ H �= ∅.
A potentially causal region r is a causal region if the following condition holds:
if m0 ∈ r then there exists a transition sequence t1 . . . tn and i < n s.t. ti, tn ∈
r◦ ∩ L.

The region r is a conflict region if r◦ ∩ H �= ∅.
Definition 24. Let N = (S, L, H, F, m0) be a net system. We say that N is
RBNI (Region-Based Non-Interference) if, for all regions r ∈ Reg(MG(N)), r
is neither a causal region nor a conflict region.

Fig. 9. A conflict region of net N−
5 (Figure 7).

Consider the net system N−
5 in Figure 7. We have that the region r =

{m1, m3} illustrated in Figure 9 is a conflict region, as l, h ∈ r◦. Hence, N−
5

is PBNI but it is not RBNI.

Proposition 6. Let N = (S, L, H, F, m0) be a net system. If N is RBNI then
N is also PBNI.

Instead of looking for causal (resp. conflict) regions in the marking graph of
a net system N , we can equivalently check for presence of causal (resp. conflict)
places in the saturated version of N .

Proposition 7. Let N = (S, L, H, F, m0) be a net system. The system N is
RBNI if and only if the system Sat(MG(N)) is PBNI.

In Section 4 we argued that the absence of causal regions is not a necessary
condition for SNNI, because of the existence of places that contain both causal
and conflict relations. Now we show that if no conflict is present, i.e., there exist
no conflict region in the marking graph of the system, then SNNI is equivalent
to the absence of causal places.

Theorem 6. Let N = (S, H ∪ L, F, m0) be a net system such that MG(N) has
no conflict regions. Then N has no causal places if and only if N is SNNI.
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A consequence of the above result is that, in absence of conflicts, PBNI is
equivalent to RBNI.

Corollary 1. Let N = (S, L, H, F, m0) be a net system such that MG(N) has
no conflict regions. Then N is PBNI if and only if N is RBNI.

6 Conclusions

A survey is presented on five behavioural non-interference properties, as well
as on two new structural ones, PBNI and RBNI, that we propose to firm more
strongly the intuition about the nature of interferences and to obtain more ef-
ficiently checkable property. With the help of many examples, we have shown
that RBNI seems to capture all the intuitive interferences that are possible due
to causality and conflict. Moreover, PBNI is a sufficient condition for SNNI and
SBNDC, hence offering a very efficient way to check these observational non-
interference properties.

The two properties PBNI and RBNI are structural because no notion of
observational equivalence is considered in their definition; however, to be pre-
cise, the definition of RBNI requires an exploration of the state space (marking
graph), hence it is in some sense a behavioural property.

The current investigation was conducted for safe Place/transition Petri nets.
The choice of such a restrictive class is due to the fact the we wanted to introduce
our security properties, in particular RBNI with the minimal technical overhead.
The results presented here scales smoothly to elementary net systems [5] as well
as safe nets with self-loops.

The current investigation was conducted in an unlabeled setting: transitions
in the Petri nets are unlabeled. A natural extension of this approach is to consider
labeled systems, also equipped with the unobservable action ε. Labels can be
used to represent an abstraction of the system where different transitions are
considered as equivalent (from the observational point of view). Therefore, we
can model situations where the low user is not able to recognize precisely the low
transition in execution but only its equivalence class w.r.t. observation. Similarly,
label ε is used to model transitions that the low user cannot observe and which
is not interested to. Such an extension would also permit to export our approach
to process algebras, because it is well-known (see e.g., [3]) how to map (some)
process algebras to safe Petri nets.
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