Lecture 12: Introduction to
OpenMP (Part 1)

What is OpenMP

Open specifications for Multi Processing

Long version: Open specifications for MultiProcessing via
collaborative work between interested parties from the hardware
and software industry, government and academia.

* An Application Program Interface (API) that is used to explicitly
direct multi-threaded, shared memory parallelism.
* APl components:
— Compiler directives
— Runtime library routines
— Environment variables

* Portability

— APl is specified for C/C++ and Fortran

— Implementations on almost all platforms including Unix/Linux and
Windows

e Standardization

— Jointly defined and endorsed by major computer hardware and
software vendors

— Possibility to become ANSI standard

Brief History of OpenMP

In 1991, Parallel Computing Forum (PCF) group
invented a set of directives for specifying loop
parallelism in Fortran programs.

X3H5, an ANSI subcommittee developed an ANSI
standard based on PCF.

In 1997, the first version of OpenMP for Fortran was
defined by OpenMP Architecture Review Board.

Binding for C/C++ was introduced later.
Version 3.1 is available since 2011.

User layer

Application

Environment
variables

Directives,

) OpenMP library
Compiler

Prog
Layer

OpenMP Runtime library

0OS/system support for shared memory and threading

@
>
=
£
3
w
>
wn

Shared Address Space

Thread

* A process is an instance of a computer program that

is being executed. It contains the program code and
Its current activity.

A thread of execution is the smallest unit of

processing that can be scheduled by an operating
system.

* Differences between threads and processes:

— Athread is contained inside a process. Multiple threads
can exist within the same process and share resources
such as memory. The threads of a process share the
latter’s instructions (code) and its context (values that
its variables reference at any given moment).

— Different processes do not share these resources.
http://en.wikipedia.org/wiki/Process (computing)

http://en.wikipedia.org/wiki/Process_(computing)

Process

* A process contains all the information needed to execute
the program

— Process ID
— Program code
— Data on run time stack
— Global data
— Data on heap
Each process has its own address space.
* In multitasking, processes are given time slices in a
round robin fashion.

— |f computer resources are assigned to another process, the
status of the present process has to be saved, in order that
the execution of the suspended process can be resumed at a
later time.

Threads

Thread model is an extension of the process model.

Each process consists of multiple independent
instruction streams (or threads) that are assigned
computer resources by some scheduling procedure.

Threads of a process share the address space of this
process.

— Global variables and all dynamically allocated data objects
are accessible by all threads of a process

Each thread has its own run-time stack, register,
program countetr.

Threads can communicate by reading/writing
variables in the common address space.

OpenMP Programming Model

* Shared memory, thread-based parallelism

— OpenMP is based on the existence of multiple threads in
the shared memory programming paradigm.

— A shared memory process consists of multiple threads.

e Explicit Parallelism

— Programmer has full control over parallelization. OpenMP
is not an automatic parallel programming model.

 Compiler directive based

— Most OpenMP parallelism is specified through the use of
compiler directives which are embedded in the source
code.

OpenMP is not

Necessarily implemented identically by all vendors

Meant for distributed-memory parallel systems (it is designed
for shared address spaced machines)

Guaranteed to make the most efficient use of shared memory

Required to check for data dependencies, data conflicts, race
conditions, or deadlocks

Required to check for code sequences

Meant to cover compiler-generated automatic parallelization
and directives to the compiler to assist such parallelization

Designed to guarantee that input or output to the same file is
synchronous when executed in parallel.

Fork-Join Parallelism

OpenMP program begin as a single process: the master thread. The
master thread executes sequentially until the first parallel region
construct is encountered.

When a parallel region is encountered, master thread
— Create a group of threads by FORK.
— Becomes the master of this group of threads, and is assigned the thread id 0
within the group.
The statement in the program that are enclosed by the parallel region
construct are then executed in parallel among these threads.

JOIN: When the threads complete executing the statement in the parallel
region construct, they synchronize and terminate, leaving only the
master thread.

> N
F > J F > J F > J
o[o 0 10 0 "1 0
— > > » > » T | —
[—] | r > | r > |
KF——|n K ——1n Kk > N
i »

Master thread is shown in red.

/0
* OpenMP does not specify parallel 1/0.

* |tis up to the programmer to ensure that I/O is
conducted correctly within the context of a multi-
threaded program.

Memory Model

 Threads can “cache” their data and are not required
to maintain exact consistency with real memory all
of the time.

* When itis critical that all threads view a shared
variable identically, the programmer is responsible
for insuring that the variable is updated by all
threads as needed.

OpenMP Code Structure

#include <stdlib.h>
#include <stdio.h>
#include "omp.h"

int main()

{

#pragma omp parallel

{
int ID = omp_get_thread_num();
printf("Hello (%d)\n", ID);
printf(" world (%d)\n", ID);

}

}
Set # of threads for OpenMP

In csh
setenv OMP_NUM _THREAD 8
Compile: g++ -fopenmp hello.c

Run: ./a.out

See: http://wiki.crc.nd.edu/wiki/index.php/OpenMP

http://wiki.crc.nd.edu/wiki/index.php/OpenMP

* “Pragma”: stands for “pragmatic information.
A pragma is a way to communicate the
information to the compiler.

* The information is non-essential in the sense
that the compiler may ignore the information
and still produce correct object program.

OpenMP Core Syntax

#include “omp.h”
int main ()

{

int varl, var2, var3;
// Serial code

// Beginning of parallel section.
// Fork a team of threads. Specify variable scoping
#pragma omp parallel private(varl, var2) shared(var3)

{

// Parallel section executed by all threads

// All threads join master thread and disband
}

// Resume serial code. . ..

}

OpenMP C/C++ Directive Format

OpenMP directive forms

— C/C++ use compiler directives
e Prefix: #pragma omp ...

— A directive consists of a directive name followed by
clauses

Example: #pragma omp parallel default (shared) private (varl,
var2)

OpenMP Directive Format (2)

General Rules:
e Case sensitive

* Only one directive-name may be specified per
directive

* Each directive applies to at most one succeeding
statement, which must be a structured block.

* Long directive lines can be “continued” on
succeeding lines by escaping the newline
character with a backslash “\” at the end of a
directive line.

OpenMP parallel Region Directive

#pragma omp parallel [clause list]
Typical clauses in [clause list]
* Conditional parallelization

— if (scalar expression)
* Determine whether the parallel construct creates threads

* Degree of concurrency

— num_threads (integer expresson)
* number of threads to create

* Date Scoping
— private (variable list)
» Specifies variables local to each thread
— firstprivate (variable list)
e Similar to the private
* Private variables are initialized to variable value before the parallel directive
— shared (variable list)
» Specifies variables that are shared among all the threads
— default (data scoping specifier)
* Default data scoping specifier may be shared or none

Example:

#pragma omp parallel if (is_parallel ==1) num_threads(8) shared (var_b)
private (var_a) firstprivate (var_c) default (none)

{

/* structured block */

}

if (is_parallel == 1) num_threads(8)

— If the value of the variable is_parallel is one, create 8 threads
shared (var_b)

— Each thread shares a single copy of variable b
private (var_a) firstprivate (var_c)

— Each thread gets private copies of variable var_a and var _c

— Each private copy of var_c is initialized with the value of var_c in main
thread when the parallel directive is encountered

default (none)
— Default state of a variable is specified as none (rather than shared)
— Singals error if not all variables are specified as shared or private

18

Number of Threads

* The number of threads in a parallel region is
determined by the following factors, in order of
precedence:

Evaluation of the if clause
Setting of the num_threads() clause
Use of the omp_set num_threads() library function

Setting of the OMP_NUM_THREAD environment
variable

5. Implementation default — usually the number of cores
on a node

* Threads are numbered from 0 (master thread) to N-1

BN e

Thread Creation: Parallel Region Example

* Create threads with the parallel construct

#include <stdlib.h>

#include <stdio.h>
#include "omp.h"

Clause to request

threads

int main()
{
int nthreads, tid;
#pragma omp parallel num_threads(4) private(tid)
{
tid = omp_get_thread _num();
printf("Hello world from (%d)\n", tid);
if(tid == 0)
{
nthreads = omp_get_num_threads();
printf(“number of threads = %d\n”, nthreads);
}

} // all threads join master thread and terminates

Each thread executes a
copy of the code
within the structured
block

Thread Creation: Parallel Region Example

#include <stdlib.h>
#include <stdio.h>

#include "omp.h"

int main(){
int nthreads, A[100], tid;

// fork a group of threads with each thread having a private tid variable

omp_set_num_threads(4);
#pragma omp parallel private (tid)
{
tid = omp_get_thread_num();
foo(tid, A);
}// all threads join master thread and terminates

A single copy of A[] is shared
between all threads

SPMD vs. Work-Sharing

* A parallel construct by itself creates a “single

program multiple data” program, i.e., each thread
executes the same code.

 Work-sharing is to split up pathways through the
code between threads within a team.

— Loop construct
— Sections/section constructs
— Single construct

Work-Sharing Construct

Within the scope of a parallel directive, work-sharing
directives allow concurrency between iterations or
tasks

Work-sharing constructs do not create new threads

A work-sharing construct must be enclosed
dynamically within a parallel region in order for the
directive to execute in parallel.

Work-sharing constructs must be encountered by all
members of a team or none at all.

Two directives to be studied

— Do/for: concurrent loop iterations

— sections: concurrent tasks

Work-Sharing Do/for Directive

Do/for
* Shares iterations of a loop across the group
* Represents a “data parallelism”.

for directive partitions parallel iterations across
threads

Do is the analogous directive in Fortran
Usage:
#pragma omp for [clause list]

/* for loop */
* Implicit barrier at end of for loop

Example Using for

H#include <stdlib.h>
#include <stdio.h>
#include "omp.h"

int main()

{
int nthreads, tid;

omp_set_num_threads(3);
#pragma omp parallel private(tid)
{
inti;
tid = omp_get_thread _num();
printf("Hello world from (%d)\n", tid);
#pragma omp for
for(i = 0; i <=4; i++)
{
printf(“Iteration %d by %d\n”, i, tid);
}

} // all threads join master thread and terminates

Another Example Using for

* Seguential code to add two vectors
for(i=0;i<N;i++) {c[i] = b[i] + a[i];}

 OpenMP implementation 1 (not desired)
#pragma omp parallel

{

int id, i, Nthrds, istart, iend;

id = omp_get_thread_num();

Nthrds = omp_get_num_threads();

istart = id*N/Nthrds;

iend = (id+1)*N/Nthrds;

if(id == Nthrds-1) iend = N;

for(l = istart; i<iend; i++) {c[i] = b[i]+a[i];}
}

* A worksharing for construct to add vectors
#pragma omp parallel

{
#pragma omp for or #pragma omp parallel for
{ {
for(i=0; i<N; i++) {c[i]=b[i]+a[i];} for(i=0; i<N; i++) {c[i]=b[i]+a[i];}
} } 26

}

Execution for loop in parallel

Thread 0 |Thread 1

Thread 2 |Thread 3 |Thread 4

- >
i=0-199 | i=200-399

- > > >
i=400-599 | i=600-799 | i=800-999

alil al[il] alil ali] al[il
+ + + + +
b[i] b[i] b[i] b[i] b[i]

c[i] c[i] c[i]

27

int main()

{

int b[3]; 11 u

char *cptr; Heap, |
int i; 11

[i0 [bray [or21] [cptr | [
cptr = malloc(1); : '

#pragma omp parallel for | Thread (1)
for(i=0; i<3; i++) (T I

bli]=i; Master thread (0)

} [i]

Every thread has its own execution context: an address space containing all of the variables the thread
may access. The execution context includes static variables, dynamically allocated data structures in the
heap, and variables on the run-time stack. The execution context includes its own additional run-time
stack. A shared variable has the same address in the execution context of every thread. All threads
have access to shared variables. A private variable has a different address in the execution context of
every thread.

{aw:7n
I

Example. During parallel execution of the for loop, index “i” is a private variable, while “b”, “cptr” and

heap data are shared.
28

e Canonical shape of “for” loop

index + +
for(index = start; index {<,or < or = or >}end; . index — —)
index += inc
index —= inc

— “for” loop must not contain statements that allow the loop to be exited
prematurely.

Examples include: “break” statement, “return” statement, “exit” statement and “goto”
statement.

— The “continue” statement is allowed.

C/C++ for Directive Syntax

#pragma omp for [clause list]
schedule (type [,chunk])
ordered
private (variable list)
firstprivate (variable list)
lastprivate (variable list)
shared (variable list)
reduction (operator: variable list)
collapse (n)
nowait

/* for_loop */

Private Clause

Direct the compiler to make one or more variables private.

#pragma omp parallel for private (j)
for(i=0; i< M; i++)
for(j=0; j < N; j++)
a[i][jl = min(ali][j], alil[k]+tmp[j]);

ow:7)
J

We need every thread to work through N values of “j” for each

iteration of the “i” loop.

If we do not make
increment the same shared variable

o
J

private, all of threads try to initialize and
“i” — meaning the data race.

“o:7
J

The private copies of variable “j” will be accessible only inside
the for loop. The values are undefined on loop entry and exit.

firstprivate Clause

x[0] = 1.0;
for(i=0; i < n; i++){
for(j=1; j<4; j++)
x[j1=g(i, x[j-1]);
answerl[i]=x[1]-x[3];

}

We want each thread'’s private copy of array element x[0] to inherit
the value that the shared variable was assigned in the master
thread.

x[0] = 1.0;
#pragma omp parallel for private (j) firstprivate (x)
for(i=0; i < n; i++){
for(j=1; j<4; j++)
x[j1=g(i, x[j-11);
answerli]=x[1]-x[3];

}

32

lastprivate Clause

* Sequentially last iteration: the iteration that occurs last when the loop is executed
sequentially.
* The lastprivate clause directs the compiler to generate code at the end of the parallel for

loop that copies back to the master thread’s copy of a variable the private copy of the
variable from the thread that executed the sequentially last iteration of the loop.

for(i=0; i < n; i++){
x[0] = 1.0;
for(j=1; j<4; j++)
x[j]= x[j-1]*(i+1);
answer[i]=x[0]+x[1]+x[2]+x[3];
}
n_cubed =x[3];

 In the sequentially last iteration of the loop, x[3] gets assigned the value n3.

* To have this value accessible outside the parallel for loop, we declare x to be a lastprivate

variable. #pragma omp parallel for private(j) lastprivate(x)
for(i=0; i < n; i++){
x[0] = 1.0;
for(j=1; j<4; j++)
x[j]= x[j-11*(i+1);
answer[i]=x[0]+x[1]+x[2]+x[3];

}

n_cubed =x[3]; 33

Reduction

 Serial code

{
double avg = 0.0, a[MAX];

inti;

for(i =0; i<MAX; i++) {avg += a[i];}
avg /= MAX;
}

* How to combine values into a single accumulation
variable (avg)?

Reduction Clause

* Reduction (operator: variable list): specifies how
to combine local copies of a variable in different
threads into a single copy at the master when
threads exit. Variables in variable list are
implicitly private to threads.

— Operators: +, *,-, &, |, », &&, and ||

— Usage

#pragma omp parallel reduction(+: sums) num_threads(4)
{

/* compute local sums in each thread

}

/* sums here contains sum of all local instances of sum */

Reduction in OpenMP for

* Inside a parallel or a work-sharing construct:

— A local copy of each list variable is made and initialized
depending on operator (e.g. O for “+”)

— Compiler finds standard reduction expressions containing
operator and uses it to update the local copy.

— Local copies are reduced into a single value and combined
with the original global value when returns to the master

thread.

double avg = 0.0, a[MAX];
inti;

#pragma omp parallel for reduction (+:avg)
for(i =0; i<MAX; i++) {avg += a[i];}
avg /= MAX;

}

Reduction Operators/Initial-Values

C/C++:
[Opertor | initiaivalie:
+ 0
* 1
- 0
& ~0
| 0
A 0

37

Monte Carlo to estimate Pl

#include <stdlib.h>
#include <stdio.h>

#include "omp.h"

int main(int argc, char *argv[])

{

longint i, count; // count points inside unit circle
long int samples; // number of samples
double pi;

unsigned short xi[3] ={1, 5, 177}; // random number seed
double x, y;
samples = atoi(argv([1]);
count =0;
for(i = 0; i < samples; i++)
{
X = erand48(xi);
y = erand48(xi);
if(x*x + y*y <= 1.0) count++;

pi = 4.0*count/samples;
printf("Estimate of pi: %7.5f\n", pi);

OpenMP version of Monte Carlo to Estimate Pl

#include <stdio.h>
#include <stdlib.h>
#include “omp.h”

main(int argc, char *argv]])

{

}

int i, count; /* points inside the unit quarter circle */
unsigned short xi[3]; /* random number seed */

int samples; [* samples Number of points to generate */
double x.y; [* Coordinates of points */

double pi; /* Estimate of pi */

samples = atoi(argv[1]);

#pragma omp parallel
{
xi[0] =1; /* These statements set up the random seed */
xi[1] = 1,
xi[2] = omp_get_thread_num();
count = 0;
printf("l am thread %d\n", xi[2]);
#pragma omp for firstprivate(xi) private(x,y) reduction(+:count)
for (i = 0; i < samples; i++)
{
X = erand48(xi);
y = erand48(xi);
if (x*x + y*y <= 1.0) count++;
}

}
pi = 4.0 * (double)count / (double)samples;

printf("Count = %d, Samples = %d, Estimate of pi: %7.5f\n", count, samples, pi);

A local copy of “count”
for each thread

All local copies of “count”
added together and
stored in master thread
Each thread needs
different random number
seeds.

Matrix-Vector Multiplication

#pragma omp parallel default (none) \
shared (a, b, c, m,n) private (i,j,sum)

num_threads(4)

for(i=0; i < m; i++){
sum = 0.0;
for(j=0; j < n; j++)

sum += b[i][j]*c[j];

ali] =sum;
(i=0,1,2,3,4) for (i=h,6,7,8,9)
sum = b[i=0] [§]*c[]] sum = b[i=5] [§]*c[]]
al[0] = sum a[5] = sum
sum = bl[i=1] [§]*c[]] sum = b[i=6] [§]*c[]]
al[l] = sum a[6] = sum
Thread O, Thread 1,

..etc...

40

schedule clause

* Describe how iterations of the loop are divided among the threads in the
group. The default schedule is implementation dependent.

e Usage: schedule (scheduling class[, parameter]).

— static

Loop iterations are divided into pieces of size chunk and then statically assigned to threads.
If chunk is not specified, the iteration are evenly (if possible) divided contiguously among
the threads.

— dynamic
Loop iterations are divided into pieces of size chunk and then dynamically assigned to
threads. When a thread finishes one chunk, it is dynamically assigned another. The default
chunk size is 1.

— guided
For a chunk size of 1, the size of each chunk is proportional to the number of unassigned
iterations divided by the number of threads, decreasing to 1. For a chunk size with value
k(k > 1), the size of each chunk is determined in the same way with the restriction that
the chunks do not contain fewer than k iterations (except for the last chunk to be assigned,
which may have fewer than k iterations). The default chunk size is 1.

— runtime
The scheduling decision is deferred until runtime by the environment variable
OMP_SCHEDULE. It is illegal to specify a chunk size for this clause

— auto
The scheduling decision is made by the compiler and/or runtime system.

e Static scheduling
e 16 iterations, 4 threads:

Thread 0 1 2 3

no chunk*| 1-4 5-8 9-12 13-16

chunk = 2| 1-2 3-4 5-6 7-8
9-10 11-12 13-14 15-16

Static Scheduling

// static scheduling of matrix multiplication loops
#pragma omp parallel default (private) \
shared (a, b, ¢, dim) num_threads(4)
#pragma omp for schedule(static)
for(i=0; i < dim; i++)
{
for(j=0; j < dim; j++)
{
cli](jl = 0.0;
for(k=0; j < dim; k++)

cli](jI += ali][k]*b[k][jl;

} Static schedule maps iterations to threads
} at compile time

Dynamic Scheduling

 The time needed to execute different loop iterations may vary considerably.

for(i=0; i<n; i++)
{
for(j=i; j < n; j++)
a[i][jl = rand();

}

* The first iteration of the outermost loop (i=0) requires n times more work
than the last iteration (i=n-1). Inverting the two loops will not remedy the
imbalance.

#pragma omp parallel default (private) \
shared (a, n) private(j) num_threads(4)
#pragma omp for schedule(dynamic)
for(i=0; i<n; i++)
{
for(j=i; j < n; j++)
a[illjl = rand();

44

Environment Variables

* OMP_SCHEDULE “schedule[, chunk_size]”

— Control how “omp for schedule (RUNTIME)” loop
iterations are scheduled.

* OMP_NUM_THREADS integer
— Set the default number of threads to use

* OMP_DYNAMIC TRUE|FALSE

— Can the program use a different number of threads in
each parallel region?

* OMP_NESTED TRUE |FALSE

— Will nested parallel regions create new teams of
threads, or will they be serialized?

By default, worksharing for loops end with an implicit
barrier

* nowait: If specified, threads do not synchronize at the
end of the parallel loop

* ordered: specifies that the iteration of the loop must
be executed as they would be in serial program.

* collapse: specifies how many loops in a nested loop
should be collapsed into one large iteration space and
divided according to the schedule clause. The
sequential execution of the iteration in all associated
loops determines the order of the iterations in the
collapsed iteration space.

Avoiding Synchronization with nowait

#pragma omp parallel shared(A,B,C) private(id)

{

id=omp get thread num();
Alid] = big_calc1(id);

#pragma Omp ba rrier Barrier: each threads waits till all threads arrive.

#pragma omp for
for(i = 0; i < N; i++) { C[i] = big_calc3(i,A); }

#pragma omp for nowait No implicit

. . . .] _ barrier due to
fOr(I =0;1<N; |++) {B[l] = blg_CaICZ(C,I); } nowait. Any
: : . thread can begin
Alid] = big_calc4(id); g caled
immediately
without waiting
for other threads
to finish the loop

Implicit barrier
at the end of the
parallel region

e By default: worksharing for loops end with an
implicit barrier
* nowait clause:

— Modifies a for directive
— Avoids implicit barrier at end of for

Loop Collapse

* Allows parallelization of perfectly nested loops without
using nested parallelism

 Compiler forms a single loop and then parallelizes this

#pragma omp parallel for collapse (2)
for(i=0;i< N; i++)
{

for(j=0;j< M; j++)

{

foo(A,i,j);

}

}

For Directive Restrictions

For the “for loop” that follows the for directive:
* |t must not have a break statement

* The loop control variable must be an integer

* The initialization expression of the “for loop” must
be an integer assighment.

* The logical expression must be one of <, <, >, >

) —

* The increment expression must have integer
increments or decrements only.

Lecture 12: Introduction to
OpenMP (Part 2)

Performance Issues |

* C/C++ stores matrices in row-major fashion.
* Loop interchanges may increase cache locality

{

#pragma omp parallel for
for(i=0;i< N; i++)
! for(j=0;j< M; j++)

| Ali][j] =BIil[] + Cli][il;
} }

* Parallelize outer-most loop

Performance Issues Il

Move synchronization points outwards. The inner loop is

parallelized.
In each iteration step of the outer loop, a parallel region is

created. This causes parallelization overhead.

for(i=0;i< N; i++)

{ #pragma omp parallel for
for(j=0;j< M; j++)
| Alilli] =B[ill] + ClilLil;

} }

Performance Issues |

* Avoid parallel overhead at low iteration counts

#pragma omp parallel for if(M > 800)
for(j=0;j< M; j++)
{
aa[j] =alpha*bb[j] + cclj];
}

}

C++: Random Access lterators Loops

* Parallelization of random access iterator loops is supported

void iterator_example(){
std::vector vec(23);
std::vector::iterator it;

#pragma omp parallel for default(none) shared(vec)
for(it=vec.begin(); it< vec.end(); it++)

{
// do work with it //

}

}

Conditional Compilation

* Keep sequential and parallel programs as a single source
code

#if def _OPENMP
#include “omp.h”
#endif

Main()
{
#ifdef OPENMP
omp_set_num_threads(3);
#endif
for(i=0;i< N; i++)
{
#pragma omp parallel for
for(j=0;j< M; j++)
{
Ali]lj] =B[i][j] + C[i][j];
}
}

Be Careful with Data Dependences

 Whenever a statement in a program reads or writes a memory
location and another statement reads or writes the same
memory location, and at least one of the two statements
writes the location, then there is a data dependence on that

memory location between the two statements. The loop may
not be executed in parallel.

for(i=1;i< N; i++)
{

ali] = a[i] + a[i-1];
}

ali] is written in loop iteration i and read in loop iteration i+1.

This loop can not be executed in parallel. The results may not
be correct.

Classification of Data Dependences

* A data dependence is called loop-carried if the two
statements involved in the dependence occur in
different iterations of the loop.

* Let the statement executed earlier in the sequential

execution be loop S1 and let the later statement be
S2.

— Flow dependence: the memory location is written in S1

and read in S2. S1 executes before S2 to produce the value
that is consumed in S2.

— Anti-dependence: The memory location is read in S1 and
written in S2.

— Qutput dependence: The memory location is written in
both statements S1 and S2.

* Anti-dependence

for(i=0;i< N-1; i++)

{
x = b[i] + cli];
ali] = a[i+1] + x;

}

e Parallel version with dependence removed

#pragma omp parallel for shared (a, a2)
for(i=0; i < N-1; i++)
a2[i] = a[i+1];
#pragma omp parallel for shared (a, a2) lastprivate(x)
for(i=0;i< N-1; i++)
{

x = b[i] + cli];
ali] = a2[i] + x;

}

for(i=1;i< m; i++)
for(j=0;j<n;j++)

{
a[il[j] = 2.0*a[i-1][j];

}

for(i=1;i< m; i++)

#pragma omp parallel for
for(j=0;j<n;j++)

{
alil[jl = 2.0*a[i-1](j];

}

Poor performance, it requires
m-1 fork/join steps.

#pragma omp parallel for private (i)
for(j=0;j< n; j++)
for(i=1;i<m;i++)
{
alillj] = 2.0*a[i-1][jl;
}

Invert loop to yield better
performance(?).

With this inverting, only a single
fork/join step is needed. The data
dependences have not changed.

However, this change affect the
cache hit rate.

* Flow dependence is in general difficult to be
removed.
X=0.0;

for(i=0;i< N; i++)

{

X=X+ ali];

}

X=0.0;

#pragma omp parallel for reduction(+:x)
for(i=0;i< N; i++)

{

X =X+ ali];

}

 Elimination of induction variab

idx = N/2+1; isum = 0; pow?2 = 1;
for(i=0;i< N/2; i++)
{
ali] = a[i] + a[idx];
b[i] = isum;
cli] = pow2;
idx++; isum +=i; pow2 *=2;

}

e Parallel version

#pragma omp parallel for shared (a,b)

for(i=0;i< N/2; i++)

{
ali] = a[i] + a[i+N/2];
b[i] =i*(i-1)/2;

c[il = pow(2,i);

}

es.

Remove flow dependence using loop skewing

for(i=1;i< N; i++)

{
b[i] = b[i] + a[i-1];
ali] = a[i]+c[i];

}

Parallel version

b[1]=b[1]+a[0];

#pragma omp parallel for shared (a,b,c)

for(i=1;i< N-1; i++)

{
ali] = ali] + c[i];
b[i+1] = b[i+1]+ali];

}

a[N-1] = a[N-1]+c[N-1];

* A flow dependence that can in general not be
remedied is a recurrence:

for(i=1;i< N; i++)
{

z[i] = z[i] + I[i]*z[i-1];
}

Recurrence: LU Factorization of Tridiagonal Matrix

a0 4o \
/bl d O
bg a2
by a3 3
b4 dq4 Q4
\ 1 b 2) d
(fl 1 \ (’ é{i C1 \
_ lp 1 2
- (3 {1 , 3 33
1 c
\ s 1)\ ey

T =LU

65

e Tx=LUx=Lz=b, z=Ux.
* Proceed as follows:
e Lz=b, Ux=z

e Lz=b is solved by:

z[0] = b[O];

for(i=1;i< n; i++)

{
z[i] = b[i] - I[i]*z[i-1];

}

Cyclic reduction probably is the best method to solve tridiagonal systems

Z. Liu, B. Chapman, Y. Wen and L. Huang. Analyses for the Translation of OpenMP
Codes into SPMD Style with Array Privatization. OpenMP shared memory parallel
programming: International Workshop on OpenMP

C. Addison, Y. Ren and M. van Waveren. OpenMP Issues Arising in the
Development of Parallel BLAS and LAPACK libraries.). Sci. Programming —
OpenMP, 11(2), 2003.

S.F. McGinn and R.E. Shaw. Parallel Gaussian Elimination Using OpenMP and MPI

V=alpha();

W=beta();

X=gamma(v,w);

Y=delta();

printf(“%g\n”, epsilon(x,y));

gamma

Data dependence diagram

Functions alpha, beta, delta may be executed
in parallel

67

Worksharing sections Directive

sections directive enables specification of task parallelism
— Sections construct gives a different structured block to each thread.

#pragma omp sections [clause list]
private (list)
firstprivate (list)
lastprivate (list)
reduction (operator: list)
nowait

{

#pragma omp section

structured_block

#pragma omp section

structured _block

#include “omp.h”
#define N 1000
int main(){
int i;
double a[N], b[N], c[N], d[N];
for(i=0; i<N; i++){
ali] =i*2.0;
b[i] =i+ a[i]*22.5;
}
#pragma omp parallel shared(a,b,c,d) private(i)
{

H#pragma omp sections nowait

{

#pragma omp section
for(i=0; i<N;i++) c[i] = a[i]+b[i];, <— —
#pragma omp section

for(i=0; i<N:i++) d[i] = alil*b[i; «— |

Two tasks are
computed
concurrently

}
} By default, there is a barrier at the end of the
} sections. Use the “nowait” clause to turn of
the barrier.

69

#include “omp.h”

#pragma omp parallel

{
#pragma omp sections
{
H#pragma omp section
v=alpha();
H#pragma omp section
w=beta();
}
H#pragma omp sections
{

#pragma omp section
x=gamma(v,w);

#pragma omp section
y=delta();

}
printf(“%g\n”, epsilon(x,y));

70

Synchronization |

Threads communicate through shared variables.
Uncoordinated access of these variables can lead to
undesired effects.

— E.g. two threads update (write) a shared variable in the
same step of execution, the result is dependent on the
way this variable is accessed. This is called a race
condition.

To prevent race condition, the access to shared
variables must be synchronized.

Synchronization can be time consuming.

The barrier directive is set to synchronize all threads.
All threads wait at the barrier until all of them have
arrived.

Synchronization |l

* Synchronization imposes order constraints and is
used to protect access to shared data

* High level synchronization:
— critical
— atomic
— barrier

— ordered

* Low level synchronization
— flush

— locks (both simple and nested)

Synchronization: critical

* Mutual exclusion: only one thread at a time can enter a critical region.

{
double res;
#pragma omp parallel I S E—
{ | =w |]
double B: [s [
int i, id, nthrds; .
id=omp_get_thread _num(); .
nthrds = omp_get _num_threads();
for(i=id; i<niters; i+=nthrds){
B = some_work(i); Threads wait here: only one thread
#pragma omp critical < at a time calls consume(). So this is
consume(B,res); a piece of sequential code inside
} the for loop.
}

Code Fragment for Manager/Worker Model

int main(int argc, char argv([])

{
struct job_struct job_ptr;
struct task_struct *task_ptr;

task_ptr = get_next_task(&job_ptr);
while(task_ptr != NULL){
complete_task(task_ptr);
task_ptr = get_next_task(&job_ptr);
}

}

struct task_struct *get_next_task(struct job_struct
{
struct task_struct *answer;
if(job_ptr == NULL) answer = NULL;
else
{
answer = job_ptr->task;
job_ptr =job_ptr->next;
}

return answer;

\

Job_ptr

next

task

next

task

next

*job_ptr)

- =

74

* Two threads complete the work

-~

task

next

task | next ——%% task | next |—>

kg

J\)b_ptr Shared variables
\

Master thread

Thread 1

75

int main(int argc, char argv(])

{
struct job_struct job_ptr;
struct task_struct *task_ptr;

#pragma omp parallel private (task_ptr)
{
task_ptr = get_next_task(&job_ptr);
while(task_ptr != NULL){
complete_task(task_ptr);
task_ptr = get_next_task(&job_ptr);

}

struct task_struct *get next_task(struct job_struct *job_ptr)
{
struct task_struct *answer;
#pragma omp critical
{
if(job_ptr == NULL) answer = NULL;
else
{
answer = job_ptr->task;
job_ptr = job_ptr->next;
}
}

return answer;

The execution of the
code block after the
parallel program is
replicated among the
threads

Ensure function
get_next_task()
executes atomically.

76

sum = 0;
#pragma omp parallel shared(n,a,sum) private(TID,sumLocal)
{
TID = omp_get_thread_num() ;
sumlLocal = 0O;
#pragma omp for
for (i=0; i<m; i++)
sumLocal += alil;
#pragma omp critical (update_sum)
{

sum += sumLocal,;
printf ("TID=Jd: sumLocal=Yd sum = %d\n",TID,sumLocal,sum);
+

} /#-- End of parallel region —-*/

77

#pragma omp parallel

{

#pragma omp for nowait shared(best_cost)

for(i=0; i<N; i++){
int my_cost;
my_cost = estimate(i);

H#pragma omp critical <«

{

if(best_cost < my_cost)
best_cost = my_cost;

Only one thread at a time
executes if() statement. This
ensures mutual exclusion when
accessing shared data.
Without critical, this will set up
a race condition, in which the
computation exhibits
nondeterministic behavior
when performed by multiple
threads accessing a shared
variable

Synchronization: atomic

atomic provides mutual exclusion but only applies to the
load/update of a memory location.

This is a lightweight, special form of a critical section.

It is applied only to the (single) assignment statement that
immediately follows it.

{

#pragma omp parallel

{
double tmp, B;

Atomic only protects the update of X.
#pragma omp atomic

{

X+=tmp;
}

int ic, i, n;
ic = 0;
#pragma omp parallel shared(n,ic) private(i)
for (i=0; i++, i<n)
{
#pragma omp atomic
ic = ic + 1;

o: 7

ic” is a counter. The atomic construct ensures that no updates
are lost when multiple threads are updating a counter value.

80

* Atomic construct may only be used together with an expression
statement with one of operations: +, *, -, /, &, », |, <<, >>.

int ic, i, n;
ic = 0;
#pragma omp parallel shared(n,ic) private(i)
for (i=0; i++, i<n)
{
#pragma omp atomic
ic = ic + bigfunc();

 The atomic construct does not prevent multiple threads
from executing the function bigfunc() at the same time.

81

Synchronization: barrier

Suppose each of the following two loops are run in parallel
over i, this may give a wrong answer.

for(i= 0; i<N; i++)
ali] = bfi] + c[i];
for(i= 0; i<N; i++)
d[i] = a[i] + bli];

There could be a data race in a[].

82

for(i= 0; i<N; i++)
ali] = b[i] + cli]; wait

for(i= 0; i<N; i++) barrier
d[i] = a[i] + bli];

To avoid race condition:

 NEED: All threads wait at the barrier point and only continue

when all threads have reached the barrier point.
Barrier syntax:

* H#pragma omp barrier

Barrier Region

time

Synchronization: barrier

barrier: each threads waits until all threads arrive

#pragma omp parallel shared (A,B,C) private (id)
{

id=omp_get_thread_num();
Alid] = big_calc1(id);
#pragma omp barrier

#pragma omp for the end of for
for(i=0; i<N;i++){C[i]=big_calc3(i,A);} — | construct

#pragma omp for nowait

for(i=0;i<N;i++) {B[i]=big_calc2(i,C);}
Alid]=big_calc4(id); \ No implicit barrier

} due to nowait

\ Implicit barrier at the end of

a parallel region

Implicit barrier at

When to Use Barriers

 |f data is updated asynchronously and data
integrity is at risk
 Examples:

— Between parts in the code that read and write the
same section of memory

— After one timestep/iteration in a numerical solver

e Barriers are expensive and also may not scale to a
large number of processors

“master” Construct

The “master” construct defines a structured block that is only executed
by the master thread.

The other threads skip the “master” construct. No synchronization is
implied.

It does not have an implied barrier on entry or exit.
The lack of a barrier may lead to problems.

#pragma omp parallel

{

#pragma omp master

{

exchange_information();

}

#pragma omp barrier

#pragma omp parallel shared(a,b) private(i)
{

#pragma omp master

{
a = 10;
printf("Master construct is executed by thread %d\n",
omp_get_thread_num()) ;

#pragma omp barrier
#pragma omp for
for (i=0; i<m; i++)
blil = a;
} /*-- End of parallel region --x*/
printf("After the parallel region:\n");

for (i=0; i<n; i++)
printf("blid] = ¥d\n",i,b[i]);

Master construct to initialize the data

87

“single” Construct

* The “single” construct builds a block of code that is

executed by only one thread (not necessarily the master
thread).

* A barrier is implicitly set at the end of the single block (the
barrier can be removed by the nowait clause)

#pragma omp parallel single processor

{ region
= P
#pragma omp single :
{ I I
exchange_information(); . E=]
do_other_things(); / I

Threads wait
} in the barrier

#pragma omp parallel shared(a,b) private(i)
{
#pragma omp single
{
a = 10;
printf("Single construct executed by thread %d\n",
omp_get_thread_num());
}

/* A barrier is automatically inserted here */

#pragma omp for
for (i=0; i<n; i++)
blil = a;

} /*—- End of parallel region --*/
printf ("After the parallel region:\n");

for (i=0; i<n; i++)
printf("bl%d] = Jd\n",i,b[i]);

Single construct to initialize a shared variable

89

Synchronization: ordered

 The “ordered” region executes in the sequential
order

#pragma omp parallel private (tmp)

{

#pragma omp for ordered reduction(+:res)
for(i=0;i<N;i++)
{
tmp = compute(i);
#pragma ordered
res += consum(tmp);

}
do_other_things();

Synchronization: Lock routines

A lock implies a memory fence of all thread visible variables.

These routines are used to guarantee that only one thread
accesses a variable at a time to avoid race conditions.

C/C++ lock variables must have type “omp_lock t” or
“omp_nest_lock_t”.

All lock functions require an argument that has a pointer to
omp lock toromp nest lock t.

Simple Lock routines:

— omp_init_lock(omp_lock_t*); omp_set lock(omp_lock t*);
omp_unset_lock(omp_lock t*);

omp_test_lock(omp_lock t*); omp_destroy lock(omp_ lock t*);

http://gcc.gnu.org/onlinedocs/libgomp/index.html#Top

http://gcc.gnu.org/onlinedocs/libgomp/index.html

General Procedure to Use Locks

1. Define the lock variables

2. Initialize the lock via a call to omp_init_lock

3. Set the lock using omp_set lock or omp test lock.

The latter checks whether the lock is actually
available before attempting to set it. It is useful to
achieve asynchronous thread execution.

. Unset a lock after the work is done via a call to
omp_unset_lock.

. Remove the lock association via a call to
omp_destroy_lock.

Locking Example

parallel region - begin

TID=0

acquire lock
Protected
Region

release lock

i TID=1

Other Work

Other Work

acquire lock

Protected
Region

release lock

parallel region - end

* The protected region

contains the update
of a shared variable

One thread acquires
the lock and
performs the update

Meanwhile, other
threads perform
some other work

When the lock is
released again, the
other threads
perform the update

Initialize a lock
associated with lock
variables “Ick” for
use in subsequent

omp_lock_t Ick; / calls.
omp_init_lock(&Ick);

#pragma omp parallel shared(lck) private (tmp, id)

{ Thread waits here
id = omp_get _thread _num(); — | for its turn.
tmp = do_some_work(iM
omp_set_lock(&Ick);

printf(“%d %d\n”, id, tmp); Release the lock so
omp_unset_lock(&Ick); that the next thread

} gets a turn

omp_destroy_lock(&Ick); S—__

Dissociate the given lock
variable from any locks.

Runtime Library Routines

* Routines for modifying/checking number of threads
— omp_set_num_threads(int n);
— intomp_get_num_threads(void);
— intomp_get_thread_num(void);
— int omp_get_max_threads(void);
* Test whether in active parallel region
— int omp_in_parallel(void);
 Allow system to dynamically vary the number of threads from one
parallel construct to another
— omp_set_dynamic(int set)
. set = true: enables dynamic adjustment of team sizes
. set = false: disable dynamic adjustment

— intomp_get _dynamic(void)
* Get number of processors in the system
— int omp_num_procs(void); returns the number of processors online

http://gcc.gnu.org/onlinedocs/libgomp/index.html#Top

http://gcc.gnu.org/onlinedocs/libgomp/index.html
http://gcc.gnu.org/onlinedocs/libgomp/index.html

Default Data Storage Attributes

* Ashared variable has a single storage location in memory for the
whole duration of the parallel construct. All threads that
reference such a variable accesses the same memory. Thus,
reading/writing a shared variable provides an easy mechanism for
communicating between threads.

— In C/C++, by default, all program variables except the loop index
become shared variables in a parallel region.

— Global variables are shared among threads

— C: File scope variables, static variables, dynamically allocated
memory (by malloc(), or by new).

* A private variable has multiple storage locations, one within the
execution context of each thread.

— Not shared variables
» Stack variables in functions called from parallel regions are private.
e Automatic variables within a statement block are private.

— This holds for pointer as well. Therefore, do not assign a private
pointer the address of a private variable of another thread. The
result is not defined.

/** main file **/
H#include <stdio.h>
H#include <stdlib.h>

double A[100];
int main(){
int index[50];
#pragma omp parallel
work(index);
printf(“%d\n”, index[0]);
}

[** file 1 **/
#include <stdio.h>
#include <stdlib.h>

extern double A[100];
void work(int *index){
double temp[50];

static int count;

}

* Variables “A”, “index” and “count” are shared by all threads.
e Variable “temp” is local (or private) to each thread.

Changing Data Storage Attributes

* Clauses for changing storage attributes
— “shared”, “private”, “firstprivate”

* The final value of a private inside a parallel “for” loop can
be transmitted to the shared variable outside the loop
with:

— “lastprivate”
 The default attributes can be overridden with:
— Default(private |shared|none)

* All data clauses listed here apply to the parallel construct
region and worksharing construct region except “shared”,
which only applies to parallel constructs.

Private Clause

“private (variable list)” clause creates a new local copy of variables for
each thread.

— Values of these variables are not initialized on entry of the parallel region.

— Values of the data specified in the private clause can no longer be accessed

after the corresponding region terminates (values are not defined on exit of
the parallel region).

/*** wrong implementation ***/
int main(){
int tmp =0;
tpragma omp paralel for privete(smp) < “tmp i not nitialized
tmp +=j;
printf(“%d\n”, tmp);

}

“tmp” is 0 in version 3.0; unspecified in
version 2.5.

Firstprivate Clause

 firstprivate initializes each private copy with the
corresponding value from the master thread.

/*** still wrong implementation ***/
int main(){

int tmp =0;
#pragma omp parallel for firstprivate(tmp)
for (int j=0; j<1000;j++)
tmp +=j;

Each thread get its own
“tmp” with an initial
value of 0.

printf(“%d\n”, tmp);

}

“tmp” is 0 in version 3.0; unspecified in
version 2.5.

Lastprivate Clause

e Lastprivate clause passes the value of a private variable from the last
iteration to a global variable.

— It is supported on the work-sharing loop and sections constructs.

— It ensures that the last value of a data object listed is accessible after the
corresponding construct has completed execution.

— In case use with a work-shared loop, the object has the value from the
iteration of the loop that would be last in a “sequential” execution.

/*** useless implementation ***/
int main(){
int tmp =0;
#pragma omp parallel for firstprivate(tmp) lastprivate(tmp)
for (int j=0; j<5;j++)
tmp +=;
printf(“%d\n”, tmp);

; T

“tmp” is defined as its value at the “last
sequential” iteration, i.e, j = 5.

Correct Usage of Lastprivate

/*** correct usage of lastprivate ***/
int main(){
int a, j;
#pragma omp parallel for private(j) lastprivate(a)
for (j=0; j<5;j++)
{
a=j+2;
printf(“Thread %d has a value of a = %d for j = %d\n”,
omp_get_thread_num(), a, j);

}

printf(“value of a after parallel = %d\n”, a);

' Tread O has a valueofa=2forj= 0
' Tread 2 has a value of a=4 forj= 2
' Tread 1 hasavalueofa=3forj= 1
Tread 3 hasavalueofa=5forj= 3
' Tread 4 has avalueofa=6forj= 4
- value of a after parallel = 6

102

Default Clause

C/C++ only has default(shared) or default(none)
Only Fortran supports default(private)

Default data attribute is default(shared)
— Exception: #pragma omp task

Default(none): no default attribute for variables
in static extent. Must list storage attribute for
each variable in static extent. Good programming
practice.

Lexical (static) and Dynamic Extent |

Parallel regions enclose an arbitrary block of code,
sometimes including calls to another function.

The lexical or static extent of a parallel region is the
block of code to which the parallel directive applies.

The dynamic extent of a parallel region extends the
lexical extent by the code of functions that are called
(directly or indirectly) from within the parallel region.

The dynamic extent is determined only at runtime.

Lexical and Dynamic Extent Il

int main(){
#pragma omp parallel |
{ | | Staticextent
print_thread_id(); j»
}]
} | Dynamic
extent
void print_thread_id() R
{
int id = omp_get_thread _num(); — —
printf(“Hello world from thread %d\n”, id);
} _—

105

llel shared(Aglobal
fnmp parallel shared(Aglobal) Thread
(void) myfunc (&Aglobal) ; Alocal
}
void myfunc(float *Aglobal) ’//
{

int Alocal;

Thread
Alocal [|—

Aglobal
Variable Alocal is in private memory,

managed by the thread owning it, and
stored on the so-called stack / \

Thread Thread
Alocal Alocal

106

void caller(int *a, int n) {
int i,j,m=3;
#pragma omp parallel for
for (i=0; i<n; i++) {
int k=m;
for (j=1; j<=5; j++) {
callee(&a[i], &k, 3J);

}
void callee(int *x, int *y, int
z) {
int ii;
static int ont;
ent++;
for (ii=1l; ii<z; ii++) {

*®X = *y + z;

R. Hartman-Baker. Using OpenMP

=

n

shared
shared
private
shared
shared
private

private
shared
private
private
private

private

shared

Declared outside parallel construct
same

Parallel loop index

Sequential loop index

Declared outside parallel construct
Automatic vanable/parallel region
Passed by value

(actually a)

Passed by value

(actually k)

(actually j)

Local stack vanable in called
function

Declared static (like global)

107

Threadprivate

 Threadprivate makes global data private to a thread
— C/C++: file scope and static variables, static class members

— Each thread gives its own set of global variables, with initial
values undefined.

* Different from private
— With private clause, global variables are masked.

— Threadrpivate preserves global scope within each thread.

— Parallel regions must be executed by the same number of
threads for global data to persist.

 Threadprivate variables can be initialized using copyin
clause or at time of definition.

If all of the conditions below hold, and if a
threadprivate object is referenced in two consecutive
(at run time) parallel regions, then threads with the
same thread number in their respective regions
reference the same copy of that variable:

— Neither parallel region is nested inside another parallel
region.

— The number of threads used to execute both parallel
regions is the same.

H#include <stdio.h>
H#include <stdlib.h>
#include "omp.h"

Threadprivate directive is

int *pglobal; used to give each thread a
#pragma omp threadprivate(pglobal) < | private copy of the global

pointer pglobal.
int main(){

#pragma omp parallel for private(i,j,sum,TID) shared(n,length,check)
for (i=0; i<n;i++)

{
TID = omp_get_thread_num();
if((pglobal = (int*) malloc(length[i]*sizeof(int))) = NULL) {
for(j=sum=0; j < length[i];j++) pglobal[j] = j+1;
sum = calculate_sum(lengthli]);
printf(“TID %d: value of sum for | = %d is %d\n”, TID,i,sum);
free(pglobal);
} else {
printf(“TID %d: not enough memory : length[%d] = %d\n", TID,i,lengthli]);
}
}

/* source of function calculate_sum() */
extern int *pglobal;

int calculate_sum(int length){
int sum =0;
for (j=0; j<length;j++)
{
sum += pglobal[j];
}

return (sum);

111

#include <omp.h>

static int sum0=0;

#pragma omp threadprivate (sumd)
int main()

{ int sum = 0;

int 1 ;

for (. . .)
f#ipragma omp parallel

{

sumd = 0;

#pragma omp for
for (i =0; i <= 1000; i++)
sumC = sumd + .
#pragma omp critical
sum = sum + sumd ;
} /# end of parallel region #/

* Each thread has its own copy of sumO, updated in a parallel
region that is called several times. The values for sumO
from one execution of the parallel region will be available
when it is next started. 112

Copyin Clause

* Copyin allows to copy the master thread’s
threadprivate variables to corresponding
threadprivate variables of the other threads.

int global[100];
#pragma omp threadprivate(global)

int main(){

for(int i= 0; i<100; i++) global[i] = i+2; // initialize data
#pragma omp parallel copyin(global)

{

/// parallel region, each thread gets a copy of global, with initialized value

}
}

Copyprivate Clause

* Copyprivate clause is supported on the single directive to broadcast values of
privates from one thread of a team to the other threads in the team.

— The typical usage is to have one thread read or initialize private data that is
subsequently used by the other threads as well.

— After the single construct has ended, but before the threads have left the associated

barrier, the values of variables specified in the associated list are copied to the other
threads.

— Do not use copyprivate in combination with the nowait clause.

#include “omp.h”
Void input_parameters(int, int); // fetch values of input parameters

int main(){
int Nsize, choice;
#pragma omp parallel private(Nsize, choice)
{
#pragma omp single copyprivate (Nsize, choice)
input_parameters(Nsize,choice);
do_work(Nsize, choice);
}
}

Flush Directive

* OpenMP supports a shared memory model.

— However, processors can have their own “local” high
speed memory, the registers and cache.

— |f a thread updates shared data, the new value will first
be saved in register and then stored back to the local
cache.

— The update are thus not necessarily immediately visible
to other threads.

a. Shared memory

115

Flush Directive

The flush directive is to make a thread’s temporary
view of shared data consistent with the value in
memory.
— #pragma omp flush (list)
— Thread-visible variables are written back to memory
at this point.

— For pointers in the list, note that the pointer itself is
flushed, not the object it points to.

Why Task Parallelism?

#include “omp.h”
/* traverse elements in the list */

Void traverse_list(List *L){
Element *e;
#pragma omp parallel private(e)
{
for(e = L->first; e I= NULL; e = e->next)
#pragma omp single nowait
do_work(e);

* Poor performance

117

* Improved performance by sections
* Too many parallel regions

e Extra synchronization

* Not flexible

#include “omp.h”
/* traverse elements in the list */

Void traverse_tree(Tree *T){
#pragma omp parallel sections
{
#pragma omp section
if(T->left)
traverse_tree(T->left);
#pragma omp section
if(T->right)
traverse_tree(T->right);

}

process(T);

}

118

OpenMP 3.0 and Tasks

e What are tasks?

— Tasks are independent units of work

— Threads are assigned to perform the work
of each task.
* Tasks may be deferred
* Tasks may be executed immediately

* The runtime system decides which of the
above

* Why task?

— The basic idea is to set up a task queue:
when a thread encounters a task directive,
it arranges for some thread to execute the
associated block — at some time. The first
thread can continue. Serial Parallel

119

OpenMP 3.0 and Tasks

Tasks allow to parallelize irregular problems
— Unbounded loops
— Recursive algorithms
— Manger/work schemes

A task has
— Code to execute
— Data environment (It owns its data)
— Internal control variables
— An assigned thread that executes the code and the data

Two activities: packaging and execution

— Each encountering thread packages a new instance of a task
(code and data)

— Some thread in the team executes the task at some later time

* OpenMP has always had tasks, but they were not
called “task”.

— A thread encountering a parallel construct, e.g., “for”,
packages up a set of implicit tasks, one per thread.

— A team of threads is created.
— Each thread is assigned to one of the tasks.

— Barrier holds master thread till all implicit tasks are
finished.

* OpenMP 3.0 adds a way to create a task explicitly for
the team to execute.

Task Directive

#pragma omp task [clauses]
if(logical expression)
untied
shared (list)
private (list)
firstprivate (list)
default(shared | none)

structured block

* Each encountering thread creates a task
— Package code and data environment

— Can be nested
* Inside parallel regions
* Inside other tasks
* Inside worksharing
 An OpenMP barrier (implicit or explicit):
All tasks created by any thread of the current team are guaranteed to be completed at
barrier exit.

 Task barrier (taskwait):
Encountering thread suspends until all child tasks it has generated are complete.

Fibonacci series:
f(1) =1

f(2)=1

f(n) = f(n-1) + f(n-2)

/* serial code to compute Fibonacci */
int fib(int n)
{
inti, j;
if(n < 2) return n;
i = fib(n-1);
j = fib(n-2);
return (i+j);
}
int main(){
intn=3§;
printf(“fib(%d) = %d\n”, n, fib(n);
}

/* OpenMP code to compute Fibonacci */
#include <stdlib.h>

#include <stdio.h>

#include "omp.h"

static int fib(int);
int main(){
int nthreads, tid;
intn=28;
#pragma omp parallel num_threads(4) private(tid)
{
#pragma omp single
{
tid = omp_get_thread_num();
printf("Hello world from (%d)\n", tid);
printf("Fib(%d) = %d by %d\n", n, fib(n), tid);
}

}// all threads join master thread and terminates

}

Staticint fib(int n){
inti, j, id;
if(n < 2)
return n;
#pragma omp task shared (i) private (id)
{
i = fib(n-1);
}
#pragma omp task shared (j) private (id)
{
j = fib(n-2);
}

return (i+j);

/* Example of pointer chasing using task*/
Void process_list(elem _t *elem){
#pragma omp parallel
{
#pragma omp single

{

while (ele = NULL) {

#pragma omp task S
Elem is firstprivate by
{]

/ default
process(elem);

}
elem = elem->next;
}
}
}

}

124

#include “omp.h”
/* traverse elements in the list */

Void traverse_list(List *L){
Element *e;

for(e = L->first; e I= NULL; e = e->next)
#pragma omp task
do_work(e);
#pragma omp taskwait

A

All tasks guaranteed to be completed here

125

/* Tree traverse using tasks*/

struct node{
struct node *left, *right;
Iy
void traverse(struct node *p, int postorder){
if(p->left 1= NULL)
H#pragma omp task
traverse(p->left, postorder);
if(p->right '= NULL)
H#pragma omp task
traverse(p->right, postorder);
if(postorder){
#pragma omp taskwait

}

process(p);

126

Task Data Scope

Data Scope Clauses

* shared (list)

 private (list)
 firstprivate (list)

e default (shared | none)

If no clause:
— Implicit rules apply: global variables are shared
Otherwise
— Firstprivate
— Shared attribute is lexically inherited

int a;
void foo(){
int b, c;
#pragma omp parallel shared (c)

{

int d;
pragma omp task
{
int e;
/*
a = shared
b = firstprivate
c = shared
d = firstprivate
e = private
*/

128

Task Synchronization

Barriers (implicit or explicit)

— All tasks created by any thread of the current team
are guaranteed to be completed at barrier exit

Task Barrier
#pragma omp taskwait

— Encountering task suspends until child tasks
complete

Task Execution Model

* Tasks are executed by a thread of the team

— Can be executed immediately by the same thread
that creates it

* Parallel regions in 3.0 create tasks

— One implicit task is created for each thread

* Threads can suspend the execution of a task
and start/resume another

#include “omp.h”
/* traverse elements in the list */
List *L;

#pragma omp parallel
traverse_list(L);

Multiple traversals of
the same list

#include “omp.h”
/* traverse elements in the list */
List *L;

#pragma omp parallel
#pragma omp single
traverse_list(L);

Single traversal:

* One thread enters single
and creates all tasks

e All the team cooperates
executing them

#finclude “omp.h”

/* traverse elements in the list */
List L[N];

#pragma omp parallel for
For (i=0;i<N;i++)
traverse_list(L[i]);

Multiple traversals:
e Multiple threads create tasks
* All the team cooperates executing them

Hybrid MPI/OpenMP

* Vector mode: MPI is called only outside OpenMP parallel regions.

* Task mode: One or more threads in the parallel region are
dedicated to special tasks, like doing communication in the
background.

AN = | {ldN [~ | N = <Id = | <IN =

133

+— + + +
o o o o

Y10MIaN UOI110=aUUO0dIBU|

o (a o (a

Y10MI=aN UOI1]03aUU0dI3]U |

C+MPI+OpenMP

C+MPI

Basic Hybrid Framework

#include <omp.h>
#include "mpi.h"

#define _NUM THREADS 4

/* Each MPI process spawns a distinct OpenMP
* master thread; so limit the number of MET
* processes to one per node

*/

int main (int argec,; char *argw([]) |
int p,my_ rank;

/* set number of threads to spawn */
omp_set num threads (NUM THREADS) ;

/* dinitialize MPI stuff */

MPI Init (&argc, &argv);

MPI Comm size (MPI_COMM WORLD, &p) ;

MPI Comm rank (MPI_COMM WORLD, &my rank);

S* the following is5 a parallel OpenMP
* exectuted by each MPI process

*/

int c;

fipragma omp parallel reduction(+:c)

{

c = omp get num threads();
}

S* expect a number to get printed for each MPI process */
print£("%d\n",c);

/* finalize MPI */

MPI Finalize() ;

return 0;

Compileing: mpicc —fopenmp test.cc 135

Concept 1: ROOT MPI Process Controls
Communication

 Map one MPI process to one SMP node.
 Each MPI process fork a fixed number of threads.

e Communication among MPI process is handled by
main MPI process only.

#pragma omp master
{
if(0O==my_rank)
// some MPI call as root process
else
// some MPI call as non-root process
}// end of omp master

#include <omp.h>
#include "mpi.h"

#define _NUM THREADS 4

int main (int argc, char *argv[]) {
int p,my_rank;

/* set number of threads to spawn */
omp_set_num threads (_NUM THREADS) ;

f* initialize MPI stuff */

MPI_Init (&argc, &argv);

MPI_Comm_size (MPI_COMM_WORLD, &p) ;

MPI_ Comm_rank (MPI_COMM_WORLD, &my_ rank) ;

/* the following is a parallel OpenMP
* executed by each MPI process
=
#pragma omp parallel
{
#pragma omp master
{
if (0 == my rank)
// some MPI_ call as ROOT process
else
// some MPI_ call as non-ROOT process
}
}

/* expect a number to get printed for each MPI process */
printf("%d\n",c);

/* finalize MPI */

MPI_Finalize();

return 0;

137

Concept 2: Master OpenMP Thread Controls
Communication

 Each MPI process uses its own OpenMP master thread to
communicate.

* Need to take more care to ensure efficient
communications.

#pragma omp master

{

some MPI call as an MPI process
} // end of omp master

#include <omp.h>
#include "mpi.h"

#idefine NUM THREADS 4

int main (int argc, char *argv[]) {
int p,my_rank;

/* set number of threads to spawn */
omp_set num threads (NUM THREADS) ;

/* initialize MPI stuff */

MPI Init (&argc, &argv);

MPI Comm size (MPI_COMM WORLD, &p);

MPI Comm_ rank (MPI_COMM WORLD, &my_rank) ;

/* the following is a parallel OpenMP
* executed by each MPI process
*/
#pragma omp parallel
{
#pragma omp master
{

// some MPI_ call as an MPI process

}
}

/* expect a number to get printed for each MPI process */
printf ("%d\n",c);

/* finalize MPI */

MPI Finalize();

return 0;

139

Concept 3: All OpenMP Threads May Use MPI
Calls

This is by far the most flexible communication scheme.

Great care must be taken to account for explicitly which thread of which
MPI process communicates.

Requires an addressing scheme that denotes which MPI process
participates in communication and which thread of MPI process is
involved, e.g., <my_rank, omp_thread_id>.

Neither MPIl nor OpenMP have built-in facilities for tracking
communication.

Critical sections may be used for some level of control.

#pragma omp critical

{

some MPI call as an MPI process
}// end of omp critical

#include <omp.h>
#include "mpi.h"

##define NUM THREADS 4

int main (int argc, char *argv([]) {
int p,my_rank;

/* set number of threads to spawn */
omp_set_num_ threads (_NUM_THREADS) ;

/* initialize MPI stuff */

MPI_ Init (&argc, &argv);

MPI_Comm_size (MPI_COMM_ WORLD, &p) ;

MPI_ Comm_ rank (MPI_COMM WORLD, &my_rank) ;

/* the following is a parallel OpenMF
* executed by each MPI process
*/

#pragma omp parallel

{

#pragma omp critical /* not required */

// some MPI_ call as an MPI process
}
}

/* expect a number to get printed for each MPI process */
printf ("%$d\n",c);

/* finalize MPI */

MPI Finalize();

return 0;

141

Conjugate Gradient

e Algorithm
— Start with MPI program
— MPI_Send/Recv for communication
— OpenMP “for” directive for matrix-vector multiplication

Init.: x(0) =0, d(0) =0, g(0) = -b;
Step 1. Compute the gradient: g(t) =Ax(t-1)-b
Step 2. Compute the direction vector:
d(t) = -g(t)+(g(t)"Ta(t))/(g(t-1)"Tg(t-1))d(t-1)
Step 3. Compute the step size:
s(t) = -(d(t)"Td(t))/(d(t)"TAd(t));
Step 4. Compute the new approximation of x:
X(t) = x(t-1) + s(t) d(t).

#include <stdlib.h>
#include <stdio.h>
#include “MyMPI.h”
int main(int argc, char *argv[]){
double **a, *astorage, *b, *x;
int p, id, m, n, nl;
MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &p);

MPI_Comm_rank(MPI_COMM_WORLD, &id);
read_block_row_matrix(id,p,argv[1], (v0|d*)(&a) (void*)(&astorage),MPI_DOUBLE,&m,&n);

nl = read_replicated_vector(id,p,argv[2],(void**)(&b),MPI_DOUBLE);
if((m!=n) | |(n !=nl)) {

printf(“Incompatible dimensions %d %d time %d\n”, m,n,nl);
}
else{

= (double*)malloc(n*sizeof(double));

cg(p,id,a,b,x,n);

print_replicated_vector(id,p,x,MPl_DOUBLE,n);
}
MPI_Finalize();

143

#define EPSILON 1.0e-10
Double *piece;
cg(int p, int id, double **a, double *b, double *x, int n){
int i, it;
double *d, *g, denom1, denom2, num1, num2, s, *tmpvec;
d = (double*)malloc(n*sizeof(double));
g = (double*)malloc(n*sizeof(double));
tmpvec = (double*)malloc(n*sizeof(double));
piece = (double*)malloc(BLOCK_SIZE(id,p,n)*sizeof(double));
for(i=0; i<n; i++){
d[i] = x[i] = 0.0;
glil = -bl[il;
}
for(it=0; it<n; it++){
denom1 = dot_product(g,g,n);
matrix_vector_product(id,p,n,a,x,g);
for(i=0;i<n;i++) g[i]-=b[i];
numl = dot_product(g,g,n);
if(num1<EPSILON) break;
for(i=0;i<n;i++) d[i]=-g[i]+(num1/denom1)*d[i];
num2 = dot_product(d,g,n);
matrix_vector_product(id,p,n,a,d,tmpvec);
denom2=dot_product(d,tmpvec,n);
s=-num2/denom?2;
for(i=0;i<n;i++) x[i] += s*d[i];

} 144

double dot_product(double *a, double *b, int n)
{
inti;
double answer=0.0;
for(i=0; i<n;i++)
answer+=ali]*b[i];
return answer;
}
double matrix_vector_product(intid, int p, int n, double **a, double *b, double *c){
inti, j;
double tmp;
#pragma omp parallel for private (l,j,tmp)
for(i=0; i<BLOCK_SIZE(id,p,n);i++){
tmp=0.0;
for(j=0;j<n;j++)
tmp+=ali][j]*b[j];
piece[i] = tmp;
}
new_replicate_block vector(id,p,piece,n, c, MPI_DOUBLE);

}

void new_replicate_block_vector(int id, int p, double *piece, int n, double *c, MPI_Datatype dtype)
{

int *cnt, *disp;

create_mixed_xfer_arrays(id,p,n,&cnt,&disp);

MPI_Allgatherv(piece,cnt[id], dtype, c, cnt, disp, dtype, MPI_COMM_WORLD);
}

Steady-State Heat Distribution

Solve Uy, + Uy, = f(x,¥), 0Sx<a,0<y<bh
With u(x,0) = G;(x),u(x,b) = G,(x), 0<x<a
u(0,y) = G3(y),u(a,y) = G4(y), 0<y<b

. Use row-decomposition.
int find_steady_state(int p, int id, iny my_rows, double **u, double **w)
{
double diff, global_diff, tdiff; int its;
MPI_Status status;inti,j;
its =0;
for(;;) {
if(id>0) MPI_Send(u[1], N, MPI_DOUBLE, id-1,0,MPI_COMM_WORLD);
if(id < p-1) {
MPI_Send(u[my_rows-2],N,MPI_DOUBLE,id+1,0,MPI_COMM_WORLD);
MPI_Recv(u[my_rows-1],N,MPI_DOUBLE,id+1,0,MPI_COMM_WORLD,&status);
}
if(id>0) MPI_Recv(u[0],N,MPI_DOUBLE,id-1,0,MPI_COMM_WORLD, &status);
diff = 0.0;
#pragma omp parallel private (1,j,tdiff)
{
tdiff = 0.0;
#pragma omp for
for(i=1;i<my_rows-1;i++)
for(j=1;j<N-1;j++){
wlil[j1=(uli-1][jl+uli+1]{]+ulil[j-1]+ulil[j+1])/4.0;
if(fabs(wli][jl-uli][j]) >tdiff) tdiff = fabs(wli][jl-u[il[j]);
}
#pragma omp for nowait
for(i=1;i<my_rows-1;i++)
for(j=1;j<N-1;j++)
ulil(il = w(il[jl;
#pragma omp critical
if(tdiff > diff) diff = tdiff;
}
MPI_Allreduce(&diff,&global_diff,1,MPI_DOUBLE,MPI_MAX,MPI_COMM_WORLD);
if(global_diff <= EPSILON) break;
its++;

147

OpenMP multithreading in MPI

 MPI-2 specification
— Does not mandate thread support

— Does define what a “thread compliant MPI” should do
— 4 |evels of thread support

e MPI_THREAD_SINGLE: There is no OpenMP multithreading in the
program.

e MPI_THREAD_FUNNELED: All of the MPI calls are made by the master
thread.

This will happen if all MPI calls are outside OpenMP parallel regions or are in master
regions.

A thread can determine whether it is the master thread by calling
MPI _Is_thread_main

______ | 4
........................ MPI Send & Recvs
........ ‘.-.-"'
User Thread MPIl_Send/Recv / Wait / etc.
| ﬁ
MPI_Init_thread MPI_Finalize
Other User threads Threads cannot make MPI calls

—_— 5
— Tlme 148

MPI_THREAD_ SERIALIZED: Multiple threads make MPI calls,
but only one at a time.

-
.
- *
- -
* .
s *
Ad .
oooo
- +
-

User Thread MPI_Send(..) MPI Send(.)"

MPI_Init_thread

User Thread

User Thread cv(..)

MPI_THREAD_MULTIPLE: Any thread may make MPI calls at
any time.

User Thread| ~ MPI_Sénd(.) VPL Send(.)"
—F] n — = I
MPI_Init_thread -
A
User Thread MPI_Recv(..) MPERecy(..)
*— | —

149

 Threaded MPI Initialization
Instead of starting MPI by MPI_Init,

int MPI_Init_thread(int *argc, char ***argy, int
required, int *provided)
required: the desired level of thread support.

provided: the actual level of thread support provided by the
system.

Thread support at levels MPI_THREAD_FUNNELED or higher
allows potential overlap of communication and computation.

http://www.mpi-forum.org/docs/mpi-20-html/node165.htm

#include <stdio.h>
#include <stdlib.h>
#include "mpi.h"
#include "omp.h"

int main(int argc, char *argv|[])

{

int rank, omp_rank, mpisupport;

MPI_Init_thread(&argc, &argv, MPI_THREAD MULTIPLE, &mpisupport);
MPI_Comm_rank(MPl_COMM_WORLD, &rank);

#pragma omp parallel private(omp_rank)

{

omp_rank = omp_get_thread_num();
printf("Hello. This is process %d, thread %d\n",
rank, omp_rank);

}
MPI_Finalize();

}

151

References:
— http://bisqwit.iki.fi/story/howto/openmp/

— http://openmp.org/mp-documents/omp-hands-on-
SCO08.pdf

— https://computing.linl.gov/tutorials/openMP/
— http://www.mosaic.ethz.ch/education/Lectures/hpc
— R. van der Pas. An Overview of OpenMP

— B. Chapman, G. Jost and R. van der Pas. Using OpenMP:
Portable Shared Memory Parallel Programming. The MIT
Press, Cambridge, Massachusetts, London, England

— B. Estrade, Hybrid Programming with MPIl and OpenMP

http://bisqwit.iki.fi/story/howto/openmp/
http://bisqwit.iki.fi/story/howto/openmp/
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
https://computing.llnl.gov/tutorials/openMP/
https://computing.llnl.gov/tutorials/openMP/

