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MESSAGE-BASED 
SYNCHRONISATION AND 

COMMUNICATION

Goals
To understand the requirements for communication and 

synchronisation based on message passing
To understand:
– the Ada extended rendezvous
– selective waiting
– POSIX message queues
– Remote procedure calls
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Message-Based Communication and Synchronisation

Use of a single construct for both synchronisation and 
communication
Three issues:
– the model of synchronisation
– the method of process naming
– the message structure

Process P1 Process P2

send message
receive message

time time
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Process Synchronisation

Variations in the process synchronisation model arise 
from the semantics of the send operation
Asynchronous (or no-wait) (e.g. POSIX)
– Requires buffer space. What happens when the buffer is full?

Process P1 Process P2

send message

receive message

message

time time
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Process Synchronisation

Synchronous (e.g. CSP, occam2)
– No buffer space required
– Known as a rendezvous

Process P1 Process P2

send message

receive message

time time

blocked M
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Process Synchronisation
Remote invocation (e.g. Ada)
– Known as an extended rendezvous

Analogy:
– The posting of a letter is an asynchronous send 
– A telephone is a better analogy for synchronous communication

Process P1 Process P2

send message

receive message

time time

blocked

M

reply
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Asynchronous and Synchronous Sends

Asynchronous communication can implement 
synchronous communication:

P1 P2
asyn_send (M) wait (M)

wait (ack) asyn_send (ack)
Two synchronous communications can be used to 
construct a remote invocation:

P1 P2
syn_send (message) wait (message)

wait (reply) ...
construct reply

...
syn_send (reply)
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Disadvantages of Asynchronous Send

Potentially infinite buffers are needed to store unread 
messages
Asynchronous communication is out-of-date; most sends 
are programmed to expect an acknowledgement 
More communications are needed with the asynchronous 
model, hence programs are more complex
It is more difficult to prove the correctness of the complete 
system
Where asynchronous communication is desired with 
synchronised message passing then buffer processes can 
easily be constructed; however, this is not without cost
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Process Naming

Two distinct sub-issues 
– direction versus indirection
– symmetry

With direct naming, the sender explicitly names the receiver:
send <message> to <process-name>

With indirect naming, the sender names an intermediate 
entity (e.g. a channel, mailbox, link or pipe):

send <message> to <mailbox>
With a mailbox, message passing can still be synchronous 
Direct naming has the advantage of simplicity, whilst indirect 
naming aids the decomposition of the software; a mailbox 
can be seen as an interface between parts of the program
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Process Naming

A naming scheme is symmetric if both sender and 
receiver name each other (directly or indirectly)
send <message> to <process-name>
wait <message> from <process-name>

send <message> to <mailbox>
wait <message> from <mailbox>

It is asymmetric if the receiver names no specific source 
but accepts messages from any process (or mailbox)
wait <message>

Asymmetric naming fits the client-server paradigm 
With indirect the intermediary could have:
– a many-to-one structure    – a many-to-many structure 
– a one-to-one structure       – a one-to-many 
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Message Structure

A language usually allows any data object of any 
defined type (predefined or user) to be transmitted in a 
message
Need to convert to a standard format for transmission 
across a network in a heterogeneous environment
OS allow only arrays of bytes to be sent
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The Ada Model

Ada supports a form of message-passing between tasks
Based on a client/server model of interaction
The server declares a set of services that it is prepared 
to offer other tasks (its clients)
It does this by declaring one or more public entries in its 
task specification
Each entry identifies the name of the service, the 
parameters that are required with the request, and the 
results that will be returned
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Entries

entry_declaration ::=

entry defining_identifier[(discrete_subtype_definition)]

parameter_profile;

entry Syn;

entry Send(V : Value_Type);

entry Get(V : out Value_Type);

entry Update(V : in out Value_Type);

entry Mixed(A : Integer; B : out Float);

entry Family(Boolean)(V : Value_Type);
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Example

task type Telephone_Operator is
entry Directory_Enquiry(

Person : in Name;
Addr : Address;
Num : out Number);

-- other services possible
end Telephone_Operator; 

An_Op : Telephone_Operator;

-- client task executes
An_Op.Directory_Enquiry ("Stuart_Jones", 

"11 Main, Street, York"
Stuarts_Number);
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Accept Statement

accept_statement ::=

accept entry_direct_name[(entry_index)]

parameter_profile [do

handled_sequence_of_statements

end [entry_identifier]];

accept Family(True)(V : Value_Type) do

-- sequence of statements

exception

-- handlers

end Family;
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Server Task

task body Telephone_Operator is
begin

...
loop

--prepare to accept next call
accept Directory_Enquiry (...) do

-- look up telephone number 
exception

when Illegal_Number =>
-- propagate error to client

end Directory_Enquiry;
-- undertake housekeeping

end loop;
...

end Telephone_Operator;
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Client Task

task type Subscriber;
task body Subscriber is
begin

...
loop

...
An_Op.Directory_Enquiry(...);
...

end loop;
...

end Subscriber;
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Protocol

T.E(A,B)

accept E(X : int; Y: out int) do

-- use X

-- undertake computation

-- produce Y

-- complete computation

end E;

task T is ...

A

B
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Synchronisation

Both tasks must be prepared to enter into the 
communication
If one is ready and the other is not, then the ready one 
waits for the other
Once both are ready, the client's parameters are passed 
to the server
The server then executes the code inside the accept 
statement
At the end of the accept, the results are returned to the 
client
Both tasks are then free to continue independently
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Bus Driver Example
task type Bus_Driver (Num : Natural) is

entry Get_Ticket (R: in Request, M: in Money; 
G : out Ticket) ;

-- money given with request, no change given!
end Bus_Driver;

task body Bus_Driver is
begin

loop
accept Get_Ticket (R: Request, 

M: Money; G : out Ticket) do
-- take money
G := Next_Ticket(R);

end Get_Ticket;
end loop;

end Bus_Driver;
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type Bus_T (N : Natural) is
record

....
Driver : Bus_Driver(N);

end record;

Number31 : Bus_T(31);
Number60 : Bus_T(60);
Number70 : Bus_T(70);

Bus 
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Shop Keeper Example
task Shopkeeper is

entry Serve(X : Request; A: out Goods);
entry Get_Money(M : Money; Change : out Money);

end Shopkeeper;

task body Shopkeeper is
begin

loop
accept Serve(X : Request; A: out Goods) do

A := Get_Goods;
end Serve;
accept Get_Money(M : Money; Change : out Money) do

-- take money return change
end Get_Money;

end loop;
end Shopkeeper;

What is wrong with this algorithm?
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Customer

task Customer;
task body Customer is
begin

-- go to shop
Shopkeeper.Serve(Weekly_Shoping, Trolley);
-- leave shop in a hurry!

end Customer;
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Rider
task type Rider;
task body Rider is
begin

...
-- go to bus stop and wait for bus
while Bus /= Number31 loop

-- moan about bus service
end loop;
Bus.Bus_Driver.Get_Ticket(Heslington, Fiftyp, Ticket); 

-- get in line
-- board bus, notice three more number 31 buses
...

end Rider;
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Other Facilities

'Count gives number of tasks queued on an entry
Entry families allow the programmer to declare, in effect, 
a single dimension array of entries
Nested accept statements allow more than two tasks to 
communicate and synchronise
A task executing inside an accept statement can also 
execute an entry call
Exceptions not handled in a rendezvous are propagated 
to both the caller and the called tasks
An accept statement can have exception handlers
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Restrictions

Accept statements can only be placed in the body of a 
task
Nested accept statements for the same entry are not 
allowed
The 'Count attribute can only be accessed from within 
the task that owns the entry
Parameters to entries cannot be access parameters but 
can be parameters of an access type
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Families

task Multiplexer is
entry Channel(1..3)(X : Data);

end Multiplexer;

task body Multiplexer is
begin

loop
for I in 1..3 loop

accept Channel(I)(X : Data) do
-- consume input data on channel I
end Channel;

end loop;
end loop;

end Multiplexer;

A family
declaration
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Tesco
type Counter is (Meat, Cheese, Wine);
task Tesco_Server is

entry Serve(Counter)(Request: . . .);
end Tesco_Server;

task body Tesco_Server is
begin

loop
accept Serve(Meat)(. . .) do . . . end Serve;
accept Serve(Cheese)(. . .) do . . . end Serve;
accept Serve(Wine)(. . .) do . . . end Serve;

end loop
end Tesco_Server;

What happens if all queues are full?
What happens if the Meat queue is empty?
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Nested Accepts

task body Controller is
begin

loop
accept Doio (I : out Integer) do

accept Start;
accept Completed (K : Integer) do

I := K;
end Completed;

end Doio;
end loop;

end Controller;
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Shopkeeper Example
task Shopkeeper is

entry Serve_Groceries(. . .);
entry Serve_Tobacco( . . .);
entry Serve_Alcohol(. . .);

end Shopkeeper;

task body Shopkeeper is
begin

. . .
accept Serve_Groceries (. . .) do

-- no change for a £10 note
accept Serve_ Alcohol(. . .) do

-- serve another Customer, 
-- get more change

end Serve_ Alcohol
end Serve_Groceries
. . .

end Shopkeeper; 

Can not have
accept Serve_Groceries (. . .) do
accept Serve_Groceries(. . .) do

. . .
end Serve_Groceries

end Serve_Groceries
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Entry Call within Accept Statement

task Car_Spares_Server is
entry Serve_Car_Part(Number: Part_ID; . . .);

end Car_Spares_Server ;

task body Car_Spares_Server is
begin

. . .
accept Serve_Car_Part(Number: Part_ID; . . .) do

-- part not is stock
Dealer.Phone_Order(. . .);

end Serve_Car_Part;
. . .

end Car_Spares_Server;
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Exceptions

accept Get(R : out Rec; Valid_Read : out Boolean) do
loop

begin
Put("VALUE OF I?"); Get(R.I);
Put("VALUE OF F?"); Get(R.F);
Put("VALUE OF S?"); Get(R.S);
Valid_Read := True;
return;

exception
when Ada.Text_IO.Data_Error => 

Put("INVALID INPUT: START AGAIN");
end;

end loop;
exception

when Ada.Text_IO.Mode_Error =>
Valid_Read := False;

end Get;

return
from
accept

exception raised

If not handled anywhere
exception raised in calling
task and the ‘accept’ task

could be handled here

or here
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Private Entries

Public entries are visible to all tasks which have visibility 
to the owning task's declaration
Private entries are only visible to the owning task
– if the task has several tasks declared internally; these tasks 

have access to the private entry
– if the entry is to be used internally by the task for requeuing

purposes
– if the entry is an interrupt entry,  and the programmer does not

wish any software task to call this entry
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Private Entries II

task type Telephone_Operator is
entry Report_Fault(N : Number);

private
entry Allocate_Repair_Worker(N : out Number);

end Telephone_Operator;
task body Telephone_Operator is

Failed : Number;
task type Repair_Worker;
Work_Force:array (1.. Num_Workers) of Repair_Worker;
task body Repair_Worker is

Job : Number:
begin 

...
Telephone_Operator.Allocate_Repair_Worker(Job);
...

end Repair_Worker;

private entry

internal task
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Private Entries III

begin
loop

accept Report_Fault(N : Number) do
Failed := N;

end Report_Fault;
-- log faulty line

if New_Fault(Failed) then -- new fault

accept Allocate_Repair_Worker(N : out Number) do
N := Failed;

end Allocate_Repair_Worker;
end if;

end loop;
end Telephone_Operator;
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Selective Waiting

So far, the receiver of a message must wait until the 
specified process, or mailbox, delivers the 
communication
A receiver process may actually wish to wait for any one 
of a number of processes to call it 
Server processes receive request messages from a 
number of clients; the order in which the clients call 
being unknown to the servers 
To facilitate this common program structure, receiver 
processes are allowed to wait selectively for a number 
of possible messages
Based on Dijkstra’s guarded commands 
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select_statement ::=
selective_accept | 
conditional_entry_call |
timed_entry_call |
asynchronous_select

Forms of Select Statement

The select statement comes in four forms:
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Selective Accept

The selective accept allows the server to:

wait for more than a single rendezvous at any one time
time-out if no rendezvous is forthcoming within a 
specified time
withdraw its offer to communicate if no rendezvous is 
available immediately
terminate if no clients can possibly call its entries
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Syntax Definition

selective_accept ::=
select

[guard]
selective_accept_alternative

{ or
[guard]
selective_accept_alternative 

[ else
sequence_of_statements ]

end select;

guard ::= when <condition> => 
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Syntax Definition II

selective_accept_alternative ::=
accept_alternative |
delay_alternative  |
terminate_alternative

accept_alternative ::= 
accept_statement [ sequence_of_statements ]

delay_alternative ::= 
delay_statement [ sequence_of_statements ]

terminate_alternative ::= 
terminate;
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Overview Example
task Server is
entry S1(...);
entry S2(...);

end Server;

task body Server is
...

begin
loop
select
accept S1(...) do
-- code for this service

end S1;
or
accept S2(...) do
-- code for this service

end S2;
end select;

end loop;
end Server;

Simple select with 
two possible actions
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Example
task type Telephone_Operator is

entry Directory_Enquiry (P : Name; A : Address;

N : out Number);

entry Directory_Enquiry (P : Name; PC : Postal_Code;

N : out Number);

entry Report_Fault(N : Number);

private

entry Allocate_Repair_Worker (N : out Number);

end Telephone_Operator;
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Example II

task body Telephone_Operator is

Failed : Number;

task type Repair_Worker;

Work_Force : array(1.. Num_Workers) of 

Repair_Worker;

task body Repair_Worker is separate;
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Example III
begin

loop
select

accept Directory_Enquiry( ... ; A: Address...) do
-- look up number based on address

end Directory_Enquiry;
or

accept Directory_Enquiry( ... ; 
PC: Postal_Code...) do

-- look up number based on ZIP
end Directory_Enquiry;

or



© Alan Burns and Andy Wellings, 2001

Example IV

or
accept Report_Fault(N : Number) do

...
end Report_Fault;
if New_Fault(Failed) then

accept Allocate_Repair_Worker (N : out
Number) do

N := Failed;
end Allocate_Repair_Worker;

end if;
end select;

end loop;
end Telephone_Operator;
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Note

If no rendezvous are available, the select statement 
waits for one to become available
If one is available, it is chosen immediately
If more than one is available, the one chosen is 
implementation dependent (RT Annex allows order to 
be defined)
More than one task can be queued on the same entry; 
default queuing policy is FIFO (RT Annex allows priority 
order to be defined)
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Tesco
type Counter is (Meat, Cheese, Wine);
task Tesco_Server is

entry Serve(Counter)(Request: . . .);
end Tesco_Server;

task body Tesco_Server is
begin

loop
select

accept Serve(Meat)(. . .) do . . . end Serve;
or

accept Serve(Cheese)(. . .) do . . . end Serve;
or

accept Serve(Wine)(. . .) do . . . end Serve;
end select

end loop
end Tesco_Server;

What happens if all queues are full?
What happens if the Meat queue is empty?
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What is the difference between

and

select
accept A;
B;

or
accept C;

end select

select
accept A do

B;
end A;

or
accept C;

end select
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Guarded Alternatives

Each select accept  alternative can have an associated 
guard
The guard is a boolean expression which is evaluated 
when the select statement is executed
If the guard evaluates to true, the alternative is eligible 
for selection
If it is false, the alternative is not eligible for selection 
during this execution of the select statement (even if 
client tasks are waiting on the associated entry)
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Example Usage

select
when Boolean_Expression =>

accept S1(...) do
-- code for service

end S1;
-- sequence of statements

or
...

end select;
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Example of Guard

task body Telephone_Operator is

begin

...

select

accept Directory_Enquiry (...) do ... end;

or

accept Directory_Enquiry (...) do ... end;

or

when Workers_Available =>

accept Report_Fault (...) do ... end;

end select;

end Telephone_Operator;

guard
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Corner Shop
type Counter is (Tobacco, Alcohol, Groceries);
task Shopkeeper is

entry Serve(Counter)(Request: . . .);
end Shopkeeper;
task body Shopkeeper is
begin

loop
select

when After_7pm =>
accept Serve(Alcohol)(. . .) do . . . end Serve;

or
when Customers_Age > 16 => 

accept Serve(Tobacco)(. . .) do . . . end Serve;
or

accept Serve(Groceries)(. . .) do . . . end Serve;
end select

end loop
end Shopkeeper;

Are these guards OK?
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Delay Alternative

The delay alternative of the select statement allows the 
server to time-out if an entry call is not received within a 
certain period
The timeout is expressed using a delay statement, and 
therefore can be relative or absolute
If the relative time is negative, or the absolute time has 
passed, the delay alternative becomes equivalent to the 
else alternative
More than one delay is allowed
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Example: Periodic Execution

Consider a task which reads a sensors every 10 
seconds, however, it may be required to change its 
periods during certain modes of operation

task Sensor_Monitor is

entry New_Period(P : Duration);

end Sensor_Monitor;
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Periodic Execution II
task body Sensor_Monitor is

Current_Period : Duration := 10.0;
Next_Cycle : Time := Clock + Current_Period;

begin
loop

-- read sensor value etc.
select

accept New_Period(P : Duration) do
Current_Period := P;

end New_Period;
Next_Cycle := Clock + Current_Period;

or
delay until Next_Cycle;
Next_Cycle := Next_Cycle + Current_Period;

end select;
end loop;

end Sensor_Monitor;

delay alternative
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Delay Alternative: Error Detection

Used to program timeouts

task type Watchdog is

entry All_Is_Well;

end Watchdog;
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Watchdog

task body Watchdog is

Client_Failed : Boolean := False;

begin

loop

select

accept All_Is_Well;

or

delay 10.0;

-- signal alarm

Client_Failed := True;

end select;

exit when Client_Failed;

end loop;
end Watchdog;
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The Else Part
task body Sensor_Monitor is

Current_Period : Duration := 10.0;
Next_Cycle : Time := Clock + Current_Period;

begin
loop

-- read sensor value etc.
select

accept New_Period(P : Duration) do
Current_Period := P;

end New_Period;
else -- cannot be guarded

null;
end select;
Next_Cycle := Clock + Current_Period;
delay until Next_Cycle;

end loop;
end Sensor_Monitor;

else part
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The Delay and the Else Part

Cannot mix else part and delay in the same select 
statement.
The following are equivalent

select

accept A;

or

accept B;

else

C;
end select;

select

accept A;

or

accept B;

or

delay 0.0;

C;

end select;
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select

accept A;

or

delay 10.0;
end select;

select

accept A;

else

delay 10.0;
end select;

More on Delay

What is the difference?

select

accept A;

or

delay 5.0;

delay 5.0;
end select;
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The Terminate Alternative

In general a server task only needs to exist when there 
are clients to serve
The very nature of the client server model is that the 
server does not know the identity of its clients
The terminate alternative in the select statement allows 
a server to indicate its willingness to terminate if there 
are no clients that could possibly request its service
The server terminates when a master of the server is 
completed and all its dependants are either already 
terminated or are blocked at a select with an open 
terminate alternative
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Primes by Sieve

Odd 3571113

Odd

57
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Primes by Sieve II
procedure Primes_By_Sieve is

task type Sieve is
entry Pass_On(Int : Integer);

end Sieve;

task Odd;

type Sieve_Ptr is access Sieve;

function Get_New_Sieve return Sieve_Ptr is
begin

return new Sieve;
end Get_New_Sieve;

task body Odd is ...
task body Sieve is ...

begin null; end Primes_By_Sieve;

function needed, as a task
type cannot contain a ‘new’
for its own type
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Primes by Sieve III

task body Odd is
Limit : constant Positive := ...;
Num : Positive;
S : Sieve_Ptr := new Sieve;

begin
Num := 3;
while Num < Limit loop

S.Pass_On(Num);
Num := Num + 2;

end loop;
end Odd;
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Primes by Sieve IV
task body Sieve is

New_Sieve : Sieve_Ptr;
Prime, Num : Positive;

begin
accept Pass_On(Int : Integer) do

Prime := Int;
end Pass_On;
-- Prime is a prime number, could output
loop

select
accept Pass_On(Int : Integer) do

Num := Int;
end Pass_On;

or
terminate;

end select;
exit when Num rem Prime /= 0;

end loop;
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Primes by Sieve V

New_Sieve := Get_New_Sieve;
New_Sieve.Pass_On(Num);
loop

select
accept Pass_On(Int : Integer) do

Num := Int;
end Pass_On;

or
terminate;

end select;
if Num rem Prime /= 0 then

New_Sieve.Pass_On(Num);
end if;

end loop;
end Sieve;
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Last Wishes

Last Wishes can be programmed using controlled types

Example: count the number of times two entries are 
called

with Ada.Finalization; use Ada;
package Counter is
type Task_Last_Wishes is new

Finalization.Limited_Controlled
with record

Count1, Count2 : Natural := 0;
end record;

procedure Finalize(Tlw : in out Task_Last_Wishes);
end Counter;
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Last Wishes II

with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
with Ada.Text_IO; use Ada.Text_IO;
package body Counter is

procedure Finalize(Tlw : in out Task_Last_Wishes) is
begin

Put("Calls on Service1:");
Put(Tlw.Count1);
Put(" Calls on Service2:");
Put(Tlw.Count2);
New_Line;

end Finalize;
end Counter;
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Last Wishes III
task body Server is
Last_Wishes :  Counter.Task_Last_Wishes;

begin
-- initial housekeeping
loop
select
accept Service1(...) do
...

end Service1;
Last_Wishes.Count1 :=  Last_Wishes.Count1 + 1;

or
accept Service2(...) do
...

end Service2;
Last_Wishes.Count2 :=  Last_Wishes.Count2 + 1;

or
terminate;

end select;
-- housekeeping

end loop;
end Server;

As the task terminates the
finalize procedure is executed
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Program Error

If all the accept alternatives have guards then there is 
the possibility in certain circumstances that all the 
guards will be closed
If the select statement does not contain an else clause 
then it becomes impossible for the statement to be 
executed
The exception Program_Error is raised at the point of 
the select statement if no alternatives are open 
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Sample Exam Question

A server task has the following Ada specification.
task Server is

entry Service_A;
entry Service_B;
entry Service_C;

end Server;
Write the body of the Server task so that
– If client tasks are waiting on all the entries, the Server should service 

the clients in a cyclic order, that is accept first a Service_A entry, 
and then a Service_B entry, and then a Service_C, so on

– If not all entries have a client task waiting, the Server should service 
the other entries in a cyclic order. The Server tasks should not be 
blocked if there are clients still waiting for a service

– If the Server task has no waiting clients then it should NOT busy-wait; it 
should block waiting for a client's request to be made

– If all the possible clients have terminated, the Server should terminate
Assume that client tasks are not aborted and issue simple entry calls only

See answer to Exercise 9.11
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The Selective Accept : Summary

A selective accept must contain at least one accept 
alternative (each possibly guarded)

A selective accept may contain one and only one of the 
following :
– a terminate alternative (possibly guarded), or
– one or more delay alternatives (each possibly guarded), or
– an else part
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The Selective Accept : Summary II

A select alternative is 'open' if it does not contain a 
guard or if the boolean condition associated with the 
guard evaluates to true; otherwise the alternative is 
'closed'

On execution: all guards, open delay expressions, and 
open entry family expressions are evaluated 

A choice is made from the open alternatives
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Non-determinism and Selective Waiting

Concurrent languages make few assumptions about the 
execution order of processes
A scheduler is assumed to schedule processes non-
deterministically 
Consider a process P that will execute a selective wait 
construct upon which processes S and T could call
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Non-determinism and Selective Waiting

P runs first; it is blocked on the select. S (or T) then runs 
and rendezvous with P
S (or T) runs, blocks on the call to P; P runs and executes 
the select; a rendezvous takes place with S (or T)
S (or T) runs first and blocks on the call to P; T (or S) now 
runs and is also blocked on P. Finally P runs and executes 
the select on which T and S are waiting
The three possible interleavings lead to P having none, 
one or two calls outstanding on the selective wait
If P, S and T can execute in any order then, in latter case, 
P should be able to choose to rendezvous with S or T — it 
will not affect the programs correctness
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Non-determinism and Selective Waiting

A similar argument applies to any queue that a 
synchronisation primitive defines 
Non-deterministic scheduling implies all queues should 
release processes in a non-deterministic order 
Semaphore queues are often defined in this way; entry 
queues and monitor queues are specified to be FIFO 
The rationale here is that FIFO queues prohibit 
starvation but if the scheduler is non-deterministic then 
starvation can occur anyway! 
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Timed Entry Calls

A timed entry call issues an entry call which is cancelled 
if the call is not accepted within the specified period 
(relative or absolute)

Note that only one delay alternative and one entry call 
can be specified.

task type Subscriber;
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Timed Entry Calls II
task body Subscriber is

Stuarts_Number : Number;
begin

loop
...
select

An_Op.Directory_Enquiry("Stuart Jones",
"10 Main Street, York", Stuarts_Number);

-- log the cost of a directory enquiry call
or

delay 10.0;
-- phone up Stuart's parents and ask them;
-- log the cost of a long distance call

end select;
...

end loop;
end Subscriber;
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Timed Entry Calls III
task body Telephone_Operator is

...
begin

loop
-- prepare to accept next request
select

accept Directory_Enquiry(Person : Name;
Addr   : Address; Num  : out Number) do
delay 3600.0; -- take a lunch break

end Directory_Enquiry; or
...

end select;
...

end loop;
end Telephone_Operator;

Time-out is on the start of the 
rendezvous not the finish
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Shopper
task type Shopper;
task body Shopper is
begin

. . .
-- enter shop
select

shopkeeper.Serve_Groceries(. . .)
or

delay10.0;
-- moan about queues;

end select;
-- leave shop
. . .

end Shopper; WARNING
accept Serve_Groceries(. . .) do

-- go to lunch
end Serve_Groceries;



© Alan Burns and Andy Wellings, 2001

Conditional Entry Call

The conditional entry call allows the client to withdraw 
the offer to communicate if the server task is not 
prepared to accept the call immediately
It has the same meaning as a timed entry call where the 
expiry time is immediate

select

Security_Op.Turn_Lights_On;

else

null; -- assume they are on already

end select;
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Conditional Entry Call II

A conditional entry call should only be used when the 
task can genuinely do other productive work, if the call 
is not accepted

Care should be taken not to program polling, or busy-
wait, solutions unless they are explicitly required

Note, the conditional entry call uses an else, the timed 
entry call an or
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Conditional Entry Call III

They cannot be mixed, nor can two entry call statements 
be included 
A client task can not therefore wait for more than one 
entry call to be serviced

The asynchronous select statement allows some of 
these restrictions to be overcome
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Dining Philosophers

procedure Dining_Philosophers is
package Activities is

procedure Think;
procedure Eat;

end Activities;

N : constant := 5;  -- number of philosophers
type Philosophers_Range is range 0..N-1;

task type Phil(P : Philosophers_Range);
type Philosopher is access Phil;

task type Chopstick_Control is
entry Pick_Up;
entry Put_Down;

end Chopstick_Control;
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Dining Philosophers II
task Deadlock_Prevention is

entry Enters;
entry Leaves;

end Deadlock_Prevention;

Chopsticks : array(Philosophers_Range) of Chopstick_Control;
Philosophers : array(Philosophers_Range) of Philosopher;

package body Activities is separate;
task body Phil is separate;
task body Chopstick_Control is separate;
task body Deadlock_Prevention is separate;

begin
for P in Philosophers_Range loop
Philosophers(P) := new Phil(P);

end loop;
end Dining_Philosophers;
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Dining Philosophers III

separate (Dining_Philosophers)
task body Chopstick_Control is
begin

loop
accept Pick_Up;
accept Put_Down;

end loop;
end Chopstick_Control;
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Dining Philosophers IV

separate (Dining_Philosophers)
task body Deadlock_Prevention is

Max : constant Integer := N - 1;
People_Eating : Integer range 0..Max := 0;

begin
loop

select
when People_Eating < Max =>

accept Enters;
People_Eating := People_Eating + 1;

or
accept Leaves;
People_Eating := People_Eating - 1;

end select;
end loop;

end Deadlock_Prevention;
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Dining Philosophers V
separate (Dining_Philosophers)
task body Phil is

Chop_Stick1, Chop_Stick2 : Philosophers_Range;
begin

Chop_Stick1 := P;
Chop_Stick2 := (Chop_Stick1 + 1) mod N;
loop

Think;
Deadlock_Prevention.Enters;
Chopsticks(Chop_Stick1).Pick_Up;
Chopsticks(Chop_Stick2).Pick_Up;
Eat;
Chopsticks(Chop_Stick1).Put_Down;
Chopsticks(Chop_Stick2).Put_Down;
Deadlock_Prevention.Leaves;

end loop;
end Philosopher;
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Exercises

Modify the code so that the program terminates after 
each philosopher has taken 32 meals
Make your solution resilient to a task failing
Replace the control tasks with protected objects
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Task States

created

non-existing

finalising

activating

executing

completed

non-existing

terminated

delayed

waiting child activation waiting dep. termination

waiting on 
an entry call

waiting on 
an accept

waiting for the end 
of a rendezvous waiting on select
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POSIX Message Queues

POSIX supports asynchronous, indirect message 
passing through the notion of message queues
A message queue can have many readers and many 
writers 
Priority may be associated with the queue
Intended for communication between processes (not 
threads)
Message queues have attributes which indicate their 
maximum size, the size of each message, the number of 
messages currently queued etc. 
An attribute object is used to set the queue attributes 
when the queue is created 
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POSIX Message Queues

Message queues are given a name when they are created
To gain access to the queue, requires an mq_open name
mq_open is used to both create and open an already 
existing queue (also mq_close and mq_unlink)
Sending and receiving messages is done via mq_send
and mq_receive

Data is read/written from/to a character buffer.
If the buffer is full or empty, the sending/receiving process 
is blocked unless the attribute O_NONBLOCK has been 
set for the queue (in which case an error return is given)
If senders and receivers are waiting when a message 
queue becomes unblocked, it is not specified which one is 
woken up unless the priority scheduling option is specified
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POSIX Message Queues

A process can also indicate that a signal should be sent to it 
when an empty queue receives a message and there are no 
waiting receivers 

In this way, a process can continue executing whilst waiting 
for messages to arrive or one or more message queues 

It is also possible for a process to wait for a signal to arrive; 
this allows the equivalent of selective waiting to be 
implemented

If the process is multi-threaded, each thread is considered to 
be a potential sender/receiver in its own right
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Robot Arm Example

typedef enum {xplane, yplane, zplane} dimension;

void move_arm(int D, int P);

#define DEFAULT_NBYTES 4
int nbytes = DEFAULT_NBYTES;

#define MQ_XPLANE  "/mq_xplane" -- message queue name 
#define MQ_YPLANE  "/mq_yplane" -- message queue name 
#define MQ_ZPLANE  "/mq_zplane" -- message queue name
#define MODE . . . /* mode info for mq_open */ 
/* names of message queues */
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Robot Arm Example
void controller(dimension dim) {

int position, setting;
mqd_t my_queue; /* message queue */
struct mq_attr ma;  /*attributes */
char buf[DEFAULT_NBYTES];
ssiz_t len;

position = 0;    
switch(dim)  { /* open appropriate message queue */

case xplane:  
my_queue = MQ_OPEN(MQ_XPLANE,O_RDONLY,MODE,&ma);
break;

case yplane:  my_queue = MQ_OPEN(MQ_YPLANE,...); break;
case zplane:  my_queue = MQ_OPEN(MQ_ZPLANE,...); break;
default:

return;
};
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Robot Arm Example
while (1) {

/* read message */
len = mq_receive(my_queue, &buf[0], nbytes, 

null);
setting = *((int *)(&buf[0]));
position = position + setting;
move_arm(dim, position);

};
}

Now the main program which creates the controller processes 
and passes the appropriate coordinates to them:
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Robot Arm Example
void (*C)(dimension dim) = &controller;

int main(int argc, char **argv) {
mqd_t mq_xplane, mq_yplane, mq_zplane;
struct mq_attr ma; /* queue attributes */
int xpid, ypid, zpid;
char buf[DEFAULT_NBYTES];

/* set message queues attributes*/
ma.mq_flags = 0;    /* No special behaviour */
ma.mq_maxmsg = 1;
ma.mq_msgsize = nbytes;

mq_xplane = MQ_OPEN(MQ_XPLANE, 
O_CREAT|O_EXCL, MODE, &ma);

mq_yplane = ...;
mq_zplane = ...;    



/* Duplicate the process to get three controllers */
switch (xpid = FORK()) {

case 0: controller(xplane); exit(0); /* child */
default:    /* parent */

switch (ypid = FORK()) {
case 0: controller(yplane); exit(0);
default:    /* parent */

switch (zpid = FORK()) {
case 0: controller(zplane); exit(0);
default:    /* parent */

break;
}

}
}

while (1) {
/* set up buffer to transmit each co-ordinate

to the controllers, for example */
MQ_SEND(mq_xplane, &buf[0], nbytes, 0); 

}
}
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Summary

The semantics of message-based communication are 
defined by three issues:
– the model of synchronisation
– the method of process naming
– the message structure

Variations in the process synchronisation model arise from 
the semantics of the send operation. 
– asynchronous, synchronous or remote invocation 
– Remote invocation can be made to appear syntactically similar to a 

procedure call 

Process naming involves two distinct issues; direct or 
indirect, and symmetry
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Summary

Ada has remote invocation with direct asymmetric naming
Communication in Ada requires one task to define an 
entry and then, within its body, accept any incoming call. A 
rendezvous occurs when one task calls an entry in 
another
Selective waiting allows a process to wait for more than 
one message to arrive.
Ada’s select statement has two extra facilities: an else part 
and a terminate alternative 
POSIX message queues allow asynchronous, many to 
many communication


