
© Alan Burns and Andy Wellings, 2001

MESSAGE-BASED
SYNCHRONISATION AND

COMMUNICATION

Goals
To understand the requirements for communication and

synchronisation based on message passing
To understand:
– the Ada extended rendezvous
– selective waiting
– POSIX message queues
– Remote procedure calls

© Alan Burns and Andy Wellings, 2001

Message-Based Communication and Synchronisation

Use of a single construct for both synchronisation and
communication
Three issues:
– the model of synchronisation
– the method of process naming
– the message structure

Process P1 Process P2

send message
receive message

time time

© Alan Burns and Andy Wellings, 2001

Process Synchronisation

Variations in the process synchronisation model arise
from the semantics of the send operation
Asynchronous (or no-wait) (e.g. POSIX)
– Requires buffer space. What happens when the buffer is full?

Process P1 Process P2

send message

receive message

message

time time

© Alan Burns and Andy Wellings, 2001

Process Synchronisation

Synchronous (e.g. CSP, occam2)
– No buffer space required
– Known as a rendezvous

Process P1 Process P2

send message

receive message

time time

blocked M

© Alan Burns and Andy Wellings, 2001

Process Synchronisation
Remote invocation (e.g. Ada)
– Known as an extended rendezvous

Analogy:
– The posting of a letter is an asynchronous send
– A telephone is a better analogy for synchronous communication

Process P1 Process P2

send message

receive message

time time

blocked

M

reply

© Alan Burns and Andy Wellings, 2001

Asynchronous and Synchronous Sends

Asynchronous communication can implement
synchronous communication:

P1 P2
asyn_send (M) wait (M)

wait (ack) asyn_send (ack)
Two synchronous communications can be used to
construct a remote invocation:

P1 P2
syn_send (message) wait (message)

wait (reply) ...
construct reply

...
syn_send (reply)

© Alan Burns and Andy Wellings, 2001

Disadvantages of Asynchronous Send

Potentially infinite buffers are needed to store unread
messages
Asynchronous communication is out-of-date; most sends
are programmed to expect an acknowledgement
More communications are needed with the asynchronous
model, hence programs are more complex
It is more difficult to prove the correctness of the complete
system
Where asynchronous communication is desired with
synchronised message passing then buffer processes can
easily be constructed; however, this is not without cost

© Alan Burns and Andy Wellings, 2001

Process Naming

Two distinct sub-issues
– direction versus indirection
– symmetry

With direct naming, the sender explicitly names the receiver:
send <message> to <process-name>

With indirect naming, the sender names an intermediate
entity (e.g. a channel, mailbox, link or pipe):

send <message> to <mailbox>
With a mailbox, message passing can still be synchronous
Direct naming has the advantage of simplicity, whilst indirect
naming aids the decomposition of the software; a mailbox
can be seen as an interface between parts of the program

© Alan Burns and Andy Wellings, 2001

Process Naming

A naming scheme is symmetric if both sender and
receiver name each other (directly or indirectly)
send <message> to <process-name>
wait <message> from <process-name>

send <message> to <mailbox>
wait <message> from <mailbox>

It is asymmetric if the receiver names no specific source
but accepts messages from any process (or mailbox)
wait <message>

Asymmetric naming fits the client-server paradigm
With indirect the intermediary could have:
– a many-to-one structure – a many-to-many structure
– a one-to-one structure – a one-to-many

© Alan Burns and Andy Wellings, 2001

Message Structure

A language usually allows any data object of any
defined type (predefined or user) to be transmitted in a
message
Need to convert to a standard format for transmission
across a network in a heterogeneous environment
OS allow only arrays of bytes to be sent

© Alan Burns and Andy Wellings, 2001

The Ada Model

Ada supports a form of message-passing between tasks
Based on a client/server model of interaction
The server declares a set of services that it is prepared
to offer other tasks (its clients)
It does this by declaring one or more public entries in its
task specification
Each entry identifies the name of the service, the
parameters that are required with the request, and the
results that will be returned

© Alan Burns and Andy Wellings, 2001

Entries

entry_declaration ::=

entry defining_identifier[(discrete_subtype_definition)]

parameter_profile;

entry Syn;

entry Send(V : Value_Type);

entry Get(V : out Value_Type);

entry Update(V : in out Value_Type);

entry Mixed(A : Integer; B : out Float);

entry Family(Boolean)(V : Value_Type);

© Alan Burns and Andy Wellings, 2001

Example

task type Telephone_Operator is
entry Directory_Enquiry(

Person : in Name;
Addr : Address;
Num : out Number);

-- other services possible
end Telephone_Operator;

An_Op : Telephone_Operator;

-- client task executes
An_Op.Directory_Enquiry ("Stuart_Jones",

"11 Main, Street, York"
Stuarts_Number);

© Alan Burns and Andy Wellings, 2001

Accept Statement

accept_statement ::=

accept entry_direct_name[(entry_index)]

parameter_profile [do

handled_sequence_of_statements

end [entry_identifier]];

accept Family(True)(V : Value_Type) do

-- sequence of statements

exception

-- handlers

end Family;

© Alan Burns and Andy Wellings, 2001

Server Task

task body Telephone_Operator is
begin

...
loop

--prepare to accept next call
accept Directory_Enquiry (...) do

-- look up telephone number
exception

when Illegal_Number =>
-- propagate error to client

end Directory_Enquiry;
-- undertake housekeeping

end loop;
...

end Telephone_Operator;

© Alan Burns and Andy Wellings, 2001

Client Task

task type Subscriber;
task body Subscriber is
begin

...
loop

...
An_Op.Directory_Enquiry(...);
...

end loop;
...

end Subscriber;

© Alan Burns and Andy Wellings, 2001

Protocol

T.E(A,B)

accept E(X : int; Y: out int) do

-- use X

-- undertake computation

-- produce Y

-- complete computation

end E;

task T is ...

A

B

© Alan Burns and Andy Wellings, 2001

Synchronisation

Both tasks must be prepared to enter into the
communication
If one is ready and the other is not, then the ready one
waits for the other
Once both are ready, the client's parameters are passed
to the server
The server then executes the code inside the accept
statement
At the end of the accept, the results are returned to the
client
Both tasks are then free to continue independently

© Alan Burns and Andy Wellings, 2001

Bus Driver Example
task type Bus_Driver (Num : Natural) is

entry Get_Ticket (R: in Request, M: in Money;
G : out Ticket) ;

-- money given with request, no change given!
end Bus_Driver;

task body Bus_Driver is
begin

loop
accept Get_Ticket (R: Request,

M: Money; G : out Ticket) do
-- take money
G := Next_Ticket(R);

end Get_Ticket;
end loop;

end Bus_Driver;

© Alan Burns and Andy Wellings, 2001

type Bus_T (N : Natural) is
record

....
Driver : Bus_Driver(N);

end record;

Number31 : Bus_T(31);
Number60 : Bus_T(60);
Number70 : Bus_T(70);

Bus

© Alan Burns and Andy Wellings, 2001

Shop Keeper Example
task Shopkeeper is

entry Serve(X : Request; A: out Goods);
entry Get_Money(M : Money; Change : out Money);

end Shopkeeper;

task body Shopkeeper is
begin

loop
accept Serve(X : Request; A: out Goods) do

A := Get_Goods;
end Serve;
accept Get_Money(M : Money; Change : out Money) do

-- take money return change
end Get_Money;

end loop;
end Shopkeeper;

What is wrong with this algorithm?

© Alan Burns and Andy Wellings, 2001

Customer

task Customer;
task body Customer is
begin

-- go to shop
Shopkeeper.Serve(Weekly_Shoping, Trolley);
-- leave shop in a hurry!

end Customer;

© Alan Burns and Andy Wellings, 2001

Rider
task type Rider;
task body Rider is
begin

...
-- go to bus stop and wait for bus
while Bus /= Number31 loop

-- moan about bus service
end loop;
Bus.Bus_Driver.Get_Ticket(Heslington, Fiftyp, Ticket);

-- get in line
-- board bus, notice three more number 31 buses
...

end Rider;

© Alan Burns and Andy Wellings, 2001

Other Facilities

'Count gives number of tasks queued on an entry
Entry families allow the programmer to declare, in effect,
a single dimension array of entries
Nested accept statements allow more than two tasks to
communicate and synchronise
A task executing inside an accept statement can also
execute an entry call
Exceptions not handled in a rendezvous are propagated
to both the caller and the called tasks
An accept statement can have exception handlers

© Alan Burns and Andy Wellings, 2001

Restrictions

Accept statements can only be placed in the body of a
task
Nested accept statements for the same entry are not
allowed
The 'Count attribute can only be accessed from within
the task that owns the entry
Parameters to entries cannot be access parameters but
can be parameters of an access type

© Alan Burns and Andy Wellings, 2001

Families

task Multiplexer is
entry Channel(1..3)(X : Data);

end Multiplexer;

task body Multiplexer is
begin

loop
for I in 1..3 loop

accept Channel(I)(X : Data) do
-- consume input data on channel I
end Channel;

end loop;
end loop;

end Multiplexer;

A family
declaration

© Alan Burns and Andy Wellings, 2001

Tesco
type Counter is (Meat, Cheese, Wine);
task Tesco_Server is

entry Serve(Counter)(Request: . . .);
end Tesco_Server;

task body Tesco_Server is
begin

loop
accept Serve(Meat)(. . .) do . . . end Serve;
accept Serve(Cheese)(. . .) do . . . end Serve;
accept Serve(Wine)(. . .) do . . . end Serve;

end loop
end Tesco_Server;

What happens if all queues are full?
What happens if the Meat queue is empty?

© Alan Burns and Andy Wellings, 2001

Nested Accepts

task body Controller is
begin

loop
accept Doio (I : out Integer) do

accept Start;
accept Completed (K : Integer) do

I := K;
end Completed;

end Doio;
end loop;

end Controller;

© Alan Burns and Andy Wellings, 2001

Shopkeeper Example
task Shopkeeper is

entry Serve_Groceries(. . .);
entry Serve_Tobacco(. . .);
entry Serve_Alcohol(. . .);

end Shopkeeper;

task body Shopkeeper is
begin

. . .
accept Serve_Groceries (. . .) do

-- no change for a £10 note
accept Serve_ Alcohol(. . .) do

-- serve another Customer,
-- get more change

end Serve_ Alcohol
end Serve_Groceries
. . .

end Shopkeeper;

Can not have
accept Serve_Groceries (. . .) do
accept Serve_Groceries(. . .) do

. . .
end Serve_Groceries

end Serve_Groceries

© Alan Burns and Andy Wellings, 2001

Entry Call within Accept Statement

task Car_Spares_Server is
entry Serve_Car_Part(Number: Part_ID; . . .);

end Car_Spares_Server ;

task body Car_Spares_Server is
begin

. . .
accept Serve_Car_Part(Number: Part_ID; . . .) do

-- part not is stock
Dealer.Phone_Order(. . .);

end Serve_Car_Part;
. . .

end Car_Spares_Server;

© Alan Burns and Andy Wellings, 2001

Exceptions

accept Get(R : out Rec; Valid_Read : out Boolean) do
loop

begin
Put("VALUE OF I?"); Get(R.I);
Put("VALUE OF F?"); Get(R.F);
Put("VALUE OF S?"); Get(R.S);
Valid_Read := True;
return;

exception
when Ada.Text_IO.Data_Error =>

Put("INVALID INPUT: START AGAIN");
end;

end loop;
exception

when Ada.Text_IO.Mode_Error =>
Valid_Read := False;

end Get;

return
from
accept

exception raised

If not handled anywhere
exception raised in calling
task and the ‘accept’ task

could be handled here

or here

© Alan Burns and Andy Wellings, 2001

Private Entries

Public entries are visible to all tasks which have visibility
to the owning task's declaration
Private entries are only visible to the owning task
– if the task has several tasks declared internally; these tasks

have access to the private entry
– if the entry is to be used internally by the task for requeuing

purposes
– if the entry is an interrupt entry, and the programmer does not

wish any software task to call this entry

© Alan Burns and Andy Wellings, 2001

Private Entries II

task type Telephone_Operator is
entry Report_Fault(N : Number);

private
entry Allocate_Repair_Worker(N : out Number);

end Telephone_Operator;
task body Telephone_Operator is

Failed : Number;
task type Repair_Worker;
Work_Force:array (1.. Num_Workers) of Repair_Worker;
task body Repair_Worker is

Job : Number:
begin

...
Telephone_Operator.Allocate_Repair_Worker(Job);
...

end Repair_Worker;

private entry

internal task

© Alan Burns and Andy Wellings, 2001

Private Entries III

begin
loop

accept Report_Fault(N : Number) do
Failed := N;

end Report_Fault;
-- log faulty line

if New_Fault(Failed) then -- new fault

accept Allocate_Repair_Worker(N : out Number) do
N := Failed;

end Allocate_Repair_Worker;
end if;

end loop;
end Telephone_Operator;

© Alan Burns and Andy Wellings, 2001

Selective Waiting

So far, the receiver of a message must wait until the
specified process, or mailbox, delivers the
communication
A receiver process may actually wish to wait for any one
of a number of processes to call it
Server processes receive request messages from a
number of clients; the order in which the clients call
being unknown to the servers
To facilitate this common program structure, receiver
processes are allowed to wait selectively for a number
of possible messages
Based on Dijkstra’s guarded commands

© Alan Burns and Andy Wellings, 2001

select_statement ::=
selective_accept |
conditional_entry_call |
timed_entry_call |
asynchronous_select

Forms of Select Statement

The select statement comes in four forms:

© Alan Burns and Andy Wellings, 2001

Selective Accept

The selective accept allows the server to:

wait for more than a single rendezvous at any one time
time-out if no rendezvous is forthcoming within a
specified time
withdraw its offer to communicate if no rendezvous is
available immediately
terminate if no clients can possibly call its entries

© Alan Burns and Andy Wellings, 2001

Syntax Definition

selective_accept ::=
select

[guard]
selective_accept_alternative

{ or
[guard]
selective_accept_alternative

[else
sequence_of_statements]

end select;

guard ::= when <condition> =>

© Alan Burns and Andy Wellings, 2001

Syntax Definition II

selective_accept_alternative ::=
accept_alternative |
delay_alternative |
terminate_alternative

accept_alternative ::=
accept_statement [sequence_of_statements]

delay_alternative ::=
delay_statement [sequence_of_statements]

terminate_alternative ::=
terminate;

© Alan Burns and Andy Wellings, 2001

Overview Example
task Server is
entry S1(...);
entry S2(...);

end Server;

task body Server is
...

begin
loop
select
accept S1(...) do
-- code for this service

end S1;
or
accept S2(...) do
-- code for this service

end S2;
end select;

end loop;
end Server;

Simple select with
two possible actions

© Alan Burns and Andy Wellings, 2001

Example
task type Telephone_Operator is

entry Directory_Enquiry (P : Name; A : Address;

N : out Number);

entry Directory_Enquiry (P : Name; PC : Postal_Code;

N : out Number);

entry Report_Fault(N : Number);

private

entry Allocate_Repair_Worker (N : out Number);

end Telephone_Operator;

© Alan Burns and Andy Wellings, 2001

Example II

task body Telephone_Operator is

Failed : Number;

task type Repair_Worker;

Work_Force : array(1.. Num_Workers) of

Repair_Worker;

task body Repair_Worker is separate;

© Alan Burns and Andy Wellings, 2001

Example III
begin

loop
select

accept Directory_Enquiry(... ; A: Address...) do
-- look up number based on address

end Directory_Enquiry;
or

accept Directory_Enquiry(... ;
PC: Postal_Code...) do

-- look up number based on ZIP
end Directory_Enquiry;

or

© Alan Burns and Andy Wellings, 2001

Example IV

or
accept Report_Fault(N : Number) do

...
end Report_Fault;
if New_Fault(Failed) then

accept Allocate_Repair_Worker (N : out
Number) do

N := Failed;
end Allocate_Repair_Worker;

end if;
end select;

end loop;
end Telephone_Operator;

© Alan Burns and Andy Wellings, 2001

Note

If no rendezvous are available, the select statement
waits for one to become available
If one is available, it is chosen immediately
If more than one is available, the one chosen is
implementation dependent (RT Annex allows order to
be defined)
More than one task can be queued on the same entry;
default queuing policy is FIFO (RT Annex allows priority
order to be defined)

© Alan Burns and Andy Wellings, 2001

Tesco
type Counter is (Meat, Cheese, Wine);
task Tesco_Server is

entry Serve(Counter)(Request: . . .);
end Tesco_Server;

task body Tesco_Server is
begin

loop
select

accept Serve(Meat)(. . .) do . . . end Serve;
or

accept Serve(Cheese)(. . .) do . . . end Serve;
or

accept Serve(Wine)(. . .) do . . . end Serve;
end select

end loop
end Tesco_Server;

What happens if all queues are full?
What happens if the Meat queue is empty?

© Alan Burns and Andy Wellings, 2001

What is the difference between

and

select
accept A;
B;

or
accept C;

end select

select
accept A do

B;
end A;

or
accept C;

end select

© Alan Burns and Andy Wellings, 2001

Guarded Alternatives

Each select accept alternative can have an associated
guard
The guard is a boolean expression which is evaluated
when the select statement is executed
If the guard evaluates to true, the alternative is eligible
for selection
If it is false, the alternative is not eligible for selection
during this execution of the select statement (even if
client tasks are waiting on the associated entry)

© Alan Burns and Andy Wellings, 2001

Example Usage

select
when Boolean_Expression =>

accept S1(...) do
-- code for service

end S1;
-- sequence of statements

or
...

end select;

© Alan Burns and Andy Wellings, 2001

Example of Guard

task body Telephone_Operator is

begin

...

select

accept Directory_Enquiry (...) do ... end;

or

accept Directory_Enquiry (...) do ... end;

or

when Workers_Available =>

accept Report_Fault (...) do ... end;

end select;

end Telephone_Operator;

guard

© Alan Burns and Andy Wellings, 2001

Corner Shop
type Counter is (Tobacco, Alcohol, Groceries);
task Shopkeeper is

entry Serve(Counter)(Request: . . .);
end Shopkeeper;
task body Shopkeeper is
begin

loop
select

when After_7pm =>
accept Serve(Alcohol)(. . .) do . . . end Serve;

or
when Customers_Age > 16 =>

accept Serve(Tobacco)(. . .) do . . . end Serve;
or

accept Serve(Groceries)(. . .) do . . . end Serve;
end select

end loop
end Shopkeeper;

Are these guards OK?

© Alan Burns and Andy Wellings, 2001

Delay Alternative

The delay alternative of the select statement allows the
server to time-out if an entry call is not received within a
certain period
The timeout is expressed using a delay statement, and
therefore can be relative or absolute
If the relative time is negative, or the absolute time has
passed, the delay alternative becomes equivalent to the
else alternative
More than one delay is allowed

© Alan Burns and Andy Wellings, 2001

Example: Periodic Execution

Consider a task which reads a sensors every 10
seconds, however, it may be required to change its
periods during certain modes of operation

task Sensor_Monitor is

entry New_Period(P : Duration);

end Sensor_Monitor;

© Alan Burns and Andy Wellings, 2001

Periodic Execution II
task body Sensor_Monitor is

Current_Period : Duration := 10.0;
Next_Cycle : Time := Clock + Current_Period;

begin
loop

-- read sensor value etc.
select

accept New_Period(P : Duration) do
Current_Period := P;

end New_Period;
Next_Cycle := Clock + Current_Period;

or
delay until Next_Cycle;
Next_Cycle := Next_Cycle + Current_Period;

end select;
end loop;

end Sensor_Monitor;

delay alternative

© Alan Burns and Andy Wellings, 2001

Delay Alternative: Error Detection

Used to program timeouts

task type Watchdog is

entry All_Is_Well;

end Watchdog;

© Alan Burns and Andy Wellings, 2001

Watchdog

task body Watchdog is

Client_Failed : Boolean := False;

begin

loop

select

accept All_Is_Well;

or

delay 10.0;

-- signal alarm

Client_Failed := True;

end select;

exit when Client_Failed;

end loop;
end Watchdog;

© Alan Burns and Andy Wellings, 2001

The Else Part
task body Sensor_Monitor is

Current_Period : Duration := 10.0;
Next_Cycle : Time := Clock + Current_Period;

begin
loop

-- read sensor value etc.
select

accept New_Period(P : Duration) do
Current_Period := P;

end New_Period;
else -- cannot be guarded

null;
end select;
Next_Cycle := Clock + Current_Period;
delay until Next_Cycle;

end loop;
end Sensor_Monitor;

else part

© Alan Burns and Andy Wellings, 2001

The Delay and the Else Part

Cannot mix else part and delay in the same select
statement.
The following are equivalent

select

accept A;

or

accept B;

else

C;
end select;

select

accept A;

or

accept B;

or

delay 0.0;

C;

end select;

© Alan Burns and Andy Wellings, 2001

select

accept A;

or

delay 10.0;
end select;

select

accept A;

else

delay 10.0;
end select;

More on Delay

What is the difference?

select

accept A;

or

delay 5.0;

delay 5.0;
end select;

© Alan Burns and Andy Wellings, 2001

The Terminate Alternative

In general a server task only needs to exist when there
are clients to serve
The very nature of the client server model is that the
server does not know the identity of its clients
The terminate alternative in the select statement allows
a server to indicate its willingness to terminate if there
are no clients that could possibly request its service
The server terminates when a master of the server is
completed and all its dependants are either already
terminated or are blocked at a select with an open
terminate alternative

© Alan Burns and Andy Wellings, 2001

Primes by Sieve

Odd 3571113

Odd

57

© Alan Burns and Andy Wellings, 2001

Primes by Sieve II
procedure Primes_By_Sieve is

task type Sieve is
entry Pass_On(Int : Integer);

end Sieve;

task Odd;

type Sieve_Ptr is access Sieve;

function Get_New_Sieve return Sieve_Ptr is
begin

return new Sieve;
end Get_New_Sieve;

task body Odd is ...
task body Sieve is ...

begin null; end Primes_By_Sieve;

function needed, as a task
type cannot contain a ‘new’
for its own type

© Alan Burns and Andy Wellings, 2001

Primes by Sieve III

task body Odd is
Limit : constant Positive := ...;
Num : Positive;
S : Sieve_Ptr := new Sieve;

begin
Num := 3;
while Num < Limit loop

S.Pass_On(Num);
Num := Num + 2;

end loop;
end Odd;

© Alan Burns and Andy Wellings, 2001

Primes by Sieve IV
task body Sieve is

New_Sieve : Sieve_Ptr;
Prime, Num : Positive;

begin
accept Pass_On(Int : Integer) do

Prime := Int;
end Pass_On;
-- Prime is a prime number, could output
loop

select
accept Pass_On(Int : Integer) do

Num := Int;
end Pass_On;

or
terminate;

end select;
exit when Num rem Prime /= 0;

end loop;

© Alan Burns and Andy Wellings, 2001

Primes by Sieve V

New_Sieve := Get_New_Sieve;
New_Sieve.Pass_On(Num);
loop

select
accept Pass_On(Int : Integer) do

Num := Int;
end Pass_On;

or
terminate;

end select;
if Num rem Prime /= 0 then

New_Sieve.Pass_On(Num);
end if;

end loop;
end Sieve;

© Alan Burns and Andy Wellings, 2001

Last Wishes

Last Wishes can be programmed using controlled types

Example: count the number of times two entries are
called

with Ada.Finalization; use Ada;
package Counter is
type Task_Last_Wishes is new

Finalization.Limited_Controlled
with record

Count1, Count2 : Natural := 0;
end record;

procedure Finalize(Tlw : in out Task_Last_Wishes);
end Counter;

© Alan Burns and Andy Wellings, 2001

Last Wishes II

with Ada.Integer_Text_IO; use Ada.Integer_Text_IO;
with Ada.Text_IO; use Ada.Text_IO;
package body Counter is

procedure Finalize(Tlw : in out Task_Last_Wishes) is
begin

Put("Calls on Service1:");
Put(Tlw.Count1);
Put(" Calls on Service2:");
Put(Tlw.Count2);
New_Line;

end Finalize;
end Counter;

© Alan Burns and Andy Wellings, 2001

Last Wishes III
task body Server is
Last_Wishes : Counter.Task_Last_Wishes;

begin
-- initial housekeeping
loop
select
accept Service1(...) do
...

end Service1;
Last_Wishes.Count1 := Last_Wishes.Count1 + 1;

or
accept Service2(...) do
...

end Service2;
Last_Wishes.Count2 := Last_Wishes.Count2 + 1;

or
terminate;

end select;
-- housekeeping

end loop;
end Server;

As the task terminates the
finalize procedure is executed

© Alan Burns and Andy Wellings, 2001

Program Error

If all the accept alternatives have guards then there is
the possibility in certain circumstances that all the
guards will be closed
If the select statement does not contain an else clause
then it becomes impossible for the statement to be
executed
The exception Program_Error is raised at the point of
the select statement if no alternatives are open

© Alan Burns and Andy Wellings, 2001

Sample Exam Question

A server task has the following Ada specification.
task Server is

entry Service_A;
entry Service_B;
entry Service_C;

end Server;
Write the body of the Server task so that
– If client tasks are waiting on all the entries, the Server should service

the clients in a cyclic order, that is accept first a Service_A entry,
and then a Service_B entry, and then a Service_C, so on

– If not all entries have a client task waiting, the Server should service
the other entries in a cyclic order. The Server tasks should not be
blocked if there are clients still waiting for a service

– If the Server task has no waiting clients then it should NOT busy-wait; it
should block waiting for a client's request to be made

– If all the possible clients have terminated, the Server should terminate
Assume that client tasks are not aborted and issue simple entry calls only

See answer to Exercise 9.11

© Alan Burns and Andy Wellings, 2001

The Selective Accept : Summary

A selective accept must contain at least one accept
alternative (each possibly guarded)

A selective accept may contain one and only one of the
following :
– a terminate alternative (possibly guarded), or
– one or more delay alternatives (each possibly guarded), or
– an else part

© Alan Burns and Andy Wellings, 2001

The Selective Accept : Summary II

A select alternative is 'open' if it does not contain a
guard or if the boolean condition associated with the
guard evaluates to true; otherwise the alternative is
'closed'

On execution: all guards, open delay expressions, and
open entry family expressions are evaluated

A choice is made from the open alternatives

© Alan Burns and Andy Wellings, 2001

Non-determinism and Selective Waiting

Concurrent languages make few assumptions about the
execution order of processes
A scheduler is assumed to schedule processes non-
deterministically
Consider a process P that will execute a selective wait
construct upon which processes S and T could call

© Alan Burns and Andy Wellings, 2001

Non-determinism and Selective Waiting

P runs first; it is blocked on the select. S (or T) then runs
and rendezvous with P
S (or T) runs, blocks on the call to P; P runs and executes
the select; a rendezvous takes place with S (or T)
S (or T) runs first and blocks on the call to P; T (or S) now
runs and is also blocked on P. Finally P runs and executes
the select on which T and S are waiting
The three possible interleavings lead to P having none,
one or two calls outstanding on the selective wait
If P, S and T can execute in any order then, in latter case,
P should be able to choose to rendezvous with S or T — it
will not affect the programs correctness

© Alan Burns and Andy Wellings, 2001

Non-determinism and Selective Waiting

A similar argument applies to any queue that a
synchronisation primitive defines
Non-deterministic scheduling implies all queues should
release processes in a non-deterministic order
Semaphore queues are often defined in this way; entry
queues and monitor queues are specified to be FIFO
The rationale here is that FIFO queues prohibit
starvation but if the scheduler is non-deterministic then
starvation can occur anyway!

© Alan Burns and Andy Wellings, 2001

Timed Entry Calls

A timed entry call issues an entry call which is cancelled
if the call is not accepted within the specified period
(relative or absolute)

Note that only one delay alternative and one entry call
can be specified.

task type Subscriber;

© Alan Burns and Andy Wellings, 2001

Timed Entry Calls II
task body Subscriber is

Stuarts_Number : Number;
begin

loop
...
select

An_Op.Directory_Enquiry("Stuart Jones",
"10 Main Street, York", Stuarts_Number);

-- log the cost of a directory enquiry call
or

delay 10.0;
-- phone up Stuart's parents and ask them;
-- log the cost of a long distance call

end select;
...

end loop;
end Subscriber;

© Alan Burns and Andy Wellings, 2001

Timed Entry Calls III
task body Telephone_Operator is

...
begin

loop
-- prepare to accept next request
select

accept Directory_Enquiry(Person : Name;
Addr : Address; Num : out Number) do
delay 3600.0; -- take a lunch break

end Directory_Enquiry; or
...

end select;
...

end loop;
end Telephone_Operator;

Time-out is on the start of the
rendezvous not the finish

© Alan Burns and Andy Wellings, 2001

Shopper
task type Shopper;
task body Shopper is
begin

. . .
-- enter shop
select

shopkeeper.Serve_Groceries(. . .)
or

delay10.0;
-- moan about queues;

end select;
-- leave shop
. . .

end Shopper; WARNING
accept Serve_Groceries(. . .) do

-- go to lunch
end Serve_Groceries;

© Alan Burns and Andy Wellings, 2001

Conditional Entry Call

The conditional entry call allows the client to withdraw
the offer to communicate if the server task is not
prepared to accept the call immediately
It has the same meaning as a timed entry call where the
expiry time is immediate

select

Security_Op.Turn_Lights_On;

else

null; -- assume they are on already

end select;

© Alan Burns and Andy Wellings, 2001

Conditional Entry Call II

A conditional entry call should only be used when the
task can genuinely do other productive work, if the call
is not accepted

Care should be taken not to program polling, or busy-
wait, solutions unless they are explicitly required

Note, the conditional entry call uses an else, the timed
entry call an or

© Alan Burns and Andy Wellings, 2001

Conditional Entry Call III

They cannot be mixed, nor can two entry call statements
be included
A client task can not therefore wait for more than one
entry call to be serviced

The asynchronous select statement allows some of
these restrictions to be overcome

© Alan Burns and Andy Wellings, 2001

Dining Philosophers

procedure Dining_Philosophers is
package Activities is

procedure Think;
procedure Eat;

end Activities;

N : constant := 5; -- number of philosophers
type Philosophers_Range is range 0..N-1;

task type Phil(P : Philosophers_Range);
type Philosopher is access Phil;

task type Chopstick_Control is
entry Pick_Up;
entry Put_Down;

end Chopstick_Control;

© Alan Burns and Andy Wellings, 2001

Dining Philosophers II
task Deadlock_Prevention is

entry Enters;
entry Leaves;

end Deadlock_Prevention;

Chopsticks : array(Philosophers_Range) of Chopstick_Control;
Philosophers : array(Philosophers_Range) of Philosopher;

package body Activities is separate;
task body Phil is separate;
task body Chopstick_Control is separate;
task body Deadlock_Prevention is separate;

begin
for P in Philosophers_Range loop
Philosophers(P) := new Phil(P);

end loop;
end Dining_Philosophers;

© Alan Burns and Andy Wellings, 2001

Dining Philosophers III

separate (Dining_Philosophers)
task body Chopstick_Control is
begin

loop
accept Pick_Up;
accept Put_Down;

end loop;
end Chopstick_Control;

© Alan Burns and Andy Wellings, 2001

Dining Philosophers IV

separate (Dining_Philosophers)
task body Deadlock_Prevention is

Max : constant Integer := N - 1;
People_Eating : Integer range 0..Max := 0;

begin
loop

select
when People_Eating < Max =>

accept Enters;
People_Eating := People_Eating + 1;

or
accept Leaves;
People_Eating := People_Eating - 1;

end select;
end loop;

end Deadlock_Prevention;

© Alan Burns and Andy Wellings, 2001

Dining Philosophers V
separate (Dining_Philosophers)
task body Phil is

Chop_Stick1, Chop_Stick2 : Philosophers_Range;
begin

Chop_Stick1 := P;
Chop_Stick2 := (Chop_Stick1 + 1) mod N;
loop

Think;
Deadlock_Prevention.Enters;
Chopsticks(Chop_Stick1).Pick_Up;
Chopsticks(Chop_Stick2).Pick_Up;
Eat;
Chopsticks(Chop_Stick1).Put_Down;
Chopsticks(Chop_Stick2).Put_Down;
Deadlock_Prevention.Leaves;

end loop;
end Philosopher;

© Alan Burns and Andy Wellings, 2001

Exercises

Modify the code so that the program terminates after
each philosopher has taken 32 meals
Make your solution resilient to a task failing
Replace the control tasks with protected objects

© Alan Burns and Andy Wellings, 2001

Task States

created

non-existing

finalising

activating

executing

completed

non-existing

terminated

delayed

waiting child activation waiting dep. termination

waiting on
an entry call

waiting on
an accept

waiting for the end
of a rendezvous waiting on select

© Alan Burns and Andy Wellings, 2001

POSIX Message Queues

POSIX supports asynchronous, indirect message
passing through the notion of message queues
A message queue can have many readers and many
writers
Priority may be associated with the queue
Intended for communication between processes (not
threads)
Message queues have attributes which indicate their
maximum size, the size of each message, the number of
messages currently queued etc.
An attribute object is used to set the queue attributes
when the queue is created

© Alan Burns and Andy Wellings, 2001

POSIX Message Queues

Message queues are given a name when they are created
To gain access to the queue, requires an mq_open name
mq_open is used to both create and open an already
existing queue (also mq_close and mq_unlink)
Sending and receiving messages is done via mq_send
and mq_receive

Data is read/written from/to a character buffer.
If the buffer is full or empty, the sending/receiving process
is blocked unless the attribute O_NONBLOCK has been
set for the queue (in which case an error return is given)
If senders and receivers are waiting when a message
queue becomes unblocked, it is not specified which one is
woken up unless the priority scheduling option is specified

© Alan Burns and Andy Wellings, 2001

POSIX Message Queues

A process can also indicate that a signal should be sent to it
when an empty queue receives a message and there are no
waiting receivers

In this way, a process can continue executing whilst waiting
for messages to arrive or one or more message queues

It is also possible for a process to wait for a signal to arrive;
this allows the equivalent of selective waiting to be
implemented

If the process is multi-threaded, each thread is considered to
be a potential sender/receiver in its own right

© Alan Burns and Andy Wellings, 2001

Robot Arm Example

typedef enum {xplane, yplane, zplane} dimension;

void move_arm(int D, int P);

#define DEFAULT_NBYTES 4
int nbytes = DEFAULT_NBYTES;

#define MQ_XPLANE "/mq_xplane" -- message queue name
#define MQ_YPLANE "/mq_yplane" -- message queue name
#define MQ_ZPLANE "/mq_zplane" -- message queue name
#define MODE . . . /* mode info for mq_open */
/* names of message queues */

© Alan Burns and Andy Wellings, 2001

Robot Arm Example
void controller(dimension dim) {

int position, setting;
mqd_t my_queue; /* message queue */
struct mq_attr ma; /*attributes */
char buf[DEFAULT_NBYTES];
ssiz_t len;

position = 0;
switch(dim) { /* open appropriate message queue */

case xplane:
my_queue = MQ_OPEN(MQ_XPLANE,O_RDONLY,MODE,&ma);
break;

case yplane: my_queue = MQ_OPEN(MQ_YPLANE,...); break;
case zplane: my_queue = MQ_OPEN(MQ_ZPLANE,...); break;
default:

return;
};

© Alan Burns and Andy Wellings, 2001

Robot Arm Example
while (1) {

/* read message */
len = mq_receive(my_queue, &buf[0], nbytes,

null);
setting = *((int *)(&buf[0]));
position = position + setting;
move_arm(dim, position);

};
}

Now the main program which creates the controller processes
and passes the appropriate coordinates to them:

© Alan Burns and Andy Wellings, 2001

Robot Arm Example
void (*C)(dimension dim) = &controller;

int main(int argc, char **argv) {
mqd_t mq_xplane, mq_yplane, mq_zplane;
struct mq_attr ma; /* queue attributes */
int xpid, ypid, zpid;
char buf[DEFAULT_NBYTES];

/* set message queues attributes*/
ma.mq_flags = 0; /* No special behaviour */
ma.mq_maxmsg = 1;
ma.mq_msgsize = nbytes;

mq_xplane = MQ_OPEN(MQ_XPLANE,
O_CREAT|O_EXCL, MODE, &ma);

mq_yplane = ...;
mq_zplane = ...;

/* Duplicate the process to get three controllers */
switch (xpid = FORK()) {

case 0: controller(xplane); exit(0); /* child */
default: /* parent */

switch (ypid = FORK()) {
case 0: controller(yplane); exit(0);
default: /* parent */

switch (zpid = FORK()) {
case 0: controller(zplane); exit(0);
default: /* parent */

break;
}

}
}

while (1) {
/* set up buffer to transmit each co-ordinate

to the controllers, for example */
MQ_SEND(mq_xplane, &buf[0], nbytes, 0);

}
}

© Alan Burns and Andy Wellings, 2001

Summary

The semantics of message-based communication are
defined by three issues:
– the model of synchronisation
– the method of process naming
– the message structure

Variations in the process synchronisation model arise from
the semantics of the send operation.
– asynchronous, synchronous or remote invocation
– Remote invocation can be made to appear syntactically similar to a

procedure call

Process naming involves two distinct issues; direct or
indirect, and symmetry

© Alan Burns and Andy Wellings, 2001

Summary

Ada has remote invocation with direct asymmetric naming
Communication in Ada requires one task to define an
entry and then, within its body, accept any incoming call. A
rendezvous occurs when one task calls an entry in
another
Selective waiting allows a process to wait for more than
one message to arrive.
Ada’s select statement has two extra facilities: an else part
and a terminate alternative
POSIX message queues allow asynchronous, many to
many communication

