
© Alan Burns and Andy Wellings, 2001

Shared Variable-Based
Synchronization and

Communication

To understand the requirements for communication and
synchronisation based on shared variables

To briefly review semaphores, monitors and conditional
critical regions

To understand Ada 95 protected objects, POSIX
mutexes and Java synchronized methods

© Alan Burns and Andy Wellings, 2001

Prerequisites

Understanding the issues of busy-waiting and
semaphores from an Operating System Course.

However:
– Course book give full details on busy-waiting, semaphores,

conditional critical regions, monitors etc.

© Alan Burns and Andy Wellings, 2001

Synchronisation and Communication

The correct behaviour of a concurrent program depends
on synchronisation and communication between its
processes
Synchronisation: the satisfaction of constraints on the
interleaving of the actions of processes (e.g. an action
by one process only occurring after an action by
another)
Communication: the passing of information from one
process to another
– Concepts are linked since communication requires

synchronisation, and synchronisation can be considered as
contentless communication.

– Data communication is usually based upon either shared
variables or message passing.

© Alan Burns and Andy Wellings, 2001

Shared Variable Communication

Examples: busy waiting, semaphores and monitors
Unrestricted use of shared variables is unreliable and
unsafe due to multiple update problems
Consider two processes updating a shared variable, X,
with the assignment: X:= X+1
– load the value of X into some register
– increment the value in the register by 1 and
– store the value in the register back to X

As the three operations are not indivisible, two
processes simultaneously updating the variable could
follow an interleaving that would produce an incorrect
result

Shared Resource Communication

task body Helicopter is

Next: Coordinates;

begin

loop

Compute_New_Cordinates(Next);

Shared_Cordinates := Next;

end loop

end;

task body Helicopter is

Next: Coordinates;

begin

loop

Compute_New_Cordinates(Next);

Shared_Cordinates := Next;

end loop

end;

task body Police_Car is

begin

loop

Plot(Shared_Cordinates);

end loop;

end;

task body Police_Car is

begin

loop

Plot(Shared_Cordinates);

end loop;

end;

type Coordinates is

record

X : Integer;

Y : Integer;

end record;

Shared_Cordinate: Coordinates;

type Coordinates is

record

X : Integer;

Y : Integer;

end record;

Shared_Cordinate: Coordinates;

Shared_Cordinates := Next;

Plot(Shared_Cordinates);

1,1

2,2

3,3

4,4

5,5

6,6

...

1,1

2,2

3,3

4,4

5,5

6,6

...

Villain's Escape

Route

(seen by helicopter)

Police Car’s

Pursuit Route

X = 0

Y = 0

X = 1

Y = 0

X = 1

Y = 1

11
11

22
22

X = 2

Y = 1

X = 2

Y = 2

X = 3

Y = 2

X = 3

Y = 3

3

X = 4

Y = 3

3
33

4

X = 4

Y = 4

4

X = 5

Y = 4
44

5
54

Villain
Escapes!

1,1

2.2

3,3

4,4

4,5

© Alan Burns and Andy Wellings, 2001

Avoiding Interference

The parts of a process that access shared variables
must be executed indivisibly with respect to each other
These parts are called critical sections
The required protection is called mutual exclusion

© Alan Burns and Andy Wellings, 2001

Mutual Exclusion

A sequence of statements that must appear to be
executed indivisibly is called a critical section
The synchronisation required to protect a critical section
is known as mutual exclusion
Atomicity is assumed to be present at the memory level.
If one process is executing X:= 5, simultaneously with
another executing X:= 6, the result will be either 5 or 6
(not some other value)
If two processes are updating a structured object, this
atomicity will only apply at the single word element level

© Alan Burns and Andy Wellings, 2001

Condition Synchronisation

Condition synchronisation is needed when a process
wishes to perform an operation that can only sensibly,
or safely, be performed if another process has itself
taken some action or is in some defined state
E.g. a bounded buffer has 2 condition synchronisation:
– the producer processes must not attempt to deposit data onto

the buffer if the buffer is full
– the consumer processes cannot be allowed to extract objects

from the buffer if the buffer is empty

head tail

Is mutual
exclusion
necessary?

© Alan Burns and Andy Wellings, 2001

Busy Waiting

One way to implement synchronisation is to have
processes set and check shared variables that are
acting as flags
This approach works well for condition synchronisation
but no simple method for mutual exclusion exists
Busy wait algorithms are in general inefficient; they
involve processes using up processing cycles when
they cannot perform useful work
Even on a multiprocessor system they can give rise to
excessive traffic on the memory bus or network (if
distributed)

© Alan Burns and Andy Wellings, 2001

Semaphores

A semaphore is a non-negative integer variable that
apart from initialization can only be acted upon by two
procedures P (or WAIT) and V (or SIGNAL)
WAIT(S) If the value of S > 0 then decrement its value
by one; otherwise delay the process until S > 0 (and
then decrement its value).
SIGNAL(S) Increment the value of S by one.
WAIT and SIGNAL are atomic (indivisible). Two
processes both executing WAIT operations on the same
semaphore cannot interfere with each other and cannot
fail during the execution of a semaphore operation

© Alan Burns and Andy Wellings, 2001

process P1;
(* waiting process *)
statement X;
wait (consyn)
statement Y;

end P1;

process P2;
(* signalling proc *)
statement A;
signal (consyn)
statement B;

end P2;

var consyn : semaphore (* init 0 *)

In what order will the statements execute?

Condition synchronisation

© Alan Burns and Andy Wellings, 2001

Mutual Exclusion

process P2;
statement A;
wait (mutex);

statement B;
signal (mutex);
statement C;

end P2;

process P1;
statement X
wait (mutex);
statement Y

signal (mutex);
statement Z

end P1;

(* mutual exclusion *)
var mutex : semaphore; (* initially 1 *)

In what order will the statements execute?

© Alan Burns and Andy Wellings, 2001

Process States

Created

Non-existingNon-existing

Initializing

Executable

Terminated

Waiting Child
Initialization

Waiting Dependent
Termination

Suspended

© Alan Burns and Andy Wellings, 2001

type Sem is ...;
X : Sem := 1; Y : Sem := 1;

task B;
task body B is
begin

...
Wait(Y);
Wait(X);
...

end B;

task A;
task body A is
begin

...
Wait(X);
Wait(Y);
...

end A;

Deadlock

Two processes are deadlocked if each is holding a
resource while waiting for a resource held by the other

© Alan Burns and Andy Wellings, 2001

Livelock

Two processes are livelocked if each is executing but
neither is able to make progress.

type Flag is (Up, Down);
Flag1 : Flag := Up;

task B;
task body B is
begin
...
while Flag1 = Up loop
null;

end loop;
...

end A;

task A;
task body A is
begin
...
while Flag1 = Up loop
null;

end loop;
...

end A;

© Alan Burns and Andy Wellings, 2001

Binary and quantity semaphores

A general semaphore is a non-negative integer; its
value can rise to any supported positive number
A binary semaphore only takes the value 0 and 1; the
signalling of a semaphore which has the value 1 has no
effect - the semaphore retains the value 1
A general semaphore can be implemented by two
binary semaphores and an integer. Try it!
With a quantity semaphore the amount to be
decremented by WAIT (and incremented by SIGNAL) is
given as a parameter; e.g. WAIT (S, i)

© Alan Burns and Andy Wellings, 2001

package Semaphore_Package is
type Semaphore(Initial : Natural) is limited private;
procedure Wait (S : Semaphore);
procedure signal (S : Semaphore);

private
type Semaphore ...

end Semaphore_Package;

Example semaphore programs in Ada

Ada does not directly support semaphores; the wait and
signal procedures can, however, be constructed from
the Ada synchronisation primitives
The essence of abstract data types is that they can be
used without knowledge of their implementation!

© Alan Burns and Andy Wellings, 2001

The Bounded Buffer

package Buffer is
procedure Append (I : Integer);
procedure Take (I : out Integer);

end Buffer;

package body Buffer is
Size : constant Natural := 32;
type Buffer_Range is mod Size;
Buf : array (Buffer_Range) of Integer;
Top, Base : Buffer_Range := 0;
Mutex : Semaphore(1);
Item_Available : Semaphore(0);
Space_Available : Semaphore(Size);
procedure Append (I : Integer) is separate;
procedure Take (I : out Integer) is separate;

end Buffer;

© Alan Burns and Andy Wellings, 2001

procedure Append(I : Integer) is
begin

Wait(Space_Available);
Wait(Mutex;

Buf(Top) := I;
Top := Top+1

Signal(Mutex;
Signal(Item_Available);

end Append;

procedure Take(I : out Integer) is
begin

Wait(Item_Available);
Wait(Mutex);

I := BUF(base);
Base := Base+1;

Signal(Mutex);
Signal(Space_Available);

end Take;

The Bounded Buffer

© Alan Burns and Andy Wellings, 2001

Criticisms of semaphores

Semaphore are an elegant low-level synchronisation
primitive, however, their use is error-prone
If a semaphore is omitted or misplaced, the entire
program to collapse. Mutual exclusion may not be
assured and deadlock may appear just when the
software is dealing with a rare but critical event
A more structured synchronisation primitive is required
No high-level concurrent programming language relies
entirely on semaphores; they are important historically
but are arguably not adequate for the real-time domain

© Alan Burns and Andy Wellings, 2001

Conditional Critical Regions (CCR)

A critical region is a section of code that is guaranteed
to be executed in mutual exclusion
Shared variables are grouped together into named
regions and are tagged as being resources
Processes are prohibited from entering a region in
which another process is already active
Condition synchronisation is provided by guards. When
a process wishes to enter a critical region it evaluates
the guard (under mutual exclusion); if the guard
evaluates true it may enter, but if it is false the process
is delayed
As with semaphores, no access order can be assumed

© Alan Burns and Andy Wellings, 2001

The Bounded Buffer

program buffer_eg;
type buffer_t is record

slots : array(1..N) of character;
size : integer range 0..N;
head, tail : integer range 1..N;

end record;
buffer : buffer_t;
resource buf : buffer;

process producer is separate;
process consumer is separate;

end.

© Alan Burns and Andy Wellings, 2001

The Bounded Buffer

process producer;
loop

region buf when buffer.size < N do
-- place char in buffer etc

end region
end loop;

end producer

process consumer;
loop

region buf when buffer.size > 0 do
-- take char from buffer etc

end region
end loop;

end consumer

© Alan Burns and Andy Wellings, 2001

Problem

One problem with CCRs is that processes must re-
evaluate their guards every time a CCR naming that
resource is left. A suspended process must become
executable again in order to test the guard; if it is still
false it must return to the suspended state
A version of CCRs has been implemented in Edison, a
language intended for embedded applications,
implemented on multiprocessor systems. Each
processor only executes a single process so it may
continually evaluate its guards if necessary

© Alan Burns and Andy Wellings, 2001

Monitors

A problem with CCRs is that they can be dispersed
throughout the program
Monitors provide encapsulation, and efficient condition
synchronisation
The critical regions are written as procedures and are
encapsulated together into a single module
All variables that must be accessed under mutual
exclusion are hidden; all procedure calls into the module
are guaranteed to be mutually exclusive
Only the operations are visible outside the monitor

© Alan Burns and Andy Wellings, 2001

The Bounded Buffer
monitor buffer;

export append, take;

var (*declare necessary vars*)

procedure append (I : integer);
...

end;

procedure take (var I : integer);
...

end;
begin
(* initialisation *)

end;

How do we get condition
synchronisation?

© Alan Burns and Andy Wellings, 2001

Condition Variables

Different semantics exist
In Hoare’s monitors: a condition variable is acted upon
by two semaphore-like operators WAIT and SIGNAL
A process issuing a WAIT is blocked (suspended) and
placed on a queue associated with the condition
variable (cf semaphores: a wait on a condition variable
always blocks unlike a wait on a semaphore)
A blocked process releases its hold on the monitor,
allowing another process to enter
A SIGNAL releases one blocked process. If no process
is blocked then the signal has no effect (cf semaphores)

© Alan Burns and Andy Wellings, 2001

The Bounded Buffer
monitor buffer;
export append, take;

var BUF : array[. . .] of integer;
top, base : 0..size-1; NumberInBuffer : integer;

spaceavailable, itemavailable : condition;

procedure append (I : integer);
begin
if NumberInBuffer = size then
wait(spaceavailable);

end if;
BUF[top] := I;
NumberInBuffer := NumberInBuffer+1;
top := (top+1) mod size;
signal(itemavailable)

end append;

© Alan Burns and Andy Wellings, 2001

procedure take (var I : integer);
begin
if NumberInBuffer = 0 then
wait(itemavailable);

end if;
I := BUF[base];
base := (base+1) mod size;
NumberInBuffer := NumberInBuffer-1;
signal(spaceavailable);

end take;

begin (* initialisation *)
NumberInBuffer := 0;
top := 0; base := 0

end;

The Bounded Buffer

• A process appending an
item will, however, signal
this suspended process
when an item does become
available.

• If a process calls take
when there is nothing in
the buffer then it will
become suspended on
itemavailable.

© Alan Burns and Andy Wellings, 2001

The semantics of SIGNAL

What happens to the signalling process and the process
that is restarted? Both must not be active in the monitor
There are various semantics for SIGNAL

© Alan Burns and Andy Wellings, 2001

The Semantics of SIGNAL

A signal is allowed only as the last action of a process
before it leaves the monitor
A signal operation has the side-effect of executing a
return statement, i.e. the process is forced to leave
A signal operation which unblocks another process has
the effect of blocking itself; this process will only execute
again when the monitor is free
A signal operation which unblocks a process does not
block the caller. The unblocked process must gain
access to the monitor again

P1 P2 P3

produce

leave

signal NotEmpty

produce

produce

consume

time

wait NotFull

leave

signal NotFull

leave

© Alan Burns and Andy Wellings, 2001

POSIX Mutexes and Condition Variables

Provide the equivalent of a monitor for communication and
synchronisation between threads
Mutexes and condition variables have associated attribute
objects; we will use default attributes only
Example attributes:
– set the semantics for a thread trying to lock a mutex it already has

locked
– allow sharing of mutexes and condition variables between processes
– set/get priority ceiling
– set/get the clock used for timeouts

typedef ... pthread_mutex_t;
typedef ... pthread_mutexattr_t;
typedef ... pthread_cond_t;
typedef ... pthread_condattr_t;

int pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t *attr);

/* initialises a mutex with certain attributes */

int pthread_mutex_destroy(pthread_mutex_t *mutex);
/* destroys a mutex */
/* undefined behaviour if the mutex is locked */

int pthread_cond_init(pthread_cond_t *cond,
const pthread_condattr_t *attr);

/* initialises a condition variable with certain attributes */

int pthread_cond_destroy(pthread_cond_t *cond);
/* destroys a condition variable */
/* undefined, if threads are waiting on the cond. variable */

int pthread_mutex_lock(pthread_mutex_t *mutex);
/* lock the mutex; if locked already suspend calling thread */
/* the owner of the mutex is the thread which locked it */

int pthread_mutex_trylock(pthread_mutex_t *mutex);
/* as lock but gives an error if mutex is already locked */

int pthread_mutex_timedlock(pthread_mutex_t *mutex,
const struct timespec *abstime);

/* as lock but gives an error if mutex cannot be obtained */
/* by the timeout */

int pthread_mutex_unlock(pthread_mutex_t *mutex);
/* unlocks the mutex if called by the owning thread */
/* undefined behaviour if calling thread is not the owner */
/* undefined behaviour if the mutex is not locked } */
/* when successful, a blocked thread is released */

int pthread_cond_wait(pthread_cond_t *cond,
pthread_mutex_t *mutex);

/* called by thread which owns a locked mutex */
/* undefined behaviour if the mutex is not locked */
/* atomically blocks the caller on the cond variable and */
/* releases the lock on mutex */
/* a successful return indicates the mutex has been locked */

int pthread_cond_timedwait(pthread_cond_t *cond,
pthread_mutex_t *mutex, const struct timespec *abstime);

/* the same as pthread_cond_wait, except that a error is */
/* returned if the timeout expires */

int pthread_cond_signal(pthread_cond_t *cond);
/* unblocks at least one blocked thread */
/* no effect if no threads are blocked */

int pthread_cond_broadcast(pthread_cond_t *cond);
/* unblocks all blocked threads */
/* no effect if no threads are blocked */

/*all unblocked threads automatically contend for */
/* the associated mutex */

All functions return 0 if successful

© Alan Burns and Andy Wellings, 2001

Bounded Buffer in POSIX
#define BUFF_SIZE 10

typedef struct {
pthread_mutex_t mutex;
pthread_cond_t buffer_not_full;
pthread_cond_t buffer_not_empty;
int count, first, last;
int buf[BUFF_SIZE];
} buffer;

int append(int item, buffer *B) {
PTHREAD_MUTEX_LOCK(&B->mutex);
while(B->count == BUFF_SIZE) {
PTHREAD_COND_WAIT(&B->buffer_not_full, &B->mutex); }

/* put data in the buffer and update count and last */
PTHREAD_MUTEX_UNLOCK(&B->mutex);
PTHREAD_COND_SIGNAL(&B->buffer_not_empty);
return 0;

}

int take(int *item, buffer *B) {
PTHREAD_MUTEX_LOCK(&B->mutex);
while(B->count == 0) {
PTHREAD_COND_WAIT(&B->buffer_not_empty, &B->mutex);

}
/* get data from the buffer and update count and first */
PTHREAD_MUTEX_UNLOCK(&B->mutex);
PTHREAD_COND_SIGNAL(&B->buffer_not_full);
return 0;
}

int initialize(buffer *B) {
/* set the attribute objects and initialize the */
/* mutexes and condition variable */

}

© Alan Burns and Andy Wellings, 2001

Readers/Writers Problem

Block of Data

reader reader writer writer

How can monitors be used to
allow many concurrent readers
or a single writer but not both?

© Alan Burns and Andy Wellings, 2001

Hint

You will need to have an entry and exit protocol

Reader:
start_read
. . .
stop_read

Writer:
start_write
. . .
stop_write

© Alan Burns and Andy Wellings, 2001

Nested Monitor Calls

What should be done if a process having made a nested
monitor call is suspended in another monitor?
The mutual exclusion in the last monitor call will be
relinquished by the process, due to the semantics of the
wait operation
However, mutual exclusion will not be relinquished by
processes in monitors from which the nested calls have
been made; processes that attempt to invoke procedures
in these monitors will become blocked
Maintain the lock: e.g. POSIX
Prohibit nested procedure calls altogether: e.g. Modula-1
Provide constructs which specify that certain monitor
procedures may release their mutual exclusion lock during
remote calls

© Alan Burns and Andy Wellings, 2001

Criticisms of Monitors

The monitor gives a structured and elegant solution to
mutual exclusion problems such as the bounded buffer
It does not, however, deal well with condition
synchronization — requiring low-level condition
variables
All the criticisms surrounding the use of semaphores
apply equally to condition variables

© Alan Burns and Andy Wellings, 2001

Protected Objects

Combines the advantages of monitors with the
advantages of conditional critical regions
Data and operations are encapsulated
Operations have automatic mutual exclusion
Guards can be placed on operations for condition
synchronization

© Alan Burns and Andy Wellings, 2001

A Protected Object

Encapsulates data items and allows access to them
only via protected actions — protected subprograms or
protected entries
The language guarantees that the data will only be
updated under mutual exclusion, and that all data read
will be internally consistent
A protected unit may be declared as a type or as a
single instance

© Alan Burns and Andy Wellings, 2001

protected type Name (Discriminant) is

function Fname(Params)

return Type_Name;

procedure Pname(Params);

entry E1_Name(Params);

private

entry E2_Name(Params);

O_Name : T_Name;

end Name;

Syntax

Only subprograms,
entries and object
declarations

Only subprograms
and entries

No type declarations

© Alan Burns and Andy Wellings, 2001

Protected Types and Mutual Exclusion

protected type Shared_Data(Initial : Data_Item) is
function Read return Data_Item;
procedure Write (New_Value : in Data_Item);

private
The_Data : Data_Item := Initial;

end Shared_Data_Item;

© Alan Burns and Andy Wellings, 2001

The Protected Unit Body

protected body Shared_Data_Item is

function Read return Data_Item is
begin

return The_Data;
end Read;

procedure Write (New_Value : in Data_Item) is
begin

The_Data := New_Value;
end Write;

end Shared_Data_Item;

© Alan Burns and Andy Wellings, 2001

Protected Procedures and Functions

A protected procedure provides mutually exclusive
read/write access to the data encapsulated
Concurrent calls to Write will be executed one at a
time
Protected functions provide concurrent read only access
to the encapsulated data
Concurrent calls to Read may be executed
simultaneously
Procedure and function calls are mutually exclusive
The core language does not define which calls take
priority

© Alan Burns and Andy Wellings, 2001

Protected Entries and Synchronisation

A protected entry is similar to a protected procedure in
that calls are executed in mutual exclusion and have
read/write access to the data
A protected entry can be guarded by a boolean
expression (called a barrier)
– if this barrier evaluates to false when the entry call is made, the

calling task is suspended and remains suspended while the
barrier evaluates to false, or there are other tasks currently
active inside the protected unit

Hence protected entry calls can be used to implement
condition synchronisation

© Alan Burns and Andy Wellings, 2001

Condition Synchronisation Example

-- a bounded buffer
Buffer_Size : constant Integer :=10;
type Index is mod Buffer_Size;
subtype Count is Natural range 0 .. Buffer_Size;
type Buffer is array (Index) of Data_Item;

protected type Bounded_Buffer is
entry Get (Item : out Data_Item);
entry Put (Item : in Data_Item);

private
First : Index := Index'First;
Last : Index := Index'Last;
Num : Count := 0;
Buf : Buffer;

end Bounded_Buffer;

© Alan Burns and Andy Wellings, 2001

barriers

Bounded Buffer
protected body Bounded_Buffer is

entry Get (Item : out Data_Item) when Num /= 0 is
begin

Item := Buf(First);
First := First + 1;
Num := Num - 1;

end Get;

entry Put (Item : in Data_Item) when

Num /= Buffer_Size is
begin

Last := Last + 1;
Buf(Last) := Item
Num := Num + 1;

end Put;
end Bounded_Buffer;
My_Buffer : Bounded_Buffer;

© Alan Burns and Andy Wellings, 2001

Subprogram Calls, Entry Calls and Barriers

To call a protected object, simply name the object and
the subprogram or entry:

My_Buffer.Put(Some_Data);

As with task entry calls, the caller can use the select
statement to issue timed or conditional protected entry
calls

select select
My_Buffer.Put(Some_Data); My_Buffer.Put(Some_Data);

or else
delay 10.0; -- do something else
-- do something else end select;

end select;

© Alan Burns and Andy Wellings, 2001

Barrier Evaluation

At any instance in time, a barrier is either open or
closed; it is open if the boolean expression evaluates to
true, otherwise it is closed
Barriers are evaluated when:
1. a task calls one of its protected entries and the associated

barrier references a variable or an attribute which might have
changed since the barrier was last evaluated

2. a task executes and leaves a protected procedure or entry, and
there are tasks queued on entries whose barriers reference
variables or attributes which might have changed since the
barriers were last evaluated

Why are barriers not evaluated after a function call?

© Alan Burns and Andy Wellings, 2001

Write Access to a Protected Object

task executing with read access

task requesting read access

task executing with read/write access

task requesting read/write access

protected object

Barrier queue

© Alan Burns and Andy Wellings, 2001

Read Access to a Protected Object

task executing with read access

task requesting read access

task executing with read/write access

task requesting read/write access

protected object

Barrier queue

© Alan Burns and Andy Wellings, 2001

Resource Control Example

protected Resource_Control is
entry Allocate;
procedure Deallocate;

private
Free : Boolean := True;

end Resource_Control;

Assuming a single resource,
what is the body of this
protected object? Answer is in RTSPL

book chapter 8

© Alan Burns and Andy Wellings, 2001

The Count Attribute

The Count attribute defines the number of tasks queued
on an entry
Its evaluation requires the read/write lock

protected Blocker is
entry Proceed;

private
Release : Boolean := False;

end Blocker;

protected body Blocker is
entry Proceed when

Proceed’Count = 5 or
Release is

begin
if Proceed’Count = 0 then
Release := False;

else
Release := True;

end if;
end Proceed;

end Blocker;

© Alan Burns and Andy Wellings, 2001

Broadcast

protected type Broadcast is
entry Receive(M : out message);
procedure Send(M : message);

private
New_Message : Message;
Message_Arrived : Boolean := False;

end Broadcast;

Everyone queued on Receive should receive the message
when send is called

Answer is in RTSPL
book chapter 8

© Alan Burns and Andy Wellings, 2001

Semaphores
package Semaphore_Package is

type Semaphore(Initial : Natural :=1)
is limited private;

procedure Wait (S : in out Semaphore);
procedure Signal (S : in out Semaphore);

private
protected type Semaphore(Initial : Natural :=1) is

entry Wait_Imp;
procedure Signal_Imp;

private
Value : Natural := Initial;

end Semaphore;
end Semaphore_Package;

How would you implement this package?
Answer is in RTSPL
book chapter 8

© Alan Burns and Andy Wellings, 2001

Private Entries and Entry Families

As with tasks, protected types can have private entries

and entry families

A protected type's private entries may be used during

requeue operations

A family can be declared by placing a discrete subtype

definition in the specification of the entry

The barrier associated with the entry can use the index

of the family (usually to index into an array of booleans)

© Alan Burns and Andy Wellings, 2001

type Group is range 1 .. 10;

type Group_Data_Arrived is array(Group) of Boolean;

protected type Group_Controller is

procedure Send(To_Group : Group; Data : Data_Item);

entry Receive(Group) (Data : out Data_Item);
private

Arrived : Group_Data_Arrived := (others => False);

The_Data : Data_Item;
end Group_Controller;

My_Controller : Group_Controller;

An Example of an Entry Family

© Alan Burns and Andy Wellings, 2001

protected body Group_Controller is
procedure Send(To_Group : Group; Data : Data_Item) is
begin
if Receive(To_Group)'Count > 0 then
Arrived(To_Group) := True;
The_Data := Data;

end if;
end Send;

entry Receive(for From in Group) (Data : out Data_Item)
when Arrived(From) is

begin
if Receive(From)'Count = 0 then
Arrived(From) := False;

end if;
Data := The_Data;

end Receive;
end Group_Controller;

Fa
m

ily
 o

f e
nt

rie
s

can’t use this
syntax for task
entries

last one out closes
the door!

Entry Families Continued

© Alan Burns and Andy Wellings, 2001

Restrictions on Protected Objects

Code inside a PO should be as short as possible
ARM disallows potentially blocking operations
– an entry call statement
– a delay statement
– task creation or activation
– a call to a subprogram which contains a potentially blocking

operation
– a select statement
– an accept statement
Program_Error is raised if a blocking operation is
called
A call to an external protected procedure/function is not
considered potentially blocking

© Alan Burns and Andy Wellings, 2001

protected type Broadcast is
procedure Send (This_Altitude : Altitude);
entry Receive (An_Altitude : out Altitude);

private
Altitude_Arrived : Boolean := False;
The_Altitude : Altitude;

end Broadcast;

type Prt_Broadcast is access all Broadcast;

a pointer to an object on the heap or
a statically aliased object

Access Variables

© Alan Burns and Andy Wellings, 2001

procedure Register (G: Ptr_Broadcast; Name : String);

function Find (G: String) return Ptr_Broadcast;
...

task body Barometric_Pressure_Reader is

My_Group : Ptr_Broadcast := new Broadcast;

begin

Register(My_Group, "Barometric_Pressure");

...

My_Group.Send(Altitude_Reading);

...
end Barometric_Pressure_Reader;

-- My_Group : aliased Broadcast;

-- Register(My_Group’Access, "Barometric_Pressure");

Broadcast Example

© Alan Burns and Andy Wellings, 2001

task Auto_Pilot;
task body Auto_Pilot is

Bp_Reader : Ptr_Broadcast;

Current_Altitude : Altitude;
begin

Bp_Reader := Find("Barometric_Pressure");
...
select

Bp_Reader.Receive(Current_Altitude);
or

delay 0.1;
end;
...

end Auto_Pilot;

Broadcast Example II

© Alan Burns and Andy Wellings, 2001

Access to Protected Subprograms

As well as declaring access types for protected types,
Ada also allows the programmer to declare an access
type to a protected subprogram

access_to_subprogram_definition ::=

access [protected] procedure parameter_profile |

access [protected] function parameter_and_result_profile

An example of this will be given later

Note, there is no access to a protected entry. Why?

© Alan Burns and Andy Wellings, 2001

Elaboration and Finalisation

A protected object is elaborated when it comes into
scope in the usual way
Finalisation of a protected object requires that any tasks
left on entry queues have the exception
Program_Error raised. Generally they are two
situations where this can happen:
– a protected object is unchecked deallocated via an access

pointer to it
– a task calls an entry in another task which requeues the first

task on a protected object which then goes out of scope

© Alan Burns and Andy Wellings, 2001

Example of Program_Error

task Client;
task body Client is
begin

...
Server.Service;
...

end Client;

task Server is
entry Service;

end Server;

© Alan Burns and Andy Wellings, 2001

task body Server is
protected Local is

entry Queue1;
entry Queue2;

end Local;

protected body Local is separate;

-- body not important here

begin
...
accept Service do

requeue Local.Queue1;

end Service;
...

end Server;

It is possible for
the Server task to
terminate with a
Client queued on the
Local protected

Example of Program_Error II

© Alan Burns and Andy Wellings, 2001

Exceptions and Protected Objects

Program_Error is raised when a protected action
issues a potentially blocking operation (if detected)
Any exception raised during the evaluation of a barrier,
results in Program_Error being raised in all tasks
currently waiting on the entry queues
Any exception raised and not handled whilst executing a
protected subprogram or entry, is propagated to the task
that issued the protected call
A task queued on a protected entry whose protected
object is subsequently finalised has Program_Error
raised

© Alan Burns and Andy Wellings, 2001

The Readers and Writers Problem

Consider a file which needs mutual exclusion between
writers and reader but not between multiple readers
Protected objects can implement the readers/writers
algorithm if the read operation is encoded as a function
and the write as a procedure; however:
– The programmer cannot easily control the order of access to the

protected object; specifically, it is not possible to give preference
to write operations over reads

– If the read or write operations are potentially blocking, then they
cannot be made from within a protected object

To overcome these difficulties the PO must be used to
implement an access control protocol for the read and
write operations (rather than encapsulate them)

© Alan Burns and Andy Wellings, 2001

Readers/Writers

with Data_Items; use Data_Items;
package Readers_Writers is

-- for some type Item
procedure Read (I : out Item);
procedure Write (I : Item);

end Readers_Writers;

© Alan Burns and Andy Wellings, 2001

Readers/Writers II
package body Readers_Writers is

procedure Read_File(I : out Item) is separate;
procedure Write_File(I : Item) is separate;

protected Control is
entry Start_Read;
procedure Stop_Read;
entry Request_Write;
entry Start_Write;
procedure Stop_Write;

private
Readers : Natural := 0; -- no. of current readers
Writers : Boolean := False; -- Writers present

end Control;

© Alan Burns and Andy Wellings, 2001

Readers/Writers III
procedure Read (I : out Item) is
begin

Control.Start_Read;
Read_File(I);

Control.Stop_Read;
end Read;

procedure Write (I : Item) is
begin

Control.Request_Write; -- indicate writer present
Control.Start_Write;

Write_File(I);
Control.Stop_Write;

end Write;

© Alan Burns and Andy Wellings, 2001

protected body Control is

end Control;
end Readers_Writers;

Readers/Writers IV

requeue allows a more
robust solution

entry Start_Read when not Writers and
Request_Write'Count = 0 is

begin Readers := Readers + 1; end Start_Read;

procedure Stop_Read is
begin Readers := Readers - 1; end Stop_Read;

entry Request_Write when not Writers is
begin Writers := True; end Request_Write;

entry Start_Write when Readers = 0 is
begin null; end Start_Write;

procedure Stop_Write is
begin

Writers := False;
end Stop_Write;

© Alan Burns and Andy Wellings, 2001

Synchronized Methods

Java provides a mechanism by which monitors can be
implemented in the context of classes and objects
There is a lock associated with each object which cannot
be accessed directly by the application but is affected by
– the method modifier synchronized
– block synchronization.

When a method is labeled with the synchronized
modifier, access to the method can only proceed once the
lock associated with the object has been obtained
Hence synchronized methods have mutually exclusive
access to the data encapsulated by the object, if that data
is only accessed by other synchronized methods
Non-synchronized methods do not require the lock and,
therefore, can be called at any time

© Alan Burns and Andy Wellings, 2001

Example of Synchronized Methods
public class SharedInteger
{

private int theData;

public SharedInteger(int initialValue)
{

theData = initialValue;
}

public synchronized int read()
{

return theData;
};

public synchronized void write(int newValue)
{

theData = newValue;
};

public synchronized void incrementBy(int by)
{

theData = theData + by;
};

}

SharedInteger myData = new SharedInteger(42);

© Alan Burns and Andy Wellings, 2001

Block Synchronization
Provides a mechanism whereby a block can be labeled as
synchronized
The synchronized keyword takes as a parameter an object
whose lock it needs to obtain before it can continue
Hence synchronized methods are effectively
implementable as

public int read()
{
synchronized(this) {
return theData;

}
}

Where this is the Java mechanism for obtaining the
current object

© Alan Burns and Andy Wellings, 2001

Warning

Used in its full generality, the synchronized block can
undermine one of the advantages of monitor-like
mechanisms, that of encapsulating synchronization
constraints associate with an object into a single place
in the program
This is because it is not possible to understand the
synchronization associated with a particular object by
just looking at the object itself when other objects can
name that object in a synchronized statement.
However with careful use, this facility augments the
basic model and allows more expressive
synchronization constraints to be programmed

© Alan Burns and Andy Wellings, 2001

Static Data

Static data is shared between all objects created from
the class
To obtain mutually exclusive access to this data
requires all objects to be locked
In Java, classes themselves are also objects and
therefore there is a lock associated with the class
This lock may be accessed by either labeling a static
method with the synchronized modifier or by identifying
the class's object in a synchronized block statement
The latter can be obtained from the Object class
associated with the object
Note, however, that this class-wide lock is not obtained
when synchronizing on the object

© Alan Burns and Andy Wellings, 2001

Static Data
class StaticSharedVariable
{

private static int shared;
...

public int Read()
{

synchronized(this.getClass())
{

return shared;
};

}

public void Write(int I)
{

synchronized(this.getClass())
{

shared = I;
};

};
}

Could have used:
public static synchronized void Write(int I)

© Alan Burns and Andy Wellings, 2001

Waiting and Notifying

To obtain conditional synchronization requires the methods
provided in the predefined object class
public void wait() throws InterruptedException;

// also throws IllegalMonitorStateException

public void notify();
// throws IllegalMonitorStateException

public void notifyAll();

// throws IllegalMonitorStateException

These methods should be used only from within methods
which hold the object lock
If called without the lock, the exception IllegalMonitor-
StateException is thrown

© Alan Burns and Andy Wellings, 2001

Waiting and Notifying

The wait method always blocks the calling thread and
releases the lock associated with the object
A wait within a nested monitor releases only the inner lock
The notify method wakes up one waiting thread; the one
woken is not defined by the Java language
Notify does not release the lock; hence the woken thread
must wait until it can obtain the lock before proceeding
To wake up all waiting threads requires use of the
notifyAll method
If no thread is waiting, then notify and notifyAll have
no effect

© Alan Burns and Andy Wellings, 2001

Thread Interruption

A waiting thread can also be awoken if it is interrupted
by another thread
In this case the InterruptedException is thrown (see later
in the course)

© Alan Burns and Andy Wellings, 2001

Condition Variables

There are no explicit condition variables. An awoken thread
should usually evaluate the condition on which it is waiting (if
more than one exists and they are not mutually exclusive)

public class BoundedBuffer {
private int buffer[];
private int first;
private int last;
private int numberInBuffer = 0;
private int size;

public BoundedBuffer(int length) {
size = length;
buffer = new int[size];
last = 0;
first = 0;

};

public synchronized void put(int item)
throws InterruptedException

{
while (numberInBuffer == size) {
wait();

};
last = (last + 1) % size ; // % is modulus
numberInBuffer++;
buffer[last] = item;
notify();

};

public synchronized int get() throws InterruptedException
{

while (numberInBuffer == 0) {
wait();

};
first = (first + 1) % size ; // % is modulus
numberInBuffer--;
notify();
return buffer[first];

};
} Mutually exclusive waiting

© Alan Burns and Andy Wellings, 2001

Readers-Writers Problem

Standard solution in monitors is to have two condition
variables: OkToRead and OkToWrite
This cannot be directly expressed using a single class

public class ReadersWriters // first solution
{

private int readers = 0;
private int waitingWriters = 0;
private boolean writing = false;

© Alan Burns and Andy Wellings, 2001

Readers-Writers Problem
public synchronized void StartWrite()

throws InterruptedException
{

while(readers > 0 || writing)
{

waitingWriters++;
wait();
waitingWriters--;

}
writing = true;

}

public synchronized void StopWrite()
{

writing = false;
notifyAll();

}

loop to re-test
the condition

Wakeup everyone

© Alan Burns and Andy Wellings, 2001

Readers-Writers Problem

public synchronized void StartRead()
throws InterruptedException

{
while(writing || waitingWriters > 0) wait();
readers++;

}

public synchronized void StopRead()
{

readers--;
if(readers == 0) notifyAll();

}

}

Arguably, this is inefficient as all threads are woken

© Alan Burns and Andy Wellings, 2001

Implementing Condition Variables

Approach: use another class and block synchronization
Get lock on condition variable on which you might want
to sleep or notify, then get monitor lock

public class ConditionVariable {
public boolean wantToSleep = false;

}

© Alan Burns and Andy Wellings, 2001

Readers-Writers Problem: Solution 2
public class ReadersWriters
{

private int readers = 0;
private int waitingReaders = 0;
private int waitingWriters = 0;
private boolean writing = false;

ConditionVariable OkToRead = new ConditionVariable();
ConditionVariable OkToWrite = new ConditionVariable();

public void StartWrite() throws InterruptedException
{

synchronized(OkToWrite) // get condition variable lock
{

synchronized(this) // get monitor lock
{

if(writing | readers > 0) {
waitingWriters++;
OkToWrite.wantToSleep = true;

} else {
writing = true;
OkToWrite.wantToSleep = false;

}
} //give up monitor lock
if(OkToWrite.wantToSleep) OkToWrite.wait();

}
}

Note order of synchronized statements

public void StopWrite()
{

synchronized(OkToRead)
{

synchronized(OkToWrite)
{

synchronized(this)
{

if(waitingWriters > 0) {
waitingWriters--;
OkToWrite.notify(); // wakeup one writer

} else {
writing = false;
OkToRead.notifyAll(); // wakeup all readers
readers = waitingReaders;
waitingReaders = 0;

}
}

}
}

}

Important for all methods to use the same
order otherwise deadlock will occur

public void StartRead()
throws InterruptedException

{
synchronized(OkToRead) {

synchronized(this)
{

if(writing | waitingWriters > 0) {
waitingReaders++;
OkToRead.wantToSleep = true;

} else {
readers++;
OkToRead.wantToSleep = false;

}
}
if(OkToRead.wantToSleep) OkToRead.wait();

}
}

public void StopRead()
{

synchronized(OkToWrite)
{

synchronized(this)
{

readers--;
if(readers == 0 & waitingWriters > 0) {

waitingWriters--;
writing = true;
OkToWrite.notify();

}
}

}
}

}

© Alan Burns and Andy Wellings, 2001

Summary

critical section — code that must be executed under
mutual exclusion
producer-consumer system — two or more processes
exchanging data via a finite buffer
busy waiting — a process continually checking a
condition to see if it is now able to proceed
livelock — an error condition in which one or more
processes are prohibited from progressing whilst using
up processing cycles
deadlock — a collection of suspended processes that
cannot proceed
indefinite postponement — a process being unable to
proceed as resources are not made available

© Alan Burns and Andy Wellings, 2001

Summary

semaphore — a non-negative integer that can only be
acted upon by WAIT and SIGNAL atomic procedures
Two more structured primitives are: condition critical
regions and monitors
Suspension in a monitor is achieved using condition
variable
POSIX mutexes and condition variables give monitors
with a procedural interface
Ada’s protected objects give structured mutual exclusion
and high-level synchronization via barriers
Java’s synchronized methods provide monitors within
an object-oriented framework

