
Scheduling
Goal
– To understand the role that scheduling and schedulability analysis 

plays in predicting that real-time applications meet their deadlines
Topics
– Simple process model
– The cyclic executive approach
– Process-based scheduling
– Utilization-based schedulability tests
– Response time analysis for FPS and EDF
– Worst-case execution time
– Sporadic and aperiodic processes
– Process systems with D < T
– Process interactions, blocking and priority ceiling protocols
– An extendible process model
– Dynamic systems and on-line analysis
– Programming priority-based systems



Scheduling

In general, a scheduling scheme provides two features:

– An algorithm for ordering the use of system resources (in 
particular the CPUs)

– A means of predicting the worst-case behaviour of the system 
when the scheduling algorithm is applied

The prediction can then be used to confirm the temporal 
requirements of the application



Simple Process Model

The application is assumed to consist of a fixed set of 
processes
All processes are periodic, with known periods
The processes are completely independent of each 
other
All system's overheads, context-switching times and so 
on are ignored (i.e, assumed to have zero cost)
All processes have a deadline equal to their period (that 
is, each process must complete before it is next 
released)
All processes have a fixed worst-case execution time



Standard Notation

B
C
D
I
J
N
P
R
T
U 

a-z

Worst-case blocking time for the process (if applicable)
Worst-case computation time (WCET) of the process 
Deadline of the process 
The interference time of the process
Release jitter of the process 
Number of processes in the system 
Priority assigned to the process (if applicable)
Worst-case response time of the process 
Minimum time between process releases (process period)
The utilization of each process (equal to C/T)
The name of a process



Cyclic Executives

One common way of implementing hard real-time 
systems is to use a cyclic executive
Here the design is concurrent but the code is produced 
as a collection of procedures
Procedures are mapped onto a set of minor cycles that 
constitute the complete schedule (or major cycle)
Minor cycle dictates the minimum cycle time
Major cycle dictates the maximum cycle time

Has the advantage of being fully deterministicHas the advantage of being fully deterministic



Consider Process Set

Process Period,T Computation Time,C

a 25 10 
b 25 8
c 50 5
d 50 4

e 100 2



Cyclic Executive

loop
wait_for_interrupt;
procedure_for_a; procedure_for_b; procedure_for_c;
wait_for_interrupt;
procedure_for_a; procedure_for_b; procedure_for_d;
procedure_for_e;
wait_for_interrupt;
procedure_for_a; procedure_for_b; procedure_for_c;
wait_for_interrupt;
procedure_for_a; procedure_for_b; procedure_for_d;

end loop;



Time-line for Process Set

a b c

Interrupt

a b d

Interrupt

e a b c

Interrupt Interrupt



Properties

No actual processes exist at run-time; each minor cycle 
is just a sequence of procedure calls
The procedures share a common address space and 
can thus pass data between themselves. This data does 
not need to be protected (via a semaphore, for example) 
because concurrent access is not possible
All “process” periods must be a multiple of the minor 
cycle time



Problems with Cycle Executives

The difficulty of incorporating processes with long periods; 
the major cycle time is the maximum period that can be 
accommodated without secondary schedules 
Sporadic activities are difficult (impossible!) to incorporate
The cyclic executive is difficult to construct and difficult to 
maintain — it is a NP-hard problem
Any “process” with a sizable computation time will need to 
be split into a fixed number of fixed sized procedures (this 
may cut across the structure of the code from a software 
engineering perspective, and hence may be error-prone)
More flexible scheduling methods are difficult to support
Determinism is not required, but predictability is



Process-Based Scheduling

Scheduling approaches

– Fixed-Priority Scheduling (FPS)
– Earliest Deadline First (EDF)
– Value-Based Scheduling (VBS)



Fixed-Priority Scheduling (FPS)

This is the most widely used approach and is the main 
focus of this course
Each process has a fixed,  static, priority which is 
computer pre-run-time
The runnable processes are executed in the order 
determined by their priority
In real-time systems, the “priority” of a process is 
derived from its temporal requirements, not its 
importance to the correct functioning of the system or its 
integrity



Earliest Deadline First (EDF) Scheduling

The runnable processes are executed in the order 
determined by the absolute deadlines of the processes
The next process to run being the one with the shortest 
(nearest) deadline
Although it is usual to know the relative deadlines of 
each process (e.g. 25ms after release), the absolute 
deadlines are computed at run time and hence the 
scheme is described as dynamic



Value-Based Scheduling (VBS)

If a system can become overloaded then the use of 
simple static priorities or deadlines is not sufficient; a 
more adaptive scheme is needed
This often takes the form of assigning a value to each 
process and employing an on-line value-based  
scheduling algorithm to decide which process to run 
next



Preemption and Non-preemption
With priority-based scheduling, a high-priority process may 
be released during the execution of a lower priority one
In a preemptive scheme, there will be an immediate switch 
to the higher-priority process
With non-preemption, the lower-priority process will be 
allowed to complete before the other executes
Preemptive schemes enable higher-priority processes to be 
more reactive, and hence they are preferred
Alternative strategies allow a lower priority process to 
continue to execute for a bounded time
These schemes are known as deferred preemption or 
cooperative dispatching
Schemes such as EDF and VBS can also take on a pre-
emptive or non pre-emptive form



FPS and Rate Monotonic Priority Assignment

Each process is assigned a (unique) priority based on 
its period; the shorter the period, the higher the priority
I.e, for two processes i and j, 

This assignment is optimal in the sense that if any 
process set can be scheduled (using pre-emptive
priority-based scheduling) with a fixed-priority 
assignment scheme, then the given process set can 
also be scheduled with a rate monotonic assignment 
scheme
Note, priority 1 is the lowest (least) priority

P jPiT jT i >⇒<



Example Priority Assignment

Process Period, T Priority, P
a 25 5 
b 60 3 
c 42 4 
d 105 1
e 75 2 



Utilisation-Based Analysis

For D=T task sets only
A simple sufficient but not necessary schedulability test 
exists
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Utilization Bounds

N Utilization bound
1 100.0%
2 82.8%
3 78.0%
4 75.7% 
5 74.3%

10 71.8%

Approaches 69.3% asymptotically



Process Period ComputationTime  Priority   Utilization
T           C                  P U

a     50        12         1     0.24 
b     40        10         2     0.25 
c     30        10         3     0.33 

Process Set A

The combined utilization is 0.82 (or 82%)
This is above the threshold for three processes (0.78) 
and, hence, this process set fails the utilization test



Time-line for Process Set A
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Gantt Chart for Process Set A
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Process Period ComputationTime  Priority   Utilization
T           C                  P U

a     80        32         1     0.400 
b     40         5         2     0.125 
c     16         4 3 0.250 

Process Set B

The combined utilization is 0.775 
This is below the threshold for three processes (0.78) 
and, hence, this process set will meet all its deadlines



Process Period ComputationTime  Priority   Utilization
T           C                  P U

a     80        40         1 0.50 
b     40        10         2     0.25 
c     20         5         3     0.25 

Process Set C

The combined utilization is 1.0
This is above the threshold for three processes (0.78) 
but the process set will meet all its deadlines



Time-line for Process Set C
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Criticism of Utilisation-based Tests

Not exact
Not general
BUT it is O(N)

The test is said to be sufficient but not necessary
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Utilization-based Test for EDF

Superior to FPS; it can support high utilizations. However
FPS is easier to implement as priorities are static
EDF is dynamic and requires a more complex run-time 
system which will have higher overhead
It is easier to incorporate processes without deadlines into 
FPS; giving a process an arbitrary deadline is more artificial
It is easier to incorporate other factors into the notion of 
priority than it is into the notion of deadline
During overload situations
– FPS is more predictable; Low priority process miss their deadlines first
– EDF is unpredictable; a domino effect can occur in which a large

number of processes miss deadlines

A much simpler test



Response-Time Analysis

Here task i's worst-case response time, R, is calculated 
first and then checked (trivially) with its deadline

Where I is the interference from higher priority tasks
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Calculating R

During R, each higher priority task j will execute a number of 
times:
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Response Time Equation
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Response Time Algorithm
for i in 1..N loop -- for each process in turn

n := 0

loop
calculate new
if         then

exit value found
end if
if then

exit value not found
end if
n := n + 1

end loop
end loop
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Process     Period   ComputationTime     Priority
T                    C                  P     

a      7         3            3 
b     12 3 2 
c     20         5 1 

Process Set D
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Process Period ComputationTime  Priority   Response time
T           C                  P R

a     80        40         1 80 
b     40        10         2      15 
c     20         5         3       5 

Revisit: Process Set C

The combined utilization is 1.0
This was above the ulilization threshold for three 
processes (0.78), therefore it failed the test
The response time analysis shows that the process set 
will meet all its deadlines
RTA is necessary and sufficient



Response Time Analysis

Is sufficient and necessary
If the process set passes the test they will meet all their 
deadlines; if they fail the test then, at run-time, a 
process will miss its deadline (unless the computation 
time estimations themselves turn out to be pessimistic)



Worst-Case Execution Time - WCET

Obtained by either measurement or analysis

The problem with measurement is that it is difficult to be 
sure when the worst case has been observed

The drawback of analysis is that an effective model of 
the processor (including caches, pipelines, memory wait 
states and so on) must be available



WCET— Finding C

Most analysis techniques involve two distinct activities.

The first takes the process and decomposes its code 
into a directed graph of basic blocks
These basic blocks represent straight-line code.
The second component of the analysis takes the 
machine code corresponding to a basic block and uses 
the processor model to estimate its worst-case 
execution time
Once the times for all the basic blocks are known, the 
directed graph can be collapsed



Need for Semantic Information

for I in 1.. 10 loop
if Cond then
-- basic block of cost 100

else
-- basic block of cost 10

end if;
end loop;

Simple cost 10*100 (+overhead), say 1005.

But if Cond only true on 3 occasions then cost is 375



Sporadic Processes

Sporadics processes have a minimum inter-arrival time
They also require D<T

The response time algorithm for fixed priority scheduling 
works perfectly for values of D less than T as long as 
the stopping criteria becomes
It also works perfectly well with any priority ordering —
hp(i) always gives the set of higher-priority processes
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Hard and Soft Processes

In many situations the worst-case figures for sporadic 
processes are considerably higher than the averages
Interrupts often arrive in bursts and an abnormal sensor 
reading may lead to significant additional computation
Measuring schedulability with worst-case figures may 
lead to very low processor utilizations being observed in 
the actual running system



General Guidelines

Rule 1 — all processes should be schedulable using 
average execution times and average arrival rates

Rule 2 — all hard real-time processes should be 
schedulable using worst-case execution times and 
worst-case arrival rates of all processes (including soft)

A consequent of Rule 1 is that there may be situations in 
which it is not possible to meet all current deadlines
This condition is known as a transient overload
Rule 2 ensures that no hard real-time process will miss 
its deadline
If Rule 2 gives rise to unacceptably low utilizations for 
“normal execution” then action must be taken to reduce 
the worst-case execution times (or arrival rates)



Aperiodic Processes

These do not have minimum inter-arrival times
Can run aperiodic processes at a priority below the 
priorities assigned to hard processes, therefore, they 
cannot steal, in a pre-emptive system, resources from 
the hard processes  
This does not provide adequate support to soft 
processes which will often miss their deadlines 
To improve the situation for soft processes, a server can 
be employed.
Servers protect the processing resources needed by 
hard processes but otherwise allow soft processes to 
run as soon as possible.
POSIX supports Sporadic Servers



Process Sets with D < T

For D = T, Rate Monotonic priority ordering is optimal
For D < T, Deadline Monotonic priority ordering is 
optimal

jiji PPDD >⇒<



Process Period Deadline  ComputationTime   Priority   Response time
T             D C                 P R

a    20     5       3         4 3 
b    15     7 3         3      6 
c    10 10       4         2 10 
d 20 20 3 1 20 

D < T Example Process Set



Proof that DMPO is Optimal

Deadline monotonic priority ordering (DMPO) is optimal 
if any process set, Q, that is schedulable by priority 
scheme, W, is also schedulable by DMPO

The proof of optimality of DMPO involves transforming 
the priorities of Q (as assigned by W) until the ordering is 
DMPO
Each step of the transformation will preserve 
schedulability



DMPO Proof Continued
Let i and j be two processes (with adjacent priorities) in Q
such that under W

Define scheme W’ to be identical to W except that 
processes i and j are swapped

Consider the schedulability of Q under W’
All processes with priorities greater than will be 
unaffected by this change to lower-priority processes
All processes with priorities lower than will be 
unaffected; they will all experience the same interference 
from i and j
Process j, which was schedulable under W, now has a 
higher priority, suffers less interference, and hence must 
be schedulable under W’
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All that is left is the need to show that process i, which 
has had its priority lowered, is still schedulable
Under W

Hence process j only interferes once during the 
execution of i
It follows that:

It can be concluded that process i is schedulable after 
the switch
Priority scheme W’ can now be transformed to W" by 
choosing two more processes that are in the wrong 
order for DMP and switching them
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DMPO Proof Continued



Process Interactions and Blocking

If a process is suspended waiting for a lower-priority 
process to complete some required computation then 
the priority model is, in some sense, being undermined

It is said to suffer priority inversion

If a process is waiting for a lower-priority process, it is 
said to be blocked



Priority Inversion

To illustrate an extreme example of priority inversion, 
consider the executions of four periodic processes: a, b, c
and d; and two resources: Q and V

Process   Priority   Execution Sequence  Release Time 
a      1 EQQQQE 0 
b      2 EE             2 
c      3 EVVE            2 
d 4          EEQVE 4 



Example of Priority Inversion
Process

a

b

c

d

0 2 4 6 8 10 12 14 16 18

Executing

Executing with Q locked

Preempted

Executing with V locked

Blocked



Priority Inheritance

If process p is blocking process q, then q runs with p's
priority

a

b

c

d

0 2 4 6 8 10 12 14 16 18

Process



Calculating Blocking

If a process has m critical sections that can lead to it 
being blocked then the maximum number of times it can 
be blocked is m
If B is the maximum blocking time and K is the number 
of critical sections, the process i has an upper bound 
on its blocking given by:

∑=
=

K

k
i kCikusageB

1
)(),(



Response Time and Blocking
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Priority Ceiling Protocols

Two forms

Original ceiling priority protocol
Immediate ceiling priority protocol



On a Single Processor

A high-priority process can be blocked at most once 
during its execution by lower-priority processes
Deadlocks are prevented
Transitive blocking is prevented
Mutual exclusive access to resources is ensured (by the 
protocol itself



OCPP

Each process has a static default priority assigned 
(perhaps by the deadline monotonic scheme)
Each resource has a static ceiling value defined, this is 
the maximum priority of the processes that use it
A process has a dynamic priority that is the maximum of 
its own static priority and any it inherits due to it blocking 
higher-priority processes.
A process can only lock a resource if its dynamic priority 
is higher than the ceiling of any currently locked 
resource (excluding any that it has already locked itself)
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OCPP Inheritance
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ICPP

Each process has a static default priority assigned 
(perhaps by the deadline monotonic scheme).
Each resource has a static ceiling value defined, this is 
the maximum priority of the processes that use it.
A process has a dynamic priority that is the maximum of 
its own static priority and the ceiling values of any 
resources it has locked
As a consequence, a process will only suffer a block at 
the very beginning of its execution
Once the process starts actually executing, all the 
resources it needs must be free; if they were not, then 
some process would have an equal or higher priority 
and the process's execution would be postponed



ICPP Inheritance
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OCPP versus ICPP

Although the worst-case behaviour of the two ceiling 
schemes is identical (from a scheduling view point), 
there are some points of difference:
– ICCP is easier to implement than the original (OCPP) as 

blocking relationships need not be monitored
– ICPP leads to less context switches as blocking is prior to first 

execution
– ICPP requires more priority movements as this happens with all 

resource usage
– OCPP changes priority only if an actual block has occurred

Note that ICPP is called Priority Protect Protocol in 
POSIX and Priority Ceiling Emulation in Real-Time Java



An Extendible Process Model

So far:
Deadlines can be less than period (D<T)
Sporadic and aperiodic processes, as well as periodic 
processes, can be supported
Process interactions are possible, with the resulting 
blocking being factored into the response time 
equations



Extensions

Cooperative Scheduling
Release Jitter
Arbitrary Deadlines
Fault Tolerance
Offsets
Optimal Priority Assignment



Cooperative Scheduling

True preemptive behaviour is not always acceptable for 
safety-critical systems
Cooperative or deferred preemption splits processes 
into slots
Mutual exclusion is via non-preemption
The use of deferred preemption has two important 
advantages
– It increases the schedulability of the system, and it can lead to 

lower values of C
– With deferred preemption, no interference can occur during the 

last slot of execution.



Cooperative Scheduling

Let the execution time of the final block be

When this converges that is,               ,  the response 
time is given by:
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Release Jitter

A key issue for distributed systems
Consider the release of a sporadic process on a 
different processor by a periodic process, l, with a 
period of 20

Time

l

t t+15 t+20

First execution l finishes at R 

Second execution of l finishes after C

Release sporadic process at time 0, 5, 25, 45



Release Jitter

Sporadic is released at 0, T-J, 2T-J, 3T-J
Examination of the derivation of the schedulability 
equation implies that process i will suffer 
– one interference from process s if
– two interfernces if 
– three interference if 

This can be represented in the response time equations

If response time is to be measured relative to the real 
release time then the jitter value must be added
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Arbitrary Deadlines

To cater for situations where D (and hence potentially 
R) > T

The number of releases is bounded by the lowest value 
of q for which the following relation is true:
The worst-case response time is then the maximum 
value found for each q:
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Arbitrary Deadlines

When formulation is combined with the effect of release 
jitter, two alterations to the above analysis must be 
made
First, the interference factor must be increased if any 
higher priority processes suffers release jitter:

The other change involves the process itself. If it can 
suffer release jitter then two consecutive windows could 
overlap if response time plus jitter is greater than period. 
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Fault Tolerance

Fault tolerance via either forward or backward error 
recovery always results in extra computation
This could be an exception handler or a recovery block.  
In a real-time fault tolerant system, deadlines should still 
be met even when a certain level of faults occur 
This level of fault tolerance is know as the fault model
If the extra computation time that results from an error in 
process i is 

where hep(i) is set of processes with priority equal to 
or higher than i
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Fault Tolerance

If F is the number of faults allows

If there is a minimum arrival interval
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Offsets

So far assumed all processes share a common release 
time (critical instant)

Process   T    D    C    R
a      8    5    4    4
b     20   10    4    8
c     20   12    4   16

With offsets
Process   T    D    C   O   R

a      8    5    4   0 4
b     20   10    4   0 8
c     20   12    4   10  8

Arbitrary offsets are 
not amenable to 
analysis



Non-Optimal Analysis

In most realistic systems, process periods are not 
arbitrary but are likely to be related to one another
As in the example just illustrated, two processes have a 
common period. In these situations it is ease to give one 
an offset (of T/2) and to analyse the resulting system 
using a transformation technique that removes the offset 
— and, hence, critical instant analysis applies.
In the example, processes b and c (having the offset of 
10) are replaced by a single notional process with 
period 10, computation time 4, deadline 10 but no offset



Non-Optimal Analysis

This notional process has two important properties.
– If it is schedulable (when sharing a critical instant with all other 

processes) then the two real process will meet their deadlines 
when one is given the half period offset

– If all lower priority processes are schedulable when suffering 
interference from the notional process (and all  other high-
priority processes) then they will remain schedulable when the 
notional process is replaced by the two real process (one with 
the offset).

These properties follow from the observation that the 
notional process always uses more (or equal) CPU time 
than the two real process
Process   T    D    C   O   R

a      8    5    4   0   4
n     10   10    4   0   8



Notional Process Parameters
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Can be extended to more than two processes



Priority Assignment

Theorem
If process p is assigned the lowest priority and is 
feasible then, if a feasible priority ordering exists for the 
complete process set, an ordering exists with process p
assigned the lowest priority

procedure Assign_Pri (Set : in out Process_Set; N : Natural;
Ok : out Boolean) is

begin
for K in 1..N loop
for Next in K..N loop
Swap(Set, K, Next);
Process_Test(Set, K, Ok);
exit when Ok;

end loop;
exit when not Ok;  -- failed to find a schedulable process

end loop;
end Assign_Pri;



Dynamic Systems and Online Analysis

There are dynamic soft real-time applications in which 
arrival patterns and computation times are not known a 
priori
Although some level of off-line analysis may still be 
applicable, this can no longer be complete and hence 
some form of on-line analysis is required
The main task of an on-line scheduling scheme is to 
manage any overload that is likely to occur due to the 
dynamics of the system's environment
EDF is a dynamic scheduling scheme that is an optimal
During transient overloads EDF performs very badly. It is 
possible to get a cascade effect in which each process 
misses its deadline but uses sufficient resources to result 
in the next process also missing its deadline.



Admission Schemes

To counter this detrimental domino effect many on-line 
schemes have two mechanisms:
– an admissions control module that limits the number of 

processes that are allowed to compete for the processors, and
– an EDF dispatching routine for those processes that are 

admitted

An ideal admissions algorithm prevents the processors 
getting overloaded so that the EDF routine works 
effectively



Values

If some processes are to be admitted, whilst others 
rejected, the relative importance of each process must 
be known
This is usually achieved by assigning value
Values can be classified 
– Static: the process always has the same value whenever it is 

released.
– Dynamic: the process's value can only be computed at the time 

the process is released (because it is dependent on either 
environmental factors or the current state of the system)

– Adaptive: here the dynamic nature of the system is such that the
value of the process will change during its execution

To assign static values requires the domain specialists 
to articulate their understanding of the desirable 
behaviour of the system



Programming Priority-Based Systems

Ada
POSIX
Real-Time Java



Ada: Real-Time Annex
Ada 95 has a flexible model:
– base and active priorities
– priority ceiling locking
– various dispatching policies using active priority
– dynamic priorities

subtype Any_Priority is Integer
range Implementation-Defined;

subtype Priority is Any_Priority range
Any_Priority'First .. Implementation-Defined;

subtype Interrupt_Priority is Any_Priority range
Priority'Last + 1 .. Any_Priority'Last;

Default_Priority : constant Priority := 
(Priority'First + Priority'Last)/2;

An implementation must support a range of Priority of at 
least 30 and at least one distinct Interrupt_Priority



Assigning Base Priorities

Using a pragma

task Controller is
pragma Priority(10);

end Controller;

task type Servers(Pri : System.Priority) is

-- each instance of the task can have a

-- different priority

entry Service1(...);

entry Service2(...);

pragma Priority(Pri);
end Servers;



Priority Ceiling Locking

Protected objects need to maintain the consistency of 
their data
Mutual exclusion can be guaranteed by use of the 
priority model 
Each protected object is assigned a ceiling priority 
which is greater than or equal to the highest priority of 
any of its calling tasks
When a task calls a protected operation, its priority is 
immediately raised to that of the protected object
If a task wishing to enter a protected operation  is 
running then the protected object cannot be already 
occupied



Ceiling Locking

Each protected object is assigned a priority using a 
pragma
If the pragma is missing, Priority'Last is assumed
Program_Error is raised if the calling task's active 
priority is greater than the ceiling
If an interrupt handler is attached to a protected 
operation and the wrong ceiling priority has been set, 
then the program becomes erroneous
With ceiling locking, an effective implementation will use 
the thread of the calling task to execute not only the 
protected operation but also to execute the code of any 
other tasks that are released as a result of the call



Example of Ceiling Priority

protected Gate_Control is

pragma Priority(28);

entry Stop_And_Close;

procedure Open;

private

Gate : Boolean := False;

end Gate_Control;

protected body Gate_Control is

entry Stop_And_Close 

when Gate is

begin

Gate := False;

end;

procedure Open is

begin

Gate := True;

end;
end Gate_Control;



Example

Assume task T, priority 20, calls Stop_And_Close and 
is blocked. Later task S, priority 27, calls Open. The 
thread executing S will undertake the following 
operations:
– the code of Open for S
– evaluate the barrier on the entry and note that T can now 

proceed
– the code Stop_And_Close for T
– evaluate the barrier again
– continue with the execution of S after its call on the protected 

object

There is no context switch



Active Priorities 

A task entering a protected operation has its priority 
raised 

A task’s active priority might also change during:
– task activation ⎯ a task inherits the active priority of the parent 

task which created it (to avoid priority inversion)
– during a rendezvous ⎯ the task executing a rendezvous will 

inherit the active priority of the caller if it is greater than its 
current active priority

– Note: no inheritance when waiting for task termination



Dispatching

The order of dispatching is determined by the tasks' 
active priorities
Default is preemptive priority based
Not defined exactly what this means on a multi-
processor system
One policy defined by annex: 
FIFO_Within_Priority

When a task becomes runnable it is placed at the back 
on the run queue for its priority; when it is preempted, it 
is placed at the front



Entry Queue Policies

A programmer may choose the queuing policy for a 
task's entry queue and the select statement
Two predefined policies: FIFO_Queuing (default) and 
Priority_Queuing
With Priority_Queuing and the select statement, an 
alternative that is open and has the highest priority task 
queued (of all open alternatives) is chosen
If there are two open with equal priority tasks, the one 
which appears textually first in the program is chosen
Tasks are queued in active priority order, if active 
priority changes then no requeuing takes place; if the 
base priority changes, the task is removed and 
requeued



Dynamic Priorities
Some applications require the base priority of a task to 
change dynamically: e.g., mode changes, or to 
implement dynamic scheduling schemes such as 
earliest deadline scheduling



Package Specification

with Ada.Task_Identification; use Ada;
package Ada.Dynamic_Priorities is

procedure Set_Priority(Priority : System.Any_Priority;
T : Task_Identification.Task_Id :=
Task_Identification.Current_Task);

function Get_Priority(T : T_Identification.Task_Id 
:= Task_Identification.Current_Task)
return System.Any_Priority;
-- raise Tasking_Error if task has terminated

-- Both raise Program_Error if a Null_Task_Id is passed
private
-- not specified by the language

end Ada.Dynamic_Priorities;



Dynamic Priorities

The effect of a change of base priorities should be as 
soon as practical but not during an abort deferred 
operation and no later than the next abort completion 
point

Changing a task's base priority can affect its active 
priority and have an impact on dispatching and queuing



POSIX

POSIX supports priority-based scheduling, and has options 
to support priority inheritance and ceiling protocols
Priorities may be set dynamically
Within the priority-based facilities, there are four policies:
– FIFO: a process/thread runs until it completes or it is blocked
– Round-Robin: a process/thread runs until it completes or it is blocked

or its time quantum has expired
– Sporadic Server: a process/thread runs as a sporadic server 
– OTHER: an implementation-defined

For each policy, there is a minimum range of priorities that 
must be supported; 32 for FIFO and round-robin
The scheduling policy can be set on a per process and a per 
thread basis



POSIX

Threads may be created with a system contention
option, in which case they compete with other system 
threads according to their policy and priority
Alternatively, threads can be created with a process 
contention option where they must compete with other 
threads (created with a process contention) in the 
parent process
– It is unspecified how such threads are scheduled relative to 

threads in other processes or to threads with global contention

A specific implementation must decide which to support



Sporadic Server

A sporadic server assigns a limited amount of CPU 
capacity to handle events, has a replenishment period, 
a budget, and two priorities
The server runs at a high priority when it has some 
budget left and a low one when its budget is exhausted
When a server runs at the high priority, the amount of 
execution time it consumes is subtracted from its budget
The amount of budget consumed is replenished at the 
time the server was activated plus the replenishment 
period
When its budget reaches zero, the server's priority is set 
to the low value



Other Facilities

POSIX allows:

priority inheritance to be associated with mutexes 
(priority protected protocol= ICPP)
message queues to be priority ordered
functions for dynamically getting and setting a thread's 
priority
threads to indicate whether their attributes should be 
inherited by any child thread they create



RT Java Threads and Scheduling

There are two entities in Real-Time Java which can be 
scheduled:
– RealtimeThreads (and NoHeapRealtimeThread)
– AsynEventHandler (and BoundAyncEventHandler)

Objects which are to be scheduled must
– implement the Schedulable interface
– specify their 

• SchedulingParameters
• ReleaseParameters

• MemoryParameters



Real-Time Java
Real-Time Java implementations are required to support at 
least 28 real-time priority levels
As with Ada and POSIX, the larger the integer value, the 
higher the priority
Non real-time threads are given priority levels below the 
minimum real-time priority
Note, scheduling parameters are bound to threads at 
thread creation time; if the parameter objects are changed, 
they have an immediate impact on the associated thread
Like Ada and Real-Time POSIX, Real-Time Java supports 
a pre-emptive priority-based dispatching policy
Unlike Ada and RT POSIX, RT Java does not require a 
preempted thread to be placed at the head of the run 
queue associated with its priority level



The Schedulable Interface

public interface Schedulable extends java.lang.Runnable
{

public void addToFeasibility();
public void removeFromFeasibility();

public MemoryParameters getMemoryParameters();
public void setMemoryParameters(MemoryParameters memory);

public ReleaseParameters getReleaseParameters();
public void setReleaseParameters(ReleaseParameters release);

public SchedulingParameters getSchedulingParameters();

public void setSchedulingParameters(
SchedulingParameters scheduling);

public Scheduler getScheduler();
public void setScheduler(Scheduler scheduler);

}



Scheduling Parameters

public abstract class SchedulingParameters
{  public SchedulingParameters(); }

public class PriorityParameters extends SchedulingParameters
{ 
public PriorityParameters(int priority);

public int getPriority(); // at least 28 priority levels
public void setPriority(int priority) throws

IllegalArgumentException; 
...

}

public class ImportanceParameters extends PriorityParameters
{
public ImportanceParameters(int priority, int importance);
public int getImportance();
public void setImportance(int importance);
...

}



RT Java: Scheduler

Real-Time Java supports a high-level scheduler whose 
goals are:
– to decide whether to admit new schedulable objects according 

to the resources available and a feasibility algorithm, and
– to set the priority of the schedulable objects according to the 

priority assignment algorithm associated with the feasibility 
algorithm

Hence, whilst Ada and Real-Time POSIX focus on static 
off-line schedulability analysis, Real-Time Java 
addresses more dynamic systems with the potential for 
on-line analysis



The Scheduler

public abstract class Scheduler
{

public Scheduler();
protected abstract void addToFeasibility(Schedulable s);
protected abstract void removeFromFeasibility(Schedulable s);

public abstract boolean isFeasible();
// checks the current set of schedulable objects

public boolean changeIfFeasible(Schedulable schedulable,
ReleaseParameters release, MemoryParameters memory);

public static Scheduler getDefaultScheduler();
public static void setDefaultScheduler(Scheduler scheduler);

public abstract java.lang.String getPolicyName();
}



The Scheduler

The Scheduler is an abstract class 
The isFeasible method considers only the set of 
schedulable objects that have been added to its 
feasibility list (via the addToFeasibility and 
removeFromFeasibility methods)
The method changeIfFeasible checks to see if its 
set of objects is still feasible if the given object has its 
release and memory parameters changed
If it is, the parameters are changed
Static methods allow the default scheduler to be queried 
or set
RT Java does not require an implementation to provide 
an on-line feasibility algorithm



The Priority Scheduler

class PriorityScheduler extends Scheduler
{

public PriorityScheduler()

protected void addToFeasibility(Schedulable s);
... 

public void fireSchedulable(Schedulable schedulable);

public int getMaxPriority();
public int getMinPriority();
public int getNormPriority();

public static PriorityScheduler instance();
...

}

Standard preemptive priority-based scheduling



Other Facilities

Priority inheritance and ICCP (called priority ceiling 
emulation)
Support for aperiodic threads in the form of processing 
groups; a group of aperiodic threads can be linked 
together and assigned characteristics which aid the 
feasibility analysis



Summary

A scheduling scheme defines an algorithm for resource 
sharing and a means of predicting the worst-case 
behaviour of an application when that form of resource 
sharing is used.
With a cyclic executive, the application code must be 
packed into a fixed number of minor cycles such that the 
cyclic execution of the sequence of minor cycles (the 
major cycle) will enable all system deadlines to be met
The cyclic executive approach has major drawbacks many 
of which are solved by priority-based systems
Simple utilization-based schedulability tests are not exact



Summary

Response time analysis is flexible and caters for:
– Periodic and sporadic processes
– Blocking caused by IPC
– Cooperative scheduling
– Arbitrary deadlines
– Release jitter
– Fault tolerance
– Offsets

Ada, RT POSIX and RT Java support preemptive 
priority-based scheduling
Ada and RT POSIX focus on static off-line schedulability 
analysis, RT Java addresses more dynamic systems 
with the potential for on-line analysis


