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Characteristics of a RTS

Large and complex
Concurrent control of separate system components
Facilities to interact with special purpose hardware
Guaranteed response times
Extreme reliability
Efficient implementation
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Real-Time Facilities

Goal
– To understand the role that time has in the design and 

implementation of real-time systems

Topics
– Notion of time
– Clocks, delays and timeouts
– Specifying timing requirements
– Temporal scopes
– Fault tolerance
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Real-Time Facilities: Requirements

Interfacing with time
– accessing clocks so that the passage of time can be measured
– delaying processes until some future time
– programming timeouts so that the non-occurrence of some 

event can be recognized and dealt with

Representing timing requirements
– specifying rates of execution
– specifying deadlines

Satisfying timing requirements — covered later
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The Notion of Time

Transitivity:

Linearity:

Irreflexivity:

Density:
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Standard Time

Name Description Note

True Solar
Day

Time between two
successive
culminations
(highest point of the
sun)

Varies through the year  
by 15 minutes (approx)

Temporal Hour One-twelfth part of
the time between
sunrise and sunset

Varies considerably
 through the year

Universal Time
(UT0)

Mean solar time at
Greenwich meridian

Defined in 1884

Second (1) 1/86,400 of a mean
solar day

Second(2) 1/31,566,925.9747
of the tropical year
for 1900

Ephemris Time defined
 in 1955



Maximum difference between 
UT2 (which is based on 
astrological measurement) and 
IAT (which is based upon 
atomic measurements) is kept 
to below 0.5 seconds

UT 2

correction to UTO because of 
polar motion

Name Description Note

UT1

Correction of UT1 because of variation 
in the speed of rotation of the earth 

Duration of 9_192_631_770 periods 
of the radiation corresponding to the
transition between two hyperfine 
levels of the ground state of the
Caesium - 133 atom

Seconds(3)

International 
Atomic Time 
(IAT)

Based upon Caesium 
atomic clock

Coordinated 
Universial 
Time (UTC)

An IAT clock synchronized to 
UT2 by the addition of 
occasional leap ticks

Accuracy of current Caesium
atomic clocks deemed to be 
one part of 10^13
(that is, one clock error per 
300,000 years)
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Access to a Clock

by having direct access to the environment's time frame 
(e.g. GPS also provides a UTC service)

by using an internal hardware clock that gives an 
adequate approximation to the passage of time in the 
environment
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package Ada.Calendar is
type Time is private;

Calendar

subtype Year_Number is Integer range 1901..2099;
subtype Month_Number is Integer range 1..12;
subtype Day_Number is Integer range 1..31;
subtype Day_Duration is Duration range 0.0..86_400.0;

function Clock return Time; 

function Year(Date:Time) return Year_Number;
function Month(Date:Time) return Month_Number;
function Day(Date:Time) return Day_Number;
function Seconds(Date:Time) return Day_Duration;
procedure Split(Date:in Time; Year:out Year_Number;   

Month:out Month_Number; Day:out Day_Number;
Seconds:out Day_Duration);

function Time_Of(Year:Year_Number; Month:Month_Number;
Day:Day_Number; Seconds:Day_Duration := 0.0) return Time;
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function "+"(Left:Time; Right:Duration) return Time;

function "+"(Left:Duration; Right:Time) return Time;

function "-"(Left:Time; Right:Duration) return Time;

function "-"(Left:Time; Right:Time) return Duration;

function "<"(Left,Right:Time) return Boolean;

function "<="(Left,Right:Time) return Boolean;

function ">"(Left,Right:Time) return Boolean;

function ">="(Left,Right:Time) return Boolean;

Calendar II

Time_Error:exception;

-- Time_Error may be raised by Time_Of, 

-- Split, Year, "+" and "-"

private

implementation-dependent

end Ada.Calendar;
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Calendar III

A value of the private type Time is a combination of the 
date and the time of day
The time of day is given in seconds from midnight
Seconds are described in terms of a subtype 
Day_Duration
Which is, in turn, defined by means of Duration
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Duration

This fixed point type Duration is one of the predefined 
scalar types and has a range which, although 
implementation dependent, must be at least -86_400.0 
.. +86_400.0
The value 86_400 is the number of seconds in a day
The accuracy of Duration is also implementation 
dependent but the smallest representable value 
Duration'Small must not be greater than 20 
milliseconds
It is recommended in the ARM that it is no greater than 
100 microseconds
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Example Use

The other language clock is provided by the optional package 
Real_Time

This has a similar form to Calendar but is intended to give a 
finer granularity
The value of Tick must be no greater than one millisecond; 
the range of Time (from the epoch that represents the 
program's start-up) must be at least fifty years

declare
Old_Time, New_Time : Time;
Interval : Duration;

begin
Old_Time := Clock;
-- other computations
New_Time := Clock;
Interval := New_Time - Old_Time;

end;
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Real-Time Clock
package Ada.Real_Time is

type Time is private;
Time_First: constant Time;
Time_Last: constant Time;
Time_Unit: constant := implementation_defined_real_number;

type Time_Span is private;

Time_Span_First: constant Time_Span;

Time_Span_Last: constant Time_Span;

Time_Span_Zero: constant Time_Span;

Time_Span_Unit: constant Time_Span;

Tick: constant Time_Span;

function Clock return Time;
function "+" (Left: Time; Right: Time_Span) return Time;

function "+" (Left: Time_Span; Right: Time) return Time;
-- similarly for "-", "<",etc
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function To_Duration(TS: Time_Span) return Duration;

function To_Time_Span(D: Duration) return Time_Span;

Real-Time Clock II

function Nanoseconds (NS: Integer) return Time_Span;

function Microseconds(US: Integer) return Time_Span;

function Milliseconds(MS: Integer) return Time_Span;

type Seconds_Count is range implementation-defined;

procedure Split(T : in Time; SC: out Seconds_Count; 

TS : out Time_Span);

function Time_Of(SC: Seconds_Count; 

TS: Time_Span) return Time;

private

-- not specified by the language

end Ada.Real_Time;
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Metrics

Time_Unit is the smallest amount of real time 
representable by the Time type 

The value of Tick must be no greater than 1 
millisecond

The range of Time (from the epoch that represents the 
program's start-up) must be at least 50 years 

Other important features of this time abstraction are 
described in the Real-Time Annex
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declare

use Ada.Real_Time;

Start, Finish : Time;

Interval : Time_Span := To_Time_Span(1.7);

begin

Start := Clock;

-- sequence of statements

Finish := Clock;

if Finish - Start > Interval then

raise Time_Error; -- a user-defined exception

end if;

end;

Example: Timing a Sequence 
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Clocks in Real-Time Java

Similar to those in Ada
java.lang.System.currentTimeMillis returns 
the number of milliseconds since 1/1/1970 GMT and is 
used by used by java.util.Date
Real-time Java adds real-time clocks with high 
resolution time types



©
 A

la
n 

B
ur

ns
 a

nd
 A

nd
y 

W
el

lin
gs

, 2
00

1

RT Java Time Types
public abstract class HighResolutionTime implements

java.lang.Comparable
{
public abstract AbsoluteTime absolute(Clock clock,

AbsoluteTime destination);

... 

public boolean equals(HighResolutionTime time);

public final long getMilliseconds();
public final int getNanoseconds();

public void set(HighResolutionTime time);
public void set(long millis);
public void set(long millis, int nanos);

}



public class AbsoluteTime extends HighResolutionTime
{
// various constructor methods including
public AbsoluteTime(AbsoluteTime T);
public AbsoluteTime(long millis, int nanos);

public AbsoluteTime absolute(Clock clock, AbsoluteTime dest);

public AbsoluteTime add(long millis, int nanos);
public final AbsoluteTime add(RelativeTime time);

...

public final RelativeTime subtract(AbsoluteTime time);
public final AbsoluteTime subtract(RelativeTime time);

}



public class RelativeTime extends HighResolutionTime
{
// various constructor methods including
public RelativeTime(long millis, int nanos);
public RelativeTime(RelativeTime time);

public AbsoluteTime absolute(Clock clock, 
AbsoluteTime destination); 

public RelativeTime add(long millis, int nanos);
public final RelativeTime add(RelativeTime time);

public void addInterarrivalTo(AbsoluteTime destination);

public final RelativeTime subtract(RelativeTime time);

...
}

public class RationalTime extends RelativeTime
{ . . .}
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RT Java: Clock Class

public abstract class Clock
{
public Clock();

public static Clock getRealtimeClock();

public abstract RelativeTime getResolution();

public AbsoluteTime getTime();
public abstract void getTime(AbsoluteTime time);

public abstract void setResolution(RelativeTime resolution);

}
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RT Java: Measuring Time

{
AbsoluteTime oldTime, newTime;
RelativeTime interval;
Clock clock = Clock.getRealtimeClock();

oldTime = clock.getTime();
// other computations
newTime = clock.getTime();

interval = newTime.subtract(oldTime);

}
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Clocks in C and POSIX

ANSI C has a standard library for interfacing to 
“calendar” time
This defines a basic time type time_t and several 
routines for manipulating objects of type time

POSIX requires at least one clock of minimum resolution 
50 Hz (20ms)
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POSIX Real-Time Clocks
#define CLOCK_REALTIME ...; // clockid_t type

struct timespec {
time_t tv_sec;   /* number of seconds */
long   tv_nsec;  /* number of nanoseconds */

};
typedef ... clockid_t;

int clock_gettime(clockid_t clock_id, struct timespec *tp);
int clock_settime(clockid_t clock_id, const struct timespec *tp);
int clock_getres(clockid_t clock_id, struct timespec *res);

int clock_getcpuclockid(pid_t pid, clockid_t *clock_id);
int clock_getcpuclockid(pthread_t thread_id, clockid_t *clock_id);

int nanosleep(const struct timespec *rqtp, struct timespec *rmtp);
/* nanosleep return -1 if the sleep is interrupted by a */
/* signal. In this case, rmtp has the remaining sleep time */



©
 A

la
n 

B
ur

ns
 a

nd
 A

nd
y 

W
el

lin
gs

, 2
00

1

Delaying a Process
In addition to clock access, processes must also be able to 
delay their execution either for a relative period of time or 
until some time in the future
Relative delays
Start := Clock; -- from calendar
loop

exit when (Clock - Start) > 10.0;
end loop;

To eliminate the need for these busy-waits, most languages 
and operating systems provide some form of delay primitive
In Ada, this is a delay statement
delay 10.0;

In POSIX: sleep and nanosleep
Java: sleep; RT Java provides a high resolution sleep
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Delays

Time specified by 
program

Granularity 
difference 
between 
clock and 
delay

Interrupts 
disabled

Process runnable 
here but not 
executable

Process 
executing

Time



©
 A

la
n 

B
ur

ns
 a

nd
 A

nd
y 

W
el

lin
gs

, 2
00

1

Absolute Delays

-- Ada
START := Clock;
FIRST_ACTION;
delay 10.0 - (Clock - START);
SECOND_ACTION;

Unfortunately, this might not achieve the desired result
START := Clock;
FIRST_ACTION;
delay until START + 10.0;
SECOND_ACTION;

As with delay, delay until is accurate only in its 
lower bound
RT Java - sleep can be relative or absolute
POSIX requires use of  an absolute timer and signals
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Drift

The time over-run associated with both relative and 
absolute delays is called the local drift and it it cannot 
be eliminated
It is possible, however, to eliminate the cumulative drift
that could arise if local drifts were allowed to 
superimpose 
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Regular Activity

task T;

task body T is
begin

loop
Action;
delay 5.0;

end loop;
end T;

Cannot delay for less than
5 seconds

local and cumulative drift
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Periodic Activity

task body T is
Interval : constant Duration := 5.0;
Next_Time : Time;

begin
Next_Time := Clock + Interval;
loop

Action;
delay until Next_Time;
Next_Time := Next_Time + Interval;

end loop;
end T; Will run on average

every 5 seconds

local drift only
If Action takes 6 seconds, the delay
statement will have no effect
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Control Example

with Ada.Real_Time; use Ada.Real_Time;
with Data_Types; use Data_Types;
with IO; use IO;
with Control_Procedures;
use Control_Procedures;
procedure Controller is 

task Temp_Controller;

task Pressure_Controller;
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Control Example II

task body Temp_Controller is
TR : Temp_Reading; HS : Heater_Setting;
Next : Time;
Interval : Time_Span := Milliseconds(30);

begin
Next := Clock;  -- start time
loop

Read(TR);
Temp_Convert(TR,HS);
Write(HS);
Write(TR);
Next := Next + Interval;
delay until Next;

end loop;
end Temp_Controller;
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Control Example III
task body Pressure_Controller is

PR : Pressure_Reading; PS : Pressure_Setting;
Next : Time;
Interval : Time_Span := Milliseconds(70);

begin
Next := Clock;  -- start time
loop

Read(PR);
Pressure_Convert(PR,PS);
Write(PS);
Write(PR);
Next := Next + Interval;
delay until Next;

end loop;
end Pressure_Controller;

begin
null;

end Controller;
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Ada Task States

executing

created

non-existing

finalising

activating completed

non-existing

terminated

waiting child 
activation

waiting dependent 
termination

delayed

delay

delay interval expires
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Timeouts: Shared Variable Communication

Timeout can be applied to condition synchronization facilities:
– semaphores, e.g. POSIX
if(sem_timedwait(&call, &timeout) < 0) {

if ( errno ==  ETIMEDOUT) {
/* timeout occurred */

}
else { /* some other error */ }

} else {
/* semaphore locked */

};

– conditional critical regions
– condition variables in monitors, mutexes or synchronized methods
– entries in protected object

POSIX also allows a timeout whilst waiting for a mutex lock
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Message-Passing and Timeouts
task Controller is

entry Call(T : Temperature);
end Controller;

task body Controller is
-- declarations, including
New_Temp : Temperature;

begin
loop
accept Call(T : Temperature) do 

New_Temp := T; 
end Call;
-- other actions

end loop;
end Controller;
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Message-Passing and Timeouts
task Controller is
entry Call(T : Temperature);

private entry Timeout;
end Controller;
task body Controller is
task Timer is
entry Go(D : Duration);

end timer;
task body Timer is separate;
-- other declarations

begin
loop
Timer.Go(10.0);
select
accept Call(T : Temperature) do 

New_Temp := T; 
end Call;

or
accept Timeout;
-- action for timeout

end select;
-- other actions

end loop;
end Controller;

task body timer is
DU : Duration;

begin
accept Go(D : Duration) do 

Timeout_Value := d; 
end Go;
delay Timeout_Value;
Controller.Timeout;

end timer;
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Message-Passing and Timeouts

task Controller is
entry Call(T : Temperature);

end Controller;

task body Controller is
-- declarations

begin
loop
select
accept Call(T : Temperature) do
New_Temp := T;

end Call;
or
delay 10.0;
-- action for timeout

end select;
-- other actions

end loop;
end Controller;
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Message Passing: Absolute Delays
task Ticket_Agent is
entry Registration(...);

end Ticket_Agent;

task body Ticket_Agent is
-- declarations
Shop_Open : Boolean := True;

begin
while Shop_Open loop
select
accept Registration(...) do
-- log details

end Registration;
or
delay until Closing_Time;
Shop_Open := False;

end select;
-- process registrations

end loop;
end Ticket_Agent;

Within Ada, it make no sense to 
mix an else part, a terminate 
alternative and delay alternatives
These three structures are 
mutually exclusive; a select 
statement can have, at most, only 
one of them
However, the select can have a 
number of delays but they must 
all be of the same kind (that is, 
delays or delay untils).
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Timeout on Message Send
loop
-- get new temperature T
Controller.Call(T);

end loop;

loop
-- get new temperature T
select
Controller.Call(T);

or
delay 0.5;
null;

end select;
end loop;

select
T.E   -- entry E in task T

else
-- other actions

end select;

The null is not strictly needed but 
shows that again the delay can have
arbitrary statements following, 
that are executed if the delay expires 
before the entry call is accepted
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Timeouts and Entries

The above examples have used timeouts on inter-task 
communication; it is also possible, within Ada, to do 
timed (and conditional) entry call on protected objects

select
P.E ; -- E is an entry in protected object P

or  
delay 0.5;

end select;
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Timeouts on Actions

select
delay 0.1;

then abort
-- action

end select;

If the  action takes too long, the triggering event will be 
taken and the action will be aborted
This is clearly an effective way of catching run-away 
code
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Imprecise Computation: Ada
declare
Precise_Result : Boolean;

begin
Completion_Time := ...
-- compulsory part
Results.Write(...); -- call to procedure in

-- external protected object
select
delay until Completion_Time;
Precise_Result := False;

then abort
while Can_Be_Improved loop
-- improve result
Results.Write(...);

end loop;
Precise_Result := True;

end select;
end;
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Real-Time Java

With Real-Time Java, timeouts on actions are provided by a 
subclass of AsynchronouslyInterruptedException
called Timed

public class Timed extends AsynchronouslyInterruptedException
implements java.io.Serializable

{
public Timed(HighResolutionTime time) throws

IllegalArgumentException;

public boolean doInterruptible(Interruptible logic);

public void resetTime(HighResolutionTime time);
}
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Imprecise Computation: RT Java
public class PreciseResult
{
public resultType value; // the result
public boolean preciseResult; // indicates if it is imprecise

}

public class ImpreciseComputation {
private HighResolutionTime CompletionTime;
private PreciseResult result = new PreciseResult();

public ImpreciseComputation(HighResolutionTime T)
{
CompletionTime = T; //can be absolute or relative

}

private resultType compulsoryPart() 
{ 
// function which computes the compulsory part

};



public PreciseResult Service()  // public service
{
Interruptible I = new Interruptible() 
{
public void run(AsynchronouslyInterruptedException exceptio

throws AsynchronouslyInterruptedException
{
// this is the optional function which improves on the
// compulsory part
boolean canBeImproved = true;

while(canBeImproved) 
{
// improve result
synchronized(this) {
// write result --
// the synchronized statement ensures
// atomicity of the write operation

}
}
result.preciseResult = true;

}

public void interruptAction(
AsynchronouslyInterruptedException exception) 

{
result.preciseResult = false;

}
};



Timed t = new Timed(CompletionTime); 

result.value = compulsoryPart(); // compute the compulsory part
if(t.doInterruptible(I)) { 
// execute the optional part with the timer
return result;

} else { ... };
}

}
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POSIX

POSIX does not support ATC and, therefore, it is difficult 
to get the same effect as Ada and RT Java
POSIX does support Timers (see later)
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Specifying Timing Requirements

Work on a more rigorous approach to this aspect of real-
time systems has followed two largely distinct paths:

The use of formally defined language semantics and 
timing requirements, together with notations and logics 
that enable temporal properties to be represented and 
analysed
A focus on the performance of real-time systems in 
terms of the feasibility of scheduling the required work 
load on the available resources (processors and so on)
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Timing Verification

The verification of a real-time system can thus be 
interpreted as requiring a two stage process:
verifying requirements — given an infinitely fast reliable 
computer, are the temporal requirements coherent and 
consistent, that is, have they the potential to be 
satisfied?
verifying the implementation — with a finite set of 
(possible unreliable) hardware resources, can the 
temporal requirements be satisfied?
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Temporal Scopes

deadline — the time by which the execution of a TS must 
be finished;
minimum delay — the minimum amount of time that 
must elapse before the start of execution of a TS;
maximum delay — the maximum amount of time that 
can elapse before the start of execution of a TS;
maximum execution time — of a TS;
maximum elapse time — of a TS.

Temporal scopes with combinations of these attributes are 
also possible



Now

Time

Deadline

a

b

c

Minimum delay
Maximum delay

Maximum 
elapse time

Units of executionMaximum execution time = a + b +c
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Temporal Scopes

Can be 
– Periodic
– Sporadic 
– Aperiodic

Deadlines can be:
Hard
Soft
Interactive — performance issue
Firm
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Specifying Processes and TS

process periodic_P;
...

begin
loop
IDLE
start of temporal scope

...
end of temporal scope

end;
end;

The time constraints take the form of maximum and/or 
minimum times for IDLE and the requirement that the 
end of the temporal scope be by some deadline
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Deadline 

The deadline can itself be expressed in terms of either

absolute time
execution time since the start of the temporal scope, or
elapsed time since the start of the temporal scope.
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Aperiodic Processes

process aperiodic_P;
...

begin
loop
wait for interrupt
start of temporal scope
...

end of temporal scope
end;

end;
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Language Support for TS

Ada and C/POSIX
Real-Time Euclid and Pearl
Real-Time Java
DPS
Esteral
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task body Periodic_T is
Release_Interval : Duration := ...; -- or
Release_Interval : Time_Span := Milliseconds(...);

begin
-- read clock and calculate the next
-- release time (Next_Release)
loop
-- sample data (for example) or
-- calculate and send a control signal
delay until Next_Release;
Next_Release := Next_Release + Release_Interval;

end loop;
end Periodic_T;

Ada: Periodic Task
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POSIX: Periodic Thread
#include <signal.h>
#include <time.h>
#include <pthread.h>
void periodic_thread() /* destined to be the thread */
{
int signum;                 /* signal caught */
sigset_t set;               /* signals to be waited for */
struct sigevent sig;        /* signal information */
timer_t periodic_timer;     /* timer for a periodic thread */
struct itimerspec required, old;  /* timer details */
struct timespec first, period;    /* start and repetition */
long Thread_Period = ....   /* actual period in nanoseconds */



/* set up signal interface */
sig.sigev_notify = SIGEV_SIGNALS;

sig.sigev_signo = SIGRTMIN; /* for example */

/* allow, e.g., 1 sec from now for system initialisation */

CLOCK_GETTIME(CLOCK_REALTIME, &first);  /* get current time */
first.tv_sec = first.tv_sec + 1;     
period.tv_sec = 0;         /* set repetition value to period*/

period.tv_nsec = Thread_Period;
required.it_value = first;  /* initialise timer details */
required.it_interval = period;

TIMER_CREATE(CLOCK_REALTIME, &sig, &periodic_timer); 
SIGEMPTYSET(&set);         /* initialise signal set to null */

SIGADDSET(&set, SIGRTMIN);  /* only allow timer interrupts*/
TIMER_SETTIME(periodic_timer, 0, &required, &old);



/* enter periodic loop */
while(1) {
SIGWAIT(&set, &signum);
/* code to be executed each period here */

}      
}

int init() 
{
pthread_attr_t attributes;      /* thread attributes */
pthread_t PT;                   /* thread pointer */

PTHREAD_ATTR_INIT(&attributes); /* default attributes */
PTHREAD_CREATE(&PT, &attributes, 

(void *) periodic_thread, (void *)0);
}
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Ada: Sporadic Task

A sporadic task that is triggered by an interrupt would 
contain no explicit time information but would, typically, 
use a protected object to handle the interrupt and 
release the task for execution

protected Sporadic_Controller is
procedure Interrupt; -- mapped onto interrupt
entry Wait_For_Next_Interrupt;

private
Call_Outstanding : boolean := false;

end Sporadic_Controller;



protected Sporadic_Controller is
procedure Interrupt is
begin

Call_Outstanding := True;
end Interrupt;
entry Wait_For_Next_Interrupt

when Call_Outstanding is
begin

Call_Outstanding := False;
end Wait_For_Next_Interrupt;

end Sporadic_Controller;

task body Sporadic_T is
begin

loop
Sporadic_Controller.Wait_For_Next_Interrupt;
-- action

end loop;
end Sporadic_T;
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Real-Time Euclid

1. periodic frameInfo first activation timeOrEvent

2. atEvent conditionId frameInfo

The clause frameInfo defines the periodicity of the 
process (including the maximum rate for sporadic 
processes).

The simplest form this can take is an expression in real-
time units:
frame realTimeExpn

The value of these units is set at the beginning of the 
program
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Periodic Process

A periodic process can be activated for the first time by
– having a start time defined 
– waiting for an interrupt to occur
– waiting for either of above

The syntax for timeOrEvent must, therefore, be one of 
the following

atTime realTimeExpn
atEvent conditionId
atTime realTimeExpn or atEvent conditionId

conditionId is a condition variable associated with an 
interrupt; it is also used with sporadic processes
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RT Euclid: Example

A cyclic temperature controller with periodicity 60 units (every
minute if the time unit is set to 1 second) which become active 
after 600 units or when a startMonitoring interrupt arrives
realTimeUnit := 1.0  % time unit = 1 seconds

var Reactor: module  % Euclid is module based
var startMonitoring : activation condition atLocation 16#A10D
% This defines a condition variable which is
% mapped onto an interrupt

process TempController : periodic
frame 60 first activation
atTime 600 or atEvent startMonitoring

% import list
%
% execution part
%
end TempController

end Reactor 

Note: no loop; scheduler 
controls the activation
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Ada Equivalent

task body Temp_Controller is
-- definitions, including
Next_Release : Duration;

begin
select
accept Start_Monitoring; 
-- or a timed entry call
-- onto a protected object

or
delay 600.0;

end select;
Next_Release := Clock + 60.0;

-- take note of next release time
loop
-- execution part
delay until Next_Release;
Next_Release := Next_Release + 60.0;

end loop;
end Temp_Controller;
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Pearl
Provides explicit timing information concerning the start, frequency 
and termination of processes
EVERY 10 SEC ACTIVATE T

To activate at a particular point in time (say 12.00 noon each day):
AT 12:00:00 ACTIVATE LUNCH

A sporadic task, S, released by an interrupt, IRT, is defined by
WHEN IRT ACTIVATE S;

or if an initial delay of one second is required:
WHEN IRT AFTER 1 SEC ACTIVATE S;

A task in Pearl can be activated by a time schedule or an interrupt 
but not both:
AFTER 10 MIN ALL 60 SEC ACTIVATE TempController;

WHEN startMonitoring ALL 60 SEC ACTIVATE TempController;

The term ALL 60 SEC means repeat periodically, after the first 
execution, every 60 seconds
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Real-Time Java

Objects which are to be scheduled must implement the 
Schedulable interface; objects must also specify their:
– memory requirements via the class MemoryParameters 
– scheduling requirements via the class SchedulingParameters
– timing requirements via the class ReleaseParameters

public abstract class ReleaseParameters {
protected ReleaseParameters(RelativeTime cost, 

RelativeTime deadline, AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler);

public RelativeTime getCost(); 
public AsyncEventHandler getCostOverrunHandler();

public RelativeTime getDeadline();
public AsyncEventHandler getDeadlineMissHandler();

// methods for setting the above
}
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Release Parameters

A schedulable object can have a deadline and a cost
associated with each time it is released for execution
The cost is the amount of execution time that a scheduler 
should give to the object
If the object is still executing when either its deadline or its
cost expire, the  associated event handlers are scheduled
Noted:
– RTJ  does not require an implementation to support execution 

time monitoring
– RTJ does require an implementation to detect missed deadlines.
– The release events for sporadic and aperiodic threads are 

currently not well-defined

A program can indicate that it is not concerned with a 
missed deadline by passing a null handler
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public class PeriodicParameters extends ReleaseParameters
{
public PeriodicParameters(

HighResolutionTime start,
RelativeTime period, 
RelativeTime cost,
RelativeTime deadline, 
AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler);

public RelativeTime getPeriod();
public HighResolutionTime getStart();
public void setPeriod(RelativeTime period);
public void setStart(HighResolutionTime start);

}

Periodic Parameters
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Aperiodic and Sporadic Release Parameters

public class AperiodicParameters extends ReleaseParameters
{
public AperiodicParameters(RelativeTime cost,

RelativeTime deadline, AsyncEventHandler overrunHandler,
AsyncEventHandler missHandler);

}

public class SporadicParameters extends AperiodicParameters
{
public SporadicParameters(RelativeTime minInterarrival, 

RelativeTime cost, RelativeTime deadline,
AsyncEventHandler overrunHandler, 
AsyncEventHandler missHandler);

public RelativeTime getMinimumInterarrival();
public void setMinimumInterarrival(RelativeTime minimum);

}
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Real-Time Threads
public class RealtimeThread extends java.lang.Thread 

implements Schedulable 
{
public RealtimeThread(SchedulingParameters s, ReleaseParameters r);
. . .

// methods for implementing the Schedulable interface
public synchronized void addToFeasibility();
. . .

public static RealtimeThread currentRealtimeThread(); 

public synchronized void schedulePeriodic();
// add the thread to the list of schedulable objects
public synchronized void deschedulePeriodic();
// remove the thread from the list of schedulable object
// when it next issues a waitForNextPeriod
public boolean waitForNextPeriod() throws ...;

public synchronized void interrupt();
// overrides java.lang.Thread.interrupt()

public static void sleep(Clock c, HighResolutionTime time) throws ...; 
}
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RT Java: Periodic Thread

public class Periodic extends RealtimeThread
{

public Periodic( PriorityParameters PP, 
PeriodicParameters P)

{ ... };

public void run()
{

while(true) {
// code to be run each period
...

waitForNextPeriod();
}

}

}
PriorityParameters are a subclass of
SchedulingParameters -- see later
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RT Java: Periodic Thread Cont.

{
AbsoluteTime A = new AbsoluteTime(...);

PeriodicParameters P = new PeriodicParameters(
A, new RelativeTime(10,0),
new RelativeTime(1,0), new RelativeTime(5,0),

null,  null );

PriorityParameters PP = new PriorityParameters(...);

Periodic ourThread = new Periodic(PP, P); //create thread

ourThread.start(); // release it

}
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DPS

Whereas Pearl, RT Euclid and RT Java have associate 
temporal scopes with processes, and, therefore, 
necessitate the specification of timing constraints on the 
process itself, other languages such as DPS provide 
local timing facilities that apply at the block level

In general, a DPS temporal block (scope) may need to 
specify three distinct timing requirements (these are 
similar to the more global requirements discussed 
earlier):
– delay start by a known amount of time;
– complete execution by a known deadline;
– take no longer than a specified time to undertake a computation
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DPS: Coffee Making Example
get_cup
put_coffee_in_cup
boil_water
put_water_in_cup
drink_coffee
replace_cup

Instant coffee

The act of making a cup of coffee should take no more 
than 10 minutes; drinking it is more complicated
A delay of 3 minutes should ensure that the mouth is 
not burnt
The cup itself should be emptied within 25 minutes (it 
would then be cold) or before 17:00 (that is, 5 o'clock 
and time to go home)
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DPS: Coffee Example Continued

Two temporal scopes are required:

start elapse 10 do
get_cup
put_coffee_in_cup
boil_water
put_water_in_cup

end

start after 3 elapse 25 by 17:00 do
drink_coffee
replace_cup

end
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DPS: Coffee Example Continued

For a temporal scope that is executed repetitively, a 
time loop construct is useful:
from <start> to <end> every <period>

For example, many software engineers require regular 
coffee throughout the working day:

from 9:00 to 16:15 every 45 do
make_and_drink_coffee
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Esterel

Synchronous Hypothesis: Ideal systems produce their 
outputs synchronously with their inputs
Hence all computation and communication is assumed to take 
zero time (all temporal scopes are executed instantaneously)
module periodic;

input tick;
output result(integer);
var V : integer in

loop
await 10 tick;
-- undertake required computation to set V

emit result(v);
end

end

A sporadic module has an identical form
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Esterel

One consequence of the synchronous hypothesis is that 
all actions are atomic
This behaviour significantly reduces nondeterminism
Unfortunately it also leads to potential causality 
problems
signal S in

present S else emit S end
end

This program is incoherent: if S is absent then it is 
emitted; on the other hand if it were present it would not 
be emitted
A formal definition of the behavioral semantics of Esterel
helps to eliminate these problems
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Fault Tolerance

A deadline could be missed in a `proven’ system if:

worst-case calculations were inaccurate
assumptions made in the schedulability checker were 
not valid
the schedulability checker itself had an error
the scheduling algorithm could not cope with a load 
even though it is theoretically schedulable
the system is working outside its design parameters
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Fault Tolerance of Timing Failures

It is necessary to be able to detect:
– overrun of deadline
– overrun of worst-case execution time
– sporadic events occurring more often than predicted
– timeout on communications

The last three failures in this list do not necessary 
indicate that deadlines will be missed;:
– an overrun of WCET in one process might be compensated by a 

sporadic event occurring less often than the maximum allowed

Hence, the damage confinement and assessment 
phase of providing fault tolerance must determine what 
actions to take
Both forward and backward error recovery is possible
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Deadline Overrun Detection and FER

The Ada RTS is unaware of the timing requirements of 
its application tasks and has to provide primitive 
mechanisms to detect deadline overrun
This is achieved using the asynchronous transfer of 
control facility
A similar approach can be used to detect a deadline 
overrun in a sporadic task



task body Periodic_T is
Next_Release : Time;
Next_Deadline : Time;
Release_Interval : constant Time_Span := Milliseconds(...);
Deadline : constant Time_Span := Milliseconds(...);

begin
-- read clock and calculate the Next_Releas and
-- Next_Deadline
loop

select
delay until Next_Deadline;
-- deadline overrun detected here perform recovery

then abort
-- code of application

end select;
delay until Next_Release;
Next_Release := Next_Release + Release_Interval;
Next_Deadline := Next_Release + Deadline;

end loop;
end Periodic_T;
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Problem with Ada Approach

It assumes  that the recovery strategy requires the task 
to stop what it is doing
This is one option but there are other approaches; for 
example, allowing the task to continue its execution at a 
different priority
For these, a more appropriate response to detecting a 
deadline overrun is to raise an asynchronous event
In Real-Time Java, the virtual machine will signal an 
asynchronous event when a periodic thread is still 
executing when its deadline has passed
Sporadic event handlers, in Real-Time Java, have no 
explicit deadline overrun detection; they are assumed to 
be soft.
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Timers in POSIX
#define TIMER_ABSTIME ..

struct itimerspec {
struct timespec it_value; /* first timer signal */
struct timespec it_interval; /* subsequent intervals */

};

typedef ... timer_t_t;

int timer_create(clockid_t clock_id, struct sigevent *evp,
timer_t *timerid);

int timer_delete(timer_t timerid);

int timer_settime(timer_t timerid, int flags, 
const struct itimerspec *value,
struct itimerspec *ovalue);

int timer_gettime(timer_t timerid,
struct itimerspec *value);

int timer_getoverrun(timer_t timerid);
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Watchdog Timer in POSIX
#include <signal.h>
#include <timer.h>
#include <pthread.h>

timer_t timer;/* timer shared between monitor and server*/

struct timespec deadline = ...;
struct timespec zero = ...;

struct itimerspec alarm_time, old_alarm;

struct sigevent s; 

void server(timer_t *watchdog) 
{

/* perform required service */
TIMER_DELETE(*watchdog);

}
A monitor thread checks the progress on a 
server thread to ensure it meets its deadline



void watchdog_handler(int signum, siginfo_t *data, 
void *extra)

{ /* SIGALRM handler */

/* server is late */
/* undertake some recovery */

}

void monitor()
{

pthread_attr_t attributes;
pthread_t serve;

sigset_t mask, omask;
struct sigaction sa, osa;
int local_mode;

SIGEMPTYSET(&mask);
SIGADDSET(&mask, SIGALRM);

sa.sa_flags = SA_SIGINFO;
sa.sa_mask = mask;
sa.sa_sigaction = &watchdog_handler;

SIGACTION(SIGALRM, &sa, &osa); /* assign handler */



alarm_time.it_value = deadline;
alarm_time.it_interval = zero; /* one shot timer */

s.sigev_notify = SIGEV_SIGNAL;
s.sigev_signo = SIGALRM;

TIMER_CREATE(CLOCK_REALTIME, &s, &timer);

TIMER_SETTIME(timer, TIMER_ABSTIME, &alarm_time, 
&old_alarm);

PTHREAD_ATTR_INIT(&attributes);
PTHREAD_CREATE(&serve, &attributes, 

(void *)server, &timer);



©
 A

la
n 

B
ur

ns
 a

nd
 A

nd
y 

W
el

lin
gs

, 2
00

1

RT Java: Timers

public abstract class Timer extends AsyncEvent
{

protected Timer(HighResolutionTimer time, Clock clock, 
AsyncEventHandler handler);

public ReleaseParameters createReleaseParameters();

public AbsoluteTime getFireTime();
public void reschedule(HighResolutionTimer time);

public Clock getClock();

public void disable();
public void enable();

public void start(); // start the timer ticking
}
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RT Java Timers Continued

public class OneShotTimer extends Timer
{

public OneShotTimer(HighResolutionTimer time,
AsyncEventHandler handler);

}

public class PeriodicTimer extends Timer
{
public PeriodicTimer(HighResolutionTimer start,

RelativeTime interval, AsyncEventHandler handler);
public ReleaseParameters createReleaseParameters();

public void setInterval(RelativeTime interval);
public RelativeTime getInterval();

public void fire();
public AbsoluteTime getFireTime();

}
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Timing Errors and DPS
With local time structures, it is also appropriate to 
associate timing errors with exceptions:
start <timing constraints> do

-- statements
exception

-- handlers
end

In a time dependent system, it may also be necessary to give 
the deadline constraints of the handlers
start elapse 22 do

-- statements
exception

when elapse_error within 3 do
-- handler

end
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Coffee Example Revisited
from 9:00 to 16:15 every 45 do

start elapse 11 do
get_cup; boil_water
put_coffee_in_cup; put_water_in_cup

exception
when elapse_error within 1 do

turn_off_kettle  -- for safety
report_fault; get_new_cup
put_orange_in_cup; put_water_in_cup

end
end
start after 3 elapse 26 do

drink
exception

when elapse_error within 1 do empty_cup end
end
replace_cup

exception
when any_exception do

null   -- go on to next iteration
end

end
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Overrun of WCET
The consequences of an error should be restricted to a 
well-defined region of the program
A process that consumes more of the CPU resource than 
has been anticipated may miss its deadline
If a high-priority process with a fair amount of slack time 
overruns its WCET, it may be a lower priority process with 
less slack available that misses its deadline
It should be possible to catch the timing error in the process 
that caused it; hence it is necessary to be able to detect 
when a process overruns its worst-case execution time
If a process is non pre-emptively scheduled (and does not 
block waiting for resources), its CPU execution time is 
equal to its elapse time and the same mechanisms that 
were used to detect deadline overrun can be used
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CPU Time Monitoring in POSIX
Uses the clock and timer facilities
Two clocks are defined: CLOCK_PROCESS_CPUTIME_ID and 
CLOCK_THREAD_CPUTIME_ID

These can be used in the same way as CLOCK_REALTIME
Each process/thread has an associated execution-time 
clock; calls to:
clock_settime(CLOCK_PROCESS_CPUTIME_ID, 
&some_timespec_value);

clock_gettime(CLOCK_PROCESS_CPUTIME_ID, 
&some_timespec_value);

clock_getres(CLOCK_PROCESS_CPUTIME_ID, 
&some_timespec_value)

will set/get the execution-time or get the resolution of the 
execution time clock associated with  the calling process 
(similarly for threads)
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CPU Time Monitoring Continued

Two functions allow a process/thread to  obtain and access 
the clock of another process/thread.

int clock_getcpuclockid(pid_t pid, clockid_t *clock_id);
int pthread_getcpuclockid(pthread_t thread_id, 

clockid_t *clock_id);

POSIX timers  can be used to create timers which will 
generate signals when the execution time has expired
As the signal generated by the expiry of the timer  is directed 
at the process, it is application-dependent  which thread will 
get the signal if a thread's execution-time timer expires
As with all execution time monitoring, it is difficult to 
guarantee the accuracy of the execution-time clock in the 
presence of context switches and interrupts
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WCET and RT Java

Real-Time Java allows a cost value to be associated 
with the execution of a schedulable object
If supported by the implementation, this  allows an 
asynchronous event to be fired if the cost is exceeded
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Overrun of Sporadic Events

A sporadic event firing more frequently than anticipated has 
an enormous consequence for a system with hard deadlines
It is necessary either to ensure that this is prohibited or to 
detect it when it occurs and take some corrective action
There are essentially two approaches to prohibiting sporadic 
event overrun
– If the event if from a hardware interrupt, the interrupt can be inhibited 

from occurring by manipulating the associated device control 
registers.

– Another approach is to use sporadic server  technology (see later)

Alternatively, it is necessary to detect when they are 
occurring too frequently; most real-time languages and 
operating systems are woefully lacking in support for this
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Timing Errors and BER

see book
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Summary
The introduction of the notion of time into real-time 
programming languages has been described in terms of four 
requirements
– access to a clock,
– delaying,
– timeouts,
– deadline specification and scheduling.

It is useful to introduce the notion of a temporal scope
– deadline for completion of execution
– minimum delay before start of execution
– maximum delay before start of execution
– maximum execution time
– maximum elapse time

Consideration was given as to how temporal scopes can be 
specified in programming languages 
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Summary

The degree of importance of timing requirements is a 
useful way of characterising real-time systems
Constraints that must be met are termed hard; those 
that can be missed occasionally, or by a small amount, 
are called firm or soft
To be fault tolerant of timing failures, it is necessary to 
be able to detect:
– overrun of deadline
– overrun of worst-case execution time
– sporadic events occurring more often than predicted
– timeout on communications.

Following detection, event-based reconfiguration may 
need to be undertaken


