

Tworzenie prostej animacji szkieletowej.

Autor: Krystian Pudlik 132843 L5

1. Ustalanie sposobu wyświetlania danych w obszarze roboczym.

- 1.1 Proszę uruchomić program Blender.
- 1.2 Proszę wybrać File -> User preferences (CTRL+ALT+U).

Rys. 1

1.3 W zaznaczonym oknie, w zakładce **Input** proszę ustawić następujące opcje:

*	- D ×					
Interface Editing		Input	Add-ons	Themes	File	System
Presets:	Blend	ler	🛊 🕂 📼 🛛 Name	2	÷ 🔎	
Blender 🗘 🕂 🗖	►	Window				
Mouse:	⊳	Screen				
Emulate 3 Button Mouse	⊳	View2D				
🗹 Continuous Grab	►	View2D Buttons List				
Drag Threshold: 5 px	►	Header				
Tweak Threshold: 10 px	₽	Grease Pencil				
Select With:	₽	3D View				
Left Right		Frames				
Double Click:	Þ	Markers				
(* Speed: 350)	►	Animation				
Emulate Numpad	₽	Animation Channels				
	▶	Graph Editor				
Orbit Style:	Þ	Dopesheet				
Turntable		NLA Editor				
Zoom Style:	⊳	Image				
Dolly \$	▶	Timeline				
Vertical Horizontal	Þ	Outliner				
Invert Mouse Zoom Directi	►	Node Editor				
Invert Wheel Zoom Direction	⊳	Sequencer				
View Navigation:	▶	Logic Editor				
Walk Fly	►	File Browser				
	⊳	Info				
Save User Settings Imp	port Key	/ Configuration] [E	Export Key Configura	tion		

Rys 2

Spowoduje to ustawienie następującego sterowania w obszarze roboczym:

(środkowy klawisz myszy) – obrót sceny
 Shift +
 – przesuwanie sceny
 Przytrzymanie
 – przesuwanie obiektu
 Scroll góra/dół
 – przybliżanie/oddalanie
 Klawisze NUM7, NUM9, NUM1, NUM3 – zwrócenie danej osi do monitora (X,Y,Z)
 Klawisze NUM4, NUM6, NUM8, NUM2 – stopniowe obracanie sceny
 NUM5 – rzut perspektywyczny/rzut prostopadły
 NUM0 – wł./wył. Widok z kamery

2. Podstawowe operacje na obiektach:

Transform User Pers Translate Rotate Scale	Default 🕂 🔀 Scene	Blender Render
 Translacja (Translate): Obrót (Rotate): R + (o Skalowanie (Scale): S Wyciąganie (Extrude): 	G + (opcjonalnie) X/Y/Z (do wybor pcjonalnie) X/Y/Z (do wyboru osi) ⊦ (opcjonalnie) X/Y/Z (do wyboru o E + (opcjonalnie) X/Y/Z (do wyboru	Rys. 3 u osi) si) u osi)

3. Najważniesze tryby pracy:

W Blenderze możemy pracować w kilku trybach. Domyślnym trybem jest **Object mode**, gdzie operujemy na całych obiektach. Tryb **Edit mode** pozwala edytować obiekty i rozszerza podstawowe operacje.

4. Przygotowywanie siatki

- 4.1. Tworzymy nowy projekt poprzez File -> New.
- 4.2. Dzielimy obszar roboczy na 2 obszary, by widziec obiekt z 2 innych perspektyw. Dzielenie wykonujemy poprzez najechanie na górną krawędź obszaru roboczego, kliknięcie ⁽¹⁾ oraz wybranie **"Split Area"**.

		Blender
) 🛛 🖁 Blender Render 🕴 🔌 vz	Area Options	Tris:12 Objects:1/3 Lamps:0/1 Mem:8.67M Cube
	Split Area	
	Join Area	Split selected area into new windows
		Python: bpy.ops.screen.area_split(mouse_x=902, mouse_y=983)

Rys. 5

Rys 6

W lewym obszarze ustawiamy widok z osią Y zwróconą do nas (patrz. 1.3)

W prawym obszarze ustawiamy widok z osią X skierowaną do nas (patrz. 1.3)

W lewym obszarze wybieramy tryb Edit Mode.

Rys 7

- 4.3. Wykonujemy następujące operacje (w lewym obszarze):
 - Wydłużamy siatkę (sześcian) dwukrotnie wzdłuż osi "Z" (S, Z, przesunięcie myszy, ⁴)
 - Zwężamy siatkę (sześcian) dwukrotnie wzgłuż osi "Y" (S, Y, przesunięcie mysz, ⁴)

4.4 W lewym obszarze należy przeciąć siatkę płaszczyzną równoległą do płaszczyzny "ZY" (CTRL+R).

UWAGA: Dokonaj niesymetrycznego podziału. Prawa cześć siatki powinna być mniejsza od lewej.

Rys. 9

4.5 Zaznaczamy wierzchołki siatki należące do lewej bocznej ściany siatki (SHIFT + 🖤)

UWAGA: Zaznaczamy/Odznaczamy wszystkie wierzchołki klawiszem A (jeśli jest taka potrzeba)

4.6 Usuwamy zaznaczone wierzcholki (DEL) i wybieramy "Vertices". Efekt widoczny na rys. 12.

Rys. 11

Rys. 12

4.7 Zaznaczamy wszystkie wierzchołki (A)

4.8 Włączamy modifier "mirror":

• Klikamy w panelu z prawej na "Modifiers"

• Wybieramy "Add modifier" -> Mirror

• Ustawiamy następujące opcje (powinno pojawić się lustrzane odbicie na osi X)

Opcja "clipping" zapobiega transferowi lustra przez obiekt.

4.9 Przysuwamy siatkę do lustra używając translacji po osi X (G,X, przesunięcie myszy, 🖤).

Rys. 15

4.10. Przecinamy siatkę dwoma płaszczyznami: równoległą do płaszczyzny **ZY** i drugą równoległą do płaszczyzny **XY** w takich proporcjach jak na poniższym rysunku (Rys. 16).

Rys. 16

4.11. Proszę zaznaczyć wskazany na rysunku 17 prostokąt

4.13. W analogiczny sposób proszę wyciągnąć "nogi", jak na rysunku 19.

Rys. 19

4.14. Proszę wskazać wielokąt, który można potraktować jako miejsce, w którym zaczyna się szyja (Rys. 20)

4.15. Poprzez kolejne transformacje uzyskamy model głowy (rys 21):

- Wyciągania szyi (E, Z, przesunięcie myszy, 🖤)
- Wyciągania 1/3 głowy (E, Z, przesunięcie myszy, 🖤)
- Skalowania (S, X, przesunięcie myszy, 🖤)

Rys. 21

4.16. Samodzielnie dokończyc model głowy, by uzyskać efekt jak na rysunku 22.

- 4.17. Zastosować wygładzanie siatki poprzez:
 - Zaznaczenie wszystkich wierzchołków (A)
 - Poddanie wierzchołków modyfikatorowi Suburf (kategoria Generte -> Subdivision Surface) podobnie jak poddanie modyfikatorowi mirror (pkt. 4.8).
 - Parametr View w zależności od mocy komputera, najlepiej 2 (wyższe wartości bardziej obciążają GPU).

Rys. 22

4.18. Dalsze modyfikacje siatko pozostawia się inwencji osoby realizującej ćwiczenie.

4.19. Na zakończenie tworzenia siatki należy przejść do **Object mode (TAB)** i zatwierdzić modyfikatory klikając na **"Apply"**

5. Tworzenie szkieletu

- 5.1. Korzystając z ⁽¹⁾ umieszczamy "celownik" "wewnątrz siatki" na wysokości krocza. W tym miejscu dodamy następny element sceny, poprzez:
 - Wciśnięcie spacji
 - Z menu wybrać Add Armature (użyj wyszukiwarki)
 - Przełączamy się na widok Wireframe, by widzieć wnętrze postaci:

Rys. 24

Rys. 25

Wewnątrz postaci pojawił się zaznaczony element (pierwsza kość szkieletu) jak na rysunku 25.

- 5.2. Zaznacz kość (jeśli nie jest zaznaczona), a następnie przejdź do Edit mode (TAB).
- 5.3. Stosując znaną metodę "wyciągania" (E, Z, przesunięcie myszy, [∭]) należy z pierwszej kości "wyciągnąć" kręgosłup postaci. Rezultat tworzenia tej części szkieletu pokazano na rysunku 26.

Rys. 26

- 5.4. Umieść celownik (🕒) w miejscu, gdzie powinna być zaczepiona kość ramienia.
- 5.5. Wciśnij spację i z listy wybierz "Add bone" (skorzystaj z wyszukiwarki).
- 5.6. Złap wstawioną kość (🎱) i "połóż" na ramieniu (rys 27). Efekt widać na rysunku 28.

Rys. 27

Rys. 27

5.7. Wyciągnij jeszcze jedną kość reprezentującą przedramię. Rezultat widać a rysunku 28.

Rys. 28

- 5.8. Połącz logicznie kość ramienia i przedramienia z kręgosłupem. (połączenie reprezentowane jest przez przerywaną linię jak na rys. 29) W tym celu:
 - Zaznacz jedną z kości ramienia
 - Przytrzymaj "Shift" i zaznacz jedną z kości kręgosłupa
 - Wciśnij **"CTRL+P**" i wybierz **"Keep offset"**

5.9. Zmień nazwy kości na następujące (2x 🖤).

UWAGA! Upewnij się, że przy zmianie nazwy zaznaczane są odpowiednie kośći!

- 5.10. Zaznacz obie kości ręki (SHIFT + 🕙).
- 5.11. Wciśnij (SHIFT + D), i przesuń kości poza siatkę. Zatwierdź klawiszem (¹). Efekt powinien być jak na rysunku 31.

5.12. Z panelu **"Armature"** wybierz **"Flip names"**. Operacja ta zamieni litery R (Right) w nazwach kości na L (Left).

Rys. 32

- 5.13. Odbij kości lustrzanie poprzez wybranie "Armature" -> Mirror -> X Global.
- 5.14. Przenieś odbite kości na lewą rękę na równi z prawymi koścmi. (rys. 33).

Rys. 33

- 5.15. Przejdź do Object mode (TAB).
- 5.16. Zaznacz siatkę , a następnie szkielet (SHIFT).
- 5.17. Wciśnij (CTRL+P) i wybierz "_With automatic weights". Ustawi to szkielet jako rodzica siatki. W zwiazku z tym jeśli szkielet zmieni położenie, to siatka też.

- 5.18. Zmień "Object mode" na "Pose mode".
- 5.19. Zaznacz kość przedramienia, wciśnij **"R"** i ruszaj myszą. Siatka powinna poruszać się razem ze szkieletem.

Rys. 35

6. Tworzenie prostej animacji.

Na samym dole okna programu znajduje się panel tworzenia animacji.

Zielona linie to aktualne położenie "filmu" w czasie.

Animacja sprowadza się do dodania kilku klatek w których ludzik będzie miał konkretne pozy.

	-50	-40	-30	-20	-10	0	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
۲	View	Marker	Frame	Playback	•	Start:		1 → < End:	25	0 🕨 <	0 🖻	*			o Sync	¢	0		G	1	

6.1. Włącz automatyczne dodawanie klatek kluczowych (rys. 36)

		View	Select	Pose	🌾 Pose Mod	e 🕴 🔘	÷ 📀 ‡	📇 🛴 💋	102	Global	•			2 \$	56	HR. Z)		
0	-50	Ê	-40	-30	-20	-10	0	10	20	30	40	50	60	70	80	90	100		Automatic keyframe insertion for Objects and Bones Python: ToolSettings.use keyframe insert auto bw. data.scenes("Scene"! tool settings.use keyframe insert auto
6		View	Marker	Frame	Playback	•	Start:	1 +	< End:	250		0)				o Sync	¢	0	e e e e e e e e e e e e e e e e e e e

6.2. Zmień tryb dolnego okna na Dope Sheet. (rys. 37)

W tym momencie każda zmiana położenia szkieletu spowoduje utworzenie klatki w miejscu zielonego kursora.

- 6.3. Ustaw zielony kursor na 0 klatkę (Prawym klawiszem myszy). Zaznacz kość i wykonaj rotację. Klatka kluczowa została dodana.
- 6.4. Ustaw zielony kursor na 100 klatkę. Wykonaj kolejną rotację (np. Wyżej, by ludzik machnął ręką).
- 6.5. Ustaw zielony kursor na 200 klatkę. Wyprostuj rękę, by była równolegle do ziemi (tak jak na początku).

6.6. Zmień tryb dolnego okna na "Timeline".

6.7. Ustaw kursor na 0 klatkę i kliknij PLAY (powinieneś zobaczyć animację).

- 6.8. Tworzony projekt na każdym etapie można zapisać do pliku ("File \rightarrow Save/Save As").
- 6.9. Utworzony wcześniej projekt można wprowadzić do programu Blender ("File → Open")
- 6.10. Powodzenia w realizacji własnych projektów!